Mitsubishi | MELSERVO MR-J2S- A | Specifications | Mitsubishi MELSERVO MR-J2S- A Specifications

MITSUBISHI ELECTRIC
MELSERVO
Servo Motors and Servo Amplifiers
Specifications and Installation Guide
MR-J2-A
Art.No.: 65883
2001 04 04
IB 67286-E
MITSUBISHI ELECTRIC INDUSTRIAL AUTOMATION
Thank you for choosing this Mitsubishi AC servo. This Installation guide gives handling information
and precautions for using the servo amplifier and servo motor. Incorrect handling may cause an
unexpected fault. Before using the servo amplifier and servo motor, please read this Installation
guide carefully to use the equipment to its optimum.
Please forward this Installation guide to the end user.
Safety Instructions
Do not attempt to install, operate, maintain or inspect the servo amplifier and servo motor until
you have read through this Installation guide and appended documents carefully and can use
the equipment correctly. Do not use the servo amplifier and servo motor until you have a full
knowledge of the equipment, safety information and instructions.
In this Installation guide, the safety instruction levels are classified into "WARNING" and "CAUTION".
WARNING
Indicates that incorrect handling may cause hazardous conditions,, resulting in death or severe injury.
CAUTION
Indicates that incorrect handling may cause hazardous conditions,, resulting in medium or slight injury to personnel or may cause physical damage.
Note that the CAUTION level may lead to a serious consequence according to conditions. Please
follow the instructions of both levels because they are important to personnel safety.
What must not be done and what must be done are indicated by the following diagrammatic
symbols:
.
: Indicates what must not be done. For example, "No Fire" is indicated by
: Indicates what must be done. For example, grounding is indicated by
.
After reading this installation guide, always keep it accessible to the operator.
In this Installation guide, instructions at a lower level than the above, instructions for other
functions, and so on are classified into "NOTICE", "INFORMATION" and "MEMORANDUM".
NOTICE
Indicates that incorrect handling may cause the servo amplifier to be faulty and may
not lead to physical damage.
INFOR- Indicates that parameter setting change, etc. will provide another function or there
MATION are other usages.
MEMOIndicates information needed for use of this equipment.
RANDUM
–1–
SAFETY INSTRCUTIONS
1. To prevent electric shock, note the following:
WARNING
Before wiring or inspection, switch power off and wait for more than 10 minutes. Then,
confirm the voltage is safe with voltage tester. Otherwise, you may get an electric shock.
Connect the servo amplifier and servo motor to ground.
Any person who is involved in wiring and inspection should be fully competent to do the
work.
Do not attempt to wire the servo amplifier and servo motor until they have been installed.
Otherwise, you may get an electric shock.
Operate the switches with dry hand to prevent an electric shock.
The cables should not be damaged, stressed loaded,, or pinched. Otherwise, you may get
an electric shock.
2. To prevent fire, note the following:
CAUTION
Do not install the servo amplifier, servo motor and regenerative brake resistor on or near
combustibles. Otherwise a fire may cause.
When the servo amplifier has become faulty, switch off the main servo amplifier power
side. Continuous flow of a large current may cause a fire.
When a regenerative brake resistor is used, use an alarm signal to switch main power off.
Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative
brake resistor, causing a fire.
3. To prevent injury, note the following:
CAUTION
Only the voltage specified in the Installation guide should be applied to each terminal,,
Otherwise,, a burst,, damage,, etc. may occur.
Connect the terminals correctly to prevent a burst,, damage,, etc.
Ensure that polarity (+, -) is correct. Otherwise, a burst, damage, etc. may occur.
During power-on or for some time after power-off, do not touch the servo amplifier fins,
regenerative brake resistor, servo motor, etc. Their temperatures may be high and you
may get burnt.
–2–
4. Additional instructions
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury,
electric shock, etc.
(1) Transportation and installation
CAUTION
Transport the products correctly acordng to their weights.
Stacking in excess of the specified number of products is not allowed.
Do not carry the motor by the cables, shaft or encoder.
Do not hold the front cover to transport the controller. The controller may drop.
Install the servo amplifier in a load-bearing place in accordance with the Installation guide.
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.
The controller and servo motor must be installed in the specified direction.
Leave specified clearances between the servo amplifier and control enclosure walls or
other equipment.
Do not install or operate the servo amplifier and servo motor which has been damaged or
has any parts missing.
Provide adequate protection to prevent screws and other conductive matter, oil and other
combustible matter from entering the servo amplifier.
Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.
–3–
CAUTION
Use the servo amplifier and servo motor under the following environmental conditions:
Conditions
Environmen
Ambient
temperature
[ °C]
[ °F]
Ambient humidity
Storage
temperature
[ °C]
[ °F]
Servo Amplifier
0 to +55 (non-freezing)
Servo Motor
0 to +40 (non-freezing)
32 to 131
32 to 104
(non-freezing)
(non-freezing)
90%RH or less
80%RH or less
(non-condensing)
-20 to +65
(non-condensing)
(non-freezing)
(non-freezing)
-4 to 149 (non-freezing)
5 to 158 (non-freezing)
-15 to +70
90%RH or less (non-condensing)
Indoors (no direct sunlight)
Free from corrosive gas, flammable gas, oil mist, dust and dirt
Max. 1000m (3280 ft) above sea level
Storage humidity
Ambience
Altitude
[m/s2]
5.9 (0.6G) or less
Vibration
[ft/s2]
19.4 or less
MC-MF series
HA-FF series
HU-UF13 to 43
HC-SF81
HC-SF52 to 152
HC-SF53 to 153
HC-RF series
HC-UF72 • 152
HC-SF121 • 201
HC-SF202 • 352
HC-SF203 • 353
HC-UF202
HC-SF301
MC-MF series
HA-FF series
HU-UF13 to 43
HC-SF81
HC-SF52 to 152
HC-SF53 to 153
HC-RF series
HC-UF72 • 152
HC-SF121 • 201
HC-SF202 • 352
HC-SF203 • 353
HC-UF202
HC-SF301
X • Y: 19.6
X: 9.8
Y: 24.5
X: 19.6
Y: 49
X: 11.7 Y: 29.4
X • Y: 64
X: 32
Y: 80
X: 64
Y: 161
X: 39 Y: 96
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may
come off during operation.
The servo motor with reduction gear must be installed in the specified direction to prevent
oil leakage.
For safety of personnel, always cover rotating and moving parts.
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder may become faulty.
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the
shaft may break.
When the equipment has been stored for an extended period of time, consult Mitsubishi.
–4–
(2) Wiring
CAUTION
Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo motor and servo amplifier.
Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.
The surge absorbing diode installed on the DC output signal relay must be wired in the specified direction. Otherwise, the emergency stop and other protective circuits may not operate.
Servo
Amplifier
Servo
Amplifier
COM
(24VDC)
Control
output
signal
COM
(24VDC)
RA
Control
output
signal
RA
(3) Test run adjustment
CAUTION
Before operation, check the parameter settings. Improper settings may cause some machines to perform unexpected operation.
The parameter settings must not be changed excessively. Operation will be instable.
(4) Usage
CAUTION
Provide an external emergency stop circuit to ensure that operation can be stopped and
power switched off immediately.
Any person who is involved in disassembly and repair should be fully competent to do the
work.
Before resetting an alarm, make sure that the run signal is off to prevent an accident. A
sudden restart is made if an alarm is reset with the run signal on.
Do not modify the equipment.
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which
may be caused by electronic equipment used near the servo amplifier.
Use the servo amplifier with the specified servo motor.
The electromagnetic brake on the servo motor is designed to hold the motor shaft and
should not be used for ordinary braking.
For such reasons as service life and mechanical structure (e.g. where a ballscrew and the
servo motor are coupled via a timing belt), the electromagnetic brake may not hold the
motor shaft. To ensure safety, install a stopper on the machine side
–5–
(5) Corrective actions
CAUTION
When it is assumed that a hazardous condition may take place at the occur due to a power
failure or a product fault,, use a servo motor with electromag<->netic brake or an external
brake mechanism for the purpose of prevention.
Configure the electromagnetic brake circuit so that it is activated not only by the servo
amplifier signals but also by an external emergency stop signal.
Contacts must be
Circuit must be
open when servo
opened during
is off or when an
emergency stop.
alarm (trouble) is
present.
Servo motor
RA1 EMG
24VDC
Electromagnetic brake
When any alarm has occurred,, eliminate its cause,, ensure safety,, then reset the alarm,,
before restarting operation.
When power is restored after an instantaneous power failure,, keep away from the machine because the machine may be restarted suddenly (design the machine so that it is
secured against hazard if restarted).
(6) Maintenance, inspection and parts replacement
CAUTION
With age, the electrolytic capacitor will deteriorate. To prevent a secondary accident due
to a fault, it is recommended to replace the electrolytic capacitor every 10 years when
used in general environment.
Please consult our sales representative.
(7) Disposal
CAUTION
Dispose of the product as general industrial waste.
(8) General instruction
To illustrate details, the equipment in the diagrams of this Installation guide may have been
drawn without covers and safety guards. When the equipment is operated, the covers and safety
guards must be installed as specified. Operation must be performed in accordance with this
Installation guide.
–6–
COMPLIANCE WITH EC DIRECTIVES
1. WHAT ARE EC DIRECTIVES?
The EC Directives were issued to standardize the regulations of the EU countries and ensure smooth
distribution of safety-guaranteed products. In the EU countries, the Machinery Directive (effective
in January, 1995), EMC Directive (effective in January, 1996) and Low Voltage Directive (effective
in January, 1997) of the EC Directives require that products to be sold should meet their fundamental safety requirements and carry the CE marks (CE marking). CE marking applies to machines and
equipment into which servo amplifiers have been installed.
(1) EMC directive
The EMC directive applies to a machine/equipment which incorporates the servo, not to the
servo alone. Hence, the EMC filter must be used to make this machine/equipment which incorporates the servo comply with the EMC Directive. For specific methods to comply with the EMC
Directive, refer to the "EMC Installation Guidelines" (IB(NA)67310).
This servo has been approved by TUV, third-party evaluation organization, which confirmed
that it can comply with the EMC Directive in the methods given in the "EMC Installation Guidelines".
(2) Low voltage directive
The low voltage directive applies also to the servo alone. Therefore, our servo is designed to
comply with the Low Voltate Directive.
This servo has been approved by TUV, third-party evalution organization, which confirmed that
it complies with the Low Voltage Directive.
(3) Machinery directive
Since the servo amplifiers are not machines, they need not comply with this derective.
2. PRECAUTIONS FOR COMPLIANCE
(1) Servo amplifiers and servo motors used
Use the following models of servo amplifiers and servo motors:
Servo amplifier series: MR-J2-10A to MR-J2-350A
Servo motor series
: HC-KF -UE
HC-MF -UE
HC-SF
HC-RF
HC-UF
Control box
(2) Structure
Reinforced
insulating
transformer
Reinforced
insulating type
24VDC
power
supply
No-fuse
breaker
Magnetic
contactor
NFB
MC
Servo
amplifier
Servo
motor
SM
(3) Environment
Operate the servo amplifier at or above the contamination level 2 set forth in IEC664. For this
purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust, dirt, etc. (IP54).
(4) Power supply
1) Operate the servo amplifier to meet the requirements of the overvoltage category II set forth
in IEC664. For this purpose, a reinforced insulating transformer conforming to the IEC or EN
Standard should be used in the power input section.
2) When supplying interface power from external, use a 24VDC power supply which has been
insulation-reinforced in I/O.
–7–
(5) Grounding
1) To prevent an electric shock, always connect the protective earth (PE) terminals (marked )
of the servo amplifier to the protective earth (PE) of the control box.
2) Do not connect two ground cables to the same protective earth (PE) terminal as shown at
right below. Always connect the cables to the terminals one-to-one.
PE terminals
PE terminals
3) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE)
terminals of the servo amplifier must be connected to the corresponding earth terminals.
(6) Wiring
1) The cables to be connected to the terminal block of the servo amplifier must have crimping
terminals provided with insulating tubes to prevent contact with adjacent terminals.
Crimping terminal
Insulating tube
Cable
2) When the servo motor has a power supply lead, use a fixed terminal block to connect it with
the servo amplifier. Do not connect cables directly.
Terminal block
3) Use the servo motor side power connector which complies with the EN Standard. The EN
Standard-compliant power connector sets are available from us as options.
(7) Auxiliary equipment and options
1) The no-fuse breaker and magnetic contactor used should be the EN or IEC Standard-compliant products of the models described in Section 6-2-1.
2) The sizes of the cables described in Section 6-2-2 meet the following requirements. To meet
the other requirements, follow Table 5 and Appendix C in EN60204-1.
• Ambient temperature: 40 (104) [°C(°F)]
• Sheath: PVC (polyvinyl chloride)
• Installed on wall surface or open table tray
3) Use the EMC filter for noise reduction. The radio noise filter (FR-BIF) is not needed.
(8) Servo motor
For outline dimension drawings not shown, contact Mitsubishi.
(9) Performing EMC tests
When EMC tests are run on a machine/device into which the servo amplifier has been installed,
it must conform to the electromagnetic compatibility (immunity/emission) standards after it has
satisfied the operating environment/electrical equipment specifications.
For the other EMC Directive guidelines on the servo amplifier, refer to the "EMC INSTALLATION GUIDELINES (IB(NA)67310)".
–8–
CONFORMANCE WITH UL/C-UL STANDARD
(1) Servo amplifiers and servo motors used
Use the following models of servo amplifiers and servo motors:
Servo amplifier series: MR-J2-10A to MR-J2-350A
Servo motor series
: HC-KF -UE
HC-MF -UE
HC-SF
HC-RF
HC-UF
(2) Installation
Install a fan of 100CFM air flow 10.16 cm (4 in) above the servo amplifier or provide cooling of
at least equivalent capability.
(3) Short-circuit rating
Having been subjected to UL's short-circuit test with an AC circuit whose peak current is limited
to 5000A max., this servo amplifier complies with this circuit.
(4) Flange
Mount the servo motor on a flange which has the following size or produces an equivalent or
higher heat dissipation effect:
Servo Motor
Flange Size
[mm]
HC-MF
-UE HA-FF C-UE
HC-SF
HC-RF
HC-UF
150 x 150 x 6
053 • 13
053 • 13
13
250 x 250 x 6
23
23 • 33
23
250 x 250 x 12
43
43 • 63
300 x 300 x 12
73
81
52 to 152
103 to 203
43
53 to 153
73
121 to 301
300 x 300 x 20
202 • 352
203 • 353
550 x 550 x 30
72 • 152
650 x 650 x 35
301
202
(5) Capacitor discharge time
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging
section for 10 minutes after power-off.
Servo Amplifier
Discharge Time [min]
MR-J2-10A(1)•20A(1)
1
MR-J2-40A(1)•60A
2
MR-J2-70A~350A
3
(6) Options and auxiliary equipment
Use products which conform to the UL/C-UL Standard.
–9–
CONTENTS
CHAPTER 1 INTRODUCTION .................................................................................................. 1-1~1-17
1-1 Inspection at delivery ................................................................................................................. 1-2
1-1-1
Packing list ................................................................................................................... 1-2
1-1-2
Model definition ........................................................................................................... 1-2
1-1-3
Combination with servo motor ..................................................................................... 1-7
1-2 Parts identification and applications .......................................................................................... 1-8
1-2-1
Servo amplifier ............................................................................................................. 1-8
1-2-2
Servo motor ............................................................................................................... 1-13
1-3 Function list .............................................................................................................................. 1-14
1-4 Basic configuration .................................................................................................................. 1-15
1-4-1
MR-J2-100A or less ................................................................................................... 1-15
1-4-2
MR-J2-200A or more ................................................................................................. 1-17
CHAPTER 2 OPERATION ......................................................................................................... 2-1~2-54
2-1 Standard connection examples ................................................................................................. 2-2
2-1-1
Position control mode .................................................................................................. 2-2
2-1-2
Speed control mode .................................................................................................... 2-6
2-1-3
Torque control mode .................................................................................................... 2-8
2-2 Operation ................................................................................................................................. 2-10
2-2-1
Pre-operation checks ................................................................................................. 2-10
2-2-2
Start-up ...................................................................................................................... 2-11
2-3 Display and operation .............................................................................................................. 2-18
2-3-1
Display flowchart ....................................................................................................... 2-18
2-3-2
Status display ............................................................................................................ 2-19
2-3-3
Diagnostic mode ........................................................................................................ 2-20
2-3-4
Alarm mode ............................................................................................................... 2-27
2-3-5
Parameter mode ........................................................................................................ 2-28
2-4 Adjustments ................................................................................................................................. 2-50
2-4-1
Auto tuning ................................................................................................................ 2-50
2-4-2
Manual gain adjustment ............................................................................................ 2-50
2-4-3
Slight vibration suppression control ........................................................................... 2-54
CHAPTER 3 WIRING ................................................................................................................. 3-1~3-62
3-1 Servo amplifier ........................................................................................................................... 3-3
3-1-1
Terminal blocks ............................................................................................................ 3-3
3-1-2
Signal connectors ....................................................................................................... 3-6
3-1-3
Detailed information on I/O signals ............................................................................ 3-18
3-1-4
Interfaces ................................................................................................................... 3-32
3-2 Connection of servo amplifier and servo motor ....................................................................... 3-36
3-2-1
Connection instructions ............................................................................................. 3-36
3-2-2
Connection diagram .................................................................................................. 3-37
3-2-3
I/O terminals .............................................................................................................. 3-38
3-2-4
Connectors used for servo motor wiring .................................................................... 3-41
3-3 Common line ............................................................................................................................ 3-55
3-4 Grounding ................................................................................................................................ 3-56
3-5 Power supply circuit ................................................................................................................. 3-57
3-6 Alarm occurrence timing chart ................................................................................................. 3-59
3-7 Servo motor with electromagnetic brake ................................................................................. 3-60
CHAPTER 4 INSTALLATION ..................................................................................................... 4-1~4-9
4-1 Servo amplifier ........................................................................................................................... 4-2
4-2 Servo motor ............................................................................................................................... 4-5
i
CHAPTER 5
ABSOLUTE POSITION DETECTION SYSTEM ................................................ 5-1~5-6
CHAPTER 6 OPTIONS AND AUXILIARY EQUIPMENT ...................................................... 6-1~6-27
6-1 Dedicated options ...................................................................................................................... 6-2
6-1-1 Regenerative brake options .................................................................................... 6-2
6-1-2 Cable connectors ...................................................................................................... 6-7
6-1-3 Junction terminal block .......................................................................................... 6-14
6-1-4 Maintenance junction card .................................................................................... 6-15
6-1-5 Set-up software (will be released soon) ............................................................. 6-16
6-2 Auxiliary equipment ................................................................................................................. 6-17
6-2-1 Cables ...................................................................................................................... 6-17
6-2-2 No-fuse breakers, fuses, magnetic contactors .................................................. 6-17
6-2-3 Power factor improving reactors .......................................................................... 6-18
6-2-4 Relays ....................................................................................................................... 6-18
6-2-5 Surge absorbers ..................................................................................................... 6-19
6-2-6 Noise reduction techniques ................................................................................... 6-20
6-2-7 Leakage current breaker ....................................................................................... 6-25
6-2-8 Battery (MR-BAT, A6BAT) ..................................................................................... 6-26
6-2-9 Setting potentiometers for analog inputs ............................................................ 6-27
CHAPTER 7
INSPECTION .......................................................................................................... 7-1~7-3
CHAPTER 8 TROUBLESHOOTING ......................................................................................... 8-1~8-13
8-1 Troubleshooting at start-up ................................................................................................... 8-2
8-1-1 Position control mode .............................................................................................. 8-2
8-1-2 Speed control mode ..................................................................................................... 8-4
8-1-3 Torque control mode .................................................................................................... 8-5
8-2 Alarms and warnings .............................................................................................................. 8-6
8-2-1 Alarm and warning list ............................................................................................. 8-6
8-2-2 Alarms ........................................................................................................................ 8-7
8-2-3 Warnings .................................................................................................................. 8-13
CHAPTER 9 CHARACTERISTICS ........................................................................................... 9-1~9-12
9-1 Overload protection characteristics ..................................................................................... 9-2
9-2 Losses generated in the servo amplifier ............................................................................. 9-4
9-3 Electromagnetic brake characteristics ................................................................................. 9-6
9-4 Dynamic brake characteristics ............................................................................................ 9-10
9-5 Vibration rank ........................................................................................................................ 9-12
CHAPTER 10 SPECIFICATIONS ........................................................................................ 10-1~10-110
10-1 Standard specifications ........................................................................................................ 10-2
10-2 Torque characteristics .......................................................................................................... 10-6
10-3 Servo motors with reduction gears .................................................................................. 10-10
10-4 Servo motors with special shafts ...................................................................................... 10-14
10-5 Outline dimension drawings .............................................................................................. 10-16
10-5-1 Servo amplifiers .................................................................................................... 10-16
10-5-2 Servo motors ......................................................................................................... 10-19
10-5-3 Servo motors (in inches) ..................................................................................... 10-61
10-5-4 Cable side plugs ................................................................................................ 10-103
ii
CHAPTER 11 SELECTION ..................................................................................................... 11-1~11-13
11-1 Specification symbol list ...................................................................................................... 11-2
11-2 Position resolution and electronic gear setting ................................................................ 11-3
11-3 Speed and command pulse frequency .............................................................................. 11-4
11-4 Stopping characteristics ...................................................................................................... 11-5
11-5 Capacity selection ................................................................................................................. 11-6
11-6 Load torque equations ......................................................................................................... 11-8
11-7 Load inertia moment equations .......................................................................................... 11-9
11-8 Precautions for zeroing ...................................................................................................... 11-10
11-9 Selection example............................................................................................................... 11-11
iii
CHAPTER 1
INTRODUCTION
This chapter provides basic information needed to use this servo.
1-1 Inspection at delivery
1-1-1 Packing list
1-1-2 Model definition
1-1-3 Combination with servo motor
1-2 Parts identification and applications
1-2-1 Servo amplifier
1-2-2 Servo motor
1-3 Function list
1-4 Basic configuration
1-4-1 MR-J2-100A or less
1-4-2 MR-J2-200A or more
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
1– 1
1. INTRODUCTION
1-1 Inspection at delivery
After unpacking, check the name plate to make sure that the servo amplifier and servo motor received are as ordered by the customer.
1-1-1 Packing list
1) Servo amplifier
2) Servo motor
Item
Qty
Item
Qty
Servo amplifier
1
Servo motor
1
(Note)Control circuit connector
1
Specifications and
installation guide
Safety Instructions
for Use of AC Servo
1
1
Note: Not supplied to the servo amplifier of MR-J2-200A or more.
1-1-2 Model definition
(1) Servo amplifier
1) Name plate
MITSUBISHI
MODEL MR-J2-60A
AC
ACSERVO
SERVO
Model
Capacity
POWER : 600W
INPUT : 3.2A 3PH+1PH 200-230V 50Hz
POWER
3PH+1PH200-230V 60Hz
5.5A 1PH230V 50/60Hz
OUTPUT : 170V 0-360Hz
3.6A
SERIAL : TC3XXAAAAG52
MITSUBISHI ELECTRIC CORPORATION
Applicable power supply
Rated output current
Current status + serial number
PASSED
MADE IN JAPAN
2) Model
MR-J2-100A or less
MR-J2-200A•350A
MR-J2- A
Series
Power Supply
Symbol
None
(Note 1) 1
Three-phase AC200~230V
(Note 2) Single-phase AC230V
Single-phase AC100V
Note: 1. Not supplied to the servo amplifier
of MR-J2-60A or more.
Note: 2. Not supplied to the servo amplifier
of MR-J2-100A or more.
General-purpose Interface
Rated output
Symbol
Rated
output [W]
Symbol
Rated
output [W]
10
100
70
750
20
200
100
1000
40
400
200
2000
60
600
350
3500
1– 2
Name plate
Name plate
1. INTRODUCTION
(2) Servo Motors
1) Name plate
AC SERVO MOTOR
HC-MF13
Model
Serial number
Date of manufacture
SERIAL
DATE
MITSUBISHI ELECTRIC CORPORATION
MADE IN JAPAN
or
AC SERVO MOTOR
Model
Input power
Rated output
Rated speed
Serial number
HC-RF153
INPUT 3AC 145V 8.2A
OUTPUT 1.5Kw IEC34-1 1994
SPEED 3000r/min
SER.No.
001 DATE
MITSUBISHI ELECTRIC CORPORATION
MADE IN JAPAN
2) Model
a. HC-MF series (ultra low inertia, small capacity)
HC-MF
3
Appearance
Series name
1) Compliance with Standard
Symbol
Specifications
None
Standard model (Japan)
-UE
EN • UL/C-UL Standard
1
2) Shaft type
3) Reduction gear
Symbol
Symbol
Reduction Gear
None
Without
G1
G2
Shaft Shape
Standard
None
(Straight shaft)
053 to 73
For general
K
(Note) With keyway
23 to 73
industrial machine
D
D-cut shaft
53 • 13
For precision application
Note: With key
4) Electromagnetic brake
5) Rated speed
3000 [r/min]
6) Rated output
Symbol
HC-MF
Rated Output [W]
05
50
1
100
2
200
4
400
7
750
1– 3
Symbol
Electromagnetic Brake
None
Without
B
With
1. INTRODUCTION
b. HA-FF series (low inertia, small capacity)
HA-FF
3
Appearance
Series name
1) Compliance with Standard
Symbol
Specifications
None
Standard model (Japan)
-UE
EN • UL/C-UL Standard
2) Shaft type
3) Reduction gear
Symbol
Shaft Shape
HA-FF
Symbol
Reduction Gear
None
(Note) Standard
053 to 73
None
Without
D
D-cut shaft
053 • 13
G1
G2
Note: The Standard shafts of the HA-FF23 to
63 are with keys and those of the other
models are straight shafts.
For general
industrial machine
For precision application
4) Electromagnetic brake
Symbol
Electromagnetic Brake
None
Without
B
With
5) Input power supply form
Symbol
Standard model
None
Lead
C
EN • UL/C-UL Standardcompliant model
Cannon connector
6) Rated speed
3000 [r/min]
7) Rated output
Symbol
Rated Output [W]
Symbol
Rated Output [W]
05
50
3
300
1
100
4
400
2
200
6
600
1– 4
1. INTRODUCTION
c. HC-SF series (middle inertia, middle capacity)
HC-SF
Appearance
Series name
1) Shaft type
Shaft shape
Symbol
Standard
None
(Straight shaft)
With keyway
K
Note: Without key
2) Reduction gear
Symbol
(Note) Reduction Gear
Without
None
For general
G1
industrial machine
(flange type)
For general
G1H
industrial machine
G2
For precision application
(leg type)
Note: Not provided for 1000r/min and
3000r/min series.
3) Electromagnetic brake
4) Rated speed
Symbol
Speed [r/min]
1
1000
2
2000
3
3000
Symbol
Electromagnetic Brake
None
Without
B
With
1
5) Rated output
Symbol
Rated Output [W]
5
500
8
850
10
1000
12
1200
15
1500
20
2000
30
3000
35
3500
1– 5
1000 [r/min] 2000 [r/min] 3000 [r/min]
1. INTRODUCTION
d. HC-RF series (low inertia, middle capacity)
HC-RF
3
Appearance
Series name
1) Shaft type
Shaft Shape
Symbol
Standard
None
(Straight shaft)
With keyway
K
Note: Without key
2) Reduction gear
Symbol
Reduction Gear
None
Without
G2
For precision application
3) Electromagnetic brake
4) Rated speed
Symbol
Electromagnetic Brake
None
Without
B
With
3000 [r/min]
5) Rated output
Symbol
Rated Output [W]
10
1000
15
1500
20
2000
e. HC-UF series (pancake type small capacity)
HC-UF
3
Appearance
Series name
1) Shaft type
Shaft Shape
Symbol
None
Standard
(Straight shaft)
K
With keyway
D
D-cut shaft
HU-UF
13 to 43
72 to 202
13
Note: Without key
2) Electromagnetic brake
3) Rated speed
Symbol
Speed [r/min]
2
2000
3
3000
4) Rated output
Symbol
Rated Output [W]
1
100
2
200
4
400
7
750
15
1500
20
2000
1– 6
Symbol
Electromagnetic Brake
None
Without
B
With
1. INTRODUCTION
1-1-3 Combination with servo motor
The following table lists combinations of servo amplifiers and servo motors. The same combinations
apply to the models with electromagnetic brakes, the models with reduction gears, the EN Standardcompliant models and UL/C-UL Standard-compliant models.
Servo Motors
Servo Amplifier
HC-SF
(Note)
(Note)
HA-FF
MR–J2–10A (1)
053 • 13
053 • 13
13
MR–J2–20A (1)
23
23
23
MR–J2–40A (1)
43
33 • 43
1000r/min
MR–J2–60A
MR–J2–70A
2000r/min
HC-RF
HC-UF
HC-MF
3000r/min
2000r/min
3000r/min
43
63
52
53
73
72
MR–J2–100A
81
102
103
MR–J2–200A
121 • 201
152 • 202
153 • 203
103 • 153
152
MR–J2–350A
301
352
353
203
202
73
Note The HC-UF73 • HC-SF203 • HC-SF353 may not be connected depending on the production timing of the servo
amplifier. Please contact us.
1
1– 7
1. INTRODUCTION
1-2 Parts identification and applications
1-2-1 Servo amplifier
(1) MR-J2-200A or less
1– 8
1. INTRODUCTION
Name/Application
Refer To
Battery holder
Contains the battery for absolute position data
backup.
Chapter 5(5)
Battery connector (CON1)
Used to connect the battery for absolute position
data backup.
Chapter 5(5)
Section 6-2-8
Display
The four-digit, seven-segment LED shows the servo
status and alarm number.
Section 2-3
Operation section
Used to perform status display, diagnostic, alarm and
parameter setting operations.
MODE
UP
DOWN
SET
Used to set parameter
data.
Section 2-3
Used to change the
display or data in each
mode.
Used to change the
mode.
I/O signal connector (CN1A)
Used to connect digital I/O signals.
Section 3-1-2
I/O signal connector (CN1B)
Used to connect digital I/O signals.
Section 3-1-2
Communication connector (CN3)
Used to connect a personal computer or output
analog monitor.
Section 3-1-2
Section 6-1-5
Name plate
Section 1-1
Charge lamp
Lit to indicate that the main circuit is charged. While
this lamp is lit, do not reconnect the cables.
Encoder connector (CN2)
Connector for connection of the servo motor encoder
Section 3-1-2
Main circuit terminal block (TE1)
Used to connect the input power supply and servo
motor.
Section 3-1-1
Control circuit terminal block (TE2)
Used to connect the control circuit power supply and
regenerative brake option.
Protective earth (PE) terminal (
Ground terminal.
1– 9
)
Section 3-1-1
Section 3-4
1
1. INTRODUCTION
(2) MR-J2-200A or more
MODE
The servo amplifier is shown
without the front cover. For
removal of the front cover, refer
to page 1-12.
UP
DOWN
SET
Installation notch (4 places)
Cooling fan
1– 10
1. INTRODUCTION
Name/Application
Refer To
Battery holder
Contains the battery for absolute position data
backup.
Chapter 5(5)
Battery connector (CON1)
Used to connect the battery for absolute position
data backup.
Chapter 5(5)
Section 6-2-8
Display
The four-digit, seven-segment LED shows the servo
status and alarm number.
Section 2-3
Operation section
Used to perform status display, diagnostic, alarm and
parameter setting operations.
MODE
UP
DOWN
SET
Used to set parameter
data.
Section 2-3
Used to change the
display or data in each
mode.
Used to change the
mode.
I/O signal connector (CN1A)
Used to connect digital I/O signals.
Section 3-1-2
I/O signal connector (CN1B)
Used to connect digital I/O signals.
Section 3-1-2
Communication connector (CN3)
Used to connect a personal computer or output
analog monitor.
Section 3-1-2
Section 6-1-5
Name plate
Section 1-1
Charge lamp
Lit to indicate that the main circuit is charged. While
this lamp is lit, do not reconnect the cables.
Encoder connector (CN2)
Connector for connection of the servo motor encoder
Section 3-1-2
Control circuit terminal block (TE2)
Used to connect the control circuit power supply and
regenerative brake option.Control circuit terminal
Section 3-1-1
Main circuit terminal block (TE1)
Used to connect the input power supply and servo
motor.
Protective earth (PE) terminal (
Ground terminal.
1– 11
)
Section 3-1-1
Section 3-4
1
1. INTRODUCTION
Removal of the front cover
q
w
1) Hold down the removing knob.
2) Pull the front cover toward you.
Front cover
Reinstallation of the front cover
1) Insert the front cover hooks into
the front cover sockets of the
servo amplifier.
w
2) Press the front cover against the
servo amplifier until the removing
knob clicks.
Front cover hook
(2 places)
q
Front cover socket (2 places)
1– 12
1. INTRODUCTION
1-2-2 Servo motor
Name/Application
Refer To
Encoder cable
Encoder connector for HC-SF/HC-RF
Section 6-1-2
Encoder
Section 3-2
Section 10-1
Power cable
• Power leads (U, V, W)
• Earth lead
• Brake lead
(For motor with electromagnetic brake)
Power supply connector for HC-SF/HC-RF
Servo motor shaft
Section 3-2
Section 4-2 (4)
Section 10-4
1
1– 13
1. INTRODUCTION
1-3 Function list
Function
Description
(Note)
Control Mode
Refer To
Position control mode
MR-J2-A is used as position control servo.
P
Section 2-1-1
Section 2-2-2 (2)
Section 3-1-3 (1)
Speed control mode
MR-J2-A is used as speed control servo.
S
Section 2-1-2
Section 2-2-2 (3)
Section 3-1-3 (2)
Torque control mode
MR-J2-A is used as torque control servo.
T
Section 2-1-3
Section 2-2-2 (4)
Section 3-1-3 (3)
Position/speed control
change mode
Using external input signal, control can be switched between position control and speed control.
P/S
Section 3-1-3 (4)
Speed/torque control
change mode
Using external input signal, control can be switched between speed control and torque control.
S/T
Section 3-1-3 (5)
Torque/position control
change mode
Using external input signal, control can be switched between torque control and position control.
T/P
Section 3-1-3 (6)
Absolute position detection
system
Return to home position is not required at each power on
after it has been made once.
P
Chapter 5
P
Section 2-4-3
P
Parameters No. 3, 4
Slight vibration suppression Suppresses vibration of ±1 pulse produced at a servo
motor stop.
control
Electronic gear
Input pulses can be multiplied by 1/50 to 50.
Real-time auto tuning
Automatically adjusts the gain to optimum value if load
applied to the servo motor shaft varies.
P, S
Section 2-4-1
Parameter No. 2
Smoothing
Speed can be increased smoothly in response to input
pulse.
P
Parameter No. 7
S
Parameter No. 13
P, S, T
Parameter No. 17
P, S, T
Parameter No. 16
S
Parameter No. 20
Parameter No. 21
S-pattern acceleration/
deceleration time constant Speed can be increased and decreased smoothly.
Analog monitor output
Servo status is output in terms of voltage in real time.
Alarm history clear
Alarm history is cleared.
If the input power supply voltage had reduced to cause
Restart after instantaneous
an alarm but has returned to normal, the servo motor can
power failure
be restarted by merely switching on the start signal.
Command pulse selection
Command pulse train form can be selected from among
four different types.
P
Input signal selection
Forward rotation start, reverse rotation start, servo on and
other input signals can be assigned to any pins.
P, S, T
Torque limit
Servo motor-generated torque can be limited to any value.
P, S
Section 3-1-3 (1) q
Parameter No. 28
Speed limit
Servo motor speed can be limited to any value.
T
Section 3-1-3 (3) e
Parameter No. 8~10
Status display
Servo status is shown on the 4-digit, 7-segment LED
display.
P, S, T
Section 2-3-2
External I/O display
ON/OFF statuses of external I/O signals are shown on the
display.
P, S, T
Section 2-3-3 (1)
Output signal can be forced on/off independently of the
Output signal forced output servo status.
Use this function for output signal wiring check, etc.
P, S, T
Section 2-3-3 (2)
Parameters No. 43 to
48
Automatic VC offset
Voltage is automatically offset to stop the servo motor
if it does not come to a stop at the analog speed command
(VC) or analog speed limit (VLA) of 0V.
S, T
Test operation mode
Servo motor can be run from the operation section of the
servo amplifier without the start signal entered.
P, S, T
Section 2-3-3 (3)
Used when the built-in regenerative brake resistor of the
Regenerative brake option servo amplifier does not have sufficient regenerative capability for the regenerative power generated.
P, S, T
Section 6-1-1
Section 2-3-3
Servo configuration software
Using a personal computer, parameter setting, test operation, status display, etc. can be performed.
P, S, T
Section 6-1-5
Alarm code output
If an alarm has occurred, the corresponding alarm number
is output in 3-bit code.
P, S, T
Section 8-2-1
Note: P: Position control mode, S: Speed control mode, T: Torque control mode
P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position
control change mode
1– 14
1. INTRODUCTION
1-4 Basic configuration
WARNING
To prevent an electric shock, always connect the protective
earth (PE) terminal (terminal marked ) of the servo amplifier
to the protective earth (PE) of the control box.
1-4-1 MR-J2-100A or less
(1) Three-phase 200V or single-phase 230V power supply models
(Note 2)
Power supply
3-phase AC200
~230V
or
1-phase AC230V
Options and Auxiliary Equipment
No-fuse breaker
(NFB) or fuse
Servo amplifier
MR-J2- A
Refer To
No-fuse breaker
Section 6-2-2
Magnetic contactor
Section 6-2-2
Set-up software
Section 6-1-5
Regenerative brake option
Section 6-1-1
Cables
Section 6-2-1
Power factor improving reactors
Section 6-2-3
Positioning unit
MR-J2-60A
Magnetic
contactor
(MC)
To CN1A
To CN1B
Junction terminal block
To CN3
CHARGE
Power factor
improring
reactors
(FR-BAL)
Personal
computer
To CN2
Set-up
software
1
L1
L2
L3
U
V
W
Protective earth (PE) terminal
(Note 1)
Encoder cable
U
Control circuit terminal block
V
D
(Note 1)
Power leads
W
L21
L11
P
Regenerative brake option
C
Note: 1. The HA-FF C-UE, HC-SF series have Cannon connectors.
(Refer to Section 3-2-2.)
Note: 2. A single-phase AC230V power supply may be used with the servo amplifier of MR-J2-70A
or less. Connect the power supply to L1 and L2 terminals and leave L3 open.
1– 15
Servo motor
1. INTRODUCTION
(2) Single-phase 100V power supply model
Options and Auxiliary Equipment
1-phase AC100V
power supply
No-fuse breaker
(NFB) or fuse
Refer To
No-fuse breaker
Section 6-2-2
Magnetic contactor
Section 6-2-2
Set-up software
Section 6-1-5
Regenerative brake option
Section 6-1-1
Cables
Section 6-2-1
Power factor improving reactors
Section 6-2-3
MR-J2- A1
Positioning unit
MR-J2-60A
To CN1A
Magnetic
contactor
(MC)
To CN1B
Junction terminal block
To CN3
CHARGE
Power factor
improring
reactors
(FR-BAL)
Personal
computer
To CN2
Set-up
software
L1
U
V
W
L2
Protective earth (PE) terminal
(Note)
Encoder cable
U
Control circuit terminal block
V
D
(Note)
Power leads
W
L21
L11
P
Regenerative brake option
C
Note: The HA-FF
Servo motor
C-UE series have Cannon connectors.
(Refer to Section 3-2-2.)
1– 16
1. INTRODUCTION
1-4-2 MR-J2-200A or more
Options and Auxiliary Equipment
3-phase AC200
~230V
power supply
Refer To
No-fuse breaker
Section 6-2-2
Magnetic contactor
Section 6-2-2
Set-up software
Section 6-1-5
Regenerative brake option
Section 6-1-1
Cables
Section 6-2-1
Power factor improving reactors
Section 6-2-3
No-fuse breaker
(NFB) or fuse
Servo amplifier
Positioning unit
To CN1A
Magnetic
contactor
(MC)
To CN1B
Junction terminal block
To CN2
Power factor
improring
reactors
(FR-BAL)
To CN3
Personal
computer
L11
L21
L1
L2
L3
U
V W
P
C
Regenerative brake option
1– 17
Set-up
software
1
CHAPTER 2
OPERATION
This chapter gives basic connection examples and operation procedures.
2-1 Standard connection examples
2-1-1 Position control mode
2-1-2 Speed control mode
2-1-3 Torque control mode
2-2 Operation
2-2-1 Pre-operation checks
2-2-2 Start-up
2-3 Display and operation
2-3-1 Display flowchart
2-3-2 Status display
2-3-3 Diagnostic mode
2-3-4 Alarm mode
2-3-5 Parameter mode
2-4 Adjustments
2-4-1 Auto tuning
2-4-2 Manual gain adjustment
2-4-3 Slight vibration suppression control
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
2–1
2. OPERATION
2-1 Standard connection examples
Always follow the instructions in Chapter 3.
CAUTION
2-1-1 Position control mode
For single-phase 100V power supply
(1) Connection with the FX-1GM
Make up a sequence which
CAUTION switches off the MC at alarm
occurrence or emergency stop.
Servo amplifier
MR – J2 – A1
NFB
MC
TE1
L1
Power supply
Single-phase 100VAC
L2
L11
L21
Make up a sequence which
switches off the MC at alarm
occurrence or emergency stop.
CAUTION
NFB
MC
Power supply
3-phase 200~230VAC
or
(Note 13) 1-phase 230VAC
Servo motor
Servo amplifier
MR – J2 – A
TE1
L1
U (Red)
U
V (White)
V
L2
W
L3
SM
W (Black)
(Green)
(Note 1)
L11
24VDC
B1
Electromagnetic
brake
L21
(Note 4)
Regenerative
brake option
C
(Note 12)
TE2
B2
D
EMG
To be shut off when servo-on
signal switches off or alarm
signal is given.
P
Positioning unit FX-1GM
Signal
CN1A(Note 5, 8)
24+
COM1
SVRDY
OPC
COM
RD
11
9
19
SV END
INP
18
COM2
PG0
COM5
CLR
FP
COM4
RP
P15R
OP
SG
CR
PP
SG
NP
4
14
10
8
3 (Note 5, 8, 10)
20 (Note 14) CN3
2
SD
(Note 11)
2m (6.5ft) or less
(Note 3, 7) External emergency stop
Servo on
Reset
Proportion control
Torque limit
(Note 7) Forward rotation stroke end
Reverse rotation stroke end
EMG
SON
RES
PC
TL
LSP
LSN
SG
SG
10m (32ft) or less
Do not connect when external
VDD
power supply is used.
(Note 2, 6)
CN1B(Note 5, 8)
15
5
14
8
9
16
17
10
20
Communication cable
(Option)
Personal computer
+
Windows 3.1 • 95
15m (49ft) or less
(Note 5, 8, 10)
CN3
4
3
14
13
Plate
MO1
LG
MO2
LG
SD
A
10kΩ
A
10kΩ
Monitor output
Max. +1mA meter
Reading in both directions
2m (6.5ft) or less
CN1B(Note 5, 8)
COM
3
13
RA1
ALM
18
Zero speed
RA2
ZSP
19
Limiting torque
RA3
TLC
6
2m (6.5ft) or less
Encoder
Encoder cable
(Option)
Plate
(Note 9) Trouble
Upper limit setting
Analog torque limit
+10V/max. torque
(Note 5, 8)
CN2
P15R
11
TLA
12
LG
SD
Plate
1
(Note 5, 8)
CN1A
5
15
6
16
7
17
1
14
4
Plate
2– 2
LZ
LZR
LA
LAR
LB
LBR
LG
OP
P15R
SD
Encoder Z-phase pulse (differential line driver)
Encoder A-phase pulse (differential line driver)
Encoder B-phase pulse (differential line driver)
Control common
Encoder Z-phase pulse (open collector)
2. OPERATION
WARNING
Note: 1. To prevent an electric shock, always connect the protective
earth(PE) terminal (terminal marked
) of the servo amplifier to
the protective earth (PE) of the control box.
CAUTION
Note: 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective circuits.
3. The emergency stop switch must be installed.
NOTICE
Note: 4. When using the regenerative brake option, always remove the
lead from across D-P.
5. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
6. The sum of currents that flow in the external relays should be
80mA max. If it exceeds 80mA, supply interface power from external.
Note: 7. When starting operation, always connect the external emergency
stop signal (EMG) and forward/reverse rotation stroke end signal
(LSN/LSP) with SG. (Normally closed contacts)
8. The pins with the same signal name are connected in the servo
amplifier.
9. The trouble (ALM) signal is on when there is no alarm, i.e. in the
normal state.
When this signal is switched off (at occurrence of an alarm), the
output of the controller should be stopped by the sequence program.
10. When connecting the personal computer together with monitor
MEMORANDUM
outputs 1, 2, use the maintenance junction card (MR-J2CN3TM).
(Refer to Section 6-1-4)
11. This length applies to the command pulse train input in the
opencollector system. It is 10m (32 ft) or less in the differential
line driver system.
12. The connection method changes with the servo motor series.
Refer to Section 3-2-2.
13. A single-phase 230V power supply may be used with the servo
amplifier of MR-J2-70A or less. Connect the power supply to L1
and L2 terminals and leave L3 open.
14. When using the relay terminal block (MR-TB20), connect it to
CN1A-10.
2– 3
2
2. OPERATION
(2) Connection with the AD75P
/A1SD75P
For single-phase 100V power supply
CAUTION
Make up a sequence which
switches off the MC at alarm
occurrence or emergency stop.
Servo amplifier
MR – J2 – A1
NFB
MC
TE1
L1
Power supply
Single-phase 100VAC
L2
L11
CAUTION
Make up a sequence which
switches off the MC at alarm
occurrence or emergency stop.
NFB
L21
MC
Power supply
3-phase 200~230VAC
or
(Note 13) 1-phase 230VAC
Servo motor
Servo amplifier
MR – J2 – A
L1
TE1
U (Red)
U
V (White)
V
L2
W
L3
(Green)
L11
(Note 1)
L21
C
Positioning unit AD75P/AISD75P
(Note 4)
Regenerative
brake option
Signal
Pin No.
PULSE F+
PULSE F PULSE R+
PULSE R CLEAR
CLEAR COM
READY
COM
INPS
3
21
4
22
5
23
7
26
8
PG0(+5V)
PG0 COM
24
25
24VDC
B1
(Note 12)
B2
EMG
P
LZ
LZR
SD
Electromagnetic
brake
TE2
D
OPC
PP
PG
NP
NG
CR
SG
RD
COM
INP
SM
W(Black)
CN1A
(Note 5, 8) (Note 5, 8)
CN2
11
To be shut off when servo-on
signal switches off or alarm
signal is given.
3
13
Encoder cable
2
(Option)
12
8
10
19
(Note 5, 8, 10)
9
CN3 Communication cable
18
(Option)
Encoder
Personal computer
+
Windows 3.1 • 95
5
15
15m (49ft) or less
Plate
(Note 11)
10m (32ft) or less
(Note 3, 7) External emergency stop
Servo on
Reset
Proportion control
Torque limit
(Note 7) Forward rotation stroke end
Reverse rotation stroke end
EMG
SON
RES
PC
TL
LSP
LSN
SG
SG
10m (32ft) or less
Do not connect when external
VDD
power supply is used.
(Note 2, 6)
COM
CN1B(Note 5, 8)
(Note 5, 8, 10)
15
CN3
5
14
8
9
16
17
10
20
3
13
RA1
ALM
18
Zero speed
RA2
ZSP
19
Limiting torque
RA3
TLC
Analog torque limit
±10V/max. current
2m (6.5ft) or less
Plate
MO1
LG
MO2
LG
SD
A
10kΩ
A
10kΩ
Monitor output
Max. +1mA meter
Reading in both directions
2m (6.5ft) or less
CN1B(Note 5, 8)
(Note 9) Trouble
Upper limit setting
4
3
14
13
(Note 5, 8)
CN1A
P15R
11
TLA
12
LG
SD
1
5
15
6
16
7
17
1
14
4
Plate
Plate
6
2– 4
LZ
LZR
LA
LAR
LB
LBR
LG
OP
P15R
SD
Encoder Z-phase pulse (differential line driver)
Encoder A-phase pulse (differential line driver)
Encoder B-phase pulse (differential line driver)
Control common
Encoder Z-phase pulse (open collector)
2. OPERATION
WARNING
Note: 1. To prevent an electric shock, always connect the protective earth
(PE) terminal (terminal marked
) of the servo amplifier to the
protective earth (PE) of the control box.
CAUTION
Note: 2. Connect the diode in the correct direction. If it is connected
reversely, the servo amplifier will be faulty and will not output
signals, disabling the emergency stop and other protective circuits.
3. The emergency stop switch must be installed.
NOTICE
Note: 4. When using the regenerative brake option, always remove the
lead from across D-P.
5. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong
connection of the connectors will lead to a fault.
6. The sum of currents that flow in the external relays should be
80mA max. If it exceeds 80mA, supply interface power from
external.
Note: 7. When starting operation, always connect the external emergency
stop signal (EMG) and forward/reverse rotation stroke end signal
(LSN/LSP) with SG. (Normally closed contacts)
8. The pins with the same signal name are connected in the servo
amplifier.
9. The trouble (ALM) signal is on when there is no alarm, i.e. in the
normal state.
When this signal is switched off (at occurrence of an alarm), the
output of the controller should be stopped by the sequence
program.
10. When connecting the personal computer together with monitor
outputs 1, 2, use the maintenance junction card (MR-J2CN3TM).
MEMORANDUM
(Refer to Section 6-1-4)
11. This length applies to the command pulse train input in the
differential line driver system. Though the command pulse train
input may be in the open collector system, we recommend the
differential line driver system which is less affected by external
noises. The length is 2m (6.5ft) or less in the open collector
system.
12. The connection method changes with the servo motor series.
Refer to Section 3-2-2.
13. A single-phase 230V power supply may be used with the servo
amplifier of MR-J2-70A or less. Connect the power supply to L1
and L2 terminals and leave L3 open.
2– 5
2
2. OPERATION
2-1-2 Speed control mode
For single-phase 100V power supply
Make up a sequence which
CAUTION switches off the MC at alarm
occurrence or emergency stop.
Servo amplifier
MR – J2 – A1
NFB
MC
TE1
L1
Power supply
Single-phase 100VAC
L2
L11
CAUTION
Make up a sequence which
switches off the MC at alarm
occurrence or emergency stop.
NFB
MC
Power supply
3-phase 200~230VAC
or
(Note) 1-phase 230VAC
L21
Servo motor
Servo amplifier
MR – J2 – A
TE1
L1
U(Red)
U
L2
V
L3
W
V(White)
SM
W(Black)
(Green)
(Note 1)
L11
24VDC
B1
Electromagnetic
brake
L21
P
COM
SP1
SG
Ready
RA4
RD
Speed reached
RA5
SA
SG
(Note 3, 7) External emergency stop
Servo on
Reset
Speed selection 2
Forward rotation start
Reverse rotation start
(Note 7) Forward rotation stroke end
Reverse rotation stroke end
EMG
SON
RES
SP2
ST1
ST2
LSP
LSN
SG
SG
10m (32ft) or less
Do not connect when external
power supply is used.
VDD
(Note 2, 6)
COM
(Note 5, 8)
CN1A
9 (Note 5, 8)
8
CN2
10
19
(Note 5, 8, 10)
CN3
Communication cable
CN1B(Note 5, 8)
(Option)
15
5
14
7
8
9
16 (Note 5, 8, 10)
CN3
17
10
4
20
3
14
CN1B(Note 5, 8)
13
3
Plate
13
ALM
18
Zero speed
RA2
ZSP
19
(Note 7) Limiting torque
RA3
TLC
6
VC
Encoder
Encoder cable
(Option)
18
RA1
P15R
EMG
To be shut off when servo-on
signal switches off or alarm
signal is given.
20
(Note 9) Trouble
Upper limit setting
(Note 14) Analog speed command
±10V/Rated speed
Upper limit setting
(Note 11) Analog command limit
±10V/max. torque
B2
D
10m (32ft) or less
Speed selection 1
(Note 12)
C TE2
(Note 4)
Regenerative
brake option
11
2
LG
1
TLA
12
SD
Plate
Personal computer
+
Windows 3.1 • 95
15m (49ft) or less
MO1
LG
MO2
LG
SD
A
A
10kΩ
10kΩ
Monitor output
Max. +1mA meter
Reading in both directions
2m (6.5ft) or less
(Note 5, 8)
CN1A
5
15
6
16
7
17
1
14
4
Plate
2m (6.5ft) or less
2– 6
LZ
LZR
LA
LAR
LB
LBR
LG
OP
P15R
SD
Encoder Z-phase pulse (differential line driver)
Encoder A-phase pulse (differential line driver)
Encoder B-phase pulse (differential line driver)
Control common
Encoder Z-phase pulse (open collector)
2. OPERATION
WARNING
Note: 1. To prevent an electric shock, always connect the protective earth
(PE) terminal (terminal marked
) of the servo amplifier to the
protective earth (PE) of the control box.
CAUTION
Note: 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective circuits.
3. The emergency stop switch must be installed.
NOTICE
Note: 4. When using the regenerative brake option, always remove the
lead from across D-P.
5. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
6. The sum of currents that flow in the external relays should be
80mA max. If it exceeds 80mA, supply interface power from external.
Note: 7. When starting operation, always connect the external emergency
stop signal (EMG) and forward/reverse rotation stroke end signal
(LSN/LSP) with SG. (Normally closed contacts)
8. The pins with the same signal name are connected in the servo
amplifier.
9. The trouble (ALM) signal is on when there is no alarm, i.e. in the
normal state.
When this signal is switched off (at occurrence of an alarm), the
output of the controller should be stopped by the sequence program.
10. When connecting the personal computer together with monitor
MEMORANDUM
outputs 1, 2, use the maintenance junction card (MR-J2CN3TM).
(Refer to Section 6-1-4)
11. TLA can be used by setting any of parameters No. 43 to 48 to
make TL available.
12. The connection method changes with the servo motor series.
Refer to Section 3-2-2.
13. A single-phase 230V power supply may be used with the servo
amplifier of MR-J2-70A or less. Connect the power supply to L1
and L2 terminals and leave L3 open.
14. When inputting a negative voltage, use the external power supply.
2– 7
2
2. OPERATION
2-1-3 Torque control mode
For single-phase 100V power supply
CAUTION
Make up a sequence which
switches off the MC at alarm
occurrence or emergency stop.
Servo amplifier
MR – J2 – A1
NFB
MC
TE1
L1
Power supply
Single-phase 100VAC
L2
L11
CAUTION
Make up a sequence which
switches off the MC at alarm
occurrence or emergency stop.
NFB
MC
Power supply
3-phase 200~230VAC
or
(Note 12) 1-phase 230VAC
L21
Servo amplifier
MR – J2 – A
TE1
L1
Servo motor
U(Red)
U
L2
V
L3
W
V(White)
SM
W(Black)
(Green)
(Note 1)
L11
24VDC
B1
Electromagnetic
brake
L21
(Note 11)
C TE2
(Note 4)
Regenerative
brake option
D
Ready
RA4
EMG
P
10m (32ft) or less
Speed selection 1
B2
(Note 5, 8)
CN1A
COM
SP1
SG
9
8
10
RD
19
SG
To be shut off when servo-on
signal switches off or alarm
signal is given.
(Note 5, 8)
CN2
Encoder
Encoder cable
(Option)
20
CN1B
(Note 5, 8)
(Note 3, 7) External emergency stop
Servo on
Reset
Speed selection 2
Forward rotation selection
Reverse rotation selection
EMG
SON
RES
SP2
RS1
RS2
SG
SG
Do not connect when external
power supply is used.
10m (32ft) or less
(Note 2, 6)
(Note 9) Trouble
RA1
15
5
14
7
9
8
10
20
VDD
3
COM
13
ALM
18
Zero speed
RA2
ZSP
19
RA3
VLC
6
P15R
11
TC
12
LG
1
VLA
2
SD
Plate
2m (6.5ft) or less
Communication cable
(Option)
15m (49ft) or less
(Note 5, 8, 10)
CN3
CN1B(Note 5, 8)
Limiting speed
Upper limit setting
Analog torque command
±8V/max. torque
Upper limit setting
Analog speed command
0 to +10V/rated speed
(Note 5, 8, 10)
CN3
Personal computer
+
Windows 3.1 • 95
4
3
14
13
Plate
MO1
LG
MO2
LG
SD
A
A
10kΩ
10kΩ
Monitor output
Max. +1mA meter
Reading in both directions
2m (6.5ft) or less
(Note 5, 8)
CN1A
5
15
6
16
7
17
1
14
4
Plate
LZ
LZR
LA
LAR
LB
LBR
LG
OP
P15R
SD
For notes, refer to page 2-6.
2– 8
Encoder Z-phase pulse (differential line driver)
Encoder A-phase pulse (differential line driver)
Encoder B-phase pulse (differential line driver)
Control common
Encoder Z-phase pulse (open collector)
2. OPERATION
WARNING
Note: 1. To prevent an electric shock, always connect the protective earth
(PE) terminal (terminal marked
) of the servo amplifier to the
protective earth (PE) of the control box.
CAUTION
Note: 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective circuits.
3. The emergency stop switch must be installed.
NOTICE
Note: 4. When using the regenerative brake option, always remove the
lead from across D-P.
5. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will ead to a fault.
6. The sum of currents that flow in the external relays should be
80mA max. If it exceeds 80mA, supply interface power from external.
Note: 7. When starting operation, always connect the external emergency stop signal (EMG) with SG. (Normally closed contacts)
MEMORANDUM
8. The pins with the same signal name are connected in the servo
amplifier.
9. The trouble (ALM) signal is on when there is no alarm, i.e. in
the normal state.
When this signal is switched off (at occurrence of an alarm),
the output of the controller should be stopped by the sequence
program.
10. When connecting the personal computer together with monitor
outputs 1, 2, use the maintenance junction card (MRJ2CN3TM). (Refer to Section 6-1-4)
11. The connection method changes with the servo motor series.
Refer to Section 3-2-2.
12. A single-phase 230V power supply may be used with the servo
amplifier of MR-J2-70A or less. Connect the power supply to L1
and L2 terminals and leave L3 open.
2– 9
2
2. OPERATION
2-2 Operation
2-2-1 Pre-operation checks
Before starting operation, check the following:
(1) Wiring
1) A correct power supply is connected to the power
input terminals (three-phase 200V: L1, L2, L3;
single-phase 230V: L1, L2; single-phase 100V: L1,
L2) of the servo amplifier.
2) The servo motor power supply terminals (U, V, W)
of the servo amplifier match in phase with the
power input terminals (U, V, W) of the servo motor.
3) The servo motor power supply terminals (U, V, W)
of the servo amplifier are not shorted to the power
input terminals (L1, L2, L3) of the servo amplifier.
4) The servo amplifier and servo motor are grounded
securely.
5) When the regenerative brake option is used, the
lead has been removed across D-P of the control
circuit terminal block. Also, twisted cables are used
for its wiring.
6) When stroke end limit switches are used, the signals across LSP-SG and LSN-SG are on during operation.
7) 24VDC or higher voltages are not applied to the
pins of connectors CN1A and CN1B.
8) SD and SG of connectors CN1A and CN1B are not
shorted.
9) The wiring cables are free from excessive force.
(2) Environment
Signal cables and power cables are not shorted by
wire offcuts,metallic dust or the like.
(3) Machine
1) The screws in the servo motor installation part and
shaft-to-machine connection are tight.
2) The servo motor and the machine connected with
the servo motor can be operated.
Servo amplifier
MR – J2 A
Three-phase
200 to 230V
50/60Hz
L1
U
L2
V
L3
L11
L21
W
V
Servo
motor
SM
W
Servo amplifier
MR – J2
Single-phase
230V
50/60Hz
A
L1
U
L2
V
L3
L11
L21
W
U
V
Servo
motor
SM
W
Servo amplifier
MR – J2 A1
L1
Single-phase
100 to 120V
50/60Hz
U
V
U
V
Servo
motor
SM
W
L2
L11
L21
W
L1
U
Servo
motor
L2
V
SM
L3
W
Servo amplifier
Servo amplifier
SD
SG
2– 10
U
2. OPERATION
2-2-2 Start-up
WARNING
Do not operate the switches with wet hands. You may get an electric shock.
CAUTION
1. Before starting operation, check the parameters. Some machines may
perform unexpected operation.
2. During power-on or soon after power-off, do not touch the servo amplifier heat sink, regenerative brake resistor, servo motor, etc. as they
may be at high temperatures. You may get burnt.
(1) Selection of control mode
With parameter No. 0, select the control mode to be used. This parameter is made valid by
setting it and switching power off once, then on again.
Parameter No. 0
Set Value
Control Mode
0
1
2
3
4
5
Position control mode
Position/speed control change mode
Speed control mode
Speed/torque control change mode
Torque control mode
Torque/position control change mode
2
2– 11
2. OPERATION
(2) Position control mode
Disconnect the servo motor from the machine, make sure that it operates properly, and reconnect it with the machine.
Power on
Test operation
Parameter setting
1) S w i t c h o f f t h e s e r vo - o n s i g n a l
(SON).
2) When power (NFB) is switched on,
the display shows C (cumulative
feedback pulses).
In the test operation mode, make sure that the servomotor runs.
(Refer to (3) in Section 2-3-3.)
Set the required parameters. (Refer to Section 2-3-5.)
The servo amplifier and servo motor need not be set in parameters
as they are set automatically.
• Setting example
Parameter
Set Value
No.0
0300
No.1
Description
Control mode
: Position
Regenerative brake option
: MR-RB12 used.
000
Electromagnetic brake interlock signal : Not used.
Positioning system
No.2
No.3
No.4
0101
2
1
: Incremental
Auto tuning
Response level
: Low
Machine
: Ordinary
Used or not used
: Used
: 2/1
Electronic gear (CMX/CDV)
2– 12
2. OPERATION
When the servo-on signal (SON) is switched on, the servo amplifier is ready to operate and the servo motor shaft is locked. (Servo
lock state)
If the shaft is not servo-locked, SON is not on. Check the external
sequence on the diagnostic display.
Servo on
Checking procedure
Power on
Press MODE once.
Switch SON on.
This display appears
• • • • when SON switches on.
Command pulse
train input
Stop
• When a pulse train is input from the
positioning unit, the ser vo motor Forward
rotation
starts rotating. First, run the servo
CCW
motor at low speed and check the rotation direction, etc. If the servo moReverse
tor does not run as expected, rerotation
check the input signals.
CW
• On the status display monitor, check the servo motor speed, command pulse frequency, load ratios, etc
• When machine operation check is over, confirm automatic operation with the positioning unit program.
• This servo amplifier has the real-time auto tuning function under
model adaptive control. Therefore, starting servo operation automatically makes gain adjustment.
Using parameter No. 2, response level setting can be adjusted to
provide the optimum tuning according to machine rigidity.
Operation is suspended and stopped by:
1) Ser vo-on signal off ... The base circuit is shut off and the servo
motor coasts.
2) Stroke end signal off ... The servo motor comes to a sudden stop
and is servo-locked. The servo motor is
allowed to run in the opposite direction.
3) A l a r m o c c u r r e n c e ... When an alarm occurs, the base circuit
is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.
4) Emergency stop signal ... The base circuit is shut off and the
dynamic brake is operated to bring the
off
servo motor to a sudden stop. The
display shows A.E6.
2– 13
2
2. OPERATION
(3) Speed control mode
Disconnect the servo motor from the machine, make sure that it operates properly, and
reconnect it with the machine.
Power on
Test operation
1) Switch off the ser vo-on signal
(SON).
2) When power (NFB) is switched on,
the display shows r (motor speed).
In the test operation mode, make sure that the servo motor runs. (Refer to (3) in Section 2-3-3.)
Set the required parameters. (Refer to Section 2-3-5.)
Parameter setting The servo amplifier and servo motor need not be set in parameters
as they are set automatically.
• Setting example
Parameter
Set Value
No.0
0002
No.1
Description
Control mode
: Speed
Regenerative brake option
: Not used.
001
Electromagnetic brake interlock signal : Used.
No.2
No.8
No.9
No.10
No.11
No.12
No.13
0101
1000
1500
2000
1000
500
0
Auto tuning
Response level
: Low
Machine
: Ordinary
Used or not used
: Used
Internal speed command 1
: 1000r/min
Internal speed command 2
: 1500r/min
Internal speed command 3
: 2000r/min
Acceleration time constant
: 1s
Deceleration time constant
: 0.5s
S-pattern acceleration/deceleration
time constant
: 0s (not used)
2– 14
2. OPERATION
Servo on
When the servo-on signal (SON) is switched on, the servo amplifier
is ready to operate and the servo motor shaft is locked. (Servo lock
state) If the shaft is not servo-locked, SON is not on. Check the
external sequence on the diagnostic display.
Checking procedure
Power on
Press MODE once.
Switch SON on.
This display appears
• • • • when SON switches on.
Start
Stop
• By selecting speeds (analog speed
command, internal speed commands 1 to 3) with the speed se- Forward
rotation
lection 1 signal (SP1) and speed seCCW
lection 2 signal (SP2) and switching on the start signal (ST1/ST2),
Reverse
the servo motor starts rotating.
rotation
CW
First, run the servo motor at low
speed and check the rotation direction, etc. If the servo motor
does not run as expected, check the input signals and parameters.
• On the status display monitor, check the servo motor speed, load
ratios, etc.
• When machine operation check is over, confirm automatic operation with the host controller or the like.
• This servo amplifier has the real-time auto tuning function under
model adaptive control. Therefore, starting servo operation automatically makes gain adjustment. Using parameter No. 2, response
level setting can be adjusted to provide the optimum tuning according to machine rigidity.
Operation is suspended and stopped by:
1) Ser vo-on signal of f ... The base circuit is shut off and the servo
motor coasts.
2) Stroke end signal off ... The servo motor comes to a sudden stop
and is servo-locked. The servo motor is
allowed to run in the opposite direction.
3) A l a r m o c c u r r e n c e ... When an alarm occurs, the base circuit is
shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.
4) Emergency stop signal ... The base circuit is shut off and the dyoff
namic brake is operated to bring the servo
motor to a sudden stop. The display
shows A.E6.
2– 15
2
2. OPERATION
(4) Torque control mode
Disconnect the servo motor from the machine, make sure that it operates properly, and reconnect it with the machine.
Power on
1) S w i t c h o f f t h e s e r vo - o n s i g n a l
(SON).
2) When power (NFB) is switched on,
the display shows U (torque command voltage).
Test operation
In the test operation mode, make sure that the servo motor runs.
(Refer to (3) in Section 2-3-3.)
Parameter setting
Set the required parameters. (Refer to Section 2-3-5.)
The servo amplifier and servo motor need not be set in parameters
as they are set automatically.
• Setting example
Parameter
Set Value
No.0
0004
No.1
Description
Control mode
: Torque
Regenerative brake option
: Not used.
000
Electromagnetic brake interlock signal : Not used.
No.8
1000
Internal speed command 1
: 1000r/min
No.9
1500
Internal speed command 2
: 1500r/min
No.10
2000
Internal speed command 3
: 2000r/min
No.11
1000
Acceleration time constant
: 1s
No.12
500
Deceleration time constant
: 0.5s
No.13
0
No.14
2000
No.28
50
S-pattern acceleration/deceleration time constant : 0s (not used)
Torque command time constant
Internal torque limit 1
2– 16
: 2s
: Controlled to 50% output.
2. OPERATION
Servo on
When the servo-on signal (SON) is switched on, the servo amplifier is
ready to operate.Check the external sequence on the diagnostic
display.
Checking procedure
Power on
Press MODE once.
Switch SON on.
This display appears
• • • • when SON switches on.
Start
Stop
• By selecting speeds (analog
speed command, internal speed
Forward
commands 1 to 3) with the speed
rotation
selection 1 signal (SP1) and
CCW
speed selection 2 signal (SP2)
and switching on the forward/
Reverse
reverse rotation selection signal
rotation
CW
(RS1/RS2), the servo motor
starts rotating. For the torque generation direction, refer to (3) in
Section 3-1-3.First, set the limit speed to low speed and check the
rotation direction, etc. If the servo motor does not run as expected,
recheck the input signals.
• On the status display monitor, check the servo motor speed, load
ratios, etc.
• When machine operation check is over, confirm automatic operation
with the host controller or the like.
Operation is suspended and stopped by:
1) Servo-on signal off ... The base circuit is shut off and the servo
motor coasts.
2) A l a r m o c c u r r e n c e ... When an alarm occurs, the base circuit is
shut off and the dynamic brake is operated
to bring the servo motor to a sudden stop.
3) Emergency stop signal ... The base circuit is shut off and the dynamic
off
brake is operated to bring the servo motor
to a sudden stop. The display shows A.E6.
2– 17
2
2. OPERATION
2-3 Display and operation
2-3-1 Display flowchart
Use the display (4-digit, 7-segment LED) on the front panel of the servo amplifier for status display,
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external
sequences, and/or confirm the operation status. Press the MODE , UP or DOWN button once to
move to the next screen. In the position control mode, switching power on displays the symbol C
of the cumulative feedback pulses.
To refer to and/or set the expansion parameters, make them valid with parameter No. 19 (parameter
write disable).
button
MODE
Status display
Diagnosis
Alarm
Basic parameters
Expansion parameters
(Note)
Cumulative feedback pulses
[pulse]
Sequence
Current alarm
Servo type
Selective function 2
Motor speed
[r/min]
External I/O
signal display
Last alarm
Selective function 1
Selective function 3
Droop pulses
[pulse]
Output signal
forced output
Second alarm
in past
Cumulative command pulses
[pulse]
Test operation
Jog feed
Third alarm
in past
Command pulse frequency
[kpps]
Test operation
Positioning operation
Fourth alarm
in past
Status display
Input signal selection 7
Speed command voltage
Speed limit voltage[mV]
Test operation
Motor-less operation
Fifth alarm
in past
Parameter write
disable
Output signal selection 1
Torque limit voltage
Torque command voltage[mV]
Software
version L
Sixth alarm
in past
Regenerative load ratio
[%]
Software
version H
Parameter
error No.
Effective load ratio
[%]
Automatic VC
offset
Peak load ratio
[%]
Within one-revolution position
[pulse]
ABS counter
[rev]
UP
DOWN
Note: The initial status display at power-on depends on the control mode.
Control Mode
Initial Display
Position
Cumulative feedback pulses (C)
Speed
Motor speed (r)
Torque
Torque command voltage (U)
Load inertia moment ratio
[times]
2– 18
2. OPERATION
2-3-2 Status display
The servo status during operation is shown on the 4-digit, 7-segment
LED display.Press the UP or DOWN button to change display data as desired.
When the required data is selected, the corresponding symbol is displayed. Press
the SET button to display that data.
Symbol
Display
Range
Cumulative feedback
pulses
C
-9999
to
9999
pulse
Feedback pulses from the servo motor encoder are counted
anddisplayed.When the value exceeds 9999, it begins with
zero.Press the SET button to reset the display value to zero.
When the servo motor is rotating in the reverse direction, the
decimal points in the upper 3 digits are lit.
Servo motor speed
r
-5400
to
5400
r/min
The servo motor speed is displayed.When the servo motor is
rotating in the reverse direction, the decimal points in the upper 3
digits are lit.The value rounded off is displayed in x 0.1r/min.
pulse
The number of droop pulses in the deviation counter is
displayed. When the value exceeds ±9999, it begins with
zero.When the servo motor is rotating in the reverse direction,
the decimal points in the upper 3 digits are lit.
The number of pulses to be displayed is the value obtained
before it is multiplied by the electronic gear.
pulse
The position command input pulses are counted and
displayed.As this value is displayed before it is multiplied by the
electronic gear (CMX/CDV), it may not match the cumulative
feedback pulses.Press the SET button to reset the display value
to zero. When the servo motor is rotating in the reverse
direction, the decimal points in the upper 3 digits are lit.
kpps
The frequency of the position command input pulses is
displayed. This value is displayed before it is multiplied by the
electronic gear (CMX/CDV). When the servo motor is rotating
in the reverse direction, the decimal points in the upper 3
digits are lit.
V
Analog speed command voltage or analog speed limit voltage
is displayed.
Analog speed command : -10.00 ~ +10.00V
Analog speed limit
: 0 ~ +10.00V
V
Analog torque command voltage or analog torque limit
voltage is displayed.
Analog torque command : -10.00 ~ +10.00V
Analog torque limit
: 0 ~ +10.00V
Name
Unit
Description
E
-9999
to
9999
P
-9999
to
9999
n
-400
to
400
F
-10.00
to
10.00
U
-10.00
to
10.00
Regenerative
load ratio
L
0
to
100
%
The ratio of regenerative power to permissible regenerative
power is displayed in %.As the permissible regenerative
power depends on whether there is the regenerative brake
option or not, set parameter No. 0 correctly.
Effective load
ratio
J
0
to
300
%
The continuous effective load torque is displayed.When rated
torque is generated, this value is 100%. The effective value
for the past 15 seconds is displayed.
Peak load ratio
b
0
to
400
%
The maximum torque generated during acceleration/deceleration,
etc. is When rated torque is generated, this value is 100%.The peak
torque for the past 15 seconds is displayed.
Within one-revolution
position
Cy
-9999
to
9999
pulse
Position within one revolution is displayed in encoder pulses.When
the value exceeds 9999, it begins with 0.
Counted when it is rotated counterclockwise.
LS
-9999
to
9999
rev
Travel value from the home position (0) in the absolute position
detection system is displayed in terms of the absolute position
detector's counter value.
dc
0.0
to
100.0
Times
Droop pulses
Cumulative command
pulses
Command pulse
frequency
Analog speed command voltage
Analog speed limit voltage
Analog torque command voltage
Analog torque limit voltage
ABS counter
Load inertia moment
ratio
The estimated ratio of the load inertia moment to the servo
motor shaft inertia moment is displayed.
2– 19
2
2. OPERATION
2-3-3 Diagnostic mode
Name
Display
Description
Not ready.
Indicates that the servo amplifier is being initialized or an alarm
has
Sequence
Ready.
Indicates that the servo was switched on after completion of
initialization and the servo amplifier is ready to operate.
CN1B
9
CN1B CN1B
8
7
CN1A
14
CN1B
18
CN1A CN1B
8
14
CN1B CN1B CN1B CN1B
5 17 15 16
Input signals
External I/O signal
display
Output signal forced
output
Jog
Test
operation
mode
feed
Positioning
operation
Output signals
CN1B
4
CN1B
6
CN1B
19
CN1A
18
CN1A
19
Indicates the ON-OFF states of the
external I/O signals.
The upper segments correspond to
the input signals and the lower
segments to the output signals.
Lit: ON
Extinguished: OFF
NOTICE
The I/O signals can
be changed using
parameters
No. 43 to 49.
The digital output signal can be forced on/off. For more information,
refer to (2) in this section.
The servo motor can be jogged without pulse train input. During jog
feed, the servo amplifier acts as speed control servo.
The status display values of the droop pulses, cumulative command
pulses and command pulse frequency do not change.
For details, refer to (3) in this section.
NOTICE
The set-up software (MRZJW3-SETUP31) is required for positioning operation. This operation
cannot be performed from the operation section
of the servo amplifier.
The servo motor can be positioned without pulse train input.
Motorless
operation
Without connection of the servo motor, the servo amplifier
provides output signals and displays the status as if the servo
motor is running actually in response to the external input
signal. This function can be used to make a sequence check on
the host positioning unit, etc.
For more information, refer to 2), (3) in this section.
Software version Low
Indicates the version of the software.
Software version High
Indicates the system number of the software.
Automatic
VC
offset
If offset voltages in the analog circuits inside and outside the
servo amplifier cause the servo motor to rotate slowly at the
analog speed command (VC) or analog speed limit (VLA) of 0V,
this function automatically makes zero-adjustment of offset
voltages. Press SET once, set the first digit numerical value to 1
using the button UP or DOWN , and press SET again to make the
automatic VC offset function valid. When this function is
executed, the automatically offset value is set to parameter No.
29.
If the input voltage of VC or VLA is ±0.4V or higher, this function
cannot be used.
2– 20
2. OPERATION
(1) External I/O signal display
The ON/OFF states of the digital I/O signals connected to the servo amplifier can be confirmed.
1) Operation
Call the display screen shown after power-on.
Press MODE once.
Press UP once.
• • • • • • • • External I/O signal display screen
2) Display definition
CN1B
9
CN1B CN1B
8
7
CN1A CN1B
8 14
CN1B CN1B CN1B CN1B
5 17 15 16
Lit: ON
Extinguished: OFF
Input signals
Output signals
CN1A
14
CN1B
18
CN1B
4
CN1B
6
CN1B
19
CN1A
18
CN1A
19
The 7-segment LED shown above indicates ON/OFF.
Each segment at top indicates the input signal and each segment at bottom indicates the output signal.The signals corresponding to the pins in the respective control modes are indicated below:
2– 21
2
2. OPERATION
a. Control modes and I/O signals
Connector
CN1A
CN1B
Signal
Input/Output
(Note 1) I/O
Pin No.
(Note 2) Symbols of I/O Signals in Control Modes
P
P/S
S
S/T
T
T/P
8
I
CR
CR/SP1
(Note 3)SP1
SP1
(Note 3)SP1
SP1/CR
14
O
OP
OP
OP
OP
OP
OP
(Note 6,8)18
O
INP
INP/SA
SA
(Note 8)19
O
RD
RD
RD
RD
RD
RD
(Note 9)4
O
DO1
DO1
DO1
DO1
DO1
DO1
(Note 7)5
I
SON
SON
SON
SON
SON
SON
(Note 6)6
O
TLC
TLC
TLC
TLC/VLC
VLC
VLC/TLC
(Note 7)7
I
LOP
SP2
LOP
SP2
LOP
(Note 7)8
I
PC
PC/ST1
(Note 4)ST1
ST1/RS2
(Note 4)RS2
RS2/PC
SA/
/INP
(Note 7)9
I
TL
TL/ST2
(Note 5)ST2
ST2/RS1
(Note 5)RS1
RS1/TL
(Note 7)14
I
RES
RES
RES
RES
RES
RES
15
I
EMG
EMG
EMG
EMG
EMG
EMG
16
I
LSP
LSP
LSP
LSP/
LSN/
/LSP
17
I
LSN
LSN
LSN
(Note 6)18
O
ALM
ALM
ALM
ALM
ALM
ALM
/LSN
(Note 6, 8)19
O
ZSP
ZSP
ZSP
ZSP
ZSP
ZSP
Note: 1. I: Input signal, O: Output signal
2. P: Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/
speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode
3. Set parameter No. 45 to use CR.
4. Set parameter No. 47 to use PC.
5. Set parameter No. 48 to use TL.
6. Set parameter No. 49 to use WNG and BWNG.
7. Set parameters No. 43 to 48 to change signals.
8. Set parameter No. 49 to output the alarm code. (Refer to Chapter 8.)
9. The signal of CN1A-18 is always output.
b. Symbols and signal names
Symbol
SON
LSP
LSN
CR
SP1
SP2
PC
ST1
ST2
RS1
RS2
TL
RES
Signal Name
Servo on
Forward rotation stroke end
Reverse rotation stroke end
Clear
Speed selection 1
Speed selection 2
Proportion control
Forward rotation start
Reverse rotation start
Forward rotation selection
Reverse rotation selection
Torque limit
Reset
Symbol
Signal Name
EMG
LOP
TLC
VLC
RD
ZSP
INP
SA
ALM
WNG
OP
BWNG
Emergency stop
Control change
Limiting torque
Limiting speed
Ready
Zero speed
In position
Speed reached
Trouble
Warning
Encoder Z-phase pulse (open collector)
Battery warning
2– 22
2. OPERATION
3) Default signal indications
a. Position control mode
Input signals
TL (CN 1 B-9) Torque limit
PC (CN 1 B-8) Proportional control
CR (CN 1 A-8) Clear
RES (CN 1 B-14) Reset
SON (CN 1 B-5) Servo on
LSN (CN 1 B-17)
Reverse rotation stroke end
EMG (CN1B-15)
Emergency stop
LSP (CN 1 B-16)
Forward rotation stroke end
Lit: ON
Extinguished: OFF
Output signals
RD (CN 1 A-19) Ready
LNP (CN 1 A-18) In position
ZSP (CN 1 B-19) Zero speed
TLC (CN 1 B-6) Limiting torque
DO1 (CN 1 B-4) In position
ALM (CN 1 B-18) Trouble
OP (CN 1 A-14) Encoder Z-phase pulse
b. Speed control mode
Input signals
ST2 (CN 1 B-9) Reverse rotation start
ST1 (CN 1 B-8) Forward rotation start
SP2 (CN 1 B-7) Speed selection 2
SP1 (CN 1 A-8) Speed selection 1
RES (CN 1 B-14) Reset
SON (CN 1 B-5) Servo on
LSN (CN 1 B-17)
External emergency stop
Emergency stop
EMG (CN 1 B-15)
LSP (CN 1 B-16)
Forward rotation stroke end
Lit: ON
Extinguished: OFF
Output signals
RD (CN 1 A-19) Ready
SA (CN 1 A-18) Limiting speed
ZSP (CN 1 B-19) Zero speed
TLC (CN 1 B-6) Limiting torque
DO1 (CN 1 B-4) In position
ALM (CN 1 B-18) Trouble
OP (CN 1 A-14) Encoder Z-phase pulse
c. Torque control mode
RS1 (CN 1 B-9) Forward rotation selection
RS2 (CN 1 B-8) Reverse rotation selection
SP2 (CN 1 B-7) Speed selection 2
SP1 (CN 1 A-8) Speed selection 1
RES (CN 1 B-14) Reset
SON (CN 1 B-5) Servo on
EMG (CN 1 B-15) Emergency stop
Input signals
Lit: ON
Extinguished: OFFF
Output signals
RD (CN 1 A-19) Ready
ZSP (CN 1 B-19) Zero speed
VLC (CN 1 B-6) Speed reached
ALM (CN 1 B-18) Trouble
OP (CN 1 A-14) Encoder Z-phase pulse
2– 23
2
2. OPERATION
(2) Output signal forced output
The output signal can be forced on/off independently of the servo status. This function is used
for output signal wiring check, etc. This operation must be performed in the servo off state
(SON signal off).
Operation
Call the display screen shown after power-on.
Press MODE once.
Press UP twice.
Press SET for more than 2 seconds.
• • • • • • • Switch on/off the signal below the lit segment.
• • • • • • • Indicates the ON/OFF of the output signal. The
CN1A
14
CN1B
18
CN1B CN1B
4
6
CN1B CN1A
19 18
CN1A
19
correspondences
between segments and signals are as in the output signals of the
external I/O signal display.
(Lit: ON, extinguished: OFF)
Press MODE once.
• • • • • • •The
segment above CN1A-pin 18 is lit.
Press UP twice.
• • • • • • • CN1A-pin
18 is switched on.
(CN1A-pin 18-SG conduct.)
Press DOWN once.
• • • • • • • CN1A-pin
18 is switched off.
Press SET for more than 2 seconds.
2– 24
2. OPERATION
(3) Test operation mode
CAUTION
MEMORANDUM
1. The test operation mode is designed to confirm servo operation and
not to confirm machine operation. In this mode, do not use the servo
motor with the machine. Always use the servo motor alone.
2. If any operational fault has occurred, stop operation using the emergency stop (EMG) signal.
This mode cannot be used for the absolute position detection system.
Set parameter No. 1 to select the incremental positioning system.
1) Jog feed
Jog feed can be performed without pulse train input from acommand unit or the like.
a. Mode change
Call the display screen shown after power-on.
Press MODE once.
Press UP three times.
Press SET for more than 2 seconds.
• • • • • • • When this screen appears, jog feed can be performed.
2
Flickers in the test operation mode.
b. Starting method
Perform the following operation to rotate the servo motor at 200r/min.At this time, the
acceleration/deceleration time constant is 1s. Whenperforming jog feed, connect EMGSG and VDD-COM (when internal power supply is used).
Rotation
Direction
CCW
CW
Operation
UP
DOWN
Press
Press
To stop, release the corresponding button.
c. Status display
Press MODE to display the servo status during test operation. The display data is the
same as in the status display in Section 2-3-2.
d. Termination of jog feed
To terminate the jog feed, switch power off once or call the
screen using MODE
and press SET for more than 2s.
2– 25
2. OPERATION
2) Motor-less operation
Without connection of the servo motor, the servo amplifier can provide output signals and
display the status as if the servo motor is running actually in response to the external input
signal. This function can be used to make a sequence check on the host positioning unit,
etc. Switch off the servo-on signal.
a. Mode change
Call the display screen shown after power-on.
Press MODE once.
Press UP five times.
Press SET for more than 2 seconds.
• • • • • • • When this screen is displayed, motor-less operation
can be performed.
Flickers in the test operation mode.
b. Operation method
As in ordinary operation, provide the start signal.
c. Status display
Press MODE to shift to the status display screen, on which the status of servo motor
rotation is indicated in simulative value. The display data is the same as in the status
display in Section 2-3-2.
d. Termination of motor-less operation
To terminate the motor-less operation, switch power off.
2– 26
2. OPERATION
2-3-4 Alarm mode
The current alarm, past alarm history and parameter error are displayed. The lower
2 digits on the display indicate the alarm number that has occurred or the parameter number in error. Display examples are shown below.
Name
Display
Description
Indicates no occurrence of an alarm.
Current alarm
Indicates the occurrence of alarm 33 (overvoltage).
Flickers at occurrence of the alarm.
Indicates that the last alarm is alarm 50 (overload 1).
Indicates that the second alarm in the past is alarm 33
(overvoltage).
Indicates that the third alarm in the past is alarm 10
(undervoltage).
Alarm history
Indicates that the fourth alarm in the past is alarm 31
(overspeed).
Indicates that there is no fifth alarm in the past.
Indicates that there is no sixth alarm in the past.
Indicates no occurrence of alarm 37 (parameter error).
Parameter error
Indicates that the data of parameter No. 1 is faulty.
Functions at occurrence of an alarm
(1) Any mode screen displays the current alarm.
(2) The other screen is visible during occurrence of an alarm. At this time, the decimal point in the
fourth digit flickers.
(3) To clear any alarm, switch power off, then on or press the SET button on the current alarm
screen. Note that this should be done after removing the cause of the alarm.
(4) Use parameter No. 16 to clear the alarm history.
2– 27
2
2. OPERATION
2-3-5 Parameter mode
The servo amplifier is factory-set in the position control mode. Change the parameter settings
when:
1) The control mode is changed;
2) The regenerative brake option is used;
3) The number of pulses per servo motor revolution is changed
(When the number of pulses per servo motor revolution has been set to the position command unit, set the number of pulses in the parameter of the position command unit unless
the maximum number of pulses is restricted); or
4) The machine mounted with the servo motor hunts or operational performance is further improved.
(1) Operation example
1) 4-digit parameter
The following example shows the operation procedure performed after power-on to place the
servo in the speed control mode:
Press MODE three times.
• • • • • • • The parameter number is displayed.
Press UP or DOWN to change the number.
Press SET twice.
• • • • • • • The set value of the specified parameter number flickers.
Press UP once.
• • • • • • • During flickering, the set value can be changed.
Use UP or DOWN .
(
2: Speed control mode)
Press SET to enter.
To shift to the next parameter, press the UP / DOWN button.
When changing the parameter No. 0 setting, change its set value, then switch power off once and
switch it on again to make the new value valid.
2– 28
2. OPERATION
2) 5-digit parameter
The following example shows the operation procedure performed to change the electronic
gear denominator (parameter No. 4) into "12345":
Call the display screen shown after power-on.
Press MODE three times. Select parameter No. 4 with UP / DOWN .
Press SET once.
Fifth digit setting
Lower 4 digits setting
Press MODE once.
Press SET once.
••••
The screen flickers.
••••
Change the set value
with UP / DOWN.
2
• • • The
set value is entered.• • •
Press SET once.
Press UP or DOWN.
To the next parameter
2– 29
2. OPERATION
(2) Expansion parameters
To use the expansion parameters, change the setting of parameter No. 19 (parameter write
disable). After setting parameter No. 19, switch power off once, then switch it on again to make
the parameter valid.
The table below shows the parameters referenced and write enabled by the setting of parameter No. 19. Those parameters marked
can be operated.
Set Value
Operation
0000
(initial value)
Reference
Basic Parameters
No.0~19
Expansion Parameters
No.20~49
Write
Reference
Allowed for No. 19 only
Write
Allowed for No. 19 only
000A
Reference
000B
Write
Reference
000C
Write
2– 30
2. OPERATION
(3) Parameter list
For any parameter whose symbol is preceded by *, set the parameter and switch power off
once, then switch it on again to make that parameter valid.
The symbols in the Control Mode field represent parameters used in the corresponding modes.
(P: Position control mode, S: Speed control mode, T: Torque control mode)
No. Symbol
0
*STY Control mode, regenerative brake option selection
P•S•T
0000
1
*OP1 Function selection 1
P•S•T
0002
P•S
0102
2
ATU Auto tuning
3
CMX Electronic gear (Command pulse multiplying factor numerator)
P
1
4
CDV Electronic gear (Command pulse multiplying factor denominator)
P
1
5
Basic parameters
Customer
Control Initial
Unit
Setting
Mode Value
Name
INP In-position range
P
6
PG1 Position loop gain 1
P
7
PST Position command acceleration/deceleration time constant (Position smoothing)
P
8
SC1 Internal speed command 1
S
Internal speed limit 1
T
9
SC2 Internal speed command 2
S
Internal speed limit 2
T
10
SC3 Internal speed command 3
S
Internal speed limit 3
T
11
STA Acceleration time constant
S•T
12
STB Deceleration time constant
S•T
13
STC S-pattern acceleration/deceleration time constant
S•T
14
TQC Torque command time constant
15
T
pulse
rad/s
3 ms
100 r / min
100 r / min
500 r / min
500 r / min
1000 r / min
1000 r / min
0 ms
0 ms
0 ms
0 ms
100
36
0
For manufacture setting
16
*BPS Communication baudrate selection, alarm history clear
P•S•T
0000
17
MOD Analog monitor output
P•S•T
0100
18
*DMD Status display selection
P•S•T
0000
P•S•T
0000
19
*BLK Parameter block
2
2– 31
2. OPERATION
No. Symbol
20
*OP2 Function selection 2
21
*OP3 Function selection 3 (Command pulse selection)
22
*OP4 Function selection 4
Customer
Initial
Unit
Setting
Value
P•S•T
0000
P
0000
P•S•T
0000
%
23
FFC Feed forward gain
24
ZSP Zero speed
25
VCM Analog speed command maximum speed
S
(Note1)0 (r/min)
Analog speed limit maximum speed
T
(Note1)0 (r/min)
26
27
P
P•S•T
TLC Analog torque command maximum output
T
*ENR Encoder output pulses
P•S•T
TL1 Internal torque limit 1
P•S•T
0
50 r/min
100
%
4000 pulse
100
%
29
VCO Analog speed command offset
S
(Note2)
mV
Analog speed limit offset
T
(Note2)
mV
30
TLO Analog torque command offset
T
0
mV
S
0
mV
31
MO1 Analog monitor offset 1
P•S•T
0
mV
32
MO2 Analog monitor offset 2
P•S•T
0
mV
33
MBR Electromagnetic brake sequence output
P•S•T
100
ms
34
GD2 Ratio of load inertia moment to servo motor inertia moment
35
PG2 Position loop gain 2
36
VG1 Speed loop gain 1
P•S
216 rad/s
37
VG2 Speed loop gain 2
P•S
714 rad/s
28
Expansion parameters
Control
Mode
Name
Analog torque limit offset
38
39
40
VIC Speed integral compensation
VDC Speed differential compensation
P•S
70 0.1 times
P
30 rad/s
P•S
20
P•S
980
0
For manufacturer setting
41
*DIA Input signal automatic ON selection
P•S•T
0000
42
*DI1 Input signal selection 1
P•S•T
0003
43
*DI2 Input signal selection 2 (CN1B-pin 5)
P•S•T
0111
44
*DI3 Input signal selection 3 (CN1B-pin 14)
P•S•T
0222
45
*DI4 Input signal selection 4 (CN1A-pin 8)
P•S•T
0665
46
*DI5 Input signal selection 5 (CN1B-pin 7)
P•S•T
0770
47
*DI6 Input signal selection 6 (CN1B-pin 8)
P•S•T
0883
*DI7 Input signal selection 7 (CN1B-pin 9)
P•S•T
0994
P•S•T
0000
48
49
*DO1 Output signal selection 1
Note: 1. 0: Rated servo motor speed
2. Depends on the servo amplifier.
2– 32
ms
2. OPERATION
(4) Detailed explanation of the parameters
To make the parameter marked * valid, set the parameter and switch power off once, then
switch it on again.
The symbols in the Control Mode field represent parameters used in the corresponding modes.
(P: Position control mode, S: Speed control mode, T: Torque control mode)
Name and Function
Basic parameters
Class No. Symbol
0
*STY
Control mode, regenerative brake option selection
Initial
Value
Setting
Range
Control
Mode
0000
0000h
to
0605h
P•S•T
0002
0000h
to
1012h
P•S•T
Used to select the control mode and regenerative brake option.
0
Unit
0
Select the control mode.
0: Position
1: Position and speed
2: Speed
3: Speed and torque
4: Torque
5: Torque and position
Select the regenerative brake option.
0: Not used
1: Reserved (do not set)
2: MR – RB032
3: MR – RB12
4: MR – RB32
5: MR – RB30
6: MR – RB50
1
*OP1
NOTICE
Wrong setting may cause the
regenerative brake option to burn.
MEMORANDUM
If the regenerative brake option
selected is not for use with the
servo amplifier, parameter error
(A. 37) occurs.
Function selection 1:
Used to select the input signal filter, CN1B-pin 19's
output signal and absolute position detection system.
2
0
Input signal filter
0: None
1: 1.77ms
2: 3.55ms
CN1B-pin 19's function selection
0: Zero speed detection signal
1: Electromagnetic brake interlock signal
Positioning system
0: Used in incremental positioning system
1: Used in absolute position detection system
2– 33
P
2. OPERATION
Basic parameters
Class No. Symbol
2
ATU
Initial
Value
Name and Function
Auto tuning:
Used to set the response level, etc. for execution of
auto tuning.
Setting
Range
Control
Mode
0102
0001h
to
0215h
P•S
1
1 to 32767
P
Unit
0
Auto tuning response level
setting
Set Value
Response Level
1
2
3
4
5
Low response
to
Middle response
to
High response
• If the machine hunts or generates
large gear sound, decrease the
set value.
• To improve performance, e.g.
shorten the settling time, increase
the set value.
Select the machine.
For example, used to improve the
position settling characteristic
when friction is large.
0: Normal
1: Friction is large
Auto tuning selection
0: Interpolation axis control(speed loop only)
1: Executed for both position and speed loops
2: No.
3
CMX
Electronic gear (Command pulse multiplying factor numerator):
Used to set the multiplier of the command pulse input.
Command pulse input
CMX
CDV
f1
Note: Set in the range of 1/50<
Position command
f2 = f1 •
CMX
CDV
CMX
<50.
CDV
The setting of the number of input pulses per servo
motor revolution can be changed by the following
formula:HC-MF series: 8192 pulses/rev)
CDV
8192 • CMX [pulse/rev]
CAUTION
Wrong setting will rotate the
servo motor at unexpectedly
high speed, leading to injury.
2– 34
2. OPERATION
Initial
Value
Name and Function
4
CDV
Electronic gear (Command pulse multiplying factor denominator):
Used to set the divisor of the command pulse input.
5
INP
In-position range:
Used to set the droop pulse range in which the inposition (INP) signal will be output.
6
PG1
Position loop gain 1:
Used to set the gain of position loop 1.
Increase the gain to improve trackability in response
to the position command.
7
PST
Position command acceleration/deceleration time constant (Position smoothing):
Used to set the time constant of a low pass filter in
response to the position command.
Example: When a command is given from a synchronizing detector, synchronous operation can be started
smoothly if started during line operation.
Basic parameters
Class No. Symbol
Unit
1
Setting
Range
Control
Mode
1 to 32767
P
100
pulse
0 to 10000
P
36
rad/s
4 to 1000
P
3
ms
0 to 20000
P
Synchronizing
detector
Start
Servo amplifier
Servo motor
Without time
constant setting
Servo motor
speed
Start
8
SC1
With time
constant setting
ON
OFF
2
t
Internal speed command 1:
Used to set speed 1 of internal speed commands.
100
r/min
Internal speed limit 1:
Used to set speed 1 of internal speed limits.
9
SC2
Internal speed command 2:
Used to set speed 2 of internal speed commands.
Internal speed limit 2:
Used to set speed 2 of internal speed limits.
2– 35
S
0 to instantaneous permissible
speed
500
r/min
T
S
0 to instantaneous permissible
speed
T
2. OPERATION
10
SC3
Name and Function
Internal speed command 3:
Used to set speed 3 of internal speed commands.
Initial
Value
Unit
1000
r/min
11
STA
Acceleration time constant:
Used to set the acceleration time required to reach the
rated speed from zero speed in response to the analog
speed command and internal speed commands 1 to 3.
0
Control
Mode
S
T
ms
0 to 20000
S•T
ms
0 to 1000
S•T
If the preset command speed is
lower than the rated speed,
acceleration/deceleration time
will be shorter.
Speed
Rated
speed
Zero
speed
Setting
Range
0 to instantaneous permissible
speed
Internal speed limit 3:
Used to set speed 3 of internal speed limits.
Time
Parameter
No. 11 setting
Parameter
No. 12 setting
Example
Set 3000 (3s) to accelerate the HC-MF series servo
motor (rated speed: 3000r/min) from 0r/min to 1000
r/min in 1 second.
12
STB
Deceleration time constant:
Used to set the deceleration time required to reach
zero speed from the rated speed in response to the
analog speed command and internal speed commands
1 to 3.
0
13
STC
S-pattern acceleration/deceleration time constant:
Used to smooth start/stop of the servo motor.
0
Command
speed
Servo motor
speed
Basic parameters
Class No. Symbol
Zero
speed
STA
STC
STC
STC
STB STC
Time
STA: Acceleration time constant (parameter No. 11)
STB: Deceleration time constant (parameter No. 12)
STC: S-pattern acceleration/deceleration time constant (parameter No. 13)
2– 36
2. OPERATION
Name and Function
14
Torque command time constant:
Used to set the constant of a low pass filter in response
to the torque command.
Basic parameters
Class No. Symbol
TQC
Initial
Value
Unit
Setting
Range
Control
Mode
0
ms
0 to 20000
T
0000h
to
0011h
P•S•T
Torque command
Torque
After
filtered
TQC
TQC
TQC: Torque command time constant
For manufacturer setting
Must not be change.
15
16
Time
*BPS
0
Communication baudrate selection, alarm history clear:
Used to select the communication baudrate for use of
the set-up software and to clear the alarm history.
0
0000
0
Selection of baudrate for RS-232C
0: 9600 [bps]
1: 19200 [bps]
Alarm history clear
0: Invalid
1: Valid
When alarm history clear is made
valid, the alarm history is cleared
at next power-on. After the alarm
history is cleared, the setting is
automatically made invalid (reset to 0).
2
2– 37
2. OPERATION
Basic parameters
17
MOD
Initial
Value
Name and Function
Class No. Symbol
Analog monitor output:
Used to set the signal output for analog monitor.
0
0
Analog monitor CH1 output
selectionThe set values and
their definitions are as in analog
monitor CH2.
Analog monitor CH2 output selection
0: Servo motor speed
(±8V/max. speed)
1: Torque (±8V/max. torque)
2: Servo motor speed
(+8V/max. speed)
3: Torque (+8V/max. torque)
4: Current command output
(±8V/max. current command)
5: Command pulse frequency
(±8/400kpps)
6: Droop pulses 1/1
(±10V/128 pulses)
7: Droop pulses 1/16
(±10V/2048 pulses)
8: Droop pulses 1/64
(±10V/8192 pulses)
9: Droop pulses 1/256
(±10V/32768 pulses)
10: Droop pulses 1/1024
(±10V/131072 pulses)
2– 38
0100
Unit
Setting
Range
Control
Mode
0000h
to
0A0Ah
P•S•T
2. OPERATION
Initial
Value
Name and Function
18
Status display selection:
Used to select the status display shown at power-on.
Basic parameters
Class No. Symbol
*DMD
0
Unit
Setting
Range
Control
Mode
0000h
to
001Ch
P•S•T
0000
0
Selection of status display at
power-on
0: Cumulative feedback pulses
1: Servo motor speed
2: Droop pulses
3: Cumulative command pulses
4: Command pulse frequency
5: Analog speed command voltage
(Note 1)
6: Analog torque command voltage
(Note 2)
7: Regenerative load ratio
8: Effective load ratio
9: Peak load ratio
A: Within one-revolution position
B: ABS counter
C: Load inertia moment ratio
Note: 1. In speed control mode. Analog
speed limit voltage in torque
control mode.
2. In torque control mode. Analog
torque limit voltage in speed or
position control mode.
Status display at power-on in
corresponding control mode
0: Depends on the control mode.
Control
Mode
Status Display at Power-On
Position
Position/speed
Speed
Cumulative feedback pulses/servo motor speed
Cumulative feedback pulses
Servo motor speed
Servo motor speed/analog torque command voltage
Speed/torque
Analog torque command voltage
Torque
Torque/position Analog torque command voltage/cumulative feedback pulses
1: Depends on the first digit setting of this parameter.
2– 39
2
2. OPERATION
Expansion parameters
Basic parameters
Class No. Symbol
19
20
*BLK
*OP2
Initial
Value
Name and Function
0000
Parameter block:
Used to select the reference and write ranges of the parameters.
Set Value
Reference Range
Write Range
0000
No.0 to 19
No.0 to 19
000A
No.19
No.19
000B
No.0 to 49
No.0 to 19
000C
No.0 to 49
No.0 to 49
Function selection 2:
Used to select restart after instantaneous power failure,
servo lock at a stop in speed control mode, and slight
vibration suppression control.
0000
Unit
Setting
Range
Control
Mode
0000h
to
000Ch
P•S•T
0000h
to
0111h
0
Restart after instantaneous
power failure
If the input power supply voltage
had reduced in the speed control
mode to stop the servo motor due
to the undervoltage alarm (A. 10)
but the supply voltage has returned to normal, the servo motor can
be restarted by merely switching
on the start signal without resetting the alarm.
0: Invalid
1: Valid
S
Stop-time servo lock selection
The shaft can be servo-locked to
remain still at a stop in the speed
control mode.
0: Valid
1: Invalid
Slight vibration suppression control
Used to suppress vibration at a stop.
0: Invalid
1: Valid
2– 40
P
2. OPERATION
Name and Function
21
Function selection 3 (Command pulse selection):
Used to select the input form of the pulse train input signal.
(Refer to Section 3-3 (1) 4).)
0
Initial
Value
0000
Unit
Setting
Range
Control
Mode
0000h
to
0012h
P
0
Command pulse train input form
0: Forward/reverse rotation pulse train
1: Signed pulse train
2: A/B phase pulse train
Pulse train logic selection
0: Positive logic
1: Negative logic
Command Pulse
Train Form
Input Waveform
Forward rotation Reverse rotation
Forward rotation
pulse train
Reverse rotation
pulse train
(Set value 0010)
Pulse train
Negative logic
*OP3
positive sign
(Set value 0011)
A-phase pulse train
B-phase pulse train
(Set value 0012)
Forward rotation
pulse train
2
Reverse rotation
pulse train
(Set value 0000)
Positive logic
Expansion parameters
Class No. Symbol
Pulse train
positive sign
(Set value 0001)
A-phase pulse train
B-phase pulse train
(Set value 0002)
2– 41
2. OPERATION
Expansion parameters
22
*OP4
Initial
Value
Name and Function
Class No. Symbol
0000
Function selection 4:
0
Selection of servo motor stop
pattern at LSP/LSN signal off
0: Sudden stop
1: Slow stop
• In the position control mode,
the servo motor is decelerated
to a stop according to parameter
No. 7 setting.
• In the speed control mode,
the servo motor is decelerated
to a stop according to parameter
No. 12 setting.
VC/VLA/TC/TLA voltage averaging
Used to set the filtering time when the
analog speed command (VC) voltage or
analog speed limit (VLA), Analog
command (TC) or analog torque limit
(TLA) is imported. Set 0 to vary the
speed to voltage fluctuation in real time.
Increase the set value to vary the speed
slower to voltage fluctuation.
Set Value
Filtering Time [ms]
0
0
1
1.77
2
3.55
3
7.11
Machine resonance suppression filter
Used to set the frequency that matches the
resonance frequency of the mechanical system. (Refer to Section 2-4-2.)
Set value Notch Frequency [Hz]
0
Not used
1
1125
2
563
3
375
4
282
5
225
6
188
7
161
2– 42
Unit
Setting
Range
Control
Mode
0000h
to
7301h
P•S•T
2. OPERATION
Name and Function
23
Feed forward gain:
Used to set the feed forward gain in position control.
By setting 100% for constant-speed operation, droop
pulses will not be generated. Note that sudden acceleration/deceleration will increase overshoot. (As a guideline, acceleration/deceleration time to/from rated speed
is 1s or longer when the set value is 100.)
Expansion parameters
Class No. Symbol
FFC
Initial
Value
Unit
Setting
Range
Control
Mode
0
%
0 to 100
P
50
r/min
0 to 10000 P • S • T
r/min
1 to 10000
When setting this parameter,
MEMORANDUM always set auto tuning to "No"
(parameter No. 2).
24
ZSP
Zero speed:
Used to set the output range of the zero speed signal (ZSP).
25
VCM
Analog speed command maximum speed:
Used to set the speed at the maximum input voltage
(10V) of the analog speed command (VC).
When it is set to 0, the speed comes to the rated
speed of the servo motor connected.
0
Analog speed limit maximum speed:
Used to set the speed at the maximum input voltage
(10V) of the analog speed limit (VLA).
When it is set to 0, the speed comes to the rated
speed of the servo motor connected.
0
0
0
r/min
1 to 10000
0 to 1000
26
TLC
Analog torque command maximum output:
Used to set the output torque at the analog torque
command voltage (TC=±8V) of +8V on the assumption
that the maximum torque is 100[%]. For example, set
50 to output (maximum torque x 50/100) at the TC of
+8V.
100
%
27
*ENR
Encoder output pulses:
Used to set the number of output pulses per encoder
revolution output by the servo amplifier.
4000
pulse
28
TL1
100
%
Internal torque limit 1:
Set this parameter to limit servo motor-generated torque
on the assumption that the maximum torque is 100[%].
When 0 is set, torque is not produced.
When analog monitor output is used to output torque,
this set value is the maximum output voltage (+8V).
Internal torque limit 1:
Set this parameter to limit servo motor-generated torque
on the assumption that the maximum torque is 100[%].
When 0 is set, torque is not produced.
Across TL-SG
Open
Short
Torque Limit
Internal torque limit 1 (Parameter No. 28)
Torque limit relationship
Analog torque limit < internal torque limit 1
Analog torque limit > internal torque limit 1
Valid torque limit
Analog torque limit
Internal torque limit 1
When analog monitor output is used to output torque, this
set value is the maximum output voltage (+8V).
2– 43
S
T
T
5 to 16384 P • S • T
2
0 to 100
T
P•S
2. OPERATION
Expansion parameters
Class No. Symbol
29
VCO
Name and Function
Initial
Value
Depends
Analog speed command offset:
on servo
Used to set the offset voltage of the analog speed
amplifier.
command (VC). When automatic VC offset is used, the
automatically offset value is set to this parameter.
(See section 2-3-3.)
The initial value is the value provided by the automatic VC
offset function before shipment at the VC-LG voltage of 0V.
Unit
Setting
Range
Control
Mode
mV
—999 to 999
S
T
Analog speed limit offset:
Used to set the offset voltage of the analog speed limit
(VLA). When automatic VC offset is used, the automatically offset value is set to this parameter.
(See section 2-3-3.)
The initial value is the value provided by the automatic VC
offset function before shipment at the VLA-LG voltage of 0V.
30
TLO
Analog torque command offset:
Used to set the offset voltage of the analog torque
command (TC).
0
mV
—999 to 999
T
S
Analog torque limit offset:
Used to set the offset voltage of the analog torque limit
(TLA).
31
MO1
Analog monitor 1 offset:
Used to set the offset voltage of the analog monitor 1
output (MO1).
0
mV
—999 to 999 P • S • T
32
MO2
Analog monitor 2 offset:
Used to set the offset voltage of the analog monitor 2
output (MO2).
0
mV
—999 to 999
33
MBR
Electromagnetic brake sequence output:
Used to set the delay time between when the electromagnetic brake interlock signal (MBR) switches off and
when the base circuit is shut off.
100
ms
0 to 1000
P•S•T
34
GD2
Ratio of load inertia moment to servo motor inertia moment:
Used to set the ratio of the load inertia moment to
the servo motor inertia moment. Note that when auto
tuning is selected, the result of auto tuning is automatically set.
70
0.1 times
0 to 1000
P•S
35
PG2
Position loop gain 2:
Used to set the gain of the position loop.
Set this parameter to increase position response to
load disturbance. Higher setting increases the response
level but is liable to generate vibration and/or noise.
30
rad/s
1 to 500
P
36
VG1
Speed loop gain 1:
Normally this parameter setting need not be changed.
Higher setting increases the response level but is liable
to generate vibration and/or noise.
216
rad/s
20 to 5000
P•S
37
VG2
Speed loop gain 2:
Set this parameter when vibration occurs on machines of
low rigidity or large backlash. Higher setting increases the
response level but is liable to generate vibration and/or noise.
714
rad/s
20 to 8000
P•S
2– 44
2. OPERATION
Name and Function
Expansion parameters
Class No. Symbol
38
VIC
Speed integral compensation
Used to set the constant of integral compensation.
39
VDC
Speed differential compensation:
Used to set the differential compensation value.
Unit
Setting
Range
Control
Mode
20
ms
1 to 1000
P•S
980
0 to 1000
P•S
0000
0000h
to
0111h
P•S•T
For manufacturer setting
Must not be change
40
41
Initial
Value
*DIA
Input signal automatic ON selection:
Used to set automatic ON of SON, LSP and LSN.
0
Servo on signal (SON) input selection
0: Switched on/off by external input.
1: Switched on automatically in servo:
amplifier.
(No need of external wiring)
Forward rotation stroke end signal
(LSP) input selection
0: Switched on/off by external input.
1: Switched on automatically in servo
amplifier.
(No need of external wiring)
P•S
Reverse rotation stroke end signal (LSN)
input selection
0: Switched on/off by external input.
1: Switched on automatically in servo
amplifier.
(No need of external wiring)
42
*DI1
Input signal selection 1:
Used to assign the control mode changing signal input
pins and to set the clear signal.
0
0003
0000h
to
0015h
0
Control change signal (LOP) input pin assignment
Used to set the control mode
change signal input connector
pins. Note that this parameter is
made valid when parameter No.
0 is set to select the position/speed, speed/torque or torque/position change mode.
Set Value
0
1
2
3
4
5
P/S
S/T
T/P
Connector Pin No.
CN1B – 5
CN1B – 14
CN1A – 8
CN1B – 7
CN1B – 8
CN1B – 9
Clear signal (CR) selection
0: Droop pulses are cleared on the
leading edge.
1: Always cleared while on.
2– 45
P•S•T
2
2. OPERATION
Expansion parameters
43
*DI2
Initial
Value
Name and Function
Class No. Symbol
Input signal selection 2 (CN1B-pin 5):
0111
This parameter is unavailable
when parameter No. 42 is set to
assign the control change signal
(LOP) to CN 1B-pin 5.
MEMORANDUM
Allows any input signal to be assigned to CN1B-pin 5.
Note that the setting digit and assigned signal differ
according to the control mode.
0
Position
control mode
Speed control
mode
Torque control mode
Input signals of
CN1B-pin 5
selected.
Signals that may be assigned in each control mode are
indicated below by their symbols. Diagonally shaded
area indicates invalid setting.
Set Value
0
1
2
3
4
5
6
7
8
9
P
(Note) Control Mode
S
T
SON
RES
PC
TL
CR
SON
RES
PC
TL
CR
SP1
SP2
ST1
ST2
SON
RES
TL
CR
SP1
SP2
RS2
RS1
Note: P: Position control mode
S: Speed control mode
T: Torque control mode
2– 46
Unit
Setting
Range
Control
Mode
0000h
to
0999h
P•S•T
2. OPERATION
Expansion parameters
44
*DI3
Setting
Range
Control
Mode
0222
0000h
to
0999h
P•S•T
0665
0000h
to
0999h
P•S•T
0770
0000h
to
0999h
P•S•T
Name and Function
Initial
Value
Input signal selection 3 (CN1B-pin 14):
Class No. Symbol
Allows any input signal to be assigned to CN1B-pin 14.
The assignable signals and setting method are the
same as in input signal selection 2 (parameter No. 43).
Unit
0
Position
control mode
Speed control
mode
Torque control mode
MEMORANDUM
45
*DI4
Input signals of
CN1B-pin 14
selected.
This parameter is unavailable
when parameter No. 42 is set to
assign the control change signal
(LOP) to CN1B-pin 14.
Input signal selection 4 (CN1A-pin 8):
Allows any input signal to be assigned to CN1A-pin 8.
The assignable signals and setting method are the
same as in input signal selection 2 (parameter No. 43).
0
Position
control mode
Speed control
mode
Torque control mode
MEMORANDUM
46
*DI5
Input signals of
CN1A-pin 8
selected.
This parameter is unavailable
when parameter No. 42 is set to
assign the control change signal
(LOP) to CN1 A-pin 8.
Input signal selection 5 (CN1B-pin 7):
Allows any input signal to be assigned to CN1B-pin 7.
The assignable signals and setting method are the
same as in input signal selection 2 (parameter No. 43).
0
Position
control mode
Speed control
mode
Torque control mode
MEMORANDUM
Input signals of
CN1B-pin 7
selected.
This parameter is unavailable
when parameter No. 42 is set to
assign the control change signal
(LOP) to CN1 B-pin 7.
2– 47
2
2. OPERATION
Expansion parameters
47
*DI6
Setting
Range
Control
Mode
0883
0000h
to
0999h
P•S•T
0994
0000h
to
0999h
P•S•T
Initial
Value
Name and Function
Class No. Symbol
Input signal selection 6 (CN1B-pin 8):
Allows any input signal to be assigned to CN1B-pin 8.
The assignable signals and setting method are the
same as in input signal selection 2 (parameter No. 43).
Unit
0
Position
control mode
Speed control
mode
Torque control mode
MEMORANDUM
Input signals of
CN1B-pin 8
selected.
This parameter is unavailable
when parameter No. 42 is set to
assign the control change signal
(LOP) to CN1B-pin 8.
When "Use in absolute position detection system" is
selected with parameter No. 1, the CN1B-8 pin comes
into the ABS transfer mode (ABSM).
48
*DI7
Input signal selection 7 (CN1B-pin 9):
Allows any input signal to be assigned to CN1B-pin 9.
The assignable signals and setting method are the
same as in input signal selection 2 (parameter No. 43).
0
Position
control mode
Speed control
mode
Torque control mode
MEMORANDUM
Input signals of
CN1B-pin 9
selected.
This parameter is unavailable
when parameter No. 42 is set to
assign the control change signal
(LOP) to CN1B-pin 9.
When "Use in absolute position detection system" is
selected with parameter No. 1, the CN1B-9 pin comes
into the ABS transfer mode (ABSM).
2– 48
2. OPERATION
Initial
Value
Name and Function
49
Output signal selection 1:
Used to select the connector pins to output the alarm
code, warning (WNG) and battery warning (BWNG).
Expansion parameters
Class No. Symbol
*DO1
0000
Unit
Setting
Range
Control
Mode
0000h
to
0551h
P•S•T
0
Setting of alarm code output
Connector Pins
Set Value CN1B-19 CN1A-18 CN1A-19
0
1
INP or SA
ZSP
RD
Alarm code is output at alarm occurrence.
(Note) Alarm Code
Alarm
CN1B CN1A CN1A
Display
pin 19 pin 18 pin 19
8888
A. 11
A. 12
A. 13
0
0
0 A. 15
A. 17
A. 18
A. 37
A. 8E
A. 30
0
0
1
A. 33
0
1
0 A. 10
A. 46
0
1
1 A. 50
A. 51
A. 24
1
0
0
A. 32
A. 31
1
0
1 A. 35
A. 52
A. 16
1
1
0 A. 20
A. 25
Name
Watchdog
Board error 1
Memory error 1
Clock error
Memory error 2
Board error 2
Board error 3
Parameter error
RS-232C error
Regenerative fault
Overvoltage
Undervoltage
Motor overheat
Overload 1
Overload 2
Ground fault
Overcurrent
Overspeed
Command pulse fault
Error excessive
Encoder error 1
Encoder error 2
Absolute position erasure
Note: 0:OFF
1:ON
Setting of warning (WNG) output
Select the connector pin to output
warning. The old signal before
selection will be unavailable.
Set Value
0
1
2
3
4
5
Connector Pin No.
Not output.
CN1A-19
CN1B-18
CN1A-18
CN1B-19
CN1B-6
Setting of battery warning (BWNG) output
Select the connector pin to output battery
warning. The old signal before selection
will be unavailable.
Set this function as in the second digit of
this parameter.
2– 49
2
2. OPERATION
2-4 Adjustments
2-4-1 Auto tuning
In general machines, gains are automatically adjusted by auto tuning. As the corresponding parameter is factory-set to make auto tuning valid, merely running the servo motor will automatically
set the optimum gains for the machine without special operation or setting.
However, if you are not satisfied with machine motions during operation, change and adjust the
response level setting (parameter No. 2) of auto tuning in the following procedure.
Actual Machine Motion
Ideal Machine Motion
Parameter No. 2 Setting Method
Settling time is long (Note)
Shorter settling time
Increase the set value of the response level.
Overshoot occurs at a stop.
Less overshoot
Decrease the set value of the response level.
Select "large friction" in machine selection.
Gear noise is generated from the machine. Smaller gear noise
Decrease the set value of the response level.
Note: Settling time indicates a period of time from when the command pulse value is
zeroed to when the servo motor comes to a stop.
2-4-2 Manual gain adjustment
In most machines, gains can be adjusted automatically by auto tuning.
In the following cases, however, the gains should be adjusted manually.
Manual Gain Adjustment Is Required When
Phenomenon
Adjustment Procedure
The machine vibrates at a low-range The servo motor shaft vibrates at a high
resonance frequency.
frequency (10Hz or more)
a. When the machine generates large noise Adjustment 1
and vibrates, the motion of the servo
1)
motor shaft is invisible.
b. When the response level setting is Adjustment 2
increased by auto tuning, vibration
increases.
The servo motor vibrates on a machine The servo motor shaft vibrates at a low Adjustment 3
whose ratio of load inertia moment to frequency (5Hz or less).
servo motor inertia moment is 20 or more a. When vibration occurs, the lateral vibration
times.
of the servo motor shaft is visible.
2)
b. The ratio of load inertia moment to servo
motor inertia moment is extremely large.
The settling time provided by auto tuning
3) should be further decreased.
Adjustment 4
The position control gain of each axis
4) should be set to the same for
interpolation operation with two or more
axes.
Adjustment 5
2– 50
2. OPERATION
The following parameters are used for manual gain adjustment. Note that 000C should be set in
parameter No. 19 (parameter write disable) to make the expansion parameters valid.
Parameter No.
Name
No. 2
Auto tuning
No.34
Ratio of load inertia moment to servo motor inertia moment
No.22
Function selection 4 (Machine resonance suppression filter)
No.6
Position loop gain 1
No.35
Position loop gain 2
No.36
Speed loop gain 1
No.37
Speed loop gain 2
No.38
Speed integral compensation
Adjustment 1
Step
Operation
Description
Set 0101 in parameter No. 2.
Auto tuning is selected.
1
2
Response is set to low level.
Set 1
in parameter No. 22.
Machine resonance frequency: 1125Hz
Switch servo on and perform operation several Auto tuning is performed.
3
times.
Increase
4
setting
of
the
fourth
digit
in
The optimum value is achieved just before
parameter No. 22 sequentially and execute step 3. vibration begins to increase.
To
5
Check to see if vibration reduced.
the
reduce
the
settling
time,
increase
the
response level of parameter No. 2 sequentially
and execute steps 2 to 4.
2
2– 51
2. OPERATION
Adjustment 2
Step
Operation
Description
Auto tuning is selected.
Response is set to low level.
1
Set 0101 in parameter No. 2.
2
Set the machine's load inertia moment to servo When this parameter value is set, the following
motor inertia moment in parameter No. 34. parameter values are set automatically. Each value
(When it is unclear, set an approximate value.) provides an ideal, hunting-less gain for parameter
No. 34 if machine resonance does not occur.
• Parameter No. 6
• Parameter No. 35
• Parameter No. 36
• Parameter No. 37
• Parameter No. 38
3
Set
4
In parameter No. 37, set a value about 100
smaller than the value set automatically in step 3.
5
6
7
2
in parameter No. 2.
Auto tuning is made invalid to enable manual
setting of parameters No. 6 • 35 to 38.
The optimum value is achieved just before
vibration begins to increase.
Execute steps 2 to 4 of Adjustment 1.
When machine response does not occur any Set a value which is about 50 to 100 smaller than
more, confirm the operating status, and at the the set value at which gear noise and/or vibration
same time, gradually increase the setting of begins to be generated by machine resonance.
parameter No. 37 reduced in step 4.
To reduce the settling time, increase the
response level of parameter No. 2 sequentially
and execute steps 1 to 6.
Adjustment 3
Step
1
2
Operation
Set 0101 in parameter No. 2.
Description
Auto tuning is selected.
Response is set to low level.
Set the machine's load inertia moment to servo When this parameter value is set, the following
motor inertia moment in parameter No. 34. parameter values are set automatically. Each
(When it is unclear, set an approximate value.) value provides an ideal, hunting-less gain for
parameter No. 34 if machine resonance does
not occur.
• Parameter No. 6
• Parameter No. 35
• Parameter No. 36
• Parameter No. 37
• Parameter No. 38
3
Switch servo on and perform operation several Auto tuning is performed.
4
If vibration still persists, execute steps 2 and 3.
5
If vibration occurs due to machine resonance,
make adjustment in the
procedure of Adjustment 1 or 2.
2– 52
2. OPERATION
Adjustment 4
Step
Operation
Set 0101 in parameter No. 2.
1
2
3
4
Description
Auto tuning is selected.
Response is set to low level.
Switch servo on and perform operation several Auto tuning is performed.
Check to see if vibration reduced.
times.
Make gain adjustment in either of the following Temporary adjustment
methods 1) and 2).
1) Set the machine's load inertia moment to When this parameter value is set, the following
servo motor inertia moment in parameter No. parameter values are
34. (When it is unclear, set an approximate
set automatically. Each value provides an
ideal, hunting-less gain for
value.)
parameter No. 34 if machine resonance does
not occur.
• Parameter No. 6
• Parameter No. 35
• Parameter No. 36
• Parameter No. 37
• Parameter No. 38
2) Switch servo on and perform operation Auto tuning is performed.
Set
2
in parameter No. 2.
Auto tuning is made invalid to enable manual
setting of parameters No. 6 • 35 to 38.
While confirming the operating status, adjust The optimum value is achieved just before
vibration begins to increase.
the following parameters:
5
•
•
•
•
Parameter
Parameter
Parameter
Parameter
No.
No.
No.
No.
6
35
36
37
• Parameter No. 38
Increase the setting to reduce the settling time.
Note that overshoot is more liable to occur.
Increase the setting to improve servo response.
Note that vibration is more liable to occur.
Decrease the setting to keep the speed
constant to load disturbance and increase
holding force at a stop (servo rigidity). Note that
overshoot
Adjustment 5
Step
1
2
3
Operation
Description
Adjust the gains of all axes in any of The gains of each axis are adjusted.
Adjustment 1 to 4 procedures.The gains of each
axis are adjusted.
0
"interpolation axis control": The values
Set 0
or
2
in parameter No. 2.
of parameters No. 34 • 35 • 37 • 38
will change in subsequent operation.
2
"no": Auto tuning is made invalid to
enable manual setting of parameters
No. 6 • 35 to 38.
Set the following parameter of each axis to the The gains for operation of all axes are set to
minimum value of all interpolation-controlled the same value.
axes:
• Parameter No. 6
2– 53
2
2. OPERATION
2-4-3 Slight vibration suppression control
The slight vibration suppression control mode is used to reduce servo-specific ±1 pulse vibration at
the time of a stop. This mode produces an effect especially when the ratio of load inertia moment to
servo motor inertia moment is small (2 to 5 times). Note that when vibration is attributable to looseness (such as gear backlash) or machine resonance, use the machine resonance suppression filter
in parameter No. 22. The slight vibration suppression control mode should be used after real-time
auto tuning or manual gain adjustment.
Usage
First, perform real-time auto tuning or manual gain adjustment so that vibration falls within ±2 to 3
pulses.
Set
1
in parameter No. 20 to enter the slight vibration suppression mode at the time of a
stop.
Parameter No. 20
1
Slight vibration suppression
control execution
2– 54
CHAPTER 3
WIRING
This chapter provides information required for wiring of connectors, terminals, etc. Before doing wiring
work, always read this chapter.
3-1 Servo amplifier
3-1-1 Terminal blocks
3-1-2 Signal connectors
3-1-3 Detailed information on I/O signals
3-1-4 Interfaces
3-2 Connection of servo amplifier and servo motor
3-2-1 Connection instructions
3-2-2 Connection diagram
3-2-3 I/O terminals
3-2-4 Connectors used for servo motor wiring
3-3 Common line
3-4 Grounding
3-5 Power supply circuit
3-6 Alarm occurrence timing chart
3-7 Servo motor with electromagnetic brake
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
3– 1
3.WIRING
WARNING
1. Any person who is involved in wiring should be fully competent to do
the work.
2. Before starting wiring, make sure that the voltage is safe in the tester
more than 10 minutes after power-off. Otherwise, you may get an
electric shock.
3. Ground the servo amplifier and the servo motor securely.
4. Do not attempt to wire the servo amplifier and servo motor until they
have been installed. Otherwise, you may get an electric shock.
5. The cables should not be damaged, stressed excessively, loaded
heavily, or pinched. Otherwise, you may get an electric shock.
1. Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate, resulting in injury.
2. Connect cables to correct terminals to prevent a burst, fault, etc.
3. Ensure that polarity (+, -) is correct. Otherwise, a burst, damage, etc.
may occur.
4. The surge absorbing diode installed to the DC relay designed for
control output should be fitted in the specified direction. Otherwise,
the signal is not output due to a fault, disabling the emergency stop
and other protective circuits.
Servo
Amplifier
CAUTION
COM
(24VDC)
Control
output
signal
COM
(24VDC)
Control output
signal
RA
RA
Servo amplifier
5. Use a noise filter, etc. to minimize the influence of electromagnetic
interference, which may be given to electronic equipment used near
the servo amplifier.
6. Do not install a power capacitor, surge suppressor or radio noise
filter (FR-BIF option) with the power line of the servo motor.
7. When using the regenerative brake resistor, switch power off with the
alarm signal. Otherwise, a transistor fault or the like may overheat
the regenerative brake resistor, causing a fire.
8. Do not modify the equipment.
NOTICE
CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the
connectors will lead to a failure. Connect them correctly.
3– 2
3.WIRING
3-1 Servo amplifier
Only the specified voltage should be applied to each terminal. Otherwise, a
CAUTION burst, damage, etc. may occur.
3-1-1 Terminal blocks
(1) Signal arrangement
Terminal block signals are as listed below:
Servo Amplifiers
Terminals
MR–J2–10A
to
MR–J2–60A
MR–J2–10A1
to
MR–J2–40A1
MR–J2–70A
MR–J2–100A
MR–J2–200A
MR–J2–350A
Terminal positions
1)
2)
2)
1)
3)
3)
Front
Front
Control circuit
1)
terminalblock
D
D
Rear
C
Rear
C
P
L21
P
(TE2)
L21
P
C
N
L3
U
V
W
N
(Phoenix Contact make)
Terminal signals
D
L11
L11
L1 L2 L3
L11 L21
L1
(Phoenix Contact make)
L2
L1 L2 L3
Main circuit
2)
3
terminal block
(TE1)
L1
U
V
W
U
V
U
W
Protective
3) earth(PE)
terminals
3– 3
V
W
L2
3.WIRING
(2) Signals
Symbol
Signal
Description
Main circuit power supply
Main circuit power input terminals
Supply L1, L2 and L3 with the following power:
For single-phase 230VAC, connect the power supply to L1/L2
and leave L3 open.
Servo amplifier MR-J2-10A MR-J2-100A MR-J2-10A1
Power supply
to 70A
to 350A
to 40A1
3-phase 200 to 230VAC, 50/60Hz
L1•L2•L3
(Note) Single-phase 230VAC, 50/60Hz
L1•L2
Single-phase 100 to 120VAC, 50/60Hz
L1•L2
Note: Cannot be used for combination with the servo motor HC-SF52.
Control circuit power supply
Control circuit power input terminals
Supply L11 and L21 with the following power:
Servo amplifier
MR-J2-10A
MR-J2-10A1
Power supply
to 350A
to 40A1
Single-phase 200 to 230VAC, 50/60Hz
L11•L21
Single-phase 100 to 120VAC, 50/60Hz
L11•L21
L11 and L21 should be in phase with L1 and L2, respectively.
P, C, D
Regenerative brake option
Regenerative brake option connection terminals
C and D are factory-connected.
When using the regenerative brake option, always remove
wiring from across P-D and connect the regenerative brake
option across P-C.
U, V, W
Servo motor output
Servo motor power output terminals
Connect to the servo motor power supply terminals (U, V, W).
L1, L2, L3
L11, L21
N
Do not connect.
Protective earth (PE)
Ground terminal
Connect this terminal to the protective earth (PE) terminals
of the servo motor and control box for grounding.
(3) How to use the control circuit terminal block (Phoenix Contact make)
1) Termination of the cables
Solid wire:
After the sheath has been stripped,
the cable can be used as it is. (Cable
size: 0.2 to 2.5mm 2)
Approx. 10mm
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this
time, take care to avoid a short caused by the loose wires of the core
and the adjacent pole. Do not solder the core as it may cause a contact fault. (Cable size: 0.2 to 2.5mm 2 )
Alternatively, a bar terminal may be used to put the wires together.
(Phoenix Contact make)
Bar terminal for 2 cables
(Twin ferrule with insulation sleeve)
Bar terminal for 1 cable
(Bar terminal ferrule with insulation sleeve)
Cable Size
2
[mm ]
AWG
0.25
24
0.5
20
0.75
18
1
18
1.5
16
2.5
14
Bar Terminal Type
For 1 cable
Al0.25-6YE
Al0.25-8YE
Al0.5-6WH
Al0.5-8WH
Al0.75-6GY
Al0.75-8GY
Al1-6RD
Al1-8RD
Al1.5-6BK
Al1.5-8BK
Al2.5-8BU
Al2.5-8BU-1000
For 2 cables
Al-TWIN2
Al-TWIN2
Al-TWIN2
Al-TWIN2
Al-TWIN2
Al-TWIN2
Al-TWIN2
Al-TWIN2
Crimping
Tool
0.75-8GY
0.75-10GY CRIMPFOX-UD6
1-8RD
1-10RD
1.5-8BK
1.5-12BK
2.5-10BU
2.5-13BU
3– 4
3.WIRING
2) Connection
Insert the core of the cable into the opening and tighten the screw with a flat-blade
screwdriver so that the cable does not come off. (Tightening torque: 0.5 to 0.6N • m)
Before inserting the cable into the opening, make sure that the screw of the terminal
is fully loose.
When using a cable of 1.5mm2 or less, two cables may be inserted into one opening.
Flat-blade screwdriver
• Tip thickness 0.4 to 0.6mm
• Overall width 2.5 to 3.5mm
To loosen.
To tighten.
Cable
Opening
Control circuit terminal block
3
3– 5
3.WIRING
3-1-2 Signal connectors
(1) Signal arrangement
All connectors are half-pitch connectors (Molex 52986-2011 or
equivalent).CN1A and CN1B signals change with the control mode. Refer to (2) in
this section.
CN1A
CN1B
11
1
18
MITSUBISHI
MELSERVO–J2
LG
4
3
LG
12
LG
8
7
MR
9
10
P5
MEMORANDUM
RXD
13
4
MO1
15
BAT
MDR
18
P5
20
6
17
MRR
19
P5
11
1
2
LG
16
6
MD
CN3
14
5
19
20
10
11
1
LG
18
9
20
CN2
2
17
7
8
19
9
10
16
6
17
7
15
5
16
8
14
4
15
5
13
3
14
6
12
2
13
3
4
11
1
12
2
LG
3
LG
5
LG
12
TXD
14
MO2
16
15
LG
18
8
19
9
10
13
LG
17
7
The connector frames
are connected with the
PE terminal inside the
servo amplifier.
LG
20
P5
P5
The connector pin-outs shown above are viewed from the cable connector
wiring section side.
3– 6
3.WIRING
(2) CN1A and CN1B signal assignment
Connector
Pin No.
Signal Input/Output
(Note 1) I/O
1
P
P/S
S
S/T
T
T/P
LG
LG
LG
LG
LG
LG
I
NP
NP/
/NP
3
I
PP
PP/
/PP
P15R
P15R/P15R
P15R
P15R
P15R
P15R
5
O
LZ
LZ
LZ
LZ
LZ
LZ
6
O
LA
LA
LA
LA
LA
LA
7
O
LB
LB
LB
LB
LB
LB
(Note 8)8
I
CR
CR/SP1
(Note 3)SP1
SP1/SP1
(Note 3)SP1
SP1/CR
9
COM
COM
COM
COM
COM
COM
10
SG
SG
SG
SG
SG
SG
11
OPC
OPC/
/OPC
I
NG
NG/
/NG
13
I
PG
PG/
14
O
OP
OP
15
O
LZR
LZR
LZR
LZR
LZR
LZR
16
O
LAR
LAR
LAR
LAR
LAR
LAR
17
(Note 7, 9)
18
(Note 7, 9)
19
20
O
LBR
LBR
LBR
LBR
LBR
LBR
O
INP
INP/SA
SA
O
RD
RD
RD
RD
RD
RD
SG
SG
SG
SG
SG
SG
LG
LG
LG
LG
LG
LG
VC
VC/VLA
VLA
VLA/
12
1
CN1B
(Note 2) Symbols of I/O Signals in Control Modes
2
4
CN1A
Pin assignment
OP
OP
SA/
OP
/INP
2
I
3
(Note 10)
4
VDD
VDD
VDD
VDD
VDD
VDD
O
DO1
DO1
DO1
DO1
DO1
DO1
(Note 8)5
I
SON
SON
SON
SON
SON
SON
(Note 7)6
O
TLC
TLC
TLC
TLC/VLC
VLC
VLC/TLC
(Note 8)7
I
LOP
SP2
LOP
SP2
LOP
(Note 8)8
I
PC
PC/ST1
(Note 4)ST1
ST1/RS2
(Note 4)RS2
RS2/PC
(Note 8)9
I
TL
TL/ST2
(Note 5)ST2
ST2/RS1
(Note 5)RS1
RS1/TL
SG
SG
SG
SG
SG
SG
10
11
12
I
/VC
/PG
OP
P15R
P15R
P15R
P15R
P15R
P15R
TLA
TLA/TLA(Note 6)
(Note 6)TLA
(Note 6)TLA/TC
TC
TC/TLA
COM
COM
COM
COM
COM
COM
13
(Note 8)
14
15
I
RES
RES
RES
RES
RES
RES
I
EMG
EMG
EMG
EMG
EMG
EMG
16
I
LSP
LSP
LSP
LSP/
/LSP
17
I
LSN
LSN
LSN
LSN/
/LSN
O
ALM
ALM
ALM
ALM
ALM
ALM
O
ZPS
ZSP
ZSP
ZSP
ZSP
ZSP
SG
SG
SG
SG
SG
SG
(Note 7)
18
(Note 7,
9, 11)19
20
For notes, refer to the next page.
3– 7
3
3.WIRING
Note: 1. I: Input signal, O: Output signal, -: Others (e.g. power)
2. P: Position control mode, S: Speed control mode, T: Torque control
mode, P/S: Position/speed control change mode, S/T: Speed/torque
control change mode, T/P: Torque/position control change mode
3. Set parameter No. 45 to use CR.
4. Set parameter No. 47 to use PC.
5. Set parameter No. 48 to use TL.
6. By setting parameters No. 43 to 48 to make TL available, TLA can be used.
7. Set parameter No. 49 to use WNG and BWNG.
8. Set parameters No. 43 to 48 to change signals.
9. Set parameter No. 49 to select alarm codes. (Refer to Chapter 8.)
10.The signal of CN1A-18 is always output.
11. Set parameter No. 1 to select MBR.
(3) Symbols and signal names
Symbol
Signal Name
Symbol
Signal Name
SON
Servo on
VLC
Limiting speed
LSP
Forward rotation stroke end
RD
Ready
LSN
Reverse rotation stroke end
ZSP
Zero speed
CR
Clear
INP
In position
SP1
Speed selection 1
SA
Speed reached
SP2
Speed selection 2
ALM
Trouble
PC
Proportion control
WNG
Warning
ST1
Forward rotation start
BWNG Battery warning
ST2
Reverse rotation start
OP
Encoder Z-phase pulse (open collector)
TL
Torque limit selection
MBR
Electromagnetic brake interlock
RES
Reset
LZ
Encoder Z-phase pulse
EMG
Emergency stop
LZR
LOP
Control change
LA
VC
Analog speed command
LAR
VLA
Analog speed limit
LB
Encoder B-phase pulse
TLA
Analog torque limit
LBR
(differential line driver)
TC
Analog torque command
MO1
Analog Monitor output 1
RS1
Forward rotation selection
MO2
Analog Monitor output 2
RS2
Reverse rotation selection
VDD
I/F internal power supply
PP
Forward/reverse rotation pulse train
COM
Digital I/F power supply input
NP
OPC
Open collector power input
PG
SG
Digital I/F common
NG
P15R
DC15V power supply
LG
Control common
SD
Shield
TLC
Limiting torque
(differential line driver)
Encoder A-phase pulse
(differential line driver)
3– 8
3.WIRING
(4) Signal explanations
In the Control Mode field of the table
: Denotes that the signal may be used in the initial setting status.
: Denotes that the signal may be used by setting the corresponding parameter among
parameters No. 1 and 43 to 49.
The pin No. in the connector pin No. column is the number under initial status.
1) Input signals
Signal
ConnecSymbol tor Pin
No.
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
Functions/Applications
Servo on
SON
CN1B
5
Connect SON-SG to switch on the base circuit and make
the servo amplifier ready to operate (servo on).
Disconnect SON-SG to shut off the base circuit (servo off)
andcoast the servo motor.
Set
1 in parameter No. 41 to switch this signal on
(keep terminals connected) automatically in the servo
amplifier.
DI–1
Reset
RES
CN1B
14
Disconnect RES-SG for more than 50ms to reset the alarm.
During alarm resetting, the base circuit is shut off.
The following alarms cannot be reset:
DI–1
Display
A. 11
A. 12
A. 13
A. 15
A. 16
A. 17
A. 18
Name
Board error 1
Memory error 1
Clock error
Memory error 2
Encoder error 1
Board error 2
Board error 3
Display
A. 20
A. 25
A. 30
A. 37
A. 50
A. 51
Name
Encoder error 2
Absolute position erase
Regenerative error
Parameter error
Overload 1
Overload 2
Also, the regenerative error (A. 30) and overload 1 (A. 50)
cannot be reset until the regenerative brake resistor and
power transistor are cooled to proper temperatures, respectively.
If the line between RES and SG is short-circuited during the
operation and no alarm is given, the status will come to the base
and the servo motor will freely run to a stop.
Forward rotation
stroke end
LSP
CN1B
16
The forward and/or reverse rotation stroke end signal must
be ON to run the servo motor. If the signal is switched off,
the servo motor will stop suddenly and servo-locked. By
setting
1 in parameter No. 22, the servo motor will
come to a slow stop when the signal is switched off.
Relationships between signal status and operation are as
follows:
Operation
Across Across
LSP-SG LSN-SG
Reverse rotation
stroke end
LSN
CN1B
17
Short
Short
Open
Short
Short
Open
Open
Open
CCW
CW
direction direction Forward
rotation
CCW
Reverse rotation
CW
Set parameter No. 41 as indicated below to switch on the signals
(keep terminals connected) automatically in the servo amplifier:
Parameter No. 41
1
Automatic ON
LSP
1
LSN
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 9
DI–1
3
3.WIRING
Signal
Torque limit
ConnecSymbol tor Pin
No.
TL
CN1B
9
Functions/Applications
Connect TL-SG to limit torque according to the voltage
level (max. torque: +8V) of analog torque limit (TLA).
Across TL-SG
Torque Limit
Open
Internal torque limit 1 (parameter No. 28)
Torque limit relationship
Valid torque
limit
Analog torque limit
internal torque limit 1
Analog torque
limit
Analog torque limit
internal torque limit 1
Internal torque
limit 1
Short
Forward rotation
start
Reverse rotation
start
ST1
ST2
CN1B
8
CN1B
9
Control
Mode
I/O
Division (Note 2)
(Note 1)
P S T
Used to start the servo motor in any of the following directions:
Across
ST1-SG
Across
ST2-SG
Servo Motor Starting Direction
Open
Open
Stop (servo lock)
Short
Open
CCW
Open
Short
CW
Short
Short
Stop (servo lock)
DI–1
DI–1
If both ST1 and ST2 are switched on or off during operation,
the servo motor will be decelerated to a stop according to
the parameter No. 12 setting and servo-locked. When the
analog speed command (VC) is 0V, starting the servo motor
will not generate servo lock torque.
Forward rotation
selection
RS1
CN1B
9
Used to select any of the following servo motor torque
generation directions:
Across RS1-SG Across RS2-SG Torque Generation Direction Rotation Direction
Open
Reverse rotation
selection
RS2
CN1B
8
Open
No torque
Stop
Short
Open
Forward rotation in driving
mode / reverse rotation in
regenerative mode
CCW
Open
Short
Reverse rotation in driving
mode / forward rotation in
regenerative mode
CW
Short
Short
No torque
Stop
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control
3– 10
DI–1
3.WIRING
Signal
Speed selection 1
ConnecSymbol tor Pin
No.
SP1
CN1A
8
Speed Command
<Speed control mode>
Used to select the command speed for operation.
Across
SP1-SG
Across
SP2-SG
Open
Open
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
DI–1
Functions/Applications
Analog speed command (VC)
Short
Open
Open
Short
Internal speed command 1
(parameter No. 8)
Internal speed command 2
(parameter No. 9)
Short
Short
Internal speed command 3
(parameter No. 10)
<Torque control mode>
Used to select the limit speed for operation.
Speed selection 2
SP2
CN1B
7
Across
SP1-SG
Across
SP2-SG
Open
Open
Analog speed limit (VLA)
Short
Open
Internal speed limit 1 (parameter No. 8)
Open
Short
Internal speed limit 2 (parameter No. 9)
Short
Short
Internal speed limit 3 (parameter No. 10)
Speed Limit
<Position/speed, speed/torque, torque/position control change mode>
As CN1B-7 acts as a control change signal, the speed
selected when the speed or torque control mode is selected
is as follows:
• When speed control mode is selected
Across
SP1-SG
Speed Command
Open
Analog speed command (VC)
Short
Internal speed command 1 (parameter No. 8)
• When torque control mode is selected
Across
Speed Limit
SP1-SG
Open
Analog speed limit (VLA)
Short
Internal speed limit 1 (parameter No. 8)
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 11
3
3.WIRING
Signal
Proportion control
Emergency stop
Clear
Control change
ConnecSymbol tor
Pin No.
Functions/Applications
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
PC
CN1B
8
Connect PC-SG to switch the speed amplifier from the
proportional integral type to the proportional type.
If the servo motor at a stop is rotated even one pulse due to
any external factor, it generates torque to compensate for a
position shift. When the servo motor shaft is to be locked
mechanically after positioning completion (stop), switching
on the proportion control signal (PC) upon positioning
completion will suppress the unnecessary torque generated
to compensate for a position shift.
When the shaft is to be locked for a long time, switch on the
proportion control signal and torque control signal (TL) at
the same time to make the torque less than the rated by the
analog torque limit.
DI–1
EMG
CN1B
15
Disconnect EMG-SG to bring the servo motor to an
emergency stop state, in which the servo is switched off and
the dynamic brake is operated.
Connect EMG-SG in the emergency stop state to reset that
state.
DI–1
CR
CN1A
8
Connect CR-SG to clear the position control counter on the
leading edge of the signal. The pulse width should be 10ms
or more.
DI–1
LOP
CN1B
7
<Position/speed control change mode>
Used to select the control mode in the position/speed control
change mode.
DI–1
Across LOP-SG Control Mode
Open
Position
Short
Speed
<Speed/torque control change mode>
Used to select the control mode in the speed/torque control
change mode.
Across LOP-SG Control Mode
Open
Speed
Short
Torque
<Torque/position control mode>
Used to select the control mode in the torque/position control
change mode.
Across LOP-SG Control Mode
Open
Torque
Short
Position
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 12
3.WIRING
Signal
Analog torque limit
ConnecSymbol tor
Pin No.
TLA
Functions/Applications
CN1B
12
NOTICE
To use this signal in the speed control
mode, set any of parameters No. 43 to
48 to make TL available.
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
Analog
input
When the analog torque limit (TLA) is valid, torque is limited
in the full servo motor output torque range. Apply 0 to +10
VDC across TLA-LG. Connect the positive terminal of the
power supply to TLA. Maximum torque is generated at +10
V. (Refer to 1), (1) in Section 3-1-3.))
Resolution: 10 bit
Analog torque
command
TC
CN1B
12
Used to control torque in the full servo motor output torque
range.
Apply -8 to +8VDC across TC-LG. Maximum torque is
generated at +8V.
(Refer to 1), (1) in Section 3-1-3.) Resolution: 10 bit
Analog
input
Analog speed
command
VC
CN1B
2
Apply -10 to +10VDC across VC-LG. Speed set in
parameter No. 25 is provided at +10V. (Refer to 1), (2) in
Section 3-1-3.)
Resolution: 12 bit or equivalent
Analog
input
Analog speed limit
VLA
CN1B
2
Apply -10 to +10VDC across VLA-LG. Speed set in
parameter No. 25 is provided at +10V. (Refer to 1), (3) in
Section 3-1-3.)
Resolution: 12 bit or equivalent
CN1A
3
CN1A
2
CN1A
13
CN1A
12
Used to enter a command pulse train.
• In the open collector system (max. input frequency
200kpps):
Forward rotation pulse train across PP-SG
Reverse rotation pulse train across NP-SG
• In the differential receiver system (max. input frequency
400kpps):
Forward rotation pulse train across PG-PP
Reverse rotation pulse train across NG-NP
The command pulse train form can be changed using
parameter No. 21.
Forward rotation
pulse train
Reverse rotation
pulse train
PP
NP
PG
NG
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 13
Analog
input
DI–2
3
3.WIRING
2) Output signals
Signal
Trouble
ConnecSymbol tor
Pin No.
Functions/Applications
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
ALM
CN1B
18
ALM-SG are disconnected when power is switched off or the
protective circuit is activated to shut off the base circuit.
Without alarm, ALM-SG are connected within 1 second after
power on. Connect the regenerative brake option or the like
with a temperature detector to make up a protective circuit.
DO–1
Ready
RD
CN1A
19
RD-SG are connected when the servo is switched on and
the servo amplifier is ready to operate.
DO–1
In position
INP
CN1A
18
INP-SG are connected when the number of droop pulses is
in the preset in-position range. The in-position range can be
changed using parameter No. 5.
When the in-position range is increased, INP-SG may be
kept connected during low-speed rotation.
DO–1
Speed reached
SA
CN1A
18
SA-SG are connected when the servo motor speed has
nearly reached the preset speed. When the preset speed is
50r/min or less, SA-SG are kept connected.
DO–1
Limiting speed
VLC
CN1B
6
VLC-SG are connected when speed reaches the value set
to any of the internal speed limits 1 to 3 (parameters No. 8
to 10) or the analog speed limit (VLA) in the torque control
mode. They are disconnected when the servo-on signal
(SON) switches off.
DO–1
Zero speed
ZSP
CN1B
19
ZSP-SG are connected when the servo motor speed is zero
speed (50r/min) or less. Zero speed can be changed using
parameter No. 24.
DO–1
Limiting torque
TLC
CN1B
6
TLC-SG are connected when the torque generated reaches
the value set to the internal torque limit 1 (parameter No. 28)
or analog torque limit (TLA). They are disconnected when the
servo-on signal (SON) switches off.
DO–1
Electromagnetic
brake interlock
MBR
CN1B
19
DO–1
NOTICE
1 in parameter No. 1 to use this
Set
parameter. Note that ZSP will be made
unavailable.
In the servo-off or alarm status, MBR-SG are disconnected.
When an alarm occurs, they are disconnected at zero speed
or less, independently of the base circuit status.
Warning
WNG
DO–1
NOTICE
1 in parameter No. 49 to use
Set
this signal.
When warning has occurred, WNG-SG are connected.
When there is no warning, WNG-SG are disconnected within
1 second after power-on.
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 14
3.WIRING
Signal
Battery warning
ConnecSymbol tor
Pin No.
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
Functions/Applications
BWNG
DO–1
1
in parameter No. 49 to use
Set
this signal.
NOTICE
BWNG-SG are connected when battery cable breakage
warning (A. 92) or battery warning (A. 9F) has occurred.
When there is no battery warning, BWNG-SG are
disconnected within 1 second after power-on.
Alarm code
CN1A
19
CN1A
18
CN1B
19
DO–1
To use this signal, set
No. 49.
NOTICE
1 in parameter
This signal is output when an alarm occurs. When there is
no alarm, respective ordinary signals (RD, INP, SA, ZSP)
are output.
Alarm codes and alarm names are listed below:
(Note) Alarm Code
CN1B
19 Pin
0
CN1A
18 Pin
0
CN1A
19 Pin
0
0
0
1
0
1
0
0
1
1
1
1
0
0
1
1
0
1
0
Alarm
Display
Name
8888
Watchdog
A. 11
Board error 1
A. 12
Memory error 1
A. 13
Clock error
A. 15
Memory error 2
A. 17
Board error 2
A. 18
Board error 3
A. 37
Parameter error
A. 8E
RS-232C error
A. 30
Regenerative error
A. 33
Overvoltage
A. 10
Undervoltage
A. 46
Motor overheat
A. 50
Overload 1
A. 51
Overload 2
A. 24
Motor output ground fault
A. 32
Acceleration
A. 31
Overspeed
A. 35
Command pulse frequency alarm
A. 52
Error excessive
A. 16
Encoder error 1
A. 20
Encoder error 2
A. 25
Absolute position erase
Note: 0: Each pin and SG are disconnected (OFF).
1: Each pin and SG are connected (ON)
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 15
3
3.WIRING
Signal
ConnecSymbol tor
Pin No.
Functions/Applications
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
Encoder Z-phase
pulse
(Open collector)
OP
CN1A
14
Outputs the zero-point signal of the encoder. One pulse is
output per servo motor revolution. OP and LG are connected
when the zero-point position is reached. ( Negative logic)
Min. pulse width is about 800µs. For zeroing
using this pulse, set the creep speed to 100r/min. or less.
DO–2
Encoder A-phase
pulse
(Differential line
driver)
LA
CN1A
6
CN1A
16
Outputs pulses per servo motor revolution set in parameter
No. 27 in the differential line driver system. The encoder
B-phase pulse lags the encoder A-phase pulse by a phase
angle of π/2.
DO–2
CN1A
5
CN1A
15
The same signal as OP is output in the differential line
driver system.
DO–2
Encoder B-phase
pulse
(Differential line
driver)
Encoder Z-phase
pulse
(Differential line
driver)
LAR
LB
LBR
LZ
LZR
CN1A
7
CN1A
17
Analog Monitor
output 1
MO1
CN3
4
Data specified for CH1 in parameter No. 17 is output to
across MO1-LG in analog form.
Analog
output
Analog Monitor
output 2
MO2
CN3
14
Data specified for CH2 in parameter No. 17 is output to
across MO2-LG in analog form.
Analog
output
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 16
3.WIRING
3) Power supply
Signal
ConnecSymbol tor
Pin No.
Functions/Applications
I/F internal power
supply
VDD
CN1B
3
Used to output 24VDC for input interface.
Connect with COM to use this power supply.
Permissible current: 80mA
Digital I/F power
supply input
COM
CN1A
9
CN1B
13
Used to input 24VDC for input interface.
Connect the positive terminal of the 24VDC external power
supply.
Connect with VDD to use the internal power supply.
24VDC±10%
Open collector
power input
OPC
CN1A
11
When inputting a pulse train in the open collector system,
supply this terminal with the positive (+) power of 24VDC.
SG
CN1A
10
20
CN1B
10
20
Common terminal for VDD and COM. Pins are connected
internally.
Separated from LG.
P15R
CN1A
4
CN1B
11
Used to output 15VDC. Available as power for TC, TLA, VC,
VLA.
Permissible current: 30mA
Control common
LG
CN1A
1
CN1B
1
CN3
1
3
5
11
13
15
Common terminal for TLA, TC, VC, VLA, FPA, FPB, OP,
MO1, MO2 and P15R.
Pins are connected internally.
Shield
SD
Plate
Connect the external conductor of the shield cable.
Digital I/F common
DC15V power
supply
Note: 1. Refer to Section 3-1-4.
2. P: Position control mode, S: Speed control mode, T: Torque control mode
3– 17
Control
I/O
Mode
Division (Note 2)
(Note 1)
P S T
3
3.WIRING
3-1-3 Detailed information on I/O signals
(1) Position control mode
1) Torque limit
a. Torque limit and generated torque
By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value during operation. A relationship between limit value and servo motor-generated torque is shown in Fig. 3-1.
A relationship between the applied voltage of the analog torque limit (TLA) and the torque
limit value of the servo motor is shown in Fig. 3-2. Generated torque limit values will vary
about 5% relative to the voltage depending on products.
At the voltage of less than 0.05V, generated torque may vary as it may not be limited
sufficiently. Therefore, use this function at the
voltage of 0.05V or more.
100
Generated torque
Torque limit value [%]
Max. torque
0
0
Torque limit value [%]
Fig. 3-1 Torque Limit Value vs.
Generated Torque
b. Connection diagram
Connect as shown in Fig. 3-3.
Servo amplifier
TL
SG
2kΩ
P15R
TLA
LG
Japan Resistor
RRS10 or equivalent
0
0 0.05
10
TLA applied voltage [V]
100
1kΩ
±5%
SD
Fig. 3-3 Connection Example
3– 18
Fig. 3-2 TLA Applied Voltage vs.
Torque Limit Value
3.WIRING
c. Torque limit signal (TL) and valid torque limit
Use the torque limit signal (TL) to select the torque limit made valid by internal torque limit
1 or analog torque limit (TLA) as indicated in Table 3-1:
Table 3-1 TL and Valid Torque Limit Value
Across TL-SG
Valid Torque Limit Value
Open
Internal torque limit 1 (parameter No. 28)
Analog torque limit (TLA) if analog torque
limit (TLA) < internal
Short
torque limit 1Internal torque limit 1 (TL1) if analog
torque limit (TLA) > internal torque limit 1
d. Limiting torque (TLC)
TLC-SG are connected when the torque generated by the servo motor reaches the torque
set to internal torque limit 1 or analog torque limit.
2) In position (INP)
PF-SG are connected when the number of droop pulses in the deviation counter falls within
the preset in-position range (parameter No. 5). When the in-position range setting is large,
PF-SG may remain connected during low-speed operation.
ON
Servo on (SON)
Alarm
OFF
Yes
No
In-position range
Droop pulses
ON
In position (INP)
OFF
3
3) Ready (RD)
ON
Servo on (SON) OFF
Alarm
Yes
No
Ready (RD)
ON
OFF
80ms or less
10ms or less
3– 19
10ms or less
3.WIRING
4) Pulse train input
Encoder pulses can be input in any of three different forms and are available in positive or
negative logic. Use parameter No. 21 to set the command pulse train form.
or
in the following table indicates the timing of importing the pulse train.
The arrow
Pulse Train Form
Negative logic
Forward rotation
pulse train
Reverse rotation
pulse train
For Forward Rotation For Reverse Rotation Parameter No. 21
PP
0010
NP
PP
Pulse train + sign
0011
NP
L
H
PP
A–phase pulse train
B–phase pulse train
0012
NP
PP
Forward rotation
pulse train
0000
Positive logic
NP
PP
0001
Pulse train + sign
NP
L
H
PP
A–phase pulse train
B–phase pulse train
0002
NP
3– 20
3.WIRING
a. Open collector system
Servo amplifier
VDD
DC24V
OPC
Approx. 1.2kΩ
PP
Approx. 1kΩ
NP
SG
SD
The explanation assumes that the input waveform has been set to the negative logic and
forward and reverse rotation pulse trains (parameter No.21 has been set to 0010). The
waveforms in the table on the preceding page are voltage waveforms of PP and NP based
on SG. Their relationships with transistor ON/OFF are as follows:
Forward rotation pulse train
(transistor)
Reverse rotation pulse train
(transistor)
(OFF)
(ON) (OFF)
(ON)
(OFF)
(OFF)
(ON) (OFF)
(ON) (OFF)
(ON)
b. Differential line driver system
Servo amplifier
PP
PG
NP
NG
3
The explanation assumes that the input waveform has been set to the negative logic and
forward and reverse rotation pulse trains (parameter No.21 has been set to 0010). In the
differential line driver system, the waveforms in the table on the preceding page are as
follows. The waveforms of PP, PG, NP and NG are waveforms based on the ground of the
differential line driver.
Forward rotation
pulse train
PP
PG
Reverse rotation
pulse train
NP
NG
3– 21
3.WIRING
(2) Speed control mode1
1) Speed setting
a. Speed command and speed
The servo motor is run at the speeds set in parameters No. 8 to 10 (internal speed commands 1 to 3) or at the speed set in the applied voltage of the analog speed command
(VC). A relationship between the analog speed command (VC) applied voltage and the
servo motor speed is shown in Fig. 3-4. The rotation directions determined by the forward
rotation start signal (ST1) and reverse rotation start signal (ST2) are indicated in Table 32.
Rated speed [r/min]
Speed
CCW direction
[r/min]
-10
0
+10
VC applied voltage [V]
CW direction
Forward
rotation
CCW
Rated speed
Reverse
rotation CW
Fig. 3-4 VC Applied Voltage vs. Speed (ST1=ON)
Table 3-2 ST1/ST2 and Rotation Directions
Rotation Direction
Analog speed command (VC)
+ polarity
0V
- polarity
Across
ST1-SG
Across
ST2-SG
Open
Open
Stop
(Servo lock)
Stop
(Servo lock)
Stop
(Servo lock)
Stop
(Servo lock)
Short
Open
Open
Short
CCW
CW
Stop
(No servo lock)
CW
CCW
CCW
CW
Short
Short
Stop
(Servo lock)
Stop
(Servo lock)
Stop
(Servo lock)
Stop
(Servo lock)
Internal speed
commands 1 to 3
b. Connection diagram
Generally connect as shown in Fig. 3-5. When a precision speed command is required,
connect as shown in Fig. 3-6. In this case, the temperature fluctuation of the command
voltage is ±0.002%/°C. Note that as the maximum value of the command voltage is approx.
+6V, adjust the maximum value with parameter No. 25.
Servo amplifier
SP1
1/2W
860kΩ
SP2
SG
P15R
2kΩ
2kΩ
VC
Servo amplifier
15V
NEC
1SZ52 or
equivalent
2kΩ
LG
LG
Japan Resistor
RRS10 or equivalent
VC
Japan Resistor
RRS10 or equivalent
SD
Fig. 3-5 Connection Example 1
SD
Fig. 3-6 Connection Example 2
3– 22
3.WIRING
c. Speed selection 1 (SP1)/speed selection 2 (SP2) and speed command values
Use speed selection 1 (SP1) and speed selection 2 (SP2) to select the speed from among
those set to the internal speed commands 1 to 3 and set to the analog speed command
(VC) as indicated in Table 3-3.
When the speed is changed during rotation, it is increased or decreased according to the
value set in parameter No. 11 or 12.
When the internal speed commands 1 to 3 are used to command the speed, the speed
does not vary with the ambient temperature.
Table 3-3 SP1/SP2 and Speed Command Values
Across SP1-SG Across SP2-SG
Speed Command Value
Open
Open
Analog speed command (VC)
Short
Open
Internal speed command 1 (parameter No. 8)
Open
Short
Internal speed command 2 (parameter No. 9)
Short
Short
Internal speed command 3 (parameter No. 10)
2) Speed reached (SA)
SA-SG are connected when the servo motor speed has nearly reached the speed set to any
of the internal speed commands 1 to 3 or to the analog speed command.
Preset speed selection
Start(ST1 • ST2)
Internal speed
command 1
Internal speed
command 2
ON
OFF
Servo motor speed
ON
Speed reached (SA) OFF
3) Torque limit
Same as in 1), (1) in this section. To use the analog torque limit (TLA), set any of parameters
No. 43 to 48 to make the torque limit (TL) available.
3– 23
3
3.WIRING
(3) Torque control mode
1) Torque control
a. Torque command and generated torque
A relationship between the applied voltage of the analog torque command (TC) and the
torque generated by the servo motor is shown in Fig. 3-7. Generated torque limit values
will vary about 5% relative to the voltage depending on products.
Generated torque may vary at the voltage of -0.05V to +0.05V. Table 3-4 shows the torque
generation directions determined by the forward rotation selection (RS1) and reverse rotation selection (RS2) when the analog torque command (TC) is used.
Max. torque
(Note)
CCW direction
CCW direction
Torque
-8
-0.05
+0.05
Forward
rotation
+8
TC applied voltage [V]
CW direction
Max. torque (Note)
Reverse
rotation
Note: Set using parameter No. 26.
Fig. 3-7 Torque Control Level (RS1=ON)
Table 3-4 Torque Generation Directions
Rotation Direction
Across
RS1-SG
Across
RS2-SG
Analog torque command (TC)
+ polarity
0V
Open
Open
Short
Open
CCW (forward rotation in driving mode/
reverse rotation in regenerative mode)
Open
Short
CW (reverse rotation in driving mode/
forward rotation in regenerative mode)
Short
Short
No torque
No torque
No torque
CW (reverse rotation in driving mode/
forward rotation in regenerative mode)
CCW (forward rotation in driving mode/
reverse rotation in regenerative mode)
No torque
No torque
b. Connection diagram
Connect as shown in Fig. 3-8.
Servo amplifier
RS1
RS2
SG
TC
LG
-8V to +8V
– polarity
SD
Fig. 3-8 Connection Example
3– 24
3.WIRING
c. Analog torque command offset
Using parameter No. 30, the offset voltage of -999 to 999mV can be added to the TC
applied voltage as shown in Fig. 3-9.
Max. torque
Generated torque
Parameter No. 30 offset range
-999~+999mV
0
+8
TC applied voltage [V]
Fig. 3-9 Analog Torque Command Offset Range
2) Torque limit
By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value during operation. A relationship between limit value and servo motor-generated
torque is as in 1), (1) in this section. Note that the analog torque limit (TLA) is unavailable.
3) Speed limit
a. Speed limit value and speed
The speed is limited to the values set in parameters No. 8 to 10 (internal speed limits 1 to
3) or the value set in the applied voltage of the analog speed limit (VLA). A relationship
between the analog speed limit (VLA) applied voltage and the servo motor speed is shown
in Fig. 3-10. The limit directions determined by the forward rotation selection (RS1) and
reverse rotation selection (RS2) are indicated in Table 3-5.
Rated speed
Speed
CCW direction
(r/min)
-10
CW direction
0
+10
VLA applied voltage [V]
Forward
rotation
3
Rated speed
Fig. 3-10 VLA Applied Voltage vs. Speed (RS1=ON)
Reverse
rotation
Table 3-5 RS1/RS2 and Speed Limit Directions
Across
RS1-SG
Across
RS2-SG
Short
Open
Open
Short
Speed Limit Direction
Analog speed limit (VLA)
Internal speed
commands 1 to 3
+ polarity
- polarity
CCW
CW
3– 25
CW
CCW
CCW
CW
3.WIRING
b. Connection diagram
Generally connect as shown in Fig. 3-11. When a precision speed command is required,
connect as shown in Fig. 3-12. In this case, the temperature fluctuation of the command
voltage is ±0.002%/°C. Note that as the maximum value of the command voltage is approx.
+6V, adjust the maximum value using parameter No. 25.
Servo amplifier
SP1
1/2W
860kΩ
SP2
SG
Servo amplifier
P15R
2kΩ
2kΩ
15V
VLA
NEC
1SZ52 or
equivalent
2kΩ
LG
LG
Japan Resistor
RRS10 or equivalent
VLA
Japan Resistor
RRS10 or equivalent
SD
Fig. 3-11 Connection Example 1
SD
Fig. 3-12 Connection Example 2
c. Speed selection 1 (SP1)/speed selection 2 (SP2) and speed command values
Use speed selection 1 (SP1) and speed selection 2 (SP2) to select the speed from among
those set to the internal speed commands 1 to 3 and set to the analog speed limit (VLA)
as indicated in Table 3-6.
When the internal speed commands 1 to 3 are used to command the speed, the speed
does not vary with the ambient temperature.
Table 3-6 SP1/SP2 and Speed Command Values
Across SP1-SG Across SP2-SG
Open
Open
Speed Command Value
Analog speed limit (VLA)
Short
Open
Internal speed limit 1 (parameter No. 8)
Open
Short
Internal speed limit 2 (parameter No. 9)
Short
Short
Internal speed limit 3 (parameter No. 10)
d. Limiting speed (VLC)
VLC-SG are connected when the servo motor speed reaches the limit speed set to any of
the internal speed limits 1 to 3 or analog speed limit.
3– 26
3.WIRING
(4) Position/speed control change mode
Set
1 in parameter No. 0 to switch to the position/speed control change mode. This function is not available in the absolute position detection system.
1) Control change (LOP)
Use control change (LOP) to switch between the position control mode and the speed control mode from an external contact. Relationships between LOP-SG status and control modes
are indicated in Table 3-7.
Table 3-7 Control Selection
Across LOP-SG
Servo Control Mode
Open
Position control mode
Short
Speed control mode
The control mode may be changed in the zero-speed status. Before changing control to the
other mode, make sure that the zero speed signal (ZSP) is on. To ensure safety, change
control after the servo motor has stopped. When position control is changed to speed control, droop pulses are reset. If the signal has been switched on-off at the speed higher than
the zero speed and the speed is then reduced to the zero speed or less, the control mode
cannot be changed. A change timing chart is shown in Fig. 3-13.
Position control mode
Servo motor speed
Speed control mode
Position control mode
Zero speed
level
Zero speed (ZSP)
ON
OFF
Control change (LOP)
ON
(Note)
OFF
(Note)
Note: When ZSP is not on, control cannot be changed if LOP is switched
on-off. If ZSP switches on after that, control cannot not be changed.
Fig. 3-13 P/S Change Timing Chart
2) Torque limit in position control mode
As in 1), (1) in this section.
3– 27
3
3.WIRING
3) Speed setting in speed control mode
a. Speed command and speed
The servo motor is run at the speed set in parameter No. 8 (internal speed command 1) or
at the speed set in the applied voltage of the analog speed command (VC). A relationship
between analog speed command (VC) applied voltage and servo motor speed and the
rotation directions determined by the forward rotation start signal (ST1) and reverse rotation start signal (ST2) are as in 1)a, (2) in this section.
b. Connection diagram
Generally connect as shown in Fig. 3-14. When a precision speed command is required,
refer to 1)b, (2) in this section.
Servo amplifier
SP1
SG
P15R
2kΩ
VC
2kΩ
LG
Japan Resistor
RRS10 or equivalent
SD
Fig. 3-14 Connection Example
c. Speed selection 1 (SP1) and speed command value
Use speed selection 1 (SP1) to select between the speed set to the internal speed command 1 and the speed set to the analog speed command (VC) as indicated in Table 3-8.
When the speed is changed during rotation, it is increased or decreased according to the
value set in parameter No. 11 or 12.
When the internal speed command 1 is used to command the speed, the speed does not
vary with the ambient temperature.
Table 3-8 SP1 and Speed Command Value
Across SP1-SG
Speed Command Value
Open
Analog speed command (VC)
Short
Internal speed command 1 (parameter No. 8)
d. Speed reached (SA)
As in 2), (2) in this section.
4) Torque limit in torque control mode
As in 2), (3) in this section.
3– 28
3.WIRING
(5) Speed/torque control change mode
Set
3 in parameter No. 0 to switch to the speed/torque control change mode.
1) Control change (LOP)
Use control change (LOP) to switch between the speed control mode and the torque control
mode from an external contact. Relationships between LOP-SG status and control modes
are indicated in Table 3-9.
Table 3-9 Control Selection
Across LOP-SG
Servo Control Mode
Open
Speed control mode
Short
Torque control mode
The control mode may be changed at any time. A change timing chart is shown in Fig. 3-15.
Speed control mode Torque control mode Speed control mode
Servo motor speed
(Note)
Load torque
10V
Analog torque
command (TC)
Forward rotation in driving mode
0
Control change (LOP)
ON
OFF
Note: When the start signal (ST1/ST2) is switched off as soon as the
mode is changed to speed control, the servo motor comes to a stop
according to the deceleration time constant.
Fig. 3-15 S/T Change Timing Chart
2) Speed setting in speed control mode
As in 1)a, (2) in this section.
3
3) Torque limit in speed control mode
As in 1), (1) in this section.
3– 29
3.WIRING
4) Speed limit in torque control mode
a. Speed limit value and speed
The speed is limited to the limit value set in parameter No. 8 (internal speed limit 1) or the
value set in the applied voltage of the
analog speed limit (VLA). A relationship between the analog speed limit (VLA) applied
voltage and the servo motor speed is as in 3)a, (3) in this section.
b. Connection diagram
Generally connect as shown in Fig. 3-16. When a precision speed command is required,
refer to 3b, (3) in this section.
Servo amplifier
SP1
SG
P15R
2kΩ
2kΩ
VLA
LG
Japan Resistor
RRS10 or equivalent
SD
Fig. 3-16 Connection Example
c. Speed selection 1 (SP1) and speed limit value
Use speed selection 1 (SP1) to select between the speed set to the internal speed limit 1
and the speed set to the analog speed limit (VLA) as indicated in Table 3-10.
When the internal speed limit 1 is used to command the speed, the speed does not vary
with the ambient temperature.
Table 3-10 SP1 and Speed Limit Value
Across SP1-SG
Speed Command Value
Open
Analog speed limit (VLA)
Short
Internal speed limit 1 (parameter No. 8)
d. Limiting speed (VLC)
As in 3)d, (3) in this section.
5) Torque control in torque control mode
As in 1), (3) in this section.
6) Torque limit in torque control mode
As in 2), (3) in this section.
3– 30
3.WIRING
(6) Torque/position control change mode
5 in parameter No. 0 to switch to the torque/position control change mode. This funcSet
tion is not available for the absolute position detection system.
1) Control change (LOP)
Use control change (LOP) to switch between the torque control mode and the position control mode from an external contact. Relationships between LOP-SG status and control modes
are indicated in Table 3-11.
Table 3-11 Control Selection
Across LOP-SG
Servo Control Mode
Open
Torque control mode
Short
Position control mode
The control mode may be changed in the zero-speed status. Before changing control to the
other mode, make sure that the zero speed signal (ZSP) is on. To ensure safety, droop pulses
are reset when the mode is changed after the servo motor has stopped. If the signal has
been switched on-off at the speed higher than the zero speed and the speed is then reduced
to the zero speed or less, the control mode cannot be changed. A change timing chart is
shown in Fig. 3-17.
Position control mode Torque control mode Position control mode
Servo motor speed
Zero speed
level
10V
Analog torque
command (TLA)
0V
Zero speed (ZSP)
Control change (LOP)
ON
OFF
ON
OFF
Fig. 3-17 T/P Change Timing Chart
2) Speed limit in torque control mode
As in 4), (5) in this section.
3) Torque control in torque control mode
As in 1), (3) in this section.
4) Torque limit in torque control mode
As in 2), (3) in this section.
5) Torque limit in position control mode
As in 1), (1) in this section.
3– 31
3
3.WIRING
3-1-4 Interfaces
The details of the interfaces (refer to I/O Division in the table) to the signals indicated in Section 31-2 (4) are given below. Refer to the following and connect the interfaces with the external equipment.
(1) Digital input interface DI-1
Give a signal with a relay or open collector transistor.
Source input is also possible. Refer to (7) in this section.
For use of internal power supply
For use of external power supply
Servo amplifier
Servo amplifier
24VDC
VDD
COM
Do not connect
VDD-COM.
R: Approx. 4.7kΩ
24VDC
200mA or more
24VDC
VDD
R: Approx. 4.7Ω
COM
For a transistor
SON, etc.
Approx. 5mA
SON, etc.
Switch
TR
Switch
SG
SG
V CES 1.0V
I CEO 100µA
(2) Digital output interface DO-1
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an
inrush current suppressing resistor (R) for a lamp load. (Permissible current: 40mA or less,
inrush current: 100mA or less)
1) Inductive load
For use of internal power supply
For use of external power supply
Servo amplifier
24VDC
Do not connect
VDD-COM.
Servo amplifier
VDD
24VDC
VDD
COM
COM
Load
ALM, etc.
Load
24VDC
±10%
ALM, etc.
SG
SG
If the diode is not
connected as shown,
the servo amplifier
will be damaged.
If the diode is not
connected as shown,
the servo amplifier
will be damaged.
3– 32
3.WIRING
2) Lamp load
For use of internal power supply
For use of external power supply
Servo amplifier
Servo amplifier
24VDC
24VDC
VDD
Do not connect
VDD-COM.
VDD
COM
COM
R
R
ALM, etc.
ALM, etc.
SG
SG
24VDC
±10%
(3) Pulse train input interface DI-2
1) Open collector system
• Interface example
For use of internal power supply
For use of external power supply
Servo amplifier
24VDC
VDD
(Note)
Max. input pulse
frequency 200kpps
OPC
Do not connect
VDD-COM.
Servo amplifier
VDD
About 1.2k
OPC
PP, NP
24VDC
Max. input pulse
frequency 200kpps
About 1.2k
24VDC
SG
PP, NP
SD
SG
SD
Note: COM of CN1A and COM of CN1B are connected
in the servo amplifier. When connecting VDD and
OPC, VDD and COM may be connected at CN1A,
and OPC and COM connected at CN1B.
• Conditions of the input pulse
tc
tHL
tLH=tHL<0.2µs
tc>2µs
tF>3µs
PP 0.9
0.1
tc
tLH
tF
PN
3– 33
3
3.WIRING
2) Differential line driver system
• Interface example
• Conditions of the input pulse
Servo amplifier
Max. input pulse
frequency 400kpps
Am26LS31
PG(NG)
Approx. 100Ω
tLH=tHL<0.1µs
tc>1µs
tF>3µs
tHL
tc
0.9
PP-PG 0.1
tc
tLH
tF
PP(NP)
NP•NG
SD
(4) Encoder pulse output DO-2
1) Open collector system
• Interface example
Max. output current: 35mA
Servo amplifier
Servo amplifier
OP
OP
LG
SD
LG
SD
5 to 24VDC
Photocoupler
2) Differential line driver system
• Interface example
Max. output current: 35mA
Servo amplifier
Servo amplifier
Am26LS32 or equivalent
LA
(LB, LZ)
LA
(LB, LZ)
1.2kΩ
High-speed photocoupler
150Ω
LAR
(LBR, LZR)
LG
LAR
(LBR, LZR)
SD
SD
• Output signal waveform
Servo motor CCW rotation
LA
LAR
T
LB
LBR
π/2
LZ
LZR
Off
OP
On
400µs or more
LZ signal varies ±3/8T on its leading edge.
3– 34
3.WIRING
(5) Analog input
(6) Analog output
Output ±10V
Max. 1mA
Input impedance
10 ~ 12KΩ
Servo amplifier
Servo amplifier
15VDC
10kΩ
MO1
(MO2)
P15R
2kΩ
Upper limit setting 2kΩ
Reading in one or
A
both directions
1mA meter
VC‚ etc
LG
Approx.
10kΩ
LG
SD
SD
(7) Source input interface
When using the input interface of source type, all DI-1 input signals are of source type.
Source output cannot be provided.
For use of internal power supply
For use of external power supply
Servo amplifier
Servo amplifier
SG
SG
COM
R: Approx. 4.7kΩ
COM
(Note)
For a transistor
R: Approx. 4.7kΩ
Switch
SON, etc.
SON, etc.
Approx. 5mA
24VDC
200mA or more
Switch
TR
V CES
I CEO
3
VDD
1.0V
100µA
Note: This also applies to the use of the external power supply.
3– 35
3.WIRING
3-2 Connection of servo amplifier and servo motor
3-2-1 Connection instructions
WARNING
Insulate the connections of the power supply terminals to prevent an electric shock.
CAUTION
1. Connect the wires to the correct phase terminals (U, V, W) of the servo
amplifier and servo motor. Otherwise, the servo motor will operate
improperly.
2. Do not connect AC power supply directly to the servo motor. Otherwise, a fault may occur.
(1) Wind an insulation tape around the connection several times.For the EN Standard-compliant
model, connect via a fixed terminal block.
Servo amplifier side
Wind insulation tape three or four times.
Servo motor side
(2) For grounding, connect the earth cable of the servo motor to the
protective earth (PE) terminal of the servo amplifier and connect
the ground cable of the servo amplifier to the earth via the protective earth of the control box.
Do not connect them directly to the protective earth of the control panel.
(3) Do not share the 24VDC power supply between the interface and
electromagnetic brake. Always use the power supply designed
exclusively for the electromagnetic brake.
3– 36
Control box
Servo amplifier
PE terminal
Servo motor
3.WIRING
3-2-2 Connection diagram
The following table lists wiring methods according to the servo motor types. Use
the connection diagram which conforms to the servo motor used. For cables required for wiring, refer to Section 6-2-1.
For encoder cable connection, refer to Section 6-1-2.
For the connectors of the servo motor, refer to Chapter 3 of the servo motor
instruction manual.
Servo Motor
Connection Diagram
Servo amplifier
Servo motor
U (Red)
U
V (White)
V
W(Black)
W
Motor
(Green)
(Note 1)
HC–MF053 (B) (–UE) to
73 (B) (–UE)
HA–FF053 (B) to 63 (B)
HC–UF13 (B) to 73 (B)
24VDC
(Note 3)
B1
(Note 2)
Electromagnetic
brake
B2
EMG
To be shut off when servo on
signal switches off or by alam
signal
CN2
Encorder
Encorder cable
Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the servo amplifier to the
protective earth (PE) of the control box.
2. This circuit applies to the servo motor with electromagnetic brake.
3. For the HA-FF series, connect the ground cable to the earth terminal of the servo motor.
Servo amplifier
Servo motor
U
U
V
V
W
W
Motor
(Note 1)
HA–FF053 (B)–UE to
63 (B)–UE
HC–SF121 (B) to 301 (B)
HC–SF202 (B)• 352 (B)
HC–SF203 (B)• 353 (B)
HC–UF202 (B)
24VDC
B1
B2
EMG
CN2
(Note 2)
Electromagnetic
brake
To be shut off when servo on
signal switches off or by alam
signal
Encorder
Encorder cable
Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the servo amplifier to the
protective earth (PE) of the control box.
2. This circuit applies to the servo motor with electromagnetic brake.
Servo amplifier
Servo motor
U
U
V
V
W
W
Motor
(Note 1)
HC–SF81 (B)
HC–SF52 (B) to 152 (B)
HC–SF53 (B) to 153 (B)
HC–RF103 (B) to 203 (B)
HC–UF72 (B) • 152 (B)
24VDC
EMG
CN2
B1
B2
(Note 2)
Electromagnetic
brake
To be shut off when servo on
signal switches off or by alam
signal
Encorder
Encorder cable
Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the servo amplifier to the
protective earth (PE) of the control box.
2. This circuit applies to the servo motor with electromagnetic brake.
3– 37
3
3.WIRING
3-2-3 I/O terminals
(1) HC–MF(–UE) series
Power supply lead
4–0.52 0.3m
With end-insulated round crimping terminal 1.25-4
Red : U phase
White : V phase
Black : W phase
Green : Earth
Encoder cable 0.3m
With connector 172169-9 Brake cable
2–0.52 0.3m
(AMP make)
With end-insulated round crimping
terminal 1.25-4
Encoder connector signal arrangement
1
2
3
MR
MRR
BAT
4
5
6
MD
MDR
7
8
9
P5
LG
SHD
(2) HA–FF series
Earth terminal, M3 screw
Encoder connector signal arrangement
Power supply cable
Encoder cable 0.3m
With connector 172169-9 VCTF3–1.252 0.5m
With end-insulated round
(AMP make)
crimping terminal 1.25-4
Red : U phase
White : V phase
Black : W phase
Brake cable
VCTF2–0.52 0.5m
With end-insulated round crimping
terminal 1.25-4
3– 38
1
2
3
MR
MRR
BAT
4
5
6
MD
MDR
7
8
9
P5
LG
SHD
3.WIRING
(3) HA–FFC–UE series
Power supply connector signal arrangement
CE05–2A14S–2PD–B
Encoder connector
MS3102A20–29P
Key
Brake connector
MS3102E10SL–4P
Power supply connector
CE05–2A14S–2PD–B
Servo Motor
HA–FF053C(B)–UE
to
HA–FF63C(B)–UE
D
A
C
B
Connector
For power supply
For encorder
For brake
CE05–2A14S–2PD–B
MS3102A20–29
MS3102E10SL–4P
Signal
U
V
W
(Earth)
Pin
A
B
C
D
Encoder connector signal arrangement
Brake connector signal arrangement
MS3102A20–29P
MS3102A10SL–4P
Key
A B
C
N
K T
D
P
J
E
S R
H
F
G
L
M
Pin
A
B
C
D
E
F
G
H
J
Signal
MD
MDR
MR
MRR
BAT
LG
Pin
K
L
M
N
P
R
S
T
Key
Signal
SHD
A
B
Signal
Pin
A (Note) B1
B (Note) B2
Note: 24VDC without
polarity.
LG
P5
(4) HC–UF 3000r/min series
3
Bottom
Encorder connector
signal arrangement
Top
Brake cable
Encorder cable 0.3m
With connector
172169-9 (AMP make)
Power supply lead 4-AWG19 0.3m
(With end-insulated round
VCTF 2-0.52 0.5m
(With end-insulated round
crimping terminal 1.25-4)
crimping terminal 1.25-4)
Red : U phase
White : V phase
Black : W phase
Green / yellow : Earth
3– 39
1
2
3
MR
MRR
BAT
4
5
6
MD
MDR
7
8
9
P5
LG
SHD
3.WIRING
(5) HC–SF/HC–RF•HC–UF 2000r/min series
Motor plate
(Opposite side)
Servo Motor Side Connectors
Electromagnetic
For power supply
For encoder
Brake Connector
Servo Motor
HC–SF81(B)
HC–SF52(B) to 152(B)
HC–SF53(B) to 153(B)
HC–SF121(B) to 301(B)
HC–SF202(B) • 352(B)
HC–SF203(B) • 353(B)
Down
Up
CE05–2A22–
23PD–B
CE05–2A24–
10PD–B
HC–UF72(B) • 152(B)
Brake connector
Power supply connector
MS3102A10SL–4P
MS3102A20–
29P
CE05–2A22–
23PD–B
CE05–2A22–
23PD–B
CE05–2A24–
10PD–B
HC–RF103(B) to 203(B)
Encoder
connector
MS3102A20–
29P
HC–UF202(B)
The connector for
power is shared.
MS3102A20–
29P
The connector for
power is shared.
The connector for
power is shared.
MS3102A10SL–4P
Power supply connector signal arrangement
CE05–2A24–10PD–B
CE05–2A22–23PD–B
Key
F
G
A
H
C
B
E
D
Pin
A
B
C
D
E
F
G
H
Key
Signal
U
V
W
(Earth)
A
F
E
B
G
D
(Note) B1
(Note) B2
C
Pin
A
B
C
D
E
F
G
Signal
U
V
W
(Earth)
Note: 24VDC without
polarity
Encoder connector signal arrangement
Electromagnetic brake connector signal pin-outs
MS3102A20–29P
MS3102A10SL–4P
Key
Key
A B
C
N
K T
D
P
J
E
S R
H
F
G
L
M
Pin
A
B
C
D
E
F
G
H
J
Signal
MD
MDR
MR
MRR
BAT
LG
Pin
K
L
M
N
P
R
S
T
Signal
Pin
A
B
SHD
A
LG
P5
3– 40
B
Signal
(Note) B1
(Note) B2
Note: 24VDC without
polarity
3.WIRING
3-2-4 Connectors used for servo motor wiring
The connector make-ups classified by the operating environment are given below.
Use the models of the manufactures given or equivalent.
(1) HC–MF(–UE) • HA–FF • HC–UF3000r/min series
Use round crimping terminals (1.25-4) for connection of the power supply and electromagnetic
brake. The encoder connector used should be the connector indicated in this section or equivalent. This connector may be used for the EN Standard/UL/C-UL Standard but is not waterproof.
Servo Motor
HC–MF (B)
HC–MF (B)–UE
HA–FF (B)
HC–UF13 to 73(B)
Servo Motor Side
Connector(AMP)
172169–9
Encode Cable Connector
Connector pins
Cable clamp
(AMP)
(Toa Denki Kogyo)
Housing
(AMP)
1–172161–9
170363–1
MTI–0002
(2) HA–FF C–UE series
Use of the waterproof connector would not improve the degree of ingress protection (IP54) of
the HA–FF C(B)–UE.
1) Non–waterproof/UL/C–UL Standard-compliant
a.When using cable type cables
• For power supply connection
qPlug
Servo Motor
HA–FF
C(B)–UE
wCable
clamp
Cable
Servo Motor
Side Connector
CE05–2A14S–2PD–B
qPlug
wCable
clamp
Cable
qPlug (Daiichi Denshi Kogyo)
Type
Model
Straight
MS3106B14S–2S
Angle
MS3108B14S–2S
wCable clamp
(Daiichi Denshi Kogyo)
MS3057–6A
• For encoder connection
qPlug
Servo Motor
HA–FF
C(B)–UE
wCable
clamp
Cable
Servo Motor Side Connector
MS3102A20–29P
qPlug
wCable
clamp
qPlug (Daiichi Denshi Kogyo)
Type
Model
Straight
MS3106B20–29S
Angle
MS3108B20–29S
3– 41
3
Cable
wCable clamp
(Daiichi Denshi Kogyo)
MS3057–12A
3.WIRING
• For brake connection
qPlug
wCable Connector
Cable
Cable
qPlug
wCable Connector
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
Servo Motor
wCable connector
Type
Straight
HA–FF
C(B)–UE
MS3102A10SL–4P
Maker
Nippon Flex
Daiwa Dengyo
MS3106A10SL–4S(D190)
Angle
Cable OD
Model
4 to 8
ACS–08RL–MS10F
8 to 12
ACS–12RL–MS10F
5 to 8.3
YS010–5 to 8
4 to 8
ACA–08RL–MS10F
8 to 12
ACA–12RL–MS10F
5 to 8.3
YL010–5 to 8
Model
Model
ID
1/4
RCC–102RL–MS14F VF–02
8.3
3/8
RCC–103RL–MS14F VF–03 10.6
1/2
RCC–104RL–MS14F VF–04 14.0
10
MSA–10–14 FCV10 10.0
12
MSA–12–14 FCV12 12.3
Nippon Flex
Daiwa Dengyo
a.When using flexible conduits
• For power supply connection
qPlug
wConduit
Connector
Conduit
wConduit Connector
Servo Motor
qPlug
Servo Motor Side Connector (Daiichi Denshi Kogyo)
qPlug
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HA–FF C(B)–UE
Conduit
CE05–2A14S–2PD–B MS3106A14S–2S(D190)
Nippon Flex
Angle
Daiwa Dengyo
3– 42
Size
Conduit
1/4
RCC–302RL–MS14F VF–02
8.3
3/8
RCC–303RL–MS14F VF–03 10.6
1/2
RCC–304RL–MS14F VF–04 14.0
10
MAA–10–14 FCV10 10.0
12
MAA–12–14 FCV12 12.3
3.WIRING
• For encoder connection
qPlug
wConduit Connector
Servo Motor
wConduit
Connector
Conduit
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
qPlug
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HA–FF C(B)–UE
Conduit
MS3102A20–29P MS3106A20–29S(D190)
Nippon Flex
Angle
Daiwa Dengyo
Size
Conduit
Model
Model
ID
1/2
RCC–104RL–MS20F VF–04 14.0
3/4
RCC–106RL–MS20F VF–06 19.0
16
MSA–16–20 FCV16 15.8
22
MSA–22–20 FCV22 20.8
1/2
RCC–304RL–MS20F VF–04 14.0
3/4
RCC–306RL–MS20F VF–06 19.0
16
MAA–16–20 FCV16 15.8
22
MAA–22–20 FCV22 20.3
• For brake connection
qPlug
wConduit Connector
Servo Motor
wConduit
Connector
Conduit
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
Conduit
qPlug
wConduit Connector
Type
Straight
HA–FF C(B)–UE MS3102A10SL–4P MS3106A10SL–4S(D190)
Angle
Conduit
Maker
Size
Model
Model
ID
Nippon Flex
1/4
RCC–102RL–MS10F
VF–02
8.3
Daiwa Dengyo
10
MSA–10–10
FCV10 10.0
Nippon Flex
1/4
RCC–302RL–MS10F
VF–02
Daiwa Dengyo
10
MAA–10–10
FCV10 10.0
8.3
3
3– 43
3.WIRING
2) EN Standard/UL/C-UL Standard-compliant
a. When using cabtyre cables
• For power supply connection
qPlug
wCable Connector
Cable
Cable
qPlug
wCable Connector
Servo Motor
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
wCable connector
Maker
Type
Straight
Nippon Flex
Angle
HA–FF
C(B)–UE
CE05–2A14S–2PD–B
CE05–6A14S–2SD–B
Straight
Daiwa Dengyo
Angle
Cable OD
Model
4 to 8
ACS–08RL–MS14F
8 to 12
ACS–12RL–MS14F
4 to 8
ACA–08RL–MS14F
8 to 12
ACA–12RL–MS14F
5 to 8.3
YS014–5 to 8
8.3 to 11.3 YS014–9 to 11
5 to 8.3
YL014–5 to 8
8.3 to 11.3 YS014–9 to 11
• For encoder connection
qPlug
eCable
clamp
Cable
Cable
wBack shell
qPlug
wBack shell
Servo Motor
HA–FF
C(B)–UE
eCable clamp
wBack shell
wCable clamp
Servo Motor
qPlug
(Daiichi Denshi Kogyo) (Daiichi Denshi Kogyo)
Side Connector (Daiichi Denshi Kogyo)
Type
Model
Cable OD
Model
MS3102A20–29P MS3106A20–29S(D190)
Straight
CE02–20BS–S
Angle
CE–20BA–S
3– 44
6.8 to 10
CE3057–12A–3
3.WIRING
• For brake connection
qPlug
Cable
wCable Connector
Cable
qPlug
wCable Connector
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
Servo Motor
wCable Connector
Type
Straight
Maker
Nippon Flex
Daiwa Dengyo
HA–FF
C(B)–UE
MS3102A10SL–4P MS3106A10SL–4S(D190)
Angle
Nippon Flex
Daiwa Dengyo
Cable OD
Model
4 to 8
ACS–08RL–MS10F
8 to 12
ACS–12RL–MS10F
5 to 8.3
YS0–10–5 to 8
4 to 8
ACA–08RL–MS10F
8 to 12
ACA–12RL–MS10F
5 to 8.3
YL010–5 to 8
b. When using flexible conduits
• For power supply connection
qPlug
wConduit
Connector
Conduit
qPlug
wConduit Connector
Servo Motor
qPlug
Servo Motor Side Connector (Daiichi Denshi Kogyo)
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HA–FF C(B)–UE
CE05–2A14S–2PD–B
Conduit
CE05–6A14S–2SD–B
Nippon Flex
Angle
Daiwa Dengyo
3– 45
Size
Conduit
Model
Model
ID
1/4
RCC–102RL–MS14F VF–02
8.3
3/8
RCC–103RL–MS14F VF–03 10.6
1/2
RCC–104RL–MS14F VF–04 14.0
10
MSA–10–14
FCV10 10.0
12
MSA–12–14
FCV12 12.3
1/4
RCC–302RL–MS14F VF–02
3/8
RCC–303RL–MS14F VF–03 10.6
8.3
1/2
RCC–304RL–MS14F VF–04 14.0
10
MAA–10–14
FCV10 10.0
12
MAA–12–14
FCV12 12.3
3
3.WIRING
• For encoder connection
qPlug
wConduit
Connector
Conduit
wConduit Connector
Servo Motor
qPlug
Servo Motor Side Connector (Daiichi Denshi Kogyo)
qPlug
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HA–FF C(B)–UE
Conduit
MS3102A20–29P MS3106A20–29S(D190)
NIppon Flex
Angle
Daiwa Dengyo
Size
Conduit
Model
Model
ID
1/2
RCC–104RL–MS20F VF–04 14.0
3/4
RCC–106RL–MS20F VF–06 19.0
16
MSA–16–20
FCV16 15.8
22
MSA–22–20
FCV22 20.8
1/2
RCC–304RL–MS20F VF–04 14.0
3/4
RCC–306RL–MS20F VF–06 19.0
16
MAA–16–20
FCV16 15.8
22
MAA–22–20
FCV22 20.8
• For brake connection
qPlug
wConduit
Connector
Conduit
wConduit Connector
Servo Motor
qPlug
Servo Motor Side Connector (Daiichi Denshi Kogyo)
Conduit
qPlug
wConduit Connector
Type
Straight
Maker
Size
Nippon Flex
1/4
Daiwa Dengyo
10
Nippon Flex
1/4
Daiwa Dengyo
10
HA–FF C(B)–UE MS3102A10SL–4P MS3106A10SL–4S(D190)
Angle
3– 46
Conduit
Model
Model
ID
RCC–102RL–MS10F VF–02
8.3
MSA–10–10 FCV10 10.0
RCC–302RL–MS10F VF–02
8.3
MAA–10–10 FCV10 10.0
3.WIRING
(3) HA–SF•HC–RF•HC–UF 2000r/min series
1) Non–waterproof/UL/C–UL Standard-compliant
a.When using cable type cables
• For power supply connection
qPlug
Servo Motor
wCable
Clamp
Cable
Servo Motor
Side Connector
HC–SF52(B) to 152(B)
HC–RF103(B) to 203(B)
HC–SF202(B) to 502(B)
Cable
qPlug (Daiichi Denshi Kogyo)
Type
Model
Straight
MS3106B22–23S
Angle
MS3108B22–23S
Straight
MS3106B24–10S
Angle
MS3108B24–10S
Straight
MS3106B32–17S
Angle
MS3108B32–17S
wCable clamp
(Daiichi Denshi Kogyo)
MS3057–12A
CE05–2A24–10PD–B
HC–UF202(B) to 502(B)
HC–SF702(B)
wCable
Clamp
CE05–2A22–23PD–B
HC–UF72(B) • 152(B)
HC–RF353(B) to 503(B)
qPlug
CE05–2A32–17PD–B
MS3057–16A
MS3057–20A
• For encoder connection
qPlug
Servo Motor
wCable
Clamp
Cable
Servo Motor
Side Connector
HC–SF52(B) to 702(B)
HC–RF103(B) to 503(B)
HC–UF72(B) to 502(B)
qPlug
wCable
Clamp
Cable
qPlug (Daiichi Denshi Kogyo)
Type
Model
Straight
MS3106B20–29S
Angle
MS3108B20–29S
MS3102A20–29P
wCable Clamp
(Daiichi Denshi Kogyo)
MS3057–12A
3– 47
3
3.WIRING
• For brake connection
qPlug
Cable
wCable Connector
Cable
qPlug
wCable Connector
Servo Motor
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
wCable Connector
Type
Straight
HC–SF202(B) to 702(B)
MS3102A10SL–4P
Maker
Nippon Flex
Daiwa Dengyo
MS3106A10SL–4S
HC–UF202(B) to 502(B)
Angle
Nippon Flex
Daiwa Dengyo
3– 48
Cable OD
Model
4 to 8
ACS–08RL–MS10F
8 to 12
ACS–12RL–MS10F
5 to 8.3
YS010–5 to 8
4 to 8
ACA–08RL–MS10F
8 to 12
ACA–12RL–MS10F
5 to 8.3
YL010–5 to 8
3.WIRING
b. When using flexible conduits
• For power supply connection
qPlug
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HC–SF52(B) to 152(B)
HC–RF103(B) to 203(B)
CE05–2A22–23PD–B
MS3106A22–23S(D190)
HC–UF72(B) • 152(B)
Nippon Flex
Angle
Daiwa Dengyo
Nippon Flex
Straight
Daiwa Dengyo
HC–SF202(B) to 502(B)
HC–RF353(B) to 503(B)
CE05–2A24–10PD–B
MS3106A24–10S(D190)
HC–UF202(B) to 502(B)
Nippon Flex
Angle
Daiwa Dengyo
Straight
HC–SF702(B)
Conduit
qPlug
wConduit Connector
Servo Motor
wConduit
Connector
Conduit
Nippon Flex
CE05–2A32–17PD–B MS3106A32–17S(D190)
Angle
3– 49
Daiwa Dengyo
Size
Conduit
Model
Model
ID
1/2
RCC–104RL–MS22F VF–04 14.0
3/4
RCC–106RL–MS22F VF–06 19.0
1
RCC–108RL–MS22F VF–08 24.4
16
MSA–16–22 FCV16 15.8
22
MSA–22–22 FCV22 20.8
28
MSA–28–22 FCV28 26.4
1/2
RCC–304RL–MS22F VF–04 14.0
3/4
RCC–306RL–MS22F VF–06 19.0
1
RCC–308RL–MS22F VF–08 24.4
16
MAA–16–14 FCV16 15.8
22
MAA–22–22 FCV22 20.8
28
MAA–28–22 FCV28 26.4
1/2
RCC–104RL–MS24F VF–04 14.0
3/4
RCC–106RL–MS24F VF–06 19.0
1
RCC–108RL–MS24F VF–08 24.4
16
MSA–16–24 FCV16 15.8
22
MSA–22–24 FCV22 20.8
28
MSA–28–24 FCV28 26.4
1/2
RCC–304RL–MS24F VF–04 14.0
3/4
RCC–306RL–MS24F VF–06 19.0
1
RCC–308RL–MS24F VF–08 24.4
16
MAA–16–24 FCV16 15.8
22
MAA–22–24 FCV22 20.8
28
MAA–28–24 FCV28 26.4
3/4
RCC–106RL–MS32F VF–06 19.0
1
RCC–108RL–MS32F VF–08 24.4
3/4
RCC–306RL–MS32F VF–06 19.0
1
RCC–308RL–MS32F VF–08 24.4
3
3.WIRING
• For encoder connection
qPlug
wConduit
Connector
Conduit
wConduit Connector
Servo Motor
qPlug
Servo Motor Side Connector (Daiichi Denshi Kogyo)
Conduit
qPlug
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HC–SF52(B) to 702(B)
HC–RF103(B) to 503(B) MS3102A20–29P MS3106A20–29S(D190)
HC–UF72(B) to 502(B)
Nippon Flex
Angle
Daiwa Dengyo
Size
Conduit
Model
Model
ID
1/2
RCC–104RL–MS20F VF–04 14.0
3/4
RCC–106RL–MS20F VF–06 19.0
16
MSA–16–20 FCV16 15.8
22
MSA–22–20 FCV22 20.8
1/2
RCC–304RL–MS20F VF–04 14.0
3/4
RCC–306RL–MS20F VF–06 19.0
16
MAA–16–20 FCV16 15.8
22
MAA–22–20 FCV22 20.8
• For brake connection
qPlug
wConduit
Connector
Conduit
wConduit Connector
Servo Motor
qPlug
Servo Motor Side Connector (Daiichi Denshi Kogyo)
qPlug
wConduit Connector
Type
Straight
HC–SF202(B) to 702(B)
HC–UF202(B) to 502(B)
Conduit
Maker
Size
Nippon Flex
1/4
Daiwa Dengyo
10
Nippon Flex
1/4
Daiwa Dengyo
10
MS3102A10SL–4P MS3106A10SL–4S(D190)
Angle
3– 50
Conduit
Model
Model
ID
RCC–102RL–MS10F VF–02
8.3
MSA–10–10 FCV10 10.0
RCC–302RL–MS10F VF–02
8.3
MAA–10–10 FCV10 10.0
3.WIRING
2) Waterproof (IP65)/EN Standard/UL/C-UL Standard-compliant
a. When using cable type cables
• For power supply connection
qPlug
Servo Motor
wCable
Clamp
Servo Motor
Side Connector
HC–SF52(B) to 152(B)
HC–RF103(B) to 203(B)
qPlug (Daiichi Denshi Kogyo)
Cable
wCable Clamp (Daiichi Denshi Kogyo)
Type
Model
Cable OD
Model
Straight
CE05–6A22–23SD–B–BSS
9.5 to 13
CE3057–12A–2(D265)
Angle
CE05–8A22–23SD–B–BAS
12.5 to 16
CE3057–12A–1(D265)
Straight
CE05–6A24–10SD–B–BSS
13 to 15.5
CE3057–16A–2(D265)
Angle
CE05–8A24–10SD–B–BAS
15 to 19.1
CE3057–16A–1(D265)
Straight
CE05–6A32–17SD–B–BSS
22 to 23.8
CE3057–20A–1(D265)
Angle
CE05–8A32–17SD–B–BAS
22 to 23.8
CE3057–20A–1(D265)
CE05–2A22–23PD–B
HC–UF72(B) • 152(B)
HC–SF202(B) to 502(B)
HC–RF353(B) to 503(B)
wCable
Clamp
qPlug
Cable
CE05–2A24–10PD–B
HC–UF202(B) to 502(B)
CE05–2A32–17PD–B
HC–SF702(B)
• For encoder connection
qPlug
eCable
Clamp
wBack shell
Cable
Cable
qPlug
wBack shell
Servo Motor
eCable Clamp
wBack shell
wCable Clamp
qPlug
Servo Motor
(Daiichi Denshi Kogyo) (Daiichi Denshi Kogyo)
Side Connector (Daiichi Denshi Kogyo)
Type
Model
Cable OD
Model
HC–SF52(B) to 702(B)
HC–RF103(B) to 503(B)
Straight
CE02–20BS–S
Angle
CE–20BA–S
MS3102A20–29P MS3106A20–29S(D190)
HA–UF72(B) to 502(B)
3– 51
6.8 to 10
CE3057–12A–3(D265)
3
3.WIRING
• For brake connection
qPlug
Cable
wCable Connector
Cable
qPlug
wCable Connector
Servo Motor
Servo Motor
qPlug
Side Connector (Daiichi Denshi Kogyo)
wCable Connector
Type
Straight
HC–SF202(B) to 702(B)
Maker
Nippon Flex
Daiwa Dengyo
MS3102A10SL–4P MS3106A10SL–4S(D190)
HC–UF202(B) to 502(B)
Angle
Nippon Flex
Daiwa Dengyo
3– 52
Cable OD
Model
4 to 8
ACS–08RL–MS10F
8 to 12
ACS–12RL–MS10F
5 to 8.3
YS0–10–5 to 8
4 to 8
ACA–08RL–MS10F
8 to 12
ACA–12RL–MS10F
5 to 8.3
YL0–10–5 to 8
3.WIRING
b. When using flexible conduits
• For power supply connection
qPlug
wConduit
Connctor
Conduit
qPlug
wConduit Connector
qPlug
Servo Motor (Daiichi Denshi Kogyo)
Servo Motor Side Connector
Model
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HC–SF52(B) to 152(B)
HC–RF103(B) to 203(B)
CE05–2A22–23PD–B
CE05–6A22–23SD–B
HC–UF72(B) • 152(B)
Nippon Flex
Angle
Daiwa Dengyo
Nippon Flex
Straight
Daiwa Dengyo
HC–SF202(B) to 502(B)
HC–RF353(B) to 503(B)
CE05–2A24–10PD–B
CE05–6A24–10SD–B
HC–UF202(B) to 502(B)
Nippon Flex
Angle
Daiwa Dengyo
Straight
HC–SF702(B)
CE05–2A32–17PD–B
Conduit
Nippon Flex
CE05–6A32–17SD–B
Angle
3– 53
Daiwa Dengyo
Size
Conduit
Model
Model
ID
1/2
RCC–104RL–MS22F VF–04 14.0
3/4
RCC–106RL–MS22F VF–06 19.0
1
RCC–108RL–MS22F VF–08 24.4
16
MSA–16–22 FCV16 15.8
22
MSA–22–22 FCV22 20.8
28
MSA–28–22 FCV28 26.4
1/2
RCC–304RL–MS22F VF–04 14.0
3/4
RCC–306RL–MS22F VF–06 19.0
1
RCC–308RL–MS22F VF–08 24.4
16
MAA–16–22 FCV16 15.8
22
MAA–22–22 FCV22 20.8
28
MAA–28–22 FCV28 26.4
1/2
RCC–104RL–MS24F VF–04 14.0
3/4
RCC–106RL–MS24F VF–06 19.0
1
RCC–108RL–MS24F VF–08 24.4
16
MSA–16–24 FCV16 15.8
22
MSA–22–24 FCV22 20.8
28
MSA–28–24 FCV28 26.4
1/2
RCC–304RL–MS24F VF–04 14.0
3/4
RCC–306RL–MS24F VF–06 19.0
1
RCC–308RL–MS24F VF–08 24.4
16
MAA–16–24 FCV16 15.8
22
MAA–22–24 FCV22 20.8
28
MAA–28–24 FCV28 26.4
3/4
RCC–106RL–MS32F VF–06 19.0
1
RCC–108RL–MS32F VF–08 24.4
3/4
RCC–306RL–MS32F VF–06 19.0
1
RCC–308RL–MS32F VF–08 24.4
3
3.WIRING
• For encoder connection
qPlug
wConduit
Connector
Conduit
wConduit Connector
qPlug
Servo Motor
Servo Motor Side Connector (Daiichi Denshi Kogyo)
Model
Conduit
qPlug
wConduit Connector
Type
Maker
Nippon Flex
Straight
Daiwa Dengyo
HC–SF52(B) to 702(B)
HC–RF103(B) to 503(B) MS3102A20–29P MS3106A20–29S(D190)
HC–UF72(B) to 502(B)
Nippon Flex
Angle
Daiwa Dengyo
Size
Conduit
Model
Model
ID
1/2
RCC–104RL–MS20F VF–04 14.0
3/4
RCC–106RL–MS20F VF–06 19.0
16
MSA–16–20 FCV16 15.8
22
MSA–22–20 FCV22 20.8
1/2
RCC–304RL–MS20F VF–04 14.0
3/4
RCC–306RL–MS20F VF–06 19.0
16
MAA–16–20 FCV16 15.8
22
MAA–22–20 FCV22 20.8
• For brake connection
qPlug
wConduit
Connector
Conduit
wConduit Connector
qPlug
Servo Motor
Servo Motor Side Connector (Daiichi Denshi Kogyo)
qPlug
wConduit Connector
Type
Straight
HC–SF202(B) to 702(B)
Conduit
Maker
Size
Nippon Flex
1/4
Daiwa Dengyo
10
Nippon Flex
1/4
Daiwa Dengyo
10
MS3102A10SL–4P MS3106A10SL–4S(D190)
HC–UF202(B) to 502(B)
Angle
3– 54
Conduit
Model
Model
ID
RCC–102RL–MS10F VF–02
8.3
MSA–10–10 FCV10 10.0
RCC–302RL–MS10F VF–02
8.3
MAA–10–10 FCV10 10.0
3.WIRING
3-3 Common line
The power supply and its common line are shown below.
CN1A
CN1B
VDD
24VDC
RA
COM
Digital input
CN1A
CN1B
ALM, etc.
Digital output
SON
RES, etc.
SG
OPC
For open collector
pulse train input
PG • NG
PP • PN
SG
SG
For differential line driver
pulse train input
OPC
PG • NG
PP • PN
Isolated
P15R(permissible 30mA, 15V±10%)
Analog input
(+10V/max. current)
TLA
VC, etc.
MO1
MO2
LG
CN3
Analog monitor output
LG
Open collector
output
35mA or less
SD
OP
LG
3
LA, etc.
Differential line
driver output
35mA or less
LAR, etc.
Servo motor encoder
CN2
MRP
MRP
Servo motor
SD
SM
Earth
3– 55
3.WIRING
3-4 Grounding
WARNING
1. Ground the servo amplifier and servo motor securely.
2. To prevent an electric shock, always connect the protective earth (PE)
terminal (marked
) of the servo amplifier with the protective earth
(PE) of the control box.
The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on the wiring and ground cablerouting, the servo amplifier may be affected by the switching noise (due to di/dt and dv/dt) of the transistor. In order to prevent such trouble from occurring,
ensure to connect an earth referring to the drawing shown below.
To conform to the EMC Directive, refer to the EMC INSTALLATION GUIDELINES (IB(NA)67310).
Control box
Servo motor
Servo amplifier
CN2
L1
Line filter
Encoder
L2
L3
L11
L21
U
U
V
V
W
W
SM
CN1A CN1B
Positioning
unit, etc.
(Note)
Three-phase
200 to 230VAC
or
Single-phase
230VAC
MC
NFB
Protective earth (PE)
Always connect it to PE
terminal of servo amplifier.
Do not connect it directly to
protective earth of control
box.
Outer
box
Note: When using a power supply of 230VAC, single phase, connect it to L1 and L2 terminals, but do not connect
anything to L3 terminal.
3– 56
3.WIRING
3-5 Power supply circuit
CAUTION
1. When the servo amplifier has become faulty, switch power off on the
servo amplifier power side. Continuous flow of a large current may cause
a fire.
2. Use the trouble signal to switch power off. Otherwise, a regenerative
brake transistor fault or the like may overheat the regenerative brake
resistor, causing a fire.
(1) Power-on sequence
1) Always wire the power supply as shown below using magnetic contactors with the main circuit power supply (three-phase 200V: L1, L2, L3; single-phase 230V: L1, L2; single-phase
100V: L1, L2).
2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit
power supply or before switching on the main circuit power supply. If the main circuit power
supply is not on, the display shows the corresponding warning. However, by switching on the
main circuit power supply, the warning disappears and the servo amplifier will operate properly.
3) The servo amplifier can accept the servo-on signal (SON) about 1 second after the main
circuit power supply is switched on. Therefore, when SON is switched on simultaneously with
the three-phase power supply, the base circuit will switch on in about 1 second, and the
ready signal (RD) will switch on in further about 20ms, making the servo amplifier ready to
operate. (Refer to paragraph (2) in this section.)
4) When the reset signal (RES) is switched on, the base circuit is shut off and the servo motor
shaft coasts.
5) For the structure of the external circuit, refer to Section 2-1.
(2) Connection example
Wire the power supply and main circuits as shown below. A no-fuse breaker (NFB) must be
used with the input cables of the power supply. Immediately after the occurrence of alarm is
detected and the power supply is cut out, the servo ON signal must be turned off.
For single-phase 100V
NFB
MC
MR–J2–
Single-phase AC
L1
100~120V
L2
A1
L11
L21
RA
External
emergency stop OFF
3
ON
MC
MC
SK
NFB
MC
(Note) Three-phase
200 to 230AC
or
Single-phase
230VAC
L1
L2
L3
L11
L21
EMG
Emergency
stop Servo on
SON
SG
VDD
COM
Note: When using a power supply of 230VAC, single
phase, connect it to L1 and L2 terminals, but do not
connect anything to L3 terminal.
Trouble
3– 57
RA
ALM
Servo amplifier
MR-J2- A
3.WIRING
(3) Timing chart
SON accepted
(1s)
3-phase power supply
ON
OFF
Base circuit
ON
OFF
Servo on
(SON)
ON
OFF
Reset
(RES)
ON
OFF
Ready
(RD)
ON
OFF
10ms
60ms
10ms
60ms
20ms
10ms
20ms
10ms
20ms
10ms
Power ON Timing Chart
(4) Emergency stop
To ensure safety, always install an emergency stop switch
across EMG-SG. By disconnecting EMG-SG, the dynamic
brake is operated to bring the servo motor to a sudden stop.
At this time, the display shows the servo emergency stop
warning (A. E6).
During ordinary operation, do not use the emergency stop
signal to alternate stop and run. The service life of the servo
amplifier may be shortened. Also, if the start signal is on or
a pulse train is input during an emergency stop, the servo
motor will rotate as soon as the warning is reset. During an
emergency stop, always shut off the run command.
3– 58
Servo amplifier
VDD
COM
EMG
SG
3.WIRING
3-6 Alarm occurrence timing chart
CAUTION
When an alarm has occurred, remove its cause, make sure that the operation signal is not being input, ensure safety, and reset the alarm before
restarting operation.
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is
coated to a stop. Switch off the main circuit power supply in the external sequence. To reset the
alarm, switch the control circuit power supply off, then on.
However, the alarm cannot be reset unless its cause of occurrence is removed.
Control
power
supply
ON
OFF
ON
Base circuit
OFF
Dynamic
Valid
brake
Invalid
Servo on
ON
(SON)
OFF
Ready
ON
(RD)
OFF
Trouble
ON
(ALM)
OFF
Reset
ON
(RES)
OFF
Power off
Power on
Brake operation
Brake operation
1s
Instantaneous power failure alarm
Alarm occurs.
Remove cause
of trouble.
50ms
or more
15ms or more
Precautions for alarm occurrence
1) Overcurrent, overload 1 or overload 2
If operation is repeated by switching control circuit power off, then on to reset the overcurrent
(A. 32), overload 1 (A. 50) or overload 2 (A. 51) alarm after its occurrence, without removing
its cause, the servo amplifier and servo motor may become faulty due to temperature rise.
Securely remove the cause of the alarm and also allow about 30 minutes for cooling before
resuming operation.
2) Regenerative alarm
If operation is repeated by switching control circuit power off, then on to reset the regenerative (A. 30) alarm after its occurrence, the external regenerative brake resistor will generate
heat, resulting in an accident.
3) Instantaneous power failure
Undervoltage (A. 10) occurs if power is restored after a 100ms or loger power failure of the
control power supply or after a drop of the bus voltage to or below 200VDC. If the power
failure persists further, the control power switches off. When the power failure is reset in this
state, the alarm is reset and the servo motor will start suddenly if the servo-on signal (SON)
is on. To prevent hazard, make up a sequence which will switch off the servo-on signal (SON)
if an alarm occurs.
4) Position control mode
When an alarm occurs, the home position is lost. When resuming operation after resetting
the alarm, make a return to home position.
3– 59
3
3.WIRING
3-7 Servo motor with electromagnetic brake
1. Make up the electromagnetic brake operation circuit so that it is activated
not only by the servo amplifier signals but also by an external emergency
stop signal.
Shut off by servo-on signal OFF,
alarm or electromagnetic brake signal.
CAUTION
Shut off by emergency stop
signal (EMG).
Servo motor
RA
Electromagnetic
brake
EMG
24VDC
2. The electromagnetic brake is provided for holding the motor shaft. Do not
use it for ordinary braking.
Note the following when the servo motor equipped with electromagnetic brake is used for applications requiring a brake to hold the motor shaft (vertical lift applications):
1) Set 1
in parameter No. 1 to make the electromagnetic brake interlock signal (MBR)
valid. Note that this will make the zero speed signal (ZSP) unavailable.
2) Do not share the 24VDC power supply between the interface and electromagnetic brake.
Always use the power supply designed exclusively for the electromagnetic brake.
3) The brake will operate when the power (24VDC) switches off.
4) Turn off the servo on signal after the servo motor has stopped.
(1) Connection diagram
Servo amplifier
Servo motor
RA Emergency stop B1
VDD
COM
MBR
Z
RA
24VDC
B2
(2) Setting procedure
1) Set 1
in parameter No. 1 to make the electromagnetic brake interlock signal (MBR)
valid.
2) Using parameter No. 33 (electromagnetic brake sequence output), set a time delay from
electromagnetic brake operation to base circuit shut-off as in the timing chart shown in (3) in
this section.
3– 60
3.WIRING
(3) Timing charts
(a) Servo-on signal (SON) ON/OFF
Tb (ms) after the servo-on (SON) signal is switched off, the servo lock is
released and the servo motor coasts. If the electromagnetic brake is made
valid in the servo lock status, the brake life may be shorter. Therefore, when
using the electromagnetic brake in a vertical lift application or the like, set
Tb to about the same as the electromagnetic brake operation delay time to
prevent a drop.
Coasting
Servo motor speed
0 r/min
Tb
(80ms)
Base circuit
ON
OFF
(80ms)
Invalid(ON)
Electromagnetic
brake interlock(MBR) Valid(OFF)
Servo on (SON)
Electromagnetic brake
operation delay time
ON
OFF
(b) Emergency stop signal (EMG) ON/OFF
Servo motor speed
(10ms)
Dynamic brake
Dynamic brake
Electromagnetic brake
Electromagnetic brake
Electromagnetic brake release
(180ms)
ON
Base circuit
OFF
Electromagnetic
brake interlock (MBR)
Invalid (ON)
Valid (OFF)
(180ms)
Electromagnetic brake
operation delay time
Invalid (ON)
Emergency stop (EMG)
Valid (OFF)
3
3– 61
3.WIRING
(c) Alarm occurrence
Dynamic brake
Dynamic brake
Electromagnetic brake
Servo motor speed
Electromagnetic brake
(10ms)
ON
Base circuit
OFF
Invalid(ON)
Electromagnetic
brake interlock (MBR)
Valid(OFF)
Electromagnetic brake
operation delay time
No(ON)
Trouble (ALM)
Yes(OFF)
(d) Both main and control circuit power supplies off
(10ms)
(Note)
15 to 100ms
Servo motor speed
Dynamic brake
Dynamic brake
Electromagnetic brake
Electromagnetic brake
ON
Base circuit
OFF
Electromagnetic
brake interlock(MBR)
Invalid(ON)
(10ms or less)
Valid(OFF)
Electromagnetic brake
operation delay time
(Note 2)
No(ON)
Trouble (ALM)
Yes(OFF)
Main circuit
ON
power
Control circuit
OFF
Note: Changes with the operating status.
(e) Only main circuit power supply off (control circuit power supply remains on)
(10ms)
(Note 1)
15ms or more
Servo motor speed
Dynamic brake
Dynamic brake
Electromagnetic brake
Electromagnetic brake
ON
Base circuit
OFF
Electromagnetic
brake interlock
(MBR)
10ms or less
Invalid(ON)
Valid(OFF)
No(ON)
Trouble (ALM)
Electromagnetic brake
operation delay time
(Note 2)
Yes(OFF)
ON
Main circuit power
OFF
supply
Note: 1. Changes with the operating status.
2. When the main circuit power supply is off in a motor stop status,
the main circuit off warning (A.E9) occurs and the ALM signal does not turn off.
3– 62
CHAPTER 4
INSTALLATION
This chapter deals with the installation method and environmental conditions. Follow the instructions in
this chapter when installing the equipment.
4-1 Servo amplifier
4-2 Servo motor
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
4– 1
4.INSTALLATION
CAUTION
1. Stacking in excess of the limited number of products is not allowed.
2. Install the equipment to incombustibles. Installing them directly or close
to combustibles will led to a fire.
3. Install the equipment in a load-bearing place in accordance with this
Installation Guide.
4. Do not get on or put heavy load on the equipment to prevent injury.
5. Use the equipment within the specified environmental condition range.
6. Provide an adequate protection to prevent screws, metallic detritus and
other conductive matter or oil and other combustible matter from entering the servo amplifier.
7. Do not block the intake/exhaust ports of the servo amplifier. Otherwise,
a fault may occur.
8. Do not subject the servo amplifier and servo motor to drop impact or
shock loads as they are precision equipment.
9. Do not install or operate a faulty servo amplifier or servo motor.
10. When the product has been stored for an extended period of time,
consult Mitsubishi.
4-1 Servo amplifier
CAUTION
1. The equipment must be installed in the specified direction. Otherwise, a
fault may occur.
2. Leave specified clearances between the servo amplifier and control box
inside walls or other equipment.
(1) Environmental conditions
Environment
Ambient temperature
Ambient humidity
storage temperature
Conditions
0 to +55 [°C] (non-freezing)
32 to +131 [°F] (non-freezing)
90%RH or less (non-condensing)
–20 to +65 [°C] (non-freezing)
–4 to +149 [°F] (non-freezing)
storage humidity
90%RH or less (non-condensing)
Ambient
Indoors (no direct sunlight)
Free from corrosive gas, flammable gas, oil mist, dust and dirt
Altitud
Max. 1000m (3280 ft) above sea level
Vibration
5.9 [m/s 2 ] or less
19.4 [ft/s 2 ] or less
4– 2
4.INSTALLATION
(2) Installation direction and clearances
1) Installation of one servo amplifier
Control box
Control box
40mm
(1.6 in.)
or more
Wiring clearance
70mm
(2.8 in.)
Top
10mm
(0.4 in.)
or more
10mm
(0.4 in.)
or more
Bottom
MR – J2
40mm
(1.6 in.)
or more
2) Installation of two or more servo amplifiers
Leave a large clearance between the top of the servo amplifier and the internal surface of
the control box, and install a fan to prevent the internal temperature of the control box from
exceeding the environmental conditions.
Control box
10mm
(0.4 in.)
or more
100mm
(4.0 in.)
or more
30mm
(1.2 in.)
or more
30mm
(1.2 in.)
or more
MR – J2
40mm
(1.6 in.)
or more
4– 3
4
4.INSTALLATION
3) Others
When using heat generating equipment such as the regenerative brake option, install them
with full consideration of heat generation so that the servo amplifier is not affected.
Install the servo amplifier on a perpendicular wall in the correct vertical direction.
(2) Keep out foreign materials
1) When installing the unit in a control box, prevent drill chips and wire fragments from entering
the servo amplifier.
2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in
the control box or a fan installed on the ceiling.
3) When positioning the control panel in a place where there is much harmful gas or dust,
perform an air purge (force-feed clean air from the outside of the control panel to increase
the inside air pressure more than the outside air pressure) to prevent harmful gas or dust
from entering the control panel.
4– 4
4.INSTALLATION
4-2 Servo motor
CAUTION
1. Do not hold the cable, shaft or encoder to carry the servo motor.
Otherwise, a fault or injury may occur.
2. Securely fix the servo motor to the machine. If fixed insecurely, the
servo motor will come off during operation, leading to injury.
3. When coupling the shaft end of the servo motor, do not subject the
shaft end to impact, such as hammering. The encoder may become
faulty.
4. Cover the shaft of the servo motor to make its rotary part completely inaccessible during operation.
5. Do not subject the servo motor shaft to more than the permissible
load. Otherwise, the shaft may break, leading to injury.
(1) Environmental conditions
Environment
Ambient temperature
Conditions
[°C]
0 to +40 (non-freezing)
[°F]
32 to +104 (non-freezing)
80%RH or less (non-condensing)
Ambient humidity
Storage temperature
Servo motor
[°C]
–15 to +70 (non-freezing)
[°F]
5 to 158 (non-freezing)
Storage humidity
90%RH or less (non-condensing)
Ambient
Indoors (no direct sunlight)
Free from corrosive gas, flammable gas, oil mist, dust and dirt
Altitude
Vibration
Max. 1000m (3280ft) above sea level
MC-MF series
X·Y: 19.6
HA-FF series
HU-UF13 to 73
HC-SF81
HC-SF52 to 152
X: 9.8
HC-SF53 to 153
Y: 24.5
HC-RF
series
[m/s 2 ] HC-UF72·152
HC-SF121·201
X: 19.6
HC-SF202·352
Y: 49
HC-SF203·353
HC-UF202
X: 11.7
HC-SF301
Y: 29.4
MC-MF series
HA-FF series
X·Y: 64
HU-UF13 to 73
HC-SF81
HC-SF52 to 152
X: 32
HC-SF53 to 153
Y: 80
2 ] HC-RF series
[ft/s
HC-UF72·152
HC-SF121·201
X: 64
HC-SF202·352
Y: 161
HC-SF203·353
HC-UF202
HC-SF301
X: 38 Y: 96
Graph of vibration servo amplitude vs. speed
4– 5
X
Y
Vibration
4
Vibration amplitude (both amplitudes) [µm]
4.INSTALLATION
200
100
80
60
50
40
30
20
500
1000 1500 2000 2500 3000 3500
Speed [r/min]
(2) Transportation
Do not hold the encoder or shaft to carry the servo motor.
(3) Load mounting precautions (Prevention of impact on shaft)
1) When mounting a pulley to the servo motor shaft provided with a keyway, use the screw hole
in the shaft end. To fit the pulley, first insert a double-end stud into the screw hole of the
shaft, put a washer against the end face of the coupling, and insert and tighten a nut to force
the pulley in.
2) For the servo motor shaft with a keyway, use the screw hole in the shaft end. For the shaft
without a keyway, use a friction coupling or the like.
3) When removing the pulley, use a pulley remover to protect the shaft from impact.
4) To ensure safety, fit a protective cover or
the like on the rotary area, such as the
Servo motor
pulley, mounted to the shaft.
Double-end stud
5) When a threaded shaft end part is needed
to mount a pulley on the shaft, please
contact us.
6) During assembling, the shaft end must
not be hammered.
Nut
7) The orientation of the encoder on the
Washer
servo motor cannot be changed.
Pulley
8) For installation of the servo motor, use
spring washers, etc. and fully tighten the
bolts so that they do not become loose
due to vibration.
(4) Permissible load for the shaft
1) Use a flexible coupling and make sure
that the misalignment of the shaft is less
than the permissible radial load.
2) When using a pulley, sprocket or timing
belt, select a diameter that will fit into the
permissible radial load.
3) Do not use a rigid coupling as it may apply excessive bending load to the shaft,
leading to shaft breakage.
4– 6
4.INSTALLATION
Radial load Thrust load
L
Serbo Motor
[mm] [in]
[N]
88 19.8 59 13.3
30
1.2 245 55.1 98 22.0
73
40
1.6 392 88.2 147 33.1
053
30
1.2 108 24.3 98 22.0
13
30
1.2 118 26.5 98 22.0
23 · 33
30
1.2 176 39.6 147 33.1
43 · 63
40
1.6 323 72.7 284 63.9
81
55 2.17 980 220 490 110
121 to 301
79 3.11 2058 463 980 220
52 to 152
55
2.2 980 220.5 490 110.2
202·352
79
3.1 2058 463.0 980 220.5
53 to 153
55 2.17 980 220 490 110
203·353
79 3.11 2058 463 980 220
HC–RF 103 to 203
45
L
Radial load
Thrust load
L: Distance from flange mounting surface to
load center
1.8 686 154.3 196 44.1
72·152
55 2.17 637 143 490 110
202
65 2.56 882 198 784 176
25 0.98 88
20
23·43
30 1.18 245
73
40 1.57 392
HC–UF 13
Note: For the symbols in the table, refer to
the following diagram:
[lb]
1.0
HC–MF 23·43
HC–SF
[lb]
25
053·13
HA–FF
[N]
59
13
55
98
22
88
147
33
(5) Protection from oil and water
1) The HC-MF/HA-FF series servo motor is not waterproof (IP44). Do not subject the servo
motor to oil and water.
Oil or water
Servo Motor Series
HC – MF•HA – FF
HC – SF•HA – RF
Protection
IP44
IP65
Servo motor
4
4– 7
4.INSTALLATION
2) When the gear box is mounted horizontally, the oil level in the gear box should always be
lower than the oil seal lip on the servo motor shaft. If it is higher than the oil seal lip, oil will
enter the servo motor, leading to a fault. Also, provide a breathing hole in the gear box to
hold the internal pressure low.
The HC-MF series servo motor is not equipped with a V ring or an oil seal and cannot be
used with the gear box as described above. Oil should be shut off on the gear box side.
Some HA-FF series servo motors are equipped with an oil seal. Please contact Mitsubishi.
Servo Motor
053 · 13
Height above Oil Level h [mm] ([in])
8 (0.32)
HA–FF 23 · 33
12 (0.48)
43 · 63
14 (0.56)
81
20 (0.79)
121 to 301
25 (0.98)
52 to 152
20 (0.79)
202 · 352
25 (0.99)
53 to 153
20 (0.79)
203 · 353
25 (0.98)
HC–SF
HC–RF 103 to 203
Servo motor
Height above oil level h
Lip
V ring
20 (0.79)
72 · 152
20 (0.79)
202 to 502
25 (0.98)
HC–UF 13
Gear
12 (0.47)
23 · 43
14 (0.55)
73
20 (0.79)
3) When installing the servo motor horizontally,
face the power cable and encoder cable downward. When installing the servo motor vertically
or obliquely, provide a trap for the cable.
Cable trap
4) Do not use the servo motor with its cable
soaked in oil or water. (Figure on the right)
Cover
Servo
motor
Oil/water pool
<Incorrect> Capillary phenomenon
5) When the servo motor is to be installed with
the shaft end at top, provide measures to prevent oil from entering the servo motor from the
gear box, etc.
Gear
Lubricating oil
Servo motor
4– 8
4.INSTALLATION
(6) Installation orientation
The servo motor may be installed in any orientation. When the servo motor with electromagnetic brake is installed with the shaft end at top, the brake plate may generate sliding sound but
it is not a fault. Refer to Section 10-3 for the installation orientation of the servo motor with
reduction gear.
(7) Cable stress
1) The way of clamping the cable must be fully examined so that flexing stress and cable's own
weight stress are not applied to the cable connection.
2) In any application where the servo motor moves, the cables should be free from excessive
stress. When using the servo motor in an application where the servo motor itself may cause
a movement, design the cable so that the service life of the bent part of the cable comes
within the service life of the bent part of the detector cable. Fix the encoder cable and power
cable of the servo motor.
3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine
corner or stamped by workers or vehicles.
4) The flexing lives of the cables are shown below. In actuality, provide a little allowance for
these values. For installation on a machine where the servo motor will move, the flexing
radius should be made as large as possible.
1 x 108
a
5 x 107
1 x 107
5 x 106
a : Long flexing-life encoder cabl
MR–JCCBL M–H
MR–JHSCBL M–H
Flexing life [times]
1 x 106
b : Standard encoder cable
MR–JCCBL M–L
MR–JHSCBL M–L
5 x 105
1 x 105
5 x 104
1 x 104
b
5 x 103
1 x 103
4
7
10
20
40
70 100
200
Flexing radius [mm]
Note: This graph gives calculated values which are not guaranteed.
Flexing Lives of Encoder Cables
4– 9
4
CHAPTER 5
ABSOLUTE POSITION DETECTION SYSTEM
This chapter provides how to build an absolute position detection system.
This servo amplifier will make up an absolute position detection system by merely installing a battery.
For more information, refer to the MR-J2-A Absolute Position Detection System Installation Guide (IB(NA)67309).
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Restrictions on absolute position detection system
Specifications
Structure
Overview of absolute position detection data communication
Battery installation procedure
Parameter setting
Connection example
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
5– 1
5.ABSOLUTE POSITION DETECTION SYSTEM
(1) Restrictions on absolute position detection system
An absolute position detection system cannot be built under the following conditions:
1) Speed control or torque control operation
2) Control change mode (position/speed, position/torque)
3) Stroke-less coordinate system, e.g. rotary shaft, infinite positioning.
4) Restart after instantaneous power failure is made valid for operation.
5) Use of alarm code output
(2) Specifications
Item
Description
System
Electronic battery backup system
Battery
1 piece of lithium battery (primary battery, nominal + 3.6V)
Type: MR-BAT or A6BAT
Encoder resolution
Refer to (2) in Section 10-1.
Maximum revolution range
Home position ± 32767 rev.
500r/min
(Note 1) Maximum speed at power failure
Approx. 10,000 hours (battery life with power off)
(Note 2) Battery backup time
(Note 3) Data holding time during battery
replacement
2 hours at delivery, 1 hour in 5 years after delivery
Battery storage period
5 years from date of manufacture
Note: 1. Maximum speed available when the shaft is rotated by external force at the
time of power failure or the like.
2. Time to hold data by a battery with power off.
3. Period during which data can be held by the super capacitor in the encoder
after power-off, with the battery voltage low or the battery removed, or during
which data can be held with the encoder cable disconnected. Battery
replacement should be finished within this period.
(3) Structure
1) Components
Component
Servo amplifier
Description
Use standard models.
Servo motor
Battery
MR-BAT or A6BAT
Encoder cable
Use a standard model.
When fabricating, refer to (2), Section 6-1-2.
General-purpose
programmable controller
Use I/O unit (3 input points, 2 output points) to transfer absolute
position detection data.
5– 2
5.ABSOLUTE POSITION DETECTION SYSTEM
2) Applicable general-purpose programmable controller units
Positioning Unit
I/O Unit
AD71 · AD71S2 · AD71S7
A1SD71S2 · A1SD71S7
AD75P · A1SD75P
AX40 · 41 · 42
AY40 · 41 · 42
FX–1PG · FX–1GM
FX(E)–20GM · FX–10GM
FX2–32MT
Note: 1. The A0J2CPU cannot be used.
2. For the availability of the units not listed above, consult Mitsubishi.
3. The absolute position detection program is not required for the FX-1GM,
FX(E)-20GM and FX-10GM.
Configuration
General-purpose
programmable controller
Servo amplifier
AD75
or the like
Battery
Servo motor
CN1A
CN1B CN2
I/O
(4) Overview of absolute position detection data communication
1) System block diagram
As shown below, the encoder consists of not only the position controlling A, B and Z phase
signals but also a counter designed to detect a position within one revolution and a cumulative
revolution counter designed to detect the number of revolutions.
Whether the general-purpose programmable controller power is on or off, the absolute position
detection system keeps the absolute position of the machine detected and battery-backed.
Therefore, once the home position has been set during machine installation, dog type zeroing
is not needed thereafter at power-on, ensuring ease of recovery after a power failure or
fault.
Also, battery-backed by the super capacitor in the encoder, absolute position data can be
held if cable disconnection or cable breakage occurs within the specified time (data holding
time during battery replacement).
General-purpose programmable controller
CPU
Positioning unit
Servo amplifier
Pulse train
command
I/O unit
Current
position
read
Zeroing data
EEPROM memory
LSO
1XO
Backup at
power off
Current position
Input
Output
Current
position
LS
Speed
detection
Speed control
Position control
1X
Detection of
position within
one revolution
5
Battery MR–BAT
Servo motor
1P/rev Cumulative revolution
counter
Super capacitor
Within one-revolution counter
A, B, Z phase signals
(Encoder)
5– 3
High-speed serial
5.ABSOLUTE POSITION DETECTION SYSTEM
2) Communication sequence
Programmable controller
Servo amplifier
Step 1
Requests ABS transfer
mode.
Changes DI/DO function for
ABS transfer I/O signal.
Step 2
Receives ready to send.
Reads ABS data from encoder,
creates current position data,
and outputs ready to send.
Step 3
Outputs ABS data
request signal.
Receives ABS data
request signal.
DI/DO is used to transfer ABS
data between servo amplifier and
programmable controller.
2-bit data is sent 19 times
(32 bits of data + 6 bits of
checksum = total of 38 bits).
These steps are repeated
19 times to make up data.
Step 4
Receives 2 bits of ABS data.
(ABS processing complete)
Outputs 2 bits of ABS data.
(5) Battery installation procedure
The internal circuits of the servo amplifier may be damaged by static electricity.
Always take the following precautions:
1. Ground human body and work bench.
2. Do not touch the conductive areas, such as connector pins and electrical
parts, directly by hand.
NOTICE
1) Open the operation window. (When the model used is the MR-J2-200A or more, also remove the front cover.)
2) Install the battery in the battery holder.
3) Insert the battery connector into CON1 until it clicks.
Battery connector
Battery connector
Operation window
CON1
CON1
Battery
Battery holder
Battery
Battery holder
For MR-J2-200A or more
For MR-J2-200A or more
Parameter No. 1
(6) Parameter setting
1
Set 1
in parameter No. 1 to make the
absolute position detection system valid.
Positioning system
0: Incremental
1: Absolute position detection system
5– 4
5.ABSOLUTE POSITION DETECTION SYSTEM
(7) Connection example
This diagram shows connection between the MELSEC-A1SD75 (AD75) and servo amplifier.
600mA
LG
Power supply
MR–J2–A CN1B
General-purpose programmable controller
A1S62P
VDD
COM
SG
SG
+24
24G
FG
3
13
10
20
INPUT
AC100/200
A1SCPU
A1SX40
0
1
2
3
4
5
6
7
COM
8
9
A
B
C
D
E
F
COM
NC
NC
ABS data bit 0
ABS data bit 1/zero speed
Readying to send data/limiting torque
Trouble
Alarm reset
Emergency stop
Servo ON
Home position return
Operation mode I
Operation mode II
Position start
Position stop
JOG+
JOG-
A1SY40
COM1
COM2
A1SD75-P
DOG
FLS
RLS
STOP
CHG
START
Common
Common
PULSE-F
PULSE-R
PLS COM
PLS COM
15
LSP
LSN
16
17
SON
ABSM
ABSR
RES
5
8
9
14
Lower limit
(Note 3)
Operation Mode
Operating Status
2
1
OFF OFF
OFF ON
JOG
ON OFF Home position return
ON ON Positioning
RA2
Electromagnetic brake output
(Note 4)
Servo alarm
ABS communication error
ABS checksum error
(Note 2)
(Note 1)
Proximity signal
11
12
13
14
15
16
35
36
Ready
Positioning completion
RDY
7
INPS
8
Common 26
CLEAR
5
(Note 2)
Common 23
PGO
EMG
Upper limit
Servo ON
ABS transfer mode
ABS request
Alarm reset
0
1
2
3
4
5
6
7
+
8
9
A
B
+
-
ABS bit0 4
ABS bit1 19
ABS busy 6
ALM
18
24
25
21
3
22
4
19
20
(Note 6)
(Note 5)
For notes, refer to page 5-6.
5– 5
CN1A
COM
RD
INP
CR
SG
SG
LZ
LZR
PG
PP
NG
NP
LG
SD
9
19
18
8
10
20
5
15
13
3
12
2
1
Plate
5
5.ABSOLUTE POSITION DETECTION SYSTEM
Note: 1. For dog type home position return. Do not connect when homeposition return is of the data set type.
2. If the servo motor provided with the zero point signal is started, the A1SD75 (AD75) will output the
deviation counter clear signal. Therefore, do not connect the clear signal of the MR-J2-A to the
A1SD75 (AD75) but connect it to the output module of the programmable contoroller.
3. This circuit is for your reference.
4. The electromagnetic brake output should be controlled via a relayconnected to the programmable
controller output.
5. Use the differential line driver system for pulse input. Do not use the open collector system.
6. To reinforce noise suppression, connect LG and pulse output COM.
5– 6
CHAPTER 6
OPTIONS AND AUXILIARY EQUIPMENT
This chapter offers how to use various options and auxiliary equipment.
6-1 Dedicated options
6-1-1 Regenerative brake options
6-1-2 Cable connectors
6-1-3 Junction terminal block
6-1-4 Maintenance junction card
6-1-5 Set-up software
6-2 Auxiliary equipment
6-2-1 Cables
6-2-2 No-fuse breakers, fuses, magnetic contactors
6-2-3 Power factor improving reactors
6-2-4 Relays
6-2-5 Surge absorbers
6-2-6 Noise reduction techniques
6-2-7 Leakage current breaker
6-2-8 Battery (MR-BAT, A6BAT)
6-2-9 Setting potentiometers for analog inputs
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
6– 1
6. OPTIONS AND AUXILIARY EQUIPMENT
WARNING
Before connecting any option or auxiliary equipment, make sure that the
charge lamp is off more than 10 minutes after power-off, then confirm the
voltage with a tester or the like. Otherwise, you may get an electric shock.
CAUTION
Use the specified auxiliary equipment and options. Unspecified ones may
lead to a fault or fire.
6-1 Dedicated options
6-1-1 Regenerative brake options
The specified combinations of regenerative brake options and servo amplifiers may only be used. Otherwise, a fire may occur.
CAUTION
(1) Combination and regenerative power
(Note) Regenerative Power[W]
Servo Amplifier
MR–RB32
MR–RB30
Built-in regenera- MR–RB032 MR–RB12
Model
[40Ω]
[40Ω]
[40Ω]
[13Ω]
tive brake resistor
MR–RB50
[13Ω]
MR–J2–10A(1)
Without
30
MR–J2–20A(1)
10
30
100
MR–J2–40A(1)
10
30
100
MR–J2–60A
10
30
100
MR–J2–70A
20
30
100
300
MR–J2–100A
20
30
100
300
MR–J2–200A
100
300
500
MR–J2–350A
100
300
500
Note: These values indicate the regenerative powers caused by the resister, not the rated powers.
(2) Selection of the regenerative brake option
1) Simple selection method
In horizontal motion applications, select the regenerative brake option as described below:
When the servo motor is run without load in the regenerative mode from the running speed
to a stop, the permissible duty is as indicated in the standard specifications (Section 10-1).
For the servo motor with a load, the permissible duty changes according to the inertia moment of the load and can be calculated by the following formula:
Permissible duty=
permissible duty for servo motor with no load (value indicated in Section 10-1)
(m+1)
x
(
rated speed
running speed
)
2
[times/minute]
where m = load inertia moment/servo motor inertia moment
From the permissible duty, find whether the regenerative brake option is required or not.
Permissible duty < number of positioning times n1 [times/minute]
Select the regenerative brake option out of the combinations in (1) in this section.
6– 2
6. OPTIONS AND AUXILIARY EQUIPMENT
2) To make selection according to regenerative energy
Use the following method when regeneration occurs continuously in vertical motion applications or when it is desired to make an in-depth selection of the regenerative brake option:
a. Regenerative energy calculation
Use the following table to calculate the regenerative energy.
Formulas for Calculating Torque and Energy in Operation
Regenerative
Torque applied to servo motor [N • m]
Power
M
Friction
torque
T1 =
2)
T2 = TU + TF
3)
T3 =
TF
Unbalance torque
TU
tf(1 cycle)
No
Up
4), 8)
Servo motor speed
(+)
t2
Tpsd1
q Tpsa1
(Driving)
w
r
Generated torque
(-)
t3
Tpsa2
t4
(JL + JM)•No
1
•
+ TU + TF
4
9.55 x 10
TPsd1
T5 =
6)
T6 = TU + TF
7)
T7 =
0.1047
•No•T1•TPsa1
2
E3 =
0.1047
•No•T3 •TPsd1
2
E4 0 (Not regenerative)
(JL + JM)•No
1
•
- T U + TF
4
9.55 x 10
TPsa2
5)
E1 =
E2 = 0.1047•No•T2•t1
T4 = TU
Time
Down
t1
(JL + JM)•No
1
•
+ TU + TF
4
9.55 x 10
TPsa1
1)
Energy [J]
E5 =
0.1047
•No•T5•TPsa2
2
Tpsd2
E6 = 0.1047•No•T6•t3
i
t
y
e
(Regenerative)
(JL + JM)•No
1
•
- T U + TF
4
9.55 x 10
TPsd2
Sum total of regenerative energies
u
E7 =
0.1047
•No•T7•TPsd2
2
Sum total of negative energies in 1) to 8)
b. Losses of servo motor and servo amplifier in regenerative mode
The following table lists the efficiencies and other data of the servo motor and servo amplifier in the regenerative mode.
Servo Amplifier
MR–J2–10A(1)
MR–J2–20A(1)
MR–J2–40A(1)
MR–J2–60A
MR–J2–70A
MR–J2–100A
MR–J2–200A
MR–J2–350A
Inverse Efficiency[%] Capacitor Charging[J]
55
70
85
85
80
80
85
85
9
9
11
11
18
18
40
40
Inverse efficiency (η)
: Efficiency including some efficiencies of the servo motor and servo
amplifier when rated (regenerative) torque is generated at rated speed.
Since the efficiency varies with the speed and generated torque, allow
for about 10%.
Capacitor charging (Ec) : Energy charged into the electrolytic capacitor in the servo amplifier.
Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by the inverse efficiency to calculate the energy consumed by the regenerative brake option.
E R [J] = η • Es–Ec
Calculate the power consumption of the regenerative brake option on the basis of single-cycle
operation period tf [s] to select the necessary regenerative brake option.
P R [W] = E R /tf ...................................................................................... (6-1)
6– 3
6
6. OPTIONS AND AUXILIARY EQUIPMENT
(3) Connection of the regenerative brake option
When using the regenerative brake option, always remove wiring from
across P-D and install the regenerative brake option across P-C. Set
parameter No.0 according to the option to be used. The regenerative
brake option will generate heat of about 100°C. Fully examine heat
dissipation, installation position, used cables, etc. before installing
the option. For wiring, use fire-retarding cables and keep them clear
of the regenerative brake option body. Always use twisted cables of
max. 5m length for connection with the servo amplifier.
CAUTION
Parameter No. 0
Selection of regenerative
brake option
0: Not used.
2: MR – RB 032
3: MR – RB 12
4: MR – RB 32
5: MR – RB 30
6: MR – RB 50
Always remove the
lead from across P-D.
Servo amplifier
D
Regenerative brake option
P
P
C
C
G3
(Note) G4
G3 • G4: Thermal protector terminals.
Abnormal heating will disconnect G3-G4.
5m (16.4 ft) max.
Note: Make up a sequence which will switch off the magnetic contactor
(MC) when abnormal heating occurs.
6– 4
6. OPTIONS AND AUXILIARY EQUIPMENT
(4) Outline drawing
1) MR-RB032•MR-RB12
LA
[Unit: mm (in)]
LB
12 (0.47)
6 (0.23)
ø6 (0.24) mounting hole
144 (5.67)
5 (0.20)
6 (0.23)
12 (0.47)
G3
G4
P
C
6 (0.23)
TE1
168 (6.61)
156 (6.14)
MR-RB
1.6 (0.06)
20
(0.79)
LD
LC
Regenerative Regenerative Resistance
[Ω]
Brake Option Power[W]
Variable Dimensions
LA
LB
LC
Weight
LD [kg] [lb]
MR – RB032
30
40
30 15 119 99
(1.18) (0.59) (4.69) (3.9) 0.5
1.1
MR – RB12
100
40
40 15 169 149
(1.57) (0.59) (6.65) (5.87) 1.1
2.4
6
6– 5
6. OPTIONS AND AUXILIARY EQUIPMENT
2) MR-RB32•MR-RB30
[Unit: mm (in)]
150(5.91)
125(4.92)
79
(7.05)
3.2(0.13)
318(12.52)
17
(0.67)
Terminal
block
7(0.28)
90
(3.54)
10
(0.39)
100(3.94)
Regenerative
Brake Option
Regenerative Resistance Weight
Power
[Ω] [kg] [lb]
[W]
MR–RB32
300
40
2.9
6.4
MR–RB30
300
13
2.9
6.4
3) MR-RB50
[Unit: mm (in)]
325(12.80)
Terminal
block
350(13.78)
7 X 14 slot
7(0.28)
2.3(0.09)
200(7.87)
17(0.67)
Regenerative
Brake Option
MR–RB50
12
(0.47)
116(4.57)
128(5.04)
Regenerative Resistance Weight
Power
[Ω]
[kg] [lb]
[W]
500
6– 6
13
5.6 12.3
6. OPTIONS AND AUXILIARY EQUIPMENT
6-1-2 Cable connectors
(1) Cable selection
• Use the encoder cable 1) or 2) or 3) or 4) after confirming the required wiring length. To fabricate
the encoder cable, use the encoder connector set 5) or 6) and refer to (2) in this section.
• The control signals may either be exported directly using the control signal connector 7) or to
the junction terminal block 12) via the junction terminal block cable 8). Use the options according to the connection method.
• When using the personal computer during operation, use the maintenance junction card 9) and
also use the communication cable 10) or 11).
• For the outline drawing of each connector, refer to Section 10-5-4.
Servo amplifier
7)
Operation
panel
CN1A CN1B
CN2
CN3
10) 11)
13)
Positioning
unit
Personal
computer
9)
8)
To CN1A
1) 2)
12)
HC–MF/HA–FF
servo motor
8)
To CN1B
5)
12)
3) 4)
HC–SF/HC–RF
servo motor
6)
Product
For
CN2
Model
Description
MR–JCCBL M–L Servo amplifier side connector (3M or equivalent)
Standard
10120–3000VE (Connector)
1) encoder cable for Cable length in
HC–MF/HA–FF : 2, 5, 10, 20, 30[m] 10320–52F0-008 (Shell kit)
HC–UF 3000r/min
Servo motor encoder side connector (AMP)
1-172161–9 (Connector)
Long flexing-life MR–JCCBL M–H
2) encoder cable for Cable length in
HC–MF/HA–FF : 2, 5, 10, 20, 30,
HC–UF 3000r/min 40, 50[m]
6
MR–JHSCBL M–L Servo amplifier side connector (3M or equivalent)
Standard
10120–3000VE (Connector)
3) encoder cable for Cable length in
10320–52F0-008 (Shell kit)
HC–SF/HC–RF : 2, 5, 10, 20, 30,
HC–UF 2000r/min 40, 50[m]
Long flexing-life MR–JHSCBL M–H
4) encoder cable for Cable length in
HC–SF/HC–RF : 2, 5, 10, 20, 30,
HC–UF 2000r/min 40, 50[m]
6– 7
Servo motor encoder side connector
(Japan Aviation Electronics)
MS3106B20-29S (Straight plug)
MS-3057-12A (Cable clamp)
6. OPTIONS AND AUXILIARY EQUIPMENT
Product
For
CN2
Description
Encoder
connector set for
5) HC–MF/HA–FF MR–J2CNM
Servo amplifier side connector (3M or equivalent)
0120–3000VE (Connector)
10320–52F0-008 (Shell kit)
Encoder
connector set for
6) HC–SF
Servo amplifier side connector (3M or equivalent)
10120–3000VE (Connector)
10320–52F0-008 (Shell kit)
For
CN1A,
Control signal
CN1B 7) connector
For
CN3
Model
8)
Junction terminal
block cable
9)
Maintenance
junction card
MR–J2CNS
MR–J2CN1
MR–J2TBL M
Length: 0.5[m]
MR–J2CN3TM
Servo motor encoder side connector (Japan Aviation Electronics)
MS3106B20-29S (Straight plug)
MS-3057-12A (Cable clamp)
Servo amplifier side connector (3M or equivalent)
10120–3000VE (Connector)
10320–52F0-008 (Shell kit)
Servo amplifier side connector (3M or equivalent)
10120–6000EL (Connector)
10320–3210-000 (Shell kit)
Servo motor encoder side connector (AMP)
1-172161–9 (Housing)
170359–1 (Connector pin)
MTI-0002 (Clamp)
Qty: 2 each
Junction terminal block side connector
HIF3BA–20D–2.54R (Hirose Electric)
Refer to Section 6–1–4.
Servo amplifier side connector (3M or equivalent) PC98 series personal computer
Communication
MR–CPC98CBL3M 10120–6000EL (Connector)
side connector
cable for PC98
Cable length: 3[m] 10320–3210-000 (Shell kit)
(Japan Aviation Electronics)
Connector: DE-25PF-N
10)
Case: DB-C2-J9
Servo amplifier side connector (3M or equivalent) DOS/V personal computer side
Communication
MR–CPCATCBL3M 10120–6000EL (Connector)
connector
cable for DOS/V
Cable length: 3[m] 10320–3210-000 (Shell kit)
(Japan Aviation Electronics)
Connector: DE-9SF-N
11)
Case: DE-C1-J6-S6
12)
Junction
terminal block
13) Bus cable
MR–TB20
MR–J2HBUS M
Cable length in
:0.5, 1, 5[m]
Refer to Section 6-1-3.
10120–6000EL (Connector)
10320–3210-000 (Shell kit)
6– 8
10120-6000EL (Connector)
10320-3210-000 (Shell kit)
6. OPTIONS AND AUXILIARY EQUIPMENT
(2) Standard encoder cable
The specifications and connection of each cable are indicated below. A fabricated cable should
be as specified in the following table or equivalent and connected correctly.
Core Size
2
[mm ]
x Pair
Core Insulation Sheath OD
(Note) d [mm]
UL20276
0.08 x 7
AWG28 7pair (BLACK)
UL20276
0.08 x 10
0.9 to 1.27
0.2 x 7
Cable Type
Recommended Cable Model
Standard encoder cable
Communication cable
Bus cable
AWG28 10pair (BLACK)
UL20276
Standard encoder cable
AWG24 7pair (BLACK)
UL20276
0.3 x 7
Standard encoder cable
AWG22 7pair (BLACK)
Note: d is as shown below.
d
Sectional view of cor
Conductor
Insulation sheath
Core Size
2
[mm ]
Characteristics of One Core
x Pair
0.2 x 6
Structure
[pcs./mm]
Conductor
resistance[Ω/km]
40/0.08
105 max.
Recommended Cable Model
(Note)
A14B2343
Cable Type
Flexing, long-life
encoder cable
Note: Junkosha make, purchased from Toa Electric
For the control signal connector, connect the external conductor of the shielded cable to the
ground plate securely as shown below.
a. Termination of external conductor
External conductor
Sheath
Core
Sheath
External conductor
Pull back the external conductor to cover the sheath
Strip the sheath.
b. Fitting of the ground plate
Screw
6
Cable
Screw
Ground plate
6– 9
6. OPTIONS AND AUXILIARY EQUIPMENT
1) Encoder cable connection diagrams
If you have fabricated the encoder cable, connect it correctly.
Otherwise, misoperation or explosion may occur.
CAUTION
a. For HC–MF/HA–FF
Optional cables
MR–JCCBL10M–L
to
MR–JCCBL30M–L
MR–JCCBL2M–L
MR–JCCBL5M–L
MR–JCCBL2M–H
MR–JCCBL5M–H
Servo amplifier side
P5
LG
P5
LG
P5
LG
19
11
20
12
18
2
MR
MRR
MD
MDR
BAT
LG
7
17
6
16
9
1
SD
Plate
Encoder side
Servo amplifier side
7
8
1
2
4
5
3
9
P5
LG
P5
LG
P5
LG
19
11
20
12
18
2
MR
MRR
MD
MDR
BAT
LG
7
17
6
16
9
1
SD
Plate
MR–JCCBL10M–H
to
MR–JCCBL50M–H
Encoder side
Servo amplifier side
7
8
1
2
4
5
3
9
P5
LG
P5
LG
P5
LG
19
11
20
12
18
2
MR
MRR
MD
MDR
BAT
LG
7
17
6
16
9
1
SD
Plate
Encoder side
7
8
1
2
4
5
3
9
For fabrication
When fabricating an encoder cable, fabricate it as shown below. The cable of max. 50m length
may be fabricated. When the user manufactures the detector cable, there is no need to connect
"MD" and "MDR" signals.
For use of AWG24
Servo amplifier side
P5
LG
P5
LG
P5
LG
19
11
20
12
18
2
MR 7
MRR 17
For use of AWG22
Servo amplifier side
Encoder side
7
P5
LG
P5
LG
P5
LG
8
1
2
19
11
20
12
18
2
MR 7
MRR 17
Encoder side
7
8
1
2
BAT 9
LG 1
3
BAT 9
LG 1
3
SD
9
SD
9
Plate
6– 10
Plate
6. OPTIONS AND AUXILIARY EQUIPMENT
b. For HC–SF/HC–RF
When fabricating an encoder cable, fabricate it as shown below:
MR – JHSCBL2M – L
MR – JHSCBL5M – L
MR – JHSCBL2M – H
MR – JHSCBL5M – H
Servo amplifier side
Encoder side
P5
LG
P5
LG
MR
MRR
P5
LG
BAT
LG
19
11
20
12
7
17
18
2
9
1
S
SD
Plate
N
MR – JHSCBL10M – L
to
MR – JHSCBL50M – L
Servo amplifier side
Encoder side
19
11
20
12
18
2
S
MR – JHSCBL10M – H
to
MR – JHSCBL50M – H
Servo amplifier side
R
C
D
P5
LG
P5
LG
P5
LG
F
G
MR 7
MRR 17
R
C
D
MR 7
MRR 17
R
C
D
BAT 9
LG 1
F
G
BAT 9
LG 1
F
G
SD
N
SD
N
Plate
AWG24 used
(For less than 10m)
AWG22 used
(For 10 to 50m)
P5
LG
P5
LG
P5
LG
Encoder side
19
11
20
12
18
2
S
Plate
AWG24 used
(For 10 to 50m)
In addition to the above, the customer may also fabricate the cable of the following length:
For use of AWG28 (5m or less)
Servo amplifier side
Encoder side
P5
LG
P5
LG
MR
MRR
P5
LG
BAT
LG
19
11
20
12
7
17
18
2
9
1
S
SD
Plate
N
6– 11
R
C
D
F
G
6
6. OPTIONS AND AUXILIARY EQUIPMENT
2) Junction terminal block cable
MR–J2TBL M
Symbol Cable Length [m (inch)]
0.5
1
Servo amplifier side
0.5 (19.68)
1 (39.37)
Junction terminal block side
(Note) Abbreviated Signal Code
Position Control Mode Speed Control Mode
LG
LG
Pin
No.
10
LG
B1
1
NP
VC
VC
VLA
0
A1
2
PP
VDD
VDD
VDD
11
B2
3
P15R
DO1
DO1
1
A2
4
DO1
P15R
LG
Pin
No.
LG
P15R
LG
Junction Terminal
Torque Control Mode Block Terminal No.
(CN1A, CN1B side)
LZ
SON
LZ
SON
LZ
SON
12
B3
5
LA
TLC
LA
TLC
LA
VLC
2
A3
6
LB
SP2
LB
SP2
13
B4
7
SP1
ST1
SP1
RS2
3
A4
8
LB
CR
PC
COM
TLC
COM
ST2
COM
RS1
14
B5
9
SG
SG
SG
SG
SG
SG
4
A5
10
OPC
P15R
P15R
P15R
15
B6
11
NG
TLA
TLA
TC
5
A6
12
PG
COM
COM
16
B7
13
OP
RES
OP
RES
OP
RES
6
A7
14
LZR
EMG
LZR
EMG
LZR
EMG
17
B8
15
LAR
LSP
LAR
LSP
LAR
7
A8
16
LBR
18
B9
17
ALM
8
A9
18
19
B10
19
9
A10
20
COM
LBR
LSN
LBR
LSN
INP
ALM
SA
ALM
RD
ZSP
RD
ZSP
RD
ZSP
SD
SD
SD
SD
SD
SD
Note: The label furnished with the relay terminal block is for position control mode. When using the relay terminal block in the
speed control mode or torque control mode, use the furnished signal seal to change the abbreviated signal code.
3) Bus cable
MR – J2HBUS05M
MR – J2HBUS1M
MR – J2HBUS5M
Servo amplifier side
connector
10120-6000EL (Connector)
10320-3210-000 (Shell kit)
Servo amplifier side
connector
10120-6000EL (Connector)
10320-3210-000 (Shell kit)
1
11
2
12
3
13
4
14
5
15
6
16
7
17
8
18
9
19
10
20
1
11
2
12
3
13
4
14
5
15
6
16
7
17
8
18
9
19
10
20
Plate
Plate
6– 12
Plate
6. OPTIONS AND AUXILIARY EQUIPMENT
4) Communication cable
This cable may not be used with some personal computers. After fully examining the signals of the RS-232C connector, refer to this section and
fabricate the cable.
NOTICE
Select the communication cable according to the shape of the RS-232C connector of the
personal computer used. When fabricating the cable, refer to the connection diagram in this
section. The following must be observed in fabrication:
• Always use a shielded, multi-core cable and connect the shield with FG securely.
• The optional communication cable is 3m (10 ft) long. When the cable is fabricated, its
maximum length is 15m (49 ft) in offices of good environment with minimal noise.
Connection diagram
• MR–CPC98CBL3M
Personal computer side
SD
2
RD
SG
RS
CS
3
7
4
5
D-SUB25 pins
(Note)
Servo amplifier side
Plate
2
1
12
11
FG
RXD
GND
TXD
GND
Half-pitch 20 pins
• MR–CPCATCBL3M
Personal computer side
TXD
3
RXD
GND
RTS
CTS
DSR
DTR
2
5
7
8
6
4
D-SUB9 pins
Servo amplifier side
Plate
2
1
12
11
FG
RXD
GND
TXD
GND
Half-pitch 20 pins
Note: The PC98 Notes having the connector of half-pitch 14 pins are
also available. Confirm the shape of the RS-232C connector of the personal computer used.
6
6– 13
6. OPTIONS AND AUXILIARY EQUIPMENT
6-1-3 Junction terminal block
When using the relay terminal, "SG" of CN1A-20 and CN1B-20 cannot
be used. Use "SG" of CN1A-4 and CN1B-4.
POINT
(1) How to use the junction terminal block
Always use the junction terminal block (MR-TB20) with the junction terminal block cable (MRJ2TBL05M) as a set. A connection example is shown below:
Servo amplifier
Junction terminal block
MR–TB20
Cable clamp
(AERSBAN–ESET)
CN1A
or
CN1B
Junction terminal
block cable
(MR–J2TBL05M)
Ground the junction terminal block cable on the junction terminal block side with the standard
accessory cable clamp fitting (AERSBAN-ESET). For the use of the cable clamp fitting, refer to
(3), Section 6-2-6.
(2) Terminal labels
The junction terminal block has three terminal block labels which indicate signal arrangement.
Out of these labels, use the two for MR-J2-A. These two labels are for use in the position
control mode. When the parameter settings of I/O signals have been changed or the position
control mode is switched to the speed or torque control mode, refer to (2) in Section 6-1-2 or (2)
in Section 3-1-2 and apply the accessory signal seals to the labels.
19
18
17
16
15
14
13
12
11
60 (2.36)
50 (1.97)
MITSUBISHI
MR-TB20
(0.28) 46.2 (1.82)
2-ø4.5 (0.18)
6– 14
9
8
7
6
5
3
2
1
9
8
7
6
5
4
3
4
[Unit: mm]
([Unit: in.])
126 (4.96)
117 (4.61)
7
(3) Outline drawing
2
VC DO1 TLC PC SG TLA RES LSP ALM SD
1
NP P15R LA CR SG NG OP LAR INP SD
0
19
18
17
16
15
14
13
TL P15R COM EMG LSN ZSP
0
12
LG VDD SON
11
LG PP LZ LB COM OPC PG LZR LBR RD
10
2) For CN1B
10
1) For CN1A
6. OPTIONS AND AUXILIARY EQUIPMENT
6-1-4 Maintenance junction card
(1) Usage
The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer
and analog monitor outputs are used at the same time.
Servo amplifier
Communication cable
Maintenance junction card (MR–J2CN3TM)
Bus cable
MR – J2HBUS M
CN3B
CN3
CN3A
CN3C
A1 A2 A3 A4 B4 B3 B2 B1 B5 B6 A5 A6
VDD COM EMI DI MBR EMGO SG PE
LG LG MO1 MO2
Analog monitor output 2
Not used in MR–J2–A.
Analog monitor output 1
(2) Connection diagram
TE1
B5
CN3A
CN3B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Shell
B6
CN3C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Shell
1
A5
3
4
5
A6
A1
10
A2
A3
13
14
15
A4
B4
B3
19
20
B2
Shell
B1
LG
LG
MO1
MO2
VDD
COM
EMI
DI
Not used in MR–J2–A.
MBR
EMG0
SG
PE
(3) Outline drawing
[Unit: mm]
([Unit: in])
CN3A
CN3B CN3C
2-ø5.3(0.21)(mounting hole)
75(2.95)
MR – J2CN3TM
6
A1
A6
B1
B6
TE1
3(0.12)
41.5(1.63)
88(3.47)
100(3.94)
Weight: 110g (0.24 lb)
6– 15
6. OPTIONS AND AUXILIARY EQUIPMENT
6-1-5 Set-up software (will be released soon)
Some functions of the setup software may not be used depending on versions.
For details, contact us.
NOTICE
The setup software (MRZJW3-SETUP31E or later) uses the communication function of the servo
amplifier to perform parameter setting changes, graph display, test operation, etc. on a personal
computer.
(1) Specifications
Item
Communication signal
Baudrate
Monitor
Alarm
Diagnostic
Parameters
Description
Conforms to RS-232C.
19200bps, 9600bps
Batch display, high-speed display, graph display
Alarm display, alarm history, data display at alarm occurrence
(Minimum resolution changes according to the processing speed of the personal computer)
External I/O signal display, no-rotation reason display, cumulative power-on time display, software
number display, tuning data display, ABS data display, automatic VC offset display
Data setting, list display, change list display, detailed information display
Test operation
Jog mode, positioning mode, motor-less operation, output signal forced
output, program operation in simple language
File operation
Data read, save, print
Others
Automatic operation, help display
Note: On some personal computers, this software may not run properly.
(2) System configuration
1) Components
To use this software, the following components are required in addition to the servo amplifier
and servo motor:
Description
Model
Personal computer
OS
Display
Keyboard
Which contains a 80386 or higher CPU and on which Windows 3.1•95 runs
(80486 or higher recommended).Memory: 8MB or more, hard disk free space: 1MB or more, serial port used.
Windows 3.1
640 x 400 or more color or 16-scale monochrome display which can be used with Windows 3.1•95.
Which can be connected to the personal computer.
Mouse
Which can be used with Windows 3.1•95. Note that a serial mouse is not used.
Printer
Which can be used with Windows 3.1•95.
Communication cable
MR – CPC98CBL3M • MR – CPCATCBL3M
When these cannot be used, refer to Section 6-1-2 and fabricate.
Note: Windows is a trade mark of Microsoft Corporation.
2) Configuration diagram
Servo amplifier
Personal computer
U
V
W
Communication cable
CN3
CN2
To RS-232C connector
6– 16
Servo motor
6. OPTIONS AND AUXILIARY EQUIPMENT
6-2 Auxiliary equipment
The auxiliary equipment used must be those indicated in this section or equivalent. To comply with
the EN Standard or UL/C-UL Standard, use the auxiliary equipment which conform to the corresponding standard.
6-2-1 Cables
Servo Amplifier
Model
(Note 1) Cables
L1•L2•L3
L11 • L21
[mm2]
U • V • W•
(Note 3) Crimping Terminal
P•C•D
B1 • B2
Model
Tool
2
1.25
32959
47387
(AWG14)
(AWG16)
32968
59239
MR – J2 – 10Aa
MR – J2 – 20Aa
MR – J2 – 40Aa
MR – J2 – 60A
1.25
2
1.25
(AWG14)
(AWG16)
(AWG16)
(Note 2)
MR – J2 – 70A
2(AWG14)
MR – J2 – 100A
MR – J2 – 200A
3.5(AWG12)
3.5(AWG12)
MR – J2 – 350A
5.5(AWG10)
5.5(AWG10)
Note:
Note:
Note:
Note:
1.
1.
2.
3.
The cables are based on the 600V vinyl cables. The cables (U, V, W) in the table assume that the distance
between the servo motor and servo amplifier is 30m or less.
Twist the cables for connection of the regenerative brake option (P, C).
Used with the UL/C-UL Standard-compliant models. (AMP make)
6-2-2 No-fuse breakers, fuses, magnetic contactors
Ensure to use one circuit breaker and electromagnetic contactor for each servo amplifier. When
using a fuse in place of the circuit breaker, use a fuse of the rating specified in this section.
Servo Amplifier No-Fuse Breaker
Fuse
Class
Current[A]
Voltage[V]
Magnetic
Contactor
MR – J2 – 10Aa
NF30 type 5A
K5
10
MR – J2 – 20A
NF30 type 5A
K5
10
MR – J2 – 40A•20A1 NF30 type 10A
K5
15
MR – J2 – 60A•40A1 NF30 type 15A
K5
20
MR – J2 – 70A
NF30 type 15A
K5
20
MR – J2 – 100A
NF30 type 15A
K5
25
MR – J2 – 200A
NF30 type 20A
K5
40
S-N18
MR – J2 – 350A
NF30 type 30A
K5
70
S-N20
S-N10
AC250
6
6– 17
6. OPTIONS AND AUXILIARY EQUIPMENT
6-2-3 Power factor improving reactors
The input power factor is improved to about 90%. For use with a single-phase power supply, it may
be slightly lower than 90%.
Outline drawing and connection diagram of the power factor improving reactor
Servo amplifier
MR – J2 –
RXS
Y T Z
B or less
E
NFB
FR – BAL
R
X
Single-phase AC
200~230V
S
Y
T
Z
D
NFB
C or less
Single-phase AC
230V
Serial
number
L1
L2
L3
Servo amplifier
MR – J2 – A
F mounting
screw
Terminal
block
Specification
number
A
R
FR – BAL
X
S
Y
T
Z
L1
L2
L3
Servo amplifier
MR – J2 – A1
A
NFB
Single-phase AC
100~120V
R
FR – BAL
X
S
Y
T
Z
Dimensions
[mm (in)]
B
D
L1
L2
Weight
[kg(lb)]
Servo amplifier Model
Model
MR–J2–10(1)•20A(1)
FR–BAL–0.4K
135
64
120 120
45
(5.31) (2.25) (4.72) (4.72) (1.77)
M4
2
(4.4)
MR–J2–40A(1)
FR–BAL–0.75K
135
74
120 120
57
(5.31) (2.91) (4.72) (4.72) (2.24)
M4
3
(6.6)
MR–J2–60A•70A
FR–BAL–1.5K
160
76
145 145
55
(6.30) (2.99) (5.71) (5.71) (2.17)
M4
4
(8.8)
MR–J2–100A
FR–BAL–2.2K
160
96
145 145
75
(6.30) (3.78) (5.71) (5.71) (2.95)
M4
6
(13.2)
MR–J2–200A
FR–BAL–3.7K
220
95
200 200
70
(8.66) (3.74) (7.87) (7.87) (2.76)
M5
8.5
(18.7)
MR–J2–350A
FR–BAL–7.5K
220 125 205 200 100
(8.66) (4.92) (8.07) (7.87) (3.94)
M5
14.5
(32.0)
A
C
E
F
6-2-4 Relays
The following relays should be used with the interfaces:
Interface
Selection Example
Relay used especially for switching on-off analog input command and digital input command (interface DI-1) signals
To prevent defective contacts, use a relay for small signal
(twin contacts).
(Ex.) OMRON: type G2A, MY
Relay used for digital output signals (interface DO-1)
Small relay with 12VDC or 24VDC of 40mA or less
(Ex.) OMRON: type MY
6– 18
6. OPTIONS AND AUXILIARY EQUIPMENT
6-2-5 Surge absorbers
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or
equivalent.
Insulate the wiring as shown in the diagram.
Maximum Rating
Permissible circuit
voltage
AC[V ma ]
Maximum
Limit Voltage
Static
Capacity
(Reference
value)
Varistor Voltage
Rating (Range)
V1mA
Surge
immunity
Energy
immunity
Rated
power
[A]
[J]
[W]
[A]
[V]
[pF]
[V]
5
0.4
25
360
300
220
(198 to 242)
DC[V]
(Note)
140
180
500/time
Note: 1 time = 8 x 20µs
(Example) ERZV10D221 (Matsushita Electric)
TNR-12G221K (Marcon Electronics)
Outline drawing [mm] ( [in] ) (ERZ–C10DK221)
4.7±1.0 (0.19±0.04)
Vinyl tube
30.0 (1.18)
or more
ø0.8 (0.03)
3.0 (0.12)
or less
16.5
(0.65)
13.5 (0.53)
Crimping terminal
for M4 screw
6
6– 19
6. OPTIONS AND AUXILIARY EQUIPMENT
6-2-6 Noise reduction techniques
Noises are classified into external noises which enter the servo
amplifier to cause it to malfunction and those radiated by the servo amplifier to cause peripheral
devices to malfunction. Since the servo amplifier is an electronic device which handles small signals, the following general noise reduction techniques are required.
Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If peripheral devices malfunction due to noises produced by the servo amplifier, noise
suppression measures must be taken. The measures will vary slightly with the routes of noise
transmission.
1) General reduction techniques
• Avoid laying power lines (input and output cables) and signal cables side by side or do not
bundle them together. Separate power lines from signal cables.
• Use shielded, twisted pair cables for connection with the encoder and for control signal
transmission, and connect the shield to the SD terminal.
• Ground the servo amplifier, servo motor, etc. together at one point (refer to Section 3-4).
2) Reduction techniques for external noises that cause the servo amplifier to malfunction
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and
many relays which make a large amount of noise) near the servo amplifier and the servo
amplifier may malfunction, the following countermeasures are required.
• Provide surge absorbers on the noise sources to suppress noises.
• Attach data line filters to the signal cables.
• Ground the shields of the encoder connecting cable and the control signal cables with
cable clamp fittings.
3) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction
Noises produced by the servo amplifier are classified into those radiated from the cables
connected to the servo amplifier and its main circuits (input and output circuits), those induced electromagnetically or statically by the signal cables of the peripheral devices located
near the main circuit cables, and those transmitted through the power supply cables.
Noises produced
by servo amplifier
Noise radiated directly
from servo amplifier
Noises transmitted
in the air
… Route 1)
Noise radiated from the
… Route 2)
power supply cable
Noise radiated from
servo motor cable
Magnetic induction
noise
… Routes 4) and 5)
Static induction
noise
… Route 6)
Noises transmitted
through electric
channels
6– 20
… Route 3)
Noise transmitted through
power supply cable
… Route 7)
Noise sneaking from
grounding cable due to
leakage current
… Route 8)
6. OPTIONS AND AUXILIARY EQUIPMENT
5)
7)
7)
1)
Instrument
7)
2)
Receiver
Sensor
power
supply
Servo
amplifier
2)
3)
8)
6)
Sensor
4)
3)
Servo motor
Noise Transmission Route
1) 2) 3)
4) 5) 6)
SM
Suppression Techniques
When measuring instruments, receivers, sensors, etc. which handle weak signals and may
malfunction due to noise and/or their signal cables are contained in a control box together
with the servo amplifier or run near the servo amplifier, such devices may malfunction due to
noises transmitted through the air. The following techniques are required.
(1) Provide maximum clearance between easily affected devices and the servo amplifier.
(2) Provide maximum clearance between easily affected signal cables and the I/O cables of
the servo amplifier.
(3) Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by
side or bundling them together.
(4) Insert a line noise filter to the I/O cables or a radio noise filter on the input line.
(5) Use shielded wires for signal and power cables or put cables in separate metal conduits.
When the power lines and the signal cables are laid side by side or bundled together,
magnetic induction noise and static induction noise will be transmitted through the signal
cables and malfunction may occur. The following techniques are required.
(1) Provide maximum clearance between easily affected devices and the servo amplifier.
(2) Provide maximum clearance between easily affected signal cables and the I/O cables of
the servo amplifier.
(3) Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by
side or bundling them together.
(4) Use shielded wires for signal and power cables or put the cables in separate metal
conduits.
7)
When the power supply of peripheral devices is connected to the power supply of the servo
amplifier system, noises produced by the servo amplifier may be transmitted back through the
power supply cable and the devices may malfunction. The following techniques are required.
(1) Insert the radio noise filter (FR-BIF) on the power cables (Input line) of the servo
amplifier.
(2) Insert the line noise filter (FR-BSF01) on the power cables of the servo amplifier.
8)
When the cables of peripheral devices are connected to the servo amplifier to make a closed
loop circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction
may be prevented by disconnecting the grounding cable of the peripheral device.
6– 21
6
6. OPTIONS AND AUXILIARY EQUIPMENT
(1) Data line filter
Noise can be prevented by installing a data line filter onto the encoder cable, etc.
Example: Data line filter:ZCAT3035-1330 [TDK]
ESD-SR-25 [Tokin]
Impedance specifications (ZCAT3035-1330)
10 to 100MHZ
100 to 500MHZ
80
150
39±1 (1.54±0.04)
34±1
(1.34±0.04)
The above impedances are reference
values and not guaranteed values.
ø13±1
ø30±1 (0.51±0.04)
(1.18±0.04)
[Unit: mm] ([Unit: in.])
Impedance[Ω]
Loop for fixing the
cable band
TDK
Product name
Lot number
Outline drawing (ZCAT3035-1330)
(2) Surge suppressor
The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic brake or the like near the servo amplifier is shown below. Use this product
or equivalent.
MS
Relay
Surge suppressor
Surge suppressor
This distance should be short
(within 20cm (0.79 in.)).
Surge suppressor
(Ex.) 972A-2003 504 11
(Matsuo Electric Co., Ltd. - 200VAC rating)
Rated
Voltage
AC[V]
200
C
[µF]
R
[Ω]
Test Voltage
AC[V]
0.5
50
(1W)
Across T-C
1000(1 to 5s)
Outline Drawing [Unit: mm] ([Unit: in.])
18±1.5
(0.71±0.06)
Vinyl sheath Red vinyl cord
Blue vinyl cord
6 (0.24)
10 (0.39) or less
10±3
(0.39
±0.12)
10 (0.39) or less
15±1 (0.59±0.04)
200 (7.87)
or more
48±1.5 (1.89±0.06)
Note that a diode should be installed to a DC relay, DC valve or
the like.
Maximum voltage: Not less than 4 times the drive voltage
of the relay or the like
Maximum current: Not less than twice the drive current of
the relay or the like
200 (7.87)
or more
10±3
(0.39
±0.12)
ø4 (0.16)
31 (1.22)
–
+
RA
Diode
6– 22
6. OPTIONS AND AUXILIARY EQUIPMENT
(3) Cable clamp fitting (AERSBAN-
SET)
Strip the cable sheath of
the clamped area.
Cutter
Cable
Cable
Cable clamp
(A, B)
Earth plate
40 (1.57)
Generally, the earth of the shielded cable may
only be connected to the connector's SD terminal. However, the effect can be increased
by directly connecting the cable to an earth
plate as shown below.
Install the earth plate near the servo amplifier for the encoder cable. Peel part of the
cable sheath to expose the external conductor, and press that part against the earth plate
with the cable clamp. If the cable is thin,
clamp several cables in a bunch.
The clamp comes as a set with the earth
plate.
External conductor
Clamp section diagram
[Unit: mm]
([Unit: in.])
• Outline drawing
Earth plate
Clamp section diagram
17.5 (0.69)
6
(0.24)
C
A
35 (1.38)
24+0.3
0
0.940
24 -0
-0.2
10 (0.39)
22 (0.87)
35 (1.38)
11 (0.43)
(Note) M4 screw
L or less
(0.940)
B±0.3 (0.01)
7 (0.28)
3 (0.12)
6 (0.24)
30 (1.18)
2 – ø5(0.20) hole
Installation hole
6
Note: Screw hole for grounding. Connect it to
the earth plate of the control box.
Type
A
B
C
Accessory Fittings
AERSBAN – DSET
100
86
30
(3.94) (3.39) (1.18)
clamp A: 2pcs.
AERSBAN – ESET
70
56
(2.76) (2.20)
clamp B: 1pc.
6– 23
Clamp Fitting
L
A
70
(2.76)
B
45
(1.77)
6. OPTIONS AND AUXILIARY EQUIPMENT
(4) Line noise filter (FR-BLF, FR-BSF01)
This filter is effective in suppressing noises radiated from the power supply side and output side of
the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current)
especially within 0.5MHz to 5MHz band.
Connection Diagram
Outline Drawing [Unit: mm] ([Unit: in.])
Wind the three-phase wires by the equal number of
times in the same direction, and connect the filter to the
power supply side and output side of the servo
amplifier.
The effect of the filter on the power supply side is
higher as the number of winds is larger. The number of
turns is generally four. If the wires are too thick to be
wound, use two or more filters and make the total
number of turns as mentioned above.
On the output side, the number of turns must be four or
less.
Do not wind the grounding wire together with the threephase wires. The filter effect will decrease. Use a
separate wire for grounding.
7 (0.28)
31.5 (1.24)
ø7 (0.28)
35
130 (5.12)
85 (3.35)
2.3
(0.09) 80 (3.15)
Example 1
FR – BLF(MR – J2 – 350A)
160 (6.30)
180 (7.09)
NFB
(for MR-J2-200A or less)
Power
supply
L1
110 (4.33)
95 (3.74)
22 (0.87)
L2
L3
Example 2
NFB
(Number of turns: 4)
2– ø5 (0.20)
65 (2.56)
Servo amplifier
ø33 (1.3)
Line noise
filter
3 (0.12)
L2
L3
65 (2.56)
L1
Power
supply
Two filters are used
(Total number of turns: 4)
(5) Radio noise filter (FR-BIF)...for the input side only
This filter is effective in suppressing noises radiated from the power supply side of the servo
amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the
input only.
Connection Diagram
Outline Drawing (Unit: mm) ([Unit: in.])
L2
29 (1.14)
L3
Radio noise
filter FR-BIF
58 (2.28)
6– 24
Green
ø5 (0.20)
hole
4 (0.16)
L1
Power
supply
Red White Blue
42 (1.65)
Servo amplifier
NFB
Leakage current: 4mA
About 300(11.81)
Make the connection cables as short as possible.
Grounding is always required.
29 (1.14)
44 (1.73)
7 (0.28)
6. OPTIONS AND AUXILIARY EQUIPMENT
6-2-7 Leakage current breaker
(1) Selection method
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits. Leakage currents containing harmonic contents are larger than those of the motor which is
run with a commercial power supply.
Select a leakage current breaker according to the following formula, and ground the servo amplifier, servo motor, etc. securely.
Make the input and output cables as short as possible, and also make the grounding cable as long
as possible (about 30cm (11.8 in)) to minimize leakage currents.
Rated sensitivity current
10 • {Ig1+Ign+Iga+K • (Ig2+Igm)} [mA] … (6-2)
K: Constant considering the harmonic contents
Cable
Leakage current breaker
Noise
filter
NV
Ig1 Ign
Mitsubishi
products
Type
Servo
amplifier
Iga
Cable
SM
Ig2
Igm
Models provided with
harmonic and surge
reduction techniques
General
models
K
NV – SF
1
NV – CF
NV – CA
3
NV – CS
NV – SS
Leakage current
Ig1: Leakage current on the electric channel from the leakage current breaker to the input
terminals of the servo amplifier (Found from Fig. 6-1.)
Ig2: Leakage current on the electric channel from the output terminals of the servo amplifier to
the servo motor (Found from Fig. 6-1.)
Ign: Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)
Iga: Leakage current of the servo amplifier (Found from Table 6-2.)
Igm: Leakage current of the servo motor (Found from Table 6-1.)
[mA]
Table 6-1 Servo Motor's Leakage
Current Example (Igm)
120
100
80
Servo Motor
Leakage
Output [kW] Current [mA]
60
0.05 to 0.5
0.1
0.6 to 1.0
0.1
20
1.2 to 2.2
0.2
0
3 • 3.5
0.3
40
2
3.5 5.5 8 14 22 38 80 150
30 60 100
Cable size[mm2]
Table 6-2 Servo Amplifier's
Leakage Current
Example (Iga)
Servo Amplifier
Capacity [kW]
Leakage
Current [mA]
0.1 to 0.6
0.1
0.7 to 3.5
0.15
Table 6-3 Leakage Circuit Breaker
Selection Example
Fig. 6-1 Leakage Current Example
(Ig1, Ig2) for CV Cable Run
in Metal Conduit
6– 25
Servo
Amplifier
Rated Sensitivity
Current of Leakage
Circuit Breaker
MR – J2 – 10A
to
MR – J2 – 350A
MR – J2 – 10A1
to
MR – J2 – 40A1
15 [mA]
6
6. OPTIONS AND AUXILIARY EQUIPMENT
(2) Selection example
Indicated below is an example of selecting a leakage current breaker under the following conditions:
2mm2 x 5m
2mm2 x 5m
NV
Servo amplifier
MR–J2–60A
Iga
Ig1
SM
Ig2
HA–FF63
Igm
Use a leakage current breaker generally available.
Find the terms of Equation (6-2) from the diagram:
Ig1 = 20 •
5
=0.1[mA]
1000
Ig2 = 20 •
5
=0.1[mA]
1000
Ign = 0 (not used)
Iga = 0.1[mA]
Igm = 0.1[mA]
Insert these values in Equation (6-2):
Ig
10 • {0.1 + 0 + 0.1 + 3 • (0.1 + 0.1)}
8.0[mA]
According to the result of calculation, use a leakage current breaker having the rated sensitivity current (Ig) of 8.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used
with the NV-CA/CS/SS series.
6-2-8 Battery (MR-BAT, A6BAT)
Use the battery to build an absolute position detection system.
6– 26
6. OPTIONS AND AUXILIARY EQUIPMENT
6-2-9 Setting potentiometers for analog inputs
The following variable resistors are available for use with analog inputs such as analog speed and
torque commands:
Model: WA2WYA2SEBK2KΩ
Model: Wire-wound variable resistor 2W2KΩ B
Model: characteristicShaft rotary angle
Note: Manufacturer (Japan Resistor) standard
Note: WA2W usableConnection diagram
Connection diagram
Outline dimension drawing [Unit: mm] ([Unit: in.])
1
Panel hole machining diagram [Unit: mm] ([Unit: in.])
ø3.6 (0.14) hole
12(0.47)
R2
5(0
.98
)
M9 x 0.75(0.03)
ø10 (0.37) hole
3
(0.12)
3-ø1.54 (0.56) hole
1
3
12
(0.47)
1.6
(0.06)
2
30(1.18)
ø2.8(0.11)
ø6(0.24)
25(0.98)
2.5(0.10) 10(0.39)
Single-revolution type
20(0.79)
30°
30°
3
2
Rated
Power
Resistance
Resistance
Tolerance
Dielectric Strength
(for 1 minute)
Insulation
Resistance
Mechanical
Rotary Angle
Rotary Torque
2W
2kΩ
±10%
700V A.C
100MΩ or more
300°±5°
10 to 100g-cm
or less
Connection diagram
Model: Helical pot RRS10(M) 2KΩ
Model: Japan Resistor make
1
3
Outline dimension drawing [Unit: mm] ([Unit: in.])
CW
2
A
13 (0.51) 10
(0.39)
24 (0.94)
Panel hole machining diagram [Unit: mm] ([Unit: in.])
Panel thickness: 2 to 6 (0.08 to 0.24)
3
1 2
21.5 (0.85)
ø9.5 (0.37) hole
1.5 (0.06)
6
9.5 (0.37)
ø6 (0.24)hole
ø22.7 (0.89)hole
9.5
(0.37)
Multi-revolution type
ø2 (0.08)
hole
ø23 (0.91)hole
15 (0.59)
15 (0.59)
ø2.2 (0.09) hole
Rated
Power
Resistance
Resistance
Tolerance
Dielectric Strength
(for 1 minute)
Insulation
Resistance
1W
2kΩ
±10%
700V A.C
1000MΩ
or more
6– 27
Mechanical
Rotary Angle
3600°
+ 10°
- 0°
Rotary Torque
100g-cm or less
CHAPTER 7
INSPECTION
This chapter describes inspection items.
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
7–1
7.INSPECTION
WARNING
1. Before starting maintenance and/or inspection, make sure that the
charge lamp is off more than 10 minutes after power-off. Then, confirm
that the voltage is safe in the tester or the like. Otherwise, you may get
an electric shock.
2. Any person who is involved in inspection should be fully competent to
do the work. Otherwise, you may get an electric shock. For repair and
parts replacement, contact your safes representative.
NOTICE
1. Do not test the servo amplifier with a megger (measure insulation
resistance), or it may become faulty.
2. Do not disassemble and/or repair the equipment on customer side.
(1) Inspection
It is recommended to make the following checks periodically:
1) Check for loose terminal block screws. Retighten any loose screws.
2) Check the servo motor bearings, brake section, etc. for unusual noise.
3) Check the cables and the like for scratches and cracks. Perform periodic inspection according
to operating conditions.
4) Check the servo motor shaft and coupling for misalignment.
(2) Life
The following parts must be changed periodically as listed below. If any part is found faulty, it
must be changed immediately even when it has not yet reached the end of its life, which depends
on the operating method and environmental conditions.
When using the servo motor in an atmosphere where there is much oil mist or dust, clean and
inspect the motor every three months.
For parts replacement, please contact your sales representative.
Part Name
Standard Life
Smoothing capacitor
Servo amplifier
Relay
Cooling fan
Servo motor
10 years
The number of power inputs reaches 100,000 times.
10,000 to 30,000 hours (2 to 3 years)
Absolute position battery
Refer to Chapter 5 (2).
Bearings
20,000 to 30,000 hours
Encoder
20,000 to 30,000 hours
Oil seal, V ring
5,000 hours
7– 2
7.INSPECTION
1) Smoothing capacitor : Affected by ripple currents, etc. and deteriorates in characteristic. The
life of the capacitor greatly depends on ambient temperature and
operating conditions. The capacitor will reach the end of its life in 10
years of continuous operation in normal air-conditioned environment.
2) Relays
: Their contacts will wear due to switching currents and contact faults
occur. Depending on the capacity of the power supply, the service life
terminates when the number of power inputs reaches 100,000 times.
3) Servo amplifier cooling fan : The cooling fan bearings reach the end of their life in 10,000 to 30,000
hours. Normally, therefore, the fan must be changed in a few years of
continuous operation as a guideline.
It must also be changed if unusual noise or vibration is found during
inspection.
4) Servo motor bearings : When the servo motor is run at rated speed under rated load, change
the bearings in 20,000 to 30,000 hours as a guideline. This differs on
the operating conditions. The bearings must also be changed if unusual
noise or vibration is found during inspection.
5) Servo motor oil seal, V ring : Must be changed in 5,000 hours of operation at rated speed as a
guideline. This differs on the operating conditions. These parts must
also be changed if oil leakage, etc. is found during inspection.
7
7– 3
CHAPTER 8
TROUBLESHOOTING
This chapter gives troubleshooting at start-up and corrective actions for alarms and warnings. When
any fault has occurred, refer to this chapter and take the corresponding action.
8-1 Troubleshooting at start-up
8-1-1 Position control mode
8-1-2 Speed control mode
8-1-3 Torque control mode
8-2 Alarms and warnings
8-2-1 Alarm and warning list
8-2-2 Alarms
8-2-3 Warnings
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
8– 1
8. TROUBLESHOOTING
8-1 Troubleshooting at start-up
Excessive adjustment or change of parameter setting must not be made as it will
CAUTION make operation instable.
The following faults may occur at start-up. If any of such faults occurs, take the corresponding
action.
8-1-1 Position control mode
(1) Troubleshooting
No. Start-Up Sequence
1
Power on
Fault
• LED is not lit.
• LED flickers.
Investigation
Possible Cause
Refer To
Not improved if connectors 1) Power supply voltage fault
CN1A, CN1B and CN2 are 2) Servo amplifier is faulty.
disconnected.
Improved when connectors Power supply of CN1 cabling
CN1A and CN1B are
is shorted.
disconnected.
Improved when connector 1) Power supply of encoder
CN2 is disconnected.
cabling is shorted.
2) Encoder is faulty.
Improved when connector Power supply is shorted.
CN3 is disconnected.
Alarm occurs.
2
Switch on servo-on Alarm occurs.
signal.
Servo motor shaft is
not servo-locked
(is free).
Refer to Section 8-2 and remove cause.
Section 8-2
Refer to Section 8-2 and remove cause.
Section 8-2
1. Check the display to see 1) Servo on signal is not
if the servo amplifier is
input. (Wiring mistake)
ready to operate.
2) 24VDC power is not
2. Check the external I/O
supplied to COM.
signal indication to see
if the servo-on (SON)
signal is ON.
3
Enter input
command.
(Test operation)
Servo motor does not Check cumulative
rotate.
command pulses.
4
Gain adjustment
Rotational ripples
(speed fluctuations)
are large at low
speed.
1) Wiring mistake
(a) For open collector
pulse train input,
24VDC power is not
supplied to OPC.
(b) LSP/LSN-SG are not
connected.
2) No pulse is input.
Make gain adjustment in
Gain adjustment fault
the following procedure:
1) Increase the auto
tuning response level.
2) Repeat acceleration
and deceleration
several times to
complete auto tuning.
Make gain adjustment in
Large load inertia
the following procedure:
moment causes the
If the servo motor may
servo motor to
be run with safety,
oscillate side to side. repeat acceleration and
Gain adjustment fault
(1), Section 2-3-3
Section 2-3-2
Section 2-4
Section 2-4
deceleration several
times to complete auto
tuning.
5
Cyclic operation
Position shift occurs. Confirm the cumulative
command pulses, cumulative
feedback pulses and actual
servo motor position.
8– 2
Pulse counting error, etc.
due to noise.
(2) in this section
8. TROUBLESHOOTING
(2) How to find the cause of position shift
Positioning unit
Servo amplifier
a) Output
pulse
counter
Electronic gear (parameters No. 3, 4)
Machine
Servo motor
Q
P
a)
C) Servo on (SON),
stroke end
(LSP/LSN) input
CMX
SM
CDV
b) Cumulative command
pulses
C
L
d) Machine stop
position M
B)
Encoder
C) Cumulative
feedback pulses
When a position shift occurs, check a) output pulse counter, b) cumulative command pulse display,
c) cumulative feedback pulse display, and d) machine stop position in the above diagram.
A), B) and C) indicate position shift causes. For example, A) indicates that noise entered the wiring
between positioning unit and servo amplifier, causing pulses to be mis-counted.
In a normal status without position shift, there are the following relationships:
1) Q = P (positioning unit's output counter = servo amplifier's cumulative command pulses)
CMX (parameter No. 3)
2) P •
CDV (parameter No. 4)
= C (cumulative command pulses x electronic gear = cumulative feedback pulses)
3) C • ∆l=M (cumulative feedback pulses x travel per pulse = machine position)
Check for a position shift in the following sequence:
1) When Q ≠ P
Noise entered the pulse train signal wiring between positioning unit and servo amplifier,
causing pulses to be mis-counted. (Cause A)
Make the following check or take the following measures:
• Check how the shielding is done.
• Change the open collector system to the differential line driver system.
• Run wiring away from the power circuit.
• Install a data line filter. (Refer to Section 6.2.6 (1).)
CMX
≠C
CDV
During operation, the servo on signal (SON) or forward/reverse rotation stroke end signal
was switched off or the clear signal (CR) and the reset signal (RES) switched on. (Cause C)
If a malfunction may occur due to much noise, increase the input filter setting (parameter
No. 1).
3) When C • ∆l ≠ M
Mechanical slip occurred between the servo motor and machine. (Cause B)
2) When P •
8
8– 3
8. TROUBLESHOOTING
8-1-2 Speed control mode
No. Start-Up Sequence
1
Power on
Fault
• LED is not lit.
• LED flickers.
Investigation
Possible Cause
Refer To
Not improved if
1) Power supply voltage
connectors CN1A, CN1B
fault
and CN2 are disconnected. 2) Servo amplifier faulty.
Improved when
connectors CN1A and
CN1B are disconnected.
Power supply of CN1
cabling is shorted.
Improved when connector 1) Power supply of
CN2 is disconnected.
encoder cabling is
shorted.
2) Encoder is faulty.
Alarm occurs.
2
3
Refer to Section 8-2 and remove cause.
Section 8-2
Switch on servo-on Alarm occurs.
signal.
Servo motor shaft is
free.
Refer to Section 8-2 and remove cause.
1. Check the display to see (Wiring mistake)
if the servo amplifier is 2) 24VDC power is not
ready to operate.
supplied to COM.
2. Check the external I/O
signal indication to see
if the servo-on (SON)
signal is ON.
(1), Section 2-3-3
Switch on forward
rotation start (ST1)
or reverse rotation
start (ST2).
Call the status display and
check the input voltage of
the analog speed command.
Section 2-3-2
Servo motor does
not rotate.
Analog speed command
is 0V.
Section 8-2
Call the external I/O signal
LSP, LSN, ST1 or ST2 is
display and check the ON/OFF off.
status of the input signal.
(1), Section 2-3-3
Check the internal speed
commands 1 to 3
(parameters No. 8 to 10).
(3), Section 2-3-5
Set value is 0.
Check the internal torque Set value is 0.
limit 1 (parameter No. 28).
4
Gain adjustment
Rotational ripples
(speed fluctuations)
are large at low
speed.
Make gain adjustment in
Gain adjustment fault
the following procedure:
1) Increase the auto tuning
response level.
2) Repeat acceleration and
deceleration several
times to complete auto
tuning.
Section 2-4
Large load inertia
Make gain adjustment in
Gain adjustment fault
moment causes the
the following procedure:
If the servo motor may be
servo motor to
run with safety, repeat
oscillate side to side.
acceleration and
deceleration several times
to complete auto tuning.
Section 2-4
8– 4
8. TROUBLESHOOTING
8-1-3 Torque control mode
No. Start-Up Sequence
1
Power on
Fault
• LED is not lit.
• LED flickers.
Investigation
Possible Cause
Refer To
Not improved if connectors 1) Power supply voltage
CN1A, CN1B and CN2 are
fault
disconnected.
2) Servo amplifier faulty.
Improved when connectors Power supply of CN1
CN1A and CN1B are
cabling is shorted.
disconnected.
Improved when connector 1) Power supply of encoder
CN2 is disconnected.
cabling is shorted.
2) Encoder is faulty.
Alarm occurs.
Refer to Section 8-2 and remove cause.
Section 8-2
2
Switch on servo-on Alarm occurs.
signal.
Refer to Section 8-2 and remove cause.
Section 8-2
3
Switch on forward
Servo motor does
rotation start (RS1) not rotate.
or reverse rotation
start (RS2).
Call the status display
and check the analog
torque command.
Analog torque command
is 0V.
Section 2-3-2
Call the external I/O signal RS1 or RS2 is off.
display and check the
ON/OFF status of the input
signal.
(1), Section 2-3-3
Check the internal speed
limits 1 to 3
(parameters No. 8 to 10).
(3), Section 2-3-5
Set value is 0.
Check the internal torque Set value is 0.
limit 1 (parameter No. 28).
8
8– 5
8. TROUBLESHOOTING
8-2 Alarms and warnings
8-2-1 Alarm and warning list
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any
alarm or warning has occurred, refer to Section 8-2-2 or 8-2-3 and take the appropriate action.Set
1 in parameter No. 49 to output the alarm code in ON/OFF status across the corresponding
pin and SG. Warnings (A. 92 to A. EA) have no codes. Any alarm code is output at occurrence of
the corresponding alarm. In the normal status, the signals available before alarm code setting
(CN1B-19: ZSP, CN1A-18:INP or SA, CN1A-19: RD) are output.
(Note) Alarm Code
Display CN1B19 pin
Alarms
A. 10
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
11
12
13
15
16
17
18
20
24
25
30
31
32
33
35
37
46
50
51
Warnings
A. 52
A. 8E
8888
Name
CN1A18 pin
CN1A19 pin
0
0
1
0
0
0
Undervoltage
Board error1
0
0
0
1
0
0
1
1
1
0
1
1
0
1
0
0
0
0
1
0
0
0
1
0
0
1
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
1
1
1
1
Memory error1
Clock error
Memory error2
Encoder error1
Board error2
Board error3
Encoder error2
Ground fault
Absolute positiom erase
Regenerative error
Overspeed
Overcurrent
Overvoltage
Command pulse frequency alarm
Parameter error
Servo motor overheat
Overload1
Overload2
0
0
0
0
0
0
Error excessive
RS-232C error
Watchdog
A. 92
A. 96
A. 9F
Open battery cable warning
Zero setting error
A. E0
A. E1
A. E3
Excessive regenerative load warning
Overload warning
A. E5
A. E6
A. E9
ABS time-out warning
Servo emergency stop
A. EA
Battery warning
Absolute position counter warning
Main circuit off warning
ABS servo on warning
NOTE, 0:OFF 1:ON
8– 6
8. TROUBLESHOOTING
8-2-2 Alarms
1. When any alarm has occurred, eliminate its cause, ensure safety, then
reset the alarm, and restart operation. Otherwise, injury may occur.
2. If an absolute position erase alarm (A. 25) occurred, always make home
position setting again. Otherwise, misoperation may occur.
WARNING
When any of the following alarms has occurred, always remove its cause
and allow about 30 minutes for cooling before resuming operation. If operation is repeated by switching control circuit power off, then on to reset the
alarm, the servo amplifier, servo motor and regenerative brake option may
become faulty.
• Regenerative error (A. 30)
• Overload 1 (A. 50)
• Overload 2 (A. 51)
NOTICE
When an alarm occurs, the trouble signal (ALM) switches off and the dynamic brake is operated to
stop the servomotor. At this time, the display indicates the alarm No.
Alarm Code
Display CN1B- CN1A- CN1A19 pin 18 pin 19 pin
A. 10
0
1
0
Name
Undervoltage
Definition
Cause
Action
Power supply
1. Power supply voltage is low.
Review the power
voltage dropped. 2. Power failed instantaneously
supply.
MR-J2- A:160V or less
for 15ms or longer.
MR-J2- A1: 83V or less
3. Shortage of power supply
capacity caused the power
supply voltage to drop at start,
etc.
4. Power switched on within 5
seconds after it had switched off.
5. Faulty parts in the servo amplifier Change the servo
amplifier.
Checking method
Alarm (A. 10) occurs if power is
switched on after CN1A, CN1B,
and CN3 connectors are
disconnected.
A. 11
0
0
0
Board error 1
Printed board
faulty
A. 12
0
0
0
Memory
error 1
RAM, ROM
memory fault
A. 13
0
0
0
Clock error
Printed board
fault
A. 15
0
0
0
EEPROM fault
A. 16
1
1
0
Memory
error 2
Encoder
error 1
Communication
error occurred
between
encoder and
servo amplifier.
8– 7
Faulty parts in the servo amplifier
Checking method
Change the servo
amplifier.
Alarm (any of A. 11 to 15)
occurs if power is switched on
after CN1A, CN1B, and CN3
connectors are disconnected.
1. Encode connector disconnected. Connect correctly.
2. Encoder fault
Change the servo
motor.
3. Encoder cable faulty
(Wire breakage or short)
Repair or change
cable.
4. Combination of servo amplifier
and servo motor is not proper.
Use correct
combination
8
8. TROUBLESHOOTING
Alarm Code
Display CN1B- CN1A- CN1A19 pin 18 pin 19 pin
A. 17
0
0
0
Name
Definition
Board error 2
CPU/parts fault
Cause
Faulty parts in the servo amplifier
Checking method
Action
Change the servo
amplifier.
Alarm (A. 17 or A. 18) occurs if
power is switched on after
CN1A, CN1B, and CN3
connectors have been disconnected.
A. 18
0
0
0
Board error 3
A. 20
1
1
0
Encoder
error 2
Communication error 1. Encoder connector disconnected. Connect correctly.
occurred between
2. Encoder cable faulty
Repair or change
encoder and servo
(wire breakage or short)
the cable.
amplifier.
A. 24
1
0
0
Motor output
ground fault
Ground fault
1. Power input wires and servo motor Connect correctly.
occurred at servo
output wires are in contact at main
motor outputs
circuit terminal block (TE1).
(U, V, W phases)
2.
The servo motor power line cover is Replace the line.
of servo amplifier.
deteriorated, and causes earthing.
3. The main circuit of the servo
amplifier is broken.
Investigating method
Replace the
servo amplifier.
Disconnect the U, V, and W power
lines from the servo amplifier, and turn
on the servo motor. A. 24 still occurs.
A. 25
1
1
0
Absolute
Absolute position 1. Reduced voltage of super
position erase data in error
capacitor in encoder
2. Battery voltage low
3. Battery cable or battery is
faulty.
A. 30
0
0
1
Regenerative
error
After leaving the alarm
occurring for a few
minutes, switch power
off, then on again.
Ensure to make home
position return again.
Change battery.
Ensure to make
home position
return again.
Power was switched 4. Super capacitor of the absolute
on for the first time
position encoder is not charged
in the absolute
position detection
system.
After leaving the
alarm occurring for
a few minutes, switch
power off, then on
again. Home position
setting must be made
again.
The permissible 1. Wrong setting of parameter No. 0
regenerative
2. Built-in regenerative brake
power of the
resistor or regenerative brake
built-in
option is not connected.
regenerative
brake resistor
3. High-duty operation or continuous
or regenerative
regenerative operation caused the
brake option is
permissible regenerative power of
exceeded.
the regenerative brake option to be
exceeded.
Checking method
Call the status display and check
the regenerative load ratio.
Set correctly.
Regenerative
transistor fault
Connect correctly.
1. Reduce the
frequency of
positioning.
2. Use the
regenerative
brake option of
larger capacity.
3. Reduce the load.
4. Power supply voltage
increased to 260V or more.
Review power
supply.
5. Regenerative transistor faulty.
Checking method
1) The regenerative brake option
has overheated abnormally.
2) The alarm occurs after removal of
the built-in regenerative brake resistor
or regenerative brake option.
Change the servo
amplifier.
6. Built-in regenerative brake
resistor or regenerative brake
option faulty.
Change servo amplifier
or regenerative brake
option.
8– 8
8. TROUBLESHOOTING
Alarm Code
Display CN1B- CN1A- CN1A19 pin 18 pin 19 pin
A. 31
A. 32
1
1
0
0
1
0
Name
Overspeed
Overcurrent
Definition
Speed has
exceeded the
instantaneous
permissible
speed.
Cause
Action
1. Input command pulse frequency Set command
exceeded the permissible
pulses correctly.
instantaneous speed frequency.
2. Small acceleration/deceleration Increase the
time constant caused overshoot acceleration/
to be large.
deceleration time
constant.
3. Servo system is instable to
cause overshoot.
1. Re-set servo
gain to proper
value.
2. If servo gain
cannot be set
to proper value:
1) Reduce load
inertia moment
ratio; or
2) Reexamine
acceleration/
deceleration
time constant.
4. Electronic gear ratio is large
(parameters No. 3, 4).
Set correctly.
5. Encoder faulty.
Change the
servo motor.
Current that flew 1. Short occurred in servo amplifier Correct the wiring.
is higher than
output phases U, V and W.
the permissible
Change the servo
2. Transistor (IPM) of the servo
current of the
amplifier.
amplifier faulty.
servo amplifier.
Checking method
Alarm (A. 32) occurs if power is
switched on after U,V and W
connectors are disconnected.
3. Ground fault occurred in servo
Correct the wiring.
amplifier output phases U, V and W.
4. External noise caused the overcurrent Take noise suppression
detection circuit to misoperate.
measures.
A. 33
0
0
1
Overvoltage
Converter bus
voltage exceeded
400V.
1. Lead of built-in regenerative
brake resistor or regenerative
brake option is open or
disconnected.
1. Change lead.
2. Connect
correctly.
2. Regenerative transistor faulty.
Change servo
amplifier.
3. Wire breakage of built-in
regenerative brake resistor or
regenerative brake option
1. For wire breakage of
built-in regenerative
brake resistor,
change servo
amplifier.
2. For wire breakage of
regenerative brake
option, change
regenerative brake
option.
4. Capacity of built-in regenerative Add regenerative
brake option or
brake resistor or regenerative
increase capacity.
brake option is insufficient.
8– 9
8
8. TROUBLESHOOTING
Alarm Code
Display CN1B- CN1A- CN1A19 pin 18 pin 19 pin
A. 35
1
0
1
Name
Command
pulse alarm
Definition
Input command
pulses are too
high.
Cause
1. Command pulse frequency is
too high.
Action
Reduce the command
pulse frequency to
proper value.
2. Noise entered command pulses. Take measures
against noise.
3. Command unit faulty.
A. 37
0
0
0
Parameter
error
Parameter
1. Servo amplifier fault caused the Change the
setting is wrong.
parameter setting to be
servo amplifier.
rewritten.
2. Regenerative brake option not
used with servo amplifier was
selected in parameter No. 0.
A. 46
0
1
1
Servo motor
overheat
Servo motor
1. Ambient temperature of servo
temperature rise
motor is over 40°C.
actuated the
thermal
protector.
2. Servo motor is overloaded.
3. Thermal protector in encoder is
faulty.
A. 50
0
1
1
Overload 1
Change the
command unit.
Load exceeded 1. Servo amplifier is used in
overload
excess of its continuous output
protection
current.
characteristic of
servo amplifier.
Load ratio 300%:
2.5s or more
Load ratio 200%:
100s or more 2. Servo system is instable and
hunting.
3. Machine struck something.
8– 10
Set parameter
No. 0 correctly.
Review environment
so that ambient
temperature is
0 to 40°C.
1. Reduce load.
2. Review operation
pattern.
3. Use servo motor
that provides
larger output.
Change servo
motor.
1. Reduce load.
2. Review operation
pattern.
3. Use servo motor
that provides
larger output.
1. Repeat
acceleration/
deceleration to
execute auto
tuning.
2. Change auto
tuning response
level setting.
3. Set auto tuning to
OFF and make
gain adjustment
manually.
1. Review
operation
pattern.
2. Install limit
switches.
8. TROUBLESHOOTING
Alarm Code
Display CN1B- CN1A- CN1A19 pin 18 pin 19 pin
A. 50
0
1
1
Name
Definition
Overload 1
Cause
Action
4. Wrong connection of servo
motor. Servo amplifier's output
terminals U, V, W do not match
servo motor's input terminals
U, V, W.
Connect correctly.
5. Encoder faulty.
Change the servo
motor.
Checking method
When the servo motor shaft is
rotated slowly with the servo off,
the cumulative feedback pulses
should vary in proportion to the
rotary angle. If the indication
skips or returns midway, the
encoder is faulty.
A. 51
0
1
1
Overload 2
Machine collision 1. Machine struck something.
or the like caused
max. output
current to flow
successively for
several seconds.
Servo motor
2. Wrong connection of servo
locked:
motor. Servo amplifier's output
1s or more
terminals U, V, W do not match
servo motor's input terminals
U, V, W.
1. Review
operation
pattern.
2. Install limit
switches.
Connect correctly.
3. Servo system is instable and
hunting.
1. Repeat acceleration/
deceleration to execute
auto tuning.
2. Change auto tuning
response level setting.
3. Set auto tuning to OFF
and make gain
adjustment manually.
4. Encoder faulty.
Change the servo
motor.
Checking method
When the servo motor shaft is
rotated slowly with the servo off,
the cumulative feedback pulses
should vary in proportion to the
rotary angle. If the indication
skips or returns midway, the
encoder is faulty.
8
8– 11
8. TROUBLESHOOTING
Alarm Code
Display CN1B- CN1A- CN1A19 pin 18 pin 19 pin
A. 52
1
0
1
Name
Error
excessive
Definition
Cause
Droop pulse value 1. Acceleration/deceleration time
of the deviation
constant is too small.
counter exceeded
2. Torque limit value (parameter
80k pulses.
No. 28) is too small.
3. Start not allowed because of
torque shortage due to power
supply voltage drop.
Action
Increase the acceleration/
deceleration time constant.
Increase the
torque limit value.
1. Review the
power supply
capacity.
2. Use servo motor
that provides larger
output.
4. Position control gain 1
Increase set value
(parameter No. 6) value is small. and adjust to ensure
proper operation.
5. Servo motor shaft was rotated
by external force.
1. When torque is
limited, increase
the limit value.
2. Reduce load.
3. Use servo
motor that provides larger
output.
6. Machine struck something.
1. Review operation pattern.
2. Install limit
switches.
7. Encoder faulty.
Change the servo
motor.
8. Wrong connection of servo motor. Connect correctly.
Servo amplifier's output terminals
U, V, W do not match servo motor's input terminals U, V, W.
A. 8E
8888
0
0
0
0
0
0
RS-232C
alarm
Watchdog
Communication
fault occurred
between servo
amplifier and
personal computer.
1. Communication connector is disconnected. Connect correctly.
2. Communication cable faulty.
(Wire breakage or short)
Repair or change
cable.
3. Personal computer faulty.
Change personal
computer.
CPU, parts faulty Fault of parts in servo amplifier
Checking method
Alarm (8888) occurs if power is
switched on after CN1A, CN1B,
and CN3 connectors are
disconnected.
8– 12
Change servo
amplifier.
8. TROUBLESHOOTING
8-2-3 Warnings
If a warning occurs, the servo amplifier does not go into a servo off status. However, if operation is
continued in the warning status, an alarm may occur or proper operation not performed. Eliminate
the cause of the warning according to this section. Use the optional set-up software to refer to the
cause of warning.
Display
A. 92
Name
Open battery
cable warning
Definition
Cause
Absolute position detection
system battery voltage is low.
1. Battery cable is open.
Action
Repair cable or change
battery.
2. Battery voltage dropped to 2.8V Change battery.
or less.
A. 96
Zero setting error
1. For incremental, return to
origin point could not be
performed.
2. For absolute position
detection system, origin
point setting could not be
performed.
1. Command pulses were input
after droop pulses had been
cleared.
2. Droop pulses remaining are
greater than in-position range
setting.
Make provisions so that
command pulses are
not input after droop
pulses are cleared.
3. Creep speed is high.
Reduce creep speed.
A. 9F
Battery warning
Absolute position detection
system battery voltage is low.
Battery voltage dropped to 3.2V
or less.
Change battery.
A. E0
Excessive regenerative load warning
There is a possibility that regenerative power may exceed
permissible regenerative power
of built-in regenerative brake
resistor or regenerative brake
option.
Regenerative power increased to 1. Reduce frequency
85% or more of permissible regeof positioning.
nerative power of built-in regene- 2. Change regenerative
rative brake resistor or regeneratbrake option for the
ive brake option.
one with larger
capacity.
Checking method
3. Reduce load.
Call the status display and
check regenerative load ratio.
A. E1
Overload warning
There is a possibility that overload alarm 1 or 2 may occur.
Load increased to 85% or more of Refer to A. 50, 51.
overload alarm 1 or 2 occurrence
level.
Cause, checking method
Refer to A. 50, 51.
1. Noise entered the encoder.
Take noise suppression measures.
A. E3
Absolute position
counter warning
Absolute position encoder
pulses faulty.
2. Encoder faulty.
Change servo motor.
A. E5
ABS time-out
warning
Absolute position data transfer
fault
1. Programmable controller's
ladder program error
Correct program.
2. Mis-wiring of CN1B-9 pin,
CN1B-6 pin
Connect correctly.
A. E6
Servo emergency
stop
EMG-SG are open.
External emergency stop was
made valid. (EMG-SG were
opened.)
After ensuring safety,
reset emergency stop.
A. E9
Main circuit off
warning
Servo on signal (SON) was
switched on with main circuit
power off.
Switch on main circuit
power.
A. EA
ABS servo on
warning
Servo on signal (SON) was
switched on with main circuit
power off.
Servo on signal (SON) was not
switched on within 1s after
servo amplifier went into
absolute position data transfer
mode.
1. Programmable controller's
ladder program error
Correct program
2. Mis-wiring of SON signal
Connect correctly.
8– 13
8
CHAPTER 9
CHARACTERISTICS
This chapter provides various characteristics and data of the servo.
9-1
9-2
9-3
9-4
9-5
Overload protection characteristics
Losses generated in the servo amplifier
Electromagnetic brake characteristics
Dynamic brake characteristics
Vibration rank
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
9– 1
9.CHARACTERISTICS
9-1 Overload protection characteristics
An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo
amplifier from overloads. The operation characteristics of the electronic thermal relay are shown
below.Overload 1 alarm (A. 50) occurs if overload operation performed is above the electronic
thermal relay protection curve shown below. Overload 2 alarm (A. 51) occurs if the maximum current flew continuously for several seconds due to machine collision, etc. Use the equipment on the
left-hand side area of the continuous or broken line in the graph.
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.
(1) MR—J2—10A to MR—J2—100A
1000
During rotation
100
Operation time [s]
a: HC-MF series
HA-FF series
(300W or more)
HC-SF series
HC-RF series
During stop
10
1
0.1
0
50
150
200
250
300
Load ratio [%]
1000
During rotation
100
Operation time [s]
b: HA-FF series
(200W or less)
10
1
During stop
0.1
0
50
100
150
200
Load ratio [%]
9– 2
250
300
9.CHARACTERISTICS
(2) MR—J2—200A and MR—J2—350A
1000
HC-SF Series
HC-RF Series
HC-UF Series
During rotation
Operation time [s]
100
During stop
10
1
0.1
0
50
100
150
200
250
300
Load ratio [%]
9
9– 3
9.CHARACTERISTICS
9-2 Losses generated in the servo amplifier
(1) Amount of heat generated by the servo amplifier
Table 9-1 indicates servo amplifiers' power supply capacities and losses generated under rated
load. For thermal design of an enclosure, use the values in Table 9-1 in consideration for the
worst operating conditions. The actual amount of generated heat will be intermediate between
values at rated torque and zero torque according to the duty used during operation. When the
servo motor is run at less than the maximum speed, the power supply capacity will be smaller
than the value in the table, but the servo amplifier's generated heat will not change.
Table 9-1 Power Supply Capacity and Generated Heat Per Servo Amplifier at Rated Output
Servo Amplifier
MR-J2-10A(1)
MR-J2-20A(1)
MR-J2-40A(1)
MR-J2-60A
MR-J2-70A
MR-J2-100A
MR-J2-200A
(Note 2) Servo Amplifier-Generated Heat Area Required for
Heat Dissipation
At rated torque With servo off
[W]
[W]
[m 2 ]
[ft 2 ]
Servo Motor
(Note 1) Power
Supply
Capacity [kVA]
HC-MF053·13
0.3
25
15
0.5
5.4
HA-FF053·13
0.3
25
15
0.5
5.4
HC-UF13
0.3
25
15
0.5
5.4
HC-MF23
0.5
25
15
0.5
5.4
HA-FF23
0.5
25
15
0.5
5.4
HC-UF23
0.5
25
15
0.5
5.4
HC-MF43
0.9
35
15
0.7
7.5
HA-FF33
0.7
35
15
0.7
7.5
HA-FF43
0.9
35
15
0.7
7.5
HC-UF43
0.9
35
15
0.7
7.5
HA-FF63
1.1
40
15
0.8
8.6
HC-SF52
1.0
40
15
0.8
8.6
HC-SF53
1.0
40
15
1.0
10.8
HC-MF73
1.3
50
15
1.0
10.8
HC-UF72·73
1.3
50
15
1.0
10.8
HC-SF81
1.7
50
15
1.0
10.8
HC-SF102·103
1.7
50
15
1.0
10.8
HC-SF121
2.1
90
20
1.8
19.4
HC-SF201
3.5
90
20
1.8
19.4
HC-SF152·153
2.5
90
20
1.8
19.4
HC-SF202·203
3.5
90
20
1.8
19.4
HC-RF103
1.7
90
20
1.8
19.4
HC-RF153
2.5
90
20
1.8
19.4
HC-UF152
2.5
90
20
1.8
19.4
HC-SF301
4.8
120
20
2.7
29.1
HC-SF352·353
5.5
130
20
2.7
29.1
HC-RF203
3.5
90
20
1.8
19.4
HC-UF202
3.5
90
20
1.8
19.4
MR-J2-350A
Note: 1. Note that the power supply capacity will vary according to the power supply impedance.
2. Heat generated during regeneration is not included in the servo amplifier-generated heat.
To calculate heat generated by the regenerative brake option, use Equation 6-1 in Section 6-1-1.
9– 4
9.CHARACTERISTICS
(2) Heat dissipation area for enclosed servo amplifier
The enclosed control box (hereafter called the control box) which will contain the servo amplifier should be designed to ensure that its temperature rise is within +10°C at the ambient temperature of 40°C. (With a 5°C (41°F) safety margin, the system should operate within a
maximum 55°C (131°F) limit.) The necessary enclosure heat dissipation area can be calculated by Equation 9-1:
A =
P
K • ∆T
........................................
(9-1)
where, A: Heat dissipation area [m 2 ]
P: Loss generated in the control box [W]
∆T: Difference between internal and ambient temperatures [°C]
(Outside)
(Inside)
Air flow
K: Heat dissipation coefficient [5 to 6]
When calculating the heat dissipation area with Fig. 9-1 Temperature Distribution in
Equation 9-1, assume that P is the sum of all
Enclosure
losses generated in the enclosure. Refer to When air flows along the outer wall of the
Table 9-1 for heat generated by the servo am- enclosure, effective heat exchange will
plifier. "A" indicates the effective area for heat be possible, because the temperature
dissipation, but if the enclosure is directly in- slope inside and outside the enclosure
stalled on an insulated wall, that extra amount will be steeper.
must be added to the enclosure's surface area.
The required heat dissipation area will vary wit
the conditions in the enclosure. If convection in the enclosure is poor and heat builds up,
effective heat dissipation will not be possible. Therefore, arrangement of the equipment in
the enclosure and the use of a fan should be considered.
Table 9-1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is operated at the ambient temperature of 40°C (104°F) under rated load.
9
9– 5
9.CHARACTERISTICS
9-3 Electromagnetic brake characteristics
The electromagnetic brake is designed to hold a load. Do not use it for
braking.
CAUTION
The characteristics of the electromagnetic brake provided for the servo motor with electromagnetic
brake are indicated below:
Though the brake lining may rattle during low-speed operation, it poses no functional problem.
Though the brake lining may rattle during operation, it poses no functional problem.A leakage
magnetic flux will occur at the shaft end of the servo motor equipped with electromagnetic brake.
(1) Characteristics
Table 9-2 Electromagnetic Brake Characteristics
HC-MF Series
Servo Motor
053B
13B
Item
23B
43B
HA-FF Series
73B
053B
13B
23B
33B
43B
63B
HC-SF
81B
52B to 152B
53B to 153B
Series HC-RF Series
121B to 301B 103B
202B to 352B to 203B
202B·352B
Spring-loaded safety brake
(Note 1)
Type
(Note 4)
Rated voltage
24VDC
0.26
0.33
0.42
0.22
0.31
0.46
0.8
1.4
0.8
Excitation coil resistance at 20°C [Ω]
91
73
57
111
78
52
29
16.8
30
Capacity [W]
6.3
7.9
10
7
7.4
11
19
34
19
ON current [A]
0.18
0.18
0.2
0.15
0.2
0.3
0.2
0.4
0.25
OFF current [A]
0.06
0.11
0.12
0.06
0.06
0.1
0.08
0.2
0.085
Rated current at 20°C [A]
Static friction torque
[N•m]
0.32
1.3
2.4
0.39
1.18
2.3
8.3
43.1
6.8
[oz•in]
45.3
184.2
340
55.3
167
326
1176
6108
964
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.1
0.03
(Note 2) Release delay time [S]
Braking delay time
AC off (Fig. a)
0.08
0.1
0.12
0.08
0.1
0.12
0.12
0.12
0.12
(Note 2) [s]
DC off (Fig.s b, c)
0.01
0.02
0.03
0.01
0.03
0.03
0.03
0.03
0.03
5.6
22.0
64.0
3.9
18.0
46.0
400
4500
400
793.6
3117.6
9069.3
552.7
2550.7
56
220
640
39
180
460
7936
31176
90693
5527
25507
65186
[J]
Per braking
[oz•in]
Permissible braking work
Per hour
[J]
[oz•in]
Brake looseness at servo motor shaft
[degrees]
Number of braking
cycles [times]
Brake life
[J]
(Note 3)
Work per
braking
[oz•in]
6518.6 56683.3 637687.1 56683.3
4000
45000
4000
566833 6376871 566833
0.19 to 2.5 0.12 to 1.2 0.1 to 0.9 0.3 to 3.5 0.2 to 2.0 0.2 to 1.3 0.2 to 0.6 0.2 to 0.6 0.2 to 0.6
20000
20000
20000
30000
30000
30000
20000
20000
20000
4
15
32
4
18
47
200
100
200
567
2126
4535
567
2551
6660
28342
141708
28342
9– 6
9.CHARACTERISTICS
HC-UF Series
Servo Motor
13B
Item
23B
43B
73B
72B
152B
202B
Spring-loaded safety brake
(Note 1)
Type
(Note 4)
Rated voltage
0
24V -10%
DC
Rated current at 20°C [A]
Excitation coil resistance at 20°C [Ω]
Capacity [W]
ON current [A]
0.26
0.33
0.42
0.8
1.4
91
73
57
29
16.8
6.3
7.9
10
19
34
0.18
0.18
0.2
0.2
0.4
0.06
0.11
0.12
0.08
0.2
[N•m]
0.32
1.3
2.4
8.3
43.1
[oz•in]
45
184
340
1176
6108
(Note 2) Release delay time [S]
0.03
0.03
0.03
0.04
0.1
Braking delay time
AC off (Fig. a)
0.08
0.1
0.12
0.12
0.12
(Note 2) [s]
DC off (Fig.s b, c)
0.01
0.02
0.03
0.03
0.03
5.6
22
64
400
4500
793.6
3117.6
56
220
640
7936
31176
90693
OFF current [A]
Static friction torque
[J]
Per braking
[oz•in]
Permissible braking work
Per hour
[J]
[oz•in]
Brake looseness at servo motor shaft
[degrees]
Brake life
(Note 3)
4000
45000
566833 6376871
0.19 to 2.5 0.12 to 1.2 0.1 to 0.9 0.2 to 0.6 0.2 to 0.6
Number of braking
cycles [times]
Work per
braking
9069.3 56683.3 637687.1
[J]
[oz•in]
20000
20000
20000
20000
20000
4
15
32
200
1000
567
2126
4535
28342
141708
Note: 1. There is no manual release mechanism. When it is necessary to hand-turn the servo
motor shaft for machine centering, etc., use a separate 24VDC power supply to release
the brake electrically.
2. The value for initial ON gap at 20°C.
3. The brake gap will increase as the brake lining wears, but the gap is not adjustable. The
brake life indicated is the number of braking cycles after which adjustment will be required.
4. 24VDC of the internal power output for interface (VDD) cannot be used. Always use a
separate power supply.
9
9– 7
9.CHARACTERISTICS
(2) Electromagnetic brake power supply
24VDC of the internal power output for interface (VDD) cannot be used. Prepare the following
power supply for use with the electromagnetic brake only.Examples of connection of the brake
exciting power supply are shown in Fig. 9-3 (a) to (c). (a) is for AC off, and (b) and (c) for DC
off. When DC is switched off, the braking delay time will be shortened, but a surge absorber
must be installed on the brake terminal. For the selection of the surge absorber, refer to Section 6-2-5.
28V AC
100V AC
or
200V AC
RF
Switch
Electromagnetic
brake
100V AC
or
200V AC
RF
Electromagnetic
brake
Switch
T
T
VAR
(b)
(a)
T
: Transformer
RF : Rectifier
VAR : Surge absorber
Electromagnetic
brake
Switch
24V DC
VAR
(c)
Fig. 9-2 Connection Examples
(3) Coasting distance
At an emergency stop, the servo motor will decelerate to a stop in the pattern shown in Fig. 94. Here, the maximum coasting distance (during fast feed), Lmax, will be the area shown with
the diagonal line in the figure and can be calculated approximately with Equation 9-2. The
effect of the load torque is greater near the stopping area. When the load torque is large, the
servo motor will stop faster than the value obtained in the equation.
Emergency stop
Brake current
t1
t2
t3
Machine speed
V0
Fig. 9-3 Coasting Distance at Emergency Stop
9– 8
9.CHARACTERISTICS
Lmax =
Vo
•
60
t1 + t2 +
t3
2
........................................................ (9-2)
Where,
Lmax: Maximum coasting distance
Vo:
Machine's fast feed speed
t 1:
Delay time of control section
t 2:
Braking delay time of brake (Note)
t 3:
Braking time
t3 =
JL
JM
No
TL
TB
[mm]
[mm/min]
[s]
[s]
[s]
(JL + JM) • NO
9.55 x 104 • (TL + 0.8TB)
: Load inertia moment converted into equivalent
value on servo motor shaft
: Servo motor inertia moment
: Servomotor speed during fast feed
: Load torque converted into equivalent
value on servo motor shaft
: Brake static friction torque (Note)
[kg • cm 2 ]
[kg • cm 2 ]
[r/min]
[N • m]
[N • m]
Note: t 2 and TB are the values noted in Table 9-2 Characteristics. JL is the machine's inertia moment at the servo motor shaft.
9
9– 9
9.CHARACTERISTICS
9-4 Dynamic brake characteristics
When an alarm, emergency stop or power failure occurs, the dynamic brake is operated to bring
the servo motor to a sudden stop. Fig. 9-5 shows the pattern in which the servo motor comes to a
stop when the dynamic brake is operated. Use Equation 9-3 to calculate an approximate coasting
distance to a stop. The dynamic brake time constant τ varies with the servo motor and machine
operation speeds as indicated in Table 9-3 and as shown in Fig. 9-6 to Fig. 9-12.
Emergency stop (EMG)
ON
OFF
Time constant τ
V0
Machine speed
Time
te
Fig. 9-4 Dynamic Brake Operation Diagram
Lmax =
Vo
60
•
te + τ (1 +
JL
)
JM
.................................................... (9-3)
Lmax :
Vo
:
JM :
JL
:
0.02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002
0
0
[mm][in]
[mm/min][in/min]
[kg • cm 2][oz • in 2]
[kg • cm 2][oz • in 2]
[s]
[s]
0.04
Time constant τ [s]
Time constant τ [s]
τ
te
Maximum coasting distance
Machine rapid feedrate
Servo motor inertial moment
Load inertia moment converted into equivalent value
on servo motor shaft
: Brake time constant (Fig. 9-6 to 9-12 • Table 9-3)
: Delay time of control section (Fig. 9-5)
(There is internal relay delay time of about 30ms.)
23
73
053
121
0.03
201
0.025
0.02
301
0.015
0.01
81
0.005
43
500
0.035
13
1000 1500 2000 2500 3000
Speed [r/min]
0
Fig. 9-5 HC-MF Dynamic Brake
Time Constant
0
50
500
Speed [r/min]
1000
Fig. 9-6 HC-SF1000r/min Dynamic
Brake Time Constant
9– 10
0.045
0.12
0.04
0.035
0.1
0.03
Time constant τ [s]
Time constant τ [s]
9.CHARACTERISTICS
352 202
0.025
52
0.02
0.015
0.01
0.005
0
0
102
152
0.04
103
50
0
153
500 1000 1500 2000 2500 3000
Speed [r/min]
Fig. 9-8 HC-SF3000r/min Dynamic
Brake Time Constant
103
153
203
500
353
0.02
Time constant τ [s]
0.004
0.002
0
0
1000 1500 2000 2500 3000
Speed [r/min]
0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0
72
152
202
0
1000 1500
500
Speed [r/min]
2000
Fig. 9-10 HC-UF2000r/min Dynamic
BrakeTime Constant
Fig. 9-9 HC-RF Dynamic Brake
Time Constant
0.07
73
0.06
Time constant τ [s]
Time constant τ [s]
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.06
0
Fig. 9-7 HC-SF2000r/min Dynamic
Brake Time Constant
53
0.08
2000
1000 1500
500
Speed [r/min]
203
0.05
0.04
0.03
Table 9-3 HA-FF Dynamic Brake
Time Constant
43
0.02
23
13
0.01
0
0
50 500 1000 15002000 2500 3000
Speed [r/min]
Fig. 9-11 HC-UF3000r/min Dynamic
Brake Time Constant
9– 11
Servo Motor
Brake Time Constant τ [s]
HA—FF053 · 13
0.02
HA—FF23
0.05
HA—FF33
0.07
HA—FF43
0.09
HA—FF63
0.12
9
9.CHARACTERISTICS
Use the dynamic brake at the load inertia
moment indicated on the right. If the load
inertia moment is higher than this value, the
built-in dynamic brake may burn. If there is
a possibility that the load inertia moment
may exceed, contact Mitsubishi.
Servo Amplifier
Load Inertia Moment
Ratio [times]
MR—J2—10A
to
MR—J2—200A
MR—J2—10A1
to
MR—J2—40A1
30
MR—J2—350A
16
9-5 Vibration rank
The vibration rank of the servo motor is V-10 at the rated speed. Measure vibration in the following
position with the servo motor installed as shown below.
Servo motor
Top
Measuring position
Bottom
Servo Motor Vibration
Measuring Conditions
9– 12
CHAPTER 10
SPECIFICATIONS
This chapter gives the specifications of the servo.
10-1
10-2
10-3
10-4
10-5
Standard specifications
Torque characteristics
Servo motors with reduction gears
Servo motors with special shafts
Outline dimension drawings
10-5-1 Servo amplifiers
10-5-2 Servo motors
10-5-3 Servo motors (in inches)
10-5-4 Cable side plugs
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
10– 1
10. SPECIFICATIONS
10-1 Standard specifications
(1) Servo amplifiers
Servo Amplifier
MR-J2-
Item
10A
20A
40A
60A
70A
100A
Three-phase 200 to 230VAC, 50/60Hz
Voltage/frequency
or single-phase 230VAC, 50/60Hz (Note1)
Power
supply Permissible voltage fluctuation Three-phase 200 to 230VAC: 170 to 253VAC
Single-phase 230VAC: 207 to 253VAC
Permissible frequency fluctuation
200A
350A
10A1
20A1
40A1
Three-phase 200 to 230VAC, 50/60Hz Single-phase 100 to 120VAC, 50/60Hz
Three-phase 170 to 253VAC
Single-phase 85 to 127VAC
±5%
Sine-wave PWM control, current control system
Built-in
System
Dynamic brake
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic thermal relay), servo motor overheat protection, encoder
fault protection, regenerative fault protection, undervoltage, instantaneous power failure protection, overspeed protection, excessive error protection
Protective functions
250Hz or more
0 to ±10VDC/max. current (except torque control mode)
400kpps (for differential receiver), 200kpps (for open collector)
Speed frequency response
Torque limit input
Max. input pulse frequency
Position
control Command pulse multiplying factor
specifi- In-position range setting
cations Error excessive
Electronic gear A/B, A, B: 1 to 32767, 1/50 < A/B < 50
0~±10000 pulse
±80 kpulse
Analog speed command 1: 1000, internal speed command 1:5000
Speed control range
Speed Analog speed command input
control
specifications Speed fluctuation ratio
DC0~±10V
-0.03% or less (load fluctuation 0 to 100%)
±0.02% or less (power fluctuation ±10%)
±3% or less
Torque
control Analog torque command input
specifications
DC0 to ±8V
[A]
Structure
Environmental conditions
0.7
[kg]
[lb]
Weight
1.5
0.7
1.5
1.1
2.4
1.1
2.4
Open (IP00)
Refer to (1) in Section 4-1.
1.7
1.7
2.0
3.75
3.75
4.4
2.0
4.4
0.7
1.5
0.7
1.5
1.1
2.4
Note: The single-phase 230VAC power supply applies to a combination with the HC-MF/HA-FF series servo motor.
(2) Servo motors
Servo Motor
Item
053
Applicable servo amplifier
(Note 1)
Continuous
running duty
MR–J2–
Rated output
Rated torque
[kW]
[N·m]
[oz·in]
22.7
Maximum speed
Permissible instantaneous speed [r/min]
[N·m]
Maximum torque
[oz·in]
Power rate at continuous rated torque [kW/s]
J[kg·cm 2 ]
WK[oz·in]
(Note 7)
Inertia moment
13
10A(1)
0.05
0.1
0.16
0.32
Servo amplifier' built-in
regenerativebrake resistor
45.3
90.7
3000
4500
5175
184
0.48
0.95
68.0
13.47
0.019
135
34.13
0.03
0.104
0.16
1.9
3.8
7.2
269
538
1020
41.8 116.55 94.43
0.088 0.143
0.6
0.48
0.78
3.28
(Note 5) (Note 5) (Note 5) 1010
400
3000
600
2400
0.3
[A]
0.3
0.85
2.6
[A]
(Note 2) Environmental conditions
(Note 7) Weight
[kg]
[lb]
0.4
0.53
0.99
1.45
0.88
1.17
2.18
3.2
63
60A
0.1
0.32
0.2
0.64
0.3
0.95
0.4
1.3
0.6
1.9
22.7
45.3
90.7
135
3000
4000
4600
184
269
0.48
0.95
1.9
2.9
3.8
5.7
68.0
4.0
0.063
135
10.2
0.095
269
11.7
0.35
411
18.1
0.50
538
17.2
0.98
808
30.1
1.2
0.344
0.52
1.91
2.73
5.36
6.56
320
150
120
950
3200
450
1500
360
1200
0.7
1.9
5.7
0.9
2.5
7.5
1.1
3.6
10.8
(Note 5) (Note 5) (Note 5)
1.3
0.5
0.9
5.1
1.5
2.8
18
5.0
9.0
Encoder (resolution
Encoder
Totally-enclosed, self-cooled
(protection type: IP44 with the
exception of through-shaft portion(Note8))
Structure
33
43
40A(1)
10 times or less
(Note 5)
[kVA]
23
20A(1)
0.05
0.16
2.4
340
30 times or less
MR–RB032(30W)
MR–RB12(30W)
(Note 3) Power supply capacity
Rated current
Maximum current
Speed/position detector
Accessories
053
13
10A(1)
73
70A
0.75
0.4
1.3
Recommended ratio of load inertia moment to
servo motor shaft inertia moment (Note 6)
(Note 4)
Regenerative
brake duty
[times/min]
23
43
20A(1) 40A(1)
0.2
0.64
[r/min]
[r/min]
Rated speed (Note 1)
HA-FF Series
(Low inertia, middle capacity)
HC-MF Series
(Ultra low inertia, small capacity)
0.3
0.3
0.5
0.6
1.1
1.3
1.8
3.3
3.9
8192 pulses/rev)
Encoder, V ring
Totally-enclosed, self-cooled (protection type: IP44)
Refer to (1), Section 4-2.
1.3
1.5
2.3
3.0
6.6
10– 2
2.87
3.31
5.07
2.6
4.2
4.8
5.73
9.26
10.6
10. SPECIFICATIONS
Servo Motor
Item
Applicable servo
amplifier
(Note 1)
Continuous
running duty
MR–J2–
[kW]
[N • m]
Rated output
Rated torque
[oz • in]
(Note 1)Rated speed
Maximum speed
Permissible instantaneous speed
[r/min]
[r/min]
[r/min]
[N • m]
Maximum torque
[oz • in]
[kW/s]
Power rate at continuous rated torque
[x10-4kg • cm2]
(Note 7)
J
Inertia moment
[oz • in2]
WK2
HC-SF 1000r/min Series
(Middle inertia, middle capacity)
81
121
201
301
52
102
152
202
352
100A
200A
200A
350A
60A
100A
200A
200A
350A
0.85
8.12
1151
1.2
2.0
11.5
19.1
1630
2707
1000
3.0
28.6
4053
0.5
2.39
339
1.0
4.78
677
1.5
7.16
1015
2000
2.0
9.55
1353
3.5
16.7
2367
1500
1725
1200
1380
24.4
3458
32.9
20.0
109
(Note 6)Recommended ratio of load inertia
moment to servo motor shaft inertia moment
MR–RB032(30W)
MR–RB12(100W)
MR–RB32(300W)
MR–RB30(300W)
MR–RB50(500W)
(Note 3) Power supply capacity
Rated current
Maximum current
Speed/position detector
Accessories
57.3
8120
44.5
82
448
140
70
220
740
2220
110
100
85.9
12173
81.3
101
552
7.16
1015
8.7
6.6
36.1
[kVA]
[A]
[A]
(Note 2) Environmental conditions
[kg]
[lb]
14.4
2041
16.7
13.7
74.9
2500
2850
21.6
3061
25.6
20.0
109
28.5
4039
21.5
4.5
232
50.1
7100
34.1
82.0
448
15 times or less
84
56
165
560
350
1040
330
550
Structure
(Note 7) Weight
34.4
4875
30.9
42.5
232
3000
345
15 times or less
Servo amplifier' built-in
regenerative brake resistor
(Note 4)
Regenerative
brake duty
[times/min]
HC-SF 2000r/min Series
(Middle inertia, middle capacity)
250
430
1.5
5.1
15.3
2.1
3.5
4.8
7.1
9.6
16
21.3
28.8
48
Encoder (resolution : 16384 pulses/rev)
Encoder • oil seal
Totally-enclosed, self-cooled
(protection type: IP65)
Refer to (1), Section 4-2.
9.0
12
19
23
19.8
26.5
41.9
50.7
54
136
64
408
680
192
320
31
80
270
810
95
158
1.0
1.7
2.5
3.5
5.5
3.2
6
9
11
17
9.6
18
27
33
51
Encoder (resolution : 16384 pulses/rev)
Encoder • oil seal
Totally-enclosed, self-cooled
(protection type: IP65)
5.0
11.0
Refer to (1), Section 4-2.
7.0
9.0
12.0
15.4
19.8
26.5
19.0
41.9
10
10– 3
10. SPECIFICATIONS
HC-SF 3000r/min Series
(Middle inertia, middle capacity)
Servo Motor
Item
Applicable servo
amplifier
(Note 1)
Continuous
running duty
MR–J2–
[kW]
[N • m]
Rated output
Rated torque
[oz • in]
103
153
60A
100A
200A
200A
0.5
1.59
225
1.0
3.18
451
1.5
4.78
677
3000
3000
3450
4.77
676
3.8
6.6
36.1
9.55
1353
7.4
13.7
74.9
14.3
2026
11.4
20.0
109.3
[r/min]
[r/min]
(Note 1)Rated speed
Maximum speed
Permissible instantaneous speed
[r/min]
[N • m]
Maximum torque
53
[oz • in]
[kW/s]
Power rate at continuous rated torque
(Note 7)
[×10-4kg • cm2]
J
Inertia moment
2
[oz • in2]
WK
(Note 6)Recommended ratio of load inertia
moment to servo motor shaft inertia moment
MR–RB032(30W)
MR–RB12(100W)
MR–RB32(300W)
MR–RB30(300W)
MR–RB50(500W)
(Note 3) Power supply capacity
Rated current
Maximum current
Speed/position detector
Accessories
[kVA]
[A]
[A]
Structure
(Note 2) Environmental conditions
(Note 7) Weight
103
153
203
350A
200A
200A
350A
2.0
6.37
903
3.5
11.1
1573
1.0
3.18
451
1.5
4.78
677
3000
4500
5175
2.0
6.37
903
19.1
2707
9.5
42.5
232.4
33.4
4733
15.1
82.0
448.3
7.95
1127
67.4
1.5
8.2
11.9
1686
120
1.9
10.4
15.9
2253
176
2.3
12.6
(Note9) 203 (Note9) 353
15 times or less
Servo amplifier' built-in
regenerative brake resistor
(Note 4)
Regenerative
brake duty
[times/min]
HC-RF Series
(Low inertia, small capacity)
[kg]
[lb]
25
24
73
250
36
120
360
82
5 times or less
24
14
1090
860
710
250
70
42
3270
2580
2130
410
2.5
8.6
25.8
110
3.5
10.4
31.2
70
5.5
16.4
49.2
Refer to (1), Section 4-2.
5.0
7.0
9.0
12
11.0
15.4
19.8
26.5
19
41.9
5450
4300
3550
1.7
1.0
1.8
2.5
3.5
5.3
3.2
6.1
8.8
14
15.9
9.6
18.4
23.4
37
Encoder (resolution : 16384 pulses/rev) Encoder (resolution : 16384 pulses/rev)
Encoder • oil seal
Encoder • oil seal
Totally-enclosed, self-cooled
Totally-enclosed, self-cooled
(protection type: IP65)
(protection type: IP65)
10– 4
Refer to (1), Section 4-2.
3.9
5.0
6.2
8.6
11.0
13.7
10. SPECIFICATIONS
Servo Motor
Item
Applicable servo
amplifier
(Note 1)
Continuous
running duty
MR–J2–
[kW]
[N • m]
Rated output
Rated torque
[oz • in]
[oz • in]
[kW/s]
Power rate at continuous rated torque
[×10-4kg • cm2]
J
(Note 7)
2
Inertia moment
[oz • in2]
WK
(Note 6)Recommended ratio of load inertia
moment to servo motor shaft inertia moment
MR–RB032(30W)
13
23
43
(Note9) 73
70A
200A
350A
10A
20A
40A
70A
0.75
3.58
507
1.5
7.16
1015
2000
3000
3450
2.0
9.55
1353
0.1
0.32
45
0.2
0.4
0.64
1.3
91
184
3000
4500
5175
0.75
2.4
340
10.7
1516
12.3
10.4
56.9
21.6
3061
23.2
22.1
120.8
28.5
4039
23.9
38.2
208.9
0.95
135
15.5
0.066
0.4
1.9
269
19.2
0.241
1.3
7.2
1020
9.66
5.90
32.3
53
124
68
372
[kVA]
[A]
[A]
(Note 2) Environmental conditions
[kg]
[lb]
3.8
538
47.7
0.365
2.0
15 times or less
(Note5) (Note5)
79
87
791
MR–RB12(100W)
MR–RB32(300W)
MR–RB30(300W)
MR–RB50(500W)
Structure
(Note 7) Weight
202
15 times or less
Servo amplifier' built-in
regenerative brake resistor
(Note 3) Power supply capacity
Rated current
Maximum current
Speed/position detector
Accessories
152
[r/min]
[N • m]
(Note 4)
Regenerative
brake duty
[times/min]
72
[r/min]
[r/min]
(Note 1)Rated speed
Maximum speed
Permissible instantaneous speed
Maximum torque
HC-UF 2000r/min Series
HC-UF 3000r/min Series
(Pancake type middle capacity) (Pancake type small capacity)
410
41
1230
4106
62
206
203
620
338
2.5
3.5
0.3
0.5
0.9
1.3
1.3
9.7
14
0.76
1.5
2.8
4.3
5.4
29.1
42
2.5
4.95
9.24
12.9
16.2
Encoder (resolution 16384 pulses/rev) Encoder (resolution : 8192 pulses/rev)
Encoder • oil seal
Encoder • oil seal
Totally-enclosed, self-cooled
Totally-enclosed, self-cooled
(protection type: IP65(Note9)) (protection type: IP65(Note9))
Refer to (1), Section 4-2.
8.0
11.0
16.0
17.6
24.3
35.3
Refer to (1), Section 4-2.
1.7
5.0
1.5
3.7
11.0
3.3
0.8
1.8
Note: 1. When the power supply voltage drops, we cannot guarantee the output and rated speed.
2. When the equipment is to be used in places where it is subjected to oil and/or water, such
as on machine field sites, optional features apply to the equipment. Please contact.
3. The power supply capacity depends on the power supply impedance.
4. The regenerative brake duty indicated is the permissible duty when the servo motor running without load at the rated speed is decelerated to a stop. When a load is connected,
the value in the table is multiplied by 1/(m + 1), where m = load inertia moment/motor
inertia moment. At the speed higher than the rated, the permissible number of times is in
inverse proportion to the square of (running speed/rated speed). When the running speed
varies frequently or when the regenerative mode continues as in vertical feed, calculate
regenerative heat generated during operation. Provisions must be made to keep this generated heat below the permissible value.
5. If the effective torque is within the rated torque range, there are no restrictions on the
regenerative duty.
6. If the load inertia moment ratio exceeds the indicated value, please consult us.
7. When the servo motor is equipped with reduction gear or electromagnetic brake, refer to the
corresponding outline dimension drawing. For the EN Standard- and UL/C-UL Standard-compliant models, please consult us.
8. Except for the shaft-through portion and connector.
9. HC-UF73, HC-SF203, and HC-SF353 may not be connected depending on the production
period of the servo amplifier. For details, contact us.
10– 5
10
10. SPECIFICATIONS
10-2 Torque characteristics
If load is opplied at stop (during servo lock), 70% of the rated torque must
not be exceeded.
CAUTION
(1) HC-MF series
(HC–MF053)
(HC–MF13)
(HC–MF23)
1.0
4.0
Short-duration
operation region
(Note)
Short-duration
operation region
Short-duration operation region
0.5
3.0
Torque [N · m]
1.5
Torque [N · m]
Short-duration operation region
0.4
(HC–MF43)
2.0
0.75
Torque [N · m]
Torque [N · m]
0.6
1.0
0.2
(Note)
0.25
Continuous operation region
0
0
1000 2000 3000 4000 4500
(Note)
0.5
1.0
Continuous operation region
Speed [r/min]
Continuous operation region
0
1000 2000 3000 4000 4500
Continuous operation region
0
1000 2000 3000 4000 4500
Speed [r/min]
Speed [r/min]
1000 2000 3000 4000 4500
Speed [r/min]
(HC–MF73)
(2) HA-FF series
8.0
(HA–FF053)
(HA–FF13)
Short-duration
operation region
1.0
Torque [N · m]
Short-duration
operation region
0.4
6.0
Torque [N · m]
0.6
Torque [N · m]
2.0
Short-duration
operation region
0.75
0.5
Note: The broken line indicates
the torque characteristic
of the servo motor used
with the single-phase
100V power supply series
servo amplifier.
4.0
2.0
Continuous operation region
0.2
0.25
Continuous operation region
0
1000 2000 3000 4000
(HA–FF23)
(HA–FF33)
Short-duration
operation region
(HA–FF63)
(HA–FF43)
3
Torque [N · m]
Torque [N · m]
2.0
1.5
1000 2000 3000 4000
Speed [r/min]
6.0
4.0
Short-duration
operation region
2
1.0
Torque [N · m]
Speed [r/min]
1000 2000 3000 4000 4500
Speed [r/min]
Torque [N · m]
0
0
Continuous operation region
Short-duration
operation region
3.0
2.0
(Note)
(Note)
(Note)
2.0
1
0.5
1.0
Continuous operation region
0
Short-duration
operation region
4.0
1000 2000 3000 4000
Speed [r/min]
Continuous operation region
0
1000 2000 3000 4000
Speed [r/min]
Continuous operation region
Continuous operation region
0
0
1000 2000 3000 4000
Speed [r/min]
1000 2000 3000 4000
Speed [r/min]
Note: The broken line indicates the torque characteristic of the servo motor used with the single-phase 100V
power supply series servo amplifier.
10– 6
10. SPECIFICATIONS
(3) HC-SF series
(HC–SF81)
(HC–SF121)
(HC–SF201)
20
60
Torque [N · m]
40
Torque [N · m]
Torque [N · m]
300
30
Short-duration
operation region
Short-duration
operation region
40
Short-duration
operation region
20
10
20
10
Continuous operation region
0
500
1000
Continuous operation region
0
1500
Speed [r/min]
500
Continuous operation region
0
1000
Speed [r/min]
500
1000
Speed [r/min]
(HC–SF301)
Torque [N · m]
100
75
Short-duration
operation region
50
25
Continuous operation region
0
500
1000
Speed [r/min]
(HC–SF52)
(HC–SF102)
Short-duration
operation region
3
Short-duration
operation region
10
5
Continuous operation region
0
1000
2000
0
3000
(HC–SF202)
8
1000
2000
3000
Speed [r/min]
Continuous operation region
0
1000
2000
3000
Speed [r/min]
(HC–SF352)
60
Torque [N · m]
30
Torque [N · m]
Short-duration
operation region
16
Continuous operation region
Speed [r/min]
Short-duration
operation region
20
10
Short-duration
operation region
40
20
Continuous operation region
0
24
Torque [N · m]
6
(HC–SF152)
15
Torque [N · m]
Torque [N · m]
9
1000
2000
Speed [r/min]
Continuous operation region
0
1000
2000
Speed [r/min]
10– 7
10
10. SPECIFICATIONS
(HC–SF53)
(HC–SF103)
4
2
Short-duration operation region
8
4
Continuous operation region
1000
2000
0
3000
10
5
Continuous operation region
1000
2000
0
3000
Speed [r/min]
(HC–SF203)
1000
2000
3000
Speed [r/min]
(HC–SF353)
39
Torque [N · m]
21
Torque [N · m]
Short-duration
operation region
Continuous operation region
Speed [r/min]
Short-duration
operation region
14
7
Short-duration
operation region
26
13
Continuous operation region
Continuous operation region
0
15
Torque [N · m]
Short-duration operation region
0
(HC–SF153)
12
Torque [N · m]
Torque [N · m]
6
1000
2000
0
3000
Speed [r/min]
1000
2000
3000
Speed [r/min]
(4) HC-RF series
(HC–RF103)
(HC–RF153)
6
3
10
18
Torque [N · m]
Short-duration
operation region
Short-duration
operation region
5
Continuous operation region
0
(HC–RF203)
15
Torque [N · m]
Torque [N · m]
9
1000 2000 3000 4000
Speed [r/min]
Short-duration
operation region
12
6
Continuous operation region
0
Continuous operation region
0
1000 2000 3000 4000
Speed [r/min]
1000 2000 3000 4000
Speed [r/min]
10– 8
10. SPECIFICATIONS
(5) HC-UF series
(HC–UF72)
(HC–UF152)
8
4
30
Short-duration
operation region
16
8
1000
2000
0
1000
Speed [r/min]
0
3000
(HC–UF23)
1.5
1000 2000 3000 4000 4500
Short-duration
operation region
Speed [r/min]
3.0
Short-duration
operation region
2.0
1.0
Continuous operation region
0
3000
4.0
0.5
Continuous operation region
2000
(HC–UF43)
1.0
0.25
1000
Speed [r/min]
Torque [N · m]
Torque [N · m]
Torque [N · m]
2000
2.0
0.5
0
Continuous operation region
Speed [r/min]
1.0
Short-duration
operation region
20
Continuous operation region
3000
(HC–UF13)
Short-duration
operation region
10
Continuous operation region
0.75
Torque [N · m]
Short-duration
operation region
0
(HC–UF202)
24
Torque [N · m]
Torque [N · m]
12
1000 2000 3000 4000 4500
Speed [r/min]
Continuous operation region
0
1000 2000 3000 4000 4500
Speed [r/min]
(HC–UF73)
Torque [N · m]
8
6
Short-duration
operation region
4
2
Continuous operation region
0
1000 2000 3000 4000 4500
Speed [r/min]
10
10– 9
10. SPECIFICATIONS
10-3 Servo motors with reduction gears
Servo motors are available with reduction gears designed for: 1) general industrial machines; and
2) precision applications.
Servo motors with electromagnetic brakes are also available.
(1) Manufacturing range of servo motor with reduction gear
Servo motors with reduction gears that may be manufactured are indicated by symbols (G1 (H),
G2) in the following table. G1 (H) and G2 are symbols appended to the servo motor models.
(Refer to 2), (2) in Section 1-1.)
Reduction Gear Series
Reduction ratio
Servo motor
HC–MF053 to 73
HA–FF053
HA–FF13
HA–FF23
HA–FF33
HA–FF43 • 63
HC–SF52
to 202
HC–SF352
HC–RF103
1) For General Industrial Machines
(Note)
(Note)
(Note)
(Note)
(Note)
1/5 1/6 1/10 1/11 1/12 1/17 1/20 1/29 1/30 1/35
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
G1
(H)
(H)
(H)
(H)
(H)
G1
G1
G1
G1
G1
(H)
(H)
(H)
(H)
(H)
2) For Precision Applications
1/43 1/59 1/5
G2
G2
G2
G2
G2
G2
G1 G1
G2
(H) (H)
G1 G1
G2
(H) (H)
to 203
1/9 1/10
G2
G2
G2
G2
G2
G2
1/15 1/20 1/25 1/29 1/45
G2
G2
G2
G2
G2
G2
G2
G2 G2
G2 G2
G2
G2 G2
G2
G2 G2
G2
G2
G2
G2
G2 G2
G2
G2 G2
G2 G2
Note: Reduction ratios for general industrial machines are nominal values. For actual reduction ratios, refer to (2) and (3) in this section.
Not
(2) HC-MF series
Reduction Gear Series
For General Industrial Machines
(HC-MF G1)
For Precision Applications
(HC-MF G2)
Mounting Method
Flange mounting
Mounting direction
In any directions
Grease lubrication (Already packed)
Lubrication
Recommended
grease
50 • 100W
200 to 750W
Mobilplex 46
Mobil Oil
Mobiltac 81
Mobil Oil
Grease lubrication (Already packed)
LDR101BV
American Oil Center Research
Output shaft rotating direction
Same as the servo motor output shaft direction.
With electromagnetic brake
Available
Backlash
60 minutes or less at reduction gear output shaft
Permissible load inertia moment ratio
(when converting into the servo motor shaft)
3 minutes or less at reduction gear output shaft
25 times or less
25 times or less
Permissible speed
(at servo motor shaft)
4500 r/min
The actual reduction ratios of the servo motors with reduction gears designed for general industrial
machines are as listed below:
Servo Motor
Nominal
HC–MF053(B)G1 HC–MF13(B)G1
Reduction Ratio
HC–MF23(B)G1
HC–MF43(B)G1
HC–MF73(B)G1
1/5
9/44
19/96
1/5
1/12
49/576
25/288
525/6048
1/20
25/484
253/5000
625/12544
10– 10
10. SPECIFICATIONS
(3) HA-FF series
For General Industrial Machines
(HA-FF G1)
Reduction Gear
For Precision Applications
(HA-FF G2)
Mounting Method
Flange mounting
Mounting direction
In any directions
Grease lubrication (Already packed)
Lubrication
50 • 100W
Grease lubrication (Already packed)
200 to 600W
LDR101BJ
American Oil Center Research
Recommended
SUMICO LUBRICANT PYRONOC UNIVERSAL No.000
greas
MOLY PS GREASE No.2
NIPPON PETRQLEUM
Output shaft rotating
direction
Servo motor shaft and reduction gear output
shaft rotate in the same direction. For the
HA-FF053G1 1/30 and HA-FF3G1 1/30, however, the servo motor shaft and reduction gear
output shaft rotate in the opposite directions.
With electromagnetic brake
Backlash
Servo motor shaft and reduction gear outputshaft rotate in the same direction.
Available
40 minutes to 1.5°
Within 3 minutes
Permissible load inertia moment ratio
(when converting into the servo motor shaft)
5 times or less
Permissible speed
(at servo motor shaft)
3000 r/min
The actual reduction ratios of the servo motors with reduction gears designed for general industrial
machines are as listed below:
Nominal
Reduction Ratio
Servo Motor
HA–FF053G1
HA–FF13G1
HA–FF23G1
HA–FF33G1
HA–FF43G1
HA–FF63G1
1/5
9/44
57/280
19/94
10/49
1/10
3/29
39/400
39/376
243/2401
1/30
144/4205
1/30
11/329
27/784
10
10– 11
10. SPECIFICATIONS
(4) HC-SF series
For General Industrial Machines
(HC-SF G1(H))
For Precision Applications
(HC-SF G2)
Mounting method
As in 1) in this section
Flange mounting
Mounting direction
As in 1) in this section
In any directions
As in 1) in this section
Grease lubrication (Already packed)
Reduction Gear Series
Lubrication
Recommended
grease
LDR101BJ of American Oil Center
As in 2) in this section
Research make
Same direction as the servo motor shaft
Opposite direction to the servo motor shaft
Output shaft rotating direction
Available
With electromagnetic brake
3 minutes or less at reduction gear output
40 minutes to 2° at reduction gear output shaft
Backlash
Permissible load inertia moment ratio
shaft
4 times or less
(when converting into the servo motor shaft)
Permissible speed
5 times or less
0.5 to 1.5kW:3000[r/min]
2000[r/min]
(at servo motor shaft)
2 to 3.5kW:2500[r/min]
1) Lubrication of reduction gears for general industrial machines
Oil lubrication cannot be used in applications where the servo motor will move. Specify grease
lubrication.
For grease lubrication, the reduction gear is already grease-packed.
For oil lubrication, pack the reduction gear with oil on the customer side.
Mounting
Direction
Shaft Horizontal
Shaft in Any Direction
Shaft Downward
Shaft Upward
Reduction gear
CNHM
model
Reduction gear
CHVM
CHHM
CNVM
CVHM
CVVM
CWHM
CWVM
(leg type) (flange type) (leg type) (flange type) (leg type) (flange type) (leg type) (flange type)
frame No.
4105
Grease
Grease
4115
Grease
Grease
4135
(Note) Oil
(Note) Oil
(Note) Oil
(Note) Oil
Grease
Grease
4165
(Note) Oil
(Note) Oil
(Note) Oil
(Note) Oil
Grease
Grease
4175
Oil
Oil
Oil
Oil
Note: Grease-lubricated type is also available.
The reduction gear frame numbers are as follows:
Servo Motor
Reduction Ratio
1/6
1/11
1/17
1/29
1/35
1/43
4105
HC-SF52(B)G1 (H)
4115
4115
HC-SF102(B)G1 (H)
HC-SF152(B)G1 (H)
4115
HC-SF202(B)G1 (H)
4115
HC-SF352(B)G1 (H)
4135
1/59
4135
4135
4165
4165
4165
4165
10– 12
4175
10. SPECIFICATIONS
2) Recommended lubricants
a. Grease:
(Changing intervals: 20000 hours or 4 to 5 years)
b. Lubricating oil
Ambient
Temperature COSMO OIL
Nisseki
IDEMITSU
Mitsubishi
KOSAN
Oil
CO., LTD
°C
COSMO
10 to 5
GEAR
SE
68
30 to 50
OIL
BONNOC DAPHNE CE
SP
68S
68
DIAMOND DAPHNE SUPER
GEAR LUBE
GEAR OIL
SP
68
68
BONNOC
SP
100, 150
GEAR
DIAMOND
SE
GEAR LUBE
SP
100, 150
100, 150
BONNOC
COSMO
SP
200 to 460
GEAR
DIAMOND
SE
GEAR LUBE
SP
200,320,460
220 to 460
COSMO
0 to 35
GENERAL
DAPHNE CE
100S,150S
DAPHNE SUPER
GEAR OIL
100, 150
Showa
Shell
Mobil OIL
SPARTAN
Mobilgear
JOMO.
EP
626
Reductus
68
(ISO VG68)
68
Mobilgear
JOMO.
629
Reductus
(ISO VG150)
100, 150
Sekiyu
Omala Oils
68
GENERAL
SP
Omala Oils
SPARTAN
GEAROL
100, 150
EP150
100, 150
GENERAL
DAPHNE CE
SP
Omala Oils
220S to 460S
GEAROL
200 to 460
200 to 260
Japan
ESSO OIL
SPARTAN
EP
220 to 460
Mobilgear
630 to 634
(ISO VG
220 to 460)
Energy
JOMO.
Reductus
200 to 460
Lubricating oil fill amount (r)
Reduction gear frame No.
Fill amount
4135
4165
4175
Horizontal type
0.7
1.4
1.9
Vertical type
1.1
1.0
1.9
(5) HC-RF series
For Precision Applications (HC-RF
Reduction Gear Series
G2)
Flange mounting
Mounting method
In any directions
Mounting direction
Grease lubrication (Already packed)
Lubrication
LDR101BJ of American Oil Center Research make
Recommended grease
Same direction as the servo motor shaft
Output shaft rotating direction
Available
With electromagnetic brake
Within 3 minutes at reduction gear output shaft
Backlash
Permissible load inertia moment ratio
5 times or less
(when converting into the servo motor shaft)
4000[r/min]
Permissible speed (at servo motor shaft)
10
10– 13
10. SPECIFICATIONS
10-4 Servo motors with special shafts
The standard shaft of the servo motor is straight without a keyway. Shafts with keyway and D cut
are also available.
These shafts are not appropriate for applications where the servo motor is started and stopped
frequently. Use a friction coupling or the like with such keys since we cannot guarantee such trouble
as broken shafts due to loose keys.
Servo Motor Model
Shaft Shape
Keyway
D cut
HC—MF053 · 13
HC—MF23 to 73
Shaft Shape
Servo Motor Model
Keyway
D cut
HC—SF53 to 353
HC—SF53 to 352
HC—SF81 to 301
(Note 1)
HA—FF053 · 13
HC—RF103 to 203
HA—FF23 to 63
(Note 2)
HC—UF72 to 202
Note: 1. With a key.
2. Standard with a key. For shape, refer to Section 10-5-2.
HC—UF13
HC—UF23 to 73
(Note1)
Machining Dimension Diagram
With key
[Unit: mm]
([Unit: in])
R
Q
R
Q
QK QL
QK QL
A
A
A
A
Servo Motor
Model
S
R
Q
W
QK
QL
U
H
Y
14h6 30
27
5
20
3
3
5
M4
(14) (1.18) (1.06) (0.20) (0.79) (0.12) (0.12) (0.20) Depth 15 (0.59)
HC—MF73K
19h6 40
37
6
25
5
3.5
6
M5
(19) (1.57) (1.46) (0.24) (0.98) (0.20) (0.14) (0.24) Depth 20 (0.79)
U
W
Variable Dimensions
HC—MF23K · 43K
HC—UF23K to 73K
H
HC—MF23K to 73K
Variable Dimension List
Y
øS
5
20
3
3
5
M4
14h6 30 23.5
HC—UF23K · 43K
(14) (1.18) (0.93) (0.20) (0.79) (0.12) (0.12) (0.20) Depth 15 (0.59)
HC—UF73K
Section A-A
6
25
5
3.5
6
M5
19h6 40 36.5
(19) (1.57) (1.44) (0.24) (0.98) (0.20) (0.14) (0.24) Depth 20 (0.79)
10– 14
10. SPECIFICATIONS
Keyway
[Unit: mm]
([Unit: in])
Variable Dimensions
Servo Motor
Model
R
Q
QK
QL
U
Depth 20 (0.787)
W
øS
A
Q
HC—SF81K
55 50
24h6
HC—SF52K to 152K
HC—SF53K to 153K (0.94) (2.17) (1.97)
HC—SF121K to 301K 35
79
HC—SF202K to 352K
HC—SF203K · 353K (1.38) (3.11)
S
W
R
U
r
+0.2
0
0
+0.2
0
+0.2
36
5
8
4
4
(0.31) (1.42) (0.20) (0.16) (0.16)
5
10 -0.036 55
50
5
(0.39) (2.17) (0.20) (0.20) (0.20)
45 40
5
8 -0.036 25
50
4
(0.94) (1.77) (1.57) (0.31) (0.98) (0.20) (0.16) (0.16)
HC—UF72K
55 50
6 -0.030 42
3
3.5 0
22h6
3
(0.87) (2.17) (1.97) (0.24) (1.65) (0.12) (0.14) (0.12)
HC—UF152K
55 50
5
8 -0.036 45
40
28h6
4
(1.10) (2.17) (1.97) (0.31) (1.77) (0.20) (0.16) (0.16)
HC—UF202K to 502K
65 60 10 -0.036 55
5
50
35h6
5
(1.38) (2.56) (2.36) (0.39) (2.17) (0.20) (0.20) (0.20)
24h6
0
Section A-A
QL
HC—RF103K to 203K
A
r
QK
0
-0.036
+0.2
0
+0.2
0
+0.2
D cut
[Unit: mm]
([Unit: in])
R
ø8h6
Variable Dimensions
R
QK
HC—MF053D · 13D
25
(0.98)
20.5
(0.81)
HA—FF053D · 13D
30
(1.178)
25.5
(1.00)
HC—UF13D
25
(0.98)
17.5
(0.69)
1
QK
Servo Motor
Model
10
10– 15
10. SPECIFICATIONS
10-5 Outline dimension drawings
10-5-1 Servo amplifiers
(1)MR – J2 – 10A to MR – J2 – 60A
[Unit: mm]
MR – J2 – 10A1 to MR – J2 – 40A1
A
ø6(ø0.24) mounting hole
70(2.76)
([Unit:in])
135(5.32)
Terminal layout
(Terminal cover open)
(0.79)
20
6
(0.24)
B
MITSUBISHI
MITSUBISHI
168(6.61)
156(6.14)
OPEN
OPEN
C
N
1
A
C
N
1
B
C
N
2
E
N
C
C
N
3
TE1
6 (0.24)
L1
7
(0.28)
Name plate
L2
C
N
1
A
C
N
1
B
C
N
2
E
N
C
C
N
3
L3
(Note)
U
V
W
6
(0.24)
Servo Amplifier
TE2
PE terminal
Variable Dimensions
Weight
Model
A
B
[kg]([lb])
MR–J2–10Aa
50
6
0.7
MR–J2–20Aa
(1.97)
(0.24)
(1.54)
MR–J2–40Aa
70
22
1.1
(2.76)
(0.87)
(2.43)
MR–J2–60A
4(0.16)
Note: This data applies to the three-phase 200V and single-phase 230V power supply models.
For the single-phase 100V power supply models, refer to Section 3-1-1.
TE1
• For three-phase 200V and single-phase 230V
• For single-phase 100V
L1
L2
L3
L1
U
V
W
U
L2
V
W
Terminal screw: M4 x 0.7
Terminal screw: M4 x 0.7
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
TE2
Front
D
C
FRONT MSTB2,5/5-ST-5,08
P
(Phoenix Contact make)
L21 L11
Tightening torque: 0.5 to 0.6 [N • m] (70.8 to 85.0 [oz • in])
PE terminals
Terminal screw: M4 x 0.7
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
10– 16
10. SPECIFICATIONS
(2)MR – J2 – 70A • MR – J2 – 100A
70(2.76)
70(2.76)
([Unit:in])
190(7.48)
22
(20)
(0.87)
Terminal layout
(Terminal cover open)
(0.79)
6
(0.24)
ø6 (ø0.24)
mounting hole
[Unit: mm]
MITSUBISHI
MITSUBISHI
6(0.24)
7(0.28)
168(6.61)
156(6.14)
OPEN
OPEN
C
N
1
A
C
N
1
B
C
N
2
E
N
C
C
N
3
L1
L2
L3
U
V
W
Name plate
PE terminal
6(0.24)
22
42
(0.87) (1.65)
TE2
C
N
1
B
C
N
2
E
N
C
C
N
3
TE1
6(0.24)
Servo Amplifier
Weight
Model
[kg]([lb])
MR–J2–70A
1.7
(3.75)
MR–J2–100A
C
N
1
A
6(0.24)
TE1
L1
L2
L3
U
V
W
Terminal screw: M4 x 0.7
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
TE2
Front
FRONT MSTB2,5/6-ST-5,08
D
(Phoenix Contact make)
C
P
L21 L11
N
Tightening torque: 0.5 to 0.6 [N • m] (70.8 to 85.0 [oz • in])
PE terminals
Terminal screw: M4 x 0.7
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
10
10– 17
10. SPECIFICATIONS
(3)MR – J2 – 200A • MR – J2 – 350A
[Unit : mm]
([Unit: in])
ø6 (ø0.24)
mounting hole
90(3.54)
78(3.07)
6
70(2.76)
195(7.68)
(0.24)
Terminal layout
168(6.61)
156(6.14)
6
(0.24)
TE2
12-M4 screw
TE1
PE terminal
Servo Amplifier
Weight
Model
[kg]([lb])
MR–J2–200A
2.0
MR–J2–350A
(4.41)
PE terminals
TE1
L1
3-M4 screw
L2
L3
U
V
W
Terminal screw: M4 x 0.7
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
Terminal screw: M4 x 0.7
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
TE2
L11 L21
D
P
C
N
Terminal screw: M4 x 0.7
Tightening torque: 1.24 [N • m] (175.6 [oz • in])
10– 18
10. SPECIFICATIONS
10-5-2 Servo motors
(1) HC-MF series
1) Standard (Without electromagnetic brake, without reduction gear)
Variable
Output
Model
Dimensions
(W)
L
KL
Inertia Moment
Weight
-4
J( 10 kg•m )
(kg)
2
HC–MF053
50
81.5
29.5
0.019
0.40
HC–MF13
100
96.5
44.5
0.03
0.53
[Unit: mm]
25
L
40
40.5
42
Moter plate
(Opposite side)
2.5
5
2-ø4.5
45°
ø8h6
Moter plate
Bottom
ø30h7
Bottom
Top
Top
ø46
Top
35.7
28.7
Bottom
6.8
Caution plate
KL
9.9
25.2
Power supply lead 4-AWG19 0.3m
(With end-insulated round
crimping terminal 1.25-4)
20
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 0.3m
With connctor 1-172169-9
(AMP make)
Variable
Output
Model
Dimensions
(W)
L
KL
Inertia Moment
Weight
-4
J( 10 kg•m )
(kg)
2
HC–MF23
200
99.5
49.1
0.088
0.99
HC–MF43
400
124.5
72.1
0.143
1.45
BC12031 *
(BC12034 *)
[Unit: mm]
L
41
62
Motor plate
(Opposite side)
2.7
7
3
4-ø5.8
45°
Bottom
Bottom
Top
Caution plate
9.9
25.2
0
42.8
Top
ø7
38.4
Bottom
ø50h7
ø14h6
Motor plate
Top
60
30
KL
10.6
10
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
10– 19
20
BC12032 *
(BC12035 *)
10. SPECIFICATIONS
Model
Output
Inertia Moment
Weight
(W)
-4
J( 10 kg•m )
(kg)
750
0.6
3
HC–MF73
2
[Unit: mm]
82
40
142
39
Motor plate
(Opposite side)
2.7
8
80
4-ø6.6
45°
3
ø19h6
Motor plate
ø9
Top
Top
58.1
48.7
Bottom
0
ø70h7
Bottom
Bottom
Top
Caution plate
86.7
11
25.2
9.9
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
20
BC12033 *
2) With electromagnetic brake
Variable
Output
Model
Dimensions
(W)
L
KL
Barking Force Inertia Moment
-4
Weight
2
(N•m)
J( 10 kg•m )
(kg)
HC–MF053B
50
109.5
29.5
0.32
0.022
0.75
HC–MF13B
100
124.5
44.5
0.32
0.032
0.89
[Unit: mm]
25
L
42
40
40.5
Motor plate
(Opposite side)
5
2.5
2-ø4.5
45˚
Bottom
Bottom
Bottom
ø8h6
6.8
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
6
KL
Caution plate
25.2
ø4
35.7
Top
Top
28.7
Top
ø30h7
Motor plate
9.9
65.5
Brake lead
2-0.3 2 0.3m
(With end-insulated round
crimping terminal 1.25-4)
10– 20
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
BC12036 *
(BC12039 *)
10. SPECIFICATIONS
Variable
Output
Model
Barking Force Inertia Moment
Dimensions
(W)
L
KL
-4
2
Weight
(N•m)
J( 10 kg•m )
(kg)
HC–MF23B
200
131.5
49.1
1.3
0.136
1.6
HC–MF43B
400
156.5
72.1
1.3
0.191
2.1
[Unit: mm]
30
L
41
62
60
7
Motor plate
(Opposite side)
2.7
3
4-ø5.8
Bottom
Top
ø50h7
ø14h6
Motor plate
45°
Bottom
Top
ø7
0
42.8
33.4
Bottom
10.6
Top
KL
Caution plate
9.9
68
25.2
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Brake lead
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
2-0.32 0.3m
(With end-insulated round
crimping terminal 1.25-4)
Output
Model
HC–MF73B
Barking Force Inertia Moment
-4
2
20
BC12037 *
(BC12039 *)
Weight
(W)
(N•m)
J( 10 kg•m )
(kg)
750
2.4
0.725
4.0
[Unit: mm]
82
177.5
39
40
Motor plate
(Opposite side)
2.7
8
45°
ø19h6
Motor plate
Bottom
Top
0
58.1
48.7
Top
Bottom
ø9
ø70h7
Bottom
80
4-ø6.6
3
Top
Caution plate
25.2
86.7
11
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
20
9.9
72
Power supply lead 4-AWG19 0.3m
Brake lead
2-0.32 0.3m
(With end-insulated round
crimping terminal 1.25-4)
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
19.5
BC12038 *
10
10– 21
10. SPECIFICATIONS
3) With reduction gear for general industrial machine
a) Without electromagnetic brake
Variable
Output
Model
Reduction
Dimensions
(W)
L
KL
Reduction Ratio
Inertia Moment
-4
2
Gear Model (Actual Reduction Ratio) J( 10 kg•m )
Weight
Backlash
(kg)
HC–MF053G1
50
126
74
K6505
1/5(9/44)
0.055
60min. max.
1.4
HC–MF053G1
50
144
92
K6512
1/12(49/576)
0.077
60min. max.
1.8
HC–MF053G1
50
144
92
K6520
1/20(25/484)
0.059
60min. max.
1.8
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
60.5
8
40.5
42
65
4-ø7
45°
6.5
28
25
Motor plate
(Opposite side)
Motor plate
Top
35.7
28.7
Top
ø48
ø16h6
Bottom
Bottom
Top
ø60h7
5
ø7
ø88
Bottom
6.8
Caution plate
9.9
25.2
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Output
Model
(W)
Variable
Reduction
Dimensions
BC12066 *
(BC12086 *)
Inertia Moment
-4
2
Gear Model (Actual Reduction Ratio) J( 10 kg•m )
KL
L
Reduction Ratio
M4 threads,
depth 8
20
Weight
Backlash
(kg)
HC–MF13G1
100
141
89
K6505
1/5(9/44)
0.067
60min. max.
1.5
HC–MF13G1
100
159
107
K6512
1/12(49/576)
0.089
60min. max.
1.9
HC–MF13G1
100
159
107
K6520
1/20(25/484)
0.071
60min. max.
1.9
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
4-ø7
L
60.5
8
40.5
42
65
45°
6.5
28
25
Motor plate
(Opposite side)
Motor plate
ø60h7
ø16h6
Top
Bottom
ø7
Top
6.8
Caution plate
25.2
9.9
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
5
35.7
28.7
Top
Bottom
ø48
ø8
8
Bottom
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 22
20
M4 threads,
depth 8
BC12067 *
(BC12087 *)
10. SPECIFICATIONS
Variable
Output
Model
L
KL
Reduction Ratio
Reduction
Dimensions
(W)
Inertia Moment
Weight
-4
(kg)
2
Gear Model (Actual Reduction Ratio) J( 10 kg•m )
1/5(19/96)
0.249
3.3
K9012
1/12(25/288)
0.293
3.9
K9020
1/20(253/5000)
0.266
3.9
HC–MF23G1
200
153
102.6
K9005
HC–MF23G1
200
173
122.6
HC–MF23G1
200
173
122.6
[Unit: mm]
For reverse rotation command
For forward rotation command
74
L
10
62
2.7
90
8
Motor plate
(Opposite side)
41
"Rotation
direction"
4-ø9
45°
35
30
Motor plate
Top
Top
38.4
Top
Bottom
ø73
Bottom
ø82h7
ø25h6
00
ø1 114
ø
Bottom
Caution plate
9.9
10.6
KL
42.8
25.2
M6 threads,
depth12
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
20
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Variable
Output
Model
Reduction
Dimensions
(W)
L
KL
BC12068 *
(BC12088 *)
Reduction Ratio
Inertia Moment
Weight
-4
(kg)
2
Gear Model (Actual Reduction Ratio) J( 10 kg•m )
HC–MF43G1
400
178
125.6
K9005
1/5(19/96)
0.296
3.8
HC–MF43G1
400
198
145.6
K9012
1/12(25/288)
0.339
4.4
[Unit: mm]
For reverse rotation command
For forward rotation command
74
L
90
10 8
41
62
30
Motor plate
(Opposite side)
"Rotation
direction"
45°
35
4-ø9
2.7
Motor plate
Top
Bottom
Top
Caution plate
9.9
10.6
42.8
25.2
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
ø82h7
Bottom
38.4
Top
ø25h6
ø73
00
ø1 14
ø1
Bottom
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
M6 threads,
depth12
BC12069 *
(BC12089 *)
10
10– 23
10. SPECIFICATIONS
Output Reduction Gear
Model
Inertia Moment
Reduction Radio
-4
(W)
Model
HC–MF43G1
400
K10020
HC–MF73G1
750
K10005
1/5
HC–MF73G1
750
K10012
1/12
HC–MF73G1
750
K12020
1/20
625/12544
Normal Reduction ratio Actual Reduction ratio
1/20
(W)
(kg)
0.653
60min. max.
5.5
1/5
1.02
60min. max.
6.2
525/6048
1.686
60min. max.
7.3
1.75
60min. max.
10.1
253/5000
Output
Model
Weight
Backlash
2
J( 10 kg•m )
Variable Dimensions
(Reduction
Ratio)
D LH LK LT H LA LB LC LD LE LF LG LM LN LP L LR KL LZ Q S P R
HC–MF43G1
400
62 38.4 41 10.6 42.8 115 95 132 100 10 73 10 13 16 86 201.5 90 149.1 9 50 32 M8 16
HC–MF73G1
750
82 48.7 39 11 58.1 115 95 132 100 10 73 10 13 16 86 207 90 151.7 9 50 32 M8 16
1/5
HC–MF73G1
750
82 48.7 39 11 58.1 115 95 132 100 10 73 10 13 16 86 229 90 173.7 9 50 32 M8 16
1/12
HC–MF73G1
750
82 48.7 39 11 58.1 140 115 162 120 12 90 15 13 20 104 242 106 186.7 14 60 40 M10 20
1/20
1/20
[Unit: mm]
"Rotation direction"
L
LK
D
2.7
4-øLZ
LR
LG
Motor plate
(Opposite side)
For reverse rotation command
For forward rotation command
LD
LE
LM
45°
LM
Q
Bottom
øLF
øLP
C
øL
LH
Bottom
Top
øLBh7
Bottom
Top
øSh6
øL
A
Motor plate
25.2
LT
H
Top
Caution plate
9.9
KL
Power supply lead 4-AWG19 0.3m
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 24
20
P threads,
depth R
BC12070 *
10. SPECIFICATIONS
b) With electromagnetic brake
Variable
Output
Model
Dimensions
(W)
L
KL
Braking Force Reduction Reduction Inertia Moment
(N•m)
Gear Model
-4
J( 10 kg•m )
Weight
Backlash
2
Ratio
(kg)
HC–MF053BG1
50
154
74
0.32
K6505
1/5(9/44)
0.058
60min. max.
1.8
HC–MF053BG1
50
172
92
0.32
K6512
1/12(49/576)
0.080
60min. max.
2.2
HC–MF053BG1
50
172
92
0.32
K6520
1/20(25/484)
0.062
60min. max.
2.2
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
4-ø7
L
65
60.5
8
42
40.5
6.5
28
45°
25
Motor plate
(Opposite side)
Motor plate
Bottom
Top
Bottom
Top
35.7
28.7
Top
ø60h7
ø16h6
ø48
5
ø7 8
ø8
Bottom
68
25.2
9.9
65.5
KL
M4 threads,
depth 8
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Brake lead
2
Red: Phase U
2-0.3 0.3m
(With end-insulated round crimping terminal 1.25-4)
White: Phase V
Black: Phase W
Encoder cable 0.3m
Green/yellow: Earth
With connector 1-172169-9
(AMP make)
Caution plate
Variable
Output
Model
Dimensions
(W)
KL
L
20
BC12071
(BC12091 *)
Braking Force Reduction Reduction Inertia Moment
(N•m)
Gear Model
-4
J( 10 kg•m )
Weight
Backlash
2
Ratio
(kg)
HC–MF13BG1
100
169
89
0.32
K6505
1/5(9/44)
0.069
60min. max.
1.9
HC–MF13BG1
100
187
107
0.32
K6512
1/12(49/576)
0.091
60min. max.
2.3
HC–MF13BG1
100
187
107
0.32
K6520
1/20(25/484)
0.073
60min. max.
2.3
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
4- 7
L
42
8
40.5
45°
6.5
28
Motor plate
(Opposite side)
Motor plate
65
60.5
25
ø8
5
ø7
ø60h7
35.7
Top
ø16h6
Top
Bottom
28.7
Top
Bottom
ø48
8
Bottom
6.8
25.2
65.5
9.9
KL
Caution plate
Brake lead
2-0.32 0.3m
(With end-insulated round crimping
terminal 1.25-4)
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
M4 threads, depth 8
20
BC12072 *
(BC12092 *)
10
10– 25
10. SPECIFICATIONS
Variable
Output
Model
Dimensions
(W)
Reduction
Reduction Ratio
Inertia Moment
Weight
-4
(kg)
2
Gear Model (Actual Reduction Ratio) J( 10 kg•m )
L
KL
185
102.6
K9005
1/5(19/96)
0.289
3.9
1/12(25/288)
0.333
4.5
1/20(253/5000)
0.306
4.5
HC–MF23BG1
200
HC–MF23BG1
200
205
122.6
K9012
HC–MF23BG1
200
205
122.6
K9020
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
4-ø 9
74
L
62
10
Motor plate
(Opposite side)
41
90
45°
8
30
35
2.7
Motor plate
ø1
ø1
14
Bottom
Top
Top
38.4
Bottom
00
ø25h6
ø73
ø82h7
Bottom
Top
68
Caution plate
9.9
10.6
KL
M6 threads,
depth 12
42.8
25.2
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
2
Brake lead 2-0.3 0.3m
(With end-insulated round
crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Variable
Output
Model
Dimensions
(W)
L
KL
Reduction Ratio
Reduction
20
BC12073 *
(BC120793 *)
Inertia Moment
Weight
-4
(kg)
2
Gear Model (Actual Reduction Ratio) J( 10 kg•m )
HC–MF43BG1
400
210
125.6
K9005
1/5(19/96)
0.344
4.4
HC–MF43BG1
400
230
145.6
K9012
1/12(25/288)
0.388
5.0
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
4-ø9
74
L
62
10
Motor plate
(Opposite side)
41
90
45°
8
30
35
2.7
Motor plate
ø1
14
Bottom
Top
Top
68
25.2
9.9
10.6
KL
M6 threads,
depth 12
42.8
Caution plate
00
38.4
Top
Bottom
ø1
ø25h6
ø73
ø82h7
Bottom
Brake lead 2-0.3 2 0.3m
(With end-insulated round
crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 26
20
BC12074 *
(BC12094 *)
10. SPECIFICATIONS
Output Brake Force Reduction
Model
Reduction Radio
(N•m)
Gear Model
HC–MF43BG1
400
1.3
K10020
HC–MF73BG1
750
2.4
K10005
HC–MF73BG1
750
2.4
K10012
HC–MF73BG1
750
2.4
K12020
1/20
Normal Reduction ratio Actual Reduction ratio
(W)
2
J( 10 kg•m )
Weight
Backlash
(kg)
253/5000
0.700
60min. max.
6.1
1/5
1/5
1.145
60min. max.
7.2
1/12
525/6048
1.811
60min. max.
8.3
625/12544
1.875
60min. max.
11.1
1/20
Output
Model
Inertia Moment
-4
(W)
Variable Dimensions
(Reduction
Ratio)
D LH LK LT LX H LA LB LC LD LE LF LG LM LN LP L LR KL LZ Q S P R
HC–MF43BG1
400
62 38.4 41 10.6 68 42.8 115 95 132 100 10 73 10 13 16 86 232.5 90 149.1 9 50 32 M8 16 1/20
HC–MF73BG1
750
82 48.7 39 11 72 58.1 115 95 132 100 10 73 10 13 16 86 242.5 90 151.7 9 50 32 M8 16
HC–MF73BG1
750
82 48.7 39 11 72 58.1 115 95 132 100 10 73 10 13 16 86 264.5 90 173.7 9 50 32 M8 16 1/12
HC–MF73BG1
750
82 48.7 39 11 72 58.1 140 115 162 120 12 90 15 13 20 104 277.5 106 186.7 14 60 40 M10 20 1/20
1/5
[Unit: mm]
"Rotation direction"
For reverse rotation command
For forward rotation command
L
D
Motor plate
(Opposite side)
LK
2.7
LG
LE
LM LN
LD
45°
Q
Bottom
LH
Top
C
øL
øLBh7
Bottom
Top
øLF
øLP
Bottom
øSh6
øL
A
Motor plate
4-øLZ
LR
Top
25.2
LT
LX
KL
H
Caution plate
9.9
2
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Brake lead 2-0.3 0.3m
(With end-insulated round
crimping terminal 1.25-4)
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
P threads,
depth R
BC12075 *
10
10– 27
10. SPECIFICATIONS
4) With reduction gear for precision application
a) Without electromagnetic brake
Variable
Output
Model
Dimensions
(W)
L
KL
Reduction
Reduction
Inertia Moment
Gear Model
Ratio
J( 10 kg•m )
-4
2
Weight
Backlash
(kg)
HC–MF053G2
50
130
78
BK1-05B-A5MEKA
1/5
0.067
3 min. max.
1.4
HC–MF053G2
50
146
94
BK1-09B-A5MEKA
1/9
0.060
3 min. max.
1.7
HC–MF053G2
50
146
94
BK1-20B-A5MEKA
1/20
0.069
3 min. max.
1.8
HC–MF053G2
50
146
94
BK1-29B-A5MEKA
1/29
0.057
3 min. max.
1.8
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
42
70
55
8
6
40.5
45°
4-ø6.6
23
25
Motor plate
(Opposite side)
Motor plate
6.8
Caution plate
25.2
9.9
KL
Power supply lead 4-AWG19 0.3m
Encoder cable 0.3m
With connector 172169-9
(AMP make)
ø95
35.7
28.7
Top
ø60
Top
Bottom
0
ø65h7
ø16h6
Top
Bottom
ø48
ø8
Bottom
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 28
20
M4 threads,
depth 8
BC12076 *
(BC12096 *)
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Inertia Moment
-4
Weight
Backlash
2
(W)
Model
Ratio
J( 10 kg•m )
HC–MF13BG2
100
BK1-05B-01MEKA
1/5
0.078
3 min. max.
1.5
HC–MF13BG2
100
BK1-09B-01MEKA
1/9
0.072
3 min. max.
1.8
HC–MF13BG2
100
BK1-20B-01MEKA
1/20
0.122
3 min. max.
3.0
HC–MF13BG2
100
BK1-29B-01MEKA
1/29
0.096
3 min. max.
3.0
Output
Model
(W)
(kg)
Variable Dimensions
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF13BG2
100
80 65 95 70
6
48
8
60 23 145 55 93 6.6 25 16 M4
8
HC–MF13BG2
100
80 65 95 70
6
48
8
60 23 161 55 109 6.6 25 16 M4
8
1/9
HC–MF13BG2
100
100 80 115 85
6
65 10 74 33 167 75 115 6.6 35 20 M5 10
1/20
HC–MF13BG2
100
100 80 115 85
6
65 10 74 33 167 75 115 6.6 35 20 M5 10
1/29
1/5
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
42
4-øLZ
LR
LG
40.5
Motor plate
(Opposite side)
LE
LK
LD
45°
Q
Motor plate
Top
øLBh7
øSh6
Bottom
Bottom
Top
35.7
28.7
Top
øLF
Bottom
øLH
A
øL C
øL
6.8
Caution plate
25.2
9.9
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
P threads,
depth R
BC12077 *
(BC12097 *)
10
10– 29
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Inertia Moment
-4
Weight
2
(W)
Model
Ratio
J( 10 kg•m )
(kg)
HC–MF23BG2
200
BK1-05B-02MEKA
1/5
0.191
2.1
HC–MF23BG2
200
BK2-09B-02MEKA
1/9
0.208
3.5
HC–MF23BG2
200
BK3-20B-02MEKA
1/20
0.357
5.0
HC–MF23BG2
200
BK3-29B-02MEKA
1/29
0.276
5.0
Output
Model
(W)
Variable Dimensions
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF23BG2
200
80 65 95 70
6
48
HC–MF23BG2
200
100 80 115 85
6
65 10 74 33 175 75 124.6 6.6 35 20 M5 10
1/9
HC–MF23BG2
200
115 95 135 100 8
75 10 85 35 180 85 129.6 9
40 25 M6 12
1/20
HC–MF23BG2
200
115 95 135 100 8
75 10 85 35 180 85 129.6 9
40 25 M6 12
1/29
8
60 23 157 55 106.6 6.6 25 16 M4
8
1/5
[Unit: mm]
For reverse rotation command
"Rotation direction"
L
62
41
LR
LG
Motor plate
(Opposite side)
2.7
4-øLZ
LE
LK
LD
45°
Q
øSh6
Motor plate
For forward rotation command
Bottom
Top
Top
38.4
Top
Bottom
A
øL øLC
øLF
øLH
øLBh7
Bottom
Caution plate
9.9
10.6
42.8
25.2
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 30
20
P threads,
depth R
BC12078 *
(BC12098 *)
10. SPECIFICATIONS
Model
Output Reduction Gear
Reduction Inertia Moment
-4
Weight
2
(W)
Model
Ratio
J( 10 kg•m )
(kg)
HC–MF43BG2
400
BK2-05B-04MEKA
1/5
0.295
3.7
HC–MF43BG2
400
BK3-09B-04MEKA
1/9
0.323
5.3
HC–MF43BG2
400
BK4-20B-04MEKA
1/20
0.426
7.5
HC–MF43BG2
400
BK4-29B-04MEKA
1/29
0.338
7.5
Model
Output
(W)
Variable Dimensions
LA LB LC LD LE LF LG LH LK
HC–MF43BG2
400
100 80 115 85
HC–MF43BG2
400
115 95 135 100 8
HC–MF43BG2
400
HC–MF43BG2
400
6
L
(Reduction
LR KL LZ
Q
S
P
R
65 10 74 33 184 75 131.6 6.6 35 20 M5 10
Ratio)
1/5
40 25 M6 12
1/9
135 110 155 115 8
90 12 100 40 211 100 158.6 11 50 32 M8 16
1/20
135 110 155 115 8
90 12 100 40 211 100 158.6 11 50 32 M8 16
1/29
75 10 85 35 205 85 152.6 9
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
62
LR
LG
Motor plate
(Opposite side)
41
4-øLZ
LE
LD
45°
LK
Q
2.7
øSh6
Motor plate
Bottom
Top
Bottom
Top
38.4
Top
A
øL C
øL
øLF
øLH
øLBh7
Bottom
Caution plate
9.9
10.6
KL
42.8
25.2
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
P threads,
depth R
BC12079
(BC12099 *)
10
10– 31
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Inertia Moment
-4
Weight
2
(W)
Model
Ratio
J( 10 kg•m )
(kg)
HC–MF73G2
750
BK3-05B-08MEKA
1/5
0.973
6.3
HC–MF73G2
750
BK4-09B-08MEKA
1/9
0.980
8.6
HC–MF73G2
750
BK5-20B-08MEKA
1/20
1.016
12.0
HC–MF73G2
750
BK5-29B-08MEKA
1/29
0.910
12.0
Output
Model
(W)
Variable Dimensions
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF73G2
750
115 95 135 100 8
75 10 85 35 212 85 156.7 9
HC–MF73G2
750
135 110 155 115 8
90 12 100 40 248 100 192.7 11 50 32 M8 16
1/9
HC–MF73G2
750
150 125 175 130 10 105 15 115 43 248 115 192.7 14 60 40 M10 20
1/20
HC–MF73G2
750
150 125 175 130 10 105 15 115 43 248 115 192.7 14 60 40 M10 20
1/29
40 25 M6 12
1/5
[Unit: mm]
For reverse rotation command
"Rotation direction"
LR
L
82
LG
39
2.7
LD
LE
45°
LK
Motor plate
(Opposite side)
4-øLZ
For forward rotation command
Q
øSh6
Motor plate
Bottom
Top
48.7
Top
Bottom
A
øL øLC
øLF
øLH
øLBh7
Bottom
Top
11
25.2
9.9
58.1
Caution plate
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 32
20
P threads,
depth R
BC12080 *
10. SPECIFICATIONS
b) With electromagnetic brake
Variable
Output
Model
Dimensions
(W)
L
KL
Braking Force
Reduction
(N•m)
Gear Model
Reduction Inertia Moment
Ratio
J( 10 kg•m )
-4
Backlash
2
Weight
(kg)
HC–MF053BG2
50
158
78
0.32
BK1-05B-A5MEKA
1/5
0.070
3 min. max.
1.8
HC–MF053BG2
50
174
94
0.32
BK1-09B-A5MEKA
1/9
0.063
3 min. max.
2.1
HC–MF053BG2
50
174
94
0.32
BK1-20B-A5MEKA
1/20
0.072
3 min. max.
2.2
HC–MF053BG2
50
174
94
0.32
BK1-29B-A5MEKA
1/20
0.060
3 min. max.
2.2
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
8
40.5
6
23
25
45°
4-ø6.6
Motor plate
(Opposite side)
Motor plate
0
ø8
Bottom
Top
35.7
Top
6.8
Caution plate
25.2
Encoder cable 0.3m
With connector 172169-9
(AMP make)
ø95
ø16h6
ø48
ø60
ø65h7
Bottom
Bottom
28.7
Top
70
55
L
42
9.9
65.5
Brake lead
2-0.3 2 0.3m
(With end-insulated round
crimping terminal 1.25-4)
Blue: B1,B2
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
M4 threads,
depth 8
BC12081 *
(BC12100 *)
10
10– 33
10. SPECIFICATIONS
Output
Model
Braking Force Reduction Gear
Reduction Inertia Moment
-4
2
Weight
Backlash
(W)
(N•m)
Model
Ratio
J( 10 kg•m )
HC–MF13BG2
100
0.32
BK1-05B-01MEKA
1/5
0.080
3 min. max.
1.9
HC–MF13BG2
100
0.32
BK1-09B-01MEKA
1/9
0.074
3 min. max.
2.2
HC–MF13BG2
100
0.32
BK2-20B-01MEKA
1/20
0.124
3 min. max.
3.4
HC–MF13BG2
100
0.32
BK2-29B-01MEKA
1/29
0.098
3 min. max.
3.4
Output
Model
(W)
(kg)
Variable Dimensions
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF13BG2
100
80 65 95 70
6
48
8
60 23 173 55 93 6.6 25 16 M4
8
HC–MF13BG2
100
80 65 95 70
6
48
8
60 23 189 55 109 6.6 25 16 M4
8
1/9
HC–MF13BG2
100
100 80 115 85
6
65 10 74 33 195 75 115 6.6 35 20 M5 10
1/20
HC–MF13BG2
100
100 80 115 85
6
65 10 74 33 195 75 115 6.6 35 20 M5 10
1/29
1/5
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
LR
LG
42
40.5
4-øLZ
LE
LD
45°
LK
Q
Motor plate
(Opposite side)
Motor plate
A
øL
Bottom
Top
35.7
Top
øSh6
øLF
øLH
øLBh7
Bottom
C
øL
28.7
Top
Bottom
6.8
Caution plate
25.2
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
65.5
Brake lead
2-0.3 2 0.3m
(With end-insulated round
crimping terminal 1.25-4)
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
P threads,
depth R
BC12082 *
(BC12101 *)
10– 34
10. SPECIFICATIONS
Output
Model
Braking Force Reduction Gear
Reduction Inertia Moment
-4
Weight
2
(W)
(N•m)
Model
Ratio
J( 10 kg•m )
(kg)
HC–MF23BG2
200
1.3
BK1-05B-02MEKA
1/5
0.239
2.7
HC–MF23BG2
200
1.3
BK2-09B-02MEKA
1/9
0.256
4.1
HC–MF23BG2
200
1.3
BK3-20B-02MEKA
1/20
0.405
5.6
HC–MF23BG2
200
1.3
BK3-29B-02MEKA
1/29
0.324
5.6
Output
Model
Variable Dimensions
(W)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF23BG2
200
80 65 95 70
6
48
HC–MF23BG2
200
100 80 115 85
6
65 10 74 33 207 75 124.6 6.6 35 20 M5 10
1/9
HC–MF23BG2
200
115 95 135 100 8
75 10 85 35 212 85 129.6 9
40 25 M6 12
1/20
HC–MF23BG2
200
115 95 135 100 8
75 10 85 35 212 85 129.6 9
40 25 M6 12
1/29
8
60 23 189 55 106.6 6.6 25 16 M4
8
1/5
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
62
41
4-øLZ
LE
LK
Motor plate
(Opposite side)
2.7
45
°
Q
øSh6
Motor plate
LD
LR
LG
Bottom
Top
A
øL C
øL
øLF
øLH
øLBh7
Bottom
Top
Top
38.4
Bottom
10.6
Caution plate
9.9
68
42.8
2.52
Brake lead
2-0.32 0.3m
Encoder cable 0.3m
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
(With end-insulated round
With connector 1-172169-9 crimping terminal 1.25-4)
(AMP make)
20
P threads,
depth R
BC12083 *
(BC12102 *)
10
10– 35
10. SPECIFICATIONS
Braking Force Reduction Gear
Output
Model
Reduction Inertia Moment
-4
Weight
2
(W)
(N•m)
Model
Ratio
J( 10 kg•m )
(kg)
HC–MF43BG2
400
1.3
BK2-05B-04MEKA
1/5
0.344
4.3
HC–MF43BG2
400
1.3
BK3-09B-04MEKA
1/9
0.372
5.9
HC–MF43BG2
400
1.3
BK4-20B-04MEKA
1/20
0.475
8.1
HC–MF43BG2
400
1.3
BK4-29B-04MEKA
1/29
0.386
8.1
Model
Output
(W)
Variable Dimensions
LA LB LC LD LE LF LG LH LK
HC–MF43BG2
400
100 80 115 85
HC–MF43BG2
400
115 95 135 100 8
HC–MF43BG2
400
HC–MF43BG2
400
6
L
(Reduction
LR KL LZ
Q
S
P
R
65 10 74 33 216 75 131.6 6.6 35 20 M5 10
Ratio)
1/5
40 25 M6 12
1/9
135 110 155 115 8
90 12 100 40 243 100 158.6 11 50 32 M8 16
1/20
135 110 155 115 8
90 12 100 40 243 100 158.6 11 50 32 M8 16
1/29
75 10 85 35 237 85 152.6 9
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
LK
45°
LK
Q
øSh6
Motor plate
4-øLZ
LE
Motor plate
(Opposite side)
2.7
LD
LR
LG
41
62
Bottom
Top
øLF
øLH
øLBh7
Top
Bottom
A
øL LC
ø
38.4
Top
Bottom
68
Caution plate
9.9
10.6
42.8
25.2
Brake lead
Encoder cable 0.3m
2-0.3 2 0.3m
With connector 1-172169-9
(With end-insulated round
(AMP make)
crimping terminal 1.25-4)
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 36
20
P threads,
depth R
BC12084 *
(BC12103 *)
10. SPECIFICATIONS
Output
Model
Braking Force Reduction Gear
Reduction Inertia Moment
-4
Weight
2
(W)
(N•m)
Model
Ratio
J( 10 kg•m )
(kg)
HC–MF73BG2
750
2.4
BK3-05B-08MEKA
1/5
1.098
7.3
HC–MF73BG2
750
2.4
BK4-09B-08MEKA
1/9
1.105
9.6
HC–MF73BG2
750
2.4
BK5-20B-08MEKA
1/20
1.141
13.0
HC–MF73BG2
750
2.4
BK5-29B-08MEKA
1/29
1.035
13.0
Model
Output
Variable Dimensions
(W)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF73BG2
750
115 95 135 100 8
75 10 85 35 247.5 85 156.7 9
HC–MF73BG2
750
135 110 155 115 8
90 12 100 40 283.5 100 192.7 11 50 32 M8 16
1/9
HC–MF73BG2
750
150 125 175 130 10 105 15 115 43 283.5 115 192.7 14 60 40 M10 20
1/20
HC–MF73BG2
750
150 125 175 130 10 105 15 115 43 283.5 115 192.7 14 60 40 M10 20
1/29
40 25 M6 12
1/5
[Unit: mm]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
82
Motor plate
LD
LR
LG
Motor plate
(Opposite side)
39
LE
4-øLZ
LK
Q
45°
øSh6
2.7
Bottom
48.7
Bottom
øLF
øLH
øLBh7
Bottom
Top
Top
A
øL LC
ø
Top
25.2
72
11
9.9
58.1
Caution plate
Encoder cable 0.3m
Brake lead
With connector 1-172169-9 2-0.3 2 0.3m
(With end-insulated round
(AMP make)
crimping terminal 1.25-4)
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
P threads,
depth R
BC12085 *
10
10– 37
10. SPECIFICATIONS
(2) HC-MF-UE series
1) Standard (Without electromagnetic brake, without reduction gear)
Variable
Output
Model
Dimensions
(W)
L
KL
Inertia Moment
Weight
J( 10 kg•m )
-4
(kg)
2
HC–MF053-UE
50
89.5
37.5
0.019
0.5
HC–MF13-UE
100
104.5
52.5
0.03
0.6
[Unit: mm]
42
25
L
Motor plate
(Opposite side)
40.5
40
2-ø4.5
2.5
5
45°
Motor plate
Top
Top
ø4
ø30h7
ø8h6
Bottom
Bottom
Bottom
6
28.7
Bottom
Top
Caution plate
V ring
TUV plate
KL
9.9
6.8
35.7
Top
V-10A
25.2
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable
0.3m
20
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Variable
Output
Model
Dimensions
(W)
L
KL
BC07328A
Inertia Moment
Weight
J( 10 kg•m )
-4
(kg)
2
HC–MF23-UE
200
108.5
58
0.09
1.2
HC–MF43-UE
400
133.5
81
0.14
1.7
[Unit: mm]
30
L
62
41
TUV plate
7
2.7
30
4-ø5.8
3
4 5°
Motor plate
(Opposite side)
Motor plate
Bottom
Top
Top
Bottom
ø7
0
V-16A
Top
Caution plate
10.6
25.2
42.8
V ring
38.4
Top
ø50h7
Bottom
ø14h6
Bottom
9.9
KL
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 0.3m
Green/yellow: Earth
With connector 1-172169-9
(AMP make)
10– 38
20
BC07329A
10. SPECIFICATIONS
Model
HC–MF73-UE
Output
Inertia Moment
Weight
(W)
-4
J( 10 kg•m )
(kg)
750
0.675
3.1
2
[Unit: mm]
40
150
TUV plate
8
Motor plate
(Opposite side)
39
82
3
80
45°
4-ø6.6
2.7
ø19h6
Motor plate
Bottom
Bottom
ø70h7
Top
ø9
Top
0
58.5
48.7
Bottom
Top
V ring
11
9.9
V-25A
25.2
Caution plate
95
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
20
BC07330A
2) With electromagnetic brake
Output
Model
(W)
Variable
Barking Force Inertia Moment
Dimensions
L
KL
-4
Weight
2
(N•m)
J( 10 kg•m )
(kg)
HC–MF053B-UE
50
117.5
37.5
0.32
0.022
0.9
HC–MF13B-UE
100
132.5
52.5
0.32
0.032
1
[Unit: mm]
25
L
2.5
5
42
40.5
Motor plate
(Opposite side)
40
2-ø4.5
TUV plate
4
5°
ø8h6
Bottom
Bottom
Top
Top
Bottom
ø30h7
Motor plate
ø4
6
Top
KL
Caution plate
25.2
6.8
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Brake lead
2-0.32 0.3m
(With end-insulated round
crimping terminal 1.25-4)
B1,B2
35.7
28.7
Bottom
Top
V ring
V-10A
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
BC07369A
10
10– 39
10. SPECIFICATIONS
Variable
Output
Model
(W)
L
KL
Weight
Barking Force Inertia Moment
Dimensions
-4
2
(N•m)
J( 10 kg•m )
(kg)
HC–MF23B-UE
200
140.5
58
1.3
0.136
1.7
HC–MF43B-UE
400
165.5
81
1.3
0.191
2.2
[Unit: mm]
30
L
TUV plate
60
3
7
41
4-ø5.8
Motor plate
2.7
62
4 5°
(Opposite side)
Top
Bottom
Top
Top
Bottom
ø50h7
Bottom
ø14h6
Bottom
Motor plate
ø7
Top
0
42.8
38.4
V ring
V-16A
Caution plate
95
10.6
25.2
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Output
Model
HC–MF73B-UE
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
9.9
Brake lead
2
2-0.3 0.3m
(With end-insulated round
crimping terminal 1.25-4)
B1,B2
20
BC07354A
Weight
Barking Force Inertia Moment
-4
2
(W)
(N•m)
J( 10 kg•m )
(kg)
750
2.4
0.75
4.2
[Unit: mm]
185.5
TUV plate
40
8
Motor plate
39
82
3
80
(Opposite side)
4-ø6.6
45°
2.7
ø 19h6
Bottom
Bottom
Top
58.1
Top
11
Caution plate
ø90
Top
48.7
Bottom
ø70h7
Motor plate
25.2
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
9.9
95
Brake lead
2
2-0.3 0.3m
(With end-insulated round
crimping terminal 1.25-4)
B1,B2
10– 40
V ring
V-25A
Power supply lead 4-AWG19 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
BC07606A
10. SPECIFICATIONS
(3) HA-FF series
1) Standard
1) HA – FF053 • HA – FF13
[Unit: mm]
LL
30
45°
Bottom
0
ø68
Top
39
V ring
Top
39
Top
54
2.5
ø50h7
Bottom
6
ø8h6
ø47
Earth terminal M3 screw
(Opposite side)
ø6
Caution plate
Bottom
Motor plate
4–ø4.5
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 0.3m
With connector 172169-9
(AMP make)
Servo Motor
Model
Inertia
Variable
Moment
Dimensions Weight
[kg]
J[ 10 -4kg•m 2]
LL
HA–FF053
0.063
106
1.3
HA–FF13
0.10
123
1.5
HA – FF23 to HA – FF63
[Unit: mm]
LL
Caution plate
LD
LR
45°
3
LG
øLA
ø47
øLBh7
Q
A
V ring
Top
Bottom
Motor plate
W
U
Earth terminal M3 screw
øLC
LJ
39
A
Servo Motor
Model
Inertia
Moment
J[ 10 -4kg•m 2] LA
4–øLZ
H
Encoder cable 0.3m
With connector 172169-9
(AMP make)
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated
P screw, depth R
round crimping terminal
1.25-4)
øSh6
Red: Phase U
White: Phase V
Section AA
Black: Phase W
Variable Dimensions
LB
LC
LD
LG
LJ
LL
LR
LZ
H
Q
S
U
W
P
R
Weight
[kg]
HA–FF23
0.35
90
70
100
76
8
50
131
30
5.5
4
25
11
2.5
4
M4 x 0.7
15
2.3
HA–FF33
0.5
90
70
100
76
8
50
148
30
5.5
4
25
11
2.5
4
M4 x 0.7
15
2.6
HA–FF43
0.98
115
95
135 100
10
62 154.5 40
9
5
35
16
3
5
M5 x 0.8
20
4.2
HA–FF63
1.2
115
95
135 100
10
62 169.5 40
9
5
35
16
3
5
M5 x 0.8
20
4.8
10
10– 41
10. SPECIFICATIONS
2) With electromagnetic brake
HA – FF053B • HA – FF13B
[Unit: mm]
4– ø4.5
LL
30
Top
45
Bottom
0
ø6 8
ø50h7
Bottom
54
2.5
ø8h6
ø47
Caution plate
6
39
39
Top
ø6
Earth terminal M3 screw
(Opposite side)
Top
Bottom
Motor plate
Brake cable
VCTF 2–0.52 0.5m
(With end-insulated round crimping terminal 1.25-4)
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 0.3m
With connector 172169-9
(AMP make)
Servo Motor
Model
Inertia
Variable
Weight
Moment
Dimensions
[kg]
-4
2
J[ 10 kg•m ]
LL
HA–FF053
0.08
140.5
1.6
HA–FF13B
0.11
157.5
1.8
HA – FF23B to HA – FF63B
[Unit: mm]
4–øLZ
LL
LD
LR
45°
3
LG
Caution plate
Q
QK
QL
øLA
Top
39
A
V ring
Top
Bottom
Motor plate
W
U
Earth terminal M3 screw
øL C
LJ
Bottom
øLBh7
ø47
A
H
Encoder cable 0.3m
With connector 172169-9
(AMP make)
Brake cable
VCTF 2–0.52 0.5m
(With end-insulated round
crimping terminal 1.25-4)
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping
terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Inertia
Servo Motor
Moment
Model
J[ 10 -4kg•m 2] LA LB LC LD LG LJ
P screw,
depth R
øSh6
Section AA
Variable Dimensions
LL LR LZ
H
Q
S
U
W
QK QL
P
R
Weight
[kg]
HA–FF23B
0.48
90
70 100 76
8
50 167.5 30 5.5
8
25
11 2.5
4
16
4
M4 x 0.7 15
2.9
HA–FF33B
0.63
90
70 100 76
8
50 185 30 5.5
8
25
11 2.5
4
16
4
M4 x 0.7 15
3.2
HA–FF43B
1.33
115 95 135 100 10
62 191.5 40
9
5
35
16
3
5
25
5
M5 x 0.8 20
5.0
HA–FF63B
1.55
115 95 135 100 10
62 206.5 40
9
5
35
16
3
5
25
5
M5 x 0.8 20
5.6
10– 42
10. SPECIFICATIONS
3) With reduction gear for general industrial machine
HA – FF053(B)G1 • HA – FF13(B)G1
[Unit: mm]
LL
38
90
3
45°
33
Caution plate
Earth terminal M3 screw
(Opposite side)
27.5
ø34
18
A
90
Bottom
ø1
39
ø47
A
04
Top
Bottom
Motor plate
5
5
3
Top
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 0.3m
With connector 172169-9
(AMP make)
4–ø6.5
ø15h6
Section AA
(Note 1) Variable
(Note 1)
(Note 2)
Servo Motor
Reduction
(Note 1) Weight
Dimensions
Inertia Moment
Reduction
Model
Gear Model J[ 10 -4 kg•m 2 ]
[kg]
LL
Ratio
1/5
0.068 (0.084)
183 (217.5)
2.5 (2.8)
HA–FF053
1/10
GR–S–10
0.068 (0.084)
183 (217.5)
2.5 (2.8)
(B)G1
1/30
HA–FF13
(B)G1
1/5
1/10
GR–S–10
1/30
0.063 (0.080)
183 (217.5)
2.5 (2.8)
0.10 (0.115)
200 (234.5)
2.7 (3.0)
0.10 (0.115)
200 (234.5)
2.7 (3.0)
0.095 (0.11)
200 (234.5)
2.7 (3.0)
Note: 1. Values in parentheses are those for the servo motors with electromagnetic brakes.
Note: 2. Nominal reduction ratios. For actual reduction ratios, refer to Section 10-3.
HA
–
FF23(B)G1
[Unit: mm]
215
32.5
4–ø10
145
Earth terminal M3 screw
(Opposite side)
80
150
15
A
ø1
ø130js7
3
77.5
5
Top
5
ø47
39
45°
25
24
A
Caution plate
Bottom
3
72.5
12
Top Bottom
Motor plate
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 172169-9
(AMP make)
ø16h6
M6 screw, depth 10
Section AA
Red: Phase U
White: Phase V
Black: Phase W
(Note 2)
Servo Motor
Reduction
Reduction
Model
Gear Model
Ratio
1/5
HA–FF23
1/10
GR–S–20
(B)G1
1/30
(Note 1)
(Note 1) Weight
Inertia Moment
[kg]
J[ 10 -4 kg•m 2 ]
0.373 (0.502)
5.0 (5.6)
0.373 (0.502)
5.0 (5.6)
0.37 (0.50)
5.0 (5.6)
Note: 1. Values in parentheses are those for the servo motors with electroNote: 1. magnetic brakes.
Note: 2. Nominal reduction ratios. For actual reduction ratios, refer to Section
Note: 1. 10-3.
10– 43
10
10. SPECIFICATIONS
HA – FF33(B)G1 • HA – FF43(B)G1
[Unit: mm]
37.5
3
18
A
6
80
Top
M6 screw,
depth 12
Top Bottom
Motor plate
ø19h6
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 172169-9
(AMP make)
87.5
6
ø47
Bottom
ø1
160
Caution plate
3.5
28
25
A
Earth terminal M3 screw
(Opposite side)
39
45°
ø130js7
12
4– ø10
145
72.5
LL
Section AA
Red: Phase U
White: Phase V
Black: Phase W
(Note 2) Reduction
Servo Motor Reduction
Gear
Model
Ratio
Model
1/5
HA–FF33
1/10
GR–S–30
(B)G1
1/30
1/5
HA–FF43
(B)G1
1/10
GR–S–40
1/30
(Note 1)
(Note 1) Variable
(Note 1) Weight
Inertia Moment
Dimensions
-4
2
[kg]
J[ 10 kg•m ]
LL
0.545 (0.678)
250 (287)
6.5 (7.2)
0.545 (0.678)
250 (287)
6.5 (7.2)
0.538 (0.670)
250 (287)
6.5 (7.2)
1.02 (1.37)
259 (295.5)
8.0 (8.9)
1.02 (1.37)
259 (295.5)
8.0 (8.9)
1.01 (1.36)
259 (295.5)
8.0 (8.9)
Note: 1. Values in parentheses are those for the servo motors with electromagnetic brakes.
Note: 2. Nominal reduction ratios. For actual reduction ratios, refer to Section 10-3.
HA – FF63(B)G1
[Unit: mm]
4–ø12
274.5(311.5)
12
3
Earth terminal M3 screw
(Opposite side)
Top
Bottom
Motor plate
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
ø22h6
100
Top
Encoder cable 0.3m
With connector 172169-9
(AMP make)
92.5
192.5
3.5
6
6
A
25
ø2
ø170js7
32
A
20
ø47
39
45°
36
Caution plate
Bottom
185
46.5
M6 screw,
depth 10
Section AA
Red: Phase U
White: Phase V
Black: Phase W
(Note 1)
(Note 2) Reduction
Servo Motor
(Note 1) Weight
Inertia Moment
Reduction
Gear
Model
[kg]
J[ 10 -4 kg•m 2 ]
Ratio
Model
HA–FF63
(B)G1
1/5
1/10
1/30
Note:
Note:
Note:
Note:
1.
1.
2.
1.
GR–S–60
1.34 (1.69)
13.0 (13.9)
1.34 (1.69)
13.0 (13.9)
1.32 (1.67)
13.0 (13.9)
Values in parentheses are those for the servo motors with
electromagnetic brakes.
Nominal reduction ratios. For actual reduction ratios, refer to
Section 10-3.
10– 44
10. SPECIFICATIONS
[Unit: mm]
4) With reduction gear for precision application
LL
LR
LG
Caution plate
LM
45°
øL
øLF
øSh6
C
Top
Top
øLBh7
39
Bottom
ø47
LD
Q
Earth terminal M3 screw
(Opposite side) 100W or less
øLK
Earth terminal M3 screw
(Opposite side) 200W or more
LE
4–øLZ
A
øL
Bottom
Motor plate
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 172169-9
(AMP make)
Servo Motor Reduction Reduction
Model
Ratio Gear Model
1/5
HA–FF053
(B)G2
1/10
1/15
1/25
1/5
HA–FF13
(B)G2
1/10
1/15
1/25
1/5
HA–FF23
(B)G2
1/10
1/15
HA–FF33
(B)G2
HA–FF43
(B)G2
1/5
1/10
1/5
BM2–05B
–A5MES
BM2–10B
–A5MES
BM2–15B
–A5MES
BM3–25B
–A5MES
BM2–05B
–01MES
BM3–10B
–01MES
BM3–15B
–01MES
BM4–25B
–01MES
BM3–05B
–02MES
BM4–10B
–02MES
BM4–15B
–02MES
BM4–05B
–03MES
BM4–10B
–03MES
BM4–05B
–04MES
Red: Phase U
White: Phase V
Black: Phase W
(Note)
Inertia
Moment
J[ 10 -4kg•m 2]
0.11
(0.128)
0.108
(0.125)
0.105
(0.123)
0.111
(0.120)
0.143
(0.160)
0.165
(0.160)
0.155
(0.153)
0.29
(0.308)
0.425
(0.558)
0.645
(0.778)
0.618
(0.75)
0.818
(0.95)
0.795
(0.928)
1.293
(1.643)
(Note) Variable Dimensions
LA LB LC LD LE LF LG LK
78 62 89 74
2
33
6
75
78 62 89 74
2
33
6
75
78 62 89 74
2
33
6
75
90 76 102 87
2
41
8
87
78 62 89 74
2
33
6
75
90 76 102 87
2
41
8
87
90 76 102 87
2
41
8
87
122 100 140 118 3
61 10 118
90 76 102 87
41
2
8
87
122 100 140 118 3
61 10 118
122 100 140 118 3
61 10 118
122 100 140 118 3
61 10 118
122 100 140 118 3
61 10 118
122 100 140 118 3
61 10 118
LL
205
(240)
205
(239.5)
205
(239.5)
213
(247.5)
222
(256.5)
230
(264.5)
230
(264.5)
262
(296.5)
240
(277)
270
(306.5)
270
(306.5)
287
(324.5)
287
(324.5)
304
(340.5)
LM LR LZ Q
S
9
30 4.5 20 10
9
30 4.5 20 10
9
30 4.5 20 10
9
35 5.5 25 14
9
30 4.5 20 10
9
35 5.5 25 14
9
35 5.5 25 14
14 55 6.6 40 22
9
35 5.5 25 14
14 55 6.6 40 22
14 55 6.6 40 22
14 55 6.6 40 22
14 55 6.6 40 22
14 55 6.6 40 22
(Note)
Weight
[kg]
2.3
(2.6)
2.3
(2.6)
2.3
(2.6)
2.8
(3.2)
2.5
(2.8)
3.0
(3.4)
3.0
(3.4)
5.0
(5.3)
3.8
(4.4)
5.8
(6.4)
5.8
(6.4)
6.1
(6.7)
6.1
(6.7)
7.7
(8.5)
Note: Values in parentheses are those for the servo motors with electromagnetic brakes.
10
10– 45
10. SPECIFICATIONS
[Unit: mm]
4–ø12
LL
LR
43
Earth terminal M3 screw
Caution plate (Opposite side) 200W or more
Earth terminal M3 screw
(Opposite side) 100W or less
LG
LD
Q
45°
3
A
øLK
ø47
39
Bottom
øLF
øLBh7
øSh6
øL
Top
øL
C
Motor plate
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 172169-9
(AMP make)
Servo Motor Reduction Reduction
Ratio Gear Model
Model
HA–FF13
(B)G2
1/45
1/20
HA–FF23
(B)G2
1/29
1/45
1/20
HA–FF33
(B)G2
1/29
1/45
1/9
HA–FF43
(B)G2
1/20
1/29
1/45
1/5
HA–FF63
(B)G2
1/9
1/20
1/29
BL1–45B
–01MES
BL1–20B
–02MES
BL1–29B
–02MES
BL2–45B
–02MES
BL1–20B
–03MES
BL2–29B
–03MES
BL2–45B
–03MES
BL1–09B
–04MES
BL2–20B
–04MES
BL2–29B
–04MES
BL2–45B
–04MES
BL1–05B
–06MES
BL1–09B
–06MES
BL2–20B
–06MES
BL2–29B
–06MES
Red: Phase U
White: Phase V
Black: Phase W
(Note)
Inertia
Moment
J[ 10 -4kg•m 2]
0.293
(0.298)
0.730
(0.885)
0.633
(0.765)
0.763
(0.895)
0.880
(1.013)
1.535
(1.668)
0.913
(1.045)
1.193
(1.543)
2.378
(2.623)
2.01
(2.36)
1.388
(1.738)
1.283
(1.858)
1.418
(1.768)
2.603
(2.953)
2.235
(2.585)
(Note) Variable Dimensions
LA LB LC LD LF LG LK
LL
274
130 100 155 120 70 10 102
(308.5)
278
130 100 155 120 70 10 102
(311.5)
278
130 100 155 120 70 10 102 (314.5)
299
160 130 185 140 94 12 132 (336)
295
130 100 155 120 70 10 102 (329.5)
316
160 130 185 140 94 12 132
(353.5)
316
160 130 185 140 94 12 132 (363.5)
295.5
130 100 155 120 70 10 102
(332.5)
323.5
160 130 185 140 94 12 132
(360.5)
323.5
160 130 185 140 94 12 132
(360.5)
333.5
160 130 185 140 94 12 132
(370.5)
300.5
130 100 155 120 70 10 102 (337.5)
310.5
130 100 155 120 70 10 102 (347.5)
338.5
160 130 185 140 94 12 132 (375.5)
338.5
160 130 185 140 94 12 132 (375.5)
LR Q
85 40 25
85 40 25
85 40 25
100 55 35
85 40 25
100 55 35
100 55 35
85 40 25
100 55 35
100 55 35
100 55 35
85 40 25
85 40 25
100 55 35
100 55 35
Note: Values in parentheses are those for the servo motors with electromagnetic brakes.
10– 46
S
(Note)
Weight
[kg]
6
(6.3)
6.8
(7.4)
6.8
(7.4)
12.3
(12.9)
7.1
(7.7)
12.6
(13.2)
12.6
(13.2)
8.2
(9.0)
14.2
(15)
14.2
(15)
14.2
(15)
8.8
(9.6)
8.8
(9.6)
14.8
(15.6)
14.8
(15.6)
10. SPECIFICATIONS
HA – FF63(B)G2 1/45
[Unit: mm]
371(407.5)
201
6–ø12
5
75
Caution plate
Power supply cable
VCTF 3-1.252 0.5m
(With end-insulated round crimping terminal 1.25-4)
°
Bottom
Motor plate
60
ø50h6
Top
ø135
ø190h7
ø190
Top
41
ø47
ø2
20
Bottom
Earth terminal M3 screw
(Opposite side)
45
15
ø2
39
140
63
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 0.3m
With connector 172169-9
(AMP make)
Reduction
Gear Model
BL3–45B–06MES
Reduction
Ratio
(Note)
Inertia
Moment
J[ 10 -4 kg•m 2 ]
(Note)
Weight [kg]
1/45
3.13
(3.475)
29.8
(33.7)
Note: Values in parentheses are those for the servo motors
with electromagnetic brakes.
10
10– 47
10. SPECIFICATIONS
(4) HA-FFC-UE series
1) Standard (without electromagnetic brake, without reduction gear)
1) HA – FF053C – UE
120
30
54
2.5
25
4 5°
ø8h6
12
Bottom
Top
0
ø68
Oil seal
GM10204B
41
Top
32
20
Top
69
47
Bottom
TUV plate
4–ø4.5
ø6
ø50h7
ø47
46
Caution plate
(English)
[Unit: mm]
Bottom
Motor plate
49.5
Power supply connector
CE05-2A14S-2PD-B(D17)
Encoder connector
MS3102A20-29P
Model
Note: 1. For the pin-outs of the power supply and encoder connectors, refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power supply and encoder
connectors down.
HA–FF053C–UE
Output Inertia Moment Weight
[W] J[ 10 -4kg•m 2] [kg]
50
0.063
1.8
HA – FF13C – UE
[Unit: mm]
30
137
46
12
54
2.5
4 5°
ø8h6
ø50h7
Bottom
Caution plate
(English)
Top
4–ø4.5
0
ø6
ø68
Oil seal
S10207B
74
Bottom
41
Top
32
Top
69
ø47
25
Bottom
Motor plate
TUV plate
20
Encoder connector
MS3102A20-29P
66.5
Power supply connector
CE05-2A14S-2PD-B(D17)
Note: 1. For the pin-outs of the power supply and encoder connectors, refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power supply and
encoder connectors down.
Model
HA–FF13C–UE
10– 48
Output Inertia Moment Weight
[W] J[ 10 -4kg•m 2] [kg]
100
0.10
2
10. SPECIFICATIONS
1)
HA – FF23C – UE • HA – FF33C – UE
[Unit: mm]
L
30
46
14
76
3
45°
25
4–ø5.5
16 4
0
Top
Caution plate
Bottom
(English)
ø10
0
41
Top
32
79
A
Oil seal
S15307B
Bottom
Motor plate
KL
20
4
Encoder connector
MS3102A20-29P
2.5
Power supply connector
CE05-2A14S-2PD-B(D17)
ø11h6
Top
TUV plate
ø9
ø70h7
ø47
A
Bottom
4
M4 x 0.7 threads, depth 15
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Output
[W]
Model
Variable Dimensions
L
KL
Inertia Moment Weight
J[ 10 -4kg•m 2] [kg]
HA–FF23C–UE
200
145
71.5
0.35
2.6
HA–FF33C–UE
300
162
89
0.50
2.9
HA – FF43C – UE • HA – FF63C – UE
[Unit: mm]
L
Caution plate
(English)
100
40
47
16
45°
3
4–ø9
35
25
5
ø13
5
ø47
Bottom
Top
15
ø1
ø95h7
A
41
EC
Top
20
32
Top
TUV plate
Bottom
Motor plate
KL
Encoder connector
MS3102A20-29P
3
Power supply connector
CE05-2A14S-2PD-B(D17)
5
44
91
Oil seal
S17308B
ø16h6
74
A
Bottom
5
M5 x 0.8 threads, depth 20
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
10– 49
Model
Output
[W]
Variable Dimensions
L
KL
Inertia Moment Weight
J[ 10 -4kg•m 2] [kg]
HA–FF43C–UE
400
169
93
0.98
4.7
HA–FF63C–UE
600
184
108
1.2
5.3
10
10. SPECIFICATIONS
2) With electromagnetic brake
HA – FF053CB – UE
[Unit: mm]
155
Bottom
54
2.5
Top Bottom
Top
ø68
4–ø4.5
ø60
Oil seal
GM10204B
CE
74
41
Top
32
67
Bottom
TUV plate
45°
25
ø8h6
ø50h7
ø47
Caution plate
30
Motor plate
12
(Opposite side)
47
28
35.5
20
44
84
Power supply connector Brake connector
CE05-2A14S-2PD-B(D17) MS3102E10SL-4P
Encoder connector
MS3102A20-29P
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Braking
Weight
Output Inertia Moment
Force
-4
2
[kg]
[W] J[ 10 kg•m ]
•
[N m]
Model
HA–FF053CB–UE
50
0.08
0.39
2.1
HA – FF13CB – UE
[Unit: mm]
30
12
ø47
Bottom
45°
ø8h6
Caution plate
54
2.5
25
Top
ø68
32
Top Bottom
Motor plate
67
CE
74
41
Top
4–ø4.5
ø60
Oil seal
S10207B
Bottom
TUV plate
ø50h7
172
47
28
35.5
20
44
Encoder connector
MS3102A20-29P
101
Power supply connector
CE05-2A14S-2PD-B(D17)
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Brake connector
MS3102E10SL-4P
Model
HA–FF13CB–UE
10– 50
Braking
Weight
Output Inertia Moment
Force
[kg]
[W] J[ 10 -4kg•m 2]
[N•m]
100
0.11
0.39
2.3
10. SPECIFICATIONS
HA – FF23CB – UE • HA – FF33CB – UE
[Unit: mm]
L
30
46
14
76
3
45°
25
Top
Bottom
A
Oil seal
S15307B
41
32
Top
Top
TUV plate
Bottom
Motor plate
ø9
ø10
0
79
ø70h7
Caution plate
(English)
0
Bottom
74
ø47
16 4
A
4–ø5.5
28
38.5
20
KL
Brake connector
MS3102E10SL-4P
2.5
4
Power supply connector
CE05-2A14S-2PD-B(D17)
ø11h6
Encoder connector
MS3102A20-29P
4
M4 x 0.7 threads, depth 15
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Output
[W]
Model
HA–FF23CB–UE
200
Variable Dimensions
L
KL
182
109
Braking Force Inertia Moment Weight
[N•m]
J[ 10 -4kg•m 2] [kg]
0.48
3.5
0.63
3.8
1.2
HA–FF33CB–UE
300
200
127
HA – FF43CB – UE • HA – FF63CB – UE
[Unit: mm]
L
Caution plate
(English)
47
16
100
40
3
35
45°
25
5
ø1
35
ø47
44
91
A
Oil seal
S17308B
41
32 Top Bottom
Motor plate
TUV plate
5
ø11
28
42.5
20
Encoder connector
MS3102A20-29P
KL
3
Power supply connector
CE05-2A14S-2PD-B(D17)
Brake connector
MS3102E10SL-4P
ø16h6
CE
Top
74
Bottom
5
Top
ø95h7
A
Bottom
4–ø9
5
M5 x 0.8 threads, depth 20
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Model
Output
[W]
Variable Dimensions
L
KL
HA–FF43CB–UE
400
206
130
HA–FF63CB–UE
600
221
145
Braking Force Inertia Moment Weight
[N•m]
J[ 10 -4kg•m 2] [kg]
1.33
5.8
1.55
6.4
2.3
10– 51
10
10. SPECIFICATIONS
(5) HC-SF series
1) Standard (without electromagnetic brake, without reduction gear)
Model
Variable
Output
Dimensions
(kW)
L
KL
Inertia Moment
Weight
-4
J( 10 kg•m )
(kg)
2
HC—SF52
HC—SF53
0.5
120
51.5
6.6
5.0
HC—SF102
HC—SF103
1.0
145
76.5
13.7
7.0
HC—SF81
0.85
HC—SF152
HC—SF153
1.5
170
101.5
20
9.0
[Unit: mm]
L
55
39.5
12
3
130
Moter plate
(Opposite side)
50
Bottom
Bottom
Top
Top
81.5
ø1
ø110h7
ø24h6
45°
4-ø9 mounting hole
Use hexagon socket
head cap screw.
45
ø1
65
Oil seal
111
S30457B
Motor flange direction
19.5
U
KL
G
H A
E D B
C
Earth
F
Encoder connector
Power supply connector
MS3102A20-29P
CE05-2A22-23P
V
41
W
Power supply connector layout
CE05-2A22-23P
Model
Output
(kW)
HC—SF121
1.2
HC—SF202
HC—SF203
2.0
HC—SF201
2.0
HC—SF352
HC—SF353
3.5
Variable
Dimensions
Z694854 *
Inertia Moment
Weight
-4
J( 10 kg•m )
(kg)
2
L
KL
145
68.5
42.5
12.0
187
110.5
82.0
19.0
[Unit: mm]
79
L
18
Moter plate
(Opposite side)
3
176
75
Bottom
Bottom
Top
Top
ø2
ø2
Oil seal
81.5
00
-0
ø114.3 -0.025
ø35 +0
-+0.010
39.5
30
142
S40608B
Motor flange direction
U
19.5
F
G
E D
Encoder connector
MS3102A20-29P
KL
Power supply connector
V
A
B
C
W
Earth
Power supply connector layout
CE05-2A24-10P
CE05-2A24-10P
10– 52
45
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
Z695393A
10. SPECIFICATIONS
Model
HC—SF301
Output
Inertia Moment
Weight
(kW)
-4
J( 10 kg·m )
(kg)
3.0
101
23
2
[Unit: mm]
208
79
Moter plate
(Opposite side) 18
39.5
176
3
45°
Bottom
Top
Top
00
-0
Bottom
ø2
ø114.3 -0.025
ø35 +0
-+0.010
75
ø2
81.5
Oil seal
30
142
S40608B
Motor flange direction
U
19.5
Encoder connector
F
MS3102A20-29P
B
E D
131.5
Power supply connector
Earth
CE05-2A2-10P
V
A
G
C
W
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
45
Power supply connector layout
CE05-2A24-10P
Note: 1. For connection with a load, use a locking element or the like.
BC10628 *
2) With electromagnetic brake
Dimensions
(kW)
L
KL
Braking Force Inertia Moment
-4
2
Weight
(N·m)
J( 10 kg·m )
(kg)
HC—SF52B
HC—SF53B
0.5
153
51.5
8.5
8.3
7.5
HC—SF102B
HC—SF103B
1.0
178
76.5
8.5
15.4
9.5
HC—SF81B
0.85
HC—SF152B
HC—SF153B
1.5
203
101.5
8.5
21.7
11.5
[Unit: mm]
4-ø9 mounting hole
Use hexagon socket
head cap screw.
L
55
12
Moter plate
(Opposite side)
130
3
45°
50
Top
ø110h7
ø24h6
ø1
Bottom
45
ø1
65
81.5
Oil seal
S30457B
111
Model
Variable
Output
Motor flange direction
Brake
U
G
19.5
Encoder connector
MS3102A20-29P
F
E H
D
KL
V
A
B
C
W
Power supply connector
Earth
CE05-2A22-23P
Power supply connector layout
CE05-2A22-23P
41
10
Z695005
10– 53
10. SPECIFICATIONS
Model
Variable
Output
Dimensions
(kW)
HC—SF121B
1.2
HC—SF202B
HC—SF203B
2.0
HC—SF201B
2.0
HC—SF352B
HC—SF353B
3.5
Braking Force Inertia Moment
-4
Weight
2
(N·m)
J( 10 kg·m )
(kg)
68.5
43.1
52.5
18.0
110.5
43.1
92.0
25.0
L
KL
193
235
[Unit: mm]
79
L
39.5
18
Moter plate
(Opposite side)
176
3
45°
ø2
Top
ø2
00
-0
Bottom
Top
-+0.010
ø35 +0
Bottom
30
ø114.3 -0.025
75
81.5
Oil seal
142
117
S40608B
19.5
Motor flange direction
KL
89
U
F
Encoder connector
Brake connector
MS3102A20-29P
MS3102A10SL-4P
Power supply connector
CE05-2A24-10P
G
A
E D
B
V
A
Brake
C F W
Earth
Power supply connector layout
CE05-2A24-10P
Model
HC—SF301B
Output
Brake connector layout
MS3102A10SL-4P
Z695319D
Weight
Braking Force Inertia Moment
-4
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
B
2
(kW)
(N·m)
J( 10 kg·m )
(kg)
3.0
43.1
111
29.0
[Unit: mm]
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
79
256
Moter plate
(Opposite side)
39.5
176
18
3
45°
75
Bottom
Top
Top
-0
ø2
Oil seal
117
81.5
00
ø114.3 -0.025
Bottom
-+0.010
ø35 +0
ø2
30
142
S40608B
Motor flange direction
131.5
19.5
U
F
89
A
Encoder connector Brake connector
MS3102A20-29P
MS3102A10SL-4P
Power supply
connector
CE05-2A24-10P
B
Brake
G
A
E D
B
C
V
W
Earth
Brake connector layout
MS3102A10SL-4P
45
Power supply connector layout
CE05-2A24-10P
BC10823 *
10– 54
10. SPECIFICATIONS
(6) HC-RF series
1) Standard (without electromagnetic brake, without reduction gear)
45
L
10
39.5
3
Motor plate
(Opposite side)
45
°
40
ø95h7
Bottom
Top
Top
4-ø9 mounting hole
Use hexagon socket
head cap screw.
100
ø24h6
Bottom
[Unit: mm]
ø1
15
35
ø1
96
81.5
Oil seal
S30457B
Motor flange directon
U
V
G
19.5
KL
F
E
Encoder connector Power supply connector
MS3102A20–29P CE05–2A22–23P
Model
A
H
D
B
41
C
W
Earth
Power supply connector layout
(CE05–2A22–23P)
Variable
Output
Dimensions
(kW)
Inertia Moment
Weight
J( 10 kg•m )
-4
(kg)
2
L
KL
71
1.5
3.9
HC–RF103
1.0
147
HC–RF153
1.5
172
96
1.9
5.0
HC–RF203
2.0
197
121
2.3
6.2
2) With electromagnetic brake
[Unit: mm]
45
L
3
10
40
45
15
Bottom
Top
Top
ø1
ø95h7
Bottom
ø1
35
96
81.5
Oil seal
S30457B
Motor flange direction
Brake
U
G
V
19.5
Encoder connector
MS3102A20–29P
4-ø9 mounting hole
(Use hexagon socket
head cap screw.)
°
ø24h6
Motor plate
(Opposite side)
100
KL
Power supply connector
CE05–2A22–23P
F
E H
D
Earth
A
B
C
41
W
Power supply connector layout
(CE05–2A22–23P)
Model
Output
(kW)
Variable
Dimensions
L
KL
Barking Force Inertia Moment
-4
2
Weight
(N•m)
J( 10 kg•m )
(kg)
HC–RF103B
1.0
185
71
7
1.85
6.0
HC–RF153B
1.5
210
96
7
2.25
7.0
HC–RF203B
2.0
235
121
7
2.65
8.3
10– 55
10
10. SPECIFICATIONS
(7) HC-UF series
1) Standard (without electromagnetic brake)
Model
HC–UF72
Output
Inertia Moment
Weight
(kW)
J( 10 kg·m )
-4
(kg)
0.75
10.4
8
2
110.5
39.5
[Unit: mm]
176
55
Moter plate 13
(Opposite side)
3
40°
2-M6 screw
ø2
15
50
-0
Top
ø22h6
Bottom
Top
Oil seal
81.5
00
ø114.3 -0.025
Bottom
ø2
ø2
S30457B
30
144
45°
Motor flange direction
19.5
U
Encoder connector
38
V
FG
H A
B
D
E C
W
Earth
MS3102A20-29P
Power supply
connector
CE05-2A22-23P
44
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
Power supply connector layout
CE05-2A22-23P
Z695911 *
Model
HC–UF152
Output
Inertia Moment
Weight
(kW)
-4
J( 10 kg·m )
(kg)
1.5
22.1
11
2
176
55
120
39.5
[Unit: mm]
Moter plate
(Opposite side)
13
40°
3
2-M6 screw
ø2
15
50
81.5
-0
Oil seal
ø2
S30457B
45°
30
144
Top
00
ɔ114.3-0.025
Bottom
Top
ɔ28h6
Bottom
ø2
Motor flange direction
19.5
U
Encoder connector
47.5
MS3102A20-29P
Power supply
connector
CE05-2A22-23P
Earth
G
F H
ED
A
V
44
B
C
W
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
Power supply connector layout
CE05-2A22-23P
Z695912A
10– 56
10. SPECIFICATIONS
Output
Model
(kW)
HC–UF202
2.0
Variable
Dimensions
L
KL
118
42.5
Inertia Moment
Weight
-4
J( 10 kg·m )
(kg)
38.2
16
2
L
[Unit: mm]
220
65
39.5
16
4
37.
5°
2-M8 screw
Top
ø2
35
ø35h6
Bottom
Top
50
Bottom
ø2
-0
ø200 -0.025
60
81.5
ø2
70
Oil seal
S40608B
164
45°
Motor flange direction
19.5
U
F
Encoder connector
MS3102A20-29P
19.5
V
G
A
E D
B
C
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
W
Power supply connector
CE05-2A24-10P
Power supply connector layout
CE06-2A24-10P
47
Z695914 *
Model
HC–UF13
Output
Inertia Moment
Weight
(kW)
-4
J( 10 kg·m )
(kg)
100
0.66
0.8
2
[Unit: mm]
70
25
60
5 6
Motor plate
4-ø5.8
TUV plate
3
Motor plate
(Opposite side)
Bottom
Top
Top
ø7
0
ø50h7
Top
ø40
Bottom
ø8h6
Bottom
Top
42.8
40
Bottom
Caution plate
Oil seal
33
9.9
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
S10207
Power supply lead 4-AWG19 0.3m
26.9
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
20
BC11740A
10
10– 57
10. SPECIFICATIONS
Variable
Output
Model
Dimensions
(W)
L
KL
Inertia Moment
Weight
-4
J( 10 kg·m )
(kg)
2
HC–UF23
200
77
43.8
0.241
1.5
HC–UF43
400
92
58.8
0.365
1.7
[Unit: mm]
L
30
80
8
6.5
4-ø6.6
3
Motor plate
(Opposite side)
Motor plate
TUV plate
Bottom
Top
55
50
Top
ø56
ø14h6
Bottom
ø70h7
ø9
0
Top
Bottom
Oil seal
SC15307
KL
26.9
Power supply lead 4-AWG19 0.3m
Encoder cable 0.3m
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
9.9
With connector 1-172169-9
(AMP make)
BC11513A
Model
HC–UF73
Output (W)
-4
Inertia Moment J(
750
2
10 kg·m )
Weight (kg)
5.9
5.0
[Unit: mm]
85
40
10
Motor plate
(Opposite side)
123
3.5
45°
2.5
4-ø9
32.5
Bottom
Bottom
Top
Top
Caution
plate
45
65
ø1
76
Oil seal
SC20357
72
Bottom
Top
ø1
Motor plate
ø80
ø110h7
ø19h6
TUV plate
Power supply lead 4-AWG19 0.3m
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
26.9
20
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
55.5
70
BC11357A
2) With electromagnetic brake
Model
HC–UF72B
Output (kW)
Braking Force (N·m) Inertia Moment J(
0.75
8.5
2
Weight (kg)
12.4
10
176
55
144
39.5
-4
10 kg·m )
[Unit: mm]
40°
13 3
Moter plate
(Opposite side)
2-M6 screw
ø2
15
-0
Bottom
Bottom
Top
Top
00
ø114.3 -0.025
ø22h6
ø2
ø2
Oil seal
S30457B
30
144
45°
Motor flange direction
19.5
Encoder connector
Brake
U
38
Power supply
connector
CE05-2A22-23P
A
F H
E
D
MS3102A20-29P
Earth
V
44
B
C
W
Power supply connector layout
CE05-2A22-23P
10– 58
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
Z695981A
10. SPECIFICATIONS
Output
Model
HC–UF152B
Weight
Braking Force Inertia Moment
-4
2
(kW)
(N·m)
J( 10 kg·m )
(kg)
1.5
8.5
28.9
13
176
55
153.5
39.5
[Unit: mm]
Moter plate
(Opposite side)
13
40°
3
2-M6 screw
ø2
15
Bottom
Top
Top
-0
Bottom
00
ø114.3 -0.025
ø28h6
ø2
ø2
Oil seal
S30457B
30
144
45°
Motor flange direction
19.5
Brake
Encoder connector
47.5
MS3102A20-29P
Power supply
connector
CE05-2A22-23P
U
V
G
F H A
E
B
D C
Earth
W
44
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
Power supply connector layout
CE05-2A22-23P
Z695982A
Variable
Output
Model
Dimensions
(kW)
HC–UF202B
2.0
L
KL
161
42.5
Weight
Braking Force Inertia Moment
-4
2
(N·m)
J( 10 kg·m )
(kg)
43.1
46.8
22
220
65
L
37.5
60
°
2-M8 screw
-0
ø200 -0.025
Moter plate 16 4
(Opposite side)
[Unit: mm]
ø2
50
Bottom
Top
Bottom
Top
ø2
81.5
139
35
-+0.010
ø35 +0
ø2
70
Oil seal
45°
S40608B
19.5
Motor flange direction
42
A B
Brake
Brake connector
H/MS3102A10SL-4P
Power supply connector
CE05-2A24-10P
Brake connector layout
MS3102A10SL-4P
Motor flange direction
U
V
F
A
G
E D C B
W
Earth
4-ø13.5 mounting hole
Use hexagon socket
head cap screw.
164
KL
Encoder connector
MS3102A20-29P
47
Power supply connector layout
CE05-2A24-10P
BC10647A
10
10– 59
10. SPECIFICATIONS
Output
Model
HC–UF13B
Weight
Braking Force Inertia Moment
-4
2
(kW)
(N·m)
J( 10 kg·m )
(kg)
100
0.32
0.074
1.2
[Unit: mm]
5
Motor plate
60
25
100
6
4-ø5.8
3
TUV plate
45˚
Motor plate
(Opposite side)
R5
ø7
0
ø40
Bottom
Top
Top
ø50h7
Top
Bottom
ø8h6
Bottom
40
42.8
Bottom
Top
Caution
plate
Oil seal
33
SC10207
46.7
26.9
Power supply lead 4-AWG19 0.3m
9.9
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Brake cable
Green/yellow: Earth
Tough-rubber sheath cable 2-0.75 2 0.3m
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Output
Model
(W)
HC–UF23B
HC–UF43B
Variable
Dimensions
Braking Force Inertia Moment
-4
20
BC11767A
Weight
2
(N·m)
J( 10 kg·m )
(kg)
L
KL
200
111
43.8
1.3
0.323
2.2
400
126
58.8
1.3
0.477
2.4
[Unit: mm]
L
30
80
8 6.5
Motor plate
Motor plate
4-ø6.6
3
45˚
(Opposite side)
TUV plate
7
R
Bottom
ø9
0
Top
55
50
Top
ø70h7
Bottom
ø56
Top
ø14h6
Bottom
Oil seal
SC15307
47.2
KL
26.9
Power supply lead 4-AWG19 0.3m
Encoder cable 0.3m
With connector 1-172169-9
(AMP make)
Brake cable
Tough-rubber sheath cable
2-0.75 2 0.3m
(With end-insulated round
crimping terminal 1.25-4)
10– 60
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
24
BC11515A
10. SPECIFICATIONS
10-5-3 Servo motors (in inches)
(1) HC-MF series
1) Standard (without electromagnetic brake, without reduction gear)
Variable
Output
Model
Dimensions (in)
(W)
HC–MF053
HC–MF13
Inertia Moment
2
WK (oz•in )
(lb)
1.16
0.10
0.9
0.18
0.16
1.2
L
KL
50
3.21
100
3.80
L
1.654
Weight
2
[Unit: in]
0.984
1.575
1.594
0.197
Moter plate
(Opposite side)
0.098
2-ø0.177
45°
Bottom
ø0.315
Moter plate
ø1.181
Bottom
Top
Top
ø1.
811
Top
1.406
1.130
Bottom
0.268
Caution plate
KL
0.390
0.992
Power supply lead 4-AWG19 11.8in
(With end-insulated round
crimping terminal 1.25-4)
0.787
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 11.8in
With connctor 1-172169-9
(AMP make)
Variable
Output
Model
Dimensions (in)
(W)
HC–MF23
HC–MF43
Inertia Moment
2
BC12031 *
(BC12034 *)
Weight
2
WK (oz•in )
(lb)
L
KL
200
3.92
1.93
0.48
2.2
400
4.90
0.06
0.78
3.2
[Unit: in]
L
1.614
2.441
Motor plate
(Opposite side)
0.106
4-ø0.228
45°
Bottom
Bottom
Top
Caution plate
0.390
0.992
.75
6
1.685
Top
ø2
1.512
Bottom
ø1.969
ø0.551
Motor plate
Top
2.362
1.181
0.276 0.118
KL
0.417
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
0.787
BC12032 *
(BC12035 *)
10
10– 61
10. SPECIFICATIONS
Output
Model
HC–MF73
Weight
Inertia Moment
2
2
(W)
WK (oz•in )
(lb)
750
3.28
6.6
[Unit: in]
5.591
3.228
1.535
1.575
0.315
Motor plate
(Opposite side)
0.106
45°
ø0.748
Motor plate
ø3
.5
43
ø2.756
Bottom
Bottom
Top
Top
Top
2.287
1.917
Bottom
3.150
4-ø0.260
0.118
Caution plate
3.413
0.433
0.992
0.390
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
0.787
BC12033 *
2) With electromagnetic brake
Output
Model
(W)
HC–MF053B
HC–MF13B
Variable
Dimensions (in)
Weight
Braking Force Inertia Moment
2
2
(oz•in)
WK (oz•in )
(lb)
L
KL
50
4.31
1.16
45.32
0.12
1.7
100
4.90
1.75
45.32
0.18
2.0
[Unit: in]
0.984
L
1.575
1.594
1.654
Motor plate
(Opposite side)
0.197
0.098
2-ø0.177
45°
Bottom
Top
ø1.
0.268
KL
0.390
Caution plate
0.992
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
2.579
Brake lead
2-0.3 2 11.8in
(With end-insulated round
crimping terminal 1.25-4)
10– 62
811
1.406
Top
ø0.315
Bottom
Bottom
1.130
Top
ø1.181
Motor plate
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
BC12036 *
(BC12039 *)
10. SPECIFICATIONS
Output
Model
(W)
HC–MF23B
HC–MF43B
Variable
Dimensions (in)
Braking Force Inertia Moment
2
Weight
2
(oz•in)
WK (oz•in )
(lb)
1.03
184
0.74
3.5
2.84
184
1.04
4.6
L
KL
200
5.18
400
6.16
[Unit: in]
2.441
2.362
1.181
L
1.614
Motor plate
(Opposite side)
0.106
0.276
45°
0.118
4-ø0.228
ø0.551
Motor plate
ø1.969
Bottom
Bottom
Top
Top
ø2
.75
6
Top
1.685
1.512
Bottom
0.417
KL
Caution plate
0.390
2.677
0.992
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Brake lead
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
2-0.32 11.8in
(With end-insulated round
crimping terminal 1.25-4)
Output
Model
HC–MF73B
Braking Force Inertia Moment
2
2
0.787
BC12037 *
(BC12039 *)
Weight
(W)
(oz•in)
WK (oz•in )
(lb)
750
340
3.96
8.8
[Unit: in]
3.228
6.988
1.535
0.106
1.575
0.315
Motor plate
(Opposite side)
45°
ø0.748
Motor plate
Top
3
2.287
Bottom
.54
1.917
Top
ø3
ø2.756
Bottom
Bottom
3.150
4-ø0.260
0.118
Top
Caution plate
0.992
3.413
0.433
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
0.787
0.390
2.835
Power supply lead 4-AWG19 11.8in
Brake lead
2-0.32 11.8in
(With end-insulated round
crimping terminal 1.25-4)
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.768
BC12038 *
10
10– 63
10. SPECIFICATIONS
3) With reduction gear for general industrial machine
a) Without electromagnetic brake
Output
Model
(W)
Variable
Dimensions (in)
L
KL
Reduction
Reduction Ratio
Inertia Moment
2
2
WK (oz•in )
Gear Model (Actual Reduction Ratio)
Weight
Backlash
(lb)
HC–MF053G1
50
4.96
2.91
K6505
1/5(9/44)
0.30
60min. max.
3.1
HC–MF053G1
50
5.669
3.62
K6512
1/12(49/576)
0.42
60min. max.
4.0
HC–MF053G1
50
5.669
3.62
K6520
1/20(25/484)
0.32
60min. max.
4.0
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
2.382
0.315
1.594
1.654
2.559
1.102
4-ø0.276
45°
0.256
0.984
Motor plate
(Opposite side)
Motor plate
ø0.630
1.406
Top
Top
0.268
Caution plate
0.390
0.992
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Output
Model
ø1.890
Bottom
1.130
Top
Bottom
ø2.362
3
65
.95
ø2 ø3.4
Bottom
(W)
Variable
Dimensions (in)
L
KL
Reduction
Reduction Ratio
BC12066 *
(BC12086 *)
Inertia Moment
2
2
WK (oz•in )
Gear Model (Actual Reduction Ratio)
M4 threads,
depth 0.315
0.787
Weight
Backlash
(lb)
HC–MF13G1
100
5.551
3.5
K6505
1/5(9/44)
0.36
60min. max.
3.3
HC–MF13G1
100
6.26
4.21
K6512
1/12(49/576)
0.48
60min. max.
4.2
HC–MF13G1
100
6.26
4.21
K6520
1/20(25/484)
0.38
60min. max.
4.2
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
4- 0.276
2.382
L
0.315
1.594
1.654
2.559
0.256
1.102
45°
0.984
Motor plate
(Opposite side)
Motor plate
Caution plate
0.992
0.268
.95
3
0.390
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
ø2
5
1.406
Top
.46
ø2.362
ø0.630
Top
Bottom
1.130
Top
Bottom
ø1.890
ø3
Bottom
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 64
0.787
M4 threads,
depth 0.315
BC12067 *
(BC12087 *)
10. SPECIFICATIONS
Variable
Output
Model
L
KL
Reduction Ratio
Reduction
Dimensions (in)
(W)
Weight
Inertia Moment
2
2
WK (oz•in )
(lb)
1/5(19/96)
1.36
7.3
Gear Model (Actual Reduction Ratio)
HC–MF23G1
200
6.02
4.04
K9005
HC–MF23G1
200
6.81
4.83
K9012
1/12(25/288)
1.60
8.6
HC–MF23G1
200
6.81
4.83
K9020
1/20(253/5000)
1.45
8.6
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
3.543
2.913
0.394 0.315
Motor plate
(Opposite side)
1.614
2.441
0.106
4-ø0.354
45 ˚
1.181
1.378
Motor plate
Top
Top
1.512
Top
Bottom
ø3.228
ø0.984
Bottom
ø2.874
7
.93
8
ø3 ø4.48
Bottom
Caution plate
0.417
0.390
KL
1.685
0.992
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Output
Model
(W)
M6 threads,
depth0.472
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Variable
Dimensions (lb)
L
KL
0.787
BC12068 *
(BC12088 *)
Reduction Ratio
Reduction
Weight
Inertia Moment
2
Gear Model (Actual Reduction Ratio)
2
WK (oz•in )
(lb)
HC–MF43G1
400
7.01
4.95
K9005
1/5(19/96)
1.62
8.4
HC–MF43G1
400
7.80
5.73
K9012
1/12(25/288)
1.85
9.7
[Unit: in]
For reverse rotation command
For forward rotation command
L
2.913
3.543
0.394 0.315
Motor plate
(Opposite side)
1.614
2.441
1.181
"Rotation
direction"
45°
1.378
4-ø0.354
0.106
Motor plate
Top
ø3.228
Top
Bottom
ø2.874
Bottom
1.512
Top
ø0.984
7
.93
ø3 4.488
ø
Bottom
Caution plate
0.417
0.390
1.685
0.992
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
M6 threads,
depth0.472
BC12069 *
(BC12089 *)
10
10– 65
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Radio
Model
HC–MF43G1
400
K10020
HC–MF73G1
750
K10005
HC–MF73G1
750
K10012
HC–MF73G1
750
K12020
1/20
Normal Reduction ratio Actual Reduction ratio
(W)
2
WK (oz•in )
Weight
Backlash
(lb)
253/5000
3.57
60min. max.
12.13
1/5
1/5
5.58
60min. max.
13.67
1/12
525/6048
9.22
60min. max.
16.09
625/12544
9.57
60min. max.
22.27
1/20
Output
Model
Inertia Moment
2
(W)
Variable Dimensions (in)
(Reduction
D LH LK LT H LA LB LC LD LE LF LG LM LN LP L LR KL LZ Q S P R
Ratio)
HC–MF43G1
400
2.362 1.50 1.61 0.42 1.69 4.53 3.74 5.20 3.94 0.39 2.87 0.39 0.512 0.63 3.39 7.933 3.54 5.87 0.35 1.97 1.26 M8 0.63
HC–MF73G1
750
3.15 1.89 1.54 0.43 2.29 4.53 3.74 5.20 3.94 0.39 2.87 0.39 0.512 0.63 3.39 8.15 3.54 5.97 0.35 1.97 1.26 M8 0.63
1/5
HC–MF73G1
750
3.15 1.89 1.54 0.43 2.29 4.53 3.74 5.20 3.94 0.39 2.87 0.39 0.512 0.63 3.39 9.016 3.54 6.84 0.35 1.97 1.26 M8 0.63
1/12
HC–MF73G1
750
3.15 1.89 1.54 0.43 2.29 5.51 4.53 6.38 4.72 0.47 3.54 0.59 0.512 0.787 4.09 9.528 4.17 7.35 0.35 2.36 1.57 M10 0.79
1/20
1/20
[Unit: in]
L
LK
D
0.106
For reverse rotation command
"Rotation direction"
For forward rotation command
4-øLZ
LD
LR
LG
Motor plate
(Opposite side)
LE
LM
45°
LM
Q
Bottom
A
øL LC
ø
LH
Bottom
Top
øLF
øLP
øLBh7
Bottom
Top
øSh6
Motor plate
Caution plate
0.992
LT
H
Top
0.390
KL
Power supply lead 4-AWG19 11.8in
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 66
0.787
P threads,
depth R
BC12070 *
10. SPECIFICATIONS
b) With electromagnetic brake
Output
Model
(W)
Variable
Dimensions (in)
L
KL
Braking Force Reduction Reduction Inertia Moment
(oz•in)
Gear Model
2
WK (oz•in )
Weight
Backlash
2
Ratio
(lb)
HC–MF053BG1
50
6.06
2.91
45
K6505
1/5(9/44)
0.32
60min. max.
4.0
HC–MF053BG1
50
6.77
3.62
45
K6512
1/12(49/576)
0.44
60min. max.
4.9
HC–MF053BG1
50
6.77
3.62
45
K6520
1/20(25/484)
0.34
60min. max.
4.9
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
4- 0.276
L
2.382
0.256
1.102
0.315
1.594
1.654
2.559
45°
0.984
Motor plate
(Opposite side)
Motor plate
3
65
ø3.4
.95
Top
1.406
1.130
Top
ø0.630
Bottom
ø2.362
Bottom
Top
ø1.890
ø2
Bottom
0.268
0.992
0.390
2.579
KL
M4 threads,
depth 0.315
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Brake lead
Red: Phase U
2-0.3 2 11.8in
(With end-insulated round crimping terminal 1.25-4)
White: Phase V
Black: Phase W
Encoder cable 11.8in
Green/yellow: Earth
With connector 1-172169-9
(AMP make)
Caution plate
Output
Model
(W)
Variable
Dimensions (in)
L
KL
0.787
BC12071 *
(BC12091 *)
Braking Force Reduction Reduction Inertia Moment
(oz•in)
Gear Model
2
2
Ratio
WK (oz•in )
Weight
Backlash
(lb)
HC–MF13BG1
100
6.65
3.43
45
K6505
1/5(9/44)
0.38
60min. max.
4.2
HC–MF13BG1
100
7.36
4.21
45
K6512
1/12(49/576)
0.50
60min. max.
5.1
HC–MF13BG1
100
7.36
4.21
45
K6520
1/20(25/484)
0.40
60min. max.
5.1
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
4- 0.276
L
2.382
0.315
1.594
1.654
1.102
Motor plate
(Opposite side)
Motor plate
2.559
45°
0.256
0.984
0.992
ø2
5
.95
3
ø2.362
.46
1.406
Top
ø0.630
Top
Bottom
1.130
Top
Bottom
ø1.890
ø3
Bottom
0.268
2.579
0.390
KL
Caution plate
Brake lead
2-0.32 11.8in
(With end-insulated round crimping
terminal 1.25-4)
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
M4 threads, depth 0.315
0.787
BC12072 *
(BC12092 *)
10
10– 67
10. SPECIFICATIONS
Variable
Output
Model
Reduction
Dimensions (in)
(W)
Reduction Ratio
Weight
Inertia Moment
2
Gear Model (Actual Reduction Ratio)
2
WK (oz•in )
(lb)
L
KL
6.65
4.04
K9005
1/5(19/96)
1.58
8.6
1/12(25/288)
1.82
9.9
1/20(253/5000)
1.67
9.9
HC–MF23BG1
200
HC–MF23BG1
200
7.36
4.23
K9012
HC–MF23BG1
200
7.36
4.23
K9020
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
4- 0.354
L
3.543
0.394 0.315
Motor plate
(Opposite side)
1.614
2.441
2.913
45°
1.378
1.181
0.106
Motor plate
ø4
.4
88
Bottom
Top
.93
7
1.512
Top
Bottom
ø3
ø0.984
ø2.874
ø3.228
Bottom
Top
2.677
Caution plate
0.390
0.417
KL
1.685
0.992
M6 threads, depth 0.472
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
2
Brake lead 2-0.3 11.8in
(With end-insulated round
crimping terminal 1.25-4)
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Variable
Output
Model
Dimensions (in)
(W)
L
KL
Braking Force Reduction
(oz•in)
Reduction Ratio
0.787
BC12073 *
(BC120793 *)
Weight
Inertia Moment
Gear Model (Actual Reduction Ratio)
2
2
WK (oz•in )
(lb)
HC–MF43BG1
400
8.27
4.95
184
K9005
1/5(19/96)
1.88
9.7
HC–MF43BG1
400
9.06
5.73
184
K9012
1/12(25/288)
2.12
11.0
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
4- 0.354
2.913
L
3.543
0.394 0.315
Motor plate
(Opposite side)
1.614
2.441
1.181
45°
1.378
0.106
Motor plate
Bottom
Top
Bottom
Top
2.677
0.992
0.390
0.417
KL
1.685
Caution plate
7
.93
ø3
8
1.512
Top
.48
ø0.984
ø2.874
ø3.228
ø4
Bottom
M6 threads,
depth 0.472
Brake lead 2-0.3 2 11.8in
(With end-insulated round
crimping terminal 1.25-4)
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 68
0.787
BC12074 *
(BC12094 *)
10. SPECIFICATIONS
Output Brake Force Reduction
Model
Reduction Radio
(oz•in)
Gear Model
HC–MF43BG1
400
184
K10020
HC–MF73BG1
750
340
K10005
HC–MF73BG1
750
340
K10012
HC–MF73BG1
750
340
K12020
1/20
(W)
2
WK (oz•in )
Normal Reduction ratio Actual Reduction ratio
Weight
Backlash
(lb)
253/5000
3.83
60min. max.
13.4
1/5
1/5
6.26
60min. max.
15.9
1/12
525/6048
9.90
60min. max.
18.3
625/12544
10.25
60min. max.
25.8
1/20
Output
Model
Inertia Moment
2
(W)
Variable Dimensions (in)
(Reduction
D LH LK LT LX H LA LB LC LD LE LF LG LM LN LP L LR KL LZ Q S P R
Ratio)
HC–MF43BG1
400
2.44 1.51 1.64 0.14 2.68 1.69 4.53 3.74 5.20 3.94 0.39 2.87 0.39 0.512 0.63 3.39 9.19 3.54 5.87 0.35 1.97 1.26 M8 0.63 1/20
HC–MF73BG1
750
3.23 1.92 1.54 0.43 2.84 1.69 4.53 3.74 5.20 3.94 0.39 2.87 0.39 0.512 0.63 3.39 9.55 3.54 5.92 0.35 1.97 1.26 M8 0.63
HC–MF73BG1
750
3.23 1.92 1.54 0.43 2.84 1.69 4.53 3.74 5.20 3.94 0.39 2.87 0.39 0.512 0.63 3.39 10.41 3.54 6.84 0.35 1.97 1.26 M8 0.63 1/12
HC–MF73BG1
750
3.23 1.92 1.54 0.43 2.84 1.69 5.51 4.53 6.38 4.72 0.47 3.54 0.39 0.512 0.787 4.09 10.93 4.17 7.35 0.55 2.36 1.57 M10 0.79 1/20
1/5
[Unit: in]
"Rotation direction"
For reverse rotation command
For forward rotation command
L
LR
Bottom
Top
LD
45°
Q
A
øL LC
ø
LH
Top
Bottom
LE
LM LN
øSh6
Bottom
LG
øLF
Motor plate
(Opposite side)
LK
0.106
øLP
øLBh7
D
Motor plate
4-øLZ
Top
0.992
LT
KL
LX
H
Caution plate
0.390
2
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Brake lead 2-0.3 11.8in
(With end-insulated round
crimping terminal 1.25-4)
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
P threads,
depth R
BC12075 *
10
10– 69
10. SPECIFICATIONS
4) With reduction gear for precision application
a) Without electromagnetic brake
Output
Model
(W)
Variable
Dimensions (in)
L
KL
Reduction
Gear Model
Reduction Ratio
Inertia Moment
2
2
WK (oz•in )
Weight
Backlash
(lb)
HC–MF053G2
50
5.12
3.07
BK1-05B-A5MEKA
1/5
0.36
3 min. max.
3.1
HC–MF053G2
50
5.75
3.70
BK1-09B-A5MEKA
1/9
0.33
3 min. max.
3.7
HC–MF053G2
50
5.75
3.70
BK1-20B-A5MEKA
1/20
0.38
3 min. max.
4.0
HC–MF053G2
50
5.75
3.70
BK1-29B-A5MEKA
1/29
0.31
3 min. max.
4.0
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
2.382
0.315
1.594
1.654
2.756
4-ø0.260
0.256
0.906
45°
0.984
Motor plate
(Opposite side)
Motor plate
ø2.559
1.406
Top
ø2.362
ø0.630
Top
Bottom
1.130
Top
Bottom
ø1.890
0
0
.15 .74
ø3 ø3
Bottom
0.268
Caution plate
0.992
0.390
KL
Power supply lead 4-AWG19 0.3m11.8in
Encoder cable 11.8in
With connector 172169-9
(AMP make)
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 70
0.787
M4 threads,
depth 0.315
BC12076 *
(BC12096 *)
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Inertia Moment
2
Weight
Backlash
2
(W)
Model
Ratio
WK (oz•in )
HC–MF13G2
100
BK1-05B-01MEKA
1/5
0.43
3 min. max.
3.3
HC–MF13G2
100
BK1-09B-01MEKA
1/9
0.39
3 min. max.
4.0
HC–MF13G2
100
BK2-20B-01MEKA
1/20
0.66
3 min. max.
6.6
HC–MF13G2
100
BK2-29B-01MEKA
1/29
0.52
3 min. max.
6.6
Output
Model
(W)
(lb)
Variable Dimensions (in)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF13G2
100
3.15 2.56 3.74 2.76 0.24 1.89 0.31 2.362 0.906 5.71 2.17 3.66 0.26 0.98 0.63 M4 0.31
1/5
HC–MF13G2
100
3.15 2.56 3.74 2.76 0.24 1.89 0.31 2.362 0.906 6.34 2.17 4.29 0.26 0.98 0.63 M4 0.31
1/9
HC–MF13G2
100
3.94 3.15 4.53 3.35 0.24 2.559 0.39 2.913 2.913 6.57 2.95 4.53 0.26 1.38 0.79 M5 0.39 1/20
HC–MF13G2
100
3.94 3.15 4.53 3.35 0.24 2.559 0.39 2.913 2.913 6.57 2.95 4.53 0.26 1.38 0.79 M5 0.39 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
4-øLZ
LR
LG
1.594
1.654
Motor plate
(Opposite side)
LE
LK
LD
45°
Q
Motor plate
A
øLBh7
0.268
Caution plate
0.992
0.390
KL
Power supply lead 4-AWG19 118in
(With end-insulated round crimping terminal 1.25-4)
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
øLC
1.406
Top
øSh6
Top
Bottom
1.130
Top
Bottom
øLF
Bottom
øLH
øL
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
P threads,
depth R
BC12077 *
(BC12097 *)
10
10– 71
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Inertia Moment
2
Weight
2
(W)
Model
Ratio
WK (oz•in )
(lb)
HC–MF23G2
200
BK1-05B-02MEKA
1/5
1.04
4.6
HC–MF23G2
200
BK2-09B-02MEKA
1/9
1.14
7.7
HC–MF23G2
200
BK3-20B-02MEKA
1/20
1.95
11.0
HC–MF23G2
200
BK3-29B-02MEKA
1/29
1.51
11.0
Model
Output
(W)
Variable Dimensions (in)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
Ratio)
R
HC–MF23G2
200
3.15 2.56 3.74 2.76 0.24 1.89 0.31 2.362 0.906 6.18 2.17 4.20 0.26 0.98 0.63 M4 0.31
1/5
HC–MF23G2
200
3.94 3.15 4.53 3.35 0.24 2.559 0.39 2.913 1.299 6.89 2.95 4.91 0.26 1.38 0.79 M5 0.39
1/9
HC–MF23G2
200
4.53 3.74 5.31 3.94 0.31 2.953 0.39 3.346 1.378 7.09 3.35 5.10 0.35 1.57 0.98 M6 0.47 1/20
HC–MF23G2
200
4.53 3.74 5.31 3.94 0.31 2.953 0.39 3.346 1.378 7.09 3.35 5.10 0.35 1.57 0.98 M6 0.47 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
LR
L
1.614
2.441
0.106
LG
Motor plate
(Opposite side)
4-øLZ
LE
LK
LD
45°
Q
øSh6
Motor plate
For forward rotation command
Bottom
Top
Top
1.512
Top
Bottom
Caution plate
0.417
0.390
1.685
0.992
A
øL C
øL
øLF
øLH
øLBh7
Bottom
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 72
0.787
P threads,
depth R
BC12078 *
(BC12098 *)
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Inertia Moment
2
Weight
2
(W)
Model
Ratio
WK (oz•in )
(lb)
HC–MF43G2
400
BK2-05B-04MEKA
1/5
1.61
8.2
HC–MF43G2
400
BK3-09B-04MEKA
1/9
1.77
11.7
HC–MF43G2
400
BK4-20B-04MEKA
1/20
2.33
16.5
HC–MF43G2
400
BK4-29B-04MEKA
1/29
1.85
16.5
Model
Output
(W)
Variable Dimensions (in)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF43G2
400
3.94 3.15 4.53 3.35 0.24 2.56 0.39 2.91 1.3 7.24 2.95 5.18 0.26 1.38 0.79 M5 0.39
1/5
HC–MF43G2
400
4.53 3.74 5.32 3.94 0.31 2.95 0.39 3.35 1.38 8.07 3.35 6.01 0.35 1.58 0.98 M6 0.47
1/9
HC–MF43G2
400
5.32 3.94 6.10 4.53 0.31 3.54 0.47 3.94 1.58 8.31 3.94 6.24 0.43 1.97 1.26 M8 0.63 1/20
HC–MF43G2
400
5.32 4.33 6.10 4.53 0.31 3.54 0.47 3.94 1.58 8.31 3.94 6.24 0.43 1.97 1.26 M8 0.63 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
2.441
LR
LG
Motor plate
(Opposite side)
1.614
4-øLZ
LE
LK
LD
45°
Q
0.106
øSh6
Motor plate
Bottom
Top
Bottom
Top
1.512
Top
A
øL
øLC
øLF
øLH
øLBh7
Bottom
Caution plate
0.417
0.390
KL
1.685
0.992
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
P threads,
depth R
BC12079 *
(BC12099 *)
10
10– 73
10. SPECIFICATIONS
Output Reduction Gear
Model
Reduction Inertia Moment
2
Weight
2
(W)
Model
Ratio
WK (oz•in )
(lb)
HC–MF73G2
750
BK3-05B-08MEKA
1/5
5.32
13.89
HC–MF73G2
750
BK4-09B-08MEKA
1/9
5.36
18.96
HC–MF73G2
750
BK5-20B-08MEKA
1/20
5.55
26.46
HC–MF73G2
750
BK5-29B-08MEKA
1/29
4.97
26.46
Output
Model
(W)
Variable Dimensions (in)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF73G2
750
4.53 3.74 5.31 3.94 0.31 2.953 0.39 3.346 1.378 8.35 3.35 6.17 0.35 1.57 0.98 M6 0.47
1/5
HC–MF73G2
750
5.31 4.33 6.10 4.53 0.31 3.543 0.47 3.937 1.575 9.76 3.94 7.59 0.43 1.97 1.26 M8 0.63
1/9
HC–MF73G2
750
5.91 4.92 6.89 5.12 0.39 4.134 0.59 4.528 1.693 9.76 4.53 7.59 0.55 2.36 1.57 M10 0.79 1/20
HC–MF73G2
750
5.91 4.92 6.89 5.12 0.39 4.134 0.59 4.528 1.693 9.76 4.53 7.59 0.55 2.36 1.57 M10 0.79 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
L
LR
LG
1.535
3.228
0.106
LD
LE
45°
LK
Motor plate
(Opposite side)
4-øLZ
For forward rotation command
Q
øSh6
Motor plate
Bottom
Top
Top
1.917
Top
Bottom
0.433
0.992
0.390
2.287
Caution plate
A
øL C
øL
øLF
øLH
øLBh7
Bottom
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 74
0.787
P threads,
depth R
BC12080 *
10. SPECIFICATIONS
b) With electromagnetic brake
Output
Model
(W)
Variable
Dimensions (in)
L
KL
Braking Force
Reduction
(oz•m)
Gear Model
Reduction Inertia Moment
Ratio
WK (oz•in )
2
Backlash
2
Weight
(lb)
HC–MF053BG2
50
6.22
3.07
45
BK1-05B-A5MEKA
1/5
0.38
3 min. max.
4.0
HC–MF053BG2
50
6.85
3.70
45
BK1-09B-A5MEKA
1/9
0.34
3 min. max.
4.6
HC–MF053BG2
50
6.85
3.70
45
BK1-20B-A5MEKA
1/20
0.39
3 min. max.
4.9
HC–MF053BG2
50
6.85
3.70
45
BK1-29B-A5MEKA
1/20
0.33
3 min. max.
4.9
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
2.382
L
0.315
1.594
1.654
0.256
1.102
2.756
0.984
45°
4-ø0.260
Motor plate
(Opposite side)
Motor plate
Bottom
Bottom
Top
1.406
Top
1.130
Top
ø0.630
ø1.890
ø2.362
ø2.559
0
.15 3.740
ø3
ø
Bottom
0.268
Caution plate
0.992
Encoder cable 11.8in
With connector 172169-9
(AMP make)
2.579
Brake lead
2-0.3 2 11.8in
(With end-insulated round
crimping terminal 1.25-4)
Blue: B1,B2
0.390
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
M4 threads,
depth 0.315
BC12081 *
(BC12100 *)
10
10– 75
10. SPECIFICATIONS
Output
Model
Braking Force Reduction Gear
Reduction Inertia Moment
2
2
Weight
Backlash
(W)
(oz•in)
Model
Ratio
WK (oz•in )
HC–MF13BG2
100
45
BK1-05B-01MEKA
1/5
0.44
3 min. max.
4.2
HC–MF13BG2
100
45
BK1-09B-01MEKA
1/9
0.40
3 min. max.
4.9
HC–MF13BG2
100
45
BK2-20B-01MEKA
1/20
0.68
3 min. max.
7.5
HC–MF13BG2
100
45
BK2-29B-01MEKA
1/29
0.53
3 min. max.
7.5
Output
Model
(W)
(lb)
Variable Dimensions (in)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
Ratio)
R
HC–MF13BG2
100
3.15 2.56 3.74 2.76 0.24 1.89 0.31 2.362 0.906 6.81 2.17 3.66 0.26 0.98 0.63 M4 0.31
1/5
HC–MF13BG2
100
3.15 2.56 3.74 2.76 0.24 1.89 0.31 2.362 0.906 7.44 2.17 4.29 0.26 0.98 0.63 M4 0.31
1/9
HC–MF13BG2
100
3.94 3.15 4.53 3.35 0.24 2.559 0.39 2.913 1.299 7.68 2.95 4.53 0.26 1.38 0.79 M5 0.39 1/20
HC–MF13BG2
100
3.94 3.15 4.53 3.35 0.24 2.559 0.39 2.913 1.299 7.68 2.95 4.53 0.26 1.38 0.79 M5 0.39 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
L
LR
LG
1.594
1.654
4-øLZ
LE
LK
LD
45°
Q
Motor plate
(Opposite side)
Motor plate
A
øL
Bottom
Top
Caution plate
1.406
Top
0.268
0.992
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
C
øL
øSh6
øLF
øLH
øLBh7
Bottom
1.130
Top
Bottom
2.579
Brake lead
2-0.3 2 11.8in
(With end-insulated round
crimping terminal 1.25-4)
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
P threads,
depth R
BC12082 *
(BC12101 *)
10– 76
10. SPECIFICATIONS
Output
Model
Braking Force Reduction Gear
Reduction Inertia Moment
2
Weight
2
(W)
(oz•in)
Model
Ratio
WK (oz•in )
(lb)
HC–MF23BG2
200
184
BK1-05B-02MEKA
1/5
1.31
6.0
HC–MF23BG2
200
184
BK2-09B-02MEKA
1/9
1.40
9.0
HC–MF23BG2
200
184
BK3-20B-02MEKA
1/20
2.21
12.3
HC–MF23BG2
200
184
BK3-29B-02MEKA
1/29
1.77
12.3
Output
Model
Variable Dimensions (in)
(W)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
R
Ratio)
HC–MF23BG2
200
3.15 2.56 3.74 2.76 0.24 1.89 0.31 2.362 0.906 7.44 2.17 4.20 0.26 0.98 0.63 M4 0.31
1/5
HC–MF23BG2
200
3.94 3.15 4.53 3.35 0.24 2.559 0.39 2.913 1.299 8.15 2.95 4.91 0.26 1.38 0.79 M5 0.39
1/9
HC–MF23BG2
200
4.53 3.74 5.31 3.94 0.31 2.953 0.39 3.346 1.378 8.35 3.35 5.10 0.35 1.57 0.98 M6 0.47 1/20
HC–MF23BG2
200
4.53 3.74 5.31 3.94 0.31 2.953 0.39 3.346 1.378 8.35 3.35 5.10 0.35 1.57 0.98 M6 0.47 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
LR
L
4-øLZ
LG
Q
øSh6
Motor plate
45
LK
Motor plate
(Opposite side)
1.614
0.106
2.441
LD
LE
Bottom
Top
Bottom
Top
Caution plate
0.417
2.677
0.390
1.685
0.992
1.512
Top
A
øL C
øL
øLF
øLH
øLBh7
Bottom
°
Brake lead
2-0.32 11.8in
Encoder cable 11.8in
(With end-insulated round
With connector 1-172169-9 crimping terminal 1.25-4)
(AMP make)
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
P threads,
depth R
BC12083 *
(BC12102 *)
10
10– 77
10. SPECIFICATIONS
Braking Force Reduction Gear
Output
Model
Reduction Inertia Moment
2
Weight
2
(W)
(oz•in)
Model
Ratio
WK (oz•in )
(lb)
HC–MF43BG2
400
184
BK2-05B-04MEKA
1/5
1.88
9.5
HC–MF43BG2
400
184
BK3-09B-04MEKA
1/9
2.03
13.0
HC–MF43BG2
400
184
BK4-20B-04MEKA
1/20
2.59
17.9
HC–MF43BG2
400
184
BK4-29B-04MEKA
1/29
2.11
17.9
Model
Output
Variable Dimensions (in)
(W)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
Ratio)
R
HC–MF43BG2
400
3.94 3.15 4.53 3.35 0.24 2.559 0.39 2.913 1.299 8.50 2.95 5.18 0.26 1.38 0.79 M5 0.39
1/5
HC–MF43BG2
400
4.53 3.74 5.31 3.94 0.31 2.953 0.39 3.346 1.378 9.33 3.35 6.01 0.35 1.57 0.98 M6 0.47
1/9
HC–MF43BG2
400
5.31 4.33 6.10 4.53 0.31 3.543 0.47 3.937 1.575 9.57 3.94 6.24 0.43 1.97 1.26 M8 0.63 1/20
HC–MF43BG2
400
5.31 4.33 6.10 4.53 0.31 3.543 0.47 3.937 1.575 9.57 3.94 6.24 0.43 1.97 1.26 M8 0.63 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
LK
LR
LG
1.614
2.441
0.106
LD
45°
LK
Q
øSh6
Motor plate
4-øLZ
LE
Motor plate
(Opposite side)
Bottom
Top
Bottom
Top
1.512
Top
A
øL
øLC
øLF
øLH
øLBh7
Bottom
2.677
Caution plate
0.390
1.685
0.992 0.417
Brake lead
Encoder cable 11.8in
2-0.3 2 11.8in
With connector 1-172169-9
(With end-insulated round
(AMP make)
crimping terminal 1.25-4)
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
10– 78
0.787
P threads,
depth R
BC12084 *
(BC12103 *)
10. SPECIFICATIONS
Output
Model
Braking Force Reduction Gear
Reduction Inertia Moment
2
2
Weight
(W)
(oz•in)
Model
Ratio
WK (oz•in )
(lb)
HC–MF73BG2
750
340
BK3-05B-08MEKA
1/5
6.00
16.1
HC–MF73BG2
750
340
BK4-09B-08MEKA
1/9
6.04
21.2
HC–MF73BG2
750
340
BK5-20B-08MEKA
1/20
6.24
28.7
HC–MF73BG2
750
340
BK5-29B-08MEKA
1/29
5.66
28.7
Output
Model
(W)
Variable Dimensions (in)
LA LB LC LD LE LF LG LH LK
L
(Reduction
LR KL LZ
Q
S
P
Ratio)
R
HC–MF73BG2
750
4.53 3.74 5.31 3.94 0.31 2.953 0.39 3.346 1.378 9.74 3.35 6.17 0.35 1.57 0.98 M6 0.47
1/5
HC–MF73BG2
750
5.31 4.33 6.10 4.53 0.31 3.543 0.47 3.937 1.575 11.16 3.94 7.59 0.43 1.97 1.26 M8 0.63
1/9
HC–MF73BG2
750
5.91 4.92 6.89 5.12 0.39 4.134 0.59 4.528 1.693 11.16 4.53 7.59 0.55 2.36 1.57 M10 0.79 1/20
HC–MF73BG2
750
5.91 4.92 6.89 5.12 0.39 4.134 0.59 4.528 1.693 11.16 4.53 7.59 0.55 2.36 1.57 M10 0.79 1/29
[Unit: in]
For reverse rotation command
"Rotation direction"
For forward rotation command
Motor plate
LD
LR
L
LG
Motor plate
(Opposite side)
1.535
3.228
LE
4- LZ
LK
Q
øSh6
Bottom
Top
Top
2.835
0.433
0.390
2.287
0.992
1.917
Top
Bottom
A
øL C
øL
øLF
øLH
øLBh7
Bottom
Caution plate
45°
0.106
Encoder cable 11.8in
Brake lead
With connector 1-172169-9 2-0.3 2 11.8in
(With end-insulated round
(AMP make)
crimping terminal 1.25-4)
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
P threads,
depth R
BC12085 *
10
10– 79
10. SPECIFICATIONS
(2) HC-MF-UE series
1) Standard (Without electromagnetic brake, without reduction gear)
Variable
Output
Model
Dimensions (in)
(W)
L
KL
Inertia Moment
2
Weight
2
WK (oz•in )
(lb)
HC–MF053-UE
50
3.52
1.48
0.10
1.1
HC–MF13-UE
100
4.11
2.07
0.16
1.3
[Unit: in]
1.654
L
Motor plate
(Opposite side)
1.594
0.984
0.197
2-ø0.177
1.575
0.098
45°
ø0.315
Motor plate
Top
Top
Bottom
1.130
Bottom
.81
1
Top
Caution plate
V ring
TUV plate
KL
0.390
0.268
1.406
Top
ø1
ø1.181
Bottom
Bottom
V-10A
0.992
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable
11.8in
0.787
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Output
Model
(W)
Variable
Dimensions (in)
L
KL
BC07328A
Inertia Moment
2
Weight
2
WK (oz•in )
(lb)
HC–MF23-UE
200
4.27
2.28
0.49
2.6
HC–MF43-UE
400
5.26
3.19
0.77
3.7
[Unit: in]
L
1.181
2.441
1.614
TUV plate
0.276
0.106
0.118
2.362
4-ø0.228
45
°
Motor plate
(Opposite side)
Motor plate
ø1.969
Bottom
Top
Top
Bottom
ø2
.75
6
V ring
Top
Caution plate
V-16A
0.417
0.992
1.685
Top
1.512
Bottom
ø0.551
Bottom
0.390
KL
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 11.8in
Green/yellow: Earth
With connector 1-172169-9
(AMP make)
10– 80
0.787
BC07329A
10. SPECIFICATIONS
Output
Model
HC–MF73-UE
Weight
Inertia Moment
2
2
(W)
WK (oz•in )
(lb)
750
3.69
6.8
[Unit: in]
5.905
TUV plate
3.228
1.535
1.575
0.315
Motor plate
(Opposite side)
0.118
3.150
45°
4-ø0.260
0.106
ø0.748
Motor plate
Bottom
ø2.756
Bottom
Top
2.303
Top
0.433
V ring
V-25A
0.390
3.740
0.992
Caution plate
ø3
.54
3
Top
1.917
Bottom
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
0.787
BC07330A
2) With electromagnetic brake
Output
Model
(W)
Variable
Dimensions (in)
L
KL
Barking Force Inertia Moment
2
Weight
2
(oz•in)
WK (oz•in )
(lb)
HC–MF053B-UE
50
4.63
1.48
45
0.12
2.0
HC–MF13B-UE
100
5.22
2.08
45
0.18
2.2
[Unit: in]
L
0.984
0.197
1.654
0.098
1.575
2-ø0.177
TUV plate
1.594
5˚
Motor plate
(Opposite side)
4
ø0.315
Motor plate
Top
Bottom
1.130
Bottom
Top
Top
Caution plate
KL
0.992
0.268
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Brake lead
2-0.32 11.8in
(With end-insulated round
crimping terminal 1.25-4)
B1,B2
ø1
.81
1
1.406
Top
ø1.181
Bottom
Bottom
V ring
V-10A
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
BC07369A
10
10– 81
10. SPECIFICATIONS
Variable
Output
Model
Dimensions (in)
(W)
L
KL
Barking Force Inertia Moment
2
Weight
2
(oz•in)
WK (oz•in )
(lb)
HC–MF23B-UE
200
5.53
2.28
184
0.47
3.7
HC–MF43B-UE
400
6.52
3.19
184
1.04
4.9
[Unit: in]
L
1.181
0.276
TUV plate
1.614
0.106
2.441
2.362
0.118
4-ø0.228
Motor plate
(Opposite side)
45°
Bottom
Top
Top
Bottom
1.512
Top
6
KL
0.417
0.992
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
Output
HC–MF73B-UE
.75
V-16A
Caution plate
Model
ø2
V ring
1.685
Top
ø0.551
Bottom
ø1.969
Bottom
Motor plate
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.390
Brake lead
2
2-0.3 11.8in
(With end-insulated round
crimping terminal 1.25-4)
B1,B2
0.787
BC07354A
Barking Force Inertia Moment
2
2
Weight
(W)
(oz•in)
WK (oz•in )
(lb)
750
340
4.10
9.3
[Unit: in]
7.303
1.575
0.315
TUV plate
3.228
1.535
Motor plate
(Opposite side)
0.118
3.150
4-ø0.260
45°
0.106
ø0.748
Motor plate
Bottom
Bottom
ø2.756
Top
Top
Top
0.433
Caution plate
ø3.5
43
2.287
1.917
Bottom
0.992
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
0.390
3.740
Brake lead
2-0.32 11.8in
(With end-insulated round
crimping terminal 1.25-4)
B1,B2
10– 82
V ring
V-25A
Power supply lead 4-AWG19 11.8in
(With end-insulated round crimping terminal 1.25-4) 0.787
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
BC07606A
10. SPECIFICATIONS
(3) HA-FF series
1) Standard
HA – FF053 • HA – FF13
[Unit: in]
LL
Caution plate
1.18
Bottom
ø2.6
Top
8
1.54
V ring
Top
1.54
Top
45°
ø1.97
Bottom
2.13
0.1
ø0.31
ø1.85
Earth terminal M3 screw 0.24
(Opposite side)
ø2
.36
1)
Bottom
Motor plate
4 – ø0.18
Power supply cable
VCTF 3-0.022 19.7in
(With end-insulated round crimping terminal0.05-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 11.8in
With connector 172169-9
(AMP make)
Servo Motor
Model
Inertia
Variable
Weight
Moment
Dimensions
[lb]
2
2
WK [oz•in ]
LL
HA–FF053
0.342
4.17
2.9
HA–FF13
0.519
4.84
3.3
HA – FF23 to HA – FF63
[Unit: in]
LL
Caution plate
LD
LR
45°
0.12
LG
øLA
øLB
ø1.85
Q
A
Top
Bottom
Motor plate
W
U
Earth terminal M3 screw
øLC
LJ
1.54
A
V ring
Servo Motor
Model
Inertia
Moment
WK 2 [oz•in 2 ]
4–øLZ
H
Encoder cable 11.8in
With connector 172169-9
(AMP make)
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated
P screw, depth R
round crimping terminal
0.05-4)
øS
Red: Phase U
White: Phase V
Section AA
Black: Phase W
Variable Dimensions
LA
LB
LC
LD
LG
LJ
LL
LR
LZ
H
Q
S
U
W
P
R
Weight
[lb]
HA–FF23
1.91
3.54 2.76 3.94 2.99 0.31 1.97 5.16 1.18 0.22 0.16 0.98 0.43 0.10 0.16 M4 0.59
5.1
HA–FF33
2.73
3.54 2.76 3.94 2.99 0.31 1.97 5.83 1.18 0.22 0.16 0.98 0.43 0.10 0.16 M4 0.59
5.7
HA–FF43
5.33
4.53 3.74 5.31 3.94 0.39 2.44 6.08 1.57 0.35 0.20 1.38 0.63 0.12 0.20 M5 0.79
9.3
HA–FF63
6.56
4.53 3.74 5.31 3.94 0.39 2.44 6.67 1.57 0.35 0.20 1.38 0.63 0.12 0.20 M5 0.79
10.6
10– 83
10
10. SPECIFICATIONS
2) With electromagnetic brake
HA – FF053B • HA – FF13B
[Unit: in]
4–ø0.18
LL
1.18
Earth terminal M3 screw 0.24
(Opposite side)
Top
45
.36
ø 2 .6 8
1.54
1.54
Top
ø2
Bottom
ø1.97
Bottom
0.10
ø0.31
ø1.85
Caution plate
2.13
Top
Bottom
Motor plate
Brake cable
VCTF 2–0.022 19.7in
(With end-insulated round crimping terminal 0.05-4)
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated round crimping terminal 0.05-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 11.8in
With connector 172169-9
(AMP make)
Inertia
Variable
Weight
Moment
Dimensions
[lb]
2
2
WK [oz•in ]
LL
Servo Motor
Model
HA–FF053
0.437
5.53
3.5
HA–FF13B
0.615
6.20
4.0
HA – FF23B to HA – FF63B
[Unit: in]
4–øLZ
LL
LD
LR
LG
Caution plate
45°
0.12
Q
QK
Top
Bottom
Motor plate
U
W
H
Encoder cable 11.8in
With connector 172169-9
(AMP make)
Brake cable
VCTF 2–0.022 19.7in
(With end-insulated round
crimping terminal 0.05-4)
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated round crimping
terminal 0.05-4)
Red: Phase U
White: Phase V
Black: Phase W
Inertia
Moment
WK 2 [oz•in 2 ]
øLC
LJ
1.54
A
V ring
Top
Servo Motor
Model
øLA
LB
ø1.85
Bottom
QL
A
P screw,
depth R
øS
Section AA
Variable Dimensions [in]
LA
LB
LC
LD
LG
LJ
LL
LR
LZ
H
Q
S
U
W
P
R
Weight
[lb]
HA–FF23B
2.64
3.54 2.76 3.94 2.99 0.31 1.97 6.59 1.18 0.22 0.16 0.98 0.43 0.10 0.16 M4 0.59
6.4
HA–FF33B
3.46
3.54 2.76 3.94 2.99 0.31 1.97 7.28 1.18 0.22 0.16 0.98 0.43 0.10 0.16 M4 0.59
7.1
HA–FF43B
7.24
4.53 3.74 5.31 3.94 0.39 2.44 7.54 1.57 0.35 0.20 1.38 0.63 0.12 0.20 M5 0.79
11.0
HA–FF63B
8.47
4.53 3.74 5.31 3.94 0.39 2.44 8.13 1.57 0.35 0.20 1.38 0.63 0.12 0.20 M5 0.79
12.3
10– 84
10. SPECIFICATIONS
3) With reduction gear for general industrial machine
HA – FF053(B)G1 • HA – FF13(B)G1
[Unit: in]
LL
1.5
3.54
0.12
45°
1.3
Caution plate
Earth terminal M3 screw
(Opposite side)
0.11
A
3.54
ø1.34
0.71
Bottom
ø4
.09
Top
Bottom
Motor plate
0.2
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated round crimping terminal 0.05-4)
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 11.8in
With connector 172169-9
(AMP make)
0.12
Top
0.2
1.54
ø1.85
A
4–ø0.26
ø0.59
Section AA
(Note 1) Variable
(Note 2)
Servo Motor
Reduction Inertia Moment
(Note 1) Weight
Dimensions
Reduction
Model
Gear Model
WK 2 [oz•in 2 ]
[lb]
LL
Ratio
1/5
0.369 (0.465)
7.20 (8.56)
5.5 (6.2)
HA–FF053
1/10
GR – S – 10
0.369 (0.465)
7.20 (8.56)
5.5 (6.2)
(B)G1
1/30
HA–FF13
(B)G1
1/5
1/10
GR – S – 10
1/30
0.342 (0.437)
7.20 (8.56)
5.5 (6.2)
0.547 (0.629)
7.87 (9.23)
6.0 (6.6)
0.547 (0.629)
7.87 (9.23)
6.0 (6.6)
0.519 (0.601)
7.87 (9.23)
6.0 (6.6)
Note: 1. Values in parentheses are those for the servo motors with electromagnetic brakes.
Note: 2. Nominal reduction ratios. For actual reduction ratios, refer to Section 10-3.
HA – FF23(B)G1
[Unit: in]
8.46
1.28
4–ø0.39
5.71
0.12
Earth terminal M3 screw
(Opposite side)
0.98
0.94
A
Top Bottom
Motor plate
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated round crimping terminal 0.05-4)
Encoder cable 11.8in
With connector 172169-9
(AMP make)
5.91
0.12
ø0.63
M6 screw, depth 0.39
Section AA
Red: Phase U
White: Phase V
Black: Phase W
(Note 2)
Servo Motor
Reduction
Reduction
Model
Gear Model
Ratio
1/5
HA–FF23
1/10
GR–S–20
(B)G1
1/30
Note:
Note:
Note:
Note:
.09
3.05
0.2
Top
0.2
ø1.85
1.54
A
ø7
ø5.12
0.59
Caution plate
Bottom
45°
2.85
0.47
1.
1.
2.
1.
Inertia Moment (Note 1) Weight
[lb]
WK 2 [oz•in 2 ]
2.037 (4.114)
11 (12.3)
2.037 (4.114)
11 (12.3)
2.037 (4.114)
11 (12.3)
Values in parentheses are those for the servo motors with electromagnetic brakes.
Nominal reduction ratios. For actual reduction ratios, refer to Section
10-3.
10– 85
10
10. SPECIFICATIONS
HA – FF33(B)G1 • HA – FF43(B)G1
[Unit: in]
1.48
0.47
0.12
6.3
0.14
M6 screw,
depth 0.39
Top Bottom
Motor plate
ø0.75
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated round crimping terminal 0.05-4)
Encoder cable 11.8in
With connector 172169-9
(AMP make)
.09
3.49
Top
0.24
0.24
ø1.85
A
ø7
ø5.12
0.71
Caution plate
1.54
45°
1.1
0.98
A
Earth terminal M3 screw
(Opposite side)
Bottom
4–ø0.39
5.71
2.85
LL
Section AA
Red: Phase U
White: Phase V
Black: Phase W
(Note 2) Reduction
Servo Motor Reduction
Gear
Model
Ratio
Model
1/5
HA–FF33
1/10
GR–S–30
(B)G1
1/30
1/5
HA–FF43
(B)G1
1/10
GR–S–40
1/30
Inertia Moment
WK2 [oz•in2]
2.980 (3.704)
2.980 (3.704)
(Note 1) Variable
(Note 1) Weight
Dimensions
[lb]
LL
9.84 (11.3)
14.3 (15.9)
9.84 (11.3)
14.3 (15.9)
2.939 (3.663)
9.84 (11.3)
14.3 (15.9)
5.577 (7.490)
10.2 (11.63)
17.6 (19.6)
5.577 (7.490)
10.2 (11.63)
17.6 (19.6)
5.536 (7.449)
10.2 (11.63)
17.6 (19.6)
Note: 1. Values in parentheses are those for the servo motors with electromagnetic brakes.
Note: 2. Nominal reduction ratios. For actual reduction ratios, refer to Section 10-3.
HA – FF63(B)G1
[Unit: in]
4–ø0.47
10.81(12.26)
0.47
Earth terminal M3 screw
(Opposite side)
0.12
45°
Top
Bottom
Motor plate
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated round crimping terminal 0.05-4)
Encoder cable 11.8in
With connector 172169-9
(AMP make)
ø0.87
7.58
3.94
Top
0.24
.86
0.14
A
ø8
0.24
0.79
Bottom
ø6.69
1.26
A
3.64
1.42
Caution plate
ø1.85
1.54
7.28
1.83
M6 screw,
depth 0.47
Section AA
Red: Phase U
White: Phase V
Black: Phase W
(Note 2) Reduction
Servo Motor
Inertia Moment (Note 1) Weight
Reduction
Gear
Model
WK 2 [oz•in 2 ]
[lb]
Ratio
Model
HA–FF63
(B)G1
1/5
1/10
1/30
Note:
Note:
Note:
Note:
1.
1.
2.
1.
GR–S–60
7.326 (9.240)
28.7 (30.6)
7.326 (9.240)
28.7 (30.6)
7.217 (9.131)
28.7 (30.6)
Values in parentheses are those for the servo motors with
electromagnetic brakes.
Nominal reduction ratios. For actual reduction ratios, refer to
Section 10-3.
10– 86
10. SPECIFICATIONS
4) With reduction gear for precision application
LL
LE
Earth terminal M3 screw
(Opposite side) 200W or more
LM
45°
øS
øLK
øL
C
4–øLZ
A
øL
øLB
1.54
ø1.85
Bottom
LD
Q
Earth terminal M3 screw
(Opposite side) 100W or less
øLF
Caution plate
LR
LG
Top
Top
Bottom
Motor plate
Power supply cable
VCTF 3-0.052 19.7in
(With end-insulated round crimping terminal 0.05-4)
Encoder cable 11.8in
With connector 172169-9
(AMP make)
Servo Motor Reduction Reduction
Model
Ratio Gear Model
1/5
HA–FF053
(B)G2
1/10
1/15
1/25
1/5
HA–FF13
(B)G2
1/10
1/15
1/25
1/5
HA–FF23
(B)G2
1/10
1/15
HA–FF33
(B)G2
HA–FF43
(B)G2
1/5
1/10
1/5
BM2–05B
–A5MES
BM2–10B
–A5MES
BM2–15B
–A5MES
BM3–25B
–A5MES
BM2–05B
–01MES
BM3–10B
–01MES
BM3–15B
–01MES
BM4–25B
–01MES
BM3–05B
–02MES
BM4–10B
–02MES
BM4–15B
–02MES
BM4–05B
–03MES
BM4–10B
–03MES
BM4–05B
–04MES
Red: Phase U
White: Phase V
Black: Phase W
(Note)
Inertia
Moment
WK 2[oz•in 2]
0.60
(0.70)
0.59
(0.68)
0.57
(0.67)
0.60
(0.66)
0.78
(0.87)
0.90
(0.87)
0.85
(0.83)
1.59
(1.68)
2.32
(3.05)
3.53
(4.25)
3.38
(4.10)
4.47
(5.19)
4.35
(5.07)
7.07
(8.98)
(Note) Variable Dimensions [in]
LA LB LC LD LE LF LG LK
LL
8.07
3.07 2.44 3.50 2.91 0.08 1.30 0.24 2.95 (9.45)
8.07
3.07 2.44 3.50 2.91 0.08 1.30 0.24 2.95 (9.43)
8.07
3.07 2.44 3.50 2.91 0.08 1.30 0.24 2.95 (9.43)
8.39
3.54 2.99 4.02 3.43 0.08 1.61 0.31 3.54 (9.74)
8.74
3.07 2.44 3.50 2.91 0.08 1.30 0.24 2.95 (10.10)
9.06
3.54 2.99 4.02 3.43 0.08 1.61 0.31 3.54 (10.41)
9.06
3.54 2.99 4.02 3.43 0.08 1.61 0.31 3.54 (10.41)
10.31
4.80 3.94 5.51 4.65 0.12 2.40 0.39 4.65 (11.67)
9.45
3.54 2.99 4.02 3.43 0.08 1.61 0.31 3.54 (10.91)
10.63
4.80 3.94 5.51 4.65 0.12 2.40 0.39 4.65 (12.07)
10.63
4.80 3.94 5.51 4.65 0.12 2.40 0.39 4.65 (12.07)
11.30
4.80 3.94 5.51 4.65 0.12 2.40 0.39 4.65 (12.78)
11.30
4.80 3.94 5.51 4.65 0.12 2.40 0.39 4.65 (12.78)
11.97
4.80 3.94 5.51 4.65 0.12 2.40 0.39 4.65 (13.41)
LM LR LZ Q
S
0.35 1.18 0.18 0.79 10.0
0.35 1.18 0.18 0.79 10.0
0.35 1.18 0.18 0.79 10.0
0.35 1.38 0.22 0.98 14.0
0.35 1.18 0.18 0.79 10.0
0.35 1.38 0.22 0.98 14.0
0.35 1.38 0.22 0.98 14.0
0.55 2.17 0.26 1.57 22.0
0.35 1.38 0.22 0.98 14.0
0.55 2.17 0.26 1.57 22.0
0.55 2.17 0.26 1.57 22.0
0.55 2.17 0.26 1.57 22.0
0.55 2.17 0.26 1.57 22.0
0.55 2.17 0.26 1.57 22.0
(Note)
Weight
[lb]
5.1
(5.7)
5.1
(5.7)
5.1
(5.7)
6.2
(7.1)
5.5
(6.2)
6.6
(7.5)
6.6
(7.5)
11.0
(11.7)
8.4
(9.7)
12.8
(14.1)
12.8
(14.1)
13.4
(14.8)
13.4
(14.8)
17.0
(18.7)
Note: Values in parentheses are those for the servo motors with electromagnetic brakes.
10
10– 87
10. SPECIFICATIONS
4–ø0.47
LL
LR
Earth terminal M3 screw
Caution plate (Opposite side) 200W or more
Earth terminal M3 screw
(Opposite side) 100W or less
LG
1.69
0.12
LD
Q
45°
A
øLF
ø102
ø1.85
1.54
Bottom
øLB
øS
øL
Top
øL
C
Motor plate
Power supply cable
VCTF 3-0.052 19.7
(With end-insulated round crimping terminal 0.05-4)
Encoder cable 11.8
With connector 172169-9
(AMP make)
Servo Motor Reduction Reduction
Model
Ratio Gear Model
HA–FF13
(B)G2
1/45
1/20
HA–FF23
(B)G2
1/29
1/45
1/20
HA–FF33
(B)G2
1/29
1/45
1/9
HA–FF43
(B)G2
1/20
1/29
1/45
1/5
HA–FF63
(B)G2
1/9
1/20
1/29
BL1–45B
–01MES
BL1–20B
–02MES
BL1–29B
–02MES
BL2–45B
–02MES
BL1–20B
–03MES
BL2–29B
–03MES
BL2–45B
–03MES
BL1–09B
–04MES
BL2–20B
–04MES
BL2–29B
–04MES
BL2–45B
–04MES
BL1–05B
–06MES
BL1–09B
–06MES
BL2–20B
–06MES
BL2–29B
–06MES
Red: Phase U
White: Phase V
Black: Phase W
(Note)
Inertia
Moment
WK2[oz•in2]
1.60
(1.63)
3.99
(4.84)
3.46
(4.18)
4.17
(4.89)
4.81
(5.54)
8.39
(9.12)
4.99
(5.71)
6.52
(8.43)
13.00
(14.91)
10.99
(12.90)
7.59
(9.50)
7.01
(10.16)
7.75
(9.66)
14.23
(16.14)
12.22
(14.13)
Variable Dimensions [in]
LA LB LC LD LF LG LK
LL
10.79
5.12 3.94 6.10 4.72 2.76 0.39 4.02 (12.15)
10.94
5.12 3.94 6.10 4.72 2.76 0.39 4.02 (12.26)
10.94
5.12 3.94 6.10 4.72 2.76 0.39 4.02 (12.38)
11.77
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (13.23)
11.61
5.12 3.94 6.10 4.72 2.76 0.39 4.02 (12.97)
12.44
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (13.92)
12.44
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (14.31)
11.63
5.12 3.94 6.10 4.72 2.76 0.39 4.02 (13.09)
12.74
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (14.19)
12.74
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (14.19)
13.13
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (14.59)
11.83
5.12 3.94 6.10 4.72 2.76 0.39 4.02 (13.29)
12.22
5.12 3.94 6.10 4.72 2.76 0.39 4.02 (13.68)
13.33
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (14.78)
13.33
6.30 5.12 7.28 5.51 3.70 0.47 5.20 (14.78)
LR Q
3.35 1.57 0.98
3.35 1.57 0.98
3.35 1.57 0.98
3.94 2.17 1.38
3.35 1.57 0.98
3.94 2.17 1.38
3.94 2.17 1.38
3.35 1.57 0.98
3.94 2.17 1.38
3.94 2.17 1.38
3.94 2.17 1.38
3.35 1.57 0.98
3.35 1.57 0.98
3.94 2.17 1.38
3.94 2.17 1.38
Note: Values in parentheses are those for the servo motors with electromagnetic brakes.
10– 88
S
Weight
[lb]
13.2
(13.9)
15.0
(16.3)
15.0
(16.3)
27.1
(28.4)
15.7
(17.0)
27.8
(29.1)
27.8
(29.1)
18.1
(19.8)
31.3
(33.1)
31.3
(33.1)
31.3
(33.1)
19.4
(21.2)
19.4
(21.2)
32.6
(34.4)
32.6
(34.4)
10. SPECIFICATIONS
HA – FF63(B)G2 1/45
[Unit: in]
14.61(16.04)
7.91
6–ø0.47
0.59
0.20
2.95
Caution plate
Top
Bottom
Motor plate
Power supply cable
VCTF 3-0.052 19.7
(With end-insulated round crimping terminal 0.05-4)
60
°
Earth terminal M3 screw
(Opposite side)
ø1.97
Top
ø7.48
1.61
ø5.31
ø7.48
.66
Bottom
ø1.85
ø8
ø9
.6
5
1.54
5.51
2.48
Red: Phase U
White: Phase V
Black: Phase W
Encoder cable 11.8
With connector 172169-9
(AMP make)
Reduction
Gear Model
BL3–45B–06MES
Reduction
Ratio
(Note)
Inertia
Moment
2
2
WK [oz • in ]
(Note)
Weight [lb]
1/45
17.11
(19.00)
65.7
(74.3)
Note: Values in parentheses are those for the servo motors with
electromagnetic brakes.
10
10– 89
10. SPECIFICATIONS
(4) HA-FFC-UE series
1) Standard (without electromagnetic brake, without reduction gear)
1) HA – FF053C – UE
1.18
2.13
0.1
0.98
45 ˚
ø0.31
Bottom
Caution plate
(English)
Top
2.91
1.61
Top
TUV plate
.36
ø2
ø2.
68
Oil seal
GM10204B
Bottom
1.26
0.79
Top
4–ø0.18
2.72
ø1.85
0.42
ø1.97
4.72
1.81
[Unit: in]
Bottom
Motor plate
1.95
Power supply connector
CE05-2A14S-2PD-B(D17)
Encoder connector
MS3102A20-29P
Model
Note: 1. For the pin-outs of the power supply and encoder connectors, refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power supply and encoder
connectors down.
HA–FF053C–UE
Output Inertia Moment Weight
[W] WK2[oz•in2] [lb]
50
0.342
4.0
HA – FF13C – UE
[Unit: in]
1.18
5.39
1.81
0.47
2.13
0.1
45 ˚
ø0.31
Bottom
Top
.36
ø2.
6
8
Oil seal
S10207B
2.91
Bottom
1.61
Top
1.26
Top
2.72
Caution plate
(English)
4–ø0.18
ø2
ø1.97
ø1.85
0.98
Bottom
Motor plate
TUV plate
0.79
Encoder connector
MS3102A20-29P
2.62
Power supply connector
CE05-2A14S-2PD-B(D17)
Note: 1. For the pin-outs of the power supply and encoder connectors, refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power supply and
encoder connectors down.
Model
Output Inertia Moment Weight
[W] WK2[oz•in2] [lb]
HA – FF13C – UE 100
10– 90
0.519
4.4
10. SPECIFICATIONS
1)
HA – FF23C – UE • HA – FF33C – UE
[Unit: in]
L
1.18
1.81
0.55
2.99
0.12
45 ˚
0.98
4–ø0.22
0.63 0.16
.54
Top
ø2.76
ø3.
94
A
Oil seal
S15307B
1.61
Top
1.26
Bottom
Motor plate
KL
0.10
0.16
0.79
Encoder connector
MS3102A20-29P
Power supply connector
CE05-2A14S-2PD-B(D17)
ø0.43
2.91
Caution plate
Top
(English)
Bottom
TUV plate
ø3
3.11
ø1.85
A
Bottom
0.16
M4 threads, depth 0.59
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Output
[W]
Model
Variable Dimensions
Inertia Moment Weight
WK2[oz•in2] [lb]
L
KL
HA–FF23C–UE 200
5.71
2.82
1.91
5.7
HA–FF33C–UE 300
6.38
3.50
2.73
6.4
HA—FF43C—UE • HA—FF63C—UE
[Unit: in]
L
Caution plate
(English)
3.94
1.57
1.85
45 ˚
0.63 0.12
4–ø0.35
1.38
0.98
0.20
ø5.
31
.53
ø4
ø3.74
Bottom
Top
ø1.85
A
0.79
1.26
Top
TUV plate
Bottom
Motor plate
KL
Encoder connector
MS3102A20-29P
0.12
Power supply connector
CE05-2A14S-2PD-B(D17)
0.20
1.732
3.58
Oil seal
S17308B
1.61
ø0.63
EC
Top
2.91
A
Bottom
0.20
M5 threads, depth 0.79
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
10– 91
Model
Output
[W]
Variable Dimensions
Inertia Moment Weight
WK2[oz•in2] [lb]
L
KL
HA–FF43C–UE 400
6.65
3.66
5.33
10.4
HA–FF63C–UE 600
7.24
4.25
6.56
11.7
10
10. SPECIFICATIONS
2) With electromagnetic brake
HA – FF053CB – UE
[Unit: in]
ø1.85
Bottom
2.13
0.1
0.98
45 ˚
ø0.31
Caution plate
1.18
Motor plate
0.47
(Opposite side)
Top Bottom
Top
68
.36
1.26
2.64
2.91
1.61
EC
Top
4–ø0.18
ø2
Oil seal
GM10204B
Bottom
TUV plate
ø2.
ø1.97
6.10
1.85
1.10
1.40
0.79
1.73
3.31
Power supply connector Brake connector
CE05-2A14S-2PD-B(D17) MS3102E10SL-4P
Encoder connector
MS3102A20-29P
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Braking
Output Inertia Moment
Weight
Force
2
2
[W] WK [oz•in ]
[lb]
[oz•in]
Model
HA – FF053CB – UE
50
0.437
55
4.6
HA – FF13CB – UE
[Unit: in]
6.77
1.18
1.85
0.43
ø1.85
Bottom
Top
ø2.
68
1.61
Top
1.26
4–ø0.18
.36
ø2
2.64
EC
TUV plate
45 ˚
Oil seal
S10207B
2.91
Bottom
2.13
0.1
0.98
ø0.31
ø1.97
Caution plate
1.10
Motor plate
1.40
0.79
1.73
Encoder connector
MS3102A20-29P
3.98
Power supply connector
CE05-2A14S-2PD-B(D17)
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Brake connector
MS3102E10SL-4P
Model
Braking
Output Inertia Moment
Weight
Force
2
2
•
[W] WK [oz in ]
[lb]
•
[oz in]
HA – FF13CB – UE 100
10– 92
0.615
55
5.1
10. SPECIFICATIONS
HA – FF23CB – UE • HA – FF33CB – UE
[Unit: in]
L
1.18
1.81
2.99
0.55 0.12
45 ˚
0.98
ø3.
94
1.61
1.26
Top
Bottom
3.11
A
Oil seal
S15307B
2.91
Caution plate
(English)
.54
ø3
ø2.76
ø1.85
0.63 0.16
A
4–ø0.22
1.10
Motor plate
TUV plate
1.52
0.79
KL
Brake connector
MS3102E10SL-4P
0.10
0.16
Power supply connector
CE05-2A14S-2PD-B(D17)
ø0.43
Encoder connector
MS3102A20-29P
0.16
M4 threads, depth 0.59
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Output
[W]
Model
HA – FF23CB–UE 200
Variable Dimensions
L
KL
7.17
4.29
Braking Force Inertia Moment Weight
[oz•in]
WK2[oz•in2] [lb]
2.64
7.7
3.46
8.4
170
HA–FF33CB–UE 300
7.87
5.0
HA – FF43CB – UE • HA – FF63CB – UE
[Unit: in]
L
Caution plate
(English)
3.94
1.57
0.63 0.12
1.38
1.85
45 ˚
4–ø0.35
0.98 0.20
ø3.74
3.58
1.61
1.10
1.67
0.79
Encoder connector
MS3102A20-29P
KL
0.12
Power supply connector
CE05-2A14S-2PD-B(D17)
Brake connector
MS3102E10SL-4P
ø0.63
1.732
3
ø4.5
A
Oil seal
S17308B
1.26 Top Bottom
Motor plate
TUV plate
.31
0.20
CE
Top
ø1.85
Top
Bottom
2.91
Bottom
ø5
A
0.20
M5 threads, depth 0.79
Section AA
Note: 1. For the pin-outs of the power supply and encoder connectors,
refer to (3), Section 3-2-3.
2. For horizontal installation, it is recommended to face the power
supply and encoder connectors down.
Model
Output
[W]
Variable Dimensions
L
KL
HA – FF43CB – UE 400
8.11
5.12
HA – FF63CB – UE 600
8.70
5.71
Braking Force Inertia Moment Weight
[oz•in]
WK2[oz•in2] [lb]
7.24
12.8
8.47
14.1
326
10– 93
10
10. SPECIFICATIONS
(5) HC-SF series
1) Standard (without electromagnetic brake, without reduction gear)
Model
Variable
Output
Dimensions (in)
(kW)
L
KL
Inertia Moment
2
Weight
2
WK (oz·in )
(lb)
HC–SF52
HC–SF53
0.5
4.7
2.03
36.22
11.0
HC–SF102
HC–SF103
1.0
5.71
3.02
74.90
15.4
HC–SF81
0.85
HC–SF152
HC–SF153
1.5
6.69
4.00
109.08
19.8
[Unit: in]
L
2.165
1.56
5.12
0.47 0.12
Moter plate
(Opposite side)
45°
ø0.95
1.97
ø5
ø4.33
Bottom
Bottom
Top
3.21
Top
4-ø0.35 mounting hole
Use hexagon socket
head cap screw.
.71
ø6
.50
Oil seal
4.37
S30457B
Motor flange direction
0.77
U
G
H A
E D B
C
Earth
KL
V
F
Encoder connector
Power supply connector
MS3102A20-29P
CE05-2A22-23P
1.61
W
Power supply connector layout
CE05-2A22-23P
Model
Output
(kW)
HC–SF121
1.2
HC–SF202
HC–SF203
2.0
HC–SF201
2.0
HC–SF352
HC–SF353
3.5
Variable
Dimensions (in)
Weight
Inertia Moment
2
Z694854 *
2
WK (oz·in )
(lb)
L
KL
5.71
2.70
232.37
26.5
7.36
4.35
448.33
41.9
[Unit: in]
3.11
L
0.71 0.12
Moter plate
(Opposite side)
6.93
2.95
ø1.378
1.56
Bottom
Top
Top
.87
ø4.5
Bottom
ø7
ø9
3.21
Oil seal
.06
5.59
S40608B
Motor flange direction
U
0.77
F
G
E D
Encoder connector
MS3102A20-29P
KL
Power supply connector
V
A
B
C
W
Earth
Power supply connector layout
CE05-2A24-10P
CE05-2A24-10P
10– 94
1.81
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
Z695393A
10. SPECIFICATIONS
Model
HC–SF301
Output
Inertia Moment
2
Weight
2
(kW)
WK (oz·in )
(lb)
3.0
552.212
50.7
[Unit: in]
8.189
3.11
6.93
Moter plate
(Opposite side) 0.71 0.12
1.56
45°
ø1.378
2.95
Bottom
Top
Top
.87
ø4.5
Bottom
ø7
ø9
3.21
Oil seal
.06
5.59
S40608B
Motor flange direction
U
0.77
Encoder connector
F
MS3102A20-29P
B
E D
5.157
Power supply connector
Earth
CE05-2A2-10P
V
A
G
C
W
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
1.81
Power supply connector layout
CE05-2A24-10P
BC10628 *
2) With electromagnetic brake
Model
Variable
Output
Dimensions (in)
(kW)
L
KL
Braking Force Inertia Moment
2
2
Weight
(oz·in)
WK (oz·in )
(lb)
HC–SF52B
HC–SF53B
0.5
6.02
2.03
1204
45.52
16.535
HC–SF102B
HC–SF103B
1.0
7.01
3.02
1204
84.20
20.944
HC–SF81B
0.85
HC–SF152B
HC–SF153B
1.5
7.99
4.00
1204
118.37
25.353
[Unit: in]
4-ø0.35mounting hole
Use hexagon socket
head cap screw.
L
2.165
0.47
Moter plate
(Opposite side)
5.12
0.12
45°
1.97
ø0.95
Top
ø4.33
ø5
Bottom
.71
ø6
.50
Oil seal
4.37
3.21
S30457B
Motor flange direction
Brake
U
G
0.77
Encoder connector
F
E H
D
MS3102A20-29P
Power supply connector
CE05-2A22-23P
Earth
V
A
B
C
W
1.61
10
Power supply connector layout
CE05-2A22-23P
Z695005
10– 95
10. SPECIFICATIONS
Model
Variable
Output
(kW)
HC–SF121B
1.2
HC–SF202B
HC–SF203B
2.0
HC–SF201B
2.0
HC–SF352B
HC–SF253B
3.5
Braking Force Inertia Moment
Dimensions (in)
2
Weight
2
(oz·in)
WK (oz·in )
(lb)
2.70
6103
287.04
39.683
4.35
6103
503.01
55.115
L
KL
7.60
9.25
[Unit: in]
3.11
L
1.56
6.93
0.71 0.12
Moter plate
(Opposite side)
45°
ø9
Top
.06
ø7
.87
ø4.5
Bottom
Top
Oil seal
3.21
S40608B
5.59
4.61
Bottom
ø1.38
2.95
0.77
Motor flange direction
KL
2.72
Motor flange direction
U
F
Encoder connector
Brake connector
MS3102A20-29P
MS3102A10SL-4P
Power supply connector
CE05-2A24-10P
G
A
E D
B
V
A
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
B
Brake
C F W
Earth
Power supply connector layout
CE05-2A24-10P
Brake connector layout
MS3102A10SL-4P
Z695319D
Model
HC–SF301B
Braking Force Inertia Moment
Output
2
Weight
2
(kW)
(oz·in)
WK (oz·in )
(lb)
3.0
6103
606.886
63.9
[Unit: in]
4-ø0.53mounting hole
Use hexagon socket
head cap screw.
3.11
10.079
6.93
Moter plate
(Opposite side)
1.56
0.71 0.12
45°
2.95
Bottom
Top
Top
ø1.38
Bottom
ø9
4.61
3.21
Oil seal
Motor flange direction
5.177
.06
5.591
S40608B
0.77
.87
ø4.5
ø7
U
Motor flange direction
2.72
A
Encoder connector Brake connector
MS3102A20-29P
MS3102A10SL-4P
Power supply
connector
CE05-2A24-10P
B
Brake
Brake connector layout
MS3102A10SL-4P
F
G
A
E D
B
C
V
W
Earth
1.811
Power supply connector layout
CE05-2A24-10P
BC10823 *
10– 96
10. SPECIFICATIONS
(6) HC-RF series
1) Standard (without electromagnetic brake, without reduction gear)
[Unit: in]
1.77
L
1.56
0.12
0.39
Motor plate
(Opposite side)
4-ø0.35 mounting
hole Use hexagon
socket head cap
screw.
3.94
45
°
Bottom
ø3.74
ø0.95
1.58
Bottom
Top
Top
ø5.
3
32
.5
ø4
3.78
3.21
Oil seal
S30457B
Motor flange directon
U
V
G
0.77
KL
F
E
Encoder connector Power supply connector
MS3102A20–29P CE05–2A22–23P
Model
A
H
D
B
1.61
C
W
Earth
Power supply connector layout
(CE05–2A22–23P)
Variable
Output
Inertia Moment
Dimensions [in]
(kW)
L
KL
2
Weight
2
WK [oz•in ]
[lb]
HC–RF103
1.0
5.79
2.80
8.20
8.6
HC–RF153
1.5
6.77
3.78
10.39
11.0
HC–RF203
2.0
7.76
4.76
12.58
13.7
[Unit: in]
2) Without electromagnetic brake
1.77
L
1.56
0.39
4-ø0.35 mounting
hole Use hexagon
socket head cap
screw.
3.94
1.58
45
°
Bottom
ø3.74
ø0.95
Motor plate
(Opposite side)
0.12
Bottom
Top
Top
ø5
.32
3
.5
ø4
Motor flange direction
Brake
U
G
V
0.77
Encoder connector
MS3102A20–29P
3.78
3.21
Oil seal
S30457B
KL
Power supply connector
CE05–2A22–23P
F
E H
D
Earth
A
B
C
1.61
W
Power supply connector layout
(CE05–2A22–23P)
Model
Output
(kW)
Variable
Dimensions [in]
L
KL
Barking Force Inertia Moment
2
2
Weight
[oz•in]
WK [oz•in ]
[lb]
HC–RF103B
1.0
7.28
2.80
991
10.12
13.2
HC–RF153B
1.5
8.27
3.78
991
12.30
15.4
HC–RF203B
2.0
4.76
991
14.49
18.3
9.25
10– 97
10
10. SPECIFICATIONS
(7) HC-UF series
1) Standard (without electromagnetic brake)
Model
HC–UF72
Weight
Output
Inertia Moment
(kW)
WK (oz·in )
(lb)
0.75
56.861
17.6
2
2
4.35
1.56
[Unit: in]
6.93
2.165
40°
Moter plate 0.512 0.12
(Opposite side)
2-M6 screw
ø8
.46
5
1.97
Top
ø0.866
Bottom
Top
Oil seal
3.21
.87
ø4.5
Bottom
ø7
ø9
S30457B
.05
5
5.669
45°
Motor flange direction
0.77
U
Encoder connector
1.496
V
FG
H A
B
D
E C
W
Earth
MS3102A20-29P
Power supply
connector
CE05-2A22-23P
1.732
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
Power supply connector layout
CE05-2A22-23P
Z695911 *
Model
HC–UF152
Output
Weight
Inertia Moment
2
2
(kW)
WK (oz·in )
(lb)
1.5
120.831
24.3
6.93
2.165
4.724
1.56
[Unit: in]
Moter plate
(Opposite side)
0.512
40°
0.12
2-M6 screw
ø8
.46
5
1.97
3.21
Oil seal
ø9
S30457B
45°
.0
55
5.669
Top
.87
ø4.5
Bottom
Top
ø1.102
Bottom
ø7
Motor flange direction
0.77
U
Encoder connector
1.87
MS3102A20-29P
Power supply
connector
CE05-2A22-23P
Earth
G
F H
ED
A
V
1.732
B
C
W
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
Power supply connector layout
CE05-2A22-23P
Z695912A
10– 98
10. SPECIFICATIONS
Output
Model
(kW)
HC–UF202
2.0
Variable
2
L
KL
4.646
1.673
2
WK (oz·in )
(lb)
208.856
35.3
L
1.56
Weight
Inertia Moment
Dimensions
[Unit: in]
8.661
2.559
0.63 0.157
Motor plate
(Opposite side)
37.
5°
2-M8 screw
2.362
.84
ø7.874
ø9
3
Bottom
Bottom
Top
Top
.25
2
ø1.378
ø9
3.21
ø1
0.6
3
Oil seal
S40608B
6.45
45°
Motor flange direction
0.77
U
F
Encoder connector
MS3102A20-29P
KL
G
A
E D
B
C
V
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
W
Power supply connector
CE05-2A24-10P
1.85
Power supply connector layout
CE05-2A24-10P
Z695914 *
Output
Model
HC–UF13
Weight
Inertia Moment
2
2
(kW)
WK (oz·in )
(lb)
100
0.361
1.8
[Unit: in]
0.984
2.756
2.362
0.20 0.23
Motor plate
4- 0.228
TUV plate
0.12
Motor plate
(Opposite side)
45°
R5
ø1.969
ø1.575
Top
Top
56
Bottom
.7
Top
ø2
Bottom
ø0.315
Bottom
Top
1.685
1.575
Bottom
Caution plate
Oil seal
1.299
S10207
Power supply lead 4-AWG19 11.8in
1.059
0.390
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.787
BC11740A
10
10– 99
10. SPECIFICATIONS
Variable
Output
Model
Dimensions (in)
(W)
HC–UF23
HC–UF43
Inertia Moment
2
Weight
2
WK (oz·in )
(lb)
1.724
1.318
3.3
2.315
1.996
3.7
L
KL
200
2.953
400
3.543
[Unit: in]
L
1.181
3.15
0.315 0.256
4-ø0.26
45°
0.12
Motor plate
(Opposite side)
Motor plate
7
R
TUV plate
Bottom
Top
2.165
1.969
Top
ø2.205
ø0.551
Bottom
ø2.756
ø3
.54
3
Top
Bottom
Oil seal
SC15307
KL
1.059
Power supply lead 4-AWG19 11.8in
Encoder cable 11.8in
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.390
With connector 1-172169-9
(AMP make)
0.945
BC11513A
Model
HC–UF73
2
2
Output (W)
Inertia Moment WK (oz·in )
Weight (lb)
750
32.258
11.0
[Unit: in]
3.35
1.58
0.39
Motor plate
(Opposite side)
4.84
0.138
4 5°
0.10
4-ø0.35
1.28
Bottom
Bottom
Top
Top
Top
Oil seal
S20357
2.84
Bottom
Top
Caution
plate
0
.5
ø6
2.99
Bottom
ø5
.71
Motor plate
ø3.15
ø4.33
ø0.75
TUV plate
Power supply lead 4-AWG19 11.8in
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
0.219
1.059
0.787
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
2.76
BC11357A
2) With electromagnetic brake
Model
HC–UF72B
2
2
Output (kW)
Braking Force (oz·in)
Inertia Moment WK (oz·in )
Weight (lb)
0.75
1204
67.796
22.0
6.93
2.165
5.669
1.56
[Unit: in]
40°
Moter plate 0.512 0.12
(Opposite side)
2-M6 screw
ø8
.46
5
ø0.866
ø7
ø4.5
Bottom
Top
Top
ø9
Oil seal
S30457B
45°
Motor flange direction
0.77
Encoder connector
Brake
Power supply
connector
CE05-2A22-23P
A
F H
E
D
Earth
5
U
1.496
MS3102A20-29P
.05
5.669
Bottom
.87
V
1.732
B
C
W
Power supply connector layout
CE05-2A22-23P
10– 100
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
Z695981A
10. SPECIFICATIONS
Output
Model
HC–UF152B
Weight
Braking Force Inertia Moment
2
2
(kW)
(oz·in)
WK (oz·in )
(lb)
1.5
1204
158.009
28.7
[Unit: in]
6.93
2.165
Moter plate 0.512 0.12
(Opposite side)
6.043
1.56
40°
2-M6 screw
ø8
.46
5
Bottom
Bottom
Top
Top
.87
ø4.5
ø1.102
ø7
ø9
Oil seal
S30457B
.0
55
5.669
45°
Motor flange direction
0.77
Brake
Encoder connector
MS3102A20-29P
Power supply
connector
CE05-2A22-23P
U
V
G
F H A
E
B
D C
Earth
W
1.87
1.732
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
Power supply connector layout
CE05-2A22-23P
Z695982
Variable
Output
Model
Dimensions (in)
(kW)
HC–UF202B
2.0
L
KL
6.339
1.673
Weight
Braking Force Inertia Moment
2
2
(oz·in)
WK (oz·in )
(lb)
6103
255.876
48.5
L
8.661
2.559
0.157
2.362
37.5
°
2-M8 screw
ø9
ø7.874
Moter plate 0.63
(Opposite side)
[Unit: in]
.84
3
Bottom
Top
Bottom
ø1
3.21
5.472
Top
.25
2
ø1.378
ø9
0.6
3
Oil seal
45°
S40608B
0.77
Motor flange direction
1.654
A B
Brake
Brake connector
H/MS3102A10SL-4P
Power supply connector
CE05-2A24-10P
Motor flange direction
U
V
F
A
G
E D C B
W
4-ø0.53 mounting hole
Use hexagon socket
head cap screw.
6.457
KL
Encoder connector
MS3102A20-29P
Earth
1.85
Power supply connector layout
CE05-2A24-10P
Brake connector layout
MS3102A10SL-4P
BC10647A
10
10– 101
10. SPECIFICATIONS
Output
Model
HC–UF13B
Weight
Braking Force Inertia Moment
2
2
(kW)
(oz·in)
WK (oz·in )
(lb)
100
45
0.405
2.6
[Unit: in]
3.937
2.362
0.984
0.20 0.23
Motor plate
4-¿0.228
0.12
TUV plate
45ß
Motor plate
(Opposite side)
R5
¿0.315
Bottom
Bottom
Top
Top
.75
6
¿1.969
Bottom
¿2
¿1.575
Top
Top
1.685
1.575
Bottom
Caution
plate
Oil seal
SC10207
1.299
1.839
1.059
Power supply lead 4-AWG19 11.8in
0.390
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Brake cable
Green/yellow: Earth
Tough-rubber sheath cable 2-0.75 2 11.8in
(With end-insulated round crimping terminal 0.05-4)
Encoder cable 11.8in
With connector 1-172169-9
(AMP make)
0.787
BC11767A
Output
Model
(kW)
Variable
Dimensions (in)
L
KL
Braking Force Inertia Moment
2
(oz·in)
Weight
2
WK (oz·in )
(lb)
HC–UF23B
200
4.291
1.724
184
1.766
4.9
HC–UF43B
400
4.882
2.315
184
2.444
5.3
[Unit: in]
L
1.181
0.315
Motor plate
4-¿0.26
Motor plate
(Opposite side)
TUV plate
3.150
0.256
0.12
45ß
7
R
Bottom
Top
2.165
1.969
Top
43
¿2.756
Bottom
¿2.205
Top
¿0.551
3.5
Bottom
Oil seal
SC15307
1.858
KL
1.059
Encoder cable 11.8in
Power supply lead 4-AWG19 11.8in
0.390
With connector 1-172169-9
(AMP make)
Brake cable
Tough-rubber sheath cable
2-0.75 2 11.8in
(With end-insulated round
crimping terminal 0.05-4)
10– 102
(With end-insulated round crimping terminal 1.25-4)
Red: Phase U
White: Phase V
Black: Phase W
Green/yellow: Earth
0.945
BC11515A
10. SPECIFICATIONS
10-5-4 Cable side plugs
(1)Servo amplifier connector
Signal connector
<Sumitomo 3M make>
Model
Connector
: 10120-3000VE
Shell kit
: 10320-52F0-008
Model
Connector
Shell kit
[Unit: mm]
([Unit: in])
: 10120-6000EL
: 10320-3210-000
[Unit: mm]
([Unit: in])
NOTICE
This connector is not optional.
ø6.7
(ø0.26)
39.0 (1.54)
23.8 (0.94)
11.5
Logo, etc. are indicated here.
(0.45)
14.0
(0.55)
(0.39)
22.0 (0.87)
10.0
12.0
(0.47)
Logo, etc. are indicated here.
20.9 (0.82)
12.7
(0.50)
33.0 (1.30)
33.3 (1.31)
(2)HC- MF/HA-FF encoder junction connector
<Nippon AMP make>
Model
[Unit: mm]
Housing
: 1-172161-9
([Unit: in])
Connector pin : 170359-1
Crimping tool
: 755330-1
29.7 (1.17)
The crimping tool is required for
wiring to the connector.
MEMORANDUM For the crimping tool, contact Nippon
23.7 (0.93)
AMP.
16 (0.63)
14 (0.55)
4.2
(0.17)
14 (0.55)
42.0 (1.65)
2-ø0.5 (0.02)
4.2 (0.17)
10
10– 103
10. SPECIFICATIONS
(3) Servo motor encoder side plugs
(a) Connectors
<Daiichi Denshi Kogyo make>
CE05-6A14S-2SD-B
3
4
7
8
-20UNEF-2A threads
-20UNEF-2B threads
CL1
[Unit: mm]
D terminal
5.6 (0.22)
W
JAPAN
ø28.57
(ø1.12)
([Unit: in])
4S-2
A1
D
DDK
CL2
B CE05C
24 (0.94)
[Unit: mm]
([Unit: in])
A
D or less
Model
7.85 (0.31) or more
A
B
C
D
W
øB
øC
40.48 38.3 61
CE05-6A22-23SD-B-BSS 13/8-18UNEF-2B
13/16-18UNEF-2A
(1.59) (1.51) (2.40)
CE05-6A24-10SD-B-BSS 11/2-18UNEF-2B
CE05-6A32-17SD-B-BSS
10– 104
2-18UNS-2S
43.63 42.0 68
17/16-18UNEF-2A
(1.72) (1.65) (2.68)
56.33 54.2 79
13/4-18UNS-2A
(2.22) (2.13) (3.11)
10. SPECIFICATIONS
D or less
S
U
Y or more
øB
R
A
[Unit: mm]
([Unit: in])
W
Model
A
B
D
W
R
U
S
Y
40.48 75.5 3
16.3 33.3 49.6 7.5
CE05-8A22-23SD-B-BAS 13/8-18UNEF-2B
1 /16-18UNEF-2A
(1.59) (2.97)
(0.64) (1.31) (1.95) (0.30)
CE05-8A24-10SD-B-BAS 11/2-18UNEF-2B
CE05-8A32-17SD-B-BAS
Gasket
J
56.33 93.5 3
24.6 44.5 61.9 8.5
1 /4-18UNS-2A
(2.22) (3.68)
(0.97) (1.75) (2.44) (0.34)
A
øB
øG
D
H or less
2-18UNS-2B
43.63 86.3 7
18.2 36.5 54.7 7.5
1 /16-18UNEF-2A
(1.72) (3.40)
(0.72) (1.44) (2.15) (0.30)
E
[Unit: mm]
([Unit: in])
C
Model
A
MS3106A10SL-4S(D190)
5/8-24UNEF-2B
22.22 23.3 9
7.5 12.5 13.49
/16-24UNEF-2A
(0.87) (0.92)
(0.30) (0.49) (0.53)
MS3106A14S-2S(D190)
7/8-20UNEF-2B
28.57 24.34 3
8.46 17.0 13.49
/4-20UNEF-2A
(1.13) (0.96)
(0.33) (0.67) (0.53)
MS3106A20S-29S(D190) 11/4-18UNEF-2B
37.28 34.11 1
12.16 26.8 18.26
1 /8-18UNEF-2A
(1.47) (1.34)
(0.48) (1.06) (0.72)
MS3106A22S-23S(D190) 13/8-18UNEF-2B
40.48 34.11 1
12.15 29.9 18.26
1 /4-18UNEF-2A
(1.59) (1.34)
(0.48) (1.18) (0.72)
MS3106A24S-10S(D190) 11/2-18UNEF-2B
43.63 36.58 3
13.42 32.9 18.26
1 /8-18UNEF-2A
(1.72) (1.44)
(0.53) (1.30) (0.72)
MS3106A32S-17S(D190)
2-18UNS-2B
B
C
D
E
G
J
56.33 36.95 7
13.14 45.3 18.26
1 /8-16UN-2A
(2.22) (1.46)
(0.52) (1.78) (0.72)
Contact Size
#16
H
#12
#8
#4
#0
8 or less 8 or less 10 or less 13 or less 13 or less
10
10– 105
10. SPECIFICATIONS
L or less
[Unit: mm]
([Unit: in])
J
W or more
Model
V
L
Q
18.26 55.57 37.28 3
9.53 47
1 /16-18UNEF
(0.72) (2.19) (1.47)
(0.38) (1.85)
MS3106B22-23S 13/8-18UNEF
18.26 55.57 40.48 3
9.53 50
1 /16-18UNEF
(0.72) (2.19) (1.59)
(0.38) (1.97)
MS3106B24-10S 13/2-8UNEF
18.26 58.72 43.63 7
9.53 53
1 /16-18UNEF
(0.72) (2.31) (1.72)
(0.38) (2.09)
Model
2-18UNS
18.26 61.92 56.33 3
11.13 66
1 /4-18UNS
(0.72) (2.44) (2.22)
(0.44) (2.60)
J
A
L
Q
øQ
R
U
V
U
MS3106B22-23S 13/8-18UNEF
18.26 76.98 40.48 24.1 33.3 3
9.53
1 /16-18UNEF
(0.72) (3.03) (1.59) (0.95) (1.31)
(0.38)
MS3106B24-10S 13/2-8UNEF
18.26 86.51 43.63 25.6 36.5 7
9.53
1 /16-18UNEF
(0.72) (3.41) (1.72) (1.01) (1.44)
(0.38)
2-18UNS
18.26 95.25 56.33 32.8 44.4
11.13
13/4-18UNS
(0.72) (3.75) (2.22) (1.29) (1.75)
(0.44)
L1
L2
C
D2
A0
C
W
9.53
3/4-20UNEF
(0.38)
18.26 79.68 37.28 22.5 33.3 3
9.53
1 /16-18UNEF
(0.72) (3.03) (1.47) (0.89) (1.31)
(0.38)
MAA
A0
V
MS3106B20-29S 11/4-18UNEF
2) Flexible conduit connectors
<Daiwa Dengyo make>
C
R
13.49 53.97 28.57 14.9 27.0
MS3106B14S-2S 7/8-20UNEF
(0.53) (2.13) (1.13) (0.59) (1.06)
MS3106B32-17S
D(D1)
Y
[Unit: mm]
([Unit: in])
A
L
W
8.0 30
3/4-20UNEF
(0.32) (1.18)
J
L or less
MSA
V
MS3106B20-29S 11/4-18UNEF
MS3106B32-17S
W or more
J
A
13.49 42.88 28.57
MS3106B14S-2S 7/8-20UNEF
(0.53) (1.69) (1.13)
øQ
Y or less
A
[Unit: mm]
([Unit: in])
Model
A0
MSA10-10 • MAA10-10
9/16-24UNEF-2B
8.2
29
26
27
44 35.5 45
(0.32) (1.73) (1.40) (1.77) (1.06) (1.14) (1.02)
MSA10-14 • MAA10-14
3/4-20UNEF-2B
8.2
29
35
27
45 39.5 46
(0.32) (1.77) (1.56) (1.18) (1.06) (1.14) (1.38)
MSA12-14 • MAA12-14
3/4-20UNEF-2B
10.7 45 39.5 46
29
35
27
(0.42) (1.77) (1.56) (1.18) (1.06) (1.14) (1.38)
MSA16-20 • MAA16-20
11/8-18UNEF-2B
14 4.95 47
52
38
39
36
(0.55) (1.95) (1.85) (2.05) (1.42) (1.50) (1.54)
MSA16-22 • MAA16-22
11/4-18UNEF-2B
14 4.95 47
52
42
39
38
(0.55) (1.95) (1.85) (2.05) (1.50) (1.65) (1.54)
MSA16-24 • MAA16-24
13/8-18UNEF-2B
14 4.95 51
54
43
47
41
(0.55) (1.95) (2.01) (2.13) (1.61) (1.69) (1.85)
MSA22-20 • MAA22-20
11/8-18UNEF-2B
18.9 4.95 47
54
39
39
36
(0.74) (1.95) (1.85) (2.13) (1.42) (1.54) (1.54)
MSA22-22 • MAA22-22
11/4-18UNEF-2B
18.9 4.95 47
54
42
39
38
(0.74) (1.95) (1.85) (2.13) (1.50) (1.65) (1.54)
MSA22-24 • MAA22-24
13/8-18UNEF-2B
18.9 4.95 51
56
43
47
41
(0.74) (1.95) (2.01) (2.21) (1.61) (1.69) (1.85)
MSA28-22 • MAA28-22
11/4-18UNEF-2B
24.5 51
53
64
50
47
46
(0.97) (2.01) (2.09) (2.52) (1.18) (1.97) (1.85)
MSA28-24 • MAA28-24
13/8-18UNEF-2B
24.5 51
53
66
50
47
46
(0.97) (2.01) (2.09) (2.60) (1.18) (1.97) (1.85)
L
L1
L2
D
10– 106
D1
D2
10. SPECIFICATIONS
E'
ød
F
G
F ' G'
ød1
A
E
L(1)
L1(2)
A1
[Unit: mm]
([Unit: in])
Threads C
Jam Nut
Model
Threads C
A
A1
d
d1
E
F
Lock Nut
G
E'
F'
G'
L
L1
Width across Width across Number of Width across Width across Number of
flats
corners
corners
flats
corners
corners
RCC-102RL-MS10F 9/16-24UNEF-2B
6
8.3 11.0
15
(0.24) (0.59) (0.33) (0.43)
24
(0.94)
26.4
(1.04)
6
24
(0.94)
26.4
(1.04)
6
39
36
(1.54) (1.42)
RCC-102RL-MS14F
3/4-20UNEF-2B
7
15
8.3 15.0
(0.28) (0.59) (0.33) (0.59)
24
(0.94)
26.4
(1.04)
6
24
(0.94)
26.4
(1.04)
6
40
37
(1.57) (1.46)
RCC-103RL-MS14F
3/4-20UNEF-2B
7
15 10.6 15.0
(0.28) (0.59) (0.42) (0.59)
27
(1.06)
29.7
(1.17)
6
26
(1.02)
28.6
(1.13)
6
44
41
(1.73) (1.61)
RCC-104RL-MS14F
3/4-20UNEF-2B
7
15 14.0 15.0
(0.28) (0.59) (0.55) (0.59)
30
(1.18)
33.0
(1.30)
6
30
(1.18)
33.0
(1.30)
6
45
42
(1.77) (1.65)
RCC-104RL-MS20F 1-1/8-18UNEF-2B
9
15 14.0 24.0
(0.35) (0.59) (0.55) (0.95)
30
(1.18)
33.0
(1.30)
6
32
(1.26)
35.2
(1.39)
6
47
44
(1.85) (1.73)
RCC-104RL-MS22F 1-1/4-18UNEF-2B
9
15 14.0 27.0
(0.35) (0.59) (0.55) (1.06)
30
(1.18)
33.0
(1.30)
6
36
(1.42)
39.6
(1.56)
6
47
44
(1.85) (1.73)
RCC-104RL-MS24F 1-3/8-18UNEF-2B
10
20 14.0 30.0
(0.39) (0.79) (0.55) (1.18)
30
(1.18)
33.0
(1.30)
6
40
(1.58)
42.5
(1.67)
6
54
50
(2.13) (1.97)
RCC-106RL-MS20F 1-1/8-18UNEF-2B
9
15 19.0 24.0
(0.35) (0.59) (0.75) (0.95)
37
(1.46)
40.7
(1.60)
6
36
(1.42)
39.6
(1.56)
6
50
46
(1.97) (1.81)
RCC-106RL-MS22F 1-1/4-18UNEF-2B
9
15 19.0 27.0
(0.35) (0.59) (0.75) (1.06)
37
(1.46)
40.7
(1.60)
6
36
(1.42)
39.6
(1.56)
6
50
46
(1.97) (1.81)
RCC-106RL-MS24F 1-3/8-18UNEF-2B
10
20 19.0 30.0
(0.39) (0.79) (0.75) (1.18)
37
(1.46)
40.7
(1.60)
6
40
(1.58)
42.5
(1.67)
8
56
52
(2.21) (2.05)
11
20 19.0 42.5
(0.43) (0.79) (0.75) (1.67)
37
(1.46)
40.7
(1.60)
6
52
(2.05)
54.5
(2.15)
8
57
53
(2.24) (2.09)
RCC-108RL-MS22F 1-1/4-18UNEF-2B
9
15 24.4 27.0
(0.35) (0.59) (0.96) (1.06)
45
(1.77)
47.3
(1.86)
8
44
(1.73)
46.3
(1.82)
8
55
50
(2.17) (1.97)
RCC-108RL-MS24F 1-3/8-18UNEF-2B
10
20 24.4 30.0
(0.39) (0.79) (0.96) (1.18)
45
(1.77)
47.3
(1.86)
8
44
(1.73)
46.3
(1.82)
8
60
55
(2.36) (2.17)
11
20 24.4 42.5
(0.43) (0.79) (0.96) (1.67)
45
(1.77)
47.3
(1.86)
8
52
(2.05)
54.5
(2.15)
8
61
56
(2.40) (2.21)
RCC-106RL-MS32F
RCC-108RL-MS32F
1-7/8-16UN-2B
1-7/8-16UN-2B
10
10– 107
10. SPECIFICATIONS
L
A1
E'
A
G'
L1(1)
L2(2)
F'
ød1
°
90
Threads C
ød
E F G
[Unit: mm]
([Unit: in])
Jam Nut
Threads C
Model
A
A1
d
d1
E
F
Lock Nut
G
E'
F'
L
G'
L1
L1
Width across Width across Number of Width across Width across Number of
flats
corners
corners
flats
corners
corners
RCC-302RL-MS10F 9/16-24UNEF-2B
6
8.3 10.0
15
(0.24) (0.59) (0.33) (0.39)
24
(0.94)
26.4
(1.04)
6
20
(0.79)
22.0
(0.87)
6
35
33
30
(1.38) (1.30) (1.18)
RCC-302RL-MS14F
3/4-20UNEF-2B
7
15
8.3 13.8
(0.28) (0.59) (0.33) (0.54)
24
(0.94)
26.4
(1.04)
6
23
(0.91)
25.3
(1.0)
6
35
33
30
(1.38) (1.30) (1.18)
RCC-303RL-MS14F
3/4-20UNEF-2B
7
15 10.6 13.8
(0.28) (0.59) (0.42) (0.54)
27
(1.06)
29.7
(1.17)
6
23
(0.91)
25.3
(1.0)
6
37
37
34
(1.46) (1.46) (1.34)
RCC-304RL-MS14F
3/4-20UNEF-2B
7
15 14.0 13.8
(0.28) (0.59) (0.55) (0.54)
30
(1.18)
33.0
(1.30)
6
23
(0.91)
25.3
(1.0)
6
39
38
35
(1.54) (1.50) (1.38)
RCC-304RL-MS20F 1-1/8-18UNEF-2B
9
15 14.0 23.2
(0.35) (0.59) (0.55) (0.91)
30
(1.18)
33.0
(1.30)
6
32
(1.26)
35.2
(1.39)
6
41
38
35
(1.61) (1.50) (1.38)
RCC-304RL-MS22F 1-1/4-18UNEF-2B
9
15 14.0 26.5
(0.35) (0.59) (0.55) (1.04)
30
(1.18)
33.0
(1.30)
6
36
(1.42)
39.6
(1.56)
6
41
38
35
(1.61) (1.50) (1.38)
RCC-304RL-MS24F 1-3/8-18UNEF-2B
10
20 14.0 28.7
(0.39) (0.79) (0.55) (1.13)
30
(1.18)
33.0
(1.30)
6
40
(1.58)
42.5
(1.67)
8
47
46
43
(1.85) (1.81) (1.69)
RCC-306RL-MS20F 1-1/8-18UNEF-2B
9
15 19.0 23.2
(0.35) (0.59) (0.75) (0.91)
37
(1.46)
40.7
(1.60)
6
32
(1.26)
35.2
(1.39)
6
45
44
40
(1.77) (1.73) (1.58)
RCC-306RL-MS22F 1-1/4-18UNEF-2B
9
15 19.0 26.5
(0.35) (0.59) (0.75) (1.04)
37
(1.46)
40.7
(1.60)
6
36
(1.42)
39.6
(1.56)
6
45
44
40
(1.77) (1.73) (1.58)
RCC-306RL-MS24F 1-3/8-18UNEF-2B
10
20 19.0 28.7
(0.39) (0.79) (0.75) (1.13)
37
(1.46)
40.7
(1.60)
6
40
(1.58)
42.5
(1.67)
8
51
49
45
(2.01) (1.93) (1.77)
11
20 19.0 40.6
(0.43) (0.79) (0.75) (1.60)
37
(1.46)
40.7
(1.60)
6
54
(2.13)
56.7
(2.23)
8
52
49
45
(2.05) (1.93) (1.77)
RCC-308RL-MS22F 1-1/4-18UNEF-2B
9
15 24.4 26.5
(0.35) (0.59) (0.96) (1.04)
45
(1.77)
47.3
(1.86)
8
36
(1.42)
39.6
(1.56)
6
49
50
45
(1.93) (1.97) (1.77)
RCC-308RL-MS24F 1-3/8-18UNEF-2B
10
20 24.4 28.7
(0.39) (0.79) (0.96) (1.13)
45
(1.77)
47.3
(1.86)
8
40
(1.58)
42.5
(1.67)
8
56
50
45
(2.21) (1.97) (1.77)
11
20 24.4 40.6
(0.43) (0.79) (0.96) (1.60)
45
(1.77)
47.3
(1.86)
8
54
(2.13)
56.7
(2.23)
8
62
50
45
(2.44) (1.97) (1.77)
RCC-306RL-MS32F
RCC-308RL-MS32F
1-7/8-16UN-2B
1-7/8-16UN-2B
3) Back shell
<Daiichi Denshi Kogyo make>
CE02-20BS-S
CE-20BA-S
10.9
39.6 (1.56) or less
31.6 (1.24)
Effective thread length (Spanner fitting)
(0.59)
7.5 (0.30) or more
7.85 (0.31)
or more
48.3 (1.90)
CL
33.3 (1.31) 15
CL
(ø17.8)
(ø0.70)
ø35(ø1.38)
11/8 -18UNEF-2B
O ring
50.5 (1.99) or less
13/16-18UNEF-2A
13/16-18UNEF-2A
10– 108
11/8-18UNEF-2B
O ring
ø36
(ø1.42)
±35 (1.38)
10. SPECIFICATIONS
4) Cable clamps
<Daiichi Denshi Kogyo make>
Effective thread
A
length
10.3 (0.41)
øE (Bushing ID)
øD (Cable clamp ID)
øG
1.6 (0.06)
øB
V
[Unit: mm]
([Unit: in])
F (Movable range)
Model
Shell Size
MS3057-6A
14S
MS3057-12A
20, 22
MS3057-16A
A
B
C
D
E
F
G
22.2 24.6 10.3 11.2 7.9 2.0 27.0
(0.87) (0.97) (0.41) (0.44) (0.31) (0.08) (1.06)
V
Bushing
3/4-20UNEF
AN3420-6
23.8 35.0 10.3 19.0 15.9 4.0 37.8 3
1 /16-18UNEF
(0.94) (1.38) (0.41) (0.75) (0.63) (0.16) (1.47)
15.9
26.2 42.1 10.3 23.8 (0.63) 4.8 42.9
7
(1.03) (1.66) (0.41) (0.94) 19.1 (0.19) (1.69) 1 /16-18UNEF
24, 28
(0.75)
MS3057-16A
19.1
27.8 51.6 11.9 31.7 (0.75) 6.3 51.6
3
(1.09) (2.03) (0.47) (1.25) 23.8 (0.25) (2.03) 1 /4-18UNS
32
(0.94)
AN3420-12
AN3420-12
AN3420-16
AN3420-16
AN3420-20
D
A
G
Effective thread length
C
V threads 1.6 (0.06)
B
øF
(Bushing ID)
øE
(Cable clamp ID)
Model
H
A
Shell Size
B
C
D
E
CE3057-12A-2
22
CE3057-12A-3
CE3057-16A-1
24
CE3057-16A-2
CE3057-20A-2
32
F
G
H
V
Bushing
16
(0.63)
CE3057-12A-1
20
[Unit: mm]
([Unit: in])
(One-side movable range)
Cable Range
CE3420-12-1 ø12.5 to ø16
23.8 35.0 10.3 41.3 19.0 13 37.3
4
13/16-18UNEF-2B
(0.94) (1.38) (0.41) (1.63) (0.75) (0.51) (1.47) (0.16)
10
(0.39)
19.1
26.2 42.1 10.3 41.3 23.8 (0.75) 42.9 4.8 17/16-18UNEF-2B
(1.03) (1.66) (0.41) (1.63) (0.94) 15.5 (1.69) (0.19)
(0.61)
27.8 51.6 11.9 43 31.7 23.8 51.6 6.3
13/4-18UNS-2B
(1.09) (2.03) (0.47) (1.69) (1.25) (0.94) (2.03) (0.25)
CE3420-12-2
ø9.5 to ø13
CE3420-12-3
ø6.8 to ø10
CE3420-16-1 ø15 to ø19.1
CE3420-16-2 ø13 to ø15.5
CE3420-20-1 ø22 to ø23.8
<Daiwa Dengyo make>
L1
AO
L2
D(D1)
O ring
L
O ring
D2
[Unit: mm]
([Unit: in])
AO
Model
Acceptable OD
ø5 to 8.3
YSO10-5 to 8 • YLO10-5 to 8
(ø0.20 to 0.33)
YSO14-5 to 8 • YLO14-5 to 8
ø5 to 8.3
(ø0.20 to 0.33)
YSO14-9 to 11 • YLO14-9 to 11
ø8.3 to 11.3
(ø0.33 to 0.45)
L
AO
L1
L2
D
D1
D2
39 42.5 24
26
26
43
9/16-24UNEF-2B
(1.69) (1.54) (1.67) (0.94) (1.02) (1.02)
3/4-20UNEF-2B
44 43.5 44.5 26
28
35
(1.73) (1.71) (1.75) (1.02) (1.10) (1.38)
10– 109
10
10. SPECIFICATIONS
<Nippon Flex make>
E
L(1)
L1(2)
15
(0.59)
G
E'
F
F'
ød
G'
A
[Unit: mm]
([Unit: in])
Threads C
Tightening Nut
Applicable
Threads C
Model
A
Cable Diameter
d
E
F
Nipple Body
G
F'
E'
L
G'
L1
Width across Width across Number of Width across Width across Number of
flats
corners
corners
flats
corners
corners
ACS-08RL-MS10F
9/16-24UNEF-2B
6
11.0
20
ø4.0 to ø8.0
(ø0.16 to 0.32) (0.24) (0.43) (0.79)
22.0
(0.87)
6
20
(0.79)
22.0
(0.87)
6
45
40
(1.77) (1.57)
ACS-08RL-MS14F
3/4-20UNEF-2B
7
15.0
20
ø4.0 to ø8.0
(ø0.16 to 0.32) (0.28) (0.59) (0.79)
22.0
(0.87)
6
22
(0.87)
24.2
(0.95)
6
46
41
(1.81) (1.61)
ACS-12RL-MS10F
9/16-20UNEF-2B
6
11.0
24
ø8.0 to ø12.0
(ø0.32 to 0.47) (0.24) (0.43) (0.94)
26.4
(1.04)
6
24
(0.94)
26.4
(1.04)
6
46
41
(1.81) (1.61)
ACS-12RL-MS14F
3/4-20UNEF-2B
7
15.0
24
ø8.0 to ø12.0
(ø0.32 to 0.47) (0.28) (0.59) (0.94)
26.4
(1.04)
6
36
(1.42)
28.6
(1.13)
6
46
41
(1.81) (1.61)
G'
E'
A
F'
L
15
(0.59)
°
L(2)
L(1)
ød
90
Threads C
[Unit: mm]
([Unit: in])
E F G
Model
Threads C
Applicable
Cable Diameter
Tightening Nut
A
d
E
F
G
Lock Nut
E'
F'
G'
L
L1
L2
Width across Width across Number of Width across Width across Number of
flats
corners
corners
flats
corners
corners
ACA-08RL-MS10F
9/16-24UNEF-2B
6
10.0
20
ø4.0 to ø8.0
(ø0.16 to 0.32) (0.24) (0.39) (0.79)
22.0
(0.87)
6
20
(0.79)
22.0
(0.87)
6
35
37
32
(1.38) (1.46) (1.26)
ACA-08RL-MS14F
3/4-20UNEF-2B
7
13.8
20
ø4.0 to ø8.0
(ø0.16 to 0.32) (0.28) (0.54) (0.79)
22.0
(0.87)
6
23
(0.91)
25.3
(1.00)
6
36
32
37
(1.42) (1.46) (1.26)
ACA-12RL-MS10F
9/16-20UNEF-2B
6
10.0
24
ø8.0 to ø12.0
(ø0.32 to 0.47) (0.24) (0.39) (0.94)
26.4
(1.04)
6
20
(0.79)
22.0
(0.87)
6
40
43
38
(1.57) (1.69) (1.50)
ACA-12RL-MS14F
3/4-20UNEF-2B
7
13.8
24
ø8.0 to ø12.0
(ø0.32 to 0.47) (0.28) (0.54) (0.94)
26.4
(1.04)
6
23
(0.91)
25.3
(1.00)
6
41
43
38
(1.61) (1.69) (1.50)
10– 110
CHAPTER 11
SELECTION
This chapter describes how to calculate the capacity of the servo motor
needed for the machine used.
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
Specification symbol list
Position resolution and electronic gear setting
Speed and command pulse frequency
Stopping characteristics
Capacity selection
Load torque equations
Load inertia moment equations
Precautions for zeroing
Selection example
INTRODUCTION
CHAPTER 1
OPERATION
CHAPTER 2
WIRING
CHAPTER 3
INSTALLATION
CHAPTER 4
ABSOLUTE POSITION DETECTION SYSTEM
CHAPTER 5
OPTIONS AND AUXILIARY EQUIPMENT
CHAPTER 6
INSPECTION
CHAPTER 7
TROUBLESHOOTING
CHAPTER 8
CHARACTERISTICS
CHAPTER 9
SPECIFICATIONS
CHAPTER 10
SELECTION
CHAPTER 11
11 – 1
11.SELECTION
11-1 Specification symbol list
The following symbols are required for selecting the proper servo:
Ta
Tb
T Ma
T Mb
T LH
TL
T LM
TU
TF
T LO
T rms
JL
J LO
JM
N
NO
N LO
V
VO
PB
Z1
Z2
n
η
g
: Acceleration torque [N • m]
: Deceleration torque [N • m]
: Servo motor torque necessary for
[N • m]
acceleration
: Servo motor torque necessary for
[N • m]
deceleration
: Torque applied during servo motor stop
[N • m]
: Load torque converted into equivalent
[N • m]
value on servo motor shaft
: Load torque converted into
[N • m]
equivalent value on servo
motor shaft during stop
: Unbalance torque
[N • m]
: Load friction torque
[N • m]
: Load torque on load shaft
[N • m]
:Continuous effective load torque
[N • m]
converted into equivalent value
on servo motor shaft
: Load inertia moment converted
[kg • cm 2 ]
into equivalent value on servo
motor shaft
: Load inertia moment on load shaft
[kg • cm 2 ]
: Servo motor's rotor inertia moment
[kg • cm 2 ]
: Servo motor speed
[r/min]
: Servo motor speed during fast feed
[r/min]
: Load shaft speed during fast feed
[r/min]
: Moving part speed
[mm/min]
: Moving part speed during fast feed
[mm/min]
: Ball screw lead
[mm]
: Number of gear teeth on servo motor shaft
: Number of gear teeth on load gear
: Gear ratio n = ZZ 21
Speed reduced when n>1,
Speed increased when n<1
: Drive system efficiency
: Gravitational acceleration (9.8[m/s 2])
µ
π
Pt
f
fo
T psa
T psb
Kp
Tp
Kv
Tv
∆R
∆R o
R
P
ts
to
tc
tR
∆ε
ε
∆θ
e
∆S
11– 2
: Friction coefficient
: Circle ratio (3.14)
: Number of feedback pulses in
[pulse/rev]
position control mode
: Input pulse frequency in position
[pps]
control mode
: Input pulse frequency during fast
[pps]
feed in position control mode
: Acceleration time constant of
[s]
frequency command in
position control mode
: Deceleration time constant of
[s]
pulse frequency command in
position control mode
: Position control gain 1
[rad/s]
: Position control time constant (Tp=1/Kp)
[s]
: Speed control gain
[rad/s]
: Speed control time constant (Tv=1/Kv)
[s]
: Feed per feedback pulse in
position control mode
[mm/pulse]
: Feed per command pulse in position
[mm/pulse]
control mode
: Feed
[mm]
: Number of input command pulses in
[pulse]
position control mode
: Settling time in position control mode
[s]
: Positioning time
[s]
: Time at constant speed of servo
[s]
motor in 1 cycle
: Stopping time in 1 cycle
[s]
: Positioning accuracy
[mm]
: Number of droop pulses
[pulse]
: Load shaft rotation angle per pulse in position
control mode
[degree/pulse]
: Euler constant = 2.718278
: Feed per servo motor revolution
[mm/rev]
11.SELECTION
11-2 Position resolution and electronic gear setting
Position resolution (travel per pulse∆R) is determined by travel per servo motor revolution ∆S
and the number of encoder feedback pulses Pt, and is represented by Equation 11-1:
∆R=
∆S
............................................................................................................................................ (11-1)
Pt
∆R : Travel per pulse
[mm]
∆S : Travel per servo motor revolution
[mm/rev]
Pt : Number of feedback pulses
[pulse/rev]
Note: As these values depend on the servo motor series, confirm them in the specifications.
Since ∆R has the relationship represented by Equation 11-1, its value is fixed in the control
system after the drive system and encoder have been determined. However, travel per
command pulse can be set as desired using the parameters.
Command
pulse train f0
CMX
CDV
+
-
Deviation
counter
Electronic gear Pt = 8192pulse/rev
(Parameters No. 3, 4)
SM
Encoder
As shown above, command pulses are multiplied by CMX/CDV set in the parameters to be
position control pulses. Travel per command pulse ∆R is expressed by Equation 11-2:
∆Ro=
Pt
∆S
•
CMX
CMX
∆R •
................................................................................................... (11-2)
CDV
CDV
CMX: Electronic gear (Command pulse multiplication numerator)
CDV: Electronic gear (Command pulse multiplication denominator)
Using the above relationship, travel per command pulse can be set to a value without fraction.
[Setting example]
Find a parameter value for ∆Ro=0.01 [mm] in a drive system where ball screw lead PB = 10 [mm]
and reduction ratio 1/n = 1.
The encoder feedback pulses Pt of the HC-MF = 8192 [pulses/rev].
Since ∆s = 10 [mm/rev], the following is obtained according to Equation 11-2:
Pt
8192
CMX
1024
= ∆Ro •
= 0.01 •
=
∆S
10
CDV
125
<Relationship between position resolution ∆R and overall accuracy>
Overall accuracy (positioning accuracy of machine) is the sum of electrical errors and mechanical
errors. Normally, provisions should be made so that overall errors are not affected by electrical
system errors. As a guideline, Equation 11-3 should be satisfied:
1
1
to
∆R<
• ∆ε ..................................................................................................................... (11-3)
qqqqqqqqqqqqqqqqqqq
5
10
where, ∆R: Travel per feedback pulse [mm/pulse]
∆ε:Positioning accuracy [mm]
11– 3
11
11.SELECTION
11-3 Speed and command pulse frequency
The servo motor is run at a speed where the command pulses and feedback pulses are equivalent.
Therefore, the command pulse frequency and feedback pulse frequency are equivalent. The relation
including the parameter settings (CMX, CDV) is as indicated below (refer to the following diagram):
fo •
CMX
No
= Pt •
CDV
60
..................................................................................................... (11-4)
fo
Electronic
gear
fo CMX
CDV
Feedback pulse
Servo motor
frequency
: Command pulse frequency [pps]
(Open collector system)
CMX : Electronic gear (Command pulse multiplication
numerator)
CDV : Electronic gear (Command pulse multiplication
denominator)
No
: Servo motor speed [r/min]
Pt
: Number of feedback pulses [pulses/rev]
(P t = 8192 for HC-MF)
According to Equation 11-4, the following equations may
be used to obtain the electronic gear and command pulse
frequency to rotate the servo motor at No.
• Electronic gear
CMX
No
=P•
•
CDV
60
1
................................................................................................................... (11-5)
fo
• Command pulse frequency
fo = Pt •
CDV
No
•
CMX
60
................................................................................................. (11-6)
[Setting example]
Obtain the command pulse frequency required to run the HC-MF at 3000r/min.
When the electronic gear ratio 1 (initial parameter value) is used, the following result is found
according to Equation 11-6:
f o = 8192 t •
No
60
t
•
CDV
CMX
(Command pulse frequency)
3000
= 8192 t •
t• 1
60
= 409600[pps]
However, as the maximum input command pulse frequency in the open collector system is
200kpps, 409600pps cannot be entered.
To run the servo motor at the speed of 3000r/min at not more than 200kpps, the electronic gear
setting must be changed. This electronic gear is found by Equation 11-5:
CMX
1
3000
= 8192 •
•
3
CDV
200 x 10
60
(Electronic gear)
256
=
125
Therefore, the parameters are set to CMX=256 and CDV=125.
11– 4
11.SELECTION
11-4 Stopping characteristics
(1) Droop pulses (ε)
When a pulse train command is used to run the servo motor, there is a relationship between the
command pulse frequency and servo motor speed as shown in the figure. The difference between
the command pulses and feedback pulses during acceleration are called droop pulses, which
are accumulated in the servo amplifier's deviation counter. Equation 11-7 defines a relationship
between the command pulse frequency (f) and position control gain 1 (Kp).
ε
fo
[pulse] ............................................................................................................................................... (11-7)
Kp
Supposing that the value of position control gain 1 is 70 [rad/s], the droop pulses during operation
will be as follows at the command pulse frequency of 200 [kpps] according to Equation 11-7:
2858[pulse]
Command pulse frequency
200 x 10 3
70
Servo motor speed
ε
Command Droop pulses
Servo motor
speed
f
[r/min] [pps] 0
Time
Tpsa
Tpsd
ts
ts
0.04s Settling time
1
3 x 70
0.04
(2) Settling time (ts) during linear acceleration/deceleration
Since droop pulses still exist when there are no command pulses, settling time (ts) is required until the
servo motor stops. Set the operation pattern in consideration for the settling time.
The ts value is obtained according to Equation 11-8:
ts
3 • Tp
1
= 3 • K p [s] .................................................................................................................................................. (11-8)
*When K p =70 [rad/s], ts
0.04 [s]. (Refer to the above diagram.)
Note: The settling time (ts) indicates the time required for the servo motor to stop in the necessary
positioning accuracy range. This does not always mean that the servo motor has stopped
completely. Thus, especially when the servo motor is used in high-duty operation and
positioning accuracy has no margin for travel per pulse (∆R), the value obtained by Equation
11-8 must be increased.
ts will vary with the moving part conditions. Especially when the load friction torque is large,
movement may be unstable near the stopping position.
11
11– 5
11.SELECTION
11-5 Capacity selection
As a first step, temporarily select the servo motor capacity by calculating the load conditions. Next,
determine the command pattern, calculate required torques according to the following equations,
and confirm that the servo motor of the initially selected capacity may be used for operation.
Command
Command pulse
frequency
Servo motor speed
(1) Initial selection of servo motor capacity
After calculating the load torque (T L ) and load inertia moment (J L ), select a servo motor which
will satisfy the following two relationships:
Servo motor's rated torque > T L
Servo motor J M > J L /m
m=3
: High duty (more than 100 times/min.)
Settling time 40ms or less
m=5
: Middle duty (60 to 100 times/min.)
Settling time 100ms or less
m= permissible load inertia moment : Low duty (less than 60 times/min.)
Settling time more than 100ms
Find the acceleration and deceleration torques and continuous effective load torque as described
in (2) to make a final selection. For high-duty positioning, the J L value should be as small as
possible. If positioning is infrequent as in line control, the J L value may be slightly larger than in
the above conditions.
(2) Acceleration and deceleration torques
The following equations are used to calculate the acceleration and deceleration torques in the
following operation pattern:
Nofo
f
[r/min] [pps]
Servo motor
speed
0
Time
Tpsa
Tpsd
Acceleration
torque
Ta
0
Time
Deceleration
Td
torque
• Acceleration torque Ta =
(J L +J M ) • N o
9.55 x 10 4
•
1
........................................................................ (11-9)
Tpsa
• Deceleration torque Tb =
(JL+JM) • No
9.55 x 104
•
1
...................................................................... (11-10)
Tpsd
(3) Torques required for operation
Torques required for the servo motor are the highest during acceleration. If any of the torques
obtained with Equations 11-9 to 11-13 exceeds the maximum servo motor torque, the servo
motor speed cannot be increased as commanded. Confirm that the calculated value is lower
than the servo motor's maximum torque. Since a friction load is normally applied during
deceleration, only the acceleration torque needs to be considered.
11– 6
Command
Command pulse
frequency
Servo motor speed
11.SELECTION
Nofo
f
[r/min] [pps]
Servo motor
speed
0
Time
Tpsa
Tpsd
Servo motor torque
T1
Ta
TMa
T2
TL
0
Time
Td
TMd
T 1 = T Ma + T a + T L .......................................................................................................................................................................... (11-11)
T 2 = T L .................................................................................................................................................................................................... (11-12)
T 3 = T Md = - T d + T L .................................................................................................................... (11-13)
Note: In the regenerative mode, the value found by Equation 11-13 is negative.
(4) Continuous effective load torque
Servo motor
speedTime
If the torque required for the servo motor changes with time, the continuous effective load torque
should be lower than the rated torque of the servo motor. There may be a servo motor torque
delay at the start of acceleration or deceleration due to a delay in the control system. To simplify
the calculation, however, it is assumed that constant acceleration and deceleration torques are
applied during Tpsa and Tpsd. The following equation is used to calculate the continuous effective
load torque in the following operation pattern:
Servo motor torque
N
[r/min]
0
Time
TMa
Ta
TLH
TL
0
Td
Tpsa
tc
Time
TMd
Tpsd
Tr
Tf (1 cycle)
2
Trms =
2
2
T Ma • T psa + T L • t c + T Md • T psd + T LH • t R
tf
......................................................... (11-14)
Note: T LH indicates the torque applied during a servo motor stop. A large torque may be applied
especially during a stop in vertical motion applications, and this must be fully taken into
consideration. During vertical drive, the unbalanced torque T U will become T LH .
11
11– 7
11.SELECTION
11-6 Load torque equations
Typical load torque equations are indicated below:
Load Torque Equations
Mechanism
Type
Equation
F
3
2 x 10 • π • η
TL =
•
V
N
=
F • ∆S
3
2 x 10 • π • η
.............................................................. (11-15)
η
Linear
movement
FC
Servo motor
Z2
FO
W
Z1
F : Force in the axial direction of the machine in linear
motion [N]
F in Equation 11-15 is obtained with Equation 11-16
when the table is moved, for example, as shown in the
left diagram.
F = F c + µ • (W • g + F O ) .................................... (11-16)
F c : Force applied in the axial direction of the moving
part [N]
F G : Tightening force of the table guide surface [N]
W : Full weight of the moving part [kg]
T LO
Rotary
movement
TL =
Z1
1
n
•
1
η
• T LO + T F ................................ (11-17)
T F : Load friction torque converted into equivalent value
on servo motor shaft [N • m]
Z2
Servo motor
During rise
T L = T U + T F .................................................... (11-18)
During fall
Servo motor
T L = - T U • η 2 + T F ........................................... (11-19)
T F : Friction torque of the moving part [N • m]
1/n
Counter
weight
Vertical
movement
TU =
W2
Guide
(W1 - W2) • g
V
•
=
2 x 103 • π • η
N
(W1 - W2) • g • ∆S
2 • 103 • π • η
.......................................................... (11-20)
Load
W1
TF =
µ(W 1 + W 2 ) • g • ∆S
2 x 10 3 • π • η
...................... (11-21)
W 1 : Weight of load [kg]
W 2 : Weight of counterweight [kg]
11– 8
11.SELECTION
11-7 Load inertia moment equations
Typical load inertia moment equations are indicated below:
Load Inertia Moment Equations
Mechanism
Type
Equation
Axis of rotation is on the cylinder
center
ρ
L
D1
D2
W
L
øD1
øD2
Cylinder
J LO =
:
:
:
:
:
π•ρ•L
32
Cylinder
Cylinder
Cylinder
Cylinder
Cylinder
Reference
Iron
Aluminum
Copper
Axis of rotation
4
4
• (D 1 - D 2) =
W
2
2
• (D 1 + D2 ) ...... (11-22)
8
material density [kg/cm 3]
length [cm]
outside diameter [cm]
inside diameter [cm]
weight [kg]
data: material
: 7.8
x 10 -3
: 2.7
x 10 -3
: 8.96 x 10 -3
density
[kg/cm 3 ]
[kg/cm 3 ]
[kg/cm 3 ]
Axis of rotation is off the cylinder
center
R
J LO =
Axis of rotation
D
R
b
a
a
Square
block
W
2
2
• (D + 8R ) ............................................ (11-23)
8
b
2
2
J LO = W • a + b + R 2 ......................................... (11-24)
3
W
: Square block weight [kg]
a, b, R : Left diagram [cm]
Axis of rotation
∆S 2
1
V 2
•
= W•
20 • π
2 • π • N 10
........................(11-25)
V : Speed of object moving linearly [mm/min]
∆S : Moving distance of object moving linearly per servo
motor revolution [mm/rev]
W : Object weight [kg]
JL = W •
V
Servo motor
Object which
moves linearly
W
N
JL = W •
D
Object that is
hung with
pulley
Servo motor
W
D
2
2
+ JP ................................................... (11-26)
J P : Pulley inertia moment [kg • cm 2 ]
D : Pulley diameter [cm]
W : Object weight [kg]
J 31
JB
N3
Converted
load
V
=W•
600 • ω
JL = J11 = (J21 + J22 + JA) •
J 21
J 22
N1
Load A
JA
N2
N2
N1
2
+ (J31 + JB) •
N3
N1
2
................. (11-27)
J A, J B
: Inertia moments of loads A, B [kg • cm 2 ]
J 11 to J 31 : Inertia moments [kg • cm 2 ]
N 1 to N 3 : Speed of each shaft [r/min]
J 11
11
11– 9
11.SELECTION
11-8 Precautions for zeroing
To return the system to the home position, use a zeroing dog or actuator. The method and
precautions for setting the mechanical origin are given below.
In the following zeroing, an actuator and the zero pulse signal (encoder Z-phase pulse OP) of a
servo motor encoder are used to set the mechanical origin.The state of ON/OFF of encoder Zphase pulse signal (OP) can be confirmed by using external I/Q signal display function. When a
general positioning unit is used, the sequence of events is as shown in Fig. 11-1.
Zeroing speed V 1
Deceleration started by actuator signal
Creep speed V 2
Actuator signal
Zero pulse signal
ON
OFF
When determining the ON duration of the
actuator, consider the deceleration time so
that the speed reaches the creep speed.
Clear signal
Considering the variations of the
actuator signal, adjust the actuator
so that it switches off near the center
of the High of the zero pulse signal.
About 15ms
Fig. 11-1 Zeroing Using the Actuator
(1) When determining the ON duration of the actuator, consider the delay time of the control section
and the deceleration time so that the creep speed is attained. If the actuator signal switches off
during deceleration, precise home position return cannot be performed.
Zeroing speed V 1
Travel distance gained after
detecting the zeroing dog until
the creep speed is reached L 1
• Travel distance L1 in the chart can be obtained by
Equation 11-28
• ON duration of the actuator LD [mm] must be longer
than L1 obtained by Equation 11-28, as indicated
in Equation 11-29.
Creep speed V 2
Deceleration time t d
Control delay
time t 1
ON duration of the actuator L D
L1 =
1
1
• V1 • t1 +
• V1 • td •
60
120
2
{ 1 - ( VV ) } + 601 • V
2
1
1
• Tp
........ (11-28)
L D > L 1 .................................................................. (11-29)
where,
V 1 , V 2 : As shown in the chart [mm/min]
t 1, t d
: As shown in the chart [s]
L1
: As shown in the chart [mm]
LD
: As shown in the chart [mm]
(2) Set the end (OFF position) of the actuator signal at the middle of two ON positions (Lows) of the
zero pulse signal. If it is set near either ON position of the zero pulse signal, the positioning unit
is liable to misdetect the zero pulse signal. In this case, a fault will occur, e.g. the home position
will shift by one revolution of the servo motor.
The zero pulse output position can be confirmed by OP (encoder Z-phase pulse) on the external
I/O signal display.
(3) Set the creep speed at which the machine is not shocked at a stop.
The machine will stop suddenly as the clear (CR) signal is given to the servo amplifier on
detection of the zero pulse signal.
11– 10
11.SELECTION
11-9 Selection example
Speed of moving part during fast feed
Travel per pulse
Travel
Positioning time
Number of feeds
Operation cycle
Gear ratio
Moving part weight
Drive system efficiency
Friction coefficient
Ball screw lead
Ball screw diameter
Ball screw length
Gear diameter (servo motor)
Gear diameter (load shaft)
Gear face width
Machine specifications
Servo
motor
Gear ratio 5:8
Servo
amplifier
Pulse train
FX – 1GM
Vo
= 30000mm/min
∆R = 0.005mm
R
= 400mm
= within 1s
to
40 times/min.
tf
= 1.5 s
n
= 8/5
W
= 60kg
η
= 0.8
µ
= 0.2
Pb
= 16mm
20mm
500mm
25mm
40mm
10mm
(1) Selection of control parameters
1) Setting of electronic gear (command pulse multiplication numerator, denominator)
There is the following relationship between the multiplication setting and travel per pulse
∆R.
∆R=
(ball screw lead)
8192 x (gear ratio)
x
( CMX
)
CDV
When the above machining specifications are substituted in the above equation:
CMX
8192 • 8/5
512
= 0.005 •
=
CDV
16
125
Acceptable as CMX/CDV is within 1/50 to 20.
2) Input pulse train frequency for rapid feed fo
fO =
Vo
30000
=
=100000 [pps]
60 • 0.005
60 • ∆R
Acceptable as f o is not more than 200kpps.
(2) Servo motor speed
NO =
Vo
• n = 3000[r/min]
Pb
(3) Acceleration/deceleration time constant
T psa = T psd = to -
R
Vo/60
- ts = 0.05 [s]
*ts: settling time. (Here, this is assumed to be 0.15s.)
11
11– 11
11.SELECTION
(4) Operation pattern
Servo motor speed
3000
Time[s]
0.05
Tpsa
0.05
Tpsd
ts
0.15
to = 1.0
[r/min]
tf = 1.5
(5) Load torque (converted into equivalent value on servo motor shaft)
Travel per servo motor revolution
∆S = P B •
1
n
= 10[mm]
µ • W • g • ∆S
2 x 103 • π • η
TL =
= 0.23[N • m]
(6) Load inertia moment (converted into equivalent value on servo motor shaft)
Moving part
2
J L1 = W •
∆S
( 20π
)
= 1.52[kg • cm 2 ]
Ball screw
J L2 =
π•ρ•L
32
4
•D •
( 1n )
2
= 0.24[kg • cm 2 ]
* ρ = 7.8 x 10 -3 [kg/cm 3 ]
Gear (servo motor shaft)
J L3 =
π•ρ•L
32
4
•D
= 0.03[kg • cm 2 ]
Gear (load shaft)
J L4 =
π•ρ•L
32
4
•D •
( )
1
n
2
= 0.8[kg • cm 2 ]
Full load inertia moment (converted into equivalent value on servo motor shaft)
J L = J L1 + J L2 + J L3 + J L4 = 1.9[kg • cm 2 ]
(7) Temporary selection of servo motor
Selection conditions
1) Load torque < servo motor's rated torque
2) Full load inertia moment < 30 x servo motor inertia moment
From the above, the HC-MF23 (200W) is temporarily selected.
11– 12
11.SELECTION
(8) Acceleration and deceleration torques
Torque required for servo motor during acceleration
T Ma =
(JL + JM) • No
9.55 x 104 • Tpsa
+ TL = 1.7[N • m]
Torque required for servo motor during
deceleration
T Md =
(J L + J M ) • N o
+ TL
9.55 x 104 • T psd
= -1.2[N • m]
The torque required for the servo motor during deceleration must be lower than the servo
motor's maximum torque.
(9) Continuous effective load torque
T rms =
2
2
2
T Ma • T psa + T L • tc + T Md • T psd
tf
= 0.41[N • m]
The continuous effective load torque must be lower than the servo motor's rated torque.
(10) Torque pattern
Torque
1.7
[N•m]
0.23
Time[s]
0.05
0.75
0.05
0.15
-1.2
1.5
(11) Selection results
The HC-MF23 servo motor and MR-J2-20A servo amplifier are selected.
1) Electronic gear setting
Parameter No. 3
Command pulse multiplication numerator (CMX)
512
Parameter No. 4
Command pulse multiplication denominator (CDV)
125
2) During rapid feed
• Servo motor speed ......................N o = 3000 [r/min]
• Input pulse train frequency........... f o = 100 [kpps]
3) Acceleration/deceleration time constant
T psa = T psd = 0.05[s]
11
11– 13
REVISIONS
*The manual number is given on the bottom left of the back cover.
Print Data
*Manual Number
Revision
Nov.,1996
IB(NA)67286-A
First edition
Mar.,1997
IB(NA)67286-B
Addition of servo amplifiers MR-J2-70 to 350A and single-phase
100V power supply models
Addition of servo motors HC-MF73, HC-SF series and HC-RF
series
Section 2-1
Addition of notes on servo motor connection
Section 2-2-2
Addition of stop by reset signal
Section 2-3-2
Correction to display range for position
within one revolution
3), (1), Section 2-3-3 Addition of default indications
(4), Section 2-3-5
Parameter No. 0: Addition of MR-RB30,
MR-RB50
Parameter No. 11, 13: Changes to
diagrams
Section 2-4-2
Changes to Step 2 in Adjustment 5
(2), Section 3-1-2
Corrections to errors in writing of signals in
table
(4), Section 3-1-2
Signals which can be used by parameter
setting are indicated by ∆.
1), (4), section 3-1-2 Addition of sentence to Reset
2), (4), section 3-1-2 Changes to sentences on encoder A-, Band Z-phase pulses
1), (3), Section 3-1-4 Addition of note
Section 3-2-2
Overall change
Section 3-2-3
Overall change
Section 3-2-4
Additions
Section 3-3
Corrections to errors in diagram
(2), Section 3-5
Addition of sentence
(2), Section 4-1
Changes to installation clearances
(7), Section 4-2
Changes to graph
(7) Chapter 5
Changes to sentence in Note 5
(1), Section 6-1-1
Changes to table
(5), Section 6-1-1
Addition of MR-RB30 and 50 diagrams
(1), Section 6-1-2
Connector outline drawings are moved to
Section 10-5-3.
(2), Section 6-1-2
Addition of UL20276AWG227 pair (BLACK)
b, 1), (2), Section 6-1-2 Addition of connection diagram for use of
AWG28
3), (2), Section 6-1-2 Addition of bus cable
Section 6-1-4
Addition of maintenance junction card
Section 6-2-5
Change to Matsushita Electric's varistor
model number
Section 10-5-1
Entry of terminal signal arrangement
Section 10-5-4
Entry of cable side plug outline drawings
REVISIONS
*The manual number is given on the bottom left of the back cover.
Print Data
*Manual Number
Revision
Oct.,1997
IB(NA)67286-C
Instructions added for compliance with the UL/C-UL Standard
Addition of single-phase 230VAC input power supply
Section 2-2-2, (2) to (4) Deletion of reset-on stop operation
Section 2-3-5, (4)
Correction made to LSP/LSN signal stop
pattern selection in parameter No. 22
Section 3-1-2, (4), 2) Correction made to description of encoder
Z-phase pulse functions and applications
Section 3-1-4, (7)
Addition of source input interface
Section 3-2-3, (4)
Addition of electromagnetic brake
connector
Section 3-3
Change in P15R connection
Section 3-5, (2), (4) Addition of VDD-COM connection
Section 3-7, (3), 2)
Deletion of reset signal ON/OFF
Section 6-1-2, (2), 1) Change in connection diagram
Section 6-1-2, (2), 3) Change in connector type
Section 6-2-1
Change in UVW cable size
Section 6-2-2
Deletion of text
Section 9-2
Change in Note 1
Section 9-3
Addition of electromagnetic brake
characteristics of HC-SF/HC-RF
Section 9-4
Change in dynamic brake's brakable load
inertia moment ratio
Section 10-2, (3)
Correction made to HC-SF graph
Section 10-3
Addition of reduction gears for use with HCSF/HC-RF
Section 10-4
Change in shaft end machining diagram for
HC-SF/HC-RF
Section 10-5-2
Addition of HC-SF/HC-RF servo motors
with electromagnetic brakes
Nov.,1998
IB(NA)67286-D
Changes made to the instructions for compliance with the UL/C-UL Standard
Section 1-1, (2)
Deletion of model explanation
Section 1-1-2
Addition of model makeup
Section 1-1-3
Addition of combinations with servo motors
Section 3-1-3, (1), 4) Addition of pulse train input
Section 3-1-3, (3), 1), a Reconsideration of rotation direction for
negative polarity in Table 3-4
Section 3-2-2
Deletion of servo motor shape
Section 3-2-3, (3)
Addition of HC-UF3000r/min series
Section 3-2-3, (5)
Addition of HC-UF2000r/min series
Ex-Section 3-2-4
Deletion of selection of the cable plug
Section 3-2-4
Addition of connectors used for servo motor wiring
Section 6-2-2
Deletion of fuse models
Section 9-1, (2)
Addition of data for MR-J2-200C/350C
Section 9-2
Addition of HC-SF81 to 301/HC-SF103 to
353/HC-UF72 to 202/HC-UF13 to 73
Section 9-3
Addition of HC-SF81 to 301/HC-SF103 to
353/HC-UF72 to 202/HC-UF13 to 73
Section 10-5-2, (5)
Addition of HC-SF81 to 301/HC-SF103 to 353
Section 10-5-2, (7)
Addition of HC-UF series
REVISIONS
*The manual number is given on the bottom left of the back cover.
Print Data
*Manual Number
Revision
May,2000
IB(NA)67286-E
Addition of compliance to EC directive 1 (1), (2), (3)
Addition of 2. Cautions for appliance (1) Servo amplifier and servo
motor to be used to EC directive
Addition of (6) e.
UL/C-UL Standard (1) Addition of servo amplifier and servo motor
to be used
UL/C-UL Standard (4) Change in flange table
UL/C-UL Standard (2) Addition of optional parts and peripheral
devices
Section 1-1-2 (1)
Change in rating name plate
Section 2-3-5 (4)
Change of parameter detail description
No. 2 initial value to 0002
Addition of some text to parameter No. 47
Addition of some text to parameter No. 48
Chapter 3
Addition of caution drawing
Section 3-1-2 (4)q
Change to emergency stop
Section 3-1-2 (4)w
Change in max. pulse width of detector Zphase pulse to 400
Section 3-1-3 (6)
Addition to figure of timing chart for switching
Section 3-1-4 (1)
Partial change in drawing of digital interface
D1-1
Section 3-1-4 (2)
Partial change in figure
Section 3-1-4 (3)
Partial change in figure
Section 3-2-4 (1)
Change of servo motor side connector to
1-172169-9
Section 3-3
Partial deletion of figure
Section 3-6
Partial change in figure of timing chart at the
time of occurrence of alarm
Section 3-7
Addition of point
Section 3-7 (1)
Partial change in connection diagram
Section 3-7 (3) (a)
Change in text
Section 3-7 (3) (b)
Partial change in figure
Section 3-7 (3) (c)
Partial change in figure
Section 3-7 (3) (d)
Partial change in figure
Section 4-2 (4)
Deletion of shaft allowable load table (kgf)
Section 6-1-2 (2)w
Change of signals listed in relay terminal block
side table of detector cable connection
diagram to those abbreviated
Section 6-1-3
Addition of point
Section 6-2-6 (2)
Change in diode mounting drawing
Section 8-1-1 (2)
Partial change in figure
Addition of some text
Section 8-2-2
Addition of A. 25 Trouble, Cause Remedy
Section 9-3 (1)
Deletion of Table 9-2 (kgf.cm)
Section 10-1 (2)
Deletion of Table (kgf.cm)
Section 10-5-2 (1)
Change in all HC-MF series
Section 10-5-2 (2)
Change in HC-MF-UE series
Section 10-5-2 (5)
Change in HC-UF3000 rpm series
Section 10-5-3 (3)
Change of servo motor detector plug
MITSUBISHI ELECTRIC
Headquarters
European Representatives
EUROPE
MITSUBISHI ELECTRIC EUROPE B.V.
Gothaer Str. 8
D-40880 Ratingen
GERMANY
Phone: +49 (0) 2102/486-0
Fax:
+49 (0) 2102/486-112
ITALY
MITSUBISHI ELECTRIC EUROPE B.V.
C.D. Colleoni - P. Perseo Ing. 2, Via Paracelso 1
I-20041 Agrate Brianza (MI)
ITALY
Phone: +39 (0)39 60 53 1
Fax:
+39 (0) 39 60 53 312
JAPAN
MITSUBISHI ELECTRIC CORPORATION
Mitsubishi Denki Bldg., 2-2-3 Marunouchi
Tokyo 100-8310
JAPAN
Phone: +81 (0) 3/32 18 31 76
Fax:
+81 (0) 3/32 18 24 22
SPAIN
MITSUBISHI ELECTRIC EUROPE B.V.
Pol. Ind. Can Magi-C. Joan Buscallá, 2-4 AC 420
E-08190 Sant Cugat del Vallés (Barcelona)
SPAIN
Phone: +34 9 3/565 31 60
Fax:
+34 9 3/589 15 79
UK
MITSUBISHI ELECTRIC EUROPE B.V.
Travellers Lane
GB-Hatfield Herts. AL10 8 XB
UK
Phone: +44 (0) 1707/27 61 00
Fax:
+44 (0) 1707/27 86 95
USA
MITSUBISHI ELECTRIC AUTOMATION INC.
500, Corporate Woods Parkway
Vernon Hills, Illinois 60061
USA
Phone: +1 (0) 847/478 21 00
Fax:
+1 (0) 847 / 478 22 83
N.V. GETRONICS Belgium S.A.
Pontbeeklaan 43
B-1731 Asse-Zellik
Telefon +32 (0) 2 / 467 17 51
Fax:
+32 (0) 2 / 467 17 45
BELGIUM
STC Drive Technique
Poslannikov per., 9, str.1
RUS-107005 Moskow
Telefon +7 (0) 95 / 786 21 00
Fax:
+7 (0) 95 / 786 21 01
RUSSIA
TELECON CO.
4, A. Ljapchev Blvd.
BG-1756 Sofia
Telefon +359 2 97 44 05 8
Fax:
+359 2 97 44 06 1
BULGARIA
ECONOTEC AG
Postfach 282
CH-8309 Nürensdorf
Telefon +41 (0) 1 / 838 48 11
Fax:
+41 (0) 1 / 838 48 12
SWITZERLAND
louis poulsen
Geminivej 32
DK-2670 Greve
Telefon +45 (0) 43 / 95 95 95
Fax:
+45 (0) 43 / 95 95 91
DENMARK
INEA d.o.o.
Ljubljanska 80
SI-61230 Domzale
Telefon +386 (0) 17 21 80 00
Fax:
+386 (0) 17 24 16 72
SLOVENIA
URHO TUOMINEN OY
Hevoshaankatu 3
FIN-28600 Pori
Telefon +358 (0) 2 / 550 800
Fax:
+358 (0) 2 / 550 8841
FINLAND
AutoCont Control Systems s.r.o.
Nemocnicni 12
CZ-702 00 Ostrava 2
Telefon +420 (0) 69 / 615 21 11
Fax:
+420 (0) 69 / 615 21 12
CZECHIA
Etudes Ingénierie Automation S.A.
208, Avenue du 8 Mai 1945
F-69165 Rillieux La Pape Cédex
Telefon +33 (0) 4 / 72 01 44 88
Fax:
+33 (0) 4 /78 88 14 02
FRANCE
GTS
Darülaceze Cad. No. 43A KAT: 2
TR-80270 Okmeydani-Istanbul
Telefon +90 (0) 212 / 320 1640
Fax:
+90 (0) 212 / 320 1649
TURKEY
IP Systèmes
8, Rue du Colonel Chambonnet
F-69672 Lyon Bron Cedex
Telefon +33 (0) 4 / 72 14 18 00
Fax:
+33 (0) 4 / 72 14 18 01
FRANCE
UTECO A.B.E.E.
5, Mavrogenous Str.
GR-18542 Piraeus
Telefon +30 (0) 1 / 42 10 050
Fax:
+30 (0) 1 / 42 12 033
GREECE
MITSUBISHI ELECTRIC EUROPE B.V
Westgate Business Park, Ballymount
IRL-Dublin 24
Telefon +353 (0) 1 / 419 88 00
Fax:
+353 (0) 1 / 419 88 90
IRELAND
SHERF Motion Techn. LTD
Rehov Hamerkava 19
IL-58851 Holon
Telefon +972 (0) 3 / 559 54 62
Fax:
+972 (0) 3 / 556 01 82
ISRAEL
Getronics Industrial Automation bv
Donauweg 10
NL-1043 AJ Amsterdam
Telefon +31 (0) 20 / 586 15 92
Fax:
+31 (0) 20 / 586 19 27
NETHERLANDS
GEVA
Wiener Straße 89
A-2500 Baden
Telefon +43 (0) 2252 / 85 55 20
Fax:
+43 (0) 2252 / 488 60
AUSTRIA
MPL Technology Sp. z o.o.
ul. Wroclawska 53
PL-30-011 Kraków
Telefon +48 (0) 12 / 632 28 85
Fax:
+48 (0) 12 / 632 47 82
POLAND
Mitsubishi Electric Europe B.V.
12/1 Goncharnaya St, suite 3C
RUS-109240 Moscow
Telefon +7 (0) 95 / 915-8624/02
Fax:
+7 (0) 95 / 915-8603
RUSSIA
4.4.2001
SV - Printed in Germany
MITSUBISHI ELECTRIC INDUSTRIAL AUTOMATION
Gothaer Strasse 8 Phone: +49 2102 486-0
Fax:
+49 2102 486-717
www.mitsubishi-automation.de
D-40880 Ratingen Hotline: +49 1805 000-766/765 Faxback: +49 2102 486-485/790 megfa-mail@meg.mee.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising