Spray Star 3182 Operator s sn 300G091 Current

Spray Star 3182 Operator s sn 300G091 Current
Operator’s
Spray Star 3182
with Raven 440 System
SN: 300G091
July 2011
Product Support:
Hwy SS & Poplar Ave; Cameron WI 54822
1-800-891-9435 [email protected]
CONTENTS
Introduction
Operation
Introduction.................................................................. 1-9
Introduction ................................................................. 1
Symbols ................................................................... 2-3
General Safe Practices ............................................... 4
Safe Spraying Practices ............................................. 5
Specifications .............................................................. 6
Optional Spray Equipment .......................................... 6
Set Up ......................................................................... 7
Controls & Instruments ............................................ 8-9
Schematics
Operation ................................................................. 10-22
Operating Instructions .......................................... 10-12
Console Features ..................................................... 13
Console Programming .............................................. 14
Console Calibration.............................................. 14-15
Initial Programming of Console Computer ........... 16-20
Initial Console Setup ................................................. 20
Spray Operation ................................................... 21-22
Spraying Procedures
Spraying Procedure ................................................ 23-29
Spraying Introduction ................................................. 23
Turf Management ...................................................... 23
Hose & Handgun Spraying ........................................ 24
Nozzles ................................................................ 24-25
Calibration Introduction ............................................. 26
The Nozzle Chart Method of Calibration .............. 27-28
The “128” Method of Boom Sprayer Calibration ... 28-29
Nozzle Charts
Nozzle Charts .......................................................... 30-35
Nozzle Performance Chart #1 .................................. 30
Nozzle Performance Chart #2 .................................. 31
Nozzle Performance Chart #3 .................................. 32
Nozzle Performance Chart #4 .................................. 33
Nozzle Performance Chart #5 .................................. 34
Nozzle Performance Chart #6 .................................. 35
Reference ................................................................ 36-37
Abbreviations and Conversions ................................ 36
Declaration of Conformity .............................................
Reference
Introduction
INTRODUCTION
Thank you for purchasing a Smithco product.
Read this manual and all other manuals pertaining to the Spray Star 3182 carefully as they have safety, operating, assembly and maintenance instructions. Failure to do so could result in personal injury or equipment damage.
Keep manuals in a safe place after operator and maintenance personnel have read them. Right and left sides are
from the operator’s seat, facing forward.
All Smithco machines have a Serial Number and Model Number. Both numbers are needed when ordering
parts. The serial number plate on the Spray Star 3182 is located on top of the frame, between the hydro pump
and spray tank. Refer to engine manual for placement of engine serial number.
For easy access record your Serial and Model numbers here.
lb/kg Empty
lb/kg Full
Information needed when ordering replacement parts:
1. Model Number of machine.
2. Serial Number of machine.
3. Name and Part Number of part.
4. Quantity of parts.
1
SYMBOLS
Introduction
2
Read Operator’s
Manual
Electrical Power
No Electrical
Power
Engine - Stop
Engine - Start
Engine - Run
Engine Oil
Temperature
Light
Water
Temperature
RPM
Gasoline
Diesel
Glow Plug - On
Glow Plug - Off
Glow Plug
Hour Meter
Hour Meter
Hand Throttle
Choke - Closed
Choke - Open
Park Brake
Park Brake
Release
Hydraulic Oil
Level
Fuse
H
R
Up/Down Arrow
Down/Lower
Up/Raise
No Smoking
Moving Parts
Manual
Operation
Pinch Point
Step
Hot Surface
Hydraulic Fluid
Penetration
Lift Arm
Tractor
Engage
Disengage
PTO
Ground Speed
Fast
Slow
High
Reverse
L
N
Low
Neutral
F
Introduction
SYMBOLS
Forward
Warning
Danger
Caution
3
SAFE PRACTICES
Introduction
1. It is your responsibility to read this manual and all publications associated with this machine.
2. Never allow anyone to operate or service the machine or its optional equipment without proper training and
instructions. Never allow minors to operate any equipment.
3. Learn the proper use of the machine, the location and purpose of all the controls and gauges before you
operate the equipment. Working with unfamiliar equipment can lead to accidents.
4. Wear all the necessary protective clothing and personal safety devises to protect your head, eyes, ears,
hands and feet. Operate the machine only in daylight or in good artificial light.
5. Inspect the area where the equipment will be used. Pick up all debris you can find before operating.
Beware of overhead obstructions and underground obstacles. Stay alert for hidden hazards.
6. Never operate equipment that is not in perfect working order or without decals, guards, shields, or other
protective devices in place.
7. Never disconnect or bypass any switch.
8. Carbon monoxide in the exhaust fumes can be fatal when inhaled, never operate a machine without proper
ventilation.
9. Fuel is highly flammable, handle with care.
10. Keep engine clean. Allow the engine to cool before storing and always remove the ignition key.
11. Disengage all drives and set park brake before starting the engine.
12. Never use your hands to search for oil leaks. Hydraulic fluid under pressure can penetrate the skin and
cause serious injury.
13. This machine demands your attention. To prevent loss of control or tipping of the vehicle:
A. Use extra caution in backing up the vehicle. Ensure area is clear.
B. Do not stop or start suddenly on any slope.
C. Reduce speed on slopes and in sharp turns. Use caution when changing directions on slopes.
D. Stay alert for holes in the terrain and other hidden hazards.
14. Before leaving operator’s position:
A. Disengage all drives.
B. Set park brake.
C. Shut engine off and remove the ignition key.
D. If engine has to run to perform any maintenance keep hands, feet, clothing and all other parts of body
away from moving parts.
15. Keep hands, feet and clothing away from moving parts. Wait for all movement to stop before you clean,
adjust or service the machine.
16. Keep the area of operation clear of all bystanders.
17. Stop engine before making repairs/adjustments or checking/adding oil to the crankcase.
18. Use parts and materials supplied by
only. Do not modify any function or part.
19. Use caution when booms are down as they extend out beyond the center line of the machine.
20. The tank is a confined space, take precaution.
These machines are intended for professional maintenance on golf courses, sports turf, and any other
area maintained turf and related trails, paths and lots. No guaranty as to the suitability for any task is
expressed or implied.
4
Persons engaged in the handling, preparation or application of chemicals must follow accepted practices to
insure the safety of themselves and others,
1. WEAR protective clothing including: gloves, hat, respirator, eye protection and skin covering suitable for
protection from chemicals being used.
2. BATHE thoroughly after any exposure to chemicals, giving particular attention to eyes, nose, ears and
mouth.
3. CLEAN equipment and materials in accordance with employer, municipal and state regulations. Use only
approved areas and drains.
4. DISPOSE of chemicals and rinse solutions by approved and legal means.
5. PROVIDE methods and materials for operators to wash eyes and hands immediately during the spraying
process.
6. PROVIDE methods and materials for control, safe dilution and neutralization of chemical spills during
preparation, spraying, transporting and cleanup.
7. Always check and follow the directions and safety warnings of the chemicals to be used.
8. Secure the discharge lines before starting the pump. An unsecured discharge line may whip.
9. Periodically inspect the pump and the system components.
10. Check hoses for weak or worn condition before each use. Make certain that all connections are tight and
secure.
11. Do not operate unit with leaks, frayed, kinked hoses or tubing. Repair or replace immediately.
12. Use only pipe, hose and fittings rated for maximum pressure or pressure at which pressure relief valve is
set at. When replacing pipe, hose or fittings, use new product.
13. Do not operate an engine in an enclosed area. Be sure the area is well ventilated.
14. Do not use these pumps for pumping water or other liquids for human or animal consumption.
15.
Do not pump flammable or explosive fluids such as gasoline, fuel oil, kerosene, etc.
Do not use in explosive atmospheres. The pump should be used only with liquids
compatible with the pump component materials.
16. Be sure all exposed moving parts are guarded and that all coupling devices are securely attached before
applying power.
17. Before servicing, disconnect all power, make sure all pressure in the system is relieved, drain all liquids
from the system and flush.
18. Protect pump from freezing conditions by draining liquid and pumping rust inhibiting antifreeze solution
through the system, coating the pump interior.
19. TRANSPORT - Machine must be stopped to raise or lower booms. Because of cam sytem, if booms are
raised in transit they can fall forward or backward when coming to a stop or while traveling on uneven
terrain.
5
Introduction
SAFE SPRAYING PRACTICES
SPECIFICATIONS
Introduction
WEIGHTS AND DIMENSIONS
Length
Width
Height w/ ROPS
Height w/ Booms Folded
Wheel Base
Weight Empty
Weight Full
128" (325 cm)
72" (183 cm)
84" (213 cm)
136" (345 cm)
68" (173 cm)
2340 lbs (1061 kg)
4950 lbs (2245 kg)
SOUND LEVEL (DBA)
At ear level
At 30 ft. (9.14 m)
88.4 dBA
77 dBA
ENGINE
Make
Model#
Type / Spec#
Horsepower
Fuel
Cooling System
Lubrication System
Alternator
35.5 hp (26.6 kW)
No. 2 Diesel
Liquid Cooled
Full Pressure
40 Amp
WHEELS & TIRE
Front: Two 20 x 11.00 x 10 Turf; 20 psi (1.4 bar)
Kubota
V1505
Rear: Two 29 x 14.00 x 15 Multi-Trac; 30 psi (2.0 bar)
SPEED
Infinitely Variable
0-10 m.p.h. (0-18 kph)
BRAKES
Spring applied hydraulic release, automatic brakes through OPC
BATTERY
BCI Group
Cold Cranking Amps
Ground Terminal Polarity
Maximum Length
Maximum Width
Maximum Height
Automotive type 24F - 12 volt
Size 24
900 minimum
Negative (-)
10.25" (26 cm)
6.88" (17 cm)
10" (25 cm)
FLUID CAPACITY
Crankcase Oil
Fuel
Hydraulic Fluid
Grade of Hydraulic Fluid
Radiator
See Engine Manual
7 gallon (26.5 liters)
10 gallon (37.8 liters)
SAE 10W-40 API Service SJ or higher Motor Oil
1.06 gallons
OPTIONAL EQUIPMENT
15-618
17-525
17-503
30-006
30-007
6
Water Meter Kit
18.5ft (5.5m) 11-Triple Nozzle Boom
20' Spray Boom
Clear water Wash Tank
Chemical Cleanload Safe Fill
30-009
30-010
30-162
15-835
Manual Hose Reel
Electric Hose Reel
Foam Marker
Tank Rinse System
The Spray Star 3182 arrives from Smithco setup and ready for service. Depending on freight conditions battery
installed.
The spray system is normally shipped attached to the 3180 Prime Mover. If a spray system is to be fitted to a
Prime Mover by a dealer or factory, assemble and attach the components in accordance with the parts drawings
in the Spray Star 3180 Parts/Service Manual.
1. Check the tire pressure. The front tires are 20 psi (1.4 bar)
and rear tires are 30 psi (2.0 bar).
2. Battery is located under seat. This is a negative grounding
system.
Connecting battery cables to the wrong post could
result in personal injury and/or damage to the
electrical system. Make sure battery and cables
do not interfere or rub on any moving part. Connect red positive (+) cable (A) to battery first.
When disconnecting remove black negative (-)
cable (B) first.
3. Check hydraulic fluid level in tank located under the seat.
Remove cap and add SAE 10W-40 API Service SJ or higher motor oil if necessary. Fluid level should be
about 2-21/2" (5-6.4 cm) from the top of the tank when cold. DO NOT OVERFILL.
4. Fill fuel tank, located on right side, with No. 2 diesel
Fuel is flammable, caution must be used when storing or handling it. Do not fill fuel tank
while engine is running or an enclosed area, fumes are explosive and dangerous to inhale.
DO NOT SMOKE while filling the fuel tank. DO NOT OVERFILL
5. Machine should be greased before starting, refer to Spray Star 3180 Parts/Service Manual for location.
6. Attach the Spray Boom and any other Optional Equipment to the Prime Mover, in accordance with
instructions in the Spray Star 3180 Parts/Service Manual. The nozzles must be the correct distance above
the turf as described in Turf Spraying Guide. The spray boom must operate properly and the outer sections must break away safely if an object is struck by them, they must then return to normal operation
position.
7. Be sure to double check boom heights, nozzle spacing and displacement before spraying.
8. Machine is shipped with windshield washer fluid in to prevent freezing. Flush system completely with clear
water. Fill tank with water and retighten the four bolts used to hold the tank in place.
9. Read operating instructions before starting.
Never allow pump to run dry! The valve on the suction side of the pump (between the pump
and tank) must be fully open whenever the pump is operated.
FUEL
CHECK EMISSION REGULATIONS OF YOUR AREA
With Emission control now in effect diesel fuel specification type and sulfur content % (ppm) used must be in
compliant with all applicable emission regulations for the area in which the engine is operated.
Use of diesel fuel with sulfur content less than 0.10% (1000 ppm) is strongly recommended.
If high sulfur fuel is used, change oil and oil filters twice as often.
DO NOT USE Fuels that have sulfur content greater than 1.0% (10000 ppm).
Diesel fuels specified in EN 590 or ASTM D975 are recommended.
Since KUBOTA diesel engines of less than 56kW (75 hp) utilize EPA Tire 4 and Interim Tier 4 Standards, the use
of low sulfur fuel or ultra low sulfur fuel is mandatory for these engines, when operated in US EPA regulated areas. Therefore, use No.2-D S500 or S15 diesel fuel as a alternative toe No. 2-D for ambient temperatures below 7
10°C (14° F).
Introduction
SETUP
CONTROLS & INSTRUMENTS
Operation
A. Hour Meter - The hour meter indicates hours of machine operation. It operates only when the ignition
switch is on.
B. Glow Plug - When ignition is turned on, glow plug lights when ready to start.
C. Water Temperature Light - Temperature light will come on when the engine starts to overheat.
D. Ignition Switch - The ignition switch has three positions: Off - Run - Start.
E. Tilt Steering - Hold lever down and adjust steering wheel to desired position and release lever.
F. Oil Light - The oil light should come on when the ignition is on without the engine running and go out when
the engine is running. The oil light will light when the oil pressure is low. If oil light should come on, shut
engine off immediately and find the cause.
G.
Speedometer - The Speedometer indicates ground speed of the vehicle in miles per hour and kilometers
per hour.
H. Lights - This rocker switch turns lights on by pushing on the top and off by pushing on the bottom.
I. Ground Speed (Cruise) Control - This rocker switch initiates cruise control by pushing on the top and
turning it off by pushing on the bottom. Works with ground Speed Control Foot switch.
J. Buzzer - The buzzer sounds if the pump is running dry.
K. Spray Pump - This rocker switch turns the spray pump on by pushing on the
top and off by pushing on the bottom.
L. Left Boom Switch - This rocker switch lifts and lowers the left boom.
M. Right Boom Switch - This rocker switch lifts and lowers the right boom.
N. Hand Throttle - The hand throttle is used to regulate engine speed.
O. Cup Holder - Holds standard cup.
P. Spray Boss Control - Engages and disengages speed boss. Forward is
engage and all the way back is disengage. When the lever is engaged it sets
a stop for the accelerator. The accelerator pedal must be used to maintain
this speed. To adjust speed use the knob on the end of the lever, counter
clockwise increases speed and clockwise decreases speed. Disengage the
lever and you will have full accelerator pedal range.
Q. Park Brake Toggle Switch - This toggle switch will engage park brake. Lift
toggle cover and move switch forward. DO NOT ENGAGE WHILE IN MOTION.
8
CONTROLS & INSTRUMENTS
R. Ground Speed (Cruise) Control Foot Switch - When rocker switch is turned on and desired speed is
obtained, push foot speed control switch to set cruise. (see below).
S. Master Boom Switch - located on the left floorboard is used to override the master switch on the computer console of the spray systems. By pushing down it will turn on/off the booms. For the 440 System
only the Master Switch on the computer must be off for the master boom control switch to work.
T.
Accelerator Pedal - This pedal controls ground speed. Press pedal to increase speed. Varying the
amount of movement of the pedal will vary the ground speed.
Operation
U. Reverse Pedal - This pedal controls reverse. Press pedal to move machine in reverse.
GROUND SPEED CONTROL
The ground speed control does not work the
same as an automotive type cruise. The
ground speed control is located on the center
floorboard and is used to lock forward speed.
TO ENGAGE:
1. Flip rocker switch ‘On’ (green light).
2. Obtain desired speed with foot pedal.
3. Step on foot switch to lock speed.
4. Push foot switch again to disengage.
To avoid abrupt stop, place foot
on traction pedal before disengaging speed control.
TOWING
When it is necessary to move the Spray Star 3180 without the engine running, there are 2 things that need to be
done. First, the bypass valve built into hydrostatic pump must be "open" by turning it 1/4 turn to open. The valve
is located on the back side of the pump. An "open" valve allows fluid to pass through the wheels freely. When
normal driven operation is desired, valve should be "closed" by turning it clockwise. Failure to "close" the valve
with engine running means no power to wheels. Secondly, the hand brake needs to be manually released. The
hand brake is located under the engine. To manually release the brake you must loosen the locknut and screw
in the stem to the bottom. Tighten the lock nut and pump handle until hard.
MANUAL BRAKE HAND PUMP MANIFOLD
The hand brake is located under the engine. The hand brake is connected to he seat switch and automatically
engages when operator gets up from the seat. So when machine is not being driven, the machine is locked
down. If engine is not running or you are towing the machine you will have to manually release the brake. To
manually release the brake you must loosen the locknut and screw
in the stem to the bottom. Tighten the lock nut and pump handle until
hard.
Run machine at half-throttle minimum, prior to operating tration
pedal. This will ensure proper brake release.
9
OPERATION
Before operating the Spray Star 3180, become familiar with all controls and functions. Also complete all maintenance requirements and read all safety warnings. Knowing the Spray Star 3180 thoroughly, how it operates, and
by doing the prescribed maintenance steps, you can expect trouble free operation for years to come.
SAFETY
Operator needs to always be the concern of an operator of a moving vehicle or any machine with moving parts.
1. Keep all shields and guards in place.
Operation
2. Keep the parking brake engaged any time the operator is away from the vehicle or whenever service is
performed.
3. Always wear the necessary protective clothing and equipment.
4. Turn engine off when refueling or performing maintenance not specifically requiring engine power.
DAILY CHECKLIST
1. Check the engine oil level. Add as needed. DO NOT OVERFILL. Refer to engine owner's manual for oil
grade and procedure.
2. Tire pressure should be 20 psi (1.4 bar) on front and 30 psi (2.0 bar) on back.
3. Inspect the electrical system and battery cables for loose connections or frayed wiring. Replace any faulty
equipment or tighten if loose.
4. Check hardware for loose or missing nuts, bolts, screws, etc., and tighten or replace as needed.
5. Inspect hydraulic lines for damage or leaks. Never use hands to inspect for leaks.
6. Check the hydraulic fluid level. The hydraulic fluid tank is located under the seat. The fluid level should be
2"-2½" (5 - 6.4 cm) from the top of the tank when cold. Use only SAE 10W-40 API Service SJ or higher
Motor Oil.
7. Inspect the steering, throttle and shift linkages for good hookups and
clear travel.
8. Check controls for smooth, proper working operation. Lubricate as
needed.
9. Check anti-vibration mounts on engine frame.
STARTING THE ENGINE
1. Make sure both fuel flow valves are ‘On’. They are located on the fuel
tank.
2. The ignition switch is located on the dashboard. Insert the key (A) and
turn clockwise to (B). When glow plug light goes off Turn key to (C) until the engine starts. Release the key and it will return to the run position (B).
3. Allow engine to idle and warm up before selecting direction of travel.
STOPPING THE ENGINE
If the engine has been running under high power, let it run at slow idle speed a few minutes
to cool the engine down, before turning the ignition switch to the OFF position.
1. Disengage spray pump.
2. Move the throttle lever to “slow” and turn ignition key to the “off” position.
3. Remove the ignition key and engage the park brake.
Never leave the vehicle unattended with the engine running. Always bring the vehicle to a
complete stop, engage park brake, turn key off and remove key.
10
OPERATION
Run machine at half-throttle minimum, prior to operating tration pedal. This will ensure
proper brake release.
Before using the Spray Star, the operator and spray technician must familiarize themselves with all of the information on
chemical spraying contained in the Turf Spray Guide.
Operation
All testing and calibrating of sprayers is to be done with water, not chemicals. This insures the safety to all
involved in performing the calibration operation. Only after all calibration procedures are completed should
chemical be added to the sprayer.
HILLSIDE OPERATION
Do NOT stop or start suddenly on any slope. Be especially cautious when changing direction. Do NOT operate on
slopes greater than 10°.
BATTERY
Batteries normally produce explosive gases which can cause personal injury. Do not allow flames, sparks or any ignited object to come near the battery. When charging or working near battery, always shield your eyes and always provide proper ventilation.
Battery cable should be disconnected before using “Fast Charge”.
Charge battery at 15 amps for 10 minutes or 7 amps for 30 minutes. Do not exceed the recommended charging rate. If
electrolyte starts boiling over, decrease charging.
Always remove grounded (-) battery clamp first and replace it last. Avoid hazards by:
1.
Filling batteries in well-ventilated areas.
2.
Wear eye protection and rubber gloves.
3.
Avoid breathing fumes when electrolyte is added.
4.
Avoid spilling or dripping electrolyte.
Battery Electrolyte is an acidic solution and should be handled with care. If electrolyte is splashed on
any part of your body, flush all contact areas immediately with liberal amounts of water. Get medical
attention immediately.
JUMP STARTING
Use of booster battery and jumper cables. Particular
care should be used when connecting a booster
battery. Use proper polarity in order to prevent sparks.
To jump start (negative grounded battery):
1.
Shield eyes.
2.
Connect ends of one cable to positive (+) terminals of each
battery, first (A) then (B).
3.
Connect one end of other cable to negative (-) terminal of "good" battery (C).
4.
Connect other end of cable (D) to engine block on unit being started (NOT to negative (-) terminal of battery)
To prevent damage to other electrical components on unit being started, make certain that engine is at idle speed
before disconnecting jumper cables.
11
OPERATION (CONTINUED)
SPRAYER VALVE SETTINGS AND SPRAY TANK AGITATION
The 3-way valve on the suction side of the pump, between the tank and the pump must be open before pump is
engaged. Close this valve only when necessary to clean the filter with spray material in the spray tank.
Operation
There is one manual flow control valve on the discharge side of the spray system. This valve controls the agitator. This valve may be opened as much as necessary to provide hydraulic agitation through the quadrajet agitator
in the tank bottom. This valve may be partially closed to prevent or reduce foam buildup from the spray materials
inside the tank. When the liquid level in the spray tank reaches a certain level (usually 1-25 gallons (3.8-95 Liters) depending on terrain and other conditions) it may be necessary to close the valve in the agitator line in
order to prevent loss of suction prime.
If your Spray Star is fitted with a hose reel, there is a second ball valve on the discharge system to supply material to the hose reel.
The Quadrajet agitation system operates with four venturi jets in the tank bottom. These jets have replaceable
orifice discs which discharge the following amounts of spay material.
Nozzle
Diameter
1
/8"
/8"
1
/8"
5
/32"
5
/32"
5
/32"
3
/16"
3
/16"
3
/16"
1
Input to
Agitator
in gpm
Input to
Agitator
in L/min
1.9
2.7
3.8
2.8
4.2
5.5
3.6
5.6
7.9
7.2
10.2
14.4
10.6
15.9
20.8
13.6
21.2
29.9
Agitator Agitator
Pressure Pressure
in psi
in bar
25
50
100
25
50
100
25
50
100
1.7
3.4
6.9
1.7
3.4
6.9
1.7
33.4
6.9
Agitator
Output
in gpm
Agitator
Output
in L/min
6.3
10.0
15.0
7.6
12.2
17.5
9.1
14.3
18.7
23.8
37.9
56.8
28.8
46.2
66.2
34.4
54.1
70.8
You can change orifice disc sizes to enhance spray system performance. Smaller discs reduce amount of agitation (desirable in some foaming materials) and make more dischargeable liquid available for nozzles. Larger (or
none) discs increase amount of agitation and make less dischargeable liquid available for nozzles.
PROCEDURE TO RE-CALIBRATE FLOWMETER
1 . Enter a Meter Cal number of 10 in Meter Cal Button
2. Enter a Total Volume of Calibrating the Pressure Gauge in Total Volume button
3. Switch Off all booms.
4. Remove a boom hose and place in calibrated 5 gallon container
5. Switch on appropriate boom switch and master switch. Pump exactly 10 gallons.
6. Readout in Total Volume is the new Meter Cal Number. Should be within 3% of number stamped on
flowmeter.
7. Repeat the procedure several times to ensure accuracy.
8. To verify calibration, fill applicator tank with predetermined amount of measured liquid. DO NOT RELAY
ON GRADUATION NUMBERS ON MOLDED TANK. Empty tank under normal operation conditions. If the
number under total volume is different from the predetermined amount of measure by more than 3%
compete calculation in back of book.
9. Enter corrected Meter Cal before resuming application.
12
CONSOLE FEATURES
This Console (PGM F) requires selection of US (acres); SI (hectares) or TU (1,000 sq ft) area
and SP1 (wheel drive, etc.).
A. POWER - Turns Console power OFF or ON. Turning Console OFF does not affect the data stored in
the computer.
B. Select manual or fully automatic control. This can automatically control two rates.
Operation
C. Manual override control provides capability for spot spraying.
D. Booms can be controlled individually, or all at once with MASTER ON/OFF Switch
E. Displays operating rate of application and flashing Tip Fault.
F. Displays function and calibration data.
G. CE - Use like you do CE (clear entry) key on a calculator. This key is also used to select an area
base measurement of US (acres), SI (Hectares) or TU (1,000 sq ft).
H. ENTER - Used only to enter the data into the Console.
DATA
MENU
Calibration Keys: (Top Row) Used to enter
data into console to calibrate the system.
Function Keys: (Bottom Row) Used to display data.
BOOM 1 CAL
BOOM 2 CAL
BOOM 3 CAL
SPEED CAL
METER CAL
VALVE CAL
RATE 1 CAL
RATE 2 CAL
SELF TEST
TOTAL AREA
FIELD AREA
FIELD VOLUME
DISTANCE
SPEED
VOLUME/TANK
TIME
Length of Boom 1
Length of Boom 2
Length of Boom 3
Measured Off front wheel (612)
Flow Meter Calibration Number
Control Valve Response Time
Target Application Rate
Target Application Rate
Simulates Vehicle Speed
Total Area Sprayed
Field Area Sprayed
Volume Applied to Field
Distance Traveled
Speed of Vehicle
Volume Remaining in Carrier Tank
24 hour clock (military time)
13
CONSOLE PROGRAMMING
When entering data into the Console computer, the entry sequence is always the same. Data must be entered
into the first eight keys.
Operation
1. Depress the key which you wish to enter data.
2. Depress the “Enter” key. An “E” will illuminate
in the DATA display.
3. Depress the keys corresponding to the
number you wish to enter (i.e. “5”, “7”, “2”).
The numbers will be displayed in the DATA
display as they are entered.
4. Complete the entry by again depressing the
“ENTER” key.
CONSOLE CALIBRATION
CALCULATING “BOOM CAL” (BOOM 1, BOOM 2, BOOM 3)
Calculate the width of each boom in inches (centimeters) by multiplying the number of tips times the spacing.
Write these boom widths down for future reference when programming the Console computer. The Console is
capable of controlling up to three (3) booms.
CALCULATING “SPEED CAL"
1. Enter Speed Cal in key
of 612.
2. Place Master and Boom 1 switches to on.
3. Enter “0” in key
.
4. Drive 1 mile. Do not use vehicle odometer to determine distance, use section lines or highway markers.
5. It should read a value of approximately 5280. If it reads between 5200-5350, the Speed Cal for this vehicle
is 688.
If the Distance display reads any other value, divide Speed Cal by the value observed in Distance, then
multiply by 5280. This will give you the correct value to enter for Speed Cal. You must round off to the
nearest 3 digit number (use 120 not 120.3).
14
CONSOLE CALIBRATION
6. Recheck the new Speed Cal numbers. Zero out Distance display as in step 3. Enter the new Speed Cal
number as in step 1. Repeat steps 4 and 5.
CALCULATING “METER CAL”
The Flow Meter calibration number is stamped on the label attached to each Flow Meter; this number is to be
used for gallon per area applications. To convert original METER CAL from gallons to desired units of measure
(oz, lbs or liters per area) see Abbreviations and Conversions section of this manual. Write down this calibration
number for future reference when programming the console.
CALCULATING "VALVE CAL”
The initial Control Valve calibration number is 2123. After operating the system, you may desire to refine this
number. See definitions below.
Valve Backlash Controls the time of the first correction pulse after a change in correction direction is detected.
Incr to Decr or Decr to Incr Range: 1 to 9, 1-Short Pulse, 9-Long Pulse
Valve Speed Digit Controls the Speed of the Control Valve motor.
Running the Control Valve too fast will cause the system to oscillate.
Range: 1 to 9, 1-slow, 9-Fast
Brake Point Digit Percent Sets the point at which the Control Valve motor begins braking, so as not to over
shoot the desired rate. Digit is percent away from target rate. Range: 0 to 9, 0=5%, 1=10%, 9=90%,
Deadband Digit Allowable difference between target and actual application rate, where rate correction is not
performed. Range: 1 to 9, 1 = 1%, 9 = 9%
CALCULATING "RATE 1 AND RATE 2 CAL" (See Spraying Procedure section)
Determine the application rate at which your chemical should be sprayed. Consult with your Dealer to insure
your spray nozzles are capable of applying at this target rate.
Using CAPACITY = .35 GPM (1.67 lit/min) and pressure = 30 PSI (20 bar) you would select tip number XR8004
from the Nozzle Charts Section, since it comes closest to providing the desired output.
VERIFYING FLOW RATE LIMITS
The flow rate of the sprayer must be within the range of 1 to 55 GPM (4 to 210 lit/min).
15
Operation
MEASURE CAREFULLY. Be sure tire is properly inflated before measuring. Measure tire in
type of soil in which you will be spraying. Circumference of tire will vary when measured in
soft soil versus hard packed soil. For best results, measure several times and average the
results. Re-measure periodically.
INITIAL PROGRAMMING OF CONSOLE COMPUTER
When you first turn on Console power, after all installation procedures have been completed, the Console will
flash “CAL” in the RATE display and “US” in the DATA display. This means you must “calibrate” or program the
Console before it can be operated.
(This is a one time operation which does not have to be repeated unless you disconnect your battery wires.
Turning OFF the POWER ON/OFF switch does not affect the Console memory. All data is retained). The following steps must now be followed.
If an entry selection error is made during steps 1, 2, 3, or 4, the Console can be reset by depressing
for
Operation
20 seconds (Data displays US and RATE displays CAL.).
1. Displaying US, SI or TU
a. Depressing momentarily
Steps the DATA display from US (acres) to SI.
b. Depressing momentarily
Steps the DATA display from SI (Hectares) to TU.
c. Depressing momentarily
Steps the DATA display from TU (1000 sq ft) to US.
2. Selecting US, SI or TU
a. To select US, SI, or TU, step
b. Momentarily depress
until the desired code is displayed in DATA display.
the DATA display will now display SP1.
3. Displaying SP1 or SP2
a. Depressing momentarily
steps the DATA display from SP1 (wheel drives, etc.) to SP2.
b. Depressing momentarily
steps the DATA display from SP2 (radar sensor) to SP1.
4. Selecting SP1 OR SP2
a. To select SP1 or SP2, step with
b. Momentarily depress
until desired code is displayed in DATA display.
the DATA display will now display 0.
5. Enter width in inches (cm) of BOOM 1 in the key labeled:
6. Enter width in inches (cm) of BOOM 2 in the key labeled:
If there is only one boom, enter "0" for
width of BOOM 2.
7. Enter width in inches (cm) of BOOM 3 in the key labeled:
for width of BOOM 3.
16
If there is only one or two boom, enter “0”
INITIAL PROGRAMMING OF CONSOLE COMPUTER
8. Enter SPEED CAL of 612 in key labeled:
9. Enter METER CAL calibration number in key labeled:
Operation
10. Enter VALVE CAL calibration number (2123) in key labeled:
11. Enter the target RATE 1 (GPA) (lit/ha) (GPK) you want to spray in the key labeled:
12. Enter the target RATE 2 (GPA) (lit/ha) (GPK) you want to spray in the key labeled:
(If you do not
use a second rate, enter same rate as RATE 1 CAL). RATE 2 should not be more than 20% different from
RATE 1 or else spray pattern may suffer.
YOU HAVE NOW COMPLETED PROGRAMMING THE CONSOLE.
The flashing “CAL” will now extinguish. If not, repeat procedure starting at step 5. You may also wish to enter
data in the keys labeled:
and
although it is not required for the operation of the system.
13. Enter the estimated total Volume-in-Tank when you start spraying in key labeled:
Each time the
tank is refilled, this number must be reentered.
14. Enter the TIME of day in the key labeled:
. This is a 24 hour clock. Therefore, all time after 12:59 pm,
add 12 hours. Thus, 8:30 am is entered as 8:30, but 1:30 pm is entered as 13:30 in the keyboard.
OTHER DISPLAY FEATURES
1. To display TOTAL AREA covered, momentarily depress key labeled:
To “zero out” this total, at any
time, enter a “0” in this key.
2. To display TOTAL VOLUME sprayed, momentarily depress key labeled:
To “zero out” this total, at
any time, enter a “0” in this key.
3. To display FIELD AREA covered, momentarily depress key labeled:
To “zero out” this total, at any
time, enter a “0” in this key.
4. To display FIELD VOLUME sprayed, momentarily depress key labeled:
To “zero out” this total, at
any time enter a “0” in this key.
5. To display DISTANCE (feet (meters) traveled) momentarily depress key labeled:
To “zero out” this
total, at any time, enter a “0” in this key.
17
INITIAL PROGRAMMING OF CONSOLE COMPUTER
6. To display SPEED, momentarily depress the key labeled:
7. To display VOL/MIN., momentarily depress the key labeled:
8. To display AREA/HOUR, momentarily depress key labeled:
This is an actual calculation of AREA/
Operation
HOUR at the present speed you are going. It is not an average over time.
9. To display TIP MONITOR fault, momentarily depress the key labeled:
See TIP MONITOR manual
for more detailed discussion. (Purchase the TIP MONITOR option if this function is desired.)
10. To display US, SI or TU and SPI or SP2 after being selected depress:
These selections will be
alternately displayed.
SELF TEST FEATURE
SELF-TEST allows speed simulation for testing the system while the vehicle is not moving. Enter the simulated
operating speed in the key labeled:
If 6 MPH (10 km/h) is desired, enter 6.0 (10.0). Verify speed by de-
pressing key labeled: SPEED
The SELF-TEST speed will clear itself when motion of vehicle is detected by the Speed Sensor. A SPEED CAL
Value of 900 (230) or greater is recommended when operating in this mode.
SEQUENCE TO ACTIVATE DATA-LOCK*
1. Depress
for 5 seconds, NEW CODE message will appear.
2. Enter 4 digit code within 15 seconds.
EXAMPLE: For 1085, depress
and
SEQUENCE TO CHANGE DATA-LOCK
1. Depress
for 5 seconds, OLD CODE message will appear.
2. Enter 4 digit OLD CODE within 15 seconds.
EXAMPLE: depress
and
NEW CODE message will appear. Enter 4 digit code within 15 seconds.
EXAMPLE: For 1285, depress
18
and
INITIAL PROGRAMMING OF CONSOLE COMPUTER
ENTER MODE SEQUENCE WITH ACTIVATED DATA-LOCK
1. Depress the key into which you wish to enter data.
CODE message will appear. Enter your DATA-LOCK CODE. If code is correct, “E” will
2. Depress
appear. Now enter data normally.
POWER DOWN DELAY TIME FEATURE
If the console is not used for 10 days, it will go into a power down (low power) mode of operation. In this mode,
all data will be retained, but the time of day clock will reset to 1:00. The delay time is initially set at 10 days, but
can be changed by the user.
1. DISPLAYING DELAY TIME. Depress
for 5 seconds, the current delay time (in days) will appear.
2. CHANGING DELAY TIME.
a. Depress
FOR 5 seconds, the current delay time will appear.
b. Enter new delay time (0 to 200 days) using the same procedure as that for entering other data.
In the event of console power loss, the power down delay time will default to 10 days.
CONSOLE ALARM FEATURE
Console alarm sounds if application rate is 30% or more away from target application rate for 5 seconds.
ALARM MENU
Depress
for 5 seconds until DATA display shows “A on”. Depressing momentarily
key steps the
DATA display between “A on” and “AoFF”. “A on” means alarm is enabled, “AoFF” means alarm is disabled.
DISPLAY MENU
Depress
for 7 seconds until DATA display shows "d on”. Depress momentarily
key steps the DATA
display between “d on” and “doFF”. “d on” means RATE displays target rate when actual rate is within a percentage of target rate. This percentage is determined by third digit of Valve CAL value as shown.
Brake point digit
(3rd digit) of Valve CAL 2 1 2 3
0 = 1% + Deadband
4 = 20% + Deadband
8 = 40% + Deadband
1 = 3% + Deadband
5 = 25% + Deadband
9 = 45% + Deadband
2 = 7% + Deadband
6 = 30% + Deadband
3 = 10% + Deadband
7 = 35% + Deadband
Actual rate is displayed if unit does not reach deadband with in 10 seconds. “doFF” means RATE displays actual rate at all times.
19
Operation
The DATA-LOCK feature prohibits the entry of data without first entering the DATA-LOCK CODE. The DATALOCK CODE may be cleared by entering a code of “0” or by removing Console power.
INITIAL PROGRAMMING OF CONSOLE COMPUTER
LOW LIMIT FLOW SET POINT AND LOW LIMIT ALARM
Depress
until DATA display flashes. A low limit flow rate may now be entered.
If actual volume Per minute falls below this limit, the Control Valve stops closing, the Alarm sounds and the rate
display flashes “LL”. The low limit value should be determined with all Booms “on”. This value is automatically
proportional to the percentage of Booms that are “on”. (i.e. If the entered low limit is 4 CAL/ MIN and half the
Total Boom length is shut off, the Console automatically reduces the low limit to 2 GAL/MIN)
Operation
CONTROL VALVE DELAY
Depress
until DATA display flashes. The first digit, (XOOO),is the Control Valve delay digit. This feature
allows the user to set a delay between the time the Booms are turned on and when the Console begins to control the flow rate. A value of 1-9 means a delay of 1-9 seconds test respectively. A value of 0 means no delay.
This delay is active if the time between turning off and turning on the Booms is less than 30 seconds.
INITIAL CONSOLE SETUP
1. Fill tank with water only. (If positive displacement type pump is used, fully open pressure relief valve,
PRV.) Open gate valve between the tank and pump.
2. Place MASTER On/Off to On and Boom On/Off switches to Off.
3. Place MAN/RATE 1/RATE 2 switch to MAN.
4. Place POWER On/Off switch to On.
5. Verify correct boom widths, speed calibration, meter calibration, valve calibration (2123), RATE 1 calibration and RATE 2 calibration have been entered in console. Enter into SELF TEST the normal sprayer
operating speed.
6. Run pump at normal operating RPM.
7. Verify that each boom ball valve operates and that no nozzles are plugged by operating Boom On/Off
switches.
8. Place all Boom On/Off switches to On.
9. Hold the MAN ADJ switch in INCR position for approximately 12 seconds. This assures motorized control
valve is fully open. Verify maximum pressure and RATE.
10. Adjust agitator line hand valve for desired agitation. Use the pressure gage on the rear of the machine to
verify maximum pressure is still present.
11. Hold the MAN ADJ switch in DECR position for approximately 12 seconds. This assures motorized control
valve is fully closed. Verify minimum pressure and RATE can be achieved. If not, consider bypass plumbing system in Appendix 3.
20
SPRAY OPERATION (After Proper Setup and Calibration)
1. Add 1/2 the amount of water required for the spray operation to tank using air gap filler.
2. Start engine, set engine speed below 2000 RPM, and engage pump after taking all previously described
safety and operation precautions.
4. Add chemicals (taking all precautions described in this manual and by the chemical manufacturer).
a. Liquids may be poured directly into tank.
b. Wettable powder chemicals must be pre-mixed with water in a container to form a slurry. The mixture
is then added to the tank through the fillwell strainer.
c. Chemical in soluble packs are place into the fillwell strainer basket and dissolved by adding water
through the basket.
The balance of the water required for the spray operation is added to the tank through the fillwell strainer,
using the air gap filler. This will wash any undissolved chemical into the tank.
5. Transport to sprayer site with and agitator operating.
6. Set Engine speed between 2000-3200 RPM.
7. (Optional) Engage ground speed control.
8. Obtain desired spraying speed before activating spray with switches on spray control console.
9. The master boom switch, located on the left floorboard is used to override the master switch on the
computer console of the spray systems. By pushing down it will turn on/off the booms. For 834 Systems
the Master Switch on the computer must be on for the master boom control switch to work. For the 440
System the Master Switch on the computer must be off for the master boom control switch to work.
Review the capacity of nozzles being used. Total capacity of all nozzles plus agitation system must not exceed
pumping system capabilities refer to Spraying Procedure section of this manual. FLUSH PUMP AFTER USE
Shut-Off 20GPM 40GPM 60GPM 80GPM 100GPM
120psi 100psi 80psi
60psi
30psi
10psi
100psi 95psi
76psi
52psi
26psi
5psi
80psi
75psi
62psi
45psi
21psi
60psi
55psi
40psi
25psi
5psi
To determine the correct performance data for your application, first shut off all flow on discharge side of pump and
detemine the shut-off pressure at the pump. Use this Shut-Off pressure to determine which line of data applies.
21
Operation
3. Open agitator valve.
SPRAY OPERATION
One of the most common causes for faulty-pump performance is corrosion inside the pump. Flush the pump and
entire system with a solution that will chemically neutralize the liquid pumped. Mix according to manufacturer’s
directions. This will dissolve most residue remaining in the pump, leaving the inside of the pump clean for the
next use.
Operation
TO PREVENT CORROSION
After cleaning the pump as directed, flush it with a permanent type automobile antifreeze (Prestone, Zerex, etc.)
containing a rust inhibitor. Use a 50% solution that is, half antifreeze and half water. Then coat the interior of the
pump with a substance which will prevent corrosion such as Fluid Film or WD40. If unit will not be used for an
extended period of time, disconnect hoses into and out of the pump, seal openings to the pump with caps or
tape. Dispose of fluids according to all federal, state and local regulations.
All chemicals and chemical residue must be removed after each use. Dispose of fluids and
residue according to all federal, state and local regulations.
SPRAYER CLEANING
Empty tank and clean unit thoroughly after each use following these instructions:
1. Turn off 3-way valve and rinse inside of tank thoroughly with clean water, remove cap from valve to drain.
2. Fill tank ten percent full with clean water, Turn 3-way valve on and start pump and discharge water through
spray hose or spray boom (with nozzles removed), until empty.
3. Turn off 3-way valve again and rinse tank interior thoroughly. Remove cap from 3-way valveto drain.
4. Rinse exterior of sprayer thoroughly with clean water.
5. This sprayer is equipped with a self cleaning strainer. The strainer uses the excess pump flow to bypass
clogging particles back to the spray tank. There is a gap between the tapered inner cylinder and the
screen face that causes the inlet fluid to flow at a high velocity past the screen face providing a
countinuous washdown of particles. For this washdown to occur a minimum of +GPM/23 l/min is required
through the bypass line.
MANUAL HOSE REEL
Located at the back of the Spray Star on top of the tank. Open the ball valve located near the manifold valve to
allow fluid to flow into the hose reel. Place the lockout pin in the unlocked position by pulling and turning it half a
turn, this will allow you to pull out additional hose or to use the handle and wind up the hose. To prevent movement during transport or storage place the lockout pin in the locked position.
ELECTRIC HOSE REEL
Located at the back of the Spray Star on top of the tank. Open the ball valve located near the manifold valve to
allow fluid to flow into the hose reel. To unwind hose just pull on the hose to get the desired amount. To wind up
the hose make sure the toggle switch is in the ON position, push the momentary push button switch until you
have reeled in the amount of hose desire. Turn off the safety switch when not in use.
FOAM MARKER
Located to the right of the control panel. Use lever on compressor to designate which boom is to be used to
dispense foam. Use dial located on the foamer to adjust pressure for the amount of foam that will be dispensed.
Switch on compressor also turns foamer on or off.
22
SPRAYING INTRODUCTION
This section is intended to offer practical guidelines for the distribution of liquid chemicals over an area of
turfgrass such as golf courses, park land, school grounds and lawns. SMITHCO makes no representation as to
the suitability of any technique or product for any particular situation. This section is suitable for self-propelled
spray vehicles or sprayers mounted onto vehicles.
Boom Spraying is the most effective, accurate and efficient method of applying chemicals to large turf areas. It
may be done by means of:
• A sprayer mounted upon a utility vehicle
Sprayers are typically equipped with wide spray booms. Generally these booms are between 15 feet (4.5 m) and
20 feet (6 m) in width. They are divided into three sections, with hinges that permit the long outer sections to
automatically move out of the way and reset if an obstacle such as a tree or fence is in you path.
To minimize the chance for missed areas or double application use a device to mark the outside boundaries of
each spray swath. Foam markers and dye markers are advisable.
TURF MANAGEMENT
Turf management chemicals are made for four general purposes:
1. Fungicides: Prevent or cure fungus on turfgrass. They are made in 2 general types:
• Systemic - Chemicals enter the plant system and protect or cure it of, fungus.
• Contact - Kills fungus with which it comes into contact.
2. Insecticides: Eliminate damaging insects and worms (such as grubs, beetles, ants, etc.)
3. Herbicides: Control and eliminate undesirable weeds and grass from turf areas and non-turf areas such
as bunkers, trails, fences, etc.
4. Nutrients & Fertilizer: Promote growth, beauty and color in turfgrass.
Some materials have to be applied so that they get into the soil below the plant leaves, This is called "soil application". In order to do this, they are best applied with a large volume of water. They are often then watered-in
using the irrigation system. This type of chemical material includes systemic chemicals and chemicals designed to destroy pests which live in the thatch and the soil.
Other materials must be applied to reach a problem that is present on the plant leaves. This is called “Foliar
Application” and requires a lower volume of water. Instead of irrigation water, these materials are further activated
by dry air and sunshine. They include contact fungicide and many herbicides.
The user of sprayers and chemicals must follow the directions provided with the spray material. It is the only
way to insure safe and effective results. It provides information on how much chemical and how much water is to
be applied to the area to be sprayed.
Though there are many types and sizes of nozzles, two specific types have proven most successful in turfgrass
management.
• The first type is target-directed. It sprays material in a direct line downwards to the target turfgrass.
These are flat fan nozzles, commonly referred to as TeeJet nozzles. They are available in a wide variety of
sizes for any required discharge volume rate. They are the best for many contact or foliar applied pesticides. They are spaced either 10" (25 cm) or 20" (51 cm) apart and overlap one another by about 1/3.
• The second type useful in turf management are broadcast type nozzles. They are commonly referred to
as raindrop or floodjet nozzles. They spray a hollow-cone shaped pattern of much larger droplets which fall
quickly to the turf under their own weight. They are best for systemic pesticides or any material requiring a
large volume of water for soil application. The larger droplets are not as subject to drift from wind and are a
safer, more environmentally friendly choice in many situations.
23
Operation
• A dedicated spray vehicle
HOSE & HANDGUN SPRAYING
A handgun (hand-nozzle or hand-lance) is used to control and direct the spray pattern to the ground, shrub or
tree. They must be constructed of long lasting and noncorrosive materials such as brass, stainless or aluminum.
The handgun fits to a hose of any length from the sprayer allowing operator mobility. The hose should be as
short as possible while still permitting operator mobility.
Liquid looses pressure due to friction as it travels through the hose, 1-3 psi (0.07-0.21 bar) for each foot (30 cm)
of hose. For most operations 1/2" (1.25 cm) inside diameter hose is adequate. Trees over 40 ft (12 m) high require 3/4" (2 cm) inside diameter hose and a sprayer pump capable of delivering a volume of at least 20 gpm (75
lpm) and a pressure of at least 400 psi (28 bar).
Operation
NOZZLES
Always be alert to the possibility of a plugged or damaged nozzles. Serious misapplications may result. Check
nozzle output periodically.
Modern nozzles use spring and diaphragm check valves to insure positive cutoff of chemicals without drip.
Snap-on caps make replacing and cleaning nozzles, quick, easy and fool proof with proper reinstallation.
An operator can see at a glance if all nozzles are the same size by the color code.
3 FUNCTIONS FOR A SPRAY BOOM NOZZLE
1. Regulating the flow is done through size of the orifice (opening) within the nozzle. All nozzles, regardless
of type, have some point within them that regulates the flow of liquid. Obviously, the larger the opening the
greater the rate of flow volume. Volume is expressed in Gallons Per Minute (gpm) or Liters Per Minute
(lpm). Do not confuse the term volume with application rate, which will be covered later.
As pressure increases, the flow volume in a given nozzle also increases. For example, an average size
nozzle which discharges 0.52 gpm (1.4 lpm) at 30 psi (2 bar), will discharge 0.73 gpm (2 lpm) at 60 psi (4
bar). In this example, an increase in pressure of 100% has caused an increase in discharge of 40%.
Some nozzles deliver a small volume (for example: 0.2 gpm (0.75 lpm)). Some nozzles deliver a relatively
large volume (for example: 1.5 gpm (5.7 lpm)), or 71/2 times as much as the smaller nozzle in this example.
The amount of material (volume) to be applied is determined by the effect the chemical has on the turf.
2. The nozzle on a sprayer is to form the liquid into droplets. The size of the droplet is determined by two
factors design and system pressure (psi/bar).
Particular applications are done best by big droplets such as systemic fungicides, insecticides and some
herbicides in order to reduce drift. Other applications require small droplets like contact fungicides and
some herbicides. Again, this is determined by whether the chemical is foliar applied or soil applied. Large
droplets for soil applied material, small droplets for foliar applied materials that evenly cover the plant
better.
Pressure also affects droplet size. More pressure at the same nozzle produces smaller droplets, more
subject to drift. The general rule on pressure is to use the lowest pressure possible with just enough to
form adequate spray nozzle patterns.
24
NOZZLES
As shown (to the right) the pattern formed by flat
fan (TeeJet) nozzles would show most liquid
concentrated at the center, then tapering off where
it begins to overlap with the next nozzle-approximately 1/3. The pattern of liquid dispersed by the
hollow-cone is more even across its width. Each
nozzle overlaps the adjoining nozzle by 100%. That is to say the area covered by each nozzle extends to
the center of the two nozzles on either side.
In order to properly develop their spray pattern, each nozzle must be the proper distance from the next
nozzle (spacing) and the proper height above the ground.
NOZZLE SCREENS (STRAINERS)
Smaller nozzles require nozzle screens or strainers to prevent clogging.
• Teejet type nozzles size 8001 and 80015 require 100 mesh screens.
• Teejet type nozzles from size 8002 through 8008 require 50 mesh screens.
• Turbo TurfJet Nozzles Size 1/4 TTJ02-VS and larger do not require strainers.
• Turbo Floodjet Nozzles TF-VS2 through TF-VS3 require 50 mesh screens.
• Turbo Floodjet Nozzles TF-VS4 and larger do not require screens.
SPACING
Turf spray nozzles are normally 20" (51 cm) apart. Some cases 40" (101 cm), depending on the type of spray
boom and type of area to be sprayed.
Very fine, level areas (golf greens and tees, bowling lawns, tennis courts, etc.) may be sprayed with nozzles
spaced every 10" (25 cm).
BOOM HEIGHT
Height is very important in permitting spray nozzles to develop their proper spray pattern. If nozzles are too high,
excessive overlap develops. If nozzles are too low, there is not enough overlapping of nozzle spray patterns.
NOZZLE
TYPE
NOZZLE
SPACING
HEIGHTABOVE
THE GROUND
80° Flat Fan
65° Flat Fan
Turbo TurfJet
Turbo TurfJet
Turbo Floodjet
Turbo Floodjet
20" (51 cm)
20" (51 cm)
20" (51 cm)
40" (101 cm)
20" (51 cm)
40" (100 cm)
18" (45 cm)
12" (30 cm)
15" (38 cm)
19" (48 cm)
16" (41 cm)
18" (45 cm)
Improper nozzle height or spacing prevents proper application of chemical. Some areas are under treated and
chemicals are ineffective. Some areas are overtreated with wasted chemical and possible turf damage.
Operating your sprayer at a desired speed and pressure on a hard, dry surface is a good method of checking
spraying consistency. Observe nozzles in operation, observe if the area dries evenly. If there are alternating wet
and dry streaks, raise or lower the spray boom. If the wet streaks are directly under the nozzle, the boom is too
low. If the wet streaks are between the nozzles, the boom is too high.
25
Operation
3. Disperse the material in a specific pattern that will
insure even distribution of chemical across the
swath covered by the boom.
CALIBRATION INTRODUCTION
Calibrating simply means to adjust a set of variables on the sprayer in order to deliver the desired amount of
chemical to a known area of turf.
The job of calibrating the sprayer consists of balancing these variables so that your sprayer delivers the desired
application rate. That is, an amount of chemical on a given area. It is expressed as:
Gallons Per Acre (gpa) (1 US gpa = 0.83 UK gpa)
or Gallons Per 1,000 Square Feet (gpt)
or Liters Per Hectare (lph) (1 US gpa = 9.35 lph)
Operation
A number of acceptable methods for calibrating a turf sprayer are widely available. The calibration method chosen must take these variables into account. They must include known ground speed (by measurement or from
an accurate speedometer) and nozzle output (gpm or lpm) from a nozzle chart or from actual measurement. The
variables are:
PRESSURE
Just as pressure increases the volume discharge rate, it also increases the application rate. Pressure must
increase by 4 times in order to double the application rate. Small pressure changes of 10 psi (1.4 bar) or less do
not greatly affect performance.
Pressure is established and maintained by a pressure control valve or by a flow control valve located on the
sprayer.
NOZZLE CAPACITY (VOLUME)
We have covered the different types of spray patterns of various nozzles and made our selection of type accordingly. We now have to choose a size which will provide the correct application rate.
Sizes are available for all requirements. Consult the nozzle chart in this manual for your nozzle type in order to
select the correct size.
TRAVEL SPEED
Increased travel speed decreases the application rate (gpa, gpt or lph). Travel speed must be safe and appropriate for the area to be sprayed.
Unlike pressure changes which have only a minor effect on application rate, ground speed changes have a more
major and direct effect. For example: 50% decrease in ground speed means a 100% increase in application
rate. If the vehicle does not have an accurate speedometer, correct speed must be determined by timing the
sprayer travel over a measured distance. (Refer to the page in this manual titled, “Abbreviations and Conversions”.
To calibrate a sprayer, the user must:
1. Understand the Variables
2. Set those variables using one of the proven methods available.
3. Make a trial run and measure the output (use water, not chemical).
4. Determine the output.
5. Make adjustments to the 3 variables until the output is at the desired level.
This covers the principles of what must be known to prepare a sprayer for operation.
There are other acceptable and proven methods of calibrating a turf sprayer for application.
Other techniques may be more suitable depending on operational needs and technical
competence of the operator.
26
THE NOZZLE CHART METHOD OF CALIBRATION
The Nozzle Chart Method is useful when the sprayer nozzles are new or nearly new. It is also the most useful
method to employ when the sprayer is equipped with an Electronic Spray Control System. The Electronic Spray
Control System does most of the calibration work, it is up to the operator to select the proper combination of
nozzle size and ground speed which will deliver the desired application rate.
The nozzle chart method requires the use of the appropriate nozzle charts which are found in the back of this
manual (Nozzle Charts 1 through 8). Nozzle charts for other nozzles are available from the manufacturer.
Operation
CALIBRATION STEPS
1. Determine “HOW” your sprayer is to be calibrated from the list of variables below.
a. Nozzle Type (Teejet, Turbo Turf, Turbo Flood)
b. Spacing (10" (25 cm) or 20" (51 cm) or 30" (76 cm))
c. Expression of Application Rate (gpa or gpt or lph)
The answers to these three questions will direct you to the appropriate nozzle chart for your application.
The correct nozzle chart MUST be used.
2. Determine the Desired Application Rate.
This is determined from the information on chemical labels or other technical information available from a
variety of sources.
3. Determine an Acceptable Ground Speed.
Conditions over which the sprayer will operate generally dictate the appropriate ground speed. Within the
limits of practicality and efficiency, spraying should generally be done at lowest possible speed. This
increases operator safety and contributes to more precise application of chemicals. For example, golf
greens and tees and hill areas would generally be sprayed in the range of 21/2 to 31/2 mph (4-6 kph).
Larger, open and more level areas such as golf fairways and park or school grounds would be sprayed at
41/2 to 6 mph (7-10 kph).
The vehicle which carries or tows the sprayer should be equipped with a precise low-speed speedometer.
If it is not, exact ground speed at a given engine speed must be determined by timing the travel of the
sprayer over a measured distance.
4. Determine Nozzle Size.
Refer to the appropriate nozzle chart in the back of this manual for your nozzle TYPE (the type of nozzle
you have or type you wish to use), nozzle SPACING and CALIBRATION TYPE (gpm, gpt or lph).
You will note from the chart, that application rates from any given nozzle decrease as the ground speed
increases. In other words, the faster you drive, the less material you are applying.
Application rates are shown in the columns to the right of the charts. Once the desired application rate is
decided upon, it should be located, as nearly as possible in one of these columns on the appropriate chart
for your operation. It could well be that the approximate rate desired would be obtained from the nozzles
already installed in the boom. If this is not possible, then nozzles will need to be changed.
When selecting a new nozzle size refer to the “Discharge Rate Column” on the nozzle
charts. The Discharge Rate (gpm or lpm) multiplied by the number of nozzles should not
exceed 75% of the actual discharge volume of the sprayer pump. [i.e., if you need to use
nozzles which discharge 0.8 gpm (3.0 lpm), and the spray boom is equipped with 12 nozzles,
the sprayer pump would have to produce an actual discharge volume of 13 gpm (49 lpm) in
order to properly supply these nozzles.] If the collective volume of the spray boom nozzles
exceeds the actual discharge volume of the pump, inadequate pressure and poor nozzle
distribution patterns may result.
Once nozzle type and size have been determined, those nozzles are installed in the sprayer boom.
Nozzles should be expected to be replaced after 15-20 hours of actual sprayer operation. After nozzles
are installed, make trial application of water over a known area to check application rate.
27
THE NOZZLE CHART METHOD OF CALIBRATION (CONTINUED)
5. For Sprayer with Electronic Spray Control Systems.
On sprayers equipped with Electronic Spray Control Systems such as those manufactured by Raven Ind.,
Micro-Trak Co. and Dickey-John Co., it is still important to select the right type and size of nozzle for the
required operation. Electronic Spray Control Systems cannot function properly if the nozzles are not
capable of delivering the programmed (desired) application rate. Nozzles which are too large will not
develop adequate pressure or satisfactory spray patterns. Nozzles which are too small will not allow the
discharge of spray material at the programmed application rate.
Operation
Further, when calibrating sprayers which are equipped with Electronic Spray Control Systems, care must
be taken to use the mode of operation on the Spray Control System (Gallons per acre “US” Mode);
Gallons per 1,000 Square Feet (“Turf” Mode); or Liters per Hectare (Standard International Model), which
corresponds with the nozzle calibration charts (gpa, gpt or lph).
6. Using the Nozzle Charts.
Select the correct chart based on your nozzle type, nozzle spacing and desired expression of application
rate (gpa, gpt or lph). If the desired operating speed is not found on the nozzle chart, it is simple to
determine application rate at different speeds by estimating from the known facts.
Example 1: If the desired speed is 21/2 MPH (4 kph) on a sprayer using TurfJet nozzles (Chart 5). The
average between the application rates for 2 MPH and 3 MPH may be assumed to be the application rate
for 21/2 MPH.
Example 2: The desired speed is 6 MPH. Use the application rate column for 3 MPH a divide by 2.
7. Converting Nozzle Chart Method to British Gallons.
To convert any of the Gallon Per Acre rates to Imperial Gallons per acre, (Imp gpa) multiply by 0.83. To
convert any of the Liter Per Hectare rates to Imperial Gallons Per Hectare (Imp GPH), multiply by 0.22.
8. Checking the Actual Application Rate.
After the combination of ground speed, nozzle size and operating pressure has been selected, the sprayer
should be operated with water only to determine if the target application rate is achieved.
THE “128” METHOD OF BOOM SPRAYER CALIBRATION
The “128” Method is useful for calibrating sprayers and also for checking the calibration of sprayer calibrated by
the Nozzle Chart Method and sprayers using Electronic Spray Control Systems. The “128” is based on a convenient mathematical relationship that exists between US Gallons, liquid ounces and acres.
An ounce is 1/128th of a (US) gallon. If an area which was “1/128th of an acre” could be found, the number of
ounces applied to that small area would be equal to the number of gallons applied to the acre Thus, no mathematical computations would be required.
To determine an area which is 1/128 of an acre:
• On nozzles with 20 inch (51 cm) spacing, measure off a distance of 204 ft (62 meters). Mark a “START”
and a “STOP” line. The rectangle formed by this distance and the spraying width of one nozzle 20" (51
cm) is equal to 340 square feet which is equal to 1/128 acre. Therefore, the amount of material applied to
this area by one nozzle in OUNCES is the same amount of material applied to an acre in GALLONS
(gpa).
• On nozzles with 10 inch (25 cm) spacing, the measure distance is 408 feet (124 meters).
• On nozzles with 30 inch (76 cm) spacing the measured distance is 136 feet (41 meters).
CALIBRATING FOR APPLICATION
1. Fill the sprayer tank with water. Run the sprayer, inspect it for leaks and make sure all systems function
properly.
2. Drive the sprayer through the measured distance discussed above at normal spraying speed, record the
travel time required to cover the measured distance in seconds with a stopwatch.
28
THE “128” METHOD OF BOOM SPRAYER CALIBRATION
The carrying or towing vehicle is to be traveling at the desired speed when it crosses the start
line of the measured course.
Repeat this procedure and determine the average of the two times.
4. Observe the volume of water in the collection bottle. The number of OUNCES collected in the time it takes
to cover the marked course. Take the average nozzle output by adding the outputs of each nozzle and
then dividing that sum by the number of nozzles.
The NUMBER OF OUNCES collected in the time required to cover the SMALL AREA is equal to the
NUMBER OF GALLONS applied per ACRE. For example: if an average of 40 ounces of water is collected
in the time required to cover the 1/128 acre area, the application rate is 40 gallons per acre (gpa).
As a practical matter, if high application rates are desired (above 75 gpa), the measured
course length should be reduced by half (i.e. 102 ft (31 m) for 20 inch (52 cm) spaced
nozzles). The volume collected (above) is then doubled (multiplied by 2).
AVERAGE OUTPUT (Ounces) = APPLICATION RATE (gpa)
5. Observe individual nozzle output volumes. If an individual nozzle is 10% above or below the average
output, check for blockages in the nozzle or in the nozzle strainer. If the nozzle is worn or damaged,
replace it.
6. Compare this actual application rate with the recommended rate. If the actual rate is more than 5% higher
or lower than the intended rate, adjustments must be made.
7. Minor adjustments in application rate may be made by increasing or decreasing the spraying pressure.
Lowering spraying pressure decreases application rate. Increasing spraying pressure increases application rate. This procedure normally does not apply to spray systems controlled by an Electronic Spray
Control System, which governs flow rate.
8. Adjustments in application rate may be made by increasing or decreasing the travel speed of the sprayer
if conditions permit. Slower speeds increase application rate. Faster speeds decrease application rate.
9. Nozzle sizes can be changed to provide the correct application rate. Refer to the nozzle charts in this
book for the desired nozzle type.
10. Re-calibrate the sprayer (steps 2-6) after any adjustments are made.
As previously discussed, there are other acceptable methods of Turf Sprayer Calibration. Chemical
suppliers, Agricultural Extension Agents, Universities and consultants of various types offer helpful advice
on this subject. Technical catalogues are available from nozzle manufacturers.
TRANSFERRING THE “128” METHOD INTO METRIC (LITERS PER HECTARE)
The same steps are used that are used when calibrating in gallons per acre. First a relationship between a measurable amount (milliliters) and the calibration amount (liter) is determined. That ratio is 1:1000.
Now an area which is 1/1000th of a hectare must be measured.
On spray booms with 51 cm (20 inch) spacing, mark off an area which is 20 meters (65.6 feet) long . The area
formed by that length and the width of one spray nozzle (20 meters by 0.5 meters) is 10 square meters which is
1/1000 of a hectare. Therefore, the amount of spray material applied to this small area in milliliters is equal to
the amount applied to one hectare in liters.
Then, follow the remaining steps 2-10, substituting milliliters for ounces, liters for gallons, square meters for
square feet and hectares for acres.
AVERAGE OUTPUT (Milliliters) = APPLICATION RATE (LITERS/HECTARE)
29
Operation
3. With the sprayer parked, run the sprayer at the required pressure level. Catch the output of each nozzle in
a container which is marked or graduated in Ounces for the exact same period of time which it took the
sprayer to cover the measured course in step #2. It is necessary to operate the vehicle engine at spraying
speed using a hand throttle.
NOZZLE PERFORMANCE CHART #1
Nozzle Type:
Spacing:
Calibration:
Color
Size
Orange
XR8001
Green
XR80015
DG80015
Yellow
XR8002
DG8002
Blue
Spraying Procedures
30
XR8003
DG8003
Red
XR8004
DG8004
Brown
XR8005
DG8005
Gray
XR8006
White
XR8008
Steel
SS8010
XR TeeJet & DG TeeJet
10 inch (25cm)
US Gal/Acre (GPA) & US Gal/1,000 Square Feet (GPT)
Application Rate GPT
Nozzle
Application Rate GPA
Speed MPH (KPH)
Pressure Capacity
Speed MPH (KPH)
3 (5)
4 (6)
2 (3)
3 (5)
4 (6)
psi
(Gal/Min) 2 (3)
20
0.07
21
14
10
0.48
0.32
0.24
30
0.09
27
18
13
0.62
0.40
0.30
40
0.10
30
20
16
0.68
0.46
0.34
60
0.12
36
24
18
0.92
0.54
0.41
0.39
0.50
0.78
16
18
32
0.11
20
0.44
0.60
0.99
20
26
39
0.13
30
0.52
0.68
1.02
22
30
44
0.15
40
0.61
0.82
1.22
27
36
54
0.18
60
20
0.14
42
28
21
0.96
0.64
0.48
30
0.17
51
34
26
1.16
0.79
0.58
40
0.30
60
40
30
1.36
0.90
0.68
60
0.37
74
50
37
1.70
1.14
0.85
20
0.21
62
42
31
1.44
0.96
0.72
30
0.26
78
52
39
1.78
1.18
0.89
40
0.30
90
60
45
2.04
1.36
1.02
60
0.37
110
74
55
2.52
1.68
1.26
20
0.28
84
56
42
1.9
1.28
.096
30
0.35
104
70
52
2.4
1.6
1.2
40
0.40
118
80
59
2.8
1.8
1.4
60
0.49
146
98
72
3.4
2.2
1.7
20
0.35
104
70
52
2.4
1.6
1.2
30
0.43
128
86
64
3.0
2.0
1.4
40
0.50
148
100
74
3.4
2.2
1.7
60
0.61
182
120
91
4.2
2.8
2.1
20
0.42
124
84
62
2.8
2.0
1.4
30
0.52
154
102
77
3.6
2.4
1.8
40
0.60
178
118
89
4.0
2.8
2.0
60
0.73
220
146
110
5.0
3.4
2.5
20
0.57
170
112
85
3.8
2.6
1.9
30
0.69
204
136
102
4.8
3.2
2.4
40
0.80
238
158
118
5.4
3.6
2.8
60
0.98
292
194
146
6.6
4.4
3.4
40
1.00
288
192
144
6.6
4.4
3.4
60
1.20
360
240
179
8.1
5.8
4.0
NOZZLE PERFORMANCE CHART #2
Color
Size
Orange
XR11001
Green
XR110015
DG11001
5
Yellow
XR11002
DG11002
Blue
XR11003
DG11003
Red
XR11004
DG11004
Brown
XR11005
DG11005
Gray
XR11006
White
XR11008
Steel
SS11010
XR TeeJet & DG TeeJet
10 inch (25cm)
Liters Per hectare
Nozzle
Application Rate l/ha
Pressure Capacity
Speed KPH (MPH)
3 (2)
5 (3)
6 (4)
bar
(l/min)
1.4
0.26
194
130
98
2.1
0.34
250
166
126
2.9
0.38
280
?88
142
4.3
0.45
332
224
167
1.4
0.4
304
186
152
2.1
0.5
366
244
184
2.9
0.6
412
280
206
4.3
0.7
500
386
249
1.4
0.5
392
262
196
2.1
0.6
468
318
264
2.9
0.8
562
374
281
4.3
0.9
692
468
346
1.4
0.8
580
392
292
2.1
1.0
730
486
360
2.9
1.1
840
562
420
4.3
1.4
1028
692
510
1.4
1.1
786
524
393
2.1
1.3
972
654
468
2.9
1.5
1104
748
553
4.3
1.9
1366
916
683
1.4
1.3
972
654
486
2.1
1.7
1196
804
598
2.9
1.9
1384
936
692
4.3
2.3
1702 1122
851
1.4
1.6
1160
786
580
2.1
2.0
1440
954
720
2.9
2.3
1664 1104
832
4.3
2.8
2058 1366 1029
1.4
2.2
1590 1048
795
2.1
2.6
1908 1272
954
2.9
3.0
2224 1478 1104
4.3
3.7
2730 1814 1365
3.8
3.8
2692 1796 1346
4.5
4.5
3366 2244 1683
Nozzle Charts
Nozzle Type:
Spacing:
Calibration:
31
NOZZLE PERFORMANCE CHART #3
Nozzle Type:
Spacing:
Calibration:
Color
Size
Red
TF-VS2
Brown
TF-VS2.5
Gray
TF-VS3
White
Nozzle Charts
32
TF-VS4
Blue
TF-VS5
Green
TF-VS7.5
Black
TF-VS10
Turbo FloodJet
40 inch (100cm)
US Gal/Acre (GPA) & US Gal/1,000 Square Feet (GPT)
Nozzle
Application Rate GPA
Application Rate GPT
Speed MPH
Speed MPH
Pressure Capacity
4
5
6
7
4
5
6
7
(Gal/Min)
psi
20
0.28
10.4
8.3
6.9
5.9
.24
30
0.35
13.0
10.4
8.7
7.4
.30
20
0.35
13.0
10.4
8.7
7.4
.30
30
0.43
16.0
12.8
10.6
9.1
.37
20
0.42
15.6
12.5
10.4
8.9
.36
30
0.52
19.3
15.4
12.9
11.0
.44
20
0.57
21.0
16.9
14.1
12.1
.48
30
0.69
26.0
20.0
17.1
14.6
.59
20
0.71
26.0
21.0
17.6
15.1
.60
30
0.87
32.0
26.0
22.0
18.5
.74
20
1.06
39.0
31.0
26.0
22.0
.90
30
1.30
48.0
39.0
32.0
28.0
1.11
20
1.41
52.0
42.0
35.0
30.0
1.20
30
1.73
64.0
51.0
43.0
37.0
1.47
NOZZLE PERFORMANCE CHART #4
Color
Size
Red
TF-VP2
Brown
TF-VP2.5
Gray
TF-VP3
White
TF-VP4
Blue
TF-VP5
Green
TF-VP7.5
Black
TF-VP10
Turbo FloodJet
40 inch (100cm)
Liters Per Hectare
Nozzle
Pressure Capacity
bar
(l/min)
1.5
1.11
2.0
1.29
1.5
1.40
2.0
1.61
1.5
1.68
2.0
1.94
1.5
2.23
2.0
2.57
1.5
2.79
2.0
3.22
1.5
4.19
2.0
4.83
1.5
5.58
2.0
6.45
Application Rate l/ha
Speed km/h
4
6
8
10
167
111
83.3
66.6
194
129
96.8
77.4
210
140
105
84.0
242
161
121
96.6
252
168
126
101
291
194
146
116
335
223
167
112
386
257
193
129
419
279
209
167
483
322
242
193
629
419
314
251
726
484
363
290
837
558
419
335
968
645
484
387
Application Rate GPT
Speed MPH
Nozzle Charts
Nozzle Type:
Spacing:
Calibration:
33
NOZZLE PERFORMANCE CHART #5
Nozzle Type:
Spacing:
Calibration:
Nozzle Charts
Color
Size
Yellow
1/4 TTJ02-VS
Red
1/4 TTJ04-VS
Brown
1/4 TTJ05-VS
Gray
1/4 TTJ06-VS
White
1/4 TTJ08-VS
L. Blue
1/4 TTJ10-VS
L. Green
1/4 TTJ15-VS
34
Turbo TurfJet
20 inch (51cm)
US Gal/Acre (GPA) & US Gal/1,000 Square Feet (GPT)
Application Rate GPT
Nozzle
Application Rate GPA
Speed MPH (KPH)
Pressure Capacity
Speed MPH (KPH)
4 (6)
5 (8) 6 (10)
3 (5)
4 (6)
5 (8) 6 (10)
psi
(Gal/Min) 3 (5)
25
.16
15.8
11.9
9.5
7.9
.36
.27
.22
.18
30
.17
16.8
12.6
10.1
8.4
.39
.29
.23
.19
40
.20
19.8
14.9
11.9
9.9
.45
.34
.27
.23
50
.22
22
16.3
13.1
10.9
.50
.37
.30
.25
25
.32
32
24
19.0
15.8
.73
.54
.44
.36
30
.35
35
26
21
17.3
.79
.60
.48
.40
40
.40
40
30
24
19.8
.91
.68
.54
.45
50
.45
45
33
27
22
1.0
.77
.61
.51
25
.40
40
30
24
19.8
.91
.68
.54
.45
30
.43
43
32
26
21
.97
.73
.58
.49
40
.50
50
37
30
25
1.1
.85
.68
.57
50
.56
55
42
33
28
1.3
.95
.76
.63
25
.47
47
35
28
23
1.1
.80
.64
.53
30
.52
51
39
31
26
1.2
.88
.71
.59
40
.60
59
45
36
30
1.4
1.0
.82
.68
50
.67
66
50
40
33
1.5
1.1
.91
.76
25
.63
62
47
37
31
1.4
1.1
.86
.71
30
.69
68
41
41
34
1.6
1.2
.94
.78
40
.80
79
59
48
40
1.8
1.4
1.1
.91
50
.89
88
66
53
44
2.0
1.5
1.2
1.0
25
.79
78
59
47
39
1.8
1.3
1.1
.90
30
.87
86
65
52
43
2.0
1.5
1.2
.99
40
1.00
99
74
59
50
2.3
1.7
1.4
1.1
50
1.12
111
83
67
55
2.5
1.9
1.5
1.3
25
1.19
118
88
71
59
2.7
2.0
1.6
1.3
30
1.30
129
97
77
64
2.9
2.2
1.8
1.5
40
1.50
149
111
89
74
3.4
2.6
2.0
1.7
50
1.68
166
125
100
83
3.8
2.9
2.3
1.9
NOZZLE PERFORMANCE CHART #6
Color
Size
Yellow
1/4 TTJ02-VP
Red
1/4 TTJ04-VP
Brown
1/4 TTJ05-VP
Gray
1/4 TTJ06-VP
White
1/4 TTJ08-VP
L. Blue
1/4 TTJ10-VP
L. Green
1/4 TTJ15-VP
Turbo TurfJet
20 inch (51cm)
Liters Per Hectare
Nozzle
Application Rate l/ha
Pressure Capacity
Speed KPH (MPH)
8 (5) 10 (6)
bar
(l/min) 4 (2.5) 6 (4)
1.0
0.46
69.0
46.0
34.5 27.6
1.5
0.56
84.0
56.0
42.0 33.6
2.0
0.65
97.5
65.0
48.8 32.5
3.0
0.80
120.0 80.0
60.0 48.0
1.0
.091
137
91.0
68.3 54.6
1.5
1.11
167
111
83.3 66.6
2.0
1.29
194
129
95.8 77.4
3.0
1.58
237
158
119 94.8
1.0
1.14
171
114
85.5 68.4
1.5
1.40
210
140
105 84.0
2.0
1.61
242
161
121 96.6
3.0
1.97
296
197
148 118
1.0
1.37
206
137
103 82.2
1.5
1.68
252
168
126 101
2.0
1.94
291
194
146 116
3.0
2.37
356
237
178 142
1.0
1.82
273
182
137 109
1.5
2.23
335
223
167 134
2.0
2.57
385
257
193 154
3.0
3.15
473
315
236 189
1.0
2.28
342
228
171 137
1.5
2.79
419
279
209 167
2.0
3.22
483
322
242 193
3.0
3.95
593
395
295 237
1.0
3.42
513
342
257 205
1.5
4.19
629
419
314 251
2.0
4.84
726
484
363 290
3.0
5.92
888
592
444 355
Nozzle Charts
Nozzle Type:
Spacing:
Calibration:
35
ABBREVIATIONS AND CONVERSIONS
gpm
Gallons per minute
cm
Centimeters
lit/min
Liters per minute
dm
Decimeters
dl/min
Deciliter per minute
m
Meter
psi
Pounds per square inch
mm
Millimeters
km
Kilometers
m.p.h.
Miles per hour
gpa
Gallon per acre
km/h
Kilometers per hour
lit/ha
Liters per hectare
us
Volume per ACRE
ml/ha
Milliliter per hectare
Si
Volume per hectare
gpk
Gallons per 1,000 sq ft
TU
Volume per 1,000 sq ft
AREA & SPEED
Distance (feet) x 0.68 = Travel Speed (m.p.h.) Travel Time (seconds)
Time Required in Seconds to Travel a Distance of:
100 Ft
200 Ft
300 Ft
Speed (m.p.h.)
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
68
46
34
27
23
20
17
15
13
136
92
68
54
46
40
34
30
28
205
136
103
82
68
58
52
46
41
LIQUID/VOLUME
1 US Gallon x 128 = Fluid Ounces
1 US Gallon x 3.785 = Liters
1 US Gallon x 0.83267 = Imperial Gallons
1 US Gallon x 8.34 = Pounds (Water)
1 Gallon Per Acre = 2.9 Fluid Ounces per 1,000 Square Feet = 9.35 Liters Per Hectare
1 Gallon Per 1,000 Square Feet = 43.56 Gallons Per Acre
1 Gallon = 128 Fluid Ounces = 8 Pints = 4 Quarts = 3.79 Liters = 0.83 Imperial Gallons
gpa =
m.p.h. x Nozzle Spacing Width (inches)
GAL. 1,000 Square Feet =
LENGTH/DISTANCE
1 millimeter (mm) = 0.039 inch
1 centimeter (cm) = 0.393 inch
Reference
1 meter (m) = 3.281 feet
1 kilometer (km) = 0.621 mile
1 inch = 25.4 millimeters; 2.54 centimeters
1 mile = 5280 Feet = 1610 Meters = 1.609 Kilometers
RE-CALIBRATE FLOWMETER
Corrected Meter Cal number =
36
Meter Cal x Total Volume
Predetermined amount of measured liquid
DECLARATIONOFCONFORMITYƒʪʫʶʸʤˀʤˉʰ˔ʯʤˁˎʽ˃ʦʫ˃ˁ˃ʦʰʫƒPROHLÁŠENÍOSHOD ƒOVERENSSTEMMELSESERKLÆRINGƒ
CONFORMITEITSVERKLARINGƒVASTAVUSDEKLARATSIOONƒVAATIMUSTENMUKAISUUSVAKUUTUSƒDECLARATIONDE
CONFORMITEƒKONFORMITÄTSERKLÄRUNGƒȴȸȿёɇȸɇɉɀɀɃɆɌёɇȸɇƒMEGFELELSSÉGINYILATKOZATƒDICHIARAZIONEDI
CONFORMITÀƒATBILST5BASDEKLAR
CIJAƒATITIKTIESDEKLARACIJAƒDIKJARAZZJONITALͲKONFORMITÀƒDEKLARACJA
ZGODNO_CIƒDECLARAÇÃODECONFORMIDADEƒDECLARAfIEDECONFORMITATEƒVYHLÁSENIEOZHODEƒIZJAVAOSKLADNOSTI
ƒDECLARACIÓNDECONFORMIDADƒDEKLARATIONOMÖVERENSSTÄMMELSE
Business name and full address of the manufacturer ƒ Ɍɴɪɝɨɜɫɤɨ ɢɦɟ ɢ ɩɴɥɟɧ ɚɞɪɟɫ ɧɚ ɩɪɨɢɡɜɨɞɢɬɟɥɹ ƒ Obchodní jméno a plná adresa
výrobce ƒ Producentens firmanavn og fulde adresse ƒ Bedrijfsnaam en volledig adres van de fabrikant ƒ Tootja ärinimi ja täielik aadress ƒ
Valmistajan toiminimi ja täydellinen osoite ƒ Nom commercial et adresse compl ète du fabricant ƒ Firmenname und vollständige Adresse des
Herstellers ƒ ǼʌȦȞȣȝȓĮ țĮȚ IJĮȤȣįȡȠȝȚțȒ įȚİȪșȣȞıȘ țĮIJĮıțİȣĮıIJȒ ƒ A gyártó üzleti neve és teljes címe ƒ Ragione sociale e indirizzo completo
del fabbricante ƒ UzƼƝmuma nosaukums un pilna ražotƗja adrese ƒ Verslo pavadinimas ir pilnas gamintojo adresas ƒ Isem kummerƛjali u
indirizz sƫiƫ tal-fabbrikant ƒ Nazwa firmy i peány adres producenta ƒ Nome da empresa e endereço completo do fabricante ƒ Denumirea
comercială úi adresa completă a producătorului ƒ Obchodný názov a úplná adresa výrobcu ƒ Naziv podjetja in polni naslov proizvajalca ƒ
Nombre de la empresa y dirección completa del fabricante ƒ Tillverkarens företagsnamn och kompletta adress
Product Code ƒ Ʉɨɞ ɧɚ ɩɪɨɞɭɤɬɚ ƒ Kód výrobku ƒ Produktkode ƒ Productcode ƒ Toote kood ƒ Tuotekoodi ƒ Code produit ƒ Produktcode ƒ
ȀȦįȚțȩȢ ʌȡȠȧȩȞIJȠȢ ƒ Termékkód ƒ Codice prodotto ƒ Produkta kods ƒ Produkto kodas ƒ Kodiƛi tal-Prodott ƒ Kod produktu ƒ Código do Produto ƒ
Cod produs ƒ Kód výrobku ƒ Oznaka proizvoda ƒ Código de producto ƒ Produktkod
Machine Name ƒ ɇɚɢɦɟɧɨɜɚɧɢɟ ɧɚ ɦɚɲɢɧɚɬɚ ƒ Název stroje ƒ Maskinnavn ƒ Machinenaam ƒ Masina nimi ƒ Laitteen nimi ƒ Nom de la machine
ƒ Maschinenbezeichnung ƒ ȅȞȠȝĮıȓĮ ȝȘȤĮȞȒȝĮIJȠȢ ƒ Gépnév ƒ Denominazione della macchina ƒ IekƗrtas nosaukums ƒ Mašinos pavadinimas ƒ
Isem tal-Magna ƒ Nazwa urządzenia ƒ Nome da Máquina ƒ Numele echipamentului ƒ Názov stroja ƒ Naziv stroja ƒ Nombre de la máquina ƒ
Maskinens namn
Designation ƒ ɉɪɟɞɧɚɡɧɚɱɟɧɢɟ ƒ Oznaþení ƒ Betegnelse ƒ Benaming ƒ Nimetus ƒ Tyyppimerkintä ƒ Pažym ơjimas ƒ Bezeichnung ƒ
ȋĮȡĮțIJȘȡȚıȝȩȢ ƒ Megnevezés ƒ Funzione ƒ ApzƯmƝjums ƒ Lithuanian ƒ Denominazzjoni ƒ Oznaczenie ƒ Designação ƒ SpecificaĠie ƒ Oznaþenie ƒ
Namen stroja ƒ Descripción ƒ Beteckning
Serial Number ƒ ɋɟɪɢɟɧ ɧɨɦɟɪ ƒ Sériové þíslo ƒ Serienummer ƒ Serienummer ƒ Seerianumber ƒ Valmistusnumero ƒ Numéro de série ƒ
Seriennummer ƒ ȈİȚȡȚĮțȩȢ ĮȡȚșȝȩȢ ƒ Sorozatszám ƒ Numero di serie ƒ SƝrijas numurs ƒ Serijos numeris ƒ Numru Serjali ƒ Numer seryjny ƒ
Número de Série ƒ Număr de serie ƒ Sériové þíslo ƒ Serijska številka ƒ Número de serie ƒ Serienummer
Engine ƒ Ⱦɜɢɝɚɬɟɥ ƒ Motor ƒ Motor ƒ Motor ƒ Mootor ƒ Moottori ƒ Moteur ƒ Motor ƒ ȂȘȤĮȞȒ ƒ Modulnév ƒ Motore ƒ DzinƝjs ƒ Variklis ƒ Saƫƫa Netta
Installata ƒ Silnik ƒ Motor ƒ Motor ƒ Motor ƒ Motor ƒ Motor ƒ Motor
Net Installed Power ƒ ɇɟɬɧɚ ɢɧɫɬɚɥɢɪɚɧɚ ɦɨɳɧɨɫɬ ƒ ýistý instalovaný výkon ƒ Installeret nettoeffekt ƒ Netto ge ïnstalleerd vermogen ƒ
Installeeritud netovõimsus ƒ Asennettu nettoteho ƒ Puissance nominale nette ƒ Installierte Nettoleistung ƒ ȀĮșĮȡȒ İȖțĮIJİıIJȘȝȑȞȘ ȚıȤȪȢ ƒ Nettó
beépített teljesítmény ƒ Potenza netta installata ƒ ParedzƝtƗ tƯkla jauda ƒ Grynoji galia ƒ Wisa’ tal-Qtugƫ ƒ Moc zainstalowana netto ƒ Pot ência
instalada ƒ Puterea instalată netă ƒ ýistý inštalovaný výkon ƒ Neto vgrajena moþ ƒ Potencia instalada neta ƒ Nettoeffekt
Smithco Inc.
34 West Avenue
Wayne, PA USA
19087-3311
31Ͳ000
Spray Star 3180
TurfSprayer
300G066
kubotaV1505
26.6kW
Conforms to Directives ƒ ȼ ɫɴɨɬɜɟɬɫɬɜɢɟ ɫ ɞɢɪɟɤɬɢɜɢɬɟ ƒ SplĖuje podmínky smČrnic ƒ Er i overensstemmelse med direktiver ƒ Voldoet aan de
richtlijnen ƒ Vastab direktiividele ƒ Direktiivien mukainen ƒ Conforme aux directives ƒ Entspricht Richtlinien ƒ ǹțȠȜȠȣșȒıIJİ ʌȚıIJȐ IJȚȢ ȅįȘȖȓİȢ ƒ
Megfelel az irányelveknek ƒ Conforme alle Direttive ƒ Atbilst direkt ƯvƗm ƒ Atitinka direktyvǐ reikalavimus ƒ Valutazzjoni tal-Konformità ƒ
Dyrektywy związane ƒ Cumpre as Directivas ƒ Respectă Directivele ƒ Je v súlade so smernicami ƒ Skladnost z direktivami ƒ Cumple con las
Directivas ƒ Uppfyller direktiv
2006/42/EC;
2000/14/ECAnnexVI.Part1
Conformity Assessment ƒ Ɉɰɟɧɤɚ ɡɚ ɫɴɨɬɜɟɬɫɬɜɢɟ ƒ Hodnocení plnČní podmínek ƒ Overensstemmelsesvurdering ƒ Conformiteitsbeoordeling ƒ
Vastavushindamine ƒ Vaatimustenmukaisuuden arviointi ƒ Evaluation de conformité ƒ Konformitätsbeurteilung ƒ ǻȚĮʌȓıIJȦıȘ ȈȣȝȝȩȡijȦıȘȢ ƒ
MegfelelĘség-értékelés ƒ Valutazione della conformità ƒ AtbilstƯbas novƝrtƝjums ƒ Atitikties Ƴvertinimas ƒ Livell tal-Qawwa tal-ƪoss Imkejjel ƒ
Ocena zgodnoĞci ƒ Avaliação de Conformidade ƒ Evaluarea conformităĠii ƒ Vyhodnotenie zhodnosti ƒ Ocena skladnosti ƒ Evaluación de
conformidad ƒ Bedömning av överensstämmelse
2006/42/ECAnnexVIII
Measured Sound Power Level ƒ ɂɡɦɟɪɟɧɨ ɧɢɜɨ ɧɚ ɡɜɭɤɨɜɚ ɦɨɳɧɨɫɬ ƒ NamČĜený akustický výkon ƒ Målte lydstyrkeniveau ƒ Gemeten
geluidsniveau ƒ Mõõdetud helivõimsuse tase ƒ Mitattu äänitehotaso ƒ Niveau de puissance sonore mesuré ƒ Gemessener Schalldruckpegel ƒ
ȈIJĮșȝȚıȝȑȞȠ İʌȓʌİįȠ ȘȤȘIJȚțȒȢ ȚıȤȪȠȢ ƒ Mért hangteljesítményszint ƒ Livello di potenza sonora misurato ƒ Izm ƝrƯtais skaƼas jaudas lƯmenis ƒ
Išmatuotas garso stiprumo lygis ƒ Livell tal-Qawwa tal-ƪoss Iggarantit ƒ Moc akustyczna mierzona ƒ Nível sonoro medido ƒ Nivelul măsurat al
puterii acustice ƒ Nameraná hladina akustického výkonu ƒ Izmerjena raven zvoþne moþi ƒ Nivel de potencia sonora medido ƒ Uppmätt
ljudeffektsnivå
Guaranteed Sound Power Level ƒ Ƚɚɪɚɧɬɢɪɚɧɨ ɧɢɜɨ ɧɚ ɡɜɭɤɨɜɚ ɦɨɳɧɨɫɬ ƒ Garantovaný akustický výkon ƒ Garanteret lydstyrkeniveau ƒ
Gegarandeerd geluidsniveau ƒ Garanteeritud helivõimsuse tase ƒ Taattu äänitehotaso ƒ Niveau de puissance sonore garanti ƒ Garantierter
Schalldruckpegel ƒ ǼȖȖȣȘȝȑȞȠ İʌȓʌİįȠ ȘȤȘIJȚțȒȢ ȚıȤȪȠȢ ƒ Szavatolt hangteljesítményszint ƒ Livello di potenza sonora garantito ƒ Garant Ɲtais
skaƼas jaudas lƯmenis ƒ Garantuotas garso stiprumo lygis ƒ Livell tal-Qawwa tal-ƪoss Iggarantit ƒ Moc akustyczna gwarantowana ƒ Nível sonoro
farantido ƒ Nivelul garantat al puterii acustice ƒ Garantovaná hladina akustického výkonu ƒ Zajamþena raven zvoþne moþi ƒ Nivel de potencia
sonora garantizado ƒ Garanterad ljudeffektsnivå
Conformity Assessment Procedure (Noise) ƒ Ɉɰɟɧɤɚ ɡɚ ɫɴɨɬɜɟɬɫɬɜɢɟ ɧɚ ɩɪɨɰɟɞɭɪɚɬɚ (ɒɭɦ) ƒ Postup hodnocení plnČní podmínek (hluk) ƒ
Procedure for overensstemmelsesvurdering (Støj) ƒ Procedure van de conformiteitsbeoordeling (geluid) ƒ Vastavushindamismenetlus (müra) ƒ
Vaatimustenmukaisuuden arviointimenettely (Melu) ƒ Procédure d’évaluation de conformité (bruit) ƒ Konformitätsbeurteilungsverfahren
(Geräusch) ƒ ǻȚĮįȚțĮıȓĮ ǹȟȚȠȜȩȖȘıȘȢ ȈȣȝȝȩȡijȦıȘȢ (ĬȩȡȣȕȠȢ) ƒ MegfelelĘség-értékelési eljárás (Zaj) ƒ Procedura di valutazione della
conformità (rumore) ƒ AtbilstƯbas novƝrtƝjuma procednjra (troksnis) ƒ Atitikties Ƴvertinimo procednjra (garsas) ƒ Proƛedura tal-Valutazzjoni talKonformità (ƪoss) ƒ Procedura oceny zgodnoĞci (poziom haáasu) ƒ Processo de avaliaç ão de conformidade (nível sonoro) Procedura de
evaluare a conformităĠii (zgomot) ƒ Postup vyhodnocovania zhodnosti (hluk) ƒ Postopek za ugotavljanje skladnosti (hrup) ƒ Procedimiento de
evaluación de conformidad (ruido) ƒ Procedur för bedömning av överensstämmelse (buller)
UK Notified Body for 2000/14/EC ƒ ɇɨɬɢɮɢɰɢɪɚɧ ɨɪɝɚɧ ɜ Ɉɛɟɞɢɧɟɧɨɬɨ ɤɪɚɥɫɬɜɨ ɡɚ 2000/14/ȿɈ ƒ ÚĜad certifikovaný podle smČrnice þ.
2000/14/EC ƒ Det britiske bemyndigede organ for 2001/14/EF ƒ Engels adviesorgaan voor 2000/14/EG ƒ Ühendkuningriigi teavitatud asutus
direktiivi 2000/14/EÜ mõistes ƒ Direktiivin 2000/14/EY mukainen ilmoitettu tarkastuslaitos Isossa-Britanniassa ƒ Organisme notifié concernant la
directive 2000/14/CE ƒ Britische benannte Stelle für 2000/14/EG ƒ ȀȠȚȞȠʌȠȚȘȝȑȞȠȢ ȅȡȖĮȞȚıȝȩȢ ǾȞȦȝȑȞȠȣ ǺĮıȚȜİȓȠȣ ȖȚĮ 2000/14/ǼȀ ƒ
2000/14/EK – egyesült királyságbeli bejelentett szervezet ƒ Organismo Notificato in GB per 2000/14/CE ƒ 2000/14/EK AK re ƧistrƝtƗ organizƗcija
ƒ JK notifikuotosios Ƴstaigos 2000/14/EC ƒ Korp Notifikat tar-Renju Unit gƫal 2000/14/KE ƒ Dopuszczona jednostka badawcza w Wielkiej Brytanii
wg 2000/14/WE ƒ Entidade notificada no Reino Unido para 2000/14/CE ƒ Organism notificat în Marea Britanie pentru 2000/14/CE ƒ Notifikovaný
orgán Spojeného kráĐovstva pre smernicu 2000/14/ES ƒ Britanski priglašeni organ za 2000/14/ES ƒ Cuerpo notificado en el Reino Unido para
2000/14/CE ƒ Anmält organ för 2000/14/EG i Storbritannien
Operator Ear Noise Level ƒ Ɉɩɟɪɚɬɨɪ ɧɚ ɧɢɜɨɬɨ ɧɚ ɞɨɥɨɜɢɦ ɨɬ ɭɯɨɬɨ ɲɭɦ ƒ Hladina hluku v oblasti uší operátora ƒ St øjniveau i førers
ørehøjde ƒ Geluidsniveau oor bestuurder ƒ Müratase operaatori k õrvas ƒ Melutaso käyttäjän korvan kohdalla ƒ Niveau de bruit à hauteur des
oreilles de l’opérateur ƒ Schallpegel am Bedienerohr ƒ ǼʌȓʌİįȠ șȠȡȪȕȠȣ ıİ ȜİȚIJȠȣȡȖȓĮ ƒ A kezelĘ fülénél mért zajszint ƒ Livello di potenza
sonora all’orecchio dell’operatore ƒ TrokšƼa lƯmenis pie operatora auss ƒ Dirbanþiojo su mašina patiriamo triukšmo lygis ƒ Livell tal-ƪoss filWidna tal-Operatur ƒ Dopuszczalny poziom haáasu dla operatora ƒ Nível sonoro nos ouvidos do operador ƒ Nivelul zgomotului la urechea
operatorului ƒ Hladina hluku pôsobiaca na sluch operátora ƒ Raven hrupa pri ušesu upravljavca ƒ Nivel sonoro en el oído del operador ƒ
Ljudnivå vid förarens öra
98dB(A)Lwa
100dB(A)Lwa
2000/14/ECAnnexVIPart1
SmithcoWestInc.
200WestPoplarAvene
Cameron,WI54822USA
98 dB(A)Lwa (2006/42/EC)
37
Harmonised standards used ƒ ɂɡɩɨɥɡɜɚɧɢ ɯɚɪɦɨɧɢɡɢɪɚɧɢ ɫɬɚɧɞɚɪɬɢ ƒ Použité harmonizované normy ƒ Brugte harmoniserede standarder ƒ
Gebruikte geharmoniseerde standaards ƒ Kasutatud ühtlustatud standardid ƒ Käytetyt yhdenmukaistetut standardit ƒ Normes harmonisées
utilisées ƒ Angewandte harmonisierte Normen ƒ ǼȞĮȡȝȠȞȚıȝȑȞĮ ʌȡȩIJȣʌĮ ʌȠȣ ȤȡȘıȚȝȠʌȠȚȒșȘțĮȞ ƒ Harmonizált szabványok ƒ Standard
armonizzati applicati ƒ Izmantotie saskaƼotie standarti ƒ Panaudoti suderinti standartai ƒ Standards armonizzati uĪati ƒ Normy spójne powiązane
ƒ Normas harmonizadas usadas ƒ Standardele armonizate utilizate ƒ Použité harmonizované normy ƒ Uporabljeni usklajeni standardi ƒ
Estándares armonizados utilizados ƒ Harmoniserade standarder som används
Technical standards and specifications used ƒ ɂɡɩɨɥɡɜɚɧɢ ɬɟɯɧɢɱɟɫɤɢ ɫɬɚɧɞɚɪɬɢ ɢ ɫɩɟɰɢɮɢɤɚɰɢɢ ƒ Použité technické normy a specifikace ƒ
Brugte tekniske standarder og specifikationer ƒ Gebruikte technische standaards en specificaties ƒ Kasutatud tehnilised standardid ja
spetsifikatsioonid ƒ Käytetyt tekniset standardit ja eritelmät ƒ Spécifications et normes techniques utilisées ƒ Angewandte technische Normen
und Spezifikationen ƒ ȉİȤȞȚțȐ ʌȡȩIJȣʌĮ țĮȚ ʌȡȠįȚĮȖȡĮijȑȢ ʌȠȣ ȤȡȘıȚȝȠʌȠȚȒșȘțĮȞ ƒ MĦszaki szabványok és specifikációk ƒ Standard tecnici e
specifiche applicati ƒ Izmantotie tehniskie standarti un specifik Ɨcijas ƒ Panaudoti techniniai standartai ir technin ơ informacija ƒ Standards u
speƛifikazzjonijiet tekniƛi uĪati ƒ Normy i specyfikacje techniczne powiązane ƒ Normas técnicas e especificaç ões usadas ƒ Standardele tehnice
úi specificaĠiile utilizate ƒ Použité technické normy a špecifikácie ƒ Uporabljeni tehniþni standardi in specifikacije ƒ Estándares y especificaciones
técnicas utilizadas ƒ Tekniska standarder och specifikationer som används
The place and date of the declaration ƒ Ɇɹɫɬɨ ɢ ɞɚɬɚ ɧɚ ɞɟɤɥɚɪɚɰɢɹɬɚ ƒ Místo a datum prohlášení ƒ Sted og dato for erkl æringen ƒ Plaats en
datum van de verklaring ƒ Deklaratsiooni väljastamise koht ja kuupäev ƒ Vakuutuksen paikka ja päivämäärä ƒ Lieu et date de la déclaration ƒ
Ort und Datum der Erklärung ƒ ȉȩʌȠȢ țĮȚ ȘȝİȡȠȝȘȞȓĮ įȒȜȦıȘȢ ƒ A nyilatkozat kelte (hely és idĘ) ƒ Luogo e data della dichiarazione ƒ
DeklarƗcijas vieta un datums ƒ Deklaracijos vieta ir data ƒ Il-post u d-data tad-dikjarazzjoni ƒ Miejsce i data wystawienia deklaracji ƒ Local e data
da declaração ƒ Locul úi data declaraĠiei ƒ Miesto a dátum vyhlásenia ƒ Kraj in datum izjave ƒ Lugar y fecha de la declaración ƒ Plats och datum
för deklarationen
Signature of the person empowered to draw up the declaration on behalf of the manufacturer, holds the technical documentation and is
authorised to compile the technical file, and who is established in the Community.ɉɨɞɩɢɫ ɧɚ ɱɨɜɟɤɚ, ɭɩɴɥɧɨɦɨɳɟɧ ɞɚ ɫɴɫɬɚɜɢ
ɞɟɤɥɚɪɚɰɢɹɬɚ ɨɬ ɢɦɟɬɨ ɧɚ ɩɪɨɢɡɜɨɞɢɬɟɥɹ, ɤɨɣɬɨ ɩɨɞɞɴɪɠɚɳɬɟɯɧɢɱɟɫɤɚɬɚ ɞɨɤɭɦɟɧɬɚɰɢɹ ɢ ɟ ɨɬɨɪɢɡɢɪɚɧ ɞɚ ɢɡɝɨɬɜɢ ɬɟɯɧɢɱɟɫɤɢɹ ɮɚɣɥ
ɢ ɟ ɪɟɝɢɫɬɪɢɪɚɧ ɜ ɨɛɳɧɨɫɬɬɚ.Podpis osoby oprávnČné sestavit prohlášení jménem výrobce, držet technickou dokumentaci a osoby
oprávnČnésestavit technické soubory a založené v rámci Evropského spoleþenství.Underskrift af personen, der har fuldmagt til at udarbejde
erklæringen på vegne af producenten, der er indehaveraf dokumentationen og er bemyndiget til at udarbejde den tekniske journal, og som er
baseret i nærområdet.Handtekening van de persoon die bevoegd is de verklaring namens de fabrikant te tekenen, de technischedocumentatie
bewaart en bevoegd is om het technische bestand samen te stellen, en die is gevestigd in het Woongebied.Ühenduse registrisse kantud isiku
allkiri, kes on volitatud tootja nimel deklaratsiooni koostama, kes omab tehnilistdokumentatsiooni ja kellel on õigus koostada tehniline
toimik.Sen henkilön allekirjoitus, jolla on valmistajan valtuutus vakuutuksen laadintaan, jolla on hallussaan teknisetasiakirjat, joka on valtuutettu
laatimaan tekniset asiakirjat ja joka on sijoittautunut yhteisöön.Signature de la personne habilitée à rédiger la déclaration au nom du fabricant,
à détenir la documentationtechnique, à compiler les fichiers techniques et qui est implantée dans la Communauté.Unterschrift der Person, die
berechtigt ist, die Erklärung im Namen des Herstellers abzugeben, die dietechnischen Unterlagen aufbewahrt und berechtigt ist, die
technischen Unterlagen zusammenzustellen,und die in der Gemeinschaft niedergelassen ist.ȊʌȠȖȡĮijȒ ĮIJȩȝȠȣ İȟȠȣıȚȠįȠIJȘȝȑȞȠȣ ȖȚĮ IJȘȞ
ıȪȞIJĮȟȘ IJȘȢ įȒȜȦıȘȢ İț ȝȑȡȠȣȢ IJȠȣ țĮIJĮıțİȣĮıIJȒ, Ƞ ȠʌȠȓȠȢțĮIJȑȤİȚ IJȘȞ IJİȤȞȚțȒ ȑțșİıȘ țĮȚ ȑȤİȚ IJȘȞ İȟȠȣıȚȠįȩIJȘıȘ ȞĮ IJĮȟȚȞȠȝȒıİȚ IJȠȞ IJİȤȞȚțȩ
ijȐțİȜȠ țĮȚ Ƞ ȠʌȠȓȠȢ İȓȞĮȚįȚȠȡȚıȝȑȞȠȢ ıIJȘȞ ȀȠȚȞȩIJȘIJĮ.A gy ártó nevében meghatalmazott személy, akinek jogában áll módosítania a
nyilatkozatot, a mĦszakidokumentációt Ęrzi, engedéllyel rendelkezik a mĦszaki fájl összeállításához, és aki a közösségbenletelepedett
személy.Firma della persona autorizzata a redigere la dichiarazione a nome del fabbricante, in possesso Delladocumentazione tecnica ed
autorizzata a costituire il fascicolo tecnico, che deve essere stabilita nella Comunità.T Ɨs personas paraksts, kura ir pilnvarota deklarƗcijas
sastƗdƯšanai ražotƗja vƗrdƗ, kurai ir tehniskƗdokumentƗcija, kura ir pilnvarota sagatavot tehnisko reƧistru un kura ir apstiprinƗta
KopienƗ.Asmuo, kuris yra gana žinomas, kuriam gamintojas suteikơ Ƴgaliojimus sudaryti šią deklaraciją, ir kuris jąpasirašơ, turi visą techninĊ
informaciją ir yra Ƴgaliotas sudaryti techninơs informacijos dokumentą.Il-firma tal-persuna awtorizzata li tfassal id-dikjarazzjoni f’isem ilfabbrikant, gƫandha d-dokumentazzjoniteknika u hija awtorizzata li tikkompila l-fajl tekniku u li hija stabbilita fil-Komunit à.Podpis osoby
upowaĪnionej do sporządzenia deklaracji w imieniu producenta, przechowującej dokumentacjĊtechniczną, upowaĪnioną do stworzenia
dokumentacji technicznej oraz wyznaczonej ds. wspólnotowych.Assinatura da pessoa com poderes para emitir a declaração em nome do
fabricante, que possui a documentaçãotécnica, que está autorizada a compilar o processo técnico e que está estabelecida na
Comunidade.Semnătura persoanei împuternicite să elaboreze declaraĠia în numele producătorului, care deĠine documentaĠiatehnică, este
autorizată să compileze dosarul tehnic úi este stabilită în Comunitate.Podpis osoby poverenej vystavením vyhlásenia v mene výrobcu, ktorá
má technickú dokumentáciu a jeoprávnená spracovaĢ technické podklady a ktorá je umiestnená v Spoloþenstve.Podpis osebe, pooblašþene za
izdelavo izjave v imenu proizvajalca, ki ima tehniþno dokumentacijo in lahkosestavlja spis tehniþne dokumentacije, ter ima sedež v
Skupnosti.Firma de la persona responsable de la declaración en nombre del fabricante, que posee la documentación técnicay está autorizada
para recopilar el archivo técnico y que está establecido en la Comunidad.Undertecknas av den som bemyndigad att upprätta deklarationen å
tillverkarens vägnar, innehar den tekniskadokumentationen och är bemyndigad att sammanställa den tekniska informationen och som är
etablerad igemenskapen.
Certificate Number ƒ ɇɨɦɟɪ ɧɚ ɫɟɪɬɢɮɢɤɚɬ ƒ ýíslo osvČdþení ƒ Certifikatnummer ƒ Certificaatnummer ƒ Sertifikaadi number ƒ
Hyväksyntänumero ƒ Numéro de certificat ƒ Bescheinigungsnummer ƒ ǹȡȚșȝȩȢ ȆȚıIJȠʌȠȚȘIJȚțȠȪ ƒ Hitelesítési szám ƒ Numero del certificato ƒ
SertifikƗta numurs ƒ Sertifikato numeris ƒ Numru taƛ-ƚertifikat ƒ Numer certyfikatu ƒ Número do Certificado ƒ Număr certificat ƒ ýíslo osvedþenia
ƒ Številka certifikata ƒ Número de certificado ƒ Certifikatsnummer
38
BSENISO12100Ͳ1:2003
BSENISO12100Ͳ2:2003
BSENISO13857
BSEN349:1993+A1:2008
BS6356:P8
BS6356:P5
BSEN907
ISO21299
2002/44/EC
SAEJ1362
Smithco West Inc.
200 West Poplar Avenue
Cameron, WI 54822 USA
24-Jun -09
2006/42/ECAnnexII1A:2
TimLansdell
TechnicalDirector
19thMarch2009
RansomesJacobsen
LimitedWestRoad,RansomesEuropark,Ipswich,
England,IP39TT
2006/42/ECAnnexII1A:10
DawnBryngelson
TechnicalDocumentationAdvisor
SmithcoInc.
34WestAvenue
Wayne,PAUSA19087Ͳ3311
10ͲDecͲ09
310002009Ͳ1
The Smithco Commercial Products Two-Year Limited Warranty
Smithco, Inc. (Smithco) warrants your 2007 or newer Smithco Commercial Product (“Product”) purchased after
January 1, 2007, to be free from defects in materials or workmanship for the period of time listed below. Where
a warrantable condition exists, Smithco will repair the Product at no cost to you including diagnosis, labor (at the
Smithco standard labor rate, subject to the Smithco flat rate schedule), and parts.
Warranty Duration is:
(1) Two years, 1500 operational hours* from the date of delivery to the original purchaser or three years
from the date of original manufacturer of the product, whichever occurs first. (*Products equipped with
hour meter).
(2) Products used in rental situations are covered for 90 days from date of delivery to original user/renter.
Owner Responsibilities:
As the Product owner, you are responsible for required maintenance and adjustments stated in your Owner’s
Manual. Failure to perform required maintenance and adjustments can be grounds for disallowing a warranty claim.
You are particularly responsible to train all present and future operators of this product on the safe operation of
this product at your location.
Instructions for Obtaining Warranty Service:
You are responsible for notifying the Authorized Smithco Products Distributor from whom you purchased the Product
as soon as you believe a warrantable condition exists and not later than 30 days from discovery of the condition.
If you need help locating an Authorized Smithco Distributor, or if you have questions regarding your warranty rights or
responsibilities, you may contact us at:
Smithco Product Support Department
200 W Poplar PO Box 487
Cameron, Wisconsin 54822
Telephone: 1-800-891-9435
E-Mail: [email protected]
Maintenance Parts:
Parts scheduled for replacement as required maintenance (“Maintenance Parts”), are warranted for the period of
time up to the scheduled replacement time for that part.
Items/Conditions Not Covered:
Not all product failures or malfunctions that occur during the warranty period are defects in materials or
workman-ship. The items/conditions listed below are not covered by this warranty:
Product failures which result from the use of non-Smithco replacement parts, or from installation and use of
add-on, modified, or unapproved accessories are not cov-ered.
Product failures which result from failure to perform required maintenance and/or adjustments are not covered.
Product failures that result from operating the Product in an abusive, negligent or reckless manner are not
covered.
This warranty does not apply to parts subject to con-sumption through use, unless found to be defective.
Examples of parts which are consumed, or used up, during normal Product operation include, but are not
limited to: blades, tines, teeth, scarifiers, rakes, plates, wear plates, castor wheels, tires, batteries, filters,
belts, nozzles, etc.
This warranty does not apply to failures caused by out-side influence. Items considered to be outside influence include, but are not limited to, weather, storage practices, contamination, use of unapproved coolants,
lubricants, additives, or chemicals, etc.
This warranty does not apply to normal “wear and tear” items. Normal “Wear and Tear” includes, but is not
lim-ited to, damage to seats due to wear or abrasion, worn painted surfaces, scratched decals or windows,
etc.
Smithco may require the return of failed parts or components in order to determine the validity of any warranty
claim.
Smithco will not be obligated to replace components of other manufacturers if inspection by the original
component manufacturer indicates that failure was due to normal wear and tear, expected consumption
through use or improper care or service.
Other Legal Disclaimers:
The above remedy for product defects through repair or replacement by an authorized Smithco distributor or dealer is
the purchaser’s sole remedy for any defect. This warranty gives you specific legal rights, and you may also have other
rights which vary from state to state.
THERE ARE NO OTHER EXPRESS WARRANTIES OTHER THAN THOSE SET FORTH ABOVE. ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE ARE LIMITED TO THE DURATION OF THE LIMITED
WARRANTIES CONTAINED HEREIN.
Some states may not allow limitations on how long an implied warranty lasts, so the above limitation may not
apply to you.
THE SMITHCO COMPANY IS NOT LIABLE FOR INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE USE OF THE PRODUCT, INCLUDING ANY COST OR EXPENSE OF PROVIDING A SUBSTITUTE
PRODUCT OR SERVICE DURING PERIODS OF MALFUNCTION OR NON-USE.
Some states may not allow the exclusion of indirect, incidental or consequential damages, so the above exclusion
may not apply to you.
Smithco neither assumes, nor authorizes any person to assume for it, any other liability in connection with the
sale or use of this product.
SMITHCO, INC.
Wayne, PA 19087
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement