Vehicle Management System Vectro II
Foreword
The descriptions and service procedures contained in this manual are based on designs and methods studies carried out up to June 2001.
The products are under continuous development. Vehicles and components produced
after the above date may therefore have different specifications and repair methods.
When this is believed to have a significant bearing on this manual, supplementary service bulletins will be issued to cover the changes.
The new edition of this manual will update the changes.
In service procedures where the title incorporates an operation number, this is a reference to an S.R.T. (Standard Repair Time).
Service procedures which do not include an operation number in the title are for general information and no reference is made to an S.R.T.
The following levels of observations, cautions and warnings are used in this Service
Documentation:
Note: Indicates a procedure, practice, or condition that must be followed in order to
have the vehicle or component function in the manner intended.
Caution: Indicates an unsafe practice where damage to the product could occur.
Warning: Indicates an unsafe practice where personal injury or severe damage to the
product could occur.
Danger: Indicates an unsafe practice where serious personal injury or death could occur.
Volvo Trucks North America, Inc.
Greensboro, NC USA
Order number: PV776-144528
© 2001 Volvo Trucks North America, Inc., Greensboro, NC USA
All rights reserved. No part of this publication may be reproduced, stored in
retrieval system, or transmitted in any forms by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of Volvo Trucks North America, Inc.
Contents
General .................................................................................................... 7
Vehicle Management System ................................................................ 7
Engine Control System Glossary ........................................................ 8
Specifications .......................................................................................
Description of Signals ..........................................................................
EECU (D7C) and Breakout Box Connected in Series Between
EECU and Wiring Harness ...............................................................
EECU, D7C, with Breakout Box Connected to Wiring Harness Only
EECU (D12B and D12C), Breakout Box Connected in Series Between EECU and Wiring Harness .....................................................
EECU (D12B and D12C), Breakout Box Connected to Wiring
Harness Only .....................................................................................
Pinouts .................................................................................................
Engine Electronic Control Unit (EECU) ............................................
Pinouts .................................................................................................
Vehicle Electronic Control Unit(VECU) .............................................
Schematic ............................................................................................
D12B ..................................................................................................
Schematic ............................................................................................
D12C .................................................................................................
Schematic ............................................................................................
D7C ...................................................................................................
Schematic ............................................................................................
VECU .................................................................................................
10
10
10
13
16
19
22
22
26
26
28
28
29
29
30
30
31
31
Tools ...................................................................................................... 33
Special Tools ....................................................................................... 33
Other Special Equipment .................................................................... 35
Design and Function ...........................................................................
Vehicle Management System ..............................................................
Strategy .............................................................................................
Conventional Control Systems ..........................................................
Data Link System ..............................................................................
Data Links, Design and Function ......................................................
Diagnostic Connector ........................................................................
Communication Equipment ...............................................................
Instrument Cluster .............................................................................
Vehicle Electronic Control Unit (VECU) ............................................
Engine Electronic Control Unit ..........................................................
ABS Brake System ECU ...................................................................
SRS Airbag ECU ...............................................................................
Transmission ECU .............................................................................
Breakout Boxes and Harnesses ........................................................
VECU Overview ................................................................................
VECU Functions ................................................................................
Sensor Locations ...............................................................................
Control Unit Locations .......................................................................
Fuses and Relays ..............................................................................
37
37
37
37
38
39
47
48
49
50
51
63
64
65
66
67
68
73
77
81
Troubleshooting ...................................................................................
Fault Code Troubleshooting ...................................................................
Message and Parameter Descriptions ................................................
FMI Table .............................................................................................
Reading/Clearing Fault Codes ..........................................................
85
85
85
87
88
1
Fault Tracing Strategy ....................................................................... 88
MID 128 EECU ...................................................................................... 92
MID 128 Fault Code Table .................................................................. 92
MID 128 PID 45 Preheater Status ...................................................... 96
Fault Codes ....................................................................................... 96
MID 128 PID 45 Preheater Status, Check .......................................... 97
MID 128 PID 49 ABS Control Status .................................................. 98
Fault Codes ....................................................................................... 98
MID 128 PID 49 ABS Control Status, Check ...................................... 99
MID 128 PID 84 Road Speed ........................................................... 100
Fault Codes ..................................................................................... 100
MID 128 PID 84 Road Speed, Check ............................................... 101
MID 128 PID 85 Cruise Control Status ............................................. 102
Fault Codes ..................................................................................... 102
MID 128 PID 85 Cruise Control Status, Check ................................ 103
MID 128 PID 91 Accelerator Pedal Position ..................................... 104
Fault Codes ..................................................................................... 104
MID 128 PID 91 Accelerator Pedal Position, Check ......................... 105
MID 128 PID 94 Fuel Delivery Pressure ........................................... 106
D7C and D12C ................................................................................ 106
Fault Codes ..................................................................................... 106
MID 128 PID 94 Fuel Delivery Pressure, Check .............................. 107
D7C and D12C ................................................................................ 107
MID 128 PID 100 Engine Oil Pressure ............................................. 110
Fault Codes ..................................................................................... 110
MID 128 PID 100 Engine Oil Pressure, Check ................................. 111
MID 128 PID 102 Boost Pressure ..................................................... 114
Fault Codes ..................................................................................... 114
MID 128 PID 102 Boost Pressure, Check ........................................ 115
MID 128 PID 105 Boost Air Temperature ......................................... 118
Fault Codes ..................................................................................... 118
MID 128 PID 105 Boost Air Temperature, Check ............................. 119
MID 128 PID 107 Air Filter Differential Pressure .............................. 122
Fault Codes ..................................................................................... 122
MID 128 PID 107 Air Filter Differential Pressure, Check .................. 124
MID 128 PID 108 Atmospheric Pressure .......................................... 125
Fault Codes ..................................................................................... 125
MID 128 PID 110 Engine Coolant Temperature ............................... 126
Fault Codes ..................................................................................... 126
MID 128 PID 110 Engine Coolant Temperature, Check ................... 127
MID 128 PID 111 Coolant Level ....................................................... 129
Fault Codes ..................................................................................... 129
MID 128 PID 111 Coolant Level, Check ........................................... 130
MID 128 PID 158 Battery Voltage ..................................................... 131
Fault Codes ..................................................................................... 131
MID 128 PID 158 Battery Voltage, Check ........................................ 132
MID 128 PID 172 Air Inlet Temperature ............................................ 133
Fault Codes ..................................................................................... 133
MID 128 PID 172 Air Inlet Temperature, Check ............................... 134
MID 128 PID 174 Fuel Temperature ................................................. 136
D7C and D12C ................................................................................ 136
Fault Codes ..................................................................................... 136
MID 128 PID 174 Fuel Temperature, Check ..................................... 137
D7C and D12C ................................................................................ 137
MID 128 PID 175 Engine Oil Temperature ....................................... 140
2
Fault Codes .....................................................................................
MID 128 PID 175 Engine Oil Temperature, Check ...........................
MID 128 PID 228 Road Speed Sensor Calibration ..........................
Fault Codes .....................................................................................
MID 128 PID 228 Road Speed Sensor Calibration, Check ..............
MID 128 PPID 86 Engine Brake Torque Percent ..............................
Fault Codes .....................................................................................
MID 128 PPID 86 Engine Brake Torque Percent, Check .................
MID 128 PPID 119 High Coolant Temperature .................................
Fault Codes .....................................................................................
MID 128 PPID 119 High Coolant Temperature, Check ....................
MID 128 PPID 122 VCB Engine Compression Brake ......................
D12B and D12C ..............................................................................
Fault Codes .....................................................................................
MID 128 PPID 122 VCB Engine Compression Brake, Check ..........
D12B and D12C ..............................................................................
MID 128 PPID 123 EPG 2 ................................................................
D12B and D12C ..............................................................................
Fault Codes .....................................................................................
MID 128 PPID 123 EPG 2, Check ....................................................
D12B and D12C ..............................................................................
MID 128 PPID 124 EPG 1 ................................................................
Fault Codes .....................................................................................
MID 128 PPID 124 EPG 1, Check ....................................................
MID 128 SID 1/2/3/4/5/6 Injector .....................................................
D12B and D12C ..............................................................................
Fault Codes .....................................................................................
MID 128 SID 1/2/3/4/5/6 Injector, Check ..........................................
D12B and D12C ..............................................................................
MID 128 SID 17 Fuel Shutoff Valve ..................................................
Fault Codes .....................................................................................
MID 128 SID 17 Fuel Shutoff Valve, Check ......................................
D7C only ..........................................................................................
MID 128 SID 20 Timing Sleeve .........................................................
D7C only ..........................................................................................
Fault Codes .....................................................................................
MID 128 SID 20 Timing Sleeve, Check ............................................
D7C only ..........................................................................................
MID 128 SID 21 Engine Position Timing Sensor ..............................
D12B and D12C ..............................................................................
Fault Codes .....................................................................................
MID 128 SID 21 Engine Position Timing Sensor, Check ..................
D12B and D12C ..............................................................................
MID 128 SID 21 Needle Lift Sensor .................................................
Fault Codes .....................................................................................
MID 128 SID 21 Needle Lift Sensor, Check .....................................
D7C only ..........................................................................................
MID 128 SID 22 Engine Speed Sensor ............................................
Fault Codes .....................................................................................
MID 128 SID 22 Engine Speed Sensor, Check ................................
MID 128 SID 23 Rack Actuator .........................................................
D7C only ..........................................................................................
Fault Codes .....................................................................................
MID 128 SID 23 Rack Actuator, Check .............................................
D7C only ..........................................................................................
140
141
144
144
145
146
146
147
148
148
149
151
151
151
152
152
153
153
153
154
154
155
155
156
157
157
157
159
159
161
161
162
162
163
163
163
165
165
166
166
166
167
167
168
168
169
169
170
170
171
172
172
172
174
174
3
MID 128 SID 24 Rack Position Sensor .............................................
D7C only ..........................................................................................
Fault Codes .....................................................................................
MID 128 SID 24 Rack Position Sensor, Check .................................
D7C only ..........................................................................................
MID 128 SID 33 Fan Control .............................................................
Fault Codes .....................................................................................
MID 128 SID 33 Fan Control, Check ................................................
MID 128 SID 64 Redundant Engine Speed Sensor .........................
D7C only ..........................................................................................
Fault Codes .....................................................................................
MID 128 SID 64 Redundant Engine Speed Sensor, Check .............
D7C only ..........................................................................................
MID 128 SID 70 Preheater Element 1 ..............................................
Fault Codes .....................................................................................
MID 128 SID 70 Preheater Element 1, Check ..................................
MID 128 SID 71 Preheater Element 2 ..............................................
D12B only ........................................................................................
Fault Codes .....................................................................................
MID 128 SID 71 Preheater Element 2, Check ..................................
D12B ................................................................................................
MID 128 SID 230 Idle Validation Switch 1 ........................................
Fault Codes .....................................................................................
MID 128 SID 230 Idle Validation Switch 1, Check ............................
MID 128 SID 231 SAE J1939 Control Link .......................................
Fault Codes .....................................................................................
MID 128 SID 232 5 Volt DC Supply ..................................................
Fault Codes .....................................................................................
MID 128 SID 232 5 Volt DC Supply, Check ......................................
MID 128 SID 240 Program Memory .................................................
Fault Codes .....................................................................................
MID 128 SID 250 SAE J1587/1708 Information Link .......................
Fault Codes .....................................................................................
MID 128 SID 253 Data Set Memory EEPROM ................................
Fault Codes .....................................................................................
MID 128 SID 254 Engine Electronic Control Unit (EECU) ...............
Fault Codes .....................................................................................
MID 144 VECU ....................................................................................
MID 144 Fault Code Table ................................................................
MID 144 PID 29 Second Accelerator Pedal Position Sensor ...........
Fault Codes .....................................................................................
MID 144 PID 29 Second Accelerator Pedal Position Sensor, Check
MID 144 PID 84 Road Speed ...........................................................
Fault Codes .....................................................................................
MID 144 PID 84 Road Speed, Check ...............................................
MID 144 PID 91 Accelerator Pedal Position .....................................
Fault Codes .....................................................................................
MID 144 PID 91 Accelerator Pedal Position, Check .........................
MID 144 PID 152 VECU, Number of Resets ....................................
Fault Codes .....................................................................................
MID 144 PPID 69 Idle Validation Switch ...........................................
Fault Codes .....................................................................................
MID 144 PPID 69 Idle Validation Switch, Check ..............................
MID 144 PPID 70 Pedal Switches, Supply .......................................
Fault Codes .....................................................................................
175
175
175
176
176
177
177
178
179
179
179
180
180
181
181
182
183
183
183
184
184
185
185
186
187
187
189
189
190
191
191
192
192
193
193
194
194
196
196
198
198
199
201
201
202
204
204
205
207
207
208
208
209
211
211
4
MID 144 PPID 70 Pedal Switches, Supply, Check ...........................
MID 144 PPID 71 Cruise Control and Engine Brake, Supply Switch
Fault Codes .....................................................................................
MID 144 PPID 71 Cruise Control and Engine Brake, Supply
Switch, Check ....................................................................................
MID 144 PPID 72 Accelerator Pedal, Supply Sensors .....................
Fault Codess ...................................................................................
MID 144 PPID 72 Accelerator Pedal, Supply Sensors, Check .........
MID 144 PPID 73 Second Accelerator Pedal, Supply Sensors ........
Fault Codes .....................................................................................
MID 144 PPID 73 Second Accelerator Pedal, Supply Sensors,
Check .................................................................................................
MID 144 PPID 75 Range Inhibitor, Solenoid Valve Status ...............
Fault Codes .....................................................................................
MID 144 PPID 75 Range Inhibitor, Solenoid Valve Status, Check ...
MID 144 SID 230 Idle Validation Switch 1 ........................................
Fault Codes .....................................................................................
MID 144 SID 230 Idle Validation Switch 1, Check ............................
MID 144 SID 231 SAE J1939 Control Link .......................................
Fault Codes .....................................................................................
MID 144 SID 231 SAE J1939 Control Link, Check ..........................
MID 144 SID 240 Program Memory .................................................
Fault Codes .....................................................................................
MID 144 SID 243 Cruise Control Set Switch ....................................
Fault Codes .....................................................................................
MID 144 SID 243 Cruise Control Set Switch, Check .......................
MID 144 SID 250 SAE J1587/1708 Information Link .......................
Fault Codes .....................................................................................
MID 144 SID 250 SAE J1587/1708 Information Link, Check ...........
MID 144 SID 253 Data Set Memory EEPROM ................................
Fault Codes .....................................................................................
MID 144 PSID 3 Idle Validation Switch 3 .........................................
Fault Codes .....................................................................................
MID 144 PSID 3 Idle Validation Switch 3, Check .............................
212
215
215
216
220
220
221
223
223
224
226
226
227
229
229
230
232
232
233
234
234
235
235
236
238
238
239
240
240
241
241
242
Service Procedures ........................................................................... 245
Engine ECU, Replacement ................................................................ 245
Feedback
Operation Numbers
5
6
Group 28
General
General
Vehicle Management System
W2002520
This information covers the Vehicle Management System, which includes VECTRO II
electronics, the vehicle ECU, and other control systems used in the vehicle.
7
Group 28
General
Engine Control System Glossary
ATA
FMI (Failure Mode Identifier)
American Trucking Association
Numbers and names used to identify how a system or
part failed.
ATDC (After Top Dead Center)
FMI
Description
0
Data valid but above normal operating range
1
Data valid but below normal operating range
2
Data erratic, intermittent, or incorrect
The 180 of crankshaft rotation before the piston reaches
top center (normal direction of rotation).
3
Voltage above normal
INFO lamp
4
Voltage below normal
Light that warns the operator of an active diagnostic fault
code; also referred to as the diagnostic lamp.
5
Current below normal or open circuit
Data link
6
Current above normal or short circuit
7
Mechanical system not responding properly
8
Abnormal frequency, pulse rate or period
9
Abnormal update
10
Abnormal rate of change
11
Failure mode not identifiable
12
Defective device or component
13
Uncalibrated device or component
The 180 of crankshaft rotation after the piston reaches
top center (normal direction of rotation).
AC (Alternating Current)
An electrical current that alternates level and direction.
BTDC (Before Top Dead Center)
An electrical connection for communication with other
microprocessor-based devices (such as powertrain control, trip recorders and maintenance systems) that are
compatible with the ATA and SAE standard.
Diagnostic fault code
These codes indicate an electronic system malfunction,
indicating a problem with the D12 electrical systems.
Diagnostic flash code
Codes flashed out in a series via the INFO lamp to indicate an active fault code.
DC (Direct Current)
An electrical current that flows in one direction only.
EEPROM (Electrical Erasable Programmable Read
Only Memory)
14/15
The contents of this type of memory may be electronically erased and new information programmed into the
device.
Hz (Hertz)
EECU (Engine Electronic Control Unit)
MID
The computer that controls the power supplied to the engine electronics, monitors and governs engine functions.
Message Identification Description
EUI (Electronic Unit Injector)
An injector pump which is mechanically activated and
electronically controlled. It combines metering and injecting in a single unit.
Engine brake disable system
During the time ABS (anti-lock braking system) is active,
the engine brake is disabled.
8
Reserved for future assignment
Measure of frequency in cycles per second.
Open circuit
Condition where an electrical wire or connector is broken, preventing signal or supply voltage from reaching its
intended destination.
Parameter
A programmable value that affects the characteristics or
behavior of the engine and/or vehicle.
Group 28
General
PID
SID
Parameter Identification code.
Subsystem Identification code.
PTO (Power Takeoff)
Signal
Operated with the cruise control switches, this mode permits setting a constant engine rpm when the vehicle is
not moving.
A voltage value used to transmit information typically
from a sensor to the EECU.
PWM (Pulse Width Modulation)
Supply voltage
A signal consisting of variable-width pulses at fixed intervals to vary; “TIME ON” versus versus “TIME OFF.”
A constant voltage that supplies electrical power to a
component. It may be generated by the EECU or supplied by the vehicle battery.
RAM (Random Access Memory)
Throttle Position Sensor (TPS)
A memory that has stored information immediately available when addressed.
An electronic sensor that is connected to the accelerator
pedal and sends a Pulse Width Modulated signal to the
EECU.
Reference voltage
A regulated voltage supplied by the EECU to a sensor,
which uses it to generate a signal voltage.
Password
A group of seven alphanumeric characters designed to
restrict access to level-2 parameters. The password is
automatically defaulted to seven empty spaces if customer has not specified password.
Vehicle Specification Programming (VSP)
VSP consists of two levels of programming: engine configuration (level 1) and customer parameters (level 2).
Vehicle Speed Sensor (VSS)
An electromagnetic device that measures vehicle speed
from the rotation of gear teeth in the drivetrain of the vehicle.
SAE
VEB (Volvo Engine Brake)
Society of Automotive Engineers.
Consists of a compression brake (VCB) and an exhaust
pressure governor (EPG).
Short circuit
A connection of comparatively low resistance, accidentally or intentionally made between two points on a
circuit.
9
Group 28
Specifications
Specifications
Description of Signals
EECU (D7C) and Breakout Box Connected in Series Between EECU
and Wiring Harness
For the measurements below, the following applies:
•
Breakout box J-41132 connected between connector EA or EB and the EECU.
•
Jumper harness J–43233 connected between connector EA or EB and the EECU.
•
•
•
•
The EECU connected.
Ignition key in ON position.
Engine not running.
Measuring voltage.
W2002710
Fig. 3: EECU voltage check, EB
W2003555
Fig. 1: EECU with pinouts
W2002712
Fig. 2: EECU voltage check, EA
B+ = battery voltage
Connection
Signal type
Measuring points
Ignition key in the ON position
EA1
Oil temperature sensor, signal
EA1 - EA5
3.0 V (+20 C/68 F)
0.4 V (+100 C/212 F)
EA2
Intake manifold temperature sensor,
signal
EA2 - EA5
2.6 V (+20 C/68 F)
1.6 V (+40 C/104 F)
EA3
Intake manifold pressure sensor, signal
EA3 - EA5
1.1 V (sea level)
EA4
Supply to sensors (5 V), +
EA4 - EA5
4.8 - 5.15 V
EA5
Signal ground to sensors, -
EA6
Not currently used
EA7
Redundant engine speed sensor, +
EA8
Rack drive PWM, +
EA9
Timing sleeve PWM, +
10
Other
Group 28
Specifications
Connection
Signal type
EA10
Rack drive PWM, -
EA11
Not currently used
EA12
Not currently used
EA13
Measuring points
Ignition key in the ON position
Fuel temperature sensor, signal
EA13 - EA5
3.0 V (+20 C/68 F)
2.0 V (+40 C/104 F)
EA14
Oil pressure sensor, signal
EA14 - EA5
0.5 V (for cold engines)
EA15
Needle lift sensor, +
EA16
Rack position sensor, search coil
EA17
Rack position sensor, common
EA18
Redundant engine speed sensor, -
EA19
Not currently used
EA20
Not currently used
EA21
Timing sleeve PWM, -
EA22
Not currently used
EA23
Not currently used
EA24
Not currently used
EA25
Coolant temperature sensor, signal
EA25 - EA5
3.0 V (+20 C/68 F)
0.6 V (+85 C/185 F)
EA26
Not currently used
EA27
Fuel pressure sensor, signal
EA27-EA5
≈ 0.5V (for cold engines)
EA28
Needle lift sensor, -
EA29
Rack position sensor, reference coil
EA30
Engine speed sensor (crank), +
EA31
Engine speed sensor (crank), -
EA32
Not currently used
EA33
Not currently used
EA34
Not currently used
EA35
Not currently used
EA36
Not currently used
EB1
SAE J1939 A Communications link
EB1/EB9
≈2-5V
EB2
SAE J1939 B Communications link
EB2/EB9
≈0-3V
EB3
Ambient air temperature sensor, signal
EB3 - EB13
2.6 V (+20 C/68 F)
1.2 V (+50 C/122 F)
EB4
Buffered idle validation switch
EB4 - EB9
< 4 V (idle)
> 8 V (off idle)
EB5
Pre-heat sense 1
EB5 - EB9
55 % of B+ (open)
0 V (closed)
EB6
Not currently used
Other
D12 C
Normally closed with
the ignition key in the
ON position.
11
Group 28
Specifications
Connection
Signal type
Measuring points
Ignition key in the ON position
Other
EB7
Coolant level sensor, signal
EB7 - EB8
80% B+ (open)
0 V (closed)
Applies to WX and
VN. Normally open
with the ignition key in
the ON position.
EB8
Signal ground to sensors, -
EB9
EECU ground, -
EB10
EECU ground, -
EB11
EECU B+
EB11 - EB9
B+
EB12
EECU B+
EB12 - EB10
B+
EB13
Ambient air temperature sensor
EB14
Not currently used
EB15
Not currently used
EB16
Not currently used
EB17
Air filter indicator sensor signal
EB18
Not currently used
EB19
Not currently used
EB20
Not currently used
EB21
Fan control (if equipped with on/off
fan)
EB21 - EB9
B+ (fan on)
0 V (fan off)
EB22
Not currently used
EB23
Not currently used
EB24
EOL Enable
EB24 - EB9
< 6 V or O/C (EOL Disable)
> 9.6 V (EOL Enable)
EB25
SAE J1587A/J1708A Information link
EB25-EB9
≈ 0-5V
EB26
SAE J1587B/J1708B Information link
EB26-EB9
≈ 0-5V
EB27
Not currently used
EB28
Not currently used
EB29
Not currently used
EB30
Not currently used
EB31
Pre-heating relay, Coil ground
EB31 - EB9
B+ (pre-heat off)
0 V (pre-heat on)
Normally ON with the
ignition key in the ON
position.
EB32
Not currently used
EB33
Not currently used
EB34
Fuel shut-off valve
EB34 - EB9
0 V (valve on)
> 1.0V (valve off)
Normally ON with the
ignition key in the ON
position.
EB35
EPG 1
EB35 - EB9
B+ (EPG off)
0 V (EPG on)
Normally OFF with
the ignition key in the
ON position.
EB36
Not currently used
12
Normally ON with the
ignition key in the ON
position.
Group 28
Specifications
EECU, D7C, with Breakout Box Connected to Wiring Harness Only
For the measurements below, the following applies:
•
Breakout box J-41132 connected to connector EA or
EB.
•
•
•
The EECU is not connected.
Ignition key must be in the OFF position.
Measuring resistance.
W2002713
Fig. 5: EECU harness checks, EB
W2002711
Fig. 4: EECU harness checks, EA
Connection
Signal type
Measuring points
EA1
Oil temperature sensor, signal
EA1 / EA5
EA2
Intake manifold temperature sensor,
signal
EA2 / EA5
EA3
Intake manifold pressure sensor, signal
EA4
Sensor supply to (5 V), +
EA5
Sensors ground , -
EA6
Not currently used
EA7
Redundant engine speed sensor, +
EA7 / EA18
EA8
Rack drive PWM, +
EA8 / EA10
EA8 / alternate
ground
EA9
Timing sleeve PWM, +
EA9 / EA21
EA9 / alternate
ground
EA10
Rack drive PWM, -
EA10 / alternate
ground
EA11
Not currently used
EA12
Not currently used
EA13
Fuel temperature sensor, signal
EA14
Oil pressure sensor, signal
EA15
Needle lift sensor, +
EA15 / EA28
65 - 165
EA16
Rack position sensor, search coil
EA16 / EA17
20.0
EA17
Rack position sensor, common
EA18
Redundant engine speed sensor, -
EA18 / EA7
775 - 945
EA19
Not currently used
EA13 / EA5
Ignition key in the OFF position
Other
1.9 k
(+20 C/68 F)
100 (+100 C/212 F)
6.2 k
(+20 C/68 F)
2.5 k
(+40 C/104 F)
775 - 945
1.5 open circuit
1.5 open circuit
open circuit (see also EA8)
1.9 k
(+20 C/68 F)
800 (+40 C/104 F)
13
Group 28
Specifications
Connection
Signal type
EA20
Not currently used
EA21
Timing sleeve PWM, -
EA22
Not currently used
EA23
Not currently used
EA24
Not currently used
EA25
Coolant temperature sensor, signal
EA26
Not currently used
EA27
Fuel pressure sensor
EA28
Needle lift sensor, -
EA29
Rack position sensor, reference coil
EA29 / EA17
20.0
EA30
Engine speed sensor (crank), +
EA30 / EA31
775 - 945
EA31
Engine speed sensor (crank), -
EA31 / EA30
775 - 945
EA32
Not currently used
EA33
Not currently used
EA34
Not currently used
EA35
Not currently used
EA36
Not currently used
EB1
SAE J1939A Communications link
EB2
SAE J1939B Communications link
EB3
Ambient air temperature sensor, signal
EB4
Buffered idle validation switch
EB5
Pre-heat sense 1
EB6
Not currently used
EB7
Coolant level sensor, signal
EB8
Sensor ground
EB9
EECU ground, -
EB10
EECU ground, -
EB11
EECU, B+
EB12
EECU, B+
EB13
Ambient air temperature ground
EB14
Not currently used
EB15
Not currently used
EB16
Not currently used
EB17
Air filter indicator sensor signal
EB18
Not currently used
EB19
Not currently used
EB20
Not currently used
EB21
Not currently used
EB22
Not currently used
EB23
Not currently used
EB24
EOL Enable
14
Measuring points
Ignition key in the OFF position
EA21 / alternate
ground
open circuit (see also EA9)
EA25 / EA5
Other
1.9 k
(+20 C/68 F)
160 (+85 C/185 F)
D12 C
EB3 / EB13
6.2 k
(+20 C/68 F)
1.7 k
(+50 C/122 F)
EB5 / EB9
open circuit (open)
< 5 (closed)
EB7 / EB8
open circuit (coolant level normal)
<1 (coolant level low)
EB24/EB9
open circuit (open)
Applies to WX and VN
Group 28
Connection
EB25
EB26
Specifications
Signal type
Measuring points
Ignition key in the OFF position
EB25 / (connection
A in 6 pin diagnostics connector)
<1
EB25 / (connection
F in 9 pin diagnostics connector)
<1
EB26 / (connection
B in the 6 pin diagnostics connector)
<1
EB26 / (connection
G in the 9 pin diagnostics connector)
<1
SAE J1587/J1708 A Information link
SAE J1587/J1708 B Information link
EB27
Not currently used
EB28
Not currently used
EB29
Not currently used
EB30
Not currently used
EB31
Pre-heating relay, coil ground
EB32
Not currently used
EB33
Not currently used
EB34
Fuel shut-off valve, include
EB35
EPG 1, -
EB36
Not currently used
Other
15
Group 28
Specifications
EECU (D12B and D12C), Breakout Box Connected in Series Between
EECU and Wiring Harness
For the measurements below, the following applies:
•
Breakout box J-41132 connected between connector EA or EB and the EECU.
•
Jumper harness J43233 connected between connector EA or EB and the EECU.
•
•
•
•
The EECU connected.
Ignition key in ON position.
Engine not running.
Measuring voltage.
W2002710
W2002712
Fig. 7: EECU voltage check, EB
Fig. 6: EECU voltage check, EA
B+ = battery voltage
Connection
Signal type
Measuring points
Ignition key in the ON position
EA1
Oil temperature sensor, signal
EA1 / EA5
3.0 V (+20 C/68 F)
0.4 V (+100 C/212 F)
EA2
Intake manifold temperature sensor,
signal
EA2 / EA5
2.6 V (+20 C/68 F)
1.6 V (+40 C/104 F)
EA3
Intake manifold pressure sensor, signal
EA3 / EA5
1.1 V (sea level)
EA4
Sensor supply (5 V), +
EA4 / EA5
4.8 - 5.15 V
EA5
Sensor ground
EA6
Not currently used
EA7
Engine position sensor (cam), +
EA8
Not currently used
EA9
Not currently used
EA10
Not currently used
EA11
Unit injector cylinder 1, -
EA12
Unit injector cylinder 1, 2, 3 (90
Volt), +
EA13
Fuel temperature sensor, signal
EA14
Oil pressure sensor, signal
EA15
Not currently used
16
Other
D12 C
EA14 / EA5
0.5 V (for cold engines)
Group 28
Specifications
Connection
Signal type
EA16
Not currently used
EA17
Not currently used
EA18
Engine position sensor (cam), -
EA19
Not currently used
EA20
Not currently used
EA21
Not currently used
EA22
Unit injector cylinder 2, -
EA23
Unit injector cylinder 3, -
EA24
Unit injector cylinder 4, 5, 6 (90
Volt), +
EA25
Coolant temperature sensor, signal
EA26
Not currently used
EA27
Fuel pressure sensor
EA28
Not currently used
EA29
Not currently used
EA30
Engine speed sensor (crank), +
EA31
Engine speed sensor (crank), -
EA32
Not currently used
EA33
VCB, -
EA34
Unit injector cylinder 4, -
EA35
Unit injector cylinder 5, -
EA36
Unit injector cylinder 6, -
EB1
Measuring points
Ignition key in the ON position
EA25 / EA5
3.0 V (+20 C/68 F)
0.6 V (+85 C/185 F)
Other
D12 C
EA33 / alternate
ground
B+ (VCB off)
0 V (VCB on)
SAE J1939 Communications link,
can HI
EB1/EB9
≈ 2-5V
EB2
SAE J1939 Communications link,
can LOW
EB2/EB9
≈ 0-3V
EB3
Ambient air temperature sensor, signal
EB3 / EB13
2.6 V (+20 C/68 F)
1.2 V (+50 C/122 F)
EB4
Buffered idle validation switch
EB4 / EB9
< 4 V (inactive)
> 8 V (active)
EB5
Pre-heat sense 1 (if equipped)
EB5 / EB9
55% of B+ (open)
0 V (closed)
Normally closed with
the ignition key in the
ON position.
EB6
Not currently used
EB7
Coolant level sensor, signal
EB7 / EB8
80% B+ (open)
0 V (closed)
VN and VHD. Normally open with the
ignition key in the ON
position.
EB8
Sensor ground
EB9
EECU ground, -
EB10
EECU ground, -
Normally OFF with
the ignition key in the
ON position.
17
Group 28
Specifications
Connection
Signal type
Measuring points
Ignition key in the ON position
EB11
EECU B+
EB11 / EB9
B+
EB12
EECU B+
EB12 / EB10
B+
EB13
Ambient air temperature sensor
EB14
Not currently used
EB15
Not currently used
EB16
Pre-heat sensor 2 (if equipped)
EB16 / EB9
55 % of B+ (open)
0 V (closed)
Normally closed with
the ignition key in the
ON position.
EB17
Air filter indicator sensor signal
EB18
Not currently used
EB19
Not currently used
EB20
Not currently used
EB21
Engine fan control (if equipped with
on/off fan), -
EB21 / EB9
B+ (fan on/solenoid inactive)
0 V (fan off/solenoid active)
Normally ON with the
ignition key in the ON
position.
EB22
Not currently used
EB23
Not currently used
EB24
EOL Enable
EB24 / EB9
< 6 V or O/C (EOL disable)
> 9.6 V (EOL Enable)
EB25
SAE J1587/J1708 + Information link
EB26
SAE J1587/J1708 - Information link
EB25/EB9
≈ 0-5V
EB27
Not currently used
EB26/EB9
≈ 0-5V
EB28
Not currently used
EB29
Not currently used
EB30
Not currently used
EB31
Pre-heating relay coil ground (if
equipped)
EB31 / EB9
B+ (pre-heat off)
0 V (pre-heat on)
Normally OFF with
the ignition key in the
ON position.
EB32
Not currently used
EB33
Not currently used
EB34
Not currently used
EB35
EPG 1
EB35 / EB9
B+ (EPG off)
0 V (EPG on)
Normally OFF with
the ignition key in the
ON position.
EB36
EPG 2
EB36 / EB9
B+ (EPG off)
0 V (EPG on)
Normally OFF with
the ignition key in the
ON position.
18
Other
Group 28
Specifications
EECU (D12B and D12C), Breakout Box Connected to Wiring Harness
Only
For the measurements below, the following applies:
•
Breakout box J-41132 connected to connector EA or
EB.
•
•
•
The EECU not connected.
Ignition key must be in the OFF position.
Measuring resistance.
W2002713
Fig. 9: EECU harness checks, EB
W2002711
Fig. 8: EECU harness checks, EA
Connection
Signal type
Measuring points
EA1
Oil temperature sensor, signal
EA1 / EA5
EA2
Intake manifold temperature sensor,
signal
EA2 / EA5
EA3
Intake manifold pressure sensor, signal
EA4
Sensor supply (5 V), +
EA5
Sensor ground
EA6
Not currently used
EA7
Engine position sensor (cam), +
EA8
Not currently used
EA9
Not currently used
EA10
Not currently used
EA11
Unit injector cylinder 1, -
EA12
Unit injector cylinder 1, 2, 3 (90
Volt), +
EA13
Fuel temperature sensor, signal
EA14
Oil pressure sensor, signal
EA15
Not currently used
EA16
Not currently used
EA17
Not currently used
EA18
Engine position sensor (cam), -
EA19
Not currently used
EA20
Not currently used
Ignition key in the OFF position
Other
1.9 k
(+20 C/68 F)
100 (+100 C/212 F)
6.2 k
(+20 C/68 F)
2.5 k
(+40 C/104 F)
EA7 / EA18
775 - 945
EA11 / EA12
1.5 - 2.0
see EA11, EA22 and EA23
D12 C
see EA7
19
Group 28
Specifications
Connection
Signal type
EA21
Not currently used
EA22
Measuring points
Ignition key in the OFF position
Unit injector cylinder 2, -
EA22 / EA12
1.5 - 2.0
EA23
Unit injector cylinder 3, -
EA23 / EA12
1.5 - 2.0
EA24
Unit injector cylinder 4, 5, 6 (90
Volt), +
EA25
Coolant temperature sensor, signal
EA26
Fuel pressure sensor, signal
EA27
Not currently used
EA28
Not currently used
EA29
Not currently used
EA30
Engine speed sensor (crank), +
EA30 / EA31
775 - 945
EA31
Engine speed sensor (crank), -
EA31 / EA30
775 - 945
EA32
Not currently used
EA33
VCB, -
EA34
Unit injector cylinder 4, -
EA34 / EA24
1.5 - 2.0
EA35
Unit injector cylinder 5, -
EA35 / EA24
1.5 - 2.0
EA36
Unit injector cylinder 6, -
EA36 / EA24
1.5 - 2.0
EB1
SAE J1939 + Communications link
EB2
SAE J1939 - Communications link
EB3
Ambient air temperature sensor, signal
EB4
Buffered idle validation switch
EB5
Pre-heat sense 1 (if equipped)
EB6
Not currently used
EB7
Coolant level sensor, signal
EB8
Sensors ground
EB9
EECU ground, -
EB10
EECU ground, -
EB11
EECU B+
EB12
EECU B+
EB13
Ambient air temperature sensor
EB14
Not currently used
EB15
Not currently used
EB16
Pre-heat sensor 2 (if equipped)
EB17
Air filter indicator sensor signal
EB18
Not currently used
EB19
Not currently used
20
Other
see EA34, EA35, and EA36
EA25 / EA5
1.9 k
(+20 C/68 F)
160 (+85 C/185 F)
D12 C
EB3 / EB13
6.2 k
(+20 C/68 F)
1.7 k
(+50 C/122 F)
EB5 / EB9
open circuit (open)
< 5.0 (closed)
EB7 / EB8
open circuit (coolant level normal)
<1 ; closed (coolant level low)
EB16 / EB9
open circuit (open)
< 5.0 (closed)
Applies to WX , VN
and VHD
Group 28
Specifications
Connection
Signal type
EB20
Not currently used
EB21
Engine fan control (if equipped with
on/off fan)
EB22
Not currently used
EB23
Not currently used
EB24
EOL Enable
EB25
EB26
SAE J1587/J1708 A Information link
Measuring points
Ignition key in the OFF position
EB24/EB9
Open circuit(open)
EB25 / (connection
A in the 6 pin diagnostics connector)
<1
EB25 / DCA (connection F in the 9
pin diagnostics connector)
<1
EB26 / (connection
B in the 6 pin diagnostics connector)
<1
EB26 / (connection
G in the 9 pin diagnostics connector)
<1
SAE J1587/J1708 B Information link
EB27
Not currently used
EB28
Not currently used
EB29
Not currently used
EB30
Not currently used
EB31
Preheating relay coil ground (if
equipped)
EB32
Not currently used
EB33
Not currently used
EB34
Not currently used
EB35
EPG 1, -
EB36
EPG 2, -
Other
21
Group 28
Specifications
Pinouts
Engine Electronic Control Unit (EECU)
VOLVO D12B/D12C EECU/EA Connector
Cavity
Color
1
GN
2
BL/W
Description
OIL TEMPERATURE
BOOST TEMPERATURE
3
GR
4
GN/W
BOOST PRESSURE
BOOST & OIL PRESSURE COMMON (+)
5
BN/W
PRESSURE & TEMP. SENSOR COMMON
(-)
6
7
NOT USED
Y
8-10
ENGINE POSITION SENSOR, CAM (+)
NOT USED
11
W
INJECTOR, CYL 1 (-)
12
W
CYL 1, CYL 2, CYL 3 INJECTOR COMMON, 90 Volt (+)
13
GN
FUEL TEMPERATURE (D12C)
14
BN
OIL PRESSURE
15-17
18
NOT USED
BN/W
19-21
ENGINE POSITION SENSOR, CAM (-)
NOT USED
22
W
INJECTOR, CYL 2 (-)
23
W
INJECTOR, CYL 3 (-)
24
W
CYL 4, CYL 5, CYL 6 INJECTOR COMMON, 90 Volt (+)
25
Y/W
26
27
NOT USED
BN
28-29
FUEL PRESSURE (D12C)
NOT USED
30
BL/SB
ENGINE SPEED SENSOR, CRANK (+)
31
BL/R
ENGINE SPEED SENSOR, CRANK (-)
32
NOT USED
33
GN/W
34
W
INJECTOR, CYL 4 (-)
35
W
INJECTOR, CYL 5 (-)
36
W
INJECTOR, CYL 6 (-)
Wire Colors:
22
COOLANT TEMPERATURE
VCB SOLENOID VALVE RETURN
BL
BLUE
R
RED
BN
BROWN
SB
SOLID BLACK
GN
GREEN
VO
VIOLET
GR
GRAY
W
WHITE
OR
ORANGE
Y
YELLOW
P
PINK
W3000945
Group 28
Specifications
VOLVO D12B/D12C EECU/EB Connector
Cavity
Color
Description
1
Y
DATA LINK J1939 CAN HI
2
GN
DATA LINK J1939 CAN LO
3
BL/Y
AMBIENT AIR TEMPERATURE
4
P
BUFFERED IDLE VALIDATION
SWITCH
5
R
PREHEAT SENSE 1
W3000945
6
NOT USED
7
BL/SB
COOLANT LEVEL WARNING
8
GR/W
AIR FILTER, COOL LVL COMMON
9
W
GROUND (-)
10
W
GROUND (-)
11
R/SB
POWER SUPPLY (+)
12
R/SB
POWER SUPPLY (+)
13
V0/W
AMBIENT AIR TEMP COMMON (-)
14-15
NOT USED
16
R/W
PREHEAT SENSE 2
17
BL/R
AIR FILTER INDICATOR
18-20
21
NOT USED
GR/R
22-23
COOLING FAN CONTROL (-)
NOT USED
24
Y/SB
25
GR
DATA LINK J1708/1587 (+)
26
OR
DATA LINK J1708/1587 (-)
27-30
31
FACTORY PROGRAMMING (NOT
USED)
NOT USED
BL/R
32-34
PREHEAT RELAY(Coil Ground)
NOT USED
35
GR/SB
EPG1 CONTROL
36
GR/W
EPG2 CONTROL
Wire Colors:
BL
BLUE
R
RED
BN
BROWN
SB
SOLID BLACK
GN
GREEN
VO
VIOLET
GR
GRAY
W
WHITE
OR
ORANGE
Y
YELLOW
P
PINK
23
Group 28
Specifications
VOLVO D7C EECU/EA Connector
Cavity
Color
1
GN
2
BL/W
3
GR
4
GN/W
BOOST, OIL & FUEL PRESSURE COMMON (+)
5
BN/W
PRESSURE & TEMP. SENSOR COMMON
6
OIL TEMPERATURE
BOOST TEMPERATURE
W3000945
BOOST PRESSURE
NOT USED
REDUNDANT ENGINE SPEED SENSOR (+)
7
Y
8
Y/R
RACK DRIVE, PWM (+)
9
Y/SB
TIMING SLEEVE, PWM
10
GN/BN
RACK DRIVE, PWM (-)
11-12
NOT USED
13
GN/BN
14
BN
15
GR/SB
16
BL/R
RACK POSITION SENSOR, SEARCH COIL
17
Y/GR
RACK POSITION SENSOR, COMMON
18
BN/W
REDUNDANT ENGINE SPEED SENSOR (-)
19-20
21
25
FUEL TEMPERATURE
OIL PRESSURE
NEEDLE LIFT SENSOR(+)
NOT USED
OR
22-24
TIMING SLEEVE, PWM (-)
NOT USED
Y/W
26
COOLANT TEMPERATURE
NOT USED
27
BN
28
GR/R
29
Y/W
30
BL/SB
ENGINE SPEED SENSOR, CRANK(+)
31
BL/R
ENGINE SPEED SENSOR, CRANK(-)
32-36
Wire Colors:
24
Description
FUEL PRESSURE
NEEDLE LIFT SENSOR (-)
RACK POSITION SENSOR, REFERENCE COIL
NOT USED
BL
BLUE
R
RED
BN
BROWN
SB
SOLID BLACK
GN
GREEN
VO
VIOLET
GR
GRAY
W
WHITE
OR
ORANGE
Y
YELLOW
P
PINK
Group 28
Specifications
VOLVO D7C EECU/EB Connector
Cavity
Color
Description
1
Y
DATA LINK J1939 CAN HI
2
GN
DATA LINK J1939 CAN LO
3
BL/Y
AMBIENT AIR TEMPERATURE
4
P
BUFFERED IDLE VALIDATION
SWITCH
5
R
PREHEAT SENSE 1
W3000945
6
NOT USED
7
BL/SB
COOLANT LEVEL WARNING
8
GR/W
AIR FILTER, COOL LEVEL COMMON (-)
9
W
GROUND (-)
10
W
GROUND (-)
11
R/SB
POWER SUPPLY (+)
12
R/SB
POWER SUPPLY (+)
13
V0/W
AMBIENT AIR TEMP COMMON (-)
14-16
17
NOT USED
BL/R
18-23
AIR FILTER INDICATOR
NOT USED
24
Y/SB
25
GR
DATA LINK J1708/1587 (+)
26
OR
DATA LINK J1708/1587 (-)
27-30
31
NOT USED
BL/R
32-33
PREHEAT RELAY, CONTROL
NOT USED
34
Y/BN
35
GR
36
Wire Colors:
FACTORY PROGRAMMING (NOT
USED)
FUEL SHUTOFF VALVE CONTROL
EPG1
NOT USED
BL
BLUE
R
RED
BN
BROWN
SB
SOLID BLACK
GN
GREEN
VO
VIOLET
GR
GRAY
W
WHITE
OR
ORANGE
Y
YELLOW
P
PINK
25
Group 28
Specifications
Pinouts
Vehicle Electronic Control Unit(VECU)
Vehicle ECU Connector A-(GREEN)
Cavity
Circuit
1
564A
CC/PTO SWITCH SET(-) INPUT
2
563A
CC/PTO SWITCH SET(+) INPUT
3
562A
CC/PTO SWITCH ON INPUT
4
NOT USED
5
567B
SERVICE BRAKE SWITCH INPUT
6
284-A
12V STARTER CONTROL SOLENOID FEED
7
245
ENGINE PREHEAT CIRCUIT PROTECTION FEED
8
571
CLUTCH SWITCH INPUT
9
385-A
10
388
INTERMITTENT WIPER INPUT
11
387-C
SWITCH TO WASHER MOTOR
12
0XE
ELECTRONIC GROUND
13
18V
ELECTRONIC ENGINE SWITCHED
BATTERY FEED
14
196V
IGNITION SWITCH DR FEED
15-18
PARK CONTROL WIPER MOTOR
NOT USED
19
300D
20
629
ENGINE BRAKE MEDIUM FEED
21
628
ENGINE BRAKE LOW FEED
22
MANUAL FAN SWITCH INPUT
NOT USED
23
555
IDLE VALIDATION INPUT
24
682
HIGH REFRIGERANT PRESSURE
SWITCH FEED
25-28
26
Description
NOT USED
29
573
30
565A
PTO SWITCH ON INPUT
CC/PTO SWITCH RESUME INPUT
W3002689
Group 28
Specifications
Vehicle ECU Connector B-(BLUE)
Cavity
Circuit
1
Description
NOT USED
2
312A
TRANSMISSION AREA INHIBITOR
VALVE RETURN
W3002689
3-4
NOT USED
5
597
ECU COMMON 12V OUTPUT
6
550
VEHICLE SPEED INPUT
7
NOT USED
8
553
9
THROTTLE POSITION SENSOR INPUT
NOT USED
10
552
THROTTLE POSITION SENSOR
SUPPLY
11
581
PARKING BRAKE SWITCH INPUT
12-14
NOT USED
15
583
16
389B
INTERMITTENT WIPER RELAY
COIL RETURN
17
555A
IDLE VALIDATION FROM ENGINE
ECU
18
312C
RANGE INHIBITOR VALVE RETURN
19
558
ECU COMMON +12V OUTPUT
20
551
VEHICLE SPEED RETURN FROM
ECU
21
317B
TRANSMISSION LOW RANGE INDICATOR SIGNAL
22
554
THROTTLE POSITION SENSOR RETURN
23-26
POWER CONTROL FROM ENGINE
ECU
NOT USED
27
567A
28-30
SERVICE BRAKE SWITCH INPUT
NOT USED
Vehicle ECU Connector C-(GREEN)
Cavity
Circuit
Description
1
401-D
DATA LINK J1708 (-)
2
400-D
DATA LINK J1708 (+)
3
408-B
DATA LINK J1939 SHIELD
4
406-B
DATA LINK J1939 CAN HI
5
407-B
DATA LINK J1939 CAN LOW
W3002690
27
Group 28
Specifications
Schematic
D12B
W2002827
28
Group 28
Specifications
Schematic
D12C
W2003348
29
Group 28
Specifications
Schematic
D7C
W2002826
30
Group 28
Specifications
Schematic
VECU
W3003497
31
32
Group 28
Tools
Tools
Special Tools
The following special tools are required for work with the D12 electronic control system. The 3917916 VOLVO breakout kit, along with its components, is available from
Volvo Truck. When requesting tools, provide the appropriate part number. Part numbers beginning with ”J” are available from Kent-Moore.
W2003598
See list on next page for information about the tools in the picture.
33
Group 28
Tools
9998534
4–pin breakout harness
J-39200
digital multimeter
J-43147
2–pin breakout harness
9998482
Guage for inspection of control unit connector
J-41132
36–pin breakout box
J-42472
2–pin breakout harness
J-43233
36–pin jumper
J-38748
7–pin fuel injection pump breakout box
34
9809687
AC/DC power supply for PC
toll.(optional)
9809678
12 Pin DIN Connector cable-alternative
programming cable for EECU
9809685
Power extension cable —used together
w/9808635.
J-43234
Adapter(Kent Moore).
9998551/J43340
60 Pin Breakout Box/Overlay.
Group 28
Tools
Other Special Equipment
The following hardware is used to operate VCADS Pro. The tools can be ordered from
Volvo quoting the specified part number.
VCADS Pro tools for diagnostics is for vehicles built from 1998 and later. For diagnostics on vehicles built prior to 1998, use Pro-Link 9000 (J-38500) with Volvo Application
Cartridge J-38500–2000.
W2003597
See list on next page for information about the tools in the picture.
35
Group 28
Tools
1
PC tool -package.
2
Didgipass password generator, model 300 or 500.
3
Laser printer; HP 1100A (To be purchased from a local supplier. Not supplied by
Volvo.)
9998574
Laser printer labels. Used when printing labels for the engine electronic control
unit (EECU).
9998555
Communication interface unit; for connection between the PC tool and the vehicle’s diagnostic connector.
9812331
Extension Cable; for communication, 22 yards (optional)
J-43999
6 Pin Diagnostic adapter; for vehicles prior to 1999
J-43939
9 Pin Diagnostic adapter; for vehicles built from January 1999.
9998496
Pressure Guage
9998489
Oscilloscope interface
9998554
Oscilloscope Cable-BNC connector cable to banana jack (optional)
9998553
Oscilloscope Cable-25 pin parallel cable (optional)
9998617
Programming Kit (see below)
9808635
Programming Unit
9808560
Cable for direct
connection to the Engine ECU
9808561
Cable for direct
connection to the Vehicle ECU
Cable for direct
connection to the Intstrument Cluster
9808562
9808563
Cable for power supply
Note: There are three ways of connecting the power cable; 1) To radio power supply, 2) Directly to battery with battery.
3) To cigar lighter.
36
Group 28
Design and Function
Design and Function
Vehicle Management System
Strategy
The vehicle management system is designed to incorporate the entire vehicle system and instantly receive
real-time data from key vehicle components.
•
•
•
Vehicle
Uniform interfaces between the control systems.
Standard adaptations to the vehicle’s functions.
Stand-alone diagnostics for the vehicle’s main electronic components.
⇔
Production
⇔
Owner
⇔
Driver
⇔
Body Builder
⇔
Service
Communication
Equipment
Transmission
SRS
Brakes
Engine
Instrument Cluster
Expansion capability
Conventional Control Systems
In principle, a conventional control system is constructed
so that one or several of the vehicle’s components have
their own control units that receive signals from different
sensors. Each control unit serves its own component and
sends signals to other control units via electrical wires.
An example of this is the engine control unit that receives signals from different sensors on the engine, as
well as from other control units on the vehicle. The accelerator pedal position, the clutch pedal position, the
speed signal, engaged power take-off etc., are sent to
the engine electronic control unit (EECU) via wires from
different sensors and contacts.
The system must have one or more communication
ports, to which tools can be connected for programming
as well as for reading information and any fault codes.
In the future, the vehicle’s sub-components will require
several specific control units and the vehicle electronics
will therefore become even more complex. In the long
run this will limit the ability of conventional control systems to fulfill their tasks.
T3008752
37
Group 28
Design and Function
Data Link System
Volvo’s vehicle electronics are constructed on the principle that all communications between the control units in
the system are accomplished via two data links:
•
•
A
the J1939 Control Data Link
and the J1587/1708 Information Data Link
The vehicle’s main components have their own control
units that are connected to one or both links in order to
be able to communicate with each other.
Here is how the system works on a vehicle equipped
with a Volvo engine: when the driver wants to increase
the vehicle’s speed, a signal is sent from the accelerator
position sensor to the vehicle electronic control unit
(VECU). The signal is then transferred via the data link
to the engine electronic control unit (EECU).
The EECU communicates with its own sensors to verify
that the conditions exist to permit increased acceleration.
If the conditions are met, it carries out the VECU’s request.
The EECU communicates with the other control units via
the data links, either by requesting or by receiving direct
information that all prerequisites are met in order to be
able to carry out the request.
If an error should occur in any of the systems, a signal is
sent out on the J1587/1708 information data link, which
makes it possible to read the information, either on the
driver’s instrument cluster, or via a PC or diagnostic tool
(i.e. Pro-Link, VCADS or VCADS Pro) connected to the
diagnostic connector.
The data link system provides an extremely flexible solution with great potential for expansion.
CAUTION
No modifications or connections should be made to
wires 406 (yellow), 407 (green) or 408 (shielded).
These wires carry the high-speed communications between the electronic systems in the vehicle. Any
modification, connection to, or damage to these
wires can result in the failure of the vehicle’s electronic systems.
38
B
J1587
/1708
J1939
C
D
Group 28
Design and Function
Data Links, Design and Function
Data links are one way of transferring information between various components. In conventional systems,
analog signals have mostly been used.
Analog signals mean that different voltage levels represent different values. A simplified example of analog
signals could be:
1 volt = 10 C
2 volts = 20 C
3 volts = 30 C
W3003960
Data links use digital communication. This means that
the voltage only varies between two different values, either “high” or “low”. By combining these high and low
signals various values can be described.
The diagram shows an oscilloscope image where the
voltage of the data link is measured. As can be seen
from the diagram, a large part of the time the link is
“silent” but at times a number of fast pulses are sent. A
group of pulses is called a message.
The enlarged portion of the diagram shows that each
message consists of a combination of high and low voltage levels.
The following sections describe what type of information
this message contains.
W3003957
39
Group 28
Design and Function
Messages and Information Content
Different voltage levels are represented by the different
numbers in the binary number system. The binary number system has only two numbers, one and zero.
The ones are normally represented by a high voltage
and the zeros by a low voltage.
Each binary number is called a “bit”. This message consists of four groups of binary numbers. Each group of
eight bits makes up a “byte”, a decimal number from 0–
255 with information, as well as a start bit and a stop bit.
W3003956
The purpose of the start and stop bits is to function as
markers for where that group of data begins and ends.
In the diagram above only the start and stop bits are labeled. The other information is shaded.
Example
The diagram shows the information content in the four
different parts of the message. The start and stop bits
are shaded since they do not contain any information.
The box in the diagram shows the different binary and
decimal values which comprise the message.
Note: The information is sent over the data link with the
“least” bit first in the binary numbers. The normal way to
notate binary numbers is shown in the box in the
diagram.
W3003958
40
Group 28
Design and Function
W2003293
Message 144–091–000–240 in this example, has the following meaning:
A
MID 144 — The message comes from the Vehicle ECU.
B
PID 091 — The message states the accelerator pedal position percentage.
C
Data 000 — The accelerator pedal is in the completely released position.
000 is a data component, which in this case states how much the accelerator pedal has been
pressed down. The value can vary between 000 for a completely released pedal and 255 for a completely pressed down accelerator pedal.
D
Check 240 — The checksum is used as a check that the message is reasonable.
41
Group 28
Design and Function
Diagnostic Message Description
The Society of Automotive Engineers (SAE) and the American Trucking Association
(ATA) have developed a standardized list of diagnostic messages, or fault codes. These
diagnostic messages are used to communicate information about problems detected
by an electronic control unit’s (ECU’s) self-diagnostic program. In addition to the
industry-standard SAE codes, Volvo has developed a list of diagnostic messages that
are unique to Volvo applications. Generally, diagnostic messages and their descriptions
are listed in the service manual for each respective ECU and in the user manual for diagnostic tools.
MID
MID is an acronym for Message Identification Description. MIDs are SAE standardized codes used to identify individual electronic control units.
PID
PID is an acronym for Parameter Identification Description. PIDs are SAE standardized codes used to identify parameters or values.
PPID PPID is an acronym for Proprietary Parameter Identification Description. PPIDs
are Volvo’s unique codes used to identify parameters or values.
SID
SID is an acronym for Subsystem Identification Description. SIDs are SAE standardized codes used to identify components.
PSID PSID is an acronym for Proprietary Subsystem Identification Description. PSIDs
are Volvo’s unique codes used to identify components.
FMI
42
FMI is an acronym for Failure Mode Identifier. FMIs are SAE standardized codes
used to identify a type of failure.
Group 28
Design and Function
Data Link Communication
General
Communication
Equipment
(Expansion
capability)
Communication between the different ECUs takes place
via the two data links: the J1939 control data link and
the J1587/1708 information data link.
The diagram shows how the control units, the diagnostic
connector, and the instrument cluster are connected in
principle.
Instrument Cluster
MIDs 234 & 140
The instrument cluster, the engine ECU and the diagnostic connector are always included in the system.
The system may include other control units, depending
on the vehicle type, engine type and optional equipment.
SRS ECU
MID 232
Engine ECU
MID 128
Diagnostic
connector
Terminating
Resistor
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
43
Group 28
Design and Function
SAE J1939 Control Data Link
The system’s control signals are sent via this link.
The J1939 link is very fast, operating at 250,000 bits per
second. This operating speed allows the system to function more effectively and adapt quickly to changing
conditions and vehicle requirements.
The link complies with SAE standards, and consists of
three twisted wires: a green wire (407), a yellow wire
(406) and in early deisgns a shield wire (408–optional).
The twisted wire set (40 turns per meter) is used to protect the link from electrical interference.
CAUTION
No modifications or connections should be made to
wires 406 (yellow), 407 (green) or 408 (shielded).
These wires carry the high-speed communications between the electronic systems in the vehicle. Any
modification, connection to, or damage to these
wires can result in the failure of the vehicle’s electronic systems.
44
Group 28
Design and Function
Terminating Resistor
Communication
Equipment
(Expansion
capability)
Instrument Cluster
MIDs 234 & 140
W3002905
Terminating resistors are wired into each end of the
J1939 data link. One is located near the ABS ECU and
the other near the engine ECU. On Volvo engines, the
terminating resistor at the engine ECU end is located inside the EECU.
SRS ECU
MID 232
If you measure 120 ohm (+/- 10 ohm) between circuits
406 and 407, then there is only one terminatig resistor.
Check to determine which is missing and reconnect it.
Note:
within
of the
within
fault.
With Volvo engines, one terminating resistor is
the engine ECU. The other is poitioned at the end
J1939 network, typically at the ABS ECU. The one
the ECU is not accessible and should not be at
If you measure less than 60 ohm, only two terminating
resistors are used in a vehicle. Never install three in one
truck. If more than two terminating resistors exist in the
J1939 circuit, damage to the ECU electronics can occur
over time. You can easily check to see if you have two
resistors by measuring the resistance between circuits
406 and 407 with the ignition OFF. The correct resistance is 60
.
The purpose of these resistors is to prevent data link
signal reflections. They must remain connected for the
system to function properly.
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
45
Group 28
Design and Function
SAE J1587/1708 Information Data Link
Communication
Equipment
(Expansion
capability)
Information and diagnostic signals are sent via this
link. The link also functions as a “backup” should the
J1939 control data link fail to function for any reason.
SAE J1708 is a standard that specifies hardware and a
databus speed of 9600 bits per second. SAE J1587 is a
protocol that provides a standard method for exchanging
information between microprocessors.
Instrument Cluster
MIDs 234 & 140
The J1587 link consists of two wires (400 and 401) that
are twisted around each other approx. 30 turns per meter. The twisted-pair wires are to protect the link against
electrical interference.
SRS ECU
MID 232
CAUTION
If a circuit must be added to the electrical system, and
will carry high currents or frequencies, route it in a location AWAY from wires 400 and 401 to prevent
mutual inductance from interfering with data link functions.
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
CAUTION
Wires 400 and 401 MUST NOT be cut or spliced for
any connections. These wires are used for the transmission of data for diagnostic messages and gauges.
Modifying this circuit can cause these functions to fail.
SAE J1922 Data Link
For a short period of time some vehicles were produced
which used the J1922 data link. The J1922 data link was
developed as an interim standard until the J1939 control
data link was established. The J1922 link operates on
J1708 defined hardware and is used like a control link
for communication between engine, transmission and
ABS ECUs.
The J1922 link consists of two wires (404 and 405) that
are twisted around each other approx. 30 turns per meter. The twisted-pair wires are to protect the link against
electrical interference.
46
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
Group 28
Design and Function
Diagnostic Connector
Communication
Equipment
(Expansion
capability)
Instrument Cluster
MIDs 234 & 140
SRS ECU
MID 232
Engine ECU
MID 128
W8001310
The diagnostic connector is a round Deutsch connector
located in the driver’s side kick panel. The diagnostic
connector is connected to the J1587/1708 information
link and gives the system a way to communicate with an
external PC or diagnostic tool.
With a PC or diagnostic tool connected, fault codes can
be read from all the control units. This is important in
fault tracing to carry out basic checks of all the vital
parts of the vehicle’s electronics.
Some programming can also be done via the diagnostic
connector.
The standard diagnostic connector is a 6–pin Deutsch. A
newer 9–pin Deutsch version has been introduced on
certain vehicle/engine variants. The new 9–pin connector
connects to both the J1939 and J1587/1708 data links.
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
47
Group 28
Design and Function
Communication Equipment
Communication
Equipment
(Expansion
capability)
Instrument Cluster
MIDs 234 & 140
SRS ECU
MID 232
W2003295
Pro-Driver Display
Various manufacturers offer communication equipment
designed to allow drivers to keep log book records electronically, maintain communication with the home office,
monitor and record vehicle operations, and many other
functions. Currently these communication devices are
connected to the J1587/1708 Information Data Link.
Newer and more sophisticated versions of these devices
may also connect to the J1939 Control Data Link. Note:
No provisions have currently been made to add communication equipment to the J1939 link in aftermarket
adaptations.
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
CAUTION
No modifications or connections should be made to
wires 406 (yellow), 407 (green) or 408 (shielded).
These wires carry the high-speed communications between the electronic systems in the vehicle. Any
modification, connection to, or damage to these
wires can result in the failure of the vehicle’s electronic systems.
Provisions are made for adding aftermarket communication devices to the J1587/1708 link via connectors in the
wiring harness.
Some of the communication devices currently used in
Volvo trucks include Road Relay, Pro-Driver, Qualcomm
and Highway Master.
48
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
Group 28
Design and Function
Instrument Cluster
W3003621
The instrument cluster used on Volvo vehicles uses both
data link signals and hardwired sensors depending on
the vehicle/engine variant and instrument configuration.
A graphic display screen is integrated into the instrument
cluster to provide additional features and vehicle system
information not available from other gauges. Diagnostic
codes can also be retrieved and displayed. The instrument cluster is connected to the J1587/1708 information
data link.
Communication
Equipment
(Expansion
capability)
Instrument Cluster
MIDs 234 & 140
For information about the instrumentation that communicates via the data link, refer to service manuals in group
38:
Model:
See Publication:
WG/AC/WC/WI from
1994; WX with electronic engines from
5.96
Data Link Instrumentation,
PV776–381–620SM
WX
Kysor Mini-Cluster, PV776–
TSP108262
VN from 1.98–2.99
VN from 3.99 ADN
VHD
Instrumentation, PV776–
TSP106805/1
SRS ECU
MID 232
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
Instrumentation, PV776–
TSP139790
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
49
Group 28
Design and Function
Vehicle Electronic Control Unit (VECU)
W2002673
The vehicle electronic control unit (VECU) is part of the
integrated vehicle electronics. The VECU is located in the
cab, but its specific mounting location varies by model.
Communication
Equipment
(Expansion
capability)
The main function of the VECU is to collect data from
different cab control units and then to pass this data to
other ECUs in the system (primarily to the engine ECU).
For detailed information about the VECU see Vehicle
Electronic Control Unit, MID 144, Volvo service publication number PV776–300–610.
Instrument Cluster
MIDs 234 & 140
The VECU is only used in vehicles equipped with
Volvo engines.
SRS ECU
MID 232
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
50
Terminating
Resistor
Group 28
Design and Function
Engine Electronic Control Unit
W2003294
Irrespective of engine variant, the engine electronic control unit (EECU) performs the same basic functions in
the system: control of engine operation. The EECU receives signals from various sensors and the data links.
Based on these signals and the parameters programmed
into the EECU, the EECU calculates the proper injection
angle and fuel quantity to satisfy the requested operating
requirements.
Communication
Equipment
(Expansion
capability)
Instrument Cluster
MIDs 234 & 140
The EECU is connected to both the J1939 control data
link and the J1587/1708 information data link.
Note: Early production model EECUs may use only the
J1587/1708 data link, or the J1587/1708 and the J1922
data links.
SRS ECU
MID 232
For detailed information about EECUs see the service
literature for that particular engine.
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
51
Group 28
Design and Function
EECU
The EECU is an electronic control unit that monitors certain operational parameters of the Volvo engine from the
SAE J1587 Data Link and appropriate sensors.
W2003076
52
Group 28
Design and Function
ON/OFF Engine Cooling Fan
The EECU receives the input from the engine coolant
temperature sensor to turn on the cooling fan at 115 C
(202 F). The fan will remain engaged until the engine
coolant drops to 90 C (195 F).
The ON/OFF cooling fan can also be engaged by the
EECU if it receives a signal from the air conditioning systems APADS module. When the A/C system pressure
reaches 20.5 bar (300 psi) the APADS module will send
a signal to the EECU to engage the cooling fan. The on
time of the cooling fan is controlled by the APADS module.
If the EECU does not receive any coolant temperature
data, the fan is engaged for a minimum of 30 seconds.
The fan will stay engaged until valid coolant temperature
data is received and the coolant temperature drops be
low 90 C (195 F).
Converting Engine Oil Pressure Signal
The EECU takes an analog signal from a pressure transducer and broadcasts the signal on the SAE J1587 data
link.
Engine Information and Warning Lamp-On Dash
•
•
•
•
Engine Oil Pressure
The EECU will make the STOP lamp light and the
icon in the display light up if the oil pressure is < 41
± 3 kPa (6 ± 1.2 psi). Also a warning signal sounds
if the engine is running.
Engine Coolant Level
The EECU will make the
STOP lamp light stay on
(solid) if the low coolant level sensor detects a low
coolant level condition. The low coolant level condition is active only after 5 seconds of a constant
signal from the low level sensor.
Engine Coolant Temperature
The EECU will make the
STOP lamp light illuminate and gauge LED illuminate, plus the icon in the
display if a high coolant temperature from the engine ECU is received.
Engine Oil Temperature
If the Engine oil temperature becomes too high an
information message is shown automatically with
the text HIGH. At the same time the yellow INFO
lamp under the display lights up. The engine may
also derate, if it is set up to do so in the engine
ECU programming. The temperature which activates
this warning varies for different engines. This
temperature is set in the engine ECU. For Volvo en
gines, it is 275 F (135 C).
1
1
1
1
Note: If the engine is running and the stop lamp comes
on you will get a buzzer or warning signal.
53
Group 28
Design and Function
Electronic Unit Injectors
The engine has six unit injectors, one for each cylinder.
Each Electronic Unit Injector, or EUI, is a combination
of injection pump and injector, but operates at a considerably higher pressure than a standard injector.
Each unit injector is mounted vertically in the cylinder
head at each cylinder, centered between the four valves.
The compressive force for the unit injector is developed
by a lobe on the overhead camshaft. It is then transferred by a rocker arm to the injector.
The injection angle and the amount of fuel to be injected
into the cylinder is determined by the EECU, which
transmits signals to the electromagnetically controlled
fuel valve in the unit injector valve housing.
Make sure to turn the ignition key off before working
on the electronic unit injectors. This eliminates the
possibility of electric shock which may result in personal injury or death.
T2006998
Electronic unit injector
Calculating Fuel Quantities
The EECU calculates the quantity of fuel to be injected
into a cylinder. This calculation provides the period of
time during which the fuel valve is closed (when the fuel
valve is closed, fuel is injected into the cylinder). Factors
that determine how much fuel to inject into a cylinder are:
•
•
Requested fuel amount
Limitation of fuel amount
Flywheel
There are 54 notches cut into the flywheel; these are
read by the speed sensor for the flywheel. With the help
of these notches, the EECU can set the correct injection
angle and calculate the time which gives the correct fuel
amount.
The notches are divided into three groups, with 18
notches in each group. There is a flat area between
each group of notches equivalent to 18 . A flat area and
18 notches is equivalent to 120 on the flywheel, or a
third of a full turn. The area between each notch equals
6 on the flywheel.
T2007019
Flywheel
54
Group 28
Design and Function
Cam Sensor Wheel
The cam sensor wheel has six teeth (one tooth for each
unit injector) evenly spaced at 60 center-to-center, plus
an extra tooth, placed 15 before the tooth that indicates
cylinder number 1.
The EECU uses these teeth to determine which injector
is in line for injection. In other words, each tooth (teeth
1–6) represents the start of a cylinder operating phase
(does not apply to the extra tooth).
T2007099
Cam sensor wheel
Flywheel and Cam Sensor Wheel
The ratio between the flywheel and cam sensor is 2:1.
This means that when the flywheel has rotated two
turns, the cam sensor wheel has rotated one turn or
when the flywheel has rotated 30 , the cam sensor
wheel has rotated 15 and so on.
55
Group 28
Design and Function
Injector Operational Phases
The operational phase of the number 1 cylinder is given
in the following example. Fuel is injected at 7 before top
dead center (BTDC) (the injection angle may vary be
tween 18 BTDC and 6 after top dead center).
The cam sensor reacts to the extra tooth on the cam
sensor wheel. This informs the control unit that the next
tooth in turn (tooth 1) indicates the number 1 cylinder.
T2007100
Locating number 1 cylinder
A
top dead center (TDC)
The cam sensor wheel detects tooth 1 and the flywheel
sensor reaches a flat area on the flywheel at the same
time.
At this point, the piston is on its way upward in the cylinder and no fuel is injected into the cylinder.
T2007101
Engine speed calculated
A
top dead center (TDC)
The sensor detects the first notch after a flat area on the
flywheel. Using the engine speed calculation, the EECU
can determine:
•
When to begin injecting fuel into the number 1 cylin
der. This gives selected injection angle (7 BTDC in
the example).
•
When to stop injecting fuel into the number 1 cylinder. This gives the selected fuel amount.
56
T2007102
Calculating injection angle
A
TDC
B
7 BTDC (injection begins)
C
ATDC (injection stops)
Group 28
Design and Function
From the first notch after a flat area, the EECU advances the angle from which it is to begin injecting fuel
into the cylinder and on to the angle where it is to stop
injecting fuel into the cylinder. If the calculated angles do
not agree with the notches on the flywheel, the EECU
measures the time between the last notches to rectify
the angles.
Because the EECU must calculate the engine speed
during 120 , the engine speed calculation for each cylinder occurs one step ahead at all times. In other words,
during the operational phase for one cylinder, the EECU
calculates engine speed for the next cylinder and so on.
This procedure is repeated for the next cylinder in the
same manner as described for the number 1 cylinder.
Note: Note that the calculation of the injection angle and
fuel amount takes place continuously, regardless of the
operational phase of the cylinders.
Cylinder Balancing
The EECU can provide each cylinder with a different
quantity of fuel to make the engine run more smoothly at
idling speeds. At higher speeds, there are no problems
with smooth running and all cylinders receive the same
amount of fuel. If the variation in fuel quantity between
different cylinders is too great during cylinder balancing,
the EUI, which deviates most, triggers a fault code from
31 to 36. This indicates that there must be a fault in the
cylinder in question.
For cylinder balancing to take place, the following conditions must be satisfied:
•
•
•
•
•
•
•
•
•
Idling speed must be below 650 rpm.
Fuel requirement must be below a specific rating.
Idling adjustment function must not be active.
PTO not active.
Cruise control mode not active.
Accelerator pedal in idling position.
Coolant temperature must be above 50 C (122 F).
Vehicle must be at a standstill.
No fault codes in existence.
57
Group 28
Other Functions
The EECU guides the EUIs based on the following ”control functions.”
Smoke limitation — To prevent injecting too much fuel
into the cylinder, the EECU checks:
•
•
•
Boost pressure
Engine speed
Boost air temperature
PTO engine speed — The engine can be kept at a constant rpm level that is at least 100 rpm greater than low
idle and less than high idle.
Cruise control — The engine can be set to maintain a
constant speed between 48 km/h (30 mph) and 140
km/h (87 mph). For the cruise control mode to function,
the following conditions must be satisfied:
•
•
•
Cruise control in ON position.
Brake pedal must not be depressed.
Clutch pedal must not be depressed.
Speed limitation — The EECU can be programmed to
limit the maximum speed up to 140 km/h (87 mph). A
fault on the sensor signal and/or a faulty cable to the
EECU generates a fault code.
Differentiated speed limitation — This mode is available as an option. It limits the speed to various levels
depending on the gear selected. In other words, each
gear has a maximum speed.
58
Design and Function
Group 28
Design and Function
Engine protection — To a certain extent, the EECU can
also protect the engine by:
•
Reducing engine speed at low coolant temperatures
(cold engine cranking): When coolant temperature is
lower than 50 C (122 F), engine speed is limited
during a specific time to 1000 rpm immediately after
starting. At –20 C (–4 F) and lower, this period is
16 seconds, and above 50 C (122 F) the period is
0 second. This function allows oil pressure to build
up before engine speeds become too high.
W2000768
Engine speed during cold cranking
•
Reducing engine output at high coolant temperatures (during engine operation): Should coolant
temperature exceed 102 C (216 F), the maximum
fuel provision is reduced by a certain percentage of
its original rating and the coolant temperature warning lamp lights up. If the coolant temperature
becomes excessively high, the engine will gradually
reduce power to 50%. When coolant temperature
has dropped below 100 C (212 F), maximum fuel
provision is permitted again and the coolant temperature warning lamp goes out.
W2000769
Engine speed during operation
The safety signal is an optional system that enables the
EECU too switch off the engine. The EECU can be programmed to provide three levels of engine protection:
•
•
•
No engine protection (fire engine)
Engine protection
Extended engine protection
59
Group 28
Design and Function
Idle shutdown — This function is available as an option.
It switches off the engine after it has run at idling speed
for a specific time. This time can be set to between 1
and 40 minutes. The engine will be switched off if the following conditions are met:
•
•
•
•
Vehicle speed is 0.
Parking brake is applied.
Engine running at idle speed.
Coolant temperature is above 45 C (113 F).
Cold starts, idling — Idling speed is automatically
boosted to heat the engine more quickly from a cold start
when coolant temperature is below a specific level. When
this mode is activated, idling speed is boosted to 650
rpm. When coolant temperature has reached 30 C (86
F), idling speed drops steadily to its normal level which
is reached at a coolant temperature of 45 C (113 F).
60
Group 28
Design and Function
Starting the engine
Before any fuel can be injected into the cylinders, the
EECU must have had a sufficient amount of time to
carry out the first calculations on injection angles and
fuel quantities. This time is equivalent to two engine revolutions.
VEB (VOLVO engine brake)
The VEB consists of an exhaust brake and a compression brake. The EECU activates the VEB when the
following conditions are satisfied:
•
Accelerator pedal at idling position (fuel injection
must not occur).
•
•
•
Engine speed must exceed 1200 rpm.
•
•
•
•
PTO not activated.
•
Engine oil temperature is greater then 55 C (130
F).
Clutch pedal must not be depressed.
Boost pressure must be lower than 152 kPa (22 psi)
(overpressure).
Vehicle speed is greater than 3.2 km/h (2 mph).
ABS not activated.
Engine coolant temperature is greater than 40 ± 2
C (104 ± 5 F).
The VEB may be activated when the cruise control is in
use. For this to take place, the following condition must
be satisfied:
•
Vehicle road speed must exceed the set speed of
the cruise control by between 5 and 30 km/h (4 and
20 mph), depending on what level has been programmed into the EECU.
61
Group 28
Design and Function
Idle Speed Adjustment
Note: This service information should be considered
supplemental to the Engine Control information for base
D12 B and C engine.
The idle speed is adjusted on the VN vehicles at the turn
signal stalk. The idle speed can be adjusted between
500 RPM and 650 RPM.
Prerequisites to adjusting idle speed:
•
•
•
Accelerator pedal not depressed.
Engine temperature above 45 C (113 F).
Vehicle is stationary / Parking brake set.
Idle speed adjustment
1
2
3
4
5
6
7
Cruise control in the ON position.
Depress the brake pedal and continue to hold it during the entire adjustment procedure.
Move the ON/OFF switch to the RESUME position
and hold for four seconds. Release the switch; the
engine speed will drop to approximately 500 RPM.
The idle speed can be adjusted with the SET
switch. Each time the SET switch is pressed, the
idle speed will increase approximately 10 RPM.
Move the ON/OFF switch to the RESUME position
and the idle speed will decrease approximately 10
RPM each time.
Hold in the SET switch and move the ON/OFF
switch to the RESUME position and hold them in
position for four seconds. Release the switches
Release the brake pedal and the new idle speed is
set. If an error was made during the adjustment procedure, the default idle speed will be maintained.
T3014326
1
2
62
A-Set
B-Resume, On/Off
Group 28
Design and Function
ABS Brake System ECU
W5000669
The ABS ECU continuously monitors wheel speed and
helps to control braking in exterme situations. It also
helps prevent wheel spin in vehicles equipped with traction control systems (ATC or TCS).
Communication
Equipment
(Expansion
capability)
The ABS ECU is connected to the J1939 control data
link and the J1587/1708 information data link.
Note: Early production model ABS ECUs may be connected to the J1587/1708 and J1922 data link or have
no data link connection at all.
Instrument Cluster
MIDs 234 & 140
For detailed information about ABS systems see the appropriate service literature for the type of ABS system
used on the vehicle.
SRS ECU
MID 232
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
63
Group 28
Design and Function
SRS Airbag ECU
T8006850
The Supplemental Restraint System (SRS) ECU senses
frontal collisions with two rapid deceleration sensors.
The SRS ECU will deploy the airbag module in the
steering wheel if a collision of sufficient force and duration is detected.
Communication
Equipment
(Expansion
capability)
The SRS ECU is connected to the J1587/1708 information data link. For detailed information about the SRS
see Supplemental Restraint System (SRS), VNL, VNM,
Volvo service publication number PV776–TSP21771/1.
Instrument Cluster
MIDs 234 & 140
Note: The SRS system is not available on all models.
SRS ECU
MID 232
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
64
Terminating
Resistor
Group 28
Design and Function
Transmission ECU
W4001493
The transmission electronic control unit (ECU) receives
signals directly from switches and sensors and via the
data links. Based on those inputs, the transmission ECU
controls transmission operation via solenoid valves and
switches. The transmission ECU also supplies system
status and diagnostic information.
Communication
Equipment
(Expansion
capability)
The transmission ECU is connected to both the J1939
control data link and the J1587/1708 information data
link.
Instrument Cluster
MIDs 234 & 140
Note: Early production model transmission ECUs may
be connected to the J1587/1708 and J1922 data links.
For detailed information about transmission ECUs see
the service literature for that particular transmission.
SRS ECU
MID 232
Engine ECU
MID 128
Terminating
Resistor
Diagnostic
connector
Vehicle ECU
MID 144
SAE J1587
/1708
SAE J1939
Transmission ECU
MID 130
Control unit
(Expansion
capability)
ABS ECU
MID 136
Terminating
Resistor
65
Group 28
Design and Function
Breakout Boxes and Harnesses
The harness adapters are used to gain access to the
EECU, the VECU, the throttle pedal and certain other
sensors on the engine, while the circuit is intact. This allows the technician and vehicle to take measurements
on functional circuits.
Example:
The 36-pin breakout box allows the technician to
measure resistance and voltage on the EECU’s EA connector (which covers the engine mounted components)
and the EB connector (which covers the remaining components involved).
CAUTION
Check that the proper cable and connector location is
observed and used while connectin to the ECU.
Ohterwise, damage to the ECU or tool will occur.
W2002712
W2002710
66
Group 28
Design and Function
VECU Overview
The Vehicle Electronic Control Unit (VECU) receives
inputs and generates output signals for functions associated with cab devices. It also converts information into
digital data to be broadcast over the J1587/1708 Information Link and the J1939 Control Link.
Note: The VECU may also be referred to as the “Cab
Controller” on the graphics display of the VN series dash
and in some Volvo publications.
VECU Programming
Each VECU is programmed with specific vehicle
performance characteristics corresponding to customerordered options for that particular vehicle. This dataset is
stored in the VECU memory, making the VECU unique
to each vehicle.
For this reason, it is not possible to “swap” a suspected
faulty VECU with one from another vehicle without reprogramming the replacement VECU.
Replacement VECUs are programmed using the VCADS
Pro tool. Programming is based on the particular dataset
that matches the vehicle; datasets are stored in the
Volvo Data Administration (VDA) database. Authorized
technicians can update and/or alter software datasets,
change customer parameters, and perform campaigns.
W0001632
For more information about the proper operation of the
VCADS Pro tool and VECU programming, please refer
to Information on VCADS Pro in Group O. This manual
is also available as a pdf file within VCADS Pro tool located under Help.
Note: Customer parameter changes are not stored in
the VDA database. Therefore, after a replacement VECU
is programmed for the vehicle, it will have to be customized to include those customer alterations.
67
Group 28
VECU Functions
The following functions are monitored or controlled by
the VECU. Only the functions needed for each specific
vehicle/engine application are wired and programmed
into the VECU.
Accelerator Pedal
The accelerator pedal signals travel first to the VECU
and are transferred to the Engine Electronic Control Unit
(EECU) via the J1939 Control Link.
If there is a fault in the J1939 Control Link, the accelerator pedal signal travels to the EECU via the J587/1708
Information Link. The vehicle can also be driven in the
“limp home” mode is there is a fault in both links. In this
situation, the idle validation switch is used to determine
when the accelerator pedal is pressed; then, the VECU
sends a buffered idle validation switch signal (via hard
wire) to the EECU.
Second Accelerator Pedal
If the vehicle is equipped with a second accelerator
pedal, the second accelerator pedal signals travel first to
the VECU and are transferred to the Engine Electronic
Control Unit (EECU) via the J1939 Control Link.
A road speed limit may be programmed into the VECU
to limit vehicle speed when the second accelerator pedal
is being used. Second accelerator pedal road speed limit
can be programmed using the VCADS Pro tool.
Speedometer
The speed signal comes from a sensor on the transmission or as a digital signal, if an electronically-controlled
transmission (Allison) is used. The VECU then sends the
vehicle speed signal on both the J1939 Control Link and
J1587/1708 Information Link. The signal on the J1939
Control Link is used to control vehicle operation. The
signal on the J1587/1708 Information Link is collected by
the instrument cluster and is displayed on the
speedometer.
Cruise Control
The VECU receives signals from the cruise control
switch and sends signals to the EECU via the J1939
Control Link. Cruise control parameters can be programmed with the VCADS Pro too.
68
Design and Function
Group 28
Design and Function
Power Take-Off (PTO)
PTO functions are controlled by the VECU through the
cruise control switch. Basic or optional PTO parameters
can be programmed with the VCADS Pro tool.
Ignition Switch
Ignition switch positions are recognized by the VECU,
which transfers the ignition switch position information to
the EECU.
Idle Shut-Down
Timed engine shut-off can be controlled by the VECU as
a customer option. Idle shut-down time can be programmed with the VCADS Pro tool.
Engine Brake
The control for the engine brake (including the exhaust
pressure governor [EPG] and compression brake [VCB],
if installed) are monitored by the VECU. At the request
of the ABS ECU, the VECU can de-activate the engine
brake.
Windshield Wipers
Windshield wiper function on the VN and VHD (with
Volvo engine) is controlled by the VECU using signals
received from the wiper switch.
Calibration Number
The calibration number (K factor) is a measurement of
“Drivetrain Constant Pulses per Mile” and is used by the
VECU to determine vehicle speed and distance traveled.
The calibration number is calculated by multiplying “tire
revolutions per mile” x “rear axle ratio” x “number of
teeth on the transmission output shaft chopper wheel.”
The calibration number is programmed into the VECU
using the VCADS Pro tool.
69
Group 28
Optional Engine Speed Limit
Optional engine speed limit is the maximum speed at
which the engine can be operated with the vehicle at
zero road speed and the PTO mode engaged. Optional
engine speed limit parameters can be programmed with
the VCADS Pro tool.
Optional Vehicle Speed Limit
Optional vehicle speed limit allows for an optional switch
to limit vehicle speed. Typically, this switch is operated
on the vehicle by someone other than the driver, such as
a garbage collector who rides on the back of the vehicle.
Optional vehicle speed limit parameters can be programmed with the VCADS Pro tool.
Note: Basic vehicle speed limit is set by the EECU.
Shut-Down Request
Optional engine shut-down request is made via a remote
mounted switch (the ignition switch is the basic engine
shut-down request). After the VECU receives the shutdown request, the request is sent to the EECU via the
J1939 Control Link. Shut-down request is enabled using
the VCADS Pro tool.
Note: The engine shut-down request function should not
be considered or used as an emergency shut-down.
Torque Limit
Torque limit 1 and 2 are used to limit drive line torque.
Torque limit parameters can be programmed with the
VCADS Pro tool.
Engine Fan Request
The VECU receives the request for engine fan operation
from either a manual switch or a high pressure A/C refrigerant switch. The VECU then transfers the request to
the EECU via the J1939 Control Link.
Brake/Clutch Status Switches
The VECU recognizes the position of the brake, clutch,
and parking brake. Various VECU functions (i.e. cruise
control or PTO) operate only when these switches are in
the proper position.
70
Design and Function
Group 28
Design and Function
Safety Warnings/Cautions
• Always wear approved eye protection.
• To avoid personal injury and damage to the vehicle,
always refer to and follow the vehicle manufacturer’s
WARNINGS, CAUTIONS, and service procedures.
•
Unless otherwise directed, turn the ignition switch
OFF before disconnecting or connecting any electrical components.
•
Read and understand the manual provided with the
tool before operating your Pro-Link® 9000.
•
VGHT recommends an assistant drive the vehicle
while you use the Pro-Link® 9000.
•
Never leave the vehicle unattended while testing.
71
Group 28
Design and Function
VCADS Pro
From the VCADS Pro Main Menu, VCADS Pro Test, Calibration, Programming and Job Cards are started. In
addition, a number of settings can be done, i.e. the selection of language. Ensure your “language” is selected
to get the right tests for your country’s vehicle variant.
Do one of the following to start an application:
•
Select the application in the menu Select application. When highlighted press “Enter”.
•
Click the program’s function button in the toolbar;
test (1), calibration (2), programming (3) and job
card (4).
•
Double click the desired program in the function tree.
T0009469
The following can be performed in the Administrative
functions
•
•
•
•
•
Language selection
•
User administration. Select the user to change the
password for. This function requires authorization
and is not available to all users.
•
General adminstration. Selection of communication
method, vehicle/machine type and activation/deactivation of the simulator is possible.
72
Selection of screen saver and screen saver delay.
Selection of background image.
Selection of default application.
Update the system. Get a new program version of
VCADS Pro from Volvo via connection to the central
systems.
Group 28
Design and Function
Sensor Locations
VN/VHD Sensors and Switches
W2003551
Inside cab
1
Throttle position sensor
2
Microswitch(service brake)
3
Engine/Exhaust Brake
4
VECU
5
Pressure Switch-Parking and Service Brake
6
ON/OFF—Resume Switch
7
Resume Switch
8
Diagnostic connector
73
Group 28
Design and Function
D7C
1
2
3
4
5
6
EECU connector EA/EB
EPG solenoid
Boost pressure/temperature sensor
Oil pressure/temperature sensor
Engine timing (crank) sensor
Engine electronic control unit (EECU)
W2002748
1
2
3
Needle lift sensor (at injector #1)
Coolant temperature sensor
Redundant engine speed sensor (1); Fuel pressure/temperature sensor (2); Fuel shut-off valve (3);
7–pin connector (4), includes rack drive, rack position sensor, and timing sleeve
W2002749
74
Group 28
Design and Function
D12B
1
2
3
4
5
6
7
Boost pressure/temperature sensor
Coolant temperature sensor
Oil pressure/temperature sensor
Engine timing (crank) sensor
Engine electronic control unit (EECU)
EECU connector EA/EB
Engine position (cam) sensor
1
2
Compression brake, VCB (under valve cover)
EPG control (PWM box)
W2002745
W2002746
75
Group 28
Design and Function
D12C
W2003550
Fig. 10: Engine electronic control unit (EECU) sensor locations D12C
Several engine sensors send signals to the EECU. They
are:
1
Cam Sensor (timing gears)—This sensor determines which cylinder is in line for injection. It detects
the camshaft’s position via a pole wheel bolted to
the camshaft drive gear.
2
Oil Pressure/temperature sensor (cylinder
block)—This combined sensor monitors oil pressure
and oil temperature.
3
Fuel Pressure/Temperature Sensor — Monitors
the fuel pressure and fuel temperature
76
4
Crank Sensor (flywheel housing) — This sensor
detects the crank-shafts’s position and speed, via
teeth in the flywheel. Detects Engine RPM’s.
5
Coolant Temperature Sensor (cylinder head)—
This sensor monitors coolant temperature.
6
Intake Manifold Pressure (intake manifold)—This
is a combined sensor that monitors both the intake
manifold air pressure and temperature.
Group 28
Design and Function
Control Unit Locations
VN/VHD: Cab and Engine Compartment
The diagram shows the normal location of the different
control units on a VN vehicle equipped with a Volvo engine.
Control units may vary slightly in location, depending on
vehicle and component type (variant). The locations are
virtually the same on a VHD vehicle.
W3003955
1
Vehicle electronic control unit (VECU)
4
SRS control unit
2
Instrument cluster
5
Engine electronic control unit (EECU)
3
ABS control unit; crossmember located toward rear
of cab
77
Group 28
Design and Function
WG/AC: Cab and Engine Compartment
The diagram shows the normal location of the different
control units on WG and AC vehicles.
Control units may vary slightly in location, depending on
vehicle type (variant).
W3003963
1
ABS control unit, on right side frame rail
3
Vehicle electronic control unit (VECU)
2
Instrument cluster
4
Engine electronic control unit (EECU)
78
Group 28
Design and Function
WX/WXLL: Cab and Engine Compartment
The diagram shows the normal location of the different
control units on a WX or WXLL vehicle.
Control units may vary slightly in location, depending on
vehicle type (variant).
W3003961
1
Vehicle electronic control unit (VECU), location in
WX narrow cab only
2
Instrument cluster
3
Engine electronic control unit (EECU)
4
Transmission ECU, under driver’s seat
5
ABS control unit, right side engine tunnel
6
VECU, WX and WXLL, right side engine tunnel
7
ABS control unit, location in WX narrow cab only
79
Group 28
Design and Function
WXR: Cab and Engine Compartment
The diagram shows the normal location of the different
control units on a WXR vehicle.
Control units may vary slightly in location, depending on
vehicle type (variant).
W3003962
1
Engine electronic control unit (EECU)
4
Transmission ECU
2
Instrument cluster
5
3
ABS control unit
Vehicle electronic control unit (VECU) — on left side
of cab, below center dash panel
80
Group 28
Design and Function
Fuses and Relays
W8000923
The VN/VHD vehicles have easy access to the TEC
panel. Fuses and relays are easily identified by referring
to the decals inside the TEC covers.
W3004398
81
Group 28
Design and Function
VN
Note: Refer to the decal inside the TEC cover for vehicle’s exact fuse descriptions and ratings.
W3002729
Fig. 11: Fuse and Relay Positions (in the top TEC panel, VN)
B1–1 through B1–6
Ignition Expansion Blocks
B2–2 through B2–4
Battery Expansion Blocks
PR1
PR2, PR3
Accessory Power Relay
Igntion Power Relays
One Accessory an two Ignition Power relays are used to transfer the heavy current load coming from the battery
to the Ignition/Accessory circuits. These relays are located on the TEC tray for easy access and replacement.
82
Group 28
Design and Function
VHD
Note: Refer to the decal inside the TEC cover for vehicle’s exact fuse descriptions and ratings.
W3004362
Fig. 12: Fuse and Relay Positions (in the top TEC panel, VHD)
B1–1 through B1–6
Battery and Ignition Expansion Block
PR1
PR2, PR3, PR4, R24
Accessory Power Relay
Ignition Power Relays
One Accessory and four ignition Power relays are used to transfer the heavy current load coming from the
battery to the Ignition/Accessory circuits. These relays are located on the TEC tray for easy access and replacement. PR4 is used in the VHD bodybuilder applications
83
84
Group 28
Troubleshooting
Troubleshooting
Fault Code Troubleshooting
Message and Parameter Descriptions
MID’s
(message ID’s)
Description
128
EECU (Engine Electronic Control Unit)
232
SRS (Supplemental Restraint System)
136
ABS (Antilock Braking System
140
Instrument Cluster Center Module
234
Instrument Cluster Left Module
144
VECU (Vehicle Electronic Control Unit)
130
TECU (Transmission Electronic Control Unit)
PID’s
(Parameter ID’s)
Description
84
Road Speed
91
% Accelerator Pedal
100
Engine Oil Pressure
102
Boost Pressure
105
Air Inlet Temperature
110
Engine Coolant Temperature
111
Coolant Level
173
Pyrometer
175
Engin Oil Temperature
190
Engine Speed
85
Group 28
Troubleshooting
PPID’s
(Proprietary Parameter
ID’s)
86
Description
69
Buffered idle switch
70
Pedal switches, supply
71
Cruise control and retarder, supply switch
72
Accelerator pedal and retarder, supply sensors
73
Accelerator control 2 and primary tank, supply sensors
75
Range inhibitor, status solenoid valve
77
Compressor, status solenoid valve
78
Interval wiper, status relay
79
Area inhibitor, status solenoid valve
86
Engine brake torque percent
109
EOG3 drive stage failure
121
MTE (Engine compsressor control output) failure
122
VCB Engine compression brake
123
EPG2 Start and Warmhold
124
EPG1 Engine brake
125
EOL Enable failure
195
Proprietary Diagnostic Data Request Clear Count
196
Proprietary Diagnostic Data/Count Clear Response
Group 28
Troubleshooting
FMI Table
SAE Standard
FMI value
SAE Text
0
Data Valid, but above normal operating range.
1
Data Valid, but under normal operating range.
2
Intermittent or incorrect data.
3
Abnormally high voltage.
4
Abnormally low voltage.
5
Abnormally low current or open circuit.
6
Abnormally high current or chort circuit.
7
Mechanical system no repsonse
8
Abnormal frequency or Pulse Width
9
Abnormal update rate
10
Abnormal change rate
11
Failure unkown
12
Bad device
13
Out of calibration
14
Special instruction (see Note)
Note: The special instruction FMI 14 is broadcast when the airbag has stored crash data.
Engine-specific for Injectors
FMI value
Explanation
2
Short circuit to battery voltage, unit injector high side.
3
Short circuit to battery voltage, unit injector low side.
4
Short circuit to ground, unit injector high or low side.
5
Open circuit in the unit injector circuit.
Engine-specific for Injection Pump
FMI value
Explanation
2
Short circuit to battery voltage, injection pump high side.
3
Short circuit to battery voltage, injection pump low side.
4
Short circuit to ground, injection pump high or low side.
5
Open circuit in the unit injection pump circuit.
6
Short circuit to ground, injection pump high side.
8
Injection pump current too high for long period of time.
87
Group 28
Troubleshooting
Reading/Clearing Fault Codes
Fault codes can be read and cleared using the VCADS
Pro tool or the Pro-Link tool with Volvo application cartridge. See the appropriate service information for details
on reading and clearing fault codes using VCADS Pro or
Pro-Link tools.
On VN-series vehicles, fault codes also can be accessed,
read, and cleared via the instrument cluster graphic display. Clearing fault codes is password protected. For
information, see “Instrumentation VN, from 3/99 and
VHD,” Volvo Service Publication PV776–TSP139790.”
The Data Link Instrument cluster used WX-series vehicles can access and read a limited number of fault
codes. However, it does not have the ability to clear fault
codes. For more information, see “Data Link Instrumentation,” Volvo Service Publication PV776–381–620SM.
Fault Tracing Strategy
CAUTION
Check that the proper cable and connector location is
observed and used while connecting to the ECU. Failure to do so may result in permanent damage to the
ECU or the tool.
Generally, the fault tracing strategy employed in this section follows a set sequence in which measurements are
taken at specific points in the vehicle wiring. The three
basic elements in this strategy are:
W3003493
1
Vehicle Electronic Control Unit (VECU)
2
The actual component being tested (varies with
each fault code)
3
Wiring between VECU and the component being
tested
The following information describes the three test strategies:
•
•
•
88
“Measurement at the Component’s Connector, to
the VECU” page 90
“Check of Component” page 90
“Check of the Subsystem” page 91
Group 28
Troubleshooting
Measurement at the Component’s Connector, to the VECU
In this procedure, the component is disconnected and
measurements are made at specific pin locations on the
wiring harness end of the connector. Measurements
usually involve supply, ground, and signal wire connections through the wiring harness and VECU.
Breakout boxes or harnesses may be used to assist in
taking measurements. Measurements outside “expected
values” may indicate faults in the wiring or in the VECU
itself
W3003494
Check of Component
In this procedure, the component is disconnected and
measurements are made at specific pin locations on the
component wiring harness or directly to the component.
The component is usually a sensor or switch; it is identified at the beginning of each check.
Breakout boxes or harnesses may be used to assist in
taking measurements. Measurements outside “expected
values” may indicate faults in the component or in the
wiring to the component.
W3003495
89
Group 28
Troubleshooting
Check of the Subsystem
In this procedure, the VECU is disconnected, a breakout
box is connected between the VECU and wiring harness,
and measurements are made at specific pin locations on
the breakout box. This check is made to measure the
voltage that is present at the VECU with the circuit intact.
Measurements outside “expected values” may indicate
faults in the component, wiring, or VECU.
Tests Using the VCADS Pro Tool
The VCADS Pro tool is a Windows95®-based PC tool
that is used to program, test, and read information from
the VECU and EECU.
A number of “real time” tests can be performed by connecting the VCADS Pro tool to the vehicle’s diagnostic
connector. If a test in the VCADS Pro tool may be of
benefit when troubleshooting a specific fault code, that
test will be referenced in the section titled, “Appropriate
tests in the VCADS Pro tool.”
Note: Not all tests will apply to all vehicle variants. When
starting VCADS Pro, menu selections for various vehicles and engines are entered. Only those tests that
apply will be available for selection.
For information about the proper operation of the
VCADS Pro tool, please refer to VCADS Pro Service Information in group 0.
W0001632
90
Group 28
Troubleshooting
MID 128 EECU
MID 128 Fault Code Table
MID:Message Identification Description.
SID:Subsystem Identification Description.
PID:Parameter Identification Description.
FMI:Failure Mode Identifier.
Error code
Component/Function
FMI
Section
MID 128-PID 45
Preheater Status
3, 4, 5
“MID 128 PID 45 Preheater Status” page 96
MID 128-PID 49
ABS Control Status
9
“MID 128 PID 49 ABS
Control Status” page 98
MID 128-PID 84
Road speed
9, 11
“MID 128 PID 84 Road
Speed” page 100
MID 128-PID 85
Cruise Control Status
9
“MID 128 PID 85
Cruise Control Status”
page 102
MID 128-PID 91
Accelerator Pedal Position
9, 11
“MID 128 PID 91 Accelerator Pedal Position”
page 104
MID 128-PID 94
Fuel Delivery Pressure (D7C
and D12C only)
1, 3, 4
“MID 128 PID 94 Fuel
Delivery Pressure” page
106
MID 128-PID 100
Engine Oil Pressure
1, 3, 4
“MID 128 PID 100 Engine Oil Pressure” page
110
MID 128–PID 102
Boost Pressure
3, 4
“MID 128 PID 102
Boost Pressure” page
114
MID 128–PID 105
Boost Air Temperature
3, 4
“MID 128 PID 105
Boost Air Temperature”
page 118
MID 128–PID 107
Air Filter Differential Pressure
0, 3, 4, 5
“MID 128 PID 107 Air
Filter Differential Pressure” page 122
MID 128–PID 108
Atmospheric Pressure
3, 4
“MID 128 PID 108 Atmospheric Pressure”
page 125
MID 128–PID 110
Engine Coolant Temperature
0, 3 ,4
“MID 128 PID 110
Engine Coolant Temperature” page 126
MID 128–PID 111
Coolant level
1
“MID 128 PID 111
Coolant Level” page 129
MID 128–PID 158
Battery Voltage
3
“MID 128 PID 158 Battery Voltage” page 131
MID 128–PID 172
Air Inlet Temperature
3, 4
“MID 128 PID 172 Air
Inlet Temperature” page
133
MID 128–PID 174
Fuel Temperature (D7C and
D12C only)
3, 4
“MID 128 PID 174 Fuel
Temperature” page 136
91
Group 28
Troubleshooting
Error code
Component/Function
FMI
Section
MID 128–PID 175
Engine Oil Temperature
0, 3, 4
“MID 128 PID 175 Engine Oil Temperature”
page 140
MID 128–PID 228
Road Speed Sensor Calibration
11
“MID 128 PID 228
Road Speed Sensor
Calibration” page 144
MID 128–PPID 86
Engine Brake Torque Percent
9
“MID 128 PPID 86 Engine Brake Torque
Percent” page 146
MID 128–PPID 119
High Coolant Temperature
0
“MID 128 PPID 119
High Coolant Temperature” page 148
MID 128–PPID 122
VCB Engine Compression
Brake (D12B adn D12C only)
3, 4, 5
“MID 128 PPID 122
VCB Engine Compression Brake” page 151
MID 128–PPID 123
EPG 2 (D12B adn D12C only)
3, 4, 5
“MID 128 PPID 123
EPG 2” page 153
MID 128–PPID 124
EPG 1
3, 4, 5
“MID 128 PPID 124
EPG 1” page 155
MID 128–SID 1-6
Injector (D12B and D12C only)
2, 3, 4, 5, 7, 11
“MID 128 SID
1/2/3/4/5/6 Injector ”
page 157
MID 128–SID 17
Fuel Shutoff Valve (D7C only)
3, 4, 5
“MID 128 SID 17 Fuel
Shutoff Valve” page 161
MID 128–SID 20
Timing Sleeve (D7C only)
2, 3, 4, 5, 6, 7, 8, 11
“MID 128 SID 20 Timing Sleeve” page 163
MID 128–SID 21
Engine Position Timing Sensor (D12B and D12C)
3, 8
“MID 128 SID 21 Engine Position Timing
Sensor” page 166
MID 128–SID 21
Needle Lift Sensor (D7C only)
2
“MID 128 SID 21 Needle Lift Sensor” page
168
MID 128–SID 22
Engine Speed Sensor
2, 3, 8
“MID 128 SID 22 Engine Speed Sensor”
page 170
MID 128–SID 23
Rack Actuator (D7C only)
2, 3, 4, 5, 6, 7, 8, 11
“MID 128 SID 23 Rack
Actuator” page 172
MID 128–SID 24
Rack Position Sensor (D7C
only)
2, 13
“MID 128 SID 24 Rack
Position Sensor” page
175
MID 128–SID 33
Fan Control
3, 4, 5
“MID 128 SID 33 Fan
Control” page 177
MID 128–SID 64
Redundant Engine Speed
Sensor (D7C only)
3, 8
“MID 128 SID 64 Redundant Engine Speed
Sensor” page 179
MID 128–SID 70
Preheater Element 1
3, 4, 5
“MID 128 SID 70 Preheater Element 1” page
181
92
Group 28
Troubleshooting
Error code
Component/Function
FMI
Section
MID 128–SID 71
Preheater Element 2 (D12B
only)
3, 4, 5
“MID 128 SID 71 Preheater Element 2” page
183
MID 128–SID 230
Idle Validation Switch 1
3, 4
“MID 128 SID 230 Idle
Validation Switch 1”
page 185
MID 128–SID 231
SAE J1939 Control Link
2, 9, 11, 12
“MID 128 SID 231 SAE
J1939 Control Link”
page 187
MID 128–SID 232
5 Volt DC Supply
3, 4
“MID 128 SID 232 5 Volt
DC Supply” page 189
MID 128–SID 240
Program Memory
2, 12
“MID 128 SID 240 Program Memory” page 191
MID 128–SID 250
SAE J1587/1708 Information
Link
12
“MID 128 SID 250 SAE
J1587/1708 Information
Link” page 192
MID 128–SID 253
Data Set Memory EEPROM
2, 12
“MID 128 SID 253 Data
Set Memory EEPROM”
page 193
MID 128–SID 254
Engine Electronic Control Unit
(EECU)
2, 8, 9, 11, 12, 13
“MID 128 SID 254 Engine Electronic Control
Unit (EECU)” page 194
93
Group 28
94
Troubleshooting
Group 28
Troubleshooting
MID 128 PID 45 Preheater Status
The preheat relay is provided battery voltage at all times through the supply wire. If the
EECU requests preheat operation (based on engine temperature), the control wire will
be grounded through the EECU. Preheating is standard on the D7C engine with one
preheat relay/element. Preheating is optional on the D12B engine with two preheat relays/elements.
Fault Codes
FMI 3
Reaction from the EECU:
Short circuit to battery voltage.
•
•
Conditions for fault code:
•
•
Fault code is set.
Yellow lamp is requested.
Output activated.
Noticeable external symptom:
Short circuit to battery voltage on EB31.
•
•
Yellow lamp lights up.
High current consumption.
Possible cause:
The intake air is warm since the preheating relay is
on all the time.
•
Short circuit to battery voltage on wire between preheating relay and EECU.
•
•
Short circuit in the preheating relay.
FMI 5:
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU switches off the output.
Noticeable external symptom:
•
•
•
•
Yellow lamp lights up.
White smoke for cold start.
Difficult to start in extreme cold.
•
•
Output switched off.
Open circuit.
Possible cause:
•
•
Blown fuse to the supply for preheating relay.
•
•
Open circuit in the preheating relay.
Open circuit in wire between EECU and preheating
relay.
Open circuit in supply wire to preheating relay.
Reaction from the EECU:
Short circuit to ground.
Conditions for fault code:
Output switched off.
Short circuit to ground on EB31.
Possible cause:
•
Conditions for fault code:
The preheating relay is not activated.
FMI 4
•
•
Break
Short circuit to ground on wire between preheating
relay and EECU.
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU switches off the output.
Noticeable external symptom:
•
•
•
•
Yellow lamp lights up.
The preheating relay is not activated.
White smoke for cold start.
Difficult to start in extreme cold.
95
Group 28
Troubleshooting
MID 128 PID 45 Preheater Status, Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections, switch resistance, and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: Check the component to verify
that each of the following values is
correct. Incorrect values can cause
this component to fail.
Control wire / alternate ground
J-39200
180 k
Supply wire:
Ignition key must be in the ON position.
Measuring
points
Optimal value
Supply wire / alternate ground
B+
96
J-39200
Ignition key must be in the OFF position.
Note: Each relay must be checked independently.
Measuring
points
Optimal value
Control and supply terminals on
the preheat relay
8.5
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Note: Test with “Preheat ON” can only
be performed if the EECU requested
preheat.
Optimal value
4
Measure the voltage at the supply wire
(D7C: small solid black wire; D12B:
small blue/red wire) using voltmeter J39200.
1
Disconnect the control and supply
wires to the preheat relay.
Control of the preheating relay
Control wire:
Measuring
points
Preheating relay
Check of Subsystem
2
Disconnect the control wire (D7C:
small blue/red wire; D12B: small solid
black wire) at the preheat relay.
3
Ignition key must be in the OFF position.
Check of component
J-39200
Measuring
points
Optimal value
EB31 / EB9
B+ (preheat off)
EB31 / EB9
0 V (preheat on)
Ground term
EB31 with a
jumper wire
preheat relay
clicks on
J-41132
J-43233
J-39200
Group 28
Troubleshooting
MID 128 PID 49 ABS Control Status
Applies only to vehicles with ABS.
Fault Codes
FMI 9
Status message from the ABS control unit is not available (SAE J1587 message).
Conditions for fault code:
•
PID 49 — the message is unavailable or is not being updated regularly.
Possible cause:
•
•
Error in the information link (SAE J1587).
Error from the ABS control unit.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
97
Group 28
Troubleshooting
MID 128 PID 49 ABS Control
Status, Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Also check if the ABS system has any active fault codes.
This fault code could be due to the fact that there is a
fault in the ABS system.
Check of Subsystem
Check of the SAE J1587 Information link
1
Ignition key must be in the OFF position.
Connect breakout box J-41132 in series between connector EB and the
EECU.
2
Connect jumper harness J-43233 in
series between connector EA and the
EECU.
Measuring
points
Optimal value
EB25 / DCA
(connection A in
diagnostics connector)
<1
EB26 / DCB
(connection B in
diagnostics connector)
<1
98
J-41132
J-43233
J-39200
Group 28
Troubleshooting
MID 128 PID 84 Road Speed
Fault Codes
FMI 9
Vehicle road speed signal not available (SAE J1587
message).
Conditions for fault code:
•
PID 84 — the message is unavailable or is not being updated regularly.
Possible cause:
•
•
•
Fault in speed sensor.
Fault in the information link (SAE J1587).
Error from the vehicle ECU (VECU).
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
If FMI 11 has also been set, the EECU limits the engine speed to approx. 1700 rpm.
Noticeable external symptom:
•
•
Yellow lamp lights up.
If FMI 11 has also been set, the maximum engine
speed is approx. 1700 rpm.
FMI 11
Vehicle road speed signal not available. (SAE J1939
message).
Conditions for fault code:
•
The vehicle speed signal is not available on the
communications link (SAE J1939).
Possible cause:
•
•
•
Fault in speed sensor.
Fault in the communications link (SAE J1939).
Fault in VECU.
Reaction from the EECU:
•
•
•
Fault code is set.
•
If FMI 9 has also been set, the EECU limits the engine speed to approx. 1700 rpm.
Yellow lamp is requested.
The message is read from the information link (SAE
J1587) instead.
Noticeable external symptom:
•
•
Yellow lamp lights up.
If FMI 9 has also been set, the maximum engine
speed is approx. 1700 rpm.
99
Group 28
Troubleshooting
MID 128 PID 84 Road Speed,
Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Also check the speed sensor and the VECU. This fault
code could be due to the fact that there is a fault in any
of these components.
Check of Subsystem
Check of the SAE J1587 Information link
1
Ignition key must be in the OFF position.
Connect breakout box J-41132 in series between connector EB and the
EECU.
2
Connect jumper harness J-43233 in
series between connector EA and the
EECU.
Measuring
points
Optimal value
EB25 / DCA
(connection A in
diagnostics connector)
<1
EB26 / DCB
(connection B in
diagnostics connector)
<1
100
J-41132
J-43233
J-39200
Group 28
Troubleshooting
MID 128 PID 85 Cruise Control Status
Fault Codes
FMI 9
Status message from Cruise Control is not available
(SAE J1587 message).
Conditions for fault code:
•
PID 85 — the message is unavailable or not being
updated regularly.
Possible cause:
•
•
Fault in the information link (SAE J1587).
Fault in the VECU.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
101
Group 28
Troubleshooting
MID 128 PID 85 Cruise Control
Status, Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Also check the cruise control switch and VECU. This
fault code could be due to the fact that there is a fault in
any of these components.
Check of Subsystem
Check of the SAE J1587 Information link
1
Ignition key must be in the OFF position.
Connect breakout box J-41132 in series between connector EB and the
EECU.
2
Connect jumper harness J-43233 in
series between connector EA and the
EECU.
Measuring
points
Optimal value
EB25 / DCA
(connection A in
diagnostics connector)
<1
EB26 / DCB
(connection B in
diagnostics connector)
<1
102
J–41132
J-43233
J-39200
Group 28
Troubleshooting
MID 128 PID 91 Accelerator Pedal Position
Fault Codes
FMI 9
Accelerator pedal message not available. (SAE J1587
message)
Conditions for fault code:
•
PID 91 message is unavailable or not being updated
regularly.
Possible cause:
•
•
•
the “Limp home mode.”
Noticeable external symptom:
•
•
Yellow lamp lights up.
If FMI 9 has also been set, the engine will be put in
the “Limp home mode” and the buffered idle validation switch is used instead of the accelerator pedal
position sensor.
Fault in the accelerator pedal.
Fault in the information link (SAE J1587).
Error from the VECU.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
If FMI 11 has also been set, the EECU will switch to
the “Limp home mode”.
Noticeable external symptom:
•
•
Yellow lamp lights up.
If FMI 11 has also been set, the engine will be put
in the “Limp home mode” and the buffered idle validation switch is used instead of the accelerator
pedal position sensor.
FMI 11
Accelerator pedal faulty. (SAE J1939 message)
Conditions for fault code:
•
Faults in the accelerator pedal sensor are sent on
the communications link (SAE J1939).
•
The accelerator pedal signal is not available on the
communications link (SAE J1939).
Possible cause:
•
•
•
Fault in the accelerator pedal.
Fault in the communications link (SAE J1939).
Error from the VECU.
Reaction from the EECU:
•
•
•
Fault code is set.
•
If FMI 9 has also been set, the EECU will switch to
Yellow lamp is requested.
Accelerator pedal signal is retrieved instead from
the information link (SAE J1587).
103
Group 28
Troubleshooting
MID 128 PID 91 Accelerator
Pedal Position, Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Also check the accelerator pedal and the VECU. This
fault code could be due to the fact that there is a fault in
any of these components.
Check of Subsystem
Check of the SAE J1587 Information link
1
Ignition key must be in the OFF position.
Connect breakout box J-41132 in series between connector EB and the
EECU.
2
Connect jumper harness J-43233 in
series between connector EA and the
EECU.
Measuring
points
Optimal value
EB25 / DCA
(connection A in
diagnostics connector)
<1
EB26 / DCB
(connection B in
diagnostics connector)
<1
104
J-41132
J-43233
J-39200
Group 28
Troubleshooting
MID 128 PID 94 Fuel Delivery Pressure
D7C and D12C
In addition to the fuel pressure, the sensor also measures the fuel temperature.
Fault Codes
FMI 1
Pressure too low.
Conditions for fault code:
•
The voltage on EA27 is below the alarm limit.
Possible cause:
•
•
•
•
•
Clogged fuel filter.
Air in fuel system.
Opening pressure too low on overflow valve.
Worn out fuel pump.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
FMI 4
Short circuit to ground.
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
•
•
Short circuit to voltage, signal wire.
Mechanical fault in sensor.
Reaction from the EECU:
•
•
•
•
Yellow lamp lights up.
Low power output.
Difficult to start.
Blue smoke.
FMI 3
Conditions for fault code:
•
The voltage on EA27 is under 0.08 V.
Possible cause:
•
•
•
•
•
•
Break, 5 V supply wire.
Break, signal wire.
Break, ground wire.
Short circuit to ground, 5 V supply wire.
Short circuit to ground, signal wire.
Fault in sensor
Short circuit to voltage or permanent loss of signal.
Reaction from the EECU:
Conditions for fault code:
•
•
•
The voltage on EA27 is below the alarm limit.
Fault code is set.
Yellow lamp is requested.
Possible cause:
Noticeable external symptom:
•
•
Short circuit to voltage, 5 V supply wire
Yellow lamp lights up.
105
Group 28
Troubleshooting
MID 128 PID 94 Fuel Delivery
Pressure, Check
D7C and D12C
Special tools: J-43233, J-39200, J-41132,
9998534
Signal wire:
5
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
J-39200
2 / alternate
ground
Optimal value
100 k
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
9998534
2
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
4 / alternate
ground
<1
Supply wire:
4
Measure the voltage with voltmeter J39200.
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
5V
106
Fuel pressure sensor
1
Disconnect the connector for the fuel
pressure sensor. Install breakout harness 9998534 to the sensor connector
only.
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector for the fuel
pressure sensor. Install breakout harness 9998534 to the wiring harness
end only.
Check of component
J-39200
Optimal value
1/4
11 k
1/2
40 k
2/4
40 k
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
4 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
Check of Subsystem
Fuel Pressure
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
Measuring
points
Optimal value
EA27 / EA5
0.5 V (engine
not running)
J-41132
J-43233
J-39200
Note: For fuel pressure/voltage chart,
see page 109.
107
Group 28
Troubleshooting
Fuel Pressure Sensor, Pressure/Voltage Chart
W2002799
108
Group 28
Troubleshooting
MID 128 PID 100 Engine Oil Pressure
In addition to the oil pressure, the sensor also measures the oil temperature.
Fault Codes
FMI 1
Pressure too low.
Conditions for fault code:
•
The voltage on EA14 is below the alarm limit.
Possible cause:
•
•
•
•
•
Fault in overflow valve.
Oil level too low.
•
Fault in sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 100.
Noticeable external symptom:
Worn oil pump.
•
•
Fault in sensor.
FMI 4
Contaminated oil, slow-flowing or too thin.
Yellow lamp lights up.
The oil pressure gauge shows 0.
Reaction from the EECU:
Short circuit to ground or open circuit.
•
•
Fault code is set.
Conditions for fault code:
Power reduction in the first stage and shutdown in
2nd stage (if engine protection is chosen in the data
set).
•
Noticeable external symptom:
•
•
LED lights up at the oil pressure gauge.
•
Engine shut-down if the vehicle speed falls below 5
mph (3 km/h), if engine protection is chosen in the
data set.
Power reduction (if engine protection is chosen in
the data set).
The voltage on EA14 is under 0.08 V.
Possible cause:
•
•
•
•
•
Break, 5 V supply wire.
Break, signal wire.
Short circuit to ground, 5 V supply wire.
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
The voltage on EA14 exceeds 4.95 V.
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 100.
Possible cause:
Noticeable external symptom:
•
•
•
•
Short circuit to battery voltage, 5 V supply wire.
Short circuit to battery voltage or 5 V, signal wire.
Yellow lamp lights up.
The oil pressure gauge shows 0.
109
Group 28
Troubleshooting
MID 128 PID 100 Engine Oil
Pressure, Check
Special tools: J-43233, J-39200, J-41132,
9998534
5
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
2
Disconnect the connector to the oil
pressure sensor. Install breakout harness 9998534 to the wiring harness
end only.
9998534
Optimal value
4 / alternate
ground
<1
J-39200
Supply wire:
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
5V
Check of component
2
Measure the resistance with ohmmeter J-39200.
Measuring
points
4
Measure the voltage with voltmeter J39200.
100 k
Ignition key must be in the OFF position.
Ignition key must be in the OFF position.
Measuring
points
2 / alternate
ground
Optimal value
1
Disconnect the connector to the oil
pressure sensor. Install breakout harness 9998534 to the sensor harness
end only.
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
Measuring
points
Oil pressure sensor
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
110
Signal wire:
J-39200
Optimal value
1/4
11 k
1/2
40 k
2/4
40 k
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
4 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
Check of Subsystem
Oil pressure
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
Measuring
points
Optimal value
EA14 / EA5
0.5 V (engine
not running)
J-41132
J-43233
J-39200
Note: For oil pressure/voltage chart,
see “Oil Pressure Sensor, Pressure/Voltage Chart” page 113.
111
Group 28
Troubleshooting
Oil Pressure Sensor, Pressure/Voltage Chart
W2002732
112
Group 28
Troubleshooting
MID 128 PID 102 Boost Pressure
In addition to the boost pressure, the sensor also measures the boost air temperature.
Fault Codes
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
The voltage on EA3 exceeds 4.95 V.
Possible cause:
•
•
•
Short circuit to battery voltage, 5 V supply wire.
Short circuit to battery voltage or 5 V, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 102.
Power reduction.
Noticeable external symptom:
• Yellow lamp lights up.
• The boost pressure gauge shows 0.
• Low power output.
FMI 4
Short circuit to ground or open circuit.
Conditions for fault code:
•
The voltage on EA3 is under 0.08 V.
Possible cause:
•
•
•
•
•
Break, 5 V supply wire.
Break, signal wire.
Short circuit to ground, 5 V supply wire.
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 102.
Power reduction.
Noticeable external symptom:
•
•
•
Yellow lamp lights up.
The boost pressure gauge shows 0.
Low power output.
113
Group 28
Troubleshooting
MID 128 PID 102 Boost Pressure, Check
Signal wire:
Special tools: J-43233, J-39200, J-41132,
9998534
5
Measure the resistance with ohmmeter J-39200.
NOTE!
Ignition key must be in the OFF position.
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VN/VHD, Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the boost
pressure sensor. Install breakout harness 9998534 to the wiring harness
end only.
2 / alternate
ground
1
Disconnect the connector to the boost
pressure sensor. Install breakout harness 9998534 to the sensor harness
end only.
9998534
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
4 / alternate
ground
<1
Supply wire:
4
Measure the voltage with voltmeter J39200.
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
5V
100 k
Check of component
Measuring
points
3
Measure the resistance with ohmmeter J-39200.
Optimal value
Boost pressure sensor
Ground wire:
114
Measuring
points
J-39200
J-39200
Optimal value
1/4
11.5 k
1/2
44 k
2/4
44 k
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
4 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
Check of Subsystem
Boost pressure
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
Measuring
points
Optimal value
EA3 / EA5
1.2 V (sea level,
engine not running)
J-41132
J-43233
J-39200
Note: For boost pressure/voltage
chart, see “Boost Pressure Sensor,
Pressure/Voltage Chart” page 117.
115
Group 28
Troubleshooting
Boost Pressure Sensor, Pressure/Voltage Chart
W2002730
116
Group 28
Troubleshooting
MID 128 PID 105 Boost Air Temperature
In addition to the boost air temperature, the sensor also measures the boost pressure.
The boost air temperature signal can be used to switch on the radiator fan.
Fault Codes
FMI 3
Short circuit to voltage or open circuit.
Conditions for fault code:
•
The voltage on EA2 exceeds 4.95 V.
Possible cause:
•
•
•
•
•
Short circuit to voltage, signal wire.
Short circuit to voltage, ground wire.
Break, signal wire.
Break, ground wire.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
The voltage on EA2 is under 0.08 V.
Possible cause:
•
•
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
117
Group 28
Troubleshooting
MID 128 PID 105 Boost Air
Temperature, Check
Special tools: J-43233, J-39200, J-41132,
9998534
Signal wire:
5
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
2
Disconnect the connector to the boost
air temperature sensor. Install breakout harness 9998534 to the wiring
harness end only.
Measuring
points
3 / alternate
ground
1
Disconnect the connector to the boost
air temperature sensor. Install breakout harness 9998534 to the sensor
harness only.
9998534
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Ground wire:
Optimal value
4 / alternate
ground
<1
Optimal value
3/4
6.2 k
(20 C/68
F)
3/4
2.5 k
(40
C/104 F)
J-39200
Ignition key must be in the OFF position.
Measuring
points
5.7 k
Check of component
Measuring
points
3
Measure the resistance with ohmmeter J-39200.
Optimal value
Boost air temperature sensor
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
4 / alternate
ground
open circuit
Supply wire:
4
Measure the voltage with voltmeter J39200.
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
5V
118
J-39200
J-39200
Note: For boost air temperature/resistance chart, see “Boost Air
Temperature Sensor, Temperature/Resistance Chart” page 121.
9998534
J-39200
Group 28
Troubleshooting
Check of Subsystem
Boost air temperature
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
Measuring
points
Optimal value
EA2 / EA5
2.6 V (20 C/68
F)
EA2 / EA5
1.6 V (40 C/104
F)
J-41132
J-43233 J39200
Note: For boost air temperature/resistance chart, see “Boost Air
Temperature Sensor, Temperature/Resistance Chart” page 121.
119
Group 28
Troubleshooting
Boost Air Temperature Sensor,
Temperature/Resistance Chart
W2002728
120
Group 28
Troubleshooting
MID 128 PID 107 Air Filter Differential Pressure
(D12B, D12C, D7C Engines)
W2003315
Fault Codes
FMI 0
Filter restriction is too great.
The pressure drop (filter restriction) is greatest at high
engine speed/load. With current engine software, once
PID 107 is triggered, it remains active until the ignition is
turned to the OFF position. At that time, the fault code is
reset (neither active nor inactive) until the fault condition
recurs.
•
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
Possible checks:
•
“MID 128 PID 107 Air Filter Differential Pressure,
Check” page 124.
Conditions for fault code:
•
•
Filter restriction too great.
Voltage between EB17–EB8 exceeds 3.25 ± 0.25 V.
Possible cause:
•
•
Clogged air filter.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp is illuminated.
Loss of tractive power.
Possible action:
•
•
T2012730
Fig. 13: 7084 - air filter restriction/temperature sensor;
9070 - EECU.
Check/replace the air filter.
See Service Bulletin, “Checklist A: Turbo Boost
Pressure,” publication number PV776–200–040SB.
FMI 3
Short circuit to battery voltage.
Conditions for fault code:
•
Voltage between EB17–EB8 exceeds 11.1 V.
Possible cause:
•
•
•
Short circuit to battery voltage, signal wire.
Short circuit to battery voltage, ground wire.
Fault in sensor.
Reaction from the EECU:
•
Fault code is set.
121
Group 28
FMI 4
Short circuit to ground.
Conditions for fault code:
•
Voltage between EB17–EB8 is under 1.1 V.
Possible cause:
•
•
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
Possible checks:
•
“MID 128 PID 107 Air Filter Differential Pressure,
Check” page 124.
FMI 5:
Break
Conditions for fault code:
•
Voltage between EB17–EB8 exceeds 7.7 V.
Possible cause:
•
•
Break in signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
Possible checks:
•
122
“MID 128 PID 107 Air Filter Differential Pressure,
Check” page 124.
Troubleshooting
Group 28
Troubleshooting
MID 128 PID 107 Air Filter Differential Pressure, Check
(D12B, D12C, D7C Engines)
Special tools: 9998534, J-39200, J-43233, J41132
Check of Component
Note: Faults in the component can be caused by faults
in the wiring harness of the EECU. Thus, a check of the
wiring harness should also be made before connecting a
new component.
Air Filter Restriction/Temperature Sensor
NOTE!
Check all the particular connectors for loose connections, switch resistance, and oxidation.
For detailed circuit information, refer to “VN/VHD, Electrical Schematics,” Group 37.
Measurement at the Component’s
Connector, to the EECU
1
Note: Check to verify that each of the
following values is correct. Incorrect
values can also cause this component
to fail. It is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the air
filter restriction/temperature sensor. Install breakout harness 9998534 to the
wiring harness only.
1
Disconnect the connector to the air
filter restriction/temperature sensor. Install breakout harness 9998534 to the
sensor harness end only.
2
Measure the resistance with DMM J39200.
9998534
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1/2
330 (inactive;
normal position)
1/2
2.2 k
(active)
9998534
Check of Subsystem
Air Filter Indicator
Ground wire:
3
Measure the resistance using DMM J39200.
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
2 / alternate
ground
<1
2
Measure the voltage with DMM J39200.
Ignition key must be in the ON position.
Signal wire/supply wire:
4
Measure the voltage at the supply wire
using DMM J-39200.
1
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
J-39200
Measuring
points
Optimal value
EB8 / EB17
1.35 V (inactive;
normal position)
5.1 V (active)
J-41132
J-43233
J-39200
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
80% B+
123
Group 28
Troubleshooting
MID 128 PID 108 Atmospheric Pressure
The sensor is located inside the EECU and therefore cannot be checked. The signal is
used to calculate the turbo pressure and to compensate the fuel when driving at high
altitudes.
Fault Codes
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
The signal from the internal sensor exceeds 4.95 V.
Possible cause:
•
•
Internal fault in the EECU.
The EECU has been exposed to extremely high
pressure.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
Poor response at high altitudes.
FMI 4
Short circuit to ground or open circuit.
Conditions for fault code:
•
The signal from the internal sensor is under 0.08 V.
Possible cause:
•
•
Internal fault in the EECU.
The EECU has been exposed to extremely low
pressure.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
124
Yellow lamp lights up.
Poor response at high altitudes.
Group 28
Troubleshooting
MID 128 PID 110 Engine Coolant Temperature
Fault Codes
FMI 0
Reaction from the EECU:
Temperature too high.
Conditions for fault code:
•
The coolant temperature exceeds 102 C/216 F.
Possible cause:
•
•
•
•
•
•
•
•
Low coolant level.
Fault in thermostat.
Clogged radiator (internally/externally).
Clogged intercooler (on the outside).
Poor through-flow in the cooling system.
Worn coolant pump.
Fault in pressure cap, expansion tank.
Fault in sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Power reduction in the first stage.
The engine is shut down in the second stage (if engine protection is chosen in the data set).
Noticeable external symptom:
•
•
•
LED lights up at the coolant temperature gauge.
Low power output.
The engine is shut down (if engine protection is chosen in the data set).
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 110.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The coolant temperature gauge shows 0.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
The voltage on EA25 is under 0.08 V.
Possible cause:
•
•
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 110.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The coolant temperature gauge shows 0.
FMI 3
Short circuit to voltage or open circuit.
Conditions for fault code:
•
The voltage on EA25 exceeds 4.95 V.
Possible cause:
•
•
•
•
•
Short circuit to battery or 5 V voltage, signal wire.
Short circuit to voltage, ground wire.
Break, signal wire.
Break, ground wire.
Fault in sensor.
125
Group 28
Troubleshooting
MID 128 PID 110 Engine
Coolant Temperature, Check
Check of component
Special tools: J-43233, J-39200, J-41132,
9998534
1
Disconnect the connector to the
coolant temperature sensor. Install
breakout harness 9998534 to the sensor harness only.
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the
coolant temperature sensor. Install
breakout harness 9998534 to the
wiring harness end only.
Optimal value
2 / alternate
ground
<1
Signal wire:
Ignition key must be in the OFF position.
Measuring
points
1 / alternate
ground
126
Optimal value
1.4 k
Optimal value
1/2
1.9 k
(20 C/68
F)
1/2
160 (85
C/185 F)
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
Check of Subsystem
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
4
Measure the resistance with ohmmeter J-39200.
Note: For coolant temperature/resistance chart, see “Coolant
Temperature Sensor, Temperature/Resistance Chart” page 128.
Coolant temperature
Ignition key must be in the OFF position.
Measuring
points
Ignition key must be in the OFF position.
9998534
J-39200
9998534
J-39200
Measure the resistance with ohmmeter J-39200.
Measuring
points
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
Coolant temperature sensor
J-39200
Measuring
points
Optimal value
EA25 / EA5
3.0 V (20 C/68
F)
EA25 / EA5
0.6 V (85 C/185
F)
Note: For coolant temperature/resistance chart, see “Coolant
Temperature Sensor, Temperature/Resistance Chart” page 128.
J-41132
J-43233
J-39200
Group 28
Troubleshooting
Coolant Temperature Sensor, Temperature/Resistance Chart
W2002729
127
Group 28
Troubleshooting
MID 128 PID 111 Coolant Level
The information applies only to the magnetic coolant level sensor that is mounted in
the bottom of the radiator expansion tank. Some models (WG, AC) are equipped with a
capacitive probe and an electronic coolant level module that converts the capacitive
signal to an output signal that the EECU can understand.
Fault Codes
FMI 1
Level too low.
Conditions for fault code:
•
•
Coolant level switch closed.
The voltage on EB7 is under 45% of the battery
voltage.
Possible cause:
•
•
•
Low coolant level.
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
The EECU reduces the output after 30 seconds and
shuts down the engine if the vehicle speed goes under 5 mph or 3 km/h (if engine protection is chosen
in the data set).
Noticeable external symptom:
•
•
128
Red lamp lights up.
The EECU reduces the output after 30 seconds and
shuts down the engine if the vehicle speed goes under 5 mph or 3 km/h (if engine protection is chosen
in the data set).
Group 28
Troubleshooting
MID 128 PID 111 Coolant Level,
Check
Special tools: J-43233, J-39200, J-41132, J42472
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the
coolant level sensor. Install breakout
harness J-42472 to the wiring harness
end only.
Check of component
The coolant level sensor
1
Disconnect the connector to the
coolant level sensor. Install breakout
harness J-42472 to the sensor harness end only.
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1/2
open circuit
(coolant level
normal)
1/2
J-42472
J-39200
J-42472
<1 (coolant
level low)
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
Check of Subsystem
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
Coolant level
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1 / alternate
ground
<1
Signal wire:
4
Measure the resistance with ohmmeter J-39200.
J-39200
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Measuring
points
Optimal value
EB7 / EB8
80% B+ (open,
coolant level normal)
EB7 / EB8
0 V (closed,
coolant level low)
J-41132
J-43233
J-39200
Ignition key must be in the OFF position.
Measuring
points
2 / alternate
ground
Optimal value
2.1 k
129
Group 28
MID 128 PID 158 Battery Voltage
Fault Codes
FMI 3
Battery voltage too high.
Conditions for fault code:
•
The battery voltage exceeds 36 V.
Possible cause:
•
•
Fault in alternator.
Fast charger connected.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
130
Yellow lamp lights up.
Troubleshooting
Group 28
Troubleshooting
MID 128 PID 158 Battery Voltage, Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Check of Subsystem
EECU supply relay
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Measuring
points
Optimal value
EB9 / EB11
B+
EB10 / EB12
B+
EB9 / EB10
<1
EB11 / EB12
J-41132
J-43233
J-39200
<1 131
Group 28
Troubleshooting
MID 128 PID 172 Air Inlet Temperature
An ambient air temperature sensor is mounted in the piping between the air filter and
the turbo inlet. In addition to ambient air temperature, the sensor also measures air filter restriction. The air filter restriction function is currently not used.
Fault Codes
FMI 3
Short circuit to voltage or open circuit.
Conditions for fault code:
•
The voltage on EB3 exceeds 4.95 V.
Possible cause:
•
•
•
Short circuit to voltage, signal wire.
•
•
Break, ground wire.
Short circuit to voltage, ground wire.
Break, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
Blue smoke in cold weather conditions.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
The voltage on EB3 is under 0.08 V.
Possible cause:
•
Short circuit to ground, signal wire.
•
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
132
Yellow lamp lights up.
Blue smoke in cold weather conditions.
Group 28
Troubleshooting
MID 128 PID 172 Air Inlet Temperature, Check
Special tools: J-43233, J-39200, J-41132,
9998534
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
Check of component
Air temperature sensor
1
Disconnect the connector to the ambient air temperature sensor. Install
breakout harness 9998534 to the sensor harness end only.
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Note: For ambient air temperature/resistance chart, see “Ambient Air
Temperature Sensor, Temperature/Resistance Chart” page 135.
Measuring
points
3/4
2
Disconnect the connector to the ambient air temperature sensor. Install
breakout harness 9998534 to the
wiring harness only.
9998534
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
4 / alternate
ground
<1
Signal wire:
4
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
3 / alternate
ground
Optimal value
5.7 k
(20 C/68
F)
Check of Subsystem
Ambient air temperature inlet
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
9998534
J-39200
J-39200
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Measuring
points
Optimal value
EB3 / EB13
2.6 V (20 C/68
F)
EB3 / EB13
1.2 V (50 C/122
F)
J-41132
J-43233
J-39200
Note: For ambient air temperature/resistance chart, see “Ambient Air
Temperature Sensor, Temperature/Resistance Chart” page 135.
Optimal value
6 k
133
Group 28
Troubleshooting
Ambient Air Temperature Sensor,
Temperature/Resistance Chart
W2002733
134
Group 28
Troubleshooting
MID 128 PID 174 Fuel Temperature
D7C and D12C
In addition to the fuel temperature, the sensor also measures the fuel pressure. The
signal is used for fuel density compensation.
Fault Codes
FMI 3
Short circuit to voltage or open circuit.
Conditions for fault code:
•
The voltage on EA13 exceeds 4.95 V.
Possible cause:
•
•
•
•
•
Short circuit to voltage, signal wire.
Short circuit to voltage, ground wire.
Break, signal wire.
Break, ground wire.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
Incorrect fuel quantity.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
The voltage on EA13 is under 0.08 V.
Possible cause:
•
•
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
Incorrect fuel quantity.
135
Group 28
Troubleshooting
MID 128 PID 174 Fuel Temperature, Check
Special tools: J-43233, J-39200, J-41132,
9998534
Note: Check all the particular connectors for loose connections as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
Optimal value
4 / alternate
ground
<1
9998534
Measuring
points
Optimal value
1 / alternate
ground
5V
136
1.4 k
Check of component
Measure the resistance with ohmmeter J-39200.
Note: For fuel temperature/resistance
chart, see “Fuel Temperature Sensor,
Temperature/Resistance Chart” page
139.
J-39200
Measuring
points
Supply wire:
Ignition key must be in the ON position.
3 / alternate
ground
Optimal value
Ignition key must be in the OFF position.
4
Measure the voltage with voltmeter J39200.
Measuring
points
1
Disconnect the connector to the fuel
temperature sensor. Install breakout
harness 9998534 to the sensor connector only.
Ignition key must be in the OFF position.
Measuring
points
J-39200
Fuel temperature sensor
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
5
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
D7C and D12C
2
Disconnect the connector to the fuel
temperature sensor. Install breakout
harness 9998534 to the wiring harness end only.
Signal wire:
J-39200
Optimal value
3/4
1.9 k
(20 C/68
F)
3/4
800 (40
C/104 F)
1 / alternate
ground
open circuit
3 / alternate
ground
open circuit
4 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
Check of Subsystem
Fuel temperature
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
Measuring
points
Optimal value
EA13 / EA5
3.0 V (20 C/68
F)
EA13 / EA5
2.0 V (40 C/104
F)
J-41132
J-43233
J-39200
Note: For fuel temperature/resistance
chart, see “Fuel Temperature Sensor,
Temperature/Resistance Chart” page
139.
137
Group 28
Troubleshooting
Fuel Temperature Sensor, Temperature/Resistance Chart
W2002742
138
Group 28
Troubleshooting
MID 128 PID 175 Engine Oil Temperature
In addition to the oil temperature, the sensor also measures the oil pressure.
Fault Codes
FMI 0
FMI 4
Temperature too high.
Short circuit to ground.
Conditions for fault code:
•
Conditions for fault code:
•
The oil temperature exceeds 130 C (266 F).
The voltage on EA1 is under 0.08 V.
Possible cause:
Possible cause:
•
•
•
•
Poor cooling capacity.
Fault in sensor.
Short circuit to ground, signal wire.
Fault in sensor.
Reaction from the EECU:
Reaction from the EECU:
•
•
•
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 175.
Noticeable external symptom:
Red lamp lights up.
Power reduction in the first stage (at 130 C (266 F)
and shutdown in 2nd stage (if engine protection is
chosen in the data set).
•
•
Yellow lamp lights up.
The oil temperature gauge shows 0.
FMI 3
Short circuit to voltage or open circuit.
Conditions for fault code:
•
The voltage on EA1 exceeds 4.95 V.
Possible cause:
•
•
•
•
•
Short circuit to voltage, signal wire.
Short circuit to voltage, ground wire.
Break, signal wire.
Break, ground wire.
Fault in sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU stops sending PID 175.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The oil temperature gauge shows 0.
139
Group 28
Troubleshooting
MID 128 PID 175 Engine Oil
Temperature, Check
Special tools: J-43233, J-39200, J-41132,
9998534
5
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VN/VHD, Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
2
Disconnect the connector to the oil
temperature sensor. Install breakout
harness 9998534 to the wiring harness end only.
9998534
Optimal value
4 / alternate
ground
<1
J-39200
Supply wire:
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
5V
Check of component
Measure the resistance with ohmmeter J-39200.
Note: For oil temperature/resistance
chart, see “Oil Temperature Sensor,
Temperature/Resistance Chart” page
143.
4
Measure the voltage with voltmeter J39200.
1.44 k
Ignition key must be in the OFF position.
Ignition key must be in the OFF position.
Measuring
points
3 / alternate
ground
Optimal value
1
Disconnect the connector to the oil
temperature sensor. Install breakout
harness 9998534 to the sensor harness end only.
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
Measuring
points
Oil temperature sensor
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
140
Signal wire:
J-39200
Measuring
points
Optimal value
3/4
1.9 k
(20 C/68
F)
3/4
100 (100
C/212 F)
9998534
J-39200
Group 28
Troubleshooting
Check of Subsystem
Oil temperature
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
Measuring
points
Optimal value
EA1 / EA5
3.0 V (20 C/68
F)
EA1 / EA5
0.4 V (100
C/212 F)
J-41132
J-43233
J-39200
Note: For oil temperature/resistance
chart, see “Oil Temperature Sensor,
Temperature/Resistance Chart” page
143.
141
Group 28
Troubleshooting
Oil Temperature Sensor, Temperature/Resistance Chart
W2002727
142
Group 28
Troubleshooting
MID 128 PID 228 Road Speed Sensor Calibration
Fault Codes
FMI 11
K factor message not available on the information link
(SAE J1587).
Conditions for fault code:
•
PID 228 the message is not available on the information link (SAE J1587).
Possible cause:
•
•
Fault in the information link (SAE J1587).
Error from the VECU.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
143
Group 28
Troubleshooting
MID 128 PID 228 Road Speed
Sensor Calibration, Check
Special tools: J–43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Also check the VECU. This fault code could be due to
the fact that there is a fault in the VECU.
Check of Subsystem
Check of the SAE J1587 Information link
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Measuring
points
Optimal value
EB25 / DCA
(connection A in
diagnostics connector)
<1
EB26 / DCB
(connection B in
diagnostics connector)
<1
144
J-41132
J-43233
J-39200
Group 28
Troubleshooting
MID 128 PPID 86 Engine Brake Torque Percent
Fault Codes
FMI 9
Engine brake torque information is not available (SAE
J1587 message).
Conditions for fault code:
•
PPID 86 the message is not available on the information link (SAE J1587).
Possible cause:
•
•
Fault in the information link (SAE J1587).
Error from the VECU.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
145
Group 28
Troubleshooting
MID 128 PPID 86 Engine Brake
Torque Percent, Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Also check the VECU. This fault code could be due to
the fact that there is a fault in the VECU.
Check of Subsystem
Check of the SAE J1587 Information link
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Measuring
points
Optimal value
EB25 / DCA
(connection A in
diagnostics
socket)
<1
EB26 / DCB
(connection B in
diagnostics
socket)
<1
146
J-41132
J-43233
J-39200
Group 28
Troubleshooting
MID 128 PPID 119 High Coolant Temperature
D12B, D12C, D7C Engines
Fault Codes
FMI 0
Temperature too high.
Conditions for fault code:
•
The coolant temperature exceeds 102 C (216 F).
Possible cause:
•
•
•
•
•
•
•
•
Low coolant level.
Fault in thermostat.
Clogged radiator (internally/externally).
Clogged intercooler (on the outside).
Poor through-flow in the cooling system.
Worn coolant pump.
Fault in pressure cap, expansion tank.
Fault in sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Power reduction in the first stage.
The engine is shut down in the second stage (if engine protection is chosen in the data set).
Noticeable external symptom:
•
•
•
LED lights up at the coolant temperature gauge.
Low power output.
The engine is shut down (if engine protection is chosen in the data set).
Possible checks:
•
“MID 128 PPID 119 High Coolant Temperature,
Check” page 149.
147
Group 28
Troubleshooting
MID 128 PPID 119 High Coolant
Temperature, Check
(D12B, D12C, D7C Engines)
Special tools: 9998534, J-43233, J-39200, J41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the Component’s
Connector, to the EECU
Note: An incorrect value (below) can also cause the
component to fail; therefore, it is important to check the
component if any of the values are incorrect.
1
Disconnect the connector to the
coolant temperature sensor. Install
breakout harness 9998534 to the
wiring harness end only.
9998534
Ground wire:
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
2 / alternate
ground
<1
Signal wire:
3
Measure the resistance using DMM J39200.
Ignition key must be in the OFF position.
1 / alternate
ground
148
Note: Faults in the component can be caused by faults
in the wiring harness of the EECU. Thus, a check of the
wiring harness should also be made before connecting a
new component.
Coolant Temperature Sensor
1
Disconnect the connector to the
coolant temperature sensor. Install
breakout harness 9998534 to the sensor harness end only.
2
Measure the resistance with DMM J39200.
Ignition key must be in the OFF position.
Note: A coolant temperature/resistance chart is available; see
“System Check” in Service Publication
200–870, “Fault Codes, Engine Electronic Control Unit,” order number
PV776–TSP105620/1.
Measuring
points
2
Measure the resistance using DMM J39200.
Measuring
points
Check of Component
Optimal value
1.4 k
J-39200
Optimal value
1/2
1.9 k
/ 20 C
(68 F)
1/2
160 / 85 C
(185 F)
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
Check of Subsystem
Coolant Temperature
1
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
2
Measure the voltage using DMM J39200.
Ignition key must be in the ON position.
Measuring
points
Optimal value
EA25 / EA5
3.0 V / 20 C (68
F)
EA25 / EA5
0.6 V / 85 C (185
F)
J-41132
J-43233
J-39200
149
Group 28
Troubleshooting
MID 128 PPID 122 VCB Engine Compression Brake
D12B and D12C
Fault Codes
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
The output is switched off.
Noticeable external symptom:
•
Short circuit to battery voltage between the VCB solenoid valve and EECU.
•
•
•
•
•
•
Short circuit in VCB solenoid valve.
FMI 5
•
•
Output activated.
Short circuit to battery voltage on EA33.
Possible cause:
Yellow lamp lights up.
VCB is on all the time.
Low power output.
Black smoke.
Extreme uneven operation.
Reaction from the EECU:
Break.
•
•
•
Fault code is set.
Conditions for fault code:
Yellow lamp is requested.
•
•
The output is switched off.
Output switched off.
Open circuit in the VCB circuit.
Noticeable external symptom:
Possible cause:
•
•
•
Open circuit between the VCB solenoid valve and
EECU.
•
Open circuit in the supply wire to VCB solenoid
valve.
•
•
Blown fuse for supply to VCB solenoid valve.
Yellow lamp lights up.
Reduced engine brake power because the VCB
cannot be activated.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
•
Output switched off.
Reaction from the EECU:
Short circuit to ground on EA33.
•
•
•
Possible cause:
•
Short circuit to ground between the VCB solenoid
valve and EECU.
Reaction from the EECU:
•
•
150
Open circuit in VCB solenoid valve.
Fault code is set.
Yellow lamp is requested.
Fault code is set.
Yellow lamp is requested.
Output is switched off.
Noticeable external symptom:
•
•
Yellow lamp lights up.
Reduced engine brake power because the VCB
cannot be activated.
Group 28
Troubleshooting
MID 128 PPID 122 VCB Engine
Compression Brake, Check
Special tools: J-43233, J-39200, J-41132
Check of component
Compression brake solenoid, VCB
NOTE!
1
Disconnect the two wires at the
compression brake solenoid. The compression brake solenoid is located
under the valve cover.
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
Measure the resistance with ohmmeter J-39200.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Ignition key must be in the OFF position.
D12B and D12C
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the two wires at the
compression brake solenoid. The compression brake solenoid is located
under the valve cover.
Ground control
wire / alternate
ground
J-39200
21
A / alternate
ground
open circuit
B / alternate
ground
open circuit
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
J-41132
J-43233
J-39200
Note: Test with “VCB On” can be
performed only if the EECU has requested VCB operation.
Optimal value
215 k
Supply wire:
4
Measure the voltage with voltmeter J39200.
Solenoid terminal A / B
Compression brake, VCB
Ignition key must be in the OFF position.
Measuring
points
Optimal value
Check of Subsystem
“Ground wire”/Control wire:
3
Measure the resistance with ohmmeter J-39200.
Measuring
points
J-39200
J-39200
Measuring
points
Optimal value
EA33 / alternate
ground
B+ (VCB off)
EA33 / alternate
ground
0 V (VCB on)
ground terminal
EA33 with a
jumper wire
VCB solenoid
clicks on
Ignition key must be in the ON position.
Measuring
points
Optimal value
Supply wire / alternate ground
B+
151
Group 28
Troubleshooting
MID 128 PPID 123 EPG 2
D12B and D12C
Fault Codes
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
•
Output activated.
Short circuit to battery voltage on EB36.
Possible cause:
•
Short circuit to battery voltage between solenoid
valve and EECU.
•
Short circuit in solenoid valve.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
EPG1, EPG2 and VCB outputs are switched off.
•
Yellow lamp is requested.
Noticeable external symptom:
•
•
•
•
Yellow lamp lights up.
EPG 2 constantly activated.
Low power output.
Black smoke.
FMI 5
Break.
Conditions for fault code:
•
•
Output switched off.
Open circuit in the EPG2 circuit.
Possible cause:
Noticeable external symptom:
•
•
•
•
•
The engine may be difficult to start.
•
•
•
•
Engine brake does not function.
Reaction from the EECU:
Yellow lamp lights up.
The heat retention does not function.
Blue smoke under cold conditions.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
•
152
Blown fuse for supply to EPG2.
Open circuit in the solenoid valve.
Fault code is set.
Yellow lamp is requested.
EPG1, EPG2 and VCB outputs are switched off.
Noticeable external symptom:
Short circuit to ground on EB36.
•
•
•
•
•
Short circuit to ground between solenoid valve and
EECU.
Reaction from the EECU:
•
Open circuit in supply wire to solenoid valve.
Output switched off.
Possible cause:
•
•
•
•
Open circuit between solenoid valve and EECU.
Fault code is set.
Yellow lamp lights up.
The heat retention does not function.
Blue smoke under cold conditions.
The engine may be difficult to start.
Engine brake does not function.
Group 28
Troubleshooting
MID 128 PPID 123 EPG 2,
Check
Check of component
D12B and D12C
1
Disconnect the connector to the EPG
control box. Install breakout harness
9998534 to the EPG control connector
only.
Special tools: J-43233, J-39200, J-41132,
9998534
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
EPG control (PWM box)
9998534
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1/3
23
1 / alternate
ground
open circuit
3 / alternate
ground
open circuit
Check of Subsystem
Exhaust pressure governor 2, EPG 2
2
Disconnect the connector to the EPG
control box. Install breakout harness
9998534 to the wiring harness end
only.
9998534
“Ground wire”/Control wire:
3
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
Measuring
points
3 / alternate
ground
Optimal value
1
Ignition key must be in the RUN position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Note: Test with “EPG On” can be
performed only if the EECU has requested EPG 2 operation.
Measuring
points
Optimal value
EB36 / EB9
B+, EPG 2 off
(Engine running,
parking brake
released, accelerator pedal
above idle)
EB36 / EB9
0 V, EPG 2 on
(Engine running,
parking brake
on, accelerator
at idle)
180 k
Supply wire:
4
Measure the voltage with voltmeter J39200.
J-39200
J-41132
J-43233
J-39200
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
B+
153
Group 28
Troubleshooting
MID 128 PPID 124 EPG 1
Fault Codes
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
•
Output activated.
Short circuit to battery voltage on EB35.
Possible cause:
•
Short circuit to battery voltage between solenoid
valve and EECU.
•
Short circuit in solenoid valve.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
EPG1, EPG2 and VCB outputs are switched off.
•
Yellow lamp is requested.
Noticeable external symptom:
•
•
•
•
Yellow lamp lights up.
EPG 1 constantly activated.
Low power output.
Black smoke.
FMI 5
Break.
Conditions for fault code:
•
•
Output switched off.
Open circuit in the EPG1 circuit.
Possible cause:
Noticeable external symptom:
•
•
•
•
•
Engine may be difficult to start.
•
•
•
•
Engine brake does not function.
Reaction from the EECU:
Yellow lamp lights up.
Heat retention does not function.
Blue smoke under cold conditions.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
•
154
Blown fuse for supply to EPG1.
Open circuit in the solenoid valve.
Fault code is set.
Yellow lamp is requested.
EPG1, EPG2 and VCB outputs are switched off.
Noticeable external symptom:
Short circuit to ground on EB35.
•
•
•
•
•
Short circuit to ground between solenoid valve and
EECU.
Reaction from the EECU:
•
Open circuit in supply wire to solenoid valve.
Output switched off.
Possible cause:
•
•
•
•
Open circuit between solenoid valve and EECU.
Fault code is set.
Yellow lamp lights up.
Engine brake does not function.
Heat retention does not function.
Blue smoke under cold conditions.
Engine may be difficult to start.
Group 28
Troubleshooting
MID 128 PPID 124 EPG 1,
Check
Special tools: J-43233, J-39200, J-41132,
9998534
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
9998534
Optimal value
4 / alternate
ground
180
J-39200
9998534
J-39200
Measuring
points
Optimal value
1/4
23
1 / alternate
ground
open circuit
4 / alternate
ground
open circuit
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
J-41132
J-43233
J-39200
Note: Test with “EPG On” can be
performed only if the EECU has requested EPG 1 operation.
Supply wire:
4
Measure the voltage with voltmeter J39200.
2
Disconnect the connector to EPG control. Install breakout harness 9998534
to the EPG control connector only.
Exhaust pressure governor 1, EPG 1
Ignition key must be in the OFF position.
Measuring
points
1
Note: This procedure is for the D12B
engine only. The D7C engine uses a
single EPG solenoid; to check the
solenoid used on the D7C, see publication TSI-270–600–07 (11/96).
Check of Subsystem
“Ground wire”/Control wire:
3
Measure the resistance with ohmmeter J-39200.
EPG control (PWM box)
Ignition key must be in the OFF position.
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the EPG
control box (D12B) or the EPG solenoid (D7C). Install breakout harness
9998534 to the wiring harness end
only.
Check of component (D12B only)
J-39200
Measuring
points
Optimal value
EB35 / EB9
B+ (EPG off)
EB35 / EB9
0 V (EPG on)
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
B+
155
Group 28
Troubleshooting
MID 128 SID 1/2/3/4/5/6 Injector
D12B and D12C
Error Code Information
Error code
Explanation
SID 1
Injector 1
SID 2
Injector 2
SID 3
Injector 3
SID 4
Injector 4
SID 5
Injector 5
SID 6
Injector 6
Fault Codes
FMI 2
Possible cause:
Short circuit to battery voltage, injectors high side.
•
•
Conditions for fault code:
•
•
Injector activated.
Short circuit to battery voltage on pin EA12 or EA24
(each respective injector bank’s high side).
Possible cause:
•
Short circuit to battery voltage in the wiring to the injectors’ high side.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
The particular injector bank is switched off.
Noticeable external symptom:
•
•
•
•
•
Yellow lamp lights up.
Low power output.
Uneven operation.
Abnormal noise.
3 cylinder operation.
FMI 3
Short circuit to battery voltage or short-circuited injector,
injector low side.
Conditions for fault code:
•
•
156
Injector activated.
Short circuit to battery voltage on each respective
injector’s low side (EA11, EA22, EA23, EA34, EA35,
EA36).
Short circuit between high and low side.
Short circuit to battery voltage in the wiring to the injectors’ low side.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
The particular injector or the whole of the affected
injector bank is switched off.
Noticeable external symptom:
•
•
•
•
•
Yellow lamp lights up.
Low power output.
Uneven operation.
Abnormal noise.
3 or 5 cylinder operation.
Group 28
FMI 4
Short circuit to ground, injector low or high side.
Conditions for fault code:
•
•
Injector activated.
Short circuit to ground on each respective injector’s
low side (EA11, EA22, EA23, EA34, EA35, EA36) or
high side (EA12, EA24).
Possible cause:
•
Short circuit to ground in the wiring for each respective injector’s low or high side.
Reaction from the EECU:
•
•
•
3 or 5 cylinder operation.
FMI 7
The mechanical system does not respond in the correct
way
Conditions for fault code:
•
•
Injector activated.
Cylinder balancing data too high.
Possible cause:
•
•
Fault in injector.
Poor compression.
Reaction from the EECU:
Yellow lamp is requested.
•
•
•
The particular injector bank is switched off.
Fault code is set.
Yellow lamp is requested.
The particular injector is switched off.
Yellow lamp lights up.
Noticeable external symptom:
Low power output.
•
•
•
•
•
Uneven operation.
Abnormal noise.
3 cylinder operation.
FMI 5
Open circuit in the injector circuit.
Conditions for fault code:
•
•
•
Fault code is set.
Noticeable external symptom:
•
•
•
•
•
Troubleshooting
Yellow lamp lights up.
Low power output.
Uneven operation.
Abnormal noise.
5 cylinder operation.
FMI 11
Unidentifiable error.
Injector activated.
Conditions for fault code:
Open circuit in the injector circuit.
•
Injector activated.
Possible cause:
Possible cause:
•
•
Open circuit in the wiring on low or high side. If 3
fault codes have been set (a bank) the open circuit
is on that bank’s high side, if there is only one fault
code the open circuit is on the particular injector’s
low side.
Reaction from the EECU:
•
•
•
Fault code is set.
Noticeable external symptom:
•
•
•
•
Reaction from the EECU:
•
•
•
Yellow lamp is requested.
One or three injectors are switched off.
Yellow lamp lights up.
Low power output.
Uneven operation.
Abnormal noise.
Intermittent faults.
Fault code is set.
Yellow lamp is requested.
The particular injector or the whole injector bank is
switched off.
Noticeable external symptom:
•
•
•
•
•
Yellow lamp lights up.
Low power output.
Uneven operation.
Abnormal noise.
3 or 5 cylinder operation.
157
Group 28
MID 128 SID 1/2/3/4/5/6 Injector,
Check
Special tools: J-43233, J-39200, J-41132
D12B and D12C
Troubleshooting
Wires
2
Connect breakout box J-41132 to the
EA connector, wiring harness end only.
DO NOT connect 100pt to the EECU.
NOTE!
Measure the resistance with ohmmeter J-39200.
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
Ignition key must be in the OFF position.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measuring
points
Optimal value
Note that small resistances are difficult to measure. Use
the value instead as a standard value for the open circuit
in the injector circuits.
EA11 / EA12
1.7
Measurement at the component’s
connector, to the EECU
EA23 / EA12
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
EA35 / EA24
158
EA22 / EA12
EA34 / EA24
EA36 / EA24
1.7 1.7 1.7 1.7 1.7 EA11 / alternate
ground
open circuit
EA22 / alternate
ground
open circuit
EA23 / alternate
ground
open circuit
EA34 / alternate
ground
open circuit
EA35 / alternate
ground
open circuit
EA36 / alternate
ground
open circuit
J-39200
J-41132
Group 28
Troubleshooting
Check of component
Injectors
1
Disconnect both the connections for
each respective injector.
J-39200
Measure the resistance with ohmmeter J-39200 on the injector.
Ignition key must be in the OFF position.
Measuring
points
Optimal value
High side / low
side
1.5 - 2.0
High side / alternate ground
open circuit
Low side / alternate ground
open circuit
159
Group 28
Troubleshooting
MID 128 SID 17 Fuel Shutoff Valve
D7C only
Fault Codes
FMI 3
Short circuit to battery voltage.
Conditions for fault code:
•
•
Output activated.
Short circuit to battery voltage on EB34.
Possible cause:
valve and EECU.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Short circuit to battery voltage on wire between solenoid valve and EECU.
•
•
•
Short circuit internally in the solenoid valve.
FMI 5
Yellow lamp lights up.
The solenoid valve permanently activated.
Reaction from the EECU:
Open circuit in the fuel shut-off circuit.
•
•
•
Fault code is set.
Conditions for fault code:
Yellow lamp is requested.
•
•
Output is switched off.
Output switched off.
Open circuit in the fuel shut-off circuit.
Noticeable external symptom:
Possible cause:
•
•
•
•
•
•
Yellow lamp lights up.
Engine stops or does not start.
No fuel reaches the nozzle.
Open circuit between solenoid valve and EECU.
Open circuit in supply wire to fuel shut-off valve.
Open circuit in solenoid valve.
FMI 4
Reaction from the EECU:
Short circuit to ground.
•
•
Conditions for fault code:
•
•
160
Yellow lamp is requested.
Output switched off.
Noticeable external symptom:
Short circuit to ground on EB34.
•
•
•
Possible cause:
•
Fault code is set.
Short circuit to ground on wire between solenoid
Yellow lamp lights up.
Engine stops or does not start.
No fuel reaches the nozzle.
Group 28
Troubleshooting
MID 128 SID 17 Fuel Shutoff
Valve, Check
Special tools: J-43233, J-39200, J-41132,
9998534
D7C only
Measurement at the component’s
connector, to the EECU
Check of component
Fuel shut-off valve solenoid
1
Disconnect the connector to the fuel
shut-off valve solenoid. Install breakout
harness 9998534 to the solenoid harness end only.
Ignition key must be in the OFF position.
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
Measuring
points
Optimal value
1/2
10.7
1 / alternate
ground
open circuit
2
Disconnect the connector to the fuel
shut-off valve solenoid. Install breakout
harness 9998534 to the wiring harness end only.
2 / alternate
ground
open circuit
9998534
9998534
J–39200
Check of Subsystem
Fuel shut-off
“Ground wire”/Control wire:
3
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
Measuring
points
2 / alternate
ground
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
J-41132
J-43233
J-39200
Optimal value
190 k
Measuring
points
Optimal value
EB34 / EB9
0V
Supply wire:
4
Measure the voltage with voltmeter J39200.
J-39200
Ignition key must be in the ON position.
Measuring
points
Optimal value
1 / alternate
ground
B+
161
Group 28
Troubleshooting
MID 128 SID 20 Timing Sleeve
D7C only
Fault Codes
FMI 2
•
Short circuit to battery voltage, timing sleeve, positive
side.
Reaction from the EECU:
Conditions for fault code:
•
Short circuit to battery voltage on EA9 (EECU
checks only when switching on the ignition).
Possible cause:
•
Short circuit to battery voltage on positive side.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
FMI 3
Short circuit to battery voltage, timing sleeve, ground
side.
Conditions for fault code:
•
Short circuit to battery voltage on EA21 (EECU
checks only when switching on the ignition).
Possible cause:
•
•
Short circuit between power and ground side.
Short circuit to battery voltage on ground side.
Reaction from the EECU:
•
•
•
•
Fault code is set.
Red lamp is requested.
The timing sleeve cannot be checked.
Output for timing sleeve and rack drive are switched
off.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
FMI 4
Short circuit to ground, timing sleeve, ground side.
Conditions for fault code:
•
•
•
•
•
Short circuit to ground on EA21.
Possible cause:
162
Short circuit to ground, ground side.
Fault code is set.
Red lamp is requested.
Injection angle cannot be checked.
Output for timing sleeve and rack drive are switched
off.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
FMI 5
Open circuit in the circuit to timing sleeve.
Conditions for fault code:
•
Open circuit between the EECU and the injection
pump.
Possible cause:
•
Open circuit in the wires between the EECU and the
injection pump.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
Output for timing sleeve and rack drive are switched
off.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
Group 28
Troubleshooting
FMI 6
Reaction from the EECU:
Short circuit to ground, timing sleeve positive side.
•
•
•
Conditions for fault code:
•
Short circuit to ground on EA9.
Possible cause:
•
Short circuit to ground, positive side.
Noticeable external symptom:
Red lamp is requested.
FMI 11
Output for timing sleeve and rack drive are switched
off.
Unidentifiable error.
Red lamp lights up.
The engine stops or does not start.
FMI 7
The mechanical system does not respond in the correct
way
Conditions for fault code:
•
•
Output for timing sleeve and rack drive are switched
off.
Fault code is set.
Noticeable external symptom:
•
•
Red lamp is requested.
•
•
Reaction from the EECU:
•
•
•
Fault code is set.
Needle lift signal available.
Incorrect timing sleeve.
Red lamp lights up.
The engine stops or does not start.
Conditions for fault code:
•
An unidentifiable error has been found.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
Output for timing sleeve and rack drive are switched
off.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
Possible cause:
•
•
Internal fault in the injection pump.
Interference in needle lift signal.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
Output for timing sleeve and rack drive are switched
off.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
FMI 8
Current too high to timing sleeve under long period of
time.
Conditions for fault code:
•
Current too high to timing sleeve.
Possible cause:
•
•
Internal fault in the injection pump.
Internal fault in the EECU.
163
Group 28
Troubleshooting
MID 128 SID 20 Timing Sleeve,
Check
Supply wire:
Special tools: J-43233, J-39200, J-41132, J38748
4
Measure the resistance with ohmmeter J-39200.
D7C only
Ignition key must be in the OFF position.
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to:
Service
Manuals
Function Group 37
Electrical Schematics, VNL, VNM
Measuring
points
Optimal value
3 / alternate
ground
40
J-39200
Check of component
Timing sleeve
IMPACT
Function Group 2841
Information Type: Diagnostic “Fault
Codes”
Note that small resistances are difficult to measure. Use
the value instead as a standard value for an open in the
timing sleeve circuit.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the timing
sleeve (7–pin connector on the rear of
the injection pump). Take measurements on the wiring harness
connector only.
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
4 / alternate
ground
164
Optimal value
60 k
J-39200
1
Disconnect the connector to the timing
sleeve (7–pin connector on the rear of
the injection pump). Install breakout
box J-38748 to the pump connector
end only.
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
Optimal value
3/4
1.3
3 / alternate
ground
open circuit
4 / alternate
ground
open circuit
J-38748
J-39200
Group 28
Troubleshooting
MID 128 SID 21 Engine Position Timing Sensor
D12B and D12C
The primary function of the engine position sensor (cam sensor) is to provide engine
position information to the EECU. As a secondary function, it also provides engine timing (speed) information.
Fault Codes
FMI 3
Short circuit to voltage or permanent loss of signal.
cam sensor wheel).
Conditions for fault code:
•
•
•
Reaction from the EECU:
Engine position signal is not available.
Possible cause:
•
•
•
•
•
•
Short circuit to voltage, positive wire.
•
•
•
Reversed polarity on the sensor.
Short circuit to voltage, negative wire.
•
•
•
Short circuit to ground, positive wire.
Faulty sensor.
Damaged cam sensor wheel.
Fault code is set.
Yellow lamp is requested.
The EECU uses the engine timing sensor signal instead; if this is also incorrect, the engine stops.
Open circuit in positive wire.
Noticeable external symptom:
Open circuit in negative wire.
•
•
An incorrectly installed sensor (incorrect distance to
cam sensor wheel).
Yellow lamp lights up.
Difficult to start at the next start (no symptom if the
fault code is set when the engine is running).
Faulty sensor.
Damaged cam sensor wheel.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
The EECU uses engine timing sensor signal instead; if this is also incorrect, the engine stops.
Noticeable external symptom:
•
•
Yellow lamp lights up.
Difficult to start at the next start (no symptom if the
fault code is set when the engine is running).
FMI 8
Abnormal frequency.
Conditions for fault code:
•
The EECU detects extra pulses on the engine position signal.
Possible cause:
•
•
•
Electrical interference in the engine position signal.
Poor insulation or faulty wires.
An incorrectly installed sensor (incorrect distance to
165
Group 28
Troubleshooting
MID 128 SID 21 Engine Position
Timing Sensor, Check
Special tools: J-43233, J-39200, J-41132,
998534
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
Measuring
points
2 / alternate
ground
166
Optimal value
48 k
Optimal value
1 / alternate
ground
2V
J-39200
Check of component
Engine position sensor
Measure the resistance with ohmmeter J–39200.
9998534
Ground wire:
Ignition key must be in the OFF position.
Measuring
points
1
Disconnect the connector to the engine position sensor. Install breakout
harness 9998534 to the sensor harness end only.
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
3
Measure the resistance with ohmmeter J-39200.
4
Measure the voltage with voltmeter J39200.
Ignition key must be in the ON position.
D12B and D12C
2
Disconnect the connector to the engine position sensor. Install breakout
harness 9998534 to the wiring harness end only.
Supply wire:
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1/2
775 - 945
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
MID 128 SID 21 Needle Lift Sensor
D7C only
Needle lift sensor. The needle lift sensor is located on first the cylinder.
Fault Codes
FMI 2
Intermittent loss of signal or incorrect signal.
Conditions for fault code:
•
•
•
Engine speed greater than 450 rpm.
Fuel injection is carried out.
Missing signal.
Possible cause:
•
•
•
•
•
•
•
Loose connection sensor.
Open circuit in one of the wires.
Short circuit to ground on any of the wires.
Short circuit to battery voltage on any of the wires.
Lack of fuel.
Faulty sensor.
No fuel injection in cylinder 1.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
Timing sleeve (injection angle) is controlled without
feedback.
Noticeable external symptom:
•
•
Yellow lamp lights up.
Higher fuel consumption than normal.
167
Group 28
Troubleshooting
MID 128 SID 21 Needle Lift
Sensor, Check
Special tools: J-43233, J-39200, J-41132,
9998534
Supply wire:
4
Measure the voltage with voltmeter J39200.
J-39200
Ignition key must be in the ON position.
D7C only
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
Measuring
points
Optimal value
1 / alternate
ground
B+
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
Measure the resistance with ohmmeter J-39200.
9998534
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
Optimal value
2 / alternate
ground
0.5
168
Needle lift sensor
1
Disconnect the connector to the needle lift sensor. Install breakout harness
9998534 to the sensor harness end
only.
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the needle lift sensor. Install breakout harness
9998534 to the wiring harness end
only.
Check of component
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1/2
65 - 165
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
MID 128 SID 22 Engine Speed Sensor
The primary function of the engine timing sensor (crank sensor) is to provide engine
timing (speed) information to the EECU. As a secondary function, it also provides limited engine position information.
Fault Codes
FMI 2
Reaction from the EECU:
Intermittent loss of signal or incorrect signal.
Conditions for fault code:
•
Incorrect engine timing signal.
Possible cause:
•
•
•
•
Electrical interference in the engine timing signal.
•
•
Faulty sensor.
•
Fault code is set.
•
Yellow lamp is requested.
•
The EECU uses the engine position signal instead.
If this is also incorrect, the engine stops.
Loose connection.
Noticeable external symptom:
Poor insulation or faulty wire.
•
Yellow lamp lights up.
•
The engine stops if the engine position signal also
disappears.
An incorrectly installed sensor (incorrect distance to
the flywheel).
Damaged teeth on flywheel.
FMI 8
Reaction from the EECU:
Abnormal frequency.
•
•
•
Conditions for fault code:
Fault code is set.
Yellow lamp is requested.
The EECU uses the engine position signal instead.
If this is also incorrect, the engine stops.
Noticeable external symptom:
•
The EECU detects extra pulses on the engine timing signal.
Possible cause:
Yellow lamp lights up.
•
Electrical interference.
The engine stops if the engine position signal also
disappears.
•
An incorrectly installed sensor.
FMI 3
•
Faulty sensor.
Short circuit to voltage or permanent loss of signal.
•
Damaged teeth on flywheel.
•
•
Conditions for fault code:
•
Signal is not available.
Reaction from the EECU:
Possible cause:
•
Fault code is set.
•
•
•
•
•
•
•
•
Yellow lamp is requested.
•
The EECU uses the engine position signal instead.
If this is also incorrect, the engine stops.
Short circuit to voltage, positive wire.
Short circuit to voltage, negative wire.
Short circuit to ground, positive wire.
Open circuit in positive wire.
Noticeable external symptom:
Open circuit in negative wire.
An incorrectly installed sensor.
Faulty sensor.
•
Yellow lamp lights up.
•
The engine stops if the engine position signal also
disappears.
169
Group 28
Troubleshooting
MID 128 SID 22 Engine Speed
Sensor, Check
Special tools: J-43233, J-39200, J-41132,
9998534
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
2
Disconnect the connector to the engine timing sensor. Install breakout
harness 9998534 to the wiring harness end only.
3
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Optimal value
48 k
Measuring
points
Optimal value
1 / alternate
ground
2V
Check of component
1
Disconnect the connector to the engine timing sensor. Install breakout
harness 9998534 to the sensor harness end only.
9998534
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Ground wire:
170
J-39200
Engine timing sensor
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2 / alternate
ground
4
Measure the voltage with voltmeter J39200.
Ignition key must be in the ON position.
NOTE!
Measuring
points
Supply wire:
J-39200
Measuring
points
Optimal value
1/2
775 - 945
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
9998534
J-39200
Group 28
Troubleshooting
MID 128 SID 23 Rack Actuator
D7C only
Fault Codes
FMI 2
FMI 4
Short circuit to battery voltage, rack drive positive side.
Short circuit to ground, rack drive ground side.
Conditions for fault code:
Conditions for fault code:
•
•
Short circuit to battery voltage on EA8 (EECU
checks only when switching on the ignition).
Possible cause:
•
Short circuit to battery voltage, positive side.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Possible cause:
•
Yellow lamp lights up.
Short circuit to ground, ground side.
Reaction from the EECU:
•
•
•
Noticeable external symptom:
•
Short circuit to ground on EA10.
Fault code is set.
Red lamp is requested.
EECU connection for power and ground sides is
switched off.
Noticeable external symptom:
Short circuit to battery voltage, rack drive ground side.
•
•
Conditions for fault code:
FMI 5
•
•
Open circuit in the circuit for rack drive.
FMI 3
Fuel injection is requested.
Short circuit to battery voltage on EA10.
Possible cause:
•
•
Short circuit between power and ground side.
Short circuit to battery voltage, ground side.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
EECU connection for power and ground sides is
switched off.
Red lamp lights up.
The engine stops or does not start.
Conditions for fault code:
•
Open circuit in the circuit for rack drive.
Possible cause:
•
•
Open circuit in wires between EECU and rack drive.
Open circuit in rack drive.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
EECU connection for power and ground sides is
switched off.
Noticeable external symptom:
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
•
•
Red lamp lights up.
The engine stops or does not start.
171
Group 28
FMI 6
Short circuit to ground, rack drive positive side.
Conditions for fault code:
•
Short circuit to ground on EA8.
Possible cause:
•
Troubleshooting
•
The engine stops or does not start.
FMI 8
Current too high to rack drive under long period of time.
Conditions for fault code:
•
Short circuit to ground, positive side.
The current to rack drive is too high for a long period.
Reaction from the EECU:
Possible cause:
•
•
•
•
•
Fault code is set.
Red lamp is requested.
EECU connection for power and ground sides is
switched off.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
Internal fault in the pump.
Internal fault in the EECU.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
EECU connection for power and ground sides is
switched off.
FMI 7
Noticeable external symptom:
The mechanical system does not respond in the correct
way
Conditions for fault code:
•
•
•
FMI 11
The rack drive does not move as expected.
Possible cause:
•
•
•
172
Unidentifiable error.
Conditions for fault code:
Mechanical fault in the pump.
•
Fault in rack drive position sensor.
Reaction from the EECU:
An unidentifiable error has been found.
Red lamp is requested.
•
•
•
EECU connection for power and ground sides is
switched off.
Noticeable external symptom:
Fault code is set.
Noticeable external symptom:
•
The engine stops or does not start.
Rack drive stuck.
Reaction from the EECU:
•
•
•
Red lamp lights up.
Red lamp lights up.
•
•
Fault code is set.
Red lamp is requested.
EECU connection for power and ground sides is
switched off.
Red lamp lights up.
The engine stops or does not start.
Group 28
Troubleshooting
MID 128 SID 23 Rack Actuator,
Check
Special tools: J-43233, J-39200, J-41132, J38748
Supply wire:
4
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
D7C only
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Note that small resistances are difficult to measure. Use
the value instead as a standard value for an open in the
rack drive.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
7 / alternate
ground
Optimal value
40 k
Check of component
Rack drive
1
Disconnect the connector to the rack
drive (7–pin connector on the rear of
the injection pump). Install breakout
box J-38748 to the pump connector
end only.
J-38748
J-39200
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
2
Disconnect the connector to the rack
drive (7–pin connector on the rear of
the injection pump). Take measurements on the wiring harness
connector only.
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
Measuring
points
Measuring
points
Optimal value
2/7
0.7
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
J-39200
Ignition key must be in the OFF position.
Measuring
points
2 / alternate
ground
Optimal value
60 k
173
Group 28
MID 128 SID 24 Rack Position Sensor
D7C only
Fault Codes
FMI 2
Incorrect data.
Conditions for fault code:
•
Unreasonable measurement value from rack position sensor.
Possible cause:
•
•
•
•
Sensor value outside measurement range.
Open circuit or short circuit in wires.
Internal fault in the pump.
Faulty sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
Output for rack drive is switched off.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine stops or does not start.
FMI 13
Sensor values outside calibration values.
Conditions for fault code:
•
Unreasonable measurement value at start-up.
Possible cause:
•
•
Uncalibrated sensor.
Faulty sensor.
Reaction from the EECU:
•
•
•
Fault code is set.
Red lamp is requested.
Output for rack drive actuator is switched off.
Noticeable external symptom:
•
•
174
Red lamp lights up.
The engine does not start.
Troubleshooting
Group 28
Troubleshooting
MID 128 SID 24 Rack Position
Sensor, Check
Special tools: J-43233, J-39200, J-41132, J38748
Search wire:
4
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
D7C only
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
Measuring
points
5 / alternate
ground
Optimal value
5.5 k
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Note that small resistances are difficult to measure. Use
the value instead as a standard value for an open in the
rack position sensor.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
Rack position sensor
1
Disconnect the connector to the rack
drive (7–pin connector on the rear of
the injection pump). Install breakout
box J-38748 to the pump connector
end only.
J-38748
J-39200
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
2
Disconnect the connector to the rack
drive (7–pin connector on the rear of
the injection pump). Take measurements on the wiring harness
connector only.
Measuring
points
Reference wire:
3
Measure the resistance with ohmmeter J-39200.
Check of component
Optimal value
5/6
20 (search
coil)
1/6
20 (reference
coil)
1, 5, 6 / alternate ground
open circuit
J-39200
Ignition key must be in the OFF position.
Measuring
points
1 / alternate
ground
Optimal value
5.5 k
175
Group 28
Troubleshooting
MID 128 SID 33 Fan Control
Fault Codes
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
•
Output activated.
Short circuit to voltage on EB21.
Possible cause:
•
Short circuit to battery voltage between solenoid
valve and EECU.
•
Short circuit in solenoid valve for fan control.
Reaction from the EECU:
•
•
•
Possible cause:
•
Open circuit in the wiring between solenoid valve
and EECU.
•
•
Open circuit in solenoid valve for fan control.
•
Blown fuse to supply for the fan control’s solenoid
valve.
Open circuit in supply wire to solenoid valve for fan
control.
Yellow lamp lights up.
The fan is in constant operation.
Noticeable external symptom:
Increased fuel consumption.
•
•
•
Output switched off.
Short circuit to ground on EB21.
Short circuit to ground between solenoid valve and
EECU.
Reaction from the EECU:
Fault code is set.
Yellow lamp is requested.
Output is switched off.
Noticeable external symptom:
176
Open circuit in the circuit for fan control.
•
•
•
Possible cause:
•
•
•
Output switched off.
Output is switched off.
Conditions for fault code:
•
•
•
•
•
Reaction from the EECU:
Short circuit to ground.
•
Conditions for fault code:
Yellow lamp is requested.
FMI 4
•
•
Break.
Fault code is set.
Noticeable external symptom:
•
•
•
FMI 5
Yellow lamp lights up.
The fan does not come on.
Increased coolant temperature.
Fault code is set.
Yellow lamp is requested.
Output is switched off.
Yellow lamp lights up.
The fan is in constant operation.
Increased fuel consumption.
Group 28
Troubleshooting
MID 128 SID 33 Fan Control,
Check
Special tools: J-43233, J-39200, J-41132, J43147
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the fan
control solenoid valve. Install breakout
harness J-43147 to the wiring harness
end only.
B / alternate
ground
1
Disconnect the connector to the fan
control solenoid valve. Install breakout
harness J-43147 to the solenoid valve
harness end only.
J-43147
J-39200
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
Optimal value
A/B
20
Fan control
J-43147
J-39200
Ignition key must be in the OFF position.
Measuring
points
Fan control solenoid valve
Check of Subsystem
“Ground wire”/Control wire:
3
Measure the resistance with ohmmeter J-39200.
Check of component
Optimal value
200 k
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Measuring
points
Optimal value
EB21 / EB9
B+ (fan on)
EB21 / EB9
0 V (fan off)
ground terminal
EB21 with a
jumper wire
fan control solenoid valve
releases fan
J-41132
J-43233
J-39200
Supply wire:
4
Measure the voltage with voltmeter J39200.
J-39200
Ignition key must be in the ON position.
Measuring
points
Optimal value
A / alternate
ground
B+
177
Group 28
Troubleshooting
MID 128 SID 64 Redundant Engine Speed Sensor
D7C only
The redundant engine speed sensor is used as a secondary engine timing (speed) and
secondary engine position sensor. Primary engine timing (speed) information is provided by the engine timing (crank) sensor. Primary engine position information is
provided by the needle lift sensor.
Fault Codes
FMI 3
FMI 8
Short circuit to voltage or permanent loss of signal.
Abnormal frequency.
Conditions for fault code:
•
Engine position signal is not available.
Possible cause:
•
•
•
•
•
•
Short circuit to battery voltage, positive wire.
•
•
•
Reversed polarity on the sensor.
178
The EECU detects extra pulses on the engine position signal.
Possible cause:
Short circuit to ground, positive wire.
•
Electrical interference in the engine position signal.
Open circuit in positive wire.
•
Poor insulation or faulty wires.
Open circuit in negative wire.
•
An incorrectly installed sensor (incorrect distance to
pump speed sensor wheel).
•
Faulty sensor.
Faulty sensor.
•
Damaged pump speed sensor wheel.
Damaged pump speed sensor wheel.
Reaction from the EECU:
An incorrectly installed sensor (incorrect distance to
pump speed sensor wheel).
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Short circuit to voltage, negative wire.
Reaction from the EECU:
•
•
Conditions for fault code:
Yellow lamp lights up.
•
Fault code is set.
•
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
Group 28
Troubleshooting
MID 128 SID 64 Redundant Engine Speed Sensor, Check
Special tools: J-43233, J-39200, J-41132
D7C only
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the connector to the engine position sensor. Install breakout
harness 9998534 to the wiring harness end only.
3
Measure the resistance with ohmmeter J-39200.
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1 / alternate
ground
2V
J-39200
Check of component
Redundant engine speed sensor
1
Disconnect the connector to the redundant engine speed sensor. Install
breakout harness J-43233 to the sensor harness end only.
J-43233
J-39200
Measure the resistance with ohmmeter J-39200.
9998534
Ground wire:
2 / alternate
ground
4
Measure the voltage with voltmeter J39200.
Ignition key must be in the ON position.
NOTE!
Measuring
points
Supply wire:
J-39200
Ignition key must be in the OFF position.
Measuring
points
Optimal value
1/2
775 - 945
1 / alternate
ground
open circuit
2 / alternate
ground
open circuit
Optimal value
48 k
179
Group 28
Troubleshooting
MID 128 SID 70 Preheater Element 1
Each preheater is equipped with a fuse between the preheating relay and element. The
fuse and element are monitored by a sense wire that determines if the circuit is intact.
Fault Codes
FMI 3
Short circuit to battery voltage.
Conditions for fault code:
•
•
Preheating relay not activated.
The voltage on EB5 is greater than 65% B+.
Possible cause:
•
•
Short circuit to battery voltage on EB5.
Preheating relay constantly on.
Reaction from the EECU:
•
•
•
Noticeable external symptom:
•
•
•
•
Yellow lamp lights up.
Preheating does not function.
White smoke for cold start.
Difficult to start in extreme cold.
FMI 5
Break.
Conditions for fault code:
•
Fault code is set.
The voltage on EB5 is greater than 5% B+ and less
than 65% B+.
Yellow lamp is requested.
Possible cause:
Preheating relay is switched off.
•
Open circuit in element or wires.
Noticeable external symptom:
Reaction from the EECU:
•
•
•
•
•
High inlet temperature.
•
•
•
High current consumption.
Noticeable external symptom:
Yellow lamp lights up.
Preheating relay may be constantly activated.
Discharged battery.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
•
Preheating requested.
Short circuit to ground on EB5.
Possible cause:
•
•
Short circuit to ground on EB5.
Preheating relay damaged.
Reaction from the EECU:
•
•
•
180
Fault code is set.
Yellow lamp is requested.
Output to pre-heating relay is switched off.
•
•
•
Fault code is set.
Yellow lamp is requested.
Output for the pre-heating relay is switched off.
Yellow lamp lights up.
Preheating does not function.
Difficult to start in extreme cold.
Group 28
Troubleshooting
MID 128 SID 70 Preheater Element 1, Check
Special tools: J–43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect sense wire (small solid red
wire) at pre-heat relay #1.
Check of Subsystem
Preheating 1, element diagnostics
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
J-41132
J-43233
J-39200
Note: Test with “Preheat On” can be
performed only if the EECU has requested pre-heat.
Measuring
points
Optimal value
EB5 / EB9
B+ (Preheating
on)
EB5 / EB9
0 V (Preheating
off)
Signal wire:
3
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
Measuring
points
Sense wire / alternate ground
Optimal value
1.4 k
Check of component
Preheating 1, element
1
Remove the fuse and support (red
plastic part) between the pre-heat relay and the pre-heat element terminal.
J-39200
Ignition key must be in the OFF position.
Measure the resistance with ohmmeter J-39200.
Measuring
points
Optimal value
Preheat element
terminal / alternate ground
<1
181
Group 28
Troubleshooting
MID 128 SID 71 Preheater Element 2
D12B only
Each preheater is equipped with a fuse between the preheating relay and element. The
fuse and element are monitored by a sense wire that determines if the circuit is intact.
Fault Codes
FMI 3
Short circuit to battery voltage.
Conditions for fault code:
•
•
Preheating relay not activated.
The voltage on EB16 is greater than 65% B+.
Possible cause:
•
•
Short circuit to battery voltage on EB16.
•
•
•
Preheating does not function.
White smoke for cold start.
Difficult to start in extreme cold.
FMI 5
Break.
Conditions for fault code:
•
Preheating relay constantly on.
The voltage on EB16 is greater than 5% B+ and
less than 65% B+.
Reaction from the EECU:
Possible cause:
•
•
•
Fault code is set.
•
Yellow lamp is requested.
Reaction from the EECU:
The preheating relay is switched off.
Yellow lamp lights up.
•
•
•
Preheating relay may be constantly on.
Noticeable external symptom:
High inlet temperature.
•
•
•
Noticeable external symptom:
•
•
•
•
•
High current consumption.
Discharged battery.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
•
Preheating requested.
Short circuit to ground on EB16.
Possible cause:
•
•
Short circuit to ground on EB16.
Preheating relay damaged.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
Output to preheating relay is switched off.
Noticeable external symptom:
•
182
Yellow lamp lights up.
Open circuit in element or wires.
Fault code is set.
Yellow lamp is requested.
Output for preheating relay is switched off.
Yellow lamp lights up.
Preheating does not function.
Difficult to start in extreme cold.
Group 28
Troubleshooting
MID 128 SID 71 Preheater Element 2, Check
Check of component
Special tools: J-43233, J-39200, J-41132
1
Remove the fuse and support (red
plastic part) between pre-heat relay #2
and pre-heat element #2 terminal.
D12B
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
Preheating 2, element
Ignition key must be in the OFF position.
Measure the resistance with ohmmeter J-39200.
Measuring
points
Optimal value
Preheat element
terminal / alternate ground
<1
Check of Subsystem
Preheating 2, element diagnostics
Signal wire:
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
3
Measure the resistance with ohmmeter J-39200.
Note: Test with “Preheat On” can be
performed only if the EECU has requested pre-heat.
2
Disconnect the sense wire (small
red/white wire) at pre-heat relay #2.
Ignition key must be in the OFF position.
Measuring
points
Sense wire / alternate ground
J-39200
J-39200
Measuring
points
Optimal value
Optimal value
EB16 / EB9
B+ (Preheating
on)
1.4 k
EB16 / EB9
0 V (Preheating
off)
J-41132
J-43233
J-39200
183
Group 28
MID 128 SID 230 Idle Validation Switch 1
Fault Codes
FMI 3
Short circuit to battery voltage.
Conditions for fault code:
•
Accelerator pedal released.
•
The voltage on EB4 exceeds 75% of B+.
Possible cause:
•
Short circuit to battery voltage on wire between
EECU and VECU.
•
Error in accelerator pedal.
Reaction from the EECU:
•
Fault code is set.
•
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
•
The "limp home" function does not function.
FMI 4
Short circuit to ground or open circuit.
Conditions for fault code:
•
Accelerator pedal pressed down > 50 %.
•
The voltage on EB4 is below 25% of B+.
Possible cause:
•
Short circuit to ground on wire between EECU and
VECU.
•
Open circuit in wire between EECU and VECU.
•
Error in accelerator pedal.
Reaction from the EECU:
•
Fault code is set.
•
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
•
The “limp home” function does not function.
184
Troubleshooting
Group 28
Troubleshooting
MID 128 SID 230 Idle Validation
Switch 1, Check
Special tools: J-43233, J-39200, J-41132
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Check of Subsystem
Buffered idle validation switch
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EB and the
EECU. Connect jumper harness J43233 in series between connector EA
and the EECU.
Measuring
points
Optimal value
EB4 / EB9
< 4 V (accelerator pedal at idle)
EB4 / EB9
> 8 V (accelerator pedal off idle)
J-41132
J-43233
J-39200
185
Group 28
Troubleshooting
MID 128 SID 231 SAE J1939 Control Link
Fault Codes
FMI 2
•
Communications link (SAE J1939) does not function.
Information is read/sent instead on the information
link (SAE J1587).
Conditions for fault code:
Noticeable external symptom:
•
•
•
No messages are received from the communications link (SAE J1939).
Possible cause:
•
•
Open circuit in communications link (SAE J1939).
•
Short circuit to ground on communications link (SAE
J1939).
•
wires in communications link (SAE J1939) shortcircuited to each other.
Short circuit to voltage on communications link (SAE
J1939).
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
Information is read/sent instead on the information
link (SAE J1587).
Noticeable external symptom:
•
•
•
•
•
•
Unidentifiable error.
Conditions for fault code:
•
Communications link (SAE J1939) does not function
internally in EECU at start-up.
Possible cause:
•
Internal fault in EECU.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
Information is read/sent instead on the information
link (SAE J1587).
Noticeable external symptom:
PTO does not function.
Preheating relay does not function.
Engine brake does not function.
Driver position no. 2 does not function.
Conditions for fault code:
Communications link (SAE J1939) does not function.
Possible cause:
•
Wires in communications link (SAE J1939) shortcircuited to each other.
•
•
•
Temporary malfunction in hardware.
Loose connection.
Intermittent fault in the wiring.
Reaction from the EECU:
186
FMI 11
Cruise Control does not function.
Communications link (SAE J1939) does not function.
•
•
Temporary loss of function on:- Cruise ControlPTO.- Pre-heating- Engine brake- Driver position no.
2
Yellow lamp lights up.
FMI 9
•
Yellow lamp lights up.
Fault code is set.
Yellow lamp is requested.
•
•
•
•
•
•
Yellow lamp lights up.
Cruise Control does not function.
PTO does not function.
Preheating does not function.
Engine brake does not function.
Driver position no. 2 does not function.
Group 28
Troubleshooting
FMI 12
Loss of message from the VECU.
Conditions for fault code:
•
The communication between EECU and VECU
does not function.
Possible cause:
•
No contact with VECU.
Reaction from the EECU:
•
•
•
Fault code is set.
Yellow lamp is requested.
Information is read/sent instead on the information
link (SAE J1587).
Noticeable external symptom:
•
•
•
•
•
•
Yellow lamp lights up.
Cruise Control does not function.
PTO does not function.
Preheating does not function.
Engine brake does not function.
Driver position no. 2 does not function.
187
Group 28
MID 128 SID 232 5 Volt DC Supply
Fault Codes
FMI 3
Short circuit to voltage.
Conditions for fault code:
•
The voltage on EA4 exceeds 5.5 V.
Possible cause:
•
Short circuit to battery voltage on the output.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
•
fault code on oil pressure sensor and boost pressure sensor.
•
•
Low power output.
Incorrect values on oil pressure sensor and boost
pressure sensor.
Oil pressure gauge and boost pressure gauge show
0 in the instrument.
FMI 4
Short circuit to ground.
Conditions for fault code:
•
The voltage on EA4 is under 4.5 V.
Possible cause:
•
•
•
Short circuit to ground.
Short circuit in sensor.
Faulty sensor.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
•
Oil pressure gauge and boost pressure gauge show
0 in the instrument.
•
Low power output.
188
fault code on oil pressure sensor and boost pressure sensor.
Troubleshooting
Group 28
Troubleshooting
MID 128 SID 232 5 Volt DC Supply, Check
Special tools: J-43233, J-39200, J-41132,
9998534
Supply wire:
4
Measure the voltage with voltmeter J39200.
J-39200
Ignition key must be in the ON position.
NOTE!
Check all the particular connectors for loose connections
as well as for switch resistance and oxidation.
For detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Measuring
points
Optimal value
1 / alternate
ground
5 V (oil pressure/temperature,
boost air pressure/temperature,
fuel temperature)
Measurement at the component’s
connector, to the EECU
1
Note: An incorrect value (below) can
also cause the component to fail;
therefore, it is important to check the
component if any of the values are incorrect.
2
Disconnect the individual connectors
to the fuel temperature sensor (D7C
only), boost air temperature/pressure
sensor, coolant temperature sensor,
and oil temperature/pressure sensor.
Install breakout harness 9998534 to
the wiring harness end only.
Check of sub-system
5 V supply to sensors
9998534
1
Ignition key must be in the ON position.
Connect breakout box J-41132 in series between connector EA and the
EECU. Connect jumper harness J43233 in series between connector EB
and the EECU.
Measuring
points
Optimal value
EA4 / EA5
4.8 - 5.15 V
J-41132
J-43233 J39200
Ground wire:
3
Measure the resistance with ohmmeter J-39200.
J-39200
Ignition key must be in the OFF position.
Measuring
points
2 / alternate
ground
4 / alternate
ground
Optimal value
<1 (coolant
temperature)
<1 (oil pressure/temperature,
boost air pressure/temperature,
fuel temperature)
189
Group 28
MID 128 SID 240 Program Memory
Fault Codes
FMI 2
Incorrect checksum in program memory.
Conditions for fault code:
•
Incorrect checksum (EECU calculates only at startup).
Possible cause:
•
•
Error when programming.
Internal fault in the EECU.
Reaction from the EECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine does not start.
FMI 12
Incorrect checksum in program memory.
Conditions for fault code:
•
Incorrect checksum.
Possible cause:
•
Internal fault in the EECU.
Reaction from the EECU:
•
Fault code is set.
Noticeable external symptom:
•
190
None.
Troubleshooting
Group 28
Troubleshooting
MID 128 SID 250 SAE J1587/1708 Information Link
Fault Codes
FMI 12
Internal fault in the EECU.
Conditions for fault code:
•
The information link (SAE J1587) does not function
internally in the EECU.
Possible cause:
•
Internal fault in the EECU.
Reaction from the EECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
•
•
•
•
•
The boost pressure gauge shows 0.
Information from the EECU is not available on the
information link (SAE J1587).
The oil pressure gauge shows 0.
The oil temperature gauge shows 0.
The coolant temperature gauge shows 0.
The tachometer shows 0.
191
Group 28
MID 128 SID 253 Data Set Memory EEPROM
Fault Codes
FMI 2
Incorrect checksum in data set memory.
Conditions for fault code:
•
Checksum error.
Possible cause:
•
•
Internal fault in the EECU.
Error when programming.
Reaction from the EECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine does not start.
FMI 12
Incorrect checksum in data set memory.
Conditions for fault code:
•
Checksum error.
Possible cause:
•
Internal fault in the EECU.
Reaction from the EECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
192
Red lamp lights up.
The engine does not start.
Troubleshooting
Group 28
Troubleshooting
MID 128 SID 254 Engine Electronic Control Unit (EECU)
Fault Codes
FMI 2
Reaction from the EECU:
Internal fault in the EECU.
Conditions for fault code:
•
•
•
Noticeable external symptom:
Incorrect self test in the EECU.
Possible cause:
•
Internal fault in the EECU.
Reaction from the EECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine does not start.
•
•
Fault code is set.
Red lamp is requested.
Red lamp lights up.
The engine does not start.
FMI 11
Internal fault in the EECU.
Conditions for fault code:
•
Incorrect self test in the EECU.
Possible cause:
•
Internal fault in the EECU.
FMI 8
Reaction from the EECU:
Internal fault in the EECU.
Conditions for fault code:
•
•
•
Noticeable external symptom:
Incorrect self test in the EECU.
Possible cause:
•
Internal fault in the EECU.
•
•
Fault code is set.
Red lamp is requested.
Red lamp lights up.
The engine does not start.
Reaction from the EECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine does not start.
FMI 9
Internal fault in the EECU.
Conditions for fault code:
•
Incorrect self test in the EECU.
Possible cause:
•
Internal fault in the EECU.
193
Group 28
FMI 12
Internal fault in the EECU.
Conditions for fault code:
•
Incorrect self test in the EECU.
Possible cause:
•
Internal fault in the EECU.
Reaction from the EECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Red lamp lights up.
The engine does not start.
FMI 13
Internal fault in the EECU.
Conditions for fault code:
•
Incorrect self test in the EECU.
Possible cause:
•
Internal fault in the EECU.
Reaction from the EECU:
•
•
The EECU restarts.
fault code can be requested, will not automatically
be shown.
Noticeable external symptom:
•
194
The engine falters.
Troubleshooting
Group 28
Troubleshooting
MID 144 VECU
MID 144 Fault Code Table
MID:Message Identification Description.
SID:Subsystem Identification Description.
PID:Parameter Identification Description.
FMI:Failure Mode Identifier.
Error code
Component/Function
FMI
Section
MID 144-PID 29
SecondAccelerator Pedal Position
3, 4, 5
“MID 144 PID 29 Second Accelerator Pedal
Position Sensor” page
198
MID 144-PID 84
Road Speed
9
“MID 144 PID 84 Road
Speed” page 201
MID 144-PID 91
Accelerator Pedal Position
9, 11
“MID 144 PID 91 Accelerator Pedal Position”
page 204
MID 144-PID 152
VECU, Number of Resests
9
“MID 144 PID 152
VECU, Number of Resets” page 207
MID 144-PPID 69
Idle Validation Switch
9, 11
“MID 144 PPID 69 Idle
Validation Switch” page
208
MID 144-PPID 70
Pedal Switches, Supply
1, 3, 4
“MID 144 PPID 70
Pedal Switches, Supply”
page 211
MID 144-PPID 71
Cruise Control and Engine
Brake, Supply Switch
1, 3, 4
“MID 144 PPID 71
Cruise Control and Engine Brake, Supply
Switch” page 215
MID 144–PPID 72
Accelerator Pedal, Supply
Sensors
3, 4
“MID 144 PPID 72 Accelerator Pedal, Supply
Sensors” page 220
MID 144–PPID 73
Second Accelerator Pedal,
Supply Sensors
3, 4
“MID 144 PPID 73 Second Accelerator Pedal,
Supply Sensors” page
223
MID 144–PPID 75
Range Inhibitor, Solenoid
Valve Status
0, 3, 4, 5
“MID 144 PPID 75
Range Inhibitor, Solenoid Valve Status” page
226
MID 144–SID 230
Idle Validation Switch 1
3, 4
“MID 144 SID 230 Idle
Validation Switch 1”
page 229
MID 144–SID 231
SAE J1939 Control Link
0, 3 ,4
“MID 144 SID 231 SAE
J1939 Control Link”
page 232
MID 144–SID 240
Program Memory
1
“MID 144 SID 240 Program Memory” page 234
MID 144–SID 243
Crusie Control Set Switch
3
“MID 144 SID 243
Cruise Control Set
Switch” page 235
195
Group 28
Troubleshooting
Error code
Component/Function
FMI
Section
MID 144–SID 250
SAE J1587/1708 Information
Link
3, 4
“MID 144 SID 250 SAE
J1587/1708 Information
Link” page 238
MID 144–SID 253
Data Set Memory EEPROM
3, 4
“MID 144 SID 253 Data
Set Memory EEPROM”
page 240
MID144-PSID 3
Idle Validation Switch 3
7
“MID 144 PSID 3 Idle
Validation Switch 3”
page 241
196
Group 28
Troubleshooting
MID 144 PID 29 Second Accelerator Pedal Position Sensor
Applies only to vehicles with a second accelerator pedal assembly (such as the WX).
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Second throttle.
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Second throttle position, %
Fault Codes
FMI 3
FMI 4
Abnormally high voltage.
Abnormally low voltage.
Conditions for fault code:
Conditions for fault code:
•
•
If the VECU receives a signal from the sensor that
is higher than 4.3 V, the VECU interprets this as a
fault and an fault code is set.
If the VECU receives a signal from the sensor that
is lower than 0.4 V, the VECU interprets this as a
fault and an fault code is set.
Possible cause:
Possible cause:
•
•
•
•
•
•
•
•
•
Open circuit in ground wire.
Signal wire short circuited to higher voltage.
Faulty second accelerator position sensor.
Faulty idle validation switch 3.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
Open circuit in supply wire.
Open circuit in signal wire.
Signal wire short-circuited to ground.
Faulty second accelerator position sensor.
Switch resistance and oxidation.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The engine does not respond when the second accelerator pedal is depressed.
•
•
Yellow lamp lights up.
The engine does not respond when the second accelerator pedal is depressed.
197
Group 28
Troubleshooting
MID 144 PID 29 Second Accelerator Pedal Position Sensor,
Check
Other special equipment: J-39200, J-41133,
9998551, J-43340, J-43234
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27104–8
Extra accelerator control, switches and
sensor, test
5
Connect a voltmeter to the breakout
harness pins and measure the voltage.
Measuring points
Expected value
Pin A / Pin E
5.4 ± 20% V
J-39200
Signal wire:
6
Turn the ignition key to the OFF position.
7
Connect an ohmmeter to the breakout
harness pins and measure the resistance.
Measuring points
Expected value
Pin B / Pin E
100 ± 20% k
J-39200
Wiring harness
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the connector at the second accelerator pedal. Install 5-pin
breakout harness J-41133 to the
wiring harness end only.
J-41133
Expected value
Pin E / alternate
<1
ground
Supply wire:
4
Turn the ignition key to the ON position.
198
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the second accelerator pedal. Install 5-pin
breakout harness J-41133 to the second accelerator pedal harness end
only.
2
Turn the ignition key to the OFF position.
Measuring points
Check of component
Second accelerator position sensor
Ground wire:
3
Connect an ohmmeter to the breakout
harness pins and measure the resistance.
8
To check the wiring harness, see
“VNL, VNM Electrical Schematics,”
Group 37.
J-39200
J-41133
2
Turn the ignition key to the OFF position.
3
Connect an ohmmeter to the breakout
harness pins and measure the resistance.
Measuring points
Expected value
Pin A / Pin E
4 ± 20% k
Pin A / Pin B
4.5 ± 20% k
(accelerator pedal at idle)
J-39200
Group 28
Troubleshooting
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PB/PA.
2
Connect the 60–pin breakout box
9998551 (with overlay J-43340) to the
adapter.
Supply wire:
J-43234
5
Ignition key in ON position.
6
Connect a voltmeter to the 60–pin
breakout box and measure the voltage.
9998551
J-43340
Measuring points
Optimal value
PB26 / PB23
5 ± 20% V
Ground wire:
Signal wire:
3
Turn the ignition key to the OFF position.
7
Turn the ignition key to the ON position.
4
Connect an ohmmeter to the 60–pin
breakout box and measure the resistance.
Measuring points
Optimal value
PB23 / Alternate
<1
J-39200
8
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Measuring points
Expected value
PB25 / PB23
0.5 ± 20% V (accelera-
J-39200
J-39200
tor pedal at idle)
ground
3.2 ± 20% V (full acceleration)
Verification
To verify that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 198).
199
Group 28
Troubleshooting
MID 144 PID 84 Road Speed
The speed signal comes from a sensor on the transmission or as a digital signal if an
electronically-controlled transmission is used (i.e. Allison). Diagnostic settings (level 1.5
parameters) are factory programmed based on the transmission type used.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Road speed.
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Road speed
Fault Codes
FMI 5
FMI 6
Abnormally low current or open circuit.
Abnormally high current or short circuit.
Conditions for fault code:
Conditions for fault code:
•
If the VECU registers a current lower than 90 A on
any of the signal wires from the speed sensor the
VECU interprets this as a fault and an fault code is
set.
Possible cause:
•
•
•
•
Poor contact, sensor connection.
Switch resistance and oxidation.
Break, signal wire.
Fault in sensor.
•
If the VECU registers a current higher than 140 A
on any of the signal wires from the speed sensor,
the VECU interprets this as a fault and an fault code
is set.
Possible cause:
•
•
•
Signal wire short-circuited to higher voltage.
Signal wire short-circuited to ground.
Fault in sensor.
Reaction from the VECU:
Reaction from the VECU:
•
•
Yellow lamp lights up.
Yellow lamp lights up.
Noticeable external symptom:
Noticeable external symptom:
•
•
•
•
•
•
200
No vehicle speed on gauge.
No PTO.
No cruise control.
No vehicle speed on gauge.
No PTO.
No cruise control.
Group 28
Troubleshooting
MID 144 PID 84 Road Speed,
Check
Other special equipment: J-39200, 9998551,
J-43340, J-43234
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
N/A
Wiring Harness
5
To check the wiring harness, refer to
“VNL, VNM Electrical Schematics,”
Group 37.
Check of Component — Vehicle
Speed Sensor
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the 2–pin vehicle speed
sensor connector at the transmission.
No test currently available.
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the VECU and install
adapter J-43234 to the wiring harness
connector PB only.
J-43234
2
Turn the ignition key to the OFF position.
3
Connect an ohmmeter to the vehicle
speed sensor connector and measure
the resistance.
Measuring
Expected
points
value*
Pin A / Pin B
265 ± 20%
Volvo
3.4k ± 20%
Fuller
Transmission
3.17k ± 20%
2
Connect 60–pin breakout box 9998511
(with overlay J-43340) to the adapter.
9998511
J-43340
J-39200
Allison HT740
NO DIAG-
Allison Auto-
NOSTICS
matic
* Value may vary depending on transmission
Signal wire
manufacturer.
3
Turn the ignition key to the OFF position.
4
Connect an ohmmeter to the 60–pin
breakout box and measure resistance.
Measuring
Expected
points
value
PB6/PB20
265 ± 20%
Volvo
3.4k ± 20%
Fuller
Transmission
3.17k ± 20%
J-39200
Allison HT740
NO DIAG-
Allison Auto-
NOSTICS
matic
* Value may vary depending on transmission
manufacturer.
201
Group 28
Troubleshooting
Check of Subsystem
Signal wire
4
Turn the ignition key to the OFF position.
Before working on a vehicle, set the parking brakes,
place the transmission in neutral, and block the
wheels. Failure to do so can result in unexpected
vehicle movement and can cause serious personal injury or death.
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connector PA/PB.
2
Connect 60–pin breakout box 9998551
(with overlay J-43340) to the adapter.
J-43234
5
Connect a voltmeter to the 60–pin
breakout box and measure the voltage
while turning the wheel by hand. The
voltage will alternate from positive to
negative and will vary with speed. Voltmeter function “MIN/MAX” may be
useful to determine value.
J-39200
Note: The transmission output shaft
must be turning.
9998551
J-43340
Measuring
Expected
points
minimum
Transmission
value
3
PB6 / PB20
+0.1 V to -0.1
Volvo
V
+0.1 V to -0.1
Fuller
V
Personal injury hazard. Never work under or around a
raised vehicle unless it is securely supported on jack
stands of adequate rating and the front wheels are
securely chocked. Failure to use adequate jack stands
and chock the wheels can result in the vehicle falling,
which can cause serious injury or death to anyone under or near the vehicle.
Chock the front wheels. Release the
parking brake and jack up one rear
wheel so that it can be turned by hand.
202
+0.1 V to -0.1
Allison HT-
V
740
NO DIAG-
Allison Auto-
NOSTICS
matic
Verification
No VCADS Pro tool test is currently available to verify
this fault correction.
Group 28
Troubleshooting
MID 144 PID 91 Accelerator Pedal Position
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Acc. pedal pos. %
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Accelerator pedal position, %
Fault Codes
FMI 3
FMI 4
Abnormally high voltage.
Abnormally low voltage.
Conditions for fault code:
Conditions for fault code:
•
If the VECU receives a signal from the sensor that
is higher than 4.3 V, the VECU interprets this as a
fault and an fault code is set.
Possible cause:
•
•
•
•
•
•
Open circuit in ground wire.
Open circuit in supply wire.
Signal wire short-circuited to higher voltage.
Faulty accelerator position sensor.
Faulty idle validation switch 1.
Switch resistance and oxidation.
•
If the VECU receives a signal from the sensor that
is lower than 0.4 V, the VECU interprets this as a
fault and an fault code is set.
Possible cause:
•
•
•
•
•
Open circuit in supply wire.
Open circuit in signal wire.
Signal wire short-circuited to ground.
Faulty accelerator position sensor.
Switch resistance and oxidation.
Reaction from the VECU:
Reaction from the VECU:
•
•
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The engine does not respond when the accelerator
pedal is depressed.
fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The engine does not respond when the accelerator
pedal is depressed.
203
Group 28
Troubleshooting
MID 144 PID 91 Accelerator
Pedal Position, Check
Other special equipment: J-39200, J-43234,
9998551, J-41133, J-43340
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27102–8
Accelerator pedal, switches and sensor,
test
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the connector at the accelerator pedal. Install 5-pin breakout
harness J-41133 to the wiring harness
end only.
J-41133
2
Turn the ignition key to the OFF position.
Measuring points
Expected value
Pin E / alternate
<1
ground
204
4
Turn the ignition key to the ON position.
5
Connect a voltmeter to the connector
and measure the voltage from pin A to
pin E (5–pin harness).
Measuring points
Expected value
Pin A / Pin E
5.4 ± 20% V
J-39200
Signal Wire:
6
Turn the ignition key to the OFF position.
7
Using an ohmmeter, measure the resistance from pin B to pin E (5–pin
harness).
Measuring points
Expected value
Pin B / Pin E
100 ± 20% k
J-39200
Wiring harness
8
To check the wiring harness, refer to
“VNL, VNM Electrical Schematics,”
Group 37.
Ground wire:
3
Using ohmmeter J-39200, measure resistance from pin E (5–pin harness) to
alternate ground.
Supply Wire:
Check of component — accelerator
pedal position sensor
J-39200
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the accelerator pedal. Install 5–pin breakout
harness J-41133 to the accelerator
pedal harness only.
J-41133
Group 28
Troubleshooting
Supply Wire:
2
Turn the ignition key to the OFF position.
3
Using an ohmmeter, measure the resistance of pin A to pin E, and pin A to
pin B.
5
Turn the ignition key to the ON position.
J-39200
6
Using a voltmeter at the 60-pin breakout box, measure the voltage from pin
PB10 to PB22.
Measuring points
Expected value
Pin A / Pin E
4 ± 20% k
Measuring points
Expected value
Pin A / Pin B
4.5 ± 20% k
PB10 / PB22
5 ± 20% V
4
Remove the 5–pin breakout harness
and reconnect the connector at the accelerator pedal.
Signal Wire:
Check of Subsystem
8
Using a voltmeter at the 60-pin breakout box, measure the voltage from pin
PB8 to PB22.
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PA/PB.
2
Connect 60-pin breakout box 9998551
(with overlay J-43340) to the adapter.
J-39200
7
Ignition key in the ON position.
J-43234
Measuring points
Expected value
PB8 / PB22
0.5 ± 20% V (accelera-
J-39200
tor at idle)
9998551
J-43340
3.2 ± 20% V (full acceleration)
Verification
Ground Wire
To verify that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 204).
3
Turn the ignition key to the OFF position.
4
Using an ohmmeter at the 60-pin
breakout box, measure the resistance
between pin PB22 and the alternate
ground.
Measuring points
Expected value
PB22 / alternate
<1
J-39200
ground
205
Group 28
Troubleshooting
MID 144 PID 152 VECU, Number of Resets
The software in the VECU contains an internal checking function that restarts the
VECU when there is a fault in the execution of the software. PID 152 contains information about how many such restarts that have been made.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
No. of ECU resets
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Number of ECU resets
Fault Codes
FMI 12
Faulty unit or component.
Conditions for fault code:
•
If an internal software fault occurs an fault code is
set.
Possible cause:
•
The system has been switched off by disconnecting
the battery or using a battery master switch instead
of switching it off with the ignition key.
•
The system has been restarted due to an internal
software fault.
Reaction from the VECU:
•
•
206
Fault code is set.
The system is restarted.
Group 28
Troubleshooting
MID 144 PPID 69 Idle Validation Switch
The function is used to be able to drive the vehicle in “limp home mode” if a fault has
occurred in the wiring to the engine electronic control unit (EECU).
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Buff. idle val. sw.
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Buffered idle validation switch
Fault Codes
FMI 4
Abnormally low voltage.
Conditions for fault code:
•
If the output signal from the buffered idle validation
switch deviates from the input signal from idle validation switch 1, the VECU interprets this as a fault
and an fault code is set.
Note: The fault code is set first when the accelerator pedal is depressed.
Possible cause:
•
Short circuit to ground, signal wire
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
207
Group 28
Troubleshooting
MID 144 PPID 69 Idle Validation
Switch, Check
Other special equipment: J-39200, J-41132,
J-43234, J-43233, 9998551, J-43340
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
N/A
6
To check the wiring harness, refer to
“VNL, VNM Electrical Schematics,”
Group 37.
Check of component — buffered
idle validation switch
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. Therefore, a check of
the wiring harness should be made before connecting a
new component.
1
Disconnect connector (EA and EB) at
the EECU.
No test currently available.
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should be made if any of the measurements
deviate from the expected values.
1
Disconnect connector (EA and EB) at
the engine electronic control unit
(EECU).
2
Connect jumper J-43233 between
EECU’s EA (upper) connector and the
wiring harness.
3
Connect the 36-pin breakout box J41132 between the EECU’s EB (lower)
connector and the wiring harness.
J-43233
J-41132
4
Turn the ignition key to the ON position.
5
Connect voltmeter J-39200 to the 36pin breakout box at pin 4 (buffered idle
validation switch) and pin 9 (ground).
Measuring points
Expected value
EB4 / EB9
0 V (accelerator pedal
at idle)
B+ (accelerator pedal
above idle)
2
Connect jumper J-43233 between
EECU’s EA (upper) connector and the
wiring harness.
3
Connect the 36-pin breakout box J41132 between the EECU’s EB (lower)
connector and the wiring harness.
J-43233
J-41132
4
Turn the ignition key to the OFF position.
Signal Wire:
208
Wiring harness
J-39200
5
Using ohmmeter J-39200 at the 36–
pin breakout box, measure resistance
from pin 4 to pin 9.
Measuring points
Expected value
EB4 / EB9
2.9 ± 20% k
J-39200
Group 28
Troubleshooting
Check of subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PA/PB.
2
Connect the 60–pin breakout box
9998551 (with overlay J-43340) to the
adapter.
Signal Wire:
3
Turn the ignition key to the ON position.
J-43234
4
Connect voltmeter J-39200 to the 60pin breakout box and measure the
voltage.
Measuring points
Expected value
PB17 / PB22
0 V (accelerator pedal
J-39200
at idle)
9998551
J-43340
B+ (accelerator pedal
above idle)
Verification
No VCADS Pro tool test is currently available to verify
this fault correction.
209
Group 28
Troubleshooting
MID 144 PPID 70 Pedal Switches, Supply
Voltage supply to pedal switches.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Output supply #3
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Pedal switches supply
Fault Codes
FMI 4
Abnormally low voltage.
Conditions for fault code:
•
If the VECU registers a voltage lower than 2.5 V on
the supply wire, the VECU interprets this as a fault
and an fault code is set.
Possible cause:
•
•
The supply wire short-circuited to ground.
•
Signal wire for idle validation switch 1 short-circuited
to ground.
•
Faulty switch.
The signal wire for brakes/clutch short-circuited to
ground.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
210
Yellow lamp lights up.
The cruise control function does not work.
Group 28
Troubleshooting
MID 144 PPID 70 Pedal
Switches, Supply, Check
Other special equipment: J-39200, J-43234,
9998551, J-43340, J-41133
NOTE!
• Read off the other fault codes for the VECU.
•
Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27102–8
27503–8
Accelerator pedal, switches and sensor,
test
5
Connect a voltmeter to the breakout
harness connector and measure the
voltage.
Measuring points
Expected value
Pin D / alternate
B+
J-39200
ground
Supply wire, brake pedal switch:
6
Turn the ignition key to the ON position.
7
Connect a voltmeter to the wiring harness connector and measure the
voltage.
Measuring points
Expected value
“COMMON” / alternate
B+
J-39200
ground
Cruise control, switch, test
Supply wire, clutch pedal switch:
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the connector at the accelerator pedal. Install 5-pin breakout
harness J-41133 to the wiring harness
end only.
J-41133
2
Disconnect the connector at the brake
pedal switch (two pin, Common-558A
wire and Normal Open-567B wire).
3
Disconnect the connector at the clutch
pedal switch (two pin, Normal Open–
571 wire and Common 558B wire).
8
Turn the ignition key to the ON position.
9
Connect a voltmeter to the wiring harness connector and measure the
voltage.
Measuring points
Expected value
“COMMON” / alternate
B+
J-39200
ground
Signal wire, idle validation switch 1:
10
Turn the ignition key to the OFF position.
11
Connect an ohmmeter to the breakout
harness connector and measure the
resistance.
Measuring points
Expected value
Pin C / alternate
1.2 ± 20% k
J-39200
ground
Supply wire, idle validation switch 1:
4
Turn the ignition key to the ON position.
Signal wire, brake pedal switch:
12
Turn the ignition key to the OFF position.
211
Group 28
Troubleshooting
13
Connect an ohmmeter to the wiring
harness connector and measure the
resistance.
Measuring points
Expected value
“Normal Open” / alter-
1.2 ± 20% k
J-39200
3
Connect an ohmmeter to the connector and measure the resistance.
Measuring points
Expected value
Pin D / Pin C
Open circuit (accelera-
J-39200
tor pedal at idle)
nate ground
20-90
(full accelera-
tion)
Signal wire, clutch pedal switch:
Check of the brake pedal switch:
14
Turn the ignition key to the OFF position.
15
Connect an ohmmeter to the wiring
harness connector and measure the
resistance.
Measuring points
Expected value
“Normal Open” / alter-
1.2 ± 20% k
4
Disconnect the connector at the brake
pedal switch (two pin).
J-39200
5
Turn the ignition key to the OFF position.
6
Connect an ohmmeter to the switch
terminals and measure the resistance.
nate ground
Wiring harness
16
To check the wiring harness, see
“VNL, VNM Electrical Schematics,”
Group 37.
Measuring points
Expected value
“COMMON” / “Normal
<1
Open”
depressed)
J-39200
(brake pedal not
open circuit (brake
pedal depressed)
Check of component
• Idle validation switch
• Brake pedal switch
• Clutch pedal switch
Check of clutch pedal switch:
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
Check of idle validation switch 1:
1
Disconnect the connector at the accelerator pedal. Install 5-pin breakout
harness J-41133 to the accelerator
pedal harness end only.
2
Turn the ignition key to the OFF position.
212
J-41133
7
Disconnect the connector at the clutch
pedal switch (two pin).
8
Turn the ignition key to the OFF position.
9
Connect an ohmmeter to the switch
terminals and measure the resistance.
Measuring points
Expected value
“COMMON” / “Normal
<1
Open”
depressed)
(clutch pedal not
open circuit (clutch
pedal depressed)
J-39200
Group 28
Troubleshooting
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness PA/PB.
2
Connect 60–pin breakout box 9998551
(with overlay J-43340) to the adapter.
Signal wire, brake pedal switch:
J-43234
9998551
J-43340
Supply wire:
7
Turn the ignition key to the ON position.
8
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Measuring points
Expected value
PA5 / PA12
B+ (brake pedal not
J-39200
depressed)
3
Turn the ignition key to the ON position.
0 V (brake pedal depressed)
Signal wire, clutch pedal switch:
4
Connect a voltmeter to the 60-pin
breakout boxes and measure the voltage.
Measuring points
Expected value
PB19 / PA12
B+
J-39200
9
Turn the ignition key to the ON position.
10
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Signal wire, idle validation switch 1:
5
Turn the ignition key to the ON position.
Measuring points
Expected value
PA8 / PA12
B+ (clutch pedal not
J-39200
depressed)
0 V (clutch pedal depressed)
6
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Measuring points
Expected value
PA23 / PA12
0 V (accelerator pedal
J-39200
Verification
To check that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 211).
at idle)
B+ (full acceleration)
213
Group 28
Troubleshooting
MID 144 PPID 71 Cruise Control and Engine Brake, Supply Switch
Voltage supply to the cruise control and exhaust brake control switches. Also voltage
supply to the idle validation switch 3 (on second accelerator pedal), if so equipped
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Output supply #4
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Cruise control and retarder switch supply
Fault Codes
FMI 4
Abnormally low voltage.
Conditions for fault code:
•
If the VECU registers a voltage lower than 2.5 V on
the supply wire, the VECU interprets this as a fault
and an fault code is set.
Possible cause:
•
•
The supply wire short-circuited to ground.
•
The signal wire for the exhaust brake switch
(EPG/VEB) short-circuited to ground.
•
The signal wire for the idle validation switch 3 shortcircuited to ground.
The signal wire for the cruise control (SET+/SET/RESUME/ON) short-circuited to ground.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
•
•
214
Yellow lamp lights up.
The cruise control does not function.
Exhaust brake does not function.
Idle validation switch 3 does not function.
Group 28
Troubleshooting
MID 144 PPID 71 Cruise Control and Engine Brake, Supply
Switch, Check
Other special equipment: J-39200, 9998551,
J-41133, J-43340, J-43234
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
•
Note: checks concerning VCB only apply to vehicles
equipped with Volvo Compression Brake.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27503–8
Cruise control, switch, test
25336–8
Exhaust brake, switch, test
27104–8
Extra accelerator control, switches and
sensor, test
Supply wire, cruise control switch:
4
Turn the ignition key to the ON position.
5
Connect a voltmeter to the connector
and measure the voltage.
Measuring points
Expected value
Pin A (wire #597A) /
B+
J-39200
alternate ground
Supply wire, exhaust brake switch:
6
Turn the ignition key to the ON position.
7
Connect a voltmeter to the connector
and measure the voltage.
Measuring points
Expected value
Pin 1 (wire #597B) / al-
B+
J-39200
ternate ground
Supply wire, idle validation switch 3
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the connector at the switch
for the cruise control. Measurements
should be taken only on the wiring
harness connector end.
9
Connect a voltmeter to the connector
and measure the voltage.
Measuring points
Expected value
Pin D / alternate
B+
J-39200
ground
Signal wire, cruise control switch:
2
Disconnect the connector at the switch
for the exhaust brake, if the vehicle is
equipped with one. Measurements
should be taken only on the wiring
harness connector end.
3
Disconnect the connector at the second accelerator pedal, if the vehicle is
equipped with one. Install the 5–pin
breakout harness J-41133 to the
wiring harness end only.
8
Turn the ignition key to the ON position.
10
Turn the ignition key to the OFF position.
J-41133
215
Group 28
Troubleshooting
11
Connect an ohmmeter to the connector and measure the resistance.
J-39200
harness should also therefore be made before connecting a new component.
Check of the switch for the cruise control:
Measuring points
Expected value
Pin E (wire #563A) /
SET+
alternate ground
1.2 ± 20% k
Pin G (wire #564A) /
SET-
alternate ground
1.2 ± 20% k
Pin C (wire #562A) /
ON
alternate ground
1.2 ± 20% k
Pin H (wire #565A) /
RESUME
alternate ground
1.2 ± 20% k
1
Disconnect the connector at the switch
for cruise control. Measurements
should be taken only on the cruise
control switch connector.
2
Turn the ignition key to the OFF position.
Signal wire, exhaust brake switch:
12
Turn the ignition key to the OFF position.
13
Connect an ohmmeter to the connector and measure the resistance.
3
Connect an ohmmeter to the connector pins and measure the resistance.
Measuring points
Expected value
Pin E / Pin A
open circuit (SET+ in-
J-39200
active)
J-39200
<1
Pin H / Pin A
(SET+ active)
open circuit (RESUME
Measuring points
Expected value
inactive)
Pin 6 (wire #628) / al-
EPG
1.2 ± 20% k
<1
ternate ground
Pin 5 (wire #629) / al-
VCB
ternate ground
1.2 ± 20% k
Pin C / Pin A
Signal wire, idle validation switch 3:
Pin G / Pin A
(RESUME active)
open circuit (OFF)
<1
(ON)
<1
(RESUME active)
<1
(SET- active)
open circuit (SET- in-
14
Turn the ignition key to the OFF position.
active)
Check of the switch for the exhaust brake:
15
Connect an ohmmeter to the connector and measure the resistance.
Measuring points
Expected value
Pin C / alternate
1.2 ± 20% k
J-39200
4
Disconnect the connector at the switch
for exhaust brake. Measurements
should be taken only on the exhaust
brake switch pins.
ground
Wiring harness:
16
To check the wiring harness, see
“VNL, VNM Electrical Schematics,”
Group 37.
Check of component
• Cruise control switch
• Exhaust brake switch
• Idle validation switch 3
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
216
5
Turn the ignition key to the OFF position.
Group 28
Troubleshooting
6
Connect an ohmmeter to the switch
pins and measure the resistance.
J-39200
9
Connect an ohmmeter to the switch
pins and measure the resistance.
Measuring points
Expected value
Measuring points
Expected value
Pin 1 / Pin 6
open circuit (switch
Pin C / Pin D
open circuit
OFF)
<1
(accelerator at idle)
(switch position 1
- EPG)
<1
J-39200
20-90
(switch position 2
(full accelera-
tion)
- VCB)
Pin 1 / Pin 5
open circuit (switch
Check of Subsystem
OFF)
open circuit (switch po-
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PA/PB.
sition 1 - EPG)
<1
(switch position 2
- VCB)
Check of the idle validation switch 3:
7
Disconnect the connector at the second accelerator pedal. Install the 5–pin
breakout harness J-41133 to the accelerator pedal harness end only.
8
Turn the ignition key to the OFF position.
2
Connect 60–pin breakout box 9998551
(with overlay J-43234) to the adapter.
J-43234
9998551
J-43234
J-41133
Supply wire:
3
Turn the ignition key to the ON position.
4
Connect a voltmeter to the connector
and measure the voltage.
Measuring points
Expected value
PB5 / PA12
B+
J-39200
217
Group 28
Troubleshooting
Signal wire, cruise control switch:
Signal wire, exhaust brake switch:
5
Turn the ignition key to the ON position.
7
Turn the ignition key to the ON position.
6
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
J-39200
8
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Measuring points
Expected value
Measuring points
Expected value
PA2 / PA12
0 V (SET+ inactive)
PA21 / PA12
0 V (exhaust brake
switch OFF)
B+ (SET+ active)
PA30 / PA12
J-39200
B+ (exhaust brake
0 V (RESUME inactive)
switch position 1 -
PA3 / PA12
B+ (RESUME active)
EPG)
0 V (cruise switch
B+ (exhaust brake
OFF)
switch position 2 VCB)
B+ (cruise switch ON)
PA1 / PA12
0 V (SET- inactive)
PA20 / PA12
0 V (exhaust brake
switch OFF )
B+ (SET- active)
0 V (exhaust brake
PA30 / PA12
B+ (RESUME active)
switch position 1 -
0 V (RESUME inactive)
EPG)
B+ (exhaust brake
switch position 2 VCB)
Signal wire, idle validation switch 3:
9
Turn the ignition key to the ON position.
10
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Measuring points
Expected value
PB30 / PA12
0 V (accelerator at idle)
J-39200
B+ (full acceleration)
Verification
To check that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 215).
218
Group 28
Troubleshooting
MID 144 PPID 72 Accelerator Pedal, Supply Sensors
The accelerator pedal position sensor is supplied with a reference voltage of 5.0 V.
Each change of the accelerator pedal angle controls the input signal to the VECU.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Output supply #1
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Accelerator pedal and retarder sensor supply
Fault Codess
FMI 3
FMI 4
Abnormally high voltage.
Abnormally low voltage.
Conditions for fault code:
•
If the VECU registers a voltage higher than 5.5 V on
the supply wire, the VECU interprets this as a fault
and an fault code is set.
Conditions for fault code:
•
If the VECU registers a voltage lower than 4.5 V on
the supply wire, the VECU interprets this as a fault
and an fault code is set.
Possible cause:
•
•
•
•
•
Open circuit in ground wire.
Possible cause:
Supply wire short-circuited to higher voltage.
•
Supply wire short-circuited to ground or lower voltage.
Faulty accelerator position sensor.
•
Faulty accelerator position sensor.
Switch resistance and oxidation.
Reaction from the VECU:
Open circuit in supply wire.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
•
Fault code is set.
•
Yellow lamp is requested.
Noticeable external symptom:
Noticeable external symptom:
•
•
Yellow lamp lights up.
•
Yellow lamp lights up.
The engine does not respond when the accelerator
pedal is depressed.
•
Engine does not respond when the accelerator
pedal is depressed.
219
Group 28
Troubleshooting
MID 144 PPID 72 Accelerator
Pedal, Supply Sensors, Check
Other special equipment: J-39200, J-41133,
9998551, J-43340, J-43234
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27102–8
Accelerator pedal, switches and sensor,
test
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the connector at the accelerator pedal. Install 5-pin breakout
harness J-41133 to the wiring harness
end only.
Expected value
Pin E / alternate
<1
ground
Supply wire:
4
Turn the ignition key to the ON position.
220
Expected value
Pin A / Pin E
5.4 ± 20% V
Signal wire:
6
Turn the ignition key to the OFF position.
7
Connect an ohmmeter to the 5–pin
breakout harness and measure the resistance.
Measuring points
Expected value
Pin B / Pin E
100 ± 20% k
J-39200
Wiring harness
8
To check the wiring harness, see
“VNL, VNM Electrical Schematics,”
Group 37.
Accelerator position sensor
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the accelerator pedal. Install 5–pin breakout
harness J-41133 to the accelerator
pedal harness end only.
2
Turn the ignition key to the OFF position.
Measuring points
Measuring points
J-39200
Check of component
J-41133
Ground wire:
3
Using ohmmeter J-39200, measure
the resistance from pin E (5–pin harness) to the alternate ground.
5
Connect a voltmeter to the connector
and measure the voltage from pin A to
pin E (5–pin harness).
J-39200
J-41133
2
Turn the ignition key to the OFF position.
3
Connect an ohmmeter to the breakout
harness pins and measure the resistance.
Measuring points
Expected value
Pin A / Pin E
4 ± 20% k
Pin A / Pin B
4.5 ± 20% k
(accelerator pedal at idle)
J-39200
Group 28
Troubleshooting
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PB/PA.
2
Connect the 60–pin breakout box
9998551 (with overlay J-43340) to the
adapter.
Supply wire:
J-43234
9998551
J-43340
5
Ignition key in ON position.
6
Connect a voltmeter to the 60–pin
breakout box and measure the voltage
from pin PB10 to PB22.
Measuring points
Optimal value
PB10 / PB22
5 ± 20% V
J-39200
Ground wire:
Signal wire:
3
Turn the ignition key to the OFF position.
4
Connect an ohmmeter to the 60–pin
breakout box and measure the resistance between pin PB22 and the
alternate ground.
Measuring points
Optimal value
PB22/ Alternate
<1
7
Turn the ignition key to the ON position.
J-39200
8
Connect a voltmeter to the 60-pin
breakout box and measure the voltage
from pin PB8 to PB22.
Measuring points
Expected value
PB8 / PB22
0.5 ± 20% V (accelera-
ground
J-39200
tor pedal at idle)
3.2 ± 20% V (full acceleration)
Verification
To verify that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 220).
221
Group 28
Troubleshooting
MID 144 PPID 73 Second Accelerator Pedal, Supply Sensors
The second accelerator pedal position sensor is supplied with a reference voltage of
5.0 V. Each change of the second accelerator pedal angle controls the input signal to
the VECU.
Note: Applies only to vehicles with a second accelerator
pedal assembly (such as the WX).
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Output supply #2
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Second throttle and wet tank sensor supply
Fault Codes
FMI 3
Conditions for fault code:
Abnormally high voltage.
•
Conditions for fault code:
•
If the VECU registers a voltage higher than 5.5 V on
the supply wire, the VECU interprets this as a fault
and an fault code is set.
Possible cause:
•
Supply wire short-circuited to ground or lower voltage.
Open circuit in ground wire.
•
Faulty second accelerator pedal position sensor.
Supply wire short-circuited to higher voltage.
Reaction from the VECU:
Open circuit in supply wire.
Faulty second accelerator pedal position sensor.
•
•
Switch resistance and oxidation.
Noticeable external symptom:
Possible cause:
•
•
•
•
•
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The engine does not respond when the second accelerator pedal is depressed.
FMI 4
Abnormally low voltage.
222
If the VECU registers a voltage lower than 4.5 V on
the supply wire, the VECU interprets this as a fault
and an fault code is set.
•
•
Fault code is set.
Yellow lamp is requested.
Yellow lamp lights up.
Engine does not respond when the second accelerator pedal is depressed.
Group 28
Troubleshooting
MID 144 PPID 73 Second
Accelerator Pedal, Supply Sensors, Check
Other special equipment: J-39200, J-41133,
9998551, J-43340, J-43234
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27104–8
Extra accelerator pedal, switches and
sensor, test
5
Connect a voltmeter to the connector
and measure the voltage from pin A to
pin E (5–pin harness).
Measuring points
Expected value
Pin A / Pin E
5.4 ± 20% V
J-39200
Signal wire:
6
Turn the ignition key to the OFF position.
7
Connect an ohmmeter to the 5–pin
breakout harness and measure the resistance.
Measuring points
Expected value
Pin B / Pin E
100 ± 20% k
J-39200
Wiring harness
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the connector at the second accelerator pedal. Install 5-pin
breakout harness J-41133 to the
wiring harness end only.
Expected value
Pin E / alternate
<1
ground
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the second accelerator pedal. Install 5–pin
breakout harness J-41133 to the second accelerator pedal harness end
only.
2
Turn the ignition key to the OFF position.
Measuring points
Check of component
Second accelerator position sensor
J-41133
Ground wire:
3
Using ohmmeter J-39200, measure
the resistance from pin E (5–pin harness) to the alternate ground.
8
To check the wiring harness, see
“VNL, VNM Electrical Schematics,”
Group 37.
J-39200
J-41133
2
Turn the ignition key to the OFF position.
3
Connect an ohmmeter to the breakout
harness pins and measure the resistance.
Supply wire:
Measuring points
Expected value
4
Turn the ignition key to the ON position.
Pin A / Pin E
4 ± 20% k
Pin A / Pin B
J-39200
4.5 ± 20% k
(accelerator pedal at idle)
223
Group 28
Troubleshooting
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PB/PA.
2
Connect the 60–pin breakout box
9998551 (with overlay J-43340) to the
adapter.
Supply wire:
J-43234
9998551
J-43340
5
Ignition key in ON position.
6
Connect a voltmeter to the 60–pin
breakout box and measure the voltage
from pin PB26 to PB23.
Measuring points
Optimal value
PB26 / PB23
5 ± 20% V
J-39200
Ground wire:
Signal wire:
3
Turn the ignition key to the OFF position.
4
Connect an ohmmeter to the 60–pin
breakout box and measure the resistance between pin PB23 and the
alternate ground.
Measuring points
Optimal value
PB23/ Alternate
<1
7
Turn the ignition key to the ON position.
J-39200
8
Connect a voltmeter to the 60-pin
breakout box and measure the voltage
from pin PB25 to PB23.
Measuring points
Expected value
PB25 / PB23
0.5 ± 20% V (accelera-
ground
J-39200
tor pedal at idle)
3.2 ± 20% V (full acceleration)
Verification
To verify that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 223).
224
Group 28
Troubleshooting
MID 144 PPID 75 Range Inhibitor, Solenoid Valve Status
This applies only to vehicles with Volvo transmissions.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Range inhibitor
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Range inhibitor solenoid valve
Fault Codes
FMI 3
the inhibitor is to be released — approximately 36
km/h (23 mph).
Abnormally high voltage.
Conditions for fault code:
Possible cause:
•
•
The wire between the solenoid valve and the VECU
short-circuited to ground.
•
Open circuit, wire between solenoid valve and
VECU.
•
•
•
Open circuit, supply wire to solenoid valve.
If the VECU registers a voltage higher than 6.5 V
when the function is active, the VECU interprets this
as a fault and an fault code is set.
Note: The fault code is set first at the speed when
the inhibitor is to engage — at approx 40 km/h (25
mph).
Possible cause:
•
•
The wire between the solenoid valve and the VECU
short-circuited to battery voltage (B+).
Faulty solenoid valve.
Reaction from the VECU:
•
•
Switch resistance and oxidation.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Fault code is set.
Noticeable external symptom:
Yellow lamp is requested.
•
•
Noticeable external symptom:
•
•
Faulty solenoid valve.
Yellow lamp lights up.
Yellow lamp lights up.
The range inhibitor is not activated or is constantly
active.
The range inhibitor is not activated.
FMI 4
Abnormally low voltage.
Conditions for fault code:
•
If the VECU registers a voltage lower than 2.3 V
when the function is inactive, the VECU interprets
this as a fault and an fault code is set.
Note: The fault code is set first at the speed when
225
Group 28
Troubleshooting
MID 144 PPID 75 Range Inhibitor, Solenoid Valve Status,
Check
Other special equipment: J-39200, 9998551,
J-43340, J-43234, J–42472
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Supply wire:
4
Turn the ignition key to the ON position.
5
Connect a voltmeter from the breakout
harness terminals to the alternate
ground and measure the voltage.
Measuring points
Expected value
Terminal 1 (breakout
B+
J-39200
harness) / alternate
ground
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
N/A
No test currently available.
Wiring harness:
6
To check the wiring harness, refer to
“VNL, VNM Electrical Schematics,”
Group 37.
Measurement at the Component’s
Connector, to the VECU
Check of Component
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the range
inhibitor solenoid valve. Install 2–pin
breakout harness J–42472 to the
wiring harness end only.
1
Disconnect the connector at the range
inhibitor solenoid valve.
J–42472
2
Install 2–pin breakout harness J–
42472 between the solenoid valve and
the wiring harness.
Ground wire:
2
Turn the ignition key to the OFF position.
3
Connect an ohmmeter and measure
the resistance.
Measuring points
Expected value
Terminal 2 (breakout
1.5 ± 20% M
harness) / alternate
ground
226
Range Inhibitor Solenoid
3
Turn the ignition key to the ON position.
J-39200
J–42472
Group 28
Troubleshooting
4
Ground the #2 breakout pin to an alternate ground. Listen for the range
inhibitor valve to click.
3
Turn the ignition key to the ON position.
4
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
CAUTION
Accidental grounding of pin #1 may blow a fuse or
cause wiring damage.
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PA/PB.
2
Connect 60-pin breakout box 9998551
(with overlay J-43340) to the adapter.
Measuring points
Expected value
PB18 / PA12
B+
Connect a jumper wire
Click at range inhibitor
from PB18 to an alter-
solenoid
J-39200
nate ground
J-43234
Verification
No VCADS Pro tool test is currently available to verify
this fault correction.
9998551
J-43340
227
Group 28
Troubleshooting
MID 144 SID 230 Idle Validation Switch 1
Idle validation switch 1 is located at the driver’s accelerator pedal assembly.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Idle valid switch
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Idle validation switch
Fault Codes
FMI 7
Incorrect response from mechanical system.
Conditions for fault code:
•
If the signal from the idle validation switch is not
available, with the accelerator position sensor below
13% travel, the VECU interprets this as a fault and
an fault code is set.
Possible cause:
•
Incorrect or faulty idle validation switch.
•
Open circuit in the supply wire.
•
Open circuit in the signal wire.
•
The signal wire short-circuited to ground.
•
The signal wire short-circuited to voltage.
•
Switch resistance or oxidation.
Reaction from the VECU:
•
Fault code is set.
•
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
•
The engine does not respond correctly to
acceleration.
228
Group 28
Troubleshooting
MID 144 SID 230 Idle Validation
Switch 1, Check
Other special equipment: J-39200, 9998551,
J-43340, J-41133, J-43234
NOTE!
• Read off the other fault codes for the VECU.
•
Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27102–8
Accelerator pedal, switches and sensor,
test
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
1
Disconnect the connector at the accelerator pedal. Install 5-pin breakout
harness J-41133 to the wiring harness
end only.
J-41133
5
Connect an ohmmeter to the breakout
harness pins and measure the resistance.
Measuring points
Expected value
Pin C / alternate
1.2 ± 20% k
ground
Wiring harness
6
To check the wiring harness, refer to
“VNL, VNM Electrical Schematics,”
Group 37.
Check of Component
Idle validation switch 1
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the accelerator pedal. Install 5-pin breakout
harness J-41133 to the accelerator
pedal harness only.
2
Turn the ignition key to the ON position.
2
Turn the ignition key to the OFF position.
Measuring points
Expected value
Pin C / Pin D
open circuit
(accelerator at idle)
20-90
Measuring points
Expected value
Pin D / alternate
B+
J-41133
3
Connect an ohmmeter to the breakout
harness pins and measure the resistance.
Supply wire:
3
Connect a voltmeter to the breakout
harness pins and measure the voltage.
J-39200
(full acceleration)
J-39200
ground
Signal wire:
4
Turn the ignition key to the OFF position.
229
Group 28
Troubleshooting
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PA/PB.
2
Connect 60-pin breakout box 9998551
(with overlay J-43340) to the adapter.
Signal wire:
3
Turn the ignition key to the ON position.
230
J-43234
4
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Measuring points
Expected value
PA23 / PA12
0 V (accelerator at idle)
J-39200
B+ (full acceleration)
9998551
J-43340
Verification
To check that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 229).
Group 28
Troubleshooting
MID 144 SID 231 SAE J1939 Control Link
High-speed digital communication between different electronic control units takes place
over the J1939 Control Link; this is used to control vehicle operation. If the J1939 Control Link fails, the J1587/1708 Information Link serves as a “back-up” control link.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
SAE J1939 data link
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
SAE J1939 data link
Fault Codes
FMI 2
Intermittent or incorrect data.
Conditions for fault code:
•
If the VECU does not receive confirmation for the
messages on the J1939 Control Link, the VECU interprets this as a fault and an fault code is set.
Possible cause:
•
•
•
•
Switch resistance and oxidation.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
Loose connection.
Open circuit in J1939 Control Link wire.
Switch resistance and oxidation.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
FMI 12
Faulty unit or component.
Conditions for fault code:
•
If the expected messages are not available from a
control unit on the J1939 Control Link, the VECU interprets this as a fault and an fault code is set.
Possible cause:
•
Open circuit in J1939 Control Link wire.
231
Group 28
Troubleshooting
MID 144 SID 231 SAE J1939
Control Link, Check
3
Turn the ignition key to the ON position.
Other special equipment: J-39200
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
4
Using a voltmeter, back probe connector PC (Green 5–pin) at connectors
PC4 and PC5 with the connector installed in the VECU.
Note: This may require the use of voltmeter function MIN/MAX.
Appropriate Tests in the VCADS
Pro Tool
Measuring points
Expected value
PC4 / Alternate ground
2-5 V DC
The following test(s) are useful for closely examining the
component’s function:
PC5 / Alternate ground
0-3 V DC
PC4 / PC5
0-5 V DC
N/A
No test currently available.
Note: The voltage of the control link
varies and is dependent on the number of electronic control units and
traffic on the control link.
Check of Subsystem
1
Turn the ignition key to the OFF position.
2
Using an ohmmeter, back probe connector PC (Green 5–pin) at connectors
PC4 and PC5 with the connector installed in the VECU.
Measuring points
Expected value
PC4 / PC5
60 ± 10
232
Verification
No VCADS Pro tool test is currently available to verify
this fault correction.
J-39200
Group 28
Troubleshooting
MID 144 SID 240 Program Memory
At startup, a checksum is calculated for the software in the VECU’s flash memory. This
is compared with the previously stored checksum to verify that the checksum is correct.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Program memory
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Programm memory
Fault Codes
FMI 2
Intermittent or incorrect data.
Conditions for fault code:
•
If the checksum stored at start up does not agree
with the previously stored checksum, the VECU interprets this as a fault and an fault code is set.
Possible cause:
•
•
Internal software fault.
Faulty memory circuit.
Reaction from the VECU:
•
The VECU continuously restarts.
Noticeable external symptom:
•
Yellow lamp is lit by the instrument control unit since
the VECU does not respond to the call.
•
The vehicle can only be run in “limp home mode.”
233
Group 28
MID 144 SID 243 Cruise Control Set Switch
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
CC Set switch
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
CC set switch
Fault Codes
FMI 7
Incorrect response from mechanical system.
Conditions for fault code:
•
If the VECU receives the signals for SET+ and SETat the same time, the VECU interprets this as a fault
and an fault code is set.
Possible cause:
•
•
Faulty switch.
Signal wire short-circuited to voltage.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
Yellow lamp lights up.
The cruise control function does not work. The
speed cannot be set.
Note: If the speed has been previously set, it can be
“resumed.”
234
Troubleshooting
Group 28
Troubleshooting
MID 144 SID 243 Cruise Control
Set Switch, Check
Other special equipment: J-39200, 9998551,
J-43340, J-43234
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27503–8
Cruise control, switch, test
5
Connect an ohmmeter to the connector and measure the resistance.
Measuring points
Expected value
Wiring harness con-
1.2 ± 20% k
J-39200
nector E / alternate
ground
RESUME
6
Turn the ignition key to the OFF position.
7
Connect an ohmmeter to the connector and measure the resistance.
Measuring points
Expected value
Wiring harness con-
1.2 ± 20% k
J-39200
nector H / alternate
ground
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the wiring harness to the VECU can
damage the component. Therefore, a check of the component should also be made if any of the measurement
values deviate from the expected value.
ON
8
Turn the ignition key to the OFF position.
9
Connect an ohmmeter to the connector and measure the resistance.
1
Disconnect the connector at the switch
for the cruise control. Measurements
should be taken only on the wiring
harness connector.
Measuring points
Expected value
Wiring harness con-
1.2 ± 20% k
J-39200
nector C / alternate
ground
Supply wire:
2
Turn the ignition key to the ON position.
3
Connect a voltmeter to the connector
and measure the voltage.
Measuring points
Expected value
Wiring harness con-
B+
nector A / alternate
ground
SET10
Turn the ignition key to the OFF position.
J-39200
11
Connect an ohmmeter to the connector and measure the resistance.
Measuring points
Expected value
Wiring harness con-
1.2 ± 20% k
J-39200
nector G / alternate
ground
Signal wire:
SET+
4
Turn the ignition key to the OFF position.
Wiring harness
12
To check the wiring harness, see
“VNL, VNM Electrical Schematics,”
Group 37.
235
Group 28
Troubleshooting
Check of Component
Cruise control set switch
2
Connect 60-pin breakout box 9998551
(with overlay J-43340) to the adapter.
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
Signal wire:
1
Disconnect the connector at the switch
for the cruise control. Measurements
should be taken only on the cruise
control switch connector.
3
Turn the ignition key to the ON position.
4
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
2
Turn the ignition key to the OFF position.
9998551
J-43340
Measuring points
Expected value
PA1 / PA12
B+ (OFF and SET- ac-
J-39200
tive)
3
Connect an ohmmeter to the connector and measure the resistance.
0 V (OFF and SET+
J-39200
active)
0 V (ON and SET+ ac-
Measuring points
Expected value
tive)
Cruise control switch
open circuit (SET+ and
0 V (RESUME active
connectors E / G
SET- inactive)
and SET+ active)
PA2 / PA12
open circuit (ON and
B+ (OFF and SET+
SET+ active)
active)
open circuit (RESUME
0 V (OFF and SET-
active and SET+ ac-
active)
tive)
0 V (ON and SET- ac-
open circuit (ON and
tive)
SET- active)
0 V (RESUME active
open circuit (RESUME
and SET- active)
active and SET- active)
Verification
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PA/PB.
236
J-43234
To check that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 235).
Group 28
Troubleshooting
MID 144 SID 250 SAE J1587/1708 Information Link
The J1587/1708 Information Link is used to communicate gauge information and diagnostic messages.
High-speed digital communication between different electronic control units takes place
over the J1939 Control Link; this is used to control vehicle operation. If the J1939 Control Link fails, the J1587/1708 Information Link serves as a “back-up” control link.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
SAE J1708 data link
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
SAE J1587/1708 data link
Fault Codes
FMI 2
Intermittent or incorrect data.
Conditions for fault code:
•
If the VECU registers incorrect messages on the
J1587/1708 Information Link, the VECU interprets
this as a fault and an fault code is set.
Possible cause:
•
Several units are sending at the same time on the
J1587/1708 Information Link.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
Yellow lamp lights up.
237
Group 28
Troubleshooting
MID 144 SID 250 SAE
J1587/1708 Information Link,
Check
Special tools: J-39200
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
N/A
2
Using a voltmeter, back the probe
connector PC (Green, 5–pin) at connectors PC1 and PC2 with the
connector installed in the VECU.
J-39200
Note: This may require the use of voltmeter function MIN/MAX.
Measuring points
Expected value
PC1 / Alternate ground
0-5 V DC
PC2 / Alternate ground
0-5 V DC
PC1 / PC2
2-5 V DC
Note: The voltage of the information
link varies and is dependent on the
number of electronic control units and
traffic on the information link.
No test currently available.
Verification
Check of Subsystem
1
Turn the ignition key to the ON position.
238
No VCADS Pro tool test is currently available to verify
this fault correction.
Group 28
Troubleshooting
MID 144 SID 253 Data Set Memory EEPROM
At start-up, a checksum is calculated for the data set in the VECU’s EEPROM memory.
This is compared with the previously stored checksum to verify that the data set is correct.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Calibration memory
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Calibration memory EEPROM
Fault Codes
FMI 2
Intermittent or incorrect data.
Conditions for fault code:
•
If the VECU receives an error in calculating the
checksum in the calibration memory, the VECU interprets this as a fault and an fault code is set.
Possible cause:
•
•
The memory circuit is faulty.
Error when programming.
•
Error when programming of the data sets.
Reaction from the VECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Red lamp lights up.
The vehicle can only be driven in the “limp home
mode.”
Reaction from the VECU:
•
•
Fault code is set.
Red lamp is requested.
Noticeable external symptom:
•
•
Red lamp lights up.
The vehicle can only be driven in the “limp home
mode.”
FMI 13
Values outside calibration values.
Conditions for fault code:
•
If the VECU receives an error when calculating the
checksums for the data sets, the VECU interprets
this as a fault and an fault code is set.
Possible cause:
•
The memory circuit is faulty.
239
Group 28
Troubleshooting
MID 144 PSID 3 Idle Validation Switch 3
This applies only to vehicles with a second accelerator pedal assembly (WX).
Note: Idle validation switch 2 is not used in North American applications.
•
Text Messages
In vehicles equipped with diagnostic display, the following message(s) will appear:
•
Instrument Cluster Graphics Display (VN):
Idle validation switch 3
•
Data Link Instrument Cluster (WG, AC, WX):
The Data Link instrument cluster graphics display
used on WG-, AC-, and WX-series vehicles can
display a limited number of text messages. For information, see “Data Link Instrumentation,” Volvo
Service Publication PV776–381–620SM.
•
VCADS Pro Display:
Idle validation switch 3
Fault Codes
FMI 7
Incorrect response from mechanical system.
Conditions for fault code:
•
If the signal from the idle validation switch is not
available with the accelerator position sensor below
13% travel, the VECU interprets this as a fault and
an fault code is set.
Possible cause:
•
•
•
•
•
•
Faulty idle validation switch.
Open circuit in the supply wire.
Open circuit in the signal wire.
The signal wire short-circuited to ground.
The signal wire short-circuited to voltage.
Switch resistance and oxidation.
Reaction from the VECU:
•
•
Fault code is set.
Yellow lamp is requested.
Noticeable external symptom:
•
•
240
Yellow lamp lights up.
The engine does not respond correctly when the
second accelerator pedal is depressed.
Group 28
Troubleshooting
MID 144 PSID 3 Idle Validation
Switch 3, Check
Other special equipment: J-39200, 9998551,
J-43340, J-43234, J-41133
NOTE!
• Read off the other fault codes for the VECU.
• Check the particular connectors during the fault
tracing for oxidation and switch resistance. For
detailed circuit information, refer to “VNL, VNM Electrical Schematics,” Group 37.
Appropriate Tests in the VCADS
Pro Tool
The following test(s) are useful for closely examining the
component’s function:
27104–8
Extra accelerator control, switches and
sensor, test
Measurement at the Component’s
Connector, to the VECU
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the second accelerator pedal. Install 5-pin
breakout harness J-41133 to the
wiring harness end only.
J-41133
2
Turn the ignition key to the ON position.
Measuring points
Expected value
Pin D / alternate
B+
ground
4
Turn the ignition key to the OFF position.
5
Connect an ohmmeter to the connector and measure the resistance.
Measuring points
Expected value
Pin C / alternate
1.2 ± 20% k
J-39200
ground
Wiring harness
6
To check the wiring harness, see
“VNL, VNM Electrical Schematics,”
Group 37.
Check of Component
Idle validation switch 3
Note: Faults in the component can be caused by faults
in the wiring harness of the VECU. A check of the wiring
harness should also therefore be made before connecting a new component.
1
Disconnect the connector at the second accelerator pedal. Install 5-pin
breakout harness J-41133 to the accelerator pedal harness end only.
J-41133
2
Turn the ignition key to the OFF position.
Supply wire:
3
Connect a voltmeter to the connector
and measure the voltage.
Signal wire:
3
Connect an ohmmeter to the connector and measure the resistance.
J-39200
Measuring points
Expected value
Pin C / Pin D
open circuit (accelera-
J-39200
tor at idle)
20-90
(full accelera-
tion)
241
Group 28
Troubleshooting
Check of Subsystem
1
Disconnect the VECU and install
adapter J-43234 between the VECU
and wiring harness connectors PA/PB.
2
Connect a 60-pin breakout box
9998551 (with overlay J-43340) to the
adapter.
Signal wire:
3
Turn the ignition key to the ON position.
242
J-43234
4
Connect a voltmeter to the 60-pin
breakout box and measure the voltage.
Measuring points
Expected value
PB30 / PA12
0 V (accelerator at idle)
J-39200
B+ (full acceleration)
9998551
J-43340
Verification
To check that the fault has been corrected, use the test
in the VCADS Pro tool (see “Appropriate Tests in the
VCADS Pro Tool” page 241).
Group 28
Service Procedures
Service Procedures
2841-03-02-01
Engine ECU, Replacement
5
Special tools: 9998482
1
Note: Make sure that the parking
brake is applied.
2
Disconnect the power with main switch
Before working on a vehicle, set the parking brakes,
place the transmission in neutral, and block the
wheels. Failure to do so can result in unexpected
vehicle movement and can cause serious personal injury or death.
T2014052
Remove the bolts for the cooling coil
on the control unit.
Note: Do not release the fuel lines on
the cooling coil.
WARNING
Fuel leaked or spilled onto hot surfaces or electrical
components can cause a fire. Clean up fuel spills immediately.
6
Remove the control unit’s hold-down
bolts (4, see previous illustration ) and
lift off the control unit.
.
7
Install the new control unit.
3
Note: Make sure that the framework
line is positioned correctly and that the
mating surface on the engine block is
free from rust.
If the control unit is painted where the
cooling coil is to be installed: Remove
the paint where the cooling coil is in
contact with the control unit to ensure
maximum cooling.
8
Install the cooling coil on the control
unit.
Remove the connector from the control unit by pressing the catch and
pushing the handle up.
9
Check the clamping force of the terminal in the connector for the control unit
by means of gauge 9998482.
4
Cut the clamps round the cable harness under the control unit and fold
away the connector for the control unit.
10
Install the connector on the control
unit. Make sure that the catch locks on
the connector.
T2014053
9998482
243
Group 28
11
Clamp the cables under the control
unit.
12
Switch on the power.
Note: When starting the engine with
cab up, make sure that a gear is not
engaged. The parking brake should be
applied.
13
Conduct a function check. Check that
there are no fault codes in the control
unit.
244
Service Procedures
Feedback
One of our objectives is that workshop personnel should have access to correct and
appropriate service manuals where it concerns fault tracing, repairs and maintenance
of Volvo trucks.
In order to maintain the high standards of our literature, your opinions and experience
when using this manual would be greatly appreciated.
If you have any comments or suggestions, make a copy of this page, write down your
comments and send them to us, either via telefax or mailing directly to the address
listed below.
To
From
Volvo Trucks North America, Inc.
..........................................................................
Dept. 516 Service Publications
..........................................................................
7825 National Service Road
..........................................................................
P.O. Box 26115
..........................................................................
Greensboro, NC 27402-6115
..........................................................................
USA
..........................................................................
Fax (336) 393-3170
..........................................................................
Comments/proposals
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
................................................................................................................................................................................
Concerns Service Manual: ...............................................................................................................................
Operation Numbers
2841-03-02-01 Engine ECU, Replacement
. . . . . . . . . . . . . . . . . . . . . . . . . . 243
Volvo Trucks North America, Inc.
P.O. Box 26115, Greensboro, NC 27402-6115
Volvo Trucks Canada, Ltd.
6490 Vipond Drive, Mississauga, Ontario L5T 1W8
http://www.volvotrucks.volvo.com
PV776-TSP144528 (1000) 06.2001 © Volvo Trucks North America, Inc., 2001
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement