Areca ARC-1280ML User manual

Add to my manuals
172 Pages

advertisement

Areca ARC-1280ML User manual | Manualzz

SATA RAID Cards

ARC-1110/1120/1130/1160/1170

( 4/8/12/16/24-port PCI-X SATA RAID Controllers )

ARC-1110ML/1120ML/1130ML/1160ML

( 4/8-port Infinband connector and 12/16-port Multi-lane connector PCI-X SATA RAID Controllers )

ARC-1210/1220/1210ML/1220ML/1230/

1260/1280/

( 4/8/12/16/24-port PCI-Express SATA RAID Controllers )

ARC-1231ML/1261ML/1280ML

(12/16/24-port PCI-Express SATA RAID Controllers)

USER Manual

Version: 3.5

Issue Date: February, 2008

Microsoft WHQL Windows Hardware Compatibility

Test

ARECA is committed to submitting products to the Microsoft Windows

Hardware Quality Labs (WHQL), which is required for participation in the Windows Logo Program. Successful passage of the WHQL tests results in both the “Designed for Windows” logo for qualifying ARECA

PCI-X and PCI-Express SATA RAID controllers and a listing on the Microsoft Hardware Compatibility List (HCL).

Copyright and Trademarks

The information of the products in this manual is subject to change without prior notice and does not represent a commitment on the part of the vendor, who assumes no liability or responsibility for any errors that may appear in this manual. All brands and trademarks are the properties of their respective owners. This manual contains materials protected under International Copyright Conventions. All rights reserved. No part of this manual may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the manufacturer and the author. All inquiries should be addressed to Areca Technology Corporation.

FCC STATEMENT

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.

These limits are designed to provide reasonable protection against interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

Contents

1. Introduction .............................................................. 10

1.1 Overview ....................................................................... 10

1.2 Features ........................................................................ 12

2. Hardware Installation ............................................... 16

2.1 Before Your Begin Installation ........................................... 16

2.2 Board Layout .................................................................. 17

2.3 Installation ..................................................................... 23

3. McBIOS RAID Manager .............................................. 42

3.1 Starting the McBIOS RAID Manager ................................... 42

3.2 McBIOS RAID manager .................................................... 43

3.3 Configuring Raid Sets and Volume Sets .............................. 44

3.4 Designating Drives as Hot Spares ...................................... 44

3.5 Using Quick Volume/Raid Setup Configuration ..................... 45

3.6 Using RAID Set/Volume Set Function Method ...................... 46

3.7 Main Menu .................................................................... 48

3.7.1 Quick Volume/RAID Setup ........................................... 49

3.7.2 Raid Set Function ....................................................... 52

3.7.2.1 Create Raid Set .................................................... 53

3.7.2.2 Delete Raid Set ..................................................... 54

3.7.2.3 Expand Raid Set .................................................... 55

• Migrating ...................................................................... 56

3.7.2.4 Activate Incomplete Raid Set ................................... 56

3.7.2.5 Create Hot Spare ................................................... 57

3.7.2.6 Delete Hot Spare ................................................... 58

3.7.2.7 Raid Set Information .............................................. 58

3.7.3 Volume Set Function ................................................... 59

3.7.3.1 Create Volume Set ................................................. 59

• Volume Name ................................................................ 61

• Raid Level ..................................................................... 61

• Capacity ....................................................................... 62

• Stripe Size .................................................................... 64

• SCSI Channel ................................................................ 64

• SCSI ID ........................................................................ 65

• Cache Mode .................................................................. 66

• Tag Queuing .................................................................. 66

3.7.3.2 Delete Volume Set ................................................. 67

3.7.3.3 Modify Volume Set ................................................. 67

3.7.3.4 Check Volume Set .................................................. 69

3.7.3.5 Stop Volume Set Check .......................................... 70

3.7.3.6 Display Volume Set Info. ........................................ 70

3.7.4 Physical Drives ........................................................... 71

3.7.4.1 View Drive Information .......................................... 71

3.7.4.2 Create Pass-Through Disk ....................................... 72

3.7.4.3 Modify a Pass-Through Disk ..................................... 72

3.7.4.4 Delete Pass-Through Disk ....................................... 73

3.7.4.5 Identify Selected Drive ........................................... 73

3.7.5 Raid System Function ................................................. 74

3.7.5.1 Mute The Alert Beeper ........................................... 74

3.7.5.2 Alert Beeper Setting ............................................... 75

3.7.5.3 Change Password .................................................. 75

3.7.5.4 JBOD/RAID Function .............................................. 76

3.7.5.5 Background Task Priority ........................................ 77

3.7.5.6 Maximum SATA Mode ............................................. 77

3.7.5.7 HDD Read Ahead Cache ......................................... 78

3.7.5.8 Stagger Power On .................................................. 78

3.7.5.9 Empty HDD slot HDD ............................................. 79

3.7.5.10 HDD SMART Status Polling .................................... 80

3.7.5.11 Controller Fan Detection ....................................... 80

3.7.5.12 Disk Write Cache Mode ......................................... 81

3.7.5.13 Capacity Truncation .............................................. 81

3.7.6 Ethernet Configuration (12/16/24-port) ......................... 82

3.7.6.1 DHCP Function ...................................................... 83

3.7.6.2 Local IP address .................................................... 84

3.7.6.3 Ethernet Address ................................................... 85

3.7.7 View System Events ................................................... 85

3.7.8 Clear Events Buffer ..................................................... 86

3.7.9 Hardware Monitor ....................................................... 86

3.7.10 System Information .................................................. 86

4. Driver Installation ..................................................... 88

4.1 Creating the Driver Diskettes ............................................ 88

4.2 Driver Installation for Windows ......................................... 90

4.2.1 New Storage Device Drivers in Windows 2003/XP-64/Vista .

90

4.2.2 Install Windows 2000/XP/2003/Vista on a SATA RAID Volume .................................................................................. 90

4.2.2.1 Installation Procedures ........................................... 90

4.2.2.2 Making Volume Sets Available to Windows System ..... 92

4.2.3 Installing Controller into an Existing Windows 2000/

XP/2003/Vista Installation ................................................... 92

4.2.3.1 Making Volume Sets Available to Windows System ..... 94

4.2.4 Uninstall controller from Windows 2000/XP/2003/Vista .... 94

4.3 Driver Installation for Linux .............................................. 95

4.4 Driver Installation for FreeBSD .......................................... 96

4.5 Driver Installation for Solaris 10 ........................................ 96

4.6 Driver Installation for Mac 10.x ......................................... 96

4.7 Driver Installation for UnixWare 7.1.4 ................................ 97

4.8 Driver Installation for NetWare 6.5 .................................... 98

5. ArcHttp Proxy Server Installation ............................. 99

5.1 For Windows................................................................. 100

5.2 For Linux ..................................................................... 101

5.3 For FreeBSD ................................................................. 103

5.4 For Solaris 10 x86 ......................................................... 103

5.5 For Mac OS 10.x ........................................................... 103

5.6 ArcHttp Configuration .................................................... 104

6. Web Browser-based Configuration ......................... 107

6.1 Start-up McRAID Storage Manager ................................. 107

• Start-up McRAID Storage Manager from Windows Local Administration ........................................................................ 108

• Start-up McRAID Storage Manager from Linux/FreeBSD/Solaris/Mac Local Administration .......................................... 109

• Start-up McRAID Storage Manager Through Ethernet port

(Out-of-Band) ............................................................... 109

6.2 McRAID Storage Manager ............................................... 110

6.3 Main Menu .................................................................. 111

6.4 Quick Function .............................................................. 111

6.5 RaidSet Functions ......................................................... 112

6.5.1 Create Raid Set ....................................................... 112

6.5.2 Delete Raid Set ........................................................ 113

6.5.3 Expand Raid Set ....................................................... 113

6.5.4 Activate Incomplete Raid Set ..................................... 114

6.5.5 Create Hot Spare ..................................................... 115

6.5.6 Delete Hot Spare ...................................................... 115

6.5.7 Rescue Raid Set ....................................................... 115

6.5.8 Offline Raid Set ........................................................ 116

6.6 Volume Set Functions .................................................... 116

6.6.1 Create Volume Set .................................................... 116

• Volume Name .............................................................. 117

• Raid Level .................................................................. 117

• Capacity ..................................................................... 117

• Greater Two TB Volume Support ..................................... 117

• Initialization Mode ........................................................ 118

• Stripe Size .................................................................. 118

• Cache Mode ................................................................ 118

• Tag Queuing ................................................................ 119

6.6.2 Delete Volume Set .................................................... 119

6.6.3 Modify Volume Set .................................................... 119

6.6.3.1 Volume Growth ................................................... 120

6.6.3.2 Volume Set Migration ........................................... 121

6.6.4 Check Volume Set .................................................... 121

6.6.5 Stop VolumeSet Check .............................................. 122

6.7 Physical Drive .............................................................. 122

6.7.1 Create Pass Through Disk .......................................... 122

6.7.2 Modify Pass Through Disk .......................................... 123

6.7.3 Delete Pass Through Disk .......................................... 123

6.7.4 Identify Selected Drive .............................................. 124

6.8 System Controls ........................................................... 124

6.8.1 System Config ......................................................... 124

• System Beeper Setting ................................................. 124

• Background Task Priority ............................................... 124

• JBOD/RAID Configuration .............................................. 125

• Maximun SATA Supported ............................................. 125

• HDD Read Ahead Cache ................................................ 125

• Stagger Power on ........................................................ 125

• Empty HDD Slot LED .................................................... 126

• Disk Write Cache Mode ................................................. 127

• Disk Capacity Truncation Mode ....................................... 128

6.8.2 Ethernet Configuration (12/16/24-port) ....................... 129

6.8.3 Alert by Mail Configuration (12/16/24-port) ................ 130

6.8.4 SNMP Configuration (12/16/24-port) ........................... 130

• SNMP Trap Configurations ............................................. 131

• SNMP System Configurations ......................................... 131

• SNMP Trap Notification Configurations ............................. 131

6.8.5 NTP Configuration (12/16/24-port) ............................. 131

• NTP Sever Address ....................................................... 132

• Time Zone ................................................................... 132

• Automatic Daylight Saving............................................. 132

6.8.6 View Events/Mute Beeper .......................................... 133

6.8.7 Generate Test Event ................................................. 133

6.8.8 Clear Events Buffer ................................................... 134

6.8.9 Modify Password ...................................................... 134

6.8.10 Update Firmware ................................................... 135

6.9 Information .................................................................. 135

6.9.1 RaidSet Hierarchy ..................................................... 135

6.9.2 System Information .................................................. 136

6.9.3 Hardware Monitor ..................................................... 136

Appendix A ................................................................. 138

Upgrading Flash ROM Update Process .................................... 138

Upgrading Firmware Through McRAID Storage Manager ........... 138

Upgrading Firmware Through nflash DOS Utility ...................... 140

Appendix B .................................................................. 142

Battery Backup Module (ARC6120-BAT-Txx) ........................... 142

BBM Components ........................................................... 142

Status of BBM ................................................................ 142

Installation .................................................................... 142

Battery Backup Capacity .................................................. 143

Operation ...................................................................... 143

Changing the Battery Backup Module ................................ 143

BBM Specifications .......................................................... 144

Appendix C .................................................................. 145

SNMP Operation & Definition ................................................ 145

Appendix D .................................................................. 152

Event Notification Configurations ........................................ 152

A. Device Event .............................................................. 152

B. Volume Event ............................................................. 153

C. RAID Set Event .......................................................... 154

D. Hardware Monitor Event .............................................. 154

Appendix E .................................................................. 156

RAID Concept ......................................................... 156

RAID Set ......................................................................... 156

Volume Set ...................................................................... 156

Ease of Use Features ......................................................... 157

• Foreground Availability/Background Initialization .............. 157

• Online Array Roaming ................................................... 157

• Online Capacity Expansion ............................................. 157

• Online RAID Level and Stripe Size Migration .................... 159

• Online Volume Expansion .............................................. 160

High availability .................................................................. 160

• Global Hot Spares .......................................................... 160

• Hot-Swap Disk Drive Support .......................................... 161

• Auto Declare Hot-Spare ................................................. 161

• Auto Rebuilding ............................................................ 162

• Adjustable Rebuild Priority .............................................. 162

High Reliability ................................................................... 163

• Hard Drive Failure Prediction ........................................... 163

• Auto Reassign Sector...................................................... 163

• Consistency Check ......................................................... 164

Data Protection .................................................................. 164

• Battery Backup ............................................................. 164

• Recovery ROM ............................................................... 165

Appendix F .................................................................. 165

Understanding RAID ........................................................... 165

• RAID 0 ......................................................................... 166

• RAID 1 ......................................................................... 166

• RAID 10 ....................................................................... 167

• RAID 3 ......................................................................... 167

• RAID 5 ......................................................................... 168

• RAID 6 ......................................................................... 169

Appendix G .................................................................. 172

Technical Support ............................................................... 172

INTRODUCTION

1. Introduction

This section presents a brief overview of the SATA RAID Series controller, ARC-1110/1110ML/1120/1120ML/1130/1130ML/1160/

1160ML/1170 (4/8/12/16/24-port PCI-X SATA RAID Controllers) and

ARC-1210/1220/1210ML/1220ML/1230/1230/1231ML/1260/1261ML/

1280/1280ML (4/8/12/16/24-port PCIe SATA RAID Controllers).

1.1 Overview

The ARC-11xx and ARC-12xx Series of high-performance Serial ATA

RAID controllers support a maximum of 4, 8, 12, 16, or 24 SATA

II peripheral devices (depending on model) on a single controller.

The ARC-11xx series for the PCI-X bus and the ARC-12xx Series for the PCI-Express bus. When properly configured, these SATA controllers provide non-stop service with a high degree of fault tolerance through the use of RAID technology and can also provide advanced array management features.

The 4 and 8 port SATA RAID controllers are low-profile PCI cards, ideal for 1U and 2U rack-mount systems. These controllers utilize the same RAID kernel that has been field-proven in Areca existing external RAID controllers, allowing Areca to quickly bring stable and reliable RAID controllers to the market.

Unparalleled Performance

The SATA RAID controllers provide reliable data protection for desktops, workstations, and servers. These cards set the standard with enhancements that include a high-performance Intel I/O

Processor, a new memory architecture, and a high performance PCI bus interconnection. The 8/12/16/24-port controllers with the RAID

6 engine built-in can offer extreme-availability RAID 6 functionality.

This engine can concurrently compute two parity blocks with performance very similar to RAID 5. The controllers by default support

256MB of ECC SDRAM memory. The 12/16/24 port controllers support one DDR333 SODIMM socket that allows for upgrading up to

1GB of memory. The 12/16/24 port controllers support one DDR2-

533 DIMM socket that allows for upgrading up to 2GB of memory.

The controllers use Marvell 4/8 channel SATA PCI-X controller

10

INTRODUCTION chips, which can simultaneously communicate with the I/O processor and read or write data on multiple drives.

Unsurpassed Data Availability

As storage capacity requirements continue to rapidly increase, users require greater levels of disk drive fault tolerance, which can be implemented without doubling the investment in disk drives. RAID

1 (mirroring) provides high fault tolerance. However, half of the drive capacity of the array is lost to mirroring, making it too costly for most users to implement on large volume sets due to doubling the number of drives required. Users want the protection of RAID 1 or better with an implementation cost comparable to RAID 5. RAID

6 can offer fault tolerance greater than RAID 1 or RAID 5 but only consumes the capacity of 2 disk drives for distributed parity data.

The 8/12/16/24-port RAID controllers provide RAID 6 functionality to meet these demanding requirements.

The SATA RAID controllers also provide RAID levels 0, 1, 10, 3, 5,

6, Single Disk or JBOD configurations. Its high data availability and protection is derived from the following capabilities: Online RAID

Capacity Expansion, Array Roaming, Online RAID Level / Stripe

Size Migration, Dynamic Volume Set Expansion, Global Online

Spare, Automatic Drive Failure Detection, Automatic Failed Drive

Rebuilding, Disk Hot-Swap, Online Background Rebuilding and

Instant Availability/Background Initialization. During the controller firmware flash upgrade process, it is possible that an error results in corruption of the controller firmware. This could result in the device becoming non-functional. However, with our Redundant Flash image feature, the controller will revert back to the last known version of firmware and continue operating. This reduces the risk of system failure due to firmware crashes.

Easy RAID Management

The SATA RAID controller utilizes built-in firmware with an embedded terminal emulation that can access via hot key at M/B BIOS boot-up screen. This pre-boot manager utility can be used to simplify the setup and management of the RAID controller. The controller firmware also contains a web browser-based program that

11

INTRODUCTION can be accessed through the ArcHttp proxy server function in Windows, Linux, FreeBSD and more environments. This web browserbased McRAID storage manager utility allows both local and remote creation and modification RAID sets, volume sets, and monitoring of RAID status from standard web browsers.

1.2 Features

Adapter Architecture

• Intel IOP 331 I/O processor (ARC-11xx series)

• Intel IOP 332/IOP 333 I/O processor (ARC-12xx series)

• Intel IOP341 I/O processor (ARC-12x1ML/ARC-1280ML/1280)

• 64-bit/133MHz PCI-X Bus compatible

• PCI Express X8 compatible

• 256MB on-board DDR333 SDRAM with ECC protection (4/8-port)

• One SODIMM Socket with default 256 MB of DDR333 SDRAM

with ECC protection, upgrade to 1GB (12, 16 and 24-port cards

only)

• One DIMM Socket with default 256 MB of DDR2-533 SDRAM

with ECC protection, upgrade to 2GB(ARC-12xxML, ARC-1280)

• An ECC or non-ECC SDRAM module using X8 or X16 chip organi-

zation

• Support up to 4/8/12/16/24 SATA ll drives

• Write-through or write-back cache support

• Multi-adapter support for large storage requirements

• BIOS boot support for greater fault tolerance

• BIOS PnP (plug and play) and BBS (BIOS boot specification)

support

• Supports extreme performance Intel RAID 6 functionality

• NVRAM for RAID event & transaction log

• Battery backup module (BBM) ready (Depend on mother

board)

RAID Features

• RAID level 0, 1, 10, 3, 5, 6, Single Disk and JBOD

• Multiple RAID selection

• Online array roaming

• Online RAID level/stripe size migration

• Online capacity expansion & RAID level migration simultaneously

• Online volume set growth

• Instant availability and background initialization

12

INTRODUCTION

• Automatic drive insertion/removal detection and rebuilding

• Greater than 2TB per volume set for 64-bit LBA

• Redundant flash image for adapter availability

• Support SMART, NCQ and OOB staggered spin-up capable

drives

Monitors/Notification

• System status indication through LED/LCD connector, HDD

activity/fault connector, and alarm buzzer

• SMTP support for email notification

• SNMP agent supports for remote SNMP manager

• I2C Enclosure Management Ready (IOP331/332/333)

• I2C & SGPIO Enclosure Management Ready (IOP341)

RAID Management

• Field-upgradeable firmware in flash ROM

• Ethernet port support on 12/16/24-port

In-Band Manager

• Hot key boot-up McBIOS RAID manager via M/B BIOS

• Support controller’s API library, allowing customer to write its

own AP

• Support Command Line Interface (CLI)

• Browser-based management utility via ArcHttp proxy server

• Single Admin Portal (SAP) monitor utility

• Disk Stress Test (DST) utility for production in Windows

Out-of-Band Manager

• Firmware-embedded browser-based MCRAID storage manager,

SMTP manager, SNMP agent and Telent function via Ethernet

port (for 12/16/24-port Adapter)

• Support controller’s API library for customer to write its own

AP (for 12/16/24-port Adapter)

• Push Button and LCD display panel (option)

Operating System

• Windows 2000/XP/Server 2003/Vista

• Red Hat Linux

• SuSE Linux

• FreeBSD

• Novell Netware 6.5

• Solaris 10 X86/X86_64

13

INTRODUCTION

• SCO Unixware 7.1.4

• Mac OS 10.X (EFI BIOS support)

(For latest supported OS listing visit http://www.areca.com.tw)

Internal PCI-X RAID Card Comparison (ARC-11XX)

1110 1120 1130 1160

RAID processor

Host Bus Type

RAID 6 support

Cache Memory

Drive Support

Disk Connector

1170

YES

256MB

YES

256MB

IOP331

PCI-X 133MHz

YES

One SO-

DIMM

YES

One SO-

DIMM

YES

One SO-

DIMM

4 * SATA ll 8 * SATA ll 12 * SATA ll 16 * SATA ll 24 * SATA ll

SATA SATA SATA SATA SATA

PCI-X RAID Card Comparison (ARC-11XXML)

1110ML 1120ML 1130ML 1160ML/1160ML2

RAID processor

Host Bus Type

RAID 6 support

Cache Memory

Yes

256MB

YES

256MB

Drive Support 4 * SATA ll 8 * SATA ll

Disk Connector Infinband Infinband

IOP331

PCI-X 133MHz

YES

One SODIMM

12 * SATA ll

Multi-lane

YES

One SODIMM

16 * SATA ll

Multi-lane/4*SFF-8087

Internal PCI-Express RAID Card Comparison (ARC-12XX)

1210/1210ML 1220/1220ML 1230 1260

RAID processor

Host Bus Type

RAID 6 support

Cache Memory

IOP332

N/A

256MB

YES

IOP333

PCI-Express X8

256MB

Drive Support 4 * SATA ll 8 * SATA ll

Disk Connector SATA/SFF-8088 SATA/2*SFF-8088

YES

One SODIMM One SODIMM

12 * SATA ll

SATA

YES

16 * SATA ll

SATA

14

INTRODUCTION

Internal PCI-Express RAID Card Comparison (ARC-12X1ML/1280)

1231ML 1261ML 1280ML 1280

RAID processor

Host Bus Type

RAID 6 support

Cache Memory

IOP341

PCI-Express X8

YES YES YES

One DDR2 DIMM (Default 256MB, Upgrade to 2GB)

YES

Drive Support

Disk Connector

12 * SATA ll

3*SFF-8087

16 * SATA ll

4*SFF-8087

24 * SATA ll

6*SFF-8087

24 * SATA ll

24*SATA

15

HARDWARE INSTALLATION

2. Hardware Installation

This section describes the procedure for installing the SATA RAID controllers.

2.1 Before Your Begin Installation

Thank you for purchasing the SATA RAID Controller as your RAID data storage and management system. This user guide gives you a simple step-by-step instructions for installing and configuring the SATA RAID Controller. To ensure personal safety and to protect your equipment and data, please read the information carefully in pack content list before you begin installing.

Package Contents

If any items listed in your package is missing, please contact your local dealers before proceeding with installation (disk drives and

disk mounting brackets are not included):

ARC-11xx Series SATA RAID Controller

• 1 x PCI-X SATA RAID Controller in an ESD-protective bag

• 4/8/12/16/24 x SATA interface cables (one per port)

• 1 x Installation CD

• 1 x User Manual

ARC-11xxML/12xxML Series SATA RAID Controller

• 1 x PCI-X SATA RAID Controller in an ESD-protective bag

• 1 x Installation CD

• 1 x User Manual

ARC-12xx Series SATA RAID Controller

• 1 x PCI-Express SATA RAID Controller in an ESD-protective bag

• 4/8/12/16 x SATA interface cables (one per port)

• 1 x Installation CD

• 1 x User Manual

16

HARDWARE INSTALLATION

2.2 Board Layout

Follow the instructions below to install a PCI RAID Card into your

PC / Server.

Figure 2-1, ARC-1110/1120 (4/8-port PCI-X SATA RAID Controller)

Figure 2-2, ARC-1210/1220 (4/8-port PCI-Express SATA RAID Controller)

17

HARDWARE INSTALLATION

Figure 2-3, ARC-1110ML/1120ML (4/8-port PCI-X SATA RAID Controller)

18

Figure 2-4, ARC-1210ML/1220ML (4-port PCI-Express SATA RAID

Controller)

HARDWARE INSTALLATION

Figure 2-5, ARC-1130/1160 (12/16-port PCI-X SATA RAID Controller)

Figure 2-6, ARC-1130ML/1160ML (12/16-port PCI-X SATA RAID

Controller)

19

HARDWARE INSTALLATION

Figure 2-7, ARC-1230/1260 (12/16-port PCI-EXpress SATA RAID

Controller)

20

Figure 2-8, ARC-1170 (24-port PCI-X SATA RAID Controller)

HARDWARE INSTALLATION

Figure 2-9, ARC-1280 (24-port PCI-Express SATA RAID Controller)

Figure 2-10, ARC-1231ML/1261ML/1280ML (12/16/24-port PCI-Express SATA RAID Controller)

21

HARDWARE INSTALLATION

Tools Required

An ESD grounding strap or mat is required. Also required are standard hand tools to open your system’s case.

System Requirement

The controller can be installed in a universal PCI slot and requires a motherboard that:

ARC-11xx series required one of the following:

• Complies with the PCI Revision 2.3 32/64-bit 33/66MHz, 3.3V.

• Complies with the PCI-X 32/64-bit 66/100/133 MHz, 3.3V.

ARC-12xx series requires:

• Complies with the PCI-Express X8

It can also work on the PCIe x1, x4, x8 and x16 signal with x8 or x16 slot M/B.

The SATA RAID controller may be connected to up to 4, 8, 12, 16, or 24 SATA ll hard drives using the supplied cables.

Optional cables are required to connect any drive activity LEDs and fault LEDs on the enclosure to the SATA RAID controller.

Installation Tools

The following items may be needed to assist with installing the

SATA RAID controller into an available PCI expansion slot.

• Small screwdriver

• Host system hardware manuals and manuals for the disk or enclosure being installed.

Personal Safety Information

To ensure personal safety as well as the safety of the equipment:

• Always wear a grounding strap or work on an ESD-protective mat.

• Before opening the system cabinet, turn off power switches and unplug the power cords. Do not reconnect the power cords until you have replaced the covers.

22

HARDWARE INSTALLATION

Warning:

High voltages may be found inside computer equipment. Before installing any of the hardware in this package or removing the protective covers of any computer equipment, turn off power switches and disconnect power cords. Do not reconnect the power cords until you have replaced the covers.

Electrostatic Discharge

Static electricity can cause serious damage to the electronic components on this SATA RAID controller. To avoid damage caused by electrostatic discharge, observe the following precautions:

• Do not remove the SATA RAID controller from its anti-static packaging until you are ready to install it into a computer case.

• Handle the SATA RAID Controller by its edges or by the metal mounting brackets at its each end.

• Before you handle the SATA RAID controller in any way, touch a grounded, anti-static surface, such as an unpainted portion of the system chassis, for a few seconds to discharge any built-up static electricity.

2.3 Installation

Follow the instructions below to install a SATA RAID controller into your PC / Server.

Step 1. Unpack

Unpack and remove the SATA RAID controller from the package.

Inspect it carefully, if anything is missing or damaged, contact your local dealer.

Step 2. Power PC/Server Off

Turn off computer and remove the AC power cord. Remove the system’s cover. See the computer system documentation for instruction.

23

HARDWARE INSTALLATION

Step 3. Install the PCI RAID Cards

To install the SATA RAID controller remove the mounting screw and existing bracket from the rear panel behind the selected PCI slot. Align the gold-fingered edge on the card with the selected

PCI expansion slot. Press gently but firmly down to ensure that the card is properly seated in the slot, as shown in Figure 2-11. Next, screw the bracket into the computer chassis. ARC-11xx controllers can fit in both PCI (32-bit/3.3V) and PCI-X slots. It can get the best performance installed in a 64-bit/133MHz PCI-X slot. ARC-12xx controllers require a PCI-Express x8 slot.

24

Figure 2-11, Insert SATA RAID controller into a PCI-X slot

Step 4. Mount the Cages or Drives

Remove the front bezel from the computer chassis and install the cages or SATA Drives in the computer chassis. Loading drives to the drive tray if cages are installed. Be sure that the power is connected to either the cage backplane or the individual drives.

HARDWARE INSTALLATION

Figure 2-12, Mount Cages & Drives

Step 5. Connect the SATA Cable

Model ARC-11XX and ARC-12XX controllers have dual-layer SATA internal connectors. If you have not yet connected your SATA cables, use the cables included with your kit to connect the controller to the SATA hard drives.

The cable connectors are all identical, so it does not matter which end you connect to your controller, SATA hard drive, or cage backplane SATA connector.

Figure 2-13, SATA Cable

Note:

The SATA cable connectors must match your HDD cage.

For example: Channel 1 of RAID Card connects to channel 1 of HDD cage, channel 2 of RAID Card connects to channel 2 of HDD cage, and follow this rule.

25

HARDWARE INSTALLATION

Step 5-2. Connect the Multi-lance Cable

Model ARC-11XXML has multi-lance internal connectors, each of them can support up to four SATA drives. These adapters can be installed in a server RAID enclosure with a Multi-lance connector

(SFF-8470) backplane. Multi-lance cables are not included in the

ARC-11XXML package.

If you have not yet connected your Multi-lance cables, use the cables included with your enclosure to connect your controller to the Multi-lance connector backplane. This type of cable will depend on what enclosure you have. The following diagram shows one example picture of Multi-lane cable.

Unpack and remove the PCI RAID cards. Inspect it carefully. If anything is missing or damaged, contact your local dealer.

Figure 2-14, Multi-Lance Cable

26

Step 5-3. Connect the Min SAS 4i to 4*SATA Cable

Model ARC-1231ML/1261ML/1280ML have Min SAS 4i (SFF-8087) internal connectors, each of them can support up to four SATA drives. These adapters can be installed in a server RAID enclosure with a standard SATA connector backplane. Min SAS 4i to SATA cables are included in the ARC-1231ML/1261ML/1280ML package.

The following diagram shows the picture of MinSAS 4i to 4*SATA cables.

Unpack and remove the PCI RAID cards. Inspect it carefully. If anything is missing or damaged, contact your local dealer.

HARDWARE INSTALLATION

Figure 2-15, Min SAS 4i to 4*SATA Cable

For sideband cable signal Please refer to page 51 for SGPIO bus.

Step 5-4. Connect the Min SAS 4i to Multi-lance Cable

Model ARC-1231ML/1261ML/1280ML have Min SAS 4i internal connectors, each of them can support up to four SATA drives. These controllers can be installed in a server RAID enclosure with a Multilance connector (SFF-8470) backplane. Multi-lance cables are not included in the ARC-12XXML package.

If you have not yet connected your Min SAS 4i to Multi-lance cables, buy the Min SAS 4i to Multi-lance cables to fit your enclosure. And connect your controller to the Multi-lance connector backplane. The type of cable will depend on what enclosure you have. The following diagram shows one example picture of Min SAS

4i to Multi-lance cable.

Unpack and remove the PCI RAID cards. Inspect it carefully. If anything is missing or damaged, contact your local dealer.

Figure 2-16, Min SAS 4i to Multi-lance Cable

27

HARDWARE INSTALLATION

Step 5-5. Connect the Min SAS 4i to Min SAS 4i Cable

Model ARC-1231ML/1261ML/1280ML have Min SAS 4i (SFF-8087) internal connectors, each of them can support up to four SATA drives and SGPIO (Serial General Purpose Input/Output) side-band signals . These adapters can be installed in a server RAID enclosure with a Min SAS 4i internal connector backplane. Min SAS 4i cables are not included in the ARC-12XXML package.

This Min SAS 4i cable has eight signal pins to support four SATA drives and six pins for the SGPIO (Serial General Purpose Input/

Output) side-band signals. The SGPIO bus is used for efficient LED management and for sensing drive Locate status. Please see page

52 for the details of the SGPIO bus.

Figure 2-17, Min SAS 4i to Min SAS 4i Cable

The SGPIO signal can carry the fault/activity signal without needing any individual LED cable. The SGPIO is included in the SFF-8087.

Min SAS 4i Connector (SFF-8087) Signal

28

Figure 2-18, Min SAS 4i (SFF-8087) Connector

HARDWARE INSTALLATION

Name

HDD R0+

HDD R0-

HDD R1+

HDD R1A6

Sideband 0 A8

Sideband 1 A9

Sideband 2 A10

Pin

A2

A3

A5

Sideband 6 A11

HDD R2+ A13

HDD R2A14

HDD R3+

HDD R3-

GND

A16

A17

HDD T3+

HDD T3-

A1, A4, A7, A12, A15, A18 GND

Name

HDD T0+

HDD T0-

HDD T1+

HDD T1-

Sideband 7

Sideband 3

Sideband 4

Sideband 5

HDD T2+

HDD T2-

Table-1 Min SAS 4i cable(SFF8087) pin assignment

B6

B8

B9

B10

Pin

B2

B3

B5

B11

B13

B14

B16

B17

B1, B4, B7, B12, B15, B18

Step 5-6. Connect the Min SAS 4x to Min SAS 4x Cable

Model ARC-12X0ML/12X1ML have external Min SAS 4x (SFF-8088) connectors, each of them can support up to four SATA drives. These adapters can be installed in a server which works with external

RAID enclosure with a Min SAS 4x connector. External Min SAS 4x cables are not included in the ARC-12X0ML/12X1ML package.

Figure 2-19, Min SAS 4x to Min SAS 4x Cable

29

HARDWARE INSTALLATION

If you have not connected your Min SAS 4x cables yet, use the cables included with your enclosure to connect your controller to the Min SAS 4x connector. This type of cable will depend on what enclosure you have. The above diagram shows one example picture of Min SAS 4x cable.

Step 6. Install the LED Cable (optional)

ARC-1XXX Series Fault/Activity Header Intelligent Electronics

Schematic.

30

The intelligent LED controller outputs a low-level pulse to determine if status LEDs are attached to pin sets 1 and 2. This allows automatic controller configuration of the LED output. If the logical level is different between the fist 2 sets of the HDD LED header

(LED attached to Set 1 but not Set 2), the controller will assign the first HDD LED header as the global indicator connector. Otherwise, each LED output will show only individual drive status.

The SATA RAID controller provides four kinds of LED status connectors.

A: Global indicator connector, which light up when any drive is active.

B: Individual LED indicator connector, for each drive channel.

C: I 2 C connector, for SATA proprietary backplane enclosure.

D: SGPIO connector for SAS backplane enclosure

HARDWARE INSTALLATION

The following diagrams and description describes each type of connector.

Note:

A cable for the global indicator comes with your computer system. Cables for the individual drive LEDs may come with a drive cage or you may need to purchase them.

A: Global indicator connector

If the system use only a single global indicator, attach the global indicator cable to the two pins HDD LED connector. The following diagrams show the connector and pin locations.

Figure 2-20, ARC-

1110/1120/1210/1220 global LED connection for computer case.

Figure 2-21, ARC-

1130/1160/1230/1260 global LED connection for computer case.

31

HARDWARE INSTALLATION

Figure 2-22, ARC-1170 global LED connection for computer case.

Figure 2-23, ARC-1280 global LED connection for computer case.

32

Figure 2-24, ARC-1231ML/

1261ML/1280ML global LED connection for computer case.

HARDWARE INSTALLATION

B: Individual LED indicator connector

Connect the cables for the drive activity LEDs and fault LEDs between the backplane of the cage and the respective connector on the SATA RAID controller. The following describes the fault/activity

LED.

LED Normal Status

Activity LED When the activity LED is illuminated, there is I/O activity on that disk drive. When the

LED is dark, there is no activity on that disk drive.

Fault LED When the fault LED is solid illuminated, there is no disk present and When the fault

LED is off, that disk is present and status is normal.

When the "Identify Drive" is selected, the selected drive fault LED will blank.

N/A

Problem Indication

When the fault LED is slow blinking (2 times/sec), that indicate disk drive has failed and should be hot-swapped immediately.

When the activity LED is illuminated and fault LED is fast blinking

(10 times/sec) that indicate there is rebuilding activity on the disk drive.

Figure 2-25, ARC-

1110/1120/1210/1220 individual LED indicators connector, for each channel drive.

33

HARDWARE INSTALLATION

Figure 2-26, ARC-

1130/1160/1230/1260 individual LED indicators connector, for each channel drive.

Figure 2-27, ARC-1170 individual LED indicators connector, for each channel drive.

34

Figure 2-28, ARC-1280 individual LED indicators connector, for each channel drive.

HARDWARE INSTALLATION

Figure 2-29, ARC-1231ML/

1261ML/1280ML individual

LED indicators connector, for each channel drive.

C: I 2 C Connector

You can also connect the I 2 C interface to a SATA backplane enclosure which includes Areca CPLD decoder controller on the backplane. This can reduce the number of activity LED and/or fault

LED cables. The I 2 C interface can also cascade to another SATA backplane enclosure for the additional channel status display.

Figure 2-30, Activity/Fault LED I 2 C connector connected between

SATA RAID controller & SATA HDD cage backplane.

35

HARDWARE INSTALLATION

Figure 2-31, Activity/Fault LED I 2 C connector connected between

SATA RAID controller & 4 SATA HDD backplane.

Note:

Ci-Design has supported this feature in its 4-port 12-6336-

05A SATA ll backplane.

The following is the I 2 C signal name description for LCD & fault/activity LED.

36

PIN

1

3

5

7

D: SGPIO bus

Description power (+5V)

LCD Module Interrupt

LCD Module Serial Data

Fault/Activity Serial Data

PIN

2

4

6

8

Description

GND

Protect Key

Fault/Activity clock

LCD Module clock

The preferred I/O connector for server backplanes is the Min SAS

4i (SFF-8087) internal serial-attachment connector. This connector has eight signal pins to support four SATA drives and six pins for the SGPIO (Serial General Purpose Input/Output) sideband signals which use to replace the individual LED cable.

HARDWARE INSTALLATION

The SGPIO bus is used for efficient LED management and for sensing drive locate status. See SFF 8485 for the specification of the SGPIO bus.The number of drives supported can be increased, by a factor of four, by adding similar backplane to maximum of 24 drives (6 backplanes)

LED Management: The backplane may contain LEDs to indicate drive status. Light from the LEDs could be transmitted to the outside of the server by using light pipes mounted on the SATA drive tray. A small CPLD on the backplane, connected via the SGPIO bus to a ARC-1231ML/1261ML/1280ML SATA RAID controller, could control the LEDs. Activity: blinking/controller access Fault: solid illuminated

Drive Locate Circuitry: The locate of a drive may be detected by sensing the voltage level of one of the pre-charge pins before and after a drive is installed. Fault blinking 2 times/second.

The following signal defines the SGPIO assignments for the Min

SAS 4i connector (SFF-8087) in ARC-1231ML/1261ML/1280ML.

PIN

SideBand0

SideBand2

SideBand4

Description

SClock (Clock signal)

Ground

SDataOut (Serial data output bit stream)

Reserved

PIN

SideBand1

SideBand3

SideBand5

Description

SLoad (Last clock of a bit stream)

Ground

SDataIn (Serial data input bit stream)

Reserved SideBand6 SideBand7

The following signal defines the sideband connector which can work with Areca sideband cable on its SFF-8087 to 4 SATA cable.

The sideband header is located at backplane. For SGPIO to work properly, please connect Areca 8-pin sideband cable to the sideband header as shown above. See the table for pin definitions.

37

HARDWARE INSTALLATION

Step 7. Re-check the SATA HDD LED and Fault LED Cable

Connections

Be sure that the proper failed drive channel information is displayed by the fault and HDD activity LEDs. An improper connection will tell the user to ‘‘Hot Swap’’ the wrong drive. This will remove the wrong disk (one that is functioning properly) from the controller. This can result in failure and loss of system data.

Step 8. Power up the System

Check the installation thoroughly, reinstall the computer cover, and reconnect the power cord cables. Turn on the power switch at the rear of the computer (if equipped) and then press the power button at the front of the host computer.

Step 9. Configure Volume Set

The SATA RAID controller configures RAID functionality through the

McBIOS RAID manager. Please refer to Chapter 3, McBIOS RAID manager, for the detail regarding configuration. The RAID controller can also be configured through the McRAID storage manager software utility with ArcHttp proxy server installed through on-board

LAN port or LCD module. For this option, please refer to Chapter 6,

Web Browser-Based Configuration or LCD Configuration Menu.

Step 10. Install the Controller Driver

For a new system:

• Driver installation usually takes places as part of operating system installation. Please refer to Chapter 4 Diver Installation for the detail installation procedure.

In an existing system:

• Install the controller driver into the existing operating system.

Please refer to the Chapter 4, Driver Installation, for the detailed installation procedure.

38

HARDWARE INSTALLATION

Note:

Look for latest release versions of drivers, please download from http://www.areca.com.tw

Step 11. Install ArcHttp Proxy Server

The SATA RAID controller firmware has embedded the web-browser

McRAID storage manager. ArcHttp proxy server will enable it. The browser-based McRAID storage manager provides all of the creation, management, and monitor SATA RAID controller status.

Please refer to the Chapter 5 for the detail ArcHttp Proxy Server

Installation. For SNMP agent function, please refer to Appendix C.

Step 12. Determining the Boot Sequences

The SATA RAID controller is a bootable controller. If your system already contains a bootable device with an installed operating system, you can set up your system to boot a second operating system from the new controller. To add a second bootable controller, you may need to enter setup of M/B BIOS and change the device boot sequence so that the SATA RAID controller heads the list. If the system BIOS setup does not allow this change, your system may not be configurable to allow the SATA RAID controller to act as a second boot device.

Summary of the Installation

The flow chart below describes the installation procedures for SATA

RAID controller. These procedures include hardware installation, the creation and configuration of a RAID volume through the Mc-

BIOS/McRAID, OS installation and installation of SATA RAID controller software.

The software components configure and monitor the SATA RAID controller via ArcHttp proxy server.

39

HARDWARE INSTALLATION

Configuration Utility

McBIOS RAID Manager

McRAID Storage Manager

(Via Archttp proxy server)

SAP Monitor (Single Admin Portal to scan for multiple RAID units in the network, Via ArcHttp proxy server)

SNMP Manager Console Integration

Operating System Supported

OS-Independent

Windows 2000/XP/2003, Linux, Free-

BSD, Solaris and Mac

Windows 2000/XP/2003

Windows 2000/XP/2003, Linux, Free-

BSD

40

McRAID Storage Manager

Before launching the firmware-embedded web server, McRAID storage manager, you can to install the ArcHttp proxy server on your server system or through on-board LAN-port (if equipped). If you need additional information about installation and start-up of this function, see the McRAID Storage Manager section in Chapter 6.

SNMP Manager Console Integration

• Out of Band-Using Ethernet Port (12/16/24-port Controller)

Before launching the firmware-embedded SNMP agent in the sever, you need first to enable the fireware-embedded SNMP agent function on your SATA RAID controller. If you need additional information about installation and start-up this function, see the section 6.8.4 SNMP Configuration (12/16/24port)

HARDWARE INSTALLATION

• In-Band-Using PCI-X/PCIe Bus (4/8/12/16/24-port

Controller)

Before launching the SNMP agent in the sever, you need to enable the fireware-embedded SNMP community configuration first and install Areca SNMP extension agent in your server system.

If you need additional information about installation and start-up the function, see the SNMP Operation & Installation section in the

Appendix C

Single Admin Portal (SAP) Monitor

This utility can scan for multiple RAID units on the network and monitor the controller set status. It also includes a disk stress test utility to identify marginal spec disks before putting the RAID unit into a production environment.

For additional information, see the utility manual in the packaged software CD or download it from the web site http://www.areca.

com.tw

41

BIOS CONFIGURATION

3. McBIOS RAID Manager

The system mainboard BIOS automatically configures the following

SATA RAID controller parameters at power-up:

• I/O Port Address

• Interrupt Channel (IRQ)

• Adapter ROM Base Address

Use McBIOS RAID manager to further configure the SATA RAID controller to suit your server hardware and operating system.

3.1 Starting the McBIOS RAID Manager

This section explains how to use the McBIOS RAID manager to configure your RAID system. The McBIOS RAID manager is designed to be user-friendly. It is a menu-driven program, residing in the firmware, which allows you to scroll through various menus and sub-menus and select among the predetermined configuration options.

When starting a system with an SATA RAID controller installed, it will display the following message on the monitor during the startup sequence (after the system bios startup screen but before the operating system boots):

ARC-1xxx RAID Ctrl - DRAM: 128(MB) / #Channels: 8

BIOS: V1.00 / Date: 2004-5-13 - F/W: V1.31 / Date: 2004-5-31

I/O-Port=F3000000h, IRQ=11, BIOS ROM mapped at D000:0h

No BIOS disk Found, RAID Controller BIOS not installed!

Press <Tab/F6> to enter SETUP menu. 9 second(s) left <ESC to Skip>..

42

The McBIOS RAID manager message remains on your screen for about nine seconds, giving you time to start the configuration menu by pressing Tab or F6. If you do not wish to enter configuration menu, press ESC to skip configuration immediately. When activated, the McBIOS RAID manager appears showing a selection dialog box listing the SATA RAID controllers that are installed in the system.

The legend at the bottom of the screen shows you what keys are enabled for the screens.

BIOS CONFIGURATION

Areca Technology Corporation RAID Controller Setup <V1.0, 2004/05/20>

Select An Adapter To Configure

( 3/14/ 0)I/O=DD200000h, IRQ = 9

ArrowKey Or AZ:Move Cursor, Enter: Select, ** Select & Press F10 to Reboot**

Use the Up and Down arrow keys to select the adapter you want to configure. While the desired adapter is highlighted, press the

Enter key to enter the main menu of the McBIOS RAID manager.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Verify Password

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

Note:

The manufacture default password is set to 0000; this password can be modified by selecting

Change Password in the Raid System

Function section.

3.2 McBIOS RAID manager

The McBIOS RAID manager is firmware-based and is used to configure RAID sets and volume sets. Because the utility resides in the

SATA RAID controller firmware, operation is independent of any operating systems on your computer. This utility can be used to:

• Create RAID sets,

• Expand RAID sets,

• Add physical drives,

• Define volume sets,

43

BIOS CONFIGURATION

• Modify volume sets,

• Modify RAID level/stripe size,

• Define pass-through disk drives,

• Modify system functions, and

• Designate drives as hot spares.

3.3 Configuring Raid Sets and Volume Sets

You can configure RAID sets and volume sets with McBIOS RAID manager automatically using “Quick Volume/Raid Setup” or manually using “Raid Set/Volume Set Function”. Each configuration method requires a different level of user input. The general flow of operations for RAID set and volume set configuration is:

Step

1

2

3

4

5

Action

Designate hot spares/pass-through drives (optional).

Choose a configuration method.

Create RAID sets using the available physical drives.

Define volume sets using the space available in the RAID Set.

Initialize the volume sets and use volume sets (as logical drives) in the host OS.

3.4 Designating Drives as Hot Spares

Any unused disk drive that is not part of a RAID set can be designated as a hot spare. The “Quick Volume/Raid Setup” configuration will add the spare disk drive and automatically display the appropriate RAID level from which the user can select. For the “Raid Set

Function” configuration option, the user can use the “Create Hot

Spare” option to define the hot spare disk drive.

When a hot spare disk drive is being created using the “Create Hot

Spare” option (in the “Raid Set Function”), all unused physical devices connected to the current controller appear:

Choose the target disk by selecting the appropriate check box.

Press the Enter key to select a disk drive, and press Yes in the create hot spare to designate it as a hot spare.

44

BIOS CONFIGURATION

3.5 Using Quick Volume/Raid Setup Configuration

“Quick Volume/Raid Setup” configuration collects all available drives and includes them in a RAID set. The RAID set you create is associated with exactly one volume set. You will only be able to modify the default RAID level, the stripe size, and the capacity of the new volume set. Designating drives as hot spares is also possible in the RAID level selection option. The volume set default settings will be:

Parameter

Volume Name

SCSI Channel/SCSI ID/SCSI LUN

Cache Mode

Tag Queuing

Volume Set # 00

0/0/0

Write Back

Yes

Setting

The default setting values can be changed after configuration is completed. Follow the steps below to create arrays using the

“Quick Volume/ Raid Setup” method:

Step

1

2

Action

Choose “Quick Volume/Raid Setup” from the main menu. The available

RAID levels with hot spare for the current volume set drive are displayed.

It is recommended that you use drives of the same capacity in a specific array. If you use drives with different capacities in an array, all drives in the RAID set will be set to the capacity of the smallest drive in the RAID set.

The numbers of physical drives in a specific array determines which RAID levels that can be implemented in the array.

RAID 0 requires 1 or more physical drives.

RAID 1 requires at least 2 physical drives.

RAID 1+Spare requires at least 3 physical drives.

RAID 10 requires at least 4 physical drives.

RAID 3 requires at least 3 physical drives.

RAID 5 requires at least 3 physical drives.

RAID 3 +Spare requires at least 4 physical drives.

RAID 5 + Spare requires at least 4 physical drives.

RAID 6 requires at least 4 physical drives.

RAID 6 + Spare requires at least 5 physical drives.

Highlight the desired RAID level for the volume set and press the Enter key to confirm.

45

BIOS CONFIGURATION

3

4

5

6

7

8

The capacity for the current volume set is entered after highlighting the desired RAID level and pressing the Enter key.

The capacity for the current volume set is displayed. Use the UP and

DOWN arrow keys to set the capacity of the volume set and press the

Enter key to confirm. The available stripe sizes for the current volume set are then displayed.

Use the UP and DOWN arrow keys to select the current volume set stripe size and press the Enter key to confirm. This parameter specifies the size of the stripes written to each disk in a RAID 0, 1, 10, 5 or

6 volume set. You can set the stripe size to 4 KB, 8 KB, 16 KB, 32 KB,

64 KB, or 128 KB. A larger stripe size provides better read performance, especially when the computer preforms mostly sequential reads. However, if the computer preforms random read requests more often, choose a smaller stripe size.

When you are finished defining the volume set, press the Enter key to confirm the “Quick Volume/Raid Setup” function.

Foreground (Fast Completion) Press Enter key to define Foreground

Initialization or Selected the Background (Instant Available) or No Init. In the Background Initialization, the initialization proceeds as a background task, the volume set is fully accessible for system reads and writes.

The operating system can instantly access to the newly created arrays without requiring a reboot and waiting the initialization complete. In

Foreground Initialization, the initialization proceeds must be completed before the volume set ready for system accesses. In No Init, there is no initialization on this volume.

Initialize the volume set you have just configured.

If you need to add additional volume set, using main menu “Create Volume Set” function.

3.6 Using RAID Set/Volume Set Function

Method

In “Raid Set Function”, you can use the “Create Raid Set Function” to generate a new RAID set. In “Volume Set Function”, you can use the “Create Volume Set” function to generate an associated volume set and and configuration parameters.

If the current controller has unused physical devices connected, you can choose the “Create Hot Spare” option in the “Raid Set

Function” to define a global hot spare. Select this method to configure new RAID sets and volume sets. The “Raid Set/Volume Set

Function” configuration option allows you to associate volume sets with partial and full RAID sets.

46

BIOS CONFIGURATION

Step

1

2

3

4

5

6

7

8

9

10

Action

To setup the hot spare (option), choose “Raid Set Function” from the main menu. Select the “Create Hot Spare and press the Enter key to define the hot spare.

Choose “RAID Set Function” from the main menu. Select “Create Raid

Set” and press the Enter key.

The “Select a Drive For Raid Set” window is displayed showing the SATA drives connected to the SATA RAID controller.

Press the UP and DOWN arrow keys to select specific physical drives.

Press the Enter key to associate the selected physical drive with the current RAID set.

It is recommended that you drives of the same capacity in a specific array. If you use drives with different capacities in an array, all drives in the RAID set will be set to the capacity of the smallest drive in the RAID set. The numbers of physical drives in a specific array determines which

RAID levels that can be implemented in the array.

RAID 0 requires 1 or more physical drives.

RAID 1 requires at least 2 physical drives.

RAID 10 requires at least 4 physical drives.

RAID 3 requires at least 3 physical drives.

RAID 5 requires at least 3 physical drives.

RAID 6 requires at least 4 physical drives.

After adding the desired physical drives to the current RAID set, press

Yes to confirm the “Create Raid Set” function.

An “Edit The Raid Set Name” dialog box appears. Enter 1 to 15 alphanumeric characters to define a unique identifier for this new raid set. The default raid set name will always appear as Raid Set. #. Press Enter to finish the name editing.

Press the Enter key when you are finished creating the current RAID set. To continue defining another RAID set, repeat step 3. To begin volume set configuration, go to step 8.

Choose the “Volume Set Function” from the main menu. Select “Create

Volume Set” and press the Enter key.

Choose a RAID set from the “Create Volume From Raid Set” window.

Press the Enter key to confirm the selection.

Choosing Foreground (Fast Completion) or Background (Instant Availability) initialization or No Init (To Rescue Volume): during Background

Initialization, the initialization proceeds as a background task and the volume set is fully accessible for system reads and writes. The operating system can instantly access the newly created arrays without requiring a reboot and waiting for initialization complete. In Foreground Initialization, the initialization must be completed before the volume set is ready for system accesses. In Fast Initialization, initiation is completed more quickly but volume access by the operating system is delayed. When No

Init, there is no initialization on this volume.

47

BIOS CONFIGURATION

48

11 If space remains in the raid set, the next volume set can be configured.

Repeat steps 8 to 10 to configure another volume set.

Note:

The “Modify Volume Set” method provides the same functions as the “Create Volume Set” configuration method. In the

“Volume Set function”, you can use “Modify Volume Set” to change all volume set parameters except for capacity (size).

3.7 Main Menu

The main menu shows all functions that are available for executing actions, which is accomplished by clicking on the appropriate link.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Note:

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Verify Password

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

The manufacture default password is set to 0000; this password can be modified by selecting

Change Password in the Raid System

Function section.

Option Description

Quick Volume/Raid Setup Create a default configuration based on the number of physical disk installed

Raid Set Function Create a customized RAID set

Volume Set Function Create a customized volume set

Physical Drives

Raid System Function

Ethernet Configuration

View individual disk information

Setup the RAID system configuration

Ethernet LAN setting (12/16/24 ports only)

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Record all system events in the buffer

Clear all information in the event buffer

Show the hardware system environment status

View the controller system information

BIOS CONFIGURATION

This password option allows user to set or clear the RAID controller’s password protection feature. Once the password has been set, the user can only monitor and configure the raid controller by providing the correct password. The password is used to protect the internal RAID controller from unauthorized entry. The controller will only prompt for the password when entering the main menu from the initial screen. The SATA RAID controller will automatically return to the initial screen when it does not receive any command in twenty seconds.

3.7.1 Quick Volume/RAID Setup

“Quick Volume/RAID Setup” is the fastest way to prepare a RAID set and volume set. It requires only a few keystrokes to complete. Although disk drives of different capacity may be used in the RAID set, it will use the capacity of the smallest disk drive as the capacity of all disk drives in the RAID set. The “Quick Volume/RAID Setup” option creates a RAID set with the following properties:

1. All of the physical drives are contained in one RAID set.

2. The RAID level, hot spare, capacity, and stripe size options are selected during the configuration process.

3. When a single volume set is created, it can consume all or a portion of the available disk capacity in this RAID set.

4. If you need to add an additional volume set, use the main menu “Create Volume Set” function.

The total number of physical drives in a specific RAID set determine the RAID levels that can be implemented within the RAID

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Total 4 Drives

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid 0

Raid 1 + 0

Raid 1 + 0 + Spare

Raid 3

Raid 5

Raid 3 + Spare

Raid 5 + Spare

Raid 6

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

49

BIOS CONFIGURATION

Set. Select “Quick Volume/RAID Setup from the main menu; all possible RAID level will be displayed on the screen.

If volume capacity will exceed 2TB, controller will show the

“Greater Two TB Volume Support” sub-menu.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Greater Two TB Volume Support

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Total 4 Drives

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid 0

Raid 1 + 0

No

Use 64bit LBA

Raid 1 + 0 + Spare

Raid 3

Raid 5

Raid 3 + Spare

Raid 5 + Spare

Raid 6

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

No

It keeps the volume size with max. 2TB limitation.

LBA 64

This option use 16 bytes CDB instead of 10 bytes. The maximum volume capacity supports up to 512TB.

This option works on different OS which supports 16 bytes CDB.

Such as:

Windows 2003 with SP1

Linux kernel 2.6.x or latter

For Windows

It change the sector size from default 512 Bytes to 4k Bytes. the maximum volume capacity up to 16TB.

This option works under Windows platform only. And it can not be converted to “Dynamic Disk”, because 4k sector size is not a standard format.

For more details please download PDF file from ftp://ftp.areca. com.tw/RaidCards/Documents/Manual_Spec/Over2TB_

050721.zip

50

BIOS CONFIGURATION

A single volume set is created and consumes all or a portion of the disk capacity available in this RAID set. Define the capacity of volume set in the “Available Capacity” popup. The default value for the volume set, which is 100% of the available capacity, is displayed in the selected capacity. Use the UP and DOWN keys to select the capacity, press the Enter key to accept this value. If the volume set uses only part of the RAID set capacity, you can use the “Create Volume Set option in the main menu to define additional volume sets.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Total 4 Drives

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid 0

Raid 1 + 0

Available Capacity : 160.1GB

Selected Capacity : 160.1GB

Raid 1 + 0 + Spare

Raid 3

Raid 5

Raid 3 + Spare

Raid 5 + Spare

Raid 6

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

Stripe Size This parameter sets the size of the stripe written to each disk in a RAID 0, 1, 10, 5, or 6 logical drive. You can set the stripe size to 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, or 128 KB.

A larger stripe size produces better-read performance, especially if your computer does mostly sequential reads. However, if you

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Total 4 Drives

Available Capacity : 160.1GB

Selected Capacity : 160.1GB

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid 0

Raid 1 + 0

Raid 1 + 0 + Spare

Raid 3

Raid 5

Raid 3 + Spare

Raid 5 + Spare

Raid 6

Select Strip Size

4K

8K

16K

32K

64K

128K

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

51

BIOS CONFIGURATION are certain that your computer performs random reads more often, select a smaller stripe size.

Press the Yes option in the “Create Vol/Raid Set” dialog box, the

RAID set and volume set will start to initialize it.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Available Capacity : 160.1GB

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Total 4 Drives

Selected Capacity : 160.1GB

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid 0

Raid 1 + 0

Raid 1 + 0 +

Spare

Raid 3

Raid 5

Raid 3 + Spare

Raid 6

Select Strip Size

Yes

No

4K

8K

16K

32K

64K

128K

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

Select “Foreground (Faster Completion)” or “Background (Instant

Available)” for initialization. “No Init (To Rescue Volume)” for recovering the missing RAID set configuration

Controller I/O Port:F3000000h, F2: Sel “Noect Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Total 4 Drives

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid 5

Raid 3 + Spare

Raid 5 + Spare

Raid 6

Available Capacity : 160.1GB

Selected Capacity : 160.1GB

Raid 0

Raid 1 + 0

Raid 1 + 0 + Spare

Raid 3

Initialization Mode

Foreground (Faster Completion)

Background (Instant Available)

16K

32K

64K

128K

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.2 Raid Set Function

Manual configuration gives complete control of the RAID set setting, but it will take longer to configure than “Quick Volume/Raid

Setup” configuration. Select “Raid Set Function” to manually configure the RAID set for the first time or delete existing RAID sets and reconfigure the RAID set.

52

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.2.1 Create Raid Set

To define a RAID set, follow the procedure below:

1. Select “Raid Set Function” from the main menu.

2. Select “Create Raid Set “ from the “Raid Set Function” dialog box.

3. A “Select SATA Drive For Raid set” window is displayed showing the SATA drives connected to the current controller.

Press the UP and DOWN arrow keys to select specific physical drives. Press the Enter key to associate the selected physical drive with the current RAID set. Repeat this step; the user can add as many disk drives as are available to a single RAID set.

When finish selecting SATA drives for RAID set, press the Esc key. A “Create Raid Set Confirmation” screen appears, select the

Yes option to confirm it.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Raid Set Function

Quick Volume/Raid Setup

Create Raid Set

Volume Set Function

Physical Drives

Select IDE Drives For Raid Set

[*]Ch01| 80.0GBST380013AS

Raid System Function

Ethernet Configuration

View System Events

[ ]Ch08| 80.0GBST380013AS

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

53

BIOS CONFIGURATION

4. An “Edit The Raid Set Name” dialog box appears. Enter 1 to

15 alphanumeric characters to define a unique identifier for the

RAID set. The default RAID set name will always appear as Raid

Set. #.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Raid Set Function

Quick Volume/Raid Setup

Create Raid Set

Delete Raid Set

Expand Raid Set

Raid System Function

Edit The Raid Set Name

Delete Hot Spare

Raid Set Information

Hardware Monitor

System Information

Select IDE Drives For Raid Set

[*]Ch01| 80.0GBST380013AS

Ethernet Configuration

View System Events

Clear Event Buffer

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.2.2 Delete Raid Set

To erase and reconfigure a RAID set completely, you must delete it and re-create the RAID set first. To delete a RAID set, select the RAID set number that user want to delete in the “Select Raid

Set to Delete” screen. The “Delete Raid Set” dialog box appears, then press Yes option to delete it. Please noticed data on RAID set will be lost if this option is used.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Delete Raid Set

Physical Drives

Raid System Function

Create Hot Spare

View System Events

Raid Set # 00

Raid Set # 01

Raid Set Information

Hardware Monitor

System Information

Are you Sure?

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

54

BIOS CONFIGURATION

3.7.2.3 Expand Raid Set

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Delete Raid Set

Exp

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Select Drives For Raid Set Expansion

Activate Raid Set

Create Hot Spare

Delete Hot Spare

Raid Set Information

Are you Sure?

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

Instead of deleting a RAID set and recreating it with additional disk drives, the “Expand Raid Set” function allows the users to add disk drives to the RAID set that have already been created.

To expand a RAID set:

Select the “Expand Raid Set” option. If there is an available disk, then the “Select SATA Drives For Raid Set Expansion” screen appears.

Select the target RAID set by clicking on the appropriate radio button. Select the target disk by clicking on the appropriate check box.

Press the Yes option to start the expansion on the RAID set.

The new additional capacity can be utilized by one or more volume sets. The volume sets associated with this RAID set appear for you to have chance to modify RAID level or stripe size.

Follow the instruction presented in the “Modify Volume Set ” to modify the volume sets; operation system specific utilities may be required to expand operating system partitions.

Note:

1. Once the “Expand Raid Set” process has started, user can not stop it. The process must be completed.

2. If a disk drive fails during raid set expansion and a hot spare is available, an auto rebuild operation will occur after the RAID set expansion completes.

55

BIOS CONFIGURATION

• Migrating

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Volume Set Function

Physical Drives

The Raid Set Information

Expand Raid Set

Activate Raid Set

Create Hot Spare

Delete Hot Spare

Free Capacity : 144.1GB

Min Member Disk Size : 40.0GB

Member Disk Channels : 1234

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

Migration occurs when a disk is added to a RAID set. Migrating state is displayed in the RAID state area of “The Raid Set

Information” screen when a disk is being added to a RAID set.

Migrating state is also displayed in the associated volume state area of the “Volume Set Information” which belongs this RAID set.

3.7.2.4 Activate Incomplete Raid Set

The following screen is used to activate the RAID set after one of its disk drive was removed in the power off state.

When one of the disk drives is removed in power off state, the RAID set state will change to “Incomplete State”. If a user wants to continue to work while the SATA RAID controller is powered on, the user can use the “Activate Raid Set” option to active the RAID set. After user selects this function, the RAID state will change to “Degraded Mode”.

56

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Create Hot Spare

Delete Hot Spare

Raid Set Information

Hardware Monitor

Total Capacity : 160.1GB

Free Capacity : 144.1GB

Min Member Disk Size : 40.0GB

Member Disk Channels : 1234

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.2.5 Create Hot Spare

When you choose the “Create Hot Spare” option in the “Raid Set

Function”, all unused physical devices connected to the current controller will result in the following:

Select the target disk by clicking on the appropriate check box.

Press the Enter key to select a disk drive and press Yes option in the “Create Hot Spare” to designate it as a hot spare.

The “Create Hot Spare” option gives you the ability to define a global hot spare.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Raid Set Function

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

[*]Ch05| 80.0GBST380013AS

Create Hot Spare

View System Events

Raid Set Information

Are you Sure?

Yes

No

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

57

BIOS CONFIGURATION

3.7.2.6 Delete Hot Spare

Select the target hot spare disk to delete by clicking on the appropriate check box.

Press the Enter keys to select a hot spare disk drive, and press

Yes in the “Delete Hot Spare” screen to delete the hot spare.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Expand Raid Set

[*]Ch05| 80.0GBST380013AS

Delete Hot Spare

Clear Event Buffer

Hardware Monitor

System Information

Are you Sure?

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.2.7 Raid Set Information

To display RAID set information, move the cursor bar to the desired RAID set number, then press the Enter key. The “Raid Set

Information” will display.

You can only view information for the RAID set in this screen.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Physical Drives

The Raid Set Information

Volume Set Function

Expand Raid Set

Activate Raid Set

Create Hot Spare

Delete Hot Spare

Min Member Disk Size : 80.0GB

Member Disk Channels : 1458

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

58

BIOS CONFIGURATION

3.7.3 Volume Set Function

A volume set is seen by the host system as a single logical device; it is organized in a RAID level within the controller utilizing one or more physical disks. RAID level refers to the level of data performance and protection of a volume set. A volume set can consume all of the capacity or a portion of the available disk capacity of a RAID set. Multiple volume sets can exist on a RAID set. If multiple volume sets reside on a specified RAID set, all volume sets will reside on all physical disks in the RAID set. Thus each volume set on the RAID set will have its data spread evenly across all the disks in the RAID set. This is with regards in having more than one volume set using some of the available disks and another volume set using other disks.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Create Volume Set

Delete Volume Set

Raid System Function

Ethernet Configuration

Check Volume Set

StopVolume Check

Clear Event Buffer

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.3.1 Create Volume Set

1. Volume sets of different RAID levels may coexist on the same

RAID set.

2. Up to 16 volume sets can be created by the SATA RAID

controller.

3. The maximum addressable size of a single volume set is not

limited to 2TB because the controller is capable of 64-bit

mode. However, the operating system itself may not be

capable of addressing more than 2TB.

To create a volume set, follow the following steps:

1. Select the “Volume Set Function” from the main menu.

2. Choose the “Create Volume Set” from “Volume Set Functions” dialog box screen.

59

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Delete Volume Set

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid Set # 00

Raid Set # 01

StopVolume Check

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3. The “Create Volume From RAID Set” dialog box will be appeared. This screen displays the existing arranged RAID sets.

Select the RAID set number and press the Enter key. The “Volume Creation” dialogue is displayed in the screen.

4. A window with a summary of the current volume set’s settings. The “Volume Creation” option allows user to select the

Volume Name, Capacity, RAID Level, Strip Size, SCSI Channel/

SCSI ID/SCSI LUN, Cache Mode and Tag Queuing. The user can modify the default values in this screen; the modification procedures are in section 3.5.3.3.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives Volume Name : Volume Set # 00

Raid Level : 5

Capacity : 160.1GB

View System Events

Clear Event Buffer

Hardware Monitor

System Information

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

5. After completing the modification of the volume set, press the

Esc key to confirm it. An “Initialization” screen is presented.

• Select “Foreground (Faster Completion)” for faster initialization of the selected volume set.

• Select “Background (Instant Available)” for normal initialization of the selected volume set.

60

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

Raid Level : 5

Capacity : 160.1GB

View System Events

Clear Event Buffer

Hardware Monitor

System Information

SCSI Channel : 0

SCSI ID : 0

Background (Instant Available)

No Init (To Rescue Volume)

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

• Select "No Init (To Rescue Volume)" for no initialization of the selected volume set.

6. Repeat steps 3 to 5 to create additional volume sets.

7. The initialization percentage of volume set will be displayed at the button line.

• Volume Name

The default volume name will always appear as Volume Set #.

You can rename the volume set providing it does not exceed the 15 characters limit.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

Check Volume Set

View System Events

Clear Event Buffer

Volume Name : Volume Set # 00

Ethernet Configuration

Raid Set # 01

StopVolume Check

SCSI Channel : 0

Hardware Monitor

System Information

SCSI ID : 0

SCSI LUN : 0

Edit The Volume Name

Cache Mode : Write Back

Tag Queuing : Enabled

V olume Set # 00

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

• Raid Level

Set the RAID level for the volume set. Highlight RAID Level and press Enter.

61

BIOS CONFIGURATION

The available RAID levels for the current volume set are displayed. Select a RAID level and press the Enter key to confirm.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

StopVolume Check

Clear Event Buffer

Hardware Monitor

Raid Level : 5

Capacity : 160.1GB

View System Events

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Select Raid Level

Cache Mode : Write Back

Tag Queuing : Enabled

0

0 + 1

3

5

6

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

• Capacity

The maximum available volume size is the default value for the first setting. Enter the appropriate volume size to fit your application. The capacity value can be increased or decreased by the UP and DOWN arrow keys. The capacity of each volume set must be less than or equal to the total capacity of the RAID set on which it resides.

If volume capacity will exceed 2TB, controller will show the

"Greater Two TB Volume Support" sub-menu.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Available Capacity : 160.1GB

Volume Set Function

Raid Set Function

Volume Creation

Delete Volume Set

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Selected Capacity : 160.1GB

Raid Set # 00

Raid Set # 01

Hardware Monitor

System Information

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

62

BIOS CONFIGURATION

No

It keeps the volume size with max. 2TB limitation.

LBA 64

This option uses 16 bytes CDB instead of 10 bytes. The maximum volume capacity supports up to 512TB.

This option works on different OS which supports 16 bytes CDB.

Such as:

Windows 2003 with SP1

Linux kernel 2.6.x or latter

For Windows

It change the sector size from default 512 Bytes to 4k Byetes. the maximum volume capacity up to 16TB.

This option works under Windows platform only. And it can not be converted to Dynamic Disk, because 4k sector size is not a standard format.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Greater Two TB Volume Support

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Total 4 Drives

No

Use 64bit LBA

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Raid 0

Raid 1 + 0

Raid 1 + 0 + Spare

Raid 3

Raid 5

Raid 3 + Spare

Raid 5 + Spare

Raid 6

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

For more details please download PDF file from ftp://ftp. areca.com.tw/RaidCards/Documents/Manual_Spec/

Over2TB_050721.zip

63

BIOS CONFIGURATION

• Stripe Size

This parameter sets the size of segment written to each disk in a RAID 0, 1, 10, 5, or 6 logical drive. You can set the stripe size to 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, or 128 KB.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Physical Drives

Volume Creation

Delete Volume Set

Raid System Function

Ethernet Configuration

View System Events

Raid Set # 00

Raid Set # 01

StopVolume Check

Clear Event Buffer

Capacity : 160.1GB

Stripe Size : 64K

Hardware Monitor

System Information

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

• SCSI Channel

The SATA RAID controller function simulates a SCSI RAID controller. The host bus represents the SCSI channel. Choose the

“SCSI Channel”. A “Select SCSI Channel” dialog box will appears; select the channel number and press the Enter key to confirm it.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Raid Set # 00

Capacity : 160.1GB

View System Events

Clear Event Buffer

Hardware Monitor

System Information

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

64

BIOS CONFIGURATION

• SCSI ID

Each device attached to the SATA card, as well as the card itself, must be assigned a unique SCSI ID number. A SCSI channel can connect up to 15 devices. It is necessary to assign a

SCSI ID to each device from a list of available SCSI IDs.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

StopVolume Check

Clear Event Buffer

Hardware Monitor SCSI ID : 0

System Information

Raid Set # 00

Capacity : 160.1GB

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

• SCSI LUN

Each SCSI ID can support up to 8 LUNs. Most SATA controllers treat each LUN as if it were a SATA disk.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Delete Volume Set

Modify Volume Set

View System Events

Clear Event Buffer

Raid Set # 00

Raid Set # 01

Hardware Monitor

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

65

BIOS CONFIGURATION

• Cache Mode

User can set the cache mode to either “Write Through” or

“Write Back” cache.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Raid Set # 00

Capacity : 160.1GB

View System Events

Clear Event Buffer

Hardware Monitor

System Information

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

• Tag Queuing

This option, when enabled, can enhance overall system performance under multi-tasking operating systems. The Command

Tag (Drive Channel) function controls the SCSI command tag queuing support for each drive channel. This function should normally remain enabled. Disable this function only when using older drives that do not support command tag queuing.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Delete Volume Set

Modify Volume Set

Clear Event Buffer

Hardware Monitor

System Information

Volume Creation

Volume Set Function

Raid System Function

Ethernet Configuration

View System Events

Raid Set # 00

Raid Set # 01

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

66

BIOS CONFIGURATION

3.7.3.2 Delete Volume Set

To delete volume set from a RAID set, move the cursor bar to the “Delete Volume Set” item, then press the Enter key. The

“Volume Set Functions” menu will show all Raid Set # items.

Move the cursor bar to a RAID set number, then press the Enter key to show all volume sets within that RAID set. Move the cursor to the volume set number that is to be deleted and press

Enter key to delete it.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Modify Volume Set

Check Volume Set

StopVolume Check

Display Volume Info.

Hardware Monitor

System Information

Select Volume To Delete

Volume Set # 00

Delete Volume Set

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.3.3 Modify Volume Set

Use this option to modify volume set configuration. To modify volume set values from RAID set system function, move the cursor bar to the “Modify Volume Set” item, then press the Enter key. The “Volume Set Functions” menu will show all RAID set items. Move the cursor bar to a RAID set number item, then press the Enter key to show all volume set items. Select the volume set from the list to be changed, press the Enter key to modify it.

67

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Select Volume To Modify

Volume Name : Volume Set # 00

Hardware Monitor

System Information

SCSI Channel : 0

SCSI ID : 0

SCSI LUN : 0

Cache Mode : Write Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

As shown, volume information can be modified at this screen.

Choose this option to display the properties of the selected volume set; all values can be modified except only the last volume set capacity of the expand RAID set.

3.7.3.3.1 Volume Growth

Use “Expand RAID Set” function to add disk to a RAID set. The additional capacity can be used to enlarge the last volume set size or to create another volume set. The “Modify Volume Set” function can support the “Volume Modification” function. To expand the last volume set capacity , move the cursor bar to the “ Capacity” item and entry the capacity size. When finished the above action, press the ESC key and select the Yes option to complete the action. The last volume set starts to expand its capacity.

To expand an existing volume noticed:

Only the last volume can expand capacity.

When expand volume capacity, you can’t modify stripe size or

modify RAID revel simultaneously.

You can expand volume capacity, but can’t reduce volume

capacity size.

After volume expansion, the volume capacity can't be

decreased.

68

BIOS CONFIGURATION

For greater 2TB expansion:

If your system installed in the volume, don't expand the

volume capacity greater 2TB, currently OS can’t support boot

up from a greater 2TB capacity device.

Expand over 2TB used LBA64 mode. Please make sure your

OS supports LBA64 before expand it.

3.7.3.3.2 Volume Set Migration

Migrating occurs when a volume set is migrating from one RAID level to another, when a volume set strip size changes, or when a disk is added to a RAID set. Migration status is displayed in the volume state area of the “Volume Set Information” screen.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Check Volume Set

StopVolume Check

Clear Event Buffer

Raid Set # 00

Raid Set # 01

RAID Level : 6

Hardware Monitor

System Information

Cache Attribute : Write-Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.3.4 Check Volume Set

Use this option to verify the correctness of the redundant data in a volume set. For example, in a system with a dedicated parity disk drive, a volume set check entails computing the parity of the data disk drives and comparing those results to the contents of the dedicated parity disk drive. To check volume set, move the cursor bar to the “Check Volume Set” item, then press the

Enter key. The “Volume Set Functions” menu will show all RAID set number items. Move the cursor bar to a RAID set number item and then press the Enter key to show all volume set items.

Select the volume set to be checked from the list and press En-

ter key to select it. After completing the selection, the confirmation screen appears, press Yes option to start the check.

69

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

Select Volume To Check

Raid Set # 00

Raid Set # 01

Check The Volume ?

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.3.5 Stop Volume Set Check

Use this option to stop all of the “Check Volume Set” operations.

3.7.3.6 Display Volume Set Info.

To display volume set information, move the cursor bar to the desired volume set number and then press the Enter key. The

“Volume Set Information” screen will be shown. You can only view the information of this volume set in this screen.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Check Volume Set

StopVolume Check

Clear Event Buffer

Raid Set # 00

Raid Set # 01

RAID Level : 6

Hardware Monitor

System Information

Cache Attribute : Write-Back

Tag Queuing : Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

70

BIOS CONFIGURATION

3.7.4 Physical Drives

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Create Pass-Through Disk

Modify Pass-Through Disk

Delete Pass-Through Disk

Identify Selected Drive

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

Choose this option from the main menu to select a physical disk and perform the operations listed above.

3.7.4.1 View Drive Information

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Ch01

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives Disk Capacity : 80.0 GB

Raid System Function

Ch04| 80.0GB|RaidSet Member|ST380013AS

Ch05| 80.0GB|RaidSet Member|ST380013AS

Hardware Monitor

System Information

SMART Read Error Rate : 200 (51)

SMART Spinup Time : 173 (21)

SMART Reallocation Count : 200 (140)

SMART Seek Error Rate : 200 (51)

SMART Spinup Retries : 100 (51)

SMART Calibration Retries : 100 (51)

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

71

BIOS CONFIGURATION

When you choose this option, the physical disks connected to the SATA RAID controller are listed. Move the cursor to the desired drive and press Enter to view drive information.

3.7.4.2 Create Pass-Through Disk

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Modify Pass-Through Disk

Delete Pass-Through Disk

SCSI LUN : 0

Cache Mode : Write Back

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

A pass-through disk is not controlled by the SATA RAID controller firmware and thus can not be a part of a volume set. The disk is available directly to the operating system as an individual disk. It is typically used on a system where the operating system is on a disk not controlled by the SATA RAID controller firmware. The SCSI Channel, SCSI ID, SCSI LUN, Cache Mode, and

Tag Queuing must be specified to create a pass-through disk.

3.7.4.3 Modify a Pass-Through Disk

Use this option to modify pass-through disk attributes. To select and modify a pass-through disk from the pool of pass-through disks, move the cursor bar to the “Modify Pass-Through Drive” option and then press the Enter key. The “Physical Drive Function” menu will show all pass-through drive number options.

Move the cursor bar to the desired item and then press the

Enter key to show all pass-through disk attributes. Select the parameter from the list to be changed and them press the Enter key to modify it.

72

BIOS CONFIGURATION

3.7.4.4 Delete Pass-Through Disk

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Physical Drives

Modify Pass-Through Disk

Delete Pass-Through

Identify Selected Drive

Clear Event Buffer

Hardware Monitor

System Information

Delete Pass-Through

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

To delete a pass-through drive from the pass-through drive pool, move the cursor bar to the “Delete Pass-Through Drive” item, then press the Enter key. The “Delete Pass-Through confirmation” screen will appear; select Yes option to delete it.

3.7.4.5 Identify Selected Drive

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Volume Set Function

Physical Drives Select The Drive

Modify Pass-Through Disk

View System Events

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

You can used the "Identify Selected Drive" feature to prevent removing the wrong drive, the selected drive fault LED will blank when the "Identify Selected Drive" is selected.

73

BIOS CONFIGURATION

3.7.5 Raid System Function

To set the RAID system function, move the cursor bar to the main menu and select the “Raid System Function” item and then press

Enter key. The “Raid System Function” menu will show multiple items. Move the cursor bar to an item, then press Enter key to select the desired function.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.5.1 Mute The Alert Beeper

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Mute The Alert Beeper

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

Mute Alert Beeper

HDD Read Ahead Cache

Stagger Power on

Yes

No

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

The “Mute The Alert Beeper” function item is used to control the

SATA RAID controller beeper. Select Yes option and press the

Enter key in the dialog box to turn the beeper off temporarily.

The beeper will still activate on the next event.

74

BIOS CONFIGURATION

3.7.5.2 Alert Beeper Setting

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Background Task Priority

Maximum SATA Mode

HDD Read Ahead Cache

Stagger Power on

Hardware Monitor

System information

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

Disabled

Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

The “Alert Beeper Setting” item is used to “Disabled or “Enable” the SATA RAID controller alarm tone generator. Select “Disabled” and press the Enter key in the dialog box to turn the beeper off.

3.7.5.3 Change Password

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Mute The Alert Beeper

Alert Beeper Setting

Change Password

JBOD/RAID Function

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

Enter New Password

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

The manufacture default password is set to 0000. The password option allows user to set or clear the password protection feature. Once the password has been set, the user can monitor and configure the controller only by providing the correct password. This feature is used to protect the SATA RAID system from unauthorized access. The controller will check the password only when entering the main menu from the initial

75

BIOS CONFIGURATION screen. The system will automatically go back to the initial screen if it does not receive any command in 20 seconds.

To set or change the password, move the cursor to “Raid System

Function” screen, press the “Change Password” item. The “Enter

New Password” screen will appear.

To disable the password, only press Enter key in both the “Enter

New Password” and “Re-Enter New Password” column. The existing password will be cleared. No password checking will occur when entering the main menu.

3.7.5.4 JBOD/RAID Function

JBOD is an acronym for “Just a Bunch Of Disk”. A group of hard disks in a RAID controllers are not set up as any type of RAID configuration. All drives are available to the operating system as an individual disk. JBOD does not provide data redundancy. User needs to delete the RAID set, when you want to change the option from the RAID to the JBOD function.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

JBOD/RAID Function

Alert Beeper Setting

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

JBOD

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

76

BIOS CONFIGURATION

3.7.5.5 Background Task Priority

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Raid Rebuild Priority

UltraLow(5%)

Low(20%)

Medium(50%)

Background Task Priority

Maximum SATA Mode

HDD Read Ahead Cache

Stagger Power on

Hardware Monitor

System information

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

The “Background Task Priority” is a relative indication of how much time the controller devotes to a rebuild operation. The

SATA RAID controller allows the user to choose the rebuild priority (Ultralow, Low, Normal, High) to balance volume set access and rebuild tasks appropriately.

3.7.5.6 Maximum SATA Mode

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Maximum SATA Mode

Alert Beeper Setting

Change Password

JBOD/RAID Function

Background Task Priority

Maximum SATA Mode

View System Events

Clear Event Buffer

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

The SATA RAID controller can support up to SATA ll, which runs up to 300MB/s, twice as fast as SATA150. NCQ is a command protocol in Serial ATA that can only be implemented on native Serial ATA hard drives. It allows multiple commands to be outstanding within a drive at the same time. Drives that support

NCQ have an internal queue where outstanding commands can

77

BIOS CONFIGURATION be dynamically rescheduled or re-ordered, along with the necessary tracking mechanisms for outstanding and completed portions of the workload. The SATA RAID controller allows the user to choose the SATA Mode: SATA150, SATA150+NCQ, SATA300,

SATA300+NCQ.

3.7.5.7 HDD Read Ahead Cache

Allow Read Ahead (Default: Enabled)—When Enabled, the drive’ s read ahead cache algorithm is used, providing maximum performance under most circumstances.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Mute The Alert Beeper

Alert Beeper Setting

Volume Set Function

Physical Drives

Background Task Priority

Ethernet Configuration

View System Events

Clear Event Buffer

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.5.8 Stagger Power On

In a PC system with only one or two drives, the power can supply enough power to spin up both drives simultaneously. But in systems with more than two drives, the startup current from spinning up the drives all at once can overload the power supply, causing damage to the power supply, disk drives and other system components. This damage can be avoided by allowing the host to stagger the spin-up of the drives. New SATA drives have support stagger spin-up capabilities to boost reliability.

Stagger spin-up is a very useful feature for managing multiple disk drives in a storage subsystem. It gives the host the ability to spin up the disk drives sequentially or in groups, allowing the drives to come ready at the optimum time without straining the system power supply. Staggering drive spin-up in a multiple drive environment also avoids the extra cost of a power supply designed to meet short-term startup power demand as well as steady state conditions.

78

BIOS CONFIGURATION

Areca RAID controller has included the option for customer to select the disk drives sequentially stagger power up value.

The values can be selected from 0.4s to 6s per step which powers up one drive.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

1.0

1.5

.

STagger Power on

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.5.9 Empty HDD slot HDD

The firmware has added the "Empty HDD Slot LED" option to setup the fault LED light "ON "or "OFF" when there is no HDD installedon this slot. When each slot has a power LED for the

HDD installed identify, user can set this option to "OFF ". Choose option "ON", the RAID controller will light the fault LED; if no

HDD installed.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Empty HDD slot LED

System information

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

Empty HDD slot LED

On

OFF

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

79

BIOS CONFIGURATION

3.7.5.10 HDD SMART Status Polling

An external RAID enclosure has the hardware monitor in the dedicated backplane that can report HDD temperature status to the controller. However, PCI cards do not use backplanes if the drives are internal to the main server chassis. The type of enclosure cannot report the HDD temperature to the controller. For this reason, "HDD SMART Status Polling" was added to enable scanning of the HDD temperature function. It is necessary to enable “HDD SMART Status Polling” function before

SMART information is accessible. This function is disabled by default.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Mute The Alert Beeper

Alert Beeper Setting

Change Password

JBOD/RAID Function

Raid System Function

Maximum SATA Mode

HDD Read Ahead Cache

Stagger Power on

Hardware Monitor

System information

HDD SMART Status Polling

HDD SMART Status Polling

Disk Write Cache Mode

Capacity Truncation

Disabled

Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

The above screen shot shows how to change the McBIOS RAID manager setting to enable the polling function.

3.7.5.11 Controller Fan Detection

Included in the product box is a field replaceable passive heatsink to be used only if there is enough airflow to adequately cool the passive heatsink.

The “Controller Fan Detection” function is available in the version 1.36 date: 2005-05-19 and later for preventing the

Buzzer warning. When using the passive heatsink, disable the

“Controller Fan Detection” function through this McBIOS RAID manager setting.

The following screen shot shows how to change the McBIOS

RAID manager setting to disable the beeper function. (This function is not available in the web browser setting.)

80

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Mute The Alert Beeper

Alert Beeper Setting

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Controller Fan Detection

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

Disabled

Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.5.12 Disk Write Cache Mode

User can set the “Disk Write Cache Mode” to Auto, Enabled, or

Disabled. “Enabled” increases speed, “Disabled” increases reliability.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Mute The Alert Beeper

Raid Set Function

Change Password

JBOD/RAID Function

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

Capacity Truncation

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.5.13 Capacity Truncation

SATA RAID controller use drive truncation so that drives from differing vendors are more likely to be able to be used as spares for each other. Drive truncation slightly decreases the usable capacity of a drive that is used in redundant units.

81

BIOS CONFIGURATION

The controller provides three truncation modes in the system configuration: “Multiples Of 10G”, “Multiples Of 1G”, and “No

Truncation”.

Multiples Of 10G: If you have 120 GB drives from different vendors; chances are that the capacity varies slightly. For example, one drive might be 123.5 GB, and the other 120 GB.

“Multiples Of 10G” truncates the number under tens. This makes the same capacity for both of these drives so that one could replace the other.

Multiples Of 1G: If you have 123 GB drives from different vendors; chances are that the capacity varies slightly. For example, one drive might be 123.5 GB, and the other 123.4 GB.

“Multiples Of 1G” truncates the fractional part. This makes the same capacity for both of these drives so that one could replace the other.

No Truncation: It does not truncate the capacity.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

To Multiples of 10G

To Multiples of 1G

Background Task Priority

Ethernet Configuration

View System Events

Clear Event Buffer

Empty HDD slot LED

HDD SMART Status Polling

Controller Fan Detection

Disk Write Cache Mode

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.6 Ethernet Configuration (12/16/24-port)

Use this feature to set the controller Ethernet port configuration.

It is not necessary to create reserved disk space on any hard disk for the Ethernet port and HTTP service to function; these functions are built into the controller firmware. To choose the

"Ethernet Configuration" of the controller, move the cursor bar to the main menu “Ethernet Configuration” function item and then press the Enter key.

82

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.6.1 DHCP Function

DHCP (Dynamic Host Configuration Protocol) allows network administrators centrally manage and automate the assignment of

IP (Internet Protocol) addresses on a computer network. When using the TCP/IP protocol (Internet protocol), it is necessary for a computer to have a unique IP address in order to communicate to other computer systems. Without DHCP, the IP address must be entered manually at each computer system. DHCP lets a network administrator supervise and distribute IP addresses from a central point. The purpose of DHCP is to provide the automatic (dynamic) allocation of IP client configurations for a specific time period (called a lease period) and to minimize the work necessary to administer a large IP network. To config-

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Local IP Address : 192.168.001.100

Ethernet Address : 00.04.D9.7F.FF.FF

Hardware Monitor

System Information

Disabled

Enabled

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

83

BIOS CONFIGURATION ure the DHCP function of the controller, move the cursor bar to

“DHCP Function” item, then press Enter key to show the DHCP setting. Select the “Disabled’ or ‘Enabled” option to enable or disable the DHCP function. If DHCP is disabled, it will be necessary to manually enter a static IP address that does not conflict with other devices on the network.

3.7.6.2 Local IP address

If you intend to set up your client computers manually (no

DHCP), make sure that the assigned IP address is in the same range as the default router address and that it is unique to your private network. However, it is highly recommend to use DHCP if that option is available on your network. An IP address allocation scheme will reduce the time it takes to set-up client computers and eliminate the possibilities of administrative errors and duplicate addresses. To manually configure the local IP address of the controller, move the cursor bar to “Local IP address” item, then press the Enter key to show the default address setting in the SATA RAID controller. You can then reassign the static

IP address of the controller.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Raid System Function

Local IP Address : 192.168.001.100

Ethernet Address : 00.04.D9.7F.FF.FF

Hardware Monitor

System Information

1 92.168.001.100

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

84

BIOS CONFIGURATION

3.7.6.3 Ethernet Address

A MAC address stands for “Media Access Control” address and is unique to every single Ethernet device. On an Ethernet LAN, it’s the same as your Ethernet address. When you’re connected to a local network from the SATA RAID controller Ethernet port, a correspondence table relates your IP address to the SATA RAID controller’s physical (MAC) address on the LAN.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives

Raid System Function

View System Events

Clear Event Buffer

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.7 View System Events

To view the SATA RAID controller’s system events information, move the cursor bar to the main menu and select the “View

System Events” link, then press the Enter key. The SATA RAID controller’s events screen will appear.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Time Device Event Type ElapseTime Errors

Volume Set Function

2004-1-1 12:00:00 H/W Monitor Raid Powered On

Raid System Function

Ethernet Configuration

View System Events

Clear Event Buffer

Hardware Monitor

System information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

85

BIOS CONFIGURATION

Choose this option to view the system events information: Timer,

Device, Event type, Elapsed Time, and Errors. The RAID system does not have a real time clock. The time information is the relative time from the SATA RAID controller powered on.

3.7.8 Clear Events Buffer

Use this feature to clear the entire events buffer.

3.7.9 Hardware Monitor

To view the RAID controller’s hardware monitor information, move the cursor bar to the main menu and click the “Hardware Monitor” link. The hardware information screen appears.

The “The Hardware Monitor” provides the temperature and fan speed (I/O Processor fan) of the SATA RAID controller.

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

Volume Set Function

Physical Drives Battery Status : Not Installed

Raid System Function

Ethernet Configuration

HDD #3 Temp. : 48

Clear Event Buffer

Hardware Monitor

System Information

HDD #7 Temp. : --

HDD #8 Temp. : --

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

3.7.10 System Information

Choose this option to display main processor, CPU instruction

Cache and data cache size, firmware version, serial number, system memory/speed and controller model name. To check the system information, move the cursor bar to “System Information” item, then press Enter key. All relevant controller information will be displayed.

86

BIOS CONFIGURATION

Controller I/O Port:F3000000h, F2: Select Controller, F10: Reboot System

Areca Technology Corporation RAID Controller

Main Menu

Quick Volume/Raid Setup

Raid Set Function

The System Information

Volume Set Function

Physical Drives

Main Processor : 500MHz IOP331

CPU ICache Size : 32KB

CPU DCache Size : 32KB/Write Back

System Memory : 128MB/333MHz

Firmware Version : V1.31 2004-5-31

BOOT ROM Version : V1.34 2004-9-29

Hardware Monitor

System Information

ArrowKey Or AZ:Move Cursor, Enter: Select, ESC: Escape, L:Line Draw, X: Redraw

87

DRIVER INSTALLATION

4. Driver Installation

This chapter describes how to install the SATA RAID controller driver to your operating system. The installation procedures use the following terminology:

Installing operating system on the SATA volume

If you have a new drive configuration without an operating system and want to install operating system on a disk drive managed by the

SATA RAID Controller. The driver installation is a part of the operating system installation.

Installing SATA RAID controller into an existing operating system

The computer has an existing operating system installed and the

SATA RAID controller is being installed as a secondary controller.

Have all required system hardware and software components on hand before proceeding with the setup and installation.

Materials required:

• Microsoft Windows 2000/XP/2003, Linux, FreeBSD or more installa-

tion CD

• SATA RAID Controller Device Drivers Software CD

• SATA RAID controller

4.1 Creating the Driver Diskettes

The software CD disc shipped with the SATA RAID controller is a self booting CD. In order to created driver diskettes for Windows,

Linux, FreeBSD or more installation drivers, your system is required to support booting from the CD-ROM.

If you do not have the software CD disc with the package, contact your local dealer or you can also download the latest version drivers for Windows 2000/XP/2003/Vista, Linux, FreeBSD and more from the Areca web site at http://www.areca.com.tw

88

DRIVER INSTALLATION

These driver diskettes are intended for use with new operating system installations. Determine the correct kernel version and identify which diskette images contain drivers for that kernel. If the driver file ends in .img, create the appropriate driver diskette using

“dd” utility. The following steps are required to create the driver diskettes:

1. The computer system BIOS must be set to boot-up from the

CD-ROM.

2. Insert the SATA Controller Driver software CD disc into the CD-

ROM drive.

3. The system will boot-up from CD-ROM Drive.

Note:

It will take about 5 minutes to boot up the Knoppix

GNU/Linux, Live Linux CD.

4. To create the driver diskette, for example: making the Cen-

tOS 5 driver diskette.

4a. Execute xterm by clicking the XTerm icon on left-bottom

toolbar.

4b. Change the path to the specific driver image.

cd /cdrom/PACKAGES/Linux/DRIVER/CentOS_5

4c. Dump the driver image into floppy diskette using "dd" util

-ity, Command format: dd if=<image file> of=

<destination>

dd if=driver.img of=/dev/fd0

4d. When the operation is complete, the following messages are

shown.

2880+0 records in

2880+0 records out

1474560 bytes (1.5 MB) copied, 97.5903 seconds, 15.1

kB/s

The driver diskette is made now. Proceed to the following instruction for installation procedures.

89

DRIVER INSTALLATION

4.2 Driver Installation for Windows

The SATA RAID controller can be used with Microsoft Windows

2000, Windows XP, Windows Server 2003, and Vista. The SATA

RAID controllers support SCSI Miniport and StorPort device driver for Windows Server 2003/Vista.

4.2.1 New Storage Device Drivers in Windows

2003/XP-64/Vista

The Storport driver is new to Windows 2003/XP-64/Vista. Storport implements a new architecture designed for better performance with RAID systems and in Storage Area Network (SAN) environments. Storport delivers higher I/O throughput, enhanced manageability, and an improved miniport interface. Storport better utilizes faster adapters through the use of reduced Delay

Procedure Call (DPC) and improved queue management.

4.2.2 Install Windows 2000/XP/2003/Vista on a

SATA RAID Volume

The following instructions explain how to install the SATA RAID controller driver. For completed details on installing Windows, see the Windows User’s Manual.

4.2.2.1 Installation Procedures

The following detailed procedure installing the SATA RAID controller driver while installing Windows 2000/XP/2003/Vista. Have your bootable Microsoft Windows 2000/XP/2003/Vista CD and follow the required procedure below to install SATA RAID controller:

1. Make sure you follow the instructions in Chapter 2 “Hardware

Installation” to install the controller and connect the disk drives or enclosure.

2. Start the system and then press Tab+F6 to access the Mc-

BIOS RAID manager. Use the McBIOS RAID manager to create the RAID set and volume set to which you will install Windows.

90

DRIVER INSTALLATION

For details, see Chapter 3 “McBIOS RAID manager”. Once a volume set is created and configured, continue with next step to install the operating system.

3. Insert the Windows setup CD and reboot the system to begin the Windows installation.

Note:

The computer system BIOS must support bootable from

CD-ROM.

4. Press F6 key as soon as the Windows screen shows ”Setup is

Inspecting your Computer’s Hardware Configuration”. A message stating “Press F6 to Specify Thrid-party RAID Controller” will display during this time. This must be done or else the Windows installer will not prompt for the driver for from the SATA RAID controller and the driver diskette will not be recognized.

5. The next screen will show: “Setup could not determine the type of one or more mass storage device installed in your system”. Selected “specify additional SCSI adapter” by pressing S.

6. Window will prompt to place the “Manufacturer-supplied hardware support disk” into floppy drive A: Insert the SATA RAID series driver diskette in drive “A:” and press Enter key.

7. Window will check the floppy; select the correct card and CPU type for your hardware from the listing and press Enter key to install it.

8. After Windows scans the hardware and finds the controller, it will display:

“Setup will load support for the following Mass Storage devices:”

“ARECA [Windows X86-64 Storport] SATA/SAS PCI RAID Controller (RAID6-Engine inside)”. Press Enter key to continue and copy the driver files. From this point on, simply follow the Microsoft Windows installation procedure. Follow the on-screen instructions, responding as needed, to complete the installation.

91

DRIVER INSTALLATION

9. After the installation is completed, reboot the system to load the new drivers/operating system.

10. See Chapter 5 in this manual to customize your RAID volume sets using McRAID storage manager.

4.2.2.2 Making Volume Sets Available to Windows

System

When you reboot the system, log in as a system administrator.

Continue with the following steps to make any additional volume sets or pass-through disks accessible to Windows. This procedure assumes that the SATA RAID controller hardware, driver, and Windows are installed and operational in your system.

1. Partition and format the new volume set or disks using Disk

Administrator: a. Choose “Administrative Tools” from the “Start” menu.

b. Choose “Computer Management” from the “Administrative

Tools” menu.

c. Select “Storage”.

d. Select “Disk Management”.

2. Follow the on-screen prompts to write a signature to the drive.

3. Right click on the disk drive and select “Create Volume” from the menu.

4. Follow the on-screen prompts to create a volume set and to give a disk drive letter.

4.2.3 Installing Controller into an Existing Windows 2000/XP/2003/Vista Installation

In this scenario, you are installing the controller in an existing

Windows system. To install the driver:

1. Follow the instructions in Chapter 2, the Hardware Installation

Chapter, to install the controller and connect the disk drives or enclosure.

92

DRIVER INSTALLATION

2. Start the system and then press Tab+F6 to enter the McBI-

OS RAID manager utility. Use the configuration utility to create the raid set and volume set. For details, see Chapter 3, McBIOS

RAID Manager. Once a volume set is created and configured, continue with installation of the driver.

3. Re-Boot Windows and the OS will recognize the SATA RAID

Controller and launch the “Found New Hardware Wizard”, which guides you in installing the SATA RAID driver.

4. The “Upgrade Device Driver Wizard” will pop-up and provide a choice of how to proceed. Choose “Display a list of known drivers for this device, so that you can choose a specific driver.” and click on “Next.

5. When the next screen queries the user about utilizing the currently installed driver, click on the “Have Disk button.

6. When the “Install From Disk” dialog appears, insert the SATA

RAID controller driver diskette or the shipping CD-ROM and type-in or browse to the correct path for the “Copy manufacturer’s files from:” dialog box.

7. After specifying the driver location, the previous dialog box will appear showing the selected driver to be installed. Click the

“Next” button.

8. The “Digital Signature Not Found” screen will appear. Click on

“Yes to continue the installation.

9. Windows automatically copies the appropriate driver files and rebuilds its driver database.

10. The “Found New Hardware Wizard” summary screen appears; click the “Finish”button.

11. The “System Settings Change” dialog box appears. Remove the diskette from the drive and click Yes option to restart the computer to load the new drivers.

12. See Chapter 5 in this manual for information on customizing your RAID volumes using McRAID storage manager.

93

DRIVER INSTALLATION

4.2.3.1 Making Volume Sets Available to Windows

System

When you reboot the system, log in as a system administrator.

The following steps show how to make any new disk arrays or independent disks accessible to Windows 2000/XP/2003/Vista.

This procedure assumes that the SATA RAID controller hardware, driver, and Windows are installed and operational in your system.

1. Partition and format the new arrays or disks using Disk Administrator: a. Choose “Administrative Tools” from the “Start” menu.

b. Choose “Computer Management” from the “Administrative

Tools” menu.

c. Select “Storage”.

d. Select “Disk Management”.

2. Follow the on-screen prompts to write a signature to the drive.

3. Right click on the drive and select “Create Volume” from the menu.

4. Follow the on-screen prompts to create a volume set and to assign a disk drive letter.

4.2.4 Uninstall controller from Windows 2000/

XP/2003/Vista

To remove the SATA RAID controller driver from the Windows system, follow the instructions below.

1. Ensure that you have closed all applications and are logged in with administrative rights.

2. Open “Control Panel and start the “Add/Remove Program icon and uninstall and software for the SATA RAID controller.

94

DRIVER INSTALLATION

3. Go to “Control Panel” and select “System”. Select the “Hardware” tab and then click the “Device Manager” button. In “Device Manager”, expand the “SCSI and RAID Controllers” section.

Right click on the “Areca SATA RAID Adapter” and select “uninstall”.

4. Click “Yes to confirm removing the SATA RAID driver. The prompt to restart the system will then be displayed.

4.3 Driver Installation for Linux

This chapter describes how to install the SATA RAID controller driver to Red Hat Linux, and SuSE Linux. Before installing the SATA

RAID driver to the Linux, complete the following actions:

1. Install and configure the controller and hard disk drives according to the instructions in Chapter 2 Hardware Installation.

2. Start the system and then press Tab+F6 to enter the McBIOS

RAID manager configuration utility. Use the McBIOS RAID manager utility to create the RAID set and volume set. For details, see

Chapter 3, McBIOS RAID Manager.

If you are using a Linux distribution for which there is not a compiled driver available from Areca, you can copy the source from the

SATA software CD or download the source from the Areca website and compile a new driver.

Compiled and tested drivers for Red Hat and SuSE Linux are included on the shipped CD. You can download updated versions of compiled and tested drivers for Red Hat or SuSE Linux from the Areca web site at http://www.areca.com.tw. Included in these downloads is the Linux driver source, which can be used to compile the updated version driver for RedHat, SuSE and other versions of Linux.

Please refer to the “readme.txt” file on the included Areca software

CD or website to make driver diskette and to install driver to the system.

95

DRIVER INSTALLATION

4.4 Driver Installation for FreeBSD

This chapter describes how to install the SATA RAID controller driver to FreeBSD. Before installing the SATA RAID driver to Free-

BSD, complete following actions:

1. Install and configure the controller and hard disk drives according to the instructions in Chapter 2, Hardware Installation.

2. Start the system and then press Tab+F6 to enter the McBIOS

RAID Manager configuration utility. Use the McBIOS RAID manager utility to create the raid set and volume set. For details, see Chapter 3, McBIOS RAID Manager.

The supplied software CD that came with the SATA RAID controller includes compiled and tested drivers for FreeBSD 4.x (4.2 and onwards) and 5.x (5.2 and onwards). To check if a more current version driver is available, please see the Areca web site at http:// www.areca.com.tw.

Please refer to the “readme.txt” file on the SATA RAID controller software CD or website to make driver diskette and to install driver to the system.

4.5 Driver Installation for Solaris 10

Please refer to the “readme.txt” file on the software CD or a manual from website: http://www.areca.com.tw

4.6 Driver Installation for Mac 10.x

After hardware installation, the SATA disk drives connected to the

SATA RAID Adapter must be configured and the volume set units initialized by the controller before they are ready to use by the system.

You must have administrative level permissions to install Areca Mac driver & software. You can install driver& software on your Power

Mac G5 or Mac Pro as below:

1. Insert the Areca Mac driver & software CD that came with your Areca SATA RAID Adapter.

96

DRIVER INSTALLATION

2. Double-click on the following file that resides at <CD-ROM>\ packages\MacOS to add the installer on the Finder.

a). install_mraid_mac.zip (For Power Mac G5) b). install_mraid_macpro.zip (For Mac Pro)

3. Launch the installer by double-clicking the install_mraid_mac or install_mraid_macpro on the Finder.

4. Follow the installer steps to install Areca driver, MRAID (archttp64 and arc_cli utility) at the same time.

5. Reboot your Power Mac G5 or Mac Pro system.

Normally archttp64 and arc_cli are installed at the same time on

Areca SATA RAID adapter. Once archttp64 and arc_cli have been installed, the background task automatically starts each time when you start your computer. There is one MARID icon showing on your desktop. This icon is for you to start up the McRAID storage manager (by archttp64) and arc_cli utility. You can also only upgrade the driver, archttp64 or arc_cli individual item that resides at <CD-ROM>\packages\MacOS Arc-cli performs many tasks at the command line. You can download arc-cli manual from Areca website or software CD <CDROM>\ DOCS directory.

4.7 Driver Installation for UnixWare 7.1.4

Please refer to the “readme.txt” file on the software CD or a manual from website: http://www.areca.com.tw

97

DRIVER INSTALLATION

4.8 Driver Installation for NetWare 6.5

Please refer to the “readme.txt” file on the software

CD or a manual from website: http://www.areca.com.

98

ARCHTTP PROXY SERVER INSTALLATION

5. ArcHttp Proxy Server Installation

Overview

After hardware installation, the SATA disk drives connected to the SATA

RAID controller must be configured and the volume set units initialized before they are ready to use.

The user interface for these tasks can be accessed through the builtin configuration that resides in the controller’s firmware. It provides complete control and management of the controller and disk arrays, eliminating the need for additional hardware or software.

In addition, a software utility to configure the SATA RAID is provided on the CD delivered with SATA controller. This software CD contains the software utility that can monitor, test, and support the SATA RAID controller. The software utility and McRAID storage manager can configure and monitor the SATA RAID controller via ArcHttp proxy server.

The following table outlines their functions:

Configuration Utility

McBIOS RAID Manager

McRAID Storage Manager

(Via Archttp proxy server)

SAP Monitor (Single Admin portal to scan for multiple RAID units in the network, Via ArcHttp Proxy Server)

Operating System Supported

OS-Independent

Windows 2000/XP/2003, Linux, FreeBSD,

Solaris and Mac

Windows 2000/XP/2003

From version 1.6 and later, the HTTP management software (ArcHttp) runs as a service or daemon, and have it automatically start the proxy for all controllers found. This way the controller can be managed remotely without having to sign in the server. The HTTP management software (ArcHttp) also has integrated the General Configuration, Mail

Configuration and SNMP Configuration. Those can be configured in local or remote standard web browser.

Note:

If your controller have onboard LAN port, you do not need to install ArcHttp proxy server, you can use McRAID storage manager directly.

99

ARCHTTP PROXY SERVER INSTALLATION

5.1 For Windows

You must have administrative level permissions to install SATA

RAID software. This procedure assumes that the SATA RAID hardware and Windows are installed and operational in your system.

Screen captures in this section are taken from a Windows XP installation. If you are running another version of Windows, your instalation screen may look different, but the ArcHttp proxy server installation is essentially the same.

1. Insert the RAID controller software CD in the CD-ROM drive.

2. Run the setup.exe file that resides at: <CD-ROM>\PACKAGES\

Windows\http\setup.exe on the CD-ROM.

3. The screen shows “Preparing to Install”.

Follow the on-screen prompts to complete ArcHttp proxy server software installation.

A program bar appears that measures the progress of the

ArcHttp setup. When this screen complete, you have completed the ArcHttp proxy server software setup.

4. After a successful installation, the “Setup Complete” dialog box is displayed.

100

Click the “Finish button to complete the installation.

ARCHTTP PROXY SERVER INSTALLATION

Click on the “Start” button in the Windows task bar and then click “Program”, select the “McRAID” and run “ ArcHttp proxy server”. The ArcHttp proxy server dialog box appears.

1. When you select Controller#01(PCI) then click “Start” button. Then web broswer McRAId storage manager appears.

2. If you select Cfg Assistant then click Start button. The

“ArcHttp Configuration” appears. (Please refer to section 5.6

ArcHttp Configuration)

5.2 For Linux

You should have administrative level permissions to install SATA

RAID software. This procedure assumes that the SATA RAID hardware and Linux are installed and operational in your system.

The following details the Linux installation procedure of the SATA

RAID controller software.

The ArcHttp proxy server is provided on the software CD delivered with SATA card or download from the www.areca.com.tw. The firmware embedded McRAID storage manager can configure and monitor the SATA RAID controller via ArcHttp Proxy Server.

1. Login as root. Copy the ArcHttp file to a local directory.

(1). Insert the SATA RAID controller CD in the CD-ROM drive.

101

ARCHTTP PROXY SERVER INSTALLATION

(2). Copy <CD-ROM>\PACKAGES\Mac\http directory to local (Ex:/ usr/local/sbin).

Or

(1). Download from the www.areca.com.tw or from the email attachment.

2. You must have administrative level permissions to install SATA

RAID controller ArcHttp proxy server software. This procedure assumes that the SATA RAID hardware and driver are installed and operational in your system.

The following details are the installation procedure of the SATA

RAID controller for Linux ArcHttp proxy server software.

(1).Run the Archttp proxy server by using the following command:

Usage: ./archttp32 (TCP_PORT) or ./archttp64 (TCP_PORT). It depends on your OS version.

Parameters: TCP_PORT value= 1~65535 (If TCP_PORT assigned,

Archttp will start from this port. Otherwise, it will use the setting in the archttpsrv.conf or default 81). This is the port address assigning for the first adapter.

Such as: archttp64 1553

(2). Archttp server console started, controller card detected then

ArcHttp proxy server screen appears.

Copyright (c) 2004 Areca, Inc. All Rights Reserved.

Areca HTTP proxy server V1.80.240 for Areca RAID controllers.

Controller(s) list

--------------------------------------------

Controller[1](PCI) : Listen to port[1553].

Cfg Assistant : Listen to port[1554].

Binding IP:[0.0.0.0]

Note: IP[0.0.0.0] stands for any ip bound to this host.

--------------------------------------------

##############################

Press CTRL-C to exit program!!

##############################

Controller [1] Http: New client [9] accepted

102

ARCHTTP PROXY SERVER INSTALLATION

Controller [1] Http: New Recv 243 bytes

Controller [1] Http: Send [174] bytes back to the client

(3). If you need the Cfg Assistant”, please refer to section 5.6

ArcHttp Configuration.

(4). See the next chapter detailing the McRAID storage manager to customize your RAID volume set.

5.3 For FreeBSD

You should have administrative level permissions to install SATA

RAID software. This procedure assumes that the SATA RAID hardware and FreeBSD are installed and operational in your system.

The following details FreeBSD installation procedure of the SATA

RAID controller software.

1. Insert the RAID controller CD in the CD-ROM drive.

2. Copy <CD-ROM>\PACKAGES\FreeBSD\http directory to local

The next following step is the same with Linux. Please see section

5.2 For Linux.

5.4 For Solaris 10 x86

You must have administrative level permissions to install SATA RAID software. This procedure assumes that the SATA RAID hardware and FreeBSD are installed and operational in your system.

The following details Solaris installation procedure of the SATA

RAID controller software.

1. Insert the RAID subsystem CD in the CD-ROM drive.

2. Copy <CD-ROM>\PACKAGES\Solaris\http directory to local The next following step is the same with Linux. Please see section 5.2

For Linux.

5.5 For Mac OS 10.x

The ArcHttp proxy server is provided on the software CD delivered with SATA card or download from the www.areca.com.tw. The

103

ARCHTTP PROXY SERVER INSTALLATION

firmware embedded McRAID storage manager can configure and monitor the SATA RAID controller via ArcHttp proxy server. The

Archttp proxy server for Mac, please reference Chapter 4.6 Driver

Installation for Mac 10.x or refer to the the Mac_manual_xxxx.

pdf that resides at CD <CD-ROM>\DOCS directory. You can install driver, archttp64 and arc-cli from software CD < CD >\package\

Mac OS directory at the same time.

5.6 ArcHttp Configuration

The ArcHttp proxy server will automatically assign one additional port for setup its configuration. If you want to change the "archttpsrv.conf" setting up of ArcHttp configuration, For example: General

Configuration, Mail Configuration, and SNMP Configuration, please start web browser by entering http://[computer IP address]:[cfg port number]

104

The ArcHttp configuration starts.

• General Configuration

Binding IP 0.0.0.0: You can choose either local adminstration or remote adminstration to connect web browser.

Binding IP 127.0.0.1: Using local adminstration to connect web browser.

Binding IP 192.166.0.44: Using remote adminstration to connect web browser.

HTTP Port#: Value 1~65535

Display HTTP Connection Information To Console: Select Yes to show Http send bytes and receive bytes information in the console.

ARCHTTP PROXY SERVER INSTALLATION

Scanning PCI Device: Select “Yes” for ARC-1XXX series adapter

Scanning RS-232 Device: No

Scanning Inband Device: No

• Mail Configuration

When you open the mail configuration page, you will see following settings:

SMTP server IP Address: Enter the SMTP server IP address which is not McRAID storage manager IP. Ex: 192.168.0.2

Sender Name: Enter the sender name that will be shown in the outgoing mail. Ex: RaidController_1

Mail address: Enter the sender email that will be shown in the outgoing mail, but don’t type IP to replace domain name.

Ex: [email protected]

Account: Enter the valid account if your SMTP mail server need authentication.

Password: Enter the valid password if your SMTP mail server need authentication.

105

ARCHTTP PROXY SERVER INSTALLATION

MailTo Name: Enter the alert receiver name that will be shown in the outgoing mail.

Mail Address: Enter the alert receiver mail address.

Ex: [email protected]

Note:

Please make sure you have completed mail address before you submit mail configurations.

• SNMP Trap Configuration

Please refer to the 6.8.4 SNMP configuration(12/16/24-port) section.

Configure configuration and submit. After ArcHttp configurations have successfully submitted, the Archttp console restarts again.

106

Note:

Event Notification Table refer to Appendix D.

After you confirm and submit configurations, you can use

"Generate Test Event" feature to make sure these settings are correct.

WEB BROWSER-BASED CONFIGURATION

6. Web Browser-based Configuration

Before using the firmware-based browser McRAID storage manager utility, do the initial setup and installation of this product. If you need to boot up the operating system from a volume set, you must first create a RAID volume by using McBIOS RAID Manager. Please refer to section 3.3 Using Quick Volume /Raid Setup Configuration for information on creating this initial volume set.

The McRAID storage manager is firmware-based utility, which is accessible via the browser installed on your operating system. The web browser-based McRAID storage manager is a HTML-based application, which utilizes the browser (IE, Netscape and Mozilla etc) installed on your monitor station.

It can be accessed through the In-Band PCI-X/PCIe bus or Out-of-Band

Ethernet port. The In-Band method via archttp proxy server to launch the web browser-based McRAID storage manager. The firmware-embedded web browser-based McRAID storage manager allows local or remote to access it from any standard internet browser via a LAN or

WAN with no software or patches required. The firmware contains

SMTP manager monitors all system events and user can select either single or multiple user notifications to be sent via LAN with “Plain English” e-mails. The firmware-embedded SNMP agent allows remote to monitor events via LAN with no SNMP agent required.

• Create RAID set,

• Expand RAID set,

• Define volume set,

• Add physical drive ,

• Modify volume set,

• Modify RAID level/stripe size,

• Define pass-through Disk drives,

• Modify system function,

• Update firmware, and

• Designate drives as hot spares.

6.1 Start-up McRAID Storage Manager

With the McRAID storage manager, you can locally manage a system containing a SATA RAID controller that has Windows,

107

WEB BROWSER-BASED CONFIGURATION

Linux or more and a supported browser. A locally managed system requires all of the following components:

• A supported web browser, which should already be installed on

the system.

• Install ArcHttp proxy server on the SATA RAID system. (Refer to

Chapter 5, Archttp Proxy Server Installation)

• Remote and managed systems must have a TCP/IP connection.

• Start-up McRAID Storage Manager from Windows

Local Administration

Screen captures in this section are taken from a Windows XP installation. If you are running another version of Windows, your screens may look different, but the ArcHttp proxy server installation is essentially the same.

1. To start the McRAID storage manager for browser-based management, selecting "Controller#01(PCI)" and then click the

“Start“ button.

108

The “Enter Network Password” dialog screen appears, type the user name and password. The SATA RAID controller default user name is “admin” and the password is “0000”. After entering the user name and password, press “Enter” to access the McRAID storage manager.

WEB BROWSER-BASED CONFIGURATION

• Start-up McRAID Storage Manager from Linux/

FreeBSD/Solaris/Mac Local Administration

To configure the SATA RAID controller. You need to know its IP address. You can find the IP address assigned by the Archttp proxy server installation:Binding IP:[X.X.X.X] for[Computer IP

Address] and controller listen to port for [Port Number].

(1). Launch your McRAID storage manager by entering http://

[Computer IP Address]:[Port Number] in the web browser.

(2). When connection is established, the "System Login" screen appears. The SAS RAID controller default User Name is “admin” and the Password is “0000”

• Start-up McRAID Storage Manager Through Ethernet port (Out-of-Band)

Areca now offers an alternative means of communication for the PCIe RAID controller – Web browser-based McRAID storage manager program. User can access the built-in configuration without needing system starting up running the ArcHttp proxy sever. The web browser-based McRAID storage manager program is an HTML-based application, which utilizes the browser installed on your remote system.

To ensure proper communications between the PCIe RAID controller and web browser-based McRAID storage manager,

Please connect the RAID controller LAN port to any LAN switch port.

The controller has embedded the TCP/IP & web browser-based

RAID manager in the firmware. User can remote manage the

RAID controller without adding any user specific software

(platform independent) via standard web browsers directly connected to the 10/100 RJ45 LAN port.

109

WEB BROWSER-BASED CONFIGURATION

To configure RAID controller on a remote machine, you need to know its IP address. The IP address will default show in

McBIOS RAID manager of “Ethernet Configuration” or “System

Information” option. Launch your firmware-embedded TCP/IP & web browser-based McRAID storage manager by entering http://

[IP Address] in the web browser.

Note:

You can find controller Ethernet port IP address in McBIOS

RAID manager “System Information” option.

6.2 McRAID Storage Manager

The McRAID storage manager start-up configuration screen displays the current configuration of your SATA RAID controller. It displays the Raid Set List, Volume Set List, and Physical Disk List.

The RAID set information, volume set information, and drive information can also be viewed by clicking on the “Raid Set Hierarchy” screen. The current configuration can also be viewed by clicking on

“Raid Set Hierarchy” in the main menu.

110

To display RAID set information, move the mouse cursor to the desired RAID set number, then click it. The RAID set information will display. To display volume set information, move the mouse cursor to the desired volume set number, then click it. The volume set information will display. To display drive information, move the mouse cursor to the desired physical drive number, then click it.

The drive information will display.

WEB BROWSER-BASED CONFIGURATION

6.3 Main Menu

The main menu shows all available functions, accessible by clicking on the appropriate link.

Individual Category

Quick Function

RaidSet Functions

VolumeSet Functions

Physical Drives

System Controls

Information

Description

Create a default configuration, which is based on the number of physical disks installed; it can modify the volume set Capacity, Raid Level, and

Stripe Size.

Create a customized RAID set.

Create customized volume sets and modify the existed volume sets parameter.

Create pass through disks and modify the existing pass through drives parameters. Also provides the function to identify disk drives (blinking Fault

LED).

Setting the raid system configuration.

Viewing the controller information. The “RaidSet

Hierarchy” can be viewed through the “RaidSet

Hierarchy” item.

6.4 Quick Function

Note:

In Quick Create, your volume set is automatically configured based on the number of disks in your system. Use the “Raid

Set Functions” and “Volume Set Functions” if you prefer to customize your system.

111

WEB BROWSER-BASED CONFIGURATION

The number of physical drives in the SATA RAID controller determines the RAID levels that can be implemented with the RAID set.

You can create a RAID set associated with exactly one volume set.

The user can change the RAID level, stripe size, and capacity. A hot spare option is also created depending upon the existing configuration.

Click the “Confirm The Operation” check box and click on the “Submit” button in the “Quick Create” screen, the RAID set and volume set will start to initialize.

Note:

If volume capacity exceeds 2TB, controller will show the

"Greater Two TB Volume Support" sub-menu. Greater Two TB

Volume Support option: No, 64bit LBA and For Windows.

For more details please download PDF file from ftp://ftp. areca.com.tw/RaidCards/Documents/Manual_Spec/

Over2TB_050721.zip

6.5 RaidSet Functions

Use the “Raid Set Functions” and “Volume Set Functions” if you prefer to customize your system. Manual configuration can provide full control of the RAID set settings, but it will take longer to complete than the “Quick Volume/Raid Setup” configuration. Select the

“Raid Set Functions” to manually configure the RAID set for the first time or delete and reconfigure existing RAID sets. (A RAID set is a group of disks containing one or more volume sets.)

6.5.1 Create Raid Set

To create a RAID set, click on the “Create Raid Set” link. A “Select The Drive For RAID Set” screen will be displayed showing the drive(s) connected to the current controller. Click on the selected physical drives within the current RAID set. The default RAID set name will always appear as “Raid Set. #”.

Click the “Confirm The Operation” check box and click on the

“Submit” button on the screen; the RAID set will start to initialize.

112

WEB BROWSER-BASED CONFIGURATION

6.5.2 Delete Raid Set

To delete a RAID set, click on the “Deleted Raid Set” link. The

“Select The Raid Set To Delete” screen is displayed showing all existing RAID sets in the current controller. Click the RAID set number you which to delete in the select column on the delete screen. Click the “Confirm The Operation” check box and click on the “Submit” button in the screen to delete it.

6.5.3 Expand Raid Set

Instead of deleting a RAID set and recreating it with additional disk drives, the “Expand Raid Set” function allows the users to add disk drives to the RAID set that have already been created.

To expand a RAID set:

Select the “Expand Raid Set” option. If there is an available disk, then the “Select SATA Drives For Raid Set Expansion” screen appears.

Select the target RAID set by clicking on the appropriate radio button. Select the target disk by clicking on the appropriate check box.

Press the Yes key to start the expansion on the RAID set.

113

WEB BROWSER-BASED CONFIGURATION

The new additional capacity can be utilized by one or more volume sets. The volume sets associated with this RAID set appear for you to have chance to modify RAID level or stripe size. Follow the instruction presented in the “Modify Volume Set ” to modify the volume sets; operation system specific utilities may be required to expand operating system partitions.

Note:

1. Once the “Expand Raid Set” process has started, user can not stop it. The process must be completed.

2. If a disk drive fails during raid set expansion and a hot spare is available, an auto rebuild operation will occur after the RAID set expansion completes.

6.5.4 Activate Incomplete Raid Set

If one of the disk drives is removed in power off state, the RAID set state will change to “Incomplete State”. If the user wants to continue to use the SATA RAID controller, the user can use the

“Activate Raid Set” option to active the RAID set. After the user completes this function, the RAID set state will change to “Degraded Mode”.

114

WEB BROWSER-BASED CONFIGURATION

To activate the incomplete the RAID set, click on the “Activate

Raid Set” link. A “Select The RAID SET To Activate” screen is displayed showing all RAID sets existing on the current controller.

Click the RAID set number to activate in the select column.

Click on the “Submit” button on the screen to activate the RAID set that had a disk removed (or failed) in the power off state. The

SATA RAID controller will continue to work in degraded mode.

6.5.5 Create Hot Spare

When you choose the “Create Hot Spare” option in the “Raid Set

Functions”, all unused physical devices connected to the current controller appear. Select the target disk by clicking on the appropriate check box. Click the “Confirm The Operation” check box and click the “Submit” button in the screen to create the hot spares.

The “Create Hot Spare” option gives you the ability to define a global hot spare.

6.5.6 Delete Hot Spare

Select the target Hot Spare disk to be deleted by clicking on the appropriate check box.

Click the “Confirm The Operation” check box and click the “Submit button on the screen to delete the hot spares.

6.5.7 Rescue Raid Set

When the system is powered off in the RAID set update/creation period, it possibly could disappear due to this abnormal condition.

The “RESCUE” function can recover the missing RAID set informa-

115

WEB BROWSER-BASED CONFIGURATION tion. The RAID controller uses the time as the RAID set signature.

The RAID set may have different time after the RAID set is recovered. The “SIGANT” function can regenerate the signature for the

RAID set.

116

6.5.8 Offline Raid Set

This function is for customer being able to unmount and remount a multi-disk volume. All Hdds of the selected RAID set will be put into offline state, spun down and fault LED in fast blinking mode.

User can remove those Hdds and insert new Hdds on those empty slots without needing power down the controller.

6.6 Volume Set Functions

A volume set is seen by the host system as a single logical device.

It is organized in a RAID level with one or more physical disks.

RAID level refers to the level of data performance and protection of a volume set. A volume set capacity can consume all or a portion of the disk capacity available in a RAID set. Multiple volume sets can exist on a group of disks in a RAID set. Additional volume sets created in a specified RAID set will reside on all the physical disks in the RAID set. Thus each volume set on the RAID set will have its data spread evenly across all the disks in the RAID set.

6.6.1 Create Volume Set

1. Volume sets of different RAID levels may coexist on the same

RAID set.

2. Up to 16 volume sets can be created by the SATA RAID controller.

WEB BROWSER-BASED CONFIGURATION

3. The maximum addressable size of a single volume set is not limited to 2 TB because the controller is capable of 64-bit mode.

However, the operating system itself may not be capable of addressing more than 2 TB. See the Areca website for details.

To create a volume set on a RAID set, move the cursor bar to the main menu and click on the “Create Volume Set” link. This “Select

The Raid Set To Create On It” screen will show all RAID set numbers. Click the RAID set number that to be used and then click the “Submit” button.

The “Enter Volume Attributeid Set=xx” option allows users to select the volume name, capacity, RAID level, strip size, SCSI

ID/LUN, cache mode, and tag queuing.

Volume Name

The default volume name will always appear as “Volume Set.

#”. You can rename the volume set providing it does not exceed the 15 characters limit.

Raid Level

Set the RAID level for the volume set. Highlight the desired

RAID Level and press Enter key. The available RAID levels for the current volume set are displayed. Select a RAID level and press "Enter" to confirm.

Capacity

The maximum volume size is the default initial setting. Enter the appropriate volume size to fit your application.

Greater Two TB Volume Support

If volume capacity exceeds 2TB, controller will show the

117

WEB BROWSER-BASED CONFIGURATION

"Greater Two TB Volume Support" sub-menu. Greater Two TB

Volume Supports: No, 64bit LBA and For Windows options.

For more details please download PDF file from ftp://ftp. areca.com.tw/RaidCards/Documents/Manual_Spec/

Over2TB_050721.zip

Initialization Mode

Press Enter key to define “Background Initialization”,

“Foreground Initialization” or “No Init (To Rescue Volume)”.

When “Background Initialization”, the initialization proceeds as a background task, the volume set is fully accessible for system reads and writes. The operating system can instantly access to the newly created arrays without requiring a reboot and waiting the initialization complete. When “Foreground Initialization”, the initialization proceeds must be completed before the volume set ready for system accesses. There is no initialization happed when you select “No Init” option. “No Init“ is for customer to rescue volume without losing data in the disk.

Stripe Size

This parameter sets the size of the stripe written to each disk in a RAID level 0, 1, 10, 5 or 6 logical drive. You can set the stripe size to 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, or 128 KB.

A larger stripe size produces better read performance, especially if your computer does mostly sequential reads. However, if you are sure that your computer does random reads more often, select a smaller stripe size.

Note: RAID level 3 can’t modify cache stripe size.

Cache Mode

The SATA RAID controller supports “Write Through” and “Write

Back” cache.

SCSI Channel/SCSI ID/SCSI Lun

SCSI Channel: The SATA RAID controller function is simulated as a SCSI RAID controller. The host bus is represented as a

SCSI channel. Choose the SCSI Channel.

SCSI ID: Each SCSI device attached to the SCSI card, as well as the card itself, must be assigned a unique SCSI ID number.

A SCSI channel can connect up to 15 devices. The SATA RAID

118

WEB BROWSER-BASED CONFIGURATION controller is a large SCSI device. Assign an ID from a list of

SCSI IDs.

SCSI LUN: Each SCSI ID can support up to 8 LUNs. Most SATA

RAID controllers treat each LUN like a SATA disk.

Tag Queuing

The Enabled option is useful for enhancing overall system performance under multi-tasking operating systems. The Command Tag (Drive Channel) function controls the SCSI command tag queuing support for each drive channel. This function should normally remain enabled. Disable this function only when using older SATA drives that do not support command tag queuing

6.6.2 Delete Volume Set

To delete a volume set from RAID set, move the cursor bar to the main menu and click on the “Delete Volume Set” link. The “Select

The Raid Set To Delete” screen will show all RAID set numbers.

Click a RAID set number and the “Confirm The Operation” check box and then click the “Submit” button to show all volume set items in the selected RAID set. Click a volume set number and the “Confirm The Operation” check box and then click the “Submit” button to delete the volume set.

6.6.3 Modify Volume Set

To modify a volume set from a RAID set:

(1). Click on the “Modify Volume Set” link.

(2). Click the volume set check box from the list that you wish to

119

WEB BROWSER-BASED CONFIGURATION modify. Click the “Submit” button. The following screen appears.

Use this option to modify the volume set configuration. To modify volume set attributes, move the cursor bar to the volume set attribute menu and click it. The “Enter The Volume Attribute” screen appears. Move the cursor to an attribute item and then click the attribute to modify the value. After you complete the modification, click the “Confirm The Operation” check box and click the

“Submit” button to complete the action. The user can modify all values except capacity.

6.6.3.1 Volume Growth

Use “Expand RAID Set’ function to add disk to a RAID set. The additional capacity can be used to enlarge the last volume set size or to create another volume set. The “Modify Volume Set” function can support the “Volume Modification” function. To expand the last volume set capacity , move the cursor bar to the “ Capacity” item and entry the capacity size. When finished the above action, press the ESC key and select the Yes option to complete the action. The last volume set starts to expand its capacity.

To expand an existing volume noticed:

Only the last volume can expand capacity.

When expand volume capacity, you can’t modify stripe size or

modify RAID revel simultaneously.

You can expand volume capacity, but can’t reduce volume

capacity size.

After volume expansion, the volume capacity can't be

decreased.

For greater 2TB expansion:

If your system installed in the volume, don't expand the

volume capacity greater 2TB, currently OS can’t support boot

up from a greater 2TB capacity device.

Expand over 2TB used LBA64 mode. Please make sure your

OS supports LBA64 before expand it.

120

WEB BROWSER-BASED CONFIGURATION

6.6.3.2 Volume Set Migration

Migrating occurs when a volume set is migrating from one RAID level to another, when a volume set strip size changes, or when a disk is added to a RAID set. Migration status is displayed in the volume state area of the “Volume Set Information” screen.

6.6.4 Check Volume Set

To check a volume set from a RAID set:

(1). Click on the “Check Volume Set” link.

(2). Click on the volume set from the list that you wish to check.

Tick on “Confirm The Operation” and click on the “Submit” button.

Use this option to verify the correctness of the redundant data in a volume set. For example, in a system with dedicated parity, volume set check means computing the parity of the data disk drives and comparing the results to the contents of the dedicated parity disk drive. The checking percentage can also be viewed by clicking on “RaidSet Hierarchy” in the main menu.

121

WEB BROWSER-BASED CONFIGURATION

6.6.5 Stop VolumeSet Check

Use this option to stop the “Check Volume Set function”.

6.7 Physical Drive

Choose this option to select a physical disk from the main menu and then perform the operations listed below.

6.7.1 Create Pass Through Disk

To create pass through disk, move the mouse cursor to the main menu and click on the “Create Pass Through” link. The “Select the

IDE Drive For Pass Through” screen appears. A pass through disk is not controlled by the SATA RAID controller firmware, it cannot be a part of a volume set. The disk is available to the operating system as an individual disk. It is typically used on a system where the operating system is on a disk not controlled by the

RAID firmware. The user can also select the Cache Mode, Tagged

Command Queuing, SCSI channel/SCSI_ID/SCSI_LUN for this pass through disk.

122

WEB BROWSER-BASED CONFIGURATION

6.7.2 Modify Pass Through Disk

Use this option to modify the “Pass Through Disk Attribute”. The user can modify the Cache Mode, Tagged Command Queuing, and SCSI channel/ID/LUN on an existing pass through disk.

To modify the pass through drive attribute from the pass through drive pool, move the mouse cursor bar and click on the “Modify

Pass Through” link. The “Select The Pass Through Disk For Modification” screen appears mark the checkbox for the pass through disk from the pass through drive pool and click on the “Submit” button to select drive.

When the “Enter Pass Through Disk Attribute” screen appears, modify the drive attribute values, as you want.

After you complete the selection, mark the check box for “Confirm

The Operation” and click on the “Submit” button to complete the selection action.

6.7.3 Delete Pass Through Disk

To delete a pass through drive from the pass through drive pool, move the mouse cursor bar to the main menus and click the “Delete Pass Through” link.

After you complete the selection, mark the check box for “Confirm The Operation” and click the “Submit” button to complete the delete action.

123

WEB BROWSER-BASED CONFIGURATION

6.7.4 Identify Selected Drive

To prevent removal of the wrong drive, the selected fault LED will blink so as to physically locate the intended disk when “Identify

Selected Drive” is selected.

To identify the selected drive from the drives pool, click “Identify

Selected Drive”. The “Select The IDE Device For Identification” screen appears mark the check box for the SATA device from the drive pool. After completing the selection, click on the “Submit” button to identify selected drive.

124

6.8 System Controls

6.8.1 System Config

To set the RAID system configuration, move the cursor to the main menu and click the “System Controls” link. The “System

Controls” will show all items, then select the desired function.

System Beeper Setting

The “System Beeper Setting” function item is used to “Disable” or “Enable” the SATA RAID controller alarm tone generator.

Background Task Priority

The ‘Background Task Priority” is a relative indication of how much time the controller devotes to a rebuild operation. The

SATA RAID controller allows the user to choose the rebuild priority (UltraLow, Low, Normal, High) to balance volume set access and rebuild tasks appropriately. For high array performance, specify a “Low” value.

WEB BROWSER-BASED CONFIGURATION

JBOD/RAID Configuration

JBOD is an acronym for “Just a Bunch Of Disk”. A group of hard disks in a RAID controllers are not set up as any type of RAID configuration. All drives are available to the operating system as an individual disk. JBOD does not provide data redundancy. User needs to delete the RAID set, when you want to change the option from the RAID to the JBOD function.

Maximun SATA Supported

The SATA RAID controller can support up to SATA ll, which runs up to 300MB/s. NCQ is a command protocol in Serial ATA that can only be implemented on native Serial ATA hard drives. It allows multiple commands to be outstanding within a drive at the same time. Drives that support NCQ have an internal queue where outstanding commands can be dynamically rescheduled or re-ordered, along with the necessary tracking mechanisms for outstanding and completed portions of the workload. The RAID subsystem allows user to choose the SATA mode (slowest to fastest): SATA150, SATA150+NCQ, SATA300, SATA300+NCQ.

• HDD Read Ahead Cache

Allow Read Ahead (Default: Enabled)—When Enabled, the drive’s read ahead cache algorithm is used, providing maximum performance under most circumstances.

Stagger Power on

In a PC system with only one or two drives, the power is able to supply enough power to spin up both drives simultaneously. But in systems with more than two drives, the startup current from spinning up the drives all at once can overload the power supply, causing damage to the power supply, disk drives and other system components. This damage can be avoided by allowing the host to stagger the spin-up of the drives. New SATA drives have support stagger spin-up capabilities to boost reliability.

Staggered spin-up is a very useful feature for managing multiple disk drives in a storage subsystem. It gives the host the ability to spin up the disk drives sequentially or in groups, allowing the drives to come ready at the optimum time without straining the system power supply. Staggering drive spin-up in a multiple drive environment also avoids the extra cost of a power supply designed to meet short-term startup power demand as well as steady state conditions.

125

WEB BROWSER-BASED CONFIGURATION

SATA RAID controller has included the option for customer to select the disk drives sequentially stagger power up value.

The values can be selected from 0.4s to 6s per step which powers up one drive.

Empty HDD Slot LED

The firmware has added the "Empty HDD Slot LED" option to setup the fault LED light "ON "or "OFF" when there is no HDD installed. When each slot has a power LED for the HDD installed identify, user can set this option to "OFF ". Choose option "ON", the SATA RAID controller will light the fault LED; if no HDD installed.

126

WEB BROWSER-BASED CONFIGURATION

HDD SMART Status Polling

An external RAID enclosure has the hardware monitor in the dedicated backplane that can report HDD temperature status to the controller. However, PCI type controllers do not use backplanes if the drives are internal to the main server chassis.

The type of enclosure cannot report the HDD temperature to the controller. For this reason, "HDD SMART Status Polling" function was added to enable scanning of the HDD temperature function.

It is necessary to enable “HDD SMART Status Polling” function before SMART information is accessible. This function is disabled by default.

The following screen shot shows how to change the setting to enable the polling function.

Disk Write Cache Mode

A user can set the “Disk Write Cache Mode”: Auto, Enabled, or

Disabled.

127

WEB BROWSER-BASED CONFIGURATION

Disk Capacity Truncation Mode

SATA RAID controller use drive truncation so that drives from differing vendors are more likely to be able to be used as spares for each other. Drive truncation slightly decreases the usable capacity of a drive that is used in redundant units.

The controller provides three truncation modes in the system configuration: “Multiples Of 10G”, “Multiples Of 1G”, and “No

Truncation”.

Multiples Of 10G: If you have 120 GB drives from different vendors; chances are that the capacity varies slightly. For example, one drive might be 123.5 GB, and the other 120 GB.

“Multiples Of 10G” truncates the number under tens. This makes the same capacity for both of these drives so that one could replace the other.

Multiples Of 1G: If you have 123 GB drives from different vendors; chances are that the capacity varies slightly. For example, one drive might be 123.5 GB, and the other 123.4 GB.

“Multiples Of 1G” truncates the fractional part. This makes the same capacity for both of these drives so that one could replace the other.

No Truncation: It does not truncate the capacity.

128

WEB BROWSER-BASED CONFIGURATION

6.8.2 Ethernet Configuration (12/16/24-port)

Use this feature to set the controller Ethernet port configuration.

A customer doesn’t need to create a reserved space on the arrays before the Ethernet port and HTTP service are working. The firmware-embedded Web Browser-based RAID storage manager can access it from any standard internet browser or from any host computer either directly connected or via a LAN or WAN with no software or patches required.

DHCP (Dynamic Host Configuration Protocol) is a protocol that lets network administrators manage centrally and automate the assignment of IP (Internet Protocol) configurations on a computer network. When using the internet’s set of protocols (TCP/IP), in order for a computer system to communicate to another computer system, it needs a unique IP address. Without DHCP, the

IP address must be entered manually at each computer system.

DHCP lets a network administrator supervise and distribute IP addresses from a central point. The purpose of DHCP is to provide the automatic (dynamic) allocation of IP client configurations for a specific time period (called a lease period) and to eliminate the work necessary to administer a large IP network.

To configure the RAID controller Ethernet port, move the cursor bar to the main menu and click on the “System Controls” link.

The “System Controls” menu will show all items. Move the cursor bar to the “EtherNet Config” item, then press “Enter key to select the desired function.

129

WEB BROWSER-BASED CONFIGURATION

6.8.3 Alert by Mail Configuration (12/16/24port)

To configure the SATA RAID controller e-mail function, move the cursor bar to the main menu and click on the “System Controls” link. The “System Controls” menu will show all items. Move the cursor bar to the “Alert By Mail Config” item, then select the desired function. This function can only be set via web-based configuration.

The firmware contains a SMTP manager monitoring all system events. Single or multiple user notifications can be sent via “Plain

English” e-mails with no software required.

130

6.8.4 SNMP Configuration (12/16/24-port)

To configure the RAID controller SNMP function, click on the “System Controls” link. The “System Controls” menu will show available items. Select the “SNMP Configuration” item. This function can only set via web-based configuration.

The firmware SNMP agent manager monitors all system events and the SNMP function becomes functional with no agent software required.

WEB BROWSER-BASED CONFIGURATION

SNMP Trap Configurations

Enter the SNMP Trap IP Address.

• SNMP System Configurations

About community, please refer to Appendix C of SNMP community name. The system Contact, Name and Location that will be shown in the outgoing SNMP Trap.

SNMP Trap Notification Configurations

Please refer to Appendix D of Event Notification Table.

6.8.5 NTP Configuration (12/16/24-port)

The “Network Time Protocol (NTP)” is used to synchronize the time of a computer client or server to another server or reference time source, such as a radio or satellite receiver or modem. It provides accuracies typically within a millisecond on LANs and up to a few tens of milliseconds on WANs relative to Coordinated Universal Time (UTC) via a Global Positioning Service (GPS) receiver, for example:

131

WEB BROWSER-BASED CONFIGURATION

132

NTP Sever Address

The most important factor in providing accurate, reliable time is the selection of NTP servers to be used in the configuration file.

Typical NTP configurations utilize multiple redundant servers and diverse network paths in order to achieve high accuracy and reliability. Our NTP configuration supports two existing public NTP synchronization subnets.

Time Zone

The "Time Zone" conveniently runs in the system tray and allows you to view the date and time in various locations around the world easily. You are also able to add your own personal locations to customize time zone the way you want with great ease and less hassle.

Automatic Daylight Saving

The “Automatic Daylight Saving” will normally attempt to automatically adjust the system clock for daylight saving changes based on the computer time zone. This tweak allows you to disable the automatic adjustment.

Note:

NTP feature works through onboard Ethernet port. So you must make sure that you have connected onboard

Ethernet port.

WEB BROWSER-BASED CONFIGURATION

6.8.6 View Events/Mute Beeper

To view the SATA RAID controller’s information, click on the “View

Events/Mute Beeper” link. The SATA RAID controller “System

Events information” screen appears.

Choose this option to view the system events information: Timer,

Device, Event type, Elapse Time and Errors. The RAID system does not have a built-in real time clock. The time information is the relative time from the SATA RAID controller power on.

6.8.7 Generate Test Event

This feature is used to generate events for testing purposes.

133

WEB BROWSER-BASED CONFIGURATION

6.8.8 Clear Events Buffer

Use this feature to clear the entire events buffer information.

6.8.9 Modify Password

To set or change the SATA RAID controller password, select “Modify Password” from the menu and click on the “Modify Password” link. The “Modify System Password” screen appears.

The manufacture default password is set to 0000. The password option allows user to set or clear the SATA RAID controller’s password protection feature. Once the password has been set, the user can only monitor and configure the SATA RAID controller by providing the correct password.

The password is used to protect the SATA RAID controller from unauthorized entry. The controller will check the password only when entering the main menu from the initial screen. The SATA

RAID controller will automatically go back to the initial screen when it does not receive any command in ten seconds.

To disable the password, leave the fields blank. Once the user confirms the operation and clicks the “Submit” button, the existing password will be cleared. After which, no password checking will occur when entering the main menu from the starting screen.

134

WEB BROWSER-BASED CONFIGURATION

6.8.10 Update Firmware

Please refer to the appendix A Upgrading Flash ROM Update Process.

6.9 Information

6.9.1 RaidSet Hierarchy

Use this feature to view the SATA RAID controller current RAID set, current volume set and physical disk configuration. Please reference this chapter “Configuring Raid Sets and Volume Sets”.

135

WEB BROWSER-BASED CONFIGURATION

6.9.2 System Information

To view the SATA RAID controller’s information, move the mouse cursor to the main menu and click on the “System Information” link. The “Raid Subsystem Information” screen appears.

Use this feature to view the SATA RAID controller’s information.

The controller name, firmware version, serial number, main processor, CPU data/instruction cache size and system memory size/ speed appear in this screen.

136

6.9.3 Hardware Monitor

To view the RAID controller’s hardware monitor information, move the mouse cursor to the main menu and click the “Hardware Monitor” link. The “Hardware Monitor Information” screen appears.

The “Hardware Monitor Information” provides the temperature, and fan speed (I/O Processor fan) of the SATA RAID controller.

The ARC-1231/1261/1280/1280ML card interface lists two temperatures; one for the I/O processor and the other one for the controller. The I/O processor temperature is a new feature which detects by a thermal sensor under the IOP341. The processor safe range is 90 Celsius degree and the controller safe range is

70 Celsius degree. If any sensor detects over the safe ranges on these temperatures, you will get a warning event.

WEB BROWSER-BASED CONFIGURATION

137

APPENDIX

Appendix A

Upgrading Flash ROM Update Process

Since the SATA RAID controller features flash firmware, it is not necessary to change the hardware flash chip in order to upgrade the RAID firmware. The user can simply re-program the old firmware through the In-Band PCI-X/PCIe bus or Out-of-Band Enthernet port McRAID storage manager. New releases of the firmware are available in the form of a DOS file on the shipped CD or Areca’s web site. The files available at the FTP site for each model contain the following files in each version:

ARCXXXXNNNN.BIN Software Binary Code (where “XXXX” refers to the model name and “NNNN” refers to the software code type)

ARCXXXXBIOS.BIN : → PCI card BIOS for system board using

ARCXXXXBOOT.BIN : → RAID controller hardware initialization

ARCXXXXFIRM.BIN : → RAID kernel program

ARCXXXXMBR0.BIN: → Master Boot Record for supporting Dual

Flash Image in the SATA ll RAID controller

README.TXT contains the history information of the software code change in the main directory. Read this file first to make sure you are upgrading to the proper binary file. Select the right file for the upgrade. Normally, user upgrades the ARCXXXXBIOS.BIN for system M/B compatibility and ARCXXXXFIRM.BIN for RAID function upgrades.

Note:

Please update all Binary Code (BIOS, BOOT, FIRM and MBR0

) before you reboot system. Otherwise, a mixed firmware package may hang the controller.

138

Upgrading Firmware Through McRAID

Storage Manager

Get the new version firmware for your SATA RAID controller. For example, download the bin file from your OEM’s web site onto the C: drive

APPENDIX

1. To upgrade the RAID controller firmware, move the mouse cursor to “Upgrade Firmware” link. The “Upgrade The Raid System

Firmware” screen appears.

2. Click "Browser". Look in the location to which the firmware upgrade software was downloaded. Select the file name and click

“Open”. All files (BIOS, BOOT, FIRM and MBR0) can be updated through this function.

3. Click “Confirm The Operation” and press the “Submit” button.

4. The web browser begins to download the firmware binary to the controller and start to update the flash ROM.

5. After the firmware upgrade is complete, a bar indicator will show

“Firmware Has Been Updated Successfully”

6. After the new firmware has completed downloading, find a chance to restart the controller/computer for the new firmware to take effect.

The web browser-based McRAID storage manager can be accessed through the In-Band PCI-X/PCIe bus or Out-of-Band LAN port.

The In-Band method uses the ArcHttp proxy server to launch the

McRAID storage manager. The Out-of-Band method allows local or remote to access the McRAID storage manager from any standard internet browser via a LAN or WAN with no software or patches required.

Controller with onboard LAN port, you can directly plug an Ethernet cable to the controller LAN port, then enter the McBIOS RAID manager to configure the network setting. After network setting configured and saved, you can find the current IP address in the

"System Information" page.

139

APPENDIX

From a remote PC, you can directly open a web browser and enter the IP address. Then enter user name and password to login and start your management. You can find the firmware update feature in the browser console: "System Controls" option.

Upgrading Firmware Through nflash DOS

Utility

Areca now offers an alternative means communication for the SATA

RAID controller – Upgrade the all files (BIOS, BOOT, FIRM and

MBR0) without necessary system starting up to running the ArcHttp proxy server. The nflash utility program is a DOS application, which runs in the DOS operating system. Be sure of ensuring properly to communicate between SATA RAID controller and nflash DOS utility.

Please make a bootable DOS floppy diskette or UBS devices from other Windows operating system and boot up the system from those bootable devices.

• Starting the nflash Utility

You do not need to short any jumper cap on running nflash utility.

The nflash utility provides an on-line table of contents, brief descriptions of the help sub-commands. The nflash utility put on the <CD-ROM>\Firmware directory. You can run the <nflash> to get more detailed information about the command usage.

Typical output looks as below:

A:\nflash

Raid Controller Flash Utility

V1.11 2007-11-8

Command Usage:

NFLASH FileName

NFLASH FileName /cn --> n=0,1,2,3 write binary to controller#0

FileName May Be ARC1110FIRM.BIN or ARC1210*

For ARC1110* Will Expand To ARC1110BOOT /FIRM/BIOS.BIN

A:\>nflash arc1210FIRM.BIN

Raid Controller Flash Utility

V1.11 2007-11-8

NODEL : ARC-1110

MEM FE620000 FE7FF000

File ARC1110FIRM.BIN : >>*** => Flash 0K

140

APPENDIX

Note:

Areca SAS and SATA ll RAID controller firmware version

1.43 date: Feb 2007 and later has supported the ATA-8 spec for HDD microcode download, allowing customer using nflash DOS utility or web browser to upgrade ATA-8 spec for microcode download supported HDD's firmware connected with Areca's entire family RAID controllers without necessary removing any single drive and upgrade. Areca has provided one utility for customer to make the ATA-8 spec for microcode download drive’s firmware for readable by Areca firmware.

141

APPENDIX

Appendix B

Battery Backup Module (ARC6120-BAT-

Txx)

The SATA RAID controller operates using cache memory. The Battery Backup Module is an add-on module that provides power to the SATA RAID controller cache memory in the event of a power failure. The Battery Backup Module monitors the write back cache on the SATA RAID controller, and provides power to the cache memory if it contains data not yet written to the hard drives when power failure occurs.

BBM Components

142

Status of BBM

• D13 (Green) : lights when BBM activated

• D14 (Red) : lights when BBM charging

• D15 (Green) : lights when BBM normal

Installation

1. Make sure all power to the system is disconnected.

2. Connector J1 is available for the optional battery backup module. Connect the BBM cable to the 12-pin battery connector on the controller.

3. Integrators may provide pre-drilled holes in their cabinet for securing the BBM using its three mounting positions.

APPENDIX

Battery Backup Capacity

Battery backup capacity is defined as the maximum duration of a power failure for which data in the cache memory can be maintained by the battery. The BBM’s backup capacity varied with the memory chips that installed on the SATA RAID controller.

Capacity

128MB DDR

Memory Type

Low Power (18mA)

Battery Backup duration (Hours)

56

Operation

1. Battery conditioning is automatic. There are no manual procedures for battery conditioning or preconditioning to be performed by the user.

2. In order to make sure of all the capacity is available for your battery cells, allow the battery cell to be fully charged when installed for the first time. The first time charge of a battery cell takes about 24 hours to complete.

Changing the Battery Backup Module

At some point, the LI-ION battery will no longer accept a charge properly. LI-ION battery life expectancy is anywhere from approximately 1 to 5 years.

1. Shutdown the operating system properly. Make sure that cache memory has been flushed.

143

APPENDIX

2. Disconnect the BBM cable from J2 on the RAID controller.

3. Disconnect the battery pack cable from JP2 on the BBM.

4. Install a new battery pack and connect the new battery pack to JP2.

5. Connect the BBM to J2 on the SATA RAID controller.

6. Disable the write-back function from the McBIOS or Utility.

Note:

Do not remove BBM while system is running.

Battery Functionality Test Procedure:

1. Writing amount of data into controller volume, about 5GB or

bigger.

2. Waiting for few seconds, power failed system by remove the

power cable

3. Check the battery status, make sure the D13 is bright light,

and battery beeps every few seconds.

4. Power on system, and press Tab/F6 to login controller.

5. Check the controller event log, make sure the event shows

controller boot up with power recovered.

BBM Specifications

Mechanical

• Module Dimension (W x H x D)

37.3 x 13 x 81.6 mm

• BBM Connector

2 * 6 box header

Environmental

• Operating Temperature

Temperature: -25 O C to +60 O C

• Humidity: 45-85%, non-condensing

• Storage Temperature

Temperature: -40 O C to 85 O C

• Humidity: 45-85%, non-condensing

Electrical

• Input Voltage

+3.6VDC

• On Board Battery Capacity

1100mAH (1*1100mAH)

144

APPENDIX

Appendix C

SNMP Operation & Definition

Overview

The McRAID storage manager includes a firmware-embedded Simple Network Management Protocol (SNMP) agent and SNMP Extension Agent for the SATA RAID controller. An SNMP-based management application (also known as an SNMP manager) can monitor the disk array. An example of An SNMP management application is

Hewlett-Packard’s Open View. The SNMP Extension Agent can be used to augment the SATA RAID controller if you are already running an SNMP management application at your site.

SNMP Definition

SNMP, an IP-based protocol, has a set of commands for getting the status of target devices. The SNMP management platform is called the SNMP manager, and the managed devices have the SNMP agent loaded. Management data is organized in a hierarchical data structure called the Management Information Base (MIB). These

MIBs are defined and sanctioned by various industry associations. The objective is for all vendors to create products in compliance with these MIBs so that inter-vendor interoperability can be achieved. If a vendor wishes to include additional device information that is not specified in a standard MIB, then that is usually done through MIB extensions.

145

APPENDIX

MIB Compilation and Definition File Creation

Before the manager application accesses the SATA RAID controller, it is necessary to integrate the MIB into the management application’s database of events and status indicator codes. This process is known as compiling the MIB into the application. This process is highly vendor-specific and should be well-covered in the User’s

Guide of your SNMP application. Ensure the compilation process successfully integrates the contents of the ARECARAID.MIB file into the traps database.

146

SNMP Installation

The installation of the SNMP manager is accomplished in several phases:

• Starting the firmware-embedded SNMP community configura-

tion.

• Installing the SNMP Extension Agent on the server

• Installing the SNMP manager software on the client

• Placing a copy of the Management Information Base (MIB) in a

directory which is accessible to the management application

• Compiling the MIB description file with the management appli-

cation

Starting the SNMP Function Setting

APPENDIX

• Community Name

Community name acts as a password to screen accesses to the

SNMP agent of a particular network device. Type in the community names of the SNMP agent. Before access is granted to a request station, this station must incorporate a valid community name into its request; otherwise, the SNMP agent will deny access to the system.

Most network devices use “public” as default of their community names. This value is case-sensitive.

SNMP Extension Agent Installation for Windows

You must have the administrative level permission to install SATA

RAID software. This procedure assumes that the SATA RAID hardware and Windows are both installed and operational in your system.

To enable the SNMP agent for Windows, configure Windows for

TCP/IP and SNMP services. The Areca SNMP Extension Agent file

is ARCSNMP.DLL.

Screen captures in this section are taken from a Windows XP installation. If you are running another version of Windows, your screens may look different, but the Areca SNMP Extension Agent installation is essentially the same.

1. Insert the SATA RAID controller CD in the CD-ROM drive.

147

APPENDIX

2. Run the setup.exe file that resides at: <CD-ROM>\packages\ windows\http\setup.exe on the CD-ROM. (If SNMP service was not installed, please install SNMP service first.)

3. Click on the “Setup.exe” file then the welcome screen appears.

4. Click the “Next” button and then the “Ready Install the Program” screen appears. Follow the on-screen prompts to complete

Areca SNMP Extension Agent installation.

148

APPENDIX

5. A Progress bar appears that measures the progress of the

Areca SNMP Extension Agent setup. When this screen complete, you have completed the Areca SNMP Extension Agent setup.

6. After a successful installation, the “Installshield Wizard Completed” dialog box of the installation program is displayed. Click the “Finish button to complete the installation.

Starting SNMP Trap Notification Configruations

To start "SNMP Trap Notification Configruations", There have two methods. First, double-click on the "Areca Raid Controller".

Second, you may also use the "Taskbar Start/programs/Areca

Technology Corp/ArcSnmpConf" menus shown below.

149

APPENDIX

SNMP Community Configurations

Please refer to the community name in this appendix.

SNMP Trap Notification Configruations

The "Community Name" should be the same as firmware- embedded SNMP community. The "SNMP Trap Notification

Configruations" include level 1: Serious, level 2: Error, level 3:

Warning and level 4: Information. The level 4 covers notification events such as initialization of the controller and initiation of the rebuilding process; Level 3 includes events which require the issuance of warning messages; Level 2 covers notification events which once have happen; Level 1 is the highest level, and covers events the need immediate attention (and action) from the administrator.

150

SNMP Extension Agent Installation for Linux

You must have administrative level permission to install SATA

RAID software. This procedure assumes that the SATA RAID

APPENDIX hardware and Linux are installed and operational in your system.

For the SNMP Extension Agent Installation for Linux procedure, please refer to <CD-ROM>\packages\Linux\SNMP\Readme or download from http://www.areca.com.tw

SNMP Extension Agent Installation for FreeBSD

You must have administrative level permission to install SATA

RAID software. This procedure assumes that the SATA RAID hardware and FreeBSD are installed and operational in your system. For the SNMP Extension Agent Installation for FreeBSD procedure please refer to <CD-ROM>\packages\FreeBSD\

SNMP\Readme or download from http://www.areca.com.tw

151

APPENDIX

Appendix D

Event Notification Configurations

The controller classifies disk array events into four levels depending on their severity. These include level 1: Urgent, level 2: Serious, level

3: Warning and level 4: Information. The level 4 covers notificational events such as initialization of the controller and initiation of the rebuilding process; Level 2 covers notification events which once have happen; Level 3 includes events which require the issuance of warning messages; Level 1 is the highest level, and covers events the need immediate attention (and action) from the administrator. The following lists sample events for each level:

A. Device Event

Event

Device Inserted

Action

Device Removed Warning HDD removed

Reading Error Warning HDD reading error Keep Watching HDD status, may be it caused by noise or HDD unstable.

Writing Error

Level Meaning

Warning HDD inserted

ATA Ecc Error

Change ATA

Mode

Time Out Error

Device Failed

PCI Parity Error

Device

Failed(SMART)

Warning

Warning

HDD writing error

HDD ECC error

Keep Watching HDD status, may be it caused by noise or HDD unstable.

Keep Watching HDD status, may be it caused by noise or HDD unstable.

Check HDD connection Warning HDD change ATA mode

Warning HDD time out Keep Watching HDD status, maybe it caused by noise or HDD unstable.

Urgent

Serious

Urgent

HDD failure

PCI parity error

Replace HDD

If only happen once, it may be caused by noise. If always happen, please check power supply or contact to us.

HDD SMART failure Replace HDD

152

APPENDIX

PassThrough Disk

Created

Inform

PassThrough Disk

Modified

Inform

PassThrough Disk

Deleted

Inform

Pass Through Disk created

Pass Through Disk modified

Pass Through Disk deleted

B. Volume Event

Event

Start Initialize

Level Meaning

Warning Volume initialization has started

Start Rebuilding Warning Volume rebuilding has started

Start Migrating Warning Volume migration has started

Start Checking Warning Volume parity checking has started

Complete Init Warning Volume initialization completed

Complete Rebuild Warning Volume rebuilding completed

Complete Migrate Warning Volume migration completed

Complete Check Warning Volume parity checking completed

Create Volume

Delete Volume

Modify Volume

Warning New volume created

Warning Volume deleted

Warning Volume modified

Volume Degraded Urgent

Volume Failed Urgent

Urgent Failed Volume

Revived

Abort

Initialization

Warning

Volume degraded

Volume failure

Failed Volume revived

Initialization been aborted

Abort Rebuilding Warning Rebuilding aborted

Abort Migration Warning Migration aborted

Abort Checking Warning Parity check aborted

Stop Initialization Warning Initialization stopped

Stop Rebuilding

Stop Migration

Stop Checking

Warning Rebuilding stopped

Warning Migration stopped

Warning Parity check stopped

Action

Replace HDD

153

APPENDIX

C. RAID Set Event

Event

Create RaidSet

Delete RaidSet

Expand RaidSet

Rebuild RaidSet

RaidSet

Degraded

Level Meaning

Warning New raidset created

Warning Raidset deleted

Warning Raidset expanded

Warning Raidset rebuilding

Urgent Raidset degraded

Action

Replace HDD

D. Hardware Monitor Event

Event Level

DRAM 1-Bit ECC Urgent

DRAM Fatal

Error

Controller Over

Temperature

Hdd Over

Temperature

Fan Failed

Urgent

Urgent

Meaning Action

DRAM 1-Bit ECC error Check DRAM

DRAM fatal error encountered

Check the DRAM module and replace with new one if required.

Abnormally high temperature detected on controller (over 60 degree)

Check air flow and cooling fan of theenclosure, and contact us.

Urgent

Urgent

Abnormally high temperature detected on Hdd (over 55 degree)

Check air flow and cooling fan of the enclosure.

Cooling Fan # failure or speed below

1700RPM

Serious Controller temperature back to normal level

Check cooling fan of the enclosure and replace with a new one if required.

Controller

Temp.

Recovered

Hdd Temp.

Recovered

Raid Power On

Test Event

Power On With

Battery Backup

Incomplete

RAIDDiscovered

HTTP Log In

Warning

Urgent

Raid power on

Test event

Warning Raid power on with battery backuped

Serious Some RAID set member disks missing before power on

Serious a HTTP login detected

Check disk information to find out which channel missing.

154

APPENDIX

Telnet Log Serious a Telnet login detected

InVT100 Log In Serious a VT100 login detected

API Log In

Lost Rebuilding/

MigrationLBA

Serious a API login detected

Urgent Some rebuilding/ migration raidset member disks missing before power on.

Reinserted the missing member disk back, controller will continue the incompleted rebuilding/ migration.

Note:

It depends on models, not every model will encounter all events.

155

APPENDIX

Appendix E

RAID Concept

RAID Set

A RAID set is a group of disks connected to a RAID controller. A

RAID set contains one or more volume sets. The RAID set itself does not define the RAID level (0, 1, 10, 3, 5, 6, etc); the

RAID level is defined within each volume set. Therefore, volume sets are contained within RAID sets and RAID Level is defined within the volume set. If physical disks of different capacities are grouped together in a RAID set, then the capacity of the smallest disk will become the effective capacity of all the disks in the RAID set.

Volume Set

Each volume set is seen by the host system as a single logical device (in other words, a single large virtual hard disk). A volume set will use a specific RAID level, which will require one or more physical disks (depending on the RAID level used). RAID level refers to the level of performance and data protection of a volume set. The capacity of a volume set can consume all or a portion of the available disk capacity in a RAID set. Multiple volume sets can exist in a RAID set. For the SATA RAID controller, a volume set must be created either on an existing RAID set or on a group of available individual disks (disks that are about to become part of a RAID set). If there are pre-existing RAID sets with available capacity and enough disks for the desired RAID level, then the volume set can be created in the existing RAID set of the user’s choice.

156

APPENDIX

In the illustration, volume 1 can be assigned a RAID level 5 of operation while volume 0 might be assigned a RAID level 10 of operation. Alternatively, the free space can be used to create volume 2, which could then be set to use RAID level 5.

Ease of Use Features

Foreground Availability/Background Initialization

RAID 0 and RAID 1 volume sets can be used immediately after creation because they do not create parity data. However,

RAID 3, 5 and 6 volume sets must be initialized to generate parity information. In background Initialization, the initialization proceeds as a background task, and the volume set is fully accessible for system reads and writes. The operating system can instantly access the newly created arrays without requiring a reboot and without waiting for initialization to complete.

Furthermore, the volume set is protected against disk failures while initialing. If using Foreground Initialization, the initialization process must be completed before the volume set is ready for system accesses.

Online Array Roaming

The SATA RAID controllers store RAID configuration information on the disk drives. The controller therefore protects the configuration settings in the event of controller failure. Array roaming allows the administrators the ability to move a completed RAID set to another system without losing RAID configuration information or data on that RAID set. Therefore, if a server fails, the

RAID set disk drives can be moved to another server with an

Areca RAID controller and the disks can be inserted in any order.

Online Capacity Expansion

Online Capacity Expansion makes it possible to add one or more physical drives to a volume set without interrupting server operation, eliminating the need to backup and restore after reconfiguration of the RAID set. When disks are added to a RAID set, unused capacity is added to the end of the RAID set. Then, data

157

APPENDIX on the existing volume sets (residing on the newly expanded

RAID set) is redistributed evenly across all the disks. A contiguous block of unused capacity is made available on the RAID set.

The unused capacity can be used to create additional volume sets.

A disk, to be added to a RAID set, must be in normal mode (not failed), free (not spare, in a RAID set, or passed through to host) and must have at least the same capacity as the smallest disk capacity already in the RAID set.

Capacity expansion is only permitted to proceed if all volumes on the RAID set are in the normal status. During the expansion process, the volume sets being expanded can be accessed by the host system. In addition, the volume sets with RAID level 1,

10, 3, 5 or 6 are protected against data loss in the event of disk failure(s). In the case of disk failure, the volume set changes from “migrating” state to “migrating+degraded“ state. When the expansion is completed, the volume set would then change to

“degraded” mode. If a global hot spare is present, then it further change to the “rebuilding” state.

The expansion process is illustrated as following figure.

158

The SATA RAID controller redistributes the original volume set over the original and newly added disks, using the same faulttolerance configuration. The unused capacity on the expand

RAID set can then be used to create an additional volume set, with a different fault tolerance setting (if required by the user.)

APPENDIX

Online RAID Level and Stripe Size Migration

For those who wish to later upgrade to any RAID capabilities, a system with Areca online RAID level/stripe size migration allows a simplified upgrade to any supported RAID level without having to reinstall the operating system.

The SATA RAID controllers can migrate both the RAID level and stripe size of an existing volume set, while the server is online and the volume set is in use. Online RAID level/stripe size migration can prove helpful during performance tuning activities as well as when additional physical disks are added to the SATA

RAID controller. For example, in a system using two drives in

RAID level 1, it is possible to add a single drive and add capacity and retain fault tolerance. (Normally, expanding a RAID level

1 array would require the addition of two disks). A third disk can be added to the existing RAID logical drive and the volume set can then be migrated from RAID level 1 to 5. The result would be parity fault tolerance and double the available capacity without taking the system down. A forth disk could be added to migrate to RAID level 6. It is only possible to migrate to a higher

RAID level by adding a disk; disks in an existing array can’t be reconfigured for a higher RAID level without adding a disk.

Online migration is only permitted to begin, If all volumes to be migrated are in the normal mode. During the migration process, the volume sets being migrated are accessed by the host system. In addition, the volume sets with RAID level 1, 10, 3, 5 or

6 are protected against data loss in the event of disk failure(s).

In the case of disk failure, the volume set transitions from migrating state to (migrating+degraded) state. When the migration

159

APPENDIX is completed, the volume set transitions to degraded mode. If a global hot spare is present, then it further transitions to rebuilding state.

Online Volume Expansion

Performing a volume expansion on the controller is the process of growing only the size of the lastest volume. A more flexible option is for the array to concatenate an additional drive into the

RAID set and then expand the volumes on the fly. This happens transparently while the volumes are online, but, at the end of the process, the operating system will detect free space at after the existing volume.

Windows, NetWare and other advanced operating systems support volume expansion, which enables you to incorporate the additional free space within the volume into the operating system partition. The operating system partition is extended to incorporate the free space so it can be used by the operating system without creating a new operating system partition.

You can use the Diskpart.exe command line utility, included with

Windows Server 2003 or the Windows 2000 Resource Kit, to extend an existing partition into free space in the dynamic disk.

Third-party software vendors have created utilities that can be used to repartition disks without data loss. Most of these utilities work offline. Partition Magic is one such utility.

High availability

Global Hot Spares

A global hot spare is an unused online available drive, which is ready for replacing the failure disk. The global hot spare is one of the most important features that SATA RAID controllers provide to deliver a high degree of fault-tolerance. A global hot spare is a spare physical drive that has been marked as a global hot spare and therefore is not a member of any RAID set. If a disk drive used in a volume set fails, then the global hot spare will automat-

160

INTRODUCTION ically take its place and the data previously located on the failed drive is reconstructed on the global hot spare.

For this feature to work properly, the global hot spare must have at least the same capacity as the drive it replaces. Global hot spares only work with RAID level 1, 10, 3, 5, or 6 volume set. You can configure up to three global hot spares with ARC-11xx/12xx.

The “Create Hot Spare” option gives you the ability to define a global hot spare disk drive. To effectively use the global hot spare feature, you must always maintain at least one drive that is marked as a global spare.

Important

:

The hot spare must have at least the same capacity as the drive it replaces.

Hot-Swap Disk Drive Support

The SATA controller chip includes a protection circuit that supports the replacement of SATA hard disk drives without having to shut down or reboot the system. A removable hard drive tray can deliver “hot swappable” fault-tolerant RAID solutions at prices much less than the cost of conventional SCSI hard disk RAID controllers. This feature provides advanced fault tolerant RAID protection and “online” drive replacement.

Auto Declare Hot-Spare

If a disk drive is brought online into a system operating in degraded mode, The SATA RAID controllers will automatically declare the new disk as a spare and begin rebuilding the degraded volume. The auto declare hot-spare function requires that the smallest drive contained within the volume set in which the failure occurred.

In the normal status, the newly installed drive will be reconfigured an online free disk. But, the newly-installed drive is automatically assigned as a hot spare if any hot spare disk was used to rebuild and without new installed drive replaced it. In this condition, the auto declare hot-spare status will be disappeared if the RAID subsystem has since powered off/on.

161

APPENDIX

The Hot-Swap function can be used to rebuild disk drives in arrays with data redundancy such as RAID level 1, 10, 3, 5, and 6.

Auto Rebuilding

If a hot spare is available, the rebuild starts automatically when a drive fails. The SATA RAID controllers automatically and transparently rebuild failed drives in the background at user-definable rebuild rates.

If a hot spare is not available, the failed disk drive must be replaced with a new disk drive so that the data on the failed drive can be automatically rebuilt and so that fault tolerance can be maintained.

The SATA RAID controllers will automatically restart the system and the rebuilding process if the system is shut down or powered off abnormally during a reconstruction procedure condition.

When a disk is hot swapped, although the system is functionally operational, the system may no longer be fault tolerant. Fault tolerance will be lost until the removed drive is replaced and the rebuild operation is completed.

During the automatic rebuild process, system activity will continue as normal, however, the system performance and fault tolerance will be affected.

Adjustable Rebuild Priority

Rebuilding a degraded volume incurs a load on the RAID subsystem. The SATA RAID controllers allow the user to select the rebuild priority to balance volume access and rebuild tasks appropriately. The “Background Task Priority” is a relative indication of how much time the controller devotes to a background operation, such as rebuilding or migrating.

The SAS RAID controller allows user to choose the task priority

(Ultra Low (5%), Low (20%), Medium (50%), High (80%)) to balance volume set access and background tasks appropriately. For high array performance, specify an “Ultra Low” value. Like volume

162

APPENDIX initialization, after a volume rebuilds, it does not require a system reboot.

High Reliability

Hard Drive Failure Prediction

In an effort to help users avoid data loss, disk manufacturers are now incorporating logic into their drives that acts as an "early warning system" for pending drive problems. This system is called

SMART The disk integrated controller works with multiple sensors to monitor various aspects of the drive's performance, determines from this information if the drive is behaving normally or not, and makes available status information to RAID controller firmware that probes the drive and look at it.

The SMART can often predict a problem before failure occurs.

The controllers will recognize a SMART error code and notify the administer of an impending hard drive failure.

Auto Reassign Sector

Under normal operation, even initially defect-free drive media can develop defects. This is a common phenomenon. The bit density and rotational speed of disks is increasing every year, and so are the potential of problems. Usually a drive can internally remap bad sectors without external help using cyclic redundancy check

(CRC) checksums stored at the end of each sector.

SATA drives perform automatic defect re-assignment for both read and write errors. Writes are always completed - if a location to be written is found to be defective, the drive will automatically relocate that write command to a new location and map out the defective location. If there is a recoverable read error, the correct data will be transferred to the host and that location will be tested by the drive to be certain the location is not defective. If it is found to have a defect, data will be automatically relocated, and the defective location is mapped out to prevent future write attempts.

In the event of an unrecoverable read error, the error will be reported to the host and the location will be flagged as being po-

163

APPENDIX tentially defective. A subsequent write to that location will initiate a sector test and relocation should that location prove to have a defect. Auto Reassign Sector does not affect disk subsystem performance because it runs as a background task. Auto Reassign

Sector discontinues when the operating system makes a request.

Consistency Check

A consistency check is a process that verifies the integrity of redundant data. To verify RAID 3, 5 or 6 redundancy, a consistency check reads all associated data blocks, computes parity, reads parity, and verifies that the computed parity matches the read parity.

Consistency checks are very important because they detect and correct parity errors or bad disk blocks in the drive. A consistency check forces every block on a volume to be read, and any bad blocks are marked; those blocks are not used again. This is critical and important because a bad disk block can prevent a disk rebuild from completing. We strongly recommend that you run consistency checks on a regular basis—at least once per week.

Note that consistency checks degrade performance, so you should run them when the system load can tolerate it.

Data Protection

Battery Backup

The SATA RAID controllers are armed with a Battery Backup Module (BBM). While a Uninterruptible Power Supply (UPS) protects most servers from power fluctuations or failures, a BBM provides an additional level of protection. In the event of a power failure, a

BBM supplies power to retain data in the RAID controller’s cache, thereby permitting any potentially dirty data in the cache to be flushed out to secondary storage when power is restored.

The batteries in the BBM are recharged continuously through a trickle-charging process whenever the system power is on. The batteries protect data in a failed server for up to three or four days, depending on the size of the memory module. Under nor-

164

APPENDIX mal operating conditions, the batteries last for three years before replacement is necessary.

Recovery ROM

The SATA RAID controller firmware is stored on the flash ROM and is executed by the I/O processor. The firmware can also be updated through the PCI-X/PCIe bus port or Ethernet port (if equipped) without the need to replace any hardware chips. During the controller firmware upgrade flash process, it is possible for a problem to occur resulting in corruption of the controller firmware. With our Redundant Flash Image feature, the controller will revert back to the last known version of firmware and continue operating. This reduces the risk of system failure due to firmware crash.

Appendix F

Understanding RAID

RAID is an acronym for Redundant Array of Independent Disks. It is an array of multiple independent hard disk drives that provides high performance and fault tolerance. The SATA RAID controller implements several levels of the Berkeley RAID technology. An appropriate RAID level is selected when the volume sets are defined or created. This decision should be based on the desired disk capacity, data availability (fault tolerance or redundancy), and disk performance. The following section discusses the RAID levels supported by the SATA RAID controller.

The SATA RAID controller makes the RAID implementation and the disks’ physical configuration transparent to the host operating system. This means that the host operating system drivers and software utilities are not affected, regardless of the RAID level selected. Correct installation of the disk array and the controller requires a proper understanding of RAID technology and the concepts.

165

APPENDIX

RAID 0

RAID 0, also referred to as striping, writes stripes of data across multiple disk drives instead of just one disk drive. RAID 0 does not provide any data redundancy, but does offer the best highspeed data throughput. RAID 0 breaks up data into smaller blocks and then writes a block to each drive in the array. Disk striping enhances performance because multiple drives are accessed simultaneously; the reliability of RAID level 0 is less because the entire array will fail if any one disk drive fails.

166

RAID 1

RAID 1 is also known as “disk mirroring”; data written on one disk drive is simultaneously written to another disk drive. Read performance will be enhanced if the array controller can, in parallel, access both members of a mirrored pair. During writes, there will be a minor performance penalty when compared to writing to a single disk. If one drive fails, all data (and software applications) are preserved on the other drive. RAID 1 offers extremely high data reliability, but at the cost of doubling the required data storage capacity.

APPENDIX

RAID 10

RAID 10 is a combination of RAID 0 and RAID 1, combing stripping with disk mirroring. RAID Level 10 combines the fast performance of Level 0 with the data redundancy of Leve1 1. In this configuration, data is distributed across several disk drives, similar to Level 0, which are then duplicated to another set of drive for data protection. RAID 10 has been traditionally implemented using an even number of disks, some hybrids can use an odd number of disks as well. Illustration is an example of a hybrid RAID 10 array comprised of five disks; A, B, C, D and E.

In this configuration, each strip is mirrored on an adjacent disk with wrap-around. Areca RAID 10 offers a little more flexibility in choosing the number of disks that can be used to constitute an array. The number can be even or odd.

RAID 3

RAID 3 provides disk striping and complete data redundancy though a dedicated parity drive. RAID 3 breaks up data into smaller blocks, calculates parity by performing an exclusive-or on the blocks, and then writes the blocks to all but one drive in the array. The parity data created during the exclusive-or is then written to the last drive in the array. If a single drive fails, data is still available by computing the exclusive-or of the contents corresponding strips of the surviving member disk. RAID 3 is best for applications that require very fast data- transfer rates or long data blocks.

167

APPENDIX

RAID 5

RAID 5 is sometimes called striping with parity at byte level. In

RAID 5, the parity information is written to all of the drives in the controllers rather than being concentrated on a dedicated parity disk. If one drive in the system fails, the parity information can be used to reconstruct the data from that drive. All drives in the array system can be used for seek operations at the same time, greatly increasing the performance of the RAID system. This relieves the write bottleneck that characterizes RAID 4, and is the primary reason that RAID 5 is more often implemented in RAID arrays.

168

APPENDIX

RAID 6

RAID 6 provides the highest reliability. It is similar to RAID 5, but it performs two different parity computations or the same computation on overlapping subsets of the data. RAID 6 can offer fault tolerance greater than RAID 1 or RAID 5 but only consumes the capacity of 2 disk drives for distributed parity data. RAID 6 is an extension of RAID 5 but uses a second, independent distributed parity scheme. Data is striped on a block level across a set of drives, and then a second set of parity is calculated and written across all of the drives.

Summary of RAID Levels

The SATA RAID controller supports RAID Level 0, 1, 10, 3, 5 and 6.

The table below provides a summary of RAID levels.

RAID

Level

0

Description

Features and Performance

Min.

Drives

Data

Reliability

Also known as stripping

Data distributed across multiple drives in the array. There is no data protection.

1 No data

Protection

Data

Transfer

Rate

Very

High

I/O Request

Rates

Very High for

Both Reads and Writes

169

APPENDIX

1

10

3

Also known as mirroring

All data replicated on N separated disks.

N is almost always 2.

This is a high availability solution, but due to the 100% duplication, it is also a costly solution. Half of drive capacity in array devoted to mirroring.

Also known Block-Interleaved

Parity.

Data and parity information is subdivided and distributed across all disks. Parity must be the equal to the smallest disk capacity in the array. Parity information normally stored on a dedicated parity disk.

Also known Bit-Interleaved Parity.

Data and parity information is subdivided and distributed across all disks. Parity data consumes the capacity of 1 disk drive. Parity information normally stored on a dedicated parity disk.

2

3

3

5 Also known Block-Interleaved

Distributed Parity.

Data and parity information is subdivided and distributed across all disk. Parity data consumes the capacity of 2 disk drive.

3

Lower than

RAID 6;

Higher than

RAID

3, 5

Writes similar to a single disk

Reads are twice as fast as a single disk;

Write are similar to a single disk.

Lower than

RAID 6;

Higher than

RAID

3, 5

Transfer rates more similar to RAID

1 than

RAID 0

Reads are twice as fast as a single disk;

Writes are similar to a single disk.

Lower than

RAID 1,

10, 6;

Reads are similar to

RAID 0;

Higher than a single drive

Lower than

RAID 1,

10, 6;

Writes are slower than a single disk

Reads are similar to

RAID 0;

Higher than a single drive

Writes are slower than a single disk

Reads are close to being twice as fast as a single disk;

Writes are similar to a single disk.

Reads are similar to

RAID 0;

Writes are slower than a single disk.

170

6 RAID 6 provides the highest reliability. Similar to RAID 5, but does two different parity computations. RAID 6 offers fault tolerance greater that RAID 1 or

RAID 5. Parity data consumes the capacity of 2 disk drives.

4

APPENDIX

Highest reliability

Reads are similar to

RAID 0;

Writes are slower than a single disk

Reads are similar to

RAID 0;

Writes are slower than a single disk.

171

APPENDIX

Appendix G

Technical Support

Areca Technical Support provides several options for Areca users to access information and updates. We encourage you to use one of our electric services, for the lastest product information updates and efficient support service. If you have decided to contact us, please have the following information ready. Kindly provide us the product model, serial number, BIOS, driver version, and a detailed description of the problem at http://www.areca.com.tw/

support/ask_a_question.htm Our support team will be glad to answer all your techinical enquires.

172

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement

Table of contents