. Studies on Factors Influencing the Respiratory Metabolism of an Arctic Marine Amphipod,

. Studies on Factors Influencing the Respiratory Metabolism of an Arctic Marine Amphipod,
.
I
.
~,
Studies on Factors Influencing
the Respiratory Metabolism of
an Arctic Marine Amphipod,
Onisimus (=Boeckosimus) affinis.
J. A. Percy
Arctic Biological Station
Department of Fisheries and Oceans
Ste. Anne de Bellevue, Quebec H9X 3R4
"
:
December 1980
~
':anadian Data Report of
Fisheries and Aquatic Sciences
~\Jo.
240
l
Canadian Data Report of
Fisheries and Aquatic Sciences
These reports provide a medium for filing and archiving data compilations where
little or no analysis is included. Such compilations commonly will have been prepared
in support of other journal publications or reports. The subject matter of Data Reports
reflects the broad interests and policies of the Department of Fisheries and Oceans,
namely, fisheries management, technology and development, ocean sciences, and
aquatic environments relevant to Canada.
Numbers 1-25 in this series were issued as Fisheries and Marine Service Data
Records. Numbers 26-160 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Data Reports. The current series name was
changed with report number 161.
Data Reports are not intended for general distribution and the contents must not
be referred to in other publications without prior written clearance from the issuing
establishment. The correct citation appears above the abstract of each report.
Rapport statistique canadien des
sciences halieutiques et aquatiques
Ces rapports servent de base a la compilation des donnees de classement et
d'archives pour lesquelles il y a peu ou point d'analyse. Cette compilation aura
d 'ordinaire ete preparee pour appuyer d 'autres publications ou rapports. Les sujets des
Rapports statistiques renetent la vaste gamme des interets et politiques du Ministere
des Peches et des Oceans, notamment gestion des peches, techniques et developpement, sciences oceaniques et environnements aquatiques, au Canada.
Les numeros 1 a 25 de cette serie ont ete publies a titre de Records statistiques,
Service des peches et de la mer. Les numeros 26-160 ont ete publies atitre de Rapports
statistiques du Service des peches et de la mer, Ministere des Peches et de
I'Environnement. Le nom de la serie a ete modifie a partir du numero 161.
Les Rapports statistiques ne sont pas prepares pour une vaste distribution et leur
contenu ne doit pas etre mentionne dans une publication sans autorisation ecrite
prealable de l'etablissement auteur. Le titre exact parait au haut du resume de chaque
rapport.
Canadian Data Report of
Fisheries and Aquatic Sciences 240
•
December 1980
STUDIES ON FACTORS INFLUENCING THE RESPIRATORY
METABOLISM OF AN ARCTIC MARINE AMPHIPOD,
ONlSIMUS (=BOECKOSIMUS) AFFINIS
by
J. A. Percy
Arctic Biological Station
Department of Fisheries and Oceans
555 St. Pierre Boulevard
Ste. Anne de Bellevue, Quebec H9X 3R4
ii
~Minister
of Supply and Services Canada 1980
Cat. No. Fs 97-13/0240
ISSN 0706-6465
Correct citation for this publication:
Percy, J. A. 1980. Studies on factors influencing the respiratory
metabolism of an arctic marine amphipod, Onisimus (=Boeckosimus)
affinis. Can. Data Rep. Fish. Aquat. Sci. 240: iv + 70 p.
/I
iii
CONTENTS
iv
Abstract/Resume
Introducti on.
1
Methods . . .
2
Collection of animals.
2
Measurement of respiration
2
a) Gilson respirometry.
2
b) Polarographic respirometry
3
c) In situ respirometry
3
Factors considered .
a) Size
.. .. . .
4
....
...
.
4
b) Temperature.
4
..
5
d) Time of day.
5
c) Sal i ni ty
e) Season
.
5
f) Duration in captivity.
6
g) Starvation and refeeding •.
6
h) Sex and reproductive condition
6
List of tables.
7
List of figures
9
Tables 1-25.
10
Fi gures 1-15
54
Acknowledgements.
69
References. . . .
70
iv
ABSTRACT
Percy, J. A. 1980. Studies on factors influencing the respiratory
metabolism of an arctic marine amphipod, Onisimus (=Boeckosimus)
affinis. Can. Data Rep. Fish. Aquat. Sci. 240: iv + 70 p.
This report serves as a repository for tabular data pertaining to
several factors influencing the respiratory metabolism of the arctic
marine amphipod, Onisirnus affinis.
Among the factors considered are
size, temperature, salinity, season, time of day, respirometry technique,
duration of captivity, starvation and refeeding, sex and reproductive
condition.
Key words:
Arctic amphipod, respiration, modifying factors, metabolism
RtSUMt
Percy, J. A. 1980. Studies on factors influencing the respiratory
metabolism of an arctic marine amphipod, Onisirnus (=Boeckosimus)
affinis. Can. Data Rep. Fish. Aquat. Sci. 240: iv + 70 p.
Ce rapport sert de repertoire pour les donnees tabulaires reliees
ales facteurs qui influencent le rnetabolisme respiratoire de l'amphipode
arctique marin, Onisimus affinis.
Parmi les facteurs consideres sont le
taille, la temperature, la salinite, la saison, 1 'heure du jour, la
technique de la respirometrie, la duree de la captivite, la privation de
nourriture et la realimentation, le sexe et la condition reproducteur.
•
1
INTRODUCTION
Much interest has been expressed in the possible occurrence in
polar marine organisms of compensating adjustments in metabolism that
would permit them to function more effectively at the prevailing low
temperature than would otherwise be possible (SpMrck, 1936; Thorson,
1936; Scholander et al., 1953; Holeton, 1974; White, 1975; and Opalinski,
1979). The available data do not permit unequivocal generalizations to
be made on this point. Certain species appear to exhibit a compensatory
elevation of respiratory metabolism relative to that of comparable
warmer water species, while others clearly do not. Holeton (1974) has
convincingly argued that, at least in the case of fish, some apparent
instances of cold adaptation in polar forms may in fact result from
methods used in determining respiration rates rather than reflect a
valid physiological phenomenon.
It is unlikely that this uncertainty will be satisfactorily
resolved until a great deal more information becomes available concerning
the respiratory metabolism of a much broader range of polar marine
invertebrates. Interpretation of the data will also require complementary
studies concerning the role of the many endogenous and exogenous variables
that may have a significant influence on the metabolism of these organisms.
In many of the studies undertaken thus far it is precisely this lack of
complementary information that has given rise to uncertainty about the
correct interpretation to be placed upon observed differences in metabolic
rate between polar and temperate species.
Information about the metabolic rates of Antarctic marine
invertebrates has increased steadily over the past several years.
Comparable data for Arctic species are surprisingly sparse. In view
of the pronounced differences, both now and in the past, between the
South and the North Polar Oceans (Knox and Lowry, 1977) it appears likely
that a great deal of information about the ecological physiology of many
species from both areas will be required in order to derive sound
generalizations about the occurrence, evolutionary development and
energetic significance of such compensatory metabolic adaptations.
During recent studies (Percy, 1975) on the physioecology of the
circumpolar arctic marine amphipod Onisimus affinis a great deal of
information was obtained about the influence of several factors on the
respiratory metabolism of this species. The present report serves as
a repository for the bulk of the tabular data, pertaining -to
respiratory metabolism, arising from these studies. Among the factors
considered are size, temperature, salinity, season, time of day,
respirometry technique, duration in captivity, starvation and refeeding,
sex and reproductive condition.
2
METHODS
COLLECTION OF ANIMALS
The amphipods used in this study were collected with baited traps
in about 20 m of water at a site adjacent to the Arctic Biological Station
field laboratory located near the entrance to the Eskimo Lakes (69°25 N,
131 16 W; station 507 of Wacasey, 1974). The Lakes are a series of
complex marine embayments connected by a narrow channel to the foot of
Liverpool Bay. Salinity decreases progressively with increasing distance
from the bay. Bottom salinities in the vicinity of the collecting site
ranged from 13.4 to 17.2% 0 , with the lowest values occurring in the
spring during ice break-up. Bottom water temperatures ranged from -0.97
to 9.07°C during the year.
I
0
1
The animals were transported rapidly to the field laboratory in
seawater in insulated containers. Subsequent procedures varied according
to the requirements of the different studies and are outlined in the
appropriate subsections below. Generally, animals were maintained in the
field laboratory in natural seawater at a temperature and salinity
comparable to that in the natural habitat. Animals transported by air
to the Arctic Biological Station in Ste. Anne de Bellevue were maintained
in a high capacity refrigerated recirculating seawater system containing
artificial seawater (Instant Ocean) of 17%
at a temperature of 1° ± 1°C.
They were fed regularly with Tetramin tropical fish food. Under these
conditions they could be maintained in an apparently healthy and active
state for an indefinite period.
0
MEASUREMENT OF RESPIRATION
Three different techniques were used during different phases of the
study for measuring the rate of oxygen consumption by the amphipods.
d) Ci 1son respi rometry
Oxygen consumption was measured with a Gilson submarine, volumetric,
respirometer equipped with 15 ml respirometer flasks. Each flask usually
contained 4-6 animals, unless otherwise noted, and 5 ml of Millipore
filtered seawater. The centre well was charged with 0.2 ml of 20% KOH.·
Readings were generally taken every hour for 5 hours, following an initial
~5 minute incubation period.
Cumulative oxygen uptake was plotted against
time and the slope of the resulting line used to calculate the mean rate.
The animals were rinsed in distilled water, measured to the nearest 0.1 mm
utilizing a projection method, and dried at 70°C to constant weight.
Oxygen uptake is expressed as either ~l Oz/animal/hr or as ~l Oz/mg dry
weight/hr.
3
b) Polarographic respirometry
In some instances, respiration rate was measured by means of a YSI
model 53 Biological Oxygen Monitor. One or two animals were placed in
small (approximately 30 ml) volume-calibrated Erlenmeyer flasks fitted
with ground glass stoppers and containing temperature-equilibrated,
well-aerated seawater. Usually 15-20 of these respirometer flasks were
incubated simultaneously, with at least two of them containing no
animals and designated as controls. A sample of the initial seawater
was collected in a standard BOD bottle for analysis of dissolved oxygen
by the Winkler technique. The respirometer flasks were incubated in a
water bath at the experimental temperature for a period which varied
from 5-8 hours depending upon experimental temperature and animal size.
The oxygen content of the respirometer flasks generally did not fall
below 50-60% of saturation during incubation. At the end of the
incubation period the respirometer flasks were individually transferred
to a small temperature-equilibrated water bath mounted on a magnetic
stirrer. A micro-stir bar was placed in the flask and an oxygen
electrode, encased in a silicone cone that effectively seals the mouth
of the respirometer flask and displaces the surface water, was inserted.
The percentage oxygen saturation was measured in each of the respirometer
flasks, including the controls. The difference in oxygen concentration
between the experimental flask and the mean value of the controls was
used to calculate the rate of oxygen consumption by the animals. The
animals were rinsed and dried to constant weight at 70°C. Respiration
rate is expressed both as ~l 02/animal/hr and as ~l 02/mg dry weight/hr.
c) In situ respirometry
To measure the respiration rate of the amphipods at different times
of the day and during different seasons, under conditions as similar to
those in the natural habitat as possible, and with minimal disturbance
to the animals, an in situ respirometry technique was devised. Respirometer
flasks consisted of 125 ml volume-calibrated Erlenmeyer flasks fitted with
ground glass stoppers. These flasks were mounted in groups of 12 in
submersible racks. At the beginning of a determination the flasks were
filled with seawater taken from the same depth as that at which the flasks
were to be incubated (generally 20 metres). A sample of the same water
was collected in a standard BOD bottle and used for oxygen determination
by the Winkler technique. Freshly collected O. affinis were placed in
each of the respirometer flasks (5 animals in-the case of 24-hour
incubations, and 20 animals in the case of 4-hour incubations). At least
two of the respirometer flasks in each rack contained no animals and
served as controls. The rack of bottles was lowered to the incubation
depth and left undisturbed for the duration of the incubation period.
At the end of this time the rack was retrieved and a sample of water from
each respirometer flask was carefully collected in a 50 ml BOD bottle.
The oxygen content was measured by the Winkler technique, appropriately
modified for the 50 ml sample size. The initial oxygen content in each
4
of the respirometer flasks was calculated from the mean O2 content
measured in the control flasks. The animals in each of the flasks
were rinsed and dried to constant weight at 70°C. Respiration rate
is expressed as ~l 02/mg dry weight/hr.
FACTORS CONSIDERED
a) Size
To determine the relationship between animal size and metabolic
rate the oxygen uptake of as wide a size range of animals as possible
was measured by the polarographic technique at temperatures of oo~ 5°~
Filtered natural seawater of 14% 0 salinity was
100~ 15°, and 20°C.
used as an incubation medium. Animals were normally utilized within
three days of collection and were kept for at least one night in a tank
in the laboratory at a temperature and salinity similar to that in the
natural habitat. A single animal was used in each respirometer flask.
The respirometers were held in a water bath at the experimental.
temperature for the duration of the incubation period which ranged from
5-11 hours depending upon animal size and experimental temperature.
Oxygen uptake was calculated as ~l 02/animal/hr. The logarithmic
regression of this rate on animal dry weight was computed for each of
the temperature groups. The logarithmic regression of weight-specific
respiration rate on animal dry weight was also calculated. To permit
comparison of the respiration rates at the different temperatures~ the
oxygen uptake of a standard 10-mg animal was calculated from the
appropriate regression equations.
b) Temperature
Some information concerning the influence of temperature on
metabolic rate was obtained during the study of size-rate relationships.
To further clarify the situation, particularly with regard to seasonal
changes in the R-T curve~ respiratory determinations at a series of
temperatures were made on three separate occasions (winter, early summer
and late summer). Measurements were made using the Gilson technique at
a range of temperatures between 0 and 22°C. Each respirometer flask
contained 4-5 similar-sized animals in natural seawater with a salinity
of 17%°' Between 7 and 9 respiratory determinations were made at each
experimental temperature.
0
The effect of acclimation to summer-like and winter-like temperatures
on the metabolic rate-temperature relationships of O. affinis was studied
in the Ste. Anne de Bellevue laboratory. Groups of-the animals were
transferred to static tanks containing seawater of 0° and 12°C and allowed
to acclimate at these temperatures for two weeks. Following this
acclimation period the metabolic rate of each group was determined by the
Gilson technique at a series of temperatures ranging from 0° to 20°C.
Seven to 17 determinations were carried out at each temperature. Four
5
animals were placed in each respirometer flask, along with filtered
17 % 0 artificial seawater as an incubation medium.
coefficients for the rate-temperature relationships of both
and winter-adapted animals and of 0° and 12°C laboratory-acclimated
animals were calculated according to the formula given in Table 1.
QI0
summer~
c) Salinity
Studies on the influence of salinity on respiratory metabolism
were carried out in Ste. Anne de Bellevue, using the Gilson technique.
Two separate sets of experiments were carried out. In the first the
animals were held in tanks of 17 % 0 seawater until required and then
acutely exposed to a range of experimental salinities between 5% 0 and
35%0 during the Gilson run. In the second experiment the animals were
acclimated for at least 10 days in tanks of seawater of the same salinity
as that used for the determination of metabolic rate. The range of
salinities was again between 5% 0 and 34%
Four similar-sized
animals were placed in each respirometer flask. Seven to 11 respiratory
determinations were made at each experimental salinity.
0 ,
d) Time of day
To determine if the respiration rate of O. affinis, as measured by
the in situ technique, fluctuates significantly, and in a regular manner,
over the course of a 24-nour period, a preliminary series of measurements
was undertaken at 4-hour intervals over a 2-day period. Respirom~ter
flasks were filled with water collected at the incubation depth, while
the animals were taken from holding cages kept on the bottom in 20 metres
of water. Twenty animals were placed in each flask and the rack of flasks
was immediately lowered to 20 metres for the duration of the incubation
period (approximately 4 hours). Two complete racks of respirometer flasks
were used; one was set in place as the other was retrieved. The animals
were rinsed and dried to constant weight at 70°C. The whole exercise was
repeated twice, once on 21-22 July and again on 13-14 August. Simultaneous
determinations were also made of tidal amplitude, light intensity and
relative abundance of animals in and out of the substratum; however, only
the metabolic data are presented in this report.
e) Season
To investigate possible seasonal changes in metabolic rate three
different approaches were utilized. The respiration rate was measured
in the laboratory inmediately after collection, at fixed temperatures of
0° and 100e, at intervals during the year. Initially, measurements were
made using the polarographic technique, while later ones were made using
the Gilson technique. Five complete set$ of determinations were made
with each of these techniques. The incubation medium consisted of natural
seawater adjusted to a salinity of 17%°' An additional series of
6
metabolic rate determinations was made using the in situ technique.
The respirometer flasks containing freshly collected animals were
incubated at 20 metres at the prevailing temperature and salinity.
Eight complete series of determinations were carried out. QI0 coefficients
were calculated for the seasonal metabolic rates determined at fixed
temperatures of 0° and 100e.
f) Duration in captivity
A preliminary series of experiments was carried out to determine the
effect of holding the animals in the laboratory on their metabolic rate.
In one group of animals the respiration rate was measured at 8°e by the
Gilson technique, within 48 hours of collection. The second group
collected at the same time, was held for 18-20 days in a laboratory
holding tank at 5°e and 15% 0 salinity. The metabolic rate of this group
was also measured at 8°e by the Gilson technique. Each group contained a
wide size range of animals, making it possible to calculate the logarithmic
regression of respir~tion rate on dry weight as well as the usual
weight-specific respiration rate.
g) Starvation and refeeding
To examine the effect of short-term starvation on metabolic rate,
groups of amphipods were held in 17% 0 seawater at a temperature of 100e.
At 24-hour intervals subsamples of 8-14 animals were taken for determination
of metabolic rate by the Gilson technique. Prior to the a-hour determination,
and immediately after the 96-hour determination, the animals were fed
Tetramin in excess. The metabolic rate was again determined after 120
hours, approximately 24 hours after the animals had been refed.
h) Sex and reproductive condition
Groups of males, females and gravid females (having brood pouches
filled with early stage embryos) were selected from the laboratory stock
maintained in Ste. Anne de Bellevue. The respiration rate was measured
at 100e by the Gilson technique. Subsamples of all three groups were
utilized simultaneously in metabolic rate determinations. In all, 12,
13 and 15 separate measurements were made on males, females and gravid
females, respectively.
7
LIST OF TABLES
Table
1.
Explanation of symbols used in tables.
Table
2.
Relationship between weight and respiration rate of
Q. affinis at different temperatures.
Table
3.
Statistical summary of relationship between weight and
respiration rate of Q. affinis.
Table
4.
Respiration rate of O. affinis at different temperatures
during the winter. -
Table
5.
Respiration rate of O. affinis at different temperatures
during early summer~
Table
6.
Respiration rate of O. affinis at different temperatures
during late summer.-
Table
7.
QI0
Table
8.
Respiration rate of O. affinis, acclimated at O°C in the
laboratory, measured at different temperatures.
Table
9.
Respiration rate of O. affinis, acclimated at 12°C in the
laboratory, measured at different temperatures.
of
coefficients for respiration rate-temperature relationship
Q. affinis during summer and winter.
Tab 1e 10.
QI0
coefficients for respiration rate-temperature relationship
of Q. affinis acclimated in the laboratory at 0° and 12°C.
Table 11.
Respiration rate of O. affinis at different salinities.
Animals acutely exposed to test salinities following
acclimation at 17%
0 •
Table 12.
Respiration rate of O. affinis at different salinities,
following acclimation at the test salinity.
Table 13.
Respiration rate of O. affinis at approximately 4-hour
intervals over a two-day period in July.
Table 14.
Respiration rate of O. affinis at approximately 4-hour
intervals over a two-day period in August.
Table 15.
Respiration rate of Q. affinis measured by polarographic
technique at different times during the year at 0° and
lOoC.
8
Table 16.
Statistical summary of respiration rate of O. affinis at
different times during the year at 0° and lO°C.
Table 17.
Respiration rate of Q. affinis measured by the Gilson
technique at different times during the year at 0° and 10°C.
Table 18.
Statistical summary of respiration rate of O. affinis at
different times during the year at 0° and lO°C.
Table 19.
Statistical summary of logarithmic regression of respiration
on length at different times during the year at 0° and 10°C.
Table 20.
QIO
Table 21.
Respiration rate of O. affinis measured by the in situ technique
at different times during the year.
Table 22.
Effect of maintenance in the laboratory on the respiration rate
of O. affinis.
Table 23.
Statistical summary of effect of maintenance in the laboratory
on the respiration rate of O. affinis.
Table 24.
Effect of short-term starvation and refeeding on the respiration
rate of O. affinis.
Table 25.
Influence of sex and reproductive condition on the respiration
rate of adult O. affinis.
coefficients for respiration of O. affinis measured at
different times during the year by polarographic and Gilson
techniques.
9
LIST OF FIGURES
ooe.
Figure
l.
Weight-metabolic rate relationship for O. affinis at
Figure
2.
Weight-metabolic rate relationship for O. affinis at 5°C.
Figure
3.
Weight-metabolic rate relationship for O. affinis at 10°C.
Fi gure
4.
Weight-metabolic rate relationship for O. affinis at 15°C.
Figure
5.
Weight-metabolic rate relationship for O. affinis at 20°C.
Figure
6.
Metabolic rate-temperature relationship for O. affinis
during the winter.
Fi gure
7.
Metabolic rate-temperature relationship for O. affinis
during the summer.
Figure
8.
Metabolic rate-temperature relationship for O. affinis
acclimated at ooe in the laboratory.
Figure
9.
Metabolic rate-temperature relationship for O. affinis
acclimated at 12°C in the laboratory.
Figure 10.
Respiration rate of O. affinis at different salinities
following acute exposure.---
Figure ll.
Respiration rate of Q. affinis at different salinities
following acclimation.
Figure 12.
Respiration rate of O. affinis measured in situ at
approximately 4-hour intervals over a 2-day period.
Figure 13.
Respiration rate of Q. affinis measured at intervals
throughout the year at 0° and 10°C and at the prevailing
habitat temperature.
Fi gure 14.
Regressions of metabolic rate on weight for O. affinis
following maintenance in the laboratory for-12-48 hours
and 18-20 days.
Figure 15.
Effect of short-term starvation and refeeding on the
respiration rate of O. affinis.
10
Table 1.
Explanation of symbols used in tables.
(~l
Q02
Respiration rate
02/animal/hr).
QW0 2
Weight specific respiration rate
(~102/mg
dry weight/hr).
Q02(10 mm) Respiration rate of "s tandard" 10 mm (10 mg) animal
Q02(10 mg) calculated from regression equation of log Q02 on log
length (weight) (~l 0 2 /10 mm (mg) animal/hr).
QI0
Temperature coefficient of respiration rate calculated
according to the formula:
log Q _ 10(10g kl - log k2 )
10 -
t1
t2
where k1 and k2 are the respiration rates at temperatures
t 1 and t 2 , respectively.
w
Mean dry weight (mg) of animal(s) in a single respirometer
flask.
W
Mean dry weight (mg) of animals in a designated set of
samples.
Mean body length (mm) of animal(s) in a single
respirometer flask.
L
Mean body length (mm) of animals in a designated set of
samples.
n
Number of animals in a single respirometer flask.
N
Number of separate respiratory determinations in a
particular experimental series.
X
Mean value for a designated set of data.
S.D.
Standard deviation.
S.E.M.
Standard error of the mean (S.D./IN).
C.V.
Coefficient of variation (S.D./X x 100).
C.1.(95%)
±95% confidence interval for the mean.
11
Table 1 (continued).
Intercept and regression coefficient, respectively,
a and b
for the regression equations:
and
a~
and
b~
=a
=a
+ b log w
+ b log t
Intercept and regression coefficient, respectively,
for the regression equations:
and
S.E.R.
log Q02
log Q02
log QW0 2 = a~ +
log QW0 2 = a~ +
b~
b~
log w
log t
Standard error of regression coefficient (b).
Correlation coefficient for the regression.
S .E.E.
Standard error of estimate for the regression.
dimlY
All dates indicated in day/month/year format.
*
Designated value not included in the calculation of
the mean.
Incubation temperature in °C.
SO/oo
Incubation salinity in p.p.t.
IOSW
Instant Ocean seawater.
NSW
Natural seawater.
Relationship bet\veen weight (w) and respiration rate (Q02 and QW0 2 ) of Q. affinis measured
polarographically at different temperatures (n = 1; 5% 0 = 14% 0 ; NSW: incubation period
= 5 - 11 h; 16-31/8/73.
Table 2.
p
'1"
16.01
1. 26
10.62
3.58
13.18
3.56
8.69
6.59
3. 14
15.22 .
1.21
3.37
9.84
0.22
1.81
1.33
5.85
3.92
7.29
17.80
11.90
11 .53
3.23
10°
5°
0°
Q02
QW0 2
1 .96
0.11
4.59
0.84
4.47
0.93
2.58
1. 55
0.83
3.40
0.55
1. 79
1. 86
0.21
0.60
0.44
1. 61
1.56
1. 93
5.84
6.18
3.96
0.96
0.12
0.09
0.43
0.23
0.34
0.26
0.30
0.24
0.26
0.22
0.45
0.53
0.19
0.95
0.33
0.33
0.28
0.40
0.26
0.33
0.52
0.34
0.30
w
7.96
5.04
5.79
3.24
4.33
4.00
0.85
1. 75
3.46
1.64
4.27
8.27
7.32
1. 05
7.99
4.55
1.48
3.28
5.84
6.12
1.11
3.63
8.48
Q02
QWO,L
3. 76
2.89
2.12
2.53
1.77
2.42
0.76
0.97
1. 39
1.27
2.33
7.39
4.46
0.99
3.83
3.55
1.08
2.21
3.66
3.92
0.77
2.22
5.90
0.47
0.57
0.37
0.78
0.41
0.61
0.89
0.55
0.40
0.77
0.55
0.89
0.61
0.94
0.48
0.78
0.73
0.67
0.63
0.64
0.69
0.61
0.70
w
Q02
4.21
2.17
3.90
2.90
11.55
7.24
1. 28 1.23
3.63
3.94
2.52
2.93
4.20
2.36
8.84 2.97
12.53 9.05
6.60
5.37
8.46
3.71
13.64 10.67
5.47
3.87
9.55
7.16
15.36 13.87
18.69 10.16
13.77 8.05
0.76
0.78
1.86
3.21
0.27 0.31
1.07 0.45
2.76
1.14
3.14 1.95
15°
QW0 2
0.52
0.74
0.63
0.96
0.92
0.86
0.56
0.34
0.72
0.81
0.44
0.78
0.71
0.75
0.90
0.54
0.58
1.03
0.58
1. 15
0.42
0.41
0.62
~,!
8.92
14.59
6.01
8.95
1. 67
1.38
23.50
1.62
4.37
4.01
8.15
12. 17
5.56
4.20
13.27
3.57
1.63
3.23
1. 70
4.17
1.86
5.63
4.50
20°
Q02
QW0 2
5.50
7.80
3.20
3.00
0.60
0.40
13.20
1.60
1.30
1.40
3.00
4.20
2.50
2.76
9.40
0.90
0.80
1. 90
1.00
1.30
3.50
2.40
1.60
0.62
0.53
0.53
0.34
0.36
0.29
0.56
0.99
0.30
0.35
0.37
0.35
0.45
0.66
0.71
0.25
0.49
0.59
0.59
0.31
1. 88
0.43
0.36
VI
Q02
QW0
2
1.50 1.84 1. 23
9.86
6.66 0.68
9.71
9.18 0.95
13.75
9.32 0.68
1. 85
2.72 1. 47
1.45
3.10 2. 14
1.08 1. 28 1. 19
5.10
3.50 0.69
24.73 12.72 0.51
4.17
3.78 0.91
9.94 10.50 1.06
12.32 10.54 0.86
4.81
2.98 0.62
1.69 1.06 0.63
1.71
3.70 2.16
4.63 3.20 0.69
11.92 9.43 0.79
10.97 5.60 0.51
10.25 6.90 0.67
1.68 2.18 1.30
7.59
5.53 0.73
9.42
7.50 0.80
1. 74
1. 93 1.11
1"->
· .
Table 2 (continued).
TO
0°
\,!
1. 35
3 95
1.l0
1.66
4.63
2.611. G6
1. 75
1. 92
23.91
2.55
18.36
13.91
7.38
6.04
9.09
1. 74
4.90
12.88
4.08
6.08
4.72
1. 12
1.47
2.87
12.68
10.96
Q02
QHO z
0.64 0.47
0.64 0.16
0.27 0.25
0.76 0.46
1.29 0.28
0.49 0.19
0.34 0.20
0.68 0.39
0.54 0.28
6.05 0.25
0.73 0.29
6.29 0.34
5.87 0.42
1.77 0.24
1. 01 0.17
2.06 0.23
0.10 0.06
0.71 0.14
4.06 0.32
1.61 0.39
3.04 0.50
1.14 0.24
0.50 0.45
0.73 0.50
1. 21 0.42
8.43 0.66
4.79 0.44
\.)
3.34
4.48
3.24
1. 91
7.85
8.15
7.81
6.05
3.44
4.72
2.92
15.54
15.55
16.68
15.11
12.93
14.25
15.44
4.87
9.93
1.49
20.21
0.73
1. 62
3.60
1. 22
4.23
2.70
15 °
10°
5°
-
QOz
QWO?
2.17
2.14
2.16
2.25
4.03
5.68
7.93
2.23
2.15
3.44
1.72
7.50
6.90
7.50
7.90
9.10
5.70
7.70
2.80
4.60
1.00
8.80
0.70
1.20
2.40
0.90
1. 70
1. 20
0.65
0.48
0.67
1. 18
0.51
0.69
1. 01
0.37
0.63
0.73
0.59
0.48
0.44
0.45
0.52
0.70
0.40
0.50
0.58
0.46
0.67
0.44
0.96
0.74
0.67
0.74
0.40
0.44
VI
Q02
7.67 4.41
7.64 4.45
9.59
6.49
4.69
4.90
16.24 9.69
17.02 8.75
14.67 5.51
5.50
2.87
4.83
3.22
3.65
3.99
12.01
9.87
4.18
2.69
3.12 1. 59
7.38 4.42
1.47 0.98
1.69 1.38
7.79 4.81
18.00 11.01
17.21
9.77
4.80
3.63
3.87
1. 73
0.95 0.37
3.64 1. 36
14.61
9.58
15. 06
8.46
11 .79
7.07
4.21
2.56
4.30
2.06
QW0 2
W
0.57
0.58
0.68
1.04
0.60
0.51
0.38
0.52
0.67
1.09
0.82
0.64
0.51
0.60
0.67
0.82
0.62
0.61
0.57
0.76
0.45
0.39
0.37
0.66
0.56
0.60
0.61
0.47
1. 25
4.83
3.32
6.79
1.45
1. 55
4.68
9.88
15.61
6.19
4.96
16.24
22.35
4.39
8.65
5.71
9.69
11.20
9.02
15.33
10.01
9.10
20°
Q02
QWO Z
W
1. 60
1. 28
2.90
1. 20
3.00
0.40
1.40
2.80
2.70
5.20
1.40
2.20
8.60
7.80
1.20
5.10
2.30
3.20
4.30
2.40
8.50
4.40
2.40
0.60
0.36
0.44
0.28
0.90
0.60
0.27
0.33
0.23
0.44
0.53
0.35
0.27
0.59
0.40
0.33
0.38
0.27
0.55
0.44
0.26
4.63
4.07
5.93
3.42
6.15
4.04
4.60
10.70
3.87
Q02
QWO Z
2.63
1. 92
2.87
3.80
4.18
3.58
2.73
8.58
2.87
0.57
0.47
0.48
1.11
0.68
0.89
0.59
0.80
0.74
w
14
Tabl e 3.
Statistical summary of relationship between weight (w) and
respiration rate of Q. affinis at different temperatures.
Based on data in Table 2. a) logarithmic regression of
respiration rate (Q02) on weight. b) logarithmic regression
of weight specific respiration rate (QW0 2) on weight.
c) Elementary statistics for mean of QW0 2 values.
TO
00
N
a)
a
b
S.E.R.
r2
S.E. E.
Q02(10mg)
b)
a~
b'
S.E.R.
r2
S.E.E.
Q02 (1 Omg)
c)
QW0 2
S. D.
S.E.M.
C.V.
50
10°
15°
20 0
50
-0.545
0.994
0.082
0.869
0.243
2.812
51
-0.108
0.826
0.040
0.947
0.103
5.224
51
-0.154
0.935
0.044
0.951
0.124
6.039
45
-0.244
0.854
0.081
0.849
0.187
4.074
32
0.119
0.709
0.069
0.881
0.135
6.730
-0.558
0.003
0.088
0.006
0.261
2.786
-0.108
-0.174
0.040
-0.528
0.103
5.224
-0.154
-0.066
0.043
-0.210
0.124
6.026
-0.243
-0.147
0.081
-0.267
0.187
4.074
0.064
-0.232
0.079
-0.473
0.154
6.792
0.328
0.154
0.022
46.95
0.624
0.178
0.025
28.53
0.654
0.192
0.027
29.36
0.498
0.295
0.044
59.24
0.897
0.414
0.073
46.15
15
Table 4.
Respiration rate (QW0 2 ) of Q. affinis measured at different
temperatures during the winter (4 - ~/3/74) by the Gilson
technique (n = 4; SO/00 = 17%0; NSW).
TO
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.I.(95%)
0°
2°
5°
8°
10°
12°
15°
0.30
0.37
0.30
0.41
0.19
0.35
0.28
0.29
0.25
0.29
0.44
0.68*
0.22
0.31
0.38
0.46
0.32
0.56*
0.46
0.38
0.36
0.33
0.33
0.41
0.38
0.40
0.33
0.30
0.37
0.39
0.45
0.55
0.66
0.63
0.45
0.53
0.39
0.35
0.41
0.42
0.58
0.41
0.60
0.56
0.52
0.66
0.66
0.58
0.75
0.69
0.76
0.70
0.71
0.63
0.84
8
9.19
0.31
0.07
0.02
22.6
0.17
7
8.54
0.34
0.09
0.04
26.5
0.22
7
8.73
0.37
0.05
0.02
13.5
0.12
8
8.27
0.39
0.08
0.03
20.5
0.19
8
8.41
0.48
8
9.85
0.57
0.08
0.03
14.0
0.19
7
10.15
0.73
0.07
0.02
9.6
0.17
0.11
0.04
22.9
0.26
16
Table 5.
Respiration rate (QW0 2 ) of ~. affinis measured at differ~nt
temperatures during early summer (10 - 19/7/74) by the Gllson
technique (n = 4; 5%0 = 17%0; NSW).
TO
N
W
QW0 2
S.D.
S.E .M.
C.V.
C.!. (95%)
8°
0°
2°
5°
10°
0.16
0.38
0.28
0.31
0.34
0.27
0.30
0.24
0.31
0.26
0.24
0.28
0.20
0.41
0.37
0.28
0.22
0.43
0.31
0.34
0.31
0.22
0.33
0.40
0.31
0.54
0.48 0.44
0.53 0.57
0.36 0.53
0.37 0.53
0.33 0.60
0.39 0.47
0.48 0.46
0.34 0.52
0.48
8
8.05
0.29
0.07
0.02
24.1
0.17
9
8.30
0.29
0.07
0.02
25.0
0.16
9
7.67
0.35
0.09
0.03
25.7
0.21
8
8.07
0.41
0.08
0.03
19.5
0.19
12°
15°
18°
0.66
0.48
0.67
0.47
0.38
0.69
0.43
0.61
0.56
0.59
0.81
0.78
0.80
0.82
0.92
0.75
0.86
0.72 0.72
0.44 0.73
0.58 0.84
0.74 0.86
0.76 0.48
0.66 0.53
0.90 1.00
0.70 0.84
0.62 0.88
9
9
7.90 6.77
0.51 0.55
0.05 0.11
0.02 0.04
9.8 20.0
0.12 0.25
8
9
7.92 6.26
0.79 0.68
0.10 0.13
0.03 0.04
12.7 19. 1
0.24 0.30
20°
22°
0.70
0.80
0.85
0.71
0.86
0.74
9
6
6.76 5.14
0.76 0.78
0.17 0.07
0.06 0.03
22.4 9.0
0.39 0.18
17
Table 6.
Respiration rate (QW0 2 ) of O. affinis measured at different
temperatures during late summer (24 - 28/8/74) by the Gilson
technique (n = 5; SO/00 = 17 % 0; NSW).
TO
N
W
QW0 2
S.D.
S. E.lvl.
C.V.
C.1.(95%)
1°
r
5°
8°
10°
12°
15°
18°
20°
0.25
0.22
0.28
0.35
0.29
0.22
0.22
0.29
0.24
0.25
0.29
0.37
0.36
0.26
0.34
0.34
0.53
0.44
0.32
0.41
0.47
0.33
0.33
0.33
0.49
0.75
0.43
0.42
0.54
0.59
0.52
0.54
0.75
0.94
0.80
0.69
0.81
0.83
0.57
0.78
0.67
0.58
0.58
0.56
0.70
0.59
0.65
0.78
0.83
0.86
0.65
0.80
0.91
0.78
0.78
0.68
1.02
1.06
0.85
0.77
0.77
1.04
1.01
0.95
0.93
1. 14
0.88
0.86
1.01
0.97
0.96
1.14
8
5.49
0.27
0.05
0.02
17.4
0.12
8
5.37
0.31
0.05
0.02
17.0
0.12
8
4.65
0.40
0.08
0.03
20.3
0.19
8
5.20
0.54
0.10
0.04
19.4
0.24
8
4.59
0.77
8
4.94
0.64
0.08
0.03
11. 9
0.19
8
5.24
0.79
0.09
0.03
11.1
0.21
8
5.39
0.93
0.12
0.04
12.8
0.28
8
4.85
0.99
0.11
0.04
10.8
0.26
o.n
0.04
14.0
0.26
18
Table 7.
coefficients for respiration rate - temperature
relationship of O. affinis during summer and winter.
Based on data in-Tables 4 - 6.
QIO
early
summer
late
summer
(10 - 19/7/74)
(24 - 28/8/74)
wi nter
(4 - 9/3/74)
TO
Q.l 0
0- 2
2- 5
5- 8
8-10
10-12
12-15
0- 8
8-15
1.59
1. 33
1.19
2.82
2.36
2.28
1.33
2.45
TO
Q10
TO
Ql0
0- 2
2- 5
5- 8
8-10
10-12
12-15
15-18
18-20
20-22
2-12
15-22
1.00
1.87
1.69
2.98
1.46
3.34
0.61
1. 74
1. 14
1. 90
0.98
1- 2
2- 5
5- 8
8-10
10-12
12-15
15-18
18-20
1-10
10-15
15-20
3.98
2.34
2.72
5.90
0.40
2.02
1.72
1. 37
3.20
1.05
1.57
Table 8.
Respiration rate (QW0 2 ) of O. affinis, acclimated at ooe in the laborator~measured at
different temperatures by the Gilson technique (n = 4; SO/00 = 17%0; IOSW; 22/10 - 30/11/73).
TO
N
W
QW0 2
S.D.
S.E.M.
e.v.
C.1.(95%)
0°
2°
4°
6°
8°
10°
12°
12°
14°
16°
16°
18°
20°
0.14
0.26
0.16
0.16
0.23
0.12
0.24
0.13
0.31
0.16
0.27
0.31
0.23
0.14
0.23
0.44*
0.21
0.21
0.21
0.14
0.31
0.23
0.17
0.14
0.22
0.37
0.27
0.19
0.20
0.17
0.20
0.24
0.12
0.39
0.32
0.28
0.31
0.35
0.20
0.23
0.12
0.30
0.33
0.32
0.35
0.41
0.29
0.29
0.29
0.34
0.58
0.47
0.37
0.53
0.56
0.39
0.54
-
0.55
0.42
0.41
0.40
0.46
0.43
0.38
0.34
0.60
0.48
0.62
0.66
0.64
0.53
0.48
0.54
0.63
0.62
0.53
0.68
0.50
0.58
0.54
0.53
0.47
-
0.44
0.43
0.41
0.63
0.43
0.48
0.48
0.53
0.48
0.56
0.58
0.54
0.45
0.60
0.58
0.66
0.60
0.60
0.71
0.77
0.73
0.58
0.52
0.50
8
6.88
0.18
0.05
0.02
27.8
0.12
7
6.00
0.24
0.07
0.03
29.2
0.17
8
6.82
0.20
0.06
0.02
30.0
0.14
8
5.37
0.23
0.06
0.02
26.1
0.14
9
6.09
0.26
0.10
0.03
38.5
0.23
8
6.46
0.32
0.04
0.01
12.5
0.09
17
4.78
0.52
0.08
0.02
1. 54
0.17
8
6.54
0.57
0.06
0.02
10.5
0.14
7
7.34
0.63
0.11
0.04
17.5
0.27
-
-
16
9
7.33 5.57
0.45 0.58
0.08 0.07
0.02 0.02
17.8 12.07
0.17 0.16
\.D
Table 9.
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.1.(95%)
Respiration rate (QW0 2 ) of Q.. affinis, acclimated at 12°C in the laboratory, measured at
different 'temperatures by the Gilson technique (n = 4; SO/00 = 1]0/00; IOS~"; 19/11 - 5/12/73).
0°
r
4°
6°
8°
10°
12 °
14°
16°
18°
20°
0.17
0.13
0.14
0.14
0.10
0.13
0.14
0.14
0.16
0.19
0.14
0.16
0.19
0.18
0.19
0.18
0.27
0.21
0.31
0.22
0.20
0.24
0.28
0.17
0.26
0.27
0.20
0.25
0.28
0.30
0.20
0.29
0.36
0.37
0.27
0.23
0.26
0.26
0.31
0.21
0.22
0.40
0.46
0.29
0.27
0.30
0.37
0.41
0.30
0.35
0.26
0.29
0.32
0.42
0.39
0.40
0.32
0.44
0.48
0.27
0.36
0.38
0.37
0.28
0.57
0.54
0.49
0.51
0.47
0.51
0.45
0.36
0.63
0.59
0.62
0.55
0.47
0.54
0.60
0.62
0.70
0.80
0.75
0.60
0.65
0.68
0.73
0.69
8
9.75
0.14
0.02
0.01
14.3
0.05
8
9.51
0.18
0.02
0.01
11.1
0.05
8
9.71
0.24
0.05
0.02
20.8
0.12
8
7.95
0.26
0.04
0.01
15.4
0.09
8
7.56
0.28
0.06
0.02
2.14
21.4
8
7.83
0.34
0.08
0.03
23.5
0.19
8
6.17
0.34
0.06
0.02
17 .6
0.14
8
8.37
0.36
0.07
0.03
19.4
0.17
8
6.63
0.49
0.06
0.02
12.2
0.14
8
8.07
0.58
0.06
0.02
10.3
0.14
8
6.86
0.70
0.06
0.02
8.6
0.14
N
0
21
Table 10.
coefficients for respiration rate - temperature
relationship of O. affinis acclimated in the laboratory
at 0° and 12°C. -Based on data in Tables 8 - 9.
QIO
12°C
acclimated
O°C
acclimated
TO
Q10
TO
QIO
0- 2
2- 4
4- 6
6- 8
8-10
10-12
12-14
14-16
16-18
18-20
0- 8
8-14
16-20
2.05
0.40
2.01
1.85
2.82
5.50
3.56
0.58
1. 58
1.65
1. 58
3.81
1.62
0- 2
2- 4
4- 6
6- 8
8-10
10-12
12-14
14-16
16-18
18-20
0-10
10-14
14-20
3.51
4.21
1.49
1.45
2.64
1.00
1.33
4.67
2.32
2.56
2.43
1. 15
3.03
22
Table 11.
Respiration rate (QW0 2 ) of Q. affinis measured by the Gilson
technique at different salinities. Animals acutely exposed
to the test salinities following acclimation at 17% 0
(n = 4; TO = 100e; IOSW)
so
N
W
QW0 2
S.D.
S.E.M.
c.v.
e.!. (95%)
/00
5
10
15
20
25
30
35
0.43
0.55
0.47
0.40
0.40
0.36
0.45
0.35
0.54
0.54
0.44
0.57
0.42
0.62
0.48
0.43
0.39
0.29
0.55
0.40
0.34
0.39
0.41
0.39
0.44
0.47
0.42
0.35
0.37
0.25
0.27
0.36
0.28
0.21
0.29
0.31
0.30
0.27
0.26
0.31
0.22
0.21
0.22
0.19
0.19
0.25
0.29
0.24
0.21
0.21
0.22
0.18
0.19
0.17
0.22
0.20
8
6.93
0.43
0.06
0.02
14.0
0.14
8
7.55
0.51
0.07
0.03
13.7
0.17
8
8.81
0.40
0.07
0.03
17.5
0.17
8
7.99
0.37
0.08
0.03
21.6
0.19
8
6.99
0.28
0.03
0.01
10.7
0.07
8
8.86
0.23
0.03
0.01
13.0
0.07
8
7.77
0.20
0.02
0.01
10.0
0.05
23
Table 12.
Respiration rate (QW0 2 ) of Q.. affinis measured by the Gilson
technique at different salinities, following acclimation for
two weeks at the test salinity (n a 4; TO = 10°C; IOSW).
SO /00
N
W
Qt~02
S.D.
S.E.M.
C.V.
C.1. (95%)
5
10
15
20
25
30
35
0.38
0.44
0.40
0.41
0.39
0.38
0.36
0.39
0.33
0.59
0.30
0.23
0.57
0.37
0.54
0.69
0.30
0.54
0.41
0.42
0.42
0.56
0.48
0.53
0.41
0.42
0.46
0.46
0.47
0.37
0.43
0.44
0.41
0.50
0.36
0.54
0.31
0.47
0.78
0.48
0.32
0.23
0.28
0.30
0.27
0.31
0.30
0.31
0.34
0.42
0.43
0.28
0.36
0.32
0.33
0.30
0.43
0.28
11
9
8.66
0.46
0.06
0.02
13.0
0.14
7
8.95
0.44
0.04
0.02
9. 1
0.10
8
8.86
0.44
0.17
0.06
38.6
0.40
9
8.20
0.33
0.06
. 0.02
18.2
0.14
7
8.90
0.33
0.05
0.02
15.2
0.12
7
8.28
0.39
0.03
0.01
7.7
0.07
8.96
0.44
0.15
0.05
34.1
0.33
24
Table 13.
Respiration rate (Q02
the in situ technique
over a two day period
incubation depth = 20
and QW0 2) of ~. affinis measured by
at approximately 4 hour intervals
in July (n = 20; ro = 2.4°C; $%0=15.2%
m; incubation times indicated).
(21/7/74)
1300-1700 h
w
QW0 2
Q02
5.61
5.00
5.19
6.26
5.59
5.04
6.84
5.86
7.43
N
W
Q\~O 2
S.D.
S.E.M.
C.V.
C.I.(95%)
1. 23
2.58
3.50
3.87
3.07
2.13
4.34
4.11
4.83
0.22*
0.52
0.67
0.62
0.55
0.42
0.63
0.70
0.65
8
5.90
0.60
0.09
0.03
15.5
0.21
\'I
4.59
6.58
5.88
7.24
5.92
4.98
5.46
5.89
1700-2105 h
QW0 2
Q02
2.65
3.37
3.20
4.01
2.80
2.44
2.19
3.29
0.58
0.51
0.54
0.56
.0.47
0.49
0.40
0.56
8
5.82
0.51
0.06
0.02
11.6
0.14
0 ;
25
Table 13 (continued).
(21 - 22/7/74)
2045-0045 h
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.1.(95%)
0140-0530 h
w
Q02
QW02
6.41
6.40
5.85
5.32
6.02
7.93
7.53
5.96
5.12
2.65
3.80
4.74
4.15
3.93
3.88
5.20
4.98
6.00
0.41
0.59
0.81
0.78
0.65
0.49
0.69
0.83
1.17*
8
5.43
0.66
O. 15
0.05
23.3
0.35
W
8.10
7.74
6.20
6.23
7.17
7.55
5.27
6.73
6.64
QOz
QW02
5.60
5.85
4.19
4.14
4.95
4.92
3.78
4.73
4.68
0.69
0.76
0.68
0.66
0.69
0.65
0.72
0.72
0.70
9
6.85
0.70
0.03
0.01
4.8
0.07
26
Table 13 (continued)
(22/7/74)
0905-1310 h
0510-0930 h
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.I.(95%)
w
Q02
QW0 2
W
5.85
8.03
7.69
7.70
8.87
7.10
6.77
7.66
7.16
5.72
4.70
4.75
5.25
3.73
3.53
3.28
4.72
4.56
0.98*
0.59
0.62
0.68
0.42
0.50
0.49
0.62
0.64
5.90
5.48
6.07
5.28
5.88
4.54
6.39
5.97
6.35
8
7.62
0.57
0.09
0.03
15.7
0.21
QOz
QW0 2
3.83
3.13
3.94
2.51
3.72
2.56
3.70
3.84
3.93
0.65
0.57
0.65
0.48
0.63
0.57
0.58
0.64
0.62
9
5.76
0.60
0.06
0.02
9.2
0.14
27
Table 13 (continued).
(22/7/74)
1240-1725 h
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.1. (95%)
1710-2120 h
w
Q02
QW0 2
6.10
7.42
6.21
6.49
6.79
6.04
4.75
6.92
4.32
2.80
3.78
4.32
4.25
3.71
2.87
4.43
0.67
0.38*
0.61
0.67
0.63
0.61
0.60
0.64
'8
5.94
6.20
7.05
5.07
6.74
6.29
5.70
7.33
7.66
Q02
QW0 2
4.79
3.21
3.92
2.43
4.08
4.99
3.90
4.50
4.08
0.81
0.52
0.56
0.48
0.61
0.79
0.69
0.61
0.53
7
9
6.19
0.63
0.03
0.01
4.5
0.07
6.44
0.62
0.12
0.04
18.9
0.28
28
Table 13 (continued).
(22 - 23/7/74)
2105-0110 h
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.!. (95%)
0100-0515 h
w
Q02
QW02
W
Q02
QW02
6.22
6.18
7.92
7.19
7.55
5.52
7.24
4.36
4.29
6.67
5.85
6.40
4.38
5.69
0.70
0.69
0.84
0.81
0.85
0.79
0.79
7.52
8.25
6.69
7.69
7.95
7.04
9.96
8.75
7.88
6.44
. 6.38
5.42
6.36
6.41
5.77.
7.88
7.32
6.68
0.86
0.77
0.81
0.83
0.81
0.82
0.79
0.84
0.85
7
6.83
0.78
0.06
0.02
8.1
0.15
9
7.97
0.82
0.03
0.01
3.5
0.07
29
Table 13 (continued).
(23/7/74)
0455-0850 h
7.85
7.36
6.97
6.73
8.51
8.45
8.83
9.38
7. 16
6.72
N
W
QW0 2
S.D.
S .E.r~.
C.V.
C.1.(95%)
5.72
5.42
4.27
4.74
6.91
6.34
6.78
6.89
5.79
5.25
0.73
0.74
0.61
0.71
0.81
0.75
0.77
0.74
0.81
0.78
10
7.80
0.75
0.06
0.02
7.8
0.14
30
Table 14.
Respiration rate ~02 and
the in situ technique at
over a two day period in
incubation depth = 20 m;
QW0 2) of ~. affinis measured by
approximately four hour intervals
August (n = 20; TO 6.4°C; SO/00 =14
incubation times indicated).
(13/8/74)
1250-1655.h
Vi
6.86
6.3.7
6.20
6.44
6.91
6.93
6.78
6.69
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.1.(95%)
1640-2040 h
Q02
QW02
W
5.07
5.09
5.07
5.31
4.36
6.32
4.15
4.67
0.74
0.80
0.82
0.83
0.63
0.91
0.61
0.70
4.72
7.21
5.56
6.38
7.54
7.14
6.00
7.16
6.92
.
8
6.65
0.76
0.10
0.04
13.8
0.24
Q02
QW02
3.45
5.20
3.62
5.37
5.17
5.29
4.88
4.73
5.75
0.73
0.72
0.65
0.84
0.69
0.74
0.81
0.66
0.83
9
6.51
0.74
0.07
0.02
9.6
0.16
%
0;
31
Table 14 (continued).
(13 - 14/8/74)
0030-0455 h
2015-0040 h
N
W
QW0 2
S.D.
S.E.M.
C.V.
C.1.(95%)
w
Q02
QW02
W
6.81
5.55
8.37
5.65
6.00
6.09
5.33
6.51
3.64
2.98
4.33
3.37
3.63
4.05
3.79
4.27
0.54
0.54
0.52
0.60
0.61
0.67
0.71
0.66
6.32
5.93
7.61
6.61
6.78
6.08
5.29
8.01
10.90
8
6.29
0.61
0.07
0.03
11.5
0.17
Q02
QWQ2
4.98
4.13
6.15
4.59
5.81
4.98
4.44
6.42
7.77
0.79
0.70
0.81
0.70
0.86
0.82
0.84
0.80
0.71
9
7.06
0.78
0.06
0.02
7.9
0.14
32
Table 14 (continued).
(14/8/74 )
0830-1250 h
0430-0845 h
N
W
QW0 2
S.D.
S.E.M.
c.v.
C. I. (95%)
w
Q02
QW02
W
Q02
QW02
6.72
9.34
6.57
7.64
10.88
9.79
8.90
7.59
4.95
5.95
5.09
4.96
7.91
7.05
6.94
5.59
0.74
0.64
0.77
0.65
0.73
0.72
0.78
0.74
9.32
14.07
8.86
7.39
11.76
10.55
7.03
7.03
16.18
5.49
7.53
5.52
4.34
6.30
5.76
5.53
4.98
10.31
0.59
0.54
0.62
0.59
0.54
0.55
0.79
0.71
0.64
8
8.43
0.72
0.05
0.02
7.1
0.12
9
10.24
0.62
0.08
0.03
13.6
0.18
33
Table 14 (continued).
(14/8/74)
1630-2030 h
6.06
7.61
6.67
6.89
7.11
6.85
7.82
6.75
N
W
QWO z
S.D.
S.E.M.
C.V.
C. 1. (95%)
3.67
5.01
4.23
4.90
5.24
4.99
5.91
4.27
0.61
0.66
0.63
0.71
0.74
0.73
0.76
0.63
8
6.97
0.68
0.06
0.02
8.5
0.14
34
Table 15.
Respiration rate (Q02 and QW0 2) of Q. affinis measured by the
polarographic technique at different times during the year at
0° and 10°C (n = 2; S%0 = 17% 0 ; NSW; dates as indicated).
(30/7 - 2/8/73)
ooe
la°e
w
Q02
QWOz
9.81
10.43
9.07
6.29
4.35
4.01
4.33
6.63
4.33
6.12
3.96
3.06
10.36
9.85
11 .89
11 .35
3.90
3.60
1. 65
2.50
0.65
0.95
1. 20
1. 75
1.15
1. 70
0.95
0.88
3.75
3.51
3.90
4.45
0.40
0.35
0.18
0.40
0.15
0.24
0.28
0.26
0.27
0.28
0.24
0.25
0.36
0.36
0.33
0.39
W
12.07
10.06
8.72
8.57
9.75
9.99
13 .12
5.17
7.16
13.48
8.53
13.66
8.97
13.45
8.67
Q02
QW02
5.70
7.30
7.80
3.85
5.60
6.05
9.45
4.65
5.60
6.95
5.65
9.40
5.40
8.95
6.20
0.47
0.73
0.89
0.45
0.57
0.61
0.72
0.90
0.78
0.52
0.66
0.69
0.60
0.67
0.72
35
Table 15 (continued).
(16 - 23/8/73)
oDe
lODe
w
Q02
QW02
W
Q02
QW02
18.36
13.91
9.10
12.88
6.08
10.96
5.85
7.29
17.80
11.53
10.62
13.18
8.69
6.59
15.22
9.84
6.30
5.90
2.10
4.10
3.00
4.80
1.60
1.90
5.80
4.00
4.60
4.50
2.60
1.60
3.40
1.90
0.34
0.42
0.23
0.32
0.49
0.44
0.28
0.26
0.33
0.35
0.43
0.34
0.30
0.24
0.22
0.19
11 .55
12.53
6.60
8.46
13.64
9.55
7.67
18.69
13.77
7.64
9.59
16.24
17.02
12.01
7.38
7.79
18.00
17.21
14.61
15.06
11 .79
7.24
9.05
5.37
3.71
10.67
7.16
4.41
10.16
8.05
4.45
6.49
9.69
8.75
9.87
4.42
4.81
11 .01
9.77
9.58
8.46
7.07
0.63
0.72
0.81
0.44
0.78
0.75
0.57
0.54
0.58
0.58
0.68
0.60
0.51
0.82
0.60
0.62
0.61
0.57
0.66
0.56
0.60
36
Table 15 (continued).
(2 - 4/3/74)
ooe
lODe
w
Q02
QW02
W
9.29
11.52
9.90
7.35
8.29
9.04
9.72
3.51
4.63
3.81
3.04
3.19
2.69
3.26
0.38
0.40
0.38
0.41
0.39
0.30
0.34
8.40
10.10
9.29
11.52
7.35
8.29
9.04
9.72
Q02
QW02
6.55
5.36·
7.41
5.97
4.87
6.65
6.32
7.96
0.80
0.53
0.80
0.52
0.66
0.80
0.70
0.82
37
Table 15 (continued).
(28 - 30/5/74)
lOoC
O°C
w
5.92
15.54
8.97
10.19
9.06
17.61
8.01
12.80
11.23
8.78
22.88
6.17
8.19
8.65
13.25
11.64
8.94
7.28
12.08
9.28
10.68
QOz
QWOz
w
QOz
QW02
1.01
3.29
1.36
2.17
2.44
3.64
2.89
2.65
3.00
2.27
4.89
1. 39
2.80
2.12
4.28
3.23
2.94
2.68
4.25
3.19
4.07
0.24
0.21
0.15
0.21
0.27
0.21
0.36
0.21
0.27
0.26
0.21
0.23
0.34
0.25
0.32
0.28
0.33
0.37
0.35
0.34
0.38
12.81
8.38
7.37
10.98
16.57
13.54
10. 15
5.84
10.46
11 .56
9.02
8.94
8.53
20.33
7.31
14.74
9.84
6.13
3.43
2.60
5.45
8.26
5.15
4.87
2.22
3.77
5.35
3.79
3.38
3.21
8.61
3.31
6.72
4.14
0.48
0.41
0.35
0.50
0.50
0.38
0.48
0.38
0.36
0.46
0.42
0.38
0.38
0.42
0.45
0.46
0.42
---
38
Table 15 (continued).
(26 - 28/7/74)
10°C
O°C
W
6.46
9.52
6.67
8.10
6.60
7.77
7.52
8.28
9.87
8.45
5.98
6.07
8.97
4.86
8.00
6.50
8.39
7.34
8.41
Q02
QW02
W
Q02
QW02
1. 08
2.66
2.44
2.40
1.03
2.06
2.43
2.20
1.56
1.87
1.72
1.71
2.86
1.41
1.98
1. 73
2.39
2.61
2.96
0.17
0.28
0.37
0.31
0.16
0.26
0.32
0.27
0.16
0.22
0.29
0.28
0.32
0.29
0.25
0.27
0.28
0.35
0.35
8.63
4.21
4.44
7.21
8.11
7.16
6.35
9.28
9.40
3.51
3.90
6.76
7.37
8.37
5.43
7.07
7.84
6.95
4.42
1.56
1. 21
2.22
2.43
1.83
2.25
4.39
4.73
0.94
1.13
2.27
3.16
3.78
1. 75
2.59
2.65
2.15
0.51
0.37
0.27 .
0.31
0.30
0.26
0.35
0.47
0.50
0.27
0.29
0.34
0.43
0.45
0.32
0.37
0.34
0.31
·.
Table 16.
Statistical summary of respiration rate (QWO z ) of ~. affinis measured at different
times during the year at 0° and 10°C by the polarographic technique. Based on data
in Table 15.
TO
N
W
QWOz
S. D.
S.E.M.
C.V.
C.1.(95%)
30/7 - 2/8/73
0°
10°
16
15
7.24
10.09
0.30
0.67
0.08
0.13
0.02
0.03
26.7
19.4
O. 17
16 - 23/8/73
0°
10°
16
21
11 .12
12.23
0.32
0.63
0.09
0.10
0.02
0.02
28.1
15.9
0.19
0.21
4/3/74
0°
10°
7
8
9.29
9.21
0.37
0.70
0.04
0.12
0.02
0.04
10.8
17. 1
0.10
0.28
28 - 30/5/74
0°
10°
21
17
10.82
11.96
0.28
0.43
0.07
0.05
0.02
0.01
25.0
11 .6
0.15
0.11
26 - 28/7/74
0°
10°
19
18
7.57
6.78
0.27
0.36
0.06
0.08
0.01
0.02
22.2
22.2
0.13
0.17
ate
2 -
0.28
w
~
40
Table 17.
Respiration rate (Q02 and QW0 2) of ~. affinis measured by the
Gilson technique at different times during the year at 0° and 10 0 e
(5% 0 = 17% 0 ; N5W; dates as indicated).
(3 - 8/3/75)
lOoe
ooe
n
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
~
9.8
12.0
13.5
11.1
12.6
10.5
9.2
11. 1
14. 1
12.1
13.4
10.1
8.9
12.0
9.7
12.7
9.6
11.4
14.7
12.2
10.2
11 .4
7.4
13.2
13.3
w
Q02
QW02
n
4.94
9.50
12.95
7.02
8.67
7.08
5.41
8.30
13.82
8.32
11 .61
6.06
4.29
9.97
6.20
10.08
6.02
7.56
19.03
8.92
6.47
6.93
1. 92
9.56
11 . 00
1. 24
1.42
2.73
0.75
1. 21
2.04
1. 94
2.72
3.10
0.84
3.37
1.20
1.13
1.93
1.28
2.35
0.86
1.47
4.63
2. 14
2.25
1. 01
0.22
1. 01
1.48
0.25
0.15
0.21
0.11
0.14
0.29
0.36
0.33
0.22
0.10
0.29
0.20
0.26
0.19
0.21
0.23
0.14
0.19
0.24
0.24
0.35
0.15
0.12
0.11
0.13
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
~
11. 7
12.3
14.1
12.9
13.9
13.8
11.5
9.4
8.2
8.8
10.2
12.2
12.3
15.4
12.6
7.0
12.9
11.6
8.8
12.0
9.7
12.9
13.8
11.0
8.8
15.4
11 .9
w
Q02
QW02
6.80
8.81
12.62
9.13
12.05
10.80
7.26
3.83
2.69
4.57
6.60
9.58
11.06
16.42
10.01
2.45
10.15
8.66
4.07
9.00
5.47
10.05
14.33
7.81
4.11
20.19
9.30
3.68
5.92
7.56
5.46
8.12
6.48
4.68
2.24
1.66
1. 88
3.28
5.16
5.82
7.20
5.80
1.32
4.22
2.66
0.96
4.72
2.52
3.36
5.92
2.76
1.48
5.76
5.60
0.54
0.67
0.59
0.59
0.67
0.60
0.64
0.58
0.61
0.41
0.50
0.54
0.53
0.44
0.58
0.54
0.42
0.31
0.24
0.52
0.46
0.33
0.41
0.41
0.36
0.29
0.60
41
Table 17 (continued).
(10 - 14/5/75)
ooe
WOC
n
l/,
w
Q02
QW02
n
5
5
5
5
5
5
5
5
5
5
5
5
8
5
5
5
5
5
5
6
5
5
6
5
5
5
11 .2
12.3
14.5
15.5
12.2
14.9
10.8
16.4
10.4
13.3
15.9
12.1
9.4
13.6
12.7
13.0
13.9
13. 7
12.3
10.4
12.7
15.4
11 .3
16.2
14.4
13. 1
6.40
8.73
12.76
14.09
7.42
11 .50
5.70
17.02
4.96
9.60
15.65
8.11
3.51
10.95
9.38
8.27
10.41
9.96
9.54
4.92
9.03
12.46
5.86
14.93
10.21
8.65
1. 36
1.66
3.32
5.50
1.12
3.48
1. 10
5.20
1. 38
2.60
2.68
2.00
0.66
2.60
3.32
2.40
2.04
2.76
2.58
1.05
2.06
2.98
0.88
3.24
1. 56
1. 74
0.21
0.19
0.26
0.39
0.15
0.30
0.19
0.31
0.28
0.27
0.17
0.25
0.19
0.24
0.35
0.29
0.20
0.28
0.27
0.21
0.24
0.24
0.15
0.22
0.15
0.20
5
5
5
5
5
5
5
5
5
5
5
5
5
6
5
5
6
5
5
5
5
5
5
8
5
5
6
w
--_.-
PO:'
:-
QW02
11.4
15.2
12.9
7.0"7
11 .21
.'3vOO
,) ~~?
1"I.b
'.4~
0.42
0.37
0.44
0.40
0.34
0.36
0.33
0.37
0.39
0.37
0.47
0.35
0.38
0.40
0.37
0.37
0.29
0.34
0.45
0.47
0.37
0.42
0.39
0.34
0.40
0.46
0.38
i
12.7
10.9
13 .5
11.7
12.6
13.6
14.0
11 .9
16.1
10.6
12.4
15.4
10.1
13.0
12. I
14.1
12. 1
12.7
14.2
10.6
13.5
12.0
12.3
-
1O.m'
:'>.62
5.87
10.71
8.U7
9.52
10 . O~)
11 .32
7.93
15.93
6.01
7.82
14.44
5.70
8,92
7J35
13. 14
7.38
C; 49
11 ?9
';'
i'~"
,10
).OU
2,96
2,10
-; r.;n
".
<-
~".....,.
.3.00
3.72
:"
72
r
., r ..
~,.
10
:?v80
6.12
2.41
2.90
5 v18
1.40
3.02
3.52
6.20
2,72
.i, Y4
IJ _ 4?
!),116
1. BS
9.82
8.88
B.92
3.92
4.08
3.38
42
Table 17 (continued).
(13 - 18/7/75)
ooe
n
7
6
9
6
5
5
5
5
7
6
5
6
6
5
6
6
7
5
7
5
5
9
5
6
6
5
5
6
9
5
6
6
5
6
6
£.
9.8
11.6
7.7
11.0
10.9
13.6
10.9
13.1
10.1
9.6
12.4
11 .5
11 .3
13.4
11.0
11.9
10.4
12.9
9.4
12.5
12.1
8.2
13.7
11. 7
10.7
12.3
13.8
10.2
8.0
12.6
10.6
11.0
12.6
11.5
11. 1
la°e
w
Q02
QW02
n
4.94
7.28
2.29
6.82
8.96
11. 41
8.78
10.23
6.60
4.42
9.05
7.90
6.58
12.94
6.57
9.22
5.79
9.49
4.29
10.33
9.12
2.63
11 .38
6.83
5.85
8.11
12.74
5.37
2.48
10.23
5.29
5.88
9.74
6.08
6.48
1.04
2.93
0.41
1.83
3.36
3. 12
3.44
3.96
1. 69
1. 92
3.24
2.92
2.42
4.42
2.88
3.52
1.84
2.46
0.79
2. 70
2.70
0.41
2.64
1.60
1. 92
3.10
2.52
1.87
0.76
3.34
1.02
1. 78
3.82
1. 55
1.68
0.21
0.40
0.18
0.27
0.38
0.27
0.39
0.39
0.26
0.43
0.36
0.37
0.37
0.34
0.44
0.38
0.32
0.26
0.18
0.26
0.30
0.16
0.23
0.23
0.33
0.38
0.20
0.35
0.30
0.33
0.19
0.30
0.39
0.26
0.26
4
6
7
5
6
13
8
7
7
5
5
6
5
6
5
5
5
7
9
5
8
5
5
5
6
5
5
~
16.1
9.6
10.3
13.5
10.6
8.3
7.4
11.4
13.4
11.6
11. 1
11 .2
10. 1
10.4
11. 5
10.7
13.0
7.6
8.1
14.0
9.2
11.4
13.6
10.0
11.7
11 .4
11.6
w
Q02
QW02
17.31
4.93
6.11
11 .13
6.90
3.00
2.26
6.81
10.78
7.75
6.19
7.36
5.56
4.60
8.84
6.95
10.66
2.56
2.38
11.87
3.54
7.58
11 .17
5.21
7.35
8.54
8.28
4.55
2.45
2.94
5.04
2.68
1. 28
1.19
2.66
4.29
5.16
3.54
4.33
2.66
1. 88
4.72
2.90
4.66
1. 23
0.84
6.80
1. 23
1. 96
2.74
2.34
1. 90
2.88
1. 92
0.26
0.50
0.48
0.45
0.39
0.42
0.52
0.39
0.40
0.67
0.57
0.59
0.48
0.41
0.53
0.42
0.44
0.48
0.35
0.57
0.35
0.26
0.25
0.45
0.26
0.34
0.23
43
Table 17 (continued).
(12 - 17/8/7 5)
0°
n
3
6
5
4
5
5
4
6
3
7
4
6
6
6
4
5
4
3
8
8
3
5
4
5
6
5
~
16.3
10.1
11 .8
13.7
12.1
11.9
12.7
10.0
17.9
8.7
13.9
10.3
11.1
10.5
12.9
11 .3
12.8
16.0
8.2
8.0
15.4
11 .2
13.3
10.9
10.8
11.3
10°
w
Q02
gWOz
n
17.30
5.06
7.70
10.38
7.16
7.18
9.51
4.58
16.60
3.42
10.18
5.40
6.62
6.18
9.39
7.56
9.88
14.83
2.88
2.89
16.16
6.78
8.90
7.48
5.68
6.89
2.90
0.67
2.82
3.95
1. 56
2.02
2.78
1.55
5.83
1.67
4.28
2.07
2.15
2.58
1. 73
2.58
4.10
2.77
0.75
0.68
5.13
1. 92
3.75
1.44
2.07
2.16
0.17
0.1;3
0.37
0.38
0.22
0.28
0.29
0.34
0.35
0.49
0.42
0.38
0.32
0.42
0.18
0.34
0.42
0.19
0.26
0.23
0.32
0.28
0.42
0.19
0.36
0.31
3
8
5
6
4
5
6
5
4
4
8
6
5
6
8
5
6
5
4
8
4
5
6
3
6
5
8
fI.,
17.5
8.0
11.3
10.2
12.8
10.9
9.3
11.0
13.5
12.7
7.5
10.0
12.3
10.6
8.2
12.9
10.3
11. 9
13.4
8.5
12.6
10.2
11.0
16.3
10.5
11.6
7.5
w
gOz
gW02
18.31
2.82
9.05
5.38
9.64
6.52
4.28
7.21
10. 12
10.46
2.82
5.77
9.23
6.36
3.30
10.78
6.15
8.25
10.97
2.96
8.19
5.07
5.49
14.51
4.41
6.81
2.75
9.70
1.20
3.04
2.53
6.63
3.74
2.30
2.68
4.88
3.75
1.33
2.50
5.10
2.53
1.34
4.52
2.83
4.46
6.05
1. 30
3.30
1.83
2.68
9.17
2.20
4.10
1.09
0.53
0.43
0.34
0.47
0.69
0.57
0.54
0.37
0.48
0.36
0.47
0.43
0.55
0.40
0.40
0.42
0.46
0.54
0.55
0.44
0.40
0.43
0.49
0.63
0.50
0.60
0.40
44
Table 17 (continued).
(27/2 - 2/3/76)
oDe
n
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
R,
11.8
13.2
11.2
12.2
12.5
11 .9
13.3
12.4
11 .0
10.3
11 .7
12.0
10.6
12.2
13.0
11. 1
12.9
10.6
13.2
12.2
lODe
w
Q0 2
QW0 2
n
9.-
w
Q0 2
QWO?
8.92
11.49
8.18
9.94
10.09
9.35
11 .33
8.40
7.74
6.86
9.29
9.29
7.84
10.79
12.56
8.04
9.40
7.27
10.12
8.93
3.54
3.54
2.30
2.68
3.16
2.70
5.06
2.20
2.68
2.00
3.12
2.28
2.56
4.06
4.50
2.60
4.42
2.02
2.02
3.64
0.40
0.31
0.28
0.27
0.31
0.29
0.45
0.26
0.35
0.29
0.34
0.25
0.33
0.38
0.36
0.32
0.47
0.28
0.20
0.41
5
5
5
5
5
5
5
5
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
12.7
11.6
13.4
10.9
12.8
12. 1
12.3
11. 7
13.0
11 .6
12.8
11.9
13.3
10.9
11 .2
13.4
12.0
13.8
12.0
11.3
11.2
12.7
11.5
13.3
11. 9
11 .81
8.12
12.40
7.40
11.00
9.90
9.47
9.53
11 .51
8.99
13.22
8.99
12.55
7.30
8.66
12.04
9.26
13.01
9.03
8.59
6.60
10.81
7.32
11 .35
9.21
10.12
7.14
5.80
3. 74
6.96
6.14
6.80
4.74
6.77
4.68
8.92
4.40
8.40
4.40
6.32
6.80
8.92
8.66
5. 12
4.84
3.34
6.22
2.70
5.72
6.24
0.86
0.88
0.47
0.51
0.63
0.62
0.72
0.50
0.59
0.52
0.67
0.49
0.67
0.60
0.73
0.56
0.96
0.67
0.57
0.56
0.51
0.58
0.37
0.50
0.68
Table 18.
Statistical summary of weight specific respiration rate (QW0 2 ) of Q. affinis measured
by Gilson respirometry at different times during the year at 0° and 10°C. Based on
data in Table 17.
TO
N
W
QW0 2
S. D.
S.E.M.
C.V.
C.1.(95%)
3 - 8/3/75
0°
100
25
27
8.47
8.81
0.21
0.50
0.08
0.12
0.02
0.02
38.1
24.0
0.16
0.25
10 - 14/5/75
00
100
26
27
9.62
9.22
0.24
0.39
0.06
0.04
0.01
0.01
25.0
10.3
0.13
0.08
13 - 18/7/75
0°
10°
00
100
35
27
7.49
7.25
0.30
0.42
0.08
0.11
0.01
0.02
26.7
26.2
0.16
0.22
26
27
8.33
7.32
0.31
0.48
0.09
0.09
0.02
0.02
29.0
18.8
0.18
0.19
00
100
20
25
9.29
9.92
0.33
0.62
0.07
0.14
0.02
0.03
21.2
22.6
0.15
0.29
12 - 17/8/75
27/2 - 2/3/76
+::0
U1
Table 19. Statistical summary of logarithmic regression of respiration (QOz) on animal length (£) for
Q. affinis at different times during the year at 0° and lOot. Based on data in Table 17.
_0
I
N
t
a
b
S.E.R.
3 - 8/3/75
0°
10°
25
27
7.4-14.7
7.0 - 15.4
-2.40
-2.24
2.45
2.66
0.60
0.25
10 - 14/5/75
0°
10°
26
27
9.4 - 16.4
10.1 - 16.1
-3.05
-2.42
3.02
2.68
13 - 18/7/75
0°
10°
35
27
7.7 - 13.7
7.4 - 16.1
-3.30
-1.98
12 - 17/8/75
0°
10°
26
27
8.0 - 17.9
7.5 - 17.5
27/2 - 2/3/76
0°
10°
20
25
10.3 - 13.3
10.9 - 13.8
Date
r2
S.E. E.
Q02(10mm)
0.65
0.91
0.21
0.11
1.12
2.60
0.38
0.27
0.85
0.90
0.12
0.07
0.94
1.83
3.44
2.31
0.38
0.33
0.85
0.81
0.14
0.14
1.39
2.16
-2.09
-2.32
2.27
2.70
0.34
0.16
0.81
0.96
0.15
0.08
1. 51
2.36
-1.91
-2.45
2.21
2.97
0.68
0.74
0.61
0.64
0.10
0.11
1.98
3.27
.+::>
0"\
47
Table 20.
QI0 coefficients for respiration of Q. affinis measured at
different times during the year by polarographic (P) and
Gilson (G) techniques. Gilson data presented both in terms
of the weight specific respiration rate (QW0 2) and the
calculated rate for a standard animal [Q02(lOmm)]. Based
on data in tables ·15 - 19.
P(Q~~02)
G(QW0 2 )
G[Q02(10mm)]
30/7 - 2/8/73
16 - 23/8/73
2 - 4/3/74
28 - 30/5/74
26 - 28/7/74
3
10
13
12
27/2
-
8/3/75
14/5/75
18/7/75
17/8/75
2/3/76
3 - 8/3/75
10 - 14/5/75
13 - 18/7/75
12 - 17/8/75
27/2 - 2/3/76
0.30
0.32
0.37
0.28
0.27
0.21
0.24
0.30
0.31
0.33
1.12
0.94
1.39
1.51
1. 98
0.67
0.63
0.70
0.43
0.36
X=
2.23
1. 97
1.89
1. 53
1. 33
1. 79
X=
2.38
1.63
1.40
1. 55
1.88
1. 77
X=
2.32
1.95
1. 55
1. 56
1. 65
1. 81
0.50
0.39
0.42
0.48
0.62
2.60
1. 83
2.16
2.36
3.27
48
Table 21.
Respiration rate (QW0 2 ) of Q. affinis measured by the in situ
technique at different times during the year [n=5; TO and
S%0 = ambient as indicated; NSW; incubation depth = 20 m;
i ncubati on time (ti) as i ndi cated] .
1974
N
W
QW0 2
S.D.
S. E.r1.
C.V.
C.!. (95%)
TO
s%o
ti (h)
1975
2/3
25/5
13/7
9/8
27/2
7/5
16/7
13/8
0.49
0.47
0.47
0.52
0.46
0.52
0.46
0.45
0.46
0.47
0.49
0.51
0.51
0.46
0.49
0.40
0.39
0.52
0.54
0.42
0.65
0.37
0.39
0.49
0.48
0.47
0.41
0.34
0.45
0.36
0.42
0.75
0.51
0.65
0.66
0.66
0.63
0.73
0.50
0.56
0.70
0.60
0.76
0.59
0.59
0.36
0.43
0.35
0.34
0.40
0.43
0.40
0.47
0.51
0.48
0.35
0.57
0.51
0.54
0.63
0.60
0.62
0.57
0.57
0.35
0.41
0.44
0.49
0.33
0.43
0.52
0.41
0.42
0.42
0.44
0.27
0.31
0.32
0.45
0.29
0.38
0.28
0.36
0.39
0.39
0.40
0.34
0.47
0.57
0.66
0.52
0.40
0.51
0.40
0.46
0.45
0.44
0.38
0.39
0.37
0.44
0.36
0.35
0.47
0.36
0.50
12
9.96
0.48
0.02
0.01
4.2
0.04
-0.8
14.8
28.5
9
10.56
0.49
0.08
0.03
16.3
0.18
-0.8
18.1
26.5
10
11. 59
0.42
0.05
0.02
11. 9
0.11
0.2
17.4
24
14
5.92
0.64
0.08
0.02
12.5
0.17
6.4
14.0
24
11
19
9.29
0.49
0.09
0.02
18.4
0.19
-0.8
17.2
24
12
7.75
0.35
0.06
0.02
17. 1
0.13
19
7.89
0.45
0.08
0.02
17.8
0.17
7.7
17.0
22.5
8.80
0.41
0.06
0.02
14.6
0.13
-0.8
14.3
24.5
--
34
Table 22.
Effect of maintenance in the laboratory at 5°C for 18 - 20 days on the respiration rate
(Q 02 and QW0 2 ) of O. affinis measured by the Gilson technique (TO = 8°C; S%0 = 15% 0; NSW).
18 - 20 days
18 - 20 days
<48 h
n
w
Q02
QW0 2
n
w
4
5
8
8
7
7
12
12
12
5
5
11
11
10
8
12
12
8.56
10.69
5.22
5.20
7.51
7.73
2.66
2.72
2.61
12.71
16.54
4.12
4.51
5.15
8.10
4.25
3.91
4.68
6.22
2.81
3.08
3.24
2.79
1.30
1.06
1.18
7.80
10.00
2.05
1.77
2.07
4.19
2.10
1. 93
0.55
0.58
0.54
0.59
0.43
0.36
0.49
0.40
0.45
0.61
0.60
0.50
0.39
0.40
0.52
0.49
0.49
5
5
8
6
6
6
10
10
13
8
8
8
8
5
10
8
5
10.56
17.51
4.51
8.81
9.18
7.85
3.38
3.49
1. 91
5.86
5.07
5.65
4.54
11.67
4.40
7.18
13.47
Q02
QW0 2
n
2.86
7.90
1.10
3.45
2.38
2.02
1.03
1.16
0.60
1.71
1.44
1.44
1.06
3.86
1.15
1.40
3.80
0.27
0.45
0.24
0.39
0.26
0.26
0.30
0.33
0.31
0.29
0.28
0.25
0.23
0.33
0.26
0.19
0.28
10
5
5
5
6
9
8
7
5
5
10
12
6
6
11
6
w
4~83
10.87
12.11
10.14
7.63
4.37
5.08
4.36
14.35
13.45
3.22
3.42
7.81
8.24
4.00
10.69
Q02
QW0 2
0.92
3.10
2.62
3.88
2.53
1.07
1.20
0.97
4.10
4.10
0.80
1.11
2.25
1. 55
0.86
2.60
0.19
0.29
0.22
0.38
0.33
0.24
0.2~'
0.22
0.29
0.30
0.25
0.32
0.29
0.19
0.22
0.24
~
\.0
50
Table 23.
N
W
QW02
S.D.
S.E.M.
C.V.
C.!. (95%)
a
b
S.E.R.
r2
S.E.
Q02 (1 Omg)
Statistical summary of effect of maintenance in the laboratory
on the respiration rate of Q. affinis. Based on data in Table 22.
<48 hours
17 - 20 days
17
2.61 - 16.54
0.49
0.08
0.02
16.3
0.17
33
1.91-17.51
0.28
0.06
-0.426
1.150
0.068
0.975
0.065
5.30
0.01
21. 4
0.12
-0.637
1.087
0.067
0.946
0.088
2.82
Table 24.
Effect of short-term starvation and refeeding on the respiration rate (Q 02 and QW0 2 ) of
O. affinis measured by the Gilson technique. Animals starved between% 0 and 96 h, then
refed after the 96 h determination (n = 5 - 6; TO = 10 0e; S%0 = 17 0; IOSW).
oh
N
X
S. D.
S.E.M.
C.V.
C.I.(95%)
Q02
QW0 2
ItJ
Q02
QlW 2
8.41
8.55
7.00
8.97
11 .01
9.80
11.62
11 .31
11.76
9.53
3.01
2.75
2.15
2.63
3.43
3.43
3.23
3.05
4.33
2.12
0.36
0.32
0.31
0.29
0.31
0.35
0.28
0.27
0.37
0.22
8.03
7.57
8.20
8.79
8.20
12.20
14.22
9.48
10.74
9.33
10.49
2.26
2.87
2.05
3.46
2.38
2.80
3.12
2.46
3.25
1.88
2.40
0.28
0.38
0.25
0.39
0.29
0.23
0.22
0.26
0.30
0.20
0.23
10
9.80
10
3.01
0.66
0.21
21.9
1.49
10
0.31
0.05
0.01
14.8
0.11
11
11
2.63
0.51
0.15
19.4
1.14
11
0.28
0.06
0.02
22.6
0.13
Q02
QW0 2
i'l
8.17
9.27
10.24
8.37
10.22
8.07
10.59
9.50
10.91
9.78
8.85
9.13
8.64
9.13
4.94
3.88
5.24
2.90
4.20
3.22
4.68
4.24
4.88
4.06
4.68
3.10
2.88
3.46
0.60
0.42
0.51
0.35
0.41
0.40
0.44
0.45
0.45
0.42
0.53
0.34
0.33
0.38
14
9.35
14
4.03
0.80
0.21
19.9
1. 73
14
0.43
0.08
0.02
17.6
0.17
\'!
48 h
24 h
9.75
(JI
.......
Table 24 (continued).
72h
Q02
QW0 2
W
9.74
7.76
7.60
9.43
10.05
8.73
11.78
11.30
9.00
9.55
2. 01
1. 91
1. 75
2.48
2.48
2.10
3.37
2.47
2.72
2.67
0.21
0.25
0.23
0.26
0.24
0.24
0.29
0.22
0.30
0.28
10.61
11.49
8.88
7.85
8.96
8.65
10.83
10.37
10
9.54
10
2.40
0.48
0.15
20.0
1.08
10
0.25
0.03
0.01
11.9
0.07
8
9.71
w
N
X
S.D.
S. E.M.
C.V.
C.1.(95%)
l20h
96h
Q02
QW0 2
W
2.98
4.08
2.37
1. 93
1. 97
2.03
2.08
2.96
0.28
0.35
0.27
0.25
0.22
0.24
0.19
0.29
8
2.55
0.75
0.27
29.4
1.77
8
0.26
0.05
0.02
18.6
0.12
Q02
QW0 2
9.14
10.13
11 .01
7.80
9.38
7.30
7.62
8.94
11.15
6.80
3.58
4.62
4.47
2.68
2.58
2.03
3.48
3.73
4.73
2.77
0.39
0.46
0.41
0.34
0.27
0.28
0.46
0.42
0.42
0.41
10
8.93
10
3.47
0.94
0.30
27.1
2.12
10
0.39
0.07
0.02
17.5
0.16
U1
N
~
Table 25.
Influence of sex and reproductive condition (gravid or non-gravid) on the respiration rate
(Q 02 and QW0 2) of adult Q. affinis measured by the Gilson technique (n = 5; TO = 10°C;
S%0 = 16%0; IOSW).
female
male
w
N
X
S.D.
S.E.M.
C.V.
C.1.(95%)
gravi d female
Q02
QWO?
10.45
12.47
11.52
12.21
10.75
12.08
12.92
10.73
11.76
12.65
12.18
14.37
12.58
11 .30
11 .78
5.67
5.78
6.37
3.54
4.17
4.74
4.20
3.71
4.33
3.53
4.80
6.60
4.71
3.80
4.00
0.54
0.46
0.55
0.29
0.39
0.39
0.33
0.35
0.37
0.28
0.39
0.46
0.37
0.34
0.34
15
11 .98
15
4.66
1. 01
0.26
21. 7
2.15
0.39
0.08
0.02
20.5
0.17
QOz
QWO?
W
11.52
11.80
13.01
11 .86
10.89
11 .18
8.57
12.38
10.66
6.57
11 .69
11 .38
11 .10
5.96
6.17
5.87
4.91
5.00
6.00
2.80
6.00
4.87
1.87
5.80
4.27
3.20
0.52
0.52
0.45
0.41
0.46
0.54
0.33
0.48
0.46
0.28
0.50
0.38
0.29
13
10.97
13
4.82
1.41
0.39
29.3
3.05
13
0.43
0.09
0.02
20.9
0.19
Q02
QW02
W.
12.58
10.17
10.71
11 .39
9.43
9.68
9.13
7.82
9.02
9.09
10.75
9.35
6.88
5.73
6.27
3.97
3.33
4.20
3.51
2.53
3.33
2.57
3.47
3.13
0.55
0.56
0.59
0.35
0.35
0.43
0.38
0.32
0.37
0.28
0.32
0.33
12
9.93
12
4.08
1.44
0.42
35.3
3.17
12
0.40
0.11
0.03
27.5
0.24
15
01
w
54
~o
20
O· C
00 • 0.285 W 0.994
2
10
o
~
...-c
........
!
0
Z
~2
0
N
o
0
0
<Xl
0
0
00
00
0
0
0.5
o
0.2
0
0
00
o
0
0
0
0
0
0
0
o
0.2
0.5
(J)
10
20
50
ANIMAL DRY WEIGHT (mg)
Figure 1.
Weight-metabolic rate relationship for O. affinis at DoC.
Based on data in Table 2. Regression equation for line
indicated.
55
SO
20
S· C
Q02- O.780WO.
826
10
0
q,
~
...-e:
.......
61
~
0
0
0
0
(J)
~
Z
0
0
-e:
0
..........
g
(J)
{1
0
N
0
0
0
~
0 0
0
0
0.5
0.'
0.2
0.5
5
10
20
~o
ANIMAL DRY WEIGHT (mg)
Figure 2.
Weight-metabolic rate relationship for O. affinis at 5°C.
Based on data in Table 2.
56
50
20
10·C
Q02,,0.703W 0.935
0
Ji.
...""
~
~
0
0
Z
~
"N
2
0
0
~
0
0
0
0.5
0
0
0
0.2
0.2
0..5
10
20
50
ANIMAL DRY WEIGHT (mg)
Figure 3.
Weight-metabolic rate relationship for O. affinis at 10°C.
Based on data in Table 2.
57
20
we
0° - O.570W 0.854
2
0
10
0JP
..r.
...
......
8
~
<l(
~
0
Z
~
0\9 0
0
aP
°
~
2
0
o 0
N
0
0
0
0
0%
0
:::L
0
0
O.~
Q)
0.2
0.2
o.~
2
~
10
20
~o
ANIMAL DRY WEIGHT (mg)
Figure 4.
Weight-metabolic rate relationship for O. affinis at 15°C.
Based on data in Table 2.
58
•
50
20
20~
C
Q02. 1.315 W 0.709
o 0
00 0
o
10
0
o
o
o
o
o
o
o~
0
0
o
0.2
0.5
2
10
20
50
ANIMAL DRY WEIGHT (mg)
Figure 5'.
Weight-metabolic rate relationship for O. affinis at 20°C.
Based on data in Table 2.
59
5
... 4
1.4
...Z
1.3
ii:
1.2
S
2
U
1.1
0
U3
...
0
1.0
1
~
o
..
2 4 8 8 10 12 14 18 18 20
TEMPERATURE (OC)
..... 9
.c
-;- .8
E
0"·6
----
:.5
0"
~
.4
0-
.3
.2
.1
0
Figure 6.
2
4
6
8
10 12 14 16
TEMPERATURE ("Cr
18
20
Metabolic rate-temperature relationship for O. affinis during
the winter .. Based on data in Table 4.
60
•
6
5
1.4
~
4
\
~o 'v
1.3
3
2
u
S!
(11
1.1
1.0
o
.9
2 4 6 8 10 12 14 16 18 20
TEMPERATURE ("C)
-;::.8
.s::
';;;-.7
..z
0... 6
'=-.5
0"
~ .4
o
.3
.2
.1
o
Figure 7.
2
4
6
8 10 12 14 16
TEMPERATURE (OC)
18
20
Metabolic rate-temperature relationship for O. affinis during
the summer. Based on data in Table 6.
61
6
1.3
I- 5
1.2
1.1
1.0
zw
U4
I&.
I&.
w
3
0
u 2
0.9
co
ef 1
t
0.8
':'
~ 0.7
O+--.............,..............----~0 2 4 6 8 10 1214 161820
TEMPERATURE (OC)
Cl
~
:§-
?
0.5
~0.4
o
/?",V/Y'
0.6
0.3
0.2
't
V
-i-?-?-
(
0.1
O.O-¥---.....-----....----r-----~-
2
Figure 8.
4
6
8
10 12 14
TEMPERATURE (GC)
16
18
20
Metabolic rate-temperature relationship for O. affinis
acclimated at O°C in the laboratory. Based on data in
Table 8.
62
1.3
7
1.2
6
1.1
I- 5
1.0
~ 4/0\
jO\
~:: ~o':' 04'\ ~
.... 0.7
l:ll
E
...... 0.6
o
TEMPERATURE(OC)
='0.5
0.2
/?
00 2 4 6 8 10 1214 16 18 20
0 .........
9~9"r
)
/~
f-?-f
0.1
O.O+----.....-"""'T"""---..-......--+--.--.......---..-......-o 2 4 6 8 10 12 14 18 18 20
TEM PERATURE (OC)
Figure 9.
Metabolic rate-temperature relationship for O. affinis
acclimated at 12°C in the laboratory. Based-on data in
Table 9.
63
•
0.6
0.5
..... OA
.....c
Q
~
0.3
0'
"i.
--to.
J
2
0.1
0.0+----...,.....%--.....-......---.--.......--o 5 10 15 20 25 30 35 40
SALINITY (%0)
Figure 10.
Respiration rate of o. affinis at different salinities
following acute exposure. Based on data in Table 11.
64
•
0.6
0.5
0.4
..
..c
E0.3
--..
0'"
2r
0"'0.
~
Q
0.1
O.O+--r----r-.,....--,....---,--.,....---,----,--
o
Fi gure 11.
5
10 15 ·20 25 30
SALINITY (%0)
35
40
Respiration rate of O. affinis at different salinities
following acclimation to the experimental salinities.
Based on data in Table 12.
65
.
.8 A
-
H
H
I
I
.7
~
.........6
CJI
e
........
o
o
.5
~
.8 B
~
.7
o
.6
I
.5
H
1~
t
,
20
I
00
o~
1
t
H
H
l
I
08
1'2
16
I
20
,
00
I
0"
d8
TIME (h)
Figure 12.
"
Respiration rate of O. affinis measured in situ at
approximately 4-hour-intervals over a two day period.
a) July 21-22, b) August 13-14. Times of high and low
tides indicated by arrows. Based on data in Tables 13 and 14.
66
tt------------
.7
.6
.S
tt-----------
.4
.3
,2
..c.
.........
.7
OJ
.6
E
.........
....
0
0
~
CJ
O·C
-- _--------J1 ".,
.S
-----------1°·
.4
:1-
....
IO·C
.3
c
.2
.7
.6
.S
.4
.3
IJ'F'M''''M'J'J''''S'O'N'oIJ'F'M',,'M'J'J',,'S'
MONTH
Figure 13.
Respiration rate of o. affinis measured at intervals throughout
the year a) Po~arographic at 0° and 10°C; b) Gilson technique
at 0 and 10°C; c) in situ technique at prevailing habitat
temperature. Based ,on data in Tables 15, 17 and 21.
0
67
•
...
to
5
~
3
oJ:
.......
....
~
2
~
Z
~
.......
N
Q
:1
N
0
0
0.5
O.~
0.3
0.2
-~8
•
12
0
18 - 20 DAYS
HOUR
•
2
3
~
5
10
15
20
30
ANIMAL DRY WEIGHT(mg)
Figure 14.
Regression of metabolic rate on weight for O. affinis
following maintenance in the laboratory for-a) 12-48 hours
and b) 18-20 days. Based on data in Table 22.
68
..
,
.5
R
!
.~
--
•
~
.........
01
.3
E
.........
N
0
~
N
0
.2
~
a
.1
72
96
120
TIME (h)
Figure 15.
Effect of short-term starvation and refeeding on the
respiration rate of O. affinis. Animals starved between
o and 96 hours; time-of refeeding indicated by R. Based
on data in Table 24.
69
1
ACKNOWLEDGEMENTS
Thanks are extended to Mr. J. Walbridge for his capable technical
assistance both in the field work and laboratory operations. I am
grateful to Mrs. E. Krivanek and Mme. G. Ferrand for preparing the
figures and to Mrs. H. M. Stephens for typing the manuscript.
,
70
REFERENCES
Holeton, G. F. 1974. Metabolic cold adaptation of polar fish: fact
or artefact? Physiol. Zool. 47(3): 137-152.
Knox, G. A. and J. K. Lowry. 1977. A comparison between the benthos
of the southern ocean and the north polar ocean with special
reference to the amphipoda and polychaeta, pages 423-462. In
Dunbar, M. J. (ed.) Polar Oceans. Proceedings of the Polarl)ceans
Conference held at McGill University, Montreal, May, 1974. Arctic
Institute of North America, Calgary.
Opalinski, K. W. 1979. Metabolic cold adaptation in antarctic amphipods.
Ekol. Pol. 27(2): 323-331.
Percy, J. A. 1975. Ecological physiology of arctic marine invertebrates.
Temperature and salinity relationships of the amphipod Onisimus
affinis H. J. Hansen. J. Exp. Mar. Biol. Ecol. 20: 99-117.
Scholander, P. F., W. Flagg, V. Walters and L. Irving. 1953. Cl imati c
adaptation in arctic and tropical poikilotherms. Physiol. Zool.
26(1): 67-92.
SpMrck, R. 1936. On the relation between metabolism and temperature in
some marine lamellibranchs and its ecological and zoogeographical
importance. Kgl. Danske Videnskab. Selskab., Biol. Medd. 13: 1-27.
Thorson. G. 1936. The larval development, growth and metabolism of
arctic marine bottom invertebrates. Medd. Gr~nland 100: 1-71.
Wacasey, J. W. 1974. Biological oceanographic observations in the
Eskimo Lakes, Arctic Canada. I. Zoobenthos data 1971-1973.
Environment Canada, Fisheries and Marine Service, Tech. Rep. 475, 69 p.
White, M. G. 1975. Oxygen consumption and nitrogen excretion by the
giant antarctic isopod Glyptonotus antarcticus Eights in relation
to cold-adapted metabolism in marine polar poikilotherms, pages
707-724. In Barnes. H. (ed.) Proc. 9th Europ. Mar. Biol. Symp.
Aberdeen UnTversity Press.
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement