UPD78070A Data Sheet

To our customers,
Old Company Name in Catalogs and Other Documents
On April 1
st
, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both companies.
Therefore, although the old company name remains in this document, it is a valid
Renesas
Electronics document. We appreciate your understanding.
Renesas Electronics website: http://www.renesas.com
April 1
st
, 2010
Renesas Electronics Corporation
Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
DATA SHEET
MOS INTEGRATED CIRCUIT
m
PD78070A
8-BIT SINGLE-CHIP MICROCONTROLLER
DESCRIPTION
The m
PD78070A is a limited-function product from which the internal ROM of the m
PD78078 subseries has been removed. Through interchangeable external ROM, program maintenance can be performed easily. Besides a highspeed, high-performance CPU, this microcontroller has an internal RAM, I/O ports, 8-bit resolution A/D converter, 8-bit resolution D/A converter, timer, serial interface, real-time output port, interrupt control, and various other peripheral hardware.
Detailed information about product features and specifications can be found in the following documents. Be sure to read the following documents before starting design.
m
PD78070A, 78070AY User’s Manual: U10200E
78K/0 Series User’s Manual – Instructions: IEU-1372
FEATURES
•
Internal high-capacity RAM
•
Internal high-speed RAM : 1024 bytes
•
Buffer RAM: 32 bytes
•
Two packages
•
100-pin plastic QFP (fine pitch) (14 x 14 mm)
•
100-pin plastic QFP (14 x 20 mm)
•
External memory expansion space : 64 Kbytes
•
Instruction execution time can be varied from high-speed (0.4 m s) to ultra-low-speed (122 m s)
APPLICATIONS
•
I/O ports: 61 (N-ch open-drain : 8)
•
8-bit resolution A/D converter : 8 channels
•
8-bit resolution D/A converter : 2 channels
•
Serial interface : 3 channels
• 3-wire/SBI/2-wire mode : 1 channel
• 3-wire mode : 1 channel
• 3-wire/UART mode : 1 channel
•
Timer : 7 channels
•
Power supply voltage : V
DD
= 2.7 to 5.5 V
CD-ROM driver, printer, PPC, etc.
ORDERING INFORMATION
Part Number m
PD78070AGC-7EA m
PD78070AGF-3BA
Package
100-pin plastic QFP (Fine pitch) (14
¥
14 mm, Resin thickness 1.45 mm)
100-pin plastic QFP (14
¥
20 mm, Resin thickness 2.7 mm)
Document No.
U10326EJ1V0DS00 (1st edition)
Date Published April 1996 P
Printed in Japan
The information in this document is subject to change without notice.
The mark
★
shows major revised points.
©
2
m
PD78070A
78K/0 Series Development
The following shows the 78K/0 series products development. Subseries names are shown inside frames.
78K/0 series
Products in mass production
Products under development
Y subseries products are compatible with I
2
C bus.
100-pin
100-pin
80-pin
80-pin
64-pin
64-pin
64-pin
64-pin
42/44pin
Control
µ
PD78078
µ
PD78070A
µ
PD78058F
µ
PD78054
µ
PD78018F
µ
PD78014
µ
PD780001
µ
PD78002
µ
PD78083
100-pin
80-pin
64-pin
FIP
TM drive
µ
PD780208
µ
PD78044A
µ
PD78024
µ
PD78078Y
µ
PD78070AY
µ
PD78058FY
µ
PD78054Y
µ
PD78018FY
µ
PD78014Y
µ
PD78002Y
100-pin
100-pin
100-pin
LCD drive
µ
PD780308
µ
PD78064B
µ
PD78064
µ
µ
PD780308Y
PD78064Y
Basic subseries for control
On-chip UART, capable of operating at a low voltage (1.8 V)
Basic subseries for driving FIP, Display output total: 26
Basic subseries for driving LCDs, On-chip UART
80-pin
IEBus
TM
supported
µ
PD78098
64-pin
LV
µ
PD78P0914 PWM output, LV digital code decoder, and on-chip Hsync counter
m
PD78070A
The following table lists the main functional differences between subseries products.
Function ROM
Subseries name capacity
Control
FIP driving
LCD driving
IEBus
Timer
8-bit m
PD78078 32 K-60 K m
PD78070A –
4ch m
PD78058F 48 K-60 K 2ch m
PD78054 16 K-60 K m
PD78018F 8 K-60 K m
PD78014 8 K-32 K m
PD780001 8 K m
PD78002 m
PD78083
8 K-16 K m
PD780208 32 K-60 K 2ch m
PD78044A 16 K-40 K m
PD78024 24 K-32 K m
PD780308 48 K-60 K 2ch m
PD78064B 32 K m
PD78064 16 K-32 K m
PD78098 32 K-60 K 2ch supported
LV m
PD78P0914 32 K 6ch
8-bit 8-bit Serial Interface I/O V
DD
16-bit Watch WDT A/D D/A
External
MIN. Value Expansion
1ch 1ch 1ch 8ch 2ch 3ch (UART: 1ch) 88
61
69
1.8 V
2.7 V
Available
– 2ch 53
2.0 V
1.8 V
2.7 V
–
1ch
1ch
–
1ch –
– 8ch
1ch 1ch 8ch –
1ch 1ch 8ch –
1ch 39
53
1ch (UART: 1ch) 33
2ch 74
68
54
3ch (UART: 1ch) 57
2ch (UART: 1ch)
1.8 V
2.7 V
1.8 V
2.0 V
–
–
–
Available
–
1ch
–
1ch
–
1ch
1ch
8ch
8ch
2ch
–
3ch (UART: 1ch) 69
2ch 54
2.7 V
4.5 V
Available
Available
3
4
m
PD78070A
FUNCTION DESCRIPTION
Item
Internal memory ROM
Function
Not provided
Internal high-speed 1024 bytes
RAM
Memory space
General registers
Instruction cycle
Instruction set
I/O ports
A/D converter
D/A converter
Serial interface
Buffer RAM 32 bytes
On-chip instruction execution time setting function
When main system 0.4 m s/0.8 m s/1.6 m s/3.2 m s/6.4 m s/12.8 m s (@ 5.0 MHz) clock is selected
64 Kbytes
8 bits
¥
32 registers (8 bits
¥
8 registers
¥
4 banks)
When subsystem 122 m s (@ 32.768 kHz) clock is selected
• 16-bit operation
• Multiply/divide (8 bits
¥
8 bits, 16 bits
Þ
8 bits)
• Bit manipulation (set, reset, test, Boolean operation)
• BCD adjust, etc.
Total
• CMOS input
• CMOS I/O
: 61
: 2
: 51
• N-ch open-drain I/O
• 8-bit resolution
¥
8 channels
• 8-bit resolution
¥
2 channels
: 8
• 3-wire/SBI/2-wire bus mode selectable: 1 channel
Timer
• 3-wire mode (on-chip max. 32-byte automatic data transmit/receive function):
1 channel
• 3-wire/UART mode selectable: 1 channel
• 16-bit timer/event counter: 1 channel
• 8-bit timer/event counter: 4 channels
• Watch timer: 1 channel
• Watchdog timer: 1 channel
5 (14-bit PWM output
¥
1, 8-bit PWM output
¥
2)
19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5.0 MHz
Timer output
Clock output
Buzzer output
Vectored interrupts
Maskable interrupts
(@ 5.0-MHz operation with main system clock)
32.768 kHz (@ 32.768-kHz operation with subsystem clock)
1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (@ 5.0-MHz operation with main system clock)
Internal : 15, external : 7
Non-maskable interInternal : 1 rupts
Software interrupts Internal : 1
Test input
Power supply voltage
Internal : 1
Package
V
DD
= 2.7 to 5.5 V
• 100-pin plastic QFP (Fine pitch) (14
¥
14 mm, Resin thickness 1.45 mm)
• 100-pin plastic QFP (14
¥
20 mm, Resin thickness 2.7 mm)
m
CONTENTS
1.
PIN CONFIGURATION (TOP VIEW) ... 7
2.
BLOCK DIAGRAM ... 10
3.
PIN FUNCTIONS ... 11
3.1 Port Pins ... 11
3.2 Non-port Pins ... 13
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins ... 15
4.
MEMORY SPACE ... 19
5.
PERIPHERAL HARDWARE FUNCTIONS ... 20
5.1 Ports ... 20
5.2 Clock Generator ... 21
5.3 Timer/Event Counter ... 22
5.4 Clock Output Control Circuit ... 24
5.5 Buzzer Output Control Circuit ... 25
5.6 A/D Converter ... 25
5.7 D/A Converter ... 25
5.8 Serial Interfaces ... 26
5.9 Real-Time Output Port ... 28
6.
INTERRUPT FUNCTIONS AND TEST FUNCTION ... 29
6.1 Interrupt Functions ... 29
6.2 Test Function ... 33
7.
EXTERNAL DEVICE EXPANSION FUNCTIONS ... 34
8.
STANDBY FUNCTION ... 34
9.
RESET FUNCTION ... 34
10. INSTRUCTION SET ... 35
11. ELECTRICAL SPECIFICATIONS... 38
12. PACKAGE DRAWINGS ... 63
13. RECOMMENDED SOLDERING CONDITIONS ... 65
m m
PD78070A
★
★
5
6
APPENDIX A. DEVELOPMENT TOOLS ... 67
APPENDIX B. RELATED DOCUMENTS ... 69
m
PD78070A
m
PD78070A
1.
PIN CONFIGURATION (Top View)
• 100-pin plastic QFP (Fine pitch) (14
¥
14 mm) m
PD78070AGC-7EA
P14/ANI4
P15/ANI5
P16/ANI6
P17/ANI7
AV
SS
P130/ANO0
P131/ANO1
AV
REF1
P70/SI2/R
X
D
P71/SO2/T
X
D
P72/SCK2/ASCK
V
SS
P20/SI1
P21/SO1
P22/SCK1
P23/STB
P24/BUSY
P25/SI0/SB0
P26/SO0/SB1
P27/SCK0
A0
A1
A2
A3
A4
7
8
9
3
4
5
6
100 99 98979695 94 93 92 9190 89 88 87 86 85 8483 8281 80 79 7877 76
1
2
75
74
73
72
71
70
69
68
67
18
19
20
21
22
10
11
12
13
14
15
16
17
23
24
53
52
25 51
26 27 28293031 32 3334 35 36 37 38 39 40 41 4243 4445 46 47 4849 50
58
57
56
55
54
66
65
64
63
62
61
60
59
P122/RTP2
P121/RTP1
P120/RTP0
P96
P95
P94
P93
P92
P91
P90
P37
P36/BUZ
P35/PCL
P34/TI2
P33/TI1
P32/TO2
P31/TO1
P30/TO0
P103
P102
P101/TI6/TO6
P100/TI5/TO5
ASTB
P66/WAIT
WR
Cautions 1. Connect IC (Internally Connected) pin directly to V
SS
.
2. Connect AV
DD
pin to V
DD
.
3. Connect AV
SS
pin to V
SS
.
7
m
PD78070A
• 100-pin plastic QFP (14
¥
20 mm) m
PD78070AGF-3BA
P120/RTP0
P121/RTP1
P122/RTP2
P123/RTP3
P124/RTP4
P125/RTP5
P126/RTP6
P127/RTP7
XT1/P07
RESET
P00/INTP0/TI00
P01/INTP1/TI01
P02/INTP2
P03/INTP3
P04/INTP4
P05/INTP5
IC
X2
X1
V
DD
XT2
P06/INTP6
AV
DD
AV
REF0
P10/ANI0
P11/ANI1
P12/ANI2
P13/ANI3
P14/ANI4
P15/ANI5
5
6
7
8
2
3
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1 80
4
79
78
77
76
75
74
73
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 52
30 51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
56
55
54
53
60
59
58
57
67
66
65
64
63
62
61
72
71
70
69
68
A10
A9
A8
AD7
AD6
AD5
AD4
AD3
A14
V
SS
A13
A12
A11
AD2
AD1
AD0
A7
A6
A5
A4
A3
A2
P66/WAIT
WR
RD
P63
P62
P61
P60
A15
8
Cautions 1. Connect IC (Internally Connected) pin directly to V
SS
.
2. Connect AV
DD
pin to V
DD
.
3. Connect AV
SS
pin to V
SS
.
m
PD78070A
P00-P07
P10-P17
P20-P27
P30-P37
P60-P63, P66
P70-P72
P90-P96
P100-P103
P120-P127
P130, P131
: Port0
: Port1
: Port2
: Port3
: Port6
: Port7
: Port9
: Port10
: Port12
: Port13
RTP0-RTP7
INTP0-INTP6
TI00, TI01
: Real-time Output Port
: Interrupt from Peripherals
: Timer Input
TI1, TI2, TI5, TI6 : Timer Input
TO0-TO2, TO5, TO6 : Timer Output
SB0, SB1 : Serial Bus
SI0-SI2
SO0-SO2
SCK0-SCK2
RxD
TxD
ASCK
: Serial Input
: Serial Output
: Serial Clock
: Receive Data
: Transmit Data
: Asynchronous Serial Clock
PCL
BUZ
STB
BUSY
AD0-AD7
A0-A15
RD
WR
WAIT
ASTB
: Programmable Clock
: Buzzer Clock
: Strobe
: Busy
: Address/Data Bus
: Address Bus
: Read Strobe
: Write Strobe
: Wait
: Address Strobe
X1, X2
XT1, XT2
RESET
ANI0-ANI7
ANO0, ANO1
AV
DD
: Crystal (Main System Clock)
: Crystal (Subsystem Clock)
: Reset
: Analog Input
: Analog Output
: Analog Power Supply
AV
SS
: Analog Ground
AV
REF0,
AV
REF1
: Analog Reference Voltage
V
DD
: Power Supply
V
SS
IC
: Ground
: Internally Connected
9
2.
BLOCK DIAGRAM
TO0/P30
TI00/INTP0/P00
TI01/INTP1/P01
TO1/P31
TI1/P33
TO2/P32
TI2/P34
TI5/TO5/P100
TI6/TO6/P101
16-bit TIMER/
EVENT COUNTER
8-bit TIMER/
EVENT COUNTER 1
8-bit TIMER/
EVENT COUNTER 2
8-bit TIMER/
EVENT COUNTER 5
8-bit TIMER/
EVENT COUNTER 6
WATCHDOG TIMER
WATCH TIMER
SI0/SB0/P25
SO0/SB1/P26
SCK0/P27
SI1/P20
SO1/P21
SCK1/P22
STB/P23
BUSY/P24
SI2/RxD/P70
SO2/TxD/P71
SCK2/ASCK/P72
ANI0/P10-
ANI7/P17
AV
DD
AV
SS
AV
REF0
ANO0/P130,
ANO1/P131
AV
SS
AV
REF1
INTP0/P00-
INTP6/P06
BUZ/P36
PCL/P35
SERIAL
INTERFACE 0
SERIAL
INTERFACE 1
SERIAL
INTERFACE 2
A/D CONVERTER
D/A CONVERTER
INTERRUPT
CONTROL
BUZZER OUTPUT
CLOCK OUTPUT
CONTROL
10
78K/0
CPU CORE
RAM
V
DD
V
SS
IC m
PD78070A
PORT 0
PORT 1
PORT 2
P00
P01-P06
P07
P10-P17
P20-P27
P30-P37
PORT 3
PORT 6
PORT 7
P60-P63, P66
P70-P72
P90-P96
PORT 9
PORT 10
PORT 12
P100-P103
P120-P127
PORT 13
P130, P131
REAL-TIME
OUTPUT PORT
EXTERNAL
ACCESS
RTP0/P120-
RTP7/P127
AD0-AD7
A0-A15
RD
WR
WAIT/P66
SYSTEM
CONTROL
RESET
X1
X2
XT1/P07
XT2
m
PD78070A
P34
P35
P36
P37
P30
P31
P32
P33
P24
P25
P26
P27
P20
P21
P22
P23
3.
PIN FUNCTIONS
3.1
Port Pins (1/2)
P03
P04
P05
P06
Pin Name
P00
P01
P02
P07
Note1
P10-P17
Input/Output
Input
Input/output
Input
Input/output
Input/output
Input/output
Function
Port 0 Input only.
After Reset
Input
8-bit input/output port.
Input/output can be specified Input
Alternate Function
INTP0/TI00
INTP1/TI01 bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
INTP2
INTP3
INTP4
INTP5
Input only.
Input
Input
INTP6
XT1
ANI0-ANI7 Port 1
8-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Note2
Port 2
8-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input SI1
SO1
SCK1
STB
BUSY
SI0/SB0
SO0/SB1
SCK0
Port 3
8-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input TO0
TO1
TO2
TI1
TI2
PCL
BUZ
—
Notes 1. When using the P07/XT1 pin as an input port, set bit 6 (FRC) of the processor clock control register (PCC) to
1. Do not use the on-chip feedback resistor of the subsystem clock oscillator.
2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog inputs, their on-chip pull-up resistors are automatically disconnected.
11
m
PD78070A
3.1
Port Pins (2/2)
Pin Name
P60
P61
P62
P63
P66
Input/Output
Input/output
P70
P71
P72
P90
P91
P92
P93
P94
P95
P96
P100
Input/output
Input/output
Input/output
P101
P102, P103
P120-P127 Input/output
P130, P131 Input/output
Function
Port 6 N-ch open-drain input/output
5-bit input/output port.
port.
Input/output can be specified bit-wise.
LED can be driven directly.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 7
3-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
After Reset Alternate Function
Input —
Input
WAIT
SI2/RxD
SO2/TxD
SCK2/ASCK
— Port 9 N-ch open-drain input/output
7-bit input/output port.
port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 10
4-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
Input TI5/TO5
TI6/TO6
Input
—
RTP0-RTP7 Port 12
8-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 13
2-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input ANO0, ANO1
12
m
PD78070A
TI00
TI01
TI1
TI2
TI5
TI6
TO0
TO1
SCK0
SCK1
SCK2
STB
BUSY
RxD
TxD
ASCK
TO2
TO5
TO6
PCL
SI0
SI1
SI2
SO0
SO1
SO2
SB0
SB1
Pin Name
INTP0
INTP1
INTP2
INTP3
INTP4
INTP5
INTP6
3.2
Non-port Pins (1/2)
Input/Output Function
Input
After Reset
External interrupt input by which the active edge (rising edge, Input
Alternate Function
P00/TI00 falling edge, or both rising and falling edges) can be specified.
P01/TI01
P02
P03
P04
P05
P06
Input Serial interface serial data input.
Input
Output
Input/Output
Serial interface serial data output.
Serial interface serial data input/output.
Input
Input
P25/SB0
P20
P70/RxD
P26/SB1
P21
P71/TxD
P25/SI0
P26/SO0
Input/Output Serial interface serial clock input/output.
Input
Output
Input
Input
Output
Input
Input
Output
Output
Serial interface automatic transmit/receive strobe output.
Serial interface automatic transmit/receive busy input.
Asynchronous serial interface serial data input.
Asynchronous serial interface serial data output.
Asynchronous serial interface serial clock input.
External count clock input to 16-bit timer (TM0).
Capture trigger signal input to capture register (CR00).
External count clock input to 8-bit timer (TM1).
External count clock input to 8-bit timer (TM2).
External count clock input to 8-bit timer (TM5).
External count clock input to 8-bit timer (TM6).
16-bit timer output (also used for 14-bit PWM output).
8-bit timer output.
8-bit timer output (also used for 8-bit PWM output).
Clock output (for main system clock, subsystem clock trimming).
Input
Input
Input
Input
Input
Input
Input
Input
P27
P22
P72/ASCK
P23
P24
P70/SI2
P71/SO2
P72/SCK2
P00/INTP0
P01/INTP1
P33
P34
P100/TO5
P101/TO6
P30
P31
P32
P100/TI5
P101/TI6
P35
13
m
PD78070A
3.2
Non-port Pins (2/2)
X2
XT1
XT2
V
DD
V
SS
IC
Pin Name
BUZ
RTP0-RTP7
AD0-AD7
A0-A15
RD
WR
WAIT
ANI0-ANI7
ANO0, ANO1 Output
AV
REF0
Input
AV
REF1
Input
AV
DD
AV
SS
RESET
X1
—
—
Input
Input
Input/Output Function
Output
Output
Buzzer output.
Real-time output port by which data is output in synchronization with a trigger.
Input/Output Data bus for external memory.
Output Address bus for external memory.
Output External memory read operation strobe signal output.
Input
Input
External memory write operation strobe signal output.
Wait insertion at external memory access.
A/D converter analog input.
D/A converter analog output.
A/D converter reference voltage input.
D/A converter reference voltage input.
A/D converter analog power supply. Connected to V
DD
.
A/D converter ground potential. Connected to V
SS
.
System reset input.
Main system clock oscillation crystal connection.
—
Input
—
—
—
—
Subsystem clock oscillation crystal connection.
Positive power supply.
Ground potential.
Internal connection. Connected directly to V
SS
.
Input
Input
Input
—
—
—
—
Input
Input
Input
—
—
—
Input
—
—
—
—
After Reset Alternate Function
Input
Input
P36
P120-P127
—
P07
—
—
—
—
—
—
—
—
P66
P10-P17
—
—
—
P130, P131
—
—
—
14
m
PD78070A
3.3
Pin I/O Circuits and Recommended Connection of Unused Pins
The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.
For the input/output circuit configuration of each type, see Figure 3-1.
Table 3-1. Types of Pin Input/Output Circuits (1/2)
Pin Name
P30/TO0
P31/TO1
P32/TO2
P33/TI1
P34/TI2
P35/PCL
P36/BUZ
P37
P60-P63
P66/WAIT
P00/INTP0/TI00
P01/INTP1/TI01
P02/INTP2
P03/INTP3
P04/INTP4
P05/INTP5
P06/INTP6
P07/XT1
P10/ANI0-P17/ANI7
P20/SI1
P21/SO1
P22/SCK1
P23/STB
P24/BUSY
P25/SI0/SB0
P26/SO0/SB1
P27/SCK0
Input/Output
Circuit Type
2
8-A
16
11
8-A
5-A
8-A
5-A
8-A
10-A
5-A
8-A
5-A
13-C
5-A
Input/Output
Input
Input/Output
Recommended Connection of Unused Pins
Connect to V
SS
.
Independently connect to V
SS
via a resistor.
Input
Input/Output
Input/Output
Input/Output
Connect to V
DD
.
Independently connect to V
DD
or V
SS
via a resistor.
Independently connect to V
DD
via a resistor.
Independently connect to V
DD
or V
SS
via a resistor.
★
15
16
m
PD78070A
Table 3-1. Types of Pin Input/Output Circuits (2/2)
Pin Name
P70/SI2/RxD
P71/SO2/TxD
P72/SCK2/ASCK
P90-P93
RESET
XT2
AV
REF0
AV
REF1
AV
DD
AV
SS
IC
P94-P96
P100/TI5/TO5
P101/TI6/TO6
P102, P103
5-A
8-A
5-A
P120/RTP0-P127/RTP7
P130/ANO0, P131/ANO1 12-A
AD0-AD7
A0-A15
RD
WR
ASTB
5-E
5-A
2
16
—
Input/Output
Circuit Type
8-A
5-A
8-A
13-C
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Output
Input
—
Recommended Connection of Unused Pins
Independently connect to V
DD
or V
SS
via a resistor.
Independently connect to V
DD
via a resistor.
Independently connect to V
DD
or V
SS
via a resistor.
Independently connect to V
SS
via a resistor.
Independently connect to V
DD
via a resistor.
Leave open.
—
Leave open.
Connect to V
Connect to V
Connect to V
SS
DD
SS
.
.
.
Connect directly to V
SS
.
Type 5-A pullup enable data output disable input enable
Type 5-E pullup enable data output disable m
PD78070A
Type 2
IN
Figure 3-1. Pin Input/Output Circuits (1/2)
Type 8-A pullup enable
Schmitt-Triggered Input with Hysteresis Characteristic data output disable
V
DD
V
DD
P-ch
P-ch
IN/OUT
N-ch
V
DD
Type 10-A pullup enable
V
DD
P-ch
P-ch
IN/OUT
N-ch data open drain output disable
V
DD
V
DD
P-ch
P-ch
IN/OUT
N-ch
V
DD
V
DD
P-ch
P-ch
IN/OUT
N-ch
V
DD
Type 11 pullup enable data
V
DD
P-ch
P-ch
IN/OUT output disable
N-ch
P-ch
Comparator
+
–
N-ch
V
REF
(threshold voltage) input enable
17
18
Figure 3-1. Pin Input/Output Circuits (2/2)
Type 12-A pullup enable
V
DD data output disable input enable
Analog Output
Voltage
P-ch
N-ch
Type 13-C
N-ch
V
DD
P-ch
P-ch
IN/OUT
Type 16
XT1 feedback cut-off
P-ch
XT2
IN/OUT data output disable
N-ch m
PD78070A
m
PD78070A
4.
MEMORY SPACE
The memory map of the m
PD78070A is shown in Figure 4-1.
Figure 4-1. Memory Map
Data
Memory
Space
FB00H
FAFFH
FAE0H
FADFH
FAC0H
FABFH
FA80H
FA7FH
FFFFH
Special Function Registers
(SFR) 256
×
8 bits
FF00H
FEFFH
FEE0H
FEDFH
General Registers
32
×
8 bits
Internal High-Speed RAM
1024
×
8 bits
Use Prohibited
Buffer RAM 32
×
8 bits
Use Prohibited
Program
Memory
Space
0000H
External Memory
64128
×
8 bits
0FFFH
0800H
07FFH
0080H
007FH
0040H
003FH
0000H
CALLF Entry Area
Program Area
CALLT Table Area
Vector Table Area
19
m
PD78070A
5.
PERIPHERAL HARDWARE FUNCTIONS
5.1
Ports
Input/output ports are classified into three types.
• CMOS inputs (P00, P07)
• CMOS input/outputs (P01-P06, Port 1-3, P66, Port 7, P94-P96, Port 10,
Port 12, Port 13)
• N-ch open-drain input/outputs (P60-P63, P90-P93)
Total
: 2
: 51
: 8
: 61
Port Name
Port 0
Pin Name
P00, P07
P01-P06
Port 1
Port 2
Port 3
Port 6
Port 7
Port 9
Port 10
Port 12
Port 13
P10-P17
P20-P27
P30-P37
P60-P63
P66
P70-P72
P90-P93
P94-P96
P100-P103
P120-P127
P130, P131
Table 5-1. Functions of Ports
Function
Input only.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
N-ch open-drain input/output port. Input/output can be specified bit-wise.
LED can be driven directly.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
N-ch open-drain input/output port. Input/output can be specified bit-wise.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be connected by software.
20
m
PD78070A
5.2
Clock Generator
There are two kinds of clock generators: main system and subsystem clock generators. It is possible to change the instruction execution time.
• 0.4 m s/0.8 m s/1.6 m s/3.2 m s/6.4 m s/12.8 m s (at main system clock frequency of 5.0 MHz)
• 122 m s (at subsystem clock frequency of 32.768 kHz)
Figure 5-1. Clock Generator Block Diagram
XT1/P07
XT2
Subsystem
Clock
Oscillator f
XT
X1
X2
Main System
Clock
Oscillator f
X
Division
Circuit f
X
2
STOP
Prescaler f
XX f
XX
2 f
XX
2
2 f
XX
2
3 f
XX
2
4 f
XT
2
1
2
Prescaler
Watch Timer, Clock
Output Function
Clock to Peripheral
Hardware
Standby
Control
Circuit
Wait
Control
Circuit
CPU Clock
(f
CPU
)
To INTP0
Sampling Clock
21
m
PD78070A
5.3
Timer/Event Counter
There are the following seven timer/event counter channels:
• 16-bit timer/event counter : 1 channel
• 8-bit timer/event counter : 4 channels
• Watch timer
• Watchdog timer
: 1 channel
: 1 channel
Table 5-2. Types and Functions of Timer/Event Counters
Type
Function
Interval timer
External event counter
Timer output
PWM output
16-bit Timer/
Event Counter
1 channel
1 channel
1 output
1 output
Pulse width measurement 2 inputs
Square wave output 1 output
One-shot pulse output
Interrupt request
Test input
1 output
2
—
—
2
—
8-bit Timer/ 8-bit Timer/
Event Counter 1, 2 Event Counter 5, 6
Watch Timer
2 channels
2 channels
2 channels
2 channels
1 channel
—
2 outputs
—
—
2 outputs
2 outputs
2 outputs
—
2 outputs
—
—
—
—
—
2
—
—
1
1
—
1
—
—
—
—
—
Watchdog
Timer
1 channel
—
Figure 5-2. 16-Bit Timer/Event Counter Block Diagram
Internal Bus
INTP1
TI01/P01/
INTP1
Watch Timer
Output
2f
XX f
XX f
XX
/2 f
XX
/2
2
TI00/P00/
INTP0
Edge
Detector
16-Bit Capture/
Compare Register
(CR00)
Match
PWM Pulse
Output
Control
Circuit
16-Bit Timer
Register (TM0)
Clear
Match
Selector
INTTM00
Output
Control Circuit
TO0/P30
INTTM01
INTP0
16-Bit Capture/
Compare Register
(CR01)
Internal Bus
22
- f
XX
/2
9 f
XX
/2
11
TI1/P33
- f
XX
/2
9
11
TI2/P34
2f
XX
- f
XX
/2
9 f
XX
/2
11
TI5/P100/TO5,
TI6/P101/TO6 m
PD78070A
Figure 5-3. 8-Bit Timer/Event Counter 1, 2 Block Diagram
Internal Bus
INTTM1
8-Bit Compare
Register (CR10)
Match
8-Bit Compare
Register (CR20)
Match
Output
Control
Circuit
TO2/P32
INTTM2
8-Bit Timer
Register 1 (TM1)
Clear
Selector
8-Bit Timer
Register 2 (TM2)
Clear
Internal Bus
Figure 5-4. 8-Bit Timer/Event Counter 5, 6 Block Diagram
Internal Bus
Output
Control
Circuit
TO1/P31
8-Bit Compare Register
(CRn0)
Match
8-Bit Timer Register n
(TMn)
OVF
Clear
Internal Bus
Output Control
Circuit
INTTMn
TO5/P100/TI5,
TO6/P101/TI6 n = 5, 6
23
m
PD78070A
2
7
Figure 5-5. Watch Timer Block Diagram
5-Bit Counter
2 14
Prescaler
2
4
2
5
2
6
2
7
2
8
2
9
2 13
INTWT
INTTM3
To 16-Bit Timer/
Event Counter
Figure 5-6. Watchdog Timer Block Diagram
2
3
Prescaler
2
4
2
5
2
6
2
7
2
8
2
9
2
11
8-Bit Counter
INTWDT
Maskable
Interrupt Request
RESET
INTWDT
Non-maskable
Interrupt Request
5.4
Clock Output Control Circuit
This circuit can output clocks of the following frequencies:
• 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz/2.5 MHz/5.0 MHz (at main system clock frequency of 5.0 MHz)
• 32.768 kHz (at subsystem clock frequency of 32.768 kHz)
Figure 5-7. Clock Output Control Circuit Block Diagram
f
XX f
XX
/2 f
XX
/2
2 f
XX
/2
3 f
XX
/2
4 f
XX
/2
5 f
XX
/2
6 f
XX
/2
7 f
XT
Synchronization
Circuit
Output Control
Circuit
PCL/P35
24
m
PD78070A
5.5
Buzzer Output Control Circuit
This circuit can output clocks of the following frequencies that can be used for driving buzzers:
• 1.2 kHz/2.4 kHz/4.9 kHz/9.8 kHz (at main system clock frequency of 5.0 MHz)
Figure 5-8. Buzzer Output Control Circuit Block Diagram
f
XX
/2
9 f
XX
/2
10 f
XX
/2
11
Output Control
Circuit
BUZ/P36
5.6
A/D Converter
The A/D converter consists of eight 8-bit resolution channels.
A/D conversion can be started by the following two methods:
• Hardware starting
• Software starting
Figure 5-9. A/D Converter Block Diagram
ANI0/P10
ANI1/P11
ANI2/P12
ANI3/P13
ANI4/P14
ANI5/P15
ANI6/P16
ANI7/P17
Sample & Hold Circuit
Voltage Comparator
Series Resistor String
AV
DD
AV
REF0
Successive Approximation
Register (SAR)
AV
SS
INTP3/P03
Edge
Detector
Control
Circuit
INTAD
INTP3
A/D Conversion Result
Register (ADCR)
Internal Bus
5.7
D/A Converter
The D/A converter consists of two 8-bit resolution channels.
The conversion method is the R-2R resistor ladder method.
25
m
PD78070A
AV
REF1
Figure 5-10. D/A Converter Block Diagram
ANOn
Selector
AV
SS
DACSn
Write
INTTM
X
D/A Conversion Value Set Register n
(DACSn)
DAMm
D/A Converter
Mode Register
Internal Bus n = 0, 1 m = 4, 5 x = 1, 2
5.8
Serial Interfaces
There are the following three on-chip serial interface channels synchronous with the clock:
• Serial interface channel 0
• Serial interface channel 1
• Serial interface channel 2
Function
3-wire serial I/O mode
3-wire serial I/O mode with automatic data transmit/receive function
2-wire serial I/O mode
Serial bus interface (SBI) mode
Asynchronous serial interface
(UART) mode
Table 5-3.
Types and Functions of Serial Interfaces
Serial Interface Channel 0
MSB/LSB first bit switching possible)
—
—
Serial Interface Channel 1
(MSB/LSB first bit switching possible)
(MSB/LSB first bit switching possible)
—
(MSB first)
(MSB first)
—
—
—
Serial Interface Channel 2
(MSB/LSB first bit switching possible)
—
—
—
—
(On-chip dedicated baud rate generator)
26
SI0/SB0/P25
SO0/SB1/P26
SCK0/P27 m
PD78070A
Figure 5-11. Serial Interface Channel 0 Block Diagram
Internal Bus
Serial I/O Shift Register 0
(SIO0)
Bus Release/
Command/
Acknowledge detector
Serial Clock Counter
Output
Latch
Interrupt
Request Signal
Generator
Busy/Acknowledge
Output Circuit
INTCSI0
Serial Clock
Control Circuit f
XX
/2–f
XX
/2 8
TO2
SI1/P20
SO1/P21
STB/P23
BUSY/P24
SCK1/P22
Figure 5-12. Serial Interface Channel 1 Block Diagram
Internal Bus
Automatic Data Transmit/
Receive Address
Pointer (ADTP)
Buffer RAM
Serial I/O Shift
Register 1 (SIO1)
Match
Automatic Data
Transmit/Receive
Interval Specification
Register (ADTI)
Handshake
Control
Circuit
Serial Clock Counter
5-Bit Counter
Serial Clock
Control Circuit
Interrupt Request
Signal Generator
INTCSI1 f
XX
/2–f
XX
/2 8
TO2
27
m
PD78070A
Figure 5-13. Serial Interface Channel 2 Block Diagram
Internal Bus
R
X
D/SI2/P70
T
X
D/SO2/P71
ASCK/SCK2/P72
Receive Buffer
Register (RXB/SIO2)
Direction Control
Circuit
Receive Shift
Register (RXS)
Receive Control
Circuit
Direction Control
Circuit
Transmit Shift
Register (TXS/SIO2)
Transmit Control
Circuit
INTSER
INTSR/INTCSI2
SCK Output
Control Circuit
INTST
Baud Rate
Generator f
XX
–f
XX
/2 10
5.9
Real-Time Output Port
Data set previously in the real-time output buffer is transferred to the output latch by hardware concurrently with timer interrupt or external interrupt generation in order to output to off-chip. This is a real-time output function. Pins used to output to off-chip are called real-time output ports.
By using a real-time output port, a signal which has no jitter can be output. This is most applicable to control of stepping motors, etc.
Figure 5-14. Real-Time Output Port Block Diagram
Internal Bus
28
INTP2
INTTM1
INTTM2
Output Trigger
Control Circuit
Real-Time Output
Buffer Register
Higher 4 Bits
(RTBH)
Real-Time Output
Buffer Register
Lower 4 Bits
(RTBL)
Output Latch
P127 P120
Real-Time Output Port Mode
Register (RTPM)
6.
INTERRUPT FUNCTIONS AND TEST FUNCTION
6.1 Interrupt Functions
A total of 24 interrupt functions are provided, divided into the following three types.
• Non-maskable interrupt : 1
• Maskable interrupts : 22
• Software interrupt : 1 m
PD78070A
29
m
PD78070A
Table 6-1. List of Interrupt Sources
Interrupt
Type
Nonmaskable
Maskable
Software
7
8
5
6
3
4
1
2
9
10
Default
Note1
Priority
—
0
11
12
13
14
15
16
17
18
19
20
—
Interrupt Source
Name Trigger
INTWDT Overflow of watchdog timer (When the watchdog timer mode 1 is selected)
INTWDT Overflow of watchdog timer (When the interval timer mode is selected)
INTP0
INTP1
Pin input edge detection
INTP2
INTP3
INTP4
INTP5
INTP6
INTCSI0 Completion of serial interface channel 0 transfer
INTCSI1 Completion of serial interface channel 1 transfer
INTSER Occurrence of serial interface channel 2 UART reception
INTSR error
Completion of serial interface channel 2 UART reception
INTCSI2 Completion of serial interface channel 2 3-wire transfer
INTST Completion of serial interface channel 2 UART transmission
INTTM3 Reference time interval signal from watch timer
INTTM00 Generation of matching signal of 16-bit timer register and capture/compare register (CR00)
INTTM01 Generation of matching signal of 16-bit timer register and capture/compare register (CR01)
INTTM1 Generation of matching signal of 8-bit timer/event counter 1
INTTM2 Generation of matching signal of 8-bit timer/event
INTAD counter 2
Completion of A/D conversion
INTTM5 Generation of matching signal of 8-bit timer/event counter 5
INTTM6 Generation of matching signal of 8-bit timer/event
BRK counter 6
Execution of BRK instruction
Internal/ Vector
External Table
Internal
Basic
Structure
Address Type Note2
0004H (A)
External 0006H
0008H
000AH
000CH
Internal
000EH
0010H
0012H
0014H
0016H
0018H
Internal
001AH
001CH
001EH
0020H
0022H
0024H
0026H
0028H
002AH
002CH
003EH
(B)
(C)
(D)
(B)
(E)
Notes 1.
Default priority is the priority order when several maskable interrupts are generated at the same time. 0 is the highest priority and 20 is the lowest priority.
2.
Basic structure types (A) to (E) correspond to (A) to (E) in Figure 6-1.
30
m
PD78070A
Figure 6-1. Basic Configuration of Interrupt Function (1/2)
(A) Internal non-maskable interrupt
Internal Bus
Interrupt
Request
Priority
Control
Circuit
Vector Table
Address
Generator
Standby Release
Signal
(B) Internal maskable interrupt
Interrupt
Request
IF
MK
Internal Bus
IE PR ISP
Priority
Control
Circuit
Vector Table
Address
Generator
Standby Release
Signal
(C) External maskable interrupt (INTP0)
Sampling Clock
Select Register
(SCS)
External Interrupt
Mode Register
(INTM0)
Internal Bus
MK IE PR ISP
Interrupt
Request
Sampling
Clock
Edge
Detector
IF
Priority
Control
Circuit
Vector Table
Address
Generator
Standby
Release
Signal
31
m
PD78070A
Figure 6-1. Basic Configuration of Interrupt Function (2/2)
(D) External maskable interrupt (except INTP0)
Internal Bus
External Interrupt
Mode Register
(INTM0, INTM1)
MK IE PR ISP
Interrupt
Request
Edge
Detector
IF
Priority Control
Circuit
Vector Table
Address
Generator
Standby
Release
Signal
(E) Software interrupt
Internal Bus
Interrupt
Request
IF : Interrupt request flag
IE : Interrupt enable flag
ISP : In-service priority flag
MK : Interrupt mask flag
PR : Priority specification flag
Priority
Control
Circuit
Vector Table
Address
Generator
32
6.2
Test Function
Table 6-2 shows the test function available.
Table 6-2. Test Input Source
Test Input Source
Name Trigger
INTWT Overflow of watch timer
Internal/
External
Internal
Figure 6-2. Basic Configuration of Test Function
Internal Bus
MK
Standby Release
Signal
Test Input
Signal
IF
IF : Test input flag
MK : Test mask flag m
PD78070A
33
m
PD78070A
7.
EXTERNAL DEVICE EXPANSION FUNCTIONS
The external device expansion functions connect external devices to areas other than the RAM and SFR.
The m
PD78070A is a ROM-less product, and therefore requires the connection of external ROM.
Connect external devices using an independent address bus and data bus.
8.
STANDBY FUNCTION
The standby function is designed to reduce current consumption.
It has the following two modes:
•
HALT mode : In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
•
STOP mode : In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used for extremely small power consumption.
Figure 8-1. Standby Function
CSS = 1
Main system clock operation
Subsystem clock operation
Note
STOP instruction
Interrupt request
STOP mode
(Oscillation of the main system clock is stopped.)
Interrupt request
CSS = 0
HALT instruction
HALT mode
(Supply of clock to CPU is stopped although clock is generated.)
Interrupt request
HALT instruction
HALT mode
Note
(Supply of clock to CPU is stopped although clock is generated.)
Note
Current consumption is reduced by shutting off the main system clock. If the CPU is operating on the subsystem clock, shut off the main system clock by setting bit 7 (MCC) of the processor clock control register (PCC).
You cannot use a STOP instruction.
Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
9.
RESET FUNCTION
There are the following two reset methods.
• External reset input by RESET pin
• Internal reset by watchdog timer runaway time detection
34
m
PD78070A
10. INSTRUCTION SET
(1) 8-bit instructions
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC,
ROR4, ROL4, PUSH, POP, DBNZ r
2nd Operand
1st Operand
A
#byte
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
A
MOV MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP r
Note
sfr
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH saddr !addr16 PSW
MOV
XCH
XOR
CMP
MOV
XCH
ADD ADD
ADDC ADDC
SUB SUB
SUBC SUBC
AND
OR
AND
OR
XOR
CMP
MOV
[DE]
MOV
XCH
[HL]
[HL + byte] $addr16
[HL + B]
MOV
XCH
ADD
[HL + C]
MOV
XCH
ADD
ADDC ADDC
SUB SUB
SUBC SUBC
AND
OR
XOR
CMP
AND
OR
XOR
CMP
1
ROR
ROL
RORC
ROLC
None
INC
DEC
B, C sfr saddr
DBNZ
DBNZ INC
DEC
!addr16
PSW
MOV
MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
MOV
MOV
MOV
MOV PUSH
POP
[DE]
Note Except r = A
MOV
35
36
m
PD78070A
2nd Operand
#byte A
1st Operand
[HL]
[HL + byte]
[HL + B]
[HL + C]
X
C
MOV
MOV r sfr saddr !addr16 PSW [DE] [HL]
[HL + byte] $addr16
[HL + B]
[HL + C]
1
2nd Operand
1st Operand
AX rp
(2) 16-bit instructions
MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW
#word AX rp
Note
sfrp saddrp
ADDW
SUBW
CMPW
MOVW MOVW
Note
MOVW
XCHW
MOVW MOVW sfrp saddrp
!addr16
SP
MOVW
MOVW
MOVW
MOVW
MOVW
MOVW MOVW
Note Only when rp = BC, DE, HL
None
!addr16
MOVW
SP
MOVW
None
ROR4
ROL4
MULU
DIVUW
INCW, DECW
PUSH, POP
m
PD78070A
(3) Bit manipulation instructions
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR
2nd Operand
1st Operand
A.bit
A.bit
sfr.bit
saddr.bit
PSW.bit
[HL].bit
sfr.bit
saddr.bit
PSW.bit
[HL].bit
CY MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
CY
MOV1
MOV1
MOV1
MOV1
MOV1
$addr16
BT
BF
BTCLR
BT
BF
BTCLR
BT
BF
BTCLR
BT
BF
BTCLR
BT
BF
BTCLR
SET1
CLR1
SET1
CLR1
SET1
CLR1
NOT1
None
SET1
CLR1
SET1
CLR1
SET1
CLR1
(4) Call instructions/Branch instructions
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ
2nd Operand AX !addr16
!addr11
[addr5] $addr16
1st Operand
Basic instruction BR
Compound instruction
CALL
BR
CALLF CALLT BR
BC
BNC
BZ
BNZ
BT
BF
BTCLR
DBNZ
(5) Other instructions
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP
37
54
(iii) UART mode (Dedicated baud rate generator output)
Parameter
Transfer rate
Symbol Test Conditions
V
DD
= 4.5 to 5.5 V
(iv) UART mode (External clock input)
Parameter
ASCK cycle time
Symbol Test Conditions t
KCY13
V
DD
= 4.5 to 5.5 V
ASCK high-/low-level width t
KH13
, t
KL13
Transfer rate
V
DD
= 4.5 to 5.5 V
V
DD
= 4.5 to 5.5 V
ASCK rise, fall time t
R13
, t
F13 m
PD78070A
MIN.
TYP.
MAX.
78125
39063
Unit bps bps
MIN.
800
1600
400
800
TYP.
MAX.
39063
19531
160 ns bps bps ns
Unit ns ns ns
m
PD78070A
11. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (T
A
= 25 °C)
Parameter
Supply voltage
Input voltage
Output voltage
Analog input voltage
Output current, high
Output current, low
Operating ambient temperature
Storage temperature
I
V
I2
V
O
V
AN
I
OH
Symbol Test Conditions
V
DD
AV
DD
AV
REF0
AV
REF1
AV
SS
V
I1
P00-P07, P10-P17, P20-P27, P30-P37, P66,
P70-P72, P94-P96, P100-P103, P120-P127,
P130, P131, AD0-AD7, X1, X2, XT2, RESET
P60-P63, P90-P93 N-ch open-drain
P10-P17
Per pin
Analog input pins
Total for P30-P37, P60-P63, P66, P90-P96,
P100-P103, P120-P127, A14, A15, RD,
OL
Note
WR, ASTB
Total for P01-P06, P10-P17, P20-P27, P70-P72, –15
P130, P131, AD0-AD7, A0-A13
Per pin Peak value 30 r.m.s. value
15
Total for A8-A13
Total for P60-P63, A14, A15
Peak value 50 r.m.s. value
20
Peak value 100 r.m.s. value
70
Ratings
–0.3 to +7.0
–0.3 to V
DD
+0.3
–0.3 to V
DD
+0.3
–0.3 to V
DD
+0.3
–0.3 to +0.3
–0.3 to V
DD
+0.3
–0.3 to V
DD
+0.3
–0.3 to V
DD
+0.3
V
V
AV
SS
– 0.3 to AV
REF0
+ 0.3
V
–10 mA
–15 mA mA
V
V
V
V
V
Unit
V mA mA mA mA mA mA mA mA
T
T
A stg
Total for P30-P37, P66, P90-P96, Peak value 50
P100-P103, P120-P127, RD, r.m.s. value
20
WR, ASTB
Total for P20-P27, AD0-AD7,
A0-A7
Total for P01-P06, P10-P17,
P70-P72, P130, P131
Peak value 50 r.m.s. value
20
Peak value 50 r.m.s. value
20
–40 to +85
–65 to +150 mA mA mA mA
°C
°C
Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value]
¥
Duty
Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.
Remark
Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.
38
m
PD78070A
Capacitance (T
A
= 25 °C, V
DD
= V
SS
= 0 V)
Parameter
Input capacitance
Symbol Test Conditions
C
IN f = 1 MHz, Unmeasured pins returned to 0 V.
Output capacitance C
OUT
I/O capacitance C
IO
MIN.
TYP.
MAX.
15
15
15
Unit pF pF pF
Main System Clock Oscillator Characteristics (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
MIN.
TYP.
Resonator
Ceramic resonator
Crystal resonator
External clock
Recommended
Circuit
IC
R1
X2 X1
C2 C1
IC
R1
X2
C2 C1
X1
X2
µ
PD74HCU04
Parameter Test Conditions
X1
Oscillation frequency
(f
X
)
Note1
Oscillation stabilization time
Note2
Oscillation frequency
(f
X
)
Note1
Oscillation stabilization time
Note2
X1 input frequency
(f
X
)
Note1
X1 input high- and low-level widths (t
XH
, t
XL
)
V
DD
= Oscillation voltage range
After V
DD
came to MIN.
of oscillation voltage range
V
DD
= 4.5 to 5.5 V
1.0
1.0
1.0
85
MAX.
Unit
5.0
4
5.0
10
30
5.0
500
MHz ms
MHz ms
MHz ns
Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.
Cautions 1.
When using the oscillation circuit of the main system clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:
• Keep the wiring length as short as possible.
• Do not cross the wiring over other signal lines.
• Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
• Always keep the ground point of the capacitor of the oscillation circuit at the same potential as
V
SS
.
• Do not connect the power source to a ground pattern through which a high current flows.
• Do not extract signals from the oscillation circuit.
2.
When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
39
m
PD78070A
Subsystem Clock Oscillator Characteristics (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
MIN.
TYP.
Resonator
Crystal resonator
External clock
Recommended
Circuit
IC XT2
R2
XT1
C4
C3
XT2
µ
PD74HCU04
Parameter Test Conditions
XT1
Oscillation frequency
(f
XT
) Note1
Oscillation stabilization time Note2
XT1 input frequency
(f
XT
) Note1
XT1 input high-, low-level widths (t
XTH
, t
XTL
)
V
DD
= 4.5 to 5.5 V
32
32
5
MAX.
32.768
35
1.2
2
10
100
15
Unit kHz s kHz m s
Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
2. Time required for oscillation to stabilize after V
DD
reaches the minimum value of the oscillation voltage range.
Cautions 1.
When using the oscillation circuit of the subsystem clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:
• Keep the wiring length as short as possible.
• Do not cross the wiring over other signal lines.
• Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
• Always keep the ground point of the capacitor of the oscillation circuit at the same potential as
V
SS
.
• Do not connect the power source pattern through which a high current flows.
• Do not extract signals from the oscillation circuit.
2.
The amplification factor of the subsystem clock oscillator is designed to be low to reduce the current consumption and therefore, the subsystem clock oscillator is influenced by noise more easily than the main system clock oscillator. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.
40
m
PD78070A
DC Characteristics (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
Parameter
Input voltage, high
Input voltage, low
Output voltage, high
Output voltage, low
Symbol Test Conditions
V
IH1
P10-P17, P21, P23, P30-P32, P35-P37, P66,
P71, P94-P96, P102, P103, P120-P127, P130,
P131, AD0-AD7
V
IH2
V
V
V
IH3
IH4
IH5
P00-P06, P20, P22, P24-P27, P33, P34, P70,
P72, P100, P101, RESET
P60-P63, P90-P93 (N-ch open-drain)
X1, X2
XT1/P07, XT2 V
DD
= 4.5 to 5.5 V
V
V
V
V
V
V
V
V
V
IL1
IL2
IL3
IL4
IL5
OH
OL1
OL2
OL3
MIN.
0.7V
0.8V
DD
DD
TYP.
0.7V
DD
V
DD
–0.5
0.8V
DD
0.9V
DD
0 P10-P17, P21, P23, P30-P32, P35-P37, P66,
P71, P94-P96, P102, P103, P120-P127, P130,
P131, AD0-AD7
P00-P06, P20, P22, P24-P27, P33, P34, P70,
P72, P100, P101, RESET
P60-P63, P90-P93
(N-ch open-drain)
X1, X2
XT1/P07, XT2
V
V
DD
DD
= 4.5 to 5.5 V
= 4.5 to 5.5 V
V
DD
= 4.5 to 5.5 V, I
OH
= –1 mA
I
OH
= –100 m
A
P60-P63 V
DD
= 4.5 to 5.5 V,
P01-P06, P10-P17,
P20-P27, P30-P37, P66,
I
OL
= 15 mA
V
DD
= 4.5 to 5.5 V,
I
OL
= 1.6 mA
P70-P72, P90-P96,
P100-P103, P120-P127,
P130, P131, AD0-AD7,
A0-A15, RD, WR, ASTB
SB0, SB1, SCK0 V
DD
= 4.5 to 5.5 V,
Open-drain, pulled up
(R = 1 ký)
I
OL
= 400 m
A
0
0
0
0
0
0
V
DD
–1.0
V
DD
–0.5
0.4
MAX.
V
DD
Unit
V
V
DD
V
DD
V
DD
V
DD
V
DD
0.3V
DD
V
V
V
V
V
0.2V
DD
V
0.3V
DD
V
0.2V
DD
V
0.4
V
0.2V
DD
V
0.1V
DD
V
V
2.0
V
V
0.4
0.5
V
V
0.2V
DD
V
V
Remark
Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.
41
m
PD78070A
DC Characteristics (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
Parameter
Input leakage current, high
Input leakage current, low
I
LIL2
Output leakage current, high I
LOH
Output leakage current, low I
LOL
Software pull-up resistor R
I
I
Symbol Test Conditions
I
LIH1
LIH2
LIL1
V
V
IN
IN
= V
DD
= 0 V
P00-P06, P10-P17,
P20-P27, P30-P37,
P60-P63, P66,
P70-P72, P90-P96,
P100-P103, P120-
P127, P130, P131,
AD0-AD7, RESET
X1, X2, XT1/P07, XT2
P00-P06, P10-P17,
P20-P27, P30-P37,
P60-P63, P66,
P70-P72, P90-P96,
P100-P103, P120-
P127, P130, P131,
AD0-AD7, RESET
X1, X2, XT1/P07, XT2
V
OUT
= V
DD
V
OUT
= 0 V
V
IN
= 0 V, P01-P06, P10V
DD
= 4.5 to 5.5 V
P17, P20-P27, P30-P37,
P66, P70-P72, P94-P96,
P100-P103, P120-P127,
P130, P131
MIN.
15
20
TYP.
MAX.
3
Unit m
A
40
20
–3
–20
3
–3
90
500 m
A m
A m
A m
A m
A k ý k ý
Remark
Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.
42
m
PD78070A
DC Characteristics (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
Parameter
Supply current
Note1
I
I
I
I
I
Symbol Test Conditions
I
DD1
5.0-MHz crystal oscillation operating mode
(f
XX
= 2.5 MHz)
Note2
V
DD
= 5.0 V ± 10%
Note5
V
DD
= 3.0 V ± 10%
Note6
DD2
5.0-MHz crystal oscillation V
DD
= 5.0 V ± 10%
Note5
operating mode V
DD
= 3.0 V ± 10%
Note6
(f
XX
= 5.0 MHz)
Note3
5.0-MHz crystal oscillation V
DD
= 5.0 V ± 10%
Note5
HALT mode V
DD
= 3.0 V ± 10%
Note6
(f
XX
= 2.5 MHz)
Note2
DD3
DD4
DD5
DD6
5.0-MHz crystal oscillation V
DD
= 5.0 V ± 10%
Note5
HALT mode V
DD
= 3.0 V ± 10%
Note6
(f
XX
= 5.0 MHz)
Note3
32.768-kHz crystal oscillaV
DD
= 5.0 V ± 10% tion operating mode
Note4
V
DD
= 3.0 V ± 10%
32.768-kHz crystal oscillaV
DD
= 5.0 V ± 10% tion operating mode
Note4
V
DD
= 3.0 V ± 10%
XT1 = V
DD
STOP mode
V
V
DD
DD
= 5.0 V ± 10%
= 3.0 V ± 10%
Feedback resistor used
XT1 = V
DD
STOP mode
Feedback resistor not used
V
V
DD
DD
= 5.0 V ± 10%
= 3.0 V ± 10%
MIN.
TYP.
4.5
0.7
MAX.
13.5
2.1
Unit mA mA
8.0
0.9
1.4
0.5
1.6
0.65
60
32
25
5
1
0.5
0.1
0.05
24.0
2.7
4.2
1.5
4.8
1.95
120
64
55
15
30
10
30
10 mA mA mA mA mA mA m
A m
A m
A m
A m
A m
A m
A m
A
Notes 1. Not including AV
REF0
, AV
REF1
and AV
DD
currents or port currents (including current flowing into on-chip pullup resistors).
2. f xx
= f x
/2 operation (when oscillation mode selection register (OSMS) is set to 00H).
3. f xx
= f x
operation (when OSMS is set to 01H).
4. When the main system clock is stopped.
5. High-speed mode operation (when processor clock control register (PCC) is set to 00H).
6. Low-speed mode operation (when PCC is set to 04H).
Remark
f xx
: Main system clock frequency (f x
or f x
/2) f x
: Main system clock oscillation frequency
43
m
PD78070A
AC Characteristics
(1)
Basic Operation (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
Parameter
Cycle time
(minimum instruction execution time)
TI00 input high-/low-level widths
TI01 input high-/low-level widths
TI1, TI2, TI5, TI6 input frequency f
TI1
TI1, TI2, TI5, TI6 input high-/ t
TIH1
, low-level widths t
TIL1
Interrupt input high-/ low-level widths t t t t
Symbol Test Conditions
T
CY
Operating on f
XX
= f
X
/2
Note1
main system f
XX
= f
X
Note2
MIN.
0.8
V
DD
= 3.5 to 5.5 V 0.4
TIH00 t
TIL00
TIH01 t
TIL01
,
, clock
Operating on subsystem clock
V
DD
= 3.5 to 5.5 V
0.8
40
2/f sam
+0.1
Note3
2/f sam
+0.2
Note3
10
V
DD
= 4.5 to 5.5 V
INTH
INTL
,
V
DD
= 4.5 to 5.5 V
INTP0
0
0
100
1.8
V
DD
= 3.5 to 5.5 V
2/f sam
+0.1
Note3
RESET low-level width t
RSL
INTP1-INTP6
2/f sam
+0.2
Note3
10
10
TYP.
122
4
275
MAX.
64
32
32
125
Unit m s m s m s m s m s m s m s
MHz kHz ns m s m s m s m s m s
Notes 1. When oscillation mode selection register (OSMS) is set to 00H.
2. When OSMS is set to 01H.
3. f sam
can be selected as f xx
/2 N , f xx
/32, f xx
/64 or f xx
/128 (N = 0-4) by bits 0 and 1 (SCS0, SCS1) of the sampling clock selection register.
Remark
f xx
: Main system clock frequency (f x
or f x
/2) f x
: Main system clock oscillation frequency
44
T
CY
vs V
DD
(Main System Clock f xx
= f x
/2 Operation)
60 m
PD78070A
T
CY
vs V
DD
(Main System Clock f xx
= f x
Operation)
60
10
Operation
Guaranteed
Range
2.0
1.0
0.5
0.4
0
1 2 3 4 5 6
Power Supply Voltage V
DD
[V]
10
Operation
Guaranteed
Range
2.0
1.0
0.5
0.4
0
1 2 3 4 5 6
Power Supply Voltage V
DD
[V]
45
m
PD78070A
(2) Read/Write Operation
(a)
When MCS = 1, PCC2 to PCC0 = 000B (T
A
= –40 to +85 °C, V
DD
= 4.5 to 5.5 V)
MAX.
Parameter
ASTB high-level width
Address setup time
Address hold time
Address
Æ
Data input time
RD
Ø Æ
Data input time
Read data hold time
RD low-level width
RD
Ø Æ
WAIT
Ø
input time
WR
Ø Æ
WAIT
Ø
input time
WAIT low-level width t
RDWT2 t
WRWT t
WTL
Write data setup time t
WDS
Write data hold time t
WDH
WR low-level width t
WRL
ASTB
Ø Æ
RD
Ø
delay time t
ASTRD
ASTB
Ø Æ
WR
Ø
delay time t
ASTWR
In external fetch RD
Æ
ASTB
delay time
In external fetch RD
Æ t t
RDAST
RDADH address hold time
RD
Æ
write data output time t
RDWD
WR
Ø Æ
write data output time t
WRWD
WR
Æ
address hold time
WAIT
Æ
RD
delay time
WAIT
Æ
WR
delay time t t t
WRADH
WTRD
WTWR t
RDD1 t
RDD2 t
RDH t
RDL1 t
RDL2 t
RDWT1
Symbol Test Conditions t
ASTH t
ADS t
ADH t
ADD1 t
ADD2
MIN.
0.85t
CY
– 50
0.85t
CY
– 50
50
0
(2 + 2n) t
CY
– 60
(2.85 + 2n) t
CY
– 60
(1.15 + 2n) t
CY
(2.85 + 2n) t
CY
– 100
20
(2.85 + 2n) t
CY
– 60
25
0.85t
CY
+ 20
0.85t
CY
– 10
0.85t
CY
– 50
40
0
0.85t
CY
1.15t
CY
+ 40
1.15t
CY
+ 30
(2.85 + 2n) t
CY
– 80
(4 + 2n) t
CY
– 100
(2 + 2n) t
CY
– 100
(2.85 + 2n) t
CY
– 100
0.85t
CY
– 50
2t
CY
– 60
2t
CY
– 60
(2 + 2n) t
CY
1.15t
CY
+ 20
1.15t
CY
+ 50
50
1.15t
CY
+ 40
3.15t
CY
+ 40
3.15t
CY
+ 30
Remarks 1.
MCS: Bit 0 of the oscillation mode selection register (OSMS)
2.
PCC2-PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)
3.
t
CY
= T
CY
/4
4.
n indicates the number of waits.
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Unit ns ns
46
m
PD78070A
(b) Except When MCS = 1, PCC2 to PCC0 = 000B (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
MAX.
Parameter
ASTB high-level width
Address setup time
Address hold time
Address
Æ
Data input time
RD
Ø Æ
Data input time
Read data hold time
RD low-level width t
RDH t
RDL1
RD
Ø Æ
WAIT
Ø
input time t t
RDL2
RDWT1
WR
Ø Æ
WAIT
Ø
input time
WAIT low-level width
Write data setup time
Write data hold time t t t
RDWT2
WRWT t
WTL
WDS t
WDH
WR low-level width t
WRL
ASTB
Ø Æ
RD
Ø
delay time t
ASTRD
ASTB
Ø Æ
WR
Ø
delay time t
ASTWR
In external fetch RD
Æ
ASTB
delay time
In external fetch RD
Æ t t
RDAST
RDADH address hold time
RD
Æ
write data output time t
RDWD
WR
Ø Æ
write data output time t
WRWD
WR
Æ
address hold time
WAIT
Æ
RD
delay time
WAIT
Æ
WR
delay time t t t
WRADH
WTRD
WTWR
Symbol Test Conditions t
ASTH t
ADS t
ADH t
ADD1 t
ADD2 t
RDD1 t
RDD2
MIN.
t
CY
– 80 t
CY
– 80
0.4t
CY
– 10
0
(1.4 + 2n) t
CY
– 20
(2.4 + 2n) t
CY
– 20
(1 + 2n) t
CY
(2.4 + 2n) t
CY
– 60
20
(2.4 + 2n) t
CY
– 20
0.4t
CY
– 30
1.4t
CY
– 30 t
CY
– 10 t
CY
– 50
0.4t
CY
– 20
0 t
CY
0.6t
CY
+ 180
0.6t
CY
+ 120
(3 + 2n) t
CY
– 160
(4 + 2n) t
CY
– 200
(1.4 + 2n) t
CY
– 70
(2.4 + 2n) t
CY
– 70 t
CY
– 100
2t
CY
– 100
2t
CY
– 100
(2 + 2n) t
CY t
CY
+ 20 t
CY
+ 50
60 t
CY
+ 60
2.6t
CY
+ 180
2.6t
CY
+ 120
Remarks 1.
MCS: Bit 0 of the oscillation mode selection register (OSMS)
2.
PCC2-PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)
3.
t
CY
= T
CY
/4
4.
n indicates the number of waits.
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Unit ns ns ns
47
m
PD78070A
(3)
Serial Interface (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V)
(a) Serial Interface Channel 0
(i) 3-wire serial I/O mode (SCK0 ··· internal clock output)
Parameter
SCK0 cycle time
Symbol Test Conditions t
KCY1
V
DD
= 4.5 to 5.5 V
SCK0 high-/low-level width t
KH1
, t
KL1 t
SIK1
V
DD
= 4.5 to 5.5 V
SI0 setup time
(to SCK0
)
SI0 hold time
(from SCK0
)
SCK0
Ø Æ
SO0 output delay time t
KSI1 t
KSO1
V
DD
= 4.5 to 5.5 V
C = 100 pF Note
Note C is the SCK0, SO0 output line load capacitance.
(ii) 3-wire serial I/O mode (SCK0 ··· external clock input)
Parameter
SCK0 cycle time
Symbol Test Conditions t
KCY2
V
DD
= 4.5 to 5.5 V
SCK0 high-/low-level width t
KH2
, t
KL2 t
SIK2
V
DD
= 4.5 to 5.5 V
SI0 setup time
(to SCK0
)
SI0 hold time
(from SCK0
)
SCK0
Ø Æ
SO0 output delay time
SCK0 rise, fall time t
KSI2 t
KSO2
C = 100 pF Note t
R2
, t
F2
Note C is the SO0 output line load capacitance.
MIN.
800
1600 t
KCY1
/2–50 t
KCY1
/2–100
100
150
400
TYP.
MAX.
300 ns ns ns ns
Unit ns ns ns ns
MIN.
800
1600
400
800
100
400
TYP.
MAX.
300
160 ns ns
Unit ns ns ns ns ns ns
48
m
PD78070A
(iii) SBI mode (SCK0 ··· internal clock output)
Parameter
SCK0 cycle time
Symbol Test Conditions t
KCY3
V
DD
= 4.5 to 5.5 V
SCK0 high-/low-level width t
KH3
, t
KL3
V
DD
= 4.5 to 5.5 V
SB0, SB1 setup time
(to SCK0
)
SB0, SB1 hold time
(from SCK0
)
SCK0
Ø Æ
SB0, SB1 output delay time
SCK0
Æ
SB0, SB1
Ø
SB0, SB1
Ø Æ
SCK0
Ø
SB0, SB1 high-level width
SB0, SB1 low-level width t
SIK3 t
KSI3 t
KSO4 t
KSB t
SBK t
SBH t
SBL
V
DD
= 4.5 to 5.5 V
R = 1 k
W
,
C = 100 pF Note
V
DD
= 4.5 to 5.5 V 0
0 t
KCY3 t
KCY3 t
KCY3 t
KCY3
MIN.
800
3200 t
KCY3
/2–50 t
KCY3
/2–150
100
300 t
KCY3
/2
TYP.
Note R and C are the SCK0, SB0, SB1 output line load resistance and load capacitance.
(iv) SBI mode (SCK0 ··· external clock input)
Parameter
SCK0 cycle time
Symbol Test Conditions t
KCY4
V
DD
= 4.5 to 5.5 V
TYP.
SCK0 high-/low-level width t
KH4
, t
KL4
V
DD
= 4.5 to 5.5 V
SB0, SB1 setup time
(to SCK0
)
SB0, SB1 hold time
(from SCK0
)
SCK0
Ø Æ
SB0, SB1 output delay time
SCK0
Æ
SB0, SB1
Ø
SB0, SB1
Ø Æ
SCK0
Ø
SB0, SB1 high-level width
SB0, SB1 low-level width
SCK0 rise, fall time t
SIK4
V
DD
= 4.5 to 5.5 V t
KSI4 t
KSO4
R = 1 k
W
,
C = 100 pF
Note t
KSB t
SBK t
SBH t
SBL t
R4
, t
F4
V
DD
= 4.5 to 5.5 V 0
0 t
KCY4 t
KCY4 t
KCY4 t
KCY4
MIN.
800
3200
400
1600
100
300 t
KCY4
/2
Note R and C are the SB0, SB1 output line load resistance and load capacitance.
MAX.
250
1000 ns ns ns ns ns ns ns ns ns ns
Unit ns ns ns
MAX.
300
1000
160 ns ns ns ns ns ns ns ns ns ns ns
Unit ns ns ns
49
m
PD78070A
(v) 2-wire serial I/O mode (SCK0 ··· internal clock output)
Parameter
SCK0 cycle time
SCK0 high-level width
SCK0 low-level width
SB0, SB1 setup time
(to SCK0
)
SB0, SB1 hold time
(from SCK0
)
SCK0
Ø Æ
SB0, SB1 output delay time t
Symbol Test Conditions
KCY5
R = 1 k
W
, t
KH5
C = 100 pF Note t
KL5 t
SIK5 t
KSI5 t
KSO5
MIN.
1600 t
KCY5
/2–160
V
DD
= 4.5 to 5.5 V t
KCY5
/2–50
TYP.
t
KCY5
/2–100
V
DD
= 4.5 to 5.5 V 300
350
600
0
Note R and C are the SCK0, SB0, SB1 output line load resistance and load capacitance.
(vi) 2-wire serial I/O mode (SCK0 ··· external clock input)
Parameter
SCK0 cycle time
SCK0 high-level width
SCK0 low-level width
SB0, SB1 setup time
(to SCK0
)
SB0, SB1 hold time
(from SCK0
)
SCK0
Ø Æ
SB0, SB1 output delay time
SCK0 rise, fall time
Symbol Test Conditions t
KCY6 t
KH6 t
KL6 t
SIK6 t
KSI6 t
KSO6 t
R6
, t
F6
R = 1 k
W
,
C = 100 pF Note
MIN.
1600
650
800
100 t
KCY6
/2
V
DD
= 4.5 to 5.5 V 0
0
Note R and C are the SB0, SB1 output line load resistance and load capacitance.
TYP.
MAX.
300 ns ns ns ns
Unit ns ns ns ns
MAX.
300
500
160 ns ns ns
Unit ns ns ns ns ns
50
m
PD78070A
(b) Serial Interface Channel 1
(i) 3-wire serial I/O mode (SCK1 ··· internal clock output)
Parameter
SCK1 cycle time
Symbol Test Conditions t
KCY7
V
DD
= 4.5 to 5.5 V
SCK1 high-/low-level width t
KH7
, t
KL7 t
SIK7
SI1 setup time
(to SCK1
)
SI1 hold time
(from SCK1
)
SCK1
Ø Æ
SO1 output delay time t t
KSI7
KSO7
V
DD
= 4.5 to 5.5 V
V
DD
= 4.5 to 5.5 V
C = 100 pF
Note
Note C is the SCK1, SO1 output line load capacitance.
(ii) 3-wire serial I/O mode (SCK1 ··· external clock input)
Parameter
SCK1 cycle time
Symbol Test Conditions t
KCY8
V
DD
= 4.5 to 5.5 V
SCK1 high-/low-level width t
KH8
, t
KL8
V
DD
= 4.5 to 5.5 V
SI1 setup time
(to SCK1
)
SI1 hold time
(from SCK1
)
SCK1
Ø Æ
SO1 output delay time
SCK1 rise, fall time t t t t
SIK8
KSI8
KSO8
R8
, t
F8
C = 100 pF
Note
Note C is the SO1 output line load capacitance.
MIN.
800
1600 t
KCY7
/2–50 t
KCY7
/2–100
100
150
400
TYP.
MAX.
300 ns ns ns
Unit ns ns ns ns ns
MIN.
800
1600
400
800
100
400
TYP.
MAX.
300
160 ns ns
Unit ns ns ns ns ns ns
51
m
PD78070A
(iii) 3-wire serial I/O mode with automatic transmission/reception function (SCK1 ··· internal clock output)
Parameter
SCK1 cycle time
Symbol Test Conditions t
KCY9
V
DD
= 4.5 to 5.5 V
SCK1 high-/low-level width
SI1 setup time
(to SCK1
)
SI1 hold time
(from SCK1
)
SCK1
Ø Æ
SO1 output delay time
SCK1
Æ
STB
Strobe signal high-level width
Busy signal setup time
(to busy signal detection timing)
Busy signal hold time
(from busy signal detection
timing)
Busy inactive
Æ
SCK1
Ø t
KH9
, t
KL9 t
SIK9 t
KSI9 t
KSO9 t
SBD t
SBW t
BYS t
BYH t
SPS
V
DD
= 4.5 to 5.5 V
V
DD
= 4.5 to 5.5 V
C = 100 pF Note
V
DD
= 4.5 to 5.5 V
MIN.
800
1600 t
KCY9
/2–50 t
KCY9
/2–100
100
150
400
TYP.
t
KCY9
/2–100 t
KCY9
–30
100
100
150
MAX.
300 ns t
KCY9
/2+100 ns t
KCY9
+30 ns
2t
KCY9 ns ns ns ns ns ns ns ns
Unit ns ns ns
Note C is the SCK1, SO1 output line load capacitance.
(iv) 3-wire serial I/O mode with automatic transmission/reception function (SCK1 ··· external clock input)
Parameter
SCK1 cycle time
SCK1 high-/low-level width
SI1 setup time
(to SCK1
)
SI1 hold time
(from SCK1
)
SCK1
Ø Æ
SO1 output delay time
SCK1 rise, fall time
Symbol Test Conditions t
KCY10
V
DD
= 4.5 to 5.5 V t
KH10
, t
KL10 t
SIK10 t
KSI10 t
KSO10 t
R10
, t
F10
V
DD
= 4.5 to 5.5 V
C = 100 pF
Note
MIN.
800
1600
400
800
100
400
TYP.
MAX.
300
160
Unit ns ns ns ns ns ns ns ns
Note C is the SO1 output line load capacitance.
52
m
PD78070A
(c) Serial Interface Channel 2
(i) 3-wire serial I/O mode (SCK2 ··· internal clock output)
Parameter
SCK2 cycle time
Symbol Test Conditions t
KCY11
V
DD
= 4.5 to 5.5 V
SCK2 high-/low-level width t
KH11
, t
KL11 t
SIK11
SI2 setup time
(to SCK2
)
SI2 hold time
(from SCK2
)
SCK2
Ø Æ
SO2 output delay time t t
KSI11
KSO11
V
V
DD
DD
= 4.5 to 5.5 V
= 4.5 to 5.5 V
C = 100 pF Note
Note C is the SCK2, SO2 output line load capacitance.
(ii) 3-wire serial I/O mode (SCK2 ··· external clock input)
Parameter
SCK2 cycle time
Symbol Test Conditions t
KCY12
V
DD
= 4.5 to 5.5 V
SCK2 high-/low-level width t
KH12
, t
KL12 t
SIK12
SI2 setup time
(to SCK2
)
SI2 hold time
(from SCK2
)
SCK2
Ø Æ
SO2 output delay time
SCK2 rise, fall time t t t
KSI12
KSO12
R12 t
F12
,
V
DD
= 4.5 to 5.5 V
C = 100 pF Note
Note C is the SO2 output line load capacitance.
MIN.
800
1600 t
KCY11
/2–50 t
KCY11
/2–100
100
150
400
TYP.
MAX.
300 ns ns ns ns
Unit ns ns ns ns
MIN.
800
1600
400
800
100
400
TYP.
MAX.
300
160 ns ns
Unit ns ns ns ns ns ns
53
54
(iii) UART mode (Dedicated baud rate generator output)
Parameter
Transfer rate
Symbol Test Conditions
V
DD
= 4.5 to 5.5 V
(iv) UART mode (External clock input)
Parameter
ASCK cycle time
Symbol Test Conditions t
KCY13
V
DD
= 4.5 to 5.5 V
ASCK high-/low-level width t
KH13
, t
KL13
Transfer rate
V
DD
= 4.5 to 5.5 V
V
DD
= 4.5 to 5.5 V
ASCK rise, fall time t
R13
, t
F13 m
PD78070A
MIN.
TYP.
MAX.
78125
39063
Unit bps bps
MIN.
800
1600
400
800
TYP.
MAX.
39063
19531
160 ns bps bps ns
Unit ns ns ns
AC Timing Test Point (Excluding X1, XT1 Input)
0.8 V
DD
0.2 V
DD
Test Points
Clock Timing
1/f x t
XL t
XH
0.8 V
DD
0.2 V
DD
X1 Input
V
DD
– 0.5 V
0.4 V t
XTL
1/f
XT t
XTH
XT1 Input
V
DD
– 0.5 V
0.4 V
TI Timing
t
TIL00 , t
TIL01 t
TIH00, t
TIH01
TI00, TI01 t
TIL1
1/f
TI1 t
TIH1
TI1, TI2,
TI5, TI6 m
PD78070A
55
Read/Write Operation
External fetch (no wait):
A0-A15
AD0-AD7
Address t
ADS t
ASTH t
ADD1
Low-order
8-bit address
Hi-Z t
ADH
Instruction code t
RDD1 t
RDADH t
RDAST
ASTB
RD t
ASTRD t
RDL1 t
RDH
External fetch (wait insertion):
A0-A15
AD0-AD7 t
ADS t
ASTH
ASTB
Low-order
8-bit address t
ADH
RD
WAIT t
ASTRD t
RDWT1 t
ADD1
Hi-Z t
RDD1
Address
Instruction code t
RDADH t
RDAST t
WTL t
RDL1 t
WTRD t
RDH m
PD78070A
56
External data access (no wait):
A0-A15
AD0-AD7 t
ADS t
ASTH
Low-order
8-bit address t
ADD2
Hi-Z t
ADH
Read Data t
RDD2 t
RDH
Address
Hi-Z
ASTB
RD
WR t
ASTRD t t
RDL2
ASTWR
Write Data t
RDWD t
WRWD t
WDS t
WRL
Hi-Z t
WDH t
WRADH
External data access (wait insertion):
A0-A15
AD0-AD7
ASTB t
ADS t
ASTH
Low-order
8-bit address t
ADH t
ADD2
Hi-Z t
RDD2 t
ASTRD
RD t
RDL2
Address
Hi-Z
Read Data t
RDH
WR
WAIT t
RDWT2 t
WTL t
ASTWR t
WTRD
Write Data
Hi-Z t
RDWD t
WRWD t
WDS t
WRL t
WRWT t
WTL t
WTWR t
WDH t
WRADH m
PD78070A
57
Serial Transfer Timing
3-wire serial I/O mode:
t
KLm t
Rn t
KCYm t
KHm t
Fn
SCK0-SCK2 t
SIKm t
KSIm
Input Data
SI0-SI2 t
KSOm
SO0-SO2
Output Data
Remark
m = 1, 2, 7, 8, 11, 12 n = 2, 8, 12
SBI mode (bus release signal transfer):
t
KL3,4 t
R4 t
KCY3,4 t
KH3,4 t
F4
SCK0 t
KSB t t t t
SBH t
SBK
SB0, SB1 t
KSO3,4
SBI mode (command signal transfer):
SCK0 t
KSB t
SBK t
KL3,4 t
R4 t
KCY3,4 t
KH3,4 t
F4 t
SIK3,4 t
KSI3,4
SB0, SB1 t
KSO3,4 t
SIK3,4 t
KSI3,4 m
PD78070A
58
m
PD78070A
2-wire serial I/O mode:
t
KL5, 6 t
R6 t
KCY5, 6 t
KH5, 6 t
F6
SCK0 t
KSO5, 6 t
SIK5, 6 t
KSI5, 6
SB0, SB1
3-wire serial I/O mode with automatic transmission/reception function:
SO1
D2 D1 D0
SI1
D2 t
SIK9, 10 t
KSO9, 10
SCK1
D1 D0 t
KSI9, 10 t
KH9, 10 t
F10 t
KL9, 10 t
KCY9, 10 t
R10 t
SBD t
SBW
STB
D7
D7
3-wire serial I/O mode with automatic transmission/reception function (busy processing):
SCK1
7 8 9
Note
10
Note
t
BYS
10+n
Note
t
BYH t
SPS
BUSY
(Active high)
Note
The signal is not actually low here, but is represented in this way to show the timing.
UART mode (external clock input):
t
KL13 t
R13 t
KCY13 t
KH13 t
F13
ASCK
1
59
m
PD78070A
A/D Converter Characteristics (T
A
= –40 to +85 °C, AV
DD
= V
DD
= 2.7 to 5.5 V, AV
SS
= V
SS
= 0 V)
Parameter
Resolution
Total error
Note
Conversion time
Sampling time
Analog input voltage
Reference voltage
AV
REF0
-AV
SS resistance
Symbol Test Conditions t
CONV t
SAMP
V
IAN
AV
REF0
R
AIREF0
2.7 V - AV
REF0
- AV
DD
MIN.
8
19.1
12/f xx
AV
SS
2.7
4
TYP.
8
14
MAX.
8
0.6
200
AV
REF0
AV
DD
Unit bit
% m s m s
V
V k
W
Note Excluding quantization error (±1/2 LSB). Shown as a percentage of the full scale value.
Remark
f xx
: Main system clock frequency (f x
or f x
/2) f x
: Main system clock oscillation frequency
D/A Converter Characteristics (T
A
= –40 to +85 °C, V
DD
= 2.7 to 5.5 V, AV
SS
= V
SS
= 0 V)
Symbol Test Conditions MIN.
TYP.
Parameter
Resolution
Total error
Settling time
Output resistor
Analog reference voltage
AV
REF1
–AV
SS
resistance
R = 2 M
W
Note1
R = 4 M
W
Note1
R = 10 M
W
Note1
C = 30 pF
Note1
4.5 V - AV
REF1
- 5.5 V
2.7 V - AV
REF1
< 4.5 V
R
O
AV
REF1
Note2
R
AIREF1
DACS0, DACS1 = 55H
Note2
2.7
4
10
8
MAX.
8
1.2
0.8
0.6
10
15
V
DD
Notes 1. R and C are the D/A converter output pin load resistance and load capacitance.
2. Value for one D/A converter channel.
Remark
DACS0, DACS1: D/A conversion value setting registers 0, 1.
Unit bit
%
%
% m s m s k
W
V k
W
60
m
PD78070A
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T
A
= –40 to +85 °C)
Parameter Symbol Test Conditions
Data retention supply voltage V
DDDR
Data retention supply current I
DDDR
V
DDDR
= 1.8 V
When subsystem clock stopped and feedback resistor disconnected
Release signal setup time t
SREL
Oscillation stabilization wait t
WAIT time
Release by RESET
Release by interrupt
MIN.
1.8
0
TYP.
0.1
2 17 /f x
Note
MAX.
5.5
10
Unit
V m
A m s ms ms
Note 2
12
/f xx
or 2
14
/f xx
-2
17
/f xx
can be selected by bit 0-bit 2 (OSTS0-OSTS2) of oscillation stabilization time selection register
(OSTS).
Remark
f xx
: Main system clock frequency (f x
or f x
/2) f x
: Main system clock oscillation frequency
Data Retention Timing (STOP mode released by RESET)
STOP mode
Data retention mode
Internal reset operation
HALT mode
Operating mode
V
DD
V
DDDR t
SREL
STOP instruction execution
RESET t
WAIT
Data Retention Timing (Standby release signal: STOP mode released by interrupt signal)
HALT mode
Operating mode
STOP mode
Data retention mode
V
DD
V
DDDR
STOP instruction execution
Standby release signal
(interrupt request) t
SREL t
WAIT
61
Interrupt Input Timing
RESET Input Timing
INTP0-INTP6
RESET t
INTL t
RSL t
INTH m
PD78070A
62
m
PD78070A
12. PACKAGE DRAWINGS
100 PIN PLASTIC QFP (FINE PITCH) ( 14)
A
B
75
76
51
50 detail of lead end
100
1
26
25
G
H
I
M J
K
N
L
NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.
L
M
N
P
Q
R
S
ITEM MILLIMETERS
A 16.0±0.2
B 14.0±0.2
INCHES
0.630±0.008
C
D
F
G
H
I
J
K
14.0±0.2
16.0±0.2
1.0
1.0
0.22
+0.05
–0.04
0.10
0.5 (T.P.)
1.0±0.2
0.630±0.008
0.039
0.039
0.009±0.002
0.004
0.020 (T.P.)
0.5±0.2
0.17
+0.03
–0.07
0.007
+0.001
–0.003
0.10
1.45
0.004
0.057
0.125±0.075
0.005±0.003
5°±5°
1.7 MAX.
5°±5°
0.067 MAX.
P100GC-50-7EA-2
63
64
m
PD78070A
100 PIN PLASTIC QFP (14
×
20)
A
B
80
81
51
50 detail of lead end
100
1
31
30
G
H I M
J
K
N
NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at maximum material condition.
L
M
N
P
Q
I
J
K
G
H
D
F
ITEM
A
B
C
S
L
MILLIMETERS
23.6±0.4
20.0±0.2
14.0±0.2
17.6±0.4
0.8
0.6
0.30±0.10
0.15
0.65 (T.P.)
1.8±0.2
0.8±0.2
0.15
+0.10
–0.05
0.10
2.7
0.1±0.1
3.0 MAX.
P100GF-65-3BA1-2
INCHES
0.929±0.016
0.795
+0.009
–0.008
0.551
+0.009
–0.008
0.693±0.016
0.031
0.024
0.012
+0.004
–0.005
0.006
0.026 (T.P.)
0.071
+0.008
–0.009
0.031
+0.009
–0.008
0.006
+0.004
–0.003
0.004
0.106
0.004±0.004
0.119 MAX.
m
PD78070A
13. RECOMMENDED SOLDERING CONDITIONS
It is recommended that the m
PD78070A be soldered under the following conditions.
For details on the recommended soldering conditions, refer to information document "Semiconductor Device Mounting
Technology Manual" (C10535E).
For soldering methods and conditions other than those recommended, please contact your NEC sales representative.
Table 13-1. Soldering Conditions for Surface Mount Devices (1/2)
(1)
m
PD78070AGC-7EA: 100-pin plastic QFP (Fine pitch) (14
¥
14 mm, resin thickness 1.45 mm)
Soldering Method
Infrared ray reflow
VPS
Partial heating
Soldering Conditions Symbol
Package peak temperature: 235 °C, Reflow time: 30 seconds or less (at 210 °C IR35-107-2 or higher), Number of reflow processes: 2 or less, Exposure limit: 7 days
Note
(10 hours pre-baking is required at 125 °C afterwards)
< Cautions >
(1) Wait for the device temperature to return to normal after the first reflow before starting the second reflow.
(2) Do not perform flux cleaning with water after the first reflow.
Package peak temperature: 215 °C, Reflow time: 40 seconds or less (at 200 °C VP15-107-2 or higher), Number of reflow processes: 2 or less, Exposure limit: 7 days
Note
(10 hours pre-baking is required at 125 °C afterwards)
< Cautions >
(1) Wait for the device temperature to return to normal after the first reflow before starting the second reflow.
(2) Do not perform flux cleaning with water after the first reflow.
Pin temperature: 300°C or below, Flow time: 3 seconds or less (per device side) —
Note Exposure limit before soldering after the dry pack package is opened. Storage conditions: 25 °C and relative humidity at 65% or less.
Caution Do not use different soldering methods together (except for partial heating method).
65
m
PD78070A
Table 13-1. Soldering Conditions for Surface Mount Devices (2/2)
(2)
m
PD78070AGF-3BA: 100-pin plastic QFP (14
¥
20 mm, resin thickness 2.7 mm)
Soldering Method
Infrared ray reflow
VPS
Wave soldering
Partial heating
Soldering Conditions
Package peak temperature: 235 °C, Reflow time: 30 seconds or less
(at 210 °C or higher), Number of reflow processes: 2 or less
< Cautions >
(1) Wait for the device temperature to return to normal after the first reflow before starting the second reflow.
(2) Do not perform flux cleaning with water after the first reflow.
Package peak temperature: 215 °C, Reflow time: 40 seconds or less
Symbol
IR35-00-2
VP15-00-2
(at 200 °C or higher), Number of reflow processes: 2 or less
< Cautions >
(1) Wait for the device temperature to return to normal after the first reflow before starting the second reflow.
(2) Do not perform flux cleaning with water after the first reflow.
Solder temperature: 260 °C or below, Flow time: 10 seconds or less,
Number of flow processes: 1, Preheating temperature: 120°C max.
(package surface temperature)
WS60-00-1
Pin temperature: 300°C or below, Flow time: 3 seconds or less (per device side) —
Caution Do not use different soldering methods together (except for partial heating method).
66
m
PD78070A
APPENDIX A. DEVELOPMENT TOOLS
The following development tools are available to support development of systems using the m
PD78070AY.
Language Processing Software
RA78K/0
Note 1, 2, 3, 4
CC78K/0 Note 1, 2, 3, 4
DF78078
Note 1, 2, 3, 4
CC78K/0–L
Note 1, 2, 3, 4
Debugging Tools
Assembler package common to the 78K/0 series
C compiler package common to the 78K/0 series
Device file common to the m
PD78078 subseries
C compiler library source file common to the 78K/0 series
IE-78000-R
IE-78000-R-A
Note8
IE-78000-R-BK
IE-78078-R-EM
EP-78064GC-R
EP-78064GF-R
EV-9500GC-100
EV-9200GF-100
SM78K0 Note 5, 6, 7
ID78K0 Note 4, 5, 6, 7, 8
SD78K/0
Note 1, 2
DF78078 Note 1, 2, 5, 6, 7
Real-Time OS
In-circuit emulator common to the 78K/0 series
In-circuit emulator common to the 78K/0 series (for the integrated debugger)
Break board common to the 78K/0 series
Emulation board common to the m
PD78078 subseries
Emulation probe common to the m
PD78064 subseries
Adapter mounted on the user system board prepared for 100-pin plastic QFP
Socket mounted on the user system board prepared for 100-pin plastic QFP
System simulator common to the 78K/0 series
Integrated debugger for the IE-78000-R-A
Screen debugger for the IE-78000-R
Device file common to the m
PD78078 subseries
RX78K/0 Note 1, 2, 3, 4
MX78K0 Note 1, 2, 3, 4
Real-time OS used for the 78K/0 series
OS used for the 78K/0 series
Notes 1. Based on PC-9800 series (MS-DOS TM )
2. Based on IBM PC/AT TM and its compatibles (PC DOS TM /IBM DOS TM /MS-DOS TM )
3. Based on HP9000 series 300 TM (HP-UX TM )
4. Based on HP9000 series 700 TM (HP-UX), SPARCstation TM (SunOS TM ), and EWS-4800 series (EWS-UX/V)
5. Based on PC-9800 series (MS-DOS + Windows TM )
6. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows)
7. Based on NEWS TM (NEWS-OS TM )
8. Under development
Remarks 1.
Please refer to the 78K/0 Series Selection Guide (IF-1185) for information on third party development tools.
2.
Use the RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0 and RX78K/0 in combination with the DF78078.
★
★
67
m
PD78070A
Fuzzy Inference Development Support System
FE9000
Note1
/FE9200
Note2
FT9080
Note1
/FT9085
Note3
FI78K0
Note 1, 3
FD78K0
Note 1, 3
Fuzzy knowledge data creation tool
Translator
Fuzzy inference module
Fuzzy inference debugger
Notes 1. Based on PC-9800 series (MS-DOS)
2. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows)
3. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS)
Remark
Please refer to the 78K/0 Series Selection Guide (IF-1185) for information on third party development tools.
68
m
PD78070A
APPENDIX B. RELATED DOCUMENTS
Documents Related to Devices
Document Name m
PD78070A, 78070AY User’s Manual
78K/0 Series User’s Manual—Instructions
78K/0 Series Instruction Table
78K/0 Series Instruction Set m
PD78070AY Special Function Register Table
Documents Related to Development Tools
Document No.
Japanese
IEU-907
IEU-849
U10903J
U10904J
U10133J
—
—
—
English
U10200E
IEU-1372
Document Name
RA78K Series Assembler Package
RA78K Series Structured Assembler Preprocessor
CC78K Series C Compiler
CC78K/0 C Compiler Application Note know-how
CC78K Series Library Source File
IE-78000-R
IE-78000-R-A
IE-78000-R-BK
IE-78078-R-EM
EP-78064
SM78K0 System Simulator
SM78K Series System Simulator
SD78K/0 Screen Debugger
PC-9800 Series (MS-DOS) Based
SD78K/0 Screen Debugger
IBM PC/AT (PC DOS) Based
Operation
Language
Operation
Language
Programming
Document No.
Japanese
EEU-809
EEU-815
EEU-817
EEU-656
EEU-655
EEA-618
English
EEU-1399
EEU-1404
EEU-1402
EEU-1280
EEU-1284
EEA-1208
EEU-777
EEU-810
U10057J
EEU-867
U10775J
EEU-934
Reference EEU-5002
External parts user U10092J open interface specification
Introduction EEU-852
Reference
Introduction
Reference
U10952J
EEU-5024
EEU-993
—
EEU-1398
U10057E
EEU-1427
EEU-1504
EEU-1522
U10181E
U10092E
—
—
EEU-1414
EEU-1413
Caution The contents of the documents listed above are subject to change without prior notice. Make sure to use the latest edition when starting design.
69
m
PD78070A
Documents Related to Embedded Software (User’s Manual)
Document Name
78K/0 Series Real-time OS Basic
Installation
Technical
Basic 78K/0 Series OS MX78K0
Fuzzy Knowledge Data Creation Tool
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System Translator
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger
Document No.
Japanese
EEU-912
EEU-911
EEU-913
EEU-5010
EEU-829
EEU-862
EEU-858
EEU-921
English
—
—
—
—
EEU-1438
EEU-1444
EEU-1441
EEU-1458
Other Documents
Document Name
Package Manual
Semiconductor Device Mounting Technology Manual
NEC Semiconductor Device Quality Grades
NEC Semiconductor Device Reliability/Quality Control System
Electrostatic Discharge (ESD) Test
Semiconductor Device Quality Assurance Guide
Microcontroller-Related Product Guide – Third Party Products –
Document No.
Japanese
IEI-635
C10535J
IEI-620
IEM-5068
MEM-539
MEI-603
MEI-604
English
IEI-1213
C10535E
IEI-1209
—
—
MEI-1202
—
Caution The contents of the documents listed above are subject to change without prior notice. Be sure to use the latest edition when starting design.
70
[MEMO]
m
PD78070A
71
m
PD78070A
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded.
The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V
DD
or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.
72
FIP and IEBus are trademarks of NEC Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.
m
PD78070A
The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
Standard, Special, and Specific. The Specific quality grade applies only to devices developed based on a customer designated quality assurance program for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in Standard unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.
M4 94.11
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project