Comparison of risk assessment methods for polluted soils in Viktor Plevrakis

Comparison of risk assessment methods for polluted soils in Viktor Plevrakis
Department of Physical Geography
and Quaternary Geology
Comparison of risk assessment
methods for polluted soils in
Sweden, Norway and Denmark
Viktor Plevrakis
Master’s thesis
Physical Geography and Quaternary Geology, 30 Credits
NKA 105
2014
Preface
This Master’s thesis is Viktor Plevrakis' degree project in Physical Geography and Quaternary
Geology at the Department of Physical Geography and Quaternary Geology, Stockholm
University. The Master’s thesis comprises 30 credits (one term of full-time studies).
Supervisor has been Jerker Jarsjö at the Department of Physical Geography and Quaternary
Geology, Stockholm University. Extern supervisor has been Johanna Moreskog, URS Nordic.
Examiner has been Andrew Frampton at the Department of Physical Geography and
Quaternary Geology, Stockholm University.
The author is responsible for the contents of this thesis.
Stockholm, 19 November 2014
Lars-Ove Westerberg
Director of studies
Abstract
Land contamination is an acknowledged problem around the world due to its
potentially adverse impacts on human health and the environment. Specifically in
Europe there are estimated to be 2,500,000 potentially contaminated sites. The risk
that contaminated sites pose is investigated by risk assessments. The methods and
the models though used in risk assessments, vary both on a national and an
international level.
In this study, the risk assessment methods and models for polluted soils used in
Scandinavia and issued by the Environmental Protection Agencies were compared.
The comparison aimed to (i) identify similarities and differences in the risk
assessment methodology and risk assessment methods and to (ii) investigate to
which extend these differences can impact the results of the models and the
implications regarding mitigation measures.
The method and model comparison showed that Sweden and Norway have great
similarities in assessing risks for contaminated soil. However, there are differences
with Denmark on a conceptual level. When a common hypothetical petrol station
with 20 soil samples was assessed, the results and the conclusions of the three risk
assessments were quite different; the site was seen as posing risk to human health
with the Danish model when complied with the quality criteria issued by the
Norwegian model. The Swedish risk assessment concluded that the contaminant
concentration in 3 out of 20 samples was potentially harmful for the environment but
not for human health.
The demonstrated divergence of the conclusions of risk assessments has major
implications and shows great interest for mainly four groups: Land-owners who may
be called to cover the expenses for remedial action. Consultants and companies who
perform risk assessments and land remediation. The countries that have to meet
national and international environmental goals and can also share/ or cover the cost
for remedial action. The people exposed to such environments that could be deemed
as potentially harmful by a neighboring country.
The study was conducted in collaboration with URS Nordic.
i
Acknowledgments
First of all, I would like to express my gratitude to my two supervisors Jerker Jarsjö
and Johanna Moreskog for the supervision and guidance throughout my thesis.
Jerker has provided me great support at all different levels of our collaboration and
helped me overcome the various difficulties that came up during the thesis. Johanna
opened the door for me to URS Nordic by suggesting the research topic and
contributed with her deep understanding and knowledge on risk assessments.
Big thanks goes also to URS Nordic for allocating time and resources to train me,
transfer knowledge and providing me an office to work in the beginning of my
thesis. Ken Jenkins has been the first person that I met from URS Nordic and who
understood the benefits of a potential collaboration of Stockholm University and
URS. I am grateful that he facilitated to start this project. I would like to thank all the
employees of URS Nordic for the fruitful discussions around risk assessments in
Scandinavia but especially Åsa Lindström, Nicklas Gingborn and Sophie Andersson
who helped me with specific parts of the models. Furthermore, I want to thank Sanne
Arildsen who has offered substantial help to topics around the Danish risk
assessment methodology. The support of Aidin Geranmayeh when I was trying to
put all the pieces together is likewise highly appreciated. Our vigorous discussions
helped me to clarify critical aspects of risk assessments.
Finally, I would like to thank my family who has supported me over this two-year
period of my studies and encouraged me to take the next step in my education.
ii
Table of Contents
List of Abbreviations ............................................................................................................. iv
1.
Introduction ....................................................................................................................... 1
1.1.
2.
3.
Background information to Risk Assessments .................................................................. 3
2.1.
Swedish and Norwegian Risk Assessments .............................................................. 4
2.2.
Danish Risk Assessment............................................................................................ 9
Methods ........................................................................................................................... 11
3.1.
4.
Aims of the study....................................................................................................... 3
Case study................................................................................................................ 11
3.1.1.
Site description .............................................................................................. 11
3.1.2.
CSM and model parameterization ................................................................. 13
3.1.3.
Influence of each exposure pathway – conservation goal on site .................. 15
3.1.4.
Analysis of the exposure path of consumption of groundwater .................... 16
Results ............................................................................................................................. 16
4.1.
Method and model comparison ............................................................................... 17
4.2.
Case study................................................................................................................ 18
4.2.1.
Compliance of the field concentrations with the quality criteria and
recognition of most influential paths ............................................................................. 18
4.2.2.
5.
Analysis of the exposure path of consumption of groundwater .................... 23
Discussion ....................................................................................................................... 25
5.1.
Method and model comparison ............................................................................... 25
5.2.
Case study................................................................................................................ 27
5.3.
Importance of the results ......................................................................................... 29
5.4.
Potential sources of errors and limitations of the results ......................................... 31
4.
Conclusions ..................................................................................................................... 32
5.
References ....................................................................................................................... 34
6.
Appendix ......................................................................................................................... 39
iii
List of Abbreviations
CES – Classes of Environmental State
CSM – Conceptual Site Model
EPA – Environmental Protection Agency
IGV – Individual Guideline Value
GGV – Generic Guideline Value
KM – Känslig Markanvändning, Sensitive land use in the Swedish model
MKM – Mindre Känslig Markanvändning, Less sensitive land use in the Swedish model
SSGV – Site Specific Guideline Value
TDI – Tolerable Daily Intake
TPH – Total Petroleum Hydrocarbons
TRV – Toxicity Reference Value
WFD – Water Framework Directive
iv
1. Introduction
Land contamination is an acknowledged problem around the world that has to be
managed in an efficient way in order to decrease the threat for human health and the
environment. Contaminated land can have major economic and legal implications
especially in the light of the “pollutant pays principle” introduced in 2012 by the
Waste Framework Directive within the European Union (European Commission
2012).
A contaminated site is defined as a site where the concentration of pollutants
exceeds the background concentration (Naturvårdsverket 2009b). Only in Europe
there are over than 340,000 identified contaminated sites and the number is
constantly increasing as, many sites remain to be identified. Currently, 2,500,000
sites are estimated to be potentially contaminated in Europe (European Commission
2014). Among the Scandinavian countries, there are 80,000 sites suspected to be
contaminated
in
Sweden
(Naturvårdsverket
2012),
4,500
in
Norway
(Miljødirektoratet 2014) and there are already 29,000 sites identified as
contaminated in Denmark (Miljøstyrelsen 2014a).
Assessing the risk that contaminated sites entail is complex (e.g. Guyonnet et al.
2003; Labieniec et al. 1997; Paustenbach 2000; Thompson et al. 1992). In order to
assess this risk, and prioritize action, a risk analysis followed by a risk assessment
take place according to the legislation in the Nordic countries (e.g. Miljøstyrelsen
2011, 2013; Miljøverndepartementet 2009; Naturvårdsverket 2006, 2009a 2009b). A
risk analysis is a process where the probability of an undesirable event to happen and
the consequences it has, are identified and quantified. Risk assessment is the
1
comparison of the results of risk analysis with acceptable criteria or values
(Miljøstyrelsen 2002). The outcome of the risk assessment has often a great effect on
the requirements for remedial action (Cushman et al. 2001; Ferguson et al. 1998;
Guyonnet et al. 2003; Li et al. 2007).
The risk assessment methods can vary from qualitative to quantitative (Linkov et al.
2009), in the degree of complexity (e.g. Peters et al. 1999; Suter 2006), in the models
that are used while investigating a site (Van Straalen 2002) and finally in the results
and the conclusions they produce (Miljøstyrelsen 2012). On a national level, the
local Environmental Protection Agency (EPA) is responsible to publish guidelines
and/or a model that give directions of how such assessments should be carried out in
order to offer a common starting point for discussions and more consistency in the
risk assessment procedure (Miljøstyrelsen 2002; Naturvårdsverket 2002).
On a European level it is known that there are substantial differences in the
underlying site definitions and interpretations of such assessments (European
Commission 2014). More and more effort is put into identifying these differences by
transferring knowledge between the involved parties and establishing common
ground for analysis and discussion (e.g. Ferguson et al. 1998). The work of Network
for Industrially Contaminated Land in Europe (NICOLE) that compares legislation,
risk analysis and risk assessment methods across Europe is an example of such an
attempt from the land-owners side (NICOLE 2004). In Academia, Troldborg (2010)
has compared risk assessment methods for groundwater contamination. From the
EPA’s side there are a few examples of such comparisons among the methods (e.g.
ecological risk assessment methods between Netherlands, Norway, Sweden and UK
by Miljøstyrelsen, 2012). So far, to the best of my knowledge, there has been no
2
comparison in the risk assessment methods and models between the Scandinavian
countries.
1.1.
Aims of the study
The main aims of the study are to (i) identify similarities and differences in the risk
assessment methodology and the risk assessment models for contaminated land in
Scandinavia, and (ii) investigate to which extend these differences can impact the
results of the models and the implications regarding mitigation measures.
Addressing aim (ii), the methods are applied to a common investigation site. The
compared countries are Sweden, Norway and Denmark and the models have been
issued by the respective EPAs (Naturvårdsverket, Miljødirektoratet, Miljøstyrelsen).
2. Background information to Risk Assessments
A risk assessment for a contaminated site is an iterative process with several phases
that gradually build up in complexity. In this section basic background information
for risk assessments is provided based on the study of the manuals issued by the
EPAs. The information describes the most important characteristics of a risk
assessment and how do the risk assessment models fit in the picture. As the manuals
of the EPAs are totaling more than a thousand pages this study summarized and
reproduced only a small fragment of them without any ambition to replace them. The
information mainly includes the workflow in a risk assessment study, the different
phases it has, and its most important characteristics in regards to the case study that
was examined. The information is first provided for the Swedish and the Norwegian
model and then for the Danish one. The order of presentation was chosen to have
3
better flow in the text since the Norwegian risk assessment model was constructed
based on the Swedish one and they share common features (Naturvårdsverket 2006).
The first step in a risk assessment is the construction of a Conceptual Site Model
(CSM). Based on the available information, the contaminant sources, the migration
pathways that may apply, the exposure paths to the receptors and finally the
receptors that are exposed are identified. This step is desktop conducted and gives a
qualitative approach to the type of the risk that may exist (Naturvårdsverket 2009a &
2009b; Miljøverndepartementet 1999 & 2009; Miljøstyrelsen 2002 & 2012). If the
outcome of the qualitative risk assessment is that there is a potential risk for humans
and/or the environment the paths of the three models start deviating from each other.
2.1. Swedish and Norwegian Risk Assessments
2.1.1. Guidelines
The next step in Swedish and Norwegian risk assessments is a basic (screening
level) risk assessment. A basic or simplified risk assessment is the first quantitative
assessment of the contaminated site during which the measured concentrations of
contaminants in soil (mg/kg) or the concentrations expected to be found there, are
compared with generic guidelines values (GGVs). The GGVs are thresholds of
values of compounds in the field, below which no adverse effects for the recipients
are expected to occur. They do not though constitute legally binding values. GGVs
refer to normal/typical conditions and are not tailor-made for the site. Moreover,
GGVs are related to protected recipients and the exposure paths through which they
may be reached (Naturvårdsverket 2009b).
4
2.1.2. Land use
In Sweden there is a lower and a higher guideline value given for chemical
compounds for sensitive land-use (Känslig Markanvändning-KM) and less sensitive
land-use (Mindre Känslig Markanvändning-MKM) respectively. Simply put, this
binary categorization refers to two scenarios for land-use where different activities
take place involving different exposure time and concomitantly resulting to a
different exposure to danger.
In Norway the measured concentrations of the contaminants in the field fall into five
Classes of Environmental State (CES) and are labeled from “very good” (CES one)
to “very bad” (CES five). Depending on the future land use (residential area, offices,
industrial area) and the contamination depth (above or below one meter) different
CES can be accepted for the site (Miljøstyrelsen 2012; Miljøverndepartementet
2009).
If the on-site concentrations comply with the GGVs the investigation is finished and
the expected risk for the recipients is acceptable. If the field concentrations are over
the guidelines, a comprehensive risk assessment should be considered. During this
phase, site specific guidelines values (SSGVs) are generated based on a greater level
on the investigated site’s characteristics. This is conducted by the use of the software
supplied by the EPAs. Depending on site characteristics the same concentration of
contaminants may pose a different risk.
2.1.3. Risk Assessments Input Variables
The site description in the Swedish and the Norwegian models is done with the use
of approximately 40 variables. The most important of them are common between the
5
models and describe among others the geometry of the contaminated area and the
buildings, the lithology and the aquifer’s characteristics.
2.1.4. Starting point for calculations in the models
With the site specific input values the chemical processes that take place between a
hot spot and the recipient included in the risk assessment models are calculated. Fate
and contaminant transport include diffusion, dispersion, sorption but this is done in
an inverse way in the Swedish and the Norwegian models; having as a starting point
the accepted quality criteria in the vicinity of the receptor (e.g. toxicological
references for humans in air or groundwater) the contaminant concentration in the
source is calculated. Since some variables may have higher uncertainty in their
values or may be totally unknown this step of the analysis can be performed
additional times to show how the uncertainty impacts the results (Miljøstyrelsen
2012). The chemical compounds are treated individually during the calculations
meaning that no interrelation between the substances takes place.
The measured soil concentrations of contaminants are not used in these calculations
but they can be inserted to give the expected concentration in the other media (pore
water, groundwater, air in soil voids etc.).
2.1.5. Recipients and exposure paths
A risk assessment is always linked to the recipients/ conservation objectives that are
exposed. The Swedish model identifies human health, environment, groundwater
and surface water as conservation objectives. Human health is exposed through
seven pathways: soil intake, skin contact, inhalation of soil particles, inhalation of
vapors, consumption of groundwater (private well), consumption of vegetables
6
cultivated on-site and consumption of fish that come from a lake downstream from
the site. In an MKM study the pathways of consumption of groundwater, vegetables
and fish are opted out as considered unrealistic. The exposure pathway of
consumption of fish is calculated by the model but does not affect the final guideline
value due to the high level of uncertainty in the results. The uncertainty stems from
the long and complex transport pathway from the point source to a nearby surface
water body and the difficulty to relate adverse health effects with consumption of
fish leaving in the water body (Naturvårdsverket 2009b).
It should be commented that the guideline referring to groundwater concerns among
other things the use of groundwater for irrigation, industrial use, how groundwater
contaminants spread to water recipients downstream as lakes and wetlands, the risk
of inhalation of vapors outside of the contaminated site etc. It should not be confused
with the risk of consumption of groundwater which focuses only on the health
impact of drinking groundwater (Naturvårdsverket 2009b).
In the Norwegian risk assessment model, human health is the only identified
receptor. The exposure pathways are the same as in the Swedish model and the
software can be parameterized to disregard certain of them.
2.1.6. Weighing of the recipients – generation of final value
The final SSGV takes into consideration the guidelines from the individual
contaminant pathways and conservation goals. This is done in a different way
depending on the structure of the model.
7
Fig. 1. Simplified schematic representation of how the final SSGV is generated in the Swedish model. The
Individual Guidelines Values from each exposure path and protection goal on the left of the figure are
grouped together in intermediate bigger groups and finally give birth to the SSGV on the right.
In the Swedish model the final guideline is calculated through three intermediate
guidelines as presented in Fig. 1. The first intermediate guideline corresponds to
human health risk and is based on the six exposure pathways. Among the six
pathways only that with the lowest value applies as it is the only one that fulfills the
quality criteria for the rest of the group. (The Individual Guideline Values (IGVs)
Cis, Cdu, Cid, Civ, Ciw and Cig are called envägskoncentration in the Swedish model).
The lowest IGV is further reduced to 50%, 20%, or 10% of the initial value and is
called afterwards health-based guideline value. The percentage of reduction depends
on the nature of the substance and is applied taking into consideration the exposure
of the recipients by other pollutant sources that are currently not explicitly examined
in the risk assessment and may therefore be unknown. Thus only a fragment of the
total daily intake (TDI) should be reached. The health-based guideline value is
screened with the guideline value for environment and the guideline value for
8
spreading of contaminants. The lowest of those three values becomes the final SSGV
and is manually compared with the on-site concentrations (Naturvårdsverket 2009b).
In the Norwegian model only the health based guideline value Che is quantified and
issued by the software. Che is based on all six exposure pathways in Fig. 1 plus the
risk of consumption of fish and is given by the formula:
1
⁄𝐶 +1⁄𝐶 +1⁄𝐶 +1⁄𝐶 +1⁄𝐶 +1⁄𝐶 +1⁄𝐶
𝑑𝑢
𝑖𝑠
𝑖𝑑
𝑖𝑣
𝑖𝑤
𝑖𝑔
𝑖𝑓
𝐶ℎ𝑒 = 1
(1)
where Cis is the IGV for soil ingestion, Cdu for skin contact, Cid for inhalation of soil
particles, Civ for inhalation of vapors, Ciw for consumption of groundwater, Cig for
consumption of vegetables and Cif for consumption of fish. This means in practice
that Che is equal to or smaller than the smallest individual guideline value. Finally,
the concentrations in the field are manually compared by the user or inserted into the
software for a comparison (Miljøverndepartementet 1999).
2.2.
Danish Risk Assessment
After the construction of the CSM, a Danish risk assessment approaches the
exposure pathways of soil ingestion, skin contact and consumption of vegetables and
fish with GGVs values for soil. The Danish model JAGG 2.0 assesses the risk
related to human exposure through inhalation of dust indoors and outdoors and
consumption of groundwater complimenting the GGVs. JAGG is a conservative
model designed to assess the risk for the most sensitive receptor regardless of land
use. That means that all exposure pathways are assessed despite the CSM. Due to the
structure of the model, fulfillment of the quality criteria for a certain pathway does
not automatically mean that the site satisfies the criteria for the other pathways as
well. Thus all the pathways are investigated individually (Miljøstyrelsen 2012).
9
The input variables are similar to the Swedish and the Norwegian models although
the interface is quite different. The model is consisted of different tabs/ sub-models
corresponding to exposure pathways and work independently to each other. Each
sub-model gives a result for only the specific pathway.
The starting point in the Danish model is to parameterize it to the case study and set
in the measured contaminant concentrations from the field. The expected
concentrations in the final media close to the recipients are calculated with the model
and are compared with inbuilt quality criteria for air and groundwater
(Miljøstyrelsen 2013). The final result is if the site complies with the criteria or not.
Hence the Danish model does not generate any SSGVs.
Regarding the treatment of the chemical compounds in the model, there are two big
groups of substances. “Oil related substances” that treat the substances as a cocktail
mixture, and “single substances” where the contaminants are processed individually
as if no other pollutants exist on site. In the oil related substances the interrelation of
the substances’ concentrations results to an increased difficulty for the user to
understand how the calculations are run for a specific contaminant. During
contaminant transport from the source to the recipient, concentrations of new oil
related compounds (meaning, not used as input) are calculated. For example, based
on the concentration of TPH C6-C35, benzene and toluene, the concentration of
naphthalene, fluoranthene and aromatic hydrocarbons is calculated through the
model.
10
3. Methods
The selection of the countries to compare the risk assessment methodologies was
based on the availability of informative material, the experience of the employees in
URS Nordic who contributed to the study and the field of interests of the company.
The first step of the study was to make a comparison in the structure of the risk
assessment methods and models based on the information provided in the
“Background information to Risk Assessments” section. The comparison is made to
reveal conceptual differences in risk assessments and models across the countries.
The second step was to approach a common contaminated site with the three
methodologies in order to investigate how the expected conceptual differences are
reflected in the results of a risk assessment. The case study refers to a contaminated
petrol station since petrol stations are frequently occurring subjects of risk
assessment studies in all three countries. In particular, the module of consumption of
groundwater was further compared among the models. The comparison aimed to
give an insight of how do the models run the calculations for a common protection
goal.
3.1. Case study
3.1.1. Site description
The case study area is hypothetical and was created and provided by URS Nordic
based on typical data from actual investigations in Scandinavia. The case study
concerns a petrol station active since 2003, with a surface of 1900 m2 that is
asphalted (Appendix Figure 1). On the SW side there are three buildings next to each
11
other with a total surface of 200 m2. They serve as car wash, workshop and
convenience store. The petrol station is located 100 m away from a registered
drinking water well. No schools or kindergartens are situated within a 500 m radius
from it.
The lithology under the station is described by the cores of ten boreholes and is
consisted of fill material for the first 3 m, sand 3-5 m and gravel between 5-7 m. No
data exist for depths greater than 7 m. The layers are homogeneous and do not
differentiate laterally. The groundwater level is at 3 m below the surface and the
hydraulic gradient is 0.001 m/m towards southeast.
Lab analysis results that describe the concentration of contaminants in soil (mg of
contaminants per kg dry weight of soil) are available at two different depths for each
borehole, resulting to 20 samples (Appendix Table 1). The following petroleum
related chemical compounds were measured:

Aliphatic hydrocarbons C5-C35

Aromatic hydrocarbons C5-C35

Benzene

Toluene

Ethylbenzene

Xylenes (m-, o- and p-xylenes) and

Methyl tert-Butyl Ether (MtBE).
12
3.1.2. CSM and model parameterization
Initially a CSM was constructed based on the available information and is presented
in Fig. 2. The exposure pathways of consumption of groundwater, vegetables and
fish were not taken into consideration and are shown with yellow. No well is situated
on site, the petrol station does not constitute cultivated land and there is no lake or
other water body hosting fish as a recipient in the vicinity of the site. The processes
that are applicable are highlighted with green.
Fig. 2. Conceptual Site Model (CSM) for the case study describing the contaminant transport from the
source to the recipients. The natural flow is from left to right and includes the primary and the
secondary contaminant sources, the spreading mechanisms, the contact media, the exposure pathways
and finally the recipients on the far right side. Green boxes stand for applicable processes on our site
and are connected with black lines/ arrows while yellow boxes are interrelated with grey lines/ arrows
and do not apply to the case study. The current CSM is based on a template from URS Nordic.
To have common ground for comparison, the models were parameterized as far as
possible with the same values. Unique or non-universal variables among the models
were set with reasonable for the site values according to site characteristics. The
basic configuration of the models is given in Appendix (Tables 2, 3 and 4).
13
Through the investigation of the site with the Swedish model the site was viewed as
MKM and the exposure pathways that were excluded in the CSM did not apply.
During the simplified risk assessment the GGVs of MKM were used and addressed
the concentration of aliphatic and aromatic hydrocarbons, benzene, toluene, xylenes
and MtBE. Due to fractionation in the hydrocarbons this resulted to guidelines for 13
substances.
In the Norwegian model there was not an option in the software to exclude all the
non- applicable exposure pathways shown in the CSM and this was done by setting
zero values to certain parameters (e.g. 0% of water or vegetable consumption comes
from the studied site). According to the average contamination depth (1.1 m) and the
land use of the site that is industrial, the contaminants’ concentrations had to be in
CES 1-4 to be accepted in a simplified risk assessment. The chemical compounds
that were used in this classification were aliphatic hydrocarbons, benzene, toluene,
ethylbenzene, xylenes and MtBE. Again, the aliphatic hydrocarbons were
fractionated leading to SSGVs for 10 substances.
In the Danish model all the exposure pathways were assessed including the
consumption of groundwater that was disregarded by the other models. This was
done since it is the typical risk assessment procedure in Denmark even if it may
seem inconsistent with the followed procedure in the other two countries. The
measured soil concentrations for the 20 samples were set in the model one at a time
and the calculated concentrations in indoor/ outdoor air and groundwater were
compared with the quality criteria. Total petroleum hydrocarbons C6-C35, benzene,
toluene, ethylbenzene and xylenes were set in the “oil related substances” and treated
14
as cocktail mixtures while MtBE were chosen from the “simple substances” list and
treated individually.
3.1.3. Influence of each exposure pathway – conservation goal on site
The most important exposure pathways in the case study were identified through two
different procedures:

First the pathways/conservation goals that had the largest effect on each
SSGV in the Swedish and the Norwegian model were identified. Since there
are guidelines values for 13 and 10 substances respectively, the influence of
each pathway can be gauged by the number of substances it mostly affects. In
the Swedish model the dominating exposure pathway/ conservation goal
accompanies the final result as given by the software. In the Norwegian
model it was found manually by identifying the lowest guideline value
among the exposure pathways for each substance. According to Eqn (1) the
lowest guideline value has the biggest effect on the final SSGV.

Secondly, see for which exposure pathways the measured concentrations in
soil samples lead to calculated concentrations in the other media higher than
the quality criteria. From this perspective an exposure pathway that poses a
risk in a higher number of boreholes/ samples than another is more
important. This approach was followed with the Danish model based on the
fact that the model does not issue SSGVs and the previous procedure could
not be applied.
15
3.1.4. Analysis of the exposure path of consumption of groundwater
After gauging the influence of each exposure pathway only consumption of
groundwater was further examined considering the time limitations and the
complexity of such an analysis. The certain exposure pathway was selected because
it was present in all models and appealed more to my personal interests than the
other common exposure path (inhalation of vapors).
To compare the models’ results for consumption of groundwater, the Swedish and
the Norwegian model were parameterized to include the additional exposure paths.
The three models had only three common chemical compounds on-site that could be
used as a comparison for the calculations: benzene, toluene and MtBE. The specified
concentration for these three compounds is the same in 18/20 samples (see
Appendix). SB03/1 was one of them and was selected as a representative sample to
be set as input.
4. Results
The result section includes a comparison of the methods and the models in the three
countries and the results of the models in the case study. In the case study it is first
presented if the specified concentrations in soil samples are accepted by each model.
Then the most important exposure pathways/ conservation goals are identified and
finally a comparison of the module for consumption of groundwater among the
models takes place.
16
4.1.
Method and model comparison
Table 1 presents a summary of the main differences and similarities in the
methodology and the models across the countries. The information derives from the
“Background Information” section but is given more clearly in a form of a
comparison in the table below. The Swedish and the Norwegian model have
similarities in the workflow of a risk assessment, on the type of results they give, on
the treatment of the substances and on the differentiations on land-use criteria during
the simplified risk assessment.
Table 1. Comparison of how Sweden, Norway and Denmark approach five common fields in the course
of a risk assessment of contaminated land.
Nr
1
Compared field
Existence and role
of land use in the
methodology
Swedish
KM and MKM
2
Input variables
3
Treatment of
chemical
compounds in the
model
Type of results the
model produces
Similar variables across the models for the same branches.
Fractionation is different.
Substances are
Substances are
Certain substances
treated individually/
treated individually/
are treated as a
no correlation among no correlation among cocktail mixture and
the contaminants
the contaminants
others individually
SSGVs for soil
SSGVs for soil
Contaminant
concentration in the
air and groundwater
Starting from the
Starting from the
Starting from the
accepted contaminant accepted contaminant measured
concentration close to concentration close to contaminant
the recipient, SSGVs the recipient, SSGVs concentration in the
for soil
for soil
soil, the model
contamination are
contamination are
calculates the
calculated by the
calculated by the
expected
model
model
concentration of
contaminants in the
air and groundwater
4
5
Workflow in the
model
Norwegian
Residential area,
offices, industrial
area
Danish
Only the most
sensitive land use
criteria apply
Table 2 contains information about the models in the three compared countries. It
includes the conservation goals and the exposure paths that are assessed in each case,
the parts of the model that affect the final result (marked with dashed rectangles) and
the model parts that apply in our case study. In the Norwegian model the risk for the
17
environment is qualitatively approached but not addressed by the software. If such a
risk exists, national, general environmental ambitions by the EPA or local
requirements
should
be
met
and
therefore
explicitly
investigated
(Miljøverndepartementet 1999).
Table 2. Recipients and exposure paths identified in all the models. The tick sign means that such a value
can be generated by the model while “x” that it cannot. Green cells represent the active parts of the model
in our case study and grey the inactive. The orange rectangles with the dashed outline are the parts of the
software that contribute to the final results. In the Swedish model there are three rectangles instead of one
to show an intermediate calculating step that is absent in the other models. In the Norwegian and in the
Danish model all cells are equally weighed.
Protection goals
Human
Exposure paths
Soil ingestion
Skin contact
Inhalation of soil
particles
Inhalation of
vapors
Consumption of
groundwater
Consumption of
vegetables
Consumption of
fish
Swedish



Environment
Groundwater
Surface water
Free phase
4.2.
Norwegian



Danish
x
x
x




 (indoors)
 (outdoors)



x


x




x
x
x
x
x
x
x

Case study
4.2.1. Compliance of the field concentrations with the quality criteria and recognition
of most influential paths
The field concentrations exceeded the GGVs in both the Swedish and the Norwegian
model at boreholes SB03, SB05 and SB10. The following advanced risk assessment
generated SSGVs presented in Table 3. For each compound the most influential
pathway/ conservation goal accompanies the SSGV and is shown in the same table.
Despite the different fractionation it is clear that the Swedish model has much lower
SSGVs than the Norwegian model. The Swedish guidelines range from five times
18
lower than the Norwegian in the case of aliphatic hydrocarbons >C8-C10 to up to ten
thousand times more in MtBE.
Table 3. GGVs and SSGVs for the studied petrol station in Sweden and Norway for different chemical
compounds. The concentrations are given in mg of contaminants per kg of soil.
Sweden
Substance
Norway
SSGV
Most
influential
pathway/
conservation
goal
Aliphatic hydrocarbons C5-C6
18
Groundwater
406
Aliphatic hydrocarbons >C6-C8
120
Groundwater
1,498
Aliphatic hydrocarbons >C8-C10
100
Inhalation of
vapors
530
Aliphatic hydrocarbons >C10-C12
500
Environment
2,881
Aliphatic hydrocarbons >C12-C16
500
Environment
-
Inhalation of
vapors
Inhalation of
vapors
Inhalation of
vapors
Inhalation of
vapors
-
Aliphatic hydrocarbons >C16-C35
1,000
Environment
-
-
Aliphatic hydrocarbons >C12-C35
-
-
>20,000
Soil ingestion
Aromatic hydrocarbons C8-C10
50
Environment
-
-
Aromatic hydrocarbons >C10-C16
15
Environment
-
Benzene
0.012
Groundwater
0.66
Toluene
15
Groundwater
245
Ethylbenzenes
15
Groundwater
906
Xylenes
20
Groundwater
812
0.25
Groundwater
2,588
Inhalation of
vapors
Inhalation of
vapors
Inhalation of
vapors
Inhalation of
vapors
Inhalation of
vapors
MtBE
SSGV
Most influential
pathway/
conservation goal
Concerning the most important exposure pathways/ conservation goals in the case
study, the guideline for protection of groundwater has the greatest impact on more
than half of the substances (7/13) in the Swedish model. Protection of environment
comes next by controlling five out of thirteen substances and inhalation of vapors
only one. In the Norwegian model the dominating exposure pathways is the
inhalation of vapors controlling nine out of ten chemical compounds. Soil ingestion
is the most influential pathway in only one substance. The two models coincide in
the identification of the most influential pathway only in aliphatic hydrocarbons
19
>C8-C10 (inhalation of vapors) and have the minimum difference in the issued
guideline.
In Table 4a the SSGV of the Swedish model are compared with the on-site
concentrations. The four samples coming from boreholes SB03, SB05 (both depths)
and SB10 have concentrations of the analyzed parameters in collected soil samples
below the SSGV. The compounds that exceed the values are marked with red and
are:

aliphatic hydrocarbons C5-C6: one sample with double concentration than
SSGV,

aliphatic hydrocarbons >C8-C10: one sample with 11% higher concentration
than SSGV,

aliphatic hydrocarbons >C10-C12: one sample with approximately 10%
concentration over SSGV,

aliphatic hydrocarbons >C12-C16: one sample with higher than double
concentration than the SSGV,

aliphatic hydrocarbons >C16-C35: one sample exceeding the SSGV by 57%,

aromatic hydrocarbons >C10-C16: three samples exceeding the SSGV by 3,
9 and 5 times and

benzene: one sample having approximately 7 times higher concentration than
the SSGV.
In the Norwegian model all analyzed parameters from the collected samples
reported below the SSGVs. Table 4b shows which soil samples (marked with
orange) required further investigation after the simplified risk assessment but
were later on accepted as the risk for human health was acceptable.
20
Table 4. (a) Comparison of the concentration of 13 substances (left side) in 20 different samples with the SSGV generated by the Swedish model. Red cells indicate that the
samples are over both GGVs and SSGVs while the non-highlighted cells mean that they comply with them. (b) Comparison of the concentration of 10 substances with the
GGVs in the Norwegian model. Orange cells are within the fifth CES while the rest concentrations are in lower CES requiring no advanced risk assessment. All the
concentrations comply with the SSGVs in the Norwegian model.
Sweden
Samples
Substances
SB01/1 SB01/2
Aliphatic hydrocarbons C5-C6
Aliphatic hydrocarbons >C6-C8
Aliphatic hydrocarbons >C8-C10
Aliphatic hydrocarbons >C10-C12
Aliphatic hydrocarbons >C12-C16
Aliphatic hydrocarbons >C16-C35
Aromatic hydrocarbons C8-C10
Aromatic hydrocarbons >C10-C16
Benzene
Toluene
Ethylbenzenes
Xylenes
MtBE
1
1
2.5
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
10
1.40
2.00
0.005
0.025
0.025
0.05
0.01
SB03/1 SB03/2 SB04/1 SB04/2 SB05/1
1.5
3
79
554
1155
802
6.00
62.17
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
3.5
2.5
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
SB05/2 SB06/1 SB06/2 SB07/1 SB07/2 SB08/1 SB08/2 SB10/1 SB10/2 SB11/1 SB11/2 SB12/1 SB12/2
1
1
34.5
1
1
49
2.5
2.5 134.25
3.25
2.5
44
35.75
5
282
55
32.5
150
0.80 20.00
0.80
2.00 198.67
2.00
0.005 0.005
0.02
0.025 0.025
3
0.025 0.025
2
0.05
0.05
3.30
0.01
0.01
0.01
1
1
2.5
2.5
5
69
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
3.25
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
33.25
5
32.5
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
47
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
10.5
2.5
65
4.25
120
2.5
90
5.75
190
10 1577.5
0.80
7.00
2.00 88.67
0.005
0.1
0.025
0.25
0.025 0.025
0.05
0.8
0.01
0.01
1.5
7
14
30
20
222
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
32.5
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
5
10
0.80
2.00
0.005
0.025
0.025
0.05
0.01
Norway
Samples
Substances
Aliphatic hydrocarbons C5-C6
Aliphatic hydrocarbons >C6-C8
Aliphatic hydrocarbons >C8-C10
Aliphatic hydrocarbons >C10-C12
Aliphatic hydrocarbons >C12-C35
Benzene
Toluene
Ethylbenzenes
Xylenes
MtBE
SB01/1 SB01/2
1
1
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
SB03/1 SB03/2 SB04/1 SB04/2 SB05/1
1.5
3
79
554
1957
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
1
3.5
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
1
1
2.5
3.25
90.75
0.005
0.025
0.025
0.05
0.01
SB05/2 SB06/1 SB06/2 SB07/1 SB07/2 SB08/1 SB08/2 SB10/1 SB10/2 SB11/1 SB11/2 SB12/1 SB12/2
1
34.5
1
49
2.5 134.25
2.5
44
37.5
432
0.005
0.02
0.025
3
0.025
2
0.05
3.3
0.01
0.01
21
1
1
2.5
2.5
74
0.005
0.025
0.025
0.05
0.01
1
1
3.25
2.5
15
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
1
1
2.5
33.25
37.5
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
52
0.005
0.025
0.025
0.05
0.01
1
2.5
4.25
2.5
15.75
0.005
0.025
0.025
0.05
0.01
10.5
65
120
90
1768
0.1
0.25
0.025
0.8
0.01
1.5
7
14
30
242
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
37.5
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
1
1
2.5
2.5
15
0.005
0.025
0.025
0.05
0.01
In the Danish risk assessment all the samples complied with the GGVs for soil. The
calculated compounds’ concentrations in indoors and outdoors air complied with the
air quality criteria in all boreholes. On the contrary, the estimated groundwater
concentration of the compounds was higher than the drinking norms in every sample.
In Table 5 the results from the groundwater module are presented for three randomly
selected samples: SB03/1, SB05/1 and SB05/2. The TPH concentration in
groundwater is at least 59 times over the limit across the three boreholes, reaching the
highest value in SB05/1. SB05/2 has the highest concentration in aromatic
hydrocarbons which exceed the groundwater criteria by 200 times and has the highest
concentration in toluene. The calculated concentration of MtBE and naphthalene is
over the drinking norms for the three samples. Benzene and fluoranthene
concentration is within the standards whereas toluene exceeds them only in SB05/2.
Table 5. Results of the Danish model for groundwater. The substances presented on the left side are split
into two groups depending on if their soil concentrations are input to the model (first four compounds) or if
they are calculated by the software. The three columns on the right show the ratio of the calculated
groundwater concentration of the substances to the groundwater quality criteria based on the hypothetical
observation data from soil samples SB03/1, SB05/1, SB05/2.
Danish model - Groundwater
Substance
TPH C6 - C35
Benzene
Toluene
MtBE
Naphthalene
Fluoranthene
Aromatic hydrocarbons C9 -C10
Ratio of calculated groundwater concentration to groundwater
criteria
SB03/1
SB05/1
SB05/2
59.1
0.014
0.0094
6
83.7
0.131
0.96
6
66.6
0.184
3.7
6
2.7
0.39
26.4
3
0.03
65.5
1.5
0.08
200
22
4.2.2. Analysis of the exposure path of consumption of groundwater
Table 6 presents the calculated pore water and groundwater concentrations based on
the hypothetical observation data from soil sample SB03/1 for benzene, toluene and
MtBE. Quality criteria for groundwater are also presented in the last line for each
compound and they are related to drinking norms. For the Swedish and the Danish
model, the quality criteria have the form of maximum contaminant level (mg/l). The
Norwegian model uses TDI criteria (mg/kg of body weight per day) and therefore
could not be compared with the other two models. For the Swedish and the Danish
model the groundwater concentrations are highlighted with either green or red
depending on if the exceed the maximum contaminant level.
Table 6. Comparison of calculated pore water concentration and groundwater concentration,
groundwater criteria and SSGVs in benzene, toluene and MTBE across the models. The calculations are
based on the hypothetical observation data from soil sample SB03/1. The concentrations in soil and in
groundwater highlighted with green, fulfill the quality criteria or the guidelines while the red ones do not.
Benzene
Specified concentration in soil (mg/kg)
IGV for groundwater (mg/kg)
Calculated pore water concentration (mg/l)
Calculated groundwater concentration (mg/l)
Groundwater criteria (mg/l)
Toluene
Specified concentration in soil (mg/kg)
IGV for groundwater (mg/kg)
Calculated pore water concentration (mg/l)
Calculated groundwater concentration (mg/l)
Groundwater criteria (mg/l)
MtBE
Specified concentration in soil (mg/kg)
IGV for groundwater (mg/kg)
Calculated pore water concentration (mg/l)
Calculated groundwater concentration (mg/l)
Groundwater criteria (mg/l)
23
Swedish
Norwegian
Danish
0.005
0.012
0.0054
0.0023
0.0005
0.005
0.0337
0.0054
0.0015
-
0.005
0.000015
0.000014
0.001
Swedish
Norwegian
Danish
0.025
5.5
0.018
0.0075
0.35
0.025
31.55
0.0093
0.0026
-
0.025
0.000048
0.000047
0.005
Swedish
Norwegian
Danish
0.01
0.41
0.042
0.018
0.04
0.01
1.26
0.0420
0.0118
-
0.01
0.0322
0.0316
0.005
Additionally, Table 6 shows the IGV for groundwater in the Swedish and the
Norwegian model. When the IGV is higher than the field concentration the sample
complies with the guidelines and the concentration is highlighted with green (first
line). For the Danish model there are no IGVs and the color of highlight depends only
on the groundwater concentration.
For all three substances the soil concentrations are below the SSGVs issued by the
Swedish and the Norwegian model. In the Danish model, benzene and toluene
concentrations are accepted but MtBE has six time higher concentration than the
drinking norms (marked with red). In the case of the Swedish model it is clear that a
compliance with the IGV does not mean that the water quality criteria/ drinking norms
are met; for benzene the calculated groundwater concentration is over the maximum
contaminant level but the soil concentration is still within the guidelines. For toluene
and MtBE both soil and groundwater concentrations comply with the guidelines and
the criteria respectively.
A comparison of the groundwater criteria between the Swedish and the Danish model
shows similar criteria for benzene but considerable differences in toluene and MtBE.
Toluene has 70 times higher acceptable concentration in the Swedish model than in
the Danish model while for MtBE it is 7 times higher.
When it comes to pore- and groundwater concentrations given by the models all three
of them have similar values for MtBE. On the contrary the Danish model gives quite
smaller concentrations for benzene and toluene than the other two models.
24
5. Discussion
The discussion follows the structure of the result section and is consisted of four parts.
First the results of the method and the model comparison are analyzed and then the
case study is on the focus. A discussion of the importance of the results and their
implications on a broader level follows with a brief report to the limitations of the
study.
5.1. Method and model comparison
The Swedish and the Norwegian risk assessment methods for contaminated land show
great similarities. Both countries have a common backbone when they assess the risk
for contaminated land, described by a two-phase risk assessment, use of GGVs,
consideration of land-use, similar fate and transport analysis of the contaminants and a
final generation of SSGVs.
These similarities expand to the models that are used for risk assessment and involve
comparable equations, interfaces and standards (Miljøverndepartementet 1999) in the
calculations.
Overall it can be said that the two countries have very close methods and models to
assess the risk deriving from contaminated areas. This was an expected conclusion
since the Norwegian model is based on an old version of the Swedish one
(Naturvårdsverket 2006).
The Danish risk assessment methodology is more difficult to be compared with the
Swedish and the Norwegian ones for the following reasons.
25

The type of the results given by the models (SSGVs and final
concentration in the vicinity of the recipient) are not comparable.

The inverse calculation path that is followed by the Swedish and
Norwegian model compared to the Danish one.

The cocktail mixture approach in the Danish model that takes into
consideration the interaction between the contaminants while the other
models assume only interaction of the contaminants with the
environment.

The different fractionation of petroleum hydrocarbons both as input to
the model and as output.
Concerning the fractionation of TPH, there is no protocol in Europe. Pinedo (2012)
argues that the fractionation of TPH should be based on their physicochemical
behavior and toxicity and not have a character of TPH as it is in the Danish model.
Peters et al. (1999) suggest to focus on certain petroleum hydrocarbon fractions that
are more dangerous for public health and not use a TPH approach. Park & Park
(2000) are also in favor of using fractions of TPH. For the rest of the differences it
cannot be said that the followed approach from a country is right or wrong as there are
arguments for both sides.
Regardless of the encountered difficulties in the comparison, there are three
conclusions that can be drawn from the theoretical cross-examination of the methods.
1. The Swedish model has the maximum number of recipients generating guideline
values for protection of humans, environment and spreading of the contaminants.
2. The Danish risk assessment is the only one that does not assess ecological risk.
This is in line with the Danish Act on Contaminated Soil (Miljøministeriet 2009)
26
that specifically lists human safety and drinking water as the primary protective
goals from contaminated areas. The Danish EPA has reflected upon the lack of the
ecological risk assessment and has analyzed and compared similar models from
other countries. The study and the comparison of similar models was done to
prepare the ground if the pressure to change the Act on Contaminated Soil
increases from the Water Framework Directive (WFD) and the Habitat Directive
in EU (Miljøstyrelsen 2007 & 2012).
3. Every recipient and exposure path in the models has the same weight in the
calculation of the risk deriving from the contaminated site. For example, the risk
for human health is as important as the risk for the environment in the Swedish
model and all the exposure paths are equated in the Norwegian and the Danish
models. This means that during the use of the models no prioritization according
to paths or recipients takes place.
5.2.Case study
The results of the Swedish and the Norwegian model on the case study are
considerably different. The much lower SSGVs issued by the Swedish model can be
explained by the fact that more exposure paths and recipients are involved into the
calculations than in the Norwegian model. If only the risk for human health was
assessed by the Swedish model, the SSGVs would be higher. This conclusion is
supported by the fact that 12/13 compounds in the Swedish model had the biggest
influence by the exposure paths of spreading of contaminants, and not by the healthbased guideline. When the two models had the same dominating exposure path for a
compound, they had their minimum difference in the SSGVs.
27
The lower SSGVs from the Swedish model resulted to considering the contaminant
concentrations in three boreholes as potentially dangerous for human and/ or the
environment. Thus, further investigation of the site can be considered. While in the
case of the Norwegian model, the site complies with the SSGVs and according to the
available data there is no need for further investigation.
The calculations with the Danish model show a different picture for the contaminated
area with all the samples giving groundwater concentrations over the drinking norms.
This clear exceedance of water quality standards leads to a higher pressure for further
investigation and consideration of remediation than in the case of the Swedish model.
The cross-examination of the module of consumption of groundwater across the
models showed how complicated such a comparison can be. In the first place it
showed that the increased sensitivity of the Danish model cannot be attributed to a
constant overestimation of the concentration of contaminants in the pore-water or in
the groundwater. It also made clear that the disparity in the results is not related to the
drinking norms. The Danish drinking norms for toluene though are remarkably more
demanding than in Sweden. The Danish EPA mentions that toluene’s reference values
are based on the Chemical Abstract Service (Miljøstyrelsen 2014b) while the Swedish
EPA uses values from World Health Organization (Naturvårdsverket 2009a).
Surprisingly enough, the drinking norm for toluene in groundwater from CAS is 1
mg/l (U.S. EPA 2005) which is far greater than the 0.005 mg/l that the Danish EPA
uses. A possible communication with the Danish EPA could clarify this discrepancy.
The overall picture from the comparison of the module of groundwater is that it is
much more conservative in Denmark. Even if this exposure pathway was taken into
consideration in the other two models, the concentrations of the three examined
28
compounds would comply with the groundwater criteria in at least 18 out of 20
samples. Another point that suggests that the Danish model is more conservative than
the other two, is that a calculated concentration of contaminants in the groundwater
over the quality criteria is not accepted in Denmark whereas in the Swedish model it
can still be within the IGV and be accepted (as demonstrated for benzene in SB03/1).
The higher tolerance in the Swedish model is supported by the fact that the drinking
norms concern parts of the water network that support more than 50 people and lead
to consumption of more than 10m3/ day (Livsmedelseverket 2005). Thus not private
use. Moreover, the drinking norms are not legally binding and they serve as a
recommendation to help in deciding if the water is appropriate or not
(Livsmedelsverket 2006).
The increased sensitivity that Denmark shows for groundwater contamination is well
known both inside the country (e.g. Miljøministeriet 2009; Miljøstyrelsen 2012
&2014b) and abroad (e.g. Naturvårdsverket 2006). The Danish EPA wants to guard
the quality of groundwater as it constitutes the main drinking water resource in the
country. The starting point of discussions for protection of groundwater is that after a
simple treatment of the water with aeration and sand filtration, it should meet EUDirective’s standards (Miljøstyrelsen 2014b).
5.3. Importance of the results
The demonstrated divergence of the examined risk assessment methods, models and
finally of the results and the conclusions that on the case-study shows how complex it
is to relate contamination on a site with impact to human health and/ or to ecology.
The complexity derives among other reasons from the existence of many direct and
indirect exposure paths (e.g. Abrahams 2002; Chen et al. 2003; Labieniec et al. 1997;
29
MacLeod et al. 2004; Paustenbach 2000) and effects of multiple contaminants on site
(Brouwer et al. 1990; Houk 1992; Park & Park 2010; Powers et al. 2001). Therefore it
has to be further examined how updated such models are with the current state of
knowledge.
In practice, the displayed divergence has major implications. These differences can
affect the decision to remedy a contaminated site and to prioritize remedial action
among contaminated areas (e.g. Miljøstyrelsen 2011). Therefore they show interest
for land-owners, consultants, the countries where the pollution occurs and, last but not
least, the inhabitants that are exposed to risks that are regarded as unacceptable by a
neighboring country.
The land-owners of a polluted site and/ or the countries where the contaminated areas
are, are legally responsible to pay for the land decontamination. In Sweden, about 1
billion SEK per year is spent on land remediation and half of it comes from the
private sector. In Norway, 170 million SEK per year are allocated for the same cause
(Miljøstyrelsen 2012) while in Denmark it was circa 250 million SEK in 2011
(Miljøstyrelsen 2014c).
For consultants who carry out risk assessments for contaminated sites, it is obvious
that the choice of a used method affects the conclusions of a risk assessment.
Companies that are present as a Nordic entity have reflected upon the varying
outcomes of risk assessments and the consequences they bear. The companies want to
efficiently utilize their funding for land decontamination and maximize risk reduction.
Additional implications for the countries from this comparison, involve which
protective goals are in threat by a contaminated site as this affects the priority for
30
remedial action. Norway and Sweden prioritize equally the ecological and human risk
assessment but they allocate more funding in remediation of sites posing risk for
humans (Miljøstyrelsen 2012). Since the models may not recognize the same
recipients being exposed to danger under a risk assessment, the decision that will be
taken may be affected.
Furthermore the risk assessments are used to see if the environmental goals set by the
EPAs on a national level are met or not. In Sweden for example, the goal to have nontoxic environment (giftfri miljö) will not be met by 2020 (Naturvårdsverket 2014).
But if a different risk assessment methodology was followed the results could maybe
show another picture. On a European level, the same problems exist when countries
report to WFD. As there is no common risk assessment methodology to gauge the
environmental status of countries the results/ reports are not comparable. This
inconsistency creates an uneven basis for discussions about obligations towards the
WFD and will concomitantly impact the need for taken action and the associated legal
implications.
5.4. Potential sources of errors and limitations of the results
The data and the methods used in the thesis may be prone to errors and therefore pose
limitations for the conclusions.
The study of the risk assessment methods and models was mostly based on online
material provided by the EPAs. The information though was usually fragmented in
different documents even when it was issued by the same EPA. Despite the thorough
research and comparison of different sources, it is possible that newer directions or
guidelines may apply and have partially replaced the ones presented here.
31
The case-study was based on fictive data that resembled real case-studies. Thus, the
construction of the examined case study by URS includes subjective choices
regarding the typical presence of the contaminants and the typical geometry and
characteristics of petrol stations. In order to further examine how representative is the
case study and the results and the conclusions that were drawn from it, additional
contaminated sites could be investigated.
The common ground for comparing certain parts of the models was very limited and
this investigation was one of the most time consuming elements of this study. This led
to comparing only one exposure path, for three compounds, in one soil sample which
corresponds to a quite small fragment of the models. Additional examination of other
common features could produce more concrete results.
4. Conclusions

The Swedish and the Norwegian risk assessment methods and models for
contaminated land show great similarities while the Danish one differs on a
conceptual level.

The present case study showed that the differences between the models affect
the results and the conclusions of a risk assessment. The same site can be seen
as posing risk to human health in one country (Denmark), while it complies
with the quality criteria of another country (Norway).

The differences reflect the priorities set by the EPAs when it comes to
protection goals.

The implications of not having a common method and tool to assess the risk
for contaminated land show great interest and mainly affect four groups: Land-
32
owners who may be called to cover the decontamination expenses. Consultants
and companies who perform risk assessments and land remediation. The
countries that have to meet national and international environmental goals and
can also share/ or cover the cost for decontamination. The people who are
exposed an environment seen as potential harmful by a neighboring country.

Although robust conclusions were obtained for the considered case, the fact
that realistic but hypothetical input data was used in the case study means that
future studies would need to further address questions regarding how frequent
and pronounced such diverging results are.
33
5. References
Abrahams, P.W., 2002, ‘Soils: Their implications to human health’, The Science of
the Total Environment, vol. 291, issue 1-3, p. 1-32, doi: 10.1016/S00489697(01)01102-0.
Brouwer, A., Murk, A.J., Koeman, J.H., 1990, ‘Biochemical and physiological
approaches in ecotoxicology’, Functional Ecology, vol. 4, issue 3, p. 275-281, doi:
10.2307/2389586.
Chen, Z., Huang, G.H., Chakma, A., 2003, ‘Hybrid fuzzy-stochastic modeling
approach for assessing environmental risks of contaminated groundwater systems’,
Journal of Environmental Engineering – ASCE, vol. 129, issue 1, p. 79-88, doi:
10.1061/(ASCE)0733-9372(2003)129:1(79).
Cushman, D.J., Driver, K.S., Ball, S.D., 2001. ‘Risk assessment for environmental
contamination: an overview of the fundamentals and application of risk assessment
at contaminated sites’. Canadian Journal of Civil Engineering 28[1], 155-162.
NRC Research Press. doi: 10.1139/cjce-28-S1-155.
European Commission 2012, Guidance on the interpretation of key provisions of
Directive 2008/98/EC on waste, Directorate-General Environment.
European Commission 2014 – Joint Research Centre (JRC), Progress in the
management of Contaminated Sites in Europe, Institute for Environment and
Sustainability, doi: 10.2788/4658.
Ferguson, C., Darmendrail, D., Freier, K., Jensen, B.K., Jensen, J., Kasamas, H.,
Urzelai, A. and Vegter, J. 1998, ‘Risk Assessment for Contaminated Sites in
Europe’. Scientific Basis. Vol. 1. LQM Press, Nottingham.
Guyonnet, D., Bourgine, B., Dubois, D., Fargier, H., Côme, B., Chilès, J., 2003,
‘Hybrid Approach for addressing Uncertainty in Risk Assessments’, Journal of
34
Environmental
Engineering-ASCE,
vol.
129,
issue
1,
p.
68-78,
doi:
10.1061/(ASCE)0733-9372(2003)129:1(68).
Houk, V.S., 1992, ‘The genotoxicity of industrial wastes and effluents’, Mutation
Research, vol. 277, issue 2, p. 91-138, doi: 10.1016/0165-1110(92)90001-P.
Labieniec, P.A., Dzombak, D.A., Siegrist, R.L., 1997, ‘Evaluation of uncertainty in
site-specific risk assessment’, Journal of Environmental Engineering –ASCE, vol.
123, Issue 3, p. 234-243, doi: 10.1061/(ASCE)0733-9372(1997)123:3(234).
Li Jianbing, Huang H. Gordon, Zeng Guangming, Maqsood Imran, Huang Yuefei,
2007, ‘An integrated fuzzy-stochastic modeling approach for risk assessment of
groundwater contamination’, Journal of Environmental Management, vol. 82, issue
2, p. 173-188, doi: 10.1016/j.jenvman.2005.12.018.
Linkov, I., Loney, D., Cormier, S., Satterstrom, F.K., Bridges, T., 2009, ‘Weight-ofevidence evaluation in environmental assessment: Review of qualitative and
quantitative approaches’, Sciences of the Total Environment, vol. 407, issue 19, p.
5199-5205, doi: 10.1016/j.scitotenv.2009.05.004.
Livsmedelsverket – Swedish National Food Agency 2006, Vägledning till
Livsmedelsverkets föreskrifter om dricksvatten (SLVFS 2001:30) [Guidance for
Swedish National Food Agency’s regulations for drinking water (SLVFS 2001:30)]
(In Swedish), Tillsynsavdelningen, Enheten för inspektion.
MacLeod, M., McKone, T.E., Foster, K.L., Maddalena, R.L., Parkerton, T.F.,
MacKay, D., 2004, ‘Applications of Contaminants and Bioaccumulation Models in
Assessing Ecological Risks of Chemicals: A Case Study for Gasoline
Hydrocarbons’, Environmental Science & Technology. vol 38, p. 6225-6233. doi:
10.1021/es049752+.
Miljøministeriet - Danish Ministry of the Environment 2009, Bekendtgørelse af lov
om forurenet jord LBK nr 1427 af 04/12/2009 [Act on Contaminated Soil (No. 1427
of 2009)] (In Danish).
35
Miljøstyrelsen - Danish Environmental Protection Agency 2002, Guidelines on
remediation of contaminated sites, Environmental guidelines no 7.
Miljøstyrelsen - Danish Environmental Protection Agency 2007, Consolidating
Regulation 22-03-2007 No. 282 on Contaminated Soil, LBKG2007282.
Miljøstyrelsen - Danish Environmental Protection Agency 2011, Værktøjer til brug
for risikovurdering og prioritering af grundvandstruende forureninger [Tool for
risk evaluation and prioritization of threat for groundwater pollution] (In Danish),
Environmental
Project
1366
2011,
Teknologiprogrammet
for
jord-
og
grundvandsforurening.
Miljøstyrelsen - Danish Environmental Protection Agency 2012, Ecological risk
assessment of contaminated sites, Environmental project 1422.
Miljøstyrelsen - Danish Environmental Protection Agency 2013, Manual for program
til risikovurdering –JAGG 2.0 (in Danish), Environmental project 1508.
Miljøstyrelsen - Danish Environmental Protection Agency 2014a, Bilag til
redegørelse om jordforurening 2011, [Appendix of remediation of contaminated
land 2011] (in Danish).
Miljøstyrelsen - Danish Environmental Protection Agency 2014b, Liste over
kvalitetskriterier i relation til forurenet jord og kvalitetskriterier for drikkevand,
[List of quality criteria concerning contaminated soil and quality criteria for
drinking water] (in Danish).
Miljøstyrelsen - Danish Environmental Protection Agency 2014c, Redegørelse om
Jordforurening 2011 [Statement in soil pollution 2011] (In Danish).
Miljøverndepartementet – Norwegian Environmental Protection Agency 1999,
Veiledning om risikovurdering av forurenset grunn [Directions for risk evaluation
of polluted wells] (In Norwegian). Norwegian Pollution Control Authority.
Guidance 99:01a.
36
Miljøverndepartementet – Norwegian Environmental Protection Agency 2009,
Helsebaserte tilstandsklasser for forurenset grunn [Health based classes of
environmental state for polluted wells] (In Norwegian). Norwegian Pollution
Control Authority. Guidance TA-2553.
Naturvårdsverket – Swedish Environmental Protection Agency 2002, Methods for
inventories of Contaminated Sites.
Naturvårdsverket – Swedish Environmental Protection Agency 2006, Fördjupade
riskbedömningar. Erfarenheter av riktvärdesberäkningar och användning av ny
kunskap [Advanced risk assessments. Experiences from generation of guideline
values and use of gained knowledge] (In Swedish). Report 5592.
Naturvårdsverket – Swedish Environmental Protection Agency 2009a, Riktvärden för
förorenad mark [Guideline values for contaminated soil] (In Swedish). Report
5976.
Naturvårdsverket
–
Swedish
Environmental
Protection
Agency
2009b,
Riskbedömning av förorenade områden [Risk assessment for contaminated sites]
(In Swedish). Report 5977.
Naturvårdsverket – Swedish Environmental Protection Agency 2014, Miljömålen
Årlig uppföljning av Sveriges miljökvalitetsmål och etappmål 2014 [Environmental
goals Annual follow-up of Swedish environmental quality and interim goals] (in
Swedish). Report 6608.
NICOLE, Network for Industrially Contaminated Land in Europe, 2004, Risk
Assessment Comparison Study, NICOLE Project, Appendix F Part 1.
Park, In-Sun, Park, Jae-Woo, 2000, ‘A novel total petroleum hydrocarbon
fractionation strategy for human health risk assessment for petroleum hydrocarboncontaminated site management’, Journal of Hazardous Materials, vol. 179, issue 13, p. 1128-1135, doi: 10.1016/j.jhazmat.2010.03.124.
37
Paustenbach, D.J., 2000, ‘The practice of exposure assessment: A state-of-the-art
review’, Journal of Toxicology and Environmental Health, Part B: Critical
Reviews, 3:3, p. 179-291, doi: 10.1080/10937400050045264.
Peters, C.A., Knightes, C.D., Brown, D.G., 1999, ‘Long-Term Composition
Dynamics of PAH-Containing NAPLs and Implications for Risk Assessment’,
Environmental Science & Technology, vol. 33, issue 24, p. 4499-4507, doi:
10.1021/es981203e.
Powers, S.E., Hunt, C.S., Heermann, S.E., Corseuil, H.X., Rice, D., Alvarez, P.J.J.,
2001, ‘The Transport and Fate of Ethanol and BTEX in Groundwater
Contaminated by Gasohol’, Critical Reviews in Environmental Science and
Technology, Vol. 31, Issue 1, p. 79-123. Doi: 10.1080/20016491089181.
Pinedo, J., Ibanez, R. Prima, O. and Irabien Gulias, A., 2012, ‘Hydrocarbons Analysis
for Risk Assessment in Polluted Soils’, Chemical Engineering Transactions, The
Italian
Association
of
Chemical
Engineering,
Vol.
28,
p.
79-84.
doi:
10.3303/CET1228014.
Suter II, G.W., 2006, Ecological Risk Assessment. CRC Press, Boca Raton, USA.
Thompson, K.M., Burmaster, D.E., Crouch, E.A.C., 1992, ‘Monte Carlo Techniques
for Quantitative Uncertainty Analysis in Public Health Risk Assessments’, Risk
Analysis, vol. 12, issue 1, p. 53-63, doi: 10.1111/j.1539-6924.1992.tb01307.x.
Troldborg, M., 2010, Risk assessment models and uncertainty estimation of
groundwater contamination from point sources, PhD thesis, Technical University
of Denmark.
U.S. EPA - United States Environmental Protection Agency, 2005, Toxicological
review of toluene. CAS No. 108-88-3.
Van Straalen, N.M., 2002, ‘Assessment of soil contamination’, Biodegradation, vol.
13, issue 1, p. 41-52, doi: 10.1023/A:1016398018140.
38
6. Appendix
Fig. 1. Map of the hypothetical petrol station. The location of the boreholes is designated with black circles
accompanied by the code of the bore sample. The outline of the buildings is marked with grey.
39
Table 1. Chemical analysis from the soil samples at the petrol station. The lab results refer to the concentration of 72 compounds in soil (left side) at ten boreholes (SB01-SB12). Each
borehole has two samples at different depths e.g. SB01/1 and SB01/2 for borehole SB01. Concentrations are given in mg/kg dry weight soil.
Sample
Substance
SB01/01 SB01/02 SB03/01 SB03/02 SB04/01 SB04/02 SB05/01 SB05/02 SB06/01 SB06/02 SB07/01 SB07/02 SB08/01 SB08/02 SB10/01 SB10/02 SB11/01 SB11/02 SB12/01 SB12/02
Limit of
Depth (m)
detection (mg/kg)
2
5
0.7
4.2
0.8
3.2
1.5
3
0.8
2
1.5
2.8
1
2.5
1
4
1.5
3
2
4.2
Aliphatic hydrocarbons C5
Aliphatic hydrocarbons C6
Aliphatic hydrocarbons C7
Aliphatic hydrocarbons C8
Aliphatic hydrocarbons C9
Aliphatic hydrocarbons C10
Aliphatic hydrocarbons C11
Aliphatic hydrocarbons C12
Aliphatic hydrocarbons C13
Aliphatic hydrocarbons C14
Aliphatic hydrocarbons C15
Aliphatic hydrocarbons C16
Aliphatic hydrocarbons C17
Aliphatic hydrocarbons C18
Aliphatic hydrocarbons C19
Aliphatic hydrocarbons C20
1
1
1
1
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
1
1
1
1
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
1
1
2
43
36
7
547
547
568
5
35
425
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
3
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
2
1.25
32
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
34
44
5
133
1.25
21
23
23
2
234
23
3
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
4
0.5
0.5
0.5
0.5
0.5
0.5
2
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
32
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
23
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
2
0.5
3
1.25
1.25
1.25
1.25
2
1.25
1.25
0.5
0.5
0.5
0.5
0.5
10
15
50
50
70
60
30
20
50
20
100
500
700
200
100
0.5
1
2
5
6
8
10
20
5
8
4
3
10
100
50
20
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
0.5
0.5
0.5
0.5
Aliphatic hydrocarbons C21
Aliphatic hydrocarbons C22
Aliphatic hydrocarbons C23
Aliphatic hydrocarbons C24
Aliphatic hydrocarbons C25
Aliphatic hydrocarbons C26
Aliphatic hydrocarbons C26
Aliphatic hydrocarbons C27
Aliphatic hydrocarbons C28
Aliphatic hydrocarbons C29
Aliphatic hydrocarbons C30
Aliphatic hydrocarbons C31
Aliphatic hydrocarbons C32
Aliphatic hydrocarbons C33
Aliphatic hydrocarbons C34
Aliphatic hydrocarbons C35
Aromatic hydrocarbons C5
Aromatic hydrocarbons C6
Aromatic hydrocarbons C7
Aromatic hydrocarbons C8
Aromatic hydrocarbons C9
Aromatic hydrocarbons C10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
1.00
0.40
3
3
3
2
2
34
23
2
0.5
3
4
46
4
0.5
245
0.5
0
0
0
0
4.00
2.00
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
23
0.5
0.5
0.5
0.5
0.5
0.5
23
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
23
0.5
0.5
0
0
0
0
10.00
10.00
0.5
34
0.5
0.5
4
0.5
0.5
34
34
0.5
0.5
34
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
56
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
34
0.5
4
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
50
20
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
2.00
5.00
30
5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
23
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0
0
0
0
0.40
0.40
40
Aromatic hydrocarbons C11
Aromatic hydrocarbons C12
Aromatic hydrocarbons C13
Aromatic hydrocarbons C14
Aromatic hydrocarbons C15
Aromatic hydrocarbons C16
Aromatic hydrocarbons C17
Aromatic hydrocarbons C18
Aromatic hydrocarbons C19
Aromatic hydrocarbons C20
Aromatic hydrocarbons C21
Aromatic hydrocarbons C22
Aromatic hydrocarbons C23
Aromatic hydrocarbons C24
Aromatic hydrocarbons C25
Aromatic hydrocarbons C26
Aromatic hydrocarbons C26
Aromatic hydrocarbons C27
Aromatic hydrocarbons C28
Aromatic hydrocarbons C29
Aromatic hydrocarbons C30
Aromatic hydrocarbons C31
Aromatic hydrocarbons C32
Aromatic hydrocarbons C33
Aromatic hydrocarbons C34
Aromatic hydrocarbons C35
Bensen
Toluene
Etylbensen
m-Xylen
o-Xylen
p-Xylen
Xylener
MtBE
0.33
0.33
0.33
0.33
0.33
0.33
4
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.01
0.05
0.05
0.025
0.025
0.05
0.1
0.02
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
6.00
28.00
26.00
1.50
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
18.00
25.00
135.00
20.00
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.02
3
2
0.3
2
1
3.3
0.01
41
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
8.00
10.00
50.00
20.00
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.25
0.025
0.1
0.2
0.5
0.8
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
0.33
0.33
0.33
0.33
0.33
0.33
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.005
0.025
0.025
0.0125
0.0125
0.025
0.05
0.01
Table 2. Configuration and report of the Swedish model
Konceptuell förorenings- och spridningsmodell
Naturvårdsverket, version 1.00
I detta blad kan en konceptuell förorenings- och spridningsmodell utarbetas för ett objekt.
Vägledning för hur denna tas fram finns i Naturvårdsverkets rapport Riskbedömning av
förorenade områden (rapport 5977), se www.naturvardsverket.se/ebh. Avsikten är att initialt
göra en kvalitativ bedömning av vilka föroreningskällor, frigörelsemekanismer, spridningsvägar,
möjliga exponeringsvägar och skyddsobjekt som är aktuella och behöver beaktas i projektet. En
del av exponeringsvägarna kan beräkningsprogrammet hantera (röd text nedan). Risker kopplade
till andra exponeringsvägar måste hanteras utanför programmet. Den konceptuella modellen kan
användas som underlag vid diskussioner mellan olika parter i projektet.
Återställ formulär
Eget scenario:
MKM Gas station
Generellt scenario: MKM
Föroreningskällor
Ytlig markförorening
Djupt liggande
markförorening
Markförorening
under grundvattenyta
Frigörelse-/
spridningsmekanismer
Utlakning till
grundvatten och
ytvatten
Exponeringsvägar
Skyddsobjekt
Hudkontakt
jord
Människor
Naturresurser
Markekosystem
Grundvatten
Ytvattenekosystem
Ytvatten
Sedimentekosystem
Övrigt
Intag av jord
Spridning via
grundvatten
Boende på platsen:
-Vuxna
-Barn
Inandning
damm
Spridning via
ytvatten
Regelbundet verksamma på platsen:
-Vuxna
-Barn
Inandning av
ånga från jord
Förorening
i grundvatten
Miljö
Förångning
Vinderosion
Intag av dricksvatten
Besökande:
-Vuxna
-Barn
Förorening
i sediment
Vattenerosion,
ras och skred
Förorening
som fri fas
Intag av frukt,
bär, svamp,
rot- & grönsaker
Närboende:
-Vuxna
-Barn
Frifasspridning
Intag av fisk
Förorening finns
i/omkring:
-Lagringstankar
-Rörledningar
-Avfall/deponi
-Ledningsgravar
-Övrigt
Pågående
verksamhet
Upptag i växter
Övrigt
Bevattning
Övrigt
Intag av mjölk,
kött och ägg
Övrigt
Hudkontakt
med sediment
Övrigt
Övrigt
42
Indata för beräkning av riktvärden
Naturvårdsverket, version 1.00
Val av generellt scenario (gulbruna celler)
Beskrivning av scenariot
Scenariots namn:
MKM Gas station
Hämta generellt scenario:
Beskrivning:
Standardscenario för mindre känslig markanvändning, enligt
Naturvårdsverkets generella riktvärden för förorenad mark.
Val av eget scenario (data till vita inmatningsceller)
Hämta eget scenario:
Val av ämnen
Ämne 1:
Ämne 9:
Ämne 17:
Ämne 2:
Ämne 10:
Ämne 18:
Ämne 3:
Ämne 11:
Ämne 19:
Ämne 4:
Ämne 12:
Ämne 20:
Ämne 5:
Ämne 13:
Ämne 21:
Ämne 6:
Ämne 14:
Ämne 22:
Ämne 7:
Ämne 15:
Ämne 23:
Ämne 8:
Ämne 16:
Ämne 24:
Val av exponeringsvägar
Exponeringsparametrar
Intag av jord
Intag av förorenad jord
Hudkontakt med jord/damm
Exponeringstid barn
Exponeringstid vuxna
Inandning av damm
60
200
MKM
60 dag/år
200 dag/år
60
90
60 dag/år
90 dag/år
60
200
1
60 dag/år
200 dag/år
1-
60
200
1
60 dag/år
200 dag/år
1-
0
0
0
0 kg/dag
0 kg/dag
0-
Hudkontakt med jord/damm
Inandning av ånga
Exponeringstid barn
Exponeringstid vuxna
Intag av dricksvatten
Intag av växter
Inandning av damm
Uppskattning av halt i fisk
Exponeringstid barn
Exponeringstid vuxna
Andel inomhusvistelse
MKM
Inandning av ånga
Scenariospecifika modellparametrar
Exponeringstid barn
Exponeringstid vuxna
Andel inomhusvistelse
Använd KM-värden i modellen
Intag av växter
Använd MKM-värden i modellen
Konsumtion, barn
Konsumtion, vuxna
Andel från odling på plats
Jord- och grundvattenparametrar
Halt löst/mobilt organiskt kol
Torrdensitet
Halt organiskt kol
Vattenhalt
Andel porluft
Total porositet
MKM
0.000003 0.000003 kg/dm3
1.7
1.5 kg/dm3
0.01
0.02 kg/kg
0.3
0.32 dm3/dm3
0.1
0.08 dm3/dm3
0.4
dm3/dm3
43
Förorenat område
Områdets längd
Områdets bredd
40
19
MKM
50 m
50 m
1
m
Riktvärdet avser endast jord under
grundvattenytan
Mäktighet under gv-ytan
Transportmodell - Ånga till inom- och utomhusluft
Luftvolym inne i byggnad
Luftomsättning i byggnad
Yta under byggnad
Djup till förorening
Utspädning till inomhusluft
Utspädning till utomhusluft
Transportmodell - Grundvatten
380
12
160
1.1
17338
3744324
Transportmodell - Ytvatten
MKM
240
12
100
0.35
3
m
1/dag
m2
m
Grundvattenbildning
Hydraulisk konduktivitet
Hydraulisk gradient
Akviferens mäktighet
Avstånd till brunn
Utspädning till grundv. (brunn)
Transportmodeller - Egna utspädningsfaktorer
MKM
Porluft till inomhusluft
Sjö
Porluft till utomhusluft
Rinnande vattendrag
Porvatten till grundv. (brunn)
1000000 1000000 m3
1
1 år
0.03171 0.03171 m3/s
13158
ggr
Sjöns volym
Sjöns omsättningstid
Flöde i rinnande vattendrag
Modellens utspädning
Skydd av markmiljö
MKM
100
100 mm/år
5.00E-05 1.00E-05 m/s
0.001
0.03 m/m
10
10 m
200
200 m
29
ggr
Porvatten till ytvatten
MKM
6000
~6000 ggr
600000 ~600000 ggr
47
47 ggr
4000
4000 ggr
Transportmodeller - Beräknade vattenflöden
Flöde genom föroren. massor
Flöde genom akviferen
m3/år
m3/år
76.0
299.6
MKM
MKM
Använd KM-värden i ämnesdatabas
Markmiljö beaktas i sammanvägning hälsa/miljö
Använd MKM-värden i ämnesdatabas
Skydd av grundvatten samt justeringar
Skydd av grundvatten - Utspädning:
MKM
Skydd av grundvatten beaktas
MKM
Egen utspädningsfaktor
Justering för aktuttoxicitet
Avstånd till skyddat gv
Egen utspädningsfaktor
Utspädning till skyddat gv
Justering för bakgrundshalt
200
47
29
200 m
47 ggr
ggr
Lägg till, spara eller ta bort scenario
Välj scenario som ska tas bort:
Scenariots namn:
Lägg till nytt/spara
scenario
MKM Gas station
Ändra scenariots namn längst upp på
bladet (cell C4).
Ta bort
scenario
Skapa, ta bort eller ändra eget ämne
Skapa eget ämne från befintligt:
Ange namn på eget ämne:
Skapa
ämne
Arsenik-mod
Ta bort
ämne
Välj eget ämne som ska tas bort:
Välj eget ämne som ska ändras:
Välj ämnesparameter:
Redigera ämnesparameter:
Spara
ändring
0
Referens:
Spara
referens
Redigera referens:
Ändra modellparameter
Spara
ändring
Välj modellparameter:
Standardvärde:
Redigera modellparameter:
7.6 m3/dag
7.6 m3/dag
Återställ
alla
44
Nollställ
referense
Uttagsrapport
Eget scenario:
MKM Gas station
Generellt scenario: MKM
Naturvårdsverket, version 1.00
Beskrivning
Standardscenario för mindre känslig markanvändning, enligt Naturvårdsverkets
generella riktvärden för förorenad mark.
Beräknade riktvärden
Ämne
Alifat >C5-C6
Alifat >C6-C8
Alifat >C8-C10
Alifat >C10-C12
Alifat >C12-C16
Alifat >C16-C35
Aromat >C8-C10
Aromat >C10-C16
Bensen
Toluen
Etylbensen
Xylen
MTBE
Avvikelser i scenarioparametrar
Torrdensitet
Halt organiskt kol
Vattenhalt
Andel porluft
Längd på förorenat område
Bredd på förorenat område
Luftvolym inne i byggnad
Yta under byggnad
Djup till förorening
Hydraulisk konduktivitet
Hydraulisk gradient
Avvikelser i modellparametrar
Inga avvikelser i modellparametrar.
Riktvärde
18
120
100
500
500
1,000
50
15
0.012
15
15
20
0.25
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Eget scenario
Generellt scenario
MKM Gas station
MKM
1.7
1.5
0.01
0.02
0.3
0.32
0.1
0.08
40
50
19
50
380
240
160
1.1
0.00005
0.001
100
0.35
0.00001
0.03
Eget värde
-
Standardvärde
-
Styrande för riktvärde
Skydd av grundvatten
Skydd av grundvatten
Inandning ånga + exp. andra källor
Skydd av markmiljö
Skydd av markmiljö
Skydd av markmiljö
Skydd av markmiljö
Skydd av markmiljö
Skydd av grundvatten
Skydd av grundvatten
Skydd av grundvatten
Skydd av grundvatten
Skydd av grundvatten
Kommentarer (obl = obligatorisk, frv = frivillig)
kg/dm3
kg/kg
dm3/dm3
dm3/dm3
m
m
m3
Fill, sand and gravel (obl)
Same preset value in the Norwegian model (obl)
Characteristics for fill material (obl)
Characteristics for fill material (obl)
Dimensions of the polluted area according to GGM (obl)
Dimensions of the polluted area according to GGM (obl)
Based on the map and logical assumptions for building
height (obl)
Measured on the site map (obl)
Average depth from all the boreholes (obl)
Field data (obl)
Field data (obl)
m2
m
m/s
m/m
Egendefinierade ämnen
Inga egendefinierade ämnen används.
45
Table 3. Configuration of the Norwegian model.
Tabell I. Eksponeringsveier ved aktuell arealbruk. (Kun verdier i gull felt kan endres. Endringer skal begrunnes.)
Parametre
Eksponeringstid for oralt inntak av jord (barn)
Eksponeringstid for oralt inntak av jord (voksne)
Eksponeringstid for hudkontakt med jord (barn)
Eksponeringstid for hudkontakt med jord (voksne)
Oppholdstid utendørs (barn)
Oppholdstid utendørs (voksne)
Oppholdstid innendørs (barn)
Oppholdstid innendørs (voksne)
Fraksjon av grunnvann fra lokaliteten brukt som
Fraksjon av inntak av grønnsaker dyrket på lokaliteten
Fraksjon av inntak av fisk fra nærliggende resipient
Standard Anvendt Enhet
verdi
verdi
365
60 dager/år
8
8 timer/dag
365
200 dager/år
8
8 timer/dag
80
60 dager/år
8
8 timer/dag
45
90 dager/år
8
8 timer/dag
365
60 dager/år
24
8 timer/dag
365
200 dager/år
24
8 timer/dag
365
60 dager/år
24
8 timer/dag
365
200 dager/år
24
8 timer/dag
100%
0% UAKTUELL
30%
0% UAKTUELL
100%
0% UAKTUELL
Begrunnelse
(Gule celler må fylles)
Same as in the Swedish model
Same as in the Swedish model
Same as in the Swedish model
Same as in the Swedish model
Same as in the Swedish model
Same as in the Swedish model
Same as in the Swedish model
Same as in the Swedish model
Exposure pathway not included in the CSM
Exposure pathway not included in the CSM
Exposure pathway not included in the CSM
Tabell II. Transport og reaksjonsmekanismer (tabell 21 s.99 i SFT 99:01A; Kun verdier i gule felt kan endres. Endringer skal begrunnes.)
Parametre
Symbol
Jordspesifikke data
Vanninnhold i jord
qw
0.2
0.3 l vann/l jord Based on fill material characteristics
Luftinnhold i jord
qa
0.2
0.1 l luft/l jord
Jordas tetthet
rs
1.7
1.7 kg/l jord
Fraksjon organisk karbon i jord
Standard
verdi
1%
foc
Jorda porøsitet
e
40%
Parametre brukt til beregning av konsentrasjon i innedørsluft
Innvendig volum av huset
240
Vhus
Anvendt Enhet
verdi
1%
380 m3
A
100
160 m2
l
12
12 d-1
L
2.4
2.4 m3/d
Z
0.35
1.1 m
0.7
0.7 m2/d
Do
Data brukt til beregning av konsentrasjon i grunnvann
Jordas hydraulisk konduktivitet
0.00001 0.00005 m/s
k
315.36
1576.8 m/år
Avstand til brønn
X
0
0m
Lengden av det forurensende området i
50
40 m
Lgw
gunnvannsstrømmens retning
Infiltrasjons faktor
IF
0.141
0.141 år/m
Gjennomsnittlig årlig nedbørmengde
P
730
500 mm/år
Infiltrasjonshastigheten
I
0.1
0.1 m/år
Hydraulisk gradient
i
0.03
0.001 m/m
Tykkelsen av akviferen
5
10 m
da
Tykkelsen av blandingssonen i akviferen
5 6.473789 m
dmix
Data brukt til beregning av konsentrasjon i overflatevann
Vannføring i overflatevann
500000 1000000 m3/år
Qsw
Bredden av det forurensende området vinkel- LSW
7.34
19 m
rett på retningen av grunnvannsstrømmen
Qdi
Based on fill material characteristics
40%
Areal under huset
Utskiftingshastighet for luft i huset
Innlekkingshastighet av poreluft
Dybde fra kjellergulv til forurensning
Diffusiviteten i ren luft
Beregnet hastighet på grunnvannstrøming
Begrunnelse
(Gule celler må fylles)
347.21136 193.9495 m3/år
46
Based on the map and logical assumptions for building height
Measured on the site map
Average depth from all the boreholes
Field data
Dimensions of the polluted area according to GGM
Average value for the three compared countries
Beregnet (IF • P 2)
Field data
Same preset value in the Swedish model
Beregnet (ligning (10) i SFT 99:01a)
Same value as in the Swedish model
Dimensions of the polluted area according to GGM
Beregnet (k • i • dmix • LSW )
Table 4. Configuration and report from the Danish model.
Oliestoffer - fugacitetsberegninger
Lokaliteten
Navn:
Adresse:
Matrikel nr.:
Note
Gas station
Sweden, Norway, Denmark
0
0
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Jord
Standard data
Kommentar
Jordtype
Poreluftvolumen
Vand-indhold
VL
VV
Samlet porøsitet
e=VL+VV
Volumen af jordskellet
Kornrumvægt
Volumenvægt
Indhold af organisk kulstof
VJ
Indtastede data (angives med fed)
Fyld
0.1
0.3
0.4
0.6
2.6
1.02
d
r
1.7
foc
1.0
Beregning: Fugacitet
Nej
Beregnet ud fra
fugacitet
Grundvandskriteriet
Vandkoncentrationer
Overskridelse
af kriteriet
Indtastede
værdier
Beregnet ud fra
profil
Indtastede
værdier
Jordkoncentrationer
gange
µg/l
µg/l
Nej
0.0146
0.0482
0.0338
0.0066
2.7797
1
5
Anvendt brugerdata
Ja
Poreluft konc.
mg/kg
mg/kg mg/kg
0.005
0.025
0.025
0.005
0.005
0.025
0.025
0.005
5.1181
1.5
C 6-C10
C 10-C15
89
1,735
89
1,735
25
C 15-C20
462
462
0.6399
377
2,664
377
2,664
0.0308
542
9
26.622
1
26.9
68.311
7.4E-05
1.4E-04
1.1E-05
3.4E-06
0.0401
0.0011
0.01
Nej
0.1
Nej
3.9E-10
3.6E-10
5.1E-12
7.3E-15
1.7E-05
9.3E-10
0.0012
0.1
Nej
Overskridelse
af kriteriet
Fri fase?
0/1/1900
Afdampningskriteriet
Dato
SB03/1
Beregnet ud fra
fugacitet
Målepunkt
Overskridelse
af kriteriet
Kommentar
gange mg/m³ mg/m³ gange
BTEX'er
Benzen
Toluen
Ethylbenzen
Sum Xylener
Naphtalen
5
1
Nej
Nej
1.0247 1.3E-04 7,883
1.4241
0.4
3.5603
0.4475
Nej
0.0764
0.1
5.2389
2.7797 0.5579
0.04
13.947
Kulbrintefraktioner
C 20-C35
Sum af kulbrinter
100
3.56
26.64
31.921
509
4,499
156
1.007
1.2E-04
60.266 4,667
0.1
46,666
0.03
2,319
Alkylbenzener
C 9-C10 aromatiske kulbrinter
Polyaromatiske Kulbrinter (PAH)
Benzo(a)pyren
benzo(b+j+k)fluoranthen
benzo(ghi)perylen
Dibenz(a,h)anthracen
Fluoranthen
indeno(1,2,3-cd)pyren
Sum af 7 PAH'er jord
Sum af 4 PAH`er
0.15
0.3
0.15
0.01
2.2625
20.118
22.84
0.3
Nej
0.3
Nej
4
5.71
NSO-forbindelser
Sum af NSO-forbindelser
0
0.0401
1.155
47
0.2932
Vertikal transport - oliestoffer
Lokaliteten
Navn:
Adresse:
Matrikel nr.:
Note
Gas station
Sweden, Norway, Denmark
0
0
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Kildeområde
Kommentar
Længde af kildeområdet
Bredde af kildeområdet
Y
x
40.0
19.0
Nettonedbør
Kommune/Egn
N
Afstand til grundvandsspejl
Z
2.3
Longitudinal dispersivitet
α L,W
0.0469
Transversal dispersivitet
α T,W
0.0003
m
m
Standard data
300.0
Helsingør
Indtastede data (angives med fed)
500.0
mm/år
m
Jordparametre
Kommentar
Jordtype
Vandindhold
Luftindhold
Total porøsitet (VL+VV)
% organisk indhold
Bulkmassefylde
qw
qa
n
foc
Standard data
Fyld
0.3
0.1
0.4
Indtastede data (angives med fed)
1.0
r
1.02
kg/l
Beregning: Vertikal transport
Målepunkt
SB03/1
Kommentar
Dato
Fri fase?
Nej
Anvendt brugerdata
Ja
Porevands
konc.
Nedbrydnings
konstant
Stationær
porevandkonc. i
toppen af GV
magasin
Transient
porevandkonc. i
toppen af GV
magasin efter
år
50
µg/l
dage-1
µg/l
µg/l
µg/l
gange
0.015
0.048
0.034
0.007
0.041
2.78
0
0
0
0
0
0
0.015
0.048
0.034
0.007
0.041
2.78
0.015
0.048
0.034
0.007
0.041
2.78
1
5
Nej
Nej
5
1
Nej
2.8
C6-C10
31.9
0
31.9
30.5
C10-C15
509
0
509
#NUM!
C15-C20
0.64
0
0.64
#NUM!
C20-C35
Sum af kulbrinter
0.031
542
0
0
0.031
542
#NUM!
#NUM!
9
60.3
Alkylbenzener
C9-C10 aromatiske kulbrinter
26.9
0
26.9
26.9
1
26.9
Polyaromatiske Kulbrinter (PAH)
Fluoranthen
Benzo(a)pyren
Sum af 4 PAH`er
0.04
0.0
0.001
0
0
0
0.04
0.0
0.001
#NUM!
#NUM!
#NUM!
0.1
0.01
0.1
Nej
Nej
Nej
NSO-forbindelser
Sum af NSO-forbindelser
1.15
0
1.15
#NUM!
Grund
vandskriteriet
Overskridelse
af kriteriet
(stationær
forhold)
BTEX'er
Benzen
Toluen
Ethylbenzen
Sum Xylener
Sum Xylener+ethylbenzen
Naphtalen
Kulbrintefraktioner
Beregningerne udført af
Firmanavn
Navn/initialer
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden at der er foretaget ændringer af beregningsformler
48
Grundvand-Olie
Lokaliteten
Navn:
Adresse:
Matrikel nr.:
Note
Gas station
Sweden, Norway, Denmark
0
0
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Det forurenede område
Kommentar
Areal af det forurenede område A
Bredde af det forurenede område B
Nettonedbør
Kommune/Egn
N
760
19.0
m
m
Standard data
Indtastede data (angives med fed)
300
500
mm/år
Helsingør
Det først betydende magasin
Kommentar
Aguifer
Effektiv porøsitet
Porøsitet, vandmættet
Bulkmassefylde
% organisk indhold
Tykkelse af GV-magasin
Hydraulisk ledningsevne
Standard data
Indtastede data (angives med fed)
Sand, mellemkornet
eeff
0.2
eW
0.45
(rho) b
1.7
kg/l
foc
0.01
1.0
dm_max
10.0
m
k
5.00E-05
m/s
Beregning: Grundvand
Målepunkt
Kommentar
Dato
Fri fase?
Anvendt brugerdata
Nej
Ja
SB03/1
Porevands
konc.
NedbrydGrund
OverTrin 1 Trin 2 Trin 3
nings
vands- skridelse
C1
C2
C3
konstant
kriteriet af kriteriet
µg/l
dage-1
µg/l
µg/l
µg/l
µg/l
gange
0.015
0.048
0.034
0.007
0.041
2.78
0
0
0
0
0
0
0.014
0.047
0.033
0.006
0.04
2.73
0.014
0.047
0.033
0.006
0.04
2.73
0.014
0.047
0.033
0.006
0.04
2.73
1.0
5.0
Nej
C6-C10
31.9
0
31.3
31.3
31.3
C10-C15
509
0
499
499
499
BTEX'er
Benzen
Toluen
Ethylbenzen
Sum Xylener
Sum af xylener+ethylbenzen
Naphtalen
5.0
1.0
2.7
Kulbrintefraktioner
C15-C20
C20-C35
Sum af kulbrinter
Alkylbenzener
C9-C10 aromatiske kulbrinter
Polyaromatiske Kulbrinter (PAH)
Fluoranthen
Benzo(a)pyren
Sum af 4 PAH`er
NSO-forbindelser
Sum af NSO-forbindelser
0.64
0
0.031
0
0.628 0.628 0.628
0.03
0.03
0.03
542
0
532
532
532
9.0
59.1
26.9
0
26.4
26.4
26.4
1.0
26.4
0.04
0.0
0.001
0
0
0
0.1
0.01
0.1
Nej
Nej
Nej
1.15
0
0.039 0.039 0.039
0.0
0.0
0.0
0.001 0.001 0.001
1.13
Beregningerne udført af
Firmanavn
Navn/initialer
1.13
1.13
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden at der er foretaget ændringer af beregningsformler
49
Indeklima-Olie
Navn:
Adresse:
Matrikel nr.:
Note
Gas station
Sweden, Norway, Denmark
0
0
Jordparametre
Indtastede data angives med fed
Membran
Kommentar
Membran type
Tykkelse
Materialekonstant
Kommentar
Jordtype
Jordlag, Dybde fra
Jordlag, Dybde til
Poreluftvolumen
Vand-indhold
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
mm
Jordlag 1
Fyld
0
0.7
VL
VV
Kapilarbrydende lag
Jord type
Tykkelse
Materialekonstant
Jordlag 2
m
Jordlag 3
Jordlag 4
m u.t.
m u.t.
0.1
0.3
Materialekonstant
0.0079
Samlet materialekonstantKW
0.0113
Samlet tykkelse af jordlag
0.7
m
Terrændæk
Bygningsdata
Kommentar
Type af terrændæk
Kommentar
Rumtype/anvendelse
Lh
Loftshøjde (m)
2.5
Gulvbredde (m)
lb
10
Gulvlængde (m)
ll
20
Luftskifte (m³/s)
Ls
Betontværsnit (cm)
Trykforskel over
betondæk (Pa)
hb
DP
10
5
Øvrige detaljer se side 3
8.3E-05
Beregning: Indeklima
Kommentar
BTEX'er
Benzen
Toluen
Ethylbenzen
Sum Xylener
∑Xylener+Ethylbenzen
Naphtalen
Kulbrintefraktioner
C 6-C10
C 10-C 15
C 15-C 20
C 20-C 35
Sum af kulbrinter
Målepunkt
Dato
Fri fase?
SB03/1
0/1/1900
Nej
Anvendt brugerdata
Poreluftkonc.
Poreluftkonc.
under gulv
Total bidrag til
udeluft
Afdampnings
kriteriet
Over
skridelse
mg/m3
1.0247
1.4241
0.4475
0.7638
1.2113
0.5579
mg/m3
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
mg/m3
0
0
0
0
0
0
mg/m3
1.30E-04
0.4
gange
Nej
Nej
0.1
0.04
Nej
Nej
4,498
156
1.007
1.16E-04
4,665
#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
0
0
0
0
0
0.1
Nej
69.5335
#VALUE!
0
0.03
Nej
Ja
Aromatiske kulbrinter
C 9-C10 aromatiske kulbrinter
Beregningerne udført af
Firmanavn
Navn/initialer
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden at der er foretaget ændringer af beregningsformler
50
Detailoplysninger om terrændæk
Type af terrændæk
Relativ luftfugtighed
Vand/cement-tallet
Cementindhold
Svindtid
Materialekonst. for beton
Armeringsdiameter
Armeringskonstant
Afstand mellem
armeringsjern
Dynamisk viskositet af
luft
Elasticitetskoeff. Beton
Elasticitetskoeff. Stål (MPa)
RF
v/c
CM
ts
Nb
da
k
%
kg/m³
døgn
mm
Db
mm
m
1.80E-05
Eb
Es
20,000
210,000
kg/m·s
MPa
MPa
Beregnede data om terrændæk
Materialekonstant for
terrændæk
Revnevidde
Beregnede
værdier
Indtastede
(målte) værdier
Gnmsn. Revneafstand
KN
w
lw
#VALUE!
mm
mm
Total revnelængde
ltot
17.0
mm
Vol. strøm gennem beton
qb
qbyg
Vol. strøm i bygningen
0
0
0.0044
51
m³/s
m³/s
Udeluft-Olie
Lokaliteten
Navn:
Adresse:
Matrikel nr.:
Note
Gas station
Sweden, Norway, Denmark
0
0
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Jordparametre
Kommentar
Jordlag, Dybde fra
Jordlag, Dybde til
Jordtype
Materialekonstant
m u.t.
m u.t.
Indtastede data (angives med fed)
Jordlag 1
Jordlag 2
Jordlag 3
0
0.7
Fyld
0.0079
Samlet ækivalent jordlagtykkelse (app 5.3/lign. 51) 0.0113
m
Jordlag 4
Tykkelse af jordlag
0.7
m
Det forurenede område
Kommentar
Længde af det
forurenede område
l
Opblandingshøjde
Opblandingshøjde/
længde
h/l
h/l
19.0
1.52
m
m
0.08
Beregning: Udeluft
Målepunkt
Fri fase?
Dato
SB03/1
Nej
Poreluftkonc.
Total bidrag
til udeluft
mg/m3
1.02
1.42
0.448
0.0764
0.524
0.558
mg/m3
1.35E-06
1.72E-06
5.04E-07
8.60E-08
5.90E-07
5.72E-06
C6-C10
4,500
0.0051
C10-C15
156
0.0012
C15-C20
1.01
6.36E-06
C20-C35
Sum af kulbrinter
377
4,670
Aromatiske kulbrinter
C9-C10 aromatiske kulbr.
69.6
Oliestofgrupper
BTEX'er
Benzen
Toluen
Ethylbenzen
Sum Xylener
∑Xylener+Ethylbenzen
Naphtalen
Anvendt brugerdata
Ja
Afdampnings
Overskridelse
kriteriet
mg/m3
1.30E-04
0.4
gange
Nej
Nej
0.1
0.04
Nej
Nej
6.49E-10
0.0063
0.1
Nej
6.34E-04
0.03
Nej
Kulbrintefraktioner
Beregningerne udført af
Firmanavn
Navn/initialer
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden at der er foretaget ændringer af beregningsformler
52
Fugacitetsberegninger
Lokaliteten
Navn:
Adresse:
Matrikel nr.:
Note
Gas station
Sweden, Norway, Denmark
0
0
Lokalitetsnr.: 0
Postnr./by: 0
Projekt nr.: O_o
Jord
Kommentar
Jordtype
Poreluftvolumen
Vandindhold
Samlet porøsitet
Volumen af jordskellet
Kornrumvægt
Volumenvægt
Indhold af organisk kulstof
Standard data
VL
VV
e=VL+VV
VJ
d
r
Indtastede data (angives med fed)
Fyld
0.1
0.3
0.4
0.6
2.6
1.02
1.7
1
foc
kg/l
kg/l
%
Stoffer
Kommentar
Forureningskomponent
Stof 1
Stof 2
Stof 3
Stof 4
MTBE
SB03/1
MP
dato
88.149
m
33,331
p
51,000
S
log oktanol/vand ford. koeff. log K OW
0.94
Målepunkt
Dato
Molmasse
Damptryk
Vandopløselighed
KOC
KOC
1.37
Henrys konstant
KH
0.023
Maksimal ford. luft
fl
0.01
Maksimal ford. vand
0.95
Maksimal ford. jord
fv
fj
Mættede damptryk
CLmax
g/mol
Pa
mg/l
0.04
1,185,865
mg/m³
Fugacitetsberegninger
Kommentar
Målt konc. i poreluft
CL
mg/m³
Beregnet jordkonc.
Ct
Beregnet vandskonc.
CV
mg/kg TS
mg/l
Målt konc. i grundvand
CV
mg/l
Beregnet poreluftskonc.
CL
Beregnet jordkonc.
Ct
mg/m³
mg/kg TS
Målt konc. i jorden
Ct
0.01
mg/kg TS
Beregnet poreluftskonc.
CL
0.75
Beregnet vandskonc.
CV
0.0322
mg/m³
mg/l
nej
Risiko for fri fase?
nej
nej
Ja, se bemærkning Ja, se bemærkning Ja, se bemærkning Ja, se bemærkning
Anvendt Brugerdata?
Beregningerne udført af
Firmanavn
Navn/initialer
nej
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
53
Vertikal transport
Lokaliteten
Navn:
Adresse:
Gas station
Sweden, Norway, Denmark
Note
0
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Kildeområde
Kommentar
Længde af kildeområdet
Bredde af kildeområdet
Y
x
Nettonedbør
Kommune/Egn
N
Afstand til grundvandsspejl
19.0
40.0
m
m
Standard data
300
Helsingør
Z
2.7
Longitudinal dispersivitet
α L,W
0.0018
Transversal dispersivitet
α T,W
1.75E-04
Indtastede data (angives med fed)
600
mm/år
m
Jordparametre
Kommentar
Jordtype
Vandindhold
Luftindhold
Total porøsitet (VL+VV)
% organisk indhold
Bulkmassefylde
Standard data
qw
qa
n
foc
Indtastede data (angives med fed)
Ler
0.3
0.1
0.4
0.1
1.62
r
kg/l
Nedbrydningsforhold:
Stoffer og stofegenskaber
Stof 1
Kommentar
Forureningskomponent
Stof 3
Stof 4
MTBE
Målepunkt
Dato
Kildekoncentration
Beregnet værdi anvendt
Testværdi anvendt
1. ordens nedbrydn.konst. aerob
1. ordens nedbrydn.konst. anaerob
Diffusionskoefficient (luft)
Dda
Diffusionskoefficient (vand) Ddw
KOC
KOC
Henrys konstant
Stof 2
SB03/1
0.0322
Ja
Nej
mg/l
dag-1
dag-1
m2/s
m2/s
mg/l
0
0
8.8E-06
8.8E-10
1
KH
0.023
Beregning: Vertikal transport
Kommentar
Stationær koncentration efter nedsivning igennem den umættede zone (z)
C(z), Porevandkoncentration lige
over grundvand (input til trin 1a)
Grundvandskriterie
0.0322
mg/l
mg/l
gange
0.005
6
Overskridelse af kriteriet
Transient koncentration efter nedsivning igennem den umættede zone (z) efter tid (t)
Tid, år
50.0
C(z,t), transient porevandkonc.
lige over grundvand efter tid, t
Anvendt Brugerdata?
0.0322
mg/l
Ja, se bemærkning
Beregningerne udført af
Firmanavn
Navn/initialer
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden at der er foretaget ændringer af beregningsformler
54
Grundvand
Lokaliteten
Navn:
Adresse:
Matrikel nr.:
Note
Gas station
Sweden, Norway, Denmark
0
0
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Det forurenede område
Kommentar
Beregningstypen
Areal af det forurenede område
Bredde af det forurenede område
A
B
Nettonedbør
Kommune/Egn
N
760
19
m
m
Filterlængde
l
m
Standard data Indtastede data (angives med fed)
300
500
mm/år
Helsingør
Det først betydende magasin
Kommentar
Aguifer
Effektiv porøsitet
Porøsitet, vandmættet
Bulkmassefylde
% organisk indhold
Tykkelse af GV-magasin
Hydraulisk gradient
Hydraulisk ledningsevne
Standard data Indtastede data (angives med fed)
Sand, mellemkornet
eeff
0.2
eW
0.45
(rho) b
1.7
kg/l
foc
0.01
dm_max
10.0
m
i
0.001
m/m
k
5.00E-05
m/s
Stoffer og stofegenskaber
Stof 1
Kommentar
Forureningskomponent
Stof 2
Stof 3
Stof 4
0
0
0
0
Stof 1
0.0322
Nej
Ja
nej
Stof 2
Stof 3
Stof 4
MTBE
SB03/1
Målepunkt
Dato
Målt GV-koncentration
Baggrundskoncentration
mg/l
mg/l
Beregning: Grundvand
Kommentar
Kildestyrken anvendt i beregning
Beregnet værdi anvendt
Værdien fra vertikaltransport anvendt
Testværdi anvendt
Grundvandskvalitetskriterie
Grundvandskoncentration: Trin 1
Overskridelse af kriteriet Trin 1
Grundvandskoncentration: Trin 2
Overskridelse af kriteriet Trin 2
mg/l
mg/l
mg/l
0.005
0.032
6
0.032
6
mg/l
Trin 3 inklusive sorption og nedbryding
Nedbrydningsforhold:
1. ordens nedbrydningskonst. aerob
1. ordens nedbrydningskonst. anaerob
log k OW
(GV-konc. med kun nedb ryd.: Trin 3 )
GV-konc. med sorpt. og nedbryd: Trin 3
Overskridelse af kriteriet Trin 3
Anvendt brugerdata
0.032
0.032
6
mg/l
mg/l
Ja, se bemærkning
Beregningerne udført af
Firmanavn
Navn/initialer
dage-1
dage-1
0
0
0.94
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden
55at der er foretaget ændringer af beregningsformler
Indeklimaberegning
Lokaliteten
Navn:
Adresse:
Matrikel nummer:
Note
Gas station
Sweden, Norway, Denmark
0
0
Jordparametre
Kommentar
Membran type
Tykkelse
Materialekonstant
Kommentar
Jordtype
Jordlag, Dybde fra
Jordlag, Dybde til
Poreluftvolumen
Vand-indhold
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Indtastede data angives med fed
Membran
Kapilarbrydende lag
Jord type
Tykkelse
Materialekonstant
mm
Jordlag 1
Jordlag 2
m
Jordlag 3
Jordlag 4
Fyld
0
0.7
VL
VV
m u.t.
m u.t.
0.1
0.3
0.0079
Materialekonstant
KW
Samlet materialekonstant
Tykkelse af jordlag
Terrændæk
0.0113
0.7
m
Kommentar
Type af terrændæk
Betontværsnit
hb
Bygningsdata
10.0
Øvrige
cm detaljer se side 3
Kommentar
Rumtype/anvendelse
Loftshøjde
Lh
Gulvbredde/-længde
lb/ll
Luftskifte
Ls
DP
Trykforskel over betondæk
Stoffer
10
8.30E-05
5.0
m
20
m
m³/s
Pa
Kommentar forurening
Kommentar Indeklimakoncentration
SB03/1
Målepunkt
Dato
Forureningskomponent
Poreluftskoncentration
2.5
MTBE
CL
0.7498
mg/m³
Nej
Ikkemålt værdi anvendt
C0
DL
Stofflux gennem beton
J
Poreluft koncentration u. gulv Cp
Baggrundskoncentration
Diffusionskoefficient luft
Diffusivt bidrag til indeluft
Totalbidrag til indeluft
Cdi
Ci
Afdampningskriterie
Overskridelse af kriteriet
mg/m³
m²/s
mg/m²·s
mg/m³
8.8E-06
7.4E-08
1.07E-04
-0.00E-01
mg/m³
mg/m³
mg/m³
3.57E-04
0.03
Nej
Anvendt brugerdata
Nej
Beregningerne udført af
Firmanavn
Navn/initialer
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden at der er foretaget ændringer af beregningsformler
56
Udeluftberegning
Lokaliteten
Navn:
Adresse:
Matrikel nummer:
Note
Gas station
Sweden, Norway, Denmark
0
0
Lokalitetsnr.: 0
Postnr/by: 0
Projekt nr.: O_o
Jordparametre
Kommentar
Jordlag, Dybde fra
Jordlag, Dybde til
Jordtype
Materialekonstant
Indtastede data (angives med fed)
Jordlag 1
Jordlag 2
Jordlag 3
m u.t.
0
m u.t.
0.7
Fyld
0.0079
Samlet ækivalent jordlagtykkelse (app 5.3 - lign. 51)
Tykkelse af jordlag
0.0113
0.7
Jordlag 4
m
m
Stoffer
Stof 1
Kommentar
Forureningskomponent
Poreluftskoncentration
Stof 3
Stof 4
MTBE
CL
0.75
mg/m³
C0
Ja
Nej
0
mg/m³
Beregnet værdi anvendt
Testværdi anvendt
Baggrundskoncentration
Stof 2
Stofegenskaber
Diffusionskoefficient luft
Vindhastighed
DL
v
m²/s
m/s
8.8E-06
0.1
(stofafhængig)
Det forurenede område
Længde af det forurenede
område
Opblandingshøjde
Opblandingshøjde/længde
l
19.0
m
h
h/l
1.52
0.08
m
Beregning: Udeluft
Kommentar
Målepunkt
Dato
Totalbidrag til udeluft
Afdampningskriterie
Overskridelse af kriteriet
MP
dato
Stof 1
SB03/1
Stof 2
9.27E-06
Stof 4
mg/m³
0.03
Nej
Anvendt brugerdata?
Ja, se bemærkning
Beregningerne udført af
Firmanavn
Navn/initialer
Stof 3
Beregningerne kontrolleret /godkendt af
URS Nordic
Viktor Plevrakis
Kontrolleret
Godkendt
Dato/Underskrift
Beregningerne er udført med de ovenfor angivne data og uden at der er foretaget ændringer af beregningsformler
57
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement