Manual optoNCDT 1700

Instruction Manual

opto NCDT 1700 opto NCDT 1710

ILD1700-2

ILD1700-10

ILD1700-20

ILD1700-40

ILD1700-50

ILD1700-100

ILD1700-200

ILD1700-250VT

ILD1700-500

ILD1700-750

ILD1700-2DR

ILD1700-10DR

ILD1700-20DR

ILD1700-2LL

ILD1700-10LL

ILD1700-20LL

ILD1700-50LL

ILD1710-50

ILD1710-1000

ILD1700-20BL

ILD1700-200BL

ILD1700-500BL

ILD1700-750BL

ILD1710-50BL

ILD1710-1000BL

Intelligent laser optical displacement measurement

MICRO-EPSILON

MESSTECHNIK

GmbH & Co. KG

Königbacher Strasse 15

94496 Ortenburg / Germany

Tel. +49 (0) 8542 / 168-0

Fax +49 (0) 8542 / 168-90 e-mail [email protected]

www.micro-epsilon.com

Certified acc. to DIN EN ISO 9001: 2008

Softwareversion: 6.000

Contents

1. Safety ........................................................................................................................................ 7

1.1 Symbols Used ................................................................................................................................................. 7

1.2 Warnings .......................................................................................................................................................... 7

1.3

1.4

1.5

Notes on CE Identification ............................................................................................................................... 8

Proper Use ....................................................................................................................................................... 9

Proper Environment ......................................................................................................................................... 9

2.

3.

3.1

3.2

3.3

3.4

3.5

Laser class ............................................................................................................................. 10

Functional Principle, Technical Data .................................................................................... 12

Functional Principle ...................................................................................................................................... 12

3.1.1

3.1.2

Diffuse Reflection ......................................................................................................................... 12

Direct Reflection ........................................................................................................................... 13

Real Time Control .......................................................................................................................................... 13

Exposure Control .......................................................................................................................................... 14

Technical Data ............................................................................................................................................... 14

Control and Indicator Elements ..................................................................................................................... 19

4. Delivery ................................................................................................................................... 20

4.1 Scope of Delivery .......................................................................................................................................... 20

......................................................................................................................................................... 20

5. Installation .............................................................................................................................. 20

5.1

5.2

5.3

5.4

Sensor Mounting Diffuse Reflection .............................................................................................................. 20

Sensor Mounting Direct Reflection ................................................................................................................ 27

Connector and Sensor Cable ........................................................................................................................ 30

Switching Inputs Laser On/Off, Setting Masters and the Mid-point .............................................................. 31

6. Operation ................................................................................................................................ 32

6.1

6.2

6.3

6.4

6.5

Getting Ready for Operation ......................................................................................................................... 32

Membrane Keys ............................................................................................................................................. 33

LED-Functions ............................................................................................................................................... 34

Inputs and Outputs ........................................................................................................................................ 34

Menue, Setting the Parameters ..................................................................................................................... 35

optoNCDT 1700

6.6

6.7

6.8

6.9

6.10

Average Setting ............................................................................................................................................. 37

6.6.1

6.6.2

6.6.3

Averaging Number N .................................................................................................................... 37

Moving Average (Default Setting) ................................................................................................ 38

Recursive Average ........................................................................................................................ 39

6.6.4 Median .......................................................................................................................................... 39

Setting Masters ............................................................................................................................................. 40

Setting Mid-Point ........................................................................................................................................... 42

Frequency and Output Rate .......................................................................................................................... 44

Operation Mode ............................................................................................................................................. 45

6.10.1 Error Mode

(Error Control) ................................................................................................................................................ 45

6.10.2 Switch Mode ................................................................................................................................ 45

6.10.3 Output Circuit for the Switching Outputs ..................................................................................... 47

6.11

6.12

Synchronization of Sensors ........................................................................................................................... 47

Exposure Time ............................................................................................................................................... 48

6.13 Timing, Measurement Value Flux .................................................................................................................. 49

6.14 Triggering ....................................................................................................................................................... 51

6.14.1 Basics ........................................................................................................................................... 51

6.14.2 Trigger Modes............................................................................................................................... 51

6.14.3 Trigger Signal Levels .................................................................................................................... 52

6.14.4 Trigger Pulse ................................................................................................................................. 52

6.14.5 Pin Assignment for External Trigger Signal.................................................................................. 53

7.

7.1

7.2

7.3

7.4

8.

8.1

8.2

8.3

8.4

Measurement Value Output ................................................................................................... 54

Voltage Output ............................................................................................................................................... 54

Current Output ............................................................................................................................................... 55

Digital Value Output ....................................................................................................................................... 55

Digital Error Modes ........................................................................................................................................ 56

Serial Interface RS422 ........................................................................................................... 57

Interface Parameters ...................................................................................................................................... 58

Data Format for Measurement Values and Error Codes ............................................................................... 58

8.2.1

8.2.2

Set-up of the Commands .............................................................................................................................. 60

Command Reply ............................................................................................................................................ 61

8.4.1

8.4.2

Binary Format ............................................................................................................................... 58

ASCII Format ................................................................................................................................ 59

Communication without Error ...................................................................................................... 61

Communication with Error............................................................................................................ 62

optoNCDT 1700

8.5 Commands .................................................................................................................................................... 63

8.5.1 Overview ....................................................................................................................................... 63

8.5.2

8.5.3

8.5.4

8.5.5

8.5.6

8.5.7

8.5.8

8.5.9

Reading out the Sensor Parameters ............................................................................................ 65

Reading out the Sensor Settings ................................................................................................. 66

Set Average Number .................................................................................................................... 70

Set Average Type.......................................................................................................................... 73

Starting and Stopping the Measurement Value Output ............................................................... 74

Set Limit Values ............................................................................................................................ 75

Assignment of the Limits to the Switch Outputs .......................................................................... 76

Operation Mode............................................................................................................................ 77

8.5.10 Set the Measurement Value Output Type .................................................................................... 78

8.5.11 Set Measurement Frequency (Speed) ......................................................................................... 78

8.5.12 Error Output (Analog Output) ....................................................................................................... 80

8.5.13 Synchronous and Trigger Mode .................................................................................................. 81

8.5.14 Switching off the Laser (External) ................................................................................................ 82

8.5.15 Switching the Data Format ........................................................................................................... 83

8.5.16 Key Lock ....................................................................................................................................... 84

8.5.17 Set Factory Setting ....................................................................................................................... 84

8.5.18 Reset Sensor ................................................................................................................................ 85

8.5.19 Reading out the Measurements ................................................................................................... 86

8.5.20 Enable / Lock the Flash for Setting Masters and the Mid-point .................................................. 87

8.5.21 Mastering or Setting Mid-point ..................................................................................................... 88

9.

9.1

9.2

9.3

9.4

Instruction for Operating ....................................................................................................... 90

Reflection Factor of the Target Surface ......................................................................................................... 90

Error Influences.............................................................................................................................................. 91

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

9.2.6

Light from other Sources .............................................................................................................. 91

Color Differences .......................................................................................................................... 91

Temperature Influences ................................................................................................................ 91

Mechanical Vibration .................................................................................................................... 91

Movement Blurs ............................................................................................................................ 91

Surface Roughness ...................................................................................................................... 92

9.2.7 Sensor Tilting ................................................................................................................................ 92

Optimizing the Measuring Accuracy ............................................................................................................. 93

Protective Housing ........................................................................................................................................ 94

optoNCDT 1700

10. ILD1700 Tool ........................................................................................................................... 97

10.1 Installation and Preparation for Measurements ............................................................................................ 97

10.1.1 System Requirements .................................................................................................................. 97

10.1.2 Cable and Program Routine Requirements ................................................................................. 97

10.2 Measurement ................................................................................................................................................. 98

11. Software Support with MEDAQLib ........................................................................................ 99

12. Warranty ................................................................................................................................ 100

13.

14.

Service, Repair ..................................................................................................................... 100

Decommissioning, Disposal ................................................................................................ 100

15. Appendix ............................................................................................................................... 101

15.1

15.2

15.3

15.4

Output Rate optoNCDT1700 ....................................................................................................................... 101

Pin Assignment Sensor Cable ..................................................................................................................... 102

Pin Assignment RS422 Connection ............................................................................................................ 103

Factory Setting ............................................................................................................................................. 104

15.5 Pin Assignment PC1700-x/x/USB/OE/IND .................................................................................................. 104

15.6 Accessory .................................................................................................................................................... 105

optoNCDT 1700

Safety optoNCDT 1700

1. Safety

The handling of the sensor assumes knowledge of the instruction manual.

1.1 Symbols Used

The following symbols are used in this instruction manual:

WARNING! - potentially dangerous situation

IMPORTANT! - useful tips and information

1.2 Warnings

Avoid unnecessary laser radiation to be exposed to the human body

- Switch off the sensor for cleaning and maintenance.

- Switch off the sensor for system maintenance and repair if the sensor is integrated into a system.

Caution - use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Connect the power supply and the display/output device in accordance with the safety regulations for electrical equipment.

> Danger of injury

> Damage to or destruction of the sensor

Avoid banging and knocking the sensor.

> Damage to or destruction of the sensor

The power supply may not exceed the specified limits

> Damage to or destruction of the sensor

Page 7

Safety optoNCDT 1700

Avoid continuous exposure to spray on the sensor.

> Damage to or destruction of the sensor

Avoid exposure to aggressive materials (washing agent, penetrating liquids or similar) on the sensor.

> Damage to or destruction of the sensor

1.3 Notes on CE Identification

The following applies to the optoNCDT1700:

- EU directive 2004/108/EC

- EU directive 2011/65/EC, “RoHS” category 9

Products which carry the CE mark satisfy the requirements of the quoted EU directives and the European standards (EN) listed therein. The EC declaration of conformity is kept available according to EC regulation, article 10 by the authorities responsible at

MICRO-OPTRONIC MESSTECHNIK GmbH

Lessingstraße 14

01465 Langebrück / Germany

The sensor is designed for use in industry and to satisfy the requirements of the standards

- EN 61326-1: 2006-10

Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

- DIN EN 55011: 2007-11 (Group 1, class B)

Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement

- EN 61000-6-2: 2006-03

Electromagnetic compatibility (EMC), Part 6-2: Generic standards, Immunity for industrial environments

The sensor satisfies the requirements if they comply with the regulations described in the operating manual for installation and operation.

Page 8

Safety

IMPORTANT!

The protection class is limited to water (no penetrating liquids or similar)!

1.4 Proper Use

- The optoNCDT1700 is designed for use in industrial areas. It is used

ƒ for measuring displacement, distance, position and elongation

ƒ for in-process quality control and dimensional testing

- The sensor may only be operated within the limits specified in the technical data, see Chap. 3.4

.

- The sensor should only be used in such a way that in case of malfunctions or failure personnel or machinery are not endangered.

- Additional precautions for safety and damage prevention must be taken for safety-related applications.

1.5 Proper Environment

- Protection class: IP 65 (Only with sensor cable connected )

- Lenses are excluded from protection class. Contamination of the lenses leads to impairment or failure of the function.

- Operating temperature: 0 to +50 °C (+32 to +104 °F)

- Storage temperature: -20 to +70 °C (-4 to +158 °F)

- Humidity: 5 - 95 % (no condensation) atmospheric pressure according to:

- Pressure:

- EMC:

ƒ

EN 61326-1: 2006-10

Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

ƒ

DIN EN 55011: 2007-11 (Group 1, class B)

Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement

ƒ

EN 61000-6-2: 2006-03

Electromagnetic compatibility (EMC), Part 6-2: Generic standards, Immunity for industrial environments optoNCDT 1700 Page 9

Laser class

IMPORTANT!

Comply with all regulations on lasers.

WARNING!

Never deliberately look into the laser beam!

Consciously close your eyes or turn away immediately if ever the laser beam should hit your eyes.

2. Laser class

The optoNCDT1700 sensors operate with a semiconductor laser with a wavelength of 670 nm (visible/red,

ILD 1700) respectively 405 nm (visible/blue, ILD 1700BL). The laser is operated on a pulsed mode, the pulse frequency corresponding to the measuring frequency. The duration of the pulse is regulated in dependency on the object to be measured and can form an almost permanent beam. The maximum optical power is ≤ 1 mW. The sensors fall within Laser Class 2 (II).

Class 2 (II) lasers are not notifiable and a laser protection officer is not required either.

The following warning labels are attached to the cover (front and/or rear side) of the sensor housing:

LASER RADIATION

Do not stare into the beam

CLASS 2 LASER PRODUCT

IEC 60825-1: 2008-05

P≤1 mW; λ= 670 nm

LASER RADIATION

Do not stare into the beam

CLASS 2 LASER PRODUCT

IEC 60825-1: 2008-05

P≤1 mW; λ= 405 nm

IEC label Only for USA IEC label for ILD1700-x BL only

During operation of the sensor the pertinent regulations acc. to EN 60825-1 on „radiation safety of laser equipment“ must be fully observed at all times. The sensor complies with all applicable laws for the manufacturer of laser devices.

IMPORTANT!

If both warning labels are covered over when the unit is installed the user must ensure that supplementary labels are applied.

optoNCDT 1700

2008-05

2008-05

Laser spot

Laser spot

Fig. 1 True reproduction of the sensor with its actual location of the warning labels, ILD1700-x

Page 10

Laser class

The laser warning labels for Germany have already been applied. Those for other non German-speaking countries an IEC standard label is included in delivery. The versions applicable to the user’s country must be

applied before the equipment is used for the first time. Laser operation is indicated by LED, see Chap. 3.5

.

Although the laser output is low looking directly into the laser beam must be avoided. Due to the visible light beam eye protection is ensured by the natural blink reflex.

The housing of the optical sensors optoNCDT 1700 may only be opened by the manufacturer, see Chap. 12.

.

For repair and service purposes the sensors must always be sent to the manufacturer. optoNCDT 1700 laser off error o.k.

midrange normal zero

1

4

32

128

1

1/2

1/4

1/8

4 - 20 mA

0 - 10 V

RS 422

opto NCDT

LASER RADIATION

Do not stare into the beam

CLASS 2 LASER PRODUCT

IEC 60825-1: 2008-05

Laser spot

Fig. 2 True reproduction of the sensor with its actual location of the warning labels, ILD1710-1000

Page 11

Functional Principle, Technical Data

3. Functional Principle, Technical Data

SMR = Start of measuring range

MMR = Midrange

EMR = End of measuring range

3.1 Functional Principle

3.1.1 Diffuse Reflection

The optoNCDT1700 consists of an laser-optical sensor and a signal conditioning electronics. The sensor uses the principle of optical triangulation, i.e. a visible, modulated point of light is projected onto the target surface.

The diffuse element of the reflection of the light spot is imaged by a receiver optical element positioned at a certain angle to the optical axis of the laser beam onto a high-sensitivity resolution element (CCD), in dependency on distance. From the output signal of the CCD element a digital signal processor (DSP) in the sensor calculates the distance between the light spot on the object being measured and the sensor. The distance is linearized and then issued via an analog or digital interface.

Sensor

ILD1700

Analog output

0 VDC 4 mA

5 VDC (MMR) 12 mA

10 VDC (EMR) 20 mA

Fig. 3 Definition of terms, output signal

optoNCDT 1700 Page 12

Functional Principle, Technical Data

SMR = Start of measuring range

MMR = Midrange

EMR = End of measuring range

3.1.2 Direct Reflection

The optoNCDT1700DR consists of an laser-optical sensor and a signal conditioning electronics. The sensor uses the principle of optical triangulation, i.e. a visible, modulated point of light is projected onto the target surface. The direct element of the reflection of the light spot is imaged by a receiver optical element onto a high-sensitivity resolution element

(CCD), in dependency on distance. From the output signal of the CCD element a digital signal processor

(DSP) in the sensor calculates the distance between the light spot on the object being measured and the sensor. The distance is linearized and then issued via an analog or digital interface.

On shining or mirroring surfaces the direct element of the reflection of the laser spot is greater and covers therefore the diffuse part. Suppression of the

2 nd

reflection from the glass rear side in the sensor is possible for measurements on glass panels. Sensors for direct reflection (ILD1700-2DR, ILD1700-

10DR and ILD1700-20DR) are calibrated in tilted position. Therefore the can not be used for diffuse reflection.

Midrange

Sensor

ILD1700DR

Analog output

0 VDC 4 mA

5 VDC (MMR) 12 mA

10 VDC (EMR) 20 mA

Fig. 4 Definiton of terms, output signal

3.2 Real Time Control

The signal from the CCD element is used to determine the intensity of the diffuse reflection. This enables the sensor to compensate for fluctuations in brightness on the object being measured. What is more, it does so in a range from almost total absorption to almost total reflection.

optoNCDT 1700 Page 13

Functional Principle, Technical Data

3.3 Exposure Control

Dark or shining objects to be measured may require a longer exposure time. However, the controller is not capable of providing exposure which is any longer than permitted by the measurement frequency. For a longer exposure time, therefore, the measurement frequency of the sensor has to be reduced either manually

or by command, see Chap. 6.9

.

3.4 Technical Data

Type

Measuring range

Start of measuring range

Midrange (MMR)

End of measuring range

ILD 1700-

mm mm

mm mm

Linearity

Resolution

1

FSO ±0.1 %

µm 0.1

Measurement frequency programmable

Light source (laser diode)

Permissible ambient light (at 2.5 kHz)

Spot diameter

SMR

MMR

EMR

80

35

80

24

25

26

2

2

Temperature stability % FSO/

°C

0.025

10 20 40 50 100

10 20 40 50 100

30 40 175 45 70

35 50 195 70 120

40 60 215 95 170

±0.08 %

0.5

1.5

4 3 6

200

200

70

170

270

250VT

250

70

195

320

500

500

200

450

700

750

750

200

575

950

±0.1 % ±0.25 % ±0.08 % ±0.1 %

12 50 30 50

2.5 kHz (1); 1.25 kHz (1/2); 625 Hz (1/4); 312.5 Hz (1/8)

Wave length 670 nm, red, max. power 1 mW, laser class 2

10.000 lx 15.000 lx 10.000 lx

110

50

110

320

45

320

230

210

230

570

55

570

740

60

700

1300

1300

1300

1500

1500

1500

1500

1500

1500

1500

1500

1500

0.01

0.025

0.01

optoNCDT 1700 Page 14

Functional Principle, Technical Data

Type

Operating temperature

Storage temperature

Protection class

Power supply U

B

Measurement value output

Voltage output

ILD 17002

selectable

10 20 40

0 ... +50 °C

50 100 200

-20 ... +70 °C

IP 65 (with plugged connection)

24 V (11 ... 30 V) DC; max. 150 mA

4 -20 mA; 0 -10 V; RS422

250VT 500 750

0 ... +55 °C 0 ... +50 °C

Load current output

Switching outputs

Switching inputs

Synchronization

Sensor cable programmable programmable

Standard

Extension

Elektromagnetic compatibility (EMC)

R i

= 100 Ohm, I max

= 5 mA, short-circuit proof

R

Load

< (U

B

-6 V) / 20 mA, R

Load

250 Ohm for U

B

= 11 VDC

Error or/and limit values, short-circuit proof

Laser ON/OFF; Zero

Simultaneous or alternating

0.25 m (with cable jack)

3 / 10 m

EN 61326-1: 2006-10

DIN EN 55011: 2007-11 (Group 1, class B)

EN 61 000-6-2: 2006-03

Vibration (acc. to IEC 60068-2-6)

2

Shock (acc. to IEC 60068-2-29)

2

2 g / 20 ... 500 Hz

15 g / 6 ms

Weight (with 25 cm cable) 550 g 600 g 550 g

The specified data apply to a white, diffuse reflecting surface (Reference: Ceramic).

SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range

FSO = Full Scale Output

1) At a measurement frequency of 2.5 kHz, without averaging

2) ILD1700-250VT: 20 g, vibration and shock resistant sensor model for use on vehicles

600 g optoNCDT 1700 Page 15

Functional Principle, Technical Data

Legend: mm (inches)

optoNCDT1700 - for direct reflective surfaces

Type

Measuring range

Start of measuring range

ILD 1700-

mm mm

2DR

2

Midrange (MMR) mm

10DR

10

, see Fig. 16 , et seq.

End of measuring range mm

Linearity, j/2

FSO ±0.1 % ±0.1 %

Linearity, j/2 ±0.3 °

Resolution

1

FSO

µm

±0.2 %

0.1

Tilt angle (j/2)

20 °

Not specified data correspond to those of the standard sensors.

MMR = Midrange

FSO = Full Scale Output

1) At a measurement frequency of 2.5 kHz, without averaging

2) Measuring range 18 (.71)

±0.25 %

0.5

17.6 ° optoNCDT 1700

20DR

20

±0.2 %

±2 %

2

3

11.5 °

optoNCDT 1700LL - for metallic shiny and rough surfaces

Type

Measuring range

Spot diameter

ILD 1700-

mm

2LL

2

SMR 85 x 240 µm

MMR 24 x 280 µm

EMR 64 x 400 µm

10LL

10

120 x 405 µm

35 x 585 µm

20LL

20

185 x 485 µm

55 x 700 µm

50LL

50

350 x 320 µm

70 x 960 µm

125 x 835 µm 195 x 1200 µm 300 x 1940 µm

For measurements against high glossary surfaces (targets), resolution depends on the material.

Not specified data correspond to those of the standard sensors.

SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range

Page 16

Functional Principle, Technical Data

optoNCDT 1710 - for long distance to the target

Type

Measuring range

Start of measuring range

Midrange (MMR)

End of measuring range

Linearity

Resolution

1

Spot diameter mm mm mm mm mm

µm

SMR

MMR

EMR

ILD 1710-50

50

550

575

600

±0.05

5

ILD 1710-1000

1000

1000

1500

2000

±1

100

0.4 ... 0.5 mm

0.4 ... 0.5 mm

2.5...5 mm

2.5...5 mm

0.4 ... 0.5 mm 2.5...5 mm

0.25 m integrated Sensor cable

Weight

Protection class

Temperature stability % FSO/ °C ca. 0.8 kg

IP 65

0.01

Operating temperature °C 0 ... 50

Not specified data correspond to those of the standard sensors.

SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range

FSO = Full Scale Output

1) At a measurement frequency of 2.5 kHz, without averaging optoNCDT 1700 Page 17

Functional Principle, Technical Data

optoNCDT 17x0BL

Type

Measuring range

Start of measuring range

Midrange

End of measuring range

Linearity

ILD 1700-20BL 1700-200BL 1700-500BL 1700-750BL 1710-50BL 1710-1000BL

mm mm

mm mm

FSO

Resolution

1

Measurement frequency

Light source

µm

Laser protection class

Light spot diameter

(µm)

SMR, µm

MMR, µm

EMR, µm

Weight (with 25 cm cable)

20

40

50

60

±0.08 %

200

100

200

300

±0.1 %

500

200

450

700

±0.08 %

750

200

575

950

50

550

575

600

±0.1 %

1000

1000

1500

2000

1,5 12 30 50 5

2.5 kHz; 1.25 kHz; 625 Hz; 312.5 Hz (adjustable)

Semiconductor laser < 1 mW, 405 nm (blue purple)

Class 2 acc. to DIN EN 60825-1: 2008-05

100

320

45

320

1300

1300

1300

1500

1500

1500

1500

1500

1500

400 x 500

400 x 500

400 x 500

2.5 ... 5 mm

2.5 ... 5 mm

2.5 ... 5 mm appr. 550 g appr. 550 g appr. 600 g appr. 600 g appr. 800 g appr. 800 g

The specified data apply to a white, diffuse reflecting surface (Reference: Ceramic).

SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range

FSO = Full Scale Output

1) At a measurement frequency of 2.5 kHz, without averaging optoNCDT 1700 Page 18

Functional Principle, Technical Data

3.5 Control and Indicator Elements

IMPORTANT!

Keys can be locked

via the serial interface, see Chap. 8.5.16

.

For the meanings of the LEDs in setup

mode, see Chap. 6.3

.

If the

IMPORTANT!

function

/ enter

key is pressed more than 5 sec, all para-meters are overwritten by the factory settings.

Fig. 5 Keys and LED‘s on the sensor

(1) select/zero key Measurement mode:

Sets analog output to

„Master“ or „Mid-point“, see Chap. 6.7

, see

Chap. 6.8

.

Setup mode: For changing the sensor

parameters, see Chap. 6.5

.

(2) function/enter key

For switching between measurement mode and setup mode.

(3) LEDs, see Fig. 6 .

optoNCDT 1700

LED

output speed avg zero state o o o o

Color Meaning

Current (4 ... 20 mA)

red green

Voltage (0 ... 10 V)

Serial (RS422) red green yellow red green yellow red flashing red green yellow

Measurement frequency

1 = 2.5 kHz

1/2 = 1.25 kHz

1/4 = 625 Hz

1/8 = 312.5 Hz

Average: 1 (Median: 3)

4 (5)

32 (7)

128 (9)

Mid-point set / mastered

Slave not synchronized

Laser off

Error

O.K.

MMR (midrange)

Fig. 6 Meanings of the LEDs in measurement mode

Note: In measurement mode (factory setting) only the

LED „state“ lights up, subject to the current position of the object to be measured.

Page 19

Delivery

IMPORTANT!

Handle optical sensors with care.

optoNCDT 1700

4. Delivery

4.1 Scope of Delivery

1 Sensor optoNCDT1700 with 0.25 m connecting cable and cable jack

2 Laser warning labels in accordance with IEC standards

1 Instruction manual

1 CD with driver and demo program

For ILD1700-xxDR: 1 fit-up aid (convenient to measuring range)

Optional accessory, packed separately:

1 PC1700 sensor cable, 3 m or 10 m in length, with cable plug and open cable ends (subject to order).

Check for completeness and shipping damage immediately after unpacking. In case of damage or missing parts, please contact the manufacturer or supplier.

4.2 Storage

Storage temperature:

Humidity :

-20 up to +70 °C (-4 to +158 °F)

5 - 95 % (no condensation)

5. Installation

The sensor is an optical sensor for measurements with micrometer accuracy. Make sure it is handled carefully when installing and operating.

5.1 Sensor Mounting Diffuse Reflection

The sensor is mounted by means of 3 screws type M4. The bearing surfaces surrounding the fastening holes (through-holes) are slightly raised.

The laser beam must be directed perpendicularly onto the surface of the target. In case of misalignment it is possible that the measurement results will not always be accurate.

To align the sensor, please comply with the „Instructions for Operation“, see Chap. 9.3

especially.

If the sensors are to be used in soiled environments or in higher ambient temperatures than normal,

MICRO-EPSILON recommends the use of protective housings, see Chap. 9.4

.

Page 20

Delivery

24.2

(.95)

36.1

(1.4)

Mounting holes

3 x ø 4.5

(.18 dia.)

80

(3.15)

89

(3 5)

97

(3.82)

13.4

(.53)

Fig. 7 Dimensional drawing optoNCDT 1700-2/10/20/50/100/200/250VT

1700-2LL/10LL/20LL/50LL dimensions in mm (inches), not to scale

MR

2

10

20

50

100

200

SMR a e

A B

24 35.0 ° 44.8 ° 25.8 16.8

30 34.3 ° 35.6 ° 28.7 20.5

40 28.8 ° 26.7 ° 30.1 22.0

45 26.5 ° 18.3 ° 31.5 22.5

70 19.0 ° 10.9 ° 32.6 24.1

70 19.0 ° 7.0 ° 33.1 24.1

250VT 70 19.0 ° 6.0 ° 33.5 24.1

optoNCDT 1700

A

B

ø 4

(.16 dia )

13.4

(.53)

15

(.59)

ø 8

( 31 dia.)

Fig. 8 Free space for optics

SMR = Start of measuring range

MR = Measuring range

Page 21

Delivery

24.2

(.95)

36.1

(1.4)

Mounting holes

3 x ø 4.5

(.18 dia.)

80

(3.15)

89

(3 5)

97

(3.82)

Fig. 9 Dimensional drawing optoNCDT 1700-20/200BL dimensions in mm, not to scale

13.4

(.53)

MR SMR a

20 e

A B

40 28.8 ° 26.7 ° 30.1 22.0

200 100 13.5 ° 6.3 ° 33,1 24.1

optoNCDT 1700

A

B

ø 4

(.16 dia )

13.4

(.53)

15

(.59)

ø 8

( 31 dia.)

Fig. 10 Free space for optics optoNCDT 1700-20/200BL dimensions in mm, not to scale

SMR = Start of measuring range

MR = Measuring range

Page 22

Delivery

75

(2 95) optoNCDT 1700

Mounting holes

3 x ø 4.5 mm

(.18 dia )

Fig. 11 Dimensional drawing optoNCDT 1700-40/500/750 optoNCDT 1700-500/750BL dimensions in mm, not to scale

2008-05

Laser spot

130

(5.12)

140

(5.51)

150

(5.91)

15

(.59)

Page 23

Delivery optoNCDT 1700

101

(3 98)

85

(3 35)

15

( 59)

ø 5

(.20 dia.)

Start of measuring range

17.5

(.69)

12

(.47)

35

(1.38)

MR SMR a e

40 175 22.1 ° 21.8 °

500 200 19.3 ° 7.0 °

750 200 19.3 ° 5.0 °

Fig. 12 Free space for optics, ranges 1700-40/500/750 mm, ranges 1700-500/750BL mm, dimensions in mm (inches), not to scale

Page 24

Delivery optoNCDT 1700

47 (1.85)

ø16 (.63 dia.)

ø 32

(1

26 dia.) max. opt. effective

ø 9

Fig. 13 Dimensional drawing optoNCDT ILD 1710-50/1000 optoNCDT ILD 1710-50/1000BL dimensions in mm, not to scale

17 5 ±1

(0.69 ±0 04)

(ø6)

61 (2.40)

71 (2.80)

73 (2.87)

83 (3.27)

5

(0.20)

48

(1.89)

24

(0.95)

Control panel

Page 25

Delivery

Label

Minimum visual range of the sensor to be kept free.

(4.65°)

(7.45°)

Connection cable

0.25 m

Fig. 14 Free space for optics optoNCDT ILD 1710-50/1000, optoNCDT ILD 1710-50/1000BL, dimensions in mm, not to scale

SMR

MR

MR SMR a e

50 550 13.35 ° 15.15 °

1000 1000 7.45 ° 4.65 ° optoNCDT 1700 Page 26

Delivery

5.2 Sensor Mounting Direct Reflection

The sensor is mounted by means of 3 screws type M4. The bearing surfaces surrounding the fastening holes (through-holes) are slightly raised.

Mount the sensor, that the reflected laser light hits the receiver

element, see Fig. 16

, see Fig. 17

, see Fig. 18 .

Use a fit-up aid to mount the sen-

sor, see Fig. 15 .

IMPORTANT!

Handle optical sensors with care!

Legend: mm (inches)

49.5

(1 95)

13.4

(.53)

90 °

15

(.59)

°

20

45.6

(1.79)

26.5

(1.04)

25

(.98)

Direct reflecting target

Fig. 16 Dimensional drawings optoNCDT1700-2DR (not to scale)

Fig. 15 Accessory to mount the sensor

optoNCDT 1700 Page 27

Delivery

Legend: mm (inches) optoNCDT 1700

49.2

(1.94)

13.4

(.53)

90 °

15

( 59)

45.7

(1 80)

29

(1.14)

35.5

(1.40)

17.6

°

Direct reflecting target

Fig. 17 Dimensional drawings optoNCDT1700-10DR (not to scale)

MR = Measuring range

Page 28

Delivery

44.3

(1.74)

13.4

( 53) optoNCDT 1700

15

(.59)

49.6

(1.95)

30.9

(1 22)

63.5

(2.50)

11.5 °

90 °

Direct reflecting target

Fig. 18 Dimensional Drawings range optoNCDT1700-20DR (not to scale)

Legend: mm (inches)

MR = Measuring range

Page 29

Delivery

Mounting steps

- Switch on the operating voltage

- Watch the “State“ LED on the top side of the sensor, see Fig. 20

.

- Position a shining or mirroring measuring object.

- Move the fit-up aid between sensor and measuring object.

- The “State“ LED illuminates yellow, see Fig. 20 .

- Mount the sensor by means of 3 screws type M4.

- Remove the fit-up aid between sensor and measuring object.

Measuring object optoNCDT 1700

5.3 Connector and Sensor Cable

Never bend the sensor cable by more than the bending radius of 60 mm.

The sensor comes with a permanently mounted connection cable of 0.25 m in length. Depending on where it is installed, a 3 m or 10 m sensor cable has to be attached to the connection cable.

MICRO-EPSILON recommends the use of the PC1700 standard sensor cable with a chain-type cable capability.

Page 30

Delivery

The connector and the cable component are marked with red markings which have to be aligned opposite each other before connection. In addition, they come with guidance grooves to prevent them from being wrongly connected. To release the plug-in connection, hold the plug-in connector on the grooved grips (outer sleeves) and pull apart in a straight line. Pulling on the cable and the lock nut will only lock the plug-in connector (ODU MINI-SNAP FP - lock) and will not release the connection. It is important, therefore, that the cable is never subjected to excessive pull force. If a cable of over 5 m in length is used and it hangs vertically without being secured, make sure that some form of strain-relief is provided close to the connector. Never twist the connectors in opposite directions to one another when connected.

Connect the cable shield to the potential equalization (PE, protective earth conductor) on the evaluator (control cabinet, PC housing) and avoid ground loops.

Never lay signal leads next to or together with power cables or pulse-loaded cables (e.g. for drive units and solenoid valves) in a bundle or in cable ducts. Always use separate ducts.

Recommended strand cross-section for self-made connection cables: ≥ 0.14 mm² (AWG 25) i

Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is disconnected from power supply only.

5.4 Switching Inputs Laser On/Off, Setting Masters and the Mid-point

The switching inputs for Laser On/Off and Setting Masters / Mid-point are similarly wired.

Please connect Pin 9 and Pin 6 in order to activate the laser.

If the connection is released, the laser is deactivated.

U int

ILD 1700

U  0.2 V

I

 0.5 mA

I

L

9 (10)

N-Channel optoNCDT 1700

Relais/

Switch

U

L

6

Open-

Collector

Fig. 19 Switching examples for Laser Off, Mastering, Set Midpoint

Page 31

Operation

IMPORTANT!

The laser diode in the sensor will only be activated if the input „Laser on/off“ is connected to

GND.

optoNCDT 1700

6. Operation

6.1 Getting Ready for Operation

Install and assemble the optoNCDT1700 in accordance with the instructions set out, see Chap. 5.

and connect with the indicator or monitoring unit and the power supply, having full regard to the connection instruc-

tions set out, see Chap. 6.3

.

The laser diode in the sensor can only be activated if the input „Laser on/off“ (Pin 9 or the red-blue wire in the sensor cable) is connected to GND.

Once the operating voltage has been switched on the sensor runs through an initialization sequence. This is indicated by the momentary activation of all the LEDs and the two switch outputs. If initialization has been finished, the sensor transmits the info string once in ASCII format via the serial interface independent of the selected interface. The initialization including the info string transmission takes up to 10 seconds. Within this period, the sensor neither executes nor replies commands.

To be able to produce reproducible measurements the sensor typically requires a start-up time of 20 minutes.

Once this has elapsed the sensor will be in measurement mode and, in accordance with the factory settings, see Chap. 15.4

, only the “state“ LED will be illuminated.

If the “state“ LED is not on, this means that

- either there is no operating voltage or

- the laser has been switched off.

Operating Voltage

- Nominal value: 24 VDC (11 ... 30 V, max. 150 mA).

- Use the power supply unit for measurement instruments only, and not for drive units or similar sources of pulse interference at the same time.

Switch on the power supply unit, if wiring is done.

Page 32

Operation optoNCDT 1700

6.2 Membrane Keys

IMPORTANT!

In setup mode the sensor continues to send measurement values to the output.

Fig. 20 Top view of the optoNCDT1700

The two membrane keys function/enter and select/zero have dual assignments, depending on the operating status.

Measurement mode (normal operation):

- zero key:

ƒ

Sets the analog output to the value for the mid-point of the measurement range, i.e. 5 VDC or 12 mA.

ƒ

Pressing the zero key again resets the function, see Chap. 6.7

, see

Chap. 6.8

.

- function key:

ƒ

Switches the sensor to setup mode, see Chap. 6.5

.

Pressing and holding the function/enter key for longer than 5 seconds

overwrites all the parameter values with the factory settings (default values, see Chap. 15.4

.

Setup mode („function“ key actuated):

- function key:

ƒ

For running through the levels and parameters.

- select key

ƒ

To open the selection list and

ƒ

select the value of the parameter in sequence.

- enter key:

ƒ

For saving the selected parameter value and

ƒ

Returning to measurement mode.

If approximately 15 seconds have elapsed since the last press of the function key or 30 seconds since the last press of the select key, the sensor returns to measurement mode without changing the parameters.

Page 33

Operation

The LEDs on the

sensor, see Fig. 20

, have different indicator functions depending on whether the sensor is in measurement mode or setup mode.

IMPORTANT!

Disconnect or connect the D-sub connection between RS422 and

USB converter when the sensor is disconnected from power supply only.

optoNCDT 1700

6.3 LED-Functions

LED

state output speed avg

Status

illuminated off flashes slowly

Measurement mode

Setup mode

Object is in the measurement range or error ...

...

Sensor off or laser off

Selected parameter value matches the saved value

Selected parameter value does not flashes quickly ...

match the saved value illuminated or flashing Indication of the parameter value from level 1 Selected parameter value flashing red Status „off“ zero illuminated off flashing

Sensor „master“ or „ set to mid-point“

Normal operation

Sensor as slave without synchronous signal

6.4 Inputs and Outputs

Signal

Analog output

Laser on/off

Zero

Pin Explanation

13

Current 4 ... 20 mA

Voltage 0 ... 10 VDC

9

10

Switching input

Switching input, Chap. 6.7

Switching output 1 8

Switching output 2 7

Sync +/Sync

Tx +/Tx -

Rx +/Rx -

3/4

1/2

Error or limit output 1

Limit output 2

Synchronizaton

1

Serial output RS422

12/11 Serial input RS422

Configuration

R

Limit

< (U

B

-6 V) / 20 mA; R

Limit

max. = 250 Ohm with U

B

= 11 V

R i

= 100 Ohm, I max

= 5 mA, short-circuit protection from 7 mA,

2

Laser operates if pin 9 is connected with GND

Connect 0.5 ... 3 s with GND: SET, connect 3 ... 6s with GND:

RESET

Open-Collector (NPN), I max

= 100 mA, U max

= 30 VDC,

Interrupt supply voltage to cancel the short-circuit protection

Symmetrical synchron output (Master) or synchron input (Slave)

Terminate with 120 Ohm receive-site

Internally terminated with 120 Ohm

1) Input is used for triggering in trigger mode, see Chap. 6.14

.

2) The use of a 10 nF capacitance at the entrance for interference suppression is recommended.

Page 34

Operation

IMPORTANT!

Parameters for

- Output type

(„Measurement value output“)

- Measurement frequency

- Average number

- Analog error

The system returns to measurement mode without saving the parameters:

- if 15 seconds elapse after the last press of the function ter

key.

/ en-

- if 30 seconds elapse after the last press of the key.

select

/ zero

6.5 Menue, Setting the Parameters

The sensor parameters can be set in setup mode using the function/enter and select/zero keys.

Measurement mode

Save parameters function enter

Measurement value output

LED output select zero red (flashes)

Current output

4 ... 20 mA select zero red

Voltage outp.

0 ... 10 VDC select zero green

RS422 select zero function enter

LED state flashes green function enter

LED speed

Measuring frequency select zero red (flashes)

1

2.5 kHz select zero red

1/2

1.25 kHz select zero green

1/4

625 Hz select zero yello

1/8

312.5 Hz select zero function enter function enter

Averaging number N

LED avg select zero red (flashes)

1

(Median 3) select zero red

4

(Median 5) select zero green

32

(Median 7) select zero yello

128

(Median 9) select zero function enter function enter

LED state flashes red

Error analog

LED output select zero red (flashes) hold last value select zero function enter red

3 mA

10.2 VDC select zero

A B C optoNCDT 1700 Page 35

Operation

IMPORTANT!

Parameters for

- Synchronization

- Averaging type

- Operation mode

- Trigger mode

- Baud rate

- Data format

The system returns to measurement mode without saving the parameters:

- if 15 seconds elapse after the last press of the function ter

key

/ en-

- if 30 seconds elapse after the last press of the key.

select

/ zero optoNCDT 1700

A

LED state flashes red

B function enter

Synchronization

1

LED speed

Trigger select zero

Sync.

function enter

Averaging type function enter

Operation mode

LED output select zero function enter

LED state flashes yellow

Baud rate function enter

Data format function enter

LED avg select zero

LED speed select zero

LED avg select zero red (flashes)

Edge LH

Master Sync off select zero function enter red

Edge HL

Master Sync on select zero red (flashes) moving select zero function enter red recursive select zero red (flashes)

Sync. Error

Mode select zero function enter red

Sync. Switch

Mode select zero red

57.6 kBd select zero red (flashes)

115.2 kBd select zero function enter red (flashes)

Binary select zero function enter red

ASCII select zero green

Level H

Slave green

Median green

19.2 kBd select zero select zero yellow

Level L

Master alternating green

Trigger Error

Mode select zero yellow

Trigger Switch

Mode select zero select zero yellow

9.6 kBd select zero select zero

C

1) Depends on operation mode settings (synchronization or trigger).

Page 36

Operation

IMPORTANT!

The preset average value and the number of averaging are saved after switching off.

6.6 Average Setting

The optoNCDT1700 is supplied ex factory with the default setting „moving averaging, number of averaging

N

Averaging methods:

- Moving average

- Recursive average

- Median

The purpose of averaging is to:

- Improve the resolution

- Eliminate signal spikes

- „Smooth out“ the signal.

Averaging has no effect on linearity.

6.6.1 Averaging Number N

In every measurement cycle (at a measurement frequency of 2.5 kHz every 0.4 ms) the internal average is calculated anew. The averaging number N indicates the number of consecutive measurement values to be averaged in the sensor.

Averaging type

Averaging number LED „avg“ moving recursive

Median moving recursive

Median moving recursive

Median moving recursive

Median

1 (no averaging)

1 (no averaging)

3

4

4

5

32

32

7

128

128

9 off red green yellow

In setup mode the averaging number can be set to

4 different, predefined fixed values. Further details

on these, see Chap.

the “avg“ LED, see

Averaging does not affect the measurement frequency or data rates in digital measurement value output.

6.5

. The selected averaging number is also indicated in measurement mode by

Fig. 21

.

More averaging counts can also be used if pro-

grammed via the digital interface, see Chap.

Fig. 21 Specification of the averaging count

The averaging is recommended for static measurements or slowly changing measuring values.

8.5.4

.

optoNCDT 1700 Page 37

Operation optoNCDT 1700

6.6.2 Moving Average (Default Setting)

The selected number N of successive measurement values (window width) is used to generate the arithmetic average value M gl

on the basis of the following formula:

N k=1

MV (k)

N

MV = Measuring value

N = Averaging number k = Running index

M

gl

= Averaging value respectively output value

Mode:

Each new measurement value is added and the first (oldest) measurement value from the averaging process

(from the window) taken out again. This results in short transient recovery times for jumps in measurement values.

Example: N = 4

... 0, 1, 2, 2, 1, 3

... 1, 2, 2, 1, 3, 4

Measurement value

2, 2, 1, 3

4

2, 1, 3, 4

4

Output value

Standard values for N: The values N = 1, 4, 32, 128 are permanently stored in the sensor. For other

permissible values for N, see Chap. 8.5.4

.

Characteristics:

The sliding average in the optoNCDT1700 can only be generated for up to a maximum of 128 values.

Page 38

Operation optoNCDT 1700

6.6.3 Recursive Average

Formula

N

M

rek (n-1)

MV = Measuring value

N = Averaging number n = Measurement value index

M

rek

= Average value respectively output value

Mode:

Each new measurement value MV(n) is added, as a weighted value, to the sum of the previous measurement values M rek

(n-1).

Standard values for N: The values N = 1, 4, 32, 128 are permanently stored in the sensor. For other

permissible values for N, see Chap. 8.5.4

„Averaging“.

Characteristics:

The recursive average permits a high degree of smoothing of the measurement values. However, it requires extremely long transient recovery times for steps in measurement values. The recursive average shows lowpass behavior.

6.6.4 Median

The median is generated from a pre-selected number of measurement values. To do so, the incoming measurement values (3, 5, 7 or 9 measurement values) are resorted again after every measurement. The average value is then given as the median. In generating the median in the controller, 3, 5, 7 or 9 measurement values are taken into account, i.e. there is never a median of 1.

This permits individual interference pulses to be repressed, but the measurement value curve is not smoothed to any great extent.

Example: Average from five measurement values

... 0 1 2 4 5 1 3 Median = 3

Median

(n+1)

= 4

Page 39

Operation

IMPORTANT!

“Master“ is only available in “Switch mode“ and “Set midpoint“ is only available

in “Error mode“, see

Chap. 6.5

.

“Master“ or “Set midpoint“ requires that an object to be measured is within the measurement range.

„Master“ has an influence on the analog and digital output.

optoNCDT 1700

6.7 Setting Masters

“Mastering” enables the measurement values at the sensor output (analog/digital) to be compared with a known measurement object (master). This function is primarily used for comparison of mounting tolerances. The value which is given during measurement on the sensor output of the “mastering object“ is the “master value”. This involves the parallel displacement of the sensor´s characteristic curve.

Storing of the master value in the sensor:

This master value has to be inserted and stored in the sensor before mastering. Currently, there are two possibilities:

1. In the configuration program “ILD1700 Tool“, see Chap. 10.

.

2. Command „Set_LIMITS“, see Chap. 8.5.7

, (Set limit values) as digital value in the „master value“.

A detailed description of the calculation, see Chap.

7.3

.

Therefore the master value is available even after

a restart of the sensor. Detailed information, see

Chap. 8.5.20

“Enable / Lock the Flash for Setting

Masters and the Mid-Point”. In the case that the sensor configuration is set to „permanent in flash“, the master value can permanently be solved in the sensor in the ILD1700 tool.

The displacement of the characteristic curve reduces the usable measurement range of the sensor the further the master value is away from the master position.

Advice:

In the case of a new ILD1700 sensor 0.5 x measuring range is set as the master value. Resetting to factory settings also includes that the master value is set to

0.5 x measuring range.

The action „mastering“ can be activated in three different ways:

- Press the button zero/select on the sensor.

Afterwards the red LED flashes “Zero”. The initial state is reached by a second press.

- External Low-Signal at the input “Zero”:

Connect GND 0.5 … 3 s: SET (mastering),

Connect GND 3 … 6 s: RESET (reset)

- At Firmeware version 6.000 using the command

“SETZero”, see Chap. 8.5.21

.

using parameters x = 1 setting ; using parameters x = 0 reset

Page 40

Operation optoNCDT 1700

Sequence „Mastering“

Operation switch-mode mode

Setpoint value

Programmed master value

Step 1

Step 2

Move object to be measured and sensor to desired position relative to one another.

Press Zero key once or connect the

“Zero” input to GND for 0.5 up to 3 s or command „SetZero“

1

.

Output signals after “Mastering”

Indicator LED „zero“ lights up.

16207 20 mA 10 V

8184

12 mA

5 V

Output characteristic

Analog value

U out, M

I out, M

=

=

.

Measurement range

.

Measurement range

161 4 mA 0 V

0 %

Output characteristic after mastering

Measurement range

100 %

Digital value D

A

= Master value

Fig. 22 Characteristic for mastering

Fig. 23 Sequence for mastering

Example:

Measurement range 50 mm, voltage output 0 ... 10 V

Master value 17 mm, related to the centre of the measurement range (MR) = 5 V,

Analog value during mastering: 3.4 V

After the mastering, the sensor gives new measurement values, related to the master value. The non-mastered condition applies by means of a reset.

1) Possible at Firmware version 6.0

Page 41

Operation

IMPORTANT!

“Master“ is only available in “Switch mode“ and “Set midpoint“ is only available

in “Error mode“, see

Chap. 6.5

.

“Master“ or “Set midpoint“ requires that an object to be measured is within the measurement range.

“Set Midpoint“ has an influence on the analog and digital

1 output.

6.8 Setting Mid-Point

The function „Setting mid-point“ displaces the analog measurement value to the value for the mid-point of the measurement range, so +5 V respectively 12 mA.

The action „set mid point“ can be activated in three different ways:

- Press the button Zero/Select on the sensor. Afterwards the red LED flashes “Zero”. The initial state is reached by a second press.

- External Low-Signal at the input “Zero”.

Connect GND 0.5 ... 3 s: SET (mid-point)

Connect GND 3 ... 6 s: RESET (reset)

At firmware version 6.000 using the command “SETZero”, see Chap. 8.5.21

using parameters x = 1 setting ; using parameters x = 0 reset

Sequence

Operation

„Set mid-point“

mode error-mode

Setpoint value Centre of the analog area

Step 1

Step 2

Move object to be measured and sensor to desired position relative to one another.

Output signals after ”Set mid-point”

Indicator

Press Zero key once or connect the “Zero” input to GND for 0.5 up to 3 s or command “SetZero”

1

.

„Zero“ LED lights up.

Analog values

U

A

I

A

= 5 V or

= 12 mA

Digital value D

A

= 8184

Fig. 24 Sequence for setting the mid-point

1) Possible at Firmware version 6.0

optoNCDT 1700 Page 42

Operation

Example:

Measurement range 50 mm, voltage output 0 ... 10 V

Mid-point is set at the position x m

= 10 mm

Set mid-point results in an output signal of 5 V.

16207 20 mA

10 V

Remaining measurement range respectively

output range: x max

= 35 mm

Out min

= 3 V respectively 8.8 mA

After setting mid-point the sensor gives new measurement values, related to the mid-point.

The condition before setting mid-point can be achieved by a reset.

Set mid-point (only error mode): no limit control

8184

12 mA

5 V

Out min

Output characteristic

The displacement of the characteristic curve reduces the usable measurement range of the sensor.

161 4 mA 0 V

0 % x m x max

Measurement range 100 %

Fig. 25 Characteristic for setting the mid-point

optoNCDT 1700 Page 43

Operation

IMPORTANT!

Synchronized sensors must always be set to the same measurement frequency.

Please, see Chap. 15.1

.

Recommendations:

- Use a high measurement frequency for light colored and matt objects to be measured.

- Use a low measurement frequency for dark or shiny objects to be measured (e.g.

surfaces covered in black lacquer), for better measurement results.

6.9 Frequency and Output Rate

The measurement frequency defines the number of measurements performed by the sensor per second. The measurement frequency may be 2.5 kHz, 1.25 kHz, 625 Hz or 312.5 Hz. Details of how to change the

measurement frequency, see Chap. 6.5

.

The output rate gives the actual number of measurement values at the sensor output per second. The maximum output rate can never exceed the measurement frequency.

Output

Current

Voltage

RS422

Maximum output rate

Measurement frequency

Measurement frequency

Output rate Measurement frequency;

Dependent on the transmission rate

(baud rate) and data format (ASCII-Code).

The sensor continues to measure internally but holds back the output until the last measurement value has been issued in full. The next measurement value is the last valid value, with other values between being lost.

Fig. 26 Output rates for the output types

Calculation of the output rate using the RS422 serial interface:

Output rate = Measuring frequency n n = int (b * 11 * MR / BR) + 1

The values are summarized, see Chap. 15.1

.

Abbreviations used: n = Partial factor int = Integral part of ( ) b = Byte/measurement value

(binary format b=2, ASCII b=6))

MR = Measurement frequency [Hz]

BR = Baud rate [Baud]

Example:

Measurement frequency = 1250 Hz, ASCII-Format (b=6), Baud rate = 19200 Baud

--> n = int (4.3) + 1 = 5

--> Output rate = 1.25 kHz / 5 = 250 Hz.

optoNCDT 1700 Page 44

Operation optoNCDT 1700

6.10 Operation Mode

6.10.1 Error Mode

(Error Control)

In error mode, the switching output 1 is used as an error output. The switching output 2 remains inactive. The error mode can be programmed using both the keypad and the programming interface.

The error output is activated (conducting to

GND) when:

- the object to be measured is outside the

measurement range, see Fig. 27 ,

- there is no object to be measured present, or

- if the object to be measured is unsuitable (too dark, polished metal, insufficiently reflective).

Transparent objects can be penetrated by the light of the laser and the laser spot unacceptably enlarged, resulting in unreliable measurements.

This will also trigger the error output.

6.10.2 Switch Mode

(Limit Control)

In switch mode, both switching outputs

are used as limit switches, see Fig. 28

.

The individual limits can be programmed using

the digital programming interface, see Chap.

8.5.7

, see Chap.

8.5.8

.

EMR

SMR

+

GND

+

GND

Measured value

Switching output 1

Switching output 2

Time

Fig. 27 Signal sequence for the switching outputs in the operation mode „Sync error“ and „Trigger error“

Error mode: Setting mid-point only, no limit control

Switch mode: Mastering only, limit control

Page 45

Operation

IMPORTANT!

The limit control is based on the average.

The following four values are used:

- Upper limit (UL),

- Lower limit (LL),

- Upper hysteresis value (UH),

- Lower hysteresis value (LH).

If the upper limit is exceeded the assigned switching output 1 will be activated (conduc- ing), and deactivated again with the follow-on shortfall on the upper hysteresis value. The same applies in principle to a shortfall on the lower

limit and switching output 2, see Fig. 28

.

Standard setting

Upper limit (UL):

101 % FSO / Digital value: 16365

Upper hysteresis value (UH):

100 % FSO / Digital value: 16207

Lower hysteresis value (LH):

0 % FSO / Digital value: 161

Lower limit (LL):

-1 % FSO / Digital value: 0

EMR

UL

UH

LH

LL

SMR

+

GND

+

GND

Measured value

Switching output 1

Switching output 2

SET_UPPERLIMIT F1

Time

+

Switching output 1

In switch mode, both switching outputs are activated when:

- the object to be measured is outside the

measurement range, see Fig. 28 ,

- there is no object to be measured present, or

- if the object to be measured is unsuitable (too dark, polished metal, insufficiently reflective).

GND

+

GND

Switching output 2

SET_LOWERLIMIT F1

Fig. 28 Signal sequence for the switching outputs in operation mode „Sync switch“ and „Trigger switch“

optoNCDT 1700 Page 46

Operation

WARNING!

Never connect the relay without a protective diode! Risk of damage to the switch output.

IMPORTANT!

Synchronization requires that the master and slave sensors have the same measurement frequency.

optoNCDT 1700

6.10.3 Output Circuit for the Switching Outputs

ILD1700

T

+24 VDC max. 100 mA

Switching output

Pin 7 / 8

In the active state the transistor T is conductive.

The switch outputs are short-circuit-proof.

To reset the short-circuit protection:

- Clear the external short circuit

- Switch off the sensor and switch on again, or

- Send the software command “Reset“ to the sensor.

The two limit outputs (Pin 7 and 8) may also be actuated in parallel as window comparator (OK/

Not OK separation).

GND Pin 6

Fig. 29 Switching output: Examples of external protective circuit with pull-up resistor or relay with protective diode

6.11 Synchronization of Sensors

If two sensors are used on a single object to be measured, they can be synchronized with each other. The

optoNCDT1700 distinguishes between two types of synchronization, see Fig. 30 .

Type

Simultaneous synchronization

Alternating synchronization

Both sensors measure in the same cycle.

Both sensors measure alternately

Used for

Measurement of differences (thickness, difference in height) on opaque objects. Here, Sensor 1 must be programmed as the

“Master“ and Sensor 2 as the “Slave“.

Thickness measurements on translucent objects or measurements of difference on closely spaced measurement points.

The alternating synchronization requires that the lasers are switched on and off alternately so that the two sensors do not interfere with each other optically.

Fig. 30 Characteristics of and uses for the different types of synchronization

For alternating synchronization the master sensor has to be run in „Master alternating“ mode, see Chap. 6.5

.

Page 47

Operation

IMPORTANT!

The slave sensor should be operated unsynchronized as far as possible!

Although this does not change the measurement frequency, the output rate is reduced by half in this mode.

An unsynchronized slave switches the laser off, sends an accordant error signal.

Pin 3, blue

Pin 4, pink

Pin 6, black

1

Conductors twisted together in the cable must be used for synchronization. Terminals with the same polarity (Sync+ and Sync-) should be connected.

The optoNCDT1700 contains a terminating

resistor, see Fig. 31

, between pin 3 and 4 for line matching.

Fig. 31 Synchronization of two optoNCDT1700

WARNING!

The synchronous terminals must never be connected to the operating voltage and/or GND, even momentarily. Risk of permanent damage from overloading!

1) Connect the ground connectors

(GND, pin 6, black) of the sensors if the sensors are not operated on the same power supply.

Synchronization with external signal

If a sensor is synchronized with an external signal the levels of the signal must comply with the LVDS specifications (Low Voltage Differential Signals). Further information, see Chap. 6.14.3

. The synchronization frequency is to maintain with a tolerance of

±

1 % of the measurement frequency.

Triggering is done with an accordant hardware only. Use the optional available triggerBOX1700 from

MICRO-EPSILON.

6.12 Exposure Time

At a maximum measurement frequency of 2.5 kHz the CCD element is exposed 2500 times per second. This gives a predefined maximum exposure time (laser exposure time) of 0.4 ms at this measurement frequency.

The lower the measurement frequency, the longer the maximum exposure time.

The real-time control of the sensor reduces the exposure time in dependency on the amount of light hitting the CCD element and therefore compensates for reflection changes at the same time, e.g. caused by imprints on the surface of the object being measured.

optoNCDT 1700 Page 48

Operation optoNCDT 1700

6.13 Timing, Measurement Value Flux

The controller operates internally with real time cycles in a pipeline mode:

1. Exposure: Charging the image detector in the receiver (measurement).

2. Reading: Reading out of the imaging device and converting into digital data.

3. Computation: Measurement computation.

4. Controlling

The output through the analog and digital interface starts with the beginning of every new cycle. The analog value and digital switch outputs are updated immediately and the digital output starts with the start bit.

Each cycle takes 400 μs at a measuring rate of 2.5 kHz (speed=1). The measured value N is available after each cycle with a constant lag of four cycles in respect to the real time event. The delay between the input reaction and the signal output is therefore 1.2 up to 1.6 ms. The processing of the cycles occurs sequentially

in time and parallel in space, see Fig. 32 , pipelining). This guarantees a true constant real time data stream.

Cycle

Time

1. Layer

2. Layer

3. Layer

4. Layer

1.

400 µs

Exposure N

(Output N-4)

2.

800 µs

Reading N

Controlling N-3 Exposure N+1

(Output N-3)

Computation N-2 Controlling N-2

Reading N-1

3.

1200 µs

Computation N

Reading N+1

Exposure N+2

(Output N-2)

Computation N-1 Controlling N-1

4.

1600 µs

Controlling N

5.

2000 µs

Exposure N+4

(Output N)

Computation N+1 Controlling N+1

Reading N+2

Exposure N+3

(Output N-1)

Computation

N+2

Reading N+3

Fig. 32 Sensor timing

Page 49

Operation

Median

1, 3, 5, 7

Measurement value as raw value

Test

Average moving optoNCDT 1700

Measurement mode

Trigger or continiously

Calculation

Analog (with offset / factor), digital and limit values

Limit values

Limit value outputs

Fig. 33 Measurement value flux ILD 1700

Output

Analog, digital values

Average recursive

Master

Trigger

Page 50

Operation

IMPORTANT!

Triggering is done with an accordant hardware only. Use the optional available triggerBOX1700 from

MICRO-EPSILON.

IMPORTANT!

The limit control is activated only in the operation mode „Trigger switch mode“.

6.14 Triggering

6.14.1 Basics

The optoNCDT1700 measurement output is controllable through an external signal (electrical signal or command). Thereby the analog or digital output is affected only. Triggering does not influence the measuring

frequency respectively the timing, see Chap. 6.13

, so that between the trigger event (level change) and the

output reaction always lie 4 cycles.

The synchronization inputs are used for external triggering. So the sensors can alternatively be synchronized or triggered. The change between

synchronization (default setting) and triggering is done with the keys, see Chap. 6.5

, „Operation mode“ or the SET_ERROROUTPUT command, see Chap. 8.5.9

.

6.14.2 Trigger Modes

The measurement output in trigger mode can be controlled with the edge as well as the level of the trigger signal. Implemented trigger conditions:

- Rising edge,

- Falling edge,

- High level or

- Low level.

Set the trigger conditions (edge or level) with the keys, see Chap. 6.5

, „Synchronization“ or the SET_TRIG-

GERMODE command, see Chap. 8.5.13

.

Edge triggering

The analog output is updated after a trigger edge. If the digital

output is selected only a single digital value, see Fig. 34 , is

transmitted through the RS422 interface. Between the analog output is temporarily stopped (“Sample and hold“, see Fig. 35 .

U

I

D

0 t t

Fig. 34 Rising trigger edge (above) and digital output signal (below)

optoNCDT 1700 Page 51

Operation optoNCDT 1700 Page 52

Operation

IMPORTANT!

Exceeding the maximum trigger frequency leads in measuring inaccuracy shown by the flashing zero LED and the set error output (if operation mode trigger/ error is selected).

IMPORTANT!

Triggering is done with an accordant hardware only. Use the optional available triggerBOX1700 from

MICRO-EPSILON.

IMPORTANT!

Connect the trigger source ground with the sensor ground

(GND, pin 6) before sending trigger signals.

optoNCDT 1700

Edge triggering

The pulse interval t i

between two trigger pulses must be at minimum four cycles. Then the triggered measurement is issued before a new trigger edge arrives. This results in a maximum trigger frequency of 625 Hz for a measuring frequency of

2.5 kHz.

Level triggering

If the trigger level has changed, all measurements must be issued before a new trigger lever can be identified. The sensor requires a non-pulse period t n

of 4 cycles. The minimum pulse interval amounts therefore 5 cycles (t i

= t measuring frequency of 2.5 kHz.

d

+ t n

), see Fig. 39 .

This results in a maximum trigger frequency of 500 Hz for a

Trigger source

U

I

3

4

GND optoNCDT1700

Fig. 38 Trigger wiring

6

Trigger mode Edge triggering Level triggering

Pulse duration t

d

1 Cycle = 400 µs 1 Cycle = 400 µs

Non-pulse period t

n

3 Cycles = 1.2 ms 4 Cycles = 1.6 ms

Pulse interval t

I

Trigger frequency f

T

f

4 Cycles = 1.6 ms 5 Cycles = 2.0 ms

T

= f

M

/ 4 = 625 Hz f

T

= f

M

/ 5 = 500 Hz f

M

= Measurement frequency

Fig. 39 Minimum pulse values and maximum trigger frequency for speed = 1

6.14.5 Pin Assignment for External Trigger Signal

Pin Input

3

4

6

Trigger+

Trigger -

GND

Characteristics Color sensor cable PC1700-x

Differential input blue pink

System ground black

3

4

6

View on solder-pin side male cable connector, insulator

Fig. 40 Pin assignment for external trigger signal

Page 53

Measurement Value Output

A 10 nF ceramic capacitor between analog output and

AGND of subsequent devices reduces highfrequency interferences.

SMR = Start of measuring range

7. Measurement Value Output

The optoNCDT1700 can issue the measurement values either via the analog output or the RS422 serial interface. The two different types of output cannot be used concurrently. The analog output can be programmed for use as a current output or a voltage output.

7.1 Voltage Output

Range for measurement voltages -0.1 V ... +10.1 V

Output amplification  U

Error value:

OUT

10.0 V = 100 % Measuring range

10.2 V (±10 mV)

Calculation of a measurement value x in mm from analog voltage: x [mm] = U

OUT

*

MR [mm]

10.0 [V]

Reference value: SMR x [mm] = U

OUT

* - MR/2

10.0 [V]

Reference value: MMR

Example: Measuring range = 10 mm, U

OUT

= 4.6 V; Result: x = 4.6 mm respectively x = -0.4 mm

10 V

10 2 V

MMR = Midrange

EMR = End of measuring range

MR = Measuring range

0 V

-0.1 V

SMR

Measuring object

EMR

Fig. 41 Voltage output signal

optoNCDT 1700 Page 54

Measurement Value Output

7.2 Current Output

Max. range

Output amplification  I

OUT

Error value:

4 mA ... 20 mA

16 mA = 100 % Measuring range

3 mA (±3 μA)

Calculation of measurement value x in mm from analog current

Reference value SMR: Reference value MMR: x [mm] = (I

OUT

- 4 mA)*

MR [mm]

16 [mA] x [mm] = (I

OUT

- 4 mA)* - MR/2

16 [mA]

Example: Measuring range = 10 mm, I

OUT

= 12 mA; Result: x = 5 mm respectively x = 0 mm

7.3 Digital Value Output

The digital measurement values are issued as unsigned digital values (raw values).

Digital value Used for

0 ... 16367

0 ... 160

Value range

SMR back-up (1 %)

161 ... 16207 Measurement range

Digital value Used for

16208 ... 16367 EMR back-up (1 %)

16370 ... 16383 Error codes

Calculation of a measurement value in mm from digital output

Reference value SMR: Reference value MMR: x [mm] = (digital

OUT

* - 0.01) * MR [mm]

16368

Example: MR =10 mm, Reference value = SMR x [mm] = (digital

OUT

* - 0.51) * MR [mm]

16368 optoNCDT 1700 Page 55

Measurement Value Output

Digital value

8184

Conversion

(8184 * 6.23167e-5 - 0.01) * 10 mm

Measurement value

= 5 mm (=MMR)

10261 (10261 * 6.23167e-5 - 0.01) * 10 mm = 6.294 mm

161 (161 * 6.23167e-5 - 0.01) * 10 mm = 0 mm (=SMR)

Note: A digital value can be calculated from a measurement value (millimeter) as follows:

16368

1.02

This formula can be used, for example, in the program-

ming of switching thresholds, see Chap. 8.5.7

.

7.4 Digital Error Modes

Digital error codes are issued in the same way as measurement values.

Value range for error codes:

16370 ... 16383 (digital OUT)

F1 bad object

F2 out of range -

F3 out of range +

F4 poor target

F5 Laser off

16370 No object detected

16372 Too close to sensor

16374 Too far from sensor

16376 Object cannot be evaluated

16378 external laser off

16380 Sensor in trigger mode

Trigger pulses come to fast.

optoNCDT 1700 Page 56

Serial Interface RS422 optoNCDT 1700

8. Serial Interface RS422

PC1700-x/IF2008

IF2008

Fig. 42 System structure to operate the interface card IF2008

Pin Signal

5 24 V

12 Rx + (Input)

11 Rx - (Input)

1 Tx + (Output)

2 Tx - (Output)

3 Sync +

Signal

24 V supply

1

Sensor 1/3 TxD+

Pin

10

2

Sensor 1

14-pol.

ODU-connector

4 Sync -

6 GND

Sensor 1/3 TxD 1

Sensor 1/3 RxD+ 4

Sensor 1/3 RxD -

TRG +

3

6

TRG -

GND

When using 3 sensors apply the optional available Y- adapter cable IF2008-Y.

7

15

Sensor 2

14-pol.

ODU connector

5 24 V

12 Rx +

11 Rx -

1 Tx +

2 Tx -

3 Sync +

4 Sync -

6 GND

24 V supply

1

10

Sensor 2/4 TxD+ 12

Sensor 2/4 TxD 11

Sensor 2/4 RxD+ 14

Sensor 2/4 RxD 13

TRG +

TRG -

GND

6

7

15

PC

IF2008,

X1 and X2,

15-pol.

Sub-D

Required cables and program routines

- IF2008

RS422 interface card, for 1 to

4 laser-optic sensors from the

ILD1700 series and 2 encoders, including MEDAQlib programming interface.

- PC1700-x/IF2008

Power supply and output cable, x = length with 3, 6 or

8 m.

Alternatively, data can be transferred with the demo software

(ILD1700 Tool) and a RS422

converter to USB, see Chap. 10.

.

Fig. 43 Pin assignment for two

PC1700-x/IF2008 and IF2008

1) Supply voltage for the connected sensors and encoders, output current 1.25 A max.

Page 57

Serial Interface RS422

8.1 Interface Parameters

The optoNCDT1700 comes with a RS422 serial interface to enable the sensor to be operated from a standard computer and measurement values and error codes to be transferred.

Data format: 8 Data bits, no parity, one stop bit (8,N,1)

The factory-set baud rate is 115.2 kBaud but it can be programmed to a different value, see Chap. 6.5

. The

maximum measurement frequency is 2.5 kHz.

8.2 Data Format for Measurement Values and Error Codes

8.2.1 Binary Format

The data word is comprised of two consecutive bytes (H-byte/L-byte). One flag bit in each byte differentiates a high from a low byte.

Start 1 7 Bit MSB Stop Start 0 7 Bit LSB Stop

Conversion of the binary data format:

For conversion purposes the high and low bytes must be identified on the basis of the first bit (flag bit), the flag bits deleted and the remaining 2 x 7 bits compiled into 14 bit data word.

Reception:

H-Byte 1

L-Byte 0

D13

D6

D12

D5

D11

D4

D10

D3

D9

D2

D8

D1

Result of conversion

0 0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D7

D0 optoNCDT 1700 Page 58

Serial Interface RS422

Conversion must be done in the application program.

Example:

Digital value: 2099 (= 0x0833 = 0b0010000 0110011) 14 Bit

Binary format

H-Byte: Transfer 0x90 (0b10010000)

-> converted 0x10 (0b0010000)

L-Byte: Transfer 0x33 (0b00110011)

-> converted 0x33 (0b110011) with flag bit 8 Bit

without flag bit 7 Bit

with flag bit 8 Bit

without flag bit 7 Bit

Flag bits deleted and compiled: 0x833

8.2.2 ASCII Format

Output of 5 characters (digits) in ASCII code for the digital value + 1 tag „CR“ (= 0x0D), i.e. a total of 6 characters. Digital values with just 3 or 4 digits are preceded by blank characters.

Example: Digital value 2099

Transfer: “_2099“ (preceded by 1 blank character) „CR“

ASCII-Code (Hex.) 0x20 0x32 0x30 0x39 0x39 0x0D

Characters SP 2 0 9 9 CR

Advices:

ASCII characters can be easily shown using a terminal program.

The output rate in ASCII format is reduced automatically by skipping individual measurement values, see

Chap. 6.9

.

optoNCDT 1700 Page 59

Serial Interface RS422

IMPORTANT!

The sensor continues to deliver measurement values to the analog output even while communicating with the sensor.

8.3 Set-up of the Commands

The commands for the sensors are comprised of command data which are transmitted in full duplex mode.

Each command packet is comprised of a whole number multiple of 32 bit words, see Fig. 44

.

1

2

31 24 23 16 15

Header

(ID)

8 7

Data 1

...

Data (n)

Package length

(16 Bit)

0

Start word

Sensor identifier e.g. „ILD1“

Contents

Command header

(2 words)

3

4

5

6

Command

(16 Bit)

Command code

1 n st th

Data word quantity n+2

Data word (4 Bytes)

...

Data word (4 Bytes)

Fig. 44 Structure of a command packet

Since most serial interfaces use an 8 bit data format, 4 consecutive bytes are combined into a 32 bit word.

Each command packet has a header consisting of two 32 bit words followed by the command and, if required, other data as well. The top two bits (No. 31 and 30) are always “0“ in the transmitted command.

Example:

Command SET_AVX. Sets the averaging number N for the moving and recursive average.

Command: 0x2075

Averaging number: N = 1024, therewith X = log2 1024 = 10 (= 0xA)

Data word: n = 1

Package length: 3

For further informations on this command, see Chap. 8.5.4

.

optoNCDT 1700 Page 60

Serial Interface RS422

Format:

31 24 23 16 15 8

„+“

„I“

„+“

„L“

„+“

„D“

0x20 0x75 0x00

0x00 0x00 0x00

8.4 Command Reply

7 0 hex

0x0d („CR“) 0x2B2B2B0D

„1“ 0x494C4431

0x03

0x0A

0x20750003

0x0000000A

Contents

Start word

Identifier ID „ILD1“

Command (0x2075) Package length

2 top bits = 0

Data word 1 (X = 0xA)

= 3

8.4.1 Communication without Error

No start word is transmitted, if the sensor replies to a command. The 1st word then is the sensor identifier.

The second word is the command with set MSB (Bit 31 = 1, corresponding an OR operation of the command with 0x8000) and the new package length, if there was no error during communication. With longer answers

(e.g. GET_INFO) the package length is larger according to the quantity of data words to be transmitted. A firm 32 bit word 0x20200D0A forms the conclusion of the answer. The conclusion word is not a data word.

Example: Sensor reply (without error) to the SET_AVX command.

31

„I“

24 23

„L“

16 15

„D“

8 7

„1“

0 hex

0x494C4431

0xA0

0x20

0x75

0x20

0x00

0x0D

0x02

0x0A

0xA0750002

0x20200D0A

Contents

Identifier ID „ILD1“

0x2075 OR 0x8000

(MSB = 1)

Package length

Conclusion word

(2)

Wait until the sensor reply, before you send a new command to the sensor.

optoNCDT 1700 Page 61

Serial Interface RS422

8.4.2 Communication with Error

If the sensor detects an error during the execution of a command, the second highest bit (bit 30) of the command is also set (the command is OR operated with 0xC000). Additionally a command error code is

transferred as data word, see Fig. 45

. The resulting package length amounts to now 3 data words. The reply is finished with a 32 bit word 0x20200D0A (2 blank characters + CR + LF).

4

5

2

3

6

Error-Code X Description

1 Command unknown

Incorrect parameter value

Invalid parameter

Time out

Command failed

Warning for averaging type and averaging number

1

Fig. 45 Command error codes

Example: Sensor operates in the average mode “Median“. The command SET_AVX is not possible in this averaging mode and leads to the following answer.

31

„I“

0xE0

0x00

0x20

24 23

„L“

0x73

0x00

0x20

16 15

„D“

0x00

0x00

0x0D

8 7

„1“

0x03

0x05

0x0A

0 hex

0x494C4431

0xE0730003

0x00000005

0x20200D0A

Contents

Identifier ID „ILD1“

0x2075 OR 0xC000

(2 top bits = 1)

Package length

= 3

Command error code: 5

„Command failed“

Conclusion word

The sensor continues to deliver measurement values to the analog output even while communicating with the sensor. The measurement value output on the digital interface is momentarily interrupted.

1) , see Chap. 8.5.5

.

optoNCDT 1700 Page 62

Serial Interface RS422

IMPORTANT!

Wait until the sensor reply, before you send a new command to the sensor.

optoNCDT 1700

8.5 Commands

8.5.1 Overview

Information commando

0x20490002 GET_INFO

0x204A0002

Average

GET_SETTINGS

0x20700002

0x20710002

0x20720002

0x20730002

0x20750003

0x207D0003

SET_AV0

SET_ AV1

SET_ AV2

SET_ AV3

SET_ AVX

SET_AV_T

Measurement value output

0x20770002 DAT_OUT_ON

0x20760002

0x202C0003

DAT_OUT_OFF

GET_MEASVALUE

Fixed points and limits

0x207E0007

0x20830002

SET_LIMITS

SET_UPPERLIMIT_F1

0x20840002 SET_LOWERLIMIT_F1

Error and measurement value autputs

0x20950003

0x20900003

Speed

0x20850003

0x20800003

SET_ERROROUTPUT

SET_OUTPUTTYP

SET_SPEED

SET_BAUDRATE

Shows sensor data

Shows sensor settings

Sets Average 0 = 1 (Median 3)

Sets Average 1 = 4 (Median 5)

Sets Average 2 = 32 (Median 7)

Sets Average 3 = 128 (Median 9)

Average X = log

2

(MV)

Selects average type

Permanent measurement value output

Stops measurement value output

Reduced measurement value output (polling)

Sets limits, hysteresis and master

Assignment OG -> Limit 1

Assignment UGt -> Limit 1

Error mode and switchmode for synchronization or triggering

Measurement value output : Current, Voltage, RS422

Measurement frequency: 2.5 kHz; 1.25 kHz; 625 Hz; 312.5 Hz

Baudrate: 115.2/ 57.6/19.2/9.6 kBaud

Page 63

Serial Interface RS422

Error output (Analog output)

0x20810003

Synchron or trigger mode

0x20820003

SET_SYNCMODE

SET_TRIGGERMODE

Switching off the laser (external)

0x20870002 LASER_ON

0x20860002 LASER_OFF

Measurement value data format

0x20880003

Key lock

ASCII_OUTPUT

0x20600003

Reset

SET_KEYLOCK

0x20F10002

0x20F00002

Lock Flashwrite

SET_DEFAULT

RESET_BOOT

0x20610003 WriteFlashZero

Setting Masters, Setting Mid-Point

0x20660003 SET_ZERO

Master / Slave, on, off, alternating; triggering

Switches the laser on

Switches the laser off

Options: ASCII / Binary

Options: Keys enables or locked

Reset to default factory settings

Reboot the sensor

Lock the Flashwriting for setting masters and the mid-point

Start setting masters measurement respectively relative measurement optoNCDT 1700 Page 64

Serial Interface RS422

IMPORTANT!

If initialization has been finished, the sensor transmits the info string once in ASCII format. The initialization including the info string transmission takes up to 10 seconds. Within this period, the sensor neither executes nor replies commands.

8.5.2 Reading out the Sensor Parameters

Name: Get_Info

Description: Supplies the info string. This shows all parameters currently stored in the sensor.

Format: 31

„+“

„l“

0x20

24 23

„+“

„L“

0x49

16 15

„+“

„D“

0x00

8 7

0x0d („CR“)

„1“

0x02

0 hex

0x2B2B2B0D

0x494C4431

0x20490002

Reply: 31

„l“

0xA0

24 23

„L“

0x49

16 15

„D“

0x00

8 7

„1“

0x70

0 hex

0x494C4431

0xA0490070

Info string in the form of a readable ASCII character string:

ILD 1700 : Standard output : RS422err frequency : 2500 Hz average-number : 1 syncmode

1

: M S off keylock: no range: 10 option : 0 date: 06/03/09 sw type: 0

0x20 0x20

Softwareversion : 5.005 speed : 1 average-type : moving hold value : yes

ASCII-output: no

Flash enable: yes serialnumber: 1234568 articlenumber : 4120088 bootloaderversion: 1.52

0x0D 0x0A 0x20200D0A

1) Depends on operation mode settings (synchronization or trigger). Options with synchronization: Master sync. off, master sync. on, slave, master alternating. Options with trigger: Edge LH, edge HL, level H, level L optoNCDT 1700 Page 65

Serial Interface RS422

8.5.3 Reading out the Sensor Settings

Name: Get_Settings

Description:

These are as follows:

Supplies the current sensor settings

Average: Integer in hex form of the exponents as the base

2 of the average number for the moving and recursive veraging types. For

Median:

0 = 3

2 = 5

5 = 7

7 = 9

Upper limit: Integer in hex form (count value)

Lower limit: Integer in hex form (count value)

Upper hysteresis value: Integer in hex form (count value)

Lower hysteresis value: Integer in hex form (count value)

Master value: Integer in hex form (count value)

Master and mid-point value set (M):

0 = Not mastered in switch mode, mid-point value not set in error mode

1 = Mastered in switch mode, mid-point value not set in error mode

2 = Not mastered in switch mode, mid-point value set in error mode

3 = Mastered in switch mode, mid-point value set in error mode

Flag for hold last value:

0 = Do not keep last measurement value

1 = Keep last measurement value

Assignment of the limits to the error outputs

1 = upper limit > F1, lower limit > F2

0 = upper limit > F2, lower limit > F1 optoNCDT 1700

Synchron mode

1

:

0 = Master synch off

1 = Mast synch on

2 = Slave

3 = Master synch alternating

Average type:

0 = Recursive

1 = Moving

2 = Median

Baud rate:

0 = 115.200 Baud

1 = 57.600 Baud

2 = 19.200 Baud

3 = 9.600 Baud

ASCII output

0 = Binary format

1 = ASCII format

Trigger mode

1

:

0 = Edge LH

1 = Edge HL

2 = Level high

3 = Level low

Output type:

0 = Current

1 = Voltage

2 = digital

Measurement speed:

0 = 1

1 = 1/2

2 = 1/4

3 = 1/8

Operation mode:

0 = Sync. error

1 = Sync. switch

2 = Trigger error

3 = Trigger switch

Laser status

0 = Laser off

1 = Laser on

1) Depends on operation mode settings (synchronization or trigger).

Page 66

Serial Interface RS422

Measurement range:

Integer in hex form in mm

Key lock:

0 = Keys enabled

1 = Keys locked

Format: 31

„+“

„l“

0x20

24 23

„+“

„L“

0x4A

16 15

„+“

„D“

0x00

Reply: 31

„l“

0xA0

0x00

0x00

0x00

24 23 16 15

„L“

0x4A

„D“

0x00

Output type

0x00 0x00

Measurement speed

0x00 0x00

Averaging number

0x00 0x00

Digital data output:

0 = Data output switched off

1 = Data output switched on

Enable Flash:

0 = Flashwrite locked

1 = Flashwrite enabled

8 7

0x0d („CR“)

„1“

0x02

0 hex

0x2B2B2B0D

0x494C4431

0x204A0002

8 7

„1“

0x17

0x0X

0x0X

0x0X

0 hex

0x494C4431

0xA04A0017

0x0000000X

0x0000000X

0x0000000X optoNCDT 1700 Page 67

Serial Interface RS422 optoNCDT 1700

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Flag hold last value

0x00 0x00

Synchron mode

0x00 0x00

0x00

Averaging type

0x00

Operation mode

0x00 0x00

Baud rate

0x00 0x00

ASCII / Binary output

0x00 0x00

Upper limit

0x00 0xXX

Upper limit

0x00 0xXX

Upper hysteresis value

0x00 0xXX

Lower Hysteresis value

0x00 0xXX

Master value

0x00 0xXX

0x0X

0x0X

0xXX

0xXX

0x0X

0x0X

0x0X

0x0X

0xXX

0xXX

0xXX

0x0000000X

0x0000000X

0x0000000X

0x0000000X

0x0000000X

0x0000000X

0x0000XXXX

0x0000XXXX

0x0000XXXX

0x0000XXXX

0x0000XXXX

Page 68

Serial Interface RS422

0x00

0x00

0x00

0x00

0x00

0x00

0x20

0x00

0x20

Master and mid-point value set

0x00 0x00

Measuring range

0x00 0xXX

Assignment of the limits to the switching outputs

0x00 0xXX

Key lock

0x00 0x00

Data output digital

0x00 0x00

Laser status

0x00

0x20

0x00

0x0D

Enable Flash

0x00

0x20

0x0X

0x0A

0x0X

0xXX

0xXX

0x0X

0x0X

0x0X

0x0A

0x0X

0x0A

0x0000000X

0x0000XXXX

0x0000XXXX

0x0000000X

0x0000000X

0x0000000X

0x20200D0A

0x0000000X

0x20200D0A optoNCDT 1700 Page 69

Serial Interface RS422

IMPORTANT!

The “avg“ LED shows the current status after the command

SET_AVO...3 on.

8.5.4 Set Average Number

Name: SET_AV0

Description: Sets the averaging number to 1 for moving and recursive averages, and to 3 for median.

Format: 31

„+“

„l“

0x20

24 23

„+“

„L“

0x70

16 15

„+“

„D“

0x00

8 7

0x0d („CR“)

„1“

0x02

0 hex

0x2B2B2B0D

0x494C4431

0x20700002

Reply:

Name:

Description:

Format: 31

Reply:

31

31

„l“

0xA0

0x20

24 23

„L“

0x70

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0700002

0x20200D0A

„+“

„l“

0x20

SET_AV1

Sets the averaging number to 4 for moving and recursive averages, and to 5 for median.

24 23 16 15 8 7 0

„+“

„L“

0x71

„+“

„D“

0x00

0x0d („CR“)

„1“

0x02 hex

0x2B2B2B0D

0x494C4431

0x207130002

„l“

0xA0

0x20

24 23

„L“

0x71

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0710002

0x20200D0A optoNCDT 1700 Page 70

Serial Interface RS422

Name: SET_AV2

Description: Sets the averaging number to 32 for moving and recursive averages, and to 7 for median.

Format: 31 24 23 16 15 8 7 0

„+“

„l“

0x20

„+“

„L“

0x72

„+“

„D“

0x00

0x0d („CR“)

„1“

0x02 hex

0x2B2B2B0D

0x494C4431

0x20720002

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x72

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0720002

0x20200D0A

Name: SET_AV3

Description: Sets the averaging number to 128 for moving and recursive averages, and to 9 for median.

Format: 31 24 23 16 15 8 7 0

„+“

„l“

0x20

„+“

„L“

0x73

„+“

„D“

0x00

0x0d („CR“)

„1“

0x02 hex

0x2B2B2B0D

0x494C4431

0x20730002

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x73

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0730002

0x20200D0A optoNCDT 1700 Page 71

Serial Interface RS422

IMPORTANT!

SET_AVX is not available for the median!

The maximum value for

N for the moving average is 128.

Note: The “avg“ LED goes off after SET_AVX.

Name: SET_AVX

Description: Sets the averaging number N for the moving and recursive averages to N=2^X.

Value range for X : 0...15 (0x00...0x0F). This command is not available for the median. If attempted, the sensor issues the message „Command failed“.

Format: 31 24 23 16 15 8 7 0

„+“

„l“

0x20

0x00

„+“

„L“

0x75

0x00

„+“

„D“

0x00

0x00

0x0d („CR“)

„1“

0x03

0x0X hex

0x2B2B2B0D

0x494C4431

0x20750003

0x0000000X

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x75

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0750002

0x20200D0A

Advice: If the existing averaging number is higher than that permitted for the new averaging type, the averaging number will be set to the upper limit for the new average type.

X = log

2

(N)

N = averaging number

This results in the following values for the averaging number N:

N 1

X 0

2

1

4

2

8

3

16

4

32

5

64 128 256 512 1024 2048 4096 8192 16384 32768

6

Overview: Command recursive average

SET_AV 0...3 1, 4, 32, 128

Example:

Average 8

Average 512

SET_AVX

X = log

X = log

2

2

1 ... 32767

(8) = 3

(512) = 9

7 8 9 10 11

Averaging number N moving average

1, 4, 32, 128

1 ... 128

12 13

Median

3, 5, 7, 9

14

Command failed

15 optoNCDT 1700 Page 72

Serial Interface RS422

8.5.5 Set Average Type

Name: SET_AV_T

Description: Sets the type of average.

Options:

- moving average for 1 to 128 measurement values

- Recursive average for 1 to 32768 measurement values

- Median for 3, 5, 7 or 9 measurement values

16 15 Format: 31 24 23

„+“

„l“

0x20

0x00

Reply: 31 24 23

„l“

0xA0

0x20

Parameter:

- X = 0 --> recursive average

- X = 1 --> recursive average

- X = 2 --> Median

„+“

„L“

0x7D

0x00

„L“

0x7D

0x20

16 15

„+“

„D“

0x00

0x00

„D“

0x00

0x0D

8 7

0x0d („CR“)

„1“

0x03

0x0X

0

8 7 0

„1“

0x02

0x0A hex

0x2B2B2B0D

0x494C4431

0x207D0003

0x0000000X hex

0x494C4431

0xA07D0002

0x20200D0A optoNCDT 1700 Page 73

Serial Interface RS422

Start command

Stop command

IMPORTANT!

The STOP command is volatile and is lost if the power supply is switched off or the

RESET_BOOT command is sent.

8.5.6 Starting and Stopping the Measurement Value Output

Name: DAT_OUT_ON

Description: Switches on the digital data output for the measurement values. The output channel

(output type) must also be set to the digital output, otherwise the measurement data cannot be received by the sensor.

Format: 31

„+“

„l“

0x20

24 23

„+“

„L“

0x77

16 15

„+“

„D“

0x00

8 7

0x0d („CR“)

„1“

0x02

0 hex

0x2B2B2B0D

0x494C4431

0x20770002

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x77

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0770002

0x20200D0A

Name: DAT_OUT_OFF

Description: Switches off the digital output for the measurement values. This has no effect on communication with the sensor via the digital interface. This command has a higher priority than

GET_MEASVALUE in trigger mode.

Format: 31

„+“

24 23

„+“

16 15

„+“

8 7

0x0d („CR“)

0 hex

0x2B2B2B0D

„l“

0x20

„L“

0x76

„D“

0x00

„1“

0x02

0x494C4431

0x20760002

Advice: The sensor sends digital measurement values again when the operating voltage has been switched on again.

optoNCDT 1700 Page 74

Serial Interface RS422

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x76

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0760002

0x20200D0A

Note: The hysteresis values have the effect of resetting the assigned switch outputs when the measurement values return to the target range.

8.5.7 Set Limit Values

Name: SET_LIMITS

Description: Sets limits and hysteresis values in the operation mode „Sync. switch mode“ respectively

„Trigger switch mode“ (upper/lower limit, upper/lower hysteresis value).

31

„+“

„l“

0x20

0x00

0x00

0x00

0x00

0x00

24 23

„+“

„L“

0x7E 0x00

Upper limit value

0x00

16 15

„+“

„D“

0xXX

Lower limit value

0x00 0xXX

Upper hysteresis value

0x00 0xXX

Lower hysteresis value

0x00 0xXX

Master value

0x00 0xXX

8 7

0x0d („CR“)

„1“

0x07

0xXX

0xXX

0xXX

0xXX

0xXX

0 hex

0x2B2B2B0D

0x494C4431

0x207E0007

0x0000XXXX

0x0000XXXX

0x0000XXXX

0x0000XXXX

0x0000XXXX optoNCDT 1700 Page 75

Serial Interface RS422

Standard setting:

Switching output 1

Upper limit,

Switching output 2

Lower limit

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x7E

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA07E0002

0x20200D0A

Note: All values are absolute values; Input as an integer value (whole number count value) of 2 bytes, completed by two advance bytes with the value “0“ to a total length of 32 bits.

8.5.8 Assignment of the Limits to the Switch Outputs

Name: SET_UPPERLIMIT_F1

Description: Assigns the upper limit to switching output 1 and the lower limit to switching output 2.

Format: 31 24 23 16 15 8 7 0

„+“

„l“

0x20

„+“

„L“

0x83

„+“

„D“

0x00

0x0d („CR“)

„1“

0x02 hex

0x2B2B2B0D

0x494C4431

0x20830002

Reply: 31

Name:

Description:

„l“

0xA0

24 23

„L“

0x83

0x20 0x20

SET_LOWERLIMIT_F1

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0830002

0x20200D0A

Assigns the upper limit to switching output 2 and the lower limit to switching output 1.

optoNCDT 1700 Page 76

Serial Interface RS422

Standard setting:

Sync error

Options:

X = 0 > Snyc error

X = 1 > Snyc switch

X = 2 > Trigger error

X = 3 > Trigger switch optoNCDT 1700

Format: 31

Reply: 31

„+“

„l“

0x20

„l“

0xA0

0x20

24 23

24 23

„+“

„L“

0x84

„L“

0x84

0x20

16 15

16 15

„+“

„D“

0x00

„D“

0x00

0x0D

8 7

0x0d („CR“)

„1“

0x02

0

8 7 0

„1“

0x02

0x0A hex

0x2B2B2B0D

0x494C4431

0x20840002 hex

0x494C4431

0xA0840002

0x20200D0A

8.5.9 Operation Mode

Name: SET_ERROROUTPUT

Description: Sets the use on synchron mode or trigger mode. Both modes exclude each other as the input lines are used for synchronisation or triggering. Additionally the use of the switching outputs is set. In error mode, switching output 1 is used as the error output. In switch mode, both outputs are used as limit outputs.

Format: 31 24 23 16 15 8 7 0

„+“

„l“

0x20

0x00

„+“

„L“

0x95

0x00

„+“

„D“

0x00

0x00

0x0d („CR“)

„1“

0x03

0x0X hex

0x2B2B2B0D

0x494C4431

0x20950003

0x0000000X

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x95

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0950002

0x20200D0A

Page 77

Serial Interface RS422

Options:

X = 0 > Current

(4..20 mA)

X = 1 > Voltage

(0..10 V)

X = 2 > RS422

Options:

X = 0 > 2.5 kHz

X = 1 > 1.25 kHz

X = 2 > 625 Hz

X = 3 > 312.5 Hz

8.5.10 Set the Measurement Value Output Type

Name: SET_OUTPUTTYP

Description: Sets the output type for the measurement values.

Format: 31 24 23 16 15 8 7

„+“

„l“

0x20

0x00

„+“

„L“

0x90

0x00

„+“

„D“

0x00

0x00

0x0d („CR“)

„1“

0x03

0x0X

0

Reply: 31 24 23 16 15 8 7 0

„l“

0xA0

0x20

„L“

0x90

0x20

„D“

0x00

0x0D

„1“

0x02

0x0A hex

0x2B2B2B0D

0x494C4431

0x20900003

0x0000000X hex

0x494C4431

0xA0900002

0x20200D0A

8.5.11 Set Measurement Frequency (Speed)

Name: SET_SPEED

Description: Sets the measurement frequency

Format: 31 24 23 16 15

„+“

„l“

0x20

0x00

„+“

„L“

0x85

0x00

„+“

„D“

0x00

0x00

8 7

0x0d („CR“)

„1“

0x03

0x0X

0 hex

0x2B2B2B0D

0x494C4431

0x20850003

0x0000000X optoNCDT 1700 Page 78

Serial Interface RS422

Options:

X = 0 > 115200 Baud

X = 1 > 57600 Baud

X = 2 > 19200 Baud

X = 3 > 9600 Baud

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x85

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0850002

0x20200D0A

Name:

Description:

Format: 31

Reply: 31

„+“

„l“

0x20

0x00

SET_BAUDRATE

Sets the transmission rate

24 23

„l“

0xA0

0x20

24 23

„+“

„L“

0x80

0x00

„L“

0x80

0x20

16 15

16 15

„+“

„D“

0x00

0x00

„D“

0x00

0x0D

8 7

8 7

0x0d („CR“)

„1“

0x03

0x0X

„1“

0x02

0x0A

0

0 hex

0x2B2B2B0D

0x494C4431

0x20800003

0x0000000X hex

0x494C4431

0xA0800002

0x20200D0A

The sensor still sends the reply with the old baud rate and only switches to the new baud rate once the reply has been sent. The output rate reduces automatically when the baud rate is changed because individual measurement values are skipped.

optoNCDT 1700 Page 79

Serial Interface RS422

Options:

X = 0 > Do not hold the last value

X = 1 > Hold last value

8.5.12 Error Output (Analog Output)

Name: SET_ERRORHANDLER

Description: Switches on the flag for keep / do not keep the last measurement value

This flag only affects the analog output. If set to X = 1 the last valid measurement value will continue to be issued if an error occurs (no object, invalid object, object outside the measurement range or laser turned off). If set to X = 0 an error signal will be generated for the current output that has an error value of 3 mA and for the voltage output that has a value of 10.2 V.

Format: 31 24 23 16 15 8 7 0

„+“

„l“

0x20

0x00

„+“

„L“

0x81

0x00

„+“

„D“

0x00

0x00

0x0d („CR“)

„1“

0x03

0x0X hex

0x2B2B2B0D

0x494C4431

0x20810003

0x0000000X

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x81

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0810002

0x20200D0A optoNCDT 1700 Page 80

Serial Interface RS422

Options:

X = 0 > Synchronous master off

X = 1 > Synchronous master on

X = 2 > Slave

X = 3 > Alternating synchronous master

Options:

X = 0 > edge LH,

X = 1 > edge HL,

X = 2 > level high,

X = 3 > level low.

8.5.13 Synchronous and Trigger Mode

Name: SET_SYNCMODE/TRIGGERMODE

Synchron mode: This command can be used for synchronizing two (or more) sensors with each other.

One sensor functions as the master, the other as the slave. Master and Slave alternately measure in alternating mode to avoid interference of each other when measuring on transparent objects.

Advice: The same measurement frequency (speed) must be set for the master and the slave, otherwise there is a risk of unreliable measurements.

Trigger mode: The synchron lines are used as trigger inputs. Four trigger types are available:

Format: 31

„+“

„l“

0x20

0x00

24 23

„+“

„L“

0x82

0x00

16 15

„+“

„D“

0x00

0x00

8 7

0x0d („CR“)

„1“

0x03

0x0X

0 hex

0x2B2B2B0D

0x494C4431

0x20820003

0x0000000X

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x82

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0820002

0x20200D0A optoNCDT 1700 Page 81

Serial Interface RS422

IMPORTANT!

The command

LASER_OFF is volatile. This means that the laser is switched on again if the power supply was switched off or the sensor was rebooted by means of the RESET_BOOT command and pin 9 is connected with

GND.

optoNCDT 1700

8.5.14 Switching off the Laser (External)

Name: LASER_OFF

Description: Switches off the laser.

Format: 31 24 23

„+“

„l“

0x20

„+“

„L“

0x86

Reply: 31 24 23

„l“

0xA0

0x20

„L“

0x86

0x20

16 15

16 15

„+“

„D“

0x00

„D“

0x00

0x0D

8 7

8 7

0x0d („CR“)

„1“

0x02

„1“

0x02

0x0A

0

0

Name:

Description:

Format: 31

Reply: 31

„+“

„l“

0x20

LASER_ON

Switches the laser on

24 23

„+“

„L“

0x87

24 23

„l“

0xA0

0x20

„L“

0x87

0x20

16 15

16 15

„+“

„D“

0x00

„D“

0x00

0x0D

The command LASER_ON is effective only if pin 9 is connected with GND.

8 7

0x0d („CR“)

„1“

0x02

0

8 7 0

„1“

0x02

0x0A hex

0x2B2B2B0D

0x494C4431

0x20860002 hex

0x494C4431

0xA0860002

0x20200D0A hex

0x2B2B2B0D

0x494C4431

0x20870002 hex

0x494C4431

0xA0870002

0x20200D0A

Page 82

Serial Interface RS422

8.5.15 Switching the Data Format

Name: ASCII_OUTPUT

Description: Switches the data format for the measurement value output via the digital interface.

Format: 31

„+“

„l“

0x20

0x00

24 23

„+“

„L“

0x88

0x00

16 15

„+“

„D“

0x00

0x00

8 7

0x0d („CR“)

„1“

0x02

0x0X

0 hex

0x2B2B2B0D

0x494C4431

0x20880002

0x0000000X

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x88

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0880002

0x20200D0A

Options:

X = 0 > Binary output (2 Byte)

X = 1 > ASCII output (6 Byte) optoNCDT 1700 Page 83

Serial Interface RS422

Options:

X = 0 > Enable keys

X = 1 > Lock keys optoNCDT 1700

8.5.16 Key Lock

Name:

Description:

Format: 31

„+“

„l“

0x20

0x00

SET_KEYLOCK

Locks or enables the membrane keys. The set status is not volatile.

24 23 16 15 8 7

„+“

„L“

0x60

0x00

„+“

„D“

0x00

0x00

0x0d („CR“)

„1“

0x03

0x0X

0 hex

0x2B2B2B0D

0x494C4431

0x20600003

0x0000000X

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0x60

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0600002

0x20200D0A

8.5.17 Set Factory Setting

Name:

Description:

SET_DEFAULT

Resets the set parameters to the default settings (factory settings).

This concerns:

- Output type (current)

- Measurement frequency

- Averaging number (1)

- Hold last measurement value,

- Synchronization (no synchronization),

- Averaging type (moving),

- Operation mode (sync error),

- Baud rate (115200 baud),

- Binary output,

- Laser (on),

- Data output (on),

- Assignment of the switching outputs (upper limit > F1, lower limit > F2),

- Default values for master, offset, limit and hysteresis values

- Keys enabled

- Flash enabled

Page 84

Serial Interface RS422

IMPORTANT!

The volatile commands Laser_off and

DAT_ UT_ OFF are lost after the RESET command.

This means that the laser is switched on again and the sensor sends measurement values again.

Format: 31

„+“

„l“

0x20

24 23

„+“

„L“

0xF1

16 15

„+“

„D“

0x00

8 7

0x0d („CR“)

„1“

0x02

0 hex

0x2B2B2B0D

0x494C4431

0x20F10002

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0xF1

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0F10002

0x20200D0A

8.5.18 Reset Sensor

Name: RESET_BOOT

Description: Starts the sensor’s initialization phase. The set parameters are retained. The short-circuit protection for the switch outputs is also reset in the process.

Format: 31

„+“

„l“

0x20

24 23

„+“

„L“

0xF0

16 15

„+“

„D“

0x00

8 7

0x0d („CR“)

„1“

0x02

0 hex

0x2B2B2B0D

0x494C4431

0x20F00002

Reply: 31

„l“

0xA0

0x20

24 23

„L“

0xF0

0x20

16 15

„D“

0x00

0x0D

8 7

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0F00002

0x20200D0A optoNCDT 1700 Page 85

Serial Interface RS422

8.5.19 Reading out the Measurements

Name: GET_MEASVALUE

Description: The command is used for polling measurements in trigger mode. The amount of measurements which the sensor should supply must be specified in the parameter. The command DAT_OUT_

OFF resets the amount of possible measurements to be transferred to 0.

Format: 31

„+“

„l“

0x20

24 23

„+“

„L“

0x2C

16 15

„+“

„D“

0x00

8 7

0x0d („CR“)

„1“

0x03

0 hex

0x2B2B2B0D

0x494C4431

0x202C0003

0xXX 0xXX 0xXX 0xXX 0xXXXXXXXX

Measurements are output in binary, see Chap. 8.2.1

or ASCII format, see Chap. 8.2.2

, in trigger mode.

Reply: 31 24 23 16 15 8 7 0

„l“

0xE0

0x00

0x20

„L“

0x2C

0x00

0x20

„D“

0x00

0x00

0x0D

„1“

0x03

0x05

0x0A hex

0x494C4431

0xE02C0003

0x00000005

0x20200D0A optoNCDT 1700 Page 86

Serial Interface RS422

The factory setting:

“Flash enabled“

8.5.20 Enable / Lock the Flash for Setting Masters and the Mid-point

Name: WriteFlashZero

Description: This command enables or locks saving the master values into the flash.

Parameter:

X = parameter value ( 0; 1 )

Format: 31 24 23

Reply: 31

„+“

„l“

0x20

0x00

„l“

0xA0

24 23

0 = lock Flash 1 = enable Flash

16 15 8 7

„+“

„L“

0x61

0x00

„+“

„D“

0x00

0x00

0x0d („CR“)

„1“

0x03

0x0X

„L“

0x61

16 15

„D“

0x00

8 7

„1“

0x02

0

0 hex

0x2B2B2B0D

0x494C4431

0x20610003

0x0000000X hex

0x494C4431

0xA0610002

Advices:

The command WriteFlashZero should be used by applications, which set before every measuring process

mastering and mid-point automatically through the external input line, see Chap. 6.7

, see Chap.

6.8

. It will do,

that the command “Lock Flash“ will be sent once.

The values for master and mid-point are saved at “Lock Flash“ only in the RAM of the sensor and get lost by switching-off the sensor. When switching-on the before saved master and mid-point values or the factory

setting, see Chap. 15.4

, are loaded. The command “WriteFlashZero“ itself is non-volatile. The setup “Lock

Flash“ also survive after switching-off.

The command “WriteFlashZero“ only influences the setting masters and mid-point. All the others flash operations were applied as before.

optoNCDT 1700 Page 87

Serial Interface RS422 optoNCDT 1700

8.5.21 Mastering or Setting Mid-point

Name: Set_Zero

Description: The command “SetşZero“ enables to

- set the sensor to mid-point in the operation mode “Error-Mode“ or

- mastering the sensor in the operation mode “Switch-Mode“

For sensors with software versions prior to 6,000 mid-point setting and mastering is possible with the sensor button “select/zero“ or the digital “Zero“ input.

Parameter X:

0 = Undo set mid-point or mastering 1 = Set mid-point or mastering

Format: 31

„+“

„l“

0x20

0x00

24 23

„+“

„L“

0x66

0x00

16 15

„+“

„D“

0x00

0x00

8 7

0x0D

„1“

0x03

0x0X

0 hex

0x2B2B2B0D

0x494c4431

0x20660003

0x0000000X

8 7 Reply, no error:

31

„l“

0xA0

0x20

24 23

„L“

0x66

0x20

16 15

„D“

0x00

0x0D

„1“

0x02

0x0A

0 hex

0x494C4431

0xA0660002

0x20200D0A

Reply, with error:

31

„l“

0xE0

0x00

0x20

24 23

„L“

0x66

0x00

0x20

16 15

Error code X: Detailed information, see Chap. 8.4.2

.

„D“

0x00

0x00

0x0D

8 7

„1“

0x03

0x0X

0x0A

0 hex

0x494C4431

0xA0660002

0x0000000X

0x20200D0A

Page 88

Serial Interface RS422

Example: X = 5 (“Command failed“), e.g. if no target is within the sensor measuring range.

Notes from version 6,000:

- With version 6,000 you can set the serial output (RS422 interface) to mid-point in the operation mode

“Error-Mode“ (Sync/error or Trigger/error). Mid-point means to set the analog or digital output on mid-

range, see Chap. 7.

.

- If you use the digital input “Zero“ for mid-point setting or mastering, you need no long pulse to undo it before you do mid-point setting or mastering again. With each short pulse (0.5 ... 3 s) mid-point setting or mastering is done always again. This also applies to the command Set_Zero with the parameter value = 1.

optoNCDT 1700 Page 89

Instruction for Operating

9. Instruction for Operating

9.1 Reflection Factor of the Target Surface

In principle the sensor evaluates the diffuse part of the reflected laser light, see Fig. 46

.

Laser beam

Laser beam

Laser beam

2

Ideal diffuse reflection

Direct mirror reflecion

Real reflecion

Fig. 46 Reflection factor of the target surface

A statement concerning a minimum reflectance is difficult to make, because even a small diffuse fraction can be evaluated from highly reflecting surfaces. This is done by determining the intensity of the diffuse reflection

from the CCD array signal in real time and subsequent compensation for intensity fluctuations, see Chap. 3.2

.

Dark or shiny objects being measured, e.g. black rubber, may require longer exposure times. The exposure time is dependent on the measurement frequency and can only be increased by reducing the sensor’s measurement frequency.

optoNCDT 1700 Page 90

Instruction for Operating

9.2 Error Influences

9.2.1 Light from other Sources

Thanks to their integrated optical interference filters the optoNCDT1700 sensors offer outstanding performance in suppressing light from other sources. However, this does not preclude the possibility of interference from other light sources if the objects being measured are shiny and if lower measurement frequencies are selected. Should this be the case it is recommended that suitable shields be used to screen the other light sources. This applies in particular to measurement work performed in close proximity to welding equipment.

9.2.2 Color Differences

Because of intensity compensation, color difference of targets affect the measuring result only slightly. However, such color differences are often combined with different penetration depths of the laser light into the material. Different penetration depths then result in apparent changes of the measuring spot size. Therefore color differences in combination with changes of penetration depth may lead to measuring errors.

9.2.3 Temperature Influences

When the sensor is commissioned a warm-up time of at least 20 minutes is required to achieve uniform temperature distribution in the sensor. If measurement is performed in the micron accuracy range, the effect of temperature fluctuations on the sensor holder must be considered. Due to the damping effect of the heat capacity of the sensor sudden temperature changes are only measured with delay.

9.2.4 Mechanical Vibration

If the sensor should be used for resolutions in the μm to sub-μm range, special care must be taken to ensure stable and vibration-free mounting of sensor and target.

9.2.5 Movement Blurs

If the objects being measured are fast moving and the measurement frequency is low it is possible that movement blurs may result. Always select a high measurement frequency for high-speed operations, therefore, in order to prevent errors.

optoNCDT 1700 Page 91

Instruction for Operating

9.2.6 Surface Roughness

In case of traversing measurements surface roughnesses of 5 μm and more lead to an apparent distance

change (also-called surface noise). However, they can be dampened by averaging, see Chap. 6.6

.

9.2.7 Sensor Tilting

Tilt angles of the sensor in diffuse reflection both around the X and the Y axes of less than 5 ° only have a disturbing effect with surfaces which are highly reflecting. Tilt angles between 5 ° and 15 ° lead to an apparent

distance change of approximately 0.12 ... 0.2 % of the measuring range, see Fig. 47

.

Tilt angles between 15 ° and 30 ° lead to an apparent distance change of approximately 0.5 % of the measuring range. These influences must be considered especially when scanning structured surfaces. In principle the angle behavior in triangulation also depends on the reflectivity of the target.

Angle

X-axis Y-axis

Fig. 47 Angle influences

Angle X-axis %

±5 ° typ. 0.12

±15 °

±30 ° typ. 0.2

typ. 0.5

Y-axis % typ. 0.12 typ. 0.2 typ. 0.5

Fig. 48 Measurement errors through tilting with diffuse reflection

optoNCDT 1700 Page 92

Instruction for Operating

9.3 Optimizing the Measuring Accuracy

Color strips Direction of movement o tput speed avg zero state fun tion e ter d fault

>5s sele t zero

Correct

Grinding or rolling marks

Incorrect

(shadow)

In case of rolled or polished metals that are moved past the sensor the sensor plane must be arranged in the direction of the rolling or rinding marks. The same arrangement must be

used for color strips, see Fig. 49

.

Fig. 49 Sensor arrangement in case of ground or striped surfaces

In case of bore holes, blind holes, and edges in the surface of moving targets the sensor must be arranged in such a way that the edges do not

obscure the laser spot, see Fig. 50 .

Fig. 50 Sensor arrangement for holes and ridges

optoNCDT 1700 Page 93

Instruction for Operating

Model types:

- SGH size S

SGH size M: without air purging (with inlet and exhaust for cooling) and

9.4 Protective Housing

The protective housing are designed to be used especially if the sensor operates in a dirty environment or higher ambient temperature. It is available as an accessory. If these protective housings are used, the linearity of the sensors in the complete system may deteriorate. For the sole purpose of protection against mechanical damage a simple protective shield with sufficiently large opening is therefore more advantageous. Installation of the sensors in the protective housings should be performed by the manufacturer, because especially in case of short reference distances the protective window must be included in the calibration.

- SGHF size S

SGHF size M: with air purging.

IMPORTANT!

The protection class is limited to water (no penetrating liquids or similar)!

The following guidelines must be observed if the sensors are operated in a protective housing:

- The maximum ambient temperature within the protective housing is 45 °C.

- The requirements for compressed-air are:

ƒ

Temperature at the inlet < 25 °C

ƒ

The compressed-air must be free of oil and water residues. It is recommended to use two oil separators in series arrangement.

- With a flow rate for example 240 l/min (2.5 * 10

5

Pa) the maximum outside temperature is 65 °C.

- For higher ambient temperatures it is recommended to use an additional water-cooled carrier and cover plates outside the protective housing.

- No direct heat radiation (including sunlight!) on the protective housing. In case of direct heat radiation additional thermal protective shields must be installed.

- It is recommended that the protective window is cleaned from time to time with a soft alcohol-soaked cloth or cotton pad.

The delivery includes:

The rotatable plug-nipple glands type LCKN-1/8-PK-6 (FESTO) for the compressed-air tubes with a inner diameter of 6 mm, the air plate (SGHF) and the sensor fastening accessories are included in the delivery of the protective housing.

optoNCDT 1700 Page 94

Instruction for Operating

SGH/SGHF size S

For SGH size S: Exhaust air connector

For SGHF size S: Closed with blind plug

ø4.5 (dia. .18) (4x)

Mounting holes

Dimension in mm (inches), not to scale

Sensor cable with connector

Air inlet

(Air supply can be pivoted, for flexible tube with 6 mm inner diameter)

Laser spot

125 (4.92)

140 ((5.51)

168 (6.61)

47.9 (1.89)

Fig. 51 Protective housing for measuring ranges 10/20/50/100/200/250 mm

optoNCDT 1700

28

(1.10)

Page 95

Instruction for Operating

SGH/SGHF size M

For SGH size M: Exhaust air connector

For SGHF size M: Closed with blind plug

60.0

Dimensions in mm

(inches), not to scale

Air inlet

(Air supply can be pivoted, for

Sensor cable with connector flexible tube with 6 mm inner diameter)

42.0

(1.65)

28.0

(1.1)

4 x

Mounting holes

ø4.5 (dia. .18) optoNCDT 1700

165 (6.50)

180 (7.09)

42.5

(1.67)

Laser spot

Fig. 52 Protective housing for measuring ranges 40/500/750 mm

32.5

(1.28)

71 (2.80)

Laser spot

Page 96

ILD1700 Tool

10. ILD1700 Tool

The software ILD1700 Tool

- transfers and reads sensor parameters and

- reads and displays measuring results in a diagram.

All data are transmitted through a RS422 interface and can be saved on demand. i

Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is disconnected from power supply only.

10.1 Installation and Preparation for Measurements

10.1.1 System Requirements

The following system requirements are recommended:

- Windows 2000, Windows XP or Windows 7 / Pentium III ≥ 1 GHz / 1 GB RAM

- Free USB port or IF2008

10.1.2 Cable and Program Routine Requirements

- PC1700-x/USB/IND Sensor cable with RS422-USB converter and 24 V power supply

- ILD1700 Tool Configuration and measurement program

- RS422/USB converter, inclusive CD with driver

1

2

3

4

5

PC1700-x/USB/IND

Pin Signal

RX -

Rx+

TX+

TX -

GND

Pin assignment,

9-pol. D SUB optoNCDT 1700

PC1700-x/USB/IND optoNCDT

1700

RS422

USB

USB cable

Fig. 53 Setup of the system for the demonstration software

You will find the actual drivers respectively program routines under: www.micro-epsilon.com/link/opto/1700

You will find details to the driver installation in the mounting instructions „Converter RS422 to USB“.

Page 97

ILD1700 Tool

10.2 Measurement

i

If the sensor’s analog output is to be used after termination of the ILD1700 tool, it previously has to be defined as output version. Do not forget to save the settings made.

Fig. 54 Start screen of the measurement program

This sub program can be used to acquire, evaluate and store data from an ILD1700 sensor.

optoNCDT 1700 Page 98

Software Support with MEDAQLib

11. Software Support with MEDAQLib

The Micro-Epsilon Data Acquisition Library offers you a high level interface library to access optoNCDT laser sensors from your Windows application in combination with

- RS422/USB converter (optional accessory) and a suitable PC1700-x/USB/IND cable or

- IF2008 PCI interface card and PC1700-x/IF2008 cable into an existing or a customized PC software.

You need no knowledge about the sensor protocol to communicate with the individual sensors. The indivi- dual commands and parameters for the sensor to be addressed will be set with abstract functions.

MEDAQLib translates the abstract functions in comprehensible instructions for the sensor.

MEDAQLib

- is a DLL/LIB usable for C, C++, VB, Delphi and many other Windows programming languages,

- supports functions to talk to the sensor

- hides the details on how to talk to the communication interface (RS232,RS422,USB,TCP)

- hides the details of the sensor protocol

- converts the incoming data to „expected data values“

- provides a consistent programming interface for all Micro-Epsilon sensors

- provides many programming examples many different programming languages

- the interface is documented in a large *.pdf file

You will find the latest MEDAQLib version at: www.micro-epsilon.com/download www.micro-epsilon.com/link/software/medaqlib optoNCDT 1700 Page 99

Warranty optoNCDT 1700

12. Warranty

All components of the device have been checked and tested for perfect function in the factory. In the unlikely event that errors should occur despite our thorough quality control, this should be reported immediately to

MICRO-EPSILON.

The warranty period lasts 12 months following the day of shipment. Defective parts, except wear parts, will be repaired or replaced free of charge within this period if you return the device free of cost to MICRO-EPSILON.

This warranty does not apply to damage resulting from abuse of the equipment and devices, from forceful handling or installation of the devices or from repair or modifications performed by third parties.

No other claims, except as warranted, are accepted. The terms of the purchasing contract apply in full.

MICRO-EPSILON will specifically not be responsible for eventual consequential damages. MICRO-EPSILON always strives to supply the customers with the finest and most advanced equipment. Development and refinement is therefore performed continuously and the right to design changes without prior notice is accordingly reserved. For translations in other languages, the data and statements in the German language operation manual are to be taken as authoritative.

13. Service, Repair

In the event of a defect on the sensor or the sensor cable:

- If possible, save the current sensor settings in a parameter set, see ILD1700 Tool, Measurement / Configuration menu, in order to load the settings back again into the sensor after the repair.

- Please send us the effected parts for repair or exchange.

In the case of faults the cause of which is not clearly identifiable, the whole measuring system must be sent back to:

MICRO-EPSILON Optronic GmbH

Lessingstraße 14

01465 Langebrück / Germany

Tel. +49 (0) 35201 / 729-0

Fax +49 (0) 35201 / 729-90 [email protected] www.micro-epsilon.com

14. Decommissioning, Disposal

- Disconnect the power supply and output cable on the sensor.

- The optoNCDT1700 is produced according to the directive 2011/65/EU “RoHS“. The disposal is done according to the legal regulations (see directive 2002/96/EC).

Page 100

Appendix optoNCDT 1700

15. Appendix

15.1 Output Rate optoNCDT1700

Measurement frequency LED speed

2.5 kHz

1.25 kHz

1

1/2

625 Hz 1/4

312.5 Hz

2.5 kHz

1.25 kHz

625 Hz

312.5 Hz

1/8

1

1/2

1/4

1/8

2.5 kHz

1.25 kHz

625 Hz

312.5 Hz

2.5 kHz

1.25 kHz

625 Hz

312.5 Hz

1

1/2

1/4

1/8

1

1/2

1/4

1/8

Baud rate

115200

Bytes

57600 19200 9600

Synchron mode: Master on, Slave synchronized, Master off

2

2

2

2

6

6

6

6

2

2

2

2

6

6

6

6

2500

1250

625

2500

1250

625

833.33

625

625

416.66

416.66

312.5

Binary output

312.5

1250

1250

312.5

833.33

625

312.5

277.77

250

312.5

138.88

138.88

625

312.5

625

312.5

208.33

156.25

125

104.16

ASCII output

Synchron mode: Master alternating, Slave synchronized

(alternating)

1250

625

312.5

156.25

1250

625

312.5

156.25

625

625

312.5

156.25

416.66

312.5

312.5

156.25

Binary output

1250

625

312.5

156.25

625

625

312.5

156.25

250

208.33

156.25

156.25

138.88

125

104.16

78.12

ASCII output

Page 101

Appendix

1

10

3

2

12

11

13

14

4

5

6

9

7

8

View: Solder-pin side male cable connector, insulator

15.2 Pin Assignment Sensor Cable

Pin Designation

5 +U

B

6 GND

13 Analog output

Characteristics

Power supply (11 ... 30 VDC)

System ground for power supply switch signals (Laser on/off, Midpoint, Limits)

Current 4 ... 20 mA or

Voltage 0 ... 10 V

14 AGND

9 Laser on/off

10 Zero

8

7

3

4

1

2

12

11

Switching output 1

Switching output 2

Sync +

Sync

Tx -

Rx -

Tx +

Rx +

-

1

1

Switching input Laser ON / OFF

Switching input for reset

Error or limit output

Limit output

Symmetrical synchron output

(Master) or input (Slave)

RS422 - Output (symmetric)

RS422 - Input (symmetric)

Plug connector:

ODU MINI-SNAP, 14-pin, series B, Dimension 2, Code 0, IP 68

More information on www.odu.de

1) Used as trigger inputs in mode “Triggering“, see Chap. 6.14

.

optoNCDT 1700

Color Sensor Cable

PC1700-x red black

Coaxial inner conductor, white red and blue white and green gray and pink violet blue pink green brown gray yellow

Page 102

Appendix

IMPORTANT!

The system ground must be connected with the terminal ground (USB converter, pin 5) before connecting the Rx and

Tx lines.

15.3 Pin Assignment RS422 Connection

PC1700-X ILD1700 optoNCDT 1700

X = Cable length in m

S4 OFF

S3 OFF

S2 ON

S1 ON

Fig. 55 Principle setup

Cross the lines for connections between sensor and PC.

Signal

ILD1700

Color

PC1700

RX-

RX+

TX+

TXyellow gray green brown

GND (Pin 6) black

Converter

Signal Pin

TX-

TX+

RX+

RX-

1 ground 5

2

3

4

Fig. 56 Pin assignment and wiring

i

Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is disconnected from power supply only.

Page 103

Appendix

15.4 Factory Setting

Name

LED output speed

Level 1

Current

2.5 kHz

Level 2

Setting

Hold last value

Master Synch off

Level 3

Sync/Error

115.2 KBaud avg zero

Master value:

1 (3) off

Moving average

...

0.5 x measurement range

Binary format (no ASCII)

...

Upper limit: 101 % FSO / Digital value: 16365

Upper hysteresis value: 100 % FSO / Digital value: 16207

Lower hysteresis value: 0 % FSO / Digital value: 161

Lower limit: -1 % FSO / Digital value: 0

Press the „function/enter“ key 5 seconds to activate the factory settings if the sensor is in measurement mode (the “state“ LED is illuminated).

15.5 Pin Assignment PC1700-x/x/USB/OE/IND

9-pin Sub-D Pin

1

2

3

4

5

Assignment

Tx -

Tx +

Rx +

Rx -

GND

Power supply unit

Analog output

2-pin cable

Color red black

Assignment

4 ... 20 mA or 0 ... 10 V

AGND

Sensor

PC

The PC1700-x/x/

USB/OE/IND includes open leads for analog output signal and power supply unit for 90 ... 235 VAC.

Length x = 3 or

10 m.

optoNCDT 1700 Page 104

Appendix optoNCDT 1700

15.6 Accessory

PC1700-3

PC1700-10

PC1700-x/IF2008

PC1700-x/USB/IND

RS422/USB converter

PC1700-x/x/USB/OE/IND

PS2010

IF2008

SGH size S, M

SGHF size S, M

Assembly aid

20,0 °

17,6 °

11,5 °

Power supply and output cable, 3 m long, cable carriers suitable; cable diameter 6.8 mm ± 0.2 mm

Power supply and output cable, 10 m long, cable carriers suitable; cable diameter 6.8 mm ± 0.2 mm

Interface and supply cable

USB power supply and output cable, 3 m, 10 m or 20 m long, including power supply unit (90 ... 235 VAC)

Interface converter RS422 to USB (useable with cable 1700-x/USB/IND inclusive driver)

Like PC1700-x/USB, with additional open leads for analog output

Power supply 24 V for mounting on DIN-rail (input 230 VAC, output

24 VDC/2.5 A)

The IF2008 interface card enables the synchronous capture of 4 digital sensor signals series optoNCDT1700 or others and 2 encoders. In combination with the IF2008E a total of 6 digital signals, 2 encoder signals, 2 analog signals and 8 I/O signals can be acquired synchronously.

Without air purging (with inlet and exhaust for cooling)

With air purging for the protective window

Stock no.

2555059

Sensor

ILD1700-2DR

Aluminum device for easy mounting of a sensor in direct reflection.

2555060 ILD1700-10DR

2555061 ILD1700-20DR

Page 105

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG

Königbacher Str. 15 · 94496 Ortenburg / Germany

Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 [email protected] · www.micro-epsilon.com

X9751139-D071045HDR

MICRO-EPSILON MESSTECHNIK

*X9751139-D07*

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement

Table of contents