Technical Catalogue PANEL RADIATORS EN 442 ISO 9001:2000 S

Technical Catalogue PANEL RADIATORS EN 442   ISO 9001:2000 S
Technical Catalogue
PANEL RADIATORS
®
MV 21
EN 442 ISO 9001:2000
T
SE
geprüfte
Sicherheit
PRODUCTO
CONFORME
A NORMAS
Épitésügyi Minóségellenórzó Intézet
INTRODUCTION
This catalogue, in general, is to give our customers technical information on
choosing, using and installing Termo Teknik panel radiators.
Termo Teknik is a subsidiary of the UK based Caradon Radiators Ltd., which has
radiator factories throughout Europe and a Research&Development Division and heat
testing laboratory in Belgium.
Termo Teknik radiators are produced by the most modern machinery. All the
radiators are tested at maximum 13 bars, and are first painted with primer paint
then with electrostatic powder paint. The principal goal of our Quality Assurrance
System is to provide our customers with affordable and high quality radiators
which will fulfill their heating requirements for many years.
Termo Teknik was one of the first radiator factories in Europe to achive ISO 9000
certification. Currently Termo Teknik’s factory and production has BS ISO 9001:2000
accreditation and the radiators are certified according to BSI, DIN, NF, EMI, GOST,AR,
UkrSEPRO, BAGUV, TSE and several other national standards, as well as the
international EN 442 steel radiator standard.
2
TECHNICAL INFORMATION
Termo Teknik panel radiators are produced in accordance with the internationally accepted
EN 442 standard. Cold rolled steel conforming to EN 10130 is used in the production; surface
treatment and painting processes takes place in accordance with DIN 55900-1 standard.
Steel thicknesses used in panel radiator production:
Panel production
: 1.20 ± 0.09 mm
Fin production
: 0.45 ± 0.09 mm
top and side covers
: 0.75 ± 0.09 mm
Radiator test pressure
: Maximum 13 bars = 13 kgf / cm²
Radiator working pressure
: Maximum 10 bars
Paint:
Primer (dip) paint
: white, water-based epoxy ester
Powder paint
: RAL 9016, 75 gloss, epoxy polyester
The fins are welded on top of 33.3 mm pitched water circulation canals to ensure that you get
the highest performance from our panel radiators.
The environmentally friendly water based primer paint is cured at 160 °C and the second coat of
high quality epoxy polyester powder paint is cured at 180 °C.
ACCESSORIES
* Screws and plastic wall plugs
* Wall hangers
* Blanking plug G 1/2''
* Airvent plug G 1/2''
* Side panels (mounted onto the panel radiator)
* Grills (mounted onto the panel radiator)
* Various other models of wall hangers and floor stands available upon request.
PACKAGING
Hangers, welded at the back of the radiators, are protected by supports against damages.
Sides of the panels are supported with grooved card-board protectors against possible harms
from external effects EAN Barcodes are printed on the model / type label. Finally, the radiators
are wrapped with shrink-wrap plastic against wetness, humidity, dust. This heavy duty
packaging minimizes the risk of damage during transportation or at the construction or
installation sites. In order to prevent damages to the radiator surface and paint, it is advised that
the wrapping of the radiator should be kept on until all construction work at the site is completed.
LENGTHS AND HEIGHTS OF PANEL RADIATORS
The standard lengths of the panel radiators: L (mm)
400 to 3000 in steps of 100 mm.
The standard heights of the panel radiators: H (mm)
H =200, 300, 400, 500, 600, 700, 900
3
4
72-94
TYPE 11 - PK
47 mm.
TYPE 10 - P
122-144
100
72-94
TYPE 20 - PP
67 mm.
200-300-400-500-600-700-900
150-250-350-450-550-650-850
TYPE 22
25
33-55
25
56-78
47 mm.
67 mm.
200-300-400-500-600-700-900
150-250-350-450-550-650-850
66- 88
25
200-300-400-500-600-700-900
150-250-350-450-550-650-850
25
TYPE 11
90-110
22-44
50-110
150-250-350-450-550-650-850
200-300-400-500-600-700-900
66
110-160
200-300-400-500-600-700-900
150-250-350-450-550-650-850
25
TYPE 10
22-44
25
50
90-110
22-44
33
50-110
PANEL RADIATOR TYPES
TYPE 21
89-111
67
TYPE 33
182-204
50
160
TYPE 22 - PKKP
100 mm
TYPE 33 - PKKPKP
TYPE 21 - PKP
160 mm
PANEL RADIATOR HANGER DIMENSIONS
L
L/2 (L>1800)
B
L/2 (L>1800)
A
A
B
C
TERMO TEKNÝK TSEN 442-1
TERMO TEKNÝK TSEN 442-1
EN 442
EN 442
134
134
EN 442
134
C
L
A
B
L
( mm )
B
C
TERMO TEKNÝK TSEN 442-1
TERMO TEKNÝK TSEN 442-1
EN 442
EN 442
134
134
D
TERMO TEKNÝK TSEN 442-1
D
400
500
600
700
800
900
1000
1100
1200
1400
1600
1800
2000
2200
2400
2600
2700
2800
3000
D
A ( mm )
B ( mm )
11 Type 10,20,21, 11 Type 10,20,21,
22,33 Type
22,33 Type
170
200
115
100
300
115
100
270
400
100
115
370
500
115
100
470
600
115
100
570
700
115
100
670
800
770
115
100
900
870
115
100
1000
970
115
100
1170
1200
115
100
1370
1400
115
100
785
800
115
100
885
900
115
100
985
1000
115
100
1085
1100
115
100
1185
1200
115
100
1235
115
100
1250
115
100
1285
1300
1385
1400
115
100
C
( mm )
D
( mm )
Row of
Hangers
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
8
PANEL RADIATOR WALL HANGER DIMENSIONS
300
400
500
600
700
900
A
55
155
255
355
455
555
755
B
-
50
150
250
350
450
650
C
75
175
275
375
475
575
775
D
-
-
150
250
350
450
650
E
23
123
223
323
423
523
723
40
200
E
D
B
C
12
20
32
85
A
22
44
5
INSTALLATION METHODS FOR PANEL RADIATORS
Generally radiators are connected in one of the below methods:
1Hot water enters from the top and
Inlet
exits from the bottom of the same
side. It is the most advised and
Radiator
Outlet
used method, and in most cases
the most energy efficient.
2This method is generally advised
Inlet
for long raditors where the length of
the panel radiator is 3 times more
Radiator
Outlet
than the height.
Example: This method is advised for 500 mm high radiator with lengths of greater than
1500 mm (500 x 3 = 1500 mm).
3 This method is also allowed by
the EN 442 standard.
Inlet
6
Radiator
Outlet
4 Special connection elements are
used in this method. This method is
used when the pipes come directly
Radiator
from the floor.
Outlet
Inlet
In this installation method, a thermostatic valve is
used so that the heat is controlled more easily and
economically.
5 According to the single pipe
Inlet
connection method, “x” needs to
be calculated or pumps for water
Radiator
Outlet
pressure drop must be placed
here. In this form of connection, it
should be taken into consideration
that every radiator will have a
different average temperature.
6 This is a method used for connecting
a series of radiators and is used
Inlet
Rad.
Rad.
Rad.
very rarely. If it must be used, the total
Outlet
heat output of the series must not
exceed 7000-8000 kcal/h, otherwise
the capacity of the circulation pump
will be exceeded.
The capacities of the series
should be calculated carefully because of the different average water temperature between
each panel.
7-
Collector system - Each radiator has a different pipe going to and coming from the collector.
7
CAPACITIES OF THE RADIATORS IN VARYING WATER
AND ROOM TEMPERATURES
Radiator heat outputs are linear. The heat output tables show the heat outputs for a 1 m long
radiator. If a 1 m long radiator from the table has an output of 1200 watts than the same model
of 70 cm would be 840 watts (0.70 x 1200) and a model of 2.2 m would be 2640 watts
(2.2x1200).
The radiator heat output varies according to water and room temperature changes.
Heat outputs at 75/65 °C water inlet/outlet temperature and at different room temperatures are
given in Table 1A and Table 1B .
Heat outputs at temperatures other than those given in Table 1A and Table 1B are calculated
using F Factors (Table 2) enabling you to find the performance of standard radiator (75/65 °C
and 20 °C) at different room and water temperatures. The following are two examples
demonstrating usage of F Factors:
EXAMPLE 1:
The heat output for 600/22/1000 panel radiator at (75/65 °C and 20 °C) is Qn=1672 watts. What
will be the heat output at 70/55 °C water inlet/outlet temperatures and 18 °C room temperature?
In F Factor table (Table 2) the first vertical column shows the incoming water temperature; the
second vertical column shows the room temperature and the horizontal rows show the
outgoing water temperature. When those columns are intersected, the “F” value is found.
The “F” value at 70/55 °C and 18 °C is 1,17.
The new heat output is calculated with the formula:
Q = Qn / F
Q:Required heat output
Q = 1672 / 1,17
Qn:Standard heat output (at 75/65 and 20 ° C)
Q = 1429 watt
F: Capacity factor from the table
EXAMPLE 2:
This table can also be used to choose a radiator for a site (room or area) whose heat
requirement has already been calculated.
Let's assume that the calculated heat requirement for a room is Q = 1500 watt. How can we
select and calculate the heat output of a standard radiator at 70/55 °C water inlet/outlet
temperatures and 18 °C room temperature?
The “F” value from Table 2 is 1,17.
Qn = Q x F
Qn = 1500 x 1,17
Qn = 1755 watt
Then we choose from the catalogue (at 75/65 and 20 °C) a radiator with Qn = 1755 watt.
If we straight away choose a radiator from the catalogue with a heat output of 1500 watt
instead of 1755 watt, the temperature of the room would not come to the desired standard.
The above example shows how a non-standard condition can be converted to a desired
standard condition.
8
Table 1A. Heatoutput values at 75/65 ºC water inlet/outlet and
various room temperatures (Watt/m - Kcal/h m)
Typ e
10-P
11-PK
21-PKP
22-PKKP
33-PKKPKP
Room
Temperature
(°C)
200
300
400
500
600
700
900
15
---
378/325
477/410
573/493
666/573
758/652
940/808
18
---
352/303
443/381
532/458
618/531
704/605
872/750
20
---
334/287
421/362
505/434
587/505
668/574
828/712
22
---
317/273
399/343
479/412
556/478
633/544
784/674
24
---
299/257
377/324
452/389
526/452
598/514
741/637
15
372/320
572/492
732/630
882/759
1025/882
1162/999
1417/1219
18
345/297
532/458
681/586
821/706
953/820
1080/929
1316/1132
20
328/282
506/435
647/556
780/671
906/779
1026/882
1250/1075
22
311/267
480/413
614/528
740/636
859/739
973/837
1185/1019
24
294/253
454/390
581/500
700/602
813/699
920/791
1120/963
15
612/526
827/711
1035/890
1234/1061
1427/1227
1615/1389
1982/1705
18
569/489
769/661
962/827
1147/986
1325/1140
1499/1289
1839/1582
20
540/464
731/629
914/786
1089/937
1258/1082
1423/1224
1745/1501
22
512/440
694/597
867/746
1032/888
1192/1025
1348/1159
1653/1422
24
484/416
657/565
820/705
976/839
1126/968
1274/1096
1561/1342
15
743/639
1073/923
1364/1173
1638/1409
1897/1631
2143/1843
2602/2238
18
691/594
997/857
1267/1090
1521/1308
1761/1514
1989/1711
2414/2076
20
656/564
947/814
1203/1035
1444/1242
1672/1438
1888/1624
2290/1969
22
622/535
898/772
1140/980
1368/1176
1584/1362
1788/1538
2168/1864
24
588/506
849/730
1078/927
1293/1112
1497/1287
1690/1453
2048/1761
15
1059/911
1524/1311
1925/1656
2310/1987
2679/2304
3037/2612
3725/3204
18
985/847
1417/1219
1789/1539
2145/1845
2487/2139
2819/2424
3454/2970
20
936/805
1346/1158
1699/1461
2037/1752
2361/2030
2675/2301
3277/2818
22
888/764
1276/1097
1610/1385
1930/1660
2237/1924
2533/2178
3102/2668
24
840/722
1207/1038
1523/1310
1825/1570
2114/1818
2394/2059
2929/2519
Table 1B. Heatoutput values at 90/70 ºC water inlet/outlet and
various room temperatures (Watt/m - Kcal/h m)
Typ e
10-P
11-PK
21-PKP
22-PKKP
33-PKKPKP
Room
Temperature
(°C)
200
300
400
500
600
700
900
15
---
471/405
594/511
713/613
830/714
945/813
1174/1010
18
---
443/381
558/480
670/576
780/671
888/764
1102/948
20
---
424/365
535/460
642/552
747/642
850/731
1055/907
22
---
406/349
512/440
614/528
714/614
813/699
1009/868
24
---
387/333
489/421
586/504
682/587
776/667
963/828
15
463/398
710/611
908/781
1095/942
1273/1095
1444/1242
1764/1517
18
435/374
668/574
854/734
1030/886
1197/1029
1358/1168
1658/1426
20
417/359
640/550
819/704
988/850
1148/987
1301/1119
1588/1366
22
399/343
613/527
784/674
945/813
1098/944
1245/1071
1519/1306
24
381/328
586/504
749/644
903/777
1049/902
1189/1023
1451/1248
15
763/656
1025/882
1286/1106
1537/1322
1781/1532
2016/1734
2476/2129
18
717/617
964/829
1209/1040
1444/1242
1673/1439
1893/1628
2325/2000
20
687/591
925/796
1159/997
1383/1189
1602/1378
1813/1559
2225/1914
22
657/565
885/761
1109/954
1323/1138
1531/1317
1733/1490
2127/1829
24
612/526
846/728
1059/911
1264/1087
1462/1257
1654/1422
2030/1746
15
925/796
1335/1148
1698/1460
2042/1756
2368/2036
2677/2302
3255/2799
18
869/747
1255/1079
1596/1373
1918/1649
2224/1913
2514/2162
3055/2627
20
833/716
1202/1034
1529/1315
1837/1580
2129/1831
2406/2069
2924/2515
22
797/685
1150/989
1462/1257
1757/1511
2036/1751
2300/1978
2794/2403
24
761/654
1098/944
1396/1201
1677/1442
1943/1671
2195/1888
2666/2293
15
1316/1132
1895/1630
2396/2061
2879/2476
3344/2876
3794/3263
4663/4010
18
1238/1065
1781/1532
2252/1937
2705/2326
3141/2701
3563/3064
4376/3763
20
1186/1020
1707/1468
2158/1856
2591/2228
3007/2586
3411/2933
4187/3601
22
1135/976
1633/1404
2064/1775
2477/2130
2875/2473
3260/2804
4001/3441
24
1085/933
1560/1342
1971/1695
2365/2034
2744/2360
3111/2675
3816/3282
9
Table 2 . F Factor Table
Radiator Capacity Factors at Different Room and Water Temperatures
Water Outlet Temperature (°C)
Room
Water Inlet
Temperature Temperature
(°C)
95
90
85
80
75
70
(°C)
25
30
35
40
45
50
55
60
65
70
75
80
85
1,54 1,41 1,30 1,20 1,12 1,04 0,97 0,91 0,86 0,81 0,77 0,73 0,69 0,66
22
1,43 1,32 1,22 1,13 1,06 0,99 0,93 0,87 0,82 0,78 0,74 0,70 0,67 0,64
20
1,34 1,24 1,15 1,07 1,00 0,94 0,88 0,83 0,79 0,75 0,71 0,67 0,64 0,61
18
1,26 1,17 1,08 1,01 0,95 0,89 0,84 0,80 0,75 0,72 0,68 0,65 0,62 0,59
15
1,15 1,07 1,00 0,94 0,88 0,83 0,79 0,75 0,71 0,67 0,64 0,61 0,59 0,56
24
1,69 1,54 1,41 1,30 1,20 1,12 1,04 0,97 0,91 0,86 0,81 0,77 0,73
22
1,57 1,43 1,32 1,22 1,13 1,06 0,99 0,93 0,87 0,82 0,78 0,74 0,70
20
1,46 1,34 1,24 1,15 1,07 1,00 0,94 0,88 0,83 0,79 0,75 0,71 0,67
18
1,36 1,26 1,17 1,08 1,01 0,95 0,89 0,84 0,80 0,75 0,72 0,68 0,65
15
1,24 1,15 1,07 1,00 0,94 0,88 0,83 0,79 0,75 0,71 0,67 0,64 0,61
24
1,87 1,69 1,54 1,41 1,30 1,20 1,12 1,04 0,97 0,91 0,86 0,81
22
1,73 1,57 1,43 1,32 1,22 1,13 1,06 0,99 0,93 0,87 0,82 0,78
20
1,60 1,46 1,34 1,24 1,15 1,07 1,00 0,94 0,88 0,83 0,79 0,75
18
1,49 1,36 1,26 1,17 1,08 1,01 0,95 0,89 0,84 0,80 0,75 0,72
15
1,34 1,24 1,15 1,07 1,00 0,94 0,88 0,83 0,79 0,75 0,71 0,67
24
2,09 1,87 1,69 1,54 1,41 1,30 1,20 1,12 1,04 0,97 0,91
22
1,92 1,73 1,57 1,43 1,32 1,22 1,13 1,06 0,99 0,93 0,87
20
1,76 1,60 1,46 1,34 1,24 1,15 1,07 1,00 0,94 0,88 0,83
18
1,63 1,49 1,36 1,26 1,17 1,08 1,01 0,95 0,89 0,84 0,80
15
1,46 1,34 1,24 1,15 1,07 1,00 0,94 0,88 0,83 0,79 0,75
24
2,36 2,09 1,87 1,69 1,54 1,41 1,30 1,20 1,12 1,04
22
2,14 1,92 1,73 1,57 1,43 1,32 1,22 1,13 1,06 0,99
20
1,96 1,76 1,60 1,46 1,34 1,24 1,15 1,07 1,00 0,94
18
1,80 1,63 1,49 1,36 1,26 1,17 1,08 1,01 0,95 0,89
15
1,60 1,46 1,34 1,24 1,15 1,07 1,00 0,94 0,88 0,83
24
2,70 2,36 2,09 1,87 1,69 1,54 1,41 1,30 1,20
22
2,42 2,14 1,92 1,73 1,57 1,43 1,32 1,22 1,13
20
2,19 1,96 1,76 1,60 1,46 1,34 1,24 1,15 1,07
18
2,00 1,80 1,63 1,49 1,36 1,26 1,17 1,08 1,01
15
1,76 1,60 1,46 1,34 1,24 1,15 1,07 1,00 0,94
Note: The F factors are calculated based on average coefficients, therefore there might be a
deviation from actual heat output value by less than 1%.
10
90
24
Table 2 . F Factor Table (cont’d)
Radiator Capacity Factors at Different Room and Water Temperatures
Water Outlet Temperature (°C)
Room
Water Inlet
Temperature Temperature
(°C)
65
60
55
50
45
(°C)
30
35
40
45
50
55
60
3,13 2,70 2,36 2,09 1,87 1,69 1,54
1,41
22
2,78 2,42 2,14 1,92 1,73 1,57 1,43
1,32
20
2,49 2,19 1,96 1,76 1,60 1,46 1,34
1,24
18
2,25 2,00 1,80 1,63 1,49 1,36 1,26
1,17
15
1,96 1,76 1,60 1,46 1,34 1,24 1,15
1,07
24
3,70 3,13 2,70 2,36 2,09 1,87 1,69
22
3,23 2,78 2,42 2,14 1,92 1,73 1,57
20
2,86 2,49 2,19 1,96 1,76 1,60 1,46
18
2,55 2,25 2,00 1,80 1,63 1,49 1,36
15
2,19 1,96 1,76 1,60 1,46 1,34 1,24
24
4,47 3,70 3,13 2,70 2,36 2,09
22
3,83 3,23 2,78 2,42 2,14 1,92
20
3,34 2,86 2,49 2,19 1,96 1,76
18
2,94 2,55 2,25 2,00 1,80 1,63
15
2,49 2,19 1,96 1,76 1,60 1,46
24
5,59 4,47 3,70 3,13 2,70
22
4,66 3,83 3,23 2,78 2,42
20
3,98 3,34 2,86 2,49 2,19
18
3,45 2,94 2,55 2,25 2,00
15
2,86 2,49 2,19 1,96 1,76
24
7,32 5,59 4,47 3,70
22
5,88 4,66 3,83 3,23
20
4,87 3,98 3,34 2,86
18
4,13 3,45 2,94 2,55
15
40
25
24
65
70
75
80
85
90
3,34 2,86 2,49 2,19
24
10,28 7,32 5,59
22
7,78 5,88 4,66
20
6,19 4,87 3,98
18
5,09 4,13 3,45
15
3,98 3,34 2,86
Note: The F factors are calculated based on average coefficients, therefore there might be a
deviation from actual heat output value by less than 1%.
11
RADIATOR PRESSURE DROP:
Pressure drop in a piping system is a result of resistance to flow. Total pressure drop
is a critical issue for selection of pump size. The pressure drop calculation of panel
radiators, as a part of total pressure drop of the system, is given below with an
example.
Pressure loss of a radiator can be found using the pressure drop graph given below.
Graph 1. Pressure Drop
0,14
Type 10, 11
Pressure drop (bar)
0,12
0,10
0,08
0,06
Type 20, 21, 22, 33
0,04
0,02
0,00
0
100
200
300
400
500
600
700
Water flowrate (Kg/h)
EXAMPLE: What is the pressure drop on a 600/22/1000 radiator ?
Qn = 1672 watt = 1441 kcal/h for a 600/22/1000 radiator (1 watt = 0,86 kcal/h).
Water Flow Rate = Qn / (water inlet temperature-water outlet temperature)
Water Flow Rate = 1441 /(75-65)
Water Flow Rate = 144.1 kg / h
Using the graph, the pressure drop for 600/22/1000 radiator is found as follows:
-draw a vertical line beginning from corresponding water flow rate on the x-axis (144.1
kg/h for 600/22/1000 radiator) intersecting the Type 22 line
-from this intersection point, draw a horizontal line intersecting y-axis. The intersection
point is the pressure drop value.
Pressure drop value is 0.002 bars for 600/22/1000 radiator.
Generally, the pressure drop of a radiator depends on the water flow rate and radiator type
and size It is significant for bigger size radiators.
12
INSTALLATION POSITION EFFECT ON HEAT OUTPUT EFFICIENCY
a
b
a
a
a
a
a
a
a
a
a
Space
cm
a=8
b=4
4
8
10
4
8
10
4
8
10
26
22
18
Efficiency %
100
95
97
98
95
96
97
89
93
94
88
87
81
1
2
3
4
5
a
a
a
b
a
a
b
b
b=0.8 a
c=1.5 a
Space
cm
a=13
Efficiency %
80
85
110
100
6
7
8
9
a=10
b=0.8 a
c
The surroundings of the radiator must be clear for it to provide the outputs stated in the
catalogue. If there is an obstruction in front or above the installation position of the radiator, this
will affect the heat output efficiency. Above some common examples.
EXAMPLE:
If 600/22/1000 radiator is connected as in Figure 5 and if a= 18 cm, then the efficiency would
be 0,81; Qn = 1672 watt (from the catalogue)
The real output will be
Qn = 1672 x 0,81
Qn = 1354 watt
A reflective surface (such as aluminium foil) on the wall behind the radiator will increase the
efficiency by reflecting heat back into the radiator. This is especially important if the radiator is
installed in front of a glass window or a thin uninsulated wall.
13
TERMO TEKNÝK PANEL RADIATORS WARANTY CONDITIONS
Termo Teknik panel radiators are guaranteed against defects in material or workmanship.
The products must be installed and used according to accepted plumbing practices such as BS 5449,
NF 047 or other national / local standards. Failure to do so will void the guarantee. Below items must
also be followed or else the warranty may be voided:
1-) Termo Teknik panel radiators should be used in closed heating systems. Never use in open circuit
(steam, thermal spring, boiled water or tap water).
2-) Do not use radiators in humid environments (swimming pool, sauna bath, green house, etc.).
3-) Avoid dropping, hitting or flexing (bending) the radiator when carrying or transporting it. Damage
from transportation is not covered under the warranty.
4-) Do not over screw the stoppers, air vents or valves; otherwise the connection thread could be
damaged.
5-) Keep the packaging on the radiator even after installing the radiator until all construction or
renovation work is finished. The packaging will prevent scratches and damages on the radiator
surface or paint.
6-) Please ensure that the connection elements are free of any dirt or burr after the installation. If
. necessary, flush the system to get rid of particles before testing or using the system.
7-) After the installation the systems should be tested by expertised personnel. Otherwise, damages
may occur in the place of installation.
8-) Maximum working pressure of the radiators is 10 bars.
9-) While filling the radiators for the first time, the heating system controls should be closed and the
system should be set to the correct pressure.
10-) Never empty the water in the heating system. Add water when needed. Each time you add or
change water to your heating system corrosion occurs and its life time will decrease.
11-) Please take precautions against freezing risk.
12-) Use an anti-corrosion agent in the system if the water is aggressive or acidic.
14
high performance
ease of use
decorative
quality
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement