STM32F410x8 STM32F410xB ARM -Cortex -M4 32b MCU+FPU, 125 DMIPS, 128KB Flash,

STM32F410x8 STM32F410xB ARM -Cortex -M4 32b MCU+FPU, 125 DMIPS, 128KB Flash,
STM32F410x8 STM32F410xB
ARM®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, 128KB Flash,
32KB RAM, 9 TIMs, 1 ADC, 9 comm. interfaces
Datasheet - production data
Features
• Dynamic Efficiency Line with BAM (Batch
Acquisition Mode)
®
®
• Core: ARM 32-bit Cortex -M4 CPU with
FPU, Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 100 MHz,
memory protection unit,
125 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1),
and DSP instructions
• Memories
– Up to 128 Kbytes of Flash memory
– 512 bytes of OTP memory
– 32 Kbytes of SRAM
• Clock, reset and supply management
– 1.7 V to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
• Power consumption
– Run: 89 µA/MHz (peripheral off)
– Stop (Flash in Stop mode, fast wakeup
time): 40 µA Typ @ 25 °C; 49 µA max
@25 °C
– Stop (Flash in Deep power down mode,
fast wakeup time): down to 6 µA @ 25 °C;
14 µA max @25 °C
– Standby: 2.4 µA @25 °C / 1.7 V without
RTC; 12 µA @85 °C @1.7 V
– VBAT supply for RTC: 1 µA @25 °C
• 1×12-bit, 2.4 MSPS ADC: up to 16 channels
• 1×12-bit D/A converter
• General-purpose DMA: 16-stream DMA
controllers with FIFOs and burst support
• Up to 9 timers
– One 16-bit advanced motor-control timer
– One low-power timer (available in Stop
December 2015
This is information on a product in full production.
WLCSP36
(2.553 x 2.579 mm)
LQFP64 (10 × 10 mm)
UFQFPN48
(7 × 7 mm)
mode)
– Three 16-bit general purpose timers
– One 32-bit timer up to 100 MHz with up to
four IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
– Two watchdog timers (independent
window)
– SysTick timer.
• Debug mode
– Serial wire debug (SWD) & JTAG
interfaces
– Cortex®-M4 Embedded Trace Macrocell™
• Up to 50 I/O ports with interrupt capability
– Up to 45 fast I/Os up to 100 MHz
– Up to 49 5 V-tolerant I/Os
• Up to 9 communication interfaces
– Up to 3x I2C interfaces (SMBus/PMBus)
including 1x I2C Fast-mode at 1 MHz
– Up to 3 USARTs (2 x 12.5 Mbit/s,
1 x 6.25 Mbit/s), ISO 7816 interface, LIN,
IrDA, modem control)
– Up to 3 SPI/I2Ss (up to 50 Mbit/s SPI or
I2S audio protocol)
• True random number generator
• CRC calculation unit
• 96-bit unique ID
• RTC: subsecond accuracy, hardware calendar
®
• All packages are ECOPACK 2
Table 1. Device summary
Reference
Part number
STM32F410x8
STM32F410T8, STM32F410C8,
STM32F410R8
STM32F410xB
STM32F410TB, STM32F410CB,
STM32F410RB
DocID028094 Rev 2
1/131
www.st.com
Contents
STM32F410x8/B
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1
3
Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 15
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 15
3.3
Batch Acquisition mode (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 16
3.7
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 18
3.11
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.12
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.13
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.15
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.16
3.15.1
Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.15.2
Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.16.1
2/131
Internal power supply supervisor availability . . . . . . . . . . . . . . . . . . . . . 21
3.17
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 22
3.18
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.19
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.20
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.20.1
Advanced-control timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.20.2
General-purpose timers (TIM5, TIM9 and TIM11) . . . . . . . . . . . . . . . . . 25
3.20.3
Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DocID028094 Rev 2
STM32F410x8/B
Contents
3.20.4
Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20.5
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20.6
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.21
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.22
Universal synchronous/asynchronous receiver transmitters (USART) . . 27
3.23
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.24
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.25
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.26
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.27
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.28
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.29
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.30
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.31
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2
VCAP_1 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.3
Operating conditions at power-up/power-down (regulator ON) . . . . . . . 53
6.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 53
6.3.5
Embedded reset and power control block characteristics . . . . . . . . . . . 54
DocID028094 Rev 2
3/131
5
Contents
7
STM32F410x8/B
6.3.6
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.7
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.11
PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 83
6.3.12
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.14
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 87
6.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.18
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.20
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.23
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.24
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.25
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1
7.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.1.1
WLCSP36 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1.2
UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.3
LQFP64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.1
8
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Appendix A Recommendations when using the internal reset OFF . . . . . . . . 127
A.1
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4/131
B.1
Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.2
Batch Acquisition Mode (BAM) example . . . . . . . . . . . . . . . . . . . . . . . . . 129
DocID028094 Rev 2
STM32F410x8/B
9
Contents
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DocID028094 Rev 2
5/131
5
List of tables
STM32F410x8/B
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
6/131
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F410x8/B features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 21
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32F410x8/B pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32F410x8/B register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 51
VCAP_1 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 53
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 53
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V . . . 58
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V . . 59
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V. . . . . . . . . . . . . . . 60
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V. . . . . . . . . . . . . . . 61
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V . . . . . 62
Typical and maximum current consumption in Sleep mode - VDD = 3.6 V . . . . . . . . . . . . . 63
Typical and maximum current consumption in Sleep mode - VDD = 1.7 V . . . . . . . . . . . . . 65
Typical and maximum current consumptions in Stop mode - VDD = 1.7 V . . . . . . . . . . . . . 66
Typical and maximum current consumption in Stop mode - VDD=3.6 V. . . . . . . . . . . . . . . 67
Typical and maximum current consumption in Standby mode - VDD= 1.7 V . . . . . . . . . . . 67
Typical and maximum current consumption in Standby mode - VDD= 3.6 V . . . . . . . . . . . 67
Typical and maximum current consumptions in VBAT mode
(LSE and RTC ON, LSE low- drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DocID028094 Rev 2
STM32F410x8/B
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
List of tables
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMI characteristics for LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . 97
SCL frequency (fPCLK1= 42 MHz.,VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . 98
FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 108
ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 108
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
WLCSP36 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 118
UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data. . . . . . . . . 123
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 127
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DocID028094 Rev 2
7/131
7
List of figures
STM32F410x8/B
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
8/131
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STM32F410x8/B block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 20
LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
WLCSP36 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Typical VBAT current consumption (LSE and RTC ON,
in low-drive mode and RTC ON). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical VBAT current consumption (LSE and RTC ON,
LSE in high-drive mode and RTC ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Low-power mode wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
FT/TC I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Power supply and reference decoupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
WLCSP36 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DocID028094 Rev 2
STM32F410x8/B
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
List of figures
UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 122
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Sensor hub application example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Sensor hub application example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Batch Acquisition Mode (BAM) example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DocID028094 Rev 2
9/131
9
Introduction
1
STM32F410x8/B
Introduction
This datasheet provides the description of the STM32F410x8/B microcontrollers.
For information on the Cortex-M4 core, please refer to the Cortex-M4 programming
manual (PM0214) available from www.st.com.
10/131
DocID028094 Rev 2
STM32F410x8/B
2
Description
Description
The STM32F410X8/B devices are based on the high-performance ARM® Cortex® -M4 32bit RISC core operating at a frequency of up to 100 MHz. Their Cortex®-M4 core features a
Floating point unit (FPU) single precision which supports all ARM single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and
a memory protection unit (MPU) which enhances application security.
The STM32F410X8/B belong to the STM32 Dynamic Efficiency™ product line (with
products combining power efficiency, performance and integration) while adding a new
innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power
consumption during data batching.
The STM32F410X8/B incorporate high-speed embedded memories (up to 128 Kbytes of
Flash memory, 32 Kbytes of SRAM), and an extensive range of enhanced I/Os and
peripherals connected to two APB buses, one AHB bus and a 32-bit multi-AHB bus matrix.
All devices offer one 12-bit ADC, one 12-bit DAC, a low-power RTC, three general-purpose
16-bit timers, one PWM timer for motor control, one general-purpose 32-bit timers and one
16-bit low-power timer. They also feature standard and advanced communication interfaces.
•
Up to three I2Cs
•
Three SPIs
•
Three I2Ss
To achieve audio class accuracy, the I2S peripherals can be clocked via the internal
PLL or via an external clock to allow synchronization.
•
Three USARTs.
The STM32F410x8/B are offered in 3 packages ranging from 36 to 64 pins. The set of
available peripherals depends on the selected package. Refer to Table 2: STM32F410x8/B
features and peripheral counts for the peripherals available for each part number.
The STM32F410x8/B operates in the –40 to +105 °C temperature range from a 1.7 (PDR
OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design
of low-power applications.
These features make the STM32F410x8/B microcontrollers suitable for a wide range of
applications:
•
Motor drive and application control
•
Medical equipment
•
Industrial applications: PLC, inverters, circuit breakers
•
Printers, and scanners
•
Alarm systems, video intercom, and HVAC
•
Home audio appliances
•
Mobile phone sensor hub
Figure 2 shows the general block diagram of the devices.
DocID028094 Rev 2
11/131
30
Description
STM32F410x8/B
Table 2. STM32F410x8/B features and peripheral counts
STM32F410 STM32F410 STM32F410 STM32F410 STM32F410 STM32F410
T8
TB
C8
CB
R8
RB
Peripherals
Flash memory in Kbytes
64
128
64
128
SRAM in Kbytes System
Timers
4
Lowpower
timer
1
Advanced
-control
1
Random number generator
Communication
interfaces
1
SPI/ I
1
3
I2C
2
3
USART
2
3
GPIOs
12-bit ADC
Number of channels
128
32
Generalpurpose
2S
64
23
36
50
1
4
10
12-bit DAC
Number of channels
16
1
1
Maximum CPU frequency
100 MHz
Operating voltage
1.7 to 3.6 V
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Operating temperatures
Package
12/131
Junction temperature: –40
to + 110 °C
WLCSP36
Junction temperature: –40 to + 125 °C
UFQFPN48
DocID028094 Rev 2
LQFP64
STM32F410x8/B
2.1
Description
Compatibility with STM32F4 series
The STM32F410x8/B are fully software and feature compatible with the STM32F4 series
(STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)
The STM32F410x8/B can be used as drop-in replacement of the other STM32F4 products
but some slight changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP64 package
966
9''
966
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9&$3B
3&
3&
3&
3$
3$
3%
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3&
3&
3&
3$
3$
3%
3%
9''
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9&$3B
9''
966
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
9''
966
3%
3%
9&$3B
966
9''
3%
9&$3B
9''
3%
3%
670)[%
3%
3%
9&$3B
966
9''
3'
670)[
3&
3&
3&
3$
3$
3%
3%
3'
670)670)OLQH
9&$3LQFUHDVHGWR—I
9&$3LQFUHDVHGWR—I
(65ŸRUEHORZ
(65ŸRUEHORZ
9''
966
9''
966
9''
06Y9
1. For STM32F410xB devices, pin 54 is bonded to PB11 instead of PD2.
DocID028094 Rev 2
13/131
30
Description
STM32F410x8/B
Figure 2. STM32F410x8/B block diagram
-7567-7',
-7&.6:&/.
-7'26:'-7'2
75$&(&/.
75$&('>@
-7$*6:
038)38
(70
19,&
,%86
$50&RUWH[0
&RUWH[0
0+]
.%65$0
'%86
$+%EXVPDWUL[60
$&&(/
&$&+(
6%86
.%)ODVK
PHPRU\
51*
3RZHUPDQDJPW
9''
9ROWDJH
UHJXODWRU
WR9
6WUHDPV
'0$
),)2
$+%0+]
6WUHDPV
'0$
),)2
#9''$
3$>@
#9''
5& +6
*3,23257$
3%>@
*3,23257%
*3,23257&
3+>@
*3,23257+
6XSSO\
VXSHUYLVLRQ
325
UHVHW
5& / 6
3&>@
9'' WR9
966
9&$3B
3253'5
%25
,QW
3 / /
39'
#9''
#9''$
;7$/26&
0+]
26&B,1
26&B287
:'*.
3:5
LQWHUIDFH
9%$7 WR9
#9
$+%3&/.
%$7
/6
;7$/N+]
57&
$:8
%DFNXSUHJLVWHU
/6
3&/.
+&/.
$3%&/.
$3%&/.
5HVHW
FORFN
0 $1
$*7
FRQWURO
9''$966$
1567
26&B,1
26&B287
$/$50B287
67$03
&5&
$)
'0$
'0$
(;7,7:.83
$+%
$3%
3:03:0
(75%.,1DV$)
$+%
$3%
7,0
E
FKDQQHOVDV$)
/37,0
E
FKDQQHOV&+2
,75DV$)
E
7,03:0
VPFDUG
7,0(5
FKDQQHODV$)
7,0
5;7;6&.
&76576DV$)
5;7;6&.DV$)
86$57
VPFDUG
LU'$
86$57
63,,6
026,6'0,626&.166
:6DV$)
63,,6
026,6'0,626&.166
:6DV$)
9''5()B$'&
DQDORJLQSXWV
8
6 $5 7 0 % S V
7HPSHUDWXUHVHQVRU
$'&
5;7;6&.
&76576DV$)
,)
63,6
026,0,626&.
166:60&.DV$)
,&60%86
6&/6'$60%$DV$)
,&60%86
6&/6'$60%$DV$)
::'*
E
VPFDUG
LU'$
86$57
E
$3%0+]PD[
7,0
$3%0+]
FKDQQHOVDV$)
LU'$
E
,&)060%86
6&/6'$60%$DV$)
#9''$
'$&
,7)
#9''$
'$&DV$)
06Y9
1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 100 MHz.
14/131
DocID028094 Rev 2
STM32F410x8/B
Functional overview
3
Functional overview
3.1
ARM® Cortex®-M4 with FPU core with embedded Flash and
SRAM
The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size
usually associated with 8- and 16-bit devices. The processor supports a set of DSP
instructions which allow efficient signal processing and complex algorithm execution. Its
single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F410x8/B devices are compatible with all ARM tools and software.
Figure 2 shows the general block diagram of the STM32F410x8/B.
Note:
Cortex®-M4 with FPU is binary compatible with Cortex®-M3.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 125 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 100 MHz.
3.3
Batch Acquisition mode (BAM)
The Batch acquisition mode allows enhanced power efficiency during data batching. It
enables data acquisition through any communication peripherals directly to memory using
the DMA in reduced power consumption as well as data processing while the rest of the
system is in low-power mode (including the flash and ART). For example in an audio
system, a smart combination of PDM audio sample acquisition and processing from the I2S
directly to RAM (flash and ART™ stopped) with the DMA using BAM followed by some very
short processing from flash allows to drastically reduce the power consumption of the
application. A dedicated application note (AN4515) describes how to implement the
STM32F410x8/B BAM to allow the best power efficiency.
DocID028094 Rev 2
15/131
30
Functional overview
3.4
STM32F410x8/B
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.5
Embedded Flash memory
The devices embed up to 128 Kbytes of Flash memory available for storing programs and
data, plus 512 bytes of OTP memory organized in 16 blocks which can be independently
locked.
To optimize the power consumption the Flash memory can also be switched off in Run or in
Sleep mode (see Section 3.18: Low-power modes).
Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between
power saving and startup time.
Before disabling the Flash, the code must be executed from the internal RAM.
3.6
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.7
Embedded SRAM
All devices embed 32 Kbytes of system SRAM which can be accessed (read/write) at CPU
clock speed with 0 wait states
16/131
DocID028094 Rev 2
STM32F410x8/B
3.8
Functional overview
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 3. Multi-AHB matrix
6
6
6
'0$B3
*3
'0$
'0$B0(0
'0$B0(0
'0$B3,
6EXV
6
*3
'0$
6
0 ,&2'(
0 '&2'(
$&&(/
6
'EXV
,EXV
$50
&RUWH[0
)ODVK
.%
0
65$0
.E\WHV
0
$+%
SHULSK
$3%
$3%
%XVPDWUL[6
06Y9
3.9
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
ADC
•
DAC.
DocID028094 Rev 2
17/131
30
Functional overview
3.10
STM32F410x8/B
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the
Cortex®-M4 with FPU.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.11
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 21 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 50 GPIOs can be connected
to the 16 external interrupt lines.
3.12
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the AHB bus, the high-speed APB (APB2) and
the low-speed APB (APB1) domains. The maximum frequency of the AHB bus and highspeed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB
domain is 50 MHz.
18/131
DocID028094 Rev 2
STM32F410x8/B
3.13
Functional overview
Boot modes
At startup, boot pins are used to select one out of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The bootloader is located in system memory. It is used to reprogram the Flash memory by
using the interfaces described in Table 3.
Refer to Table 9: STM32F410x8/B pin definitions) for the GPIOs available on the selected
package.
For more detailed information on the bootloader, refer to Application Note: AN2606,
STM32™ microcontroller system memory boot mode.
Table 3. Embedded bootloader interfaces
Package
USART1
WLCSP36
X
UFQFPN48
LQFP64
3.14
USART2
PA2/PA3
PA9/PA10
I2C1
I2C2
I2C4 FM+
SPI1
SPI3
X
PB10/PB3
PA15/PA5
/PB4/PB5
X
PB14/PB15
X
PA4/PA5/
PA6/PA7 PB12/PB13
/PC2/PC3
PB6/PB7
X
PB10/PB11
Power supply schemes
•
VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor
(POR/PDR) disabled, provided externally through VDD pins. Requires the use of an
external power supply supervisor connected to the VDD and PDR_ON pins.
•
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with
decoupling technique.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
DocID028094 Rev 2
19/131
30
Functional overview
STM32F410x8/B
3.15
Power supply supervisor
3.15.1
Internal reset ON
This feature is available for VDD operating voltage range 1.8 V to 3.6 V.
The internal power supply supervisor is enabled by holding PDR_ON high.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.15.2
Internal reset OFF
This feature is available on WLCSP36 package only. The internal power-on reset (POR) /
power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low.
An external power supply supervisor should monitor VDD and should set the device in reset
mode when VDD is below 1.7 V. NRST should be connected to this external power supply
supervisor. Refer to Figure 4: Power supply supervisor interconnection with internal reset
OFF.
Figure 4. Power supply supervisor interconnection with internal reset OFF(1)
9''
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
1567
3'5B21
9''
06Y9
1. The PRD_ON pin is available on WLCSP36 package only.
20/131
DocID028094 Rev 2
STM32F410x8/B
Functional overview
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no longer supported:
3.16
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
•
The brownout reset (BOR) circuitry must be disabled.
•
The embedded programmable voltage detector (PVD) is disabled.
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
Voltage regulator
The regulator has three operating modes:
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
The three power modes configured by software:
•
MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
•
LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
•
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
An external ceramic capacitor should be connected to the VCAP_1 pin.
3.16.1
Internal power supply supervisor availability
Table 4. Regulator ON/OFF and internal power supply supervisor availability
Package
Power supply supervisor ON Power supply supervisor OFF
UFQFPN48
Yes
No
WLCSP36
Yes
PDR_ON set to VDD
Yes
PDR_ON set to VSS(1)
LQFP64
Yes
No
1. An external power supervisor must be used (refer to Section 3.15.2: Internal reset OFF).
DocID028094 Rev 2
21/131
30
Functional overview
3.17
STM32F410x8/B
Real-time clock (RTC) and backup registers
The backup domain includes:
•
The real-time clock (RTC)
•
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC features a reference clock detection, a more precise
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC
provides a programmable alarm and programmable periodic interrupts with wakeup from
Stop and Standby modes. The sub-seconds value is also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.18: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
The RTC and backup registers are supplied through a switch that is powered either from the
VDD supply when present or from the VBAT pin.
3.18
Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
To further reduce the power consumption, the Flash memory can be switched off
before entering in Sleep mode. Note that this requires a code execution from the RAM.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
22/131
DocID028094 Rev 2
STM32F410x8/B
Functional overview
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The RTC and the low-power timer (LPTIM1) can remain active in Stop mode. They can
consequently be used to wake up the device from this mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, LPTIM1, the RTC alarm/
wakeup/ tamper/ time stamp events).
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp event
occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and
the 1.2 V domain is controlled by an external power.
3.19
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
super-capacitor, or from VDD when no external battery and an external super-capacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC and the backup registers.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
3.20
Timers and watchdogs
The devices embed one advanced-control timer, seven general-purpose timers and two
watchdog timers.
All timer counters can be frozen in debug mode.
Table 5 compares the features of the advanced-control and general-purpose timers.
DocID028094 Rev 2
23/131
30
Functional overview
STM32F410x8/B
Table 5. Timer feature comparison
Timer
type
Advanced
-control
Max.
interface
clock
(MHz)
Max.
timer
clock
(MHz)
TIM1
16-bit
Up,
Down,
Up/down
Any
integer
between
1 and
65536
Yes
4
Yes
100
100
32-bit
Up,
Down,
Up/down
Any
integer
between
1 and
65536
Yes
4
No
50
100
Up
Any
integer
between
1 and
65536
No
2
No
100
100
Up
Any
integer
between
1 and
65536
No
1
No
100
100
Yes
0
No
50
100
No
2
No
50
100
TIM9
TIM11
16-bit
16-bit
Basic
TIM6
16-bit
Up
Any
integer
between
1 and
65536
Lowpower
LPTIM1
16-bit
Up
Between
1 and 128
24/131
Complementary output
Timer
TIM5
General
purpose
DMA
Capture/
request
compare
generation channels
Counter Counter Prescaler
resolution
type
factor
DocID028094 Rev 2
STM32F410x8/B
3.20.1
Functional overview
Advanced-control timers (TIM1)
The advanced-control timer (TIM1) can be seen as three-phase PWM generator multiplexed
on 4 independent channels. It has complementary PWM outputs with programmable
inserted dead times. It can also be considered as a complete general-purpose timer. Its 4
independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
If configured as standard 16-bit timers, it has the same features as the general-purpose
TIMx timers. If configured as a 16-bit PWM generator, it has full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 supports independent DMA request generation.
3.20.2
General-purpose timers (TIM5, TIM9 and TIM11)
There are three synchronizable general-purpose timers embedded in the STM32F410x8/B
(see Table 5 for differences).
•
TIM5
The STM32F410x8/B devices includes a full-featured general-purpose timer, TIM5.
TIM5 timer is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. It
features four independent channels for input capture/output compare, PWM or onepulse mode output.
TIM5 can operate in conjunction with the other general-purpose timers and TIM1
advanced-control timer via the Timer Link feature for synchronization or event chaining.
TIM5 general-purpose timer can be used to generate PWM output.
All TIM5 channels have independent DMA request generation. They are capable of
handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4
hall-effect sensors.
•
TIM9 and TIM11
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM11 features one independent channel, whereas TIM9 has two independent
channels for input capture/output compare, PWM or one-pulse mode output. They can
be synchronized with TIM5 full-featured general-purpose timer or used as simple time
bases.
3.20.3
Basic timer (TIM6)
This timer is mainly used for DAC triggering and waveform generation. It can also operate
as generic 16-bit timers.
TIM6 supports independent DMA request generation.
DocID028094 Rev 2
25/131
30
Functional overview
3.20.4
STM32F410x8/B
Low-power timer (LPTIM1)
The devices embed one low-power timer. This timer features an independent clock and runs
in Stop mode if it is clocked by LSE, LSI or by an external clock. It is able to wake up the
system from Stop mode.
The low-power timer main features are the following:
3.20.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous/ one shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source
–
Internal clock sources: LSE, LSI, HSI or APB1 clock
–
External clock source over LPTIM input (working even when no internal clock
source is running and used by pulse-counter applications).
•
Programmable digital glitch filter
•
Encoder mode
•
Active in Stop mode.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.20.6
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.7
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
26/131
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
DocID028094 Rev 2
STM32F410x8/B
3.21
Functional overview
Inter-integrated circuit interface (I2C)
The devices feature up to three I2C bus interfaces which can operate in multimaster and
slave modes:
•
One I2C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to
400 kHz) modes and Fast-mode plus (up to 1 MHz).
•
Two I2C interfaces support the Standard mode (up to 100 KHz) and the Fast mode (up
to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on the
complete solution, refer to the nearest STMicroelectronics sales office.
All I2C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave)
and embed a hardware CRC generation/verification.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 6).
Table 6. Comparison of I2C analog and digital filters
Pulse width of
suppressed spikes
3.22
Analog filter
Digital filter
≥ 50 ns
Programmable length from 1 to 15 I2C peripheral clocks
Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed three universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART6).
These three interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 12.5 Mbit/s. The USART2 interface communicates at up to
6.25 bit/s.
USART1 and USART2 also provide hardware management of the CTS and RTS signals,
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller.
DocID028094 Rev 2
27/131
30
Functional overview
STM32F410x8/B
Table 7. USART feature comparison
Max. baud
Max. baud
USART Standard Modem
SPI
Smartcard rate in Mbit/s rate in Mbit/s
APB
LIN
irDA
name
features (RTS/CTS)
master
(ISO 7816) (oversampling (oversampling mapping
by 16)
by 8)
USART1
X
X(1)
X
X
X
X
6.25
12.5
APB2
(max.
100 MHz)
USART2
X
X(1)
X
X(1)
X
X(1)
3.12
6.25
APB1
(max.
50 MHz)
X
N.A
X
X(1)(2)
X
X(1)(2)
6.25
12.5
APB2
(max.
50 MHz)
USART6
(1)
1. Not available on WLCSP36 package.
2. Not available on UFQFPN48 package.
3.23
Serial peripheral interface (SPI)
The devices feature three SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1 and SPI5 can communicate at up to 50 Mbit/s, SPI2 can
communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and
the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.24
Inter-integrated sound (I2S)
Three standard I2S interfaces (multiplexed with SPI1 to SPI5) are available. They can be
operated in master or slave mode, in simplex communication modes and can be configured
to operate with a 16-/32-bit resolution as an input or output channel. All the I2Sx audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.25
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
28/131
DocID028094 Rev 2
STM32F410x8/B
3.26
Functional overview
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 100 MHz.
3.27
Analog-to-digital converter (ADC)
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1 or
TIM5 timer.
3.28
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the ADC_IN18 input channel which is used to convert the sensor output
voltage into a digital value. Refer to the reference manual for additional information.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.29
Digital-to-analog converter (DAC)
One 12-bit buffered DAC channel can be used to convert a digital signal into an analog
voltage signal output. The chosen design structure is composed of integrated resistor
strings and an amplifier in inverting configuration.
This digital interface supports the following features:
•
8-bit or 12-bit monotonic output
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
DocID028094 Rev 2
29/131
30
Functional overview
STM32F410x8/B
•
Triangular-wave generation
•
DMA capability for each channel
•
External triggers for conversion
•
Sample and hold low-power mode, with internal or external capacitor
The DAC channel is triggered through TIM6 update output that is also connected to different
DMA channels.
3.30
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.31
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F410x8/B through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using any high-speed
channel available. Real-time instruction and data flow activity can be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
30/131
DocID028094 Rev 2
STM32F410x8/B
Pinouts and pin description
9''
966
3%
3%
%227
3%
3%
3%
3%
3%
3%
3&
3&
3&
3$
3$
Figure 5. LQFP64 pinout
9%$7
9''
3&
966
3&26&B,1
3$
3&26&B287
3$
3+26&B,1
3$
3+26&B287
3$
1567
3$
3&
3$
3&
3&
3&
3&
3&
3&
966$95()
3&
9''$95()
3%
3$
3%
3$
3%
3$
3%
3$
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
9&$3B
966
9''
/4)3
966
4
Pinouts and pin description
0VY9
1. The above figure shows the package top view.
DocID028094 Rev 2
31/131
40
Pinouts and pin description
STM32F410x8/B
966
3$
3&26&B287
3$
3+26&B,1
3$
3+26&B287
3$
1567
3$
966$95()
3$
9''$95()
3%
3%
3$
3%
3$
3%
966
9''
3$
3&
3&26&B,1
3%
9''
3%
3$
3%
3%
3%
3%
3%
3%
3$
3$
3$
3$
3$
3%
3%
%227
966
9%$7
3%
9''
Figure 6. UFQFPN48 pinout
9&$3B
3$
8)4)31
069
1. The above figure shows the package top view.
Figure 7. WLCSP36 pinout
$
9''
966
3%
3%
3$
9''
%
3&
26&B,1
9%$7
3'5B
21
3%
3$
966
&
3&
26&B
287
3+
26&B,1
3&
3%
3%
3$
'
3+
26&B287
1567
%227
3%
3$
3$
(
966$
95()
3$
3$
3%
9&$3
B
3%
)
9''$
95()
3$
3$
3%
966
9''
06Y9
1. The above figure shows the package bump side.
32/131
DocID028094 Rev 2
STM32F410x8/B
Pinouts and pin description
Table 8. Legend/abbreviations used in the pinout table
Name
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin name
Pin type
I/O structure
Notes
S
Supply pin
I
Input only pin
I/O
Input/ output pin
FT
5 V tolerant I/O
TC
Standard 3.3 V I/O
B
Dedicated BOOT0 pin
NRST
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
Table 9. STM32F410x8/B pin definitions
WLCSP36
UFQFPN48
LQFP64
Pin type
I/O structure
Notes
Pin Number
Alternate functions
B5
1
1
VBAT
S
-
-
-
VBAT
C4
2
2
PC13
I/O
FT
(2)(3)
EVENTOUT
TAMP_1
(4)
EVENTOUT
OSC32_IN
Pin name
(function after
reset)(1)
(2)(3)
Additional functions
B6
3
3
PC14OSC32_IN
I/O
FT
C6
4
4
PC15OSC32_OUT
I/O
FT
(2)(4)
EVENTOUT
OSC32_OUT
C5
5
5
PH0 - OSC_IN
I/O
FT
(4)
EVENTOUT
OSC_IN
D6
6
6
PH1 OSC_OUT
I/O
FT
(4)
EVENTOUT
OSC_OUT
D5
7
7
NRST
NR
ST
-
-
-
-
-
-
8
PC0
I/O
FT
-
LPTIM1_IN1, EVENTOUT
ADC1_10, WKUP2
DocID028094 Rev 2
33/131
40
Pinouts and pin description
STM32F410x8/B
Table 9. STM32F410x8/B pin definitions (continued)
WLCSP36
UFQFPN48
LQFP64
Pin type
I/O structure
Notes
Pin Number
Alternate functions
-
-
9
PC1
I/O
FT
-
LPTIM1_OUT, EVENTOUT
ADC1_11, WKUP3
-
-
10
PC2
I/O
FT
-
LPTIM1_IN2, SPI2_MISO,
EVENTOUT
ADC1_12
-
-
11
PC3
I/O
FT
-
LPTIM1_ETR,
SPI2_MOSI/I2S2_SD,
EVENTOUT
ADC1_13
E6
8
12
VSSA/VREF-
S
-
-
-
-
F6
9
13
VDDA/VREF+
S
-
-
-
-
E5
10
14
PA0
I/O
FT
-
TIM5_CH1, USART2_CTS,
EVENTOUT
ADC1_0, WKUP1
-
11
15
PA1
I/O
FT
-
TIM5_CH2, USART2_RTS,
EVENTOUT
ADC1_1
E4
12
16
PA2
I/O
FT
-
TIM5_CH3, TIM9_CH1,
I2S2_CKIN, USART2_TX,
EVENTOUT
ADC1_2
F5
13
17
PA3
I/O
FT
-
TIM5_CH4, TIM9_CH2,
I2S2_MCK, USART2_RX,
EVENTOUT
ADC1_3
-
-
18
VSS
S
-
-
-
-
-
-
19
VDD
S
-
-
-
-
-
14
20
PA4
I/O
FT
-
SPI1_NSS/I2S1_WS,
USART2_CK, EVENTOUT
ADC1_4
F4
15
21
PA5
I/O
TC
-
SPI1_SCK/I2S1_CK,
EVENTOUT
ADC1_5, DAC_OUT1
-
16
22
PA6
I/O
FT
-
TIM1_BKIN, SPI1_MISO,
I2S2_MCK, EVENTOUT
ADC1_6
-
17
23
PA7
I/O
FT
-
TIM1_CH1N,
SPI1_MOSI/I2S1_SD,
EVENTOUT
ADC1_7
-
-
24
PC4
I/O
FT
-
TIM9_CH1, EVENTOUT
ADC1_14
-
-
25
PC5
I/O
FT
-
TIM9_CH2, I2C4_SMBA,
EVENTOUT
ADC1_15
34/131
Pin name
(function after
reset)(1)
DocID028094 Rev 2
Additional functions
STM32F410x8/B
Pinouts and pin description
Table 9. STM32F410x8/B pin definitions (continued)
WLCSP36
UFQFPN48
LQFP64
Pin type
I/O structure
Notes
Pin Number
Alternate functions
-
18
26
PB0
I/O
FT
-
TIM1_CH2N,
SPI5_SCK/I2S5_CK,
EVENTOUT
ADC1_8
-
19
27
PB1
I/O
TC
-
TIM1_CH3N,
SPI5_NSS/I2S5_WS,
EVENTOUT
ADC1_9
F3
20
28
PB2
I/O
FT
-
LPTIM1_OUT, EVENTOUT
BOOT1
Pin name
(function after
reset)(1)
Additional functions
E3
21
29
PB10
I/O
FT
-
I2C2_SCL,
SPI2_SCK/I2S2_CK,
I2S1_MCK, I2C4_SCL,
EVENTOUT
E2
22
30
VCAP_1
S
-
-
-
-
F2
23
31
VSS
S
-
-
-
-
F1
24
32
VDD
S
-
-
-
-
-
E1
25
33
PB12
I/O
FT
-
TIM1_BKIN, TIM5_CH1,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
EVENTOUT
-
26
34
PB13
I/O
FT
-
TIM1_CH1N, I2C4_SMBA,
SPI2_SCK/I2S2_CK,
EVENTOUT
-
-
27
35
PB14
I/O
FT
-
TIM1_CH2N, I2C4_SDA,
SPI2_MISO, EVENTOUT
-
-
-
28
36
PB15
I/O
FT
-
RTC_50Hz, TIM1_CH3N,
I2C4_SCL,
SPI2_MOSI/I2S2_SD,
EVENTOUT
-
-
37
PC6
I/O
FT
-
TRACECLK, I2C4_SCL,
I2S2_MCK, USART6_TX,
EVENTOUT
-
-
-
-
-
38
PC7
I/O
FT
-
I2C4_SDA,
SPI2_SCK/I2S2_CK,
I2S1_MCK, USART6_RX,
EVENTOUT
-
-
39
PC8
I/O
FT
-
USART6_CK, EVENTOUT
DocID028094 Rev 2
35/131
40
Pinouts and pin description
STM32F410x8/B
Table 9. STM32F410x8/B pin definitions (continued)
WLCSP36
UFQFPN48
LQFP64
Pin type
I/O structure
Notes
Pin Number
Alternate functions
-
-
40
PC9
I/O
FT
-
MCO_2, I2C4_SDA,
I2S2_CKIN, EVENTOUT
-
D1
29
41
PA8
I/O
FT
-
MCO_1, TIM1_CH1,
I2C4_SCL, USART1_CK,
EVENTOUT
-
-
30
42
PA9
I/O
FT
-
TIM1_CH2, USART1_TX,
EVENTOUT
-
-
31
43
PA10
I/O
FT
-
TIM1_CH3,
SPI5_MOSI/I2S5_SD,
USART1_RX, EVENTOUT
-
-
32
44
PA11
I/O
FT
-
TIM1_CH4, USART1_CTS,
USART6_TX, EVENTOUT
-
D2
33
45
PA12
I/O
FT
-
TIM1_ETR, SPI5_MISO,
USART1_RTS,
USART6_RX, EVENTOUT
-
C1
34
46
PA13
I/O
FT
-
JTMS-SWDIO, EVENTOUT
-
B1
35
47
VSS
S
-
-
-
-
-
36
48
VDD
S
-
-
-
-
A1
-
-
VDD
S
-
-
-
-
B2
37
49
PA14
I/O
FT
-
JTCK-SWCLK, EVENTOUT
-
A2
38
50
PA15
I/O
FT
-
JTDI, SPI1_NSS/I2S1_WS,
USART1_TX, EVENTOUT
-
-
-
51
PC10
I/O
FT
-
TRACED0, TIM5_CH2,
EVENTOUT
-
-
-
52
PC11
I/O
FT
-
TRACED1, TIM5_CH3,
EVENTOUT
-
-
-
53
PC12
I/O
FT
-
TRACED2, TIM11_CH1,
EVENTOUT
-
-
-
54
PB11
I/O
FT
-
TRACED3, TIM5_CH4,
I2C2_SDA, I2S2_CKIN,
EVENTOUT
-
36/131
Pin name
(function after
reset)(1)
DocID028094 Rev 2
Additional functions
STM32F410x8/B
Pinouts and pin description
Table 9. STM32F410x8/B pin definitions (continued)
C2
39
55
PB3
I/O
FT
-
JTDO-SWO, I2C4_SDA,
SPI1_SCK/I2S1_CK,
USART1_RX, I2C2_SDA,
EVENTOUT
D3
40
56
PB4
I/O
FT
-
JTRST, SPI1_MISO,
EVENTOUT
-
A3
41
57
PB5
I/O
FT
-
I/O
-
B3
42
58
PB6
I/O
FT
-
LPTIM1_ETR, I2C1_SCL,
USART1_TX, EVENTOUT
-
C3
43
59
PB7
I/O
FT
-
LPTIM1_IN2, I2C1_SDA,
USART1_RX, EVENTOUT
-
D4
44
60
BOOT0
I
B
-
-
BOOT0
A4
45
61
PB8
I/O
FT
-
LPTIM1_OUT, I2C1_SCL,
SPI5_MOSI/I2S5_SD,
EVENTOUT
-
-
46
62
PB9
I/O
FT
-
TIM11_CH1, I2C1_SDA,
SPI2_NSS/I2S2_WS,
I2C2_SDA, EVENTOUT
-
A5
47
63
VSS
S
-
-
-
-
B4
-
-
PDR_ON
I
FT
-
-
-
A6
48
64
VDD
S
-
-
-
-
LQFP64
Alternate functions
WLCSP36
Notes
I/O structure
Pin name
(function after
reset)(1)
Pin type
UFQFPN48
Pin Number
Additional functions
-
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F410x8/Breference manual.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
DocID028094 Rev 2
37/131
40
AF0
AF1
AF2
AF3
SYS_AF
TIM1/LPTIM1
TIM5
TIM9/
TIM11
PA0
-
-
TIM5_
CH1
-
-
PA1
-
-
TIM5_
CH2
-
PA2
-
-
TIM5_
CH3
PA3
-
-
PA4
-
PA5
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SPI1/I2S1/
SPI2/I2S2/
SPI5/I2S5
USART1/
USART2
USART6
I2C2/
I2C4
-
-
-
-
-
SYS_AF
-
-
USART2_
CTS
-
-
-
-
-
-
-
EVENTOUT
-
-
-
USART2_
RTS
-
-
-
-
-
-
-
EVENTOUT
TIM9_
CH1
-
I2S2_
CKIN
-
USART2_
TX
-
-
-
-
-
-
-
EVENTOUT
TIM5_
CH4
TIM9_
CH2
-
I2S2_MCK
-
USART2_
RX
-
-
-
-
-
-
-
EVENTOUT
-
-
-
-
SPI1_NSS/
I2S1_WS
-
USART2_
CK
-
-
-
-
-
-
-
EVENTOUT
-
-
-
-
-
SPI1_SCK/
I2S1_CK
-
-
-
-
-
-
-
-
-
EVENTOUT
PA6
-
TIM1_BKIN
-
-
-
SPI1_MISO
I2S2_MCK
-
-
-
-
-
-
-
-
EVENTOUT
PA7
-
TIM1_CH1N
-
-
-
SPI1_MOSI
/I2S1_SD
-
-
-
-
-
-
-
-
-
EVENTOUT
PA8
MCO_1
TIM1_CH1
-
-
I2C4_
SCL
-
-
USART1_
CK
-
-
-
-
-
-
-
EVENTOUT
PA9
-
TIM1_CH2
-
-
-
-
-
USART1_
TX
-
-
-
-
-
-
-
EVENTOUT
PA10
-
TIM1_CH3
-
-
-
-
SPI5_MOSI USART1_
/I2S5_SD
RX
-
-
-
-
-
-
-
EVENTOUT
PA11
-
TIM1_CH4
-
-
-
-
USART1_
CTS
USART6
_TX
-
-
-
-
-
-
EVENTOUT
PA12
-
TIM1_ETR
-
-
-
-
SPI5_MISO USART1_
RTS
USART6
_RX
-
-
-
-
-
-
EVENTOUT
PA13
JTMSSWDIO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PA14
JTCKSWCLK
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PA15
JTDI
-
-
-
-
SPI1_NSS/
I2S1_WS
-
USART1_
TX
-
-
-
-
-
-
-
EVENTOUT
I2C1/I2C2 SPI1/I2S1/S
/I2C4
PI2/I2S2
DocID028094 Rev 2
Port A
Port A
AF5
-
STM32F410x8/B
AF6
Port
AF4
Pinouts and pin description
38/131
Table 10. Alternate function mapping
AF0
AF1
AF2
AF3
SYS_AF
TIM1/LPTIM1
TIM5
TIM9/
TIM11
PB0
-
TIM1_CH2N
-
-
-
PB1
-
TIM1_CH3N
-
-
PB2
-
LPTIM1_OUT
-
PB3
JTDOSWO
-
PB4
JTRST
PB5
DocID028094 Rev 2
Port B
AF5
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SPI1/I2S1/
SPI2/I2S2/
SPI5/I2S5
USART1/
USART2
USART6
I2C2/
I2C4
-
-
-
-
-
SYS_AF
-
SPI5_SCK/
I2S5_CK
-
-
-
-
-
-
-
-
EVENTOUT
-
-
SPI5_NSS/
I2S5_WS
-
-
-
-
-
-
-
-
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
-
-
I2C4_
SDA
SPI1_SCK/I
2S1_CK
-
USART1_
RX
-
I2C2_
SDA
-
-
-
-
-
EVENTOUT
-
-
-
-
SPI1_MISO
-
-
-
-
-
-
-
-
-
EVENTOUT
-
LPTIM1_IN1
-
-
I2C1_
SMBA
SPI1_MOSI
/I2S1_SD
-
-
-
-
-
-
-
-
-
EVENTOUT
PB6
-
LPTIM1_ETR
-
-
I2C1_
SCL
-
-
USART1_
TX
-
-
-
-
-
-
-
EVENTOUT
PB7
-
LPTIM1_IN2
-
-
I2C1_
SDA
-
-
USART1_
RX
-
-
-
-
-
-
-
EVENTOUT
PB8
-
LPTIM1_OUT
-
-
I2C1_
SCL
-
SPI5_MOSI
/I2S5_SD
-
-
-
-
-
-
-
-
EVENTOUT
PB9
-
-
-
TIM11_
CH1
I2C1_
SDA
SPI2_NSS/
I2S2_WS
-
-
-
I2C2_
SDA
-
-
-
-
-
EVENTOUT
PB10
-
-
-
-
I2C2_
SCL
SPI2_SCK/
I2S2_CK
I2S1_MCK
-
-
I2C4_
SCL
-
-
-
-
-
EVENTOUT
PB11
TRACED3
-
TIM5_
CH4
-
I2C2_
SDA
I2S2_CKIN
-
-
-
-
-
-
-
-
-
EVENTOUT
PB12
-
TIM1_BKIN
TIM5_
CH1
-
I2C2_
SMBA
SPI2_NSS/
I2S2_WS
-
-
-
-
-
-
-
-
-
EVENTOUT
PB13
-
TIM1_CH1N
-
-
I2C4_
SMBA
SPI2_SCK
/I2S2_CK
-
-
-
-
-
-
-
-
-
EVENTOUT
PB14
-
TIM1_CH2N
-
-
I2C4_
SDA
SPI2_MISO
-
-
-
-
-
-
-
-
-
EVENTOUT
PB15
RTC_
50Hz
TIM1_CH3N
-
-
I2C4_
SCL
SPI2_MOSI
/I2S2_SD
-
-
-
-
-
-
-
-
-
EVENTOUT
I2C1/I2C2 SPI1/I2S1/S
/I2C4
PI2/I2S2
39/131
Pinouts and pin description
AF6
Port
AF4
STM32F410x8/B
Table 10. Alternate function mapping (continued)
AF0
AF1
AF2
AF3
SYS_AF
TIM1/LPTIM1
TIM5
TIM9/
TIM11
PC0
-
LPTIM1_IN1
-
-
-
PC1
-
LPTIM1_OUT
-
-
LPTIM1_IN2
-
Port
PC2
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SPI1/I2S1/
SPI2/I2S2/
SPI5/I2S5
USART1/
USART2
USART6
I2C2/
I2C4
-
-
-
-
-
SYS_AF
-
-
-
-
-
-
-
-
-
-
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
-
-
SPI2_MISO
-
-
-
-
-
-
-
-
EVENTOUT
I2C1/I2C2 SPI1/I2S1/S
/I2C4
PI2/I2S2
DocID028094 Rev 2
-
LPTIM1_ETR
-
-
-
SPI2_MOSI
/I2S2_SD
-
-
-
-
-
-
-
-
EVENTOUT
PC4
-
-
-
TIM9_
CH1
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PC5
-
-
-
TIM9_
CH2
I2C4_
SMBA
-
-
-
-
-
-
-
-
-
EVENTOUT
PC6
TRACE
CLK
-
-
-
I2C4_
SCL
I2S2_MCK
-
-
USART6
_TX
-
-
-
-
-
-
EVENTOUT
PC7
-
-
-
-
I2C4_
SDA
SPI2_SCK/
I2S2_CK
I2S1_MCK
-
USART6
_RX
-
-
-
-
-
-
EVENTOUT
PC8
-
-
-
-
-
-
-
-
USART6
_CK
-
-
-
-
-
-
EVENTOUT
PC9
MCO_2
-
-
-
I2C4_
SDA
I2S2_CKIN
-
-
-
-
-
-
-
-
-
EVENTOUT
PC10
TRACED0
-
TIM5_
CH2
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PC11
TRACED1
-
TIM5_
CH3
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PC12
TRACED2
-
-
TIM11_
CH1
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PC13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PH0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
Port C
Port H
STM32F410x8/B
PC3
Pinouts and pin description
40/131
Table 10. Alternate function mapping (continued)
STM32F410x8/B
5
Memory mapping
Memory mapping
The memory map is shown in Figure 8.
Figure 8. Memory map
5HVHUYHG
[([))))))))
&RUWH[0LQWHUQDO[([()))))
SHULSKHUDOV
[')))))))
5HVHUYHG
[
[))
[))))))))
[(
[')))))))
0E\WH
EORFN
&RUWH[0
V
LQWHUQDO
SHULSKHUDOV
$+%
0E\WH
EORFN
1RWXVHG
[&
[%)))))))
5HVHUYHG
[
[[))))
[))
5HVHUYHG
[
[)))))))
$3%
0E\WH
EORFN
3HULSKHUDOV
[
[)))))))
[
[)))))))
0E\WH
EORFN
65$0
0E\WH
EORFN
&RGH
[
5HVHUYHG
65$0.%DOLDVHG [[)))))))
E\ELWEDQGLQJ
[[)))
5HVHUYHG
2SWLRQE\WHV
5HVHUYHG
273DUHDORFN
6\VWHPPHPRU\
5HVHUYHG
)ODVKPHPRU\
5HVHUYHG
5HVHUYHG
[)))&[)))))))
[)))&[)))&
[)))$[)))%)))
[)))[)))$)
[)))[)))))
[[))())))
[[))))
[[))))))
[
[[))))
[))
$3%
$OLDVHGWR)ODVK
V\VWHPPHPRU\RU
[[))))
65$0GHSHQGLQJRQ
WKH%227SLQV
[
06Y9
DocID028094 Rev 2
41/131
44
Memory mapping
STM32F410x8/B
Table 11. STM32F410x8/B register boundary addresses
Bus
®
Cortex -M4
AHB1
42/131
Boundary address
Peripheral
0xE010 0000 - 0xFFFF FFFF
Reserved
0xE000 0000 - 0xE00F FFFF
Cortex-M4 internal peripherals
0x5000 0000 - 0xDFFF FFFF
Reserved
0x4008 0400 - 0x4FFF FFFF
Reserved
0x4008 0000 - 0x4008 03FF
RNG
0x4002 6800 - 0x4007 FFFF
Reserved
0x4002 6400 - 0x4002 67FF
DMA2
0x4002 6000 - 0x4002 63FF
DMA1
0x4002 5000 - 0x4002 4FFF
Reserved
0x4002 3C00 - 0x4002 3FFF
Flash interface register
0x4002 3800 - 0x4002 3BFF
RCC
0x4002 3400 - 0x4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2800 - 0x4002 2FFF
Reserved
0x4002 2400 - 0x4002 27FF
LPTIM1
0x4002 2000 - 0x4002 23FF
Reserved
0x4002 1C00 - 0x4002 1FFF
GPIOH
0x4002 0C00 - 0x4002 1BFF
Reserved
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
DocID028094 Rev 2
STM32F410x8/B
Memory mapping
Table 11. STM32F410x8/B register boundary addresses (continued)
Bus
APB2
Boundary address
Peripheral
0x4001 5400- 0x4001 FFFF
Reserved
0x4001 5000 - 0x4001 53FF
SPI5/I2S5
0x4001 4C00- 0x4001 4FFF
Reserved
0x4001 4800 - 0x4001 4BFF
TIM11
0x4001 4400 - 0x4001 47FF
Reserved
0x4001 4000 - 0x4001 43FF
TIM9
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
Reserved
0x4001 3000 - 0x4001 33FF
SPI1/I2S1
0x4001 2400 - 0x4001 2FF
Reserved
0x4001 2000 - 0x4001 23FF
ADC1
0x4001 1800 - 0x4001 1FFF
Reserved
0x4001 1400 - 0x4001 17FF
USART6
0x4001 1000 - 0x4001 13FF
USART1
0x4001 0400 - 0x4001 0FFF
Reserved
0x4001 0000 - 0x4001 03FF
TIM1
DocID028094 Rev 2
43/131
44
Memory mapping
STM32F410x8/B
Table 11. STM32F410x8/B register boundary addresses (continued)
Bus
APB1
44/131
Boundary address
Peripheral
0x4000 7800 - 0x4000 FFFF
Reserved
0x4000 7400 - 0x4000 77FF
DAC
0x4000 7000 - 0x4000 73FF
PWR
0x4000 6400 - 0x4000 6FFF
Reserved
0x4000 6000 - 0x4000 63FF
I2C4 FM+
0x4000 5C00 - 0x4000 5FFF
Reserved
0x4000 5800 - 0x4000 5BFF
I2C2
0x4000 5400 - 0x4000 57FF
I2C1
0x4000 4800 - 0x4000 53FF
Reserved
0x4000 4400 - 0x4000 47FF
USART2
0x4000 4000 - 0x4000 43FF
Reserved
0x4000 3C00 - 0x4000 3FFF
SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF
SPI2 / I2S2
0x4000 3400 - 0x4000 37FF
Reserved
0x4000 3000 - 0x4000 33FF
IWDG
0x4000 2C00 - 0x4000 2FFF
WWDG
0x4000 2800 - 0x4000 2BFF
RTC & BKP Registers
0x4000 1400 - 0x4000 27FF
Reserved
0x4000 1000 - 0x4000 13FF
TIM6
0x4000 0C00 - 0x4000 0FFF
TIM5
0x4000 0000 - 0x4000 0BFF
Reserved
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2 σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
Figure 9. Pin loading conditions
-#5PIN
#P&
-36
DocID028094 Rev 2
45/117
115
Electrical characteristics
6.1.5
STM32F410x8/B
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 10. Input voltage measurement
-#5PIN
6).
-36
46/117
DocID028094 Rev 2
STM32F410x8/B
6.1.6
Electrical characteristics
Power supply scheme
Figure 11. Power supply scheme
sd
sdс
ϭ ͘ϲϱƚŽϯ͘ϲs
ĂĐŬƵƉĐŝƌĐƵŝƚƌLJ
;K^ϯϮ<͕Zd͕
tĂŬĞƵƉůŽŐŝĐ
ĂĐŬƵƉƌĞŐŝƐƚĞƌƐͿ
Khd
'W/KƐ
/E
>ĞǀĞůƐŚŝĨƚĞƌ
WŽǁĞƌ
ƐǁŝƚĐŚ
/K
>ŽŐŝĐ
<ĞƌŶĞůůŽŐŝĐ
;Wh͕ĚŝŐŝƚĂů
ΘZDͿ
sWͺϭ
ϭdžϰ͘ϳђ&
s s
ϭ ͬϮ ͬ͘͘͘ ϰ
ϰп ϭ ϬϬŶ&
нϭпϰ͘ϳђ&
s^^
ϭ ͬϮ ͬ͘͘͘ ϰ
͕
sŽůƚĂŐĞ
ƌĞŐƵůĂƚŽƌ
&ůĂƐŚŵĞŵŽƌLJ
WZͺKE
s
ZĞƐĞƚ
ĐŽŶƚƌŽůůĞƌ
s
sZ&
ϭϬϬŶ&
нϭђ&
ϭϬϬŶ&
нϭђ&
ŶĂůŽŐ͗
ZƐ ͕
W>> ͕͘͘
s^^
06Y9
1. To connect PDR_ON pin, refer to Section 3.14: Power supply supervisor.
Caution:
Each power supply pair (for example VDD/VSS, VDDA/VSSA) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below, the appropriate pins on the underside of the PCB to ensure good operation of
the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
DocID028094 Rev 2
47/117
115
Electrical characteristics
6.1.7
STM32F410x8/B
Current consumption measurement
Figure 12. Current consumption measurement scheme
)$$?6"!4
6"!4
)$$
6$$
6$$!
AI
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 12: Voltage characteristics,
Table 13: Current characteristics, and Table 14: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 12. Voltage characteristics
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VDD and
VBAT)(1)
–0.3
4.0
Input voltage on FT and TC pins(2)
VSS–0.3
VDD+4.0
Input voltage on any other pin
VSS–0.3
4.0
VSS
9.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
VIN
Input voltage for BOOT0
|ΔVDDx|
|VSSX −VSS|
VESD(HBM)
Electrostatic discharge voltage (human body model)
Unit
V
mV
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 13 for the values of the maximum allowed
injected current.
48/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Table 13. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD_x power lines (source)(1)
160
Σ IVSS
(1)
-160
Total current out of sum of all VSS_x ground lines (sink)
IVDD
Maximum current into each VDD_x power line (source)
(1)
100
IVSS
Maximum current out of each VSS_x ground line (sink)(1)
-100
IIO
ΣIIO
IINJ(PIN) (3)
ΣIINJ(PIN)
Output current sunk by any I/O and control pin
25
Output current sourced by any I/O and control pin
Total output current sunk by sum of all I/O and control pins
-25
(2)
mA
120
Total output current sourced by sum of all I/Os and control pins(2)
Injected current on FT and TC pins
Unit
-120
(4)
–5/+0
Injected current on NRST and B pins (4)
Total injected current (sum of all I/O and control pins)(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 14. Thermal characteristics
Symbol
TSTG
TJ
TLEAD
Ratings
Storage temperature range
Maximum junction temperature
Maximum lead temperature during soldering
(WLCSP36, LQFP64, UFQFPN48)
Value
Unit
–65 to +150
125
see note
°C
(1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS
directive 2011/65/EU, July 2011).
DocID028094 Rev 2
49/117
115
Electrical characteristics
STM32F410x8/B
6.3
Operating conditions
6.3.1
General operating conditions
Table 15. General operating conditions
Symbol
fHCLK
Parameter
Internal AHB clock frequency
Conditions
Min
Typ
Max
Power Scale3: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x01
0
-
64
Power Scale2: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x10
0
-
84
Power Scale1: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x11
0
-
100
Unit
MHz
fPCLK1
Internal APB1 clock frequency
-
0
-
50
MHz
fPCLK2
Internal APB2 clock frequency
-
0
-
100
MHz
-
1.7(1)
-
3.6
V
1.7(1)
-
2.4
VDD
VDDA(2)(3)
VBAT
V12
Standard operating voltage
Analog operating voltage
(ADC limited to 1.2 M
samples)
Analog operating voltage
(ADC limited to 2.4 M
samples)
Must be the same potential as VDD(4)
2.4
-
3.6
-
1.65
-
3.6
VOS[1:0] bits in PWR_CR register = 0x01
Max frequency 64 MHz
1.08
1.14 1.20(5)
VOS[1:0] bits in PWR_CR register = 0x10
Max frequency 84 MHz
1.20
1.26 1.32(5)
1.26
1.32
1.38
1.10
1.14
1.20
1.20
1.26
1.32
1.26
1.32
1.38
Backup operating voltage
Regulator ON: 1.2 V internal
voltage on VCAP_1 pins
VOS[1:0] bits in PWR_CR register = 0x11
Max frequency 100 MHz
V12
VIN
PD
50/117
V
Max frequency 64 MHz
Regulator OFF: 1.2 V external
voltage must be supplied on
Max frequency 84 MHz
VCAP_1 pins
Max frequency 100 MHz
(5)
(5)
Input voltage on RST, FT and
TC pins(6)
2 V ≤ VDD ≤ 3.6 V
–0.3
-
5.5
VDD ≤ 2 V
–0.3
-
5.2
Input voltage on BOOT0 pin
-
0
-
9
-
-
435
-
-
606
-
-
328
LQFP64
Maximum allowed package
power dissipation at
UFQFPN48
TA = 85 °C (range 6) or 105 °C
(7)
(range 7)
WLCSP36
DocID028094 Rev 2
V
V
V
V
mW
STM32F410x8/B
Electrical characteristics
Table 15. General operating conditions (continued)
Symbol
Parameter
Conditions
Ambient temperature for
range 6
TA
Ambient temperature for
range 7
TJ
Junction temperature range
Min
Typ
Max
Maximum power dissipation
–40
-
85
Low power dissipation(8)
–40
-
105
Maximum power dissipation
–40
-
105
Low power dissipation for LQFP64 and
UFQFPN48(8)
–40
-
125
Low power dissipation for WLCSP36(8)
–40
-
110
Range 6
–40
-
105
Range 7 for LQFP64 and UFQFPN48
–40
-
125
Range 7 for WLCSP36
–40
-
110
Unit
°C
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
reset OFF).
2. When the ADC is used, refer to Table 66: ADC characteristics.
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
5. Guaranteed by test in production.
6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
8. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 16. Features depending on the operating power supply range
Operating
power
supply
range
ADC
operation
VDD =1.7 to
2.1 V(4)
Conversion
time up to
1.2 Msps
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
(5)
16 MHz
18 MHz
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Clock output
frequency on
I/O pins(3)
Possible
Flash
memory
operations
100 MHz with 6
wait states
– No I/O
up to 30 MHz
compensation
8-bit erase
and program
operations
only
100 MHz with 5
wait states
– No I/O
up to 30 MHz
compensation
16-bit erase
and program
operations
DocID028094 Rev 2
51/117
115
Electrical characteristics
STM32F410x8/B
Table 16. Features depending on the operating power supply range (continued)
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
24 MHz
VDD = 2.7 to
3.6 V
Conversion
time up to
2.4 Msps
30 MHz
Possible
Flash
memory
operations
Maximum Flash
memory access
frequency with
wait states (1)(2)
100 MHz with 4
wait states
– I/O
compensation up to 50 MHz
works
16-bit erase
and program
operations
100 MHz with 3
wait states
– up to
100 MHz
when VDD =
– I/O
3.0 to 3.6 V
compensation
– up to
works
50 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
I/O operation
Clock output
frequency on
I/O pins(3)
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. Refer to Table 57: I/O AC characteristics for frequencies vs. external load.
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
reset OFF).
5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
6.3.2
VCAP_1 external capacitor
Stabilization for the main regulator is achieved by connecting the external capacitor CEXT to
the VCAP_1 pin.
CEXT is specified in Table 17.
Figure 13. External capacitor CEXT
&
(65
5/HDN
069
1. Legend: ESR is the equivalent series resistance.
52/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Table 17. VCAP_1 operating conditions
6.3.3
Symbol
Parameter
Conditions
CEXT
Capacitance of external capacitor
4.7 µF
ESR
ESR of external capacitor
<1Ω
Operating conditions at power-up/power-down (regulator ON)
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator ON)
Symbol
tVDD
6.3.4
Parameter
Min
Max
VDD rise time rate
20
∞
VDD fall time rate
20
∞
Unit
µs/V
Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 19. Operating conditions at power-up / power-down (regulator OFF)(1)
Symbol
tVDD
tVCAP
Parameter
Conditions
Min
Max
VDD rise time rate
Power-up
20
∞
VDD fall time rate
Power-down
20
∞
VCAP_1 rise time rate
Power-up
20
∞
VCAP_1 fall time rate
Power-down
20
∞
Unit
µs/V
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
DocID028094 Rev 2
53/117
115
Electrical characteristics
6.3.5
STM32F410x8/B
Embedded reset and power control block characteristics
The parameters given in Table 20 are derived from tests performed under ambient
temperature and VDD supply voltage @ 3.3V.
Table 20. Embedded reset and power control block characteristics
Symbol
VPVD
Parameter
Conditions
Programmable voltage
detector level selection
VPVDhyst(2) PVD hysteresis
VPOR/PDR
Max
PLS[2:0]=000 (rising edge)
2.09
2.14
2.19
PLS[2:0]=000 (falling edge)
1.98
2.04
2.08
PLS[2:0]=001 (rising edge)
2.23
2.30
2.37
PLS[2:0]=001 (falling edge)
2.13
2.19
2.25
PLS[2:0]=010 (rising edge)
2.39
2.45
2.51
PLS[2:0]=010 (falling edge)
2.29
2.35
2.39
PLS[2:0]=011 (rising edge)
2.54
2.60
2.65
PLS[2:0]=011 (falling edge)
2.44
2.51
2.56
PLS[2:0]=100 (rising edge)
2.70
2.76
2.82
PLS[2:0]=100 (falling edge)
2.59
2.66
2.71
PLS[2:0]=101 (rising edge)
2.86
2.93
2.99
PLS[2:0]=101 (falling edge)
2.65
2.84
3.02
PLS[2:0]=110 (rising edge)
2.96
3.03
3.10
PLS[2:0]=110 (falling edge)
2.85
2.93
2.99
PLS[2:0]=111 (rising edge)
3.07
3.14
3.21
PLS[2:0]=111 (falling edge)
2.95
3.03
3.09
-
100
-
Falling edge
1.60(1)
1.68
1.76
Rising edge
1.64
1.72
1.80
-
40
-
-
VBOR1
Brownout level 1
threshold
Falling edge
2.13
2.19
2.24
Rising edge
2.23
2.29
2.33
VBOR2
Brownout level 2
threshold
Falling edge
2.44
2.50
2.56
Rising edge
2.53
2.59
2.63
VBOR3
Brownout level 3
threshold
Falling edge
2.75
2.83
2.88
Rising edge
2.85
2.92
2.97
Unit
V
mV
V
mV
V
VBORhyst(2) BOR hysteresis
-
-
100
-
mV
TRSTTEMPO
-
0.5
1.5
3.0
ms
(2)(3)
54/117
Typ
-
Power-on/power-down
reset threshold
VPDRhyst(2) PDR hysteresis
Min
POR reset timing
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Table 20. Embedded reset and power control block characteristics (continued)
Symbol
IRUSH(2)
ERUSH
(2)
Parameter
Conditions
Min
Typ
Max
Unit
In-Rush current on
voltage regulator poweron (POR or wakeup from
Standby)
-
160
200
mA
In-Rush energy on
voltage regulator power- VDD = 1.7 V, TA = 105 °C,
on (POR or wakeup from IRUSH = 171 mA for 31 µs
Standby)
-
-
5.4
µC
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design.
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first
instruction is fetched by the user application code.
6.3.6
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in input mode with a static value at VDD or VSS (no load).
•
All peripherals are disabled except if it is explicitly mentioned.
•
The Flash memory access time is adjusted to both fHCLK frequency and VDD ranges
(refer to Table 16: Features depending on the operating power supply range).
•
The voltage scaling is adjusted to fHCLK frequency as follows:
–
Scale 3 for fHCLK ≤ 64 MHz
–
Scale 2 for 64 MHz < fHCLK ≤ 84 MHz
–
Scale 1 for 84 MHz < fHCLK ≤ 100 MHz
•
The system clock is HCLK, fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
•
External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
•
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
DocID028094 Rev 2
55/117
115
Electrical characteristics
STM32F410x8/B
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(3)
IDD
Supply current
in Run mode
HSI, PLL off,
all peripherals
enabled(3)
External clock,
all peripherals
disabled(3)
HSI, PLL off, all
peripherals
disabled(3)
PLL
fHCLK Voltage VCO
(MHz) scale (MHz)
Max(2)
Typ
(1)
TA=
25 °C
TA=
25 °C
TA=85
°C
TA=105
°C
100
S1
200
17.4
17.8(4)
19.1
19.4(4)
84
S2
168
14.1
14.4(4)
15.4
15.8(4)
64
S3
128
9.8
10.0(4)
10.7
11.0(4)
50
S3
100
7.7
7.9
8.5
8.8
25
S3
100
4.1
4.2
4.7
5.0
20
S3
160
3.5
3.7
4.1
4.4
16
S3
off
2.5
2.5
2.9
3.2
1
S3
off
0.4
0.5
0.8
1.2
100
S1
200
11.8
12.1
12.9
13.3
84
S2
168
9.6
9.8
10.4
10.8
64
S3
128
6.7
6.9
7.4
7.7
50
S3
100
5.3
5.5
5.9
6.2
25
S3
100
2.9
3.0
3.3
3.7
20
S3
160
2.5
2.6
2.9
3.2
16
S3
off
1.7
1.8
2.1
2.4
1
S3
off
0.3
0.4
0.7
1.1
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Guaranteed by tests in production.
56/117
DocID028094 Rev 2
Unit
mA
STM32F410x8/B
Electrical characteristics
Table 22. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(3)
IDD
Supply
current in
Run mode
HSI, PLL off,
all peripherals
enabled(3)
External clock,
all peripherals
disabled(3)
HSI, PLL off, all
peripherals
disabled(3)
fHCLK
(MHz)
PLL
Voltage VCO
scale (MHz)
Max(2)
Typ
(1)
TA=
25 °C
TA=85 TA=105
°C
°C
100
S1
200
17.7
18.5(4)
19.3
19.7(4)
84
S2
168
14.4
14.9(4)
15.7
16.0(4)
64
S3
128
10.1
10.3(4)
11.0
11.3(4)
50
S3
100
8.0
8.2
8.8
9.1
25
S3
100
4.4
4.5
4.9
5.2
20
S3
160
3.8
3.9
4.3
4.6
16
S3
off
2.5
2.6
2.9
3.2
1
S3
off
0.4
0.5
0.8
1.2
100
S1
200
12.1
12.7(4)
13.1
13.5(4)
84
S2
168
9.8
10.3(4)
10.7
11.0(4)
64
S3
128
7.0
7.2(4)
7.6
7.9(4)
50
S3
100
5.6
5.7
6.1
6.4
25
S3
100
3.1
3.2
3.5
3.9
20
S3
160
2.8
2.9
3.2
3.5
16
S3
off
1.7
1.8
2.1
2.4
1
S3
off
0.4
0.4
0.7
1.1
Unit
mA
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Guaranteed by tests in production.
DocID028094 Rev 2
57/117
115
Electrical characteristics
STM32F410x8/B
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(3)
IDD
Supply
current in
Run mode
HSI, PLL OFF,
all peripherals
enabled(3)
External clock,
all peripherals
disabled(3)
HSI, PLL OFF,
all peripherals
disabled(3)
fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
100
S1
84
Max(2)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
200
15.7
16.0
16.5
16.9
S2
168
12.7
12.9
13.4
13.8
64
S3
128
8.8
9.0
9.4
9.7
50
S3
100
7.0
7.2
7.5
7.8
25
S3
100
3.9
4.0
4.3
4.7
20
S3
160
3.4
3.5
3.8
4.2
16
S3
off
2.4
2.5
2.8
3.2
1
S3
off
0.6
0.7
1.0
1.4
100
S1
200
10.1
10.4
10.8
11.2
84
S2
168
8.2
8.3
8.7
9.1
64
S3
128
5.7
5.9
6.2
6.6
50
S3
100
4.6
4.7
5.0
5.4
25
S3
100
2.6
2.7
3.0
3.4
20
S3
160
2.4
2.5
2.8
3.1
16
S3
off
1.7
1.7
2.1
2.4
1
S3
off
0.6
0.6
1.0
1.4
(1)
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
58/117
DocID028094 Rev 2
Unit
mA
STM32F410x8/B
Electrical characteristics
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(3)
IDD
Supply
current in
Run mode
HSI, PLL OFF,
all peripherals
enabled(3)
External clock,
all peripherals
disabled(3)
HSI, PLL OFF,
all peripherals
disabled(3)
fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
100
S1
84
Max(2)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
200
16.3
16.8(4)
17.1
17.5(4)
S2
168
13.2
13.7
14.0
14.3
64
S3
128
9.3
9.7
9.9
10.2
50
S3
100
7.4
7.8
8.0
8.3
25
S3
100
4.2
4.6
4.8
5.0
20
S3
160
3.7
4.1
4.3
4.6
16
S3
off
2.4
2.8
3.0
3.4
1
S3
off
0.6
0.9
1.2
1.5
100
S1
200
10.6
11.1(4)
11.4
11.7(4)
84
S2
168
8.7
9.1
9.3
9.7
64
S3
128
6.2
6.6
6.8
7.1
50
S3
100
5.0
5.3
5.5
5.8
25
S3
100
2.9
3.3
3.5
3.8
20
S3
160
2.7
3.0
3.2
3.5
16
S3
off
1.7
2.0
2.3
2.6
1
S3
off
0.6
0.9
1.1
1.5
(1)
Unit
mA
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Guaranteed by tests in production.
DocID028094 Rev 2
59/117
115
Electrical characteristics
STM32F410x8/B
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(3)
IDD
Supply
current in
Run mode
HSI, PLL OFF,
all peripherals
enabled(3)
External clock,
all peripherals
disabled(3)
HSI, PLL OFF,
all peripherals
disabled(3)
fHCLK
(MHz)
PLL
Voltage VCO
scale (MHz)
Max(2)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
(1)
100
S1
200
24.7
25.6
26.5
27.0
84
S2
168
21.6
22.3
23.2
23.7
64
S3
128
15.9
16.5
17.1
17.6
50
S3
100
13.1
13.8
14.3
14.7
25
S3
100
7.5
8.0
8.3
8.7
20
S3
160
6.5
6.9
7.2
7.5
16
S3
off
4.7
5.1
5.5
5.9
1
S3
off
0.8
1.2
1.6
1.9
100
S1
200
19.1
19.9
20.7
21.3
84
S2
168
17.1
17.8
18.6
19.1
64
S3
128
12.8
13.4
14.0
14.5
50
S3
100
10.7
11.3
11.8
12.2
25
S3
100
6.3
6.8
7.1
7.4
20
S3
160
5.4
5.9
6.2
6.5
16
S3
off
4.0
4.4
5.0
5.1
1
S3
off
0.8
1.1
1.5
1.8
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
60/117
DocID028094 Rev 2
Unit
mA
STM32F410x8/B
Electrical characteristics
Table 26. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(3)
IDD
Supply
current in
Run mode
HSI, PLL OFF,
all peripherals
enabled(3)
External clock,
all peripherals
disabled(3)
HSI, PLL OFF,
all peripherals
disabled(3)
fHCLK
(MHz)
PLL
Voltage VCO
scale (MHz)
Max(2)
Typ
TA =
25 °C
TA =
85 °C
(1)
Unit
TA =
105 °C
100
S1
200
24.2
25.4
25.7
26.5
84
S2
168
20.0
21.1
21.4
22.1
64
S3
128
15.8
16.7
17.0
17.7
50
S3
100
13.3
16.1
14.4
15.0
25
S3
100
7.5
9.2
8.3
8.8
20
S3
160
6.7
8.0
7.3
7.7
16
S3
off
5.1
6.2
5.7
6.2
1
S3
off
0.8
1.0
1.3
1.7
100
S1
200
18.6
22.3
23.4
23.9
84
S2
168
15.5
18.7
19.9
20.4
64
S3
128
12.7
15.6
16.7
17.0
50
S3
100
10.9
13.5
14.3
14.7
25
S3
100
6.3
7.8
8.4
8.7
20
S3
160
5.6
7.0
7.3
7.6
16
S3
off
4.3
5.3
5.8
6.2
1
S3
off
0.8
0.9
1.3
1.6
mA
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
DocID028094 Rev 2
61/117
115
Electrical characteristics
STM32F410x8/B
Table 27. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(3)
IDD
Supply
current in
Run mode
HSI, PLL OFF,
all peripherals
enabled(3)
External clock,
all peripherals
disabled(3)
HSI, PLL OFF,
all peripherals
disabled(3)
fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
100
S1
84
Max(2)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
200
27.1
28.0
28.9
29.5
S2
168
23.2
24.0
24.9
25.5
64
S3
128
17.0
17.7
18.4
18.8
50
S3
100
13.6
14.2
14.7
15.2
25
S3
100
7.5
8.0
8.3
8.7
20
S3
160
6.5
6.9
7.2
7.5
16
S3
off
4.7
5.1
5.5
5.9
1
S3
off
0.8
1.2
1.4
1.8
100
S1
200
21.5
22.3
23.2
23.8
84
S2
168
18.7
19.5
20.3
20.8
64
S3
128
14.0
14.6
15.2
15.7
50
S3
100
11.2
11.8
12.3
12.7
25
S3
100
6.3
6.8
7.1
7.4
20
S3
160
5.4
5.9
6.2
6.5
16
S3
off
4.0
4.4
4.8
5.1
1
S3
off
0.8
1.1
1.4
1.7
(1)
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
62/117
DocID028094 Rev 2
Unit
mA
STM32F410x8/B
Electrical characteristics
Table 28. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V
Symbol
Parameter
Conditions
All peripherals
enabled(3), External
clock, PLL ON,
Flash memory in
Deep power down
mode
IDD
Supply
current in
Sleep mode
All peripherals
enabled(3), HSI, PLL
OFF, Flash memory
in Deep power down
mode
All peripherals
enabled(3), External
clock, PLL ON,
Flash memory ON
All peripherals
enabled(3), HSI, PLL
OFF, Flash memory
ON
fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
100
S1
84
Max(2)
Typ
TA =
25 °C
200
8.0
8.2(4)
9.0
9.4(4)
S2
168
6.5
6.7
7.4
7.7
64
S3
128
4.6
4.7
5.2
5.5
50
S3
100
3.7
3.9
4.3
4.6
25
S3
100
2.2
2.3
2.6
2.9
20
S3
160
2.1
2.2
2.5
2.8
16
S3
off
1.1
1.2
1.5
1.9
1
S3
off
0.3
0.4
0.7
1.1
100
S1
200
8.4
8.7
9.5
9.9
84
S2
168
6.9
7.1
7.7
8.1
64
S3
128
4.9
5.1
5.5
5.9
50
S3
100
4.0
4.2
4.6
4.9
25
S3
100
2.5
2.6
2.9
3.2
20
S3
160
2.4
2.5
2.7
3.1
16
S3
off
1.4
1.4
1.8
2.2
1
S3
off
0.6
0.6
1.0
1.3
(1)
TA =
TA = Unit
85 °C 105 °C
mA
DocID028094 Rev 2
63/117
115
Electrical characteristics
STM32F410x8/B
Table 28. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V (continued)
Symbol
Parameter
Conditions
All peripherals
disabled, External
clock, PLL ON,
Flash memory in
Deep power down
mode
Supply
IDD
current in
(continued) Sleep mode
(continued)
All peripherals
disabled, HSI, PLL
OFF, Flash memory
in Deep power down
mode
All peripherals
disabled, External
clock, PLL ON,
Flash memory ON
All peripherals
disabled, HSI, PLL
OFF, Flash memory
in Deep power down
mode
fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
100
S1
84
Max(2)
Typ
TA =
25 °C
200
2.2
2.3(4)
2.6
3.0(4)
S2
168
1.8
1.9
2.2
2.6
64
S3
128
1.4
1.5
1.8
2.1
50
S3
100
1.2
1.3
1.6
1.9
25
S3
100
0.9
1.0
1.3
1.7
20
S3
160
1.0
1.2
1.4
1.7
16
S3
off
0.3
0.4
0.7
1.1
1
S3
off
0.3
0.3
0.7
1.0
100
S1
200
2.6
2.7
3.0
3.4
84
S2
168
2.2
2.3
2.6
3.0
64
S3
128
1.8
1.9
2.1
2.5
50
S3
100
1.5
1.6
1.9
2.2
25
S3
100
1.2
1.4
1.6
2.0
20
S3
160
1.3
1.4
1.7
2.0
16
S3
off
0.6
0.6
1.0
1.3
1
S3
off
0.5
0.6
0.9
1.3
(1)
TA =
TA = Unit
85 °C 105 °C
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Guaranteed by tests in production.
64/117
DocID028094 Rev 2
mA
STM32F410x8/B
Electrical characteristics
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V
Symbol
Parameter
Conditions
All peripherals
enabled(3), External
clock, PLL ON,
Flash memory in
Deep power down
mode
IDD
Supply
current in
Sleep mode
All peripherals
enabled, HSI, PLL
OFF, Flash memory
in Deep power down
mode
All peripherals
enabled, External
clock, PLL ON,
Flash memory ON
All peripherals
enabled, HSI, PLL
OFF, Flash memory
ON
fHCLK
(MHz)
PLL
Voltage VCO
scale (MHz)
Max(2)
Typ
TA =
25 °C
(1)
TA =
TA = Unit
85 °C 105 °C
100
S1
200
7.7
7,9
8,8
9,2
84
S2
168
6.2
6,4
7,1
7,5
64
S3
128
4.3
4,5
5,0
5,3
50
S3
100
3.4
3,6
4,0
4,4
25
S3
100
2.0
2,1
2,4
2,7
20
S3
160
1.8
1,9
2,3
2,6
16
S3
off
1.1
1,2
1,5
1,9
1
S3
off
0.3
0,4
0,7
1,0
mA
100
S1
200
8.1
8,4
9,3
9,7
84
S2
168
6.6
6,8
7,5
7,9
64
S3
128
4.7
4,8
5,4
5,7
50
S3
100
3.8
3,9
4,4
4,7
25
S3
100
2.3
2,4
2,7
3,1
20
S3
160
2.1
2,2
2,6
2,9
16
S3
off
1.4
1,5
1,8
2,2
1
S3
off
0.5
0,6
1,0
1,3
DocID028094 Rev 2
65/117
115
Electrical characteristics
STM32F410x8/B
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V (continued)
Symbol
Parameter
fHCLK
(MHz)
Conditions
All peripherals
disabled, External
clock, PLL ON,
Flash memory in
Deep power down
mode
Supply
IDD
current in
(continued) Sleep mode
(continued)
All peripherals
disabled, HSI, PLL
OFF, Flash memory
in Deep power down
mode
All peripherals
disabled, External
clock, PLL ON,
Flash memory ON
All peripherals
disabled, HSI, PLL
OFF, Flash memory
in Deep power down
mode
PLL
Voltage VCO
scale (MHz)
Max(2)
Typ
TA =
25 °C
(1)
TA =
TA = Unit
85 °C 105 °C
100
S1
200
1.9
2,0
2,4
2,7
84
S2
168
1.6
1,7
2,0
2,4
64
S3
128
1.1
1,2
1,5
1,9
50
S3
100
0.9
1,0
1,3
1,7
25
S3
100
0.7
0,8
1,1
1,4
20
S3
160
0.8
0,8
1,2
1,5
16
S3
off
0.3
0,4
0,7
1,0
1
S3
off
0.2
0,3
0,6
1,0
100
S1
200
2.3
2,4
2,9
3,3
84
S2
168
2.0
2,1
2,4
2,8
64
S3
128
1.5
1,6
1,9
2,3
50
S3
100
1.3
1,4
1,7
2,0
25
S3
100
1.0
1,1
1,4
1,7
20
S3
160
1.0
1,2
1,5
1,8
16
S3
off
0.6
0,6
1,0
1,4
1
S3
off
0.5
0,6
0,9
1,3
mA
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
Table 30. Typical and maximum current consumptions in Stop mode - VDD = 1.7 V
Typ
Symbol
Conditions
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
IDD_STOP
Flash in Deep power
down mode, all oscillators
OFF, no independent
watchdog
Unit
TA =
TA = TA =
TA =
(1)
(1)
25 °C 25 °C 85 °C 105 °C
Main regulator usage
105.6
117.1
385.1
665.7
Low power regulator usage
39.5
48.7
287.5
548.4
Main regulator usage
77.8
87.5
351.3
630.1
Low power regulator usage
11.0
20.0
254.2
512.0
Low power low voltage regulator
usage
6.1
13.6
217.0
442.5
1. Guaranteed by characterization.
66/117
Max
DocID028094 Rev 2
µA
STM32F410x8/B
Electrical characteristics
Table 31. Typical and maximum current consumption in Stop mode - VDD=3.6 V
Typ
Symbol
Conditions
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
IDD_STOP
Flash in Deep power
down mode, all oscillators
OFF, no independent
watchdog
Max
Unit
TA =
TA =
TA =
TA =
(1)
(1)
25 °C 25 °C
85 °C 105 °C
126(2)
392.8 675.4(2)
Main regulator usage
108.6
Low power regulator usage
41.03
50.31(2) 290.9 554.2(2)
Main regulator usage
80.32
94.0(2) 357.0 639.5(2)
(2)
µA
(2)
Low power regulator usage
12.41
21.5
258.1 518.1
Low power low voltage regulator
usage
7.53
15.2(2) 221.6 449.2(2)
1. Guaranteed by characterization.
2. Guaranteed by tests in production.
Table 32. Typical and maximum current consumption in Standby mode - VDD= 1.7 V
Typ
Symbol
IDD_STBY
Parameter
Supply current in
Standby mode
Conditions
TA =
25 °C
Max
TA =
25 °C
(1)
Unit
TA =
TA =
(1)
85 °C 105 °C
Low-speed oscillator (LSE) and RTC
ON
2.1
2.9
6.5
18.2
RTC and LSE OFF
1.2
1.9
5.5
17.1
µA
1. Guaranteed by characterization, unless otherwise specified.
Table 33. Typical and maximum current consumption in Standby mode - VDD= 3.6 V
Typ
Symbol
Parameter
IDD_STBY
Supply current in
Standby mode
Conditions
Low-speed oscillator (LSE) and RTC
ON
RTC and LSE OFF
Max
Unit
TA =
TA =
TA =
TA =
(1)
(1)
25 °C 25 °C
85 °C 105 °C
3.4
4.3
2.5
3.3(2)
8.9
22.8
7.8
21.6(2)
µA
1. Guaranteed by characterization, unless otherwise specified.
2. Guaranteed by tests in production.
DocID028094 Rev 2
67/117
115
Electrical characteristics
STM32F410x8/B
Table 34. Typical and maximum current consumptions in VBAT mode
(LSE and RTC ON, LSE low- drive mode)
Max(2)
Typ
Symbol
TA =
85 °C
TA = 25 °C
Conditions(1)
Parameter
VBAT = VBAT= VBAT =
1.7 V 2.4 V 3.3 V
Low-speed oscillator (LSE in low-drive
mode) and RTC ON
Backup
IDD_VBAT domain supply Low-speed oscillator (LSE in high-drive
current
mode) and RTC ON
RTC and LSE OFF
TA =
105 °C Unit
VBAT = 3.6 V
0.7
0.8
1.1
2.8
4.2
1.4
1.6
1.9
4.2
7.0
0.1
0.1
0.1
2.0
4.0
µA
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization.
Figure 14. Typical VBAT current consumption (LSE and RTC ON,
in low-drive mode and RTC ON)
,''B9%$7—$
7HPSHUDWXUHƒ&
06Y9
68/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Figure 15. Typical VBAT current consumption (LSE and RTC ON,
LSE in high-drive mode and RTC ON)
,''B9%$7—$
7HPSHUDWXUHƒ&
06Y9
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 55: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 36: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD × f SW × C
DocID028094 Rev 2
69/117
115
Electrical characteristics
STM32F410x8/B
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
70/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Table 35. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDD = 3.3 V
C = CINT
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT + CS
IDDIO
I/O switching
current
VDD = 3.3 V
CEXT =10 pF
C = CINT + CEXT + CS
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT + CS
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT + CS
I/O toggling
Typ
frequency (fSW)
2 MHz
0.05
8 MHz
0.15
25 MHz
0.45
50 MHz
0.85
60 MHz
1.00
84 MHz
1.40
90 MHz
1.67
2 MHz
0.10
8 MHz
0.35
25 MHz
1.05
50 MHz
2.20
60 MHz
2.40
84 MHz
3.55
90 MHz
4.23
2 MHz
0.20
8 MHz
0.65
25 MHz
1.85
50 MHz
2.45
60 MHz
4.70
84 MHz
8.80
90 MHz
10.47
2 MHz
0.25
8 MHz
1.00
25 MHz
3.45
50 MHz
7.15
60 MHz
11.55
2 MHz
0.32
8 MHz
1.27
25 MHz
3.88
50 MHz
12.34
Unit
mA
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
DocID028094 Rev 2
71/117
115
Electrical characteristics
STM32F410x8/B
On-chip peripheral current consumption
The MCU is placed under the following conditions:
•
At startup, all I/O pins are in analog input configuration.
•
All peripherals are disabled unless otherwise mentioned.
•
The ART accelerator is ON.
•
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
•
HCLK is the system clock at 100 MHz. fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
The given value is calculated by measuring the difference of current consumption
•
–
with all peripherals clocked off
–
with only one peripheral clocked on
Ambient operating temperature is 25 °C and VDD=3.3 V.
Table 36. Peripheral current consumption
IDD (Typ)
Peripheral
AHB1
(up to 100 MHz)
APB1
(up to 50 MHz)
72/117
Voltage
scale1
Voltage
scale2
Voltage
scale3
GPIOA
1.68
1.62
1.42
GPIOB
1.67
1.60
1.41
GPIOC
1.63
1.56
1.39
GPIOH
0.61
0.61
0.52
CRC
0.31
0.32
0.25
DMA1(1)
1.67N +
3.12
1.60N +
2.96
1.43N +
2.64
DMA2(1)
1.59N +
2.83
1.52N +
2.65
1.36N +
2.41
RNG
0.90
0.88
0.75
APB1 to AHB
0,78
0,74
0,63
TIM5
13,38
12,76
11,41
TIM6
2,14
1,98
1,75
LPTIM
8,22
7,88
7,06
WWDG
0,64
0,64
0,56
SPI2/I2S2
2,42
2,33
2,06
USART2
3,38
3,29
2,91
I2C1
3,46
3,33
2,97
I2C2
3,50
3,31
2,97
I2C4
4,82
4,64
4,09
PWR
0,66
0,64
0,62
DAC
0,84
0,81
0,78
DocID028094 Rev 2
Unit
µA/MHz
µA/MHz
STM32F410x8/B
Electrical characteristics
Table 36. Peripheral current consumption (continued)
IDD (Typ)
Peripheral
APB2
(up to 100 MHz)
Voltage
scale1
Voltage
scale2
Voltage
scale3
APB2 to AHB
0,22
0,19
0,17
TIM1
6,62
6,36
5,66
USART1
3,19
3,10
2,77
USART6
3,10
2,99
2,66
ADC1
3,35
3,25
2,88
SPI1/I2S1
1,82
1,77
1,58
SYSCFG
0,83
0,81
0,72
EXTI
0,92
0,88
0,80
TIM9
2,90
2,81
2,48
TIM11
2,13
2,06
1,81
SPI5/I2S5
1,88
1,83
1,59
1.91
1.82
1.64
Bus matrix
Unit
µA/MHz
1. Valid if all the DMA streams are activated (please refer to the reference manual RM0401).
6.3.7
Wakeup time from low-power modes
The wakeup times given in Table 37 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
•
For Stop or Sleep modes: the wakeup event is WFE.
•
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
DocID028094 Rev 2
73/117
115
Electrical characteristics
STM32F410x8/B
Figure 16. Low-power mode wakeup
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
2SWLRQE\WHVDUHQRWUHORDGHG
&38UHVWDUW
5HJXODWRU +6,UHVWDUW )ODVKVWRSH[LW
UDPSXS
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
IODVKLQ'HHSSRZHUGRZQPRGH
2SWLRQE\WHVDUHQRWUHORDGHG
&38UHVWDUW
5HJXODWRU +6,UHVWDUW )ODVK'HHS3GUHFRYHU\
UDPSXS
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
UDPSXS
&38UHVWDUW
+6,UHVWDUW )ODVKVWRSH[LW
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
IODVKLQ'HHSSRZHUGRZQPRGH
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
UDPSXS
:DNHXSIURP6WDQGE\PRGH
&38UHVWDUW
)ODVK'HHS3GUHFRYHU\
5HJXODWRU
2))
5HJXODWRU
UHVWDUW
:DNHXSIURP6OHHSDQG
)ODVKLQ'HHSSRZHUGRZQ
+6,UHVWDUW
&38UHVWDUW
+6,UHVWDUW
5HJXODWRU
21
&38UHVWDUW
)ODVK'HHS3GUHFRYHU\
2SWLRQE\WHVORDGLQJ
2SWLRQE\WHVDUHQRWUHORDGHG
)ODVK'HHS3GUHFRYHU\
069
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
74/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Table 37. Low-power mode wakeup timings(1)
Symbol
Parameter
Min
Typ
Max
Unit
-
-
4
6
CPU
clock
cycles
Flash memory in Deep power
down mode
-
-
40,0
Main regulator
-
12.9
15.0
-
104.9
115.0
-
20.8
25.0
-
112.9
120.0
Main regulator, Flash memory
in Stop or Deep power down
mode
-
4.9
7.0
Regulator in low-power mode,
Flash memory in Stop or Deep
power down mode
-
12.8
20.0
Wakeup from Standby
mode
-
-
316.8
350.0
Wakeup of Flash memory
From Flash_Stop mode
-
-
10.0
Wakeup of Flash memory
From Flash Deep power down
mode
-
-
40.0
tWUSLEEP(2)
Conditions
Wakeup from Sleep mode
tWUSLEEPFDSM(2)
tWUSTOP(2)
Main regulator, Flash memory
Wakeup from Stop mode, in Deep power down mode
code execution from Flash Regulator in low-power mode
memory
Regulator in low-power mode,
Flash memory in Deep power
down mode
Wakeup from Stop mode,
code execution from RAM
tWUSTDBY(2)(3)
tWUFLASH
µs
1. Guaranteed by characterization.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY maximum value is given at –40 °C.
6.3.8
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 55. However, the recommended clock input
waveform is shown in Figure 17.
The characteristics given in Table 38 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 15.
DocID028094 Rev 2
75/117
115
Electrical characteristics
STM32F410x8/B
Table 38. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
-
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
5
-
-
V
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
Cin(HSE)
(1)
OSC_IN input capacitance(1)
DuCy(HSE) Duty cycle
OSC_IN Input leakage current
IL
VSS ≤ VIN ≤ VDD
-
-
10
-
5
-
pF
45
-
55
%
-
-
±1
µA
1. Guaranteed by design.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 55. However, the recommended clock input
waveform is shown in Figure 18.
The characteristics given in Table 39 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 15.
Table 39. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1)
-
-
50
OSC32_IN input capacitance(1)
-
5
-
pF
30
-
70
%
-
-
±1
µA
Cin(LSE)
DuCy(LSE)
IL
ns
Duty cycle
OSC32_IN Input leakage current
VSS ≤ VIN ≤ VDD
1. Guaranteed by design.
76/117
V
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Figure 17. High-speed external clock source AC timing diagram
6(3%(
6(3%,
TR(3%
TF(3%
T7(3% T
T7(3%
4(3%
%XTERNAL
CLOCKSOURCE
F(3%?EXT
/3#?).
),
34-&
AI
Figure 18. Low-speed external clock source AC timing diagram
9/6(+
9/6(/
WU/6(
WI/6(
W:/6(
26&B,1
,/
W:/6( W
7/6(
([WHUQDO
FORFNVRXUFH
I/6(BH[W
670)
DL
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
DocID028094 Rev 2
77/117
115
Electrical characteristics
STM32F410x8/B
Table 40. HSE 4-26 MHz oscillator characteristics(1)
Symbol
fOSC_IN
RF
IDD
Parameter
Conditions
Min
Typ
Max
Unit
Oscillator frequency
4
-
26
MHz
Feedback resistor
-
200
-
kΩ
VDD=3.3 V,
ESR= 30 Ω,
CL=5 pF @25 MHz
-
450
-
VDD=3.3 V,
ESR= 30 Ω,
CL=10 pF @25 MHz
-
530
-
Startup
-
-
1
mA/V
VDD is stabilized
-
2
-
ms
HSE current consumption
Gm_crit_max Maximum critical crystal gm
tSU(HSE)(2)
Startup time
µA
1. Guaranteed by design.
2. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 19). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 19. Typical application with an 8 MHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
0+]
UHVRQDWRU
&/
I+6(
26&B,1
5(;7
5)
26&B28 7
%LDV
FRQWUROOHG
JDLQ
670)
DL
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 41. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
78/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
The LSE high-power mode allows to cover a wider range of possible crystals but with a cost
of higher power consumption.
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
RF
Feedback resistor
IDD
LSE current consumption
Gm_crit_max Maximum critical crystal gm
tSU(LSE)(2)
startup time
Conditions
Min
Typ
Max
Unit
-
-
18.4
-
MΩ
Low-power mode
(default)
-
-
1
High-drive mode
-
-
3
Startup, low-power
mode
-
-
0.56
Startup, high-drive
mode
-
-
1.50
VDD is stabilized
-
2
-
µA
µA/V
s
1. Guaranteed by design.
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is guaranteed by characterization. It is measured for a
standard crystal resonator and it can vary significantly with the crystal manufacturer.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
For information about the LSE high-power mode, refer to the reference manual RM0401.
Figure 20. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
%LDV
5) FRQWUROOHG
JDLQ
N+ ]
UHVRQDWRU
&/
I/6(
26&B,1
26&B28 7
670)
DL
DocID028094 Rev 2
79/117
115
Electrical characteristics
6.3.9
STM32F410x8/B
Internal clock source characteristics
The parameters given in Table 42 and Table 43 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 15.
High-speed internal (HSI) RC oscillator
Table 42. HSI oscillator characteristics (1)
L
Symbol
Parameter
fHSI
Conditions
Min
Typ
Max
Unit
-
16
-
MHz
-
-
1
%
–8
-
4.5
%
–4
-
4
%
–1
-
1
%
Frequency
User-trimmed with the RCC_CR
register(2)
Accuracy of the HSI
oscillator
Factorycalibrated
ACCHSI
TA = –40 to 105 °C(3)
TA = –10 to 85
TA = 25
°C(4)
°C(3)
tsu(HSI)(2)
HSI oscillator
startup time
-
2.2
4
µs
IDD(HSI)(2)
HSI oscillator
power consumption
-
60
80
µA
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization.
4. Factory calibrated non-soldered parts.
Figure 21. ACCHSI versus temperature
!##(3)
4! #
-IN
-AX
4YPICAL
-36
1. Guaranteed by characterization.
80/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Low-speed internal (LSI) RC oscillator
Table 43. LSI oscillator characteristics (1)
Symbol
Parameter
fLSI(2)
tsu(LSI)
Min
Typ
Max
Unit
17
32
47
kHz
LSI oscillator startup time
-
15
40
µs
LSI oscillator power consumption
-
0.4
0.6
µA
Frequency
(3)
IDD(LSI)(3)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by characterization.
3. Guaranteed by design.
Figure 22. ACCLSI versus temperature
MAX
AVG
MIN
.ORMALIZEDDEVIATI ON
4EMPERAT URE #
-36
6.3.10
PLL characteristics
The parameters given in Table 44 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 15.
Table 44. Main PLL characteristics
Symbol
Parameter
fPLL_IN
PLL input clock(1)
fPLL_OUT
PLL multiplier output clock
fPLL48_OUT
48 MHz PLL multiplier output
clock
fVCO_OUT
PLL VCO output
Conditions
DocID028094 Rev 2
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
24
-
100
MHz
-
48
75
MHz
100
-
432
MHz
81/117
115
Electrical characteristics
STM32F410x8/B
Table 44. Main PLL characteristics (continued)
Symbol
tLOCK
Parameter
Conditions
PLL lock time
Min
Typ
Max
VCO freq = 100 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
-
25
-
-
±150
-
-
15
-
-
±200
-
-
0.40
0.75
-
0.40
0.85
RMS
Cycle-to-cycle jitter
System clock
100 MHz
Jitter(3)
peak
to
peak
RMS
peak
to
peak
Period Jitter
IDD(PLL)(4)
PLL power consumption on VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45
IDDA(PLL)(4)
PLL power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55
Unit
µs
ps
mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of two PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization.
82/117
DocID028094 Rev 2
STM32F410x8/B
6.3.11
Electrical characteristics
PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 51: EMI characteristics for LQFP64). It is available only on the
main PLL.
Table 45. SSCG parameter constraints
Symbol
Parameter
Min
Typ
Max(1)
Unit
fMod
Modulation frequency
-
-
10
kHz
md
Peak modulation depth
0.25
-
2
%
-
215
MODEPER * INCSTEP
(Modulation period) * (Increment Step)
-
-1
-
1. Guaranteed by design.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ f PLL_IN ⁄ ( 4 × fMod ) ]
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
6
3
MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 250
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP = round [ ( ( 2
15
– 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ]
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP = round [ ( ( 2
15
– 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 250 ) ] = 126md(quantitazed)%
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × PLLN )
As a result:
md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2
DocID028094 Rev 2
15
– 1 ) × 240 ) = 2.002%(peak)
83/117
115
Electrical characteristics
STM32F410x8/B
Figure 23 and Figure 24 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 23. PLL output clock waveforms in center spread mode
&REQUENCY0,,?/54
MD
&
MD
TMODE
4IME
XTMODE
AI
Figure 24. PLL output clock waveforms in down spread mode
)UHTXHQF\3//B287
)
[PG
WPRGH
7LPH
[WPRGH
DLE
6.3.12
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 46. Flash memory characteristics
Symbol
IDD
84/117
Parameter
Supply current
Conditions
Min
Typ
Max
Write / Erase 8-bit mode, VDD = 1.7 V
-
5
-
Write / Erase 16-bit mode, VDD = 2.1 V
-
8
-
Write / Erase 32-bit mode, VDD = 3.3 V
-
12
-
DocID028094 Rev 2
Unit
mA
STM32F410x8/B
Electrical characteristics
Table 47. Flash memory programming
Symbol
tprog
Parameter
Word programming time
tERASE16KB Sector (16 KB) erase time
tERASE64KB Sector (64 KB) erase time
tME
Vprog
Mass erase time
Programming voltage
Conditions
Min(1)
Typ
Max(1) Unit
Program/erase parallelism
(PSIZE) = x 8/16/32
-
16
100(2)
Program/erase parallelism
(PSIZE) = x 8
-
400
800
Program/erase parallelism
(PSIZE) = x 16
-
300
600
Program/erase parallelism
(PSIZE) = x 32
-
250
500
Program/erase parallelism
(PSIZE) = x 8
-
1200
2400
Program/erase parallelism
(PSIZE) = x 16
-
700
1400
Program/erase parallelism
(PSIZE) = x 32
-
550
1100
Program/erase parallelism
(PSIZE) = x 8
-
2
4
Program/erase parallelism
(PSIZE) = x 16
-
1.4
2.8
Program/erase parallelism
(PSIZE) = x 32
-
1
2
32-bit program operation
2.7
-
3.6
V
16-bit program operation
2.1
-
3.6
V
8-bit program operation
1.7
-
3.6
V
µs
ms
ms
s
1. Guaranteed by characterization.
2. The maximum programming time is measured after 100K erase operations.
Table 48. Flash memory programming with VPP voltage
Symbol
Parameter
tprog
Double word programming
tERASE16KB
Sector (16 KB) erase time
tERASE64KB
Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Conditions
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
Mass erase time
Min(1)
Typ
Max(1)
Unit
-
16
100(2)
µs
-
230
-
-
490
-
-
875
-
-
3.50
-
s
2.7
-
3.6
V
ms
Vprog
Programming voltage
VPP
VPP voltage range
7
-
9
V
IPP
Minimum current sunk on
the VPP pin
10
-
-
mA
-
-
1
hour
tVPP(3)
Cumulative time during
which VPP is applied
DocID028094 Rev 2
85/117
115
Electrical characteristics
STM32F410x8/B
1. Guaranteed by design.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 49. Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
(2)
at TA = 105 °C
10
10 kcycle(2) at TA = 55 °C
20
1 kcycle
Unit
kcycles
Years
1. Guaranteed by characterization.
2. Cycling performed over the whole temperature range.
6.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 51. They are based on the EMS levels and classes
defined in application note AN1709.
Table 50. EMS characteristics
Symbol
86/117
Parameter
Conditions
Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25 °C,
fHCLK = 100 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25 °C,
fHCLK = 100 MHz, conforms to
IEC 61000-4-4
4A
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
In noisy environments, it is recommended to avoid pin exposition to disturbances. The pins
showing a middle range robustness are PA14 and PA15.
As a consequence, it is recommended to add a serial resistor (1 kΩ maximum) located as
close as possible to the MCU pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 51. EMI characteristics for LQFP64
Symbol
Parameter
Conditions
Monitored
frequency band
Max vs.
[fHSE/fCPU]
Unit
8/100 MHz
SEMI
6.3.14
Peak level
VDD = 3.6 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz
10
30 to 130 MHz
11
130 MHz to 1 GHz
5
SAE EMI Level
2.5
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
DocID028094 Rev 2
87/117
115
Electrical characteristics
STM32F410x8/B
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 52. ESD absolute maximum ratings(1)
Symbol
Ratings
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
Class
Maximum
value(2)
2
2000
UFQFN48
4
500
WLCSP36
3
TBD
LQPF64
3
500
Conditions
TA = +25 °C conforming to
ANSI/JEDEC JS-001
TA = +25 °C conforming to
ANSI/ESD STM5.3.1
Unit
V
1. TBD stands for “to be defined”.
2. Guaranteed by characterization.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 53. Electrical sensitivities
Symbol
LU
6.3.15
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins
88/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator
frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 54.
Table 54. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on BOOT0 pin
–0
NA
Injected current on NRST pin
–0
NA
Injected current on PB3, PB4, PB5, PB6,
PB7, PB8, PB9, PC13, PC14, PC15, PH1,
PDR_ON, PC0, PC1, PC2, PC3
–0
NA
Injected current on any other FT pin
–5
NA
Injected current on any other pins
–5
+5
Unit
mA
1. NA = not applicable.
Note:
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.16
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under the conditions summarized in Table 15. All I/Os are CMOS and TTL
compliant.
Table 55. I/O static characteristics
Symbol
Parameter
FT, TC and NRST I/O input low
level voltage
VIL
BOOT0 I/O input low level
voltage
FT, TC and NRST I/O input high
level voltage(5)
VIH
BOOT0 I/O input high level
voltage
Conditions
Min
Typ
Max
1.7 V≤ VDD≤ 3.6 V
-
-
0.3VDD(1)
1.75 V≤ VDD ≤ 3.6 V,
-40 °C≤ TA ≤ 105 °C
-
-
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
-
-
0.7VDD(1
-
1.7 V≤ VDD≤ 3.6 V
1.75 V≤ VDD ≤ 3.6 V,
-40 °C≤ TA ≤ 105 °C
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
DocID028094 Rev 2
0.1VDD+0.1
Unit
V
(2)
)
0.17VDD
+0.7(2)
V
-
-
89/117
115
Electrical characteristics
STM32F410x8/B
Table 55. I/O static characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1.7 V≤ VDD≤ 3.6 V
-
10% VDD(3)
-
V
-
100
-
mV
VSS ≤ VIN ≤ VDD
-
-
±1
VIN = 5 V
-
-
3
All pins
except for
PA10
(OTG_FS_ID)
VIN = VSS
30
40
50
PA10
(OTG_FS_ID)
-
7
10
14
All pins
except for
PA10
(OTG_FS_ID)
VIN = VDD
30
40
50
PA10
(OTG_FS_ID)
-
7
10
14
-
-
5
-
FT, TC and NRST I/O input
hysteresis
VHYS
BOOT0 I/O input hysteresis
I/O input leakage current (4)
Ilkg
I/O FT/TC input leakage current
(5)
RPU
RPD
CIO(8)
Weak pull-up
equivalent
resistor(6)
Weak pull-down
equivalent
resistor(7)
I/O pin capacitance
1.75 V≤ VDD ≤ 3.6 V,
-40 °C≤ TA ≤ 105 °C
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
µA
kΩ
pF
1. Guaranteed by tests in production.
2. Guaranteed by design.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 54: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 54: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8.
Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT and TC I/Os is shown in Figure 25.
90/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Figure 25. FT/TC I/O input characteristics
9,/9,+9
'
9'
L
P
,+
Q
9
QW
H
P
LUH 77/UHTXLUHPHQW
U
9,+PLQ 9
26
0
&
'
9'
Q
R
WL
XF
LQ
RG
+P
,
SU
9
LQ
QV
WLR
HG
VW
XOD
P
L
7H
V
LJQ
HV
$UHDQRW
Q'
R
G
VH
GHWHUPLQHG
''
D
%
9
D[
,/P
QV9
ODWLR
X
LP
V
VLJQ
Q'H
HGR
77/UHTXLUHPHQW9,/PD[
%DV
9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
X
HT
9''9
069
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 13).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 13).
Output voltage levels
Unless otherwise specified, the parameters given in Table 56 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 15. All I/Os are CMOS and TTL compliant.
DocID028094 Rev 2
91/117
115
Electrical characteristics
STM32F410x8/B
Table 56. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL (1)
Output low level voltage for an I/O pin
VOH (3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
Conditions
Min
Max
CMOS port(2)
IIO = +8 mA
2.7 V ≤ VDD ≤ 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
TTL port(2)
IIO =+8 mA
2.7 V ≤ VDD ≤ 3.6 V
IIO = +20 mA
2.7 V ≤ VDD ≤ 3.6 V VDD–1.3(4)
1.3(4)
IIO = +6 mA
1.8 V ≤ VDD ≤ 3.6 V VDD–0.4(4)
0.4(4)
IIO = +4 mA
1.7 V ≤ VDD ≤ 3.6 V VDD–0.4(5)
0.4(5)
-
-
-
Unit
V
V
V
V
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 13.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization results.
5. Guaranteed by design.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 26 and
Table 57, respectively.
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 15.
Table 57. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
00
tf(IO)out/
tr(IO)out
92/117
Output high to low level fall
time and output low to high
level rise time
Min
Typ
Max
CL = 50 pF, VDD ≥ 2.70 V
-
-
4
CL = 50 pF, VDD≥ 1.7 V
-
-
2
CL = 10 pF, VDD ≥ 2.70 V
-
-
8
CL = 10 pF, VDD ≥ 1.7 V
-
-
4
CL = 50 pF, VDD = 1.7 V to
3.6 V
-
-
100
DocID028094 Rev 2
Unit
MHz
ns
STM32F410x8/B
Electrical characteristics
Table 57. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
01
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
fmax(IO)out Maximum frequency(3)
10
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
Fmax(IO)out Maximum frequency(3)
11
tf(IO)out/
tr(IO)out
-
tEXTIpw
Output high to low level fall
time and output low to high
level rise time
Min
Typ
Max
CL = 50 pF, VDD ≥ 2.70 V
-
-
25
CL = 50 pF, VDD ≥ 1.7 V
-
-
12.5
CL = 10 pF, VDD ≥ 2.70 V
-
-
50
CL = 10 pF, VDD ≥ 1.7 V
-
-
20
CL = 50 pF, VDD ≥2.7 V
-
-
10
CL = 50 pF, VDD ≥ 1.7 V
-
-
20
CL = 10 pF, VDD ≥ 2.70 V
-
-
6
CL = 10 pF, VDD ≥ 1.7 V
-
-
10
CL = 40 pF, VDD ≥ 2.70 V
-
-
50(4)
CL = 40 pF, VDD ≥ 1.7 V
-
-
25
CL = 10 pF, VDD ≥ 2.70 V
-
-
100(4)
CL = 10 pF, VDD ≥ 1.7 V
-
-
50(4)
CL = 40 pF, VDD≥ 2.70 V
-
-
6
CL = 40 pF, VDD≥ 1.7 V
-
-
10
CL = 10 pF, VDD≥ 2.70 V
-
-
4
CL = 10 pF, VDD≥ 1.7 V
-
-
6
CL = 30 pF, VDD ≥ 2.70 V
-
-
100(4)
CL = 30 pF, VDD ≥ 1.7 V
-
-
50(4)
CL = 30 pF, VDD ≥ 2.70 V
-
-
4
CL = 30 pF, VDD ≥ 1.7 V
-
-
6
CL = 10 pF, VDD≥ 2.70 V
-
-
2.5
CL = 10 pF, VDD≥ 1.7 V
-
-
4
10
-
-
Pulse width of external signals
detected by the EXTI
controller
Unit
MHz
ns
MHz
ns
MHz
ns
ns
1. Guaranteed by characterization.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 26.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
DocID028094 Rev 2
93/117
115
Electrical characteristics
STM32F410x8/B
Figure 26. I/O AC characteristics definition
(;7(51$/
287387
21&/
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI”7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´
6.3.17
DLG
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 55).
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 15. Refer to Table 55: I/O static characteristics for the values of VIH and VIL for
NRST pin.
Table 58. NRST pin characteristics
Symbol
Parameter
RPU
Weak pull-up equivalent
resistor(1)
VF(NRST)(2)
NRST Input filtered pulse
VNF(NRST)(2) NRST Input not filtered pulse
TNRST_OUT
Generated reset pulse duration
Conditions
Min
Typ
Max
Unit
VIN = VSS
30
40
50
kΩ
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Internal Reset
source
20
-
-
µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
94/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Figure 27. Recommended NRST pin protection
9''
([WHUQDO
UHVHWFLUFXLW 1567 538
,QWHUQDO5HVHW
)LOWHU
—)
670)
DLF
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 58. Otherwise the reset is not taken into account by the device.
6.3.18
TIM timer characteristics
The parameters given in Table 59 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 59. TIMx characteristics(1)(2)
Symbol
tres(TIM)
Parameter
Timer resolution time
Conditions(3)
Min
Max
Unit
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
100 MHz
1
-
tTIMxCLK
11.9
-
ns
1
-
tTIMxCLK
11.9
-
ns
AHB/APBx prescaler>4,
fTIMxCLK = 100 MHz
fEXT
ResTIM
tCOUNTER
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 100 MHz
0
fTIMxCLK/2
MHz
0
50
MHz
Timer resolution
-
16/32
bit
0.0119
780
µs
-
65536 ×
65536
tTIMxCLK
-
51.1
S
16-bit counter clock
period when internal clock fTIMxCLK = 100 MHz
is selected
Maximum possible count
tMAX_COUNT
with 32-bit counter
fTIMxCLK = 100 MHz
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise
TIMxCLK >= 4x PCLKx.
DocID028094 Rev 2
95/117
115
Electrical characteristics
6.3.19
STM32F410x8/B
Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 60. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the
complete solution, please contact your local ST sales representative.
Table 60. I2C characteristics
Symbol
Parameter
Standard mode
I2C(1)(2)
Fast mode I2C(1)(2)
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
0
900(4)
µs
th(SDA)
SDA data hold time
0
3450(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
µs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
µs
tSP
Pulse width of the spikes
that are suppressed by the
analog filter for standard fast
mode
0
50(5)
0
50(5)
ns
Cb
Capacitive load for each bus
line
-
400
-
400
pF
ns
µs
1. Guaranteed by design.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
96/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
5. The minimum width of the spikes filtered by the analog filter is above tSP (max)
Figure 28. I2C bus AC waveforms and measurement circuit
s ''B,&
s ''B,&
53
53
670)[[
56
6'$
,ð&EXV
56
6&/
67$575(3($7('
67$57
67$57
WVX67$
6'$
WI6'$
WU6'$
WK67$
WVX6'$
WZ6&/+
WZ67267$
6723
WK6'$
6&/
WU6&/
WZ6&//
WI6&/
WVX672
DLF
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
Table 61. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x8019
300
0x8021
200
0x8032
100
0x0096
50
0x012C
20
0x02EE
2
1. RP = External pull-up resistance, fSCL = I C speed
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
DocID028094 Rev 2
97/117
115
Electrical characteristics
STM32F410x8/B
Table 62. SCL frequency (fPCLK1= 42 MHz.,VDD = VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x8019
300
0x8021
200
0x8032
100
0x0096
50
0x012C
20
0x02EE
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
98/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
FMPI2C characteristics
The FMPI2C characteristics are described in Table 63.
Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output
alternate function characteristics (SDA and SCL).
Table 63. FMPI2C characteristics(1)
Standard mode
-
fFMPI2CC
Fast mode
Fast+ mode
Parameter
Unit
Min
Max
Min
Max
Min
Max
2
-
8
-
17
16(2)
-
FMPI2CCLK frequency
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
0.5
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
0.26
-
tsu(SDA)
SDA setup time
0.25
-
0.10
-
0.05
-
tH(SDA)
SDA data hold time
0
-
0
-
0
-
-
3.45
-
0.9
-
0.45
tv(SDA,ACK) Data, ACK valid time
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
0.100
-
0.30
-
0.12
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
0.30
-
0.30
-
0.12
th(STA)
Start condition hold time
4
-
0.6
-
0.26
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
0.26
-
tsu(STO)
Stop condition setup time
4
-
0.6
-
0.26
-
4.7
-
1.3
-
0.5
-
tSP
Pulse width of the spikes that
are suppressed by the
analog filter for standard and
fast mode
-
-
0.05
0.09
0.05
0.09
Cb
Capacitive load for each bus
Line
-
400
-
400
-
550(3)
tw(STO:STA)
Stop to Start condition time
(bus free)
us
pF
1. Guaranteed based on test during characterization.
2. When tr(SDA,SCL)<=110 ns.
3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:
tr(SDA/SCL) = 0.8473 x Rp x Cload
Rp(min) = (VDD -VOL(max)) / IOL(max)
DocID028094 Rev 2
99/117
115
Electrical characteristics
STM32F410x8/B
Figure 29. FMPI2C timing diagram and measurement circuit
s ''B,&
s ''B,&
53
53
670)[[
56
6'$
,ð&EXV
56
6&/
67$575(3($7('
67$57
67$57
WVX67$
6'$
WI6'$
WU6'$
WK67$
WVX6'$
WZ6&/+
6723
WK6'$
WZ67267$
6&/
WZ6&//
WU6&/
WI6&/
WVX672
DLF
100/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 64 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 15, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 64. SPI dynamic characteristics(1)
Symbol
fSCK
1/tc(SCK)
Duty(SCK)
Parameter
SPI clock frequency
Conditions
Min
Typ
Max
Master full duplex/receiver mode,
2.7 V < VDD < 3.6 V
SPI1/4/5
-
-
42
Master full duplex/receiver mode,
3.0 V < VDD < 3.6 V
SPI1/4/5
-
-
50
Master transmitter mode
1.7 V < VDD < 3.6 V
SPI1/4/5
-
-
50
Master mode
1.7 V < VDD < 3.6 V
SPI1/2/3/4/5
-
-
25
Slave transmitter/full duplex mode
2.7 V < VDD < 3.6 V
SPI1/4/5
-
-
38(2)
Slave receiver mode,
1.8 V < VDD < 3.6 V
SPI1/4/5
-
-
50
Slave mode,
1.8 V < VDD < 3.6 V
SPI1/2/3/4/5
-
-
25
30
50
70
%
Duty cycle of SPI clock
Slave mode
frequency
Unit
MHz
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode, SPI presc = 2
TPCLK−1.5
TPCLK
TPCLK
+1.5
ns
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
3TPCLK
-
-
ns
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2TPCLK
-
-
ns
Master mode
4
-
-
ns
Slave mode
2.5
-
-
ns
Master mode
7.5
-
-
ns
Slave mode
3.5
-
-
ns
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
DocID028094 Rev 2
101/117
115
Electrical characteristics
STM32F410x8/B
Table 64. SPI dynamic characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
ta(SO)
Data output access time Slave mode
7
-
21
ns
tdis(SO)
Data output disable time Slave mode
5
-
12
ns
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V
-
11
13
ns
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V
-
11
18.5
ns
tv(SO)
Data output valid time
th(SO)
Data output hold time
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V
8
-
-
ns
tv(MO)
Data output valid time
Master mode (after enable edge)
-
4
6
ns
Master mode (after enable edge)
0
-
-
ns
th(MO)
Data output hold time
1. Guaranteed by characterization.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%
Figure 30. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
W962
WD62
0,62
287387
WK62
06%287
%,7287
06%,1
%,7,1
WU6&.
WI6&.
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
102/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Figure 31. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
&3+$
&32/
&3+$
&32/
WK166
WF6&.
WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
WU6&.
WI6&.
%,7287
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
06%,1
/6%,1
%,7,1
DLE
Figure 32. SPI timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
WF6&.
&3+$ &32/ 6&.2XWSXW
6&.LQSXW
W68166
&3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
WU6&.
WI6&.
%,7,1
06%,1
/6%,1
WK0,
026,
287387
06%287
WY02
% , 7287
/6%287
WK02
DLF
DocID028094 Rev 2
103/117
115
Electrical characteristics
STM32F410x8/B
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 65 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 15, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Table 65. I2S dynamic characteristics(1)
Symbol
Parameter
fMCK
I2S Main clock output
fCK
I2S clock frequency
DCK
Conditions
Min
Max
Unit
256x8K
256xFs(2)
MHz
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
30
70
-
I2S clock frequency duty cycle Slave receiver
tv(WS)
WS valid time
Master mode
0
7
th(WS)
WS hold time
Master mode
1.5
-
tsu(WS)
WS setup time
Slave mode
1.5
-
th(WS)
WS hold time
Slave mode
3
-
Master receiver
1
-
Slave receiver
2.5
-
Master receiver
7
-
Slave receiver
2.5
-
Slave transmitter (after enable edge)
-
20
Master transmitter (after enable edge)
-
6
Slave transmitter (after enable edge)
8
-
Master transmitter (after enable edge)
2
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
tv(SD_MT)
th(SD_ST)
th(SD_MT)
Data input setup time
Data input hold time
Data output valid time
Data output hold time
MHz
%
ns
1. Guaranteed by characterization.
2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).
Note:
Refer to the I2S section of RM0401 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
104/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
Figure 33. I2S slave timing diagram (Philips protocol)(1)
tc(CK)
CK Input
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 34. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
SDreceive
LSB
LSB transmit
th(SD_MR)
tsu(SD_MR)
receive(2)
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DocID028094 Rev 2
105/117
115
Electrical characteristics
6.3.20
STM32F410x8/B
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 66 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 15.
Table 66. ADC characteristics
Symbol
Parameter
VDDA
Power supply
VREF+
Positive reference voltage
fADC
fTRIG(2)
VAIN
RAIN(2)
ADC clock frequency
External trigger frequency
Conditions
Typ
Max
Unit
(1)
1.7
-
3.6
V
1.7(1)
-
VDDA
V
VDDA = 1.7(1) to 2.4 V
0.6
15
18
MHz
VDDA = 2.4 to 3.6 V
0.6
30
36
MHz
fADC = 30 MHz,
12-bit resolution
-
-
1764
kHz
-
-
17
1/fADC
0 (VSSA or VREFtied to ground)
-
VREF+
V
-
-
50
kΩ
-
-
6
kΩ
-
4
7
pF
-
-
0.100
µs
-
-
3(5)
1/fADC
-
-
0.067
µs
-
-
2(5)
1/fADC
0.100
-
16
µs
3
-
480
1/fADC
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
VDDA − VREF+ < 1.2 V
Conversion voltage range(3)
External input impedance
See Equation 1 for
details
RADC(2)(4) Sampling switch resistance
CADC(2)
Internal sample and hold
capacitor
tlat(2)
Injection trigger conversion
latency
fADC = 30 MHz
tlatr(2)
Regular trigger conversion
latency
fADC = 30 MHz
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time (including
sampling time)
fADC = 30 MHz
Min
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
106/117
DocID028094 Rev 2
1/fADC
STM32F410x8/B
Electrical characteristics
Table 66. ADC characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
12-bit resolution
Single ADC
-
-
2
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
3.75
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
6
Msps
Sampling rate
fS(2)
(fADC = 30 MHz, and
tS = 3 ADC cycles)
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
-
300
500
µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
-
1.6
1.8
mA
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.14.2:
Internal reset OFF).
2. Guaranteed by characterization.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.
Equation 1: RAIN max formula
R AIN
( k – 0.5 )
- – R ADC
= ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 67. ADC accuracy at fADC = 18 MHz(1)
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Typ
Max(2)
±3
±4
±2
±3
±1
±3
±1
±2
±2
±3
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Guaranteed by characterization.
DocID028094 Rev 2
107/117
115
Electrical characteristics
STM32F410x8/B
Table 68. ADC accuracy at fADC = 30 MHz(1)
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA − VREF < 1.2 V
Typ
Max(2)
±2
±5
±1.5
±2.5
±1.5
±4
±1
±2
±1.5
±3
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Guaranteed by characterization.
Table 69. ADC accuracy at fADC = 36 MHz(1)
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Typ
Max(2)
±4
±7
±2
±3
±3
±6
±2
±3
±3
±6
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Guaranteed by characterization.
Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to-noise and distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.3
10.4
-
bits
64
64.2
-
64
65
-
-
-72
-67
dB
1. Guaranteed by characterization.
Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to noise and distortion ratio
SNR
Signal-to noise ratio
THD
Total harmonic distortion
fADC = 36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
1. Guaranteed by characterization.
108/117
DocID028094 Rev 2
Min
Typ
Max
Unit
10.6
10.8
-
bits
66
67
-
64
68
-
-
-72
-70
dB
STM32F410x8/B
Note:
Electrical characteristics
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
Figure 35. ADC accuracy characteristics
6 2%&
6 $$!
;,3" )$%!, ORDEPENDINGONPACKAGE=
%'
%4
%/
%,
%$
, 3")$%!,
6 33!
6$$!
AIC
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
DocID028094 Rev 2
109/117
115
Electrical characteristics
STM32F410x8/B
Figure 36. Typical connection diagram using the ADC
670)
9''
5$,1 $,1[
9$,1
&SDUDVLWLF
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$'&
97
9
,/“—$
ELW
FRQYHUWHU
& $'&
DL
1. Refer to Table 66 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
110/117
DocID028094 Rev 2
STM32F410x8/B
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 37. The 10 nF capacitors
should be ceramic (good quality). They should be placed as close as possible to the chip.
Figure 37. Power supply and reference decoupling
670)
95()9''$
—)Q)
95()9''$
06Y9
6.3.21
Temperature sensor characteristics
Table 72. Temperature sensor characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VSENSE linearity with temperature
-
±1
±2
°C
Average slope
-
2.5
-
mV/°C
Voltage at 25 °C
-
0.76
-
V
tSTART(2)
Startup time
-
6
10
µs
TS_temp(2)
ADC sampling time when reading the temperature (1 °C accuracy)
10
-
-
µs
TL(1)
Avg_Slope
(1)
V25(1)
1. Guaranteed by characterization.
2. Guaranteed by design.
Table 73. Temperature sensor calibration values
Symbol
Parameter
Memory address
TS_CAL1
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V
0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V
0x1FFF 7A2E - 0x1FFF 7A2F
DocID028094 Rev 2
111/117
115
Electrical characteristics
6.3.22
STM32F410x8/B
VBAT monitoring characteristics
Table 74. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
KΩ
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
4
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
(1)
Er
TS_vbat(2)(2)
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.23
Embedded reference voltage
The parameters given in Table 75 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 15.
Table 75. Embedded internal reference voltage
Symbol
VREFINT
TS_vrefint(1)
VRERINT_s(2)
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
-
10
-
-
µs
VDD = 3V ± 10mV
-
3
5
mV
ADC sampling time when reading the
internal reference voltage
Internal reference voltage spread over the
temperature range
TCoeff(2)
Temperature coefficient
-
-
30
50
ppm/°C
tSTART(2)
Startup time
-
-
6
10
µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design
Table 76. Internal reference voltage calibration values
6.3.24
Symbol
Parameter
Memory address
VREFIN_CAL
Raw data acquired at temperature of
30 °C VDDA = 3.3 V
0x1FFF 7A2A - 0x1FFF 7A2B
DAC electrical characteristics
Table 77. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
-
VDDA
Analog supply voltage
1.7(1)
-
3.6
V
VREF+
Reference supply voltage
1.7(1)
-
3.6
V
VSSA
Ground
0
-
0
V
112/117
DocID028094 Rev 2
VREF+ ≤ VDDA
-
STM32F410x8/B
Electrical characteristics
Table 77. DAC characteristics (continued)
Symbol
Min
Typ
Max
Unit
Comments
Resistive load with buffer
ON
5
-
-
kΩ
-
Impedance output with
buffer OFF
-
-
15
kΩ
When the buffer is OFF, the Minimum
resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
Capacitive load
-
-
50
pF
Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
DAC_OUT Lower DAC_OUT voltage
with buffer ON
min(2)
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
max(2)
with buffer ON
-
-
VDDA –
0.2
V
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer OFF
-
0.5
-
mV
-
-
VREF+
– 1LSB
V
-
170
240
RLOAD(2)
RO(2)
CLOAD(2)
Parameter
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(2)
IVREF+(4)
IDDA(4)
DNL(4)
INL(4)
Offset(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
DAC DC VDDA current
consumption in quiescent
mode(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VREF+/2)
µA
It gives the maximum output excursion
of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V
and (0x1C7) to (0xE38) at VREF+ = 1.7 V
It gives the maximum output excursion
of the DAC.
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
50
75
-
280
380
µA
With no load, middle code (0x800) on
the inputs
-
475
625
µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration.
-
-
±2
LSB
Given for the DAC in 12-bit
configuration.
-
-
±1
LSB
Given for the DAC in 10-bit
configuration.
-
-
±4
LSB
Given for the DAC in 12-bit
configuration.
-
-
±10
mV
Given for the DAC in 12-bit configuration
-
-
±3
LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
DocID028094 Rev 2
113/117
115
Electrical characteristics
STM32F410x8/B
Table 77. DAC characteristics (continued)
Symbol
Gain
error(4)
tSETTLING(4)
Parameter
Min
Typ
Max
Unit
Comments
Gain error
-
-
±0.5
%
Given for the DAC in 12-bit configuration
Total Harmonic Distortion
Buffer ON
-
3
6
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
THD(4)
-
-
-
-
dB
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
tWAKEUP(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and highest
possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed based on test during characterization.
Figure 38. 12-bit buffered/non-buffered DAC
%XIIHUHGQRQEXIIHUHG'$&
%XIIHU
5/2$'
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
'$&[B287
&/2$'
DLG
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
114/117
DocID028094 Rev 2
STM32F410x8/B
6.3.25
Electrical characteristics
RTC characteristics
Table 78. RTC characteristics
Symbol
Parameter
-
fPCLK1/RTCCLK frequency ratio
Conditions
Any read/write operation
from/to an RTC register
DocID028094 Rev 2
Min
Max
4
-
115/117
115
Package characteristics
STM32F410x8/B
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1.1
WLCSP36 package mechanical data
Figure 39. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package outline
H
EEE =
)
$
%DOO$EDOOORFDWLRQ
$
*
'HWDLO$
H
H
)
$
$
H
$
%XPSVLGH
6LGHYLHZ
$
$
E
)URQWYLHZ
%XPS
$
'
HHH =
=
E
FFF
GGG
(
%DOO$
RULHQWDWLRQ
UHIHUHQFH
= ;<
=
6HDWLQJSODQH
'HWDLO$
URWDWHGƒ
DDD
;
:DIHUEDFNVLGH
1. Drawing is not to scale.
116/131
DocID028094 Rev 2
$)B0(B9
STM32F410x8/B
Package characteristics
Table 79. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
-
0.170
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
(2)
A3
-
0.025
-
-
0.0010
-
(3)
0.220
0.250
0.280
0.0087
0.0098
0.0110
D
2.518
2.553
2.588
0.1012
0.1026
0.1039
E
2.544
2.579
2.614
0.1050
0.1064
0.1078
e
-
0.400
-
-
0.0157
-
e1
-
2.000
-
-
0.0787
-
e2
-
2.000
-
-
0.0787
-
F
-
0.2765
-
-
0.0119
-
G
-
0.2895
-
-
0.0138
-
aaa
-
-
0.100
-
-
0.0039
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee
-
-
0.050
-
-
0.0020
b
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 40. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint
'SDG
'VP
$)B)3B9
DocID028094 Rev 2
117/131
129
Package characteristics
STM32F410x8/B
Table 80. WLCSP36 recommended PCB design rules (0.4 mm pitch)
Dimension
Recommended values
Pitch
0.4 mm
Dpad
0.225 mm
Dsm
0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.250 mm
Stencil thickness
0.100 mm
WLCSP36 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 41. WLCSP36 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
)%
5HYLVLRQFRGH
'DWHFRGH
%DOO
LGHQWLILHU
::
<
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
118/131
DocID028094 Rev 2
STM32F410x8/B
7.1.2
Package characteristics
UFQFPN48 package mechanical data
Figure 42. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
'
$
(
(
7
GGG
$
6HDWLQJ
SODQH
E
H
'HWDLO<
'
([SRVHGSDG
DUHD
<
'
/
&[ƒ
SLQFRUQHU
(
5W\S
'HWDLO=
=
$%B0(B9
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
DocID028094 Rev 2
119/131
129
Package characteristics
STM32F410x8/B
Table 81. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 43. UFQFPN48 recommended footprint
1. Dimensions are in millimeters.
120/131
DocID028094 Rev 2
!"?&0?6
STM32F410x8/B
Package characteristics
UFQFPN48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 44. UFQFPN48 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670)
&%8
'DWHFRGH
< ::
3LQLGHQWLILHU
5HYLVLRQFRGH
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID028094 Rev 2
121/131
129
Package characteristics
7.1.3
STM32F410x8/B
LQFP64 package mechanical data
Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not to scale.
122/131
DocID028094 Rev 2
STM32F410x8/B
Package characteristics
Table 82. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 46. LQFP64 recommended footprint
1. Dimensions are in millimeters.
DocID028094 Rev 2
123/131
129
Package characteristics
STM32F410x8/B
LQFP64 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 47. LQFP64 marking example (package top view)
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)
5%7
'DWHFRGH
< ::
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
124/131
DocID028094 Rev 2
STM32F410x8/B
7.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 15: General operating conditions on page 50.
The maximum chip-junction temperature, TJ max., in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 83. Package thermal characteristics
Symbol
ΘJA
7.2.1
Parameter
Value
Thermal resistance junction-ambient
LQFP64
46
Thermal resistance junction-ambient
UFQFPN48
33
Thermal resistance junction-ambient
WLCSP36
61
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
DocID028094 Rev 2
125/131
129
Part numbering
8
STM32F410x8/B
Part numbering
Table 84. Ordering information scheme
Example:
STM32
Device family
STM32 = ARM®-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
410 = 410 line
Pin count
T = 36 pins
C = 48 pins
R = 64 pins
Flash memory size
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
Package
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Packing
TR = tape and reel
No character = tray or tube
126/131
DocID028094 Rev 2
F
410 C B Y 6
TR
STM32F410x8/B
Recommendations when using the internal reset OFF
Appendix A
Recommendations when using the internal
reset OFF
When the internal reset is OFF, the following integrated features are no longer supported:
A.1
•
The integrated power-on-reset (POR)/power-down reset (PDR) circuitry is disabled.
•
The brownout reset (BRO) circuitry must be disabled. By default BOR is OFF.
•
The embedded programmable voltage detector (PVD) is disabled.
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
Operating conditions
Table 85. Limitations depending on the operating power supply range
Operating
power supply
range
VDD = 1.7 to
2.1 V(3)
ADC
operation
Conversion
time up to
1.2 Msps
Maximum
Maximum
Flash memory
Flash memory
access
access
frequency
frequency
with no wait
with no wait
state
states(1) (2)
(fFlashmax)
20 MHz(4)
100 MHz with
6 wait states
I/O operation
Possible
Flash memory
operations
No I/O
compensation
8-bit erase and
program
operations only
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no
wait state is required.
2. Thanks to the ART Accelerator and the 128-bit Flash memory, the number of wait states given here does
not impact the execution speed from Flash memory since the ART Accelerator allows to achieve a
performance equivalent to 0 wait state program execution.
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to
Section 3.15.1: Internal reset ON).
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and
power.
DocID028094 Rev 2
127/131
129
Application block diagrams
Appendix B
B.1
STM32F410x8/B
Application block diagrams
Sensor Hub application example
Figure 48. Sensor hub application example 1
$FFHOHURPHWHU
*\URVFRSH
670)[%
:/&63SDFNDJH
[*3,2V
Nവ
*3,2
3%
6&/
3%
6'$
3$
7;
3$
5;
0DJQHWRPHWHU
,&
3UHVVXUH
$PELHQWOLJKW
3UR[LPLW\
%227
9''
3'5B21
6:',2
-7$*
6:&/.
6:2
3$
3$
3$
3$
3%
3%
8$57
166
6&.
63,
0,62
+267
3% 026,
1567
N+]RVFLOODWRU
3&
3$
$'&
7HPSHUDWXUHKXPLGLW\
3&
06Y9
Figure 49. Sensor hub application example 2
$FFHOHURPHWHU
*\URVFRSH
670)[%
:/&63SDFNDJH
[*3,2V
Nവ
*3,2
3%
3%
6&/
0DJQHWRPHWHU
,&
3UHVVXUH
6'$
$PELHQWOLJKW
3UR[LPLW\
%227
9''
3$
3'5B21
6:',2
-7$*
3$
6:&/.
3$
/RZ
SRZHU
WLPHU
,1
287
3%
3%
3%
6&.
3$
7;
3$
5;
3$
63,
0,62
0LFURSKRQH
8$57
6&/
3% 6'$
0+],&)0
+267
1567
N+]RVFLOODWRU
3&
3$
$'&
7HPSHUDWXUHKXPLGLW\
3&
06Y9
128/131
DocID028094 Rev 2
STM32F410x8/B
B.2
Application block diagrams
Batch Acquisition Mode (BAM) example
Data is transferred through the DMA from interfaces into the internal SRAM while the rest of
the MCU is set in low power mode.
•
Code execution from RAM before switching off the Flash.
•
Flash is set in power down and flash interface (ART accelerator™) clock is stopped.
•
The clocks are enabled only for the required interfaces.
•
MCU core is set in sleep mode (core clock stopped waiting for interrupt).
•
Only the needed DMA channels are enabled and running.
Figure 50. Batch Acquisition Mode (BAM) example
670)[%
:/&63SDFNDJH
[*3,2V
Nവ
&RUWH[Š0FRUH
0+]
)38038
*3,2
%227
.%)ODVK
PHPRU\
9''
3'5B21
6:',2
-7$*
/RZ
SRZHU
WLPHU
6:&/.
,1
*\URVFRSH
3%
3%
3$
3%
$57$FFHOHUDWRUŒ
3$
3$
3$
$FFHOHURPHWHU
.%5$0
3%
3$
3$
287
3%
3%
6&/
0DJQHWRPHWHU
,&
3UHVVXUH
6'$
$PELHQWOLJKW
6&.
63,
0LFURSKRQH
3UR[LPLW\
0,62
7;
8$57
5;
6&/
6'$
0+],&)0
+267
1567
N+]RVFLOODWRU
3&
'0$
3$
$'&
7HPSHUDWXUHKXPLGLW\
3&
/RZSRZHUEORFNV
06Y9
DocID028094 Rev 2
129/131
129
Revision history
9
STM32F410x8/B
Revision history
Table 86. Document revision history
130/131
Date
Revision
Changes
28-Sep-2015
1
Initial release.
07-Dec-2015
2
Junction temperature range changed to –40 to + 110 °C
for WLCSP49 package.
Updated Figure 6: UFQFPN48 pinout.
DocID028094 Rev 2
STM32F410x8/B
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID028094 Rev 2
131/131
131
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
STM32F410RBT6 STM32F410CBU6 STM32F410TBY6TR STM32F410R8T6
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement