RADIATION HARDENED JANSR2N7423U POWER MOSFET 200V, P-CHANNEL

RADIATION HARDENED JANSR2N7423U POWER MOSFET 200V, P-CHANNEL
PD-91300E
IRHN9250
JANSR2N7423U
200V, P-CHANNEL
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (SMD-1)
REF: MIL-PRF-19500/662
®
™
RAD Hard HEXFET TECHNOLOGY
Product Summary
Part Number Radiation Level
IRHN9250
100K Rads (Si)
IRHN93250 300K Rads (Si)
RDS(on)
0.315Ω
0.315Ω
ID
-14A
-14A
QPL Part Number
JANSR2N7423U
JANSF2N7423U
SMD-1
International Rectifier’s RADHard HEXFETTM technology
provides high performance power MOSFETs for space
applications. This technology has over a decade of proven
performance and reliability in satellite applications. These
devices have been characterized for both Total Dose and
Single Event Effects (SEE). The combination of low Rdson
and low gate charge reduces the power losses in switching
applications such as DC to DC converters and motor
control. These devices retain all of the well established
advantages of MOSFETs such as voltage control, fast
switching, ease of paralleling and temperature stability of
electrical parameters.
Features:
n
n
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Proton Tolerant
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Surface Mount
Ceramic Package
Light Weight
ESD Rating: Class 2 per MIL-STD-750,
Method 1020
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = -12V, TC = 25°C
ID @ VGS = -12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
I AR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current À
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
PCKG Mounting Surface Temp.
Weight
Units
-14
-9.0
-56
150
1.2
±20
500
-14
15
-41
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 ( for 5s)
2.6 (typical)
g
For footnotes refer to the last page
www.irf.com
1
05/13/14
IRHN9250, JANSR2N7423U
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
BVDSS
Parameter
Min
Drain-to-Source Breakdown Voltage
-200
Typ Max Units
—
—
V
∆BV DSS /∆T J Temperature Coefficient of Breakdown —
-0.24 —
V/°C
Voltage
RDS(on)
Static Drain-to-Source On-State
—
—
0.315
Ω
Resistance
—
— 0.33
VGS(th)
Gate Threshold Voltage
-2.0
—
-4.0
V
g fs
Forward Transconductance
4.0
—
—
S
IDSS
Zero Gate Voltage Drain Current
—
—
-25
µA
—
—
-250
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4.0
-100
100
200
45
85
60
240
225
220
—
Ciss
C oss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
4200
690
160
—
—
—
nA
nC
ns
nH
pF
Test Conditions
VGS = 0V, ID = -1.0mA
Reference to 25°C, ID = -1.0mA
VGS = -12V, ID = -9.0A Ã
VGS = -12V, ID = -14A Ã
VDS = VGS, ID = -1.0mA
VDS = -15V, IDS = -9.0A Ã
VDS = -160V ,VGS = 0V
VDS = -160V,
VGS = 0V, TJ = 125°C
VGS = -20V
VGS = 20V
VGS = -12V, ID = -14A
VDS = -100V
VDD = -100V, ID = -14A,
VGS = -12V, RG = 2.35Ω
Measured from the center of
drain pad to center of source pad
VGS = 0V, VDS = -25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
—
—
—
—
-14
-56
A
VSD
trr
Q RR
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
—
—
—
—
—
—
-3.6
775
7.2
V
ns
µC
ton
Forward Turn-On Time
Test Conditions
Tj = 25°C, IS = -14A, VGS = 0V Ã
Tj = 25°C, IF = -14A, di/dt ≤ -100A/µs
VDD ≤ -50V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
RthJ-PCB
Junction-to-Case
Junction-to-PC board
Min Typ Max
—
—
—
6.6
0.83
—
Units
°C/W
Test Conditions
soldered to a 1” square copper-clad board
Note: Corresponding Spice and Saber models are available on International Rectifier Web site.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHN9250, JANSR2N7423U
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
100K Rads(Si)1
Min
Max
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source Ã
On-State Resistance (TO-3)
Static Drain-to-Source Ã
On-State Resistance (SMD-1)
Diode Forward Voltage Ã
300 K Rads (Si)2 Units
Min
Max
Test Conditions
-200
-2.0
—
—
—
—
—
-4.0
-100
100
-25
0.317
-200
-2.0
—
—
—
—
—
-5.0
-100
100
-25
0.317
µA
Ω
VGS = 0V, ID = -1.0mA
VGS = VDS, ID = -1.0mA
VGS = -20V
VGS = 20 V
VDS = -160V, VGS =0V
VGS = -12V, ID = -9.0A
—
0.315
—
0.315
Ω
VGS = -12V, ID = -9.0A
—
-3.6
—
-3.6
V
VGS = 0V, IS = -14A
V
nA
1. Part number IRHN9250 (JANSR2N7423U)
2. Part number IRHN93250 (JANSF2N7423U)
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Typical Single Event Effect Safe Operating Area
Ion
Cu
Br
LET
MeV/(mg/cm2))
28.0
36.8
VDS (V)
Range
(µm) @VGS=0V @VGS=5V @VGS=10V
43
-200
-200
-200
39
-200
-200
-160
Energy
(MeV)
285
305
@VGS=15V
-200
-75
@VGS=20V
—
—
-250
VDS
-200
-150
Cu
Br
-100
-50
0
0
5
10
15
20
VGS
Fig a. Typical Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHN9250, JANSR2N7423U
100
Pre-Irradiation
100
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
-5.0V
10
20µs PULSE WIDTH
TJ = 25 °C
1
10
10
100
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D , Drain-to-Source Current (A)
1
-VDS , Drain-to-Source Voltage (V)
3.0
TJ = 150 ° C
V DS = -50V
20µs PULSE WIDTH
5
20µs PULSE WIDTH
TJ = 150 °C
-VDS , Drain-to-Source Voltage (V)
TJ = 25 ° C
6
7
-VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
-5.0V
10
100
100
10
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
TOP
TOP
8
ID = -14A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -12V
-10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs.Temperature
www.irf.com
Pre-Irradiation
20
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
-VGS , Gate-to-Source Voltage (V)
C, Capacitance (pF)
8000
IRHN9250, JANSR2N7423U
6000
Ciss
4000
Coss
2000
Crss
0
1
10
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
50
-VDS , Drain-to-Source Voltage (V)
150
200
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
-I D, Drain-to-Source Current (A)
-ISD , Reverse Drain Current (A)
100
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
TJ = 150 ° C
TJ = 25 ° C
10
1
0.1
0.0
VDS =-160V
VDS = -100V
VDS =-40V
16
0
100
ID = -14 A
V GS = 0 V
0.5
1.0
1.5
2.0
2.5
3.0
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
3.5
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µs
10
1ms
10ms
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
1
DC
10
100
1000
-VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHN9250, JANSR2N7423U
Pre-Irradiation
15
V GS
12
-ID , Drain Current (A)
RD
V DS
D.U.T.
RG
-
+
9
V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
6
Fig 10a. Switching Time Test Circuit
3
td(on)
tr
t d(off)
tf
VGS
0
10%
25
50
75
100
125
TC , Case Temperature ( °C)
150
90%
Fig 9. Maximum Drain Current Vs.
CaseTemperature
VDS
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.1
0.01
0.0001
0.10
0.05
0.02
0.01
PDM
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHN9250, JANSR2N7423U
L
D.U.T
RG
VGS
-20V
1200
IAS
tp
VDD
A
DRIVER
0.01Ω
15V
Fig 12a. Unclamped Inductive Test Circuit
I AS
EAS , Single Pulse Avalanche Energy (mJ)
VDS
ID
-6.3A
-8.9A
-14A
TOP
1000
BOTTOM
800
600
400
200
0
25
50
75
100
125
Starting T J, Junction Temperature
( °C)
150
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V(BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
-12V
QGS
50KΩ
-12V
12V
.2µF
.3µF
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHN9250, JANSR2N7423U
Pre-Irradiation
Footnotes:
À Repetitive Rating; Pulse width limited by
maximum junction temperature.
Á VDD = -50V, starting TJ = 25°C, L = 5.1mH
Peak IL = -14A, VGS = -12V
 ISD ≤ -14A, di/dt ≤ -600A/µs,
VDD ≤ -200V, TJ ≤ 150°C
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
-12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
Å Total Dose Irradiation with VDS Bias.
-160 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — SMD-1
PAD ASSIGNMENTS
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 05/2014
8
www.irf.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement