AVIATION INVESTIGATION REPORT A14A0067 COLLISION WITH TERRAIN

AVIATION INVESTIGATION REPORT A14A0067 COLLISION WITH TERRAIN
AVIATION INVESTIGATION REPORT
A14A0067
COLLISION WITH TERRAIN
MANAN AIR SERVICES (dba ATLANTIC CHARTERS)
PIPER PA-31 NAVAJO, C-GKWE
GRAND MANAN, NEW BRUNSWICK
16 AUGUST 2014
Transportation Safety Board of Canada
Place du Centre
200 Promenade du Portage, 4th floor
Gatineau QC K1A 1K8
819-994-3741
1-800-387-3557
www.tsb.gc.ca
communications@bst-tsb.gc.ca
© Her Majesty the Queen in Right of Canada, as represented by
the Transportation Safety Board of Canada, 2016
Cat. No. TU3-5/14-0067E-PDF
ISBN 978-0-600-04015-8
This document is available on the website of the Transportation Safety Board of Canada at
www.tsb.gc.ca
The Transportation Safety Board of Canada (TSB) investigated this occurrence for the
purpose of advancing transportation safety. It is not the function of the Board to assign fault
or determine civil or criminal liability.
Aviation Investigation Report A14A0067
Collision with terrain
Manan Air Services (dba Atlantic Charters)
Piper PA-31 Navajo, C-GKWE
Grand Manan, New Brunswick
16 August 2014
Summary
The Atlantic Charters Piper PA-31 (registration C-GKWE, serial number 31-7812037) aircraft
had carried out a MEDEVAC flight from Grand Manan, New Brunswick, to Saint John, New
Brunswick. At 0436 Atlantic Daylight Time, the aircraft departed Saint John for the return
flight to Grand Manan with 2 pilots and 2 passengers. Following an attempt to land on
Runway 24 at Grand Manan Airport, the captain carried out a go-around. During the second
approach, with the landing gear extended, the aircraft contacted a road perpendicular to the
runway, approximately 1500 feet before the threshold. The aircraft continued straight
through 100 feet of brush before briefly becoming airborne. At about 0512, the aircraft struck
the ground left of the runway centreline, approximately 1000 feet before the threshold. The
captain and 1 passenger sustained fatal injuries. The other pilot and the second passenger
sustained serious injuries. The aircraft was destroyed; an emergency locator transmitter
signal was received. The accident occurred during the hours of darkness.
Le présent rapport est également disponible en français.
Aviation Investigation Report A14A0067 | i
Table of contents
1.0 Factual information ..................................................................................... 1
1.1
1.2
1.3
1.4
1.5
1.6
History of the flight ............................................................................................................1
Injuries to persons ..............................................................................................................3
Damage to aircraft ..............................................................................................................3
Other damage .....................................................................................................................3
Personnel information .......................................................................................................4
Aircraft information ...........................................................................................................4
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.7
1.8
1.9
1.10
1.11
General ................................................................................................................................ 4
Occurrence aircraft ............................................................................................................ 5
Weight and balance ........................................................................................................... 5
Airworthiness / type design ........................................................................................... 7
Elementary maintenance work ........................................................................................ 9
Meteorological information ............................................................................................10
Aids to navigation ............................................................................................................11
Communications ..............................................................................................................11
Aerodrome information ..................................................................................................11
Flight recorders .................................................................................................................12
1.11.1
1.11.2
General .............................................................................................................................. 12
Benefits of recorded flight data ..................................................................................... 12
1.12 Wreckage and impact information ................................................................................14
1.12.1
General .............................................................................................................................. 14
1.13 Medical and pathological information ..........................................................................15
1.13.1
1.13.2
1.13.3
Captain.............................................................................................................................. 15
Transport Canada medical requirements for pilots ................................................... 15
Reporting requirements ................................................................................................. 16
1.14 Fire ......................................................................................................................................17
1.15 Survival aspects ................................................................................................................17
1.15.1
1.15.2
1.15.3
Seatbelts ............................................................................................................................ 17
Cargo restraints ............................................................................................................... 17
Safety briefing .................................................................................................................. 18
1.16 Tests and research ............................................................................................................18
1.16.1
TSB laboratory reports .................................................................................................... 18
1.17 Organizational and management information ............................................................19
1.17.1
1.17.2
1.17.3
1.17.4
General .............................................................................................................................. 19
Atlantic Charters flight safety........................................................................................ 19
Atlantic Charters operations manual ........................................................................... 19
Standard operating procedures ..................................................................................... 20
1.18 Additional information ...................................................................................................21
1.18.1
1.18.2
1.18.3
1.18.4
Air ambulance services in Canada ................................................................................ 21
Crew resource management .......................................................................................... 22
Controlled flight into terrain ......................................................................................... 24
Visual illusions ................................................................................................................ 25
ii| Transportation Safety Board of Canada
1.18.5
1.18.6
1.18.7
1.18.8
1.18.9
1.18.10
Flying through clouds .................................................................................................... 26
Descent rates .................................................................................................................... 27
Transport Canada oversight .......................................................................................... 28
Office of the Auditor General report ............................................................................ 29
Organizational safety culture ........................................................................................ 30
TSB Watchlist ................................................................................................................... 31
1.19 Useful or effective investigation techniques ................................................................31
2.0 Analysis ...................................................................................................... 32
2.1
2.2
Weather..............................................................................................................................32
Controlled flight into terrain ..........................................................................................32
2.2.1
2.2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
Scenario 1 .......................................................................................................................... 33
Scenario 2 .......................................................................................................................... 33
Crew resource management ...........................................................................................33
Weight and balance..........................................................................................................34
Elementary work ..............................................................................................................34
Airworthiness ...................................................................................................................35
Company safety culture ..................................................................................................35
Transport Canada oversight ...........................................................................................36
Ambulance New Brunswick ...........................................................................................36
Survival aspects ................................................................................................................37
2.10.1
2.10.2
Seatbelts ............................................................................................................................ 37
Cargo restraints ............................................................................................................... 37
2.11 Area navigation approach...............................................................................................37
2.12 Medical reporting .............................................................................................................38
3.0 Findings ...................................................................................................... 39
3.1
3.2
3.3
Findings as to causes and contributing factors ............................................................39
Findings as to risk ............................................................................................................39
Other findings ...................................................................................................................41
Appendices ........................................................................................................ 42
Appendix A – Grand Manan area navigation (RNAV) global navigation satellite system
(GNSS) approach to Runway (RWY) 24 .................................................................................42
Aviation Investigation Report A14A0067 | 1
1.0 Factual information
1.1
History of the flight
At 0221, 1 Atlantic Charters received a telephone call from the Ambulance New Brunswick
(ANB) Medical Communication Management Centre (MCMC) advising of a possible patient
transfer (MEDEVAC flight) from Grand Manan, New Brunswick, to Saint John,
New Brunswick. The MCMC also requested a weather check. During a follow-up telephone
call, Atlantic Charters indicated that the departure would not be a problem, but that since
fog was starting to come in, the return flight might be delayed.
About 30 minutes later, the MCMC contacted Atlantic Charters and confirmed the flight.
Atlantic Charters indicated that it would advise the pilots, as well as meet the patient,
paramedic, and nurse at the airport. The captain contacted the first officer (FO) then filed a
flight plan.
The FO prepared the aircraft for the flight and helped load the patient. The FO then installed
a forward-facing passenger seat on the left rear side of the cabin adjacent to the entrance
door, entered the cockpit through the cabin, and sat in the right seat.
An ANB paramedic occupied the rear-facing seat that was installed behind the captain’s seat
on the left side of the cabin, and a nurse from the Grand Manan Hospital occupied the
forward-facing passenger seat. The captain closed the cabin entrance door from the outside,
entered the cockpit via the cockpit door, and sat in the left seat.
After the engines were started, the captain noted that there was only 1 headset. Because the
engines were already running, the captain decided to continue with only the single headset
on board and used this headset during the flights.
At about 0400, the aircraft departed Grand Manan Airport under an instrument flight rules
(IFR) flight plan to Saint John. The flight was uneventful, and the aircraft landed in
Saint John at 0417, where it was met by an ambulance to transfer the patient to the hospital.
At 0436, the aircraft departed Saint John under an IFR flight plan to Grand Manan with the
2 pilots, the paramedic, and the nurse on board. All occupants sat in the same seats as before.
The captain contacted Atlantic Charters’ duty person 2 on the radio and advised that they
were inbound. At 0457, approximately 20 nautical miles (nm) from Grand Manan, the
captain closed the IFR flight plan with the Moncton Area Control Centre (ACC).
The aircraft began to descend from 1900 feet above sea level (asl) at 4.87 nm from the
threshold of Runway 24. 3 The captain made an advisory radio call on the aerodrome traffic
1
All times are Atlantic Daylight Time (Coordinated Universal Time minus 3 hours).
2
The duty person located in Grand Manan, New Brunswick, provides flight following services.
2| Transportation Safety Board of Canada
frequency (ATF) at EMGAM, 4 which is 4 nm from the threshold of Runway 24 (Appendix
A). At EMGAM, the aircraft was at an altitude of 1600 feet asl, with a ground speed of 90
knots. The aircraft then levelled off at 500 feet asl, 1.2 nm from the threshold. The aircraft
remained at 500 feet asl, which is approximately 250 feet above ground level (agl), until it
was at least 0.26 nm 5 from the threshold, with a ground speed of 90 knots. Soon after this
point, the captain initiated a descent in an attempt to land. However, the captain elected to
carry out a go-around, and 36 seconds later, the aircraft was 0.23 nm past the end of Runway
24 at 300 feet asl (50 feet agl).
At about 0508, the aircraft intercepted the final approach approximately 7 nm from the
threshold at an altitude of 1000 feet asl for a second attempt to land on Runway 24. Two
minutes later, the aircraft passed over EMGAM at 900 feet asl, with a ground speed of
100 knots. The aircraft remained at this altitude until it was 2.46 nm from the threshold,
when it started to descend. Approximately 1 minute later, the aircraft was at 500 feet asl and
1.23 nm from the threshold, with a ground speed of 90 knots. The aircraft remained at
approximately this altitude for 24 seconds. At about 0512, which is the time of the last
recorded radar position, the aircraft was 0.56 nm from the threshold, with a ground speed of
90 knots.
The approach to Runway 24 was over a
dimly lit, sparsely populated area, and
was carried out with the aircraft’s
landing light and strobes off, and with
the runway lights illuminated. 6
Photo 1. Occurrence site (Source: Royal Canadian
Mounted Police, with TSB annotations)
The aircraft contacted the north side of
Bancroft Road on all 3 wheels, about
15 feet above and approximately 0.25 nm
before the threshold of Runway 24
(Photo 1).
The aircraft continued across the
approximately 25-foot-wide road and
straight through 100 feet of brush and
uneven terrain. All 3 tires made
distinctive marks on the road and as the
aircraft continued through the brush.
The left outboard landing gear door
3
All altitudes and positions are based on radar data compiled from multiple radar sites. Altitude
has a ± 50 feet tolerance, distances are rounded to the nearest 1/100 nautical mile, and ground
speeds are approximate.
4
EMGAM is the final approach fix for the area navigation (RNAV) approach to Runway 24.
5
The last recorded radar position before the threshold was 0.26 nautical mile, about 60 feet from
Bancroft Road.
6
The intensity of the runway lights could not be determined.
Aviation Investigation Report A14A0067 | 3
separated, a portion of the nose landing gear strut fractured, and the left main wheel
contacted a tree stump before the terrain dropped off. The aircraft became airborne and
began to bank to the left, then the lower portion of the nose landing gear strut and wheel
assembly separated from the aircraft.
The aircraft continued an increasingly steep left bank. When the bank angle was almost 90°,
the left wingtip contacted the ground, causing the aircraft to rotate downward in a cartwheel
motion. The aircraft’s nose and both propellers struck the ground. The aircraft bounced and
pitched nose up before coming to rest approximately 1000 feet before the threshold. 7
The captain and paramedic were fatally injured. The captain was found in the left seat in the
cockpit with the shoulder harness and seatbelt fastened. The paramedic was found on the
left wing adjacent to the fuselage below the cockpit door. The FO and nurse were severely
injured; both had been wearing their seatbelts and both evacuated the aircraft without
assistance. During the evacuation, the FO had to manoeuvre around loose cargo while
moving through the cabin. After exiting the aircraft, the FO made a 911 telephone call at
0514.
About 15 minutes after the impact, first responders were on Bancroft Road, in a location that
aligned with the runway, which was about 500 feet from the aircraft. Members of the Royal
Canadian Mounted Police (RCMP) also arrived shortly after the accident. They secured the
site and remained in control until the arrival of TSB investigators.
1.2
Injuries to persons
Table 1. Injuries to persons
Crew
Passengers
Others
Total
Fatal
1
1
–
2
Serious
1
1
–
2
Minor/None
–
–
–
–
Total
2
2
–
4
1.3
Damage to aircraft
The aircraft was destroyed.
1.4
Other damage
Not applicable.
7
Aircraft heading was approximately 300° magnetic.
4| Transportation Safety Board of Canada
1.5
Personnel information
The captain was certified and qualified for the flight in accordance with existing regulations.
During the week preceding the occurrence, the captain carried out a multi-leg charter
operation. The flights ranged from 15 minutes to 1.5 hours each day. On 15 August, the day
before the occurrence, the captain had flown approximately 3.5 hours and had returned to
Grand Manan at 1600. There was no indication throughout the week that the captain was
fatigued. The captain had about 5 hours’ rest before preparing for the MEDEVAC flight to
Saint John. Fatigue was not considered a factor in this occurrence.
The FO was certified and qualified for the flight in accordance with existing regulations. The
FO had completed a multi-engine IFR rating in April 2014 and started working at
Atlantic Charters the same month. The FO completed the company’s indoctrination, survival
equipment, and MEDEVAC training. The FO was hired to assist in the daily activities at the
hangar, such as cleaning and moving aircraft, and to act as FO on MEDEVAC and charter
flights. The day before the occurrence, the FO worked at the hangar for 3 hours in the
morning, cleaning aircraft and doing paperwork.
Table 2. Personnel information
Captain
First officer
Pilot licence
Airline transport pilot
licence (ATPL)
Commercial pilot licence
(CPL)
Medical expiry date
01 January 2015
01 June 2015
Total flying hours
17 400
304
Unknown
67.5
79.5
72.8
Hours on type in the last 30 days
1.2
27.7
Hours in the last 3 days (all types)
4.5
3.9
Hours on duty prior to occurrence
2
2
10.5
15
Hours on type
Hours in the last 90 days (all types)
Hours off duty prior to work period
The investigation could not determine the captain’s total hours on a PA-31 aircraft because
numerous records had been destroyed in an earlier house fire. The captain had been flying
PA-31 aircraft for over 20 years.
1.6
1.6.1
Aircraft information
General
The Piper PA-31 is a twin-engine aircraft with retractable landing gear and constant-speed
propellers. The aircraft is certified to be flown with a single pilot and, depending on its
configuration, can have cabin seating for a maximum of 6 passengers.
Aviation Investigation Report A14A0067 | 5
1.6.2
Occurrence aircraft
The occurrence aircraft was manufactured in 1978, and had been owned and operated by
Atlantic Charters since it was imported in April 2011. The aircraft was certified for day or
night flights under visual flight rules (VFR) or instrument flight rules (IFR). The aircraft was
equipped with wing nacelle fuel tanks and a global positioning system (GPS). Aircraft
documentation indicated the GPS was certified for IFR enroute, terminal and approach
modes.
On the occurrence flight, the aircraft was configured to carry 2 pilots, 2 passengers, and
1 patient on an air ambulance system, which was installed in a longitudinal orientation on
the right side of the cabin.
Records indicate that the aircraft was maintained in accordance with the Atlantic Charters
approved maintenance schedule. There were no deferred or outstanding defects recorded in
the aircraft journey log. 8 There was no report of any technical difficulties before the
occurrence flight, nor was there any indication of a component or system failure during the
flight. At the time of the accident, the aircraft had accumulated a total of 5762.5 hours.
1.6.3
1.6.3.1
Weight and balance
General
Aircraft are designed to operate within their specified weight and balance (centre of gravity)
limitations, and these limitations are critical for the safe operation of an aircraft.
Canadian Aviation Regulations (CARs) 703.37 requires that the load restrictions, the weight
and the centre of gravity of the aircraft conform to the limitations specified in the aircraft
flight manual (AFM). 9 Additionally, the aircraft operator must specify in its company
operations manual (COM) its weight and balance system, as well as instructions to
employees regarding the preparation and accuracy of weight and balance forms.
CARs 605.92(1)(c) requires aircraft owners to retain an empty weight and balance report that
meets regulatory standards. Standards require that:
The empty weight of an aircraft stated in a weight and balance report shall
include all items required by the basis of the aircraft type certification, and all
additional items of installed equipment. Any item not forming part of the type
design shall be entered in an equipment list with its associated weight and
moment. This list constitutes a part of the weight and balance report. 10
8
The occurrence aircraft had carried out about 170 flights in 2014, and no defects or unscheduled
maintenance actions were entered in the aircraft journey log.
9
Canadian Aviation Regulations (CARs) 703.37.
10
Canadian Aviation Regulations (CARs) Standard 571, Appendix C.
6| Transportation Safety Board of Canada
According to this standard, when modifications or major repairs are made to an aircraft that
involve a change to the empty weight or centre of gravity, a description of the change, the
effective date of the change, and the weight and moment arm of each item installed or
removed shall be transcribed in the empty weight and balance report for that aircraft.
When aircraft operate in 2 or more different configurations, a separate weight and balance
report addendum for each configuration may be used providing that the current applicable
addendum is identified in the aircraft journey log.
1.6.3.2
Occurrence aircraft
When the occurrence aircraft was imported into Canada in April 2011, the aircraft records
indicated a basic empty weight of 4598.55 pounds with a moment arm of 128.16 inches.
In June 2011, Atlantic Charters had the aircraft reweighed; the aircraft records showed a
basic empty weight of 4244.0 pounds with a moment arm of 127.3 inches. The aircraft records
did not include a current equipment list nor did they identify any modifications or major
repairs that would account for the 354-pound reduction in weight. Atlantic Charters did not
provide supporting documentation which accounted for the difference in weight.
The empty weight and balance report was amended twice after the aircraft was imported;
the final weight was identified as 4241.8 pounds. 11 However, Atlantic Charters continued to
use the June 2011 basic empty weight for its weight and balance calculation form.
The investigation could not confirm the aircraft’s basic empty weight, nor could it identify
what equipment was included in the recorded weight of the aircraft. Therefore, the
investigation could not determine the aircraft’s exact weight and centre of gravity location
for the occurrence flight.
1.6.3.3
Atlantic Charters weight and balance
Atlantic Charters repeatedly reconfigured the aircraft from the passenger seating
configuration to the MEDEVAC configuration. Each configuration change required an
addendum to the weight and balance, and the configuration change was to be recorded in
the aircraft journey log and technical records. However, there were no records of
configuration changes, or the applicable weight and balance information, in the aircraft
journey log or technical records.
The Atlantic Charters’ COM describes the company’s procedures pertaining to weight and
balance control. The manual includes the following information:
2.5.4
11
The weight & balance calculation may take two forms: one that is
precomputed for different fuel and passenger/freight loads, and the
other that is individually prepared for a specific flight reflecting non-
In October 2011, Atlantic Charters had the aircraft repainted. The aircraft was not reweighed
following this modification.
Aviation Investigation Report A14A0067 | 7
standard loading. Blank forms and those pre-computed are kept in
[…] each aeroplane.
[…] a copy [of the weight and balance calculation form] will be left at
the point of departure with instructions that it be retained for 24 hours,
or an electronic copy may be emailed to [the company]. The original of
the form will be returned and retained in the company files for a six
month period following the flight. 12
[…]
2.5.9
Sample Weight and Balance form may be found in Chapter 8 of [the
COM].
Post-accident examination revealed that there were no blank forms on board the aircraft.
Atlantic Charters used the pre-computed weight and balance calculation form for the
MEDEVAC flights. However, the investigation noted a number of discrepancies in the
recorded information on the pre-computed form provided for the occurrence flight. Atlantic
Charters did not provide supporting documentation which accounted for the differences in
weights.
Occasionally, Atlantic Charters would use the wing nacelle fuel tanks; however, the precomputed form did not have a provision to enter fuel weights for the nacelle fuel tanks.
1.6.4
1.6.4.1
Airworthiness / type design
General
In respect of an aircraft or other aeronautical product, the CARs define airworthy as being
“in a fit and safe state for flight and in conformity with its type design. 13”
Regulations prohibit an aircraft from being flown unless it is maintained in accordance with
any airworthiness limitations applicable to the aircraft type design. 14
1.6.4.2
Supplemental type certificate
A supplemental type certificate (STC) is a document issued by Transport Canada (TC) to
record the approval of a change to the original type design of an aeronautical product
identified in the document. 15 This document also describes how the change affects the
original type design. The STC may include supporting technical data, such as supplements to
12
Atlantic Charters, Atlantic Charters Operations Manual: Aeroplanes Air Taxi IFR/Night/Multi & Single
Engine, December 1996.
13
Canadian Aviation Regulations (CARs) 101.01(1).
14
Canadian Aviation Regulations (CARs) 605.84(1)(a).
15
A supplemental type certificate approved by a foreign airworthiness authority must be validated
by Transport Canada.
8| Transportation Safety Board of Canada
the approved aircraft flight manual (AFM) and aircraft maintenance manual (AMM). The
AFM supplements contain information that supersedes or supplements the basic AFM
regarding procedures, performance, and limitations, such as permissible operating weights
and critical airspeeds.
1.6.4.2.1
Boundary Layer Research, Inc.
When the aircraft was imported into Canada, it was equipped with a Boundary Layer
Research, Inc. (BLR) STC. 16 This STC included the installation of 4 engine nacelle strakes,
86 vortex generators (VG) affixed to the wings and vertical tail, the remarking of the airspeed
indicators (ASI), and the insertion of the approved supplement into the AFM.
In October 2011, the aircraft was paint-stripped and repainted. There is no record of the VGs
having been removed as part of the painting process.
During the post-occurrence examination of the aircraft, it was noted that there were no VGs
installed, only 2 of the engine nacelle strakes were installed, both ASIs were marked in
accordance with the STC markings, and the AFM included the STC supplement as well as
amendments to speeds and performance charts to reflect the STC.
1.6.4.2.2
Aeromed Systems, Inc.
The aircraft was equipped with an Aeromed Systems, Inc. air ambulance system (serial
number 3800-078), which consisted of an ambulance unit with overhead panel (referred to as
a medical unit), a stretcher, and an adapter unit. A total of 93 such air ambulance systems
were built.
The Aeromed Systems, Inc. air ambulance system (Federal Aviation Administration [FAA]
STC SA1423GL) 17 is approved for installation on various aircraft, including the PA-31. The
STC documentation included an AFM supplement, an electromagnetic interference (EMI)
test plan, and a maintenance program. 18 According to the AFM supplement, the medical
unit, stretcher, adapter, and overhead panel had a combined weight of 218 pounds.
Atlantic Charters did not provide a record of the installation of the Aeromed Systems, Inc.
air ambulance system, nor did it provide a copy of the AFM supplement, the EMI test plan or
the maintenance program. 19 TC does not have a record of Atlantic Charters incorporating
this STC on the occurrence aircraft. None of the aircraft’s technical records contained any
information related to the installation of the air ambulance system.
The air ambulance system requires the adapter unit to be installed on the right side of the
fuselage, using the aircraft’s existing seat track. An electrical interface consisting of a 40-amp
16
Supplemental Type Certificate #SA5967NM (superseded by #SA00047SE in 1994) – Gross Weight
Increase for the Piper Navajo PA-31 Series Without Wing Lockers.
17
Date of issuance: 25 October 1989.
18
The maintenance program includes procedures for maintaining the air ambulance system.
19
This supplemental type certificate was not installed prior to the aircraft being imported to Canada.
Aviation Investigation Report A14A0067 | 9
circuit breaker/switch is installed in the circuit breaker panel, and an electrical connector is
mounted in the right side cabin floor adjacent to the adapter.
The adapter unit consists of a left-side and right-side rail, each with 4 plates attached. Each
right-side plate had 2 slotted holes and each left-side plate had a single slotted hole. Cross
tubes are attached between the left- and right-side plates and are held in place by 2 bolt
assemblies per plate, installed through the slotted holes. The slotted holes in the plates allow
for adjustment of the side rails. Two locking pins, 1 in each seat track, are installed to locate
the adapter unit on the seat tracks and to restrict forward and aft movement of the adapter
unit.
During initial installation, the width of the adapter unit is adjusted to fit the seat tracks. Both
sides of the cross tubes are then secured to the plates by tightening the bolt assemblies. A
quick-release pin is to be installed between a bracket on the left side of the cross tube and the
plate both on the forward and aft locations.
By removing the 2 quick-release pins and loosening the 8 bolts that secure the left side of the
cross tubes to the plates, the left-side rail can then be moved to allow the complete adapter
unit to be detached from the aircraft. When reinstalling the adapter unit, the right-side rail is
placed on the seat track, and then the left-side rail is adjusted until the 2 quick-release pins
can be installed. The 8 bolts are then tightened to secure the rail in place.
Post-occurrence examination of the adapter unit revealed the following:
• Only 1 locking pin had been installed, in the left seat track.
• The locking pin had been pulled free, and the adapter unit had moved forward about
2 inches.
• The adapter unit was twisted and was no longer fully retained by the 2 seat tracks.
• Of the 16 bolts which secured the cross tubes to the plates, 4 were found loose in their
slotted holes. 20
• The quick-release pins were not installed.
1.6.5
Elementary maintenance work
CARs 605.85 discusses the certification of maintenance conducted on an aircraft as follows:
[…] no person shall conduct a take-off in an aircraft, or permit a take-off to be
conducted in an aircraft that is in the legal custody and control of the person,
where that aircraft has undergone maintenance, unless the maintenance has
been certified by the signing of a maintenance release pursuant to section
571.10.
[…]
No maintenance release is required in respect of tasks identified as elementary
work in the Aircraft Equipment and Maintenance Standards.
20
The nuts had not been fully threaded onto the bolts.
10| Transportation Safety Board of Canada
CARs 605.96 requires all tasks designated as elementary work to be recorded in the aircraft’s
journey log. 21 Atlantic Charters had used the occurrence aircraft for both charter and
MEDEVAC flights, and considered the installation of the air ambulance system to be
elementary work although it was not listed as such in the maintenance control manual
(MCM). In addition, the aircraft’s journey log had no entries for the completion of
elementary work tasks.
For CARs subpart 703 operators, the designated elementary work tasks must be listed in the
operator’s MCM, along with a reference to the training to be undertaken by persons
authorized to perform these tasks. Atlantic Charters’ MCM listed 8 elementary work tasks
that could be performed on its aircraft by persons trained for elementary maintenance by the
approved maintenance organization (AMO). The task list included the removal and
installation of passenger seats and passenger seatbelts; however, it did not include the
removal and replacement of equipment designed for rapid removal and replacement. The
MCM stated that the elementary work training record sheet would be maintained for not less
than 2 years. However, Atlantic Charters could not provide any elementary work training
record sheets.
The occurrence aircraft was reconfigured from the charter to the MEDEVAC configuration
the day before the occurrence flight. The pilot who installed the air ambulance system did
not have approved training, nor was the pilot approved to carry out elementary work in
accordance with the company’s MCM.
1.7
Meteorological information
Saint John (CYSJ) is the nearest aviation weather station to Grand Manan (CCN2), at 53 nm
away. According to the aerodrome routine meteorological report (METAR), the weather at
0500 at CYSJ was as follows: wind 140° true (T) at 6 knots, visibility 15 statute miles (sm),
overcast ceiling 500 feet agl, temperature 14°C, dewpoint 13°C, altimeter 29.90 inches of
mercury (in. Hg), remark: stratocumulus 8 oktas. 22
According to the aerodrome forecast (TAF) for CYSJ issued at 0238 on 16 August 2014, the
weather between 0300 to 0900 called for wind 160°T at 5 knots, visibility 2 sm in mist,
scattered clouds at 200 feet agl, broken clouds at 400 feet agl, overcast at 12 000 feet agl.
There was a temporary condition of visibility 6 sm in mist, scattered clouds at 400 feet agl,
broken clouds at 12 000 feet agl, and a 30% probability of ½ sm visibility in fog, vertical
visibility 200 feet agl.
At the TSB’s request, Environment Canada carried out a post-occurrence assessment of the
meteorological conditions present before and around the time of the crash at Grand Manan
Airport. The assessment concluded that, “At the time of the crash, the aircraft at Grand
21
Canadian Aviation Regulations (CARs) Standard 625, Appendix A, identifies the 29 tasks and the
conditions associated with elementary work.
22
Cloud layer amounts are reported in eighths (oktas) of sky coverage.
Aviation Investigation Report A14A0067 | 11
Manan airport would have most likely been flying into dense fog with extremely limited
visibilities in both the vertical and horizontal direction.” 23
Persons near the airport around the time of the accident indicated there were localized areas
of fog.
1.8
Aids to navigation
The airport is equipped with a non-directional beacon (NDB). IFR approaches to Runway 06
include an NDB non-precision approach as well as an area navigation (RNAV) non-precision
approach. The only IFR approach for Runway 24 is an RNAV non-precision approach
(Appendix A). An RNAV approach uses global navigation satellite system (GNSS) guidance,
and is commonly referred to as a GPS approach.
According to the Canada Air Pilot (CAP), 24 the RNAV Runway 24 approach depicts a constant
descent angle of 3 degrees, the optimum descent path for a non-precision final approach
segment. When flying at a ground speed of 90 knots, a rate of descent of 480 feet per
minute (fpm) is needed to achieve this descent path. This descent can continue until reaching
the minimum descent altitude (MDA), which is 840 feet asl (609 feet agl) for Runway 24.
Pilots of aircraft on instrument approaches are prohibited from continuing the descent below
the MDA unless the required visual reference is established and maintained in order to
complete a safe landing. 25
1.9
Communications
The Grand Manan Airport uses an ATF to ensure that all radio-equipped aircraft operating
on the ground or within the area are listening on a common frequency and following
common reporting procedures.
Radio communications with Moncton ACC while en route were carried out by the captain.
1.10 Aerodrome information
Grand Manan Airport has an asphalt runway (Runway 06/24), which is 3009 feet long by
75 feet wide. Runway 24, which is oriented 236° magnetic (M), has a 0.54% upslope. The
23
Meteorological Service of Canada Weather and Environmental Prediction and Services,
Meteorological Assessment August 16, 2014, Grand Manan, NB, TSB Investigation: Grand Manan
Aircraft Crash, September 15-24, 2014.
24
The Canada Air Pilot (CAP) is a NAV CANADA publication that provides aeronautical
information related to the arrival or departure portions of flight instrument approach procedures,
standard instrument departure procedures, and noise abatement procedures. CAP 7 is applicable
for the Grand Manan Airport.
25
Some examples of visual reference include the runway or runway markings, runway threshold or
threshold markings, runway identification lights, threshold and runway end lights, and parallel
runway edge lights.
12| Transportation Safety Board of Canada
aerodrome elevation is 244 feet asl; the elevation of the threshold of Runway 24 is
228 feet asl.
The airport has a type K aircraft radio control of aerodrome lighting (ARCAL) system, which
activates the entire aerodrome lighting system. 26 Runway 24 has runway identification lights
as well as medium-intensity threshold and runway end lights. The airport is owned,
operated and maintained by the Village of Grand Manan.
1.11 Flight recorders
1.11.1
General
The aircraft was not equipped with a flight data recorder (FDR) or a cockpit voice
recorder (CVR), nor was either required by regulation.
1.11.2
Benefits of recorded flight data
Numerous TSB aviation investigation reports have referred to investigators being unable to
determine the reasons an accident occurred due to the absence of on-board recording
devices. 27 The benefits of recorded flight data in aircraft accident investigations are well
known and documented. 28
Commercially operated aircraft weighing less than 5700 kg are not usually fitted at
manufacture with the system infrastructure required to support an FDR, expensive
modifications would be required to install conventional FDRs in this category of aircraft.
Several affordable, stand-alone, lightweight flight recording systems are currently being
manufactured that can record combined cockpit image, cockpit audio, aircraft parametric
data and/or data-link messages, and that require minimal modification to the aircraft to
install.
If cockpit data recordings are not available to an investigation, then the identification and
communication of safety deficiencies to advance transportation safety may be precluded.
In 2013, following its investigation into the March 2011 loss of control / in-flight break-up
occurrence, northeast of Mayo, Yukon (TSB Aviation Investigation Report A11W0048), the
TSB found that if cockpit or data recordings are not available to an investigation, the
26
A Type K aircraft radio control of aerodrome lighting (ARCAL) system is activated by the pilot
pressing the microphone button 7 times for high intensity. The light intensity can be changed by
keying the button 7, 5 or 3 times within 5 seconds for high-, medium- or low-intensity lighting,
respectively. At the Grand Manan Airport, when the runway identification lights (unidirectional
flashing strobe lights) are required, keying the microphone 7 times on the appropriate frequency
will turn them on.
27
TSB aviation investigation reports A01W0261, A02W0173, A03H0002, A05W0137, A05C0187,
A06W0139, A07Q0063, A07W0150, A09A0036, A09P0187, and A10P0244.
28
TSB Aviation Investigation Report A11W0048.
Aviation Investigation Report A14A0067 | 13
identification and communication of safety deficiencies to advance transportation safety may
be precluded. It further concluded that in the event that an accident does occur, recordings
from lightweight flight recording systems will provide useful information to enhance the
identification of safety deficiencies in the investigation. Therefore, the Board recommended
that
[t]he Department of Transport work with industry to remove obstacles to and
develop recommended practices for the implementation of flight data
monitoring and the installation of lightweight flight recording systems by
commercial operators not currently required to carry these systems.
TSB Recommendation A13-01
The TSB assessed TC’s latest response to Recommendation A13-01 as follows:
In its response, Transport Canada has indicated proposed action in the form of an advisory
circular to describe recommended practices regarding flight data monitoring programs. In
addition, it will conduct focus group consultation to identify obstacles within Transport
Canada’s mandate and make recommendations for mitigation of those obstacles with respect
to the installation of lightweight flight recording systems for commercial operators not
required to carry these systems. The Board is encouraged by the intent of Transport Canada
to work toward meeting the issues identified in the recommendation; however, the work is
ongoing.
Therefore, the response was assessed as Satisfactory Intent. 29
29
Board reassessment of the response to Aviation Safety Recommendation A13-01: Requirement for
lightweight flight recorder system in commercially operated aircraft not governed by CARs 605.33
(March 2015), available at: http://www.tsb.gc.ca/eng/recommandationsrecommendations/aviation/2013/rec_a1301.asp (last accessed 07 December 2015).
14| Transportation Safety Board of Canada
1.12 Wreckage and impact information
1.12.1
General
The aircraft nose structure
forward of the cockpit
instrument panel was crushed
and displaced to the right. The
instrument panel and cockpit
floor were buckled so that the
cockpit volume was reduced. The
fuselage structure was buckled
between the cockpit and cabin
sections and deformed such that
the cockpit door could not be
closed and latched. The cockpit
door support rod had separated
at the fuselage, allowing the door
to travel beyond its normal
range.
Photo 2. Occurrence aircraft (Source: Royal Canadian Mounted
Police)
The non-structural interior partitions between the aft baggage area and cabin, and between
the cabin and cockpit were fractured and separated from their attachment points. Both the
captain’s and the rear forward-facing passenger’s seats had separated from their seat
mounting points.
The flaps were in the full down position and the landing gear was fully extended. The left
main landing gear lower leg piston fractured and separated inboard. The nose gear lower leg
piston fractured and separated aft. The right main landing gear upper torque link attachment
point fractured.
The left wing separated at the wing root, remaining connected to the fuselage by control
cables, wires and tubing. About 6 feet of the outer portion of the left wing separated from the
main wing but remained connected by control cables, wires and tubing. There was no
indication of pre-impact structural failure or failure of the flight control system. Both engine
mount trusses had separated from the wings. Fuel was observed in the fuel supply lines,
between the emergency fuel pump and the engine-driven pump, for both engines.
TSB investigators supervised the removal of the wreckage from the accident site. The
wreckage was transported to the TSB’s Dartmouth, Nova Scotia, regional wreckage
examination facility where further examination was carried out. Several components were
removed and sent to the TSB Laboratory in Ottawa, Ontario, for detailed examination. The
investigation determined that both propellers were in fine pitch and the engines were
producing power at the time of impact. There was no pre-existing condition found that
would have prevented the engines or propellers from operating normally.
Aviation Investigation Report A14A0067 | 15
1.13 Medical and pathological information
1.13.1
Captain
In April 2012, the captain was diagnosed with vestibular neuritis. Vestibular neuritis
symptoms include dizziness or vertigo, disequilibrium or imbalance, and nausea. Even
though the vestibular neuritis symptoms had been present for about 6 months, the captain
continued to fly during that period and continued to fly immediately after being diagnosed.
Neither the diagnosis nor the preceding symptoms were recorded on the captain’s
subsequent Medical Examination Report (MER), nor were they reported directly to TC.
The captain’s last TC Category 1 medical examination was completed in early June 2014. In
July 2014, the captain had experienced an episode of weakness, confusion and blurred vision
due to an allergic reaction to a prescription medication. Although the captain had a medical
examination, TC had no record of the examination.
In both the April 2012 and the July 2014 medical examinations, conducted at the emergency
department of a local hospital, no record was made by the hospital staff indicating the
patient was a pilot.
Notwithstanding, the investigation determined that there was nothing to indicate that the
captain’s performance was degraded by physiological factors or incapacitation.
1.13.2
Transport Canada medical requirements for pilots
The primary activity of TC’s Civil Aviation Medicine Branch (CAM) is the performance of
medical assessments required for the certification of licensed aviation personnel. CARs
Standard 424.17(3)(a) states that:
The purpose of the medical examination is to determine whether an applicant
meets the standards that apply in respect of the issuance of the Medical
Certificate that is needed to issue a particular permit, licence or rating […]. 30
With aviation medical examinations, TC is chiefly concerned with managing the risk to
aviation over the short term, that is, the validity period of the medical certificate. As such, TC
reviews the risk of incapacitation for the period of the licence.
It is the responsibility of the civil aviation medical examiner (CAME) to interview and
perform a complete examination on all applicants. CARs Standard 424 requires the CAME to
examine the applicant in accordance with medical practices recognized by the medical
profession, and with the personnel licensing standards. The CAME is usually the only
person who physically examines the applicant and makes a recommendation for medical
certification. TC considers the CAME to be the most important link in the medical
certification process.
30
Canadian Aviation Regulations (CARs) Standard 424.17(3)(a).
16| Transportation Safety Board of Canada
The CAM Handbook for Civil Aviation Medical Examiners (TP 13312) stipulates that, during the
medical examination, there is a shared responsibility, with the onus on the applicant to
report any symptoms and a requirement for the CAME to conduct a careful and thorough
examination.
Pilots are required to report on their TC medical report form all visits to medical
professionals. CARs Standard 424 requires applicants to sign the Aviation MER, which states
that the information provided is complete and correct, and that they are aware that it is an
offence to knowingly make a false declaration.
1.13.3
Reporting requirements
CARs 404.06 prohibits a pilot from exercising the privileges of their licence if they suffer
from an illness, injury or disability that could impair their ability to exercise those privileges
safely. The Transport Canada Aeronautical Information Manual (TC AIM) addresses the issue of
medical reporting. The TC AIM reminds pilots that before they have a medical examination
by any physician, they must identify themselves as a holder of a pilot’s licence, and it states
that the attending physician must notify TC of any finding that may constitute a hazard to
aviation safety.
Subsection 6.5(1) of the Aeronautics Act requires physicians to report to TC any holder of a
Canadian aviation document who they believe (on reasonable grounds) may, for medical
reasons, constitute a hazard to aviation safety. Section 26 of the Canadian Medical
Association’s CMA Driver’s Guide, 8th Edition, which addresses aviation, states that,
“Physicians are required by law to report to regional aviation medical officers of Transport
Canada any pilots, air traffic controllers or flight engineers with a medical condition that
could affect flight safety.” 31
Section 26 of the CMA Driver’s Guide also alerts physicians to aspects of medical fitness that
are of unique importance to aircrews and provides a list of common reportable conditions. If
the physician is certain that a condition poses a risk to aviation, the condition must be
reported. If uncertain, the attending physician can contact a regional aviation medical
officer (RAMO) for guidance.
The CMA Driver’s Guide requires any medical condition that affects balance organs or vision
to be reported to TC, as it may induce or exaggerate dangerous spatial disorientation.
Therefore, vestibular neuritis and episodes of weakness, confusion and blurred vision are
medical symptoms that must be reported to TC.
In this occurrence, even though the captain’s general practitioner, who was also the CAME,
was aware of the April 2012 and the June 2014 medical examinations, neither medical
condition was reported to the RAMO.
31
Canadian Medical Association, CMA Driver’s Guide, 8th Edition, 2012, Section 26.
Aviation Investigation Report A14A0067 | 17
TSB investigations have previously identified the issue of information not being reported to
TC. 32
1.14 Fire
Not applicable.
1.15 Survival aspects
1.15.1
Seatbelts
During an impact, an unrestrained passenger can be thrown about the cabin, possibly
contacting aircraft structures and/or other occupants, thereby increasing the risk of injury or
death to themselves and to others.
The occurrence aircraft’s passenger seats were equipped with seatbelts, and a seatbelt
extension was readily available. Post-accident examination revealed that the paramedic’s
seatbelt was fastened and adjusted to a length that would have been too short for the
paramedic’s waist. There was no indication that the state of the seatbelt had been altered
during post-accident emergency response activities.
1.15.2
Cargo restraints
CARs 602.86(1) prohibits the operation of an aircraft unless carry-on baggage, equipment
and cargo are
(a) stowed in a bin, compartment, rack or other location that is certified in
accordance with the aircraft type certificate in respect of the stowage of
carry-on baggage, equipment or cargo; or
(b) restrained so as to prevent them from shifting during movement of the
aircraft on the surface and during take-off, landing and in-flight
turbulence.
The PA-31 interior includes a baggage compartment aft of the main cabin door which will
accommodate up to 200 pounds of cargo. Regarding the stowage of baggage, the AFM states,
“Baggage tie down straps should be used in all baggage areas for safe and secure stowage of
baggage.” 33
Post-accident examination revealed that tie-down straps were not used, and medical
equipment bags were found forward of the aft baggage compartment area.
The Aeromed Systems, Inc. ambulance unit was equipped with seatbelt-style cargo restraints
to secure medical equipment. In the occurrence aircraft, a single fitting with an attached
buckle had been installed on the left outboard seat track, between the rear-facing seat and the
32
TSB aviation investigation reports, A07P0357, A10A0041, and A14O0077.
33
Piper Aircraft Corporation, PA-31, Navajo, Section 7.47.
18| Transportation Safety Board of Canada
cabin door. ANB’s practice was to place the defibrillator on the floor and secure it in place by
fastening the restraint to the buckle.
Post-accident examination found that the defibrillator was loose in the cabin, and the
restraint and buckle were not fastened.
1.15.3
Safety briefing
CARs 703.39(1) states, “The pilot-in-command shall ensure that passengers are given a safety
briefing in accordance with the Commercial Air Service Standards [CASS].”
The CASS require a safety briefing to be carried out prior to takeoff, and if no additional
passengers embark on subsequent flights on the same day, it may be omitted.
According to ANB’s contract with Atlantic Charters, the operator was to provide the flight
paramedics with annual flight safety training. Atlantic Charters and ANB had subsequently
agreed to provide Aircraft Orientation and Safety Training to the flight paramedics every
6 months. This training was in lieu of providing a safety briefing prior to takeoff at the start
of each flight, and included topics such as the use of seatbelts, the securing of various types
of medical devices/gear, and the location and operation of safety devices. The occurrence
paramedic had completed the most recent training in April 2014.
According to TC’s Guide to Air Ambulance Operations:
[…] medical attendants are not normally crew members under the Canadian
Aviation Regulations. They may be designated as crew members provided they
receive approved flight attendant training. In this case, medical attendants
may be assigned duties such as passenger briefing, evacuation, and look-out
for helicopter landings, otherwise these functions remain the responsibility of
the flight crew. 34
The paramedics were not designated as part of the flight crew, they did not receive any
approved flight attendant training, nor were they required to.
1.16 Tests and research
1.16.1
TSB laboratory reports
The following TSB laboratory reports were completed in support of this investigation:
• LP 181-2014 – Instrument and lamp examination
• LP 182-2014 – Cell phone NVM [non volatile memory] examination
• LP 187-2014 – Cell phone examination
• LP 219-2014 – GPS [global positioning system] Analysis
• LP 226-2014 – Examination of exhaust pipes
• LP 049-2015 – Radar Data Analysis
34
Transport Canada, TP 10839E, Guide to Air Ambulance Operations, August 2004, p. 3.
Aviation Investigation Report A14A0067 | 19
1.17 Organizational and management information
1.17.1
General
Atlantic Charters is a privately owned company that has been operating from Grand Manan
since 1982. The owner and founder of the company, who was also the occurrence captain,
held the positions of accountable executive, operations manager, chief pilot and maintenance
coordinator. This individual was responsible for the company business decisions including
contract negotiations. The owner had over 30 years of flying experience from the Grand
Manan Airport and was very familiar with the surrounding environment as well as the
challenges associated with flying in the local weather conditions.
Atlantic Charters conducts CARs subpart 703 air taxi operations, providing domestic and
international air charters. The company had been providing patient transfer charter services
for over 30 years, with the majority of this work being carried out as single-pilot operations.
At the time of the accident, the company employed 5 pilots, including the owner and a
member of the owner’s family. The company operated a Piper Cheyenne III, 3 Piper Navajos,
a Piper Seneca, and a Cessna Skyhawk. With the exception of the owner and the owner’s
family member, the company typically hired pilots with limited flying experience who
normally stayed with the company for about 2 years before moving on.
With the exception of maintenance tasks designated as elementary work, all maintenance
was carried out by an AMO. Atlantic Charters did not have any maintenance staff or
approved maintenance capabilities.
1.17.2
Atlantic Charters flight safety
Atlantic Charters did not have a safety management system (SMS), nor was it required by
regulation to have one.
There was no documented flight safety program at Atlantic Charters. According to the COM,
the operations manager was responsible for safe flight operations, and the chief pilot was
responsible for the professional standards of the flight crew under his authority.
1.17.3
1.17.3.1
Atlantic Charters operations manual
Navigation tools
According to regulations, if conducting an IFR flight, “all of the necessary current
aeronautical charts and publications covering the route of the proposed flight and any
probable diversionary route” 35 must be carried on board.
For flights between Grand Manan and Saint John, the required current charts and
publications would include the CAP 7, the Enroute Low Altitude Chart, and the Canada
Flight Supplement (CFS).
35
Canadian Aviation Regulations (CARs) 602.60(1)(b).
20| Transportation Safety Board of Canada
Post-accident examination found only an outdated CFS (expired 24 July 2014) on board the
aircraft.
Regulations state that if an aircraft is operated on an IFR flight and using databasedependent navigation equipment such as a GPS, the current database covering the route
must be carried on board. 36
Post-accident examination revealed that the GPS database had expired on 01 May 2014.
For a CARs subpart 703 company to conduct a GPS approach on revenue flights, it must
obtain TC Operations Specification (OPS Spec) 100. To be granted OPS Spec 100, a company
must have ground and flight training on GPS approaches and standard operating
procedures (SOP) that address the use of GPS during approach operations when flying with
2 crew members, and must demonstrate competency in using the equipment.
Atlantic Charters did not have OPS Spec 100. However, its typical practice was to use the
GPS when conducting approaches on Runway 24.
1.17.4
Standard operating procedures
SOPs represent an important information resource available to pilots to assist with problem
solving and decision making. SOPs are designed to help pilots operate within organizational
risk-management boundaries and maintain situational awareness through the use of
predetermined procedures and standardized phraseology.
Atlantic Charters had developed SOPs in 2012 to meet the requirements of ANB’s latest
contract. The SOPs mention aspects of communications between pilots, such as standard
altitude calls, standard take-off briefing, and the fact that all checklists are to be completed
verbally (challenge and response).
A challenge-and-response checklist requires that the pilot not flying read the item and the
pilot flying respond with the appropriate wording (e.g., set, on, complete, etc.). To carry out
the challenge-and-response checklist procedures, it would be necessary for the captain and
FO to communicate effectively with each other.
When flying with this captain, the FO was expected to learn and gain experience by
observing what the captain did. The FO would follow the actions of the captain by reviewing
the checklist. During the occurrence flight, since no headset was available to the FO, the
checklists were not completed in a challenge-and-response manner.
During the approach, the FO was monitoring the ASI and GPS, as well as looking outside to
locate the runway.
36
Canadian Aviation Regulations (CARs) 602.60(1)(d).
Aviation Investigation Report A14A0067 | 21
1.18 Additional information
1.18.1
Air ambulance services in Canada
TC considers all non-government air ambulance services as commercial air services, subject
to Part VII of the CARs. Therefore, there is no requirement for a company to have an
amendment to its operations specification in order to operate an air ambulance service.
According to TC’s publication Guide to Air Ambulance Operations, as certain situations may
place a great deal of stress on pilots, companies “contracting for air ambulance services may
wish to specify requirements over and above the minimum required by regulation such as
two pilots on all flights, [and] additional training and experience…” 37
The Guide to Air Ambulance Operations also states:
A successful company safety management program can have a positive effect
on many aspects of air ambulance operations and one of the most important is
pilot judgment. Training in Pilot Decision Making (PDM) and Cockpit
Resource Management (CRM) are developments in the aviation industry and
are particularly applicable to the often life and death nature of the air
ambulance mission. 38
1.18.1.1
Ambulance New Brunswick
Since 2007, ANB has been operating as the province’s ambulance service, providing land and
air ambulance services throughout the province. ANB responds to nearly 100 000 calls each
year.
ANB’s Air Ambulance Service (referred to as AirCare) consists of a dedicated fixed-wing
aircraft and crew, which are provided under contract. During the 2013–2014 fiscal year,
AirCare completed about 500 patient transfers, of which 46% were classified as emergent or
urgent, and 54% were classified as non-urgent.
ANB’s MCMC is the centralized ambulance dispatch centre. The MCMC is staffed by
emergency medical dispatchers, who respond to emergency medical calls, coordinate interfacility transfers, and dispatch emergency medical services land and air crews. When ANB
receives a request for a patient transfer, the attending physician will consult with the
provincially appointed medical control physician. They will determine if the patient requires
care that is outside the primary care paramedic scope; this type of patient is referred to as a
high acuity patient. For high acuity patients, the preferred method of transfer is through
AirCare.
ANB also contracts air services, on an as-needed basis, from Atlantic Charters for non-urgent
patient transfers from Grand Manan. Atlantic Charters may transport high acuity patients
37
Transport Canada, TP 10839E, Guide to Air Ambulance Operations, August 2004, p. 4.
38
Ibid., p. 6.
22| Transportation Safety Board of Canada
when the sending physician, medical control physician, and receiving physician (as
required) agree that the Grand Manan medical facility can provide an appropriate escort,
such as a registered nurse, and that it would be more expeditious than waiting for AirCare.
Atlantic Charters carried out about 100 patient transfers per year. 39
1.18.1.2
Ambulance New Brunswick contract requirements
AirCare has been provided by the same operator since before ANB was established. The
current contract requires the pilot-in-command to have a minimum of 2000 hours total time,
with 500 hours as pilot-in-command of a multi-engine aircraft, and 100 hours on the specific
type used for the service. The FO is required to have a minimum of 500 hours total time and
a minimum of 100 hours on a multi-engine aircraft. In an effort to make all flights as safe as
possible, the operator’s flight crew training program must emphasize a challenge-andresponse checklist, and include cockpit 40 resource management.
ANB’s contract with Atlantic Charters requires 2 pilots who are certified and qualified to
operate the type of aircraft used. The 2-pilot requirement is a change that came about during
the last contract negotiation (2012) with Atlantic Charters. ANB had conducted informal
research and determined that 2 pilots should offer a higher level of safety; more specifically,
if 1 pilot became incapacitated and could no longer perform their duties, someone else could
fly the aircraft. Up until the latest contract, Atlantic Charters had been providing the ANB
patient transfer service using a single pilot.
ANB has indicated that the wording of the 2 contracts, with the exception of some minor
changes, had been in place prior to ANB’s existence. ANB has also indicated that it has
limited aviation knowledge and experience, and was unfamiliar with what was meant by
terms such as challenge-and-response and CRM.
1.18.2
Crew resource management
Atlantic Charters does not have a formal crew resource management (CRM) training
program, nor is such training required by regulation or as part of ANB’s contract
requirements. However, Atlantic Charters indicated that informal CRM training was carried
out.
When operating in a 2-crew environment, pilots must successfully interact with each other,
their aircraft, and their environment to effectively manage threats, errors, or undesired
aircraft states that may be encountered. CRM training focuses on critical cognitive and
interpersonal skills with the objective of reducing human error in aviation. Research has
shown that flight crews with recent CRM training are better able to deal with novel
situations than flight crews without recent CRM training. 41
39
In 2012, there were 101 transfers; in 2013, there were 104 transfers.
40
The current generic term is crew resource management (CRM).
41
Federal Aviation Administration, Advisory Circular (AC) 120-51E, Crew Resource Management
Training, January 2004.
Aviation Investigation Report A14A0067 | 23
From a CRM standpoint, effective communication plays a critical role in the alignment of the
crew’s understanding of the situation. However, communication skills require practice and
reinforcement to be effective, particularly during periods of high workload, such as during
an instrument approach or an abnormal situation.
Modern CRM programs highlight barriers to effective communication and provide multiple
communication strategies that allow individuals to select the most appropriate strategy,
depending on the severity of the situation, the time available, and the other person(s)
involved in the communication process.
Situational awareness is defined as “the continuous extraction of environmental information,
the integration of this information with previous knowledge to form a coherent mental
picture, and the use of that picture in directing further perception and anticipating future
events.” 42
Flight crew actions need to be based on a common understanding of the current state of the
aircraft, the intended flight plan, and the threats to these activities in order to perform in a
coordinated, efficient, and safe manner. This common understanding between the crew
members is referred to as team or shared situational awareness. 43, 44 When this
understanding is consistent, crews are better able to effectively anticipate and coordinate
their actions toward achieving their common goal.
Shared situational awareness is developed and maintained by a crew through a number of
discrete and continuous behaviours. Discrete behaviours include flight planning, in-flight
briefings, and identification of key points in the flight, such as attaining minimum altitudes.
These activities are planned checkpoints to describe current state and future plans, and to
provide an opportunity for checking that all crew members have a common understanding.
Continuous behaviours include threat and error management, callouts of changes of aircraft
state and instrument setting/mode, and communication of changes to plans. These
behaviours ensure that information and state changes are communicated between crew
members to update the shared situational awareness on an ongoing basis. Such continuous
behaviours are influenced by the training and operational approach taken by operators.
Following its investigation into a collision with terrain which occurred in Sandy Bay,
Saskatchewan, in January 2007 (TSB Aviation Investigation Report A07C0001), the TSB
concluded that some operators are unlikely to provide CRM training in the absence of a
regulatory requirement to do so. Therefore, some commercial pilots may be unprepared to
42
EUROCONTROL SKYbrary [online], “Situational Awareness,” available at:
http://www.skybrary.aero/index.php/Situational_Awareness (last accessed on
07 December 2015).
43
M.R. Endsley, “Toward a Theory of Situation Awareness in Dynamic Systems,” Human Factors
Vol. 37, No. 1, 1995, pp. 32-64.
44
E. Salas, C. Prince, D.P. Baker, and L. Shrestha, “Situation Awareness in Team Performance:
Implications for Measurement and Training,” Human Factors, Vol. 37, No. 1, 1995, pp. 123–136.
24| Transportation Safety Board of Canada
avoid, trap, or mitigate crew errors encountered during flight. In light of the risks associated
with the absence of recent CRM training for air taxi and commuter crew members, the Board
recommended that
[t]he Department of Transport require commercial air operators to provide
contemporary crew resource management (CRM) training for Canadian
Aviation Regulations (CARs) subpart 703 air taxi and CARs subpart 704
commuter pilots.
TSB Recommendation A09-02
The TSB report on its investigation into the August 2011 controlled flight into terrain
accident which occurred in Resolute Bay, Nunavut (TSB Aviation Investigation Report
A11H0002) identified ineffective crew interactions as a significant contributing factor to the
accident. This investigation also found that if operators do not take steps to ensure that flight
crews routinely apply effective CRM practices during flight operations, risk to aviation
safety will persist. Therefore, the Board expressed concern that, without a comprehensive
and integrated approach to CRM by TC and aviation operators, flight crews may not
routinely practice effective CRM.
TSB Recommendation A09-02 was first issued in 2009. TC’s project plan has been under
development since December 2012. Work continues on the development of standards for
CRM. A Notice of Proposed Amendment on CRM standards has been developed and is
expected to be published in 2016.
The Board is encouraged that action on this recommendation is nearing completion. The
proposed course of action should substantially reduce or eliminate the safety deficiency
identified in Board Recommendation A09-02. Until the standards are amended and fully
implemented, this safety deficiency will continue to exist. The TC response was last assessed
as Satisfactory Intent.
1.18.3
Controlled flight into terrain
Controlled-flight-into-terrain (CFIT) accidents occur when an airworthy aircraft under the
control of the pilot is inadvertently flown into the ground, water, or an obstacle. In these
cases, pilots are unaware of the danger until it is too late. This type of accident often happens
when visibility is low, at night, or in poor weather conditions. Such conditions reduce a
pilot’s situational awareness of surroundings and make it difficult to tell whether the aircraft
is too close to the ground. Between 2003 and 2013, there were 117 CFIT accidents in Canada,
which resulted in 121 fatalities. Collisions with land and water account for 3% of all
accidents, but nearly 18% of all fatalities.
In a study of airline accidents, the Flight Safety Foundation (FSF) noted that CFIT was the
leading category of approach-and-landing accidents. 45 Its findings included the following:
45
Flight Safety Foundation, "Killers in Aviation: FSF Task Force Presents Facts About Approachand-landing and Controlled-flight-into-terrain Accidents," Flight Safety Digest, NovemberDecember 1998/January-February 1999.
Aviation Investigation Report A14A0067 | 25
•
“omission of action/inappropriate action” by a flight crewmember was
identified as the most common primary causal factor. This usually
referred to the crew continuing descent below the decision height (DH) or
minimum descent altitude (MDA) without adequate visual reference;
•
the second most common primary causal factor was “lack of positional
awareness in the air,” generally resulting in controlled flight into terrain
(CFIT);
•
[a majority of] CFIT occurrences were during poor-visibility conditions;
•
disorientation or visual illusions […] were involved in 21.1 percent of all
occurrences, […][with a] lack of vigilance, assigning a lower priority to
monitoring primary instruments, and a lack of training for and awareness
of such illusions [identified as] associated factors. 46
The FSF has determined that the majority of CFIT accidents occurred when aircraft were on
final approach to the runway. 47 Some common causes of CFIT accidents are
• loss of situational awareness, 48
• unstable approaches, and
• poor communications.
Atlantic Charters’ COM required pilots to undergo initial CFIT training, then biennial
recurrent training. This training included factors that may lead to CFIT accidents and
incidents, CFIT prevention strategies, methods of improving situational awareness, and
escape manoeuvre techniques and profiles. The captain had received recurrent CFIT training
in June 2013 and the FO had completed it in April 2014.
1.18.4
Visual illusions
The FSF Approach and Landing Accident Reduction (ALAR) Task Force’s Briefing Note 5.3
states:
Visual illusions result from the absence of visual references or the alteration of
visual references, which modify the pilot’s perception of his or her position (in
terms of height, distance and/or intercept angle) relative to the runway
threshold. 49
The briefing note also states:
46
Flight Safety Foundation, "Killers in Aviation: FSF Task Force Presents Facts About Approachand-landing and Controlled-flight-into-terrain Accident," Flight Safety Digest, NovemberDecember 1998/January-February 1999.
47
Flight Safety Foundation, Approach and Landing Accident Reduction (ALAR) Tool Kit, FSF
ALAR Briefing Note 5.3 (2009).
48
A loss of situational awareness occurs when a pilot's perception of his situation differs from the
reality of his situation.
49
Flight Safety Foundation, Approach and Landing Accident Reduction (ALAR) Tool Kit, FSF
ALAR Briefing Note 5.3 (2009).
26| Transportation Safety Board of Canada
Visual illusions are most critical when transitioning from instrument
meteorological conditions (IMC) and instrument references to visual
meteorological condition (VMC) and visual references. 50
Flying in light rain, fog, mist, or darkness creates an illusion of being too high. If this illusion
is not recognized, a pilot may push the nose forward, descending below the ideal approach
path. Entering a fog layer also creates the illusion of pitching up. The pilot who does not
recognize this illusion will steepen the approach, often quite abruptly. 51
The Airbus Operational Briefing Notes state that:
The following crew actions and the consequences are often cited in the
analysis of approach-and-landing incidents or accidents resulting from visual
illusions:
[…]
•
Natural tendency to descend below the glide slope or the initial glide path
(i.e., “ducking under”);
•
Inability to arrest the rate of descent after descending below the intended
glide path (i.e., late recognition of the flattening of runway and runway
environment) […] 52
The TC Human Factors for Aviation Basic Handbook (TP 12863E) states that landing illusions
can affect even the most experienced pilots.
1.18.5
Flying through clouds
The PA-31 Pilot Operating Handbook contains the following warning:
Turn off anti-collision lights […] during flight through cloud, fog or haze. 53
The Flight Safety International Navajo Pilot Training Manual, Models 310, 325, 350 and T1020,
issues a warning which states:
Strobe lights should not be operating when flying through overcast and
clouds since the reflected beam may produce spatial disorientation. 54
50
Ibid.
51
Federal Aviation Administration, Aeronautical Information Manual, Chapter 8-1-5.
52
Airbus [online], Flight Operations Briefing Notes: Human Performance, Visual Illusions
Awareness, available at:
http://www.airbus.com/fileadmin/media_gallery/files/safety_library_items/AirbusSafetyLib_FLT_OPS-HUM_PER-SEQ11.pdf (last accessed 07 December 2015).
53
Piper Aircraft Inc., PA-31 Pilot Operating Handbook.
54
Flight Safety International, Navajo Pilot Training Manual, Models 310, 325, 350 and T1020, February
1985.
Aviation Investigation Report A14A0067 | 27
Landing lights and strobe lights are typically not used when flying through cloud, fog or
haze because their illumination can cause reflection or glare that can adversely affect the
pilot, making it more difficult for the pilot to identify outside lights.
1.18.6
Descent rates
Figure 1. Altitude vs distance, first and second approach (Source: GoogleEarth, with TSB annotations)
1.18.6.1
First approach
The aircraft began its approach from 1900 feet asl, 4.87 nm from the threshold. The aircraft
continued on a constant descent until it was at 500 feet asl, at 1.2 nm from the threshold. The
aircraft’s ground speed was 90 knots. At this ground speed, the descent rate would have
been approximately 470 fpm. This rate of descent is consistent with what the CAP identifies
for a constant descent angle for a GPS approach.
When the aircraft was 0.26 nm from the threshold, it was at 500 feet asl and at 90 knots. To
touch down at the threshold from this point would require a descent rate of about
1590 fpm. This descent rate does not take into account the need for the aircraft to flare prior
to touching down on the threshold.
1.18.6.2
Second approach
On the second approach, at 0.56 nm from the threshold, the aircraft was level at 500 feet asl
at 90 knots.
28| Transportation Safety Board of Canada
To touch down at the threshold from this point would require a descent rate of about
730 fpm. To touch down on Bancroft Road from this point would require a descent rate of
about 1215 fpm. These descent rates do not take into account the need for the aircraft to flare
before touching down.
1.18.7
1.18.7.1
Transport Canada oversight
General
TC expects companies to proactively manage the safety of their operations—where risks are
managed to acceptable levels—and to have programs in place to ensure their continued
compliance with all regulatory requirements. TC’s surveillance program is designed to
assess whether an aviation company has implemented appropriate and effective systems;
specific systems-based surveillance inspections are conducted at intervals based on risk
indicators. The program is targeted at key systems determined by certificate type and
whether or not the company is required to have an SMS. The surveillance program is based
on a systemic approach to managing risk and includes the following steps: documentation
review; on-site interviews and on-site sampling conducted by inspectors; and production of
a report with findings of systemic deficiencies. This allows inspectors to understand how a
company plans to meet a specific regulatory requirement. The sampling portion is where
inspectors select specific areas, or outputs, to test compliance with that system and to the
applicable regulations.
Program validation inspections (PVI) are conducted on a routine schedule, and use risk
indicators to adjust the frequency of inspection, as necessary. During a PVI, the TC team will
conduct interviews, gather evidence to support observations, and analyze those
observations. It will then determine if the operator is in compliance with regulations and
whether its SMS is effective (if the organization is required to have an SMS). The
TC PVI team will also prepare any findings of non-compliance and document the results of
the on-site review.
A process inspection (PI) is another surveillance tool employed by TC to determine whether
an operator’s processes meet regulatory requirements and are functioning as intended. A PI
may also generate findings. The PI report shall indicate whether the process meets applicable
regulatory requirements and is being followed as published in approved company manuals,
or whether the process is not documented, not implemented, or not effective.
In principle, any process required by regulation may be the focus of a PI or a PVI. Targeted
PIs across a range of areas have the potential to identify a lack of compliance with
regulations requiring those processes.
1.18.7.2
Oversight at Atlantic Charters
TC verified that Atlantic Charters was in compliance with applicable regulations and
standards by carrying out PVIs and PIs.
Prior to the accident, Atlantic Charters had been on a 3-year surveillance cycle.
Aviation Investigation Report A14A0067 | 29
The TSB reviewed the surveillance activities carried out by TC and the company’s responses
for the 3 years preceding the occurrence. During this period, TC carried out 2 PVIs and 1 PI,
none of which examined aircraft weight and balance or continuing airworthiness.
In June 2011, TC carried out a PVI of Atlantic Charters on the operational control described
in the approved COM. The inspection identified 1 finding: the COM outlined a procedure
which had been cancelled by Advisory Circular 700-018, which had come into effect 13 days
before the inspection. 55 Atlantic Charters submitted a corrective action plan which was
accepted by TC in August 2011.
In February 2012, TC carried out a PVI of Atlantic Charters focused on quality assurance for
air operations maintenance. The inspection identified 2 findings, which included items such
as audit reports not available, technical records not available at the time of the inspection,
and missing personnel and training records. Atlantic Charters submitted a corrective action
plan which was accepted by TC in November 2012. Atlantic Charters’ corrective action plan
indicated that the records had been lost in a house fire.
In June 2012, TC carried out a PI of Atlantic Charters in order to verify compliance with
regulatory requirements. The inspection involved an off-site file review, and familiarization
with the company’s training program and aircraft equipment requirements. The PI identified
1 finding: the COM had 7 sections which no longer met the Commercial Air Services Standards.
Atlantic Charters submitted a corrective action plan which was accepted by TC in August
2012.
1.18.8
Office of the Auditor General report
In the spring of 2012, the Office of the Auditor General (OAG) 56 published the report of an
audit it conducted to determine whether TC has adequately managed the risks associated
with overseeing its civil aviation safety program.
The OAG report issued recommendations with respect to the number of surveillance
activities conducted, the manner in which surveillance was conducted and documented, and
management oversight of surveillance activities. The report did not comment on the focus of
surveillance activities except to note that in moving to SMS, the role of inspectors was
changing from being auditors of regulatory compliance to taking on the role of system
evaluators while conducting traditional audits as necessary.
55
Advisory Circular (AC) No. 700-018, Flight Crew Member Qualifications - Sections 702.65 and
703.88 of the CARs [Canadian Aviation Regulations] - List of Approved and Cancelled Groupings
for Recurrent PPC [pilot proficiency check] Purposes of Aeroplanes Operating Pursuant to
Subparts 702 and 703 of the CARs.
56
Office of the Auditor General of Canada, Report of the Auditor General of Canada to the House of
Commons, Spring 2012, Chapter 5.
30| Transportation Safety Board of Canada
1.18.9
Organizational safety culture
According to the International Civil Aviation Organization (ICAO), “Organizational culture
sets the boundaries for accepted executive and operational performance by establishing the
norms and limits […]” and “[…] provides a cornerstone for managerial and employee
decision making.” 57 Culture is deeply ingrained, and its impact on safety may not be readily
apparent to those working within those cultures.
One of the largest influences on safety culture is management commitment and style. ICAO
has described the role of management in creating a positive organizational safety culture as
follows:
Those in the best position to effect accident prevention by eliminating
unacceptable risks are those who can introduce changes in the organization,
its structure, corporate culture, policies and procedures, etc. No one is in a
better position to produce these changes than management. 58
Organizations must strike a balance between safety and production by managing risks
present in their operation. The challenge for an organization is to operate efficiently while
minimizing safety risks. The reality within many organizations is that production and
operational concerns may at times seem more pressing since they are more measurable and
provide immediate feedback in terms of results. Therefore, in the minds of decision-makers,
operational concerns may be more salient than concerns dealing with safety. In this context,
organizations may unwittingly introduce risk into their operations.
Organizations differ considerably in the level of risk they tolerate within their operations.
Organizations that take proactive steps to identify and mitigate risks are considered to have
positive safety cultures, while other organizations with poor safety cultures knowingly or
unknowingly operate with higher levels of risk. An organization that operates with
significant risk faces a greater potential for an accident.
The traditional approach to safety management is based on compliance with regulations and
a reactive response to incidents and accidents. Although compliance with safety regulations
is fundamental to the development of sound safety practices, organizations that simply
comply with the standards set by the regulations are not well situated to identify emerging
safety problems. According to the ICAO Safety Management Manual:
As global aviation activity and complexity continue to grow, […] traditional
methods of managing safety to an acceptable level [become] less effective and
57
International Civil Aviation Organization, Document 9859, Safety Management Manual (SMM),
Third Edition, 2013, Chapter 2, paragraph 2.6.5.
58
International Civil Aviation Organization (ICAO), Document 9683, Human Factors Training Manual
(2008), cited in: ICAO, Document 9824, Human Factors Guidelines for Aircraft Maintenance Manual,
First Edition, 2003, Chapter 1, paragraph 1.4.4.
Aviation Investigation Report A14A0067 | 31
efficient. Different, evolved methods of understanding and managing safety
are necessary. 59
As summarized in TSB Aviation Investigation Report A07A0134,
Modern safety management principles promote a proactive search for
hazards, identification of risks, and the best defences to reduce risk to an
acceptable level. These principles must be embedded within an organization’s
management system so that safety policies, planning, procedures, and
performance measurement are integrated into day-to-day operations.
1.18.10 TSB Watchlist
The Watchlist is a list of issues posing the greatest risk to Canada’s transportation system;
the TSB publishes it to focus the attention of industry and regulators on the problems that
need addressing today.
1.18.10.1
Approach-and-landing accidents are a TSB 2014 Watchlist issue
As this occurrence demonstrates, landing accidents continue to occur at Canadian airports
representing a significant risk to the safety of air transportation.
1.18.10.2
Safety management and oversight are a TSB 2014 Watchlist issue
Transportation companies have a responsibility to manage safety risks in their operations.
The TSB urges TC to implement regulations requiring all operators to have formal safety
management processes, and for TC to oversee these processes.
When companies are unable to effectively manage safety, TC must not only intervene, but do
so in a manner that succeeds in changing unsafe operating practices.
1.19 Useful or effective investigation techniques
Not applicable.
59
International Civil Aviation Organization, Document 9859, Safety Management Manual (SMM),
Second Edition, 2009, Chapter 3, paragraph 3.6.1.
32| Transportation Safety Board of Canada
2.0 Analysis
There was no indication of an aircraft component or system failure during the occurrence
flight and fatigue was not considered a factor. The analysis will focus on possible scenarios
as to why the serviceable aircraft was inadvertently flown into the ground, the culture and
practices of the company, and Transport Canada (TC) oversight.
2.1
Weather
During the initial telephone conversations with Ambulance New Brunswick (ANB),
Atlantic Charters indicated a concern with the weather for the return flight to Grand Manan,
New Brunswick. A post-occurrence assessment by Environment Canada found that, at the
time of the accident, the weather was most likely dense fog with extremely limited visibility.
The first approach followed a constant descent angle consistent with the area navigation
(RNAV) approach for the runway. Had the aircraft continued on this profile, it would have
been in a position to land on Runway 24. However, the aircraft levelled off at 500 feet above
sea level (asl), and remained at that altitude for at least 40 seconds, likely because the captain
did not see the required visual references. At 0.26 nautical mile (nm) from the runway, for
the aircraft to touch down at the threshold, it would have required a descent angle much
steeper than the approach profile normally flown for a visual approach. This is likely why a
go-around was carried out.
Following the go-around, the captain flew about 7 nm downwind from the threshold before
intercepting the final approach at 1000 feet asl. About 3 minutes later, the aircraft started to
descend, then levelled off at 500 feet asl for 24 seconds, which is inconsistent with what
would be done during a visual approach. The second approach was flown with the landing
lights and the aircraft strobes off, which is in accordance with the published warnings when
flying through fog or cloud. Shortly after the accident, the first responders could not see the
aircraft due to the limited visibility. Therefore, it is likely that the weather at the time of both
approaches was such that the captain could not see the necessary visual references to ensure
a safe landing.
2.2
Controlled flight into terrain
This occurrence involved several of the most common factors associated with controlled
flight into terrain (CFIT) accidents. In particular, it involved a non-precision instrument
approach conducted at night over a dimly lit, sparsely populated area, and with limited
visibility in fog.
Under the conditions present at the time of the accident, the road would likely have been
indistinguishable from the surrounding terrain.
The following scenarios were considered:
Aviation Investigation Report A14A0067 | 33
2.2.1
Scenario 1
On the second approach, the descent was initiated at 0.56 nm from the threshold, even
though during the first approach it was not possible to see the runway until the aircraft was
less than 0.26 nm from the threshold. Therefore, it is possible that the captain initiated the
second descent to get under the weather in an attempt to see the runway lights early enough
to ensure a safe landing.
The contact across the road is consistent with the captain not seeing the required visual
references to ensure a safe landing.
2.2.2
Scenario 2
One of the most common causes of CFIT accidents is a loss of situational awareness. Visual
illusions contribute to the loss of situational awareness, and these illusions are caused by the
absence of visual references, which cause the pilot to lose depth perception. At the time of
the accident, the weather and terrain conditions were conducive to a visual illusion, which
would create the illusion that the aircraft was too high.
If the captain believed that the aircraft was too high, then it is possible that a steep rate of
descent was initiated. The rate of descent from the last radar point was calculated to have
been about 1215 fpm, which is steeper than the typical descent path.
The contact across the road is consistent with the late recognition of the flattening of the
runway and the captain not seeing the required visual references to ensure a safe landing.
This is typical of an approach-and-landing accident resulting from visual illusions.
Therefore, it is possible that the captain succumbed to a visual illusion during the descent to
Runway 24.
It could not be determined which of these scenarios was more likely to have been the cause
of the accident; however, not seeing the required visual references to ensure a safe landing is
the significant factor in both scenarios. The first officer (FO) was focused on locating the
runway and was unaware of the captain’s actions during the descent.
2.3
Crew resource management
Because most of Atlantic Charters’ flying operations were carried out with a single pilot, the
company did not provide any formal crew resource management (CRM) training, nor was
such training required by regulation. Research has shown that CRM-trained crews operate
more effectively as teams and cope more effectively with non-routine situations than crews
without CRM training.
A key element of successful CRM is effective communication. Since only the captain was
wearing a headset, communication between the 2 pilots would have been limited to handgesturing and/or yelling above the ambient noise, neither of which are effective ways to
communicate. The captain chose to continue with the flight even after realizing that there
34| Transportation Safety Board of Canada
was only 1 headset available for the 2 pilots. The captain typically operated as a single pilot;
therefore, it is likely that the captain did not consider the need to communicate effectively
with the FO to be significant enough to obtain a second headset. Because the captain and FO
could not communicate effectively with each other, the FO would not have been aware of the
captain’s intentions nor of the captain’s radio communications. Because of this ineffective
communication, shared situational awareness between the 2 pilots was reduced. If crew
members are unable to communicate effectively, then they are less likely to anticipate and
coordinate their actions, which could jeopardize the safety of flight.
CRM requires practice and reinforcement to be effective. If CRM training is not provided,
used and continuously fostered, then there is a risk that pilots will be unprepared to avoid or
mitigate crew errors encountered during flight.
2.4
Weight and balance
The investigation could not determine if the aircraft was within its weight and balance
limitations because the aircraft’s actual basic empty weight could not be confirmed, and
there were a number of undocumented discrepancies in the recorded weights. If an actual
weight and balance cannot be determined, then the aircraft may be operating outside of its
approved limits, which could affect the aircraft’s performance characteristics.
The company’s pre-computed weight and balance form did not include a line item to
indicate nacelle fuel. If pre-computed weight and balance forms do not include standard
items, then it increases the likelihood of omissions in weight and balance calculations, which
increases the risk of inadvertently overloading or incorrectly loading the aircraft.
2.5
Elementary work
A company pilot had installed the air ambulance system the day before the occurrence.
Because the company’s maintenance control manual (MCM) did not include this as
elementary work, no company employee would have been approved to carry out this task. If
organizations carry out a maintenance task that they consider to be elementary work and the
task is not approved as elementary work, then there is a risk that the aircraft will not
conform to its type design, which could jeopardize the safety of flight.
The individual who installed the air ambulance system had not received any approved
training to do so. The design of the air ambulance system is such that it requires all adapter
plate bolts to be installed correctly to ensure that the system meets airworthiness standards.
Post-occurrence examination revealed that 4 of the 16 bolts which secure the cross tubes to
the plates had not been tightened, and that the adapter unit had moved forward and
partially separated from the seat tracks. If individuals are performing maintenance tasks for
which they have not received approved training, then there is a risk that the task will not be
performed in accordance with the manufacturer’s instructions. If components are not
installed in accordance with the manufacturer’s instructions, then occupants are at a greater
risk of injury or death during an incident or accident if these components are not properly
secured.
Aviation Investigation Report A14A0067 | 35
According to regulations, when elementary work is performed, the task must be recorded in
the aircraft’s journey log. Even though the occurrence aircraft had been operated in both
passenger and MEDEVAC configurations and Atlantic Charters’ pilots had performed
elementary work on the aircraft, there were no entries in the aircraft journey log. If
organizations do not record when maintenance is carried out, then the proper completion of
tasks cannot be confirmed, and there is a risk that the aircraft will not conform to its type
design, which jeopardizes the safety of flight.
2.6
Airworthiness
An aircraft is considered airworthy when it is maintained in accordance with the limitations
applicable to its type design.
A supplemental type certificate (STC) is an approved change to the aircraft’s type design
and, therefore, all STC information that supersedes or supplements the basic aircraft flight
manual (AFM) and aircraft maintenance manual (AMM) must be complied with to ensure
that the aircraft is airworthy. Atlantic Charters had installed the air ambulance system in the
occurrence aircraft. There was no record of TC having approved this STC for installation in
the occurrence aircraft; there was no record of the installation in any of the occurrence
aircraft’s technical documents; and Atlantic Charters could not provide any of the required
STC supporting documentation. If an aircraft is modified without regulatory approval and
without supporting documentation, then the aircraft is not in compliance with all applicable
standards of airworthiness, which could jeopardize the safety of flight.
Prior to importation into Canada, the occurrence aircraft had been modified to increase its
gross take-off weight in accordance with an STC. Post-occurrence examination revealed that
the aircraft had been modified such that it was no longer in compliance with the STC
changes, and that these changes were not recorded in the aircraft’s technical records. If an
operator undertakes unapproved changes to an STC, then there is a risk that the aircraft will
not be airworthy, which could jeopardize the safety of flight.
2.7
Company safety culture
According to the International Civil Aviation Organization (ICAO), management is in the
best position to create a positive organizational safety culture. To accomplish this,
management needs to develop and foster an environment where the organization does more
than simply comply with the regulations. Management can make the necessary changes to
company structure, culture, policies and procedures to ensure that the company pro-actively
influences accident prevention by eliminating unacceptable risks.
Since the owner of Atlantic Charters was also the accountable executive and held all of the
management positions, the owner would have been responsible for fostering the manner in
which safety was managed and for establishing the company’s safety culture.
An organization’s culture sets the boundaries for what is considered acceptable performance.
These norms and limits are what managers and employees use when making decisions.
36| Transportation Safety Board of Canada
Atlantic Charters did not provide supporting documentation which explained the
discrepancies in the weight and balance information. Maintenance tasks were being carried
out without the approved training, and much of this work was not being recorded in the
aircraft’s journey log. By not complying with the requirements of the STCs, the company was
not ensuring that the aircraft met airworthiness standards. Because these practices had been
ongoing, they would have been considered normal company practice and, therefore, a
reflection of what management considered acceptable performance, i.e., the company’s
safety culture.
Organizations respond to operational pressures because these priorities are clearly
measurable and provide immediate feedback. Under these pressures, concerns dealing with
safety may become less prominent, and organizations may unwittingly introduce risk into
their operations.
The traditional approach to safety management has been shown to be ineffective in
identifying potential hazards and associated risks. Organizations that comply with the
minimum standards and manage safety using the traditional approach are not well situated
to identify emerging safety problems. In today’s aviation environment, modern safety
management practices must be embedded within an organization’s management system, so
that the management of safety is integrated into day-to-day operations. If organizations do
not use modern safety management practices, then there is an increased risk that hazards
will not be identified and risks mitigated.
2.8
Transport Canada oversight
In the 3 years preceding this occurrence, TC’s surveillance activities had not identified the
discrepancies in the company’s operating practices related to weight and balance and
continuing airworthiness. Consequently, these practices persisted.
While a move toward safety management systems (SMS) has great potential to enhance
safety by encouraging operators to put in place a systemic approach to proactively manage
safety, the regulator must also have assurances of compliance with existing regulations. The
current approach to regulatory oversight, which focuses on an operator’s processes, is at risk
of failing to identify and address unsafe practices and conditions. If TC does not adopt a
balanced approach that combines thorough inspections for compliance with audits of safety
management processes, unsafe operating practices may not be identified, thereby increasing
the risk of accidents.
2.9
Ambulance New Brunswick
ANB’s AirCare contract clearly outlined the requirements for crew experience and crew
coordination; however, the most recent Atlantic Charters contract provided no such
requirements. The wording in both the Atlantic Charters and the AirCare contracts had been
in place before ANB’s existence. For many years, Atlantic Charters had been providing
MEDEVAC services with a single-pilot operation. However, under Atlantic Charters’ latest
contract, ANB had an expectation that the operation would be safer because there would be
Aviation Investigation Report A14A0067 | 37
an additional pilot in the cockpit. Because of ANB’s limited aviation knowledge and
experience, it relied on its service providers to ensure regulatory compliance. ANB was
unfamiliar with what was meant by standard industry terms such as challenge-and-response
and CRM and, therefore, was unaware of the importance of these practices for the
management of safety during flight. If organizations contract aviation companies to provide
a service with which the organizations are not familiar, then there is an increased risk that
safety deficiencies will go unnoticed, which could jeopardize the safety of the organizations’
employees.
ANB required Atlantic Charters to provide semi-annual flight safety training to paramedics
in lieu of providing a safety briefing prior to takeoff at the start of each flight. However, this
practice does not meet the regulatory requirements of the pilot-in-command ensuring that
passengers are given a safety briefing prior to takeoff on the first flight of the day. If
passengers are not provided with a regular safety briefing, then there is an increased risk
that they will not use the available safety equipment or be able to perform necessary
emergency functions in a timely manner to avoid injury or death.
2.10 Survival aspects
2.10.1
Seatbelts
The paramedic’s seatbelt was found fastened and adjusted in such a manner that it would
not have fit around the paramedic’s waist, and there was no indication that its state was
altered after the aircraft came to rest. The investigation determined that, at the time of the
accident, the paramedic was not wearing the seatbelt.
If passengers are not properly restrained, then there is an increased risk of injuries and death
to those passengers and the other occupants in the event of an accident.
2.10.2
Cargo restraints
Post-accident examination revealed that tie-down straps were not used, and medical
equipment was found loose within the cabin.
If carry-on baggage, equipment or cargo is not restrained, then occupants are at a greater risk
of injury or death if these items become projectiles in a crash.
If carry-on baggage, equipment or cargo is not restrained, then there is an increased risk that
the occupants’ access to normal and emergency exits, and to safety equipment, will be
completely or partially blocked.
2.11 Area navigation approach
The captain had cancelled the instrument flight rules (IFR) flight plan when approximately
20 nm from Grand Manan. The weather conditions at the time of the accident were such that
visual reference to the runway would have been unlikely. The radar data indicate that the
aircraft was aligned with the runway. Runway 24 was equipped with an RNAV instrument
38| Transportation Safety Board of Canada
approach and the captain had reported passing the EMGAM final approach fix. Therefore,
for the captain to navigate in such a way that the aircraft was aligned with the runway, it is
likely that the GPS was being used to carry out an RNAV approach. When operating under
CARs subpart 703, as during the occurrence flight, the company was not authorized to
conduct GPS approaches.
In both approaches, the aircraft descended about 350 feet below the minimum descent
altitude (MDA) and levelled off at 250 feet above ground level (agl). The MDA ensures
adequate terrain clearance for an aircraft inside the final approach fix until the crew can
visually acquire the runway environment. If pilots continue an approach below published
MDAs without seeing the required visual references, then there is a risk of collision with
terrain and/or obstacles.
No approach charts were found on board the aircraft, and the GPS database was out of date.
Having a current database is important because it ensures that all data are up to date,
including obstacles and waypoints. If current charts and databases are not used, then
navigational accuracy and obstacle avoidance cannot be assured.
TC requires that CARs subpart 703 companies on revenue flights have the Operations
Specification (OPS Spec) 100 in order to conduct GPS approaches. Having the OPS Spec
ensures that there is adequate ground and flight training provided and demonstration of
competency when using a GPS. If GPS approaches are conducted without the approved OPS
Spec, then there is a risk that the pilot’s training and knowledge will be inadequate to safely
conduct the approach.
2.12 Medical reporting
The captain’s medical status was being followed by a general practitioner who was also the
civil aviation medical examiner (CAME). The captain had 2 medical events which should
have been reported to TC. However, no such reports were made by the captain, the
attending physician, or the captain’s general practitioner. If medical symptoms/conditions
are not reported to TC, then it negates some of the safety benefit of examinations and
increases the risk that pilots will continue to fly with a medical condition that poses a risk to
safety.
Aviation Investigation Report A14A0067 | 39
3.0 Findings
3.1
Findings as to causes and contributing factors
1.
The captain commenced the flight with only a single headset on board, thereby
preventing a shared situational awareness among the crew.
2.
It is likely that the weather at the time of both approaches was such that the captain
could not see the required visual references to ensure a safe landing.
3.
The first officer was focused on locating the runway and was unaware of the
captain’s actions during the descent.
4.
For undetermined reasons, the captain initiated a steep descent 0.56 nautical mile
from the threshold, which went uncorrected until a point from which it was too late
to recover.
5.
The aircraft contacted a road 0.25 nautical mile short of the runway and struck
terrain.
6.
The paramedic was not wearing a seatbelt and was not restrained during the impact
sequence.
3.2
Findings as to risk
1.
If cockpit data recordings are not available to an investigation, then the identification
and communication of safety deficiencies to advance transportation safety may be
precluded.
2.
If crew members are unable to communicate effectively, then they are less likely to
anticipate and coordinate their actions, which could jeopardize the safety of flight.
3.
If crew resource management training is not provided, used and continuously
fostered, then there is a risk that pilots will be unprepared to avoid or mitigate crew
errors encountered during flight.
4.
If an actual weight and balance cannot be determined, then the aircraft may be
operating outside of its approved limits, which could affect the aircraft’s performance
characteristics.
5.
If pre-computed weight and balance forms do not include standard items, then it
increases the likelihood of omissions in weight and balance calculations, which
increases the risk of inadvertently overloading or incorrectly loading the aircraft.
6.
If organizations carry out a maintenance task that they consider to be elementary
work and the task is not approved as an elementary work task, then there is a risk
40| Transportation Safety Board of Canada
that the aircraft will not conform to its type design, which could jeopardize the safety
of flight.
7.
If individuals are performing maintenance tasks for which they have not received
approved training, then there is a risk that the task will not be performed in
accordance with the manufacturer’s instructions.
8.
If components are not installed in accordance with the manufacturer’s instructions,
then occupants are at a greater risk of injury or death during an incident or accident if
these components are not properly secured.
9.
If organizations do not record when maintenance is carried out, then the proper
completion of tasks cannot be confirmed, and there is a risk that the aircraft will not
conform to its type design, which could jeopardize the safety of flight.
10.
If an aircraft is modified without regulatory approval and without supporting
documentation, then the aircraft is not in compliance with all applicable standards of
airworthiness, which could jeopardize the safety of flight.
11.
If an operator undertakes unapproved changes to a supplemental type certificate,
then there is a risk that the aircraft will not be airworthy, which could jeopardize the
safety of flight.
12.
If organizations do not use modern safety management practices, then there is an
increased risk that hazards will not be identified and risks mitigated.
13.
If Transport Canada does not adopt a balanced approach that combines thorough
inspections for compliance with audits of safety management processes, unsafe
operating practices may not be identified, thereby increasing the risk of accidents.
14.
If organizations contract aviation companies to provide a service with which the
organizations are not familiar, then there is an increased risk that safety deficiencies
will go unnoticed, which could jeopardize the safety of the organizations’ employees.
15.
If passengers are not provided with a regular safety briefing, then there is an
increased risk that they will not use the available safety equipment or be able to
perform necessary emergency functions in a timely manner to avoid injury or death.
16.
If passengers are not properly restrained, then there is an increased risk of injuries
and death to those passengers and the other occupants in the event of an accident.
17.
If carry-on baggage, equipment or cargo is not restrained, then occupants are at a
greater risk of injury or death if these items become projectiles in a crash.
18.
If carry-on baggage, equipment or cargo is not restrained, then there is an increased
risk that the occupants’ access to normal and emergency exits, and to safety
equipment, will be completely or partially blocked.
Aviation Investigation Report A14A0067 | 41
19.
If pilots continue an approach below published minimum descent altitudes without
seeing the required visual references, then there is a risk of collision with terrain
and/or obstacles.
20.
If current charts and databases are not used, then navigational accuracy and obstacle
avoidance cannot be assured.
21.
If GPS (global positioning system) approaches are conducted without the approved
Operations Specification, then there is a risk that the pilot’s training and knowledge
will be inadequate to safely conduct the approach.
22.
If medical symptoms/conditions are not reported to Transport Canada, then it
negates some of the safety benefit of examinations and increases the risk that pilots
will continue to fly with a medical condition that poses a risk to safety.
3.3
Other findings
1.
The pilot who installed the air ambulance system did not have approved training, nor
was the pilot approved to carry out elementary work.
2.
Atlantic Charters was not approved to install the air ambulance system as an
elementary work task.
3.
Atlantic Charters’ pre-computed weight and balance form did not include a line item
to indicate nacelle fuel.
4.
The semi-annual safety training offered to paramedics in lieu of safety briefings prior
to flights did not meet regulatory requirements.
This report concludes the Transportation Safety Board’s investigation into this occurrence. The Board
authorized the release of this report on 10 February 2016. It was officially released on 12 February
2016.
Visit the Transportation Safety Board’s website (www.tsb.gc.ca) for information about the TSB and
its products and services. You will also find the Watchlist, which identifies the transportation safety
issues that pose the greatest risk to Canadians. In each case, the TSB has found that actions taken to
date are inadequate, and that industry and regulators need to take additional concrete measures to
eliminate the risks.
42| Transportation Safety Board of Canada
Appendices
Appendix A – Grand Manan area navigation (RNAV) global navigation
satellite system (GNSS) approach to Runway (RWY) 24
Not for navigation
Source: NAV CANADA, Canada Air Pilot
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising