Casio | fx-500ES | Casio fx-500ES User manual

Casio fx-500ES User manual
fx-500ES
Appendix
Apéndice
Appendice Lampiran
Apêndice
RCA502135-001V01
http://world.casio.com/edu/
#001
Math
MATH
'2c3e+
'1c2=
LINE
2'3+1
'2=
#002
1
2
11
3 — + 1— = 4 —
4
3
12
MATH
1'(()3e
1c4e+
Math
Math
1'(()1e2
c3=
LINE
3'1'4+
1'2'3=
1
1
4 – 3— = —
2
2
MATH
Math
4-1'(()
3e1c2=
LINE
4-3'1'2=
#003
LINE
21((%)=
–1 –
#004
LINE
150*20
1((%)=
#005
LINE
660/880
1((%)=
#006
LINE
2500+2500
*151((%)=
#007
LINE
3500-3500
*251((%)=
#008
LINE
168+98+
734=
-G*201((%)=
#009
LINE
(500+300)
/5001((%)=
–2 –
#010
LINE
(46-40)/
401((%)=
eeeeY8=
#011
LINE
2e0e30e=
#012
LINE
2e20e30e+
0e39e30e=
#013
LINE
2.255=
e
e
–3 –
#014
LINE
4 × 3 + 2.5 = 14.5
4 × 3 – 7.1 = 4.9
4*3+2.5=
A
d
YYYY
-7.1=
#015
LINE
9×6+3
5×8
= 1.425
9*6+3
1t(STO)e(B)
5*81t(STO)w(C)
Se(B)/Sw(C)=
–4 –
#016
Deg
LINE
s30)=
1s(sin–1)0.5)=
#017
LINE
w1(sinh)1)=
w5(cosh–1)1)=
#018
LINE
Deg
c15(π)1G(DRG')
2(r))=
c1001G(DRG')
3(g))=
#019
MATH
Math
Deg
1c(cos–1)y1)
=
Rad
1c(cos–1)y1)
=
Math
–5 –
#020
log216 = 4
Math
MATH
&2e16=
LINE
#021
l21)(,)
16)=
LINE
log16 = 1.204119983
l16)=
*1
#022
LINE
ln 90 (= loge90) = 4.49980967
i90)=
ln e = 1
iS5(e))=
#023
LINE
e10 = 22026.46579
1i(e^)10=
–6 –
#024
MATH
1.2 × 103 = 1200
Math
1.2*
1l($)3=
(1 + 1)2+2 = 16
Math
(1+1)62+2
=
#025
3
(52) = 15625
Math
(5w)
W=
MATH
('
2 + 1) ('
2 – 1) = 1
LINE
(!2)+1)
(!2)-1)=
5 32 = 2
516(")32)=
#026
2
LINE
(–2) 3 = 1.587401052
(y2)6
2'3)=
#027
LINE
3'
5 + 3 –27 = –1.290024053
1!(#)5)+
1!(#)y27)=
–7 –
#028
LINE
1
= 12
1 1
–
3 4
(3E-4E)E=
#029
Deg
(X, Y) = ('
2, '
2) → (r, θ)
Math
MATH
1+(Pol)!2e
1)(,)!2e)=
LINE
1+(Pol)!2)
1)(,)!2))=
#030
LINE Deg (r, θ) = (2, 30) → (X, Y)
1-(Rec)21)(,)
30)=
#031
LINE
(5+3)1E(x!)=
#032
Math
MATH
LINE
D2-7=
D2-7)=
–8 –
#033
LINE
1000
1.(Ran#)=
=
=
#034
LINE
101*(nPr)4=
101/(nCr)4=
#035
LINE
1234=
W
W
–9 –
#036
LINE
123=
1W(←)
1W(←)
#037
MATH
Math
15(π)*'2c5=
Math
f
#038
MATH
Math
!2e*!3=
Math
f
–10 –
#039
o = Σnx
Σ (x – o)2
n
2
x σ n –1 = Σ (x – o)
n–1
xσ n =
#040
1Nc4(STAT)1(ON)
N2(STAT)
STAT
1(1-VAR)
1= 2= 3= 4=
5= 6= 7= 8=
9= 10=
STAT
STAT
A
#041
STAT
11(STAT)2(Data)
STAT
11(STAT)3(Edit)1(Ins)
–11 –
STAT
ccccccccY
STAT
A
#042
STAT
11(STAT)2(Data)e
STAT
c2= c2= 2=
2= 3= 4= 2=
STAT
A
#043
11(STAT)4(Sum)
STAT
1(Σx2)=
STAT
11(STAT)4(Sum)
2(Σx)=
–12 –
#044
11(STAT)5(Var)
STAT
1(n)=
STAT
11(STAT)5(Var)2(o)=
STAT
11(STAT)5(Var)
3(xσn)=
#045
11(STAT)6(MinMax)
STAT
1(minX)=
STAT
11(STAT)6(MinMax)
2(maxX)=
–13 –
#046
o = Σnx
Σ (x – o)2
n
2
x σ n –1 = Σ (x – o)
n–1
Σy
p= n
2
y σ n = Σ (y – p)
n
2
y σ n –1 = Σ (y – p)
n–1
Σy – B.Σx
A=
n
n.Σxy – Σx .Σy
B= . 2
n Σx – (Σx)2
n .Σxy – Σx .Σy
r=
{n .Σx 2 – (Σx)2}{n .Σy 2 – (Σy)2}
y–A
m=
B
n = A + Bx
xσ n =
–14 –
#047
x
y
x
y
1.0
1.2
1.5
1.6
1.9
1.0
1.1
1.2
1.3
1.4
2.1
2.4
2.5
2.7
3.0
1.5
1.6
1.7
1.8
2.0
1Nc4(STAT)2(OFF)
N2(STAT)
STAT
2(A+BX)1=
1.2= 1.5=
1.6= 1.9=
2.1= 2.4=
2.5= 2.7=
3=
STAT
STAT
ce1=
1.1= 1.2=
1.3= 1.4=
1.5= 1.6=
1.7= 1.8=
2=
STAT
STAT
A
–15 –
#048
11(STAT)4(Sum)
STAT
5(Σxy)=
11(STAT)5(Var)
STAT
3(xσn)=
11(STAT)6(MinMax)
STAT
4(maxY)=
–16 –
#049
11(STAT)7(Reg)
STAT
1(A)=
STAT
11(STAT)7(Reg)
2(B)=
STAT
11(STAT)7(Reg)3(r)=
#050
STAT
*1
y311(STAT)
7(Reg)4(m)=
*2
211(STAT)7(Reg)
5(n)=
STAT
–17 –
#051
Σy
Σx
Σx 2
–B
–C
n
n
n
2 2
2 .
.
Sxy Sx x – Sx y Sxx 2
B=
Sxx.Sx 2x 2 – (Sxx 2)2
Sx 2y.Sxx – Sxy.Sxx 2
C=
Sxx.Sx 2x 2 – (Sxx 2) 2
A=
( ) ( )
Sxx = Σx 2– (Σx)
n
(Σx . Σy)
Sxy = Σxy –
n
.Σx 2)
(
Σx
2
3
Sxx = Σx –
n
2 2
2 2
4
(
Σx
)
Sx x = Σx –
n
2.
Sx 2y = Σx 2y – (Σx Σy)
n
– B + B 2 – 4C(A – y)
m1 =
2C
– B – B 2 – 4C(A – y)
m2 =
2C
n = A + Bx + Cx 2
2
–18 –
#052
11(STAT)1(Type)
STAT
3(_+CX2)
STAT
A
#053
11(STAT)7(Reg)
STAT
1(A)=
STAT
11(STAT)7(Reg)
2(B)=
STAT
11(STAT)7(Reg)
3(C)=
–19 –
#054
y = 3 → m1 = ?
STAT
311(STAT)7(Reg)
4(m1)=
y = 3 → m2 = ?
STAT
311(STAT)7(Reg)
5(m2)=
x=2→n=?
STAT
211(STAT)7(Reg)
6(n)=
#055
Σy – B.Σ lnx
n
n .Σ(lnx)y – Σlnx .Σy
B=
n .Σ(lnx)2 – (Σlnx)2
n .Σ(lnx)y – Σlnx .Σy
r=
{n .Σ(lnx)2 – (Σ lnx)2}{n .Σy2 – (Σy)2}
A=
y–A
m=e B
n = A + Blnx
–20 –
#056
.
A = exp Σlny – B Σx
(
)
n
n .Σxlny – Σx .Σ lny
B=
n .Σx 2 – (Σx)2
n .Σxlny – Σx .Σ lny
r=
{n .Σx 2 – (Σx)2}{n .Σ(ln y)2 – (Σln y)2}
lny – lnA
m=
B
n = Ae Bx
#057
.
A = exp Σlny – B Σx
B = exp
r=
( n )
.
.
( n Σxn .Σxy –– ΣxΣxΣ y )
ln
ln
( )2
n .Σxlny – Σx .Σ lny
2
{n .Σx 2 – (Σx)2}{n .Σ(ln y)2 – (Σln y)2}
lny – lnA
lnB
n = ABx
m=
–21 –
#058
.
A = exp Σlny – B Σlnx
(
)
n
n .Σlnxlny – Σlnx .Σ lny
B=
n .Σ(lnx)2 – (Σlnx)2
n .Σlnxlny – Σlnx .Σ lny
r=
{n .Σ(ln x)2 – (Σln x)2}{n .Σ(ln y)2 – (Σln y)2}
m=e
ln y – ln A
B
n = AxB
#059
Σy – B.Σx–1
n
Sxy
B=
Sxx
Sxy
r=
Sxx .Syy
A=
Sxx = Σ(x–1)2 –
(Σx–1)2
(Σy)
Syy = Σy2– n
n
2
–1.
Sxy = Σ(x–1)y – Σx Σy
n
B
m=
y–A
B
n=A+
x
–22 –
#060
11(STAT)1(Type)
STAT
4(In X)A11(STAT)
7(Reg)3(r)=
11(STAT)1(Type)
5(e^X)A11(STAT)
7(Reg)3(r)=
11(STAT)1(Type)
6(A•B^X)A11(STAT)
7(Reg)3(r)=
11(STAT)1(Type)
7(A•X^B)A11(STAT)
7(Reg)3(r)=
11(STAT)1(Type)
8(1/X)A11(STAT)
7(Reg)3(r)=
–23 –
STAT
STAT
STAT
STAT
#061
y = A + Blnx
x
y
29
50
74
103
118
1.6
23.5
38.0
46.4
48.9
1Nc4(STAT)2(OFF)
N2(STAT)4(ln X)
STAT
29= 50= 74=
103= 118=
ce1.6=
23.5=
38= 46.4=
48.9=
STAT
STAT
A11(STAT)7(Reg)
1(A)=
STAT
11(STAT)7(Reg)
2(B)=
STAT
11(STAT)7(Reg)
3(r)=
x = 80 → n = ?
STAT
8011(STAT)7(Reg)
5(n)=
y = 73 → m = ?
STAT
7311(STAT)7(Reg)
4(m)=
–24 –
#062
y = AeBx
x
y
6.9
12.9
19.8
26.7
35.1
21.4
15.7
12.1
8.5
5.2
1Nc4(STAT)2(OFF)
N2(STAT)5(e^X)
6.9= 12.9=
19.8=
26.7=
35.1=
ce21.4=
15.7=
12.1= 8.5=
5.2=
STAT
STAT
STAT
A11(STAT)7(Reg)
1(A)=
STAT
11(STAT)7(Reg)
2(B)=
STAT
11(STAT)7(Reg)
3(r)=
x = 16 → n = ?
STAT
1611(STAT)7(Reg)
5(n)=
y = 20 → m = ?
STAT
2011(STAT)7(Reg)
4(m)=
–25 –
#063
x
–1
3
5
10
y = ABx
1Nc4(STAT)2(OFF)
y
0.24 N2(STAT)6(A•B^X)
4
16.2
513
STAT
y1= 3= 5=
10=
STAT
ce0.24= 4=
16.2= 513=
STAT
A11(STAT)7(Reg)
1(A)=
STAT
11(STAT)7(Reg)
2(B)=
STAT
11(STAT)7(Reg)
3(r)=
x = 15 → n = ?
STAT
1511(STAT)7(Reg)
5(n)=
y = 1.02 → m = ?
STAT
1.0211(STAT)
7(Reg)4(m)=
–26 –
#064
y = AxB
x
y
28
30
33
35
38
2410
3033
3895
4491
5717
1Nc4(STAT)2(OFF)
N2(STAT)7(A•X^B)
STAT
28= 30= 33=
35= 38=
ce2410=
3033=
3895=
4491=
5717=
STAT
STAT
A11(STAT)7(Reg)
1(A)=
STAT
11(STAT)7(Reg)
2(B)=
STAT
11(STAT)7(Reg)
3(r)=
x = 40 → n = ?
STAT
4011(STAT)7(Reg)
5(n)=
y = 1000 → m = ?
STAT
100011(STAT)
7(Reg)4(m)=
–27 –
#065
y=A+B
x
x
y
1.1
2.1
2.9
4.0
4.9
18.3
9.7
6.8
4.9
4.1
1Nc4(STAT)2(OFF)
N2(STAT)8(1/X)
1.1= 2.1=
2.9= 4=
4.9=
ce18.3=
9.7= 6.8=
4.9= 4.1=
STAT
STAT
STAT
A11(STAT)7(Reg)
1(A)=
STAT
11(STAT)7(Reg)
2(B)=
STAT
11(STAT)7(Reg)
3(r)=
x = 3.5 → n = ?
STAT
3.511(STAT)
7(Reg)5(n)=
y = 15 → m = ?
STAT
1511(STAT)7(Reg)
4(m)=
–28 –
#066
MATH
X + 2Y = 3
2X + 3Y = 4
N3(EQN)
Math
1(anX+bnY=cn)
Math
1= 2= 3=
2= 3= 4=
Math
=
Math
c
#067
MATH X2 + 2X + 3 = 0
N3(EQN)
Math
3(aX2+bX+c=0)
Math
1= 2= 3=
–29 –
Math
=
Math
=
#068
MATH
X–Y+Z=2
X+Y–Z=0
–X + Y + Z = 4
N3(EQN)
Math
2(anX+bnY+cnZ=dn)
1= y1= 1= 2=
1= 1= y1= 0=
y1= 1= 1= 4=
Math
Math
=
Math
c
Math
c
–30 –
#069
MATH X3 – 2X2 – X + 2 = 0
N3(EQN)
Math
4(aX3+bX2+cX+d=0)
Math
1= y2=
y1= 2=
Math
=
Math
c
Math
c
–31 –
#070
MATH X2 – 4X + 4 = 0
Math
N3(EQN)3(aX2+bX+c=0)
Math
1= y4= 4=
Math
=
–32 –
CASIO COMPUTER CO., LTD.
6-2, Hon-machi 1-chome
Shibuya-ku, Tokyo 151-8543, Japan
SA0411-A
Printed in China
Imprimé en Chine
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising