MC9328MXSVF10 скачать даташит

Freescale Semiconductor
Data Sheet: Technical Data
MC9328MXS
Document Number: MC9328MXS
Rev. 3, 12/2006
MC9328MXS
Package Information
Plastic Package
Case 1304B-01
(MAPBGA–225)
Ordering Information
1 Introduction
The i.MX Family of applications processors provides a leap in performance with an ARM9™ microprocessor core and highly integrated system functions. The i.MX family specifically addresses the requirements of the personal, portable product market by providing intelligent integrated peripherals, an advanced processor core, and power management capabilities.
The MC9328MXS (i.MXS) processor features the advanced and power-efficient ARM920T™ core that operates at speeds up to 100 MHz. Integrated modules, which include a USB device and an LCD controller, support a suite of peripherals to enhance portable products. It is packaged in a 225-contact MAPBGA
shows the functional block diagram of the i.MXS processor.
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Signals and Connections . . . . . . . . . . . . . . . 4
3 Electrical Characteristics . . . . . . . . . . . . . . 16
4 Functional Description and Application
Information . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Pin-Out and Package Information . . . . . . . . 71
6 Product Documentation . . . . . . . . . . . . . . . . 73
Contact Information . . . . . . . . . . . . . . . Last Page
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
Introduction
2
Figure 1. i.MXS Functional Block Diagram
1.1
Features
To support a wide variety of applications, the processor offers a robust array of features, including the following:
• ARM920T™ Microprocessor Core
• AHB to IP Bus Interfaces (AIPIs)
• External Interface Module (EIM)
• SDRAM Controller (SDRAMC)
• DPLL Clock and Power Control Module
• Two Universal Asynchronous Receiver/Transmitters (UART 1 and UART 2)
• Serial Peripheral Interface (SPI)
• Two General-Purpose 32-bit Counters/Timers
• Watchdog Timer
• Real-Time Clock/Sampling Timer (RTC)
• LCD Controller (LCDC)
• Pulse-Width Modulation (PWM) Module
• Universal Serial Bus (USB) Device
• Direct Memory Access Controller (DMAC)
• Synchronous Serial Interface and an Inter-IC Sound (SSI/I
2
S) Module
• Inter-IC (I
2
C) Bus Module
• General-Purpose I/O (GPIO) Ports
• Bootstrap Mode
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Introduction
• Power Management Features
• Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O
• 225-contact MAPBGA Package
1.2
Target Applications
The i.MXS applications processor is designed to meet the needs of medical instrumentation, low-end
PDAs, point-of-sale terminals, security systems and other applications requiring a basic device based on
ARM technology with support for open operating systems. Like other members of the i.MX family, the i.MXS is designed for high performance and low-power to maximize battery life.
1.3
Ordering Information
provides ordering information.
Table 1. i.MXS Ordering Information
Package Type
225-contact MAPBGA
Frequency
100 MHz
Temperature
0
O
C to 70
O
C
-40
O
C to 85
O
C
Solderball Type
Pb-free
Pb-free
Order Number
MC9328MXSVP10(R2)
MC9328MXSCVP10(R2)
1.4
Conventions
This document uses the following conventions:
• OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.
•
Logic level one
is a voltage that corresponds to Boolean true (1) state.
•
Logic level zero
is a voltage that corresponds to Boolean false (0) state.
• To set a bit or bits means to establish logic level one.
• To clear a bit or bits means to establish logic level zero.
• A signal is an electronic construct whose state conveys or changes in state convey information.
• A pin is an external physical connection. The same pin can be used to connect a number of signals.
•
Asserted
means that a discrete signal is in active logic state.
— Active low signals change from logic level one to logic level zero.
— Active high signals change from logic level zero to logic level one.
•
Negated
means that an asserted discrete signal changes logic state.
— Active low signals change from logic level zero to logic level one.
— Active high signals change from logic level one to logic level zero.
• LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and high bytes or words are spelled out.
• Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are hexadecimal.
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
3
4
Signals and Connections
A[24:0]
D[31:0]
EB0
EB1
EB2
EB3
OE
CS [5:0]
2 Signals and Connections
identifies and describes the i.MXS processor signals that are assigned to package pins. The signals are grouped by the internal module that they are connected to.
Table 2. i.MXS Signal Descriptions
Signal Name
ECB
LBA
BCLK (burst clock)
RW
DTACK
BOOT [3:0]
SDBA [4:0]
SDIBA [3:0]
MA [11:10]
MA [9:0]
DQM [3:0]
CSD0
Function/Notes
External Bus/Chip-Select (EIM)
Address bus signals
Data bus signals
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].
Byte Strobe—Active low external enable byte signal that controls D [23:16].
Byte Strobe—Active low external enable byte signal that controls D [15:8].
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].
Memory Output Enable—Active low output enables external data bus.
Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the
Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected.
Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an on-going burst sequence and initiate a new (long first access) burst sequence.
Active low signal sent by a flash device causing the external burst device to latch the starting burst address.
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.
RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE input signal by external DRAM.
DTACK signal—The external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 clock counts have elapsed.
Bootstrap
System Boot Mode Select—The operational system boot mode of the i.MXS processor upon system reset is determined by the settings of these pins.
SDRAM Controller
SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals are logically equivalent to core address p_addr [25:21] in SDRAM cycles.
SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.
SDRAM address signals
SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on
SDRAM cycles.
SDRAM data enable
SDRAM Chip-select signal which is multiplexed with the CS2 signal. These two signals are selectable by programming the system control register.
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Signal Name
CSD1
RAS
CAS
SDWE
SDCKE0
SDCKE1
SDCLK
RESET_SF
EXTAL16M
XTAL16M
EXTAL32K
XTAL32K
CLKO
RESET_IN
RESET_OUT
POR
TRST
TDO
TDI
TCK
TMS
DMA_REQ
BIG_ENDIAN
Signals and Connections
Table 2. i.MXS Signal Descriptions (Continued)
Function/Notes
SDRAM Chip-select signal which is multiplexed with CS3 signal. These two signals are selectable by programming the system control register. By default, CSD1 is selected, so it can be used as boot chip-select by properly configuring BOOT [3:0] input pins.
SDRAM Row Address Select signal
SDRAM Column Address Select signal
SDRAM Write Enable signal
SDRAM Clock Enable 0
SDRAM Clock Enable 1
SDRAM Clock
Not Used
Clocks and Resets
Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut down.
Crystal output
32 kHz crystal input
32 kHz crystal output
Clock Out signal selected from internal clock signals.
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all modules (except the reset module and the clock control module) are reset.
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.
Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally generated by an external RC circuit designed to detect a power-up event.
JTAG
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.
Serial Output for test instructions and data. Changes on the falling edge of TCK.
Serial Input for test instructions and data. Sampled on the rising edge of TCK.
Test Clock to synchronize test logic and control register access through the JTAG port.
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of
TCK.
DMA
DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY.
Big Endian—Input signal that determines the configuration of the external chip-select space. If it is driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven logic-low at reset, the external chip-select space will be configured to little endian. This input must not change state after power-on reset negates or during chip operation.
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
5
Signals and Connections
Table 2. i.MXS Signal Descriptions (Continued)
Signal Name Function/Notes
ETM
ETMTRACESYNC
ETMTRACECLK
ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.
ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.
ETMPIPESTAT [2:0] ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM mode.
ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16].
ETMTRACEPKT [7:0] are selected in ETM mode.
LD [15:0]
FLM/VSYNC
LP/HSYNC
LSCLK
ACD/OE
CONTRAST
SPL_SPR
PS
CLS
REV
SPI1_MOSI
SPI1_MISO
SPI1_SS
SPI1_SCLK
SPI1_SPI_RDY
TIN
TMR2OUT
USBD_VMO
USBD_VPO
USBD_VM
USBD_VP
LCD Controller
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.
Frame Sync or Vsync—This signal also serves as the clock signal output for the gate driver (dedicated signal SPS for Sharp panel HR-TFT).
Line pulse or H sync
Shift clock
Alternate crystal direction/output enable.
This signal is used to control the LCD bias voltage as contrast control.
Program horizontal scan direction (Sharp panel dedicated signal).
Control signal output for source driver (Sharp panel dedicated signal).
Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated signal).
Signal for common electrode driving signal preparation (Sharp panel dedicated signal).
SPI 1
Master Out/Slave In
Slave In/Master Out
Slave Select (Selectable polarity)
Serial Clock
Serial Data Ready
General Purpose Timers
Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers simultaneously.
Timer 2 Output
USB Device
USB Minus Output
USB Plus Output
USB Minus Input
USB Plus Input
6
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
UART1_RXD
UART1_TXD
UART1_RTS
UART1_CTS
UART2_RXD
UART2_TXD
UART2_RTS
UART2_CTS
UART2_DSR
UART2_RI
UART2_DCD
UART2_DTR
Signal Name
USBD_SUSPND
USBD_RCV
USBD_ROE
USBD_AFE
SSI_TXDAT
SSI_RXDAT
SSI_TXCLK
SSI_RXCLK
SSI_TXFS
SSI_RXFS
I2C_SCL
I2C_SDA
PWMO
TRISTATE
PA[14:3]
Signals and Connections
Table 2. i.MXS Signal Descriptions (Continued)
Function/Notes
USB Suspend Output
USB Receive Data
USB OE
USB Analog Front End Enable
UARTs – IrDA/Auto-Bauding
Receive Data
Transmit Data
Request to Send
Clear to Send
Receive Data
Transmit Data
Request to Send
Clear to Send
Data Set Ready
Ring Indicator
Data Carrier Detect
Data Terminal Ready
Serial Audio Port – SSI (configurable to I
2
S protocol)
Transmit Data
Receive Data
Transmit Serial Clock
Receive Serial Clock
Transmit Frame Sync
Receive Frame Sync
I
2
C
I
2
C Clock
I
2
C Data
PWM
PWM Output
Test Function
Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input with a 1 k ohm resistor to ground. (TRI-STATE
®
is a registered trademark of National Semiconductor.)
General Purpose Input/Output
Dedicated GPIO
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
7
8
Signals and Connections
Signal Name
PB[13:8]
NVDD
NVSS
AVDD
QVDD
QVSS
Table 2. i.MXS Signal Descriptions (Continued)
Function/Notes
Dedicated GPIO
Digital Supply for the I/O pins
Digital Ground for the I/O pins
Digital Supply Pins
Supply Pins – Analog Modules
Supply for analog blocks
Internal Power Supply
Power supply pins for silicon internal circuitry
Ground pins for silicon internal circuitry
2.1
I/O Pads Power Supply and Signal Multiplexing Scheme
This section describes detailed information about both the power supply for each I/O pin and its function multiplexing scheme. The user can reference information provided in
Table 6 on page 17 to configure the
power supply scheme for each device in the system (memory and external peripherals). The function
multiplexing information also shown in Table 6 allows the user to select the function of each pin by
configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions.
Table 3. MC9328MXS Signal Multiplexing Scheme
Primary Alternate
I/O Supply
Voltage
NVDD1
225
BGA
Ball
D2
Signal
A24
Dir
O
Pull-
Up
Signal Dir
ETMTRAC
ESYNC
O
GPIO
Mux
PA0
Pull
-Up
AIN
69K Reser ved
BIN AOUT Default
A24
NVDD1
NVDD1
C1
D1
D31
A23
I/O
O
69K
ETMTRAC
ECLK
O PA31 69K A23
NVDD1
NVDD1
E3
E2
D30
A22
I/O
O
69K
ETMPIPE
STAT2
O PA30 69K A22
NVDD1
NVDD1
E4
E1
D29
A21
I/O
O
69K
ETMPIPE
STAT1
O PA29 69K A21
NVDD1
NVDD1
F3
F1
D28
A20
I/O
O
69K
ETMPIPE
STAT0
O PA28 69K A20
NVDD1
NVDD1
F4
F2
D27
A19
I/O
O
69K
ETMTRAC
EPKT3
O PA27 69K A19
NVDD1 G3 D26 I/O 69K
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
I/O Supply
Voltage
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
Signals and Connections
R3
N5
R4
R2
N4
M4
P4
M3
P2
N3
P3
M2
N2
P1
R1
L3
L2
M1
N1
K4
K2
L4
L1
J3
K1
J4
J2
H3
H1
H5
J1
225
BGA
Ball
G2
G4
G1
H4
H2
Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)
D11
EB0
D10
A3
EB1
D9
EB2
D13
A5
D12
A4
D15
A7
D14
A6
D17
A9
D16
A8
D19
A11
D18
A10
D21
A13
D20
A12
D23
A15
D22
A14
Signal
A18
D25
A17
D24
A16
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
Primary
Dir
O
I/O
O
I/O
O
Pull-
Up
Alternate
Signal
ETMTRAC
EPKT2
Dir
O
GPIO
Mux
Pull
-Up
PA26 69K
69K
ETMTRAC
EPKT1
O PA25 69K
69K
ETMTRAC
EPKT0
O PA24 69K
69K
69K
69K
69K
69K
69K
69K
69K
69K
69K
69K
69K
69K
69K
69K
AIN BIN AOUT Default
A18
A17
A16
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
9
Signals and Connections
I/O Supply
Voltage
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
N10
R12
N11
P11
K10
M10
P10
P9
N12
P12
R13
R14
Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)
Primary Alternate
Signal
CS4
A0
CS3
D6
CS2
SDCLK
CS1
CS0
D5
ECB
A2
EB3
D8
OE
A1
CS5
D7
225
BGA
Ball
K3
R8
M8
N8
M7
R7
N7
P7
P8
L9
R5
P6
L7
R6
P5
M5
N6
Dir
O
O
O
O
O
O
O
I/O
I/O
I
O
O
O
I/O
O
O
I/O
Pull-
Up
69K
69K
69K
69K
Signal
CSD1
CSD0
ETMTRAC
EPKT7
Dir
GPIO
Mux
Pull
-Up
PA23 69K
PA22 69K
PA21 69K
PA20 69K
AIN BIN
R9
R10
D4
LBA
I/O
O
69K
ETMTRAC
EPKT6
PA19 69K
R11
M9
D3
BCLK
I/O 69K
ETMTRAC
EPKT5
PA18 69K
L8
N9
D2
PA17
I/O 69K
ETMTRAC
EPKT4
PA17 69K Reser ved
D1
RW
MA11
MA10
D0
DQM3
DQM2
DQM1
DQM0
RAS
CAS
SDWE
I/O
O
O
O
O
O
O
I/O
O
O
O
69K
69K
AOUT
DTACK
Default
PA23
PA22
A0
CSD1
CSD0
ECB
LBA
BCLK
PA17
10
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
I/O Supply
Voltage
NVDD1
NVDD1
NVDD1
NVDD1
AVDD1
QVDD2
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
Signals and Connections
Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)
Alternate
225
BGA
Ball
Signal
Primary
Dir
Pull-
Up
M12
K11
J14
J15
J13
H15
J12
K12
J11
H14
H13
G14
H12
G13
J10
G15
N13
P13
P15
SDCKE0
SDCKE1
RESET_S
F
O
O
O
P14
R15
M13
N15
CLKO
AVDD1 Static
QVDD2
TRST
N14 TRISTATE
1
O
Static
I
I
M15
L14
L15
K15
M14
K14
L12
K13
EXTAL16
M
I
XTAL16M O
EXTAL32
K
I
XTAL32K O
RESET_I
N
2
I
RESET_O
UT
O
I
POR
BIG_ENDI
AN
3
I
I
I
I
I
TDO
4
TMS
O
TCK
TDI
I2C_SCL O
I2C_SDA I/O
I
I
I
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
I
I
I
I
I
I
69K
69K
69K
69K
69K
Signal Dir
GPIO
Mux
Pull
-Up
PA16 69K
PA15 69K
PA14 69K
PA13 69K
PA12 69K
PA11 69K
PA10 69K
PA9 69K
AIN BIN AOUT Default
PA16
PA15
PA14
PA13
PA12
PA11
PA10
PA9
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
11
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
Signals and Connections
I/O Supply
Voltage
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
NVDD2
B13
A13
D12
B12
C11
B15
B14
A15
A14
D13
E12
C13
C12
F13
F12
D15
C14
Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)
225
BGA
Ball
Signal
Primary
Dir
F15
G12
F14
H11
E14
E15
G11
Reserved
Reserved
Reserved
Reserved
Reserved
I
I
I
I
I
Reserved O
PWMO O
E13 TIN I
D14 TMR2OUT O
Pull-
Up
Alternate
Signal Dir
GPIO
Mux
Pull
-Up
PA8
PA7
PA6
PA5
PA4
PA3
PA2
69K
69K
69K
PA1 69K
PD31 69K
69K
69K
69K
69K
AIN BIN AOUT
Reser ved
Reserved
D11
E11
C10
B11
LD15
LD14
LD13
LD12
LD11
LD10
LD9
LD8
LD7
LD6
LD5
LD4
LD3
LD2
LD1
LD0
FLM/VSY
NC
LP/HSYN
C
ACD/OE
CONTRA
ST
O
SPL_SPR O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
PD30 69K
PD29 69K
PD28 69K
PD27 69K
PD26 69K
PD25 69K
PD24 69K
PD23 69K
PD22 69K
PD21 69K
PD20 69K
PD19 69K
PD18 69K
PD17 69K
PD16 69K
PD15 69K
PD14 69K
PD13 69K
PD12 69K
PD11 69K
A12
F10
A11
PS
CLS
REV
O
O
O
UART2_D
SR
O
UART2_RI O
O UART2_D
CD
UART2_D
TR
I
PD10 69K Reser ved
PD9 69K
PD8
PD7
69K Reser ved
69K Reser ved
Reserved
Default
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PA8
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PD31
PD22
PD21
PD20
PD19
PD18
PD17
PD16
PD15
PD14
PD30
PD29
PD28
PD27
PD26
PD25
PD24
PD23
12
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
I/O Supply
Voltage
NVDD3
NVDD3
NVDD3
NVDD3
NVDD3
NVDD3
NVDD3
NVDD3
NVDD3
NVDD4
NVDD2
NVDD3
NVDD3
NVDD3
NVDD3
NVDD3
NVDD3
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
Signals and Connections
Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)
225
BGA
Ball
B10
D10
E10
B9
A10
A9
E8
B8
C9
E9
A8
C8
F9
B7
F8
A7
C7
D8
E7
F7
B6
C6
A6
D6
A5
Signal
Primary
Dir
SSI_TXFS I/O
SSI_TXDA
T
O
I SSI_RXD
AT
SSI_RXCL
K
I
SSI_RXFS I
UART2_R
XD
I
O UART2_T
XD
UART2_R
TS
I
UART2_C
TS
USBD_VM
O
O
O
USBD_VP
O
O
USBD_VM I
LSCLK
SPI1_MO
SI
SPI1_MIS
O
O
I/O
I/O
SPI1_SS I/O
SPI1_SCL
K
I/O
I/O SPI1_SPI
_RDY
UART1_R
XD
I
O UART1_T
XD
UART1_R
TS
UART1_C
TS
SSI_TXCL
K
I
O
I/O
USBD_VP I
USBD_SU
SPND
O
Pull-
Up
Alternate
Signal Dir
GPIO
Mux
Pull
-Up
PD6 69K
PC17 69K
PC16 69K
PC15 69K
PC14 69K
PC13 69K
PC12 69K
PC11 69K
PC10 69K
PC9
PC8
PC7
PC6
PC5
PC4
69K
69K
69K
69K
69K
69K
PC3 69K
PB31 69K
PB30 69K
PB29 69K
PB28 69K
PB27 69K
PB26 69K
PB25 69K
PB24 69K
PB23 69K
AIN BIN AOUT
DMA_REQ
Default
PD6
PC17
PC16
PC15
PC14
PC13
PC12
PC11
PC10
PC9
PC8
PC7
PC6
PC5
PC4
PC3
PB31
PB30
PB29
PB28
PB27
PB26
PB25
PB24
PB23
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
13
Signals and Connections
I/O Supply
Voltage
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD4
NVDD1
NVDD1
QVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
NVDD1
Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)
G5
K6
J5
H7
J8
E6
F5
J6
D5
G6
E5
H6
C5
D3
C2
L5
H8
K7
K5
J7
L5
G8
Reserved I/O
Reserved I/O
Reserved I/O
NVDD1 Static
NVSS Static
NVDD1 Static
NVSS Static
QVDD1 Static
QVSS Static
NVDD Static
NVSS Static
NVDD1 Static
NVSS Static
NVDD1 Static
NVSS Static
NVDD1 Static
NVSS Static
NVDD1 Static
NVSS Static
NVDD1 Static
NVSS Static
QVSS Static
A2
C3
A1
B2
B1
A3
C4
D4
B3
225
BGA
Ball
B5
A4
B4
Signal
Primary
Dir
USBD_RC
V
USBD_RO
E
USBD_AF
E
I/O
O
O
PB19
PB18
PB17
PB16
PB15
PB14
Reserved I/O
Reserved O
I
I
Reserved I/O
I/O
I/O
O
I
Pull-
Up
Alternate
Signal
Reserved
Reserved
Reserved
Dir
GPIO
Mux
Pull
-Up
PB22 69K
PB21
PB20
69K
69K
Reserved
Reserved
Reserved
69K
69K
PB13 69K
PB12 69K
69K
69K
69K
69K
PB11 69K
(pull down)
PB10 69K
PB9
PB8
69K
69K
AIN BIN AOUT Default
PB10
PB9
PB8
PB22
PB21
PB20
PB19
PB18
PB17
PB16
PB15
PB14
PB13
PB12
PB11
14
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Signals and Connections
Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)
Primary Alternate GPIO
I/O Supply
Voltage
225
BGA
Ball
Signal Dir
Pull-
Up
Signal Dir
NVDD2
QVDD3
NVDD2
QVDD4
NVDD3
NVDD4
NVDD1
NVDD1
NVDD1
NVDD1
G7
F6
L6
M6
L13
D9
J9
K9
K8
L10
L11
M11
H10
G9
F11
G10
C15
H9
D7
NVDD2 Static
NVSS Static
QVDD3 Static
QVSS Static
NVDD2 Static
NVSS Static
QVDD4 Static
QVSS Static
NVDD3 Static
NVSS Static
NVSS Static
NVDD4 Static
NVDD1 Static
NVDD1 Static
NVDD1 Static
NVDD1 Static
NVSS Static
NVSS Static
NVSS Static
2
3
1
4
Pull down this input with 1K
Ω resistor to GND.
External circuit required to drive this input.
Tie this input high (to AVDD) or pull down with 1K
Ω resistor to GND.
Pull up this output with a resistor to NVDD2.
Mux
Pull
-Up
AIN BIN AOUT Default
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
15
Electrical Characteristics
3 Electrical Characteristics
This section contains the electrical specifications and timing diagrams for the i.MXS processor.
3.1
Maximum Ratings
provides information on maximum ratings which are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits listed in Recommended Operating
or the DC Characteristics table.
Table 4. Maximum Ratings
Symbol Rating Minimum Maximum Unit
NV
DD
QV
DD
AV
DD
DC I/O Supply Voltage
DC Internal (core = 100 MHz) Supply Voltage
DC Analog Supply Voltage
-0.3
-0.3
-0.3
3.3
1.9
3.3
V
V
V
BTRFV
DD
VESD_HBM
VESD_MM
DC Bluetooth Supply Voltage
ESD immunity with HBM (human body model)
ESD immunity with MM (machine model)
-0.3
–
–
3.3
2000
100
V
V
V
ILatchup
Test
Latch-up immunity
Storage temperature
–
-55
200
150 mA
°C
Pmax Power Consumption
800
1
1300
2 mW
1
2
A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM
® core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.
A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the
ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS application at 100MHz, and where the whole image is running out of SDRAM. QVDD at 1.9V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA.
3.2
Recommended Operating Range
provides the recommended operating ranges for the supply voltages and temperatures. The i.MXS processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of
VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the AVDD pins from other VDD pins.
For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4 .
16
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Electrical Characteristics
Table 5. Recommended Operating Range
Symbol Rating
T
T
A
A
Operating temperature range
MC9328MXSVP10
Operating temperature range
MC9328MXSCVP10
NVDD I/O supply voltage (if using SPI, LCD, and USBd which are only 3 V interfaces)
NVDD I/O supply voltage (if not using the peripherals listed above)
QVDD Internal supply voltage (Core = 100 MHz)
AVDD Analog supply voltage
Minimum Maximum
0 70
-40
2.70
1.70
1.70
1.70
85
3.30
3.30
1.90
3.30
Unit
°C
°C
V
V
V
V
3.3
Power Sequence Requirements
For required power-up and power-down sequencing, please refer to the “Power-Up Sequence” section of application note AN2537 on the i.MX applications processor website.
3.4
DC Electrical Characteristics
contains both maximum and minimum DC characteristics of the i.MXS processor.
Table 6. Maximum and Minimum DC Characteristics
Number or
Symbol
Iop
Sidd
1
Sidd
2
Sidd
3
Sidd
4
Parameter
Full running operating current at 1.8V for QVDD, 3.3V for
NVDD/AVDD (Core = 96 MHz, System = 96 MHz, driving
TFT display panel, and OS with MMU enabled memory system is running on external SDRAM).
Standby current
(Core = 100 MHz, QVDD = 1.8V, temp = 25
°
C)
Standby current
(Core = 100 MHz, QVDD = 1.8V, temp = 55
°
C)
Standby current
(Core = 100 MHz, QVDD = 1.9V, temp = 25
°
C)
Standby current
(Core = 100 MHz, QVDD = 1.9V, temp = 55
°
C)
Input high voltage V
IH
V
IL
V
OH
V
OL
I
IL
Input low voltage
Output high voltage (I
OH
= 2.0 mA)
Output low voltage (I
OL
= -2.5 mA)
Input low leakage current
(V
IN
= GND, no pull-up or pull-down)
Min
–
–
–
–
–
0.7V
DD
–
0.7V
DD
–
–
Typical
QVDD at
1.8V = 120mA;
NVDD+AVDD at
3.0V = 30mA
25
45
35
60
–
–
–
–
–
Max
–
–
–
–
–
Vdd+0.2
0.4
Vdd
0.4
±1
Unit
mA
μA
μA
μA
μA
V
V
V
V
μA
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
17
Functional Description and Application Information
Table 6. Maximum and Minimum DC Characteristics (Continued)
Number or
Symbol
I
IH
I
I
I
OH
OL
OZ
Parameter
Input high leakage current
(V
IN
= V
DD
, no pull-up or pull-down)
Output high current
(V
OH
= 0.8V
DD
, V
DD
= 1.8V)
Output low current
(V
OL
= 0.4V, V
DD
= 1.8V)
Output leakage current
(V out
= V
DD
, output is high impedance)
Input capacitance C i
C o
Output capacitance
Min
–
4.0
-4.0
–
–
–
Typical
–
–
–
–
–
–
±5
5
5
Max
±1
–
–
Unit
μA mA mA
μA pF pF
3.5
AC Electrical Characteristics
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of other signals. All timing specifications are specified at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 100 MHz) with an operating supply voltage from V
DD min timing is measured at 30 pF loading.
to V
DD max
under an operating temperature from T
L
to T
H
. All
Table 7. Tristate Signal Timing
Pin Parameter
TRISTATE Time from TRISTATE activate until I/O becomes Hi-Z
Minimum Maximum Unit
– 20.8
ns
Table 8. 32k/16M Oscillator Signal Timing
Parameter Minimum
EXTAL32k input jitter (peak to peak) –
EXTAL32k startup time
EXTAL16M input jitter (peak to peak)
1
EXTAL16M startup time
1
800
–
TBD
1
The 16 MHz oscillator is not recommended for use in new designs.
RMS
5
–
TBD
–
Maximum
20
–
TBD
–
Unit
ns ms
–
–
4 Functional Description and Application Information
This section provides the electrical information including and timing diagrams for the individual modules of the i.MXS.
18
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
4.1
Embedded Trace Macrocell
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the
ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following:
• 32-bit data field
• 7-bit address field
• A read/write bit
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit.
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state.
The timing diagram for the ETM9 is shown in Figure 2 . See Table 9
for the ETM9 timing parameters used
2a
1
3a
2b
TRACECLK
3b
TRACECLK
(Half-Rate Clocking Mode)
Output Trace Port Valid Data
4a
Figure 2. Trace Port Timing Diagram
Valid Data
4b
3b
4a
4b
1
2a
2b
3a
Ref No.
Table 9. Trace Port Timing Diagram Parameter Table
Parameter
CLK frequency
Clock high time
Clock low time
Clock rise time
Clock fall time
Output hold time
Output setup time
1.8 ± 0.1 V
Minimum
0
1.3
3
–
–
2.28
3.42
Maximum
3
–
–
85
–
–
4
3.0 ± 0.3 V
Minimum
–
2
3
2
–
0
2
Maximum
3
–
–
100
–
–
3
Unit
MHz ns ns ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
19
Functional Description and Application Information
4.2
DPLL Timing Specifications
Parameters of the DPLL are given in Table 10
. In this table, T ref pre-divider and T dck
is the output double clock period.
is a reference clock period after the
Table 10. DPLL Specifications
Parameter Test Conditions
DPLL input clock freq range
Pre-divider output clock freq range
Vcc = 1.8V
Vcc = 1.8V
DPLL output clock freq range Vcc = 1.8V
Pre-divider factor (PD) –
Total multiplication factor (MF) Includes both integer and fractional parts
MF integer part –
MF numerator
MF denominator
Pre-multiplier lock-in time
Should be less than the denominator
–
–
Freq lock-in time after full reset
Freq lock-in time after partial reset
Phase lock-in time after full reset
Phase lock-in time after partial reset
Freq jitter (p-p)
FOL mode for non-integer MF
(does not include pre-multi lock-in time)
FOL mode for non-integer MF (does not include pre-multi lock-in time)
FPL mode and integer MF (does not include pre-multi lock-in time)
FPL mode and integer MF (does not include pre-multi lock-in time)
–
Phase jitter (p-p)
Power supply voltage
Power dissipation
Integer MF, FPL mode, Vcc=1.8V
–
FOL mode, integer MF, f dck
= 100 MHz, Vcc = 1.8V
Minimum Typical Maximum Unit
5 – 100 MHz
5
80
1
5
5
0
1
–
250
220
300
270
–
–
1.7
–
–
–
–
–
–
–
–
–
280
(56
μs)
250
(50
μs)
350
(70
μs)
320
(64
μs)
0.005
(0.01%)
1.0
(10%)
–
–
30
220
16
15
15
1022
1023
312.5
300
270
400
370
0.01
1.5
2.5
4
MHz
T ref
T ref
T ref
T ref
2•T dck ns
V mW
MHz
–
–
–
–
–
μ sec
4.3
Reset Module
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and
.
NOTE
Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing.
20
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
POR
RESET_POR
RESET_DRAM
HRESET
RESET_OUT
CLK32
HCLK
90% AVDD
1
10% AVDD
2
Exact 300ms
3
7 cycles @ CLK32
4
14 cycles @ CLK32
Figure 3. Timing Relationship with POR
5
RESET_IN
HRESET
RESET_OUT
CLK32
HCLK
6
14 cycles @ CLK32
4
Figure 4. Timing Relationship with RESET_IN
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
21
Functional Description and Application Information
Table 11. Reset Module Timing Parameter Table
Ref
No.
Parameter
1.8 ± 0.1 V 3.0 ± 0.3 V
Unit
Min Max Min Max
1 Width of input POWER_ON_RESET note
1
300
– note
1
300
– –
2 Width of internal POWER_ON_RESET
(CLK32 at 32 kHz)
3 7K to 32K-cycle stretcher for SDRAM reset
300 300 ms
4 14K to 32K-cycle stretcher for internal system reset
HRESERT and output reset at pin RESET_OUT
5 Width of external hard-reset RESET_IN
7
14
7
14
7
14
7
14
Cycles of
CLK32
Cycles of
CLK32
4 – 4 – Cycles of
CLK32
6 4K to 32K-cycle qualifier 4 4 4 4 Cycles of
CLK32
1
POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals.
Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal.
If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in calculating timing for the start-up process.
4.4
External Interface Module
The External Interface Module (EIM) handles the interface to devices external to the i.MXS processor, including the generation of chip-selects for external peripherals and memory. The timing diagram for the
EIM is shown in
, and
defines the parameters of signals.
22
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
(HCLK) Bus Clock
Address
Chip-select
1a
2a
1b
2b
3a 3b
Read (Write)
OE (rising edge)
4a 4b
5a
4c
5b
4d
OE (falling edge)
EB (rising edge)
5c 5d
EB (falling edge)
6a 6b
LBA (negated falling edge)
6a 6c
LBA (negated rising edge)
7a 7b
BCLK (burst clock) - rising edge
BCLK (burst clock) - falling edge
Read Data
Write Data (negated falling)
9a
7c
8a
7d
8b
9b
9a 9c
Write Data (negated rising)
DTACK_B
10a 10a
Figure 5. EIM Bus Timing Diagram
1a
1b
2a
2b
3a
3b
Ref No.
Table 12. EIM Bus Timing Parameter Table
Parameter
Clock fall to address valid
Clock fall to address invalid
Clock fall to chip-select valid
Clock fall to chip-select invalid
Clock fall to Read (Write) Valid
Clock fall to Read (Write) Invalid
1.8 ± 0.1 V 3.0 ± 0.3 V
Min Typical Max Min Typical Max
2.48
1.55
2.69
1.55
1.35
1.86
3.31
2.48
3.31
2.48
2.79
2.59
9.11
5.69
7.87
6.31
6.52
6.11
2.4
1.5
2.6
1.5
1.3
1.8
3.2
2.4
3.2
2.4
2.7
2.5
8.8
5.5
7.6
6.1
6.3
5.9
Unit
ns ns ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
23
Functional Description and Application Information
Table 12. EIM Bus Timing Parameter Table (Continued)
1.8 ± 0.1 V 3.0 ± 0.3 V
Ref No.
Parameter
Min Typical Max Min Typical Max
4a
4b
4c
4d
5a
5b
5c
5d
6a
6b
6c
7a
Clock
1
rise to Output Enable Valid
Clock
1
rise to Output Enable Invalid
Clock
1
fall to Output Enable Valid
Clock
1
fall to Output Enable Invalid
Clock
1
rise to Enable Bytes Valid
Clock
1
rise to Enable Bytes Invalid
Clock
1
fall to Enable Bytes Valid
Clock
1
fall to Enable Bytes Invalid
Clock
1
fall to Load Burst Address Valid
Clock
1
fall to Load Burst Address Invalid
Clock
1
rise to Load Burst Address Invalid
Clock
1
rise to Burst Clock rise
Clock
1 rise to Burst Clock fall
Clock
1
fall to Burst Clock rise
Clock
1
fall to Burst Clock fall
2.32
2.11
2.38
2.17
1.91
1.81
1.97
1.76
2.07
1.97
1.91
1.61
2.62
2.52
2.69
2.59
2.52
2.42
2.59
2.48
2.79
2.79
2.62
2.62
6.85
6.55
7.04
6.73
5.54
5.24
5.69
5.38
6.73
6.83
6.45
5.64
2.3
2.1
2.3
2.1
1.9
1.8
1.9
1.7
2.0
1.9
1.9
1.6
7b
7c
7d
8a
1.61
1.55
1.55
5.54
2.62
2.48
2.59
–
5.84
1.6
5.59
1.5
5.80
1.5
– 5.5
8b
9a
9b
9c
Read Data setup time
Read Data hold time
Clock
1
Clock
1
Clock
1
rise to Write Data Valid
fall to Write Data Invalid
rise to Write Data Invalid
0
1.81
1.45
1.63
–
2.72
2.48
–
–
6.85
1.8
5.69
–
10a DTACK setup time 2.52
– –
1
Clock refers to the system clock signal, HCLK, generated from the System DPLL
0
1.4
1.62
2.5
2.6
2.5
2.6
2.5
2.5
2.4
2.5
2.4
2.7
2.7
2.6
2.6
2.6
2.4
2.5
–
–
2.7
2.4
–
–
6.5
6.6
6.4
5.6
5.5
5.2
5.5
5.2
6.8
6.5
6.8
6.5
–
6.8
5.5
–
–
5.8
5.4
5.6
–
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
4.4.1
DTACK Signal Description
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal function when the external DTACK signal is used for data acknowledgement.
4.4.2
DTACK Signal Timing
through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units
of measure for this figure are found in the associated tables.
24
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
4.4.2.1
WAIT Read Cycle without DMA
Address
2
CS5
EB
1 programmable min 0ns
9
8
3
5
OE
4
WAIT
7 6
DATABUS
(input to i.MXS)
10 11
Figure 6. WAIT Read Cycle without DMA
Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Number Characteristic Unit
Minimum Maximum
3
4
1
2
OE and EB assertion time
CS5 pulse width
OE negated to address inactive
Wait asserted after OE asserted
See note 2
3T
56.81
–
–
–
57.28
1020T
5
6
7
8
Wait asserted to OE negated
Data hold timing after OE negated
Data ready after wait asserted
OE negated to CS negated
OE negated after EB negated
2T+1.57
T-1.49
0
1.5T-0.68
3T+7.33
–
T
1.5T-0.06
9
10
Become low after CS5 asserted
0.06
0
0.18
1019T ns ns
11
Wait pulse width
1T 1020T ns
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when
EBC bit in CS5L register is clear.
3. Address becomes valid and CS asserts at the start of read access cycle.
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. ns ns ns ns ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
25
Functional Description and Application Information
4.4.2.2
WAIT Read Cycle DMA Enabled
Address
2
CS5
EB
1 programmable min 0ns
10
4
9
3
6
OE
RW
(logic high)
WAIT
5
7
11
12
8
S
DATABUS
Figure 7. DTACK WAIT Read Cycle DMA Enabled
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Number Characteristic Unit
7
8
5
6
3
4
1
2
9
10
11
OE and EB assertion time
CS pulse width
OE negated before CS5 is negated
Address inactived before CS negated
Wait asserted after CS5 asserted
Wait asserted to OE negated
Data hold timing after OE negated
Data ready after wait is asserted
CS deactive to next CS active
OE negate after EB negate
Wait becomes low after CS5 asserted
Minimum
See note 2
3T
1.5T-0.68
–
–
2T+1.57
T-1.49
–
T
0.06
0
Maximum
–
–
1.5T-0.06
0.05
1020T
3T+7.33
–
T
–
0.18
1019T ns ns ns ns ns ns ns ns ns ns ns
26
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)
3.0 ± 0.3 V
Number Characteristic Unit
Minimum Maximum
12 Wait pulse width 1T 1020T ns
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when
EBC bit in CS5L register is clear.
3. Address becomes valid and CS asserts at the start of read access cycle.
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.
4.4.2.3
WAIT Write Cycle without DMA
5
Address
CS5
1
2
EB programmable min 0ns programmable min 0ns
3
10
4
7
RW
OE
(logic high)
WAIT
DATABUS from i.MXS
9
11
6
12
8
Figure 8. WAIT Write Cycle without DMA
Number
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Characteristic
3
4
1
2
5
6
CS5 assertion time
EB assertion time
CS5 pulse width
RW negated before CS5 is negated
RW negated to Address inactive
Wait asserted after CS5 asserted
Minimum
See note 2
See note 2
3T
2.5T-3.63
64.22
–
Maximum
–
–
–
2.5T-1.16
–
1020T
Unit
ns ns ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
27
Functional Description and Application Information
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)
3.0 ± 0.3 V
Number Characteristic Unit
Minimum Maximum
9
10
7
8
Wait asserted to RW negated
Data hold timing after RW negated
Data ready after CS5 is asserted
EB negated after CS5 is negated
T+2.66
2T+0.03
–
0.5T
2T+7.96
–
T
0.5T+0.5
11
12
Wait becomes low after CS5 asserted
Wait pulse width
0
1T
1019T
1020T
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.
3. Address becomes valid and RW asserts at the start of write access cycle.
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. ns ns ns ns ns ns
4.4.2.4
WAIT Write Cycle DMA Enabled
Address
1
CS5
2
EB
RW
OE (logic high)
WAIT
S
DATABUS programmable min 0ns programmable min 0ns
3
6
7
4
9
12
13
Figure 9. WAIT Write Cycle DMA Enabled
8
5
11
10
28
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz
3.0 ± 0.3 V
Number Characteristic Unit
Minimum Maximum
7
8
5
6
3
4
1
2
CS5 assertion time
EB assertion time
CS5 pulse width
RW negated before CS5 is negated
Address inactived after CS negated
Wait asserted after CS5 asserted
Wait asserted to RW negated
Data hold timing after RW negated
See note 2
See note 2
3T
2.5T-3.63
–
–
T+2.66
2T+0.03
–
–
–
2.5T-1.16
0.09
1020T
2T+7.96
–
9
10
Data ready after CS5 is asserted
CS deactive to next CS active
–
T
T
– ns ns
11
12
EB negate after CS negate 0.5T
0
0.5T+0.5
1019T
13
Wait becomes low after CS5 asserted
Wait pulse width 1T 1020T
Note:
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)
2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.
3. Address becomes valid and RW asserts at the start of write access cycle.
4.The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. ns ns ns ns ns ns ns ns ns ns
4.4.3
EIM External Bus Timing
The External Interface Module (EIM) is the interface to devices external to the i.MXS
, including generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in
Figure 5 , and Table 12 defines the parameters of signals.
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
29
Functional Description and Application Information
hclk hsel_weim_cs[0] htrans hwrite haddr hready weim_hrdata weim_hready
BCLK (burst clock)
ADDR
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Seq/Nonseq
Read
V1
Last Valid Data
Last Valid Address
Read
V1
DATA
V1
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 10. WSC = 1, A.HALF/E.HALF
V1
30
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[0] htrans hwrite haddr hready hwdata weim_hrdata weim_hready
BCLK (burst clock)
ADDR
CS0
R/W
LBA
OE
EB
Nonseq
Write
V1
Last Valid Data
Last Valid Address
Write Data (V1)
Last Valid Data
Write
V1
Unknown
DATA
Last Valid Data Write Data (V1)
Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
31
Functional Description and Application Information
hclk hsel_weim_cs[0] htrans hwrite haddr hready weim_hrdata weim_hready
BCLK (burst clock)
ADDR
CS0
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Nonseq
Read
V1
Last Valid Data
Last Valid Addr Address V1
Read
V1 Word
Address V1 + 2
DATA
1/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF
2/2 Half Word
32
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[0] htrans hwrite haddr
Nonseq
Write
V1 hready hwdata Last Valid Data weim_hrdata weim_hready
BCLK (burst clock)
ADDR
CS0
R/W
LBA
OE
EB
Last Valid Addr
Write Data (V1 Word)
Last Valid Data
Address V1
Write
Address V1 + 2
DATA 1/2 Half Word
Figure 13. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF
2/2 Half Word
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
33
Functional Description and Application Information
hclk hsel_weim_cs[3] htrans
Nonseq hwrite
Read haddr
V1 hready weim_hrdata
Last Valid Data weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS[3]
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Address V1
Read
Address V1 + 2
V1 Word
DATA
1/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 14. WSC = 3, OEA = 2, A.WORD/E.HALF
2/2 Half Word
34
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[3] htrans Nonseq hwrite
Write haddr
V1 hready hwdata Last Valid
Data weim_hrdata weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS3
R/W
LBA
OE
EB
Write Data (V1 Word)
Last Valid Data
Address V1
Write
Address V1 + 2
DATA
Last Valid Data 1/2 Half Word 2/2 Half Word
Figure 15. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
35
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq
Read hwrite haddr
V1 hready weim_hrdata
Last Valid Data weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Address V1
Read
Address V1 + 2
V1 Word weim_data_in
1/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 16. WSC = 3, OEA = 4, A.WORD/E.HALF
2/2 Half Word
36
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq hwrite haddr
Write
V1 hready hwdata
Last Valid
Data weim_hrdata weim_hready
BCLK (burst clock)
ADDR Last Valid Addr
CS2
R/W
LBA
OE
EB
Write Data (V1 Word)
Last Valid Data
Address V1
Write
Address V1 + 2
DATA Last Valid Data 1/2 Half Word
Figure 17. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF
2/2 Half Word
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
37
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq hwrite haddr
Read
V1 hready weim_hrdata Last Valid Data weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Address V1
Read
Address V1 + 2
DATA
1/2 Half Word 2/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 18. WSC = 3, OEN = 2, A.WORD/E.HALF
V1 Word
38
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
hclk hsel_weim_cs[2] htrans
Nonseq hwrite haddr
Read
V1 hready weim_hrdata
Last Valid Data weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Address V1
Read
Functional Description and Application Information
Address V1 + 2
V1 Word
DATA
1/2 Half Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 19. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF
2/2 Half Word
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
39
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq hwrite haddr
Write
V1 hready hwdata
Last Valid
Data weim_hrdata weim_hready
BCLK (burst clock)
ADDR Last Valid Addr
CS2
R/W
LBA
OE
EB
Address V1
Write Data (V1 Word)
Last Valid Data
Write
Address V1 + 2
Unknown
DATA
Last Valid Data 1/2 Half Word 2/2 Half Word
Figure 20. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF
40
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans Nonseq
Write hwrite haddr
V1 hready hwdata
Last Valid
Data weim_hrdata weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EB
Write Data (V1 Word)
Last Valid Data
Address V1
Write
Address V1 + 2
DATA
Last Valid Data 1/2 Half Word 2/2 Half Word
Figure 21. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF
Unknown
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
41
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq
Read hwrite haddr V1 hready hwdata weim_hrdata weim_hready
Last Valid Data
Last Valid Data
Nonseq
Write
V8
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Read
Address V1
Write Data
Read Data
Address V8
Write
DATA Read Data
DATA
Last Valid Data Write Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 22. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF
42
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Read hclk hsel_weim_cs[2] htrans
Nonseq
Read hwrite haddr
V1 hready hwdata weim_hrdata
Last Valid Data
Last Valid Data
Nonseq
Write
V8
Idle weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Read
Address V1
Functional Description and Application Information
Write
Write Data
Read Data
Address V8
Write
DATA Read Data
DATA
Last Valid Data Write Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 23. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
43
Functional Description and Application Information
hclk hsel_weim_cs[4] htrans
Nonseq hwrite haddr
Write
V1 hready hwdata
Last Valid
Data weim_hrdata weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS
R/W
LBA
OE
EB
Address V1
Write Data (Word)
Last Valid Data
Write
Address V1 + 2
DATA
Last Valid Data Write Data (1/2 Half Word) Write Data (2/2 Half Word)
Figure 24. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF
44
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
hclk hsel_weim_cs[4] htrans Nonseq
Read hwrite haddr
V1 hready hwdata weim_hrdata weim_hready
Last Valid Data
Last Valid Data
BCLK (burst clock)
ADDR Last Valid Addr
CS4
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Read
Address V1
Nonseq
Write
V8
Functional Description and Application Information
Write Data
Read Data
Address V8
Write
DATA
Read Data
DATA Last Valid Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 25. WSC = 3, CSA = 1, A.HALF/E.HALF
Write Data
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
45
Functional Description and Application Information
hclk hsel_weim_cs[4] htrans hwrite haddr
Nonseq
Read
V1 hready weim_hrdata weim_hready
Last Valid Data
BCLK (burst clock)
ADDR
Last Valid
CS4
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Idle Seq
Read
V2
Read Data (V1)
Address V1
Read
CNC
Read Data (V2)
Address V2
DATA
Read Data
(V1)
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF
Read Data
(V2)
46
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[4] htrans
Nonseq hwrite haddr
Read
V1 hready hwdata weim_hrdata
Last Valid Data
Last Valid Data
Idle Nonseq
Write
V8 weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr Address V1
CS4
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Read
CNC
Write Data
Read Data
Address V8
Write
DATA
Read Data
DATA
Last Valid Data Write Data
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 27. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
47
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq hwrite
Read haddr
V1 hready weim_hrdata weim_hready
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Address V1
Nonse
Read
V5
Read
Address V5
Idle
ECB
DATA
V1 Word V2 Word V5 Word V6 Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF
48
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq hwrite
Read haddr
V1 hready weim_hrdata weim_hready
Last Valid Data
BCLK (burst clock)
ADDR
Last Valid Addr
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Seq
Read
V2
V1 Word
Seq
Read
V3
V2 Word
Address V1
Read
Seq
Read
V4
V3 Word
Idle
V4 Word
ECB
DATA V1 Word V2 Word V3 Word
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 29. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD
V4 Word
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
49
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans
Nonseq hwrite haddr
Read
V1 hready weim_hrdata
Last Valid Data weim_hready
BCLK (burst clock)
ADDR
Last Valid
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Address V1
Seq
Read
V2
V1 Word
Read
Address V2
Idle
V2 Word
ECB
DATA
V1 1/2 V1 2/2 V2 1/2
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 30. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF
V2 2/2
50
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans hwrite
Non seq
Read haddr
V1 hready weim_hrdata weim_hready
BCLK (burst clock)
ADDR
Last
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Last Valid Data
Address V1
Read
Seq
Read
V2
V1 Word
Idle
V2 Word
ECB
DATA
V1 1/2 V1 2/2 V2 1/2 V2 2/2
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 31. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
51
Functional Description and Application Information
hclk hsel_weim_cs[2] htrans hwrite
Non seq
Read haddr
V1 hready weim_hrdata weim_hready
BCLK (burst clock)
ADDR
Last
CS2
R/W
LBA
OE
EBx
1
(EBC
2
=0)
EBx
1
(EBC
2
=1)
Last Valid Data
Address V1
Read
Seq
Read
V2
V1 Word
Idle
V2 Word
ECB
DATA
V1 1/2 V1 2/2 V2 1/2 V2 2/2
Note 1: x = 0, 1, 2 or 3
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register
Figure 32. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF
52
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
4.4.4
Non-TFT Panel Timing
T1
VSYN
T1
T2
T3
XMAX
T4 T2
HSYN
SCLK
Ts
LD[15:0]
Figure 33. Non-TFT Panel Timing
Table 17. Non TFT Panel Timing Diagram
Symbol Parameter
Allowed Register
Minimum Value
1, 2
Actual Value Unit
T1 HSYN to VSYN delay
3
0 HWAIT2+2
Tpix
4
T2
T3
HSYN pulse width
VSYN to SCLK
0
–
HWIDTH+1
0
≤ T3 ≤ Ts
5
Tpix
–
T4 SCLK to HSYN 0 HWAIT1+1 Tpix
2
3
1
4
5
Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.
Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.
VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all these 3 signals are active high.
Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).
Ts is the shift clock period. Ts = Tpix * (panel data bus width).
4.5
SPI Timing Diagrams
To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI module is configured as a master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY signal (input). The SPI1 Sample Period Control Register (PERIODREG1) can also be programmed to a fixed data transfer rate. When the SPI module is configured as a slave, the user can configure the SPI1
Control Register (CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS becomes an input signal, and is used to latch data into or load data out to the internal data shift registers,
as well as to increment the data FIFO. Figure 34 through Figure 38
show the timing relationship of the master SPI using different triggering mechanisms.
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
53
Functional Description and Application Information
2
SS
1
SPIRDY
3
4
5
SCLK, MOSI, MISO
Figure 34. Master SPI Timing Diagram Using SPI_RDY Edge Trigger
SS
SPIRDY
SCLK, MOSI, MISO
Figure 35. Master SPI Timing Diagram Using SPI_RDY Level Trigger
SS (output)
SCLK, MOSI, MISO
Figure 36. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger
SS (input)
SCLK, MOSI, MISO
Figure 37. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT
SS (input)
6
7
SCLK, MOSI, MISO
Figure 38. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge
54
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
Table 18. Timing Parameter Table for
through
3.0 ± 0.3 V
Ref No.
Parameter
Minimum Maximum
1
2
3
4
SPI_RDY to SS output low
SS output low to first SCLK edge
Last SCLK edge to SS output high
SS output high to SPI_RDY low
2T
1
3 • Tsclk
2
2 • Tsclk
0
–
–
–
–
5 SS output pulse width
Tsclk + WAIT
3
T
–
6 SS input low to first SCLK edge –
7 SS input pulse width T –
1
2
3
T = CSPI system clock period (PERCLK2).
Tsclk = Period of SCLK.
WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.
Unit
ns ns ns ns ns ns ns
8
SCLK
9 9
Figure 39. SPI SCLK Timing Diagram
Ref No.
8
9
Table 19. Timing Parameter Table for SPI SCLK
3.0 ± 0.3 V
Parameter
SCLK frequency
SCLK pulse width
Minimum
0
100
Maximum
10
–
Unit
MHz ns
4.6
LCD Controller
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD controller with various display configurations, refer to the LCD controller chapter of the MC9328MXS
Reference Manual
.
LSCLK
1
LD[15:0]
Figure 40. SCLK to LD Timing Diagram
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
55
Functional Description and Application Information
Table 20. LCDC SCLK Timing Parameter Table
3.0 ± 0.3 V
Ref No.
1
Parameter
SCLK to LD valid
Minimum
–
Maximum
2
T1
Non-display
T3
T4
Display region
Unit
ns
VSYN
HSYN
OE
LD[15:0]
T2
Line Y Line 1 Line Y
T5
T6
XMAX
T7
HSYN
SCLK
OE
LD[15:0]
T8
(1,1)
(1,2)
(1,X)
VSYN
T9 T10
Figure 41. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing
Symbol
T1
Description
End of OE to beginning of VSYN
T2
T3
T4
T5
T6
T7
Table 21. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing
HSYN period
VSYN pulse width
End of VSYN to beginning of OE
HSYN pulse width
End of HSYN to beginning to T9
End of OE to beginning of HSYN
Minimum Corresponding Register Value
(VWAIT1·T2)+T5+T6+T7+T9 T5+T6
+T7+T9
XMAX+5
T2
1
1
2
1
XMAX+T5+T6+T7+T9+T10
VWIDTH·(T2)
VWAIT2·(T2)
HWIDTH+1
HWAIT2+1
HWAIT1+1
Unit
Ts
Ts
Ts
Ts
Ts
Ts
Ts
56
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
Table 21. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued)
Symbol Description Minimum Corresponding Register Value Unit
T8
T9
T9
SCLK to valid LD data
End of HSYN idle2 to VSYN edge
(for non-display region)
End of HSYN idle2 to VSYN edge
(for Display region)
VSYN to OE active (Sharp = 0) when VWAIT2 = 0
VSYN to OE active (Sharp = 1) when VWAIT2 = 0
-3
2
1
3
2
1 ns
Ts
Ts
T10
T10
1
2
1
2
Ts
Ts
Note:
• Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns.
•
VSYN, HSYN and OE can be programmed as active high or active low. In Figure 41 , all 3 signals
are active low.
• The polarity of SCLK and LD[15:0] can also be programmed.
• SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period.
In
, SCLK is always active.
• For T9 non-display region, VSYN is non-active. It is used as an reference.
• XMAX is defined in pixels.
4.7
Pulse-Width Modulator
The PWM can be programmed to select one of two clock signals as its source frequency. The selected clock signal is passed through a divider and a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in
and the parameters are listed in
1
2a
3b
System Clock
2b
4b
3a
4a
PWM Output
Figure 42. PWM Output Timing Diagram
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
57
Functional Description and Application Information
Table 22. PWM Output Timing Parameter Table
1.8 ± 0.1 V
Ref No.
Parameter
Minimum
1
2a
2b
3a
3b
4a
System CLK frequency
1
0
Clock high time
1
3.3
Clock low time
1
7.5
Clock fall time
1
–
Clock rise time
1
Output delay time
1
Output setup time
1
–
5.7
5.7
4b
1
C
L
of PWMO = 30 pF
Maximum
87
–
–
5
6.67
–
–
3.0 ± 0.3 V
Minimum
–
5
5
0
5/10
5/10
–
Maximum
100
–
–
5/10
5/10
–
–
Unit
MHz ns ns ns ns ns ns
4.8
SDRAM Controller
This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic random access memory) Controller.
58
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
1
SDCLK
2
3S
3
CS
3H
3S
RAS
3S
3H
CAS
3S
3H
3H
WE
4S
4H
ROW/BA
ADDR
COL/BA
8
5
DQ
Data
6
7
3S
DQM
3H
Note:
CKE is high during the read/write cycle.
Figure 43. SDRAM Read Cycle Timing Diagram
Ref
No.
Table 23. SDRAM Read Timing Parameter Table
1.8 ± 0.1 V
Parameter
1 SDRAM clock high-level width
2 SDRAM clock low-level width
3 SDRAM clock cycle time
3S CS, RAS, CAS, WE, DQM setup time
3H CS, RAS, CAS, WE, DQM hold time
4S Address setup time
4H Address hold time
5 SDRAM access time (CL = 3)
Minimum
2.28
3.42
2.28
–
2.67
6
11.4
3.42
Maximum
–
–
–
6.84
–
–
–
–
3.0 ± 0.3 V
Minimum
2
–
2
3
10
3
4
4
Maximum
–
6
–
–
–
–
–
–
Unit
ns ns ns ns ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
59
Functional Description and Application Information
Table 23. SDRAM Read Timing Parameter Table (Continued)
1.8 ± 0.1 V 3.0 ± 0.3 V
Ref
No.
Parameter
Minimum Maximum Minimum
5 SDRAM access time (CL = 2)
5 SDRAM access time (CL = 1)
6 Data out hold time
7 Data out high-impedance time (CL = 3)
–
–
2.85
–
6.84
22
–
6.84
–
–
2.5
–
7 Data out high-impedance time (CL = 2)
7 Data out high-impedance time (CL = 1)
–
–
6.84
22
–
–
8 Active to read/write command period (RC = 1) t
RCD
1 – t
RCD1
1 t
RCD
= SDRAM clock cycle time. This settings can be found in the MC9328MXS reference manual.
Maximum
6
22
–
6
22
–
6
Unit
ns ns ns ns ns ns ns
SDCLK
1
3
2
CS
RAS
6
CAS
WE
ADDR
DQ
4
/ BA
5
ROW/BA
7
8
COL/BA
DATA
9
DQM
Figure 44. SDRAM Write Cycle Timing Diagram
60
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
Table 24. SDRAM Write Timing Parameter Table
1.8 ± 0.1 V 3.0 ± 0.3 V
Ref No.
Parameter
Minimum Maximum Minimum Maximum
3
4
1
2
SDRAM clock high-level width
SDRAM clock low-level width
SDRAM clock cycle time
Address setup time
2.67
6
11.4
3.42
–
–
–
–
4
4
10
3
5
6
7
8
Address hold time
Precharge cycle period
1
Active to read/write command delay
Data setup time t
2.28
t
RP
2
RCD2
4.0
–
–
–
– t
2
RP2 t
RCD2
2
–
–
–
–
9 Data hold time 2.28
– 2 –
1
2
Precharge cycle timing is included in the write timing diagram.
t
RP
and t
RCD
= SDRAM clock cycle time. These settings can be found in the MC9328MXS reference manual.
–
–
–
–
Unit
ns ns ns ns ns ns ns ns ns
SDCLK
1 3 2
CS
RAS
6
CAS
7 7
WE
ADDR
4
BA
5
ROW/BA
DQ
DQM
Figure 45. SDRAM Refresh Timing Diagram
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
61
Functional Description and Application Information
Table 25. SDRAM Refresh Timing Parameter Table
1.8 ± 0.1 V 3.0 ± 0.3 V
Ref No.
Parameter
Minimum Maximum Minimum Maximum
3
4
1
2
SDRAM clock high-level width
SDRAM clock low-level width
SDRAM clock cycle time
Address setup time
2.67
6
11.4
3.42
–
–
–
–
4
4
10
3
5 Address hold time 2.28
– 2 –
6 Precharge cycle period t
RP
1 – t
RP1
–
7 Auto precharge command period t
RC1
– t
RC1
–
1 t
RP
and t
RC
= SDRAM clock cycle time. These settings can be found in the MC9328MXS reference manual.
–
–
–
–
Unit
ns ns ns ns ns ns ns
SDCLK
CS
RAS
CAS
WE
ADDR
DQ
DQM
CKE
BA
Figure 46. SDRAM Self-Refresh Cycle Timing Diagram
62
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
4.9
USB Device Port
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up.
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer.
USBD_AFE
(Output)
USBD_ROE
(Output)
1 t
ROE_VPO t
VMO_ROE
4 t
PERIOD
6 3 t
VPO_ROE
USBD_VPO
(Output)
USBD_VMO
(Output)
USBD_SUSPND
(Output)
USBD_RCV
(Input)
USBD_VP
(Input) t
ROE_VMO
2 t
FEOPT
5
USBD_VM
(Input)
Figure 47. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)
Ref
No.
Table 26. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX)
3.0 ± 0.3 V
Parameter
1 t
ROE_VPO
; USBD_ROE active to USBD_VPO low
2 t
ROE_VMO
; USBD_ROE active to USBD_VMO high
3 t
VPO_ROE
; USBD_VPO high to USBD_ROE deactivated
4 t
VMO_ROE
; USBD_VMO low to USBD_ROE deactivated (includes SE0)
Minimum
83.14
81.55
83.54
248.90
Maximum
83.47
81.98
83.80
249.13
Unit
ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
63
Functional Description and Application Information
Ref
No.
Table 26. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX) (Continued)
5 t
FEOPT
; SE0 interval of EOP
6 t
PERIOD
; Data transfer rate
Parameter
3.0 ± 0.3 V
Minimum
160.00
11.97
Maximum
175.00
12.03
Unit
ns
Mb/s
USBD_AFE
(Output)
USBD_ROE
(Output)
USBD_VPO
(Output)
USBD_VMO
(Output)
USBD_SUSPND
(Output)
USBD_RCV
(Input) t
FEOPR
1
USBD_VP
(Input)
USBD_VM
(Input)
Figure 48. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)
Table 27. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)
Ref No.
1
Parameter
t
FEOPR
; Receiver SE0 interval of EOP
3.0 ± 0.3 V
Minimum
82
Maximum
–
Unit
ns
4.10
I
2
C Module
The I
2
C communication protocol consists of seven elements: START, Data Source/Recipient, Data
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.
64
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
SDA
5
3
4
3
4
1
2
5
6
Ref No.
SCL
2
1
Figure 49. Definition of Bus Timing for I
2
C
Table 28. I
2
C Bus Timing Parameter Table
1.8 ± 0.1 V
Parameter
Hold time (repeated) START condition
Data hold time
Data setup time
HIGH period of the SCL clock
LOW period of the SCL clock
Setup time for STOP condition
Minimum
182
0
11.4
80
480
182.4
Maximum
–
171
–
–
–
–
6
3.0 ± 0.3 V
Minimum
160
0
10
120
320
160
Maximum
–
150
–
–
–
–
Unit
ns ns ns ns ns ns
4.11
Synchronous Serial Interface
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals.
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams
are shown in Figure 51 through
.
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices.
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
65
Functional Description and Application Information
1
STCK Output
2
4
STFS (bl) Output
STFS (wl) Output
6
10
11
STXD Output
31
32
SRXD Input
Note: SRXD input in synchronous mode only.
Figure 50. SSI Transmitter Internal Clock Timing Diagram
12
8
1
SRCK Output
3 5
SRFS (bl) Output
SRFS (wl) Output
7
13
14
SRXD Input
Figure 51. SSI Receiver Internal Clock Timing Diagram
9
66
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
16
15
17
STCK Input
18 20
STFS (bl) Input
STFS (wl) Input
22
28
26 27
STXD Output
33
34
SRXD Input
Note: SRXD Input in Synchronous mode only
Figure 52. SSI Transmitter External Clock Timing Diagram
24
16
15
17
SRCK Input
19 21
SRFS (bl) Input
23
SRFS (wl) Input
30
29
SRXD Input
Figure 53. SSI Receiver External Clock Timing Diagram
25
Table 29. SSI (Port C Primary Function) Timing Parameter Table
3
4
1
2
5
Ref No.
1.8 ± 0.1 V 3.0 ± 0.3 V
Parameter
Minimum Maximum Minimum Maximum
Internal Clock Operation
1
(Port C Primary Function
2
)
STCK/SRCK clock period
1
95
STCK high to STFS (bl) high
3
1.5
SRCK high to SRFS (bl) high
3
-1.2
STCK high to STFS (bl) low
3
2.5
SRCK high to SRFS (bl) low
3
0.1
–
4.5
-1.7
4.3
-0.8
83.3
1.3
-1.1
2.2
0.1
–
3.9
-1.5
3.8
-0.8
Unit
ns ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
67
Functional Description and Application Information
Table 29. SSI (Port C Primary Function) Timing Parameter Table (Continued)
27a
27b
28
29
30
23
24
25
26
19
20
21
22
15
16
17
18
10
11a
11b
12
13
14
8
9
6
7
Ref No.
1.8 ± 0.1 V 3.0 ± 0.3 V
Parameter
Minimum Maximum Minimum Maximum
STCK high to STFS (wl) high
3
1.48
SRCK high to SRFS (wl) high
3
-1.1
STCK high to STFS (wl) low
3
2.51
SRCK high to SRFS (wl) low
3
0.1
4.45
-1.5
4.33
-0.8
1.3
-1.1
2.2
0.1
3.9
-1.5
3.8
-0.8
STCK high to STXD valid from high impedance
STCK high to STXD high
14.25
0.91
15.73
3.08
12.5
0.8
13.8
2.7
STCK high to STXD low
STCK high to STXD high impedance
SRXD setup time before SRCK low
SRXD hold time after SRCK low
0.57
12.88
21.1
0
3.19
13.57
–
–
0.5
11.3
18.5
0
2.8
11.9
–
–
External Clock Operation (Port C Primary Function
2
)
STCK/SRCK clock period
1
92.8
–
STCK/SRCK clock high period
STCK/SRCK clock low period
STCK high to STFS (bl) high
3
SRCK high to SRFS (bl) high
3
STCK high to STFS (bl) low
3
SRCK high to SRFS (bl) low
3
STCK high to STFS (wl) high
3
SRCK high to SRFS (wl) high
3
STCK high to STFS (wl) low
3
SRCK high to SRFS (wl) low
3
27.1
61.1
–
–
–
–
–
–
–
–
–
–
92.8
92.8
92.8
92.8
92.8
92.8
92.8
92.8
STCK high to STXD valid from high impedance
STCK high to STXD high
STCK high to STXD low
STCK high to STXD high impedance
SRXD setup time before SRCK low
SRXD hole time after SRCK low
18.01
8.98
9.12
18.47
1.14
0
28.16
18.13
18.24
28.5
–
–
Synchronous Internal Clock Operation (Port C Primary Function
2
)
7.0
8.0
16.2
1.0
0
0
0
0
15.8
0
0
0
0
81.4
40.7
40.7
0
15.9
16.0
25.0
–
–
81.4
81.4
81.4
24.7
81.4
81.4
81.4
81.4
–
–
–
81.4
31
32
SRXD setup before STCK falling
SRXD hold after STCK falling
15.4
0
–
–
13.5
0
–
–
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
68
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Functional Description and Application Information
Table 29. SSI (Port C Primary Function) Timing Parameter Table (Continued)
1.8 ± 0.1 V 3.0 ± 0.3 V
Ref No.
Parameter Unit
Minimum Maximum Minimum Maximum
Synchronous External Clock Operation (Port C Primary Function
2
)
33 SRXD setup before STCK falling 1.14
– 1.0
– ns
34 SRXD hold after STCK falling 0 – 0 – ns
1
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
2
There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function.
3 bl = bit length; wl = word length.
Table 30. SSI (Port B Alternate Function) Timing Parameter Table
Ref
No.
Parameter
1.8 ± 0.1 V
Minimum Maximum
10
11a STCK high to STXD high
11b
12 STCK high to STXD high impedance
13
STCK high to STXD low
Internal Clock Operation
1
(Port B Alternate Function
2
)
1 STCK/SRCK clock period
1
95
2 STCK high to STFS (bl) high
3
1.7
3 SRCK high to SRFS (bl) high
3
-0.1
4 STCK high to STFS (bl) low
3
3.08
5 SRCK high to SRFS (bl) low
3
1.25
6 STCK high to STFS (wl) high
3
7 SRCK high to SRFS (wl) high
3
1.71
9 SRCK high to SRFS (wl) low
3
-0.1
8 STCK high to STFS (wl) low
3
3.08
1.25
STCK high to STXD valid from high impedance
SRXD setup time before SRCK low
14 SRXD hold time after SRCK low
14.93
1.25
2.51
12.43
20
0
–
4.8
1.0
5.24
2.28
4.79
1.0
5.24
2.28
16.19
3.42
3.99
14.59
–
–
83.3
1.5
-0.1
2.7
1.1
1.5
-0.1
2.7
1.1
13.1
1.1
2.2
10.9
17.5
0
3.0 ± 0.3 V
Minimum Maximum
2.0
14.2
3.0
3.5
12.8
–
–
2.0
4.2
1.0
4.6
–
4.2
1.0
4.6
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
69
Functional Description and Application Information
Table 30. SSI (Port B Alternate Function) Timing Parameter Table (Continued)
Ref
No.
Parameter
1.8 ± 0.1 V 3.0 ± 0.3 V
Unit
Minimum Maximum Minimum Maximum
External Clock Operation (Port B Alternate Function
2
)
15 STCK/SRCK clock period
1
92.8
– 81.4
16 STCK/SRCK clock high period
17 STCK/SRCK clock low period
18 STCK high to STFS (bl) high
3
19 SRCK high to SRFS (bl) high
3
20 STCK high to STFS (bl) low
3
21 SRCK high to SRFS (bl) low
3
22 STCK high to STFS (wl) high
3
23 SRCK high to SRFS (wl) high
3
24 STCK high to STFS (wl) low
3
25 SRCK high to SRFS (wl) low
3
27.1
61.1
–
–
–
–
–
–
–
–
–
–
92.8
92.8
92.8
92.8
92.8
92.8
92.8
92.8
40.7
40.7
0
0
0
0
0
0
0
0
26 STCK high to STXD valid from high impedance
27a STCK high to STXD high
27b STCK high to STXD low
28 STCK high to STXD high impedance
29 SRXD setup time before SRCK low
30 SRXD hold time after SRCK low
18.9
9.23
10.60
17.90
1.14
0
29.07
20.75
21.32
29.75
–
–
1.0
0
16.6
8.1
9.3
15.7
Synchronous Internal Clock Operation (Port B Alternate Function
2
)
31 SRXD setup before STCK falling
32 SRXD hold after STCK falling
18.81
0
–
–
16.5
0
Synchronous External Clock Operation (Port B Alternate Function
2
)
–
– ns ns
33 SRXD setup before STCK falling 1.14
– 1.0
– ns
34 SRXD hold after STCK falling 0 – 0 – ns
1
2
3
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as inputs, the SSI module selects the input based on
FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function.
bl = bit length; wl = word length.
18.2
18.7
26.1
–
–
81.4
81.4
81.4
25.5
81.4
81.4
81.4
81.4
–
–
–
81.4
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
70
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
K
A
B
C
D
E
F
G
H
J
5 Pin-Out and Package Information
illustrates the package pin assignments for the 225-contact MAPBGA package. For a complete listing of signals, see the
Signal Multiplexing Table 3 on page 8.
Table 31. i.MXS 225 MAPBGA Pin Assignments
1
PB13
PB11
D31
A23
A21
A20
A17
A15
A14
2
PB15
PB12
PB8
A24
A22
A19
A18
A16
A12
3
PB19
PB16
PB14
PB9
D30
D28
D26
D23
D21
4
USBD_
ROE
USBD_
AFE
PB18
PB17
D29
D27
D25
D24
D20
5
USBD_
SUSPND
6
USBD_VM
USBD_
RCV
PB10
USBD_
VMO
USBD_
VPO
NVDD1
USBD_
VP
7
SSI_
RXFS
SSI_
RXDAT
UART2_
RXD
QVDD4
NVDD1
NVDD1
QVSS
NVDD1
UART2_
RTS
UART2_
CTS
NVDD1 NVSS NVDD4
D22
NVDD1
NVSS
NVSS
NVSS
NVSS
8
SSI_
TXCLK
UART1_
TXD
SSI_
TXFS
UART2_
TXD
UART1_
RXD
SSI_
RXCLK
NVSS
9
SPI1_SPI_
RDY
10
SPI1_
SCLK
11
REV
SPI1_SS
UART1_
RTS
CONTRAST FLM/VSYNC
NVDD3
UART1_
CTS
SSI_
TXDAT
LSCLK
SPI1_
MOSI
SPI1_
MISO
CLS
SPL_
SPR
LP/HSYNC
ACD/OE
QVDD3
NVSS QVSS PWMO
NVSS
QVDD1
NVSS
NVSS
NVDD2
PA10
PA5
I2C_SCL
12
PS
LD0
LD8
LD1
LD10
LD14
PA7
PA12
TCK
13
LD2
LD3
LD9
LD11
TIN
LD15
14
LD4
LD6
LD12
TMR2OUT
PA4
PA6
15
LD5
LD7
NVDD2
LD13
PA3
PA8
A13 A11 CS2 D19 NVDD1 NVSS QVSS
N
P
L
M
A10
D16
A8
D14
A9
D15
A7
A5
D17
D13
D12
A4
D18
D10
EB0
A3
NVDD1
EB3
D9
A2
NVDD1
NVDD1
D8
A1
R
A6 D11 EB1 EB2 OE D7 A0
1 2 3 4 5 6
1
2
Burst Clock
This signal is not used and should be floated in an actual application.
7
CS5
CS4
CS3
D6
NVDD1
D2
CS1
CS0
D5
SDCLK
8
NVSS
ECB
BCLK
1
PA17
MA10
D4
9
D1
NVSS
RW
D0
MA11
LBA
10
BOOT2
NVSS
NVSS
DQM2
DQM1
D3
11
TDI
POR
BOOT3
DQM0
RAS
DQM3
12
A
B
C
D
E
F
PA11
PA14
PA13
I2C_SDA
PA9
TMS
TDO
BIG_
ENDIAN
QVSS
QVDD2
BOOT1
RESET_
OUT
BOOT0
XTAL32K
XTAL16M EXTAL32K
J
K
L
RESET_IN EXTAL16M
M
SDCKE0 TRISTATE
SDCKE1
CAS
13
CLKO
SDWE
14
TRST
N
RESET_SF
2
P
R
AVDD1
15
G
H
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: i.MXS Product Family
Pin-Out and Package Information
5.1
MAPBGA 225 Package Dimensions
illustrates the 225 MAPBGA 13 mm × 13 mm package.
Case Outline 1304B
TOP VIEW
72
BOTTOM VIEW
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2.DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.
SIDE VIEW
3.MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER
BALLS.
5.PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE
OF PACKAGE
Figure 54. i.MXS 225 MAPBGA Mechanical Drawing
MC9328MXS Technical Data, Rev. 3
Freescale Semiconductor
Product Documentation
6 Product Documentation
6.1
Revision History
provides revision history for this release. This history includes technical content revisions only and not stylistic or grammatical changes.
Table 32. i.MXS Data Sheet Revision History Rev. 3
Location
Signal Names and
Descriptions
Signal Multiplex Table i.MXS
Revision
• Added the DMA_REQ signal to table.
• Corrected signal name from USBD_OE to USBD_ROE
Added Signal Multiplex table from Reference Manual with the following changes:
• Corrected BGA pin assignments.
Changed first and second parameters descriptions:
From: Reference Clock freq range, To: DPLL input clock freq range
From: Double clock freq range, To: DPLL output freq range
6.2
Reference Documents
The following documents are required for a complete description of the MC9328MXS and are necessary to design properly with the device. Especially for those not familiar with the ARM920T processor or previous i.MX processor products, the following documents are helpful when used in conjunction with this document.
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)
ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)
ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)
EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)
MC9328MXS Product Brief (order number MC9328MXSP)
MC9328MXS Reference Manual (order number MC9328MXSRM)
The Freescale manuals are available on the Freescale Semiconductors Web site at http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web site, or printed versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com.
Freescale Semiconductor
MC9328MXS Technical Data, Rev. 3
73
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130 [email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French) [email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125 [email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080 [email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the
ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and
ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
Document Number:
MC9328MXS
Rev. 3
12/2006
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project