Precision Rolling Bearings Precision Rolling Bearings Table of Contents Technical Description 1 Bearing Selection 1-1 Bearing Selection Procedure ......................................................... 2 1-2 Examine Bearing Type .................................................................. 3 2 Bearing Life 2-1 Basic Dynamic Load Rating and Rated Life .................................... 4 2-2 Dynamic Equivalent Load.............................................................. 4 2-3 Angular Contact Ball Bearing Load ................................................ 5 2-4 Basic Static Load Rating and Static Equivalent Load ....................... 6 3 Bearing Tolerance 3-1 Radial Bearing Tolerances............................................................. 7 3-2 Tolerances and Permissible Values of Angular Contact Ball Bearings for Thrust Loads (TAH/TBH Series) ............................ 9 3-3 Tolerances of Cross Tapered Roller Bearings .................................. 9 3-4 Ball Screw Support Bearing (TAB Series) Tolerances ..................... 10 3-5 Tolerances for Ball Screw Support Bearing (TAF Series) ................ 11 3-6 Tolerances for Tapered Bores (Cylindrical Roller Bearings) ............. 11 4 Bearing Arrangement 4-1 Duplex Bearing Features ............................................................ 12 4-2 Mounting and Mounting Symbols ................................................ 13 4-3 Flush Ground Angular Contact Ball Bearings ................................ 13 5 Preload and Rigidity 5-1 Preload Objectives ..................................................................... 14 5-2 Preload Methods........................................................................ 14 5-3 Measuring Preload ..................................................................... 14 5-4 Preload Effect ............................................................................ 15 5-5 Standard Preload and Axial Rigidity ............................................. 16 6 Lubrication 6-1 Purpose of Lubrication ............................................................... 22 6-2 Lubrication Methods................................................................... 22 7 Limiting Speeds 7-1 Limiting Speed Correction .......................................................... 26 8 Shaft and Housing Design 8-1 Shaft and Housing Fit ................................................................. 27 8-2 Recommended Accuracy for Shaft and Housing ........................... 28 8-3 Chamfer Dimension Limits.......................................................... 29 9 Bearing Handling 9-1 Storing and Transporting Bearings ............................................... 30 9-2 Assembling Bearings .................................................................. 30 9-3 Running Test.............................................................................. 34 9-4 Removing Bearings .................................................................... 34 Dimension Tables Precision Rolling Bearing Types and Designs .................................................................................................................. 37 Angular Contact Ball Bearings Standard Type 38 7900C/7900AC Series ...................................................................................................................... 40 7000C/7000AC Series ...................................................................................................................... 42 7200C/7200AC Series ...................................................................................................................... 44 High-speed Angular Contact Ball Bearings 46 BNH Series ....................................................................................................................................... 48 Thrust Load Angular Contact Ball Bearings 50 TAH Series........................................................................................................................................ 52 TBH Series ....................................................................................................................................... 54 Multiple-row Cylindrical Roller Bearings 56 NN3000 Series ................................................................................................................................. 58 NNU4900 Series ............................................................................................................................... 60 Cross Tapered Roller Bearings 62 XRN Series ....................................................................................................................................... 64 XRG Series ....................................................................................................................................... 66 Ball Screw Support Bearings 68 TAB Series ........................................................................................................................................ 70 TAF Series ........................................................................................................................................ 72 Technical Description Technical Description Bearing Selection Bearing Life Bearing Tolerance Bearing Arrangement Preload and Rigidity Lubrication Limiting Speeds Shaft and Housing Design Bearing Handling Technical Description 1 Bearing Selection 1-1 Bearing Selection Procedure While it is not easy to select the optimum bearing type and combination, it is no exaggeration to say that bearing selection is essential in order to obtain the desired design performance and service life. While there is no “best” procedure for selecting the optimal bearing, the designer should consider giving priority to meeting the most critical requirement of the bearing. Figure 1.1 provides an example of a procedure based on the establishment of priorities for the required bearing characteristics. Performance, operating conditions, and environmental conditions demanded of bearings 1-2 Examine Bearing Type Study of the Bearing Arrangements and Bearing Types Page 3 ① Load direction and size ② Speed ③ Noise and torque ④ Horizontal or vertical shaft ⑤ Rigidity ⑥ Axial bearing arrangement ⑦ Installation and removal ⑧ Vibration, shock 3. Bearing Tolerance Select the degree of accuracy Required Dynamic Load Rating ① Change from ball bearings to roller bearings. ② Use multiple bearings. ③ Use alternate dimension. If high rigidity is required increase the preload. Calculate the required dynamic load ratings based on load, rotation speed, and desired service life. 6. Lubrication Page 22 Prevent dirt, water, and other foreign matter from getting inside the bearing. Grease lubrication Sealed bearings Value analysis (Can standard parts be used?) Oil lubrication No Page 14 Page 4 Selecting the lubrication method Select bearing dimensions. ① Shaft axial run-out ② Vibration from rotation ③ Rotating speed 5. Preload and Rigidity Determining Preload 2. Bearing Life Page 7 Open bearings Maintenance is not required, since grease cannot be removed or added. Countermeasures to keep dirt out, and to prevent oil/grease from leaking. Design that allows grease replenishment. Is size within design limits? Yes 2-4. Basic Static Load Rating and Static Equivalent Load Page 6 Basic static load rating check No Consider shaft and housing accuracy Is operating load smaller than static load rating? Yes 8-2. Recommended Accuracy for Shaft and Housing Page 28 9. Bearing Handling 7. Limiting Speeds Page 26 Consider handling and installation Review operating speed Review lubrication method No Consider the design from a maintenance viewpoint. Yes 8-1. Shaft and Housing Fit Page 27 ① Outer or inner ring rotation ② Stationary, rotational or impact loading ③ Shaft and housing materials ④ Fixed or expansion (free) ⑤ Inner ring expansion due to centrifugal force at high rotation speeds Bearing Selection Consider how to protect bearing from damage and dirt in the work environment, and use proper installation tools. If the bearing service life or grease life is shorter than the machine service life, create a design that allows easy bearing replacement or easy grease replenishment, and define the maintenance interval. Monitoring equipment can help in predicting service life through heat and vibration measurements. Selection of bearing ● Figure 1.1 Bearing Selection Procedure 2 Page 30 If the bearing service life is the same as or greater than the machine service life, consider a design or lubrication that does not require maintenance. Is speed within limits? Determine fit Determine if the shaft and housing accuracy is the same as or close to the bearing accuracy. NACHI BEARING Technical Description 1-2 Examine Bearing Type Factors Selection guidelines Allowable space for bearings ● When designing a shaft system, the rigidity and strength of the shaft are important factors. The first step is to determine the shaft diameter, and the bore diameter. ● Figure 1.2 shows guidelines for the main precision rolling contact bearings types and sizes used in machine tools. Load (type, direction, magnitude) ● Select the optimum bearing type in accordance with the magnitude of radial and axial load, direction of the load (either one or both directions), and level (vibration or shock). ● In general, a roller bearing has a greater load rating capacity than a ball bearing. Rotating speed ● Select the bearing type in accordance with the maximum rotating speed specified for the machine where the bearing is used. ● The limiting speeds of bearings is largely depended on the magnitude of the load applied, running accuracy, cage material, and cage design. Therefore, careful consideration is necessary. ● In general, angular contact ball bearings or cylindrical roller bearings, which demonstrate minimal temperature rise, are used in highspeed applications. Bearing Selection Bearing Life Rigidity ● In order to improve the rigidity of rotational axis, the rigidity of the shaft and housing, as well as the bearing rigidity become important. ● In general, roller bearing rigidity is greater than a ball bearing. ● The rigidity of combination angular contact ball bearing is increased by applying a preload to the bearing. Bearing Tolerance Mounting and dismounting ● Selecting a separable bearing increases work efficiency during mounting and dismounting for periodic inspection, etc. Bearing Arrangement Preload and Rigidity Lubrication Limiting Speeds 79 Series NNU49 Series 70 Series BNH Series NN30 Series TAH Series Shaft and Housing Design 72 Series ● Figure 1.2 Main Precision Rolling Bearings Used in Machine Tools Bearing Handling Bearing Selection 3 Technical Description 2 Bearing Life 2-1 Basic Dynamic Load Rating and Rated Life Although the requirements of rolling contact bearings vary somewhat with the individual application, the principal requirements are: ● High load capabilities ● Low friction ● Smooth and quiet rotation ● High accuracy ● High rigidity The reliability or durability requirement sets the time frame over which all other requirements are to be maintained. The reliability requirement (life in the broad sense) includes grease and acoustic life, as well as fatigue life. Reliability is reduced by various type of damage and degradation. Though there are other damage such as breakage and seizure, these are considered to be separate from bearing life. Improper handling, mounting, lubrication, and fits are the major causes of problems leading to lower-than-calculated bearing life. Regardless of how well they are maintained or mounted or handled, dynamic bearings will eventually fail from rolling fatigue generated by the repetitive stress of bearing load. The service life of a bearing can be examined from two perspectives: 1) If, from inspection, a trace of fatigue becomes noticeable, the bearing should be deemed not suitable for further use; or 2) length of bearing life in hours or revolutions can be predefined as a limit beyond which the bearing is automatically replaced. Since calculated fatigue life will vary with the size and type of bearings used under identical load conditions, great care must be taken in the analysis of the load conditions and the final choice of bearings to satisfy the application requirements. Fatigue lives of individual bearing are dispersed. When a group of identical bearings operates under the same conditions, the statistical phenomenon of dispersion will appear. Use of average life is not an adequate criterion for selecting rolling contact bearings. Instead, it is more appropriate to consider the limit (hours or numbers of revolutions) which a large percentage of the operating bearings can attain. Accordingly, the rating life and basic dynamic load rating Cr or Ca are defined using the following definition: ● Basic Rating Life Total number of revolutions that 90% of a group of identical bearings operated individually under equal conditions can complete without suffering material damage from rolling fatigue. ● Basic Dynamic Load Rating (Cr or Ca) Bearing load of constant direction and magnitude that ends the bearing life after one million revolutions. The rating life of bearings is calculated by Formula 2.1 and Formula 2.2. (Formula 2.1) (Formula 2.2) : Basic rating life (106 revolutions) : Basic rating life (hours) : Basic Dynamic Load Rating (N) (Cr for radial bearings, Ca for thrust bearings) : Bearing Load (Dynamic Equivalent Load) (N) (Pr for radial bearings, Pa for thrust bearings) p : 3 (ball bearings), 10/3 (roller bearings) N : RPM: (min-1) L Lh C P In the case of multiple rows of radial ball bearing arrangements, the basic dynamic load rating is calculated using the factors provided below. 2-row arrangement 3-row arrangement 4-row arrangement 1.62 2.16 2.64 2-2 Dynamic Equivalent Load Bearing load P in Formula 2.1 and Formula 2.2 is the pure radial load (pure axial load) of constant direction and magnitude. Under actual operating conditions, there are many cases where radial and axial loads are applied simultaneously. In such cases, bearing life must be calculated by converting the radial and axial loads into dynamic equivalent load. Dynamic equivalent load is calculated using Formula 2.3. Bearing load of constant direction and magnitude that ends the bearing life after one million revolutions. The rating life of bearings is calculated by Formula 2.1 and Formula 2.2. ● Table 2.1 Load Factors Nominal contact angle 15° Radial ball bearings (Formula 2.3) Pr Pa Fr Fa X Y 4 : Dynamic equivalent radial load (N) : Dynamic equivalent axial load (N) : Radial load (N) : Axial load (N) : Radial load factors (Table 2.1) : Axial load factors (Table 2.1) Bearing Life Thrust ball bearings 25° 30° 40° 50° 55° 60° iFa/ Cor e 0.015 0.029 0.058 0.087 0.12 0.17 0.29 0.44 0.58 − − − − − − 0.38 0.40 0.43 0.46 0.47 0.50 0.55 0.56 0.56 0.68 0.80 1.14 1.49 1.79 2.17 Single-row/singledirection bearing Fa/Fr>e X Y 0.44 0.41 0.39 0.35 0.73 0.81 0.92 1.47 1.40 1.30 1.23 1.19 1.12 1.02 1.00 1.00 0.87 0.76 0.57 1 1 1 Multiple-row/multiple-direction bearing Fa/Frde Fa/Fr>e X Y X Y 1 1.37 1.6 1.9 1.65 1.57 1.46 1.38 1.34 1.26 1.14 1.12 1.12 0.92 0.78 0.55 0.57 0.56 0.55 0.72 0.67 0.63 0.57 0.73 0.81 0.92 2.39 2.28 2.11 2.00 1.93 1.82 1.66 1.63 1.63 1.41 1.24 0.93 1 1 1 Note 1) i = 2 for DB or DF, i = 1 for Single or DT. Note 2) For Single or DT, use Pr=Fr when Fa/Frde. Note 3) When the nominal contact angle is 15q, use linear interpolation to determine X, Y, and e values of iFa/Cor that are not included in the table. Note 4) For high-speed use (dmn value > 800,000), the centrifugal force of the roller must also be taken into consideration in addition to the external load. Please consult NACHI concerning such applications. NACHI BEARING Technical Description 2-3 Angular Contact Ball Bearing Load In the case of angular contact ball bearings, the points where the extended contact lines within the bearing and the axis as shown in Figure 2.1 must be used as the bearing support points (load centers). Because of this, angular contact ball bearings are shown in dimension tables with "a" dimensions indicating support point positions. This consideration is particularly important when a moment load is acting on a bearing series. Axial component forces are generated when a radial load acts on an angular contact ball bearing. You can calculate the axial component forces using Formula 2.4. Fa' Bearing Selection Fr Bearing Life (Formula 2.4) Bearing Tolerance Fa’ : Induced axial load (N) Fr : Radial load (N) Y : Axial load factor ● Figure 2.1 Induced Axial Load for Angular Contact Ball Bearings Due to these component forces, the axial load and dynamic equivalent radial load acting on the bearing is as shown in Table 2.2. Preload and Rigidity ● Table 2.2 Axial Load and Dynamic Equivalent Load of Angular Contact Ball Bearings Bearing arrangement II Load conditions Lubrication Axial load Dynamic equivalent radial load I Limiting Speeds Shaft and Housing Design Fa Bearing Handling FrI FrII I II Fa FrI FrII II I Fa FrI FrII I II Fa FrI Bearing Arrangement FrII FrI, FrII : Radial load (N) applied to bearings I and II Fa : External axial load (N) : Axial load factors of bearings I and II YI, YII XI, XII : Radial load factors of bearings I and II PrI, PrII : Dynamic equivalent radial load (N) of bearings I and II Bearing Life 5 Technical Description Bearing Life 2-4 Basic Static Load Rating and Static Equivalent Load ● Table 2.3 Static Load Factors 2.4.1 Basic Static Load Rating Load applied to stationary bearings can create permanent indentions in the load surfaces. While some level of deformation can be tolerated, a level of deformation will be reached where noise and vibration during operation of the bearing, will make the bearing unusable. The term Basic Static Load Rating (Cor or Coa) refers to the maximum contact stress value of the static load when the rolling element and raceways contact. Ball bearings — 4200 MPa Roller bearings — 4000 MPa With these contact stresses, the sum of deformations is approximately 1/10,000 of the diameter of the rolling element. (Figure 2.2). Rolling element Radial ball bearings Thrust ball bearings Single or DT DB or DF Nominal contact angle Xo Yo Xo Yo 15° 25° 30° 40° 50° 55° 60° 0.5 0.5 0.5 0.5 2.74 3.28 3.98 0.46 0.38 0.33 0.26 1 1 1 1 1 1 1 2.74 3.28 3.98 0.92 0.76 0.66 0.52 1 1 1 2.4.3 Safety Factors The basic static load rating is considered as the limiting load for general applications. An application may require a safety factor larger than 1. Formula 2.8 and Table 2.4 show the calculation formula and safety factors (guidelines). Da r inne r andceway e t u O ng ra ri Load Raceway surface deformation G1 Rolling element surface deformation G2 (Formula 2.8) Po max : Permissible static equivalent load (N) Co : Basic static load rating (N) So : Safety factors (Table 2.4) ● Table 2.4 Safety Factors So ● Figure 2.2 Permanent Indentation Application conditions 2.4.2 Static Equivalent Load Static equivalent load is the static load that reflects the actual load conditions to the contact section of the rolling elements and raceway receiving the maximum stress. For radial bearings, radial load of a constant direction and magnitude is called the static equivalent radial load, and for thrust bearings, axial load of a constant direction and magnitude is called the static equivalent axial load. To calculate the static equivalent radial load, the larger of the two values obtained from Formula 2.5 and Formula 2.6 are to be used. (Formula 2.5) (Formula 2.6) High rotating accuracy is needed Vibration and or impact present Normal operating conditions So Ball bearings Roller bearings 2 3 1.5 2 1 1.5 2.4.4 Permissible Thrust Load A permissible thrust load exists for bearings that can be applied with axial load like an angular contact ball bearings. For ball bearings, the permissible load is the smaller of the following two values. a Axial load when the contact pressure value between the roller and raceway surfaces is 4200 MPa or less b Axial load causing the contact ellipse formed between the roller and raceway surface to deviate beyond the raceway shoulder (Figure 2.3) The static equivalent axial load is calculated using Formula 2.7. (Formula 2.7) Por Poa Fr Fa Xo Yo Axial load : Static equivalent radial load (N) : Static equivalent axial load (N) : Radial load (N) : Axial load (N) : Static radial load factors (Table 2.3) : Static axial load factors (Table 2.3) Contact ellipse Axial load 2b 2a ● Figure 2.3 Contact Ellipse 6 Bearing Life NACHI BEARING Bearing Tolerance Technical Description 3 3-1 Radial Bearing Tolerances The tolerance of rolling contact bearings includes dimensional and running accuracy. The tolerances is classified by ISO 492 and JIS B 1514 (Rolling bearings - Tolerances), with precision rolling bearings conforming to Class 5, 4, and 2. Radial bearing tolerances are shown in Table 3.1 and Table 3.2 (page 8). ● Table 3.1 Tolerances of Inner Ring (JIS Class 5, Class 4, Class 2) Nominal bearing bore diameter d (mm) 2.5 10 18 30 50 80 120 150 180 Incl. 10 18 30 50 80 120 150 180 250 Bore diameter deviation (1) Single plane mean bore diameter variation (1) 'd mp Class 5 Over Unit: μm Class 4 Single plane mean bore Single plane bore difference (1) diameter difference (1) 'd s Class 2 Vd sp Class 4 Class 2 Diameter series High 0 0 0 0 0 0 0 0 0 Low -5 -5 -6 -8 -9 -10 -13 -13 -15 High 0 0 0 0 0 0 0 0 0 Low High -4 -4 -5 -6 -7 -8 -10 -10 -12 0 0 0 0 0 0 0 0 0 Low -2.5 -2.5 -2.5 -2.5 -4 -5 -7 -7 -8 Low -4 -4 -5 -6 -7 -8 -10 -10 -12 High 0 0 0 0 0 0 0 0 0 Class 4 Class 5 Class 4 Class 2 Diameter series 0,2 High 0 0 0 0 0 0 0 0 0 Vd mp Class 5 Low -2.5 -2.5 -2.5 -2.5 -4 -5 -7 -7 -8 9 0,2 9 0,2 Max Max Max Max 5 5 6 8 9 10 13 13 15 Max 4 4 5 6 7 8 10 10 12 Max 4 4 5 6 7 8 10 10 12 Max 3 3 4 5 5 6 8 8 9 3 3 3 4 5 5 7 7 8 2 2 2.5 3 3.5 4 5 5 6 1.5 1.5 1.5 1.5 2 2.5 3.5 3.5 4 Bearing Selection Bearing Life Bearing Tolerance Bearing Arrangement Preload and Rigidity Lubrication Unit: μm Nominal bearing bore diameter d (mm) Assembled bearing Inner ring radial run-out Inner ring reference inner ring reference face of assembled bearing face runout with bore runout with raceway (2) K ia Sd Class 5 Class 4 Class 2 Class 5 Class 4 Class 2 Class 5 Class 4 Class 2 Over 2.5 10 18 30 50 80 120 150 180 Deviation of a single ring width 'B s S ia Class 5 Incl. 10 18 30 50 80 120 150 180 250 Max Max Max Max Max Max Max Max Max 4 4 4 5 5 6 8 8 10 2.5 2.5 3 4 4 5 6 6 8 1.5 1.5 2.5 2.5 2.5 2.5 2.5 5 5 7 7 8 8 8 9 10 10 11 3 3 4 4 5 5 6 6 7 1.5 1.5 1.5 1.5 1.5 2.5 2.5 4 5 7 7 8 8 8 9 10 10 13 3 3 4 4 5 5 7 7 8 1.5 1.5 2.5 2.5 2.5 2.5 2.5 5 5 Class 4/Class 2 Single bearing High 0 0 0 0 0 0 0 0 0 Low -40 -80 -120 -120 -150 -200 -250 -250 -300 High 0 0 0 0 0 0 0 0 0 VB s Class 5/Class 4 Class 5 Class 4 Class 2 /Class 2 Duplex bearing (3) Low -40 -80 -120 -120 -150 -200 -250 -250 -300 Limiting Speeds Inner ring width variation High 0 0 0 0 0 0 0 0 0 Low -250 -250 -250 -250 -250 -380 -380 -380 -500 Max Max Max 5 5 5 5 6 7 8 8 10 2.5 2.5 2.5 3 4 4 5 5 6 1.5 1.5 1.5 1.5 1.5 2.5 2.5 4 5 Note 1) Applies to bearings with cylindrical bore. Note 2) Applies to ball bearings. Note 3) Applies to the rings of single bearings made for mounted bearings. Remark: The high deviation of bearing bore diameter of cylindrical bore bearings in Table 3.1 does not apply within a distance from the raceway ring face of 1.2 x r (max) of the chamfer. Bearing Tolerance 7 Shaft and Housing Design Bearing Handling Technical Description Bearing Tolerance ● Table 3.2 Tolerances of Outer Ring (JIS Class 5, Class 4, Class 2) Nominal bearing outside diameter D (mm) Single plane mean outside diameter variation of outer ring Unit: μm Outside diameter deviation 'D s 'D mp Class 5 Class 4 Class 2 Class 4 Outside diameter variation in a single Mean outside diameter radial plane (1) variation VD sp Class 2 Class 5 Diameter series Over 18 30 50 80 120 150 180 250 315 Incl. 30 50 80 120 150 180 250 315 400 High 0 0 0 0 0 0 0 0 0 Low High -6 -7 -9 -10 -11 -13 -15 -18 -20 0 0 0 0 0 0 0 0 0 Low -5 -6 -7 -8 -9 -10 -11 -13 -15 High 0 0 0 0 0 0 0 0 0 Low -4 -4 -4 -5 -5 -7 -8 -8 -10 Low -5 -6 -7 -8 -9 -10 -11 -13 -15 High 0 0 0 0 0 0 0 0 0 Class 2 Class 5 Class 4 Class 2 Diameter series 0,2 High 0 0 0 0 0 0 0 0 0 VD mp Class 4 Low -4 -4 -4 -5 -5 -7 -8 -8 -10 9 0,2 9 0,2 0,2 Max Max Max Max 6 7 9 10 11 13 15 18 20 Max 5 5 7 8 8 10 11 14 15 Max 5 6 7 8 9 10 11 13 15 Max 4 5 5 6 7 8 8 10 11 Max 4 4 4 5 5 7 8 8 10 3 4 5 5 6 7 8 9 10 2.5 3 3.5 4 5 5 6 7 8 2 2 2 2.5 2.5 3.5 4 4 5 Unit: μm Nominal bearing outside diameter D (mm) Over 18 30 50 80 120 150 180 250 315 Incl. 30 50 80 120 150 180 250 315 400 Outer ring radial runout of assembled bearing K ea Class 5 Max 6 7 8 10 11 13 15 18 20 Class 4 Max 4 5 5 6 7 8 10 11 13 Class 2 Max 2.5 2.5 4 5 5 5 7 7 8 Variation of outside surface generatrix inclination with outer ring reference Assembled bearing outer ring reference face runout with raceway (2) SD S ea Class 5 Max 8 8 8 9 10 10 11 13 13 Class 4 Max 4 4 4 5 5 5 7 8 10 Class 2 Max 1.5 1.5 1.5 2.5 2.5 2.5 4 5 7 Class 5 Max 8 8 10 11 13 14 15 18 20 Class 4 Max 5 5 5 6 7 8 10 10 13 Class 2 Max 2.5 2.5 4 5 5 5 7 7 8 Deviation of a single ring width 'C s Corresponds to the values of 'B s of the inner ring being matched with it. Note 1) Applies to open type bearings. Note 2) Applies to ball bearings. Remark: The low outside diameter deviation of bearings in Table 3.2 does not apply within a distance from the ring face of 1.2 x r (max) of the chamfer. 8 Bearing Tolerance Outer ring width variation VC S Class 5 Max 5 5 6 8 8 8 10 11 13 Class 4 Max 2.5 2.5 3 4 5 5 7 7 8 Class 2 Max 1.5 1.5 1.5 2.5 2.5 2.5 4 5 7 NACHI BEARING Technical Description 3-2 Tolerances and Permissible Values of Angular Contact Ball Bearings for Thrust Loads (TAH/TBH Series) Except for the outside diameter of outer ring outside diameter, accuracy of angular contact ball bearings for thrust loads conforms to JIS Class 4. Outside diameter of outer ring tolerances is as shown in Table 3.3. ● Table 3.3 Tolerance of Outside Diameter Nominal bearing outside diameter D (mm) Unit: μm Outside diameter deviation 'D s Over Incl. High Low 50 80 120 180 250 80 120 180 250 315 -30 -36 -43 -50 -56 -49 -58 -68 -79 -88 Bearing Selection Bearing Life Bearing Tolerance 3-3 Tolerances of Cross Tapered Roller Bearings Bearing Arrangement Tolerances for cross tapered roller bearings is shown in Table 3.4 and Table 3.5. ● Table 3.4 XRN Series Inner Ring and Outer Ring tolerances Bearing no. 150XRN23 200XRN28 250XRN33 250XRN35 300XRN40 310XRN42 0330XRN045 350XRN47 375XRN49 400XRN55 0457XRN060 580XRN76 0685XRN091 950XRN117 Single plane mean bore diameter variation 'd mp Unit: μm Single plane mean outside diameter variation of outer ring 'D mp Variation of assembled height Ts Outer ring run-out (Max) Lubrication High Low High Low High Low 0 0 0 0 0 0 +25 0 0 0 +25 +25 +38 0 -13 -15 -15 -10 -13 -13 0 -13 -13 -13 0 0 0 -75 0 0 0 0 0 0 +25 0 0 0 +25 +38 +38 0 -15 -18 -18 -13 -15 -15 0 -15 -15 -18 0 0 0 -75 +350 +350 +350 +350 +350 +350 +350 +350 +350 +350 +380 +406 +508 +750 -250 -250 -250 -250 -250 -250 -250 -250 -250 -250 -380 -406 -508 -750 Radial run-out Sideface runout 7 7 7 9 7 7 8 9 7 9 9 10 12 14 7 7 7 9 7 7 8 9 7 9 9 10 12 14 ● Table 3.5 XRG (XRGV) Series Inner Ring and Outer Ring Tolerances Bearing no. 130XRG23 140XRGV20 150XRG23 200XRGV028 320XRG43 480XRGV66 Single plane mean bore diameter variation 'd mp Preload and Rigidity Limiting Speeds Shaft and Housing Design Bearing Handling Unit: μm Single plane mean outside diameter variation of outer ring 'D mp Variation of assembled height Ts High Low High Low High Low 0 0 0 0 0 0 -10 -13 -13 -15 -13 -45 0 0 0 0 0 -70 -15 -15 -15 -18 -15 -100 +350 +350 +350 +350 +350 +450 -250 -350 -250 -350 -250 -450 Inner ring run-out (Max) Radial run-out Sideface runout 6 5 6 7 7 11 7 5 7 7 7 11 Bearing Tolerance 9 Technical Description Bearing Tolerence 3-4 Ball Screw Support Bearing (TAB Series) Tolerances Tolerances for ball screw support (TAB Series) is shown in Table 3.6 and Table 3.7. ● Table 3.6 Tolerances for Inner Ring (Including Outer Ring Width and Outer Ring Sideface Runout Reference to Raceway) Nominal bearing bore diameter d (mm) Single plane mean bore and bore variation 'd mp, 'd s Class 5 Class 4 Bore diameter variation in a single radial plane Mean bore diameter variation Vd mp Vd p Deviation of a single inner ring width (or a single outer ring width) ' B s, ' C s Unit: μm Side face runout with Radial runout Side face reference to raceway of assembled runout S d with of assembled bearing bearing inner ring reference to inner ring S ia and of K ia assembled bearing bore outer ring S ea Width deviation of Inner ring VB s Class 5 Class 4 Class 5 Class 4 Class 5/Class 4 Class 5 Class 4 Class 5 Class 4 Class 5 Class 4 Class 5 Class 4 Over Incl. High Low High Low Max Max Max Max High Low Max Max Max Max Max Max Max Max 10 18 30 50 18 30 50 80 0 0 0 0 -5 -6 -8 -9 0 0 0 0 -4 -5 -6 -7 4 5 6 7 3 4 5 5 3 3 4 5 2 2.5 3 3.5 0 0 0 0 -80 -120 -120 -150 5 5 5 6 2.5 2.5 3 4 4 4 5 5 2.5 3 4 4 7 8 8 8 3 4 4 5 4 5 6 7 2 2.5 2.5 2.5 ● Table 3.7 Tolerances for Outer Ring Nominal bearing outside diameter D (mm) Single plane mean outside diameter variation of outer ring 'D mp, 'D s Class 5 Over 30 50 80 Incl. 50 80 120 Unit: μm High 0 0 0 Low -7 -9 -10 Class 4 High 0 0 0 Low -6 -7 -8 Variation of outside Outside diameter Radial runout of Mean outside Outside Inclination surface generatrix variation in a single assembled bearing diameter variation of outer ring inclination with radial plane outer ring VD mp SD outer ring reference VD p K ea VC s Class 5 Class 4 Class 5 Class 4 Class 5 Class 4 Class 5 Class 4 Class 5 Class 4 Max 5 7 8 Max 5 5 6 Max 4 5 5 Max 3 3.5 4 Max 5 6 8 Max 2.5 3 4 Max 7 8 10 Max 5 5 6 Max 8 8 9 Max 4 4 5 For the TAB Series flush ground type, strict tolerances are established for outside diameter and bore diameter to minimize differences within duplex bearings. (Table 3.8, Table 3.9) ● Table 3.8 Tolerances for Bore Diameter of Inner Ring (Class 4 Flush Ground) Unit: μm Nominal bearing bore diameter d (mm) Over 10 18 30 50 Incl. 18 30 50 80 Single plane mean bore diameter variation 'd mp, 'd s Class 4 flush ground High 0 0 0 0 Tolerances for other than bore diameter conforms to Class 4 in Table 3.6. 10 Bearing Tolerance Low -4 -4 -4 -5 ● Table 3.9 Tolerancs for Outside Diameter of Outer Ring (Class 4 Flush Ground) Unit: μm Nominal bearing Single plane mean outside diameter variation of outer ring 'D mp, 'D s outside diameter D (mm) Class 4 flush ground Over 30 50 80 Incl. 50 80 120 High 0 0 0 Low -4 -5 -6 Tolerances for other than outside diameter conforms to Class 4 in Table 3.7. NACHI BEARING Technical Description 3-5 Tolerances for Ball Screw Support Bearing (TAF Series) Tolerances for ball screw support (TAF Series) is shown in Table 3.10 and Table 3.11. ● Table 3.10 Tolerances for Inner Ring (Including Outer Ring Width, JIS Class 5) Nominal bearing bore diameter d (mm) Bore diameter Mean bore variation in a diameter single radial variation plane Single plane mean bore diameter variation 'd mp Vd mp Vd p Unit: μm Radial runout Width Outer and inner ring width of assembled deviation VBS variation bearing inner of Inner Ring ring 'B s, 'C s VB s K ia Side face Side face runout with runout with reference to raceway reference to of assembled bore bearing inner ring Sd S ia Over Incl. High Low Max Max High Low Max Max Max Max 18 30 50 80 30 50 80 120 0 0 0 0 -6 -8 -9 -10 5 6 7 8 3 4 5 5 0 0 0 0 -120 -120 -150 -200 5 5 6 7 4 5 5 6 8 8 8 9 8 8 8 9 ● Table 3.11 Tolerances for Outer Ring (JIS Class 5) Nominal bearing outside diameter D (mm) Bearing Selection Bearing Life Unit: μm Outside diameter Variation of outside Assembled bearing Radial runout Mean outside Outer ring width variation in a surface generatrix outer ring reference of assembled variation single radial diameter variation inclination with outer ring face runout with bearing outer ring VD mp VC s plane reference raceway Single plane mean outside diameter variation of outer ring 'D mp K ea VD p SD S ea Over Incl. High Low Max Max Max Max Max Max 50 80 120 150 180 250 80 120 150 180 250 315 0 0 0 0 0 0 -9 -10 -11 -13 -15 -18 7 8 8 10 11 14 5 5 6 7 8 9 6 8 8 8 10 11 8 10 11 13 15 18 8 9 10 10 11 13 10 11 13 14 15 18 Lubrication Limiting Speeds Shaft and Housing Design Tolerances for tapered bores (Cylindrical roller bearings) is specified by JIS. Since JIS tolerances are rather broad, NACHI defines its own narrower range for precision bearings. ● Table 3.12 Tolerances for Tapered Bores (Cylindrical Roller Bearings) Nominal bearing bore diameter d (mm) Over 18 30 50 80 120 180 250 315 Incl. 30 50 80 120 180 250 315 400 High +10 +12 +15 +20 +25 +30 +35 +40 Bore diameter variation in a single plane radial plane 'd 1mp- 'd mp Class 4 Low 0 0 0 0 0 0 0 0 High +6 +8 +9 +10 +13 +15 +18 +23 Bearing Handling Unit: μm 'd mp Class 5 Class 5 Low 0 0 0 0 0 0 0 0 High +5 +5 +6 +7 +10 +12 +15 +16 Vd p Class 4 Low 0 0 0 0 0 0 0 0 High +3 +4 +4 +5 +7 +9 +11 +12 Low 0 0 0 0 0 0 0 0 Class 5 Class 4 Max 3 4 5 5 7 8 9 12 Max 3 3 4 4 5 6 9 12 'd1mp'd1mp I (d+'dmp) Id1 ID D I (d1+'d1mp) 2 D B B Theoretical tapered bore Tapered bore with actual mean diameters at their deviations D d1 : Basic diameter at theoretical large end of tapered bore 'dmp : Mean bore diameter deviation at theoretical small end of tapered bore 'd1mp B D Bearing Arrangement Preload and Rigidity 3-6 Tolerances for Tapered Bores (Cylindrical Roller Bearings) Mean bore diameter deviation at theoretical small end of a tapered bore Bearing Tolerance : Nominal bearing bore diameter : Mean bore diameter deviation at theoretical large end of tapered bore : Nominal bearing inner ring width : Nominal taper angle (half of cone angle) ● Figure 3.1 Tapered Bores of Cylindrical Roller Bearings Bearing Tolerance 11 Technical Description 4 Bearing Arrangement 4-1 Duplex Bearing Features In addition to a duplex set, precision angular contact ball bearings and ball screw support bearings are available in 3-row duplex and 4-row duplex. Bearings in these combinations are manufactured in sets with a desired preload and dimensional variation of outside diameter and bore diameter within the bearing sets are controlled. Because of this, avoid switching the duplex bearings in a set with other bearings. Table 4.1 shows the main combinations and describes their characteristics. ● Table 4.1 Main Combinations and Characteristics Main combinations Cross section Load capability Moment load rigidity Speed Features ● Radial loads and axial loads in both directions can be applied. ● The load center distance is long, so moment load capability is high. ● Misalignment or other mounting error increases internal load and tends to generate premature flaking. Back-to-back (DB) Load center distance Face-to-face (DF) c ● The load center distance is decreased, so moment load capability is low. ● Since moment load capability is low, increase in internal load due to misalignment is kept under control. Because of this, this combination is suitable when misalignment can not be avoided or when shaft deflection is large because of the load. U ● Radial loads and axial loads can be applied in one direction. ● Since the axial load capability is double that of a single row, this combination is suitable for large axial load in one-direction. Load center distance Tandem (DT) 3-row duplex (FFB) U Preload 4-row duplex (FFBB) 12 Bearing Arrangement ● Radial loads and axial loads in both direction can be applied. ● The axial load capability is double that of a single-row, but preload is not distributed uniformly to each bearing, and the single-row configuration is double that of the two-row configuration. This non-uniform preload distribution makes appropriate preload settings difficult at high speed rotation. ● Radial loads and axial loads in both directions can be applied. ● Compared to the back-to-back configuration under the same preload clearance, preload is doubled and rigidity is greater. NACHI BEARING Technical Description 4-2 Mounting and Mounting Symbols The symbols used for each type of combination are shown in Table 4.1. The arrangement sequence and direction of the load are important for duplex bearings. Because of this, the outside surface of the outer ring of the duplex bearings in Figure 4.1 has a combination mark ([<]) that can be used to check the arrangement sequence. If the bearings are arranged in the correct sequence, the marks on the outside surface of each bearing appear as a "<" Bearing Selection DB DF DT FFB BFF FFF Bearing Life Bearing Tolerance Bearing Arrangement FFBB BBFF FFFB BFFF Preload and Rigidity ● Figure 4.1 Set Combinations and Outer Ring Combination Marks Lubrication 4-3 Flush Ground Angular Contact Ball Bearings For flush ground angular contact ball bearings, the face side width dimension (Af) and back side width dimension (Ab) are controlled to be the same. Therefore, desired preload is obtained in any set of combination. (Figure 4.2). Flush ground angular contact ball bearings are delivered singularly (suffix symbol; U) or in a duplex set (suffix symbol: DU). Duplex sets have a small dimensional variation in bore diameter and outer diameter. When using U series in a combination, select a bearing whose actual measured outside diameter and bore diameter values are close to each other. For the ball screw support bearing TAB Series flush ground type, a combination ([<]) mark is put on the outside surface of the outer ring. For information about set combinations and the combination marks, see Figure 4.3. Af Limiting Speeds Shaft and Housing Design DB DF FFB BFF Bearing Handling DT FFF FFBB BBFF FFFB BFFF ● Figure 4.3 Flush Ground Bearing Set Combinations and Combination Marks Ab Af = Ab ● Figure 4.2 Flush Ground Angular Contact Ball Bearing Bearing Arrangement 13 Technical Description 5 Preload and Rigidity 5-1 Preload Objectives Rolling contact bearings generally have internal clearance suitable for operating conditions, angular contact ball bearings also may be installed with appropriate predetermined negative clearance (axial preload). This is known as "preload". Care is required when determining preloads. An improper preload can increase friction torque, raise temperature, cause abnormal sounds, shorten bearing life, and cause other problems. The following is a list of what can be achieved by preloading. ● Reduced axial displacement due to external force and greater axial rigidity ● Prevention of vibration and noise and increased speed due to greater axial rigidity ● Less chance of fretting due to external vibration ● Smooth rolling rotation ● Lower noise and less heat due to ball centrifugal force and gyro-moment of the two different axes. This is called a "gyro-moment" (Figure 5.1). The size of the gyro-moment is proportional to rotational angular velocity and orbital angular velocity. Gyro-moment is small enough to be ignored at low-speed rotation, but heat generation due to slipping caused by gyro-motion in the high-speed rotation range cannot be ignored. In order to suppress slipping caused by gyro-motion, friction (ball load x coefficient of friction ) between the balls and raceway surface must be maintained. This means that there are times when minimal preload can be chosen. Ball rotation Gyro-moment Gyro-moment The balls of an angular contact ball bearing spin around rotational axes while they revolve around an orbital axis (axis line). An angle is performed between the rotational axis and orbital axis, and a moment is generated when a ball attempts to revolve on the center ● Figure 5.1 Gyro-moment 5-2 Preload Methods 1.2 Life ratio (Life=1 when radial clearance=0) Preloading combination bearings is broadly divided between fixedposition preload and fixed-pressure preload. Table 5.1 (page 15) shows graphic examples and describes the characteristics of each type of preloading. A cylindrical roller bearing with tapered bore also may be used with radial preload (negative radial clearance) applied. However, caution is required because radial preload that is too large dramatically reduces service life (Figure 5.2). Radial Load: 4710N (3% of dynamic load rating) 1.0 0.8 0.6 0.4 0.2 0 -0.020 0 0.020 0.040 0.060 Radial clearance (mm) ● Figure 5.2 Cylindrical Roller Bearing (NN3020) Radial Clearance and Service Life 5-3 Measuring Preload a Axial load measurement method For spring preloading (fixed-pressure preload), the preload is known if the spring displacement is known. For nut preloading (fixed-position preload), the preload can be determined based on the relationship between nut tightening torque and tightening force. However, that caution is required because there is wide variation in the relationship between nut tightening torque and tightening force due to accuracy and roughness of the threaded portion. b Axial displacement measurement method The preload can be determined based on the relationship between the axial load on the bearing and axial displacement. 14 Preload and Rigidity c Bearing starting friction torque measurement method To perform this measurement, your first need to create a graph of the load and starting torque of the bearing itself. However, caution is required because of variation due to bearing type, lubrication conditions, etc. NACHI BEARING Technical Description ● Table 5.1 Preload Methods Preload methods Design example Features ● Since bearing spread is used, the prescribed preload can be obtained simply by tightening a nut. ● Fit causes preload inconsistency. ● Heat generation causes preload inconsistency. ● Applying an axial load that is too great can cause loss of preload. Fixedposition preload Method using either a duplex bearing with pre-adjusted preload or a dimension adjusted spacer Bearing Selection Bearing Life ● Uniform preload, even if fit is inconsistent ● Further tightening possible ● Heat generation causes preload inconsistency. ● Applying an axial load that is too great can cause loss of preload. Bearing Tolerance Bearing Arrangement Preload adjustment method using nut tightening Preload and Rigidity ● Constant uniform preload while running ● No loss of preload ● Suitable for high speeds ● In principle, one-direction axial load can be applied ● Inferior rigidity compared to fixed-position preload of the same preload Fixedpressure preload Lubrication Limiting Speeds Method using spring Shaft and Housing Design 5-4 Preload Effect e Axial displacement is given as bearing B displacement Gw. (Bearing B displacement is the displacement for Tp subtracted from the displacement for Tb.) The reason for this is that the displacements of two preloaded bearings are not uniform within the range that the preload does not become zero due to outside load. (Figure 5.3 is uniform). In other words, bearing A is displaced only as much as bearing B is displaced by the external load. After external load becomes great and preload is eliminated, bearing B load Tb becomes the same as external load Tw, and bearing A load is eliminated. The size of the external load when this preload is eliminated is indicated in Figure 5.3 as Tpo. Bearing A Bearing B Tw Axial elastic displacement amount Ga Graphic analysis of load distribution and axial displacement on two bearings when preload is applied with an external load, as shown in Figure 5.3, is performed as described below. a Graph the Axial Load T - Axial Deflection Ga curve for bearing A. b Locating preload Tp on the T-axis, determine the point of intersection for bearing A curve, and then graph the T - Ga curve for Bearing B point P. c Link the above two curves horizontally along the T-axis for a length that corresponds to the external load value Tw. d Loads Ta and Tb, which correspond to the points of intersection of the lines, are the loads of each bearing under external load conditions. O' ring f bea T-Ga eo curv A P T-Ga c urve Applied load Tw O Ta Tp Tb of be aring B Tpo Axial load ● Figure 5.3 Fixed-position Preload Preload and Rigidity 15 Bearing Handling Technical Description Preload and Rigidity 5-5 Standard Preload and Axial Rigidity 5.5.1 Angular Contact Ball Bearing ● Table 5.2 Preload Factors for Multiple-row Arrangements Preloads and axial rigidity for face-to-face and back-to-back duplex mounting are shown in Table 5.3 1 to 6 (pages 16 through 18). Preloads for multiple-row arrangements can be obtained by multiplying by the coefficients in Table 5.2. 3-row arrangement 4-row arrangement FFB·BFF FFFB·BFFF FFBB·BBFF 1.36 1.57 2 ● Table 5.3 1 7900C Series with 15° Contact Angle E (extra-light preload) Bore diameter number 00 01 02 03 04 05 06 07 08 09 10 Preload (N) 5 7 8 8 15 15 15 25 25 35 35 Axial rigidity (N/μm) 10 12 13 13 19 19 21 28 28 35 35 L (light preload) Preload (N) 15 20 25 25 40 50 50 70 80 100 100 Axial rigidity (N/μm) 15 18 21 21 27 33 36 41 44 53 56 M (medium preload) Preload (N) 30 40 50 50 80 100 100 140 155 195 195 Axial rigidity (N/μm) 20 24 28 28 36 43 48 56 60 70 72 2 7900AC Series with 25° Contact Angle L (light preload) Bore diameter number 00 01 02 03 04 05 06 07 08 09 10 16 Preload and Rigidity Preload (N) 20 20 29 29 59 69 78 88 88 98 118 Axial rigidity (N/μm) 33 33 42 42 65 69 78 88 98 109 118 M (medium preload) Preload (N) 88 98 108 118 235 265 294 323 412 470 520 Axial rigidity (N/μm) 59 65 67 74 107 120 134 147 165 188 208 H (heavy preload) Preload (N) 196 216 235 255 490 560 628 785 1,000 1,040 1,140 Axial rigidity (N/μm) 82 90 94 102 149 169 190 212 244 260 284 NACHI BEARING Technical Description 3 7000C Series with 15° Contact Angle E (extra-light preload) Bore diameter number 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 Preload (N) 20 20 20 20 50 50 50 70 70 70 70 100 100 100 145 145 145 195 195 195 195 L (light preload) Axial rigidity (N/μm) 13 14 15 16 23 26 27 33 34 34 36 43 43 47 57 57 57 65 65 68 70 Preload (N) 50 50 50 50 100 100 100 145 145 145 145 195 195 195 295 295 295 390 390 390 390 Axial rigidity (N/μm) 20 21 23 25 33 36 38 46 49 49 51 56 58 61 75 77 75 89 87 91 93 M (medium preload) Preload (N) 100 100 100 100 195 195 195 295 295 295 295 390 390 390 590 590 590 785 785 785 785 H (heavy preload) Axial rigidity (N/μm) 29 31 34 35 48 50 53 64 68 68 70 78 82 85 105 107 105 125 121 125 127 Preload (N) 145 145 145 145 295 295 390 390 590 590 590 785 785 785 1170 1170 1170 1470 1470 1470 1470 Axial rigidity (N/μm) 37 39 42 43 59 63 75 75 98 98 100 112 115 123 149 153 149 171 165 171 173 4 7000AC Series with 25° Contact Angle L (light preload) Bore diameter number 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 Preload (N) 39 39 49 59 59 108 118 127 147 216 225 314 333 363 392 412 529 549 676 706 745 Axial rigidity (N/μm) 39 44 49 59 59 83 91 98 113 135 141 157 167 191 196 206 230 239 260 272 287 M (medium preload) Preload (N) 118 127 157 216 274 392 441 539 617 745 784 1,040 1,098 1,225 1,460 1,530 1,900 1,990 2,185 2,300 2,400 Axial rigidity (N/μm) 62 67 83 98 110 140 158 174 193 213 224 254 268 299 332 348 373 390 405 427 445 Axial rigidity (N/μm) 95 104 118 144 152 187 208 236 256 300 317 341 362 402 443 464 504 530 555 580 608 Preload and Rigidity Bearing Life Bearing Tolerance Bearing Arrangement Preload and Rigidity Lubrication Limiting Speeds Shaft and Housing Design H (heavy preload) Preload (N) 314 343 353 520 608 804 892 1,156 1,176 1,646 1,744 2,078 2,205 2,450 3,010 3,155 3,880 4,080 4,600 4,810 5,050 Bearing Selection Bearing Handling 17 Technical Description Preload and Rigidity 5 7200C Series with 15° Contact Angle E (extra-light preload) Bore diameter number 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 Preload (N) 30 30 30 30 70 70 70 100 100 100 100 145 145 145 195 195 195 295 295 295 295 L (light preload) Axial rigidity (N/μm) 16 16 17 17 25 29 29 35 36 36 39 46 46 47 54 56 58 68 67 68 68 Preload (N) 70 70 70 70 145 145 145 195 195 195 195 295 295 295 390 390 390 490 490 490 490 Axial rigidity (N/μm) 24 24 25 25 37 41 41 47 49 50 52 63 61 64 73 75 77 85 83 85 85 M (medium preload) Preload (N) 145 145 145 145 295 295 295 490 490 490 490 590 590 590 785 785 785 980 980 980 980 H (heavy preload) Axial rigidity (N/μm) 36 36 38 37 53 58 58 74 77 77 80 88 84 88 102 105 105 117 114 114 115 Preload (N) 195 195 195 195 490 490 590 590 785 785 785 980 980 980 1470 1470 1470 1960 1960 1960 1960 Axial rigidity (N/μm) 42 42 44 44 71 77 83 82 98 98 102 114 109 113 139 144 143 166 161 159 159 6 7200AC Series with 25° Contact Angle L (light preload) Bore diameter number 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 18 Preload and Rigidity Preload (N) 39 39 69 78 118 147 157 225 255 333 353 460 540 600 610 650 800 940 1,200 1,235 1,588 Axial rigidity (N/μm) 44 44 57 60 74 92 92 119 127 145 153 177 186 206 210 223 241 262 285 294 324 M (medium preload) Preload (N) 186 196 265 274 420 430 628 853 950 1,200 1,295 1,500 1,600 2,069 2,108 2,255 2,725 2,970 3,745 3,870 4,930 Axial rigidity (N/μm) 78 78 95 98 120 139 165 194 216 241 259 278 280 328 335 358 389 407 441 450 503 H (heavy preload) Preload (N) 412 421 530 628 853 922 1,314 1,890 1,960 2,470 2,655 3,145 3,410 4,175 4,260 4,310 5,730 6,090 7,620 8,140 9,950 Axial rigidity (N/μm) 108 111 129 143 164 188 227 270 288 321 345 379 383 440 444 464 531 549 591 612 677 NACHI BEARING Technical Description 5.5.2 High-speed Angular Contact Ball Bearings 5.5.3 Thrust Load Angular Contact Ball Bearings ● Table 5.4 BNH000 Series with 15° Contact Angle ● Table 5.5 1 TAH Series with 30° Contact Angle Bore diameter Bore diameter number (mm) 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 28 30 32 34 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 L (standard preload) Preload (N) 78.5 98.1 98.1 98.1 147 147 147 245 245 294 294 392 392 392 490 588 588 785 834 1080 1180 1370 Axial rigidity (N/μm) 44 49 52 54 61 64 67 88 91 98 98 115 119 123 136 144 147 163 174 200 206 221 Nominal bore diameter (mm) 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 M (medium preload) Preload (N) 294 392 392 392 588 588 686 686 1080 1080 1080 1180 1370 1470 1860 1960 2450 2650 3040 Axial rigidity (N/μm) 226 262 280 280 327 327 361 361 449 449 469 490 528 566 621 654 721 779 800 Bearing Selection Bearing Life Bearing Tolerance Bearing Arrangement Preload and Rigidity Lubrication Limiting Speeds Shaft and Housing Design 2 TBH Series with 40° Contact Angle Nominal bore diameter (mm) 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 M (medium preload) Preload (N) 539 686 686 686 1080 1080 1270 1270 1860 1860 1860 2060 2450 2550 3330 3530 4310 4510 5300 Bearing Handling Axial rigidity (N/μm) 415 458 490 528 599 599 671 671 776 810 847 858 943 1,020 1,111 1,177 1,269 1,367 1,431 Preload and Rigidity 19 Technical Description Preload and Rigidity 5.5.4 Ball Screw Support Bearings ● Table 5.6 1 TAB Series with 60° Contact Angle Standard Preload: M (Medium) Bearing no. 15TAB04 17TAB04 20TAB04 25TAB06 30TAB06 35TAB07 40TAB07 40TAB09 45TAB07 45TAB10 50TAB10 55TAB10 55TAB12 60TAB12 2-row arrangement 3-row arrangement DB/DF BFF/FFB Preload (N) 2160 2160 2160 3330 3330 3920 3920 5200 4120 5980 6280 6280 7060 7060 Axial rigidity Starting torque (N/μm) (N·cm) 735 15 735 15 735 15 981 20 981 20 1230 25 1230 25 1320 50 1270 30 1470 60 1520 65 1520 65 1770 70 1770 70 Preload (N) 2940 2940 2940 4510 4510 5300 5300 7060 5590 8140 8530 8530 9610 9610 4-row arrangement BBFF/FFBB Axial rigidity Starting torque (N/μm) (N·cm) 1080 20 1080 20 1080 20 1470 27 1470 27 1770 35 1770 35 1910 68 1910 40 2160 82 2260 88 2260 88 2550 95 2550 95 Preload (N) 4310 4310 4310 6670 6670 7840 7840 10400 8240 12000 12600 12600 14100 14100 BFFF/FFFB Axial rigidity Starting torque (N/μm) (N·cm) 1470 30 1470 30 1470 30 1960 40 1960 40 2350 50 2350 50 2550 100 2550 60 2890 120 3040 130 3040 130 3480 140 3480 140 Preload (N) 3430 3430 3430 5200 5200 6180 6180 8140 6470 9410 9810 9810 11100 11100 Axial rigidity Starting torque (N/μm) (N·cm) 1320 25 1320 25 1320 25 1910 30 1910 30 2300 40 2300 40 2500 80 2500 45 2790 95 2940 100 2940 100 3380 110 3380 110 Note) Starting torque shows values for an open type and non-contact seal type with grease lubrication. 2 TAF Series with 50° or 55° Contact Angle Standard Preload: M (Medium) Bearing no. 25TAF06 30TAF07 35TAF09 40TAF09 40TAF11 45TAF11 50TAF11 60TAF13 60TAF17 80TAF17 100TAF21 120TAF03 2-row arrangement 3-row arrangement DB/DF BFF/FFB Preload (N) 1670 1860 3700 3700 4600 4600 4600 5200 8300 8300 13200 19600 Axial rigidity Starting torque (N/μm) (N·cm) 555 642 908 908 1020 1020 1020 1130 1440 1440 1970 2550 20 20 55 55 80 80 80 105 215 215 485 700 Note) Starting torque shows values with grease lubrication. 20 Preload and Rigidity Preload (N) 2270 2530 5030 5030 6250 6250 6250 7070 11300 11300 17900 26600 4-row arrangement BBFF/FFBB Axial rigidity Starting torque (N/μm) (N·cm) 805 944 1340 1340 1530 1530 1530 1680 2110 2110 2940 3810 27 27 75 75 110 110 110 145 290 290 660 950 Preload (N) 3340 3720 7400 7400 9200 9200 9200 10400 16600 16600 26400 39200 BFFF/FFFB Axial rigidity Starting torque (N/μm) (N·cm) 1110 1284 1816 1816 2040 2040 2040 2260 2880 2880 3940 5100 40 40 110 110 160 160 160 210 430 430 970 1400 Preload (N) 2620 2920 5810 5810 7220 7220 7220 8160 13000 13000 20700 30800 Axial rigidity Starting torque (N/μm) (N·cm) 1060 1180 1680 1680 1960 1960 1960 2140 2660 2660 4160 4810 30 30 85 85 125 125 125 165 340 340 760 1100 NACHI BEARING The radial internal clearance for multiple-row cylindrical roller bearings is specified by JIS, NACHI defines its own narrower range ● Table 5.7 1 Cylindrical Bore Bearing Non-interchangeable Clearance Nominal bearing bore diameter d (mm) Over 24 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 Incl. 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 Unit: μm Cylindrical bore bearing clearance (non-interchangeable) C1na Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2na Max 10 12 15 15 20 25 25 30 35 35 40 45 50 55 60 65 Min 10 12 15 15 20 25 25 30 35 35 40 45 50 55 60 65 Cna Max 25 25 30 35 40 45 50 60 65 75 80 90 100 110 120 135 Min 25 25 30 35 40 45 50 60 65 75 80 90 100 110 120 135 C3na Max 35 40 45 50 60 70 80 90 100 110 120 135 150 165 180 200 Min 40 45 50 55 70 80 95 105 115 125 140 155 170 185 205 225 Nominal bearing bore diameter d (mm) Incl. 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 Bearing Selection Max 50 55 65 75 90 105 120 135 150 165 180 200 215 240 265 295 2 Tapered Bore Bearing Non-interchangeable Clearance Over 24 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 Technical Description in order to maximize rotation accuracy. The radial internal clearances for cylindrical bore bearings and tapered bore bearings are shown in Table 5.7. Caution is required when handling and installing bearings with non-interchangeable clearances, because there is no interchangeability with another bearing's outer ring or inner ring. 5.5.5 Radial Internal Clearance for Multiple-row Cylindrical Roller Bearings Bearing Life Bearing Tolerance Bearing Arrangement Preload and Rigidity Lubrication Limiting Speeds Shaft and Housing Design Unit: μm Tapered bore bearing clearance (non-interchangeable) C9na Min 5 5 5 5 10 10 10 15 15 15 20 20 25 25 30 30 C1na Max 10 12 15 15 20 25 25 30 35 35 40 45 50 55 60 65 Min 15 15 17 20 25 35 40 45 50 55 60 60 65 75 80 90 C2na Max 25 25 30 35 40 55 60 70 75 85 90 95 100 110 120 135 Min 25 25 30 35 40 45 50 60 65 75 80 90 100 110 120 135 Max 35 40 45 50 60 70 80 90 100 110 120 135 150 165 180 200 Preload and Rigidity 21 Bearing Handling Technical Description 6 Lubrication 6-1 Purpose of Lubrication The main purposes of rolling bearing lubrication is to reduce bearing friction and wear, and to prevent seizure. The appropriate lubrication methods and lubricating agents greatly influences rolling contact bearing performance and service life. The following are the purposes of lubrication. a Lubrication of friction surfaces 1) Reduce rolling friction on roller and raceway surfaces, and reduce sliding friction on roller and guide surfaces in roller bearings 2) Reduce sliding friction between the roller and the cage 3) Reduce sliding friction on cage and raceway ring guide surfaces b Removal of friction-generated heat and heat transmitted from other mechanisms c Dust-proofing and rust prevention d Reduce stress concentration 1) Uniform distribution of stress on points or linear-contact rolling surfaces. 2) Buffering of impact load 6-2 Lubrication Methods 6.2.1 Oil Lubrication a Forced lubrication (jet lubrication) ● Forced lubrication is used when cooling is required at relatively high speed rotation or under high ambient temperatures. ● Jet lubrication supplies vaporized lubricating oil using pressurized oil and a small nozzle, which has a cooling effect. ● The oil drain port must be larger than the oil supply port because agitation of oil that collects inside the housing increases heat generation and power loss. Particularly with jet lubrication, an oil drain port that is at least 10 times larger than the supply port opposite the nozzle is needed, and a pump should be used for forced draining. ● Figure 6.1 shows an example of jet lubrication. heating effect, this type of lubrication is suitable for relatively low load applications. c Oil air lubrication ● With oil air lubrication, a small amount of lubricating oil is discharged by a measurement piston at fixed intervals, the lubricating oil is supplied by the mixing valve into compressed Air Air filter Pressure adjustment value Mist generator Air escapes here. ● Figure 6.2 Example of Spindle Unit Using Vapor Lubrication Oil inlet Generally, the nozzle is directed between the cage and the inner ring. Pressure: 10 to 50N/cm2 Nozzle orifice size: 1 to 2 mm Oil capacity: 500 cc/min. (minimum) ● Figure 6.1 Jet Lubrication Example b Vapor lubrication (oil mist lubrication) ● With this lubrication method, the bearing is air cooled and a small amount of oils required for lubrication is vaporized and sprayed onto the bearing. Figure 6.2 shows an example of oil mist lubrication. ● Air sent to the mist generator via the pressure adjustor valve is mixed with oil, which is sprayed on the bearing. ● The nozzle can spray directly onto the bearing, or it can spray onto the bearing using the centrifugal force of the tapered part of a slinger installed on the axis (Figure 6.3). ● Generally, the mist pressure is 5 to 15 N/cm2, with a few cc's of oil mixed with 10 to 50ℓ/parts of air every hour. ● Oil mist uses only a small amount of oil so it is suitable for high-speed operation with little bearing power loss, but since the specific heat of air is not large and it does not have great 22 Lubrication ● Figure 6.3 Example of Mist Oil Delivery by Slinger NACHI BEARING Technical Description air, and then supplied continually to rolling part of the bearing. ● Since a small and measured amount of new lubricating oil is constantly being supplied, this method is suitable for highspeed applications where little heat is generated. ● Oil air lubrication is more environmentally friendly because oil requirements are 1/10 that of vapor lubrication and the oil is delivered in the form of droplets rather than a mist. ● Figure 6.4 shows an example of oil air lubrication. 6.2.2 Grease Lubrication Note the following precautions whenever using grease lubrication. ● Select the proper grease. For examples of the main types of grease used for machine tool bearings, see Table 6.1. ● Make sure the grease replenishment amount and locations are correct. A greasing amount of 10 to 20% of the bearing internal space volume is recommended for high-speed roller bearings. Note, however, that 40 to 50% is recommended for a ball screw support bearing (open type). ● Over-greasing can result in very high temperatures and large power loss due to agitation. For information about internal space volume of bearings, see Table 6.2 (page 24 to 25). ● For an example illustrating the difference in bearing temperature increase due to lubrication method, see Figure 6.5. Oil inlet port 4 locations (1 location/1 bearing) Bearing Selection Bearing Life Bearing Tolerance 60 Outer ring temperature increase (°C) Grease lubrication (ISOFLEX NBU 15, 15% greasing) 50 Jet lubrication (ISO VG2 compliant, 1000 cc/min) Preload and Rigidity 40 30 Lubrication 20 Limiting Speeds 10 0 0 Oil/air discharge ports x 2 places ● Figure 6.4 Example of Spindle Unit Using Oil Air Lubrication Bearing Arrangement Oil air lubrication (ISO VG46 compliant, 0.02 cc/30 min.) 5 10 Speed (×1000 rpm) 15 20 ● Figure 6.5 Comparison of Temperature Increase Caused by Different Lubrication Methods ● Table 6.1 Main Grease Used for Machine Tool Bearings Grease brand Manufacturer Base oil Thickener Recommended operation temperature range °C Main applications ISOFLEX NBU15 NOK KLUBER Ester Oil Barium composite -40 ~ +130 Spindle bearing ISOFLEX LDS18 Special A NOK KLUBER Ester Oil Lithium -60 ~ +130 Spindle bearing Multemp LRL No. 3 Kyodo Yushi Polyol Ester Oil Lithium -50 ~ +150 Spindle bearing Alvania Grease S No. 2 Showa Shell Oil Mineral Oil Lithium -25 ~ +120 Ball Screw Support Bearings Multemp PS No. 2 Kyodo Yushi Diester Oil + Hydrocarbon Oil Lithium -55 ~ +130 Ball Screw Support Bearings Lubrication 23 Shaft and Housing Design Bearing Handling Technical Description Lubrication ● Table 6.2 Bearing Internal Space Volume 1 Internal space volume of angular contact ball bearings and cylindrical roller bearings Bore diameter Bore diameter number (mm) 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 28 30 32 34 36 38 40 24 Lubrication 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 180 190 200 Unit: cc/each Series 7900C 7900AC 0.44 0.49 0.68 0.68 1.5 1.9 2.2 3.0 5.2 5.7 6.2 − − − − − − − − − − − − − − − − − − − − − 7000C 7000AC 0.9 1.0 1.4 1.7 2.9 3.4 4.8 6.4 7.8 10.2 10.7 15.9 17.0 18.2 27.7 28.7 32.1 36.3 49.2 53.0 55.1 − − − − − − − − − − − 7200C 7200AC 1.2 1.7 2.2 3.0 4.7 5.3 8.2 10.3 13.0 15.4 18.6 25.9 33.2 39.1 45.2 49.4 59.0 73.5 93.1 117 135 − − − − − − − − − − − BNH000 − − − − − − − 5.6 7.2 9.0 9.7 14.0 15.0 16.0 22.0 23.0 30.0 31.0 40.0 42.0 43.0 54.0 66.0 71.0 108 114 138 174 227 − − − TAH TBH − − − − − − − − − − 8.0 12.0 13.0 14.0 19.0 20.0 27.0 28.0 38.0 40.0 41.0 52.0 65.0 70.0 105 111 139 167 225 − − − NN3000 NNU4900 − − − − − 3.6 5.9 7.5 9.5 12.8 13.8 19.6 20.7 21.8 30.4 32.9 46.3 47.8 62.9 64.5 67.3 91.8 114 126 178 195 235 288 374 508 530 684 − − − − − − − − − − − − − − − − − − − − 49.5 57.9 59.6 86.4 102 114 195 199 209 281 296 448 NACHI BEARING Technical Description 2 Ball Screw Support Bearing (TAB Series) Internal Space Volume Bearing no. 15TAB04 17TAB04 20TAB04 25TAB06 30TAB06 35TAB07 40TAB07 40TAB09 45TAB07 45TAB10 50TAB10 55TAB10 55TAB12 60TAB12 Internal space volume [cc/each] 3.8 3.8 3.8 4.8 4.8 5.8 5.8 14 6.5 15 16 16 19 19 3 Ball Screw Support Bearing (TAF Series) Internal Space Volume Bearing no. 25TAF06 30TAF07 35TAF09 40TAF09 40TAF11 45TAF11 50TAF11 60TAF13 60TAF17 80TAF17 100TAF21 120TAF03 Internal space volume [cc/each] 9.3 14 26 26 45 45 45 71 150 150 282 473 6.2.3 Grease Life Grease life is affected by operating temperature, grease type, rotation speed, load, and other factors. Grease life approximate estimates for a rolling contact bearing, which is used as a representative example, can be calculated using Formula 5.1. (Formula 5.1) Bearing Selection L : Grease life (hours) T : Bearing temperature (°C) SG : Life reduction factor based on grease type Grease type Long life petroleum grease and silicon grease Bearing Life SG Bearing Tolerance 0 Conventional petroleum grease 1.0 Diester and and low temperature grease 2.9 Bearing Arrangement Preload and Rigidity Lubrication SN d n (dn)L Limiting Speeds : Life reduction factor based on rotation speed : Nominal bearing bore diameter (mm) : Bearing speed (rpm) : Bearing type-specific speed factor Bearing type Shaft and Housing Design Bearing Handling (dn)L Angular contact ball bearings 400,000 Cylindrical roller bearings 200,000 SW : Load-specific life reduction factor C : Basic dynamic load rating (N) w : Bearing load (N) Lubrication 25 Technical Description 7 Limiting Speeds 7-1 Limiting Speed Correction Using a bearing at high speeds that exceed its limit generates frictional heat inside the bearing, which can cause temperatures to rise to levels that will not support bearing performance. The limit on the empirical rotation speed that avoids these problems is called the "rotation speed limit". The rotation speed limit depends on the bearing type, dimensions, lubricating method, load, etc. The rotation speed limit of a contact seal bearing is limited by the circumferential speed of the contact sections of the seal and raceway ring. The dimension tables in this catalog show rotation speed limits for grease lubrication and oil lubrication, but these values all assume light load, horizontal shaft operation, and proper lubrication. Though normally two or more pre-loaded angular contact ball bearings are used, the rotation speed is limited in so it is necessary to multiply the speeds in the dimension tables by the correction factors shown in Table 7.1. When using a bearing at 75% or more of its rotation speed limit, select the correct required grease type and amount or the correct lubrication oil and method. ● Table 7.1 Correction Factors for Rotation Speed Limit of Duplex Bearings No. of bearings in set Extra-light preload (E) Light preload (L) Medium preload (M) Heavy preload (H) 2 rows 3 rows 4 rows 0.83 0.78 0.63 0.54 0.73 0.68 0.54 0.39 0.78 0.73 0.59 0.44 26 Limiting Speeds NACHI BEARING Shaft and Housing Design Technical Description 8 8-1 Shaft and Housing Fit Appropriate inner ring and shaft fit, and outer ring and housing fit is required in order to get the most performance out of a bearing. Loose fit surfaces can result in rotation of the raceway rings on the shaft or in the housing. This is called "creep." When it occurs creep can cause premature failure, vibration, and other trouble due to abnormal heat and wear, from debris getting into the bearing. An interference fit is a good way of preventing creep. For convenient installation the interference fit in on the inner ring and shaft or on the outer ring and housing (not both). However, this cannot be done under certain conditions so bearing fitting needs to be determined after carefully considering the relationship between the shaft and housing and other factors. Recommended fits for general operating conditions (inner ring rotation) of precision bearings used for machine tools are shown in Tables 8.1 through 8.3. Bearing Selection ● Table 8.1 Shafts and Recommended Fit Shaft diameter (mm) Bearing type Angular contact ball bearings Cylindrical roller bearings (cylindrical bore) Main spindle thrust bearing Ball screw support bearings Unit: μm Bearing accuracy class Over 10 18 50 80 150 25 40 140 Class 5 Incl. 18 50 80 150 200 40 140 200 Class 4/Class 2 Desired fit 0~2T 0~2.5T 0~3T 0~4T 0~5T − − − Shaft tolerance h4 h4 h4 js4 js4 js4 k4 k4 Desired fit 0~2T 0~2.5T 0~3T 0~4T 0~5T − − − For all shaft diameters 0~6L h4 0~6L h4 For all shaft diameters 0~10L h5 0~10L h5 Bearing type Angular contact ball bearings Cylindrical roller bearings Main spindle thrust bearing Ball screw support bearings Angular contact ball bearings Cylindrical roller bearings Ball screw support bearings Shaft and Housing Design Class 5 Class 4/Class 2 Desired fit Desired fit Housing bore tolerance 18 50 50 120 120 180 180 250 Overall housing bore 0~3L 0~4L 0~5L 0~6L ±0 JS4 JS4 JS4 JS4 K5 0~3L 0~4L 0~5L 0~6L ±0 JS3 JS3 JS3 JS3 K5 Overall housing bore 30L~40L K5 30L~40L K5 Overall housing bore 10L~20L H6 10L~20L H6 Unit: μm Bearing accuracy class Housing bore diameter (mm) Class 5 Class 4/Class 2 incl. Desired fit Housing bore tolerance 18 50 50 120 120 180 180 250 Overall housing bore Overall housing bore 6L~10L 8L~13L 12L~18L 15L~22L ±0 10L~20L H4 H4 H4 H4 K5 H6 Over Lubrication Unit: μm ● Table 8.3 Housings and Recommended Fit (Free Side) Bearing type Preload and Rigidity Limiting Speeds Housing bore tolerance incl. Bearing Arrangement Bearing accuracy class Housing bore diameter (mm) Over Bearing Tolerance Shaft tolerance h3 h3 h3 js3 js3 js4 k3 k3 ● Table 8.2 Housings and Recommended Fit (Fixed Side) Bearing Life Desired fit Housing bore tolerance 6L~10L 8L~13L 12L~18L 15L~22L ±0 10L~20L H3 H3 H3 H3 K4 H6 Note) In Tables 8.1 through 8.3, "L" following a value indicates loose or clearance fit, while "T" indicates tight or interference fit. Shaft and Housing Design 27 Bearing Handling Technical Description Shaft and Housing Design 8-2 Recommended Accuracy for Shaft and Housing In order to maintain mechanical performance of the main spindle of a machine tool, the accuracy of installation and of installed components must be equal to or higher than bearing accuracy. The recommended bearing installation section accuracy and surface roughness are shown in Tables 8.4 to 8.7. ● Table 8.4 Shaft Accuracy ● Table 8.6 Housing Accuracy Accuracy item Roundness c, a Cylindricity ,b Vibration ,c Concentricity ,d Unit: μm Shaft diameter Over − 10 18 30 50 80 120 180 − 10 18 30 50 80 120 180 − 10 18 30 50 80 120 180 − 10 18 30 50 80 120 180 Bearing accuracy class Incl. 10 18 30 50 80 120 180 250 10 18 30 50 80 120 180 250 10 18 30 50 80 120 180 250 10 18 30 50 80 120 180 250 Class 5 1.3 1.5 2.0 2.0 2.5 3.0 4.0 5.0 1.3 1.5 2.0 2.0 2.5 3.0 4.0 5.0 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 14.0 Class 4 0.8 1.0 1.3 1.3 1.5 2.0 2.5 3.5 0.8 1.0 1.3 1.3 1.5 2.0 2.5 3.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 14.0 Class 2 0.5 0.6 0.8 0.8 1.0 1.3 1.8 2.3 0.5 0.6 0.8 0.8 1.0 1.3 1.8 2.3 1.3 1.5 2.0 2.0 2.5 3.0 4.0 5.0 2.5 3.0 4.0 4.0 5.0 6.0 8.0 10.0 ● Table 8.5 Shaft Fitting Surface Roughness (Ra) Over − 10 18 30 50 80 120 180 − 10 18 30 50 80 120 180 − 10 18 30 50 80 120 180 − 10 18 30 50 80 120 180 Roundness c, a1 Cylindricity , b1 Vibration , c1 Concentricity , d1 Shaft diameter d Class 5 Class 4 Class 2 d ≤ 80mm 0.2 0.2 0.1 d > 80mm 0.4 0.4 0.2 Housing bore diameter D D ≤ 80mm 80mm < D ≤ 250mm D > 250mm Class 5 1.3 1.5 2.0 2.0 2.5 3.0 4.0 5.0 1.3 1.5 2.0 2.0 2.5 3.0 4.0 5.0 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 14.0 Class 4 0.8 1.0 1.3 1.3 1.5 2.0 2.5 3.5 0.8 1.0 1.3 1.3 1.5 2.0 2.5 3.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 14.0 Bearing accuracy class Class 5 0.4 0.8 1.6 Class 4 0.4 0.8 1.6 Class 2 0.2 0.4 0.8 b1 c1 AB c1 AB A B c AB 28 Shaft and Housing Design Class 2 0.5 0.6 0.8 0.8 1.0 1.3 1.8 2.3 0.5 0.6 0.8 0.8 1.0 1.3 1.8 2.3 1.3 1.5 2.0 2.0 2.5 3.0 4.0 5.0 2.5 3.0 4.0 4.0 5.0 6.0 8.0 10.0 c a1 dA b Incl. 10 18 30 50 80 120 180 250 10 18 30 50 80 120 180 250 10 18 30 50 80 120 180 250 10 18 30 50 80 120 180 250 Bearing accuracy class ● Table 8.7 Housing Fitting Surface Roughness (Ra) Bearing accuracy class c a Accuracy item Unit: μm Housing bore diameter A d1 A B NACHI BEARING Technical Description 8-3 Chamfer Dimension Limits ● Table 8.8 Chamfer Dimensions for Radial Bearings (Excluding Tapered Roller Bearings) 1.1 1.5 2 2.1 2.5 3 4 5 6 7.5 9.5 12 15 19 − − − − − 40 − 40 − 50 − 120 − 120 − 80 220 − 280 − 100 280 − 280 − − − − − − − − − 0.1 0.16 0.2 0.3 0.5 0.6 0.8 1 1.3 1.5 1.9 2 2.5 2.3 3 3 3.5 3.8 4 4.5 3.8 4.5 5 5 5.5 6.5 8 10 12.5 15 18 21 25 0.2 0.3 0.4 0.6 0.8 1 1 2 2 3 3 3.5 4 4 5 4.5 5 6 6.5 7 6 6 7 8 8 9 10 13 17 19 24 30 38 0.05 0.08 0.1 0.15 0.2 Bearing bore or outside diameter surface 0.3 r(maximum) or r1(maximum) (Radial direction) − − − − − − 40 − 40 − 50 − 120 − 120 − 80 220 − 280 − 100 280 − 280 − − − − − − − − Max r(maximum) or r1(maximum) Axial direction r1 1 Radial direction or m) mu ) ini um 0.6 Incl. ( 0.3 Over r (m inim m 0.05 0.08 0.1 0.15 0.2 Nominal bearing bore diameter Side face of inner/outer ring or center washer Smallest permissible chamfer dimensions of inner and outer rings r (min) or r1 (min) Unit: mm Smallest permissible (Reference) chamfer dimensions of inner Shaft or housing fillet and outer rings radius ra r (max) or r1 (max) Bearing Selection r (minimum) or r1 (minimum) Bearing Life Bearing Tolerance (Axial direction) 0.6 1 r: Chamfer dimensions of inner ring and outer ring r1: Chamfer dimensions of inner ring and outer ring (front face etc.) or of center ring of thrust ball bearing Bearing Arrangement 1 Preload and Rigidity 1.5 Lubrication 2 Limiting Speeds 2 Shaft and Housing Design 2 Bearing Handling 2.5 3 4 5 6 8 10 12 15 Note a Exact shape of chamfer is not specified. Limits fall within radial and axial minimum radius and maximum radius. b r (minimum) values in the axial direction of bearings with nominal bearing widths of 2 mm or less r (max) are the same as those in the radial direction. Shaft and Housing Design 29 Technical Description 9 Bearing Handling 9-1 Storing and Transporting Bearings Rolling contact bearings are precision components. It is important to handle them with care to avoid damage due to impact. Rolling contact bearings also are susceptible to dirt and rust, so care is required during storage and transport. ● When storing bearings, select a cool, dry location that is not exposed to direct sunlight or humidity. ● Do not leave bearings on the floor. Store them at a height of at least 30 cm, and avoid exposure to dust. ● First-in, first-out storage should always be used for bearing inventory management. Arrange bearings so those with the oldest packing date can be used first. ● Take care bearings being transported are not crushed or dropped, etc., protect them from damage and deformation due to impact, and ensure they do not become soiled due to broken packing materials. 9-2 Assembling Bearings The quality of bearing installation influences precision, service life, performance, and other factors, so care is required. The following is the procedure for assembly work. a Shaft and housing inspection b Unpacking and cleaning c Assembly d Post assembly check 9.2.1 Shaft and Housing Inspection ● Clean the shaft and housing thoroughly and remove any dirt and debris. Also, confirm there are no burrs. ● Confirm that the shaft and housing are finished in accordance with the drawings, and check and record dimensions, shoulder squareness, and the corner radius. As shown in Figure 9.1, measure the shaft diameter and housing bore at two locations in the axial direction and four locations radially. 1 2 3 A ● After washing, shake the oil from the bearing and then cover it. Do not rotate a bearing that has been degreased. 9.2.3 Assembly Generally the majority of bearings assembled into machine tools have interference shaft fits and loose housing fits. The methods used for mounting bearings to shafts are the shrink and press fits. Shrink fits With this mounting method, the bearing is heated until it expands larger than the shaft and the inner ring can be slipped onto the shaft. An electromagnetic heater with degausser (Figure 9.2) avoids undue stress to the inner ring, while an oven helps to shorten process time. Heating temperature must be no greater than 120°C. Temperatures greater than 120°C can decrease bearing hardness and shortens its service life. After a heated bearing is installed on a shaft, it contracts axially as it cools, which can cause a gap between the inner ring and shaft shoulder (Figure 9.3), so positioning is achieved using a nut, etc. B 4 1 2 3 A B 4 ● Figure 9.1 Shaft Diameter and Housing Diameter Measurement Locations ● Figure 9.2 Induction Heater 9.2.2 Unpacking and Cleaning ● Do not unpack a bearing until just before you are ready to use it. Be sure to wear vinyl gloves when unpacking a bearing. Unpacking a bearing with bear hands or while wearing fabric gloves creates the risk of rust or lint intrusion. ● Apply anti-rust oil to the surface of the unpacked bearing. Wash the bearing with white kerosene. For washing, prepare either a filtered shower or two containers with raised wire mesh bottoms, one for basic washing and one for finish washing. ● Figure 9.3 Shaft Shoulder Gap After Cooling 30 Bearing Handling NACHI BEARING Reference: Press fit force and removal force Though the force required to press fit a bearing inner ring to and removing it from the shaft depends on interference amounts and the shaft surface finish, general values can be obtained using Formula 9.1. (Formula 9.1) Ka : Press fit force (removal force) (kN) fk : Installation/removal condition coefficient (Table 9.1) Δde B d di : Effective interference (mm) : Nominal inner ring width (mm) : Nominal bearing bore diameter (mm) : Inner ring mean outside diameter (mm) Cylindrical roller bearing Bearing Selection Bearing Life Bearing Tolerance Other bearings Bearing Arrangement Here, D = Nominal bearing outside diameter (mm) ● Figure 9.4 Inner Ring Press Fitting Preload and Rigidity ● Table 9.1 Installation/Removal Condition Coefficient Conditions Risk of ball damage Technical Description Press fits With this method, a tool is placed on the inner ring side surface and a jack or press is used to press fit (Figure 9.4). When press fitting the inner ring on a shaft do not apply force to the outer ring or cage. In the case of an angular contact ball bearing, application of force in the opposite direction of the contact angle direction should be avoided because it will damage the raceway shoulder (Figure 9.5). fk (mean value) Inner ring press fit to cylindrical solid shaft 39 Inner ring removal from cylindrical solid shaft 59 Lubrication Limiting Speeds Note) Values when shaft bore and shaft are thinly coated with oil. Shaft and Housing Design Bearing Handling ● Figure 9.5 Angular Contact Ball Bearing Assembly Direction Reference: Maximum radial run-out locations The maximum radial run-out locations of the inner ring and outer ring are indicated by "c" marks on the ring face. Axial run-out can be minimized by aligning the minimum radial run-out location of the axis with the "c" mark on the inner ring. The outer ring also should be assembled so its "c" mark is aligned with the minimum run-out locations of the housing. Note that there is no relationship between the outside ring "c" mark position and the outside diameter "<" mounting mark position. Maximum radial run-out surface ● Figure 9.6 Maximum Radial Run-out Locations Bearing Handling 31 Technical Description Bearing Handling Mounting on a shaft Normally a shaft nut is used to secure the inner ring of the bearing to the shaft. It is necessary to ensure that the shaft nut side surface is at the proper angle relative to the thread. If the surfaces are not square tightening of the shaft nut can result in bending of the shaft. Also, adjustment of the shaft nut is required when tightening it because of edge contact due to a gap in the mating surface between the shaft nut and the shaft. Tightening with the shaft nut makes it possible to apply a specific tightening force by controlling the tightening torque. Though there is a discrepancy in the relationship between shaft nut tightening torque and the tightening force due to the accuracy and roughness of each threaded portion, it can be expressed as Formula 9.2. The recommended mounting force for each bearing bore is shown in Table 9.2. Mounting on a housing In order to secure the outer ring of a bearing in the axial direction, clearing normally is maintained between the press-fit cover and housing and a bolt is used for tightening. Caution is required because outer ring misalignment and deformation can occur bolts are not tightened correctly or uniformly (Figure 9.7). Generally an outside ring clearance reduction gap D of 0.010 to 0.020 is recommended. Recommended clearance reduction gap values for a face-to-face ball support bearing (TAB Series, TAF Series) are shown in Tables 9.3 and 9.4. Δ+2A 2A clearance Housing Press-fit cover A A (Formula 9.2) F Mn d2 E P U D dn μm μ : Tightening force (N) : Tightening torque (N·mm) Δ =0.010mm : Thread nominal diameter (mm) : Lead angle ● Table 9.3 Recommended Clearance Reduction Gap Values for Ball Screw Support Bearings (TAB Series) : Pitch (mm) : Thread surface friction angle Bearing no. : Half-angle of thread : Mean diameter of nut bearing surface (mm) : Coefficient of friction of nut bearing surface (| 0.15) : Coefficient of friction of thread surface (| 0.15) ● Table 9.2 Recommended Shaft Nut Tightening Force Values Nominal bearing bore diameter (mm) 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 32 Shaft nut tightening force (N) Bearing Handling 1500 2500 2500 2500 4900 4900 4900 4900 9800 9800 9800 14700 14700 14700 14700 14700 Δ =0.050mm ● Figure 9.7 Example of Raceway Deflection Depending on Outer Ring Clearance Reduction Gap Nominal bearing bore diameter (mm) 80 85 90 95 100 105 110 120 130 140 150 160 170 180 190 200 Shaft nut tightening force (N) 19600 19600 19600 19600 19600 19600 19600 19600 19600 29400 29400 29400 29400 29400 29400 29400 15TAB04 DF 17TAB04 DF 20TAB04 DF 25TAB06 DF 30TAB06 DF 35TAB07 DF 40TAB07 DF 40TAB09 DF 45TAB07 DF 45TAB10 DF 50TAB10 DF 55TAB10 DF 55TAB12 DF 60TAB12 DF External ring clearance reduction gap ' (mm) 0.010 ~ 0.030 0.010 ~ 0.040 0.020 ~ 0.050 0.020 ~ 0.060 ● Table 9.4 Recommended Clearance Reduction Gap Values for Ball Screw Support Bearings (TAF Series) Bearing no. External ring clearance reduction gap ' (mm) 25TAF06 DF 30TAF07 DF 35TAF09 DF 40TAF09 DF 40TAF11 DF 45TAF11 DF 50TAF11 DF 60TAF13 DF 60TAF17 DF 80TAF17 DF 100TAF21 DF 120TAF03 DF 0.020 0.030 0.040 0.050 NACHI BEARING Technical Description Tapered bore cylindrical roller bearing clearance adjustment The internal clearance of a tapered bore cylindrical roller bearing can be adjusted by the spacer width using the procedure below. a Check the shaft taper. Coat the taper with a thin layer of bluing; 80% or more contact is required. b Lightly place the inner sub-unit onto the shaft taper (Figure 9.8). d Place the outer ring and fix the shaft horizontally. f Touch the center the outer ring with a dual gauge probe. g Pressing down on the outer ring from above, rotate it left and right a few times so it fits well, and then zero set the dial gauge. h Push the outer ring straight up 180° from its position of symmetry (directly below), and rotate it slightly left and right to take a reading of its maximum value (Figure 9.9). i Change the position of the shaft at steps of approximately 30°, measure the axial displacement, and calculate the average of the readings as the value of D R. j Use a block gauge to measure the length to the inner ring edges surface and shaft shoulder (Figure 9.10). k Change the position and use the average of five or six locations as the value for L'. l Use Formula 9.3 to determine the wide dimension of the required spacer. ● Figure 9.8 Inner Sub-unit Temporary Tightening Bearing Selection Bearing Life Bearing Tolerance Bearing Arrangement Preload and Rigidity (Formula 9.3) Lubrication L’ ΔR Δ Oe : Average spacer width obtained in step k : Measured radial clearance : Desired post-assembly radial clearance : External ring contraction ratio Limiting Speeds Shaft and Housing Design ● Figure 9.9 Radial Clearance Measurement Bearing Handling Block gauge D De Dh G : Inner ring outside diameter (mm) : Inner ring bore (mm) : Housing bore (mm) : Outer ring interference m Correct the spacer width dimension. n Remove the inner sub-unit from the shaft. This time avoid striking the inner ring with strong force. Use of a special removal tool to make ring removal easy. o Install the spacer and bearing onto the shaft. p Again, measure the radial clearance and confirm that the desired radial clearance is provided (Figure 9.11). ● Figure 9.10 Spacer Temporary Width Dimension Measurement 9.2.4 Post Assembly Check Use the procedure under "5-3 Measuring Preload" (page 14) to confirm that the prescribed preload is being applied. ● Figure 9.11 Final Assembly Radial Clearance Check Bearing Handling 33 Technical Description Bearing Handling 9-3 Running Test After installing bearings, a test run is performed to confirm that operation is normal. Particularly when using grease lubrication the grease must be allowed to get inside the bearing, and so sufficient break-in running is required. The following is the general running test procedure. a Check to make sure there is no gap between the shaft and housing or the cover or that all the gaps are uniform. b First rotate manually any rotatable mechanisms and check for abnormal noise and sticking. c For large mechanisms that cannot be rotated manually, start at a speed that is as low as possible then do the same checks as step b while coasting. d If no abnormalities are discovered during the first three steps above, gradually increase speed up to normal operating speed while confirming that the rise in temperature is within normal conditions. e For long term operation, check for bolt and nut looseness, oil and grease leaks, and abnormal noise. If possible, after completing the test run drain the lubricant and check for the presence of foreign matter. f Actual operation can be started after completing the run in test. 9-4 Removing Bearings Though the main reasons for removing bearings is periodic maintenance and mechanical breakdown, it also should be used as an opportunity to check the current status of a machine and to use what is learned for improvements, etc. Particularly in the case of malfunction, the key reasons for the breakdown usually can be found after disassembly. Because of this, the following points should be checked when removing bearings. a Problems with bearing installation b Insufficient lubricating oil or grease, and the amount of contaminants present (Collect samples.) 34 Bearing Handling c Inner ring and outer ring fit d Bearing trouble The following items also need to be settled before starting bearing removal. a Bearing removal method b Fitting conditions c Tools required for removal Dimension Tables Dimension Tables Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF Precision Rolling Bearings Angular Contact Ball Bearings High-speed Angular Contact Ball Bearings Thrust Load Angular Contact Ball Bearings Multiple-row Cylindrical Roller Bearings Cross Tapered Roller Bearings Ball Screw Support Bearings 36 Precision Rolling Bearing Types and Designs NACHI BEARING Precision Rolling Bearing Types and Designs Dimension Tables Type Angular contact ball bearings High-speed angular contact ball bearings Cross section Bearing series 7900C Contact angle 15° 7900AC 25° 7000C 15° 7000AC 25° 7200C 15° 7200AC 25° BNH 15° TAH 30° Thrust load angular contact ball bearings NN type multiplerow cylindrical roller bearings TBH 40° NN3000 − Description ● Balls and the inner ring and outer ring raceways are designed for contact in a specific contact angle, which means this type of bearing is suitable for composite loads (axial load and radial load). ● The contact angle means that axial force components are generated when a radial load is applied, so these bearings are normally used in pairs at either end of a shaft. ● A contact angle of 15° is best for high speed, while a contact angle of 25° is better for axial loads. ● Since ball slipping is reduced by the gyro-moment at high-speeds, the ball diameter of this type of bearing is smaller than that of a standard angular contact ball bearing. ● This type of bearing is dimensionally interchangeable with the 7000 Series, and can be used for their replacement. 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG ● The contact angle of this type is smaller than that of the previous TAD Series (double-direction thrust angular contact ball bearings), for less gyro-moment induced ball sliding and lower temperature. ● Can be used to replace TAD Series bearings. TAB TAF ● A large number of rollers (cylindrical) for high rigidity. ● Tapered bore allows adjustment of the internal clearance. ● Oil groove and oil hole in the center of the outer ring width are also available. NNU type multiplerow cylindrical roller bearings NNU4900 − Cross tapered roller bearings XRN XRG − ● Designed as an alternate to tapered roller bearings, this series provides high axial load and moment load rigidity. ● Rollers have rotational and orbital centers for smooth rotation. TAB 60° ● Mainly used in machine tool ball screw support applications. ● Open type and sealed type (contact type, non-contact type) available. TAF 50° (55°) ● Mainly used in machine tool high load ball screw support applications for electric injection molding machines. ● Large-diameter balls provide a large contact angle for high thrust load capacity. Ball screw support bearings Precision Rolling Bearing Types and Designs Types Types and and Designs Designs 37 Angular Contact Ball Bearings Standard Type 38 Angular Contact Ball Bearings NACHI BEARING Nomenclature of Bearing Numbers Tolerance class code P5 : JIS Class 5 P4 : JIS Class 4 Cage code Y : Polyamide resin cage Contact angle code C : 15° AC : 25° Preload and other class codes /GE : Extra-light preload /GL : Light preload /GM : Medium preload /GH : Heavy preload Mounting code U : Flush ground (Single) DU : Flush ground (duplex) DB : Back-to-back DF : Face-to-face DT : Tandem ● With angular contact ball bearings, the balls and the inner ring and outer ring raceways form a specific angle of contact. When used in a single configuration, axial load is limited to a single direction, this type of bearing is suitable for bearing composite loads made up of axial and radial loads. ● Since this type of bearing has a contact angle, axial components are generated when a radial load is applied. Because of this, this type of bearing is normally used in pairs at either end of a shaft. ● Ceramic ball type also available. Contact Angle Two contact angles are available: 15° and 25°. 15° is for high-speed applications. 25° is for applications requiring high axial rigidity. Cage A ball guide polyamide cage is provided as standard. The polyamide cage should be used under temperatures lower than 120°. Dimensional Accuracy, Rotational Accuracy Conforms to JIS Class 5 or Class 4. See page 7 for details. Preload ● Four types of standard preload settings are available. Use the nearby table to select the preload that meets your criteria. ● See page 16 through 18 for standard preloads available for each series and size. 7900 7000 7200 TAH TBH NN3000 NNU4900 XRN XRG TAB TAF Preload Selection Criteria Preload code E (extra-light preload) L (light preload) M (medium preload) H (heavy preload) Types and Designs BNH Bore diameter number Dimension series number 00 : 10 mm bore dimension 01 : 12mm 9 : 19 Series Bearing type 02 : 15mm 0 : 10 Series 7 : Single-row angular contact ball bearing Material code 03 : 17mm 2 : 02 Series SH6- : Inner ring/Outer ring = Bearing steel; Ball = Ceramic 04+ : (bore number) ×5 mm (No code): Inner ring/Outer ring/Balls = Bearing steel Features Dimension Tables SH6- 7 2 08 C Y DU /GL P4 Selection criteria Prevents mechanical vibration and increases accuracy. Provides rigidity at high-speed (dmn value = 500,000) operation. Provides higher than light preload rigidity at standard-speed operation. Provides maximum rigidity at low-speed operation. Mounting See page 12 and 13 for multiple-row arrangements. Ceramic Ball Types Bearings with ceramic balls that are less dense than bearing steel balls also are available for lower centrifugal force when balls rotate at high speeds. ● The characteristics of ceramic and bearing steel are shown in the table below. ● The bearing number of a bearing that uses ceramic balls starts with "SH6-". ● Preload and axial rigidity is approximately 1.2 times that of bearing steel type bearings. Comparison of Ceramic and Bearing Steel Characteristics °C g/cc Ceramic (Si3N4) 800 3.2 Bearing steels (SUJ2) 180 7.8 1/°C 3.2×10-6 12.5×10-6 Hv 1400~1700 700~800 GPa 314 206 Features Unit Heat resistance Density Linear expansion coefficient Hardness Longitudinal elastic coefficient Poisson's ratio Corrosion resistance Magnetism Conductivity Crystal chemical bonding − − − − − 0.26 0.30 Good No good Non-magnetic substance Strongly magnetic substance Insulator Conductor Covalent Metallic Angular Contact Ball Bearings 39 Dimension Tables Angular Contact Ball Bearings 7900C Series 7900AC Series Contact angle D = 15° Contact angle D = 25° B r r1 r r D d D a Back-to-back (DB) Bearing no. 40 d D B r (Min) Face-to-face (DF) r1 (Min) Load center a (mm) Basic dynamic load rating Cr (kN) Boundary dimensions (mm) Tandem (DT) Basic static load rating Cor (kN) 7900C 10 22 6 0.3 0.15 -0.9 3.00 1.52 7900AC 10 22 6 0.3 0.15 0.7 2.88 1.45 7901C 7901AC 12 12 24 6 0.3 0.15 -0.6 3.20 1.72 24 6 0.3 0.15 1.2 3.05 1.63 7902C 7902AC 15 15 28 28 7 7 0.3 0.3 0.15 0.15 -0.6 1.5 4.75 4.55 2.64 2.53 7903C 7903AC 7904C 7904AC 17 17 20 20 30 7 0.3 0.15 -0.3 5.00 2.95 30 7 0.3 0.15 2.1 4.75 2.82 37 9 0.3 0.15 -0.7 7.30 4.55 37 9 0.3 0.15 2.1 6.95 4.35 7905C 7905AC 25 25 42 9 0.3 0.15 0.1 7.80 5.45 42 9 0.3 0.15 3.5 7.40 5.15 7906C 30 47 9 0.3 0.15 0.7 8.30 6.25 7906AC 7907C 7907AC 7908C 7908AC 30 35 35 40 40 47 9 0.3 0.15 4.5 7.85 5.95 55 10 0.6 0.3 1.0 12.5 55 10 0.6 0.3 5.5 11.9 62 62 12 12 0.6 0.6 0.3 0.3 0.8 5.9 15.7 14.9 12.4 11.8 7909C 7909AC 7910C 45 45 50 68 12 0.6 0.3 1.6 16.6 14.1 68 12 0.6 0.3 7.2 15.7 13.3 72 12 0.6 0.3 2.2 17.7 15.5 7910AC 50 72 12 0.6 0.3 8.2 16.4 14.9 Angular Contact Ball Bearings 9.65 9.20 NACHI BEARING R1 R R R d1 D1 R D1 d2 d2 d1 D1 D1 d1 Dimension Tables 73000 63500 64800 56400 54300 47200 49700 43200 41000 35600 34800 30300 30300 26300 25900 22500 22900 19900 20600 18000 19100 16600 d2 Back-to-back Rotation speed limit (rpm) Grease lubrication D1 D1 Single row R Face-to-face Corner radius (mm) Oil lubrication D1 (Min) d1 (Max) d2 (Max) R (Max) R1 (Max) Mass (kg) (Reference) Bearing no. 100000 85000 88800 75500 74400 63200 68000 57800 56100 47700 47700 40600 41500 35300 35500 30200 31300 26600 28300 24000 26200 22300 12.5 12.5 14.5 14.5 17.5 17.5 19.5 19.5 22.5 22.5 27.5 27.5 32.5 32.5 39.5 39.5 44.5 44.5 49.5 49.5 54.5 54.5 19.5 19.5 21.5 21.5 25.5 25.5 27.5 27.5 34.5 34.5 39.5 39.5 44.5 44.5 50.5 50.5 57.5 57.5 63.5 63.5 67.5 67.5 20.8 20.8 22.8 22.8 26.8 26.8 28.8 28.8 35.8 35.8 40.8 40.8 45.8 45.8 52.5 52.5 59.5 59.5 65.5 65.5 69.5 69.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.008 0.008 0.010 0.010 0.015 0.015 0.016 0.016 0.035 0.035 0.041 0.041 0.046 0.046 0.074 0.074 0.107 0.107 0.127 0.127 0.128 0.128 7900C 7900AC 7901C 7901AC 7902C 7902AC 7903C 7903AC 7904C 7904AC 7905C 7905AC 7906C 7906AC 7907C 7907AC 7908C 7908AC 7909C 7909AC 7910C 7910AC Angular Contact Ball Bearings Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF 41 Dimension Tables Angular Contact Ball Bearings 7000C Series 7000AC Series Contact angle D = 15° Contact angle D = 25° B r r1 r r D d D a Back-to-back (DB) Bearing no. 42 d D B r (Min) Face-to-face (DF) r1 (Min) Load center a (mm) Basic dynamic load rating Cr (kN) Boundary dimensions (mm) Tandem (DT) Basic static load rating Cor (kN) 7000C 10 26 8 0.3 0.15 -1.9 5.35 2.50 7000AC 7001C 10 12 26 8 0.3 0.15 0.2 5.15 2.41 28 8 0.3 0.15 -1.7 5.80 2.91 7001AC 12 28 8 0.3 0.15 0.7 5.60 2.79 7002C 7002AC 7003C 7003AC 7004C 7004AC 15 15 17 17 20 20 32 9 0.3 0.15 -1.8 6.65 3.70 32 9 0.3 0.15 1.0 6.30 3.55 35 35 10 10 0.3 0.3 0.15 0.15 -2.0 1.1 7.00 6.65 4.15 3.95 42 12 0.6 0.3 -2.4 11.2 6.60 42 12 0.6 0.3 1.2 10.6 6.25 7005C 25 47 12 0.6 0.3 -1.8 12.9 8.65 7005AC 25 47 12 0.6 0.3 2.4 11.7 7.60 7006C 7006AC 30 30 55 13 1 0.6 -1.6 16.0 11.1 55 13 1 0.6 3.4 15.1 10.5 7007C 7007AC 7008C 7008AC 7009C 7009AC 35 35 40 40 45 45 62 14 1 0.6 -1.4 19.3 13.7 62 14 1 0.6 4.3 18.2 13.0 68 15 1 0.6 -1.3 20.7 16.0 68 15 1 0.6 5.1 19.5 15.1 75 75 16 16 1 1 0.6 0.6 -1.1 6.0 24.6 23.1 19.4 18.3 7010C 7010AC 7011C 50 50 55 80 16 1 0.6 -0.5 26.2 22.0 80 16 1 0.6 7.2 23.7 19.7 90 18 1.1 0.6 -0.6 34.5 28.8 7011AC 7012C 7012AC 7013C 55 60 60 65 90 18 1.1 0.6 7.9 31.0 25.6 95 18 1.1 0.6 -0.1 35.5 30.5 95 18 1.1 0.6 9.1 32.0 27.6 100 18 1.1 0.6 0.5 37.5 34.5 7013AC 7014C 7014AC 7015C 7015AC 65 70 70 75 75 100 18 1.1 0.6 10.2 34.0 31.0 110 20 1.1 0.6 0.4 47.0 43.0 110 115 20 20 1.1 1.1 0.6 0.6 11.0 1.0 44.5 48.5 41.0 46.0 115 20 1.1 0.6 12.2 45.5 43.0 7016C 7016AC 7017C 7017AC 7018C 80 80 85 85 90 125 22 1.1 0.6 0.8 59.0 55.5 125 22 1.1 0.6 12.9 55.5 52.5 130 22 1.1 0.6 1.4 60.5 59.0 130 22 1.1 0.6 14.1 57.0 55.5 140 24 1.5 1 1.3 72.0 69.5 7018AC 90 140 24 1.5 1 14.8 68.0 65.5 7019C 7019AC 7020C 95 95 100 145 24 1.5 1 1.9 74.0 73.5 145 24 1.5 1 16.0 69.5 69.5 150 24 1.5 1 2.4 76.0 77.5 7020AC 100 150 24 1.5 1 17.2 71.0 73.0 Angular Contact Ball Bearings NACHI BEARING R1 R R R d1 D1 R D1 d2 d1 D1 D1 d1 Dimension Tables 65000 56500 58500 51000 49500 43000 45000 39000 37500 32500 32500 28200 27400 23900 24100 21000 21600 18800 19500 16900 18000 15600 16100 14000 15000 13100 14200 12300 13000 11300 12300 10700 11400 9900 10900 9400 10100 8800 9700 8400 9300 8100 d2 Back-to-back Rotation speed limit (rpm) Grease lubrication D1 d2 D1 Single row R Face-to-face Corner radius (mm) Oil lubrication D1 (Min) d1 (Max) d2 (Max) R (Max) R1 (Max) Mass (kg) (Reference) Bearing no. 89000 75500 80000 68000 68000 58000 61500 52500 51500 44000 44500 37500 37500 32000 33000 28000 29600 25200 26700 22700 24600 20900 22100 18800 20600 17500 19400 16500 17800 15100 16800 14300 15600 13300 14900 12700 13900 11800 13300 11300 12800 10900 12 12 14 14 17 17 19 19 24 24 29 29 35 35 40 40 45 45 50 50 55 55 61 61 66 66 71 71 76 76 81 81 86 86 91 91 97 97 102 102 107 107 24 24 26 26 30 30 33 33 38 38 43 43 50 50 57 57 63 63 70 70 75 75 84 84 89 89 94 94 104 104 109 109 119 119 124 124 133 133 138 138 143 143 25 25 27 27 31 31 34 34 40 40 45 45 52 52 59 59 65 65 72 72 77 77 86 86 91 91 96 96 106 106 111 111 121 121 126 126 135.6 135.6 140.6 140.6 145.6 145.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 1 1 1 1 1 0.022 0.022 0.024 0.026 0.035 0.035 0.045 0.045 0.079 0.079 0.091 0.091 0.135 0.135 0.170 0.170 0.210 0.210 0.265 0.265 0.285 0.285 0.420 0.420 0.450 0.450 0.470 0.470 0.660 0.660 0.695 0.695 0.925 0.925 0.960 0.960 1.26 1.26 1.36 1.36 1.37 1.37 7000C 7000AC 7001C 7001AC 7002C 7002AC 7003C 7003AC 7004C 7004AC 7005C 7005AC 7006C 7006AC 7007C 7007AC 7008C 7008AC 7009C 7009AC 7010C 7010AC 7011C 7011AC 7012C 7012AC 7013C 7013AC 7014C 7014AC 7015C 7015AC 7016C 7016AC 7017C 7017AC 7018C 7018AC 7019C 7019AC 7020C 7020AC Angular Contact Ball Bearings Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF 43 Dimension Tables Angular Contact Ball Bearings 7200C Series 7200AC Series Contact angle D = 15° Contact angle D = 25° B r r1 r r D d D a Back-to-back (DB) Bearing no. 44 d D B r (Min) Face-to-face (DF) r1 (Min) Load center a (mm) Basic dynamic load rating Cr (kN) Boundary dimensions (mm) Tandem (DT) Basic static load rating Cor (kN) 7200C 10 30 9 0.6 0.3 -2.2 6.95 3.30 7200AC 10 30 9 0.6 0.3 0.2 6.75 3.20 7201C 7201AC 12 12 32 10 0.6 0.3 -2.5 7.95 3.90 32 10 0.6 0.3 0.2 7.65 3.75 7202C 7202AC 15 15 35 11 0.6 0.3 -2.6 8.70 4.55 35 11 0.6 0.3 0.4 8.35 4.40 7203C 7203AC 7204C 7204AC 17 17 20 20 40 40 12 12 0.6 0.6 0.3 0.3 -2.7 0.8 10.9 10.5 5.90 5.65 47 14 1 0.6 -3.1 14.7 47 14 1 0.6 0.9 14.0 7205C 7205AC 25 25 52 15 1 0.6 -3.1 16.7 52 15 1 0.6 1.6 15.9 7206C 30 62 16 1 0.6 -2.7 23.2 14.9 7206AC 7207C 7207AC 7208C 30 35 35 40 62 16 1 0.6 2.8 22.0 14.1 72 17 1.1 0.6 -2.3 30.5 20.1 72 17 1.1 0.6 4 29.1 19.1 80 18 1.1 0.6 -2.1 36.5 25.4 7208AC 7209C 7209AC 7210C 40 45 45 50 80 85 18 19 1.1 1.1 0.6 0.6 5 -2.0 34.5 41.0 24.1 29.0 85 19 1.1 0.6 5.7 39.0 27.5 90 20 1.1 0.6 -1.9 43.0 32.0 7210AC 7211C 7211AC 7212C 7212AC 7213C 50 55 55 60 60 65 6.3 41.0 30.5 -1.6 53.0 40.0 7213AC 7214C 7214AC 7215C 8.15 7.80 10.3 9.80 90 20 1.1 0.6 100 21 1.5 1 100 21 1.5 1 7.6 50.5 38.0 110 22 1.5 1 -1.2 64.5 49.5 110 22 1.5 1 8.8 58.0 43.5 120 23 1.5 1 -0.8 73.5 59.0 65 70 70 75 120 23 1.5 1 10.1 66.5 52.0 125 125 24 24 1.5 1.5 1 1 -0.7 10.7 80.0 72.5 65.0 57.5 130 25 1.5 1 -0.7 83.5 70.0 7215AC 7216C 7216AC 7217C 75 80 80 85 130 25 1.5 1 11.4 75.5 62.5 140 26 2 1 -0.3 93.5 78.0 140 26 2 1 12.7 88.5 74.0 150 28 2 1 -0.4 7217AC 85 150 28 2 1 13.4 7218C 7218AC 7219C 90 90 95 160 30 2 1 -0.6 124 160 30 2 1 14.2 112 170 32 2.1 1.1 -0.7 133 115 7219AC 7220C 7220AC 95 100 100 170 32 2.1 1.1 14.9 126 107 180 180 34 34 2.1 2.1 1.1 1.1 -0.8 15.7 150 142 128 121 Angular Contact Ball Bearings 100 95.0 85.0 81.0 105 93.0 NACHI BEARING R1 R R R d1 D1 R D1 d2 d1 D1 D1 d1 Dimension Tables 58500 51000 53000 46000 46500 40500 41000 35500 34500 30500 30000 26400 25200 22000 21800 19000 19500 16900 18000 15600 16700 14500 15000 13100 13700 12000 12600 11000 12000 10400 11400 9900 10600 9200 9900 8600 9300 8100 8800 7700 8300 7200 d2 Back-to-back Rotation speed limit (rpm) Grease lubrication D1 d2 D1 Single row R Face-to-face Corner radius (mm) Oil lubrication D1 (Min) d1 (Max) d2 (Max) R (Max) R1 (Max) Mass (kg) (Reference) Bearing no. 80000 68000 72500 62000 64000 54500 56000 47500 47500 40500 41500 35500 34500 29600 29900 25400 26700 22700 24600 20900 22900 19400 20600 17500 18800 16000 17300 14700 16400 13900 15600 13300 14500 12400 13600 11600 12800 10900 12100 10300 11400 9700 15 15 17 17 20 20 22 22 26 26 31 31 36 36 42 42 47 47 52 52 57 57 64 64 69 69 74 74 79 79 84 84 90 90 95 95 100 100 107 107 112 112 25 25 27 27 30 30 35 35 41 41 46 46 56 56 65 65 73 73 78 78 83 83 91 91 101 101 111 111 116 116 121 121 130 130 140 140 150 150 158 158 168 168 27.4 27.4 29.4 29.4 32.4 32.4 37.4 37.4 43.4 43.4 48.4 48.4 58.4 58.4 67 67 75 75 80 80 85 85 94.6 94.6 104.6 104.6 114.6 114.6 119.6 119.6 124.6 124.6 134 134 144 144 154 154 163 163 173 173 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2 2 2 2 2 2 2 2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 1 1 1 1 1 0.8 0.8 1 1 1 1 1 1 1 1 1 1 1 1 0.034 0.034 0.040 0.040 0.048 0.048 0.070 0.070 0.110 0.110 0.135 0.135 0.210 0.210 0.295 0.295 0.380 0.380 0.430 0.430 0.485 0.485 0.635 0.635 0.820 0.820 1.02 1.02 1.12 1.12 1.23 1.23 1.50 1.50 1.87 1.87 2.30 2.30 2.78 2.78 3.32 3.32 7200C 7200AC 7201C 7201AC 7202C 7202AC 7203C 7203AC 7204C 7204AC 7205C 7205AC 7206C 7206AC 7207C 7207AC 7208C 7208AC 7209C 7209AC 7210C 7210AC 7211C 7211AC 7212C 7212AC 7213C 7213AC 7214C 7214AC 7215C 7215AC 7216C 7216AC 7217C 7217AC 7218C 7218AC 7219C 7219AC 7220C 7220AC Angular Contact Ball Bearings Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF 45 High-speed Angular Contact Ball Bearings BNH Series 46 High-speed Angular Contact Ball Bearings NACHI BEARING Nomenclature of Bearing Numbers Tolerance class code P4 : JIS Class 4 (standard) P2 : JIS Class 2 Preload and other class codes /GL : Light preload (standard) Mounting code U : Flush ground (Single) DB : Back-to-back DF : Face-to-face DT : Tandem Cage code T : Phenolic resin cage (standard) Y : Polyamide resin cage Bore diameter number 07+: Bore dimension (bore number) ×5 mm BNH000 Contact Angle 15° contact angle provided as standard. Cage Outer ring guided phenolic resin cage provided as standard. Ball guide polyamide resin cage also available. Dimensional Accuracy, Rotational Accuracy JIS Class 4 compliance as standard. See page 7 for details. BNH XRN XRG TAB TAF Preload 7000C 7900 7000 7200 NN3000 NNU4900 Material code SH6- : Inner ring/Outer ring = Bearing steel; Ball = Ceramic (No symbol): Inner ring/Outer ring/Balls = Bearing steel ● Smaller machine steel balls, higher speeds, and lower temperatures than previous angular contact ball bearings. Mainly used for the main spindle of high-speed machining centers. ● Ceramic ball type also available. Types and Designs TAH TBH Dimension series number 0 : 10 Series Bearing type BNH : BNH Series angular contact ball bearing Features Dimension Tables SH6- BNH 0 10 T DB /GL P4 Light preload as standard. See page 19 for information about preloads. Ceramic Ball Types ● Bearings with ceramic balls that are less dense than bearing steel balls also are available for lower centrifugal force when balls rotate at high speeds. ● The characteristics of ceramic and bearing steel are shown in the table below. ● The bearing numbers of bearings that use ceramic balls start with "SH6-". ● Preload and axial rigidity is approximately 1.2 times that of bearing steel type bearings. Comparison of Ceramic and Bearing Steel Characteristics °C g/cc Ceramic (Si3N4) 800 3.2 Bearing steels (SUJ2) 180 7.8 1/°C 3.2×10-6 12.5×10-6 Hv 1400~1700 700~800 GPa 314 206 Features Unit Heat resistance Density Linear expansion coefficient Hardness Longitudinal elastic coefficient Poisson's ratio Corrosion resistance Magnetism Conductivity Crystal chemical bonding − − − − − 0.26 0.30 Good No good Non-magnetic substance Strongly magnetic substance Insulator Conductor Covalent Metallic High-speed Angular Contact Ball Bearings 47 Dimension Tables High-speed Angular Contact Ball Bearings BNH Series Contact angle 15° B r r1 r 15˚ Id ID r a r1 (Min) Load center a (mm) Basic dynamic load rating Cr (kN) Boundary dimensions (mm) Bearing no. 48 d D B r (Min) Basic static load rating Cor (kN) BNH007 35 62 14 1 0.6 -0.5 11.6 BNH008 40 68 15 1 0.6 -0.3 14.8 BNH009 BNH010 45 50 75 16 1 0.6 0 15.5 14.5 80 16 1 0.6 0.7 16.1 15.9 BNH011 BNH012 55 60 90 95 18 18 1.1 1.1 0.6 0.6 0.7 1.4 20.0 20.8 20.1 21.9 BNH013 BNH014 BNH015 BNH016 65 70 75 80 100 18 1.1 0.6 2.1 21.5 23.4 110 20 1.1 0.6 2.1 29.4 31.5 115 20 1.1 0.6 2.7 29.8 32.5 125 22 1.1 0.6 2.7 35.0 39.0 BNH017 BNH018 85 90 130 22 1.1 0.6 3.4 35.5 40.0 140 24 1.5 1 3.4 46.5 53.0 BNH019 95 145 24 1.5 1 4.1 47.0 55.0 BNH020 BNH021 BNH022 BNH024 BNH026 100 105 110 120 130 150 24 1.5 1 4.7 48.0 56.5 160 26 2 1 4.8 54.5 65.0 170 28 2 1 4.8 61.0 74.0 180 200 28 33 2 2 1 1 6.1 5.6 63.0 83.5 79.0 105 BNH028 BNH030 BNH032 140 150 160 210 33 2 1 6.9 86.0 112 225 35 2.1 1.1 7.6 102 132 240 38 2.1 1.1 7.8 110 145 BNH034 170 260 42 2.1 1.1 7.8 129 173 High-speed Angular Contact Ball Bearings 9.95 12.9 NACHI BEARING R R R R d1 D2 R D1 d1 d1 D1 D1 d1 d1 D2 Back-to-back Rotation speed limit (rpm) Grease lubrication Oil lubrication 28900 26000 23400 21600 19400 18100 17000 15600 14800 13700 13100 12200 11700 11200 10600 10000 9400 8500 8000 7500 7000 6500 39000 35000 31500 29200 26200 24500 23000 21100 20000 18500 17700 16500 15800 15200 14300 13600 12700 11500 10900 10100 9500 8800 40 45 50 55 61 66 71 76 81 86 91 97 102 107 115 120 130 140 150 161 172 182 d1 Face-to-face Corner radius (mm) D1 (Min) D2 Dimension Tables Single-row or tandem R1 D2 (Min) d1 (Max) R (Max) R1 (Max) Mass (kg) (Reference) Bearing no. 39 44 49.5 54.5 59.5 64.5 69.5 74.5 79.5 84.5 89.5 95.5 100.5 105.5 110.5 115.5 125.5 135.5 145.5 156 166 176 57 63 70 75 84 89 94 104 109 119 124 133 138 143 150 160 170 190 200 213 228 248 1 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 1 1 1 1 1 1 1 1 1 1 0.167 0.200 0.260 0.280 0.400 0.433 0.460 0.650 0.690 0.930 0.973 1.27 1.33 1.39 1.77 2.18 2.32 3.46 3.68 4.55 5.57 7.50 BNH007 BNH008 BNH009 BNH010 BNH011 BNH012 BNH013 BNH014 BNH015 BNH016 BNH017 BNH018 BNH019 BNH020 BNH021 BNH022 BNH024 BNH026 BNH028 BNH030 BNH032 BNH034 High-speed Angular Contact Ball Bearings Types and Designs 7900 7000 7200 BNH BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF 49 Thrust Load Angular Contact Ball Bearings TAH/TBH Series 50 Thrust Load Angular Contact Ball Bearings NACHI BEARING Nomenclature of Bearing Numbers Tolerance class code P5 : JIS Class 5 P4 : JIS Class 4 (standard) Dimension Tables 90 TBH 10 T DB /GM P4 Preload and other class codes /GM : Medium preload (standard) Mounting code DB : Back-to-back (standard) DF : Face-to-face FFB : 3-row arrangement Types and Designs 7900 7000 7200 Cage code T : Phenolic resin cage Dimension series number 10 : 10 Series BNH TAH TBH Bearing type TAH : TAH Series Contact angle: 30° TBH : TBH Series Contact angle: 40° NN3000 NNU4900 XRN XRG Bore dimension (mm) TAB TAF Features Contact Angle ● Same number and diameter of balls as the TAD20 type doubledirection thrust angular contact ball bearings, and with smaller contact angles, 30° (TAH Series) or 40° (TBH Series), providing better high-speed performance with no separable ring. ● 2B width dimension of a duplex mounting (DB or DF) that is equivalent to the B1 dimension of the TAD20 Type. TAH/TBH Series are interchangeable by changing the method used to secure them to the shaft. 2B B 30° contact angle for the TAH Series, 40° contact angle for the TBH Series. Cage Outer ring guided phenolic resin cage provided as standard. Dimensional Accuracy, Rotational Accuracy JIS Class 4 compliance as standard, but the external ring outside diameter has smaller tolerances compared to the jointly used radial bearing. See page 9 for details. B TAH (TBH) Type Preload Medium preload as standard. See page 19 for information about preloads. B1 TAD Type Thrust Load Angular Contact Ball Bearings 51 Dimension Tables Thrust Load Angular Contact Ball Bearings TAH Series Contact angle 30° 2B B r1 B r r r1 r r ID r1 r1 Id 30˚ a 1N=0.102kgf Boundary dimensions (mm) Bearing no. 52 d D 2B r (Min) r1 (Min) Load center a (mm) Basic dynamic load rating Ca (kN) Basic static load rating Coa (kN) 50TAH10DB 50 80 28.5 1 0.6 11.6 19.2 40.5 55TAH10DB 60TAH10DB 55 60 90 33 1.1 0.6 12.7 23.8 51.0 95 33 1.1 0.6 14.1 24.7 56.0 65TAH10DB 65 100 33 1.1 0.6 15.6 25.6 61.0 70TAH10DB 75TAH10DB 80TAH10DB 85TAH10DB 90TAH10DB 95TAH10DB 70 75 80 85 90 95 110 115 36 36 1.1 1.1 0.6 0.6 17.0 18.4 35.0 35.5 80.0 83.5 125 40.5 1.1 0.6 19.5 41.5 99.5 130 40.5 1.1 0.6 20.9 42.0 104 140 45 1.5 1 21.9 55.5 135 145 45 1.5 1 23.4 56.0 141 100TAH10DB 100 150 45 1.5 1 24.8 57.0 147 105TAH10DB 105 160 49.5 2 1 25.9 64.5 168 110TAH10DB 120TAH10DB 110 120 170 54 2 1 26.9 73.0 191 180 54 2 1 29.8 75.0 207 130TAH10DB 140TAH10DB 150TAH10DB 160TAH10DB 130 140 150 160 200 63 2 1 31.9 99.5 269 210 63 2 1 34.8 103 291 225 240 67.5 72 2.1 2.1 1.1 1.1 37.3 39.7 121 131 340 375 170TAH10DB 170 260 81 2.1 1.1 41.8 154 445 Thrust Load Angular Contact Ball Bearings NACHI BEARING R1 R Da da da Da Dimension Tables Rotation speed limit (rpm) Grease lubrication 11500 10300 9700 9100 8300 7900 7300 7000 6500 6200 6000 5600 5300 5000 4500 4200 4000 3700 3400 Corner radius (mm) Oil lubrication da (Min) Da (Max) R (Min) R1 (Min) Mass (kg) (Reference) Bearing no. 14600 13100 12300 11500 10600 10000 9200 8800 8200 7900 7600 7100 6800 6300 5700 5400 5000 4700 4400 61 68 73 78 85 90 97 102 107.5 112.5 117.5 125 132 142 156 166 178 190 204 75 84 89 94 104 109 118 123 132 137 142 151 160 170 188 198 212 227 245 1 1 1 1 1 1 1 1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 1 1 1 1 1 1 1 1 1 1 0.266 0.405 0.432 0.460 0.622 0.655 0.900 0.944 1.24 1.30 1.35 1.75 2.20 2.36 3.52 3.75 4.59 5.62 7.63 50TAH10DB 55TAH10DB 60TAH10DB 65TAH10DB 70TAH10DB 75TAH10DB 80TAH10DB 85TAH10DB 90TAH10DB 95TAH10DB 100TAH10DB 105TAH10DB 110TAH10DB 120TAH10DB 130TAH10DB 140TAH10DB 150TAH10DB 160TAH10DB 170TAH10DB Thrust Load Angular Contact Ball Bearings Types and Designs 7900 7000 7200 BNH TAH TAH TBH TBH NN3000 NNU4900 XRN XRG TAB TAF 53 Dimension Tables Thrust Load Angular Contact Ball Bearings TBH Series Contact angle 40° 2B B B r1 r r r1 r r ID r1 r1 Id 40˚ a Boundary dimensions (mm) Bearing no. 54 d D 2B r (Min) 1N=0.102kgf r1 (Min) Load center a (mm) Basic dynamic load rating Ca (kN) Basic static load rating Coa (kN) 50TBH10DB 50 80 28.5 1 0.6 20.2 22.8 53.0 55TBH10DB 55 90 33 1.1 0.6 22.2 28.2 67.0 60TBH10DB 65TBH10DB 60 65 95 33 1.1 0.6 24.3 29.3 73.0 100 33 1.1 0.6 26.4 30.0 70TBH10DB 75TBH10DB 70 75 110 115 36 36 1.1 1.1 0.6 0.6 28.8 30.9 41.5 42.0 104 109 80TBH10DB 85TBH10DB 90TBH10DB 95TBH10DB 80 85 90 95 125 40.5 1.1 0.6 32.9 49.0 130 130 40.5 1.1 0.6 35.0 50.0 136 140 45 1.5 1 37.0 65.5 176 145 45 1.5 1 39.1 66.5 184 100TBH10DB 105TBH10DB 100 105 150 45 1.5 1 41.2 67.5 191 160 49.5 2 1 43.2 76.5 219 110TBH10DB 110 170 54 2 1 45.3 86.0 249 120TBH10DB 130TBH10DB 140TBH10DB 150TBH10DB 160TBH10DB 120 130 140 150 160 180 54 2 1 49.5 88.5 200 63 2 1 53.5 118 350 210 225 63 67.5 2 2.1 1 1.1 57.7 61.8 121 143 380 445 240 72 2.1 1.1 65.9 155 490 170TBH10DB 170 260 81 2.1 1.1 70.0 182 580 Thrust Load Angular Contact Ball Bearings 79.5 269 NACHI BEARING R1 R Da da da Da Dimension Tables Rotation speed limit (rpm) Grease lubrication 10000 8900 8300 7900 7200 6800 6300 6000 5600 5400 5200 4900 4600 4300 3900 3700 3400 3200 3000 Corner radius (mm) Oil lubrication da (Min) Da (Max) R (Min) R1 (Min) Mass (kg) (Reference) Bearing no. 13200 11800 11000 10400 9500 9000 8300 7900 7400 7100 6800 6400 6100 5700 5200 4900 4500 4200 3900 61 68 73 78 85 90 97 102 107.5 112.5 117.5 125 132 142 156 166 178 190 204 75 84 89 94 104 109 118 123 132 137 142 151 160 170 188 198 212 227 245 1 1 1 1 1 1 1 1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 1 1 1 1 1 1 1 1 1 1 0.266 0.405 0.432 0.460 0.622 0.655 0.900 0.944 1.24 1.30 1.35 1.75 2.20 2.36 3.52 3.75 4.59 5.62 7.63 50TBH10DB 55TBH10DB 60TBH10DB 65TBH10DB 70TBH10DB 75TBH10DB 80TBH10DB 85TBH10DB 90TBH10DB 95TBH10DB 100TBH10DB 105TBH10DB 110TBH10DB 120TBH10DB 130TBH10DB 140TBH10DB 150TBH10DB 160TBH10DB 170TBH10DB Thrust Load Angular Contact Ball Bearings Types and Designs 7900 7000 7200 BNH TAH TAH TBH TBH NN3000 NNU4900 XRN XRG TAB TAF 55 Multiple-row Cylindrical Roller Bearings NN3000 Series/ NNU4900 Series 56 Multiple-row Cylindrical Roller Bearings NACHI BEARING Nomenclature of Bearing Number Tolerance class code P5 : JIS Class 5 Inner clearance code P4 : JIS Class 4 C9NA : Non-interchangeable clearance (tapered bore) C1NA : Non-interchangeable clearance (cylindrical bore, tapered bore) C2NA : Non-interchangeable clearance (cylindrical bore, tapered bore) CNA : Non-interchangeable clearance (cylindrical bore) C3NA : Non-interchangeable clearance (cylindrical bore) Bore shape code (No code) : Cylindrical bore K : Tapered bore Bearing type NN : Multi-row cylindrical roller bearing (ribbed inner ring, non-ribbed outer ring) NNU : Multi-row cylindrical roller bearing (non-ribbed inner ring, ribbed outer ring) ● Comparatively simple construction provides high accuracy. A large number of rollers for high rigidity. ● Fewer sliding sections than a tapered rollar bearing so less heat is generated. ● Tapered bore bearing allows adjusting of radial internal clearance during assembly. ● This bearing cannot bear axial load, so normally it is used in combination with a thrust bearing. Cage Both the NN3000 Series and NNU4900 Series are provided with brass alloy roller guide cage as standard. Dimensional Accuracy, Rotational Accuracy ● Conforms to JIS Class 5 or Class 4. See page 7 for details. ● Nachi defines its own tolerance values for accuracy of dimensions. See page 11 for details. Radial Internal Clearance Outer Ring Oil Hole Dimensions The table below shows the dimensions of the outer ring oil hole and oil groove (W33 Specification). Outer ring width dimension B (mm) Over Incl. − 19 19 25 25 35 35 50 50 80 − 80 Oil hole diameter dH (mm) Oil groove width A (mm) 2 2 3 4 6 8 3.5 4 6 8 10 12 Nominal outside diameter dimensions D (mm) Over Incl. − 250 − 250 Types and Designs 7900 7000 7200 BNH Oil hole number Cage code (No code) : Without outer ring oil groove, oil hole (No code) : Machined brass cage (integrated) W33 : With outer ring oil groove and oil hole M2 : Machined brass cage (separate) Bore diameter number (bore dimension) = (bore number) ×5 mm Dimension series number 49 : 49 Series 30 : 30 Series Features Dimension Tables NN 30 06 W33 M2 K C1NA P4 Number of oil holes N 4 6 A N-dH Nachi defines its own non-interchangeable clearances for cylindrical bores and tapered bores in order to minimize axial run-out inconsistency. See page 21 for details. Multiple-row Cylindrical Roller Bearings 57 TAH TBH NN3000 NNU4900 XRN XRG TAB TAF Dimension Tables Multiple-row Cylindrical Roller Bearing NN3000 Series B r r Id NN Type Cylindrical bore NN Type With outer ring oil groove and oil hole Tapered bore (1/12) (W33) Bearing no. Cylindrical bore 58 Tapered bore Id 1/12 Taper IEW ID r Boundary dimensions (mm) d D B Ew r (Min) Basic dynamic load rating Cr (kN) Basic static load rating Cor (kN) NN3005 NN3005K 25 47 16 41.3 0.6 25.8 30.0 NN3006 NN3006K 30 55 19 48.5 1 31.0 37.0 NN3007 NN3008 NN3007K NN3008K 35 40 62 20 55 1 39.5 50.0 68 21 61 1 43.5 55.5 NN3009 NN3010 NN3011 NN3012 NN3013 NN3014 NN3009K NN3010K NN3011K NN3012K NN3013K NN3014K 45 50 55 60 65 70 75 23 67.5 1 52.0 65.5 80 90 23 26 72.5 81 1 1.1 53.0 69.5 72.5 96.5 95 26 86.1 1.1 73.5 106 100 26 91 1.1 77.0 116 110 30 100 1.1 97.5 148 NN3015 NN3016 NN3015K NN3016K 75 80 115 30 105 1.1 96.5 149 125 34 113 1.1 119 186 NN3017 NN3017K 85 130 34 118 1.1 125 201 NN3018 NN3019 NN3020 NN3021 NN3018K NN3019K NN3020K NN3021K 90 95 100 105 140 37 127 1.5 143 228 145 37 132 1.5 150 246 150 37 137 1.5 157 265 160 41 146 2 198 320 NN3022 NN3024 NN3026 NN3028 NN3022K NN3024K NN3026K NN3028K 110 120 130 140 170 180 45 46 155 165 2 2 229 239 375 405 200 52 182 2 284 475 210 53 192 2 298 515 NN3030 NN3032 NN3034 NN3036 NN3038 NN3040 NN3030K NN3032K NN3034K NN3036K NN3038K NN3040K 150 160 170 180 190 200 225 56 206 2.1 335 585 240 60 219 2.1 375 660 260 67 236 2.1 450 805 280 74 255 2.1 565 995 290 75 265 2.1 595 1080 310 82 282 2.1 655 1170 NN3044 NN3048 NN3044K NN3048K 220 240 340 360 90 92 310 330 3 3 815 855 1480 1600 NN3052 NN3056 NN3052K NN3056K 260 280 400 104 364 4 1080 2070 420 106 384 4 1080 2080 NN3060 NN3064 NN3060K NN3064K 300 320 460 118 418 4 1430 2740 480 121 438 4 1430 2750 Multiple-row Cylindrical Roller Bearings NACHI BEARING Ida IDa Ida1 ra Dimension Tables Rotation speed limit (rpm) Grease lubrication 21300 18000 15800 14200 12800 11700 10500 9800 9200 8500 8000 7500 7100 6600 6300 6100 5800 5400 5100 4600 4300 4100 3800 3500 3300 3200 2900 2700 2500 2300 2100 2000 1900 Corner radius (mm) Mass (kg) (Reference) (Tapered bore) Bearing no. (Tapered bore) (Min) ra (Max) 41.8 49 56 62 69 74 82 87 92 101 106 114 119 129 134 139 148 157 167 183 194 208 221 238 257 267 285 313 333 367 387 421 442 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 2 2 2 2.5 2.5 3 3 3 3 0.123 0.199 0.258 0.312 0.405 0.454 0.651 0.704 0.758 1.04 1.14 1.52 1.61 2.07 2.17 2.26 2.89 3.68 3.98 5.92 6.44 7.81 8.92 12.6 16.6 17.5 21.6 28.4 31.8 46.0 49.6 68.7 74.0 NN3005K NN3006K NN3007K NN3008K NN3009K NN3010K NN3011K NN3012K NN3013K NN3014K NN3015K NN3016K NN3017K NN3018K NN3019K NN3020K NN3021K NN3022K NN3024K NN3026K NN3028K NN3030K NN3032K NN3034K NN3036K NN3038K NN3040K NN3044K NN3048K NN3052K NN3056K NN3060K NN3064K Da Oil lubrication da (Min) da1 (Min) (Max) 25000 21200 18600 16700 15000 13800 12400 11600 10900 10000 9400 8800 8300 7800 7500 7200 6800 6400 6000 5400 5100 4800 4500 4200 3900 3700 3500 3200 3000 2700 2500 2300 2200 30 36 41 46 51 56 62 67 72 77 82 87 92 98.5 103.5 108.5 115 120 130 140 150 162 172 182 192 202 212 234 254 278 298 318 338 30 37 42 48 52 58 64 68 74 78 84 90 96 100 106 112 116 122 132 144 154 164 174 184 196 206 216 238 256 280 300 325 345 42 49 56 62 69 74 83 88 93 103 108 118 123 131.5 136.5 141.5 150 160 170 190 200 213 228 248 268 278 298 326 346 382 402 442 462 Multiple-row Cylindrical Roller Bearings Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF 59 Dimension Tables Multiple-row Cylindrical Roller Bearing NNU4900 Series B r r NNU Type Cylindrical bore Bearing no. Cylindrical bore 60 Tapered bore 1/12 Taper Id IFW Id ID r NNU Type Tapered bore (1/12) Ew r (Min) Basic dynamic load rating Cr (kN) Boundary dimensions (mm) d D B Basic static load rating Cor (kN) NNU4920 NNU4920K 100 140 40 113 1.1 155 305 NNU4921 NNU4921K 105 145 40 118 1.1 161 325 NNU4922 NNU4924 NNU4922K NNU4924K 110 120 150 40 123 1.1 167 335 165 45 134.5 1.1 183 360 NNU4926 NNU4928 NNU4926K NNU4928K 130 140 180 190 50 50 146 156 1.5 1.5 275 283 565 585 NNU4930 NNU4932 NNU4934 NNU4936 NNU4930K NNU4932K NNU4934K NNU4936K 150 160 170 180 210 60 168.5 2 350 715 220 60 178.5 2 365 760 230 60 188.5 2 375 805 250 69 202 2 480 1020 NNU4938 NNU4940 NNU4938K NNU4940K 190 200 260 69 212 2 485 1060 280 80 225 2.1 570 1220 NNU4944 NNU4944K 220 300 80 245 2.1 600 1330 NNU4948 NNU4952 NNU4956 NNU4960 NNU4964 NNU4948K NNU4952K NNU4956K NNU4960K NNU4964K 240 260 280 300 320 320 80 265 2.1 625 1450 360 100 292 2.1 935 2100 380 420 100 118 312 339 2.1 3 960 1230 2230 2880 440 118 359 3 1270 3050 Multiple-row Cylindrical Roller Bearings NACHI BEARING Idc Ida1 Ida IDa ra Dimension Tables Rotation speed limit (rpm) Grease lubrication Oil lubrication 6300 6100 5800 5300 4900 4600 4200 4000 3800 3500 3400 3200 2900 2700 2400 2300 2100 2000 7500 7200 6900 6300 5800 5400 5000 4700 4500 4200 4000 3700 3400 3200 2900 2700 2500 2300 Corner radius (mm) da (Min) (Max) da1 (Min) 106.5 111.5 116.5 126.5 138 148 159 169 179 189 199 211 231 251 271 291 313 333 111 116 121 133 144 154 166 176 186 199 209 222 242 262 288 308 335 335 110 115 120 130 142 151 162 172 182 194 204 214 234 254 276 296 320 340 dc (Min) Da (Max) ra (Max) 115 120 125 137 148 158 171 182 192 205 215 228 248 269 296 316 343 363 133.5 138.5 143.5 158.5 172 182 201 211 221 241 251 269 289 309 349 369 407 427 1 1 1 1 1.5 1.5 2 2 2 2 2 2 2 2 2 2 2.5 2.5 Mass (kg) (Reference) (Tapered bore) Bearing no. (Tapered bore) 1.77 1.85 1.93 2.65 3.55 3.80 5.95 6.25 6.60 9.50 10.0 10.1 15.5 17.0 28.3 30.3 46.7 49.6 NNU4920K NNU4921K NNU4922K NNU4924K NNU4926K NNU4928K NNU4930K NNU4932K NNU4934K NNU4936K NNU4938K NNU4940K NNU4944K NNU4948K NNU4952K NNU4956K NNU4960K NNU4964K Multiple-row Cylindrical Roller Bearings Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF 61 Cross Tapered Roller Bearings XRN Series/XRG Series 62 Cross Tapered Roller Bearings NACHI BEARING Nomenclature ofBearing Number 300 XRN 40 Outside diameter value Outside diameter divided by 10 Features ● A bearing that can stand up to radial loads, axial loads, and moment loads. ● Bearing applications can be simplified, fewer components reduce weight and size, reduced assembly time. ● Shaft thermal expansion has minimal affect on bearing preload promoting machine accuracy. ● Tapered rollers are used and the center of rotation is maintained for smooth rotation, even under preload. ● Polyamide resin spacers are inserted between rollers to minimize roller-to-roller friction (except XRGV Type). ● Angle of contact is approximately 45°. Bearing type XRN : XRN Series Inner ring separable type XRG : XRG Series Outer ring separable type XRGV : XRG Series Outer ring separable type, no spacer Bore dimension (mm) Axial Load and Axial Displacement 1 0.020 2 345 Axial displacement [mm] Installation Example of Tapered Roller Bearing and Cross Tapered Roller Bearing TAH TBH 9 10 0.014 0.008 0.006 1 : 200XRN28 2 : 250XRN33 / 250XRN35 3 : 300XRN40 / 310XRN42 4 : 350XRN47 5 : 0330XRN045 6 : 375XRN49 0.002 0 10 20 30 40 50 60 Axial load [kN] 70 7 : 0457XRN060 8 : 400XRN55 9 : 580XRN76 10 : 0685XRN091 11 : 0901XRN112 12 : 950XRN117 80 90 100 XRG Series XRG (XRGV) Type Main Applications ● Work table of a machining center, grinding machine, etc. ● Work spindle of a lathe, grinding machine, etc. ● Large-scale milling machine, drilling machine, or other indexing machine. ● Pivot of parabolic antenna, etc. 1 2 3 4 0.020 0.018 5 0.016 Axial displacement [mm] The XRN Series is a separable inner ring, primary outer ring type bearing, intended mainly for applications where the focus is on outer ring accuracy under outer ring rotation. The XRG Series, on the other hand mainly is used where the focus is on inner ring rotation accuracy during inner ring rotation. NN3000 NNU4900 XRN XRG TAB TAF 0.010 Nachi defines its own accuracy standards. See page 9 for details. XRN Type 11 12 0.012 0.004 Accuracy Mechanism 7900 7000 7200 BNH 7 8 6 0.016 Cross Tapered Roller Bearings Types and Designs XRN Series 0.018 Duplex Tapered Roller Bearings Dimension Tables A bearing that provides functions equivalent to a duplex tapered roller bearing, but in the size of a single bearing. The rolling elements are arranged in alternating orientation between the separable ring and the primary ring. 0.014 0.012 0.010 0.008 0.006 1 : 130XRG23 / 150XRG23 2 : 140XRGV20 3 : 200XRGV028 4 : 320XRG43 5 : 480XRGV66 0.004 0.002 0 10 20 30 40 50 60 Axial load [kN] 70 80 90 Cross Tapered Roller Bearings 100 63 Dimension Tables Cross Tapered Roller Bearings XRN Series Id r C T r r r ID Boundary dimensions (mm) Bearing no. 150XRN23 64 d D T C r Basic dynamic load rating Ca (kN) Basic static load rating Coa (kN) 150 200 230 30 30 1.5 105 335 200XRN28 280 30 30 1.5 144 520 250XRN33 250 330 30 30 1 164 650 250XRN35 250 350 40 40 3 170 680 300XRN40 310XRN42 300 310 400 420 38 40 38 40 3 2.5 268 260 985 1070 0330XRN045 350XRN47 330.2 350 457.2 63.5 63.5 3.3 400 1540 470 50 50 3 284 1230 375XRN49 400XRN55 375 400 490 45 45 2.5 290 1280 550 60 60 3.5 365 1900 0457XRN060 580XRN76 0685XRN091 950XRN117 457.2 580 685.8 950 609.6 63.5 63.5 3.3 370 1670 760 80 80 6.4 830 3800 914.4 79.375 79.375 3.3 1090 5000 85 85 3 1440 7400 Cross Tapered Roller Bearings 1170 NACHI BEARING Id1 ra Dimension Tables ra ID1 Rotation speed limit (rpm) Corner radius (mm) Grease lubrication Oil lubrication d1 (Min) 600 480 400 400 330 320 290 280 260 250 220 170 140 100 1200 950 800 800 650 630 580 560 530 500 440 340 280 200 182 235 285 302 345 358 380 410 430 475 535 667 807 1050 D1 (Max) ra (Max) Mass (kg) (Reference) Bearing no. 197 249 298 312 369 380 409 424 445 492 554 691 834 1084 1 1 1 1.5 2.5 2 2 1.5 1.5 1.5 2 4 2 2.5 5.11 6.43 7.77 13.6 14.8 18.1 35.4 27.7 25.5 48.8 57.1 108 161 218 150XRN23 200XRN28 250XRN33 250XRN35 300XRN40 310XRN42 0330XRN045 350XRN47 375XRN49 400XRN55 0457XRN060 580XRN76 0685XRN091 950XRN117 Cross Tapered Roller Bearings Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRN XRG TAB TAF 65 Dimension Tables Cross Tapered Roller Bearings XRG Series Id r T B r r r ID Boundary dimensions (mm) Bearing no. 66 D T 130 140 230 30 30 1.5 105 335 140XRGV20 200 25 25 1.5 89 299 150XRG23 200XRGV028 150 200 230 285 30 30 30 30 1.5 1 105 170 335 655 320XRG43 480XRGV66 320 480 430 40 40 2.5 260 1070 660 50 49.5 4 405 2110 Cross Tapered Roller Bearings r Basic static load rating Coa (kN) d 130XRG23 B Basic dynamic load rating Ca (kN) NACHI BEARING Id1 ra Dimension Tables ra ID1 Rotation speed limit (rpm) Corner radius (mm) Grease lubrication Oil lubrication d1 (Min) 650 680 600 480 300 200 1250 1350 1200 950 600 400 182 162 182 235 358 550 D1 (Max) ra (Max) Mass (kg) (Reference) Bearing no. 197 176 197 249 382 572 1 1 1 1 2 3 5.97 2.86 5.11 7.13 18.9 61.0 130XRG23 140XRGV20 150XRG23 200XRGV028 320XRG43 480XRGV66 Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRN XRG TAB TAF Cross Tapered Roller Bearings 67 Ball Screw Support Bearings TAB/TAF Series TAB Series Ball screw support bearings are used in high accuracy and high-speed precision machine tools, precision measuring machines, robots, and other machines that have built in precision feed actuators. Nomenclature of Bearing Numbers 30 TAB 06 DB -2LR /GM P4 Tolerance class code Preload and other class codes P4 : JIS Class 4 (standard) /GM : Medium preload (standard) Seal code (No code) : Open type -2LR : With two contact seals -2NK : With two non-contact seals Features ● Resin cage and more balls than previous ball bearings for greater rigidity. ● Combination bearings are provided with preset preloads, eliminating the need for troublesome installation adjustment using shims and torque measurements. ● A contact angle of 60° and has the ability to handle radial and axial loads creates a compact bearing. ● The seal type provides a choice between contact seal and noncontact seal to suit specific applications. Contact Angle The contact angle is 60°. Cage A ball guided polyamide resin cage is provided as standard. Preload Medium preload as standard. See page 20 for details. Axial Load and Axial Displacement 30 Fa 1 2 Axial elastic displacement [μm] Bearing type Bore dimension (mm) Mounting code U : Flush ground (single) DU : Flush ground (duplex) DB : Back-to-back DF : Face-to-face Outside diameter value Outside diameter divided by 10 3 4 5 6 7 8 20 10 Bearing (single) 1 : 15, 17, 20TAB04 2 : 25, 30TAB06 3 : 40TAB09 4 : 35, 40TAB07 5 : 45TAB10 6 : 45TAB07 7 : 50, 55TAB10 8 : 55, 60TAB12 Accuracy JIS Class 4 is standard. See page 10 for details. 0 0 4000 8000 Axial load Fa [N] 68 Ball Screw Support Bearings 12000 NACHI BEARING Nomenclature of Bearing Numbers 25 TAF 06 DF /GM P5 Tolerance class code Preload and other class codes P5 : JIS Class 5 (standard) /GM : Medium preload (standard) Mounting code DB : Back-to-back DF : Face-to-face DT : Tandem Bearing type Bore dimension (mm) Dimension Tables Though hydraulic actuators were widely used in the past in high load drive devices like injection molding machines, the use of electric drives (ball screw drives) in such applications is becoming more common. The TAF Series are special bearings designed to support high-load drive ball screws. TAF Series Types and Designs 7900 7000 7200 BNH Outside diameter value Outside diameter divided by 10 (with some exceptions) TAH TBH NN3000 NNU4900 Features Preload ● A large-diameter ball and large contact angle provides the high thrust load capacity needed for the high loads of the ball screw used in injection molding machines. ● A one-piece molded cage that combines both greater accuracy and strength, and the ability to withstand repeated high-speed switching between forward and reverse. XRN XRG Medium preload as standard. See page 20 for details. TAB TAF Cage A ball guide polyamide resin cage is provided as standard. Some sizes come with a machined brass cage. Contact Angle A contact angle of 50° up to a nominal bore of 80 mm, and 55° for a nominal bore of 100 mm or greater. Accuracy JIS Class 5 is standard. See page 11 for details. Comparison of Basic Dynamic Axial Loads Comparison of Axial Limiting Loads 250 450 TAF Series 73B Series TAB Series 400 TAF Series 73B Series TAB Series 200 350 300 150 250 200 100 150 100 50 50 0 I25 I30 I35 I40 I50 Bore dimension (mm) I60 I80 I100 0 I25 I30 I35 I40 I50 Bore dimension (mm) I60 I80 I100 Ball Screw Support Bearings 69 Dimension Tables Ball Screw Support Bearing TAB Series B r r1 60° Open type IDa2 Ida1 Ida2 IDa1 IDa2 Id Ida1 r Ida2 IDa1 ID r Contact seal (2LR) Non-contact seal (2NK) Boundary dimensions (mm) Bearing no. 15TAB04 15TAB04-2NK d D B r (Min) r1 (Min) 15 15 47 15 1(1) 0.6 25.9 32.0 47 15 1(1) 0.6 25.9 32.0 (1) 15TAB04-2LR 17TAB04 15 17 47 15 1 0.6 25.9 32.0 47 15 1 0.6 25.9 32.0 17TAB04-2NK 17TAB04-2LR 20TAB04 20TAB04-2NK 20TAB04-2LR 25TAB06 17 17 20 20 20 25 47 15 1 0.6 25.9 32.0 47 47 15 15 1 1 0.6 0.6 25.9 25.9 32.0 32.0 47 15 1 0.6 25.9 32.0 47 15 1 0.6 25.9 32.0 62 15 1 0.6 29.9 46.4 25TAB06-2NK 25TAB06-2LR 25 25 62 15 1 0.6 29.9 46.4 62 15 1 0.6 29.9 46.4 30TAB06 30 62 15 1 0.6 29.9 46.4 30TAB06-2NK 30TAB06-2LR 35TAB07 35TAB07-2NK 30 30 35 35 62 15 1 0.6 29.9 46.4 62 15 1 0.6 29.9 46.4 72 15 1 0.6 32.5 54.3 72 15 1 0.6 32.5 54.3 35TAB07-2LR 40TAB07 40TAB07-2NK 40TAB07-2LR 35 40 40 40 72 72 15 15 1 1 0.6 0.6 32.5 32.5 54.3 54.3 72 15 1 0.6 32.5 54.3 72 15 1 0.6 32.5 40TAB09 40TAB09-2NK 40TAB09-2LR 45TAB07 45TAB10 50TAB10 40 40 40 45 45 50 90 20 1 0.6 65.0 101 90 20 1 0.6 65.0 101 90 20 1 0.6 65.0 101 75 15 1 0.6 33.5 100 20 1 0.6 68.0 113 100 20 1 0.6 69.5 119 55TAB10 55TAB12 55 55 100 120 20 20 1 1 0.6 0.6 69.5 73.0 119 137 60TAB12 60 120 20 1 0.6 73.0 137 Note (1) Minimum r for inner ring bore is 0.6. (2) When the axial load is on a 2-row or 3-row arrangement, the values in the table should be multiplied by 1.62 and 2.16 respectively. (3) When the axial load is on a 2-row or 3-row arrangement, the values in the table should be multiplied by 2 and 3 respectively. (4) Rotation speed limit for medium preload (preload code GM). 70 Basic dynamic load rating (2) Axial limiting load (3) Ca (kN) (kN) Ball Screw Support Bearings 54.3 59.5 NACHI BEARING Dynamic equivalent axial load Pa=X Fr+Y Fa No. of bearings in set 2 Number of rows receiving axial load Fa/Fr > 2.17 1 row 2 rows 1 row 2 rows 3 rows 1 row 2 rows 3 rows 4 rows X 1.90 − 1.43 2.33 − 1.17 2.33 2.53 − Y X 0.54 − 0.77 0.35 − 0.89 0.35 0.26 − 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Y 1 1 1 1 1 1 1 1 1 Rotation speed limit (4) (rpm) Grease lubrication 4 Reference dimensions (mm) Mass (kg) (Reference) Dimension Tables Fa/Fr ≤ 2.17 3 Bearing no. Oil lubrication da1 da2 Da1 Da2 6300 6300 8000 33.7 26.8 33.5 41 0.14 15TAB04 − 33.7 26.8 35 41.9 0.14 15TAB04-2NK 6300 − 8000 33.7 33.7 26.8 26.8 35 33.5 41.9 41 0.14 0.13 15TAB04-2LR 17TAB04 − 33.7 26.8 35 41.9 0.13 17TAB04-2NK − 8000 − 33.7 33.7 33.7 26.8 26.8 26.8 35 33.5 35 41.9 41 41.9 0.13 0.12 0.12 17TAB04-2LR 20TAB04 20TAB04-2NK − 6000 33.7 46.2 26.8 39.7 35 46 41.9 53.4 0.12 0.24 20TAB04-2LR 25TAB06 − 46.2 39.7 47.5 54.9 0.24 25TAB06-2NK − 6000 46.2 46.2 39.7 39.7 47.5 46 54.9 53.4 0.24 0.21 25TAB06-2LR 30TAB06 − 46.2 39.7 47.5 54.9 0.21 30TAB06-2NK − 5000 46.2 56.2 39.7 49.7 47.5 56 54.9 63.4 0.21 0.29 30TAB06-2LR 35TAB07 − 56.2 49.7 57.5 64.9 0.29 35TAB07-2NK − 5000 − 56.2 56.2 56.2 49.7 49.7 49.7 57.5 56 57.5 64.9 63.4 64.9 0.29 0.26 0.26 35TAB07-2LR 40TAB07 40TAB07-2NK − 4000 56.2 67.2 49.7 57.2 57.5 67 64.9 78.4 0.26 0.62 40TAB07-2LR 40TAB09 − 67.2 57.2 68.5 79.9 0.62 40TAB09-2NK − 4500 3500 3500 3500 3000 3000 67.2 61.7 74.2 78.2 78.2 92.2 92.2 57.2 55.2 64.2 68.2 68.2 82.2 82.2 68.5 61.5 74 78 78 92 92 79.9 68.9 85.4 89.4 89.4 103.4 103.4 0.62 0.25 0.79 0.72 0.95 1.15 1.08 40TAB09-2LR 45TAB07 45TAB10 50TAB10 55TAB10 55TAB12 60TAB12 6300 6300 6300 6300 6300 6300 4650 4650 4650 4650 4650 4650 3750 3750 3750 3750 3750 3750 3150 3150 3150 3400 2850 2700 2700 2300 2300 Ball Screw Support Bearings Types and Designs 71 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF Dimension Tables Ball Screw Support Bearing TAF Series B Id Ida1 r Ida2 IDa1 ID D r1 IDa2 r1 r Contact angle D (°) Basic dynamic load rating (1) Ca (kN) Axial limiting load (2) (kN) Boundary dimensions (mm) Bearing no. d D B r (Min) r1 (Min) 25TAF06 30TAF07 25 30 62 17 1.1 0.6 50 56.0 47.5 72 19 1.1 0.6 50 74.0 58.0 35TAF09 40TAF09 35 40 90 23 1.5 1 50 103 90 23 1.5 1 50 103 40TAF11 45TAF11 40 45 110 110 27 27 2 2 1 1 50 50 152 152 118 118 50TAF11 60TAF13 60TAF17 80TAF17 50 60 60 80 110 27 2 1 50 152 118 130 31 2.1 1.1 50 196 157 170 39 2.1 1.1 50 279 238 170 39 2.1 1.1 50 279 238 100TAF21 120TAF03 100 120 215 47 3 1.1 55 385 234 260 55 3 1.1 55 445 380 Note (1) When the axial load is on a 2-row or 3-row arrangement, the values in the table should be multiplied by 1.62 and 2.16 respectively. (2) When the axial load is on a 2-row or 3-row arrangement, the values in the table should be multiplied by 2 and 3 respectively. (3) Use at 80% or less of the allowable axial load is recommended. (4) Rotation speed limit for medium preload (preload code GM). 72 Ball Screw Support Bearings 77.0 77.0 NACHI BEARING Dynamic equivalent axial load Pa=X Fr+Y Fa Contact angle 50° Contact angle 55° No. of bearings in set 2 Number of rows receiving axial load Fa/Fr ≤ 1.49 Fa/Fr > 1.49 2 rows 1.37 − 0.57 − 0.73 0.73 1 1 2 Number of rows receiving axial load Fa/Fr ≤ 1.79 Fa/Fr > 1.79 Reference dimensions (mm) Rotation speed limit (4) (rpm) Grease lubrication da1 da2 Da1 4500 3800 3000 3000 2500 2500 2500 2100 1500 1500 1200 1000 42.9 49.8 63.2 63.2 77.6 77.6 77.6 92.4 121.1 121.1 152.3 186.2 32.7 38.6 49.7 49.7 60.3 60.3 60.3 72.9 97.2 97.2 123.4 151.1 44.9 53 67.7 67.7 83.4 83.4 83.4 98.9 130.3 130.3 164.1 193.8 X Y X Y 1 row 2 rows 1.60 − 0.56 − 0.81 0.81 1 1 Da2 Mass (kg) (Reference) Bearing no. 56.6 65.9 82.3 82.3 101.1 101.1 101.1 119.7 155.8 155.8 194.7 228.4 0.237 0.357 0.709 0.655 1.28 1.21 1.13 1.79 4.48 3.80 7.41 14.8 25TAF06 30TAF07 35TAF09 40TAF09 40TAF11 45TAF11 50TAF11 60TAF13 60TAF17 80TAF17 100TAF21 120TAF03 Ball Screw Support Bearings Dimension Tables X Y X Y No. of bearings in set 1 row Types and Designs 7900 7000 7200 BNH TAH TBH NN3000 NNU4900 XRN XRG TAB TAF 73 The appearance and specifications may be changed without prior notice if required to improve performance. Every care has been taken to ensure the accuracy of the information contained in this catalog but no liability can be accepted for any errors or omissions. CATALOG NO. B1031E-5 2013.05.X-ABE-ABE
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement