Thermal Arc ArcMaster 300 ACDC Service Manaul_(0

Thermal Arc ArcMaster 300 ACDC Service Manaul_(0
300 AC/DC
ARCMASTER
®
INVERTER ARC WELDER
Art # A-07238
Service Manual
Version No: AA.01
Issue Date: May 22, 2006
Manual No.: 0-4942B
Operating Features:
50Hz
60
INVERTER
3
400
V
WARNINGS
Read and understand this entire Manual and your employer’s safety practices before installing,
operating, or servicing the equipment.
While the information contained in this Manual represents the Manufacturer's best judgement,
the Manufacturer assumes no liability for its use.
ArcMaster 300 AC/DC Inverter Arc Welder
Service Manual Number 0-4942B for:
Part Number 10-3098
Published by:
Thermadyne Industries Inc.
82 Benning Street
West Lebanon, New Hampshire, USA 03784
(603) 298-5711
www.thermalarc.com
Copyright 2006 by
Thermadyne Industries Inc.
All rights reserved.
Reproduction of this work, in whole or in part, without written permission of the publisher
is prohibited.
The publisher does not assume and hereby disclaims any liability to any party for any
loss or damage caused by any error or omission in this Manual, whether such error
results from negligence, accident, or any other cause.
Publication Date: May 22, 2006
Record the following information for Warranty purposes:
Where Purchased:
___________________________________
Purchase Date:
___________________________________
Equipment Serial #:
___________________________________
i
CONTENTS
1 SAFETY INSTRUCTIONS AND WARNINGS
1
2
3
4
5
6
7
Arc Welding Hazards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
PRINCIPAL SAFETY STANDARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
PRECAUTIONS DE SECURITE EN SOUNDAGE A L'ARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
Dangers relatifs au soudage à l’arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
PRINCIPAL SAFETY STANDARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
STATEMENT OF WARRANTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
DECLARATION OF CONFORMITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13
2 INTRODUCTION
1
2
3
4
5
6
7
How To Use This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Equipment Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receipt Of Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Symbol Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transporting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–1
2–1
2–1
2–2
2–3
2–3
2–4
3 INSTALLATION
1
2
3
4
5
6
7
8
9
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Input Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Input Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Frequency Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Frequency Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1
3–1
3–1
3–1
3–2
3–3
3–3
3–3
3–4
4 OPERATOR CONTROLS
1
2
3
4
5
ARC MASTER 300ACDC Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Weld Process selection for ARC MASTER 300ACDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Weld Parameter Descriptions for ARC MASTER 300ACDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Weld Parameters for ARC MASTER 300ACDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Source Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1
4–2
4–3
4–5
4–6
5 SET-UP FOR SMAW (STICK) AND GTAW (TIG)
6 SEQUENCE OF OPERATION
1
2
3
4
5
Stick Welding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC or DC HF TIG Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slope Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slope Mode with repeat sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pulse Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6–1
6–1
6–2
6–2
6–2
7 ROUTINE MAINTENANCE
8 BASIC TROUBLESHOOTING
1
2
3
TIG Welding Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1
Stick Welding Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
Power Source Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5
9 VOLTAGE REDUCTION DEVICE (VRD)
1
2
3
VRD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1
VRD Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1
Switching VRD On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–2
10 POWER SOURCE ERROR CODE
11 ADVANCED TROUBLESHOOTING
1
2
3
4
5
System-Level Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1
1. 1 Opening the Enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1
Verification and Remedy to the Indicated Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3
2. 1 E01 "Over-Temperature at the primary side" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3
2. 2 E02 "Over-Temperature at the secondary side" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
2. 3 E03 "Transformer Over-Current Failure". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
2. 4 E04 "Torch Cable Failure". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5
2. 5 E11 "Main Supply Over Voltage" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5
2. 6 E12 "Main Supply Under Voltage" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5
2. 7 E81 "Wrong Main Supply Voltage". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5
2. 8 E82 "Rated Voltage Selection Circuit abnormality" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–6
2. 9 E83 "Abnormalities in Mains Supply Voltage Detection" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–6
2. 10 E85 "Pre-charge abnormality" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–6
2. 11 E94 "Thermistor malfunction". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–7
2. 12 E99 "Initial Power Receiving". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–7
Verification and Remedy to Failures without Indication Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–7
3. 1 "Cooling Fan (FAN1) Failure" (Fan is not rotating.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–7
3. 2 "Gas Valve Failure" (No Gas flow through unit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–8
3. 3 "No Weld Output" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–8
3. 4 "Operating Panel Failure" (LED's do not light properly or welding setting cannot be establish.) . . . . . . . . . . . . . . . 11–9
3. 5 "High Frequency Output Failure" (Unit does not generate High Frequency.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–9
Fault Isolation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–10
4. 1 Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–10
Verification of the Power Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–11
5. 1 Verification of the AC Input Voltage using an AC Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–11
5. 2 Verification of the Power Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–12
5. 3 Verification of the Cooling Fan, FAN1, Drive Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–13
5. 4 Verification of the Gas Valve, SOL1, Drive Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–14
5. 5 Verification of the primary Diode (D1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–14
5. 6 Verification of the secondary Diode (D2-D7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–15
5. 7 Verification of the primary IGBT (Q1-Q24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–15
5. 8 Verification of the secondary IGBT (Q25-Q26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–16
5. 9 Verification of No-load Voltage (OCV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–16
12 MAINTENANCE
1
2
Maintenance List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–1
Service Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–5
2. 1 Tools and parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–5
2. 2 Notes of disassembly and assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–5
3 Replacement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–6
3. 1 PCB1 (WK-5493) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–6
3. 2 PCB2 (WK-5597) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–7
3. 3 PCB3 (WK-5548), PCB7 (WK-5550) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–8
3. 4 PCB4 (WK-4819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
3. 5 PCB5 (WK-5551) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
3. 6 PCB6 (WK-5549) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–11
3. 7 PCB8, PCB9 (WK-5479) and Q1-Q12 “Primary IGBT” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–11
3. 8 PCB10, PCB11 (WK-5479) and Q13-Q24 “Primary IGBT” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–12
3. 9 PCB12 (WK-5527) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–12
3. 10 PCB13 (WK-5528) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–13
3. 11 PCB14 (WK-5594) (T1-T2 “Main Trans former”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–14
3. 12 PCB15 (WK-5606) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–15
3. 13 PCB16 (WK-5569) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–16
CONTENTS
3. 14
3. 15
3. 16
3. 17
3. 18
3. 19
3. 20
3. 21
3. 22
3. 23
3. 24
3. 25
3. 26
3. 27
3. 28
3. 29
3. 30
3. 31
3. 32
3. 33
3. 34
3. 35
3. 36
3. 37
3. 38
3. 39
PCB17 (WK-5570) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCB20 (WK-5499) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCB21 (WK-4917) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCB22 (WK-5022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limiting Resistor (R6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discharge Resistor (R3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Resistor (R7, R8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Coupling Coil (CC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inductor (FCH1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Primary Thermistor (TH1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Secondary Thermistor (TH2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cooling Fan (FAN1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solenoid Valve (SOL1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main ON/OFF Switch (S1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Remote Socket (CON1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Freguency Unit (HF.UNIT1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hall Current Sensor (HCT1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Primary Diode (D1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Secondary Diode (D2-D7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Secondary IGBT (Q25-Q26) and PCB18-PCB19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Trans (CT2, CT3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ring Core (L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ring Core (L105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reactor (L101) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reactor (L102) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reactor (L103) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12–16
12–17
12–18
12–19
12–20
12–20
12–21
12–23
12–23
12–24
12–25
12–25
12–26
12–27
12–28
12–28
12–29
12–30
12–31
12–32
12–33
12–34
12–36
12–37
12–38
12–40
APPENDIX 1 PARTS LIST
1
2
Equipment Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1
How To Use This Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1
APPENDIX 2 CONNECTION WIRING GUIDE
APPENDIX 3 INTERCONNECT DIAGRAM
APPENDIX 4 DIODE TESTING BASICS
ARCMASTER 300 AC/DC
SECTION 1. SAFETY INSTRUCTIONS AND WARNINGS
!
WARNING
PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS KEEP
AWAY UNTIL CONSULTING YOUR DOCTOR. DO NOT LOSE THESE INSTRUCTIONS. READ OPERATING/INSTRUCTION MANUAL BEFORE
INSTALLING, OPERATING OR SERVICING THIS EQUIPMENT.
Welding products and welding processes can cause serious injury or death, or damage to other equipment or property, if the operator does not
strictly observe all safety rules and take precautionary actions.
Safe practices have developed from past experience in the use of welding and cutting. These practices must be learned through study and
training before using this equipment. Some of these practices apply to equipment connected to power lines; other practices apply to engine
driven equipment. Anyone not having extensive training in welding and cutting practices should not attempt to weld.
Safe practices are outlined in the American National Standard Z49.1 entitled: SAFETY IN WELDING AND CUTTING. This publication and other
guides to what you should learn before operating this equipment are listed at the end of these safety precautions. HAVE ALL INSTALLATION,
OPERATION, MAINTENANCE, AND REPAIR WORK PERFORMED ONLY BY QUALIFIED PEOPLE.
1.01
7. Use fully insulated electrode holders. Never dip holder in water to
cool it or lay it down on the ground or the work surface. Do not
touch holders connected to two welding machines at the same
time or touch other people with the holder or electrode.
Arc Welding Hazards
8. Do not use worn, damaged, undersized, or poorly spliced cables.
9. Do not wrap cables around your body.
WARNING
10. Ground the workpiece to a good electrical (earth) ground.
ELECTRIC SHOCK can kill.
11. Do not touch electrode while in contact with the work (ground)
circuit.
Touching live electrical parts can cause fatal shocks or
severe burns. The electrode and work circuit is electrically
live whenever the output is on. The input power circuit
and machine internal circuits are also live when power
is on. In semiautomatic or automatic wire welding, the
wire, wire reel, drive roll housing, and all metal parts
touching the welding wire are electrically live. Incorrectly
installed or improperly grounded equipment is a hazard.
12. Use only well-maintained equipment. Repair or replace damaged
parts at once.
13. In confined spaces or damp locations, do not use a welder with
AC output unless it is equipped with a voltage reducer. Use
equipment with DC output.
14. Wear a safety harness to prevent falling if working above floor
level.
15. Keep all panels and covers securely in place.
1. Do not touch live electrical parts.
2. Wear dry, hole-free insulating gloves and body protection.
3. Insulate yourself from work and ground using dry insulating mats
or covers.
WARNING
4. Disconnect input power or stop engine before installing or
servicing this equipment. Lock input power disconnect switch
open, or remove line fuses so power cannot be turned on
accidentally.
ARC RAYS can burn eyes and skin; NOISE can damage
hearing. Arc rays from the welding process produce
intense heat and strong ultraviolet rays that can burn
eyes and skin. Noise from some processes can damage
hearing.
5. Properly install and ground this equipment according to its Owner’s
Manual and national, state, and local codes.
6. Turn off all equipment when not in use. Disconnect power to
equipment if it will be left unattended or out of service.
1. Wear a welding helmet fitted with a proper shade of filter (see
ANSI Z49.1 listed in Safety Standards) to protect your face and
eyes when welding or watching.
2. Wear approved safety glasses. Side shields recommended.
1
ARCMASTER 300 AC/DC
3. Use protective screens or barriers to protect others from flash
and glare; warn others not to watch the arc.
WARNING
4. Wear protective clothing made from durable, flame-resistant
material (wool and leather) and foot protection.
WELDING can cause fire or explosion.
5. Use approved ear plugs or ear muffs if noise level is high.
Sparks and spatter fly off from the welding arc. The flying
sparks and hot metal, weld spatter, hot workpiece, and
hot equipment can cause fires and burns. Accidental
contact of electrode or welding wire to metal objects
can cause sparks, overheating, or fire.
WARNING
FUMES AND GASES can be hazardous to your health.
1. Protect yourself and others from flying sparks and hot metal.
Welding produces fumes and gases. Breathing these
fumes and gases can be hazardous to your health.
2. Do not weld where flying sparks can strike flammable material.
1. Keep your head out of the fumes. Do not breath the fumes.
3. Remove all flammables within 35 ft (10.7 m) of the welding arc.
If this is not possible, tightly cover them with approved covers.
2. If inside, ventilate the area and/or use exhaust at the arc to remove
welding fumes and gases.
4. Be alert that welding sparks and hot materials from welding can
easily go through small cracks and openings to adjacent areas.
3. If ventilation is poor, use an approved air-supplied respirator.
5. Watch for fire, and keep a fire extinguisher nearby.
4. Read the Material Safety Data Sheets (MSDSs) and the
manufacturer’s instruction for metals, consumables, coatings, and
cleaners.
6. Be aware that welding on a ceiling, floor, bulkhead, or partition
can cause fire on the hidden side.
7. Do not weld on closed containers such as tanks or drums.
5. Work in a confined space only if it is well ventilated, or while
wearing an air-supplied respirator. Shielding gases used for
welding can displace air causing injury or death. Be sure the
breathing air is safe.
8. Connect work cable to the work as close to the welding area as
practical to prevent welding current from traveling long, possibly
unknown paths and causing electric shock and fire hazards.
9. Do not use welder to thaw frozen pipes.
6. Do not weld in locations near degreasing, cleaning, or spraying
operations. The heat and rays of the arc can react with vapors to
form highly toxic and irritating gases.
10. Remove stick electrode from holder or cut off welding wire at
contact tip when not in use.
7. Do not weld on coated metals, such as galvanized, lead, or
cadmium plated steel, unless the coating is removed from the
weld area, the area is well ventilated, and if necessary, while
wearing an air-supplied respirator. The coatings and any metals
containing these elements can give off toxic fumes if welded.
Eye protection filter shade selector for welding or cutting
(goggles or helmet), from AWS A6.2-73.
Welding or cutting
Torch soldering
Torch brazing
Oxygen Cutting
Light
Medium
Heavy
Gas welding
Light
Medium
Heavy
Shielded metal-arc
Electrode Size
Filter
Welding or cutting
2
3 or 4
Under 1 in., 25 mm
1 to 6 in., 25-150 mm
Over 6 in., 150 mm
3 or 4
4 or 5
5 or 6
Under 1/8 in., 3 mm
1/8 to 1/2 in., 3-12 mm
Over 1/2 in., 12 mm
Under 5/32 in., 4 mm
5/32 to 1/4 in.,
Over 1/4 in., 6.4 mm
4 or 5
5 or 6
6 or 8
10
12
14
Electrode Size
Gas metal-arc
Non-ferrous base metal
All
Ferrous base metal
All
Gas tungsten arc welding
All
(TIG)
All
Atomic hydrogen welding
All
Carbon arc welding
All
Plasma arc welding
Carbon arc air gouging
Light
Heavy
Plasma arc cutting
Light Under 300 Amp
Medium 300 to 400 Amp
Heavy Over 400 Amp
2
Filter
11
12
12
12
12
12
12
14
9
12
14
ARCMASTER 300 AC/DC
2. If used in a closed area, vent engine exhaust outside and away
from any building air intakes.
WARNING
WARNING
FLYING SPARKS AND HOT METAL can cause injury.
Chipping and grinding cause flying metal. As welds cool,
they can throw off slag.
ENGINE FUEL can cause fire or explosion.
Engine fuel is highly flammable.
1. Wear approved face shield or safety goggles. Side shields
recommended.
1. Stop engine before checking or adding fuel.
2. Wear proper body protection to protect skin.
2. Do not add fuel while smoking or if unit is near any sparks or
open flames.
WARNING
3. Allow engine to cool before fueling. If possible, check and add
fuel to cold engine before beginning job.
CYLINDERS can explode if damaged.
4. Do not overfill tank — allow room for fuel to expand.
Shielding gas cylinders contain gas under high pressure.
If damaged, a cylinder can explode. Since gas cylinders
are normally part of the welding process, be sure to treat
them carefully.
5. Do not spill fuel. If fuel is spilled, clean up before starting engine.
WARNING
1. Protect compressed gas cylinders from excessive heat, mechanical
shocks, and arcs.
MOVING PARTS can cause injury.
2. Install and secure cylinders in an upright position by chaining
them to a stationary support or equipment cylinder rack to prevent
falling or tipping.
Moving parts, such as fans, rotors, and belts can cut fingers and hands
and catch loose clothing.
3. Keep cylinders away from any welding or other electrical circuits.
1. Keep all doors, panels, covers, and guards closed and
securely in place.
4. Never allow a welding electrode to touch any cylinder.
2. Stop engine before installing or connecting unit.
5. Use only correct shielding gas cylinders, regulators, hoses, and
fittings designed for the specific application; maintain them and
associated parts in good condition.
3. Have only qualified people remove guards or covers for
maintenance and troubleshooting as necessary.
6. Turn face away from valve outlet when opening cylinder valve.
4. To prevent accidental starting during servicing, disconnect
negative (-) battery cable from battery.
7. Keep protective cap in place over valve except when cylinder is in
use or connected for use.
5. Keep hands, hair, loose clothing, and tools away from moving
parts.
8. Read and follow instructions on compressed gas cylinders,
associated equipment, and CGA publication P-1 listed in Safety
Standards.
6. Reinstall panels or guards and close doors when servicing
is finished and before starting engine.
!
WARNING
WARNING
Engines can be dangerous.
SPARKS can cause BATTERY GASES TO EXPLODE;
BATTERY ACID can burn eyes and skin.
Batteries contain acid and generate explosive gases.
WARNING
1. Always wear a face shield when working on a battery.
2. Stop engine before disconnecting or connecting battery cables.
ENGINE EXHAUST GASES can kill.
3. Do not allow tools to cause sparks when working on a battery.
Engines produce harmful exhaust gases.
4. Do not use welder to charge batteries or jump start vehicles.
1. Use equipment outside in open, well-ventilated areas.
5. Observe correct polarity (+ and –) on batteries.
3
ARCMASTER 300 AC/DC
1.02
Principal Safety Standards
Safety in Welding and Cutting, ANSI Standard Z49.1, from American
Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.
WARNING
Safety and Health Standards, OSHA 29 CFR 1910, from Superintendent
of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
STEAM AND PRESSURIZED HOT COOLANT can burn
face, eyes, and skin.
The coolant in the radiator can be very hot and under
pressure.
Recommended Safe Practices for the Preparation for Welding and
Cutting of Containers That Have Held Hazardous Substances, American Welding Society Standard AWS F4.1, from American Welding
Society, 550 N.W. LeJeune Rd., Miami, FL 33126.
1. Do not remove radiator cap when engine is hot. Allow engine to cool.
National Electrical Code, NFPA Standard 70, from National Fire
Protection Association, Batterymarch Park, Quincy, MA 02269.
2. Wear gloves and put a rag over cap area when removing cap.
3. Allow pressure to escape before completely removing cap.
!
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P1, from Compressed Gas Association, 1235 Jefferson Davis Highway,
Suite 501, Arlington, VA 22202.
WARNING
Code for Safety in Welding and Cutting, CSA Standard W117.2, from
Canadian Standards Association, Standards Sales, 178 Rexdale
Boulevard, Rexdale, Ontario, Canada M9W 1R3.
This product, when used for welding or cutting, produces
fumes or gases which contain chemicals know to the
State of California to cause birth defects and, in some
cases, cancer. (California Health & Safety code Sec.
25249.5 et seq.)
Safe Practices for Occupation and Educational Eye and Face Protection, ANSI Standard Z87.1, from American National Standards Institute, 1430 Broadway, New York, NY 10018.
Cutting and Welding Processes, NFPA Standard 51B, from National
Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
NOTE
Considerations About Welding And The Effects of Low
Frequency Electric and Magnetic Fields
The following is a quotation from the General Conclusions Section of
the U.S. Congress, Office of Technology Assessment, Biological Effects
of Power Frequency Electric & Magnetic Fields - Background Paper,
OTA-BP-E-63 (Washington, DC: U.S. Government Printing Office, May
1989): “...there is now a very large volume of scientific findings based
on experiments at the cellular level and from studies with animals and
people which clearly establish that low frequency magnetic fields
interact with, and produce changes in, biological systems. While most
of this work is of very high quality, the results are complex. Current
scientific understanding does not yet allow us to interpret the evidence
in a single coherent framework. Even more frustrating, it does not yet
allow us to draw definite conclusions about questions of possible risk
or to offer clear science-based advice on strategies to minimize or
avoid potential risks.”
To reduce magnetic fields in the workplace, use the following
procedures:
1. Keep cables close together by twisting or taping them.
2. Arrange cables to one side and away from the operator.
3. Do not coil or drape cable around the body.
4. Keep welding power source and cables as far away from
body as practical.
ABOUT PACEMAKERS:
The above procedures are among those also normally
recommended for pacemaker wearers. Consult your
doctor for complete information.
4
ARCMASTER 300 AC/DC
1.03
Precautions de Securite en Soudage à l’Arc
!
MISE EN GARDE
LE SOUDAGE A L’ARC EST DANGEREUX
PROTEGEZ-VOUS, AINSI QUE LES AUTRES, CONTRE LES BLESSURES GRAVES POSSIBLES OU LA MORT. NE LAISSEZ PAS LES ENFANTS
S’APPROCHER, NI LES PORTEURS DE STIMULATEUR CARDIAQUE (A MOINS QU’ILS N’AIENT CONSULTE UN MEDECIN). CONSERVEZ CES
INSTRUCTIONS. LISEZ LE MANUEL D’OPERATION OU LES INSTRUCTIONS AVANT D’INSTALLER, UTILISER OU ENTRETENIR CET EQUIPEMENT.
Les produits et procédés de soudage peuvent sauser des blessures graves ou la mort, de même que des dommages au reste du matériel et à la
propriété, si l’utilisateur n’adhère pas strictement à toutes les règles de sécurité et ne prend pas les précautions nécessaires.
En soudage et coupage, des pratiques sécuritaires se sont développées suite à l’expérience passée. Ces pratiques doivent être apprises par
étude ou entraînement avant d’utiliser l’equipement. Toute personne n’ayant pas suivi un entraînement intensif en soudage et coupage ne devrait
pas tenter de souder. Certaines pratiques concernent les équipements raccordés aux lignes d’alimentation alors que d’autres s’adressent aux
groupes électrogènes.
La norme Z49.1 de l’American National Standard, intitulée “SAFETY IN WELDING AND CUTTING” présente les pratiques sécuritaires à suivre.
Ce document ainsi que d’autres guides que vous devriez connaître avant d’utiliser cet équipement sont présentés à la fin de ces instructions de
sécurité.
SEULES DES PERSONNES QUALIFIEES DOIVENT FAIRE DES TRAVAUX D’INSTALLATION, DE REPARATION, D’ENTRETIEN ET D’ESSAI.
1.04
6. Arrêtez tout équipement après usage. Coupez l’alimentation de
l’équipement s’il est hors d’usage ou inutilisé.
Dangers Relatifs au Soudage à l’Arc
7. N’utilisez que des porte-électrodes bien isolés. Ne jamais plonger
les porte-électrodes dans l’eau pour les refroidir. Ne jamais les
laisser traîner par terre ou sur les pièces à souder. Ne touchez
pas aux porte-électrodes raccordés à deux sources de courant en
même temps. Ne jamais toucher quelqu’un d’autre avec l’électrode
ou le porte-électrode.
AVERTISSEMENT
8. N’utilisez pas de câbles électriques usés, endommagés, mal
épissés ou de section trop petite.
L’ELECTROCUTION PEUT ETRE MORTELLE.
9. N’enroulez pas de câbles électriques autour de votre corps.
10. N’utilisez qu’une bonne prise de masse pour la mise à la terre de
la pièce à souder.
Une décharge électrique peut tuer ou brûler gravement.
L’électrode et le circuit de soudage sont sous tension
dès la mise en circuit. Le circuit d’alimentation et les
circuits internes de l’équipement sont aussi sous tension dès la mise en marche. En soudage automatique
ou semi-automatique avec fil, ce dernier, le rouleau ou
la bobine de fil, le logement des galets d’entrainement
et toutes les pièces métalliques en contact avec le fil de
soudage sont sous tension. Un équipement
inadéquatement installé ou inadéquatement mis à la terre
est dangereux.
11. Ne touchez pas à l’électrode lorsqu’en contact avec le circuit de
soudage (terre).
12. N’utilisez que des équipements en bon état. Réparez ou remplacez
aussitôt les pièces endommagées.
13. Dans des espaces confinés ou mouillés, n’utilisez pas de source
de courant alternatif, à moins qu’il soit muni d’un réducteur de
tension. Utilisez plutôt une source de courant continu.
14. Portez un harnais de sécurité si vous travaillez en hauteur.
1. Ne touchez pas à des pièces sous tension.
15. Fermez solidement tous les panneaux et les capots.
2. Portez des gants et des vêtements isolants, secs et non troués.
3
Isolez-vous de la pièce à souder et de la mise à la terre au moyen
de tapis isolants ou autres.
4. Déconnectez la prise d’alimentation de l’équipement ou arrêtez le
moteur avant de l’installer ou d’en faire l’entretien. Bloquez le
commutateur en circuit ouvert ou enlevez les fusibles de
l’alimentation afin d’éviter une mise en marche accidentelle.
5. Veuillez à installer cet équipement et à le mettre à la terre selon le
manuel d’utilisation et les codes nationaux, provinciaux et locaux
applicables.
5
ARCMASTER 300 AC/DC
AVERTISSEMENT
AVERTISSEMENT
LE RAYONNEMENT DE L’ARC PEUT BRÛLER LES YEUX
ET LA PEAU; LE BRUIT PEUT ENDOMMAGER L’OUIE.
LES VAPEURS ET LES FUMEES SONT DANGEREUSES
POUR LA SANTE.
L’arc de soudage produit une chaleur et des rayons
ultraviolets intenses, susceptibles de brûler les yeux et
la peau. Le bruit causé par certains procédés peut
endommager l’ouïe.
Le soudage dégage des vapeurs et des fumées
dangereuses à respirer.
1. Eloignez la tête des fumées pour éviter de les respirer.
1. Portez une casque de soudeur avec filtre oculaire de nuance
appropriée (consultez la norme ANSI Z49 indiquée ci-après) pour
vous protéger le visage et les yeux lorsque vous soudez ou que
vous observez l’exécution d’une soudure.
2. A l’intérieur, assurez-vous que l’aire de soudage est bien ventilée
ou que les fumées et les vapeurs sont aspirées à l’arc.
2. Portez des lunettes de sécurité approuvées. Des écrans latéraux
sont recommandés.
4. Lisez les fiches signalétiques et les consignes du fabricant relatives aux métaux, aux produits consummables, aux revêtements
et aux produits nettoyants.
3. Si la ventilation est inadequate, portez un respirateur à adduction
d’air approuvé.
3. Entourez l’aire de soudage de rideaux ou de cloisons pour protéger
les autres des coups d’arc ou de l’éblouissement; avertissez les
observateurs de ne pas regarder l’arc.
5. Ne travaillez dans un espace confiné que s’il est bien ventilé; sinon,
portez un respirateur à adduction d’air. Les gaz protecteurs de
soudage peuvent déplacer l’oxygène de l’air et ainsi causer des
malaises ou la mort. Assurez-vous que l’air est propre à la respiration.
4. Portez des vêtements en matériaux ignifuges et durables (laine et
cuir) et des chaussures de sécurité.
5. Portez un casque antibruit ou des bouchons d’oreille approuvés
lorsque le niveau de bruit est élevé.
6. Ne soudez pas à proximité d’opérations de dégraissage, de
nettoyage ou de pulvérisation. La chaleur et les rayons de l’arc
peuvent réagir avec des vapeurs et former des gaz hautement
toxiques et irritants.
SELECTION DES NUANCES DE FILTRES OCULAIRS POUR LA PROTECTION
DES YEUX EN COUPAGE ET SOUDAGE (selon AWS á 8.2-73)
Dimension d'électrode ou
Epiasseur de métal ou
Intensité de courant
Nuance de
filtre oculaire
Brassage tendre
au chalumeau
toutes conditions
2
Brassage fort
au chalumeau
toutes conditions
3 ou 4
Opération de coupage
ou soudage
Soudage á l'arc sous gaz
avec fil plein (GMAW)
métaux non-ferreux
toutes conditions
11
métaux ferreux
toutes conditions
12
toutes conditions
12
toutes conditions
12
toutes conditions
12
toutes dimensions
12
Oxycoupage
mince
moins de 1 po. (25 mm)
moyen de 1 á 6 po. (25 á 150 mm)
épais
plus de 6 po. (150 mm)
3 ou 4
4 ou 5
5 ou 6
Soudage aux gaz
Dimension d'électrode ou
Nuance de
Epiasseur de métal ou
filtre oculaire
Intensité de courant
Opération de coupage
ou soudage
Soudage á l'arc sous gaz avec
électrode de tungstène (GTAW)
Soudage á l'hydrogène
atomique (AHW)
Soudage á l'arc avec
électrode de carbone (CAW)
Soudage á l'arc Plasma (PAW)
mince
moins de 1/8 po. (3 mm)
moyen de 1/8 á 1/2 po. (3 á 12 mm)
épais
Soudage á l'arc avec
électrode enrobees
(SMAW)
4 ou 5
Gougeage Air-Arc avec
électrode de carbone
5 ou 6
mince
12
plus de 1/2 po. (12 mm)
6 ou 8
épais
14
moins de 5/32 po. (4 mm)
10
5/32 á 1/4 po. (4 á 6.4 mm)
12
mince
moins de 300 amperès
9
plus de 1/4 po. (6.4 mm)
14
moyen
de 300 á 400 amperès
12
plus de 400 amperès
14
Coupage á l'arc Plasma (PAC)
épais
6
ARCMASTER 300 AC/DC
7. Ne soudez des tôles galvanisées ou plaquées au plomb ou au
cadmium que si les zones à souder ont été grattées à fond, que si
l’espace est bien ventilé; si nécessaire portez un respirateur à adduction d’air. Car ces revêtements et tout métal qui contient ces
éléments peuvent dégager des fumées toxiques au moment du
soudage.
AVERTISSEMENT
LES ETINCELLES ET LES PROJECTIONS BRULANTES
PEUVENT CAUSER DES BLESSURES.
Le piquage et le meulage produisent des particules
métalliques volantes. En refroidissant, la soudure peut
projeter du éclats de laitier.
AVERTISSEMENT
LE SOUDAGE PEUT CAUSER UN INCENDIE OU UNE
EXPLOSION
1. Portez un écran facial ou des lunettes protectrices
approuvées. Des écrans latéraux sont recommandés.
L’arc produit des étincellies et des projections. Les
particules volantes, le métal chaud, les projections de
soudure et l’équipement surchauffé peuvent causer un
incendie et des brûlures. Le contact accidentel de
l’électrode ou du fil-électrode avec un objet métallique
peut provoquer des étincelles, un échauffement ou un
incendie.
2. Portez des vêtements appropriés pour protéger la peau.
AVERTISSEMENT
LES BOUTEILLES ENDOMMAGEES PEUVENT
EXPLOSER
1. Protégez-vous, ainsi que les autres, contre les étincelles et du
métal chaud.
Les bouteilles contiennent des gaz protecteurs sous
haute pression. Des bouteilles endommagées peuvent
exploser. Comme les bouteilles font normalement partie
du procédé de soudage, traitez-les avec soin.
2. Ne soudez pas dans un endroit où des particules volantes ou des
projections peuvent atteindre des matériaux inflammables.
3. Enlevez toutes matières inflammables dans un rayon de 10, 7
mètres autour de l’arc, ou couvrez-les soigneusement avec des
bâches approuvées.
1. Protégez les bouteilles de gaz comprimé contre les sources de
chaleur intense, les chocs et les arcs de soudage.
4. Méfiez-vous des projections brulantes de soudage susceptibles
de pénétrer dans des aires adjacentes par de petites ouvertures
ou fissures.
2. Enchainez verticalement les bouteilles à un support ou à un cadre
fixe pour les empêcher de tomber ou d’être renversées.
3. Eloignez les bouteilles de tout circuit électrique ou de tout soudage.
5. Méfiez-vous des incendies et gardez un extincteur à portée de la
main.
4. Empêchez tout contact entre une bouteille et une électrode de
soudage.
6. N’oubliez pas qu’une soudure réalisée sur un plafond, un plancher,
une cloison ou une paroi peut enflammer l’autre côté.
5. N’utilisez que des bouteilles de gaz protecteur, des détendeurs,
des boyauxs et des raccords conçus pour chaque application
spécifique; ces équipements et les pièces connexes doivent être
maintenus en bon état.
7. Ne soudez pas un récipient fermé, tel un réservoir ou un baril.
8. Connectez le câble de soudage le plus près possible de la zone
de soudage pour empêcher le courant de suivre un long parcours
inconnu, et prévenir ainsi les risques d’électrocution et d’incendie.
6. Ne placez pas le visage face à l’ouverture du robinet de la bouteille
lors de son ouverture.
9. Ne dégelez pas les tuyaux avec un source de courant.
7. Laissez en place le chapeau de bouteille sauf si en utilisation ou
lorsque raccordé pour utilisation.
10. Otez l’électrode du porte-électrode ou coupez le fil au tube-contact lorsqu’inutilisé après le soudage.
8. Lisez et respectez les consignes relatives aux bouteilles de gaz
comprimé et aux équipements connexes, ainsi que la publication
P-1 de la CGA, identifiée dans la liste de documents ci-dessous.
11. Portez des vêtements protecteurs non huileux, tels des gants en
cuir, une chemise épaisse, un pantalon revers, des bottines de
sécurité et un casque.
AVERTISSEMENT
LES MOTEURS PEUVENT ETRE DANGEREUX
LES GAZ D’ECHAPPEMENT DES MOTEURS PEUVENT
ETRE MORTELS.
Les moteurs produisent des gaz d’échappement nocifs.
7
ARCMASTER 300 AC/DC
1. Utilisez l’équipement à l’extérieur dans des aires ouvertes et bien
ventilées.
Les accumulateurs contiennent de l’électrolyte acide et
dégagent des vapeurs explosives.
2. Si vous utilisez ces équipements dans un endroit confiné, les
fumées d’échappement doivent être envoyées à l’extérieur, loin
des prises d’air du bâtiment.
1. Portez toujours un écran facial en travaillant sur un accumu-lateur.
2. Arrêtez le moteur avant de connecter ou de déconnecter des câbles
d’accumulateur.
3. N’utilisez que des outils anti-étincelles pour travailler sur un
accumulateur.
AVERTISSEMENT
4. N’utilisez pas une source de courant de soudage pour charger
un accumulateur ou survolter momentanément un véhicule.
LE CARBURANT PEUR CAUSER UN INCENDIE OU UNE
EXPLOSION.
5. Utilisez la polarité correcte (+ et –) de l’accumulateur.
Le carburant est hautement inflammable.
1. Arrêtez le moteur avant de vérifier le niveau e carburant ou de
faire le plein.
2. Ne faites pas le plein en fumant ou proche d’une source d’étincelles
ou d’une flamme nue.
AVERTISSEMENT
3. Si c’est possible, laissez le moteur refroidir avant de faire le plein
de carburant ou d’en vérifier le niveau au début du soudage.
LA VAPEUR ET LE LIQUIDE DE REFROIDISSEMENT
BRULANT SOUS PRESSION PEUVENT BRULER LA
PEAU ET LES YEUX.
4. Ne faites pas le plein de carburant à ras bord: prévoyez de l’espace
pour son expansion.
Le liquide de refroidissement d’un radiateur peut être
brûlant et sous pression.
5. Faites attention de ne pas renverser de carburant. Nettoyez tout
carburant renversé avant de faire démarrer le moteur.
1. N’ôtez pas le bouchon de radiateur tant que le moteur n’est pas
refroidi.
AVERTISSEMENT
2. Mettez des gants et posez un torchon sur le bouchon pour l’ôter.
3. Laissez la pression s’échapper avant d’ôter complètement le
bouchon.
DES PIECES EN MOUVEMENT PEUVENT CAUSER DES
BLESSURES.
1.05
Des pièces en mouvement, tels des ventilateurs, des
rotors et des courroies peuvent couper doigts et mains,
ou accrocher des vêtements amples.
Principales Normes de Securite
Safety in Welding and Cutting, norme ANSI Z49.1, American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33128.
1. Assurez-vous que les portes, les panneaux, les capots et les
protecteurs soient bien fermés.
Safety and Health Standards, OSHA 29 CFR 1910, Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C.
20402.
2. Avant d’installer ou de connecter un système, arrêtez le moteur.
Recommended Safe Practices for the Preparation for Welding and
Cutting of Containers That Have Held Hazardous Substances, norme
AWS F4.1, American Welding Society, 550 N.W. LeJeune Rd., Miami,
FL 33128.
3. Seules des personnes qualifiées doivent démonter des protecteurs
ou des capots pour faire l’entretien ou le dépannage nécessaire.
4. Pour empêcher un démarrage accidentel pendant l’entretien,
débranchez le câble d’accumulateur à la borne négative.
National Electrical Code, norme 70 NFPA, National Fire Protection
Association, Batterymarch Park, Quincy, MA 02269.
5. N’approchez pas les mains ou les cheveux de pièces en
mouvement; elles peuvent aussi accrocher des vêtements amples
et des outils.
Safe Handling of Compressed Gases in Cylinders, document P-1,
Compressed Gas Association, 1235 Jefferson Davis Highway, Suite
501, Arlington, VA 22202.
6. Réinstallez les capots ou les protecteurs et fermez les portes après
des travaux d’entretien et avant de faire démarrer le moteur.
Code for Safety in Welding and Cutting, norme CSA W117.2 Association canadienne de normalisation, Standards Sales, 276 Rexdale
Boulevard, Rexdale, Ontario, Canada M9W 1R3.
Safe Practices for Occupation and Educational Eye and Face Protection, norme ANSI Z87.1, American National Standards Institute, 1430
Broadway, New York, NY 10018.
AVERTISSEMENT
DES ETINCELLES PEUVENT FAIRE EXPLOSER UN
ACCUMULATEUR; L’ELECTROLYTE D’UN ACCUMULATEUR PEUT BRULER LA PEAU ET LES YEUX.
Cutting and Welding Processes, norme 51B NFPA, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
8
ARCMASTER 300 AC/DC
1.06
Declaration Of Conformity
Manufacturer:
Address:
Thermadyne Corporation
82 Benning Street
West Lebanon, New Hampshire 03784
USA
The equipment described in this manual conforms to all applicable aspects and regulations of the ‘Low Voltage Directive’ (European Council
Directive 73/23/EEC as amended by Council Directive 93/68/EEC) and to the National legislation for the enforcement of this Directive.
The equipment described in this manual conforms to all applicable aspects and regulations of the “EMC Directive” (European Council Directive
89/336/EEC) and to the National legislation for the enforcement of this Directive.
Serial numbers are unique with each individual piece of equipment and details description, parts used to manufacture a unit and date of
manufacture.
National Standard and Technical Specifications
The product is designed and manufactured to a number of standards and technical requirements. Among them are:
•
CSA (Canadian Standards Association) standard C22.2 number 60 for Arc welding equipment.
•
UL (Underwriters Laboratory) rating 94VO flammability testing for all printed-circuit boards used.
•
CENELEC EN50199 EMC Product Standard for Arc Welding Equipment.
•
ISO/IEC 60974-1 (BS 638-PT10)
equipment and associated accessories.
•
For environments with increased hazard of electrical shock, Power Supplies bearing the S mark conform to EN50192 when used in
conjunction with hand torches with exposed cutting tips, if equipped with properly installed standoff guides.
•
Extensive product design verification is conducted at the manufacturing facility as part of the routine design and manufacturing process.
This is to ensure the product is safe, when used according to instructions in this manual and related industry standards, and performs as
specified. Rigorous testing is incorporated into the manufacturing process to ensure the manufactured product meets or exceeds all
design specifications.
(EN
60
974-1)
(EN50192)
(EN50078)
applicable
to
plasma
cutting
Thermadyne has been manufacturing products for more than 30 years, and will continue to achieve excellence in our area of manufacture.
Manufacturers responsible representative:
Steve Ward
Operations Director
Thermadyne Europe
Europa Building
Chorley N Industrial Park
Chorley, Lancashire,
England PR6 7BX
9
2 INTRODUCTION
1 How To Use This Manual
2 Equipment Identification
INTRODUCTION
This Service Manual applies to just specification or
part numbers listed on page i.
The unit's identification number (specification or
part number), model, and serial number usually
appear on a nameplate attached to the control
panel. In some cases, the nameplate may be
attached to the rear panel. Equipment which does
not have a control panel such as gun and cable
assemblies is identified only by the specification or
part number printed on the shipping container.
Record these numbers on the bottom of page i for
future reference.
To ensure safe operation, read the entire manual,
including the chapter on safety instructions and
warnings.
Throughout this manual, the words WARNING,
CAUTION, and NOTE may appear. Pay particular
attention to the information provided under these
headings. These special annotations are easily
recognized as follows:
3 Receipt Of Equipment
WARNING
A WARNING gives information regarding possible
personal injury.
When you receive the equipment, check it against
the invoice to make sure it is complete and inspect
the equipment for possible damage due to shipping. If there is any damage, notify the carrier
immediately to file a claim. Furnish complete information concerning damage claims or shipping
errors to the location in your area listed in the
inside back cover of this manual.
CAUTION
A CAUTION refers to possible equipment damage.
NOTE
A NOTE offers helpful information concerning certain operating procedures.
Include all equipment identification numbers as
described above along with a full description of the
parts in error.
Additional copies of this manual may be purchased
by contacting Thermal Arc at the address and
phone number in your area listed in the inside
back cover of this manual. Include the manual
and equipment identification numbers.
Move the equipment to the installation site before
uncrating the unit. Use care to avoid damaging the
equipment when using bars, hammers, etc., to uncrate the unit.
Electronic copies of this manual can also be downloaded at no charge in Acrobat PDF format by
going to the Thermal Arc web site listed below and
clicking on the Literature Library link:
http://www.thermalarc.com
2–1
300ACDC
2 INTRODUCTION
4 Symbol Chart
Note that only some of these symbols will appear on your model.
Amperage
STICK
(Shielded Metal Arc SMAW)
Voltage
Pulse Current Function
Hertz (frequency)
Spot Time (GTAW)
t
SEC
Seconds
Remote Control
(Panel/Remote)
%
Percent
Remote Function
DC (Direct Current)
Arc Control (SMAW)
AC (Alternating Current)
t2
Standard Function
t1
VRD
Slope Function
Gas Post-Flow
Gas Pre-Flow
Voltage Reduction Device
Circuit
Slope W/Repeat Function
Negative
Spot Function
Positive
Impulse Starting
(High Frequency GTAW)
Gas Input
Touch Start
(Lift Start TIG circuit GTAW)
Gas Output
2–2
300ACDC
2 INTRODUCTION
5 Description
The Thermal ArcTM Model 300ACDC is a self contained single/three -phase AC/DC arc welding power
source with Constant Current (CC) output characteristics. This unit is equipped with a Digital Volt/Amperage
Meter, gas control valve, built in Sloper and Pulser, lift arc starter, and high-frequency arc starter for use with
Gas Tungsten Arc Welding (GTAW), Gas Tungsten Arc Welding-Pulsed (GTAW-P) Gas Tungsten Arc Welding-Sloped (GTAW-S), and Shielded Metal Arc Welding (SMAW) processes. The power source is totally
enclosed in an impact resistant, flame retardant and non-conductive plastic case.
NOTE
Volt-Ampere curves show the maximum Voltage and Amperage output capabilities of the welding power
source. Curves of other settings will fall between the curves shown.
(V)
OCV
(V)
OCV
(V)
OCV
10V
5A
300A
(A)
25A
STICK Process
300A
(A)
5A
LIFT TIG Process
300A
(A)
HF TIG Process
Figure 2-1: Model 300ACDC Volt-Ampere curve
6 Functional Block Diagrams
Figure 2-1 illustrates the functional block diagram of the 300ACDC-power supply.
To each control circuit
+/-12VDC +15VDC
DC Power
Drive
Circuit
Input
Power
Main
Circuit
Switch
Filter
Input
Diode
Capacitor
DC Power
Primary
Voltage
Sensor
Main
Transformer
(PCB14)
IGBT
Inverter
Thermal
Detector
Output
Diodes
Thermal
Detector
Output
Inductor
Hall Current
Secondary
IGBT
Inverter
Transformer
(HCT1)
Coupling
Coil
To each control circuit Drive
+/-15VDC +18VDC
Circuit
+24VDC +5VDC
Trouble
Sensing
Circuit
Thermal
Sensor
Circuit
HF-UNIT
Control
Circuit
Stick Mode
VRD
Sensing
Circuit
Lift Tig Mode
Output Short
Sensing
Circuit
High
Frequency
Unit
Primary
Current
Sensor
Sequence
Control
Torch Control
Connection
(CON1)
Current
Adjustment
circuit
Fan Control
Circuit
Fan
Gas Control
Circuit
Solenoid
Reference
Adjustment &
Mode select Switches
Panel Circuit Board
Figure 2-2: 300ACDC Model Functional Block Diagram
2–3
300ACDC
7 Transporting Methods
These units are equipped with a handle for carrying
purposes.
WARNING
ELECTRIC SHOCK can kill.
 DO NOT TOUCH live electrical parts.
 Disconnect input power conductors from deenergized supply line before moving the welding
power source.
WARNING
FALLING EQUIPMENT can cause serious personal injury and equipment damage.
 Lift unit with handle on top of case.
 Use handcart or similar device of adequate
capacity.
 If using a fork lift vehicle, place and secure unit
on a proper skid before transporting.
2–4
2 INTRODUCTION
3 INSTALLATION
1 Environment
3 Electrical Input Connec-
INSTALLATION
tions
The ARC MASTER 300ACDC is designed for use
in adverse environments.
WARNING
Examples of environments with increased adverse
conditions are:
ELECTRIC SHOCK can kill; SIGNIFICANT DC
VOLTAGE is present after removal of input power.
a. In locations in which freedom of movement is
restricted, so that the operator is forced to perform the work in a cramped (kneeling, sitting or
lying) position with physical contact with conductive parts;
DO NOT TOUCH live electrical parts.
SHUT DOWN welding power source, disconnect
input power employing lockout/tagging procedures.
Lockout/tagging procedures consist of padlocking
line disconnect switch in open position, removing
fuses from fuse box, or shutting off and red-tagging
circuit breaker or other disconnecting device.
b. In locations which are fully or partially limited
by conductive elements, and in which there is
a high risk of unavoidable or accidental contact
by the operator, or
c. In wet or damp hot locations where humidity or
perspiration considerably reduces the skin
resistance of the human body and the insulation properties of accessories.
4 Electrical Input Requirement
Environments with adverse conditions do not
include places where electrically conductive parts
are in the near vicinity of the operator, which can
cause increased hazard, have been insulated.
Operate the welding power source from a single
or 3-phase 50/60 Hz, AC power supply. The input
voltage must match one of the electrical input voltages
shown on the input data label on the unit nameplate. Contact the local electric utility for information about the type of electrical service available,
how proper connections should be made, and any
inspection required.
2 Location
Be sure to locate the welder according to the following guidelines:
The line disconnect switch provides a safe and
convenient means to completely remove all electrical power from the welding power supply whenever
necessary to inspect or service the unit.
 In areas, free from moisture and dust.
 Ambient temperature between 0 degrees C to
40 degrees C.
 In areas, free from oil, steam and corrosive
gases.
NOTE
These units are equipped with a three-conductor
with earth power cable that is connected at the
welding power source end for single and three
phase electrical input power.
 In areas, not subjected to abnormal vibration or
shock.
 In areas, not exposed to direct sunlight or rain.
 Place at a distance of 12” (304.79mm) or more
from walls or similar boundaries that could
restrict natural airflow for cooling.
Do not connect an input (Brown or BLUE or GRAY)
conductor to the ground terminal.
Do not connect the ground (GREEN/YELLOW)
conductor to an input line terminal.
WARNING
Thermal Arc advises that this equipment be electrically connected by a qualified electrician.
3–1
300ACDC
5 Input Power
Refer to figure 3-1 and:
1. Connect end of ground (GREEN/YELLOW)
conductor to a suitable ground. Use a grounding method that complies with all applicable
electrical codes.
Each unit incorporates an INRUSH circuit and input
voltage sensing circuit. When the MAIN CIRCUIT
SWITCH is turned on, the inrush circuit provides a
pre-charging of the input capacitors. At this point
the Bus Voltages are checked and the welder is
enabled after the input capacitors have charged to
full operating voltage (after approximately 5 seconds).
2. Connect ends of line 1 (BROWN) and line 2
(BLUE) and line 3 (GRAY) input conductors to
a de-energized line disconnect switch.
3. Use Table 1 and Table 2 as a guide to select
line fuses for the disconnect switch.
Input Voltage
Fuse Size
400V
50 Amps
3 INSTALLATION
NOTE
Note the available input power. Damage to the
welder could occur if 575VAC or higher is applied.
Table 3-1: Electrical Input Connections
The following 400V Primary Current recommendations are required to obtain the maximum welding
current and duty cycle from this welding equipment:
NOTE
Fuse size is based on not more than 200 percent of
the rated input amperage of the welding power
source (Based on Article 630, National Electrical
Code).
Primary
Supply
Lead Size
(Factory
Fitted)
Minimum
Primary
Current
Circuit Size
(Vin/Amps)
ARC
4mm sq / 4
MASTER
minimum
300ACDC
Model
Current & Duty
Cycle
TIG
STICK
400/16
300 @
25%
−
400/24
−
300 @
25%
3φ
Table 3-2: 400V Primary Current Circuit sizes to achieve
maximum current
The ARC MASTER 300ACDC is designed for use
with a generator as an input power source. Contact an accredited Thermal Arc service agent for
the proper sizing and set-up recommendations of a
generator power source system. As a general rule,
depending on the type of generator used, the generator capacity should be twice the maximum rating of the welder.
Figure 3-1: Electrical Input Connections
3–2
300ACDC
3
INSTALLATION
6 High Frequency Introduc-
3. Radiation from Welding Leads: Radiated
interference from welding leads, although pronounced in the vicinity of the leads, diminishes
rapidly with distance. Keeping leads as short
as possible will minimize this type of interference. Looping and suspending of leads
should be avoided where possible.
tion
The importance of correct installation of high frequency welding equipment cannot be over-emphasized. Interference due to high frequency initiated
or stabilized arc is almost invariably traced to
improper installation. The following information is
intended as a guide for personnel installing high
frequency welding machines.
4. Re-radiation from Unearthed Metallic
Objects: A major factor contributing to interference is re-radiation from unearthed metallic
objects close to the welding leads. Effective
grounding of such objects will prevent re-radiation in most cases.
WARNING: Explosives
The high frequency section of this machine has an
output similar to a radio transmitter. The machine
should NOT be used in the vicinity of blasting operations due to the danger of premature firing.
8 Duty Cycle
The duty cycle of a welding power source is the
percentage of a ten (10) minute period that it can
be operated at a given output without causing overheating and damage to the unit. If the welding
amperes decrease, the duty cycle increases. If the
welding amperes are increased beyond the rated
output, the duty cycle will decrease.
WARNING: Computers
It is also possible that operation close to computer
installations may cause computer malfunction.
7 High Frequency Interfer-
WARNING
ence
Exceeding the duty cycle ratings will cause the
thermal overload protection circuit to become energized and shut down the output until the unit has
cooled to normal operating temperature.
Interference may be transmitted by a high frequency initiated or stabilized arc welding machine
in the following ways:
1. Direct Radiation: Radiation from the machine
can occur if the case is metal and is not properly grounded. It can occur through apertures
such as open access panels. The shielding of
the high frequency unit in the Power Source
will prevent direct radiation if the equipment is
properly grounded.
CAUTION
Continually exceeding the duty cycle ratings can
cause damage to the welding power source and
will void the manufactures warranty.
NOTE
Due to variations that can occur in manufactured
products, claimed performance, voltages, ratings,
all capacities, measurements, dimensions and
weights quoted are approximate only. Achievable
capacities and ratings in use and operation will
depend upon correct installation, use, applications,
maintenance and service.
2. Transmission via the Supply Lead: Without
adequate shielding and filtering, high frequency energy may be fed to the wiring within
the installation (mains) by direct coupling. The
energy is then transmitted by both radiation
and conduction. Adequate shielding and filtering is provided in the Power Source.
3–3
300ACDC
9 Specifications
Parameter
Rated Output
Amperes
Volts
Duty Cycle
Duty
TIG
Cycle
STICK
Output
Current
Range
TIG
STICK
Open Circuit Voltage
Dimensions
Width
Height
Length
Weight
Output @ Rated Load
Rated Input Voltage
Output Amperes
Output Volts
Duty Cycle
KVA
KW
Output @ No Load
Rated Input Voltage
KVA
KW
Input Volts Three
Phase
400V
Thermal Arc continuously strives to produce the
best product possible and therefore reserves the
right to change, improve or revise the specifications or design of this or any product without prior
notice. Such updates or changes do not entitle the
buyer of equipment previously sold or shipped to
the corresponding changes, updates, improvements or replacement of such items.
300ACDC
300
22
25%
300A / 22V @ 25%
190A / 17V @ 60%
150A / 16V @ 100%
300A / 32V @ 25%
190A / 27V @ 60%
150A / 26V @ 100%
5 - 300 (DC)
5 - 300 (AC) @ 60Hz,
50% Cleaning
5 - 300 (DC)
5 - 300 (AC) @ 60Hz,
50% Cleaning
57V
The values specified in the table above are optimal
values, your values may differ. Individual equipment may differ from the above specifications due
to in part, but not exclusively, to any one or more of
the following; variations or changes in manufactured components, installation location and conditions and local power grid supply conditions.
8.3” (210mm)
16.5” (420mm)
17.7” (450mm)
52.8 lb. 24 kg
Three-phase
300A
32V
25%
18.0
12.0
Three-phase
0.5
0.13
Amperage
Draw @ Rated
Load
24
3 INSTALLATION
No Load Amps
0.7
3–4
4 OPERATOR CONTROLS
1 ARC MASTER 300ACDC Controls
OPERATOR CONTROLS
1
1. Control Knob: This control sets the selected
weld parameter, rotating it clockwise increases
the parameter that is indicated on the digital
meter. Pushing the knob inward displays the
actual welding voltage.
2
435
2. Remote Control Socket: The 14 pin Remote
Control Socket is used to connect remote current control devices to the welding Power
Source. To make connections, align keyway,
insert plug, and rotate threaded collar fully
clockwise.
5
4
3
210
E
A
B
C
A B C D E F GH I J K L MN
J
K
L
D
I
N
M
E
H
G
F
5k ohms
Front view of 14
Socket Receptacle
Figure 4-2: 14-Socket Receptacle
Socket
Pin
Function
A
Torch Switch Input (24V) to (connect pins A &
B to turn on welding current).
B
450
C
6
D
7
E
G
F,H,I,J,
K,L
8
Figure 4-1: ARC MASTER 300ACDC Power Source
Torch Switch Input (0V) to energize weld
current (connect pins A & B to turn on welding
current).
5k ohm (maximum) connection to 5k ohm
remote control potentiometer.
Zero ohm (minimum) connection to 5k ohm
remote control potentiometer.
Wiper arm connection to 5k ohm remote
control potentiometer.
Mains Earth.
Not Used.
M
OK to move current detect signal for robotics
applications.
N
OK to move current detect signal for robotics
applications.
Table 4-1: Socket Pin Functions
4–1
300ACDC
4 OPERATOR CONTROLS
2 Weld Process selection for
3. Positive Terminal: Welding current flows from
the Power Source via heavy duty Dinse type
terminal (50 mm). It is essential, however,
that the male plug is inserted and turned
securely to achieve a sound electrical connection.
ARC MASTER 300ACDC
Weld Process
Selection
4. Negative Terminal: Welding current flows
from the Power Source via heavy duty Dinse
type terminal (50 mm). It is essential, however, that the male plug is inserted and turned
securely to achieve a sound electrical connection.
Weld Mode
HF LIFT
STICK
TIG TIG
CAUTION
SLOPE
5. Torch / Gas Terminal: Torch / Gas Terminal
is an all-in-one design of the Gas Outlet and
the Negative Terminal. Gas Outlet is a BSP-3/
8 inch female gas fitting.
REPEAT
6. ON/OFF Switch: This switch connects the Primary supply voltage to the inverter when in the
ON position. This enables the Power Supply.
2T operation in
TIG Modes using
Yes remote devices to
control contactor
& current
4T operation in
TIG Modes with
crater fill using a
Yes
remote contactor
device to control
sequence.
4T operation in
TIG Modes with
repeat operation
Yes
and crater fill
using a remote
contactor device.
2T operation spot
welding in HF TIG
No
using a remote
contactor device.
Yes
Yes
No
Yes
No
Yes
No
Yes
No
Yes
Yes
Pulse operation
in TIG Modes
Yes
Yes
Yes
Selects AC or DC
weld current
Yes
No
Contactor
Yes operation in Stick
Mode
Yes
Yes
Selects mode of
Yes operation: Panel
or Remote
STD
Loose welding terminal connections can cause
overheating and result in the male plug being fused
in the bayonet terminal.
Description
SPOT
WARNING
When the welder is connected to the Primary supply voltage, the internal electrical components
may be at 720V potential with respect to earth.
PULSE
ON/OFF
7. Input Cable: The input cable connects the Primary supply voltage to the equipment.
8. Gas Inlet: The Gas Inlet is a BSP-3/8 inch
female gas fitting.
Contactor ON/OFF
Operation
PANEL / REMOTE
Table 4-2:
Weld Process selection verses Weld Mode
for ARC MASTER 300ACDC
4–2
300ACDC
4
OPERATOR CONTROLS
3 Weld Parameter Descriptions for ARC MASTER 300ACDC
Figure 4-3:
ARC MASTER 300ACDC Front Panel
with Parameter Description
Parameter
t1
Description
This parameter operates in TIG modes only and is used to provide gas to the weld zone prior to
striking the arc, once the torch trigger switch has been pressed. This control is used to dramatically
reduce weld porosity at the start of a weld.
PRE-FLOW
HOT START
INITIAL CUR.
UP SLOPE
PEAK CUR.
WELD
BASE
(Background
Current)
SPOT TIME
PULSE WIDTH
PULSE FREQ.
AC FREQUENCY
This parameter operates in all weld modes except Lift TIG mode and is used to heat up the weld
zone in TIG modes or improve the start characteristics for stick electrodes. e.g. low hydrogen
electrodes. It sets the peak start current on top of the BASE (WELD) current.
e.g. HOT START current = 130 amps when BASE (WELD) = 100 amps & HOT START = 30 amps
This parameter operates in SLOPE or REPEAT (4T) TIG modes only and is used to set the start
current for TIG. The Start Current remains on until the torch trigger switch is released after it has
been depressed.
This parameter operates in TIG modes only and is used to set the time for the weld current to ramp
up, after the torch trigger switch has been pressed then released, from INITIAL CUR to PEAK or
BASE current.
This parameter sets the PEAK weld current when in PULSE mode.
This parameter sets the TIG WELD current in STD, SLOPE, REPEAT and SPOT modes when
PULSE is off. This parameter also sets the STICK weld current.
This parameter sets the Background current when in Pulse TIG mode.
This parameter sets the duration of the SPOT TIME in HF TIG mode only.
This parameter sets the percentage on time of the PULSE FREQUENCY for PEAK weld current
when the PULSE is on.
This parameter sets the PULSE FREQUENCY when the PULSE is on.
This parameter operates in AC mode only and is used to set the frequency for the AC weld current.
4–3
300ACDC
Parameter
Description
This parameter is used for aluminium AC TIG mode and is used to set the penetration to cleaning
action ratio for the AC weld current. Generally WAVE BALANCE is set to 50% for AC STICK
welding. The WAVE BALANCE control changes the ratio of penetration to cleaning action of the
AC TIG welding arc. Maximum weld penetration is achieved when the WAVE BALANCE control is
set to 10%. Maximum cleaning of heavily oxidised aluminum or magnesium alloys is achieved
when the WAVE BALANCE control is set to 65%.
WAVE BALANCE=50%
WAVE BALANCE
4 OPERATOR CONTROLS
WAVE BALANCE=10%
50%
(+)
10%
(+)
(-)
50%
Balanced with 50%
penetration and 50%
cleaning
WAVE BALANCE=65%
65%
(+)
(-)
(-)
90%
35%
Maximum Penetration and
reduced cleaning
Maximum Cleaning and
reduced penetration
DOWN SLOPE
This parameter operates in TIG modes only and is used to set the time for the weld current to ramp
down, after the torch trigger switch has been pressed, to CRATER CUR. This control is used to
eliminate the crater that can form at the completion of a weld.
CRATER CUR.
This parameter operates in SLOPE or REPEAT (4T) TIG modes only and is used to set the finish
current for TIG. The CRATER Current remains on until the torch trigger switch is released after it
has been depressed.
POST-FLOW
t2
SAVE
LOAD
SAUVEGARDER CHARGER
This parameter operates in TIG modes only and is used to adjust the post gas flow time once the
arc has extinguished. This control is used to dramatically reduce oxidation of the tungsten
electrode.
The SAVE/LOAD buttons are used to save and retrieve a total number of 5 programs into the
300ACDC memory.
Table 4-3: Weld Parameter Descriptions for ARC MASTER 300ACDC
4–4
300ACDC
4
OPERATOR CONTROLS
4 Weld Parameters for ARC MASTER 300ACDC
Weld Mode
Parameter
Range
Factory Setting
Incremental Unit
STICK
HF TIG
LIFT TIG
0.0 to 1.0 sec
0 to 70A
0 sec
20A
0.1 sec
1A
No
Yes
Yes
Yes
Yes
No
5 to 300A
0 to 15 sec
30A
1 sec
1A
0.1 sec
No
No
Yes
Yes
Yes
Yes
5 to 300A
5 to 300A
120A
80A
1A
1A
No
No
Yes
Yes
Yes
Yes
5 to 300A
0.5 to 5.0 sec
80A
2 sec
1A
0.1 sec
Yes
No
Yes
Yes
Yes
Yes
PULSE WIDTH
15 to 80%
50%
No
Yes
Yes
PULSE FREQ.
0.5 to 500Hz
100.0Hz
No
Yes
Yes
AC FREQUENCY
15 to 150Hz
60Hz
1%
See Table
Table 4-5
1Hz
Yes
Yes
Yes
WAVE BALANCE
DOWN SLOPE
10 to 65%
0 to 25 sec
50%
3 sec
1%
0.1 sec
Yes
No
Yes
Yes
Yes
Yes
5 to300A
0.0 to 60 sec
30A
10 sec
1A
0.1 sec
No
No
Yes
Yes
Yes
Yes
Weld Parameter
PRE-FLOW
HOT START
INITIAL CUR.
UP SLOPE
PULSE PEAK CUR.
PULSE BASE CUR.
WELD CUR.
SPOT TIME
CRATER CUR.
POST-FLOW
Table 4-4: Weld Parameters for ARC MASTER 300ACDC
PULSE FREQ. Range
0.5 to 20Hz
Incremental Unit
0.1Hz
20 to 100Hz
100 to 500Hz
1Hz
5Hz
Table 4-5: PULSE FREQ. Range and Incremental Units
4–5
300ACDC
4 OPERATOR CONTROLS
5 Power Source Features
Feature
Feature
Description
New Digital
Control
 Almost all welding parameters are
adjustable.
Touch Panel
Switches
 Touch switches eliminate
mechanical damage.
Front Control
Cover
 Protects front panel controls.
Digital Meter
 Displays selected weld parameter value.
 Displays weld current when welding.
 Displays weld current for 20 seconds after weld has been completed.
 A selected weld parameter value
can be adjusted at any time even
while welding.
Intelligent
Fan Control
 The intelligent cooling system is
designed to reduce dust and foreign material build-up, whilst providing optimum cooling.
 Fan speed reduces approximately
30 seconds after machine is
turned on.
 Fan speed increases when internal components reach operating temperature.
ON/OFF
switch
 Primary voltage Supply ON/OFF
switch located on rear panel.
Self
Diagnosis
Using Error
Codes
 An error code is displayed on the
Digital Meter when a problem
occurs with Primary supply voltage or internal component problems. Refer to troubleshooting
guide.
Save/Load
function
 A total number of 5 programs can
be saved into the 300ACDC
memory.
SAVE the Current Weld Parameters
into Memory.
 Press the SAVE button.
 Select a memory location by rotating the control knob, 1 to 5 is displayed on the meter.
 After selecting the desired memory location (ie 1 to 5), press the
right scroll button and the
machine will give a beep to confirm the weld parameters from the
control panel are saved.
LOAD (retrieve) a Program to Control
Panel.
 Press the LOAD button.
 Select a memory location by rotating the control knob, 1 to 5 is displayed on the meter.
After selecting the desired memory
location (ie 1 to 5), press the right scroll
button and the machine will give a beep
to confirm the weld parameters are
loaded onto the control panel.
Reduces the OCV when the power
supply is not in use. Eliminates the
need for add on voltage reducers and
has no effect on arc starting.
Table 4-6: Power Source Features
Voltage
 VRD fully complies to IEC 60974-1
Reduction
Device (VRD)  When Stick mode is selected the
green VRD light is ON when not
welding and red when welding.
 When in TIG modes VRD is off.
Control Knob
Description
 For the selected weld parameter,
rotating the knob clockwise
increases the parameter.
 Rotating the knob counter-clockwise decreases the parameter.
 A selected weld parameter value
can be adjusted at any time even
while welding.
 Pushing the knob in displays
actual arc voltage.
4–6
5 SET-UP FOR SMAW (STICK) AND GTAW (TIG)
Conventional operating procedures apply when
using the Welding Power Source, i.e. connect work
lead directly to work piece and electrode lead is
used to hold electrode. Wide safety margins provided by the coil design ensure that the Welding
Power Source will withstand short-term overload
without adverse effects. The welding current range
values should be used as a guide only. Current
delivered to the arc is dependent on the welding
arc voltage, and as welding arc voltage varies
between different classes of electrodes, welding
current at any one setting would vary according to
the type of electrode in use. The operator should
use the welding current range values as a guide,
then finally adjust the current setting to suit the
application.
SET-UP FOR SMAW (STICK) AND GTAW (TIG)
WARNING
Before connecting the work clamp to the work and
inserting the electrode in the electrode holder make
sure the Primary power supply is switched off.
CAUTION
Remove any packaging material prior to use.
Do not block the air vents at the front or rear or
sides of the Welding Power Source.
CAUTION
DO NOT change the Weld Mode or Weld Process
Mode until after POST-FLOW time has finished.
Figure 5-1: 300ACDC Set-up
5–1
300ACDC
5 SET-UP FOR SMAW (STICK) AND GTAW (TIG)
PAGE LEFT INTENTIONALLY BLANK
5–2
6 SEQUENCE OF OPERATION
8. Scroll Buttons:
used to select the parameters to be set. The
LED's show which function is being adjusted
on the Sequence Graph.
9. AC/DC Button:
Selects between AC or DC welding output.
10. Contactor function:
Pressing this button enables Contactor functions.
SEQUENCE OF OPERATION
NOTE
Scroll Buttons are used to select the parameters to
be set. The LED's show which function is being
adjusted on the weld sequence graph. Refer to the
Symbols Table located in the front of the manual
for Symbol descriptions.
9
10
1
1 Stick Welding
7
8
Connect work lead to negative terminal.
Connect electrode lead to positive terminal.
Switch machine on.
Set AC or DC weld current. If AC is selected
then set AC FREQ to 60Hz & WAVE BALANCE
to 50%.
 Set Contactor.
 Connect remote control device if required.




2
7
3
4
5
Figure 6-1: 300ACDC Front Panel
Use the Scroll Buttons to move to the parameter to
be set. The LED will show which function is being
adjusted on the weld sequence graph.
Use the control knob to adjust each parameter.
1. Pulse function:
Pressing this button enables the TIG current
pulse functions.
2. Remote Current function:
Pressing this button enables remote current
functions.
3. TIG Mode Functions:
Pressing this button scrolls through the output
TIG function modes (Standard, Slope, Slope
w/repeat, Spot).
4. Digital LED display:
Welding amperage and parameter values are
displayed in this window. Internal warnings
such as over temperature, low or high input
voltage applied are signaled to the operator by
a warning sound and error message on the
screen.
5. Save/Load Buttons:
by using the Save & Load buttons the operator
can easily save up to 5 welding parameter programs.
6. Control knob:
allows the operator to adjust the output amperage within the entire range of the power source
and sets each parameter value.
7. Process Button:
This button selects between STICK, HF TIG
and Lift TIG mode.
 Set HOT START.
 Set WELD current.
Commence welding.
2 AC or DC HF TIG Welding
Connect work lead to positive terminal.
Connect TIG torch to negative terminal.
Switch machine on.
Set AC or DC weld current. If AC is selected
then set AC FREQ & WAVE BALANCE.
 Connect remote control device if required.




Use the Scroll Buttons to move to the parameter to
be set. The LED will show which function is being
adjusted on the weld sequence graph. Use the
control knob to adjust each parameter.
 Set PRE-FLOW time.
 Set HOT START current.
 Set POST-FLOW time.
 Set (WELD) PEAK CUR current.
 Set POST-FLOW time.
Slope Mode Parameters if required.
 Set INTIAL CUR current.
6–1
6 SEQUENCE OF OPERATION
300ACDC
4 Slope Mode with repeat
 Set UP SLOPE time.
 Set (WELD) PEAK CUR current.
sequence
 Set BASE current.
 Set DOWN SLOPE time.
The repeat function is operated during the down
slope cycle of the Slope Sequence and is active
through the down slope period only. During the
down slope period by opening the Remote Switch
contacts the current will increase back to weld current. Within the Down Slope period the repeat
function can operated as many times as desired.
To continue slope cycle and end slope sequence
close remote switch contacts and allow weld current to reach final current setting. Once final current setting is reached opening the Remote Switch
again will turn off the welding arc and post flow
begins.
 Set CRATER CUR current.
Pulse Mode parameters if required.
 Set PULSE WIDTH % for PEAK CURRENT.
 Set PEAK CURRENT.
 Set PULSE FREQ.
Commence welding.
3 Slope Mode Sequence
Switch
Closed
Switch
Open
Initial
Current
Up
Slope
Weld Current
Switch
Closed
Down
Slope
Switch
Open
5 Pulse Controls
Final
Current
Postflow
Preflow
(Pulse Width)
Figure 6-2: Slope Mode Sequence
(Peak Current)
1. To start Slope sequence Close remote switch
contact. Once the welding arc is established
the Power Source will maintain initial current
setting as long as the remote switch contacts
are closed.
(Pulse Frequency)
(Base)
Background
Current
The Pulse controls are used primarily to control
heat input. Pulse offers a number of advantages
as follows:
a. In the HF TIG mode, after Preflow time,
High Frequency is present at the torch.
When the torch is positioned close to the
work the welding current will transfer to the
work and establish the arc at the initial current setting.
1) Control puddle – size and fluidity (especially
out of position).
2) Increase penetration.
3) Travel speed control.
b. In the Lift TIG mode, after Preflow time, Lift
Start current is present at the torch. When
the electrode is touched to the work and
lifted off, the welding arc is established at
the initial current setting.
4) Better consistent quality.
5) Decreased distortion on lighter or thinner
materials.
Pulse-current provides a system in which the welding current continuously changes between two levels. During the periods of Peak current, heating
and fusion takes place, and during the background
(base) current periods, cooling and solidification
take place. Pulse Width is the time in one cycle the
current remains at the peak current setting. Pulse
Frequency, measured in Hertz, is the number of
cycles per second the current travels between
peak and background current settings. It is as if
the foot rheostat were moved up and down to
increase and decrease the welding current on a
regular basis. The faster you move the foot rheostat up and down the faster the frequency.
2. Open Remote Switch – current increases to
weld current. Once welding arc has reached
weld current the power source will maintain
weld current as long as the remote switch contacts are open.
3. Close Remote Switch – Welding current
decreases to final current setting. Once final
welding current is reached the power source
will maintain final current setting as long as the
remote switch contacts are closed.
4. Open Remote Switch – Welding arc stops and
post flow begins.
6–2
7 ROUTINE MAINTENANCE
ROUTINE MAINTENANCE
The only routine maintenance required for the
power supply is a thorough cleaning and inspection, with the frequency depending on the usage
and the operating environment.
WARNING
Disconnect primary power at the source before
opening the enclosure. Wait at least two minutes
before opening the enclosure to allow the primary
capacitors to discharge.
To clean the unit, open the enclosure (refer to
to Section 11.1.1, "Opening the Enclosure") and
use a vacuum cleaner to remove any accumulated
dirt and dust. The unit should also be wiped clean,
if necessary; with solvents that are recommended
for cleaning electrical apparatus.
CAUTION
Do not blow air into the power supply during cleaning. Blowing air into the unit can cause metal particles to interfere with sensitive electrical
components and cause damage to the unit.
7–1
300ACDC
7 ROUTINE MAINTENANCE
PAGE LEFT INTENTIONALLY BLANK
7–2
8 BASIC TROUBLESHOOTING
BASIC TROUBLESHOOTING
WARNING
There are extremely dangerous voltages and power levels present inside this product. Do not attempt to
open or repair unless you are an Accredited Thermal Arc Service Agent and you have had training in power
measurements and troubleshooting techniques.
If major complex subassemblies are faulty, then the Welding Power Source must be returned to an Accredited Thermal Arc Service Agent for repair.
The basic level of troubleshooting is that which can be performed without special equipment or knowledge.
1 TIG Welding Problems
Weld quality is dependent on the selection of the correct consumables, maintenance of equipment and
proper welding technique.
Description
Possible Cause
Remedy
1. Excessive bead build-up or poor
penetration or poor fusion at edges
of weld.
2. Weld bead too wide and flat or
undercut at edges of weld or
excessive burn through.
Welding current is too low.
Increase weld current and/or faulty joint
preparation.
Welding current is too high.
Decrease weld current.
3. Weld bead too small or insufficient
penetration or ripples in bead are
widely spaced apart.
4. Weld bead too wide or excessive
bead build up or excessive
penetration in butt joint.
Travel speed too fast.
Reduce travel speed.
Travel speed too slow.
Increase travel speed.
5. Uneven leg length in fillet joint.
6. Electrode melts when arc is struck.
Wrong placement of filler rod.
A. Electrode is connected to the '+'
terminal.
B. WAVE BALANCE is greater than
50%.
Re-position filler rod.
A. Connect the electrode to the '–'
terminal.
B. Reduced WAVE BALANCE to below
50% or increase the electrode size.
7. Dirty weld pool.
A. Electrode contaminated through
contact with work piece or filler
rod material.
B. Gas contaminated with air.
A. No gas flowing to welding region.
8. Electrode melts or oxidizes when an
arc is struck.
B.
C.
D.
E.
F.
G.
H.
A. Clean the electrode by grinding off
the contaminates.
B. Check gas lines for cuts and loose
fitting or change gas cylinder.
A. Check the gas lines for kinks or
breaks and gas cylinder contents.
Torch is clogged with dust.
B. Clean torch.
Gas hose is cut.
C. Replace gas hose.
Gas passage contains impurities. D. Disconnect gas hose from torch then
raise gas pressure and blow out
impurities.
Gas regulator turned off.
E. Turn on.
Torch valve is turned off.
F. Turn on.
The electrode is too small for the G. Increase electrode diameter or
welding current.
reduce the welding current.
WAVE BALANCE is set above
H. Reduced WAVE BALANCE to below
50%.
50% or increase the electrode size.
8–1
300ACDC
Description
9. Poor weld finish.
Possible Cause
Inadequate shielding gas.
10.Arc flutters during TIG welding.
A. Tungsten electrode is too large
for the welding current.
B. Absence of oxides in the weld
pool.
A. Work clamp is not connected to
the work piece or the work/torch
leads are not connected to the
right welding terminals.
B. Torch lead is disconnecte.
C. Gas flow incorrectly set, cylinder
empty or the torch valve is off.
A. Tungsten electrode is too large
for the welding current.
B. The wrong electrode is being
used for the welding job.
C. Gas flow rate is too high.
11.Welding arc can not be established.
12.Arc start is not smooth.
D. Incorrect shielding gas is being
used.
E. Poor work clamp connection to
work piece.
Table 8-1: TIG Welding Problems
8–2
8 BASIC TROUBLESHOOTING
Remedy
Increase gas flow or check gas line for
gas flow problems.
A. Select the right size electrode. Refer
to Basic TIG Welding guide.
B. Refer Basic TIG Welding Guide for
ways to reduce arc flutter.
A. Connect the work clamp to the work
piece or connect the work/torch
leads to the right welding terminals.
B. Connect it to the '–' terminal.
C. Select the right flow rate, change
cylinders or turn torch valve on.
A. Select the right size electrode. Refer
to Basic TIG Welding Guide.
B. Select the right electrode type.
Refer to Basic TIG Welding Guide.
C. Select the correct rate for the
welding job. Refer to Basic TIG
Welding Guide.
D. Select the right shielding gas.
Refer to Basic TIG Welding Guide.
E. Improve connection to work piece.
300ACDC
8 BASIC TROUBLESHOOTING
2 Stick Welding Problems
Description
Possible Cause
1. Gas pockets or voids in weld
metal (Porosity).
A. Electrodes are damp.
B. Welding current is too high.
C. Surface impurities such as oil,
grease, paint, etc.
A. Rigidity of joint.
2. Crack occurring in weld metal
soon after solidification
commences.
A. Dry electrodes before use.
B. Reduce welding current.
C. Clean joint before welding.
C. Cooling rate is too high.
A. Redesign to relieve weld joint of
severe stresses or use crack
resistance electrodes.
B. Travel slightly slower to allow
greater build up in throat.
C. Preheat plate and cool slowly.
A.
B.
C.
D.
A.
B.
C.
D.
B. Insufficient throat thickness.
3. A gap is left by failure of the weld
metal to fill the root of the weld.
Remedy
Welding current is too low.
Electrode too large for joint.
Insufficient gap.
Incorrect sequence.
Increase welding current.
Use smaller diameter electrode.
Allow wider gap.
Use correct build-up sequence.
Table 8-2-a: STICK Welding Problems
Incorrect sequence
Insufficient gap
Figure 8-1: Example of insufficient gap
or incorrect sequence
Description
4. Portions of the weld run do not
fuse to the surface of the metal
or edge of the joint.
Possible Cause
A. Small electrodes used on heavy cold
plate.
B. Welding current is too low.
C. Wrong electrode angle.
D. Travel speed of electrode is too high.
E. Scale or dirt on joint surface.
A.
B.
C.
D.
E.
Remedy
Use larger electrodes and preheat
the plate.
Increase welding current.
Adjust angle so the welding arc is
directed more into the base metal.
Reduce travel speed of electrode.
Clean surface before welding.
Table 8-2-b: STICK Welding Problems (continued)
Lack of fusion caused by dirt,
electrode angle incorrect, rate
of travel too high
Lack of inter-run Fusion
Lack of side fusion, scale
dirt, small electrode,
amperage too low
Lack of Root Fusion
Figure 8-2: Example of lack of fusion
8–3
300ACDC
Description
5. Non-metallic particles are trapped
in the weld metal (slag inclusion).
Possible Cause
A. Non-metallic particles may be
trapped in undercut from previous
run.
B. Joint preparation too restricted.
C. Irregular deposits allow slag to be
trapped.
D. Lack of penetration with slag
trapped beneath weld bead.
E. Rust or mill scale is preventing full
fusion.
F. Wrong electrode for position in
which welding is done.
Remedy
A. If bad undercut is present, clean
slag out and cover with a run from a
smaller diameter electrode.
B. Allow for adequate penetration and
room for cleaning out the slag.
C. If very bad, chip or grind out
irregularities.
D. Use smaller electrode with
sufficient current to give adequate
penetration. Use suitable tools to
remove all slag from corners.
E. Clean joint before welding.
F. Use electrodes designed for
position in which welding is done,
otherwise proper control of slag is
difficult.
Table 8-2-c: STICK Welding Problems (continued)
Slag trapped in
undercut
Not cleaned, or
incorrect electrode
Slag trapped in root
Figure 8-3: Examples of slag inclusion
8–4
8 BASIC TROUBLESHOOTING
300ACDC
8 BASIC TROUBLESHOOTING
3 Power Source Problems
Description
1. The welding arc cannot be
established.
2. Maximum output welding current
can not be achieved with nominal
Mains supply voltage.
3. Welding current reduces when
welding.
Possible Cause
A. The Primary supply voltage has not A. Switch ON the Primary supply
been switched ON.
voltage.
B. The Welding Power Source switch B. Switch ON the Welding Power
is switched OFF.
Source.
C. Loose connections internally.
C. Have an Accredited Thermal Arc
Service Agent repair the connection.
Defective control circuit.
Have an Accredited Thermal Arc
Service Agent repair the connection.
A. Loose welding cable connections.
B. Incorrect welding cable size.
C. Improper input connections.
4. No gas flow when the torch trigger
switch is depressed.
5. Gas flow won't shut off.
D.
E.
A.
B.
Poor electrode condition.
Wrong welding polarity.
Gas hose is cut.
Gas passage contains impurities.
C. Gas regulator turned off.
D. Torch trigger switch lead is
disconnected or switch/cable is
faulty.
A. Weld Mode (STD, SLOPE,
REPEAT or SPOT) was changed
before POST-FLOW gas time had
finished.
B. Gas valve is faulty.
C. Gas valve jammed open.
6. The TIG electrode has been
contaminated due to the gas flow
shutting off before the programmed
POST-FLOW time has elapsed.
Remedy
D. POST-FLOW control is set to 60
sec.
The Weld Process Mode (STICK, HF
TIG or LIFT TIG) was changed before
POST-FLOW gas time had finished.
Table 8-3: Power Source Problems
8–5
A. Tighten all welding cable
connections.
B. Use proper size and type of cable.
C. Refer to Section 2.05 Electrical Input
Requirements.
D. Replace electrode.
E. Verify output torch connections.
A. Replace gas hose.
B. Disconnect gas hose from the rear of
Power Source then raise gas
pressure and blow out impurities.
C. Turn gas regulator on.
D. Reconnect lead or repair faulty
switch/cable.
A. Strike an arc to complete the weld
cycle. OR Switch machine off then
on to reset solenoid valve sequence.
B. Have an Accredited Thermal Arc
Service Agent repair or replace the
gas valve.
C. Have an Accredited Thermal Arc
Service Agent repair or replace the
gas valve.
D. Reduce POST-FLOW time.
Do not change Weld Process Mode
before the POST-FLOW gas time had
finished.
300ACDC
8 BASIC TROUBLESHOOTING
PAGE LEFT INTENTIONALLY BLANK
8–6
9 VOLTAGE REDUCTION DEVICE (VRD)
1 VRD Specification
Description
VRD Open
Circuit Voltage
VRD
Resistance
VRD Turn OFF
Time
ARC
MASTER
300ACDC
If this equipment is used in a location or an environment with a high risk of electrocution then the
above tests should be carried out prior to entering
this location.
VOLTAGE REDUCTION DEVICE (VRD)
Notes
The test of VRD is shown below:
1) In STICK welding mode, mark and then turn
potentiometer VR1 on PCB6 (WK-5549) all the
way to the left and turn on the electric shock
protector function (Voltage-Reduction-Device,
VRD).
Open circuit voltage
between welding
terminals.
The required resistance
148 to 193 between welding
ohms
terminals to turn ON the
welding power.
The time taken to turn
0.2 to 0.3 OFF the welding power
seconds
once the welding current
has stopped.
15.3 to
19.8V
2) Contactor function is put into the state of "ON"
by pushing Function button. Refer to section 6.
3) Verify the no-load voltage (OCV) using a DC
voltmeter. (The capability of the voltmeter
should be more than 100VDC.)
4) The normal no-load voltage is approximately
18V.
Table 9-1: VRD Specification
5) In STICK welding mode, mark and then turn
potentiometer VR1 on PCB6 (WK-5549) all the
way to the right and turn off the VRD.
2 VRD Maintenance
Routine inspection and testing (power source):
6) Contactor function is put into the state of "ON"
by pushing Function button. Refer to section 6.
An inspection of the power source should be carried out.
WARNING
a. For transportable equipment, at least once
every 3 months; and
Electric shock hazard. The unit will generate OCV
(Open Circuit Voltage) immediately when contactor
function is put into the state of on pushing Function
button at STICK mode.
b. For fixed equipment, at least once every 12
months.
The owners of the equipment shall keep a suitable
record of the periodic tests.
7) Verify the no-load voltage (OCV) using a DC
voltmeter. (The capability of the voltmeter
should be more than 100VDC.)
NOTE
A transportable power source is any equipment
that is not permanently connected and fixed in the
position in which it is operated.
8) The normal no-load voltage is approximately
65V.
In addition to the above tests and specifically in
relation to the VRD fitted to this machine, the following periodic tests should also be conducted by
an accredited Thermal Arc service agent.
Description
IEC 60974-1 Requirements
VRD Open
Circuit Voltage
Less than 20V; at Vin=400V
VRD Turn ON
Resistanc
Less than 200 ohms
VRD Turn OFF
Time
Less than 0.3 seconds
Table 9-2: Periodic Tests
9–1
300ACDC
3 Switching VRD On/Off
9 VOLTAGE REDUCTION DEVICE (VRD)
C) Access the VRD control by gently prying back
the front panel controls to reveal the VRD on/
off potentiometer (see Figure 9-3).
Switch the machine Off.
A) Remove the clear plastic cover from the control
panel (see Figure 9-1).
CAUTION
Do not pull back the front panel with excessive
force as this will unplug control PCB. Plugging the
control PCB back into the front panel controls can
only be achieved by removing the Side Panel.
 Lift up the cover so it rests on the top of the
unit.
 Place a small flat bladed screw driver between
the cover hinge on the front panel.
 Gently lift the cover hinge out of the front cover
mounting hole.
VR1
 Remove the control's clear plastic cover.
2
Figure 9-3: VRD ON/OFF Step D
D) Turning the VRD ON/OFF (see Figure 9-3).
3
 To turn VRD ON: rotate the trim potentiometer
(VR1) on the display PCB fully clockwise.
When VRD is turned ON check that it operates
as per VRD Specifications on section 9.1.
1
 To turn VRD OFF: rotat7e the trim potentiometer
(VR1) on the display PCB fully counter clockwise.
Figure 9-1: VRD ON/OFF Step A
B) Remove four mounting screws from the control
panel (see Figure 9-2).
WARNING
The VRD ON/OFF trim potentiometer MUST ONLY
be positioned fully clockwise OR fully counter
clockwise as the VRD function will be unknown for
every other position.
1
1
2
1
1
Figure 9-2: VRD ON/OFF Step B,C
9–2
10 POWER SOURCE ERROR CODE
POWER SOURCE ERROR CODE
Description
Possible Cause
1. E01 error code displayed A. The Welding Power
Source's duty cycle has
Temperature sensor TH1
been exceeded.
(protects IGBTs) is
greater than 80°C for
B. Fan ceases to operate.
about 1 second.
C. Air flow is restricted by
vents being blocked.
2. E02 error code displayed A. The Welding Power
Source's duty cycle has
Temperature sensor TH2
been exceeded.
(protects secondary
diodes) is greater than
B. Fan ceases to operate.
80°C for about 1 second.
C. Air flow is restricted by
vents being blocked.
Remedy
A. Let Power Source cool
down then keep within its
duty cycle.
B. Have an Accredited
Thermal Arc Service
Agent investigate.
C. Unblock vents then let
Power Source cool down.
Remarks
Weld current ceases.
Buzzer sounds constantly.
Fan operates at max speed.
E01 resets when TH1
decreases to 70°C for about
30 seconds.
A. Let Power Source cool
down then keep within its
duty cycle.
B. Have an Accredited
Thermal Arc Service
Agent investigate
C. Unblock vents then let
Power Source cool down.
Weld current ceases.
Buzzer sounds constantly.
Fan operates at max speed.
E02 resets when TH2
decreases to 70°C for about
30 seconds.
3. E03 error code displayed A. Transformer current is
A. Reduce length of welding
Transformer current too
too high because welding
arc.
high.
arc is too long.
B. Mains supply voltage is
B. Have an Accredited
more than 10% below
Thermal Arc Service
nominal voltage .
Agent or a qualified
electrician check for low
Mains voltage.
Weld current ceases.
Buzzer sounds constantly.
Switch machine off then on
to reset E03 error.
4. E04 error code displayed TIG torch cable and/or work
Output voltage exceeds
lead are too long or leads
the secondary voltage
are coiled.
specification.
Reduce the length of the
TIG torch cable and/or work
lead or un-coiled leads.
Weld current ceases.
Buzzer sounds constantly.
Switch machine off then on
to reset E04 error.
Primary supply voltage is
greater than the nominal
voltage plus 10%.
Have an Accredited Thermal
Arc Service Agent or a
qualified electrician check
the Primary voltage.
Mains supply voltage is less
than the nominal operating
voltage less 10%.
Have an Accredited Thermal
Arc Service Agent or a
qualified electrician check
the Mains voltage.
Weld current ceases.
Buzzer sounds constantly.
Error code E11
automatically will reset when
the voltage reduces.
Weld current available.
Buzzer sounds
intermittently./Error code
E14 automatically will reset
when the voltage increases.
5. E11 error code displayed
Over Primary supply
(input) voltage at primary
capacitors is exceeded
for one second.
6. E14 error code displayed
Under mains supply
(input) voltage warning
primary capacitors is
reduced for one second.
7. E12 error code displayed Mains supply voltage is
down to a dangerously low
Under mains supply
level.
(input) voltage primary
capacitors is reduced for
one second.
A. Have an Accredited
Thermal Arc Service
Agent or a qualified
electrician check the
Mains voltage.
B. Have an Accredited
Thermal Arc Service
Agent or a qualified
electrician check the
primary cable and fuses.
8. E81 error code displayed When 3 phase machine is
Have an Accredited Thermal
Arc Service Agent or a
first turned on with the
Wrong Primary supply
wrong Primary supply (input) qualified electrician check
(input) voltage
the Mains voltage.
voltage connected.
connected.
10 – 1
Weld current ceases.
Buzzer sounds constantly.
Error code E12
automatically will reset when
the voltage increases.
No weld current is available.
Buzzer sounds constantly.
Switch machine off.
300ACDC
Description
Possible Cause
9. E82 error code displayed The Primary supply (input)
Rated voltage selection
voltage fluctuates and is not
circuit abnormality.
stable.
10 POWER SOURCE ERROR CODE
Remedy
Have an Accredited Thermal
Arc Service Agent or a
qualified electrician check
the Mains voltage.
Have an Accredited Thermal
Arc Service Agent check
connector plug on input PCB
and the Mains voltage.
Remarks
No weld current is available.
Buzzer sounds constantly.
Switch machine off then on
to reset E82 error.
No weld current is available.
Buzzer sounds constantly.
Switch machine off then on
to reset E83 error.
10.E83 error code displayed
CPU checks mains
supply (input) voltage
when the on/off switch on
rear panel of machine is
turned ON.
11.E85 error code displayed
Pre-charge abnormality.
The Primary supply (input)
voltage fluctuates and is not
stable.
Due to malfunction inside
the Welding Power Source,
primary capacitors are not
charging correctly.
Have an Accredited Thermal
Arc Service Agent service
the machine.
No weld current is available.
Buzzer sounds constantly.
Switch machine off then on
to reset E85 error.
12.E93 error code displayed
Memory chip (EEPROM)
on control PCB can not
read/write weld
parameters.
13.E94 error code displayed
Temperature sensor TH1
for IGBTs or sensor TH2
for secondary diodes are
open circuit.
Memory chip (EEPROM)
error.
Have an Accredited Thermal
Arc Service Agent check the
control PCB.
Weld current ceases.
Buzzer sounds constantly.
Switch machine off.
The Welding Power
Have an Accredited Thermal
Source's temperature
Arc Service Agent check or
sensors have malfunctioned. replace the temperature
sensors.
Weld current ceases.
Buzzer sounds constantly.
Switch machine off.
14.E99 error code displayed A. Main on/off switch on
A. Turn on/off switch on.
machine has been turned
Mains supply (input)
off
voltage has been turned
off but control circuit has B. Mains supply (input)
B. Have an Accredited
power from the primary
voltage has been turned
Thermal Arc Service
capacitors.
off.
Agent or a qualified
electrician check the
Mains voltage and fuses.
Weld current ceases.
Buzzer sounds constantly.
Must switch machine off
then on to reset E99 error.
Table 10-1: Power Source Error Codes
10 – 2
11 ADVANCED TROUBLESHOOTING
If you are here, all of the troubleshooting suggestions in Section 8-Basic Troubleshooting have
either failed to resolve the faulty operation or have
indicated that one or more of the subsystems
within the power supply are defective. This section
provides the information needed to take live measurements on the various subsystems within the
power supply, and replace those subsystems that
prove faulty.
ADVANCED TROUBLESHOOTING
1 System-Level Fault Isolation
If none of the suggestions provided in Section 8
have solved the problem or corrected the faulty
operation, the next step is to isolate one or more of
the internal subassemblies that may be defective.
CAUTION
CAUTION
Perform all steps in each procedure, in sequence.
Skipping portions of procedures, or performing
steps out of sequence can result in damage to the
unit, and possible injury, or worse, to the operator.
Troubleshooting and repairing this unit is a process, which should be undertaken only by those
familiar with high voltage/high power electronic
equipment.
1.1 Opening the Enclosure
WARNING
There are extremely dangerous voltage and power
levels present inside this unit. Do not attempt to
diagnose or repair unless you have training in
power electronics, measurement and troubleshooting techniques.
Under no circumstances are field repairs to be
attempted on printed circuit boards or other subassemblies of this unit. Evidence of unauthorized
repairs will void the factory warranty. If a subassembly is found to be defective by executing any of
the procedures in this Service Manual, the subassembly should be replaced with a new one. The
faulty subassembly should then be returned to
Thermal Arc through established procedures.
WARNING
1) Confirm that the switch of power supply and
the switch on switchboard (distribution panel)
are all OFF.
Figure 11-1: Switch OFF
CAUTION
Disconnect primary power at the source before disassembling the power supply. Frequently review
the "Important Safety Precautions" in section 1.02.
Be sure the operator is equipped with proper
gloves, clothing and eye and ear protection. Make
sure no part of the operator's body comes into contact with the work piece or any internal components
while the unit is activated.
11 – 1
The capacitors inside the power supply will slowly
discharged after you turn off the switch of the
power supply or the switch at the breaker box (distribution panel). Wait at least 5 minutes for the discharge to complete.
300ACDC
2) Remove all screws and nuts on the Side Panel.
11 ADVANCED TROUBLESHOOTING
4) Pull the front panel slightly forward and pull the
rear panel slightly backward. The interlocking
hooks of the side case covers can now be disengaged from the front and rear panels.
Figure 11-2: Remove screws
3) Loosen the screws on the front panel and the
rear panel by turning them approximately two
turns CCW.
Figure 11-4: Loosen front and rear panels
5) Remove the Side Panel.
Figure 11-3: Loosen screws
NOTE
DO NOT remove the screws completely.
Figure 11-5: Remove Side Panel
11 – 2
300ACDC
11 ADVANCED TROUBLESHOOTING
6) Remove protection cover sheet by removing
the plastic tabs.
2.1 E01 "Over-Temperature at
the primary side"
Cause
Occurs when an over-temperature condition of the
primary IGBT is detected.
Verification/Remedy
a) Unit may be in thermal shutdown mode.
 Review the rated duty cycle of the unit per
section 3.8. Exceeding the duty cycle can
damage the unit and void the warranty. Refer
also to section 1.6 for additional information.
b) Verify the ventilating condition.
 Maintain a clear and unobstructed distance
of more than 30cm in the front and more that
50cm in the rear of the unit for ventilation purposes.
Figure 11-6: Remove PCB cover
NOTE
When you re-assemble the parts, conduct the
above process backwards.
2 Verification and Remedy to
the Indicated Error Codes
NOTE
The capacitors inside the power supply will slowly
discharged after you turn off the switch of the
power supply or the switch at the breaker box (distribution panel). Wait at least 5 minutes for the discharge to complete and then remove the cases to
continue your inspection and repair (or maintenance) inside the power supply. As for the removal
and installation of the case, refer to section 11.1.1.
NOTE
During the "Verification/Remedy" procedures
below, follow the alphabetical sequence (a, b, c...)
and proceed with your verification and confirmation.
 Verify and maintain clean, dust free, front and
rear airflow paths. Cleaning and removing
dust from the front and rear panels once
every six months in a normal working environment is recommended. Extremely dusty
environments will require more frequent
cleanings.
c) Verify the operation of the cooling fan, FAN1,
and replace it if necessary.
 Verify the condition of FAN1. Verify that
there are no broken or cracked fan blades
and that FAN1 is not producing any abnormal
sounds.
 If broken or cracked FAN1 blades, or abnormal sounds are emanating from FAN1,
replace FAN1.
 Verify the operation of the cooling fan and
replace it if the condition of FAN1 is inactive.
Follow the instruction in section.
 Refer to section 12.3.24 for the replacement
of FAN1.
 Refer to section 11.5.3 for additional FAN1
tests.
d) Replace PCB6 (WK-5549).
NOTE
After you confirm and replace all spare parts and
components, confirm that there are no damaged
harnesses or connectors, uninstalled or loose
screws.
11 – 3
 Refer to section 12.3.6 for the replacement of
PCB6.
300ACDC
2.2 E02 "Over-Temperature at
the secondary side"
11 ADVANCED TROUBLESHOOTING
2.3 E03 "Transformer Over-Current Failure"
Cause
Cause
Occurs when an over-temperature condition of the
secondary IGBT and diode are detected.
Occurs when excessive current is detected flowing into the primary side of the main transformer.
Verification/Remedy
Verification/Remedy
a) Unit may be in thermal shutdown mode.
a) Confirm the operation of the machine within
the rated specification.
 Review the rated duty cycle of the unit per
section 3.8. Exceeding the duty cycle can
damage the unit and void the warranty. Refer
also to section 1.6 for additional information.
b) Verify the ventilating condition.
 Maintain a clear and unobstructed distance
of more than 30cm in the front and more that
50cm in the rear of the unit for ventilation purposes.
 Verify and maintain clean, dust free, front and
rear airflow paths. Cleaning and removing
dust from the front and rear panels once
every six months in a normal working environment is recommended. Extremely dusty
environments will require more frequent
cleanings.
c) Verify the operation of the cooling fan, FAN1,
and replace it if necessary.
 Verify the condition of FAN1. Verify that
there are no broken or cracked fan blades
and that FAN1 is not producing any abnormal
sounds.
 If broken or cracked FAN1 blades, or abnormal sounds are emanating from FAN1,
replace FAN1.
 Verify the operation of the cooling fan and
replace it if the condition of FAN1 is inactive.
Follow the instruction in section.
 Refer to section 12.3.24 for the replacement
of FAN1.
 Refer to section 11.5.3 for additional FAN1
tests.
d) Replace PCB6 (WK-5549).
 Refer to section 12.3.6 for the replacement of
PCB6.
11 – 4
 Refer to the specification data sheet in Section 3.9.
b) Verify the secondary diode (D2-D7).
 Refer to section 11.5.6 for the test, and
section 12.3.32 for the replacement of D2- D7.
c) Verify the H.F. unit (HF. UNIT1).
 Refer to section 12.3.29 for the replacement
of HF.UNIT 1.
d) Verify the secondary IGBT (Q25-Q26).
 Refer to section 11.5.8 for the test and Refer
to section 12.3.33 replacement of Q25 and
Q26.
e) Replace the Hall CT, HCT1.
NOTE
Pay special attention to installed direction of HCT1.
The Hall CT will not function properly if installed in
the incorrect direction.
 Refer to section 12.3.30 for the replacement of
HCT1.
300ACDC
11 ADVANCED TROUBLESHOOTING
2.4 E04 "Torch Cable Failure"
2.6 E12 "Main Supply Under Voltage"
Cause
Cause
The combined length of the torch cable and the
work cable is too long.
Main supply voltage occurs at about 150V or less.
Verification/Remedy
Verification/Remedy
a) Verify the rated duty cycles of the torch/work
cable and the power supply.
a) Verify main supply voltage.
 Perform what is described in a section of
"Verification of the Power Supply Voltage".
Refer to section 11.5.2.
 Only use appropriate sized torch cables
(length and capacity). The recommended
total combined length of the torch and work
cable is 50 feet.
b) Replace PCB4 (WK-4819)
 Replace PCB4, when abnormalities occur,
even if carries out the above-mentioned verifications. Refer to section 12.3.4.
 Torch and work cable should not be "coiled"
during welding operations.
 Maintain the duty cycle of the power supply.
Refer to section 2.8 for the recommended
duty cycle.
b) Replace PCB6 (WK-5549) and PCB16
(WK-5569).
2.7 E81 "Wrong Main Supply
Voltage"
 Refer to section 12.3-6 for the replacement of
PCB6.
 Refer to section 12.3-13 for the replacement
of PCB16.
Cause
The detection circuitry of main supply voltage is
abnormal.
Verification/Remedy
a) Verify main supply voltage.
2.5 E11 "Main Supply Over Voltage"
 Perform what is described in the section
"Verification of the Power Supply Voltage".
Refer to section 11.5.2.
Cause
Main supply voltage occurs at about 275V or
more.
b) Confirm a secure connection of the harness
wired between CN2 on PCB3 (WK-5548) and
CN1 on PCB21 (WK-4917)
 Re-install the harness with a secure connection.
Verification/Remedy
a) Verify main supply voltage.
 Perform what is described in a section of
"Verification of the Power Supply Voltage".
Refer to section 11.5.2.
b) Replace PCB4 (WK-4819)
 Verify PCB4 (WK-4819) and replace it if necessary. Refer to section 12.3.4.
 Contact the manufacturer if you find any broken connectors or damaged wiring harness.
c) Verify PCB4 (WK-4819) and replace it if necessary
 Check whether there are any abnormalities
on the appearance of PCB4.
 Replace PCB4. Refer to section 12.3.4.
11 – 5
300ACDC
2.8 E82 "Rated Voltage Selection
Circuit abnormality"
11 ADVANCED TROUBLESHOOTING
c) Verify PCB4 (WK-4819) and replace it if necessary.
 Check whether there are any abnormalities
on the appearance of PCB4.
Cause
Rated voltage selection circuit inside the Welding
Power Source is not functioning properly.
 Replace PCB4. Refer to section 12.3.4.
2.10 E85 "Pre-charge abnormality"
Verification/Remedy
Cause
a) Verify the wiring harness and connection of
CN4 on PCB4 (WK-4819).
 Re-install the harness with a secure connection.
 Contact the manufacturer if you find any broken connectors or a damaged wiring harness.
b) Verify PCB4 (WK-4819) and replace it if necessary.
 Check whether there are any abnormalities
on the appearance of PCB4.
 Replace PCB4. Refer to section 12.3.4.
2.9 E83 "Abnormalities in Mains
Supply Voltage Detection"
Due to malfunction inside the Welding Power
Source, primary capacitors are not charging correctly.
Verification/Remedy
a) Verify the connection of PCB2 (WK-5597) and
the rectified output voltage of the rectifier.
 Verify the connection between CN2 on PCB2
and CN3 on PCB3.
 Confirm whether there is any breakage
(blown, burnt, cracked, etc.) of R18 on PCB2.
 Perform what is described in a section of
"Verification of the Power Supply Voltage".
Refer to section 11.5.2.
b) Verify the primary diode (D1).
 Verify D1. Refer to section 11.5.5.
 Replace D1. Refer to section 12.3.31.
Cause
Abnormalities, such as an input voltage detection
circuit
c) Verify the primary IGBT (Q1-Q24).
 Verify IGBT. Refer to section 11.5.7.
 Replace IGBT. Refer to section 12.3.7,
12.3.8.
Verification/Remedy
a) Verify main supply voltage.
 Perform what is described in a section of
"Verification of the Power Supply Voltage".
Refer to section 11.5.2.
b) Confirm a secure connection of the harness
wired between CN2 on PCB3 (WK-5548) and
CN1 on PCB21 (WK-4917).
 Re-install the harness with a secure connection.
 Contact the manufacturer if you find any broken connectors or damaged wiring harness.
11 – 6
d) Replace PCB2 (WK-5597) and PCB4
(WK-4819).
 Replace PCB2 and PCB4, when abnormalities occur, even if carries out the above-mentioned verifications. Refer to section 12.3.2,
12.3.4.
300ACDC
11 ADVANCED TROUBLESHOOTING
2.11 E94 "Thermistor malfunction"
3 Verification and Remedy to
Failures without Indication
Codes
Cause
Thermistors for detecting temperature of internal
components have malfunctioned.
Verification/Remedy
Refer to Note on Section 11.02.
3.1 "Cooling Fan (FAN1) Failure"
(Fan is not rotating.)
a) Confirm a secure connection of the harness
wired between CN8-9 on PCB6 (WK-5549)
and Thermistors (TH1, TH2).
 Re-install the harness with a secure connection.
 Contact the manufacturer if you find any broken connectors or a damaged wiring harness.
b) Replace thermistors (TH1, TH2).
Cause
Occurs when the cooling fan (FAN1) is defective,
damaged or the driving voltage is incorrect.
Verification/Remedy
a) Verify the cooling fan (FAN1).
 Refer to section 12.3.22, 12.3.23.
c) Replace PCB6 (WK-5549).
 Refer to section 12.3.6.
2.12 E99 "Initial Power Receiving"
Cause
Occurs when the initial AC power received signal
has not reached the CPU. This error occurs normally during the power "OFF" sequence of the
unit.
Verification/Remedy
 Inspect the condition of the fan blades and all
peripheral parts. Clean the fan blades and all
peripheral parts if covered with dust. Cleaning and removing dust from the fan blades
once every 6 months in a normal environment is recommended. Extremely dusty
environments will require more frequent
cleanings.
 Verify that there are no wiring harnesses
entangled inside the fan, confirm that the harnesses do not have any brakes in the wire or
damaged connectors.
 Replace wiring harnesses if you find any broken connectors or damaged wiring harnesses.
a) Confirm a secure connection of the harness
wired between CN1 on PCB21 (WK-4917) and
CN2 on PCB3 (WK-5548).
 Re-install the harness with a secure connection.
 Contact the manufacturer if you find any broken connectors or a damaged wiring harness.
b) Verify PCB4 (WK-4819) and replace it if necessary.
 Confirm a secure connection of all the harness wired to PCB3 and PCB4.
 Replace PCB4. Refer to section 12.3.4.
 Replace the fan if there are any broken,
cracked or missing fan blades.
 Refer to the page 12.3.24.
b) Verify the wiring harness between the cooling
fan (FAN1) and CN11 on PCB3 (WK-5548).
 Confirm a secure connection of the harness
to CN11 on PCB3.
c) Verify the drive circuitry of the cooling fan
(FAN1) on PCB3.
 Verify the drive circuitry of the cooling fan
(FAN1) on PCB3.
c) Replace PCB6 (WK-5549).
 Refer to section 12.5.3.
 Refer to section 12.3.6.
 Replace PCB3 if necessary.
 Refer to section 12.3.3.
11 – 7
300ACDC
3.2 "Gas Valve Failure" (No Gas
flow through unit)
11 ADVANCED TROUBLESHOOTING
3.3 "No Weld Output"
Cause
Occurs when the gas valve (SOL1) is defective,
damaged or the driving voltage is incorrect.
Verification/Remedy
When in High Frequency TIG (HF TIG) mode, if the
High Frequency is not generated (present), refer to
"High Frequency Output Failure". Refer to section
11.3.5.
Cause
Occurs when the remote connector (CON1) or
associated circuitry is defective, damaged, or the
TIG torch cable is defective.
a) Confirm that TIG welding is selected on the
welding mode.
 Do not change welding modes while welding.
Only change welding modes when the unit is
idle (torch switch OFF).
 Verify the setting of Pre-flow and Post-flow
on the front panel. If the Pre-flow or Post-flow
time is set to 0 seconds, change them to
higher setting.
b) Verify the layout of the gas hose.
 Confirm that the hose is securely connected
into the fitting at the inlet and the outlet. Confirm that the layout of the gas hose so that it
is not bent or kinked. Confirm there are no
breaks, burns or holes in the hose.
 Confirm the layout of the TIG torch gas hose
and that the hose adapters are properly connected.
c) Verify the wiring harness and connection of
gas valve (SOL1) and CN11 on PCB3
(WK-5548).
Verification/Remedy
Caution
Read and understand this entire section before
proceeding. Extreme personal harm and test
equipment damage will occur if the procedures are
not performed accurately.
a) Verify the remote connector (CON1).
(Applies to LIFT TIG and High Frequency TIG
(HF TIG) mode.)
 Confirm a secure between the remote connector (CON1) and the TIG torch cable.
 Confirm a secure connection of the harness
and the connections between the remote
connector (CON1) and PCB7 (WK-5550) are
all correct and there are no open circuits.
 Contact the manufacture if you find any broken connectors or damaged wiring harnesses.
d) Verify the drive circuitry of the gas valve
(SOL1).
 Verify the drive circuitry of the gas valve
(SOL1).
 Refer to section 11.5.4.
 Replace PCB3, when abnormal.
 Confirm the proper pins-outs of the remote
connector at the TIG Torch side. (Refer to
the Operating Manual.)
 Confirm that there is no open circuit on the
remote connector at TIG Torch side.
 In equipment for remote control use, confirm
the pin specification of a connector. (Refer to
section Operating Manual.)
 Refer to section 12.3.3.
e) Replace the PCB6 (WK-5549).
 Refer to section 12.3.6.
b) Verify the condition and connections of the
welding cable, the stick rod holders and the
ground clamp. (Applies to all welding modes.)
 Confirm a secure connection of the welding
cable, stick rod holders, ground clamp and
dinse connectors and there are no open circuits.
11 – 8
300ACDC
11 ADVANCED TROUBLESHOOTING
c) Verify the no-load voltage (OCV).
(Applies to STICK, High Frequency TIG (HF
TIG) mode.)
 Refer to the section "Verification of No-load
voltage (OCV)" in section 11.5.9.
 If performing the "No-Load Voltage Failure"
procedure does not rectify the failure, perform
the following tests in the sequence below.
Replace any defective components found.
1. Secondary IGBT (Q25-Q26)
 Contact the manufacturer if you find any broken connectors or a damaged wiring harnesses.
b) Verify the connection between PCB5
(WK-5551) and PCB6 (WK-5549).
c) Replace PCB5 (WK-5551) and PCB6 (WK5549).
 Refer to section 12.3.5, 12.3.6.
d) Verify the connection between PCB6 (WK5549) and PCB12 (WK-5527).
e) Replace PCB6 (WK-5549) and PCB12
(WK-5527).
 Refer to section 12.3.6, 12.3.9.
 Verification. Refer to section 11.5.8.
 Replacement. Refer to section 12.3.33.
2. Secondary diode (D2-D7)
 Verification. Refer to section 11.5.6.
 Replacement. Refer to section 12.3.32.
3.5 "High Frequency Output Failure" (Unit does not generate
High Frequency.)
3. Coupling coil (CC1)
 Replacement. Refer to section 12.3.20.
4. Reactor (FCH1)
Cause
 Replacement. Refer to section 12.3.21.
Occurs when the HF. unit (HF UNIT1) is defective
or blown.
5. PCB14 (T1-T2)
 Replacement. Refer to section 12.3.11.
Verification/Remedy
6. Primary IGBT (Q1-Q24)
 Verification. Refer to section 11.5.7.
 Replacement. Refer to section 12.3.7,
12.3.8.
7. Hall C.T. (HCT1)
 Replacement. Refer to 12.3.30.
3.4 "Operating Panel Failure"
(LED's do not light properly
or welding setting cannot be
established.)
Cause
Occurs when there is a connection failure among
PCB6 (WK-5549), PCB12 (WK-5527) and PCB6
or PCB12 are defective.
Verification/Remedy
a) Verify the harness connection between CN21
on PCB6 (WK-5549) and CN2 on PCB12
(WK-5527).
 Confirm a secure connection of the harness
and the connections between CN21 on PCB6
(WK-5549) and CN2 on PCB12 (WK-5527).
11 – 9
Caution
Read and understand this entire section before
proceeding. Extreme personal harm and test
equipment damage will occur if the procedures are
not performed accurately. The unit will generate a
High Voltage component that can cause extreme
personal harm and test equipment damage.Capacitors installed inside the Welding Power Source are
electrically charged for a while after the Mains ON/
OFF switch or distribution panel switch has been
turned off. Before inspecting the inside of the Welding Power Source, leave it for about 5 min. after
switching off power for discharging the capacitors,
and then remove the top and side panels.
a) Verify the connection between High Frequency
(HF UNIT1) and Coupling Coil (CC1).
 Verify the connection between the HF UNIT1
and CC1; confirm that the quick-disconnect
terminals are inserted onto the terminals of
HF UNIT1 (TB5-TB6) correctly and completely.
 Confirm there are no short circuits, burnt or
broken wires at CC1.
 Replace CC1.
 Refer to section 12.3.20.
300ACDC
b) Verify the connection between High Frequency
(HF UNIT1) and the current limiting resistor
(R2).
 Verify the connection between HF UNIT1 and
the current limiting resistor (R2), confirm that
the quick-disconnect terminals are inserted
onto the terminals of HF UNIT1 (TB3-TB4)
correctly and completely.
4 Fault Isolation Tests
4.1 Preparation
The following initial conditions must be met
prior to starting any of the procedures in this
section.
1) Connect the appropriate input voltage.
(Check the name tag on the rear of the
power supply for the proper input voltage.)
 Confirm there are no short circuits, burnt or
broken wires between the HF UNIT1 and the
current limiting resistor (R2).
c) Verify the connection between the terminals
between AC1-AC2 (TB1-TB2).
 Verify the connection between AC1-AC2,
confirm that the quick-disconnect terminals
are inserted onto the terminals of HF UNIT1
correctly and completely.
NOTE
Operate at all input voltages as noted on the nameplate on the rear panel when testing the power supply.
2) Remove the Side Panel. Refer to the section 11.1.1.
 Confirm there are no short circuits, burnt or
broken wires between AC1 and AC2.
3) Close primary power source wall disconnect switch or circuit breaker.
d) Verify and replace the Gap (GAP) of the High
Frequency Unit (HF UNIT1).
4) Place power supply MAIN CIRCUIT
SWITCH (S1) on rear of the unit in the ON
position.
 Confirm that the GAP is connected to HF
UNIT1 correctly and completely.
 Confirm there is no dust or foreign debris
between the space of the GAP.
 If there are any abnormalities observed with
the GAP, replace the GAP.
 A setup of a gap is 1.0mm.
In the case of a gap 1.0mm or more, high frequency voltage and a period increase.
In the case of a gap 1.0mm or less, high frequency voltage and a period decrease.
11 ADVANCED TROUBLESHOOTING
WARNING
Dangerous voltage and power levels are present
inside this unit. Be sure the operator is equipped
with proper gloves, clothing and eye and ear protection. Make sure no part of the operator's body
comes into contact with the work piece or any internal components while the unit is activated.
e) Verify and replace the Current limiting Resistor
(R6) on HF UNIT1.
 If R6 is defective (blown, burnt, cracked,
etc.), replace R6.
 Refer to section 12.3.17.
f) Replace the High Frequency Unit (HF UNIT1).
 Refer to section 12.3.29.
g) Replace PCB3 (WK-5548).
 Refer to section 12.3.3.
11 – 10
300ACDC
11 ADVANCED TROUBLESHOOTING
5 Verification of the Power
3) Verify input voltage after the input switch (S1)
using an AC voltmeter. (The capability of the
voltmeter should be more than 600VAC.)
Input Circuitry
• Using an AC voltmeter, measure between
the points U2 and V2 on the input switch, S1.
CAUTION
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1
"Preparation".
5.1 Verification of the AC Input
Voltage using an AC Voltmeter
1) Verify input voltage (Phase-to Phase) using an
AC voltmeter. (The capability of the voltmeter
should be more than 600VAC). Measure the
point between lines U1 and V1 on the input
switch, S1.Measure the point between lines U1
and W1 on the input switch, S1. Measure the
point between lines V1 and W1 on the input
switch, S1. The location of points U1, V1 and
W1 on switch S1 are indicated in Figure 11-7.
When using a single-phase connection, the
voltage can be verified only between U1 and
V1.
U2
S1
U1
• Using an AC voltmeter, measure between
the points U2 and W2 on the input switch, S1.
• Using an AC voltmeter, measure between
the points V2 and W2 on the input switch, S1.
The location of points U2, V2 and W2 on
switch S1 are indicated in Figure 11-7. When
using a single-phase connection, the voltage
can be verified only between U2 and V2.
4) If this voltage is out of the operating range,
which is ±10% (187 ? 253/414 ? 506 VAC) of
the rated voltage (208, 230/460V), replace S1
following the process in section 12.3.26.
5) Verify the rectified output voltage of the input
diode, D1 using a DC voltmeter. (The capability of the voltmeter should be more than
1000VDC.) Using a DC voltmeter, measure
between the points 1 (P)[+] and 2 (N)[-] on D1.
Points 1 (P) and 2 (1) are on D1. See Figure
11-8. The measured voltage should be approximately 1.4 times larger than input voltage
measured in #1 above. Replace diode D1 if the
calculated measurement is not within the corresponding range (260 ? 360/580 ? 720 VDC)
following the process in section 12.3.31.
V2
W2
1
2
V1
D1
W1
Figure 11-7: Check points U1, U2, V1, V2, W1 and W2
2) If the input voltage is out of the operating range
of the unit, which is ±10% (187 - 253/414 ~ 506
VAC) of the rated voltage (208, 230/460V),
verify the available power capacity at the
installed site. If the input voltage is within the
operating range, recheck the input voltage
while welding, as welding may cause the input
voltage to decrease to a value below the operating range of the unit.
11 – 11
Figure 11-8: The check points 1 (P) and 2 (N)
300ACDC
11 ADVANCED TROUBLESHOOTING
6) Verify bus voltage (the voltage of the electro2) On the PCB3 (WK-5548) and PCB6 (WKlytic capacitor after rectification) using a DC
5549), measure the voltages according to the
voltmeter. The capability of the DVM
following table. The check points and the refershould be more than 1000VDC. Measure
ence are obtainable on the solder side of
between the output studs C and E
PCB6 (WK-5549). The locations of points are
on PCB8 (WK5479), PCB9 (WK-5479),
indicated in Figure 11-10, 11-11.
PCB10 (WK5479) and PCB11 (WK5479).
TP3 TP1
The measured voltage should be approximately
TP0 TP2
1.4 times larger than the input voltage
measured in step 1 (above), except when running
at 460V where the bus voltage will be shared
across all boards, ie each board receiving 0.7
? 360 / 580 ?
times the input voltage measured in step 1 (above).
PCB6
Replace diode D1 if the calculated measurement
is not within the corresponding range
(260~360/580~720VDC). Follow the process in
section 12.3.31.
TB4(N)
TB1(P)
Figure 11-10: Checkpoints TP0-TP3 on PCB6
PCB2
Check Point
PCB6
Reference
PCB6
ACCEPTABLE
VALUE
TP1
TP0
+5VDC
TP2
TP0
+15VDC
TP3
TP0
-15VDC
Table 11-1: Checkpoints TP0-TP3 on PCB6
Figure 11-9: The check points TB1(P) and TB4(N)
7) After the replacement of D1, if the above voltage is still abnormal, replace PCB1
(WK-5493).
pin3
pin 1
PCB3
5.2 Verification of the Power
Supply Voltage
CAUTION
CN18
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1
Figure 11-11: Checkpoints CN18 on PCB3
"Preparation".
1) Verify Power Supply voltage using an DC voltmeter. (The capability of the voltmeter should
be more than 50VDC.) Operate at all input voltages as noted on the nameplate on the rear
panel when testing the power supply.
11 – 12
Check Point
PCB3
Reference
PCB3
ACCEPTABLE
VALUE
Pin1 on CN18
Pin3 on CN18
+24VDC
Table 11-2: Checkpoints CN18 on PCB3
300ACDC
11 ADVANCED TROUBLESHOOTING
3) If any of these voltages are not present or
are below a 10% tolerance, replace the
PCB3 (WK-5548). Refer to section 12.3.3.
2) Using the measurement taken above, follow
the chart below for possible failure modes.
FAN1
Status
5.3 Verification of the Cooling
Fan, FAN1, Drive Circuitry
Voltage
measurement.
(1PIN-2PIN of
CN11 on PCB3)
Case 1 Rotating DC 18 ∼ 25V
CAUTION
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1
"Preparation".
1) Verify the condition of the cooling fan, FAN1,
using a DC voltmeter. (The capability of the
voltmeter should be more than 50VDC.) Using
a DC voltmeter, measure between PIN 1 (Positive [+]) and PIN 2 (Negative [-]) of CN11 on
PCB3 (WK-5548). The location of connector
CN11 of PCB3 is indicated in Figure 11-12.
When you measure the above voltage, do not
remove the connector. Conduct the measurement while the connector plug and receptacle
are still connected.
pin2
Case 2 Rotating Below DC 18V
Case 3 Inactive
Below DC 18V
Case 4 Inactive
DC 18 ∼ 25V
pin1
PCB3
Remedy
FAN1 drive circuit
is normal.
Replace PCB3.
Refer to section
12.3.3.
Replace PCB3.
Refer to section
12.3.3.
↓
Perform
"2. Verification of
the Power Supply
Voltage".
Refer to section
11.5.2.
Replace the FAN1.
Refer to section
12.3.24.
Table 11-3: Verification of the FAN1
 At the time of a low output and standby, as
for this equipment, rotation of a fan becomes
slow. Therefore, exact voltage measuring
becomes impossible. Perform the check of
voltage in the state of abnormalities.
 When verifying the voltage, confirm that the
AC input voltage remain within the operating
range of the unit. (The AC input does not
drop below 180VAC).
CN11
Figure 11-12: Verification of the FAN1
11 – 13
300ACDC
5.4 Verification of the Gas Valve,
SOL1, Drive Circuitry
11 ADVANCED TROUBLESHOOTING
5.5 Verification of the primary
Diode (D1)
CAUTION
CAUTION
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1
"Preparation".
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1
"Preparation".
1) Verify the voltage between the PIN3 (Positive
[+]) and PIN4 (Negative [-]) of connector CN11
on PCB3 (WK-5548) while you press the torch
switch while in TIG Mode. (The capacity of the
voltmeter should be more than 50VDC.) The
location of connector CN11 of PCB3 (WK5548) is indicated in Figure 8. When you measure the above voltage, do not remove the
connector. Conduct the measurement while
the connector plug and receptacle are still connected.
1) Verify the characteristic of the primary diode,
D1, using a diode tester.
2) Refer to Table 11-5 and Figure 11-14 for
the checkpoints on D1.
COMPONENT
TESTED
Diode of D1
Diode of D1
Thyristor of D1
pin4
PCB3
pin3
Gate of D1
TERMINALS
Positive Negative
lead
lead
0
3, 4, 5
0
3, 4, 5
3, 4, 5
2
2
3, 4, 5
0
1
1
0
6
7
ACCEPTABLE
VALUE
0.3 to 0.5V
Open
Open
0.3 to 0.5V
Open
Open
52 +3, ±3ohm
Table 11-5: Tester checkpoints in the D1
CN11
Figure 11-13: Verification of the SOL1
3
Case 1
Case 2
Remedy
Below DC 18V
Replace PCB1.
Refer to section 12.3.1.
DC 18 ∼ 25V
Replace SOL1.
Refer to section 12.3.1.
4
67
D1
2) Using the measurement taken above, follow
the chart below for possible failure modes.
Voltage
measurement.
(1PIN-2PIN of
CN11 on PCB3)
5
0
1
2
0
6 7
1
5
Table 11-4: Verification of the SOL1
4
3) When verifying the voltage, confirm that the AC
input voltage remain within the operating range
of the unit.
(The AC input does not drop below 180VAC).
11 – 14
3
2
Figure 11-14: Tester checkpoints for D1 showing
the interconnection diagram
300ACDC
11 ADVANCED TROUBLESHOOTING
5.6 Verification of the secondary
Diode (D2-D7)
1) Check whether there are any abnormalities on
the appearance of PCB8-PCB11.
2) Verify the characteristic of the primary IGBT
(Q1-Q24), using a diode tester.
CAUTION
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1
"Preparation".
3) Refer below Table 11-7 and Figure 11-16 for
the checkpoints on PCB8-PCB11.
1) Verify the characteristic of the secondary
diode, D2-D7, using a diode tester.
Collector-Emitter
of Q1∼Q12 with
PCB8 and PCB9
C
CE
CE
C
Open
0.2 to 0.5V
Collector-Emitter
of Q13∼Q24 with
PCB10 and PCB11
CE
E
E
CE
Open
0.2 to 0.5V
2) Refer to Table 11-6 and Figure 11-15 for
the checkpoints on D2-D7.
COMPONENT
TESTED
Diode 1 of
D2-D7
Diode 2 of
D2-D7
TERMINALS
Positive Negative
lead
lead
Anode
Cathode
Cathode
Anode
Anode
Cathode
Cathode
Anode
ACCEPTABLE
VALUE
TERMINALS
COMPONENT
TESTED
Positive Negative
lead
lead
ACCEPTABLE
VALUE
Table 11-7: Tester checkpoints in the Q1-Q24
0.2 to 0.3V
Open
0.2 to 0.3V
Open
Table 11-6: Tester checkpoints in D2-D7
PCB10
D4
D3
C
Diode 1
Anode
Cathode
E
Diode 2
Anode
D2
D7
CE
PCB11
TRO_0031
Cathode
D6
D5
PCB8
Figure 11-15: Tester checkpoints in D2-D7
PCB9
C
CE
E
5.7 Verification of the primary
IGBT (Q1-Q24)
CAUTION
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1
"Preparation".
11 – 15
Figure 11-16: Tester checkpoints in the Q1-Q24
300ACDC
5.8 Verification of the secondary
IGBT (Q25-Q26)
11 ADVANCED TROUBLESHOOTING
5.9 Verification of No-load Voltage (OCV)
CAUTION
CAUTION
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1.
"Preparation".
Before performing any portion of the procedure
below, make certain the unit is placed in the initial
set up condition as described in section 11.4.1.
"Preparation".
1) Check whether there are any abnormalities on
the appearance of PCB17.
a. Verify the no-load voltage in STICK mode.
1) In STICK welding mode, mark and then
turn potentiometer VR1 on PCB6 (WK5549) fully counterclockwise to turn off
the electric shock protector function (Voltage-Reduction-Device, VRD).
2) Verify the characteristic of the secondary IGBT
(Q25-Q26), using a diode tester.
3) Refer to Table 11-8 and Figure 11-17 for
the checkpoints on Q25-Q26.
COMPONENTTE
STED
TERMINALS
2) Contactor function is put into the state of
"ON" pushing Function button. Refer to section 6.
ACCEPTABLE
VALUE
Positive
lead
Negative
lead
Collector-Emitter
of Q25
(By PCB18
connection)
C1
C2E1
C2E1
C1
Open
0.2 to 0.5V
Collector-Emitter
of Q26
(By PCB19
connection)
C2E1
E2
E2
C2E1
Open
0.2 to 0.5V
WARNING
Electric shock hazard. The unit will generate OCV
immediately when contactor function is put into the
state of "ON" pushing Function button enabling
STICK mode.
3) Verify the no-load voltage using a DC voltmeter.
(The capability of the voltmeter should be
more than 100VDC.)
Table 11-8: Tester checkpoints in the Q25-Q26
4) The normal no-load voltage is approximately 65V.
C2E1
Q25
Q26
E2
C1
Figure 11-17: Tester checkpoints in the Q25-Q26
11 – 16
300ACDC
11 ADVANCED TROUBLESHOOTING
b. Verify the no-load voltage (OCV) in High Frequency TIG mode.
WARNING
This welding mode produces high frequency and
high voltage. Extra care shall be taken to prevent
electric shock.
1) When in HF TIG mode, the unit will generate high voltage. To prevent personal harm
and test equipment damage, mark and
then remove the indicated wire from the HF
UNIT1 shown in Figure 11-18. To prevent
electric shock, always wrap the removed
wire with electrical tape or other suitable
insulation.
HF. UNIT1
Figure 11-18: Removal and installation
from the HF UNIT1
(To disable the operation of the HF unit.)
2) Press the Welding mode selection button
to select HF TIG welding mode.
3) While depressing the Torch switch, verify
the OCV using a DC voltmeter. (The capability of the voltmeter should be more than
100VDC.) The check point with a tester is
the voltage between output terminal + and
-. In TIG mode, the OCV ceases 3 seconds
after you depress the torch switch.
4) The normal no-load voltage is approximately 65V.
5) Return the setting variable resister (VR1)
to the original position. (Return to the position recorded by "a. 1)" clause.)
• fully clockwise:
VRD ON
• fully counterclockwise: VRD OFF
6) Return connection with HF UNIT1 to the
original position.
11 – 17
12 MAINTENANCE
1 Maintenance List
MAINTENANCE
10
3
2
4
5
6
1
7
8
9
No.
DWG No.
Parts name
Reference page
Part No.
1
PCB2
Print Circuit Board (WK-5597)
12- 7
W7001313
2
PCB3
Print Circuit Board (WK-5548)
12- 9
W7001314
3
PCB4
Print Circuit Board (WK-4819)
12- 10
10-6635
4
PCB5
Print Circuit Board (WK-5551)
12- 11
W7001417
5
PCB7
Print Circuit Board (WK-5550)
12- 9
W7001423
6
PCB12
Print Circuit Board (WK-5527)
12- 12
W7001319
7
PCB13
Print Circuit Board (WK-5528)
12- 13
W7001320
8
PCB14
Print Circuit Board (WK-5594)
12- 14
W7001435
9
PCB16
Print Circuit Board (WK-5569)
12- 16
W7001433
10
PCB21
Print Circuit Board (WK-4917)
12- 18
10-6740
12 – 1
12 MAINTENANCE
300ACDC
5
2
6
4
1
3
7
8
9
No.
1
Parts name
Print Circuit Board (WK-5493)
Reference page
PCB1
DWG No.
12- 6
W7001312
Part No.
2
PCB6
Print Circuit Board (WK-5549)
12- 11
W7001738
PCB8 (Q1-Q6)
12- 12
W7001318
12- 12
W7001318
12- 12
W7001318
12- 12
W7001318
12- 16
W7001321
7
PCB15
Print Circuit Board
(WK-5479) (Primary IGBT)
Print Circuit Board
(WK-5479) (Primary IGBT)
Print Circuit Board
(WK-5479) (Primary IGBT)
Print Circuit Board
(WK-5479) (Primary IGBT)
Print Circuit Board (WK-5606)
8
PCB17
Print Circuit Board (WK-5570)
12- 17
W7001434
9
PCB20
Print Circuit Board (WK-5499)
12- 17
W7001324
3
4
5
6
PCB9 (Q7-Q12)
PCB10 (Q13Q18)
PCB11 (Q19-Q24)
12 – 2
300ACDC
12 MAINTENANCE
12
13
2
6
7
8
3
4
5
1
10
11
9
No.
DWG No.
Parts name
Reference page
Part No.
1
CON1
Remote Socket
12- 28
W7001666
2
D1
Primary Diode
12- 30
10-6769
3
D2
Secondary Diode
12- 30
10-6629
4
D3
Secondary Diode
12- 30
10-6629
5
D4
Secondary Diode
12- 30
10-6629
6
D5
Secondary Diode
12- 30
10-6629
7
D6
Secondary Diode
12- 30
10-6629
8
D7
Secondary Diode
12- 30
10-6629
9
HF.UNIT1
High Frequency Unit
10
Q25 (PCB18)
Secondary IGBT (WK-3367)
12- 31
10-6643
11
Q26 (PCB19)
Secondary IGBT (WK-3367)
12- 31
10-6643
12
S1
Main ON/OFF Switch
12- 26
10-6857
13
S2
Input Voltage Switch
12- 27
10-6857
12- 28
12 – 3
W7001399
300ACDC
12 MAINTENANCE
2
7
11
3
12
8
4
9
5
14
13
15
10
6
1
No.
DWG No.
1 CC1
Parts name
Coupling Coil
Reference page
Part No.
12- 22
W7001382
W7001304
2
CT2
Current Trans
12- 32
3
CT3
Current Trans
12- 32
4
FAN1
Cooling Fan
12- 24
W7001307
5
FCH1
Reactor
12- 22
W7001681
6
HCT1
Hall Current Sensor
12- 29
10-5003
7
L1
Ring Core
12- 33
W7001309
8
L105
Ring Core
12- 33
W7001309
9
R3
Discharge Resistor
12- 20
10-5137
10
R6
Current Limiting Resistor
12- 19
W7001451
11
R7
Resistor
12- 21
W7001325
12
R8
Resistor
12- 21
W7001325
13
SOL1
Solenoid Valve
12- 25
10-6645
14
TH1
Primary Thermistor
12- 23
10-5228
15
TH2
Secondary Thermistor
12- 24
10-5228
12 – 4
300ACDC
12 MAINTENANCE
2 Service Tools
2.1 Tools and parts
The tools and parts to be used for maintenance are shown by icons.
Spanner
Philips Head
Screwdriver
Long Nose
Pliers
C-Ring Pliers
Snap Band
Silicon
Compound
2.2 Notes of disassembly and assembly
NOTE
When removing the locking type connectors and board supporters, disengage the locking mechanism first
and then disconnect them.
Locking type connectors and board supporters are indicated in this manual using the following symbols;
black star marks for locking connectors and white star marks for locking board supports.
NOTE
During your maintenance or repair, please cut any tie-wraps necessary. However, after your maintenance or
repair, please reassemble and tie-wrap all components and wiring in the same manner as before the maintenance or repair.
CAUTION
Please note that you remove each connector, grasp and pull out by the connector part only. Do not pull the
harness (cable) part.
WARNING
The capacitors inside the power supply will slowly discharged after you turn off the switch of the power supply or the switch at the breaker box (distribution panel). Wait at least 5 minutes for the discharge to complete.
12 – 5
300ACDC
3 Replacement Procedure
3.1 PCB1 (WK-5493) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB2 (WK-5597). [Reference page : 12-7]
3) Remove the diode (D1). [Reference page : 12-30]
4) Remove the current trans (CT2/CT3). [Reference page : 12-33]
5) Remove the gas tube. Remove the two bolts, and one terminal.
Remove the four screws and open the front cabinet.
2
3
1
3
4
2
3
3
1
2
6) Remove the four screws and six terminals from the PCB1 (WK-5477).
7) Remove the reactor (L1). [Reference page : 12-34]
12 – 6
12 MAINTENANCE
300ACDC
12 MAINTENANCE
8) Remove the 18 screws and remove the PCB1 (WK-5493).
2
1
1
3.2 PCB2 (WK-5597) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the screw and then disconnect the four ground terminals. Disconnect the 19 connectors.
CN7
CN17
CN4
CN1
CN7
1
CN3
CN2
2
CN22
CN23
CN8
CN21
CN19
CN1
2
CN9
CN21
CN20 CN9
CN8
CN11
3) Remove the four screws. Remove the PCB3, PCB4, PCB5, PCB6, and PCB7 unit.
Disconnect the three connectors.
CN13
2
CN15
CN14
1
12 – 7
300ACDC
12 MAINTENANCE
4) Remove the six screws, three terminals and three connectors from the PCB2 (WK-5597).
CN1
CN2
CN3
5) Remove the two PCB supporters and then the PCB2 (WK-5597) and insulation sheet.
3.3 PCB3 (WK-5548), PCB7 (WK-5550) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB4 (WK-4819). [Reference page : 12-10]
3) Remove the PCB6 (WK-5549). [Reference page : 12-11]
4) Remove the PCB5 (WK-5551). [Reference page : 12-10]
5) Disconnect the 11 connectors from the PCB3 (WK-5548).
CN21
CN20
CN9
CN23
CN22
CN11
CN8
CN19
CN1
CN2
CN3
12 – 8
300ACDC
12 MAINTENANCE
6) Remove the screw and then the four ground terminals. Remove the four screws and then remove the
PCB3 and PCB7 unit. Disconnect the three connectors from the PCB7 (WK-5550).
1
2
CN14
CN15
CN13
3
7) Disconnect the one connector and remove the two screws, and then remove the PCB7 (WK-5550) from
the PCB3 (WK-5548). Remove one screw and one ground terminal from the PCB7 (WK-5550).
CN20
1
2
8) Disconnect the two connectors from the PCB3 (WK-5548).
CN18
CN33
12 – 9
300ACDC
12 MAINTENANCE
3.4 PCB4 (WK-4819) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Disconnect the two connectors. Remove the two screws and three connectors and remove the PCB4
(WK-4819).
1
2
CN7
CN4
CN5
CN4
CN6
3.5 PCB5 (WK-5551) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB6 (WK-5549). [Reference page : 12-11]
3) Remove the two screws and three connectors. Remove the PCB5 (WK-5551).
CN30
CN31
CN32
12 – 10
300ACDC
12 MAINTENANCE
3.6 PCB6 (WK-5549) 
1) Remove the Side Panel. [Reference page :11-1]
2) Disconnect the six connectors.
CN21
CN17
CN1
CN9
CN8
CN20
3) Remove the three screws and five connectors. Remove the PCB6 (WK-5549).
CN27
CN18
CN32
CN30
CN31
3.7 PCB8, PCB9 (WK-5479) and Q1-Q12 “Primary IGBT” 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the eight screws and four device clips. Remove the four connectors and six screws.
Remove the PCB8 (WK-5479) and PCB9 (WK-5479).
 Remember to install silicone rubber sheets when reinstalling the print circuit boards.
CN2
CN1
2
2 CN1
CN2
1
Silicone rubber sheets
3
12 – 11
300ACDC
12 MAINTENANCE
3.8 PCB10, PCB11 (WK-5479) and Q13-Q24 “Primary IGBT” 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the eight screws and four device clips.
Remove the four connectors and six screws. Remove the PCB10 (WK-5479) and PCB11 (WK-5479).
 Remember to install silicone rubber sheets when reinstalling the print circuit boards.
2 CN2
CN2
CN1
CN1
1
Silicone rubber sheets
3
3.9 PCB12 (WK-5527) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB13 (WK-5528). [Reference page :12-13]
3) Remove the three latches and then the PCB12 (WK-5527).
2
1
1
 When reinstalling the PCB12, engage two latches first.
1
2
12 – 12
300ACDC
12 MAINTENANCE
3.10 PCB13 (WK-5528) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the operation cover.
2
2
3
1
3) Remove the jog dial cap. Holding the jog dial down, loosen the screw and remove the jog dial.
2
1mm
1
3
4) Disconnect the one connector from the PCB12 (WK-5527).
Remove the nut, washer and terminal. Remove the four screws.
Pull out the operation panel and bring it down.
1
3
2
3
CN2
4
3
3
12 – 13
300ACDC
12 MAINTENANCE
5) Remove the one connector and two screws. Remove the PCB13 (WK-5528).
2
4
1
CN1
3
3.11 PCB14 (WK-5594) (T1-T2 “Main Trans former”) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the coupling coil (CC1). [Reference page : 12-23]
3) Remove the PCB16 (WK-5569). [Reference page : 12-16]
4) Remove the PCB20 (WK-5499). [Reference page : 12-17]
5) Remove the inductor (FCH1). [Reference page : 12-23]
6) Remove the two screws from the front side and remove the bus bar.
7) Remove the gas tube and two terminals. Remove the four screws and open the rear cabinet.
3
2
3
4
1
3
1
2
3
12 – 14
300ACDC
12 MAINTENANCE
8) Remove the four screws from the PCB1 (WK-5477). Remove the seven terminals.
The cables is drawn out.
2
2
1
9) Remove the four screws and two terminals from the bottom. Remove the two screws from the rear side
and pull out the PCB14 (WK-5594). Remove the four screws and then remove the bus bar.
1
2
3
3.12 PCB15 (WK-5606) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB16 (WK-5569). [Reference page : 12-16]
3) Remove the eight screws. Remove the two PCB supporters and remove the PCB15 (WK-5606).
2
3
1
2
1
12 – 15
300ACDC
12 MAINTENANCE
3.13 PCB16 (WK-5569) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the gas tube and two terminals. Remove the six connectors, two screws and two terminals.
CN2
CN1
4
1
3
CN4
2
CN5
CN3
CN6
3) Remove the four screws and then the PCB16 (WK-5569).
3.14 PCB17 (WK-5570) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB20 (WK-5499). [Reference page : 12-17]
3) Remove the five screws and three terminals. Remove the PCB17 (WK-5570) and insulation sheet
3
3
1
2
1
1
2
1
12 – 16
1
2
300ACDC
12 MAINTENANCE
4) Remove the three print circuit board supporters from the PCB17 (WK-5570).
3.15 PCB20 (WK-5499) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the gas tube from the front side.
1
2
3) Disconnect the two connectors.
Remove the three print circuit board supporters and then remove the PCB20 (WK-5499).
2
1
CN1
1
12 – 17
CN3
300ACDC
3.16 PCB21 (WK-4917) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the six screws from the switch (S1) and remove the six terminals.
1
2
2
1
3) Remove the four screws and then open the rear plate.
1
1
2
1
1
4) Disconnect the one connector. Remove the two screws and one ground terminal.
Remove the PCB21 (WK-4917).
3
1
CN1
2
12 – 18
2
12 MAINTENANCE
300ACDC
12 MAINTENANCE
5) Remove the three screws and the bus bar from the PCB21 (WK-4917).
3.17 PCB22 (WK-5022) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Disconnect one connector. Remove four screws and one terminal. Remove the PCB19 (WK-5022).
2
1
CN1
3
3) Remove three board supports.
12 – 19
2
300ACDC
3.18 Current Limiting Resistor (R6) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the high freguency unit (HF.UNIT1). [Reference page : 12-28]
3) Remove the screws and then remove the current limiting resistor (R6).
3.19 Discharge Resistor (R3) 
1)
2)
3)
4)
5)
6)
Remove the Side Panel. [Reference page : 11-1]
Remove the coupling coil (CC1). [Reference page : 12-23]
Remove the PCB16 (WK-5569). [Reference page : 12-16]
Remove the PCB20 (WK-5499). [Reference page : 12-17]
Remove the inductor (FCH1). [Reference page : 12-23]
Cut the snap band and remove the connector.
1
2
7) Remove the two screws and the discharge resistor (R3).
12 – 20
CN5
12 MAINTENANCE
300ACDC
12 MAINTENANCE
3.20 Resistor (R7, R8) 
1) Remove the Side Panel. [Referance page : 11-1]
2) Remove four screws and three terminals.
3) Cut off one snap band and disconnect one connector. Remove the one screw.
2
3
1
CN1
4) Remove two screws and remove the PCB22 unit.
1
2
1
12 – 21
300ACDC
5) Remove four screws and open the rear panel.
1
1
2
1
1
6) Remove four screws and six terminals. Remove the resistors (R7 and R8).
1
1
2
2
1
1
12 – 22
12 MAINTENANCE
300ACDC
12 MAINTENANCE
3.21 Coupling Coil (CC1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the gas tube. Remove the two bolts, and one terminal.
Remove the four screws and open the front cabinet.
2
3
1
3
4
2
3
3
1
2
3) Remove the two terminals. Remove one screw, four terminals, and one nut.
Remove one screw and detach the coupling coil (CC1).
2
1
3
3.22 Inductor (FCH1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the high frequency unit (HF.UNIT1). [Reference page : 12-28]
3) Remove the coupling coil (CC1). [Reference page : 12-23]
4) Remove the PCB16 (WK-5569). [Reference page : 12-16]
5) Remove the PCB20 (WK-5499). [Reference page : 12-17]
6) Remove the three screws and three terminals.
12 – 23
300ACDC
12 MAINTENANCE
7) Remove the one screw and one terminal. Remove the four screws and inductor (FCH1).
2
1
3.23 Primary Thermistor (TH1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Disconnect the one connector. Remove the one screw and then detach the primary thermistor (TH1).
 Before installing a new therminstor, apply a uniform coat of silicone compound (Shinetsu Silicone G747 or equivalent) on the base.
1
CN8
3
2
12 – 24
300ACDC
12 MAINTENANCE
3.24 Secondary Thermistor (TH2) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB16 (WK-5569). [Reference page : 12-16]
3) Cut the three snap bands and disconnect the one connector. Remove the one screw and secondary
thermister (TH2).
 Before installing a new therminstor, apply a uniform coat of silicone compound (Shinetsu Silicone G747 or equivalent) on the base.
1
1
1
2
CN9
4
3
3.25 Cooling Fan (FAN1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the gas tube and two terminals. Remove the four screws and open the rear cabinet.
3
2
3
4
1
3
1
2
3
12 – 25
300ACDC
12 MAINTENANCE
3) Cut the one snap band and disconnect the one connector.
CN11
4) Remove the two screws and detach the cooling fan (FAN1).
AIR FLOW
ROTATION
 Do not have the wrong direction of the fan when reinstalling.
3.26 Solenoid Valve (SOL1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the gas tube and two terminals. Remove the four screws and open the rear cabinet.
3
2
3
4
1
3
1
2
3
12 – 26
300ACDC
12 MAINTENANCE
3) Remove the C ring and detach the solenoid valve (SOL1).
 When reinstalling, make sure that the C ring seats in the solenoid valve groove.
2
1
3.27 Main ON/OFF Switch (S1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the six screws and six terminals.
2
1
2
1
3) Remove the two screws and detach the main ON/OFF switch (S1). Remove the three posts.u
12 – 27
300ACDC
3.28 Remote Socket (CON1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the reactor (L105). [Reference page : 12-36]
3) Disconnect the three connectors. Remove the one screw and four ground terminals.
2
CN13
1
CN15
1
CN14
1
4) Remove the two screws and disconnect the remote socket (CON1).
2
1
3.29 High Freguency Unit (HF.UNIT1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the high freguency gap Remove the six terminals.
12 – 28
12 MAINTENANCE
300ACDC
12 MAINTENANCE
3) Remove the two screws and detach the high freguency unit (HF. UNIT1).
1
2
1
3.30 Hall Current Sensor (HCT1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB16 (WK-5569). [Reference page : 12-16]
3) Remove the PCB20 (WK-5499). [Reference page : 12-17]
4) Remove the PCB17 (WK-5570). [Reference page : 12-16]
5) Remove the gas tube. Remove the two bolts and one terminal.
Remove the four screws and open the front cabinet.
2
3
1
3
4
2
3
3
1
2
6) Remove the one post and one screw. Remove the one screw, one terminal and bus bar.
2
1
12 – 29
300ACDC
12 MAINTENANCE
7) Remove the connector, three screws and one terminal. Remove the bus bar. Remove the hall current
sensor (HCT1).
2
1
3.31 Primary Diode (D1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the PCB3 (WK-5548). [Reference page : 12-8]
3) Remove four screws and three terminals.
4) Cut off one snap band and disconnect one connector. Remove the one screw.
2
3
1
CN1
12 – 30
300ACDC
12 MAINTENANCE
5) Remove two screws and remove the PCB22 unit.
1
2
1
6) Remove the six screws and 14 terminals. Remove the two screws and then detach the primary diode (D1).
 Before installing a new diode, apply a uniform coat of silicone compound (Shinetsu Silicone G-747 or
equivalent) on the base.
1
2
1
3.32 Secondary Diode (D2-D7) 
1)
2)
3)
4)
Remove the Side Panel. [Reference page : 11-1]
Remove the PCB16 (WK-5569). [Reference page : 12-16]
Remove the PCB15 (WK-5606). [Reference page : 12-15]
Remove the 30 screws and four terminals. Remove the bus bar.
12 – 31
300ACDC
12 MAINTENANCE
5) Remove the 12 screws and then detach the secondary diodes (D2, D3, D4, D5, D6, D7).
 Do not have the wrong direction of the diodes when reinstalling.
 Before installing a new diodes, apply a uniform coat of silicone compound (Shinetsu Silicone G-747 or
equivalent) on the base.
D4
D7
D3
D6
D2
D5
3.33 Secondary IGBT (Q25-Q26) and PCB18-PCB19 
1)
2)
3)
4)
5)
6)
Remove the Side Panel. [Reference page : 11-1]
Remove the PCB16 (WK-5569). [Reference page : 12-16]
Remove the PCB20 (WK-5499). [Reference page : 12-17]
Remove the PCB17 (WK-5570). [Reference page : 12-16]
Remove the hall current sensor (HCT1). [Reference page : 12-29]
Remove the one screw and one post, remove the bus bar.
2
1
7) Remove the two connectors and four screws. Remove the two secondary IGBT (Q25, Q26).
 Before installing a new IGBT, apply a uniform coat of silicone compound (Shinetsu Silicone G-747 or
equivalent) on the base.
2
3
3
2
1
CN1
1
CN1
12 – 32
300ACDC
12 MAINTENANCE
3.34 Current Trans (CT2, CT3) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove four screws and three terminals.
3) Cut off one snap band and disconnect one connector. Remove the one screw.
2
3
1
CN1
4) Remove two screws and remove the PCB22 unit.
1
2
1
12 – 33
300ACDC
12 MAINTENANCE
5) Remove the gas tube and two terminals. Remove the four screws and open the rear cabinet.
3
2
3
4
1
3
1
2
3
6) Cut the three snap bands and remove the connector from the PCB3 (WK-5548). Remove two screws
and three terminals from the PCB1 (WK-5493). Cut two snap bands and remove the current trans (CT2,
CT3).
3
5
3
5
1
1
4
1
2
CN7
3.35 Ring Core (L1) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove four screws and three terminals.
12 – 34
300ACDC
12 MAINTENANCE
3) Cut off one snap band and disconnect one connector. Remove the one screw.
2
3
1
CN1
4) Remove two screws and remove the PCB22 unit.
1
2
1
5) Remove the gas tube and two terminals. Remove the four screws and open the rear cabinet.
3
2
3
4
1
3
1
2
3
12 – 35
300ACDC
12 MAINTENANCE
6) Remove the two screws and three terminals. Cut the snap band and remove the ring core (L1).
1
1
3
2
3.36 Ring Core (L105) 
1) Remove the Side Panel. [Reference page : 11-1]
2) Remove the operation cover.
2
2
3
1
3) Remove the four screws. Pull out the operation panel and bring it down.
1
1
2
1
1
12 – 36
300ACDC
12 MAINTENANCE
4) Remove the ring core (L105).
3.37 Reactor (L101)
1) Remove the Side Panel. [Reference page: 11-1]
2) Remove four screws and remove the three ground cables.
3) Disconnect the connector CN1 on the PCB22. Remove the screw..
2
1
CN1
12 – 37
300ACDC
4) Remove the PCB22 unit.
5) Cut the snap band. Remove the reactor (L101) from the Input cable.
1
2
3.38 Reactor (L102) 
1) Remove the Side Panel. [Reference page: 11-1]
2) Remove four screws and three terminals.
12 – 38
12 MAINTENANCE
300ACDC
12 MAINTENANCE
3) Cut off one snap band and disconnect one connector. Remove the one screw.
2
3
1
CN1
4) Remove two screws and remove the PCB22 unit.
1
2
1
5) Remove six screws, nine terminals and remove the reactor (L102).
2
3
12 – 39
1
300ACDC
12 MAINTENANCE
3.39 Reactor (L103) 
1) Remove the Side Panel. [Reference page: 11-1]
2) Remove one screw and two terminals.
3) Remove four screws and open the rear panel. Remove one nut, one washer and one terminal.
1
1
3
2
1
1
4) Cut off one snap band. Remove the reactor (L103).
1
2
12 – 40
APPENDIX 1 PARTS LIST
1 Equipment Identification
2 How To Use This Parts List
All identification numbers as described in the
Introduction chapter must be furnished when
ordering parts or making inquiries. This information is usually found on the nameplate
attached to the equipment. Be sure to include
any dash numbers following the Part
or Assembly numbers.
The Parts List is a combination of an illustration and a corresponding list of parts which
contains a breakdown of the equipment into
assemblies, subassemblies, and detail parts.
All parts of the equipment are listed except for
commercially available hardware, bulk items
such as wire, cable, sleeving, tubing, etc., and
permanently attached items which are soldered, riveted, or welded to other parts. The
part descriptions may be indented to show part
relationships. To determine the part number,
description, quantity, or application of an item,
simply locate the item in question from the
illustration and refer to that item number in the
corresponding Parts List.
PART NUMBER:
ARC MASTER 300ACDC 10-3098
No.
1
2
DWG No.
CC1
CON1
Part No.
W7001382
W7001666
Description
Coupling Coil, gen 3.1, IPS
Socket, Remote, gen 3.1, IPS
3
4
5
6
7
8
CT1
D1
D2-7
FAN1
FCH1
HCT1
W7001304
10-6628
10-6629
W7001307
W7001681
10-5003
Transformer, gen 3.1, IPS
Diode, gen 3.1, IPS
Diode, gen 3.1, IPS
Fan, gen 3.1, IPS
Inductor, gen 3.1, IPS
Sensor, Current, gen 3.1, IPS
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
HF.UNIT1
L1
L101
L102
L103
L105
PCB1
PCB2
PCB3
PCB4
PCB5
PCB6
PCB7
PCB8-11
W7001399
10-6633
W7001309
W7001400
W7001672
W7001605
W7001400
W7001312
W7001678
W7001314
10-6635
W7001417
W7001739
W7001423
W7001318
HF, Unit, gen 3.1, IPS
HF, Gap, gen 3.1, IPS
Reactor, gen 3.1, IPS
Reactor, gen 3.1, IPS
Reactor, gen 3.1, IPS
Reactor, gen 3.1, IPS
Reactor, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
24
PCB12
W7001319
PCB, gen 3.1, IPS
1
Additional Information
F3A073800 300A AC CC
MS3102A20-27S (NIC) 14P with
Wiring Assembly (Remote Socket)
F2A503001 CT 1:40
DFA50BA160 (Primary Diode)
DBA200UA60 (Secondary Diode)
109E5724H507 DC 24V 16.8W
F3A040701 300A AC FCH
HC-TN200V4B15M 200A 4V (Hall
Current Sensor)
HF.UNIT (WK-4840 U04)
U0A601100
GP-7 (Ring Core)
ZCAT-3035-1330 (Ring Core)
F2A734000
SNG-25B-600
ZCAT-3035-1330
WK-5493 U01 MAIN PCB
WK-5597 U02 LINK PCB
WK-5548 U01 DDC PCB
WK-4819 U01 DETECT PCB
WK-5551 U01 CONECT PCB
WK-5549 U01-1 DC CTRL PCB
WK-5550 U01 FILTER PCB
WK-5479 U01 GATE PCB (with
IRGP20B60PD)
WK-5527 U05 PANEL PCB
QTY.
1
1
2
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
1
300ACDC PARTS LIST
No.
25
26
27
DWG No.
PCB13
PCB14
PCB15
Part No.
W7001320
W7001435
W7001321
Description
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
Additional Information
WK-5528 U01 ENCODER PCB
WK-5594 01 TRANS PCB
WK-5606 U01 DIODE SNUBBER PCB
QTY.
1
1
1
28
29
PCB16
PCB17
W7001433
W7001434
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
WK-5569 U01 GATE/INPOSE PCB
WK-5570 U01 IGBT SNUBBER PCB
1
1
30
31
32
33
34
35
36
37
38
39
PCB20
PCB21
PCB22
Q25-26
R2
R3
R6
R7, 8
S1
SOL1
W7001324
10-6740
W7001677
10-6643
W7001449
10-5137
W7001451
W7001325
W7001698
W7001604
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
PCB, gen 3.1, IPS
Transistor, gen 3.1, IPS
Resistor, gen 3.1, IPS
Resistor, gen 3.1, IPS
Resistor, gen 3.1, IPS
Resistor, gen 3.1, IPS
Switch, gen 3.1, IPS
Solenoid Valve, gen 3.1, IPS
1
1
1
2
2
2
1
2
1
1
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
TH1,2
10-5228
W7001472
W7001329
W7001330
W7001331
W7001332
W7001699
W7001334
10-6791
W7001336
W7001696
10-6657
W7001339
W7001340
W7001345
10-6794
10-6733
W7001690
10-5184
10-6660
N/A
10-6795
W7001349
Thermistor, gen 3.1, IPS
Panel, Front, gen 3.1, IPS
Panel, Rear, gen 3.1, IPS
Label, Side, gen 3.1, IPS
Case, Front, gen 3.1, IPS
Board, Front, gen 3.1, IPS
Cover, Rear, gen 3.1, IPS
Cover, Protector, gen 3.1, IPS
Cover, Encoder, gen 3.1, IPS
Cover, PCB, gen 3.1, IPS
Label, Name, gen 3.1, IPS
Label, Side, gen 3.1, IPS
Label, 1 Warning, gen 3.1, IPS
Label, 2 Warning, gen 3.1, IPS
Label, VRD, gen 3.1, IPS
Label, Terminal, gen 3.1, IPS
Label, Gas Input, gen 3.1, IPS
Outlet, Gas, gen 3.1, IPS
C-Ring, gen 3.1, IPS
Terminal, Output, gen 3.1, IPS
Cable, Input, gen 3.1, IPS
Clamp, Input, gen 3.1, IPS
Heatsink, gen 3.1, IPS
WK-5499 U01 FILTER PCB
WK-4917 U04 INPUT FILTER PCB
WK-5022 U01 CE FILTER PCB
GCA200CA60 (with WK-3367 U04)
ERG3SJ220H 3W 22Ω
JG23V101J 68W 100Ω
MHS20A101KI 20W 100Ω
MHS20A151JI 20W 150Ω
DCP-53SR50C-480V 3P-480V
5505NBR1.5 DC24V 11VA/10W (with
Gas Inlet and PC4-02)
ERTA53D203 20kΩ/25°C B=3950K
E0D004801
E0D004901
E0D005207
E0C346000
JEA496001
JCA911200
E0C299200
EBA514400
E1B537600 (with Dustcover Sheet)
N4A933700 (300AC/DC)
N4A009200
N1B029700
N1B029800
N4A919100
N4A040600
N4A040700
E5A925600 (with PC4-02)
2
TRAK-BE35-70S
H07RN-F#1600106 L=3.9m
EBA156800
E1B895000
2
1
1
2
1
1
1
1
1
1
2
2
1
1
1
1
1
1
2
2
1
1
2
300ACDC PARTS LIST
No.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
DWG No.
Part No.
W7001350
W7001351
W7001352
W7001353
10-6665
10-6666
W7001585
W7001357
10-6669
W7001358
W7001693
W7001694
W7001360
W7001361
W7001362
W7001363
W7001364
10-6868
W7001692
W7001691
W7001695
W7001367
W7001671
W7001673
W7001368
W7001369
W7001370
W7001371
W7001643
W7001373
W7001374
10-6681
W7001375
W7001377
10-2020
300X4904
Description
Heatsink, gen 3.1, IPS
Spring Clip,IGBT, gen 3.1, IPS
Chassis, PCB1, gen 3.1, IPS
Chassis, gen 3.1, IPS
Knob, gen 3.1, IPS
Knob Cap, gen 3.1, IPS
Cover, Protector, gen 3.1, IPS
Sheet, Rubber, gen 3.1, IPS
Post, 1 (M4-M5), gen 3.1, IPS
Post, 11 (M5-M5), gen 3.1, IPS
Bus Bar, 1 D-L, gen 3.1, IPS
Bus Bar, 2 D-L, gen 3.1, IPS
Bus Bar, T-D, gen 3.1, IPS
Bus Bar, 1 D, gen 3.1, IPS
Bus Bar, 2 D, gen 3.1, IPS
Bus Bar, 3 D, gen 3.1, IPS
Bus Bar, 4 D, gen 3.1, IPS
Bus Bar, S1, gen 3.1, IPS
Bus Bar, Output, gen 3.1, IPS
Bus Bar, 1 L-Q, gen 3.1, IPS
Bus Bar, 2 L-Q, gen 3.1, IPS
Bus Bar, T-CC, gen 3.1, IPS
Bus Bar, input, gen 3.1, IPS
Chassis, PCB22, gen 3.1, IPS
Post, Output, gen 3.1, IPS
Insulated Board, gen 3.1, IPS
Insulation Sheet, gen 3.1, IPS
Insulation Sheet, gen 3.1, IPS
Cover, Protector, gen 3.1, IPS
Cover, Protector, gen 3.1, IPS
Clip, gen 3.1, IPS
Hose, Nylon, gen 3.1, IPS
Cover, CON1, gen 3.1, IPS
Edge Protect, gen 3.1, IPS
Plug, Output, gen 3.1, IPS
Operating Manual, gen 3.1, IPS
3
Additional Information
E1B870100
E1B850100
J5B017500
J3C356600
2621603
3021104
N1B016200
EDA227700
EBA424900 (M4-M5)
EBA643600 (M5-M5)
EDA046700
EDA046800
EDA003800
EDA046900
EDA047000
EDA047100
EDA047200
ECA321000
EDA046600
EEA158800
EEA158900
EDA047300
EDA069200
J5B348000
ECA867900
E1B872000
E1B859700
EDA079800
E1B933000
E1B933100
#74 NATURAL
T0425B Nylon Hose L=0.5m
1070500-20 (with String)
EH18U
TRAK-SK50
Operating Manual
QTY.
1
8
1
1
1
1
1
4
3
3
1
1
1
1
1
1
1
3
1
1
1
1
1
1
2
2
1
1
1
1
4
1
1
2
2
1
300ACDC PARTS LIST
52
51
46
43
49
38
31
71
93
80
71
80
61
42
60
56
25
48
24
14
45
12
44
58
69
6
68
67
39
50
47
54
50
43
41
15
2
94
87
95
53
57
58
51
55
87
59
59
4
300ACDC PARTS LIST
3
32
11
4 96
13
96
37
21
3
19
20
16
86
18
37
85
89
22
64
17
65
64
23
62
23
62
70
90
70
23
40
66
88
35
64
23
26
64
63
84
7
88
5
5
66
75
5
1
33
75
9
29
76
8
81
77
74
78
79
36
40
82
91
30
10
73
83
34
92
28
27
72
5
APPENDIX 2 CONNECTION WIRING GUIDE
APPENDIX 2 Connection Wiring Guide
A
B
C
D
E
PCB2
PCB2
PCB2
PCB2
PCB2
F
PCB3
G
H
I
J
K
L
M
PCB3
PCB3
PCB3
PCB3
PCB3
PCB3
Destination
CN1 ↔ PCB4
CN2 ↔ PCB3
CN3 ↔
D1
CN1 ↔
D1
CN2 ↔ PCB21
CT2
CN7 ↔
CT3
FAN1
CN11 ↔
SOL1
CN20 ↔ PCB8
CN21 ↔ PCB8
CN22 ↔ PCB11
CN23 ↔ PCB11
CN18 ↔ PCB7
CN7
CN3
CN1
CN1
CN2
CN1
CN2
CN20
N
O
P
Q
R
PCB3
PCB4
PCB6
PCB6
PCB6
S
PCB6
T
U
V
W
X
PCB6
PCB12
Y
PCB16
Destination
CN33 ↔ PCB6
CN4
S2
CN1 ↔ HCT1
CN8 ↔
TH1
CN9 ↔
TH2
PCB16
CN17 ↔
PCB20
CN21 ↔ PCB12
CN13
CN14 ↔ CON1
CN15
CN1 ↔ PCB13
Q25
CN6 ↔
Q26
PCB7
CN20
CN4
CN3
CN2
CN1
CT2
CT3
CN17
CN21
X
T
CN1
PCB6
F
O
P
CN8
CN1
CN1
CN2
CN20
PCB21
CN9
PCB13
K
S2
N
CN4
CN1
CN7
PCB12
CN1
L
PCB4
CN2
CN1
CN2
E
CN22
C
A
CN1
CN7
CN23
PCB10
D
CN2
CN3
CN33
CN11
CN1
CN13
U
W
D1
B
PCB11
CN15
V
PCB7
CN18
CN20
CN3
CN14
FAN1
PCB3
G
M
CN2
SOL1
H
PCB2
HCT1
S
I
CN21
CON1
CN3
CN20
Q25
PCB20
CN4
CN6
CN1
PCB16
CN1
R
J
CN2
CN1
PCB9
TH2
Q26
O
6
CN2
CN1
TH1
PCB8
Q
THIS PAGE LEFT INTENTIONALLY BLANK
APPENDIX 3 INTERCONNECT DIAGRAM
INTERCONNECT DIAGRAM
APPENDIX 3 INTERCONNECT DIAGRAM
Main
Circuit
Board
[WK-5493]
P
TB1
G1
E1
R2
1
2
3
R2
G2
E2
N
TB3
1
2
3
4
5
CN1
1 2
REAR
PANEL
TB4
C
K
L
D
N
M
E
1
2
3
H
G
F
G
E
C
1
2
3
Q7
TB5
UB1
TB6
TB7
Q8
Q19
G
E
E
PCB11 C
Q20
CE
IGBT
Gate G
Circuit E
Board C
[WK-5479]
Q9
G7
1
2
3
Q10 E7
E
C
G8
E8
1
2
3
Q12
E
EC
7
Q22
G
E
C
Q23
G
E
C
Q24
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5 6 7
CN21
CN22
CN23
CN20
CN9
CN8
1 2
1 2 3
1 2
CN19
1 2 3
CN33
Q21
G
E
C
G
E
CN18
1 2 3
1
2
3
4
G
CT1
CT2
CT3
CT4
E1
G1
Q11
G
E3
G3
CN7
E
C
PCB6
Control
Circuit Board
[WK-5549]
PCB7
Filter
Circuit Board
[WK-5550]
Q18
C
C
CN2
1
2
3
4
CN20
CN14
1
2
1
2
CN27
3
4
CN27
5
I
1
2
3
4
CN17 CN18
TB0 CN17 CN18
EB
CN20
B
CON1
J
CN1
CN4
CN30
CN30
CN15
A
CN32
CN32
CN13
L105
CN6
CN6
CN131 CN132 CN130
CN131 CN132 CN130
A : Contactor Control /+24VDC
B : Contactor Control /Contactor Clouser To"A"
C : 0 To +10Vdc Output To Remote Control
D : Remote Control Circuit Common
E : 0 To +10Vdc Intput From Remote Control
F : Not Used
G : Chassis Ground
H : Not Used
I : Not Used
J : Not Used
K : Not Used
L : Not Used
M : OK to Move(Current Detect Signal)
N : OK to Move(Current Detect Signal)
E
C
E
PCB9 C
PCB3
Control
Souce
PCB5
Conect Circuit BoardCircuit Board 1 2 3 4 5 6
[WK-5548]
[WK-5551]
CN11
SOL1
E
1 2 3
PCB4
CN7
Detect
Circuit Board
[WK-4819]
Q17
G
G
IGBT G
Gate
Circuit E
Board C
[WK-5479]
G5
E5
CN31
CN31
Q6
G
CN5
CN5
1
2
3
4
E
CN3
FAN1
+
E
C
1
2
3
4
E3
E7
G7
CN2
1
2
3
4
-
TB20
1 2 3 4 5
CN4
R2
G
G6
E6
CN1
P
C
CE
CN1
1 2 3
1
2
3
4
5
6
C
TB19
TB4
1 2 3
N
TB18
CN2
SIDE CHASSIS 1
Q5 G3
E4
G4
CE Filter
Circuit Board
[WK-5022]
Q16
E8
G8
TB1 PCB22
Q15
G
E
C
TB3
PCB2
Link
Circuit Board
[WK-5597]
CN1
CN1
Q14
G
E2
G2
+
1
2
3
G4
G
E
C
1 2 3 4 5
PCB21
E Filter
Circuit
Board
[WK-4917]
PCB10 C
G
E
E5
G5
Ground
CN2
L103
TB2
E
Q13
IGBT
Gate G
Circuit E
Board C
[WK-5479]
E6
G6
GND
TB2
1
2
3
4
E
Q4 E4
G
E
C
CN2
GND
TB12
Q3
G
E
C
N
T(5) (2)
G
1 2 3
TH2
TH1
CN17
S(4)
C
CE
1
2
3
4
5
6
7
CN21
(0)
TB1
C
TB11
1
2
3
4
CN1
L101
Q2
IGBT
Gate G
Circuit E
Board C
[WK-5479]
TB10
CN1
R(3)
PCB8
Q1
P+21V
PGND
L102
S1
G
E
C
E
PCB1
G(6)
C
CE
CN1
P
K(7)
C
CN2
TB13
UB3
TB14
TB15
CN1
+
(1)
CN3
1
2
D1
1
2
3
4
AC1
FCH1
TB34
G1 G1
G1 G1
PCB18
E1 E1
IGBT Gate
Circuit Board
[WK-3367] G2 G2
D7
CN1
TB8
PCB19
IGBT Gate
Circuit Board
G2 G2 [WK-3367]
E1 E1
E2 E2
TB1
TB30
G12
E12
1 2 3 4 5
E9
G9
D2
TB16
TB2
TB22
AC4
D4
1
2
CN2
S+15V
1
2
3
SH.DET+
SH.DET-
AC2
AC4
N
SG
CN8
CN9
R1
R2
R2
AC3
R6
AC3
PCB16
Super Inpose
Circuit Board
[WK-5569]
AC1
1
2
3
4
5
6
7
8
G9
E9
G11
E11
G10
E10
G12
E12
FRONT
PANEL
1 2 3 4 5 6 7
EB
+
Ground
RY+15V
1
2
3
4
5
6
+15
-15
IS
GND
PCB12
Panel
Circuit Board
[WK-5527]
SIDE CHASSIS 2
PCB13
Encoder
Board
[WK-5528]
R7
UB1
UB2
R8
CN2
1 2 3 4 5 6 7 8 9
-Output
Terminal
CC1
HF.UNIT1
AC1
CN5
CN4
/RY_ON
1 2 3 4 5
TB2
1 2
CN6
CN1
P+21V
PGND
CN3
TB1
1
2
3
4
CC2
SH.DET-
CT4
R3
AC3
PCB20
Filter Circuit
Board
[WK-5499] SIDE CHASSIS 3
Torch/Gas
CC1
Terminal
TO2
P
EB
1
2
3
TB31
CT3
CT3
RY+15V
/RY_ON
Ground
CN1
CN3
D3
TB32
S+15V
SG
+
1 2 3 4 5
UB4
TB17
CN1
E2 E2
1 2 3 4 5
L1
TO1
+Output
Terminal
Q26
HCT1
D6
G10
E10
UB2
4
123
Q25
TB21
CT2
+15
-15
IS
GND
PCB17
IGBT Snubber
Circuit Board
[WK-5570]
E11
G11
TB33
CT2
CT1
TB7
AC2
PCB14
TRANS
Board
[WK-5594]TB35
PCB15
DIODE Snubber
Circuit Board
[WK-5606]
D5
SH.DET+
300ACDC INTERCONNECT DIAGRAM
CN1
CN1
1 2 3 4
8
1 2 3 4
UB3
UB4
APPENDIX 4 DIODE TESTING BASICS
DIODE TESTING BASIC
APPENDIX 4 DIODE Testing Basic
Testing of diode modules requires a digital Volt/
Ohmmeter that has a diode test scale.
1. Locate the diode module to be tested.
2. Remove cables from mounting studs on diodes
to isolate them within the module.
3. Set the digital volt/ohm meter to the diode test
scale.
4. Using figure 1 and 2, check each diode in the
module. Each diode must be checked in both
the forward bias (positive to negative) and
reverse bias (negative to positive) direction.
VR
COM
A
Forward Bias
Diode Conducting
5. To check the diode in the forward bias direction, connect the volt/ohm meter positive lead
to the anode (positive, +) of the diode and the
negative lead to the cathode (negative, –) of
the diode (refer to Figure 13-1). A properly
functioning diode will conduct in the forward
bias direction, and will indicate between 0.3
and 0.9 volts.
Anode
Cathode
Figure 13-1: Forward bias diode test
6. To check the diode in the reverse bias direction, reverse the meter leads (refer to Figure
13-1). A properly functioning diode will block
current flow in the reverse bias direction, and
depending on the meter function, will indicate
an open or "OL".
7. If any diode in the module tests as faulty,
replace the diode module.
8. Reconnect all cables to the proper terminals.
VR
COM
Reverse Bias
Diode Not Conducting
Cathode
Anode
Figure 13-2: Reverse bias diode test
S9
A
LIMITED WARRANTY AND SCHEDULE
This information applies to Thermadyne products that were purchased in the United Kingdom
April 2006
Thermadyne guarantees the proposed product to be free from defects in material or workmanship when operated in
accordance with the written instructions as defined in the owner’s manual supplied with the machine. Thermadyne
welding products are manufactured for use by commercial and industrial users and trained personnel with experience
in the use and maintenance of electrical welding and cutting equipment.
Thermadyne warranty will not apply to:
1. Equipment that has been modified by any other party other than Thermadyne’s own service personnel or
with prior written consent obtained from Thermadyne service department (UK).
2. Equipment that has been used beyond the specifications established in the owners manual.
3. Installation not in accordance with the installation/service manual.
4. Failure to clean and maintain the machine as set forth in the owner, installation or service manual.
If warranty is being sought, please contact Thermadyne's UK warranty department for a warranty authorization returns
form.
Welding Equipment - Limited Warranty Period
Product
200S, 300S, 400S, 200TS, 300TS, 400TS, 400 MST, 200AC/DC, 300AC/DC,
PowerMaster 320SP, 400SP, 500SP,
Fabricator 200, Ultrafeed VA4000, Portafeed VS212
150SE, 155SE, 250SE, 400SE, 250TE, 400TE, 180AC/DC, 250AC/DC, 400AC/DC
Fabricator 250, Fabricator 330, Fabricator 400, Fabricator 450, 220GMS
Options and Accessories
Repair and Replacement Parts
Torch Consumables
Cutting Equipment -Limited Warranty Period
Product
CutMaster 38, 51, 81,101, 151
PakMaster 150XL, Drag-Gun Plus
CutSkill C-35A, C-70A, C-100A, Drag-Gun
1TorchTM, SureLokTM Torches and PCH 120
Other Torches
Repair Parts
Arc Accessories - Limited Warranty Period
Product
All Products
Consumables
Torch Consumables
Period
3 Years
2 Years
6 Months
3 Months
None
Period
3 Years
2 Years
1 Year
1 Year
6 Months
3 Months
Period
1 Month
None
None
GLOBAL CUSTOMER SERVICE CONTACT INFORMATION
Thermadyne USA
Thermadyne Asia Sdn Bhd
2800 Airport Road
Denton, Tx 76207 USA
Telephone: (940) 566-2000
800-426-1888
Fax: 800-535-0557
Email: [email protected]
Lot 151, Jalan Industri 3/5A
Rawang Integrated Industrial Park - Jln Batu Arang
48000 Rawang Selangor Darul Ehsan
West Malaysia
Telephone: 603+ 6092 2988
Fax : 603+ 6092 1085
Thermadyne Canada
Cigweld, Australia
2070 Wyecroft Road
Oakville, Ontario
Canada, L6L5V6
Telephone: (905)-827-1111
Fax: 905-827-3648
71 Gower Street
Preston, Victoria
Australia, 3072
Telephone: 61-3-9474-7400
Fax: 61-3-9474-7510
Thermadyne Europe
Thermadyne Italy
Europe Building
Chorley North Industrial Park
Chorley, Lancashire
England, PR6 7Bx
Telephone: 44-1257-261755
Fax: 44-1257-224800
OCIM, S.r.L.
Via Benaco, 3
20098 S. Giuliano
Milan, Italy
Tel: (39) 02-98 80320
Fax: (39) 02-98 281773
Thermadyne, China
Thermadyne International
RM 102A
685 Ding Xi Rd
Chang Ning District
Shanghai, PR, 200052
Telephone: 86-21-69171135
Fax: 86-21-69171139
2070 Wyecroft Road
Oakville, Ontario
Canada, L6L5V6
Telephone: (905)-827-9777
Fax: 905-827-9797
World Headquarters
Thermadyne Holdings Corporation
Suite 300, 16052 Swingley Ridge Road
St. Louis, MO 63017
Telephone: (636) 728-3000
Fascimile: (636) 728-3010
Email: [email protected]
www.thermalarc.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement