TDA7851F скачать даташит

TDA7851F

4 x 45 W MOSFET quad bridge power amplifier

Features

Multipower BCD technology

High output power capability:

– 4 x 45 W/4

Ω max.

– 4 x 28 W/4

Ω @ 14.4 V, 1 kHz, 10 %

– 4 x 72 W/2

Ω max.

MOSFET output power stage

Excellent 2

Ω driving capability

Hi-Fi class distortion

Low output noise

Standby function

Mute function

Automute at min. supply voltage detection

Low external component count:

– Internally fixed gain (26 dB)

– No external compensation

– No bootstrap capacitors

Output DC offset detector

Flexiwatt25

Fortuitous open GND

Reversed battery

ESD

Protections:

Output short circuit to GND, to V s

, across the load

Very inductive loads

Overrating chip temperature with soft thermal limiter

Load dump voltage

Table 1. Device summary

Order code

TDA7851F

Package

Flexiwatt25

Description

The TDA7851F is a breakthrough MOSFET technology class AB audio power amplifier, designed for high-power car radio.

The fully complementary P-Channel/N-Channel output structure allows a rail-to-rail output voltage swing. This, combined with high output current and minimized saturation losses, sets new power references in the car-radio field, with unparalleled distortion performance.

Packing

Tube

July 2010 Doc ID 17714 Rev 1 1/15

www.st.com

1

5

6

Contents

Contents

1

2

3

4

TDA7851F

Block diagram and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2

Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1

Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3

Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1

SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2

Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3

Standby and muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4

Heatsink definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2/15 Doc ID 17714 Rev 1

TDA7851F

List of tables

List of tables

Table 2.

Table 3.

Table 4.

Table 5.

Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Doc ID 17714 Rev 1 3/15

List of figures

List of figures

TDA7851F

Figure 1.

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.

Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 3.

Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 4.

Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 5.

Output power vs. supply voltage (R

L

= 4

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 6.

Output power vs. supply voltage (R

L

= 2

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

= 4

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 7.

Distortion vs. output power (R

L

Figure 8.

Figure 9.

Distortion vs. output power (R

Distortion vs. frequency (R

L

L

= 2

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

= 4

Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 10.

Distortion vs. frequency (R

L

= 2

Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 11.

Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 12.

Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 13.

Output attenuation vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 14.

Power dissipation and efficiency vs. output power (R

L

= 4

Ω, SINE) . . . . . . . . . . . . . . . . . 10

Figure 15.

Figure 16.

Figure 17.

Power dissipation and efficiency vs. output power (R

Power dissipation vs. output power (R

Power dissipation vs. output power (R

L

L

L

= 2

Ω, SINE) . . . . . . . . . . . . . . . . . 10

= 4

Ω, audio program simulation) . . . . . . . . . . . . 11

= 2

Ω, audio program simulation) . . . . . . . . . . . . 11

Figure 18.

ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 11

Figure 19.

Flexiwatt25 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4/15 Doc ID 17714 Rev 1

TDA7851F

1

Block diagram and application circuit

Block diagram and application circuit

Figure 1.

Block diagram

Vcc1

ST-BY

MUTE

IN1

IN2

IN3

IN4

AC-GND

Vcc2

SVR TAB S-GND

OD

OUT1+

OUT1-

PW-GND

OUT2+

OUT2-

PW-GND

OUT3+

OUT3-

PW-GND

OUT4+

OUT4-

PW-GND

AC00420

Figure 2.

Application circuit

ST-BY

MUTE

IN1

R1

10K

R2

47K

C1

0.1

μF

IN2

C2 0.1

μF

IN3

C3 0.1

μF

IN4

C4 0.1

μF

C9

1

μF

C10

1

μF

4

22

11

C8

0.1

μF

C7

2200

μF

Vcc1-2

6

Vcc3-4

20

9

8

7

5

2

3

12

15

S-GND

14

13

C5

0.47

μF

16

C6

47

μF

10

SVR

25

OD

21

24

23

1

TAB

R3

47K

OD OUT

17

18

19

V

AC00421

OUT1

OUT2

OUT3

OUT4

Doc ID 17714 Rev 1 5/15

Pin description

Figure 3.

Pin connection (top view)

TDA7851F

1 25

AC00422

Table 2.

Symbol

Thermal data

Parameter

R th j-case

Thermal resistance junction-to-case max

Value

1

Unit

°C/W

6/15 Doc ID 17714 Rev 1

TDA7851F Electrical specifications

3.1 Absolute maximum ratings

Table 3.

Symbol

V

S

V

S (DC)

V

S (pk)

Absolute maximum ratings

Parameter

Operating supply voltage

DC supply voltage

Peak supply voltage (for t = 50 ms)

I

O

P tot

T j

T stg

Output peak current

Non repetitive (t = 100

μs)

Repetitive (duty cycle 10 % at f = 10 Hz)

Power dissipation T case

= 70 °C

Junction temperature

Storage temperature

Value

18

28

50

10

9

85

150

-55 to 150

Unit

V

V

V

A

A

W

°C

°C

Refer to the test and application diagram, V

S

= 14.4 V; R

L

= 4

Ω; R g

T amb

= 25 °C; unless otherwise specified.

= 600

Ω; f = 1 kHz;

Table 4.

Symbol

V

S

I q1

V

OS dV

OS

G v dG v

P o

P o max.

Electrical characteristics

Parameter Test condition

Supply voltage range

Quiescent current

Output offset voltage

Max. output power

(1)

-

R

L

=

Play mode / Mute mode

During mute ON/OFF output offset voltage

During standby ON/OFF output offset voltage

ITU R-ARM weighted see

Figure 18

Voltage gain

Channel gain unbalance

-

-

V

S

= 14.4 V; THD = 10 %

V

S

= 14.4 V; THD = 1 %

V

S

= 14.4 V; THD = 10 %, 2

Ω

V

S

= 14.4 V; THD = 1 %, 2

Ω

V

S

= 14.4 V; R

L

= 4

Ω

V

S

= 14.4 V; R

L

Vs = 15.2V; R

L

= 2

Ω;

= 4

Ω (square wave input (2 Vrms))

Min. Typ.

Max.

Unit

8

100

-60

-

150

-

18

300

+60

V mA mV

-10

-10

25

25

-

-

-

-

26

28

22

48

38

45

75

50

+10

+10

27

±1

-

-

mV mV dB dB

W

W

W

W

W

Doc ID 17714 Rev 1 7/15

Electrical specifications

Table 4.

Symbol

THD

Electrical characteristics (continued)

Distortion

Parameter Test condition

e

No

SVR f ch

R i

C

T

I

SB

I pin5

V

SB out

V

SB in

A

M

V

M out

V

M in

Supply voltage rejection

High cut-off frequency

Input Impedance

Cross talk

Standby current consumption

Standby pin current

Standby out threshold voltage

Standby in threshold voltage

Mute attenuation

Mute out threshold voltage

Mute in threshold voltage

P o

= 4 W

"A" Weighted

Bw = 20 Hz to 20 kHz f = 100 Hz; V r

= 1 Vrms

-

P

O

= 0.5W

f = 1 kHz P

O

= 4 W f = 10 kHz P

O

= 4 W

V

St-By

= 1.2 V

V

St-By

= 0

V

St-By

= 1.2 V to 2.6 V

(Amp: ON)

(Amp: OFF)

P

Oref

= 4 W

(Amp: Play)

(Amp: Mute)

(Amp: Mute)

Att

80 dB; P

Oref

= 4 W

V

AM in

V

S

automute threshold

Ipin23 Muting pin current

(Amp: Play)

Att < 0.1 dB; P

O

= 0.5 W

V

MUTE

= 1.2 V

(Sourced current)

V

MUTE

= 2.6 V

Offset detector

V

OFF

Detected diff. output offset

V

OFF_SAT

Off detector sat voltage

V

OFF_LK

Off detector leakage current

1.

Saturated square wave output

V

ST-BY

= 5 V

Vo > ±3 V, I off Det

= 1 mA

0 V < V off Det

< 18 V

Vo < ±1 V

TDA7851F

50

100

70

60

2.6

-

80

2.6

-

-

-

-

Min. Typ.

Max.

Unit

-

-

90

-

-

-

-

-

-

0.01

0.05

35

50 100

70

300

100

70

60

-

-

-

130

-

-

20

10

±1

1.2

1.2

kHz k

Ω dB dB

μA

μA

μA

V

%

μV

μV dB

V dB

V

V

6.7

7 V

7

-5

7.5

12

-

8

18

18

V

μA

μA

±1

-

-

±2

0.2

0

±3

0.4

15

V

V

µA

8/15 Doc ID 17714 Rev 1

TDA7851F Electrical specifications

Figure 4.

Quiescent current vs. supply

180

I d

(mA)

170

160

150

140

130

120

8

V i

= 0

R

L

=

voltage

10 12

Vs (V)

14 16 18

AC00024

55

50

45

40

35

30

25

20

15

10

5

80

75

70

65

60

Figure 5.

Output power vs. supply voltage

(R

L

= 4

Ω)

P o

(W)

R

L

= 4

Ω f =1 KHz

Po-max

THD=10%

THD=1%

8 9 10 11 12 13

V s

(V)

14 15 16 17 18

AC00025

Figure 6.

Output power vs. supply voltage

(R

L

= 2

Ω)

Po (W)

60

50

40

30

20

10

0

130

120

110

100

90

80

70

R

L

=2

Ω f=1 KHz

Po-max

THD=10%

THD=1%

8 9 10 11 12 13

V s

(V)

14 15 16 17 18

AC00026

Figure 7.

Distortion vs. output power

(R

L

= 4

Ω)

10

1

0.1

0.01

0.001

0.1

THD (% )

V s

R

L

= 14.4 V

= 4

Ω

1 f = 10 KHz f = 1 KHz

P o

(W)

10 100

AC00027

Figure 8.

Distortion vs. output power

(R

L

= 2

Ω)

10

THD (% )

V s

R

L

= 14.4 V

= 2

Ω

1 f = 10 KHz

0.1

f = 1 KHz

Figure 9.

Distortion vs. frequency

(R

L

= 4

Ω)

10

THD (% )

1

0.1

V s

R

L

P o

= 14.4 V

= 4

Ω

= 4 W

0.01

0.01

0.001

0.1

1

P o

(W)

10 100

AC00028

0.001

10 100 1000 f (Hz)

10000 100000

AC00029

Doc ID 17714 Rev 1 9/15

Electrical specifications TDA7851F

Figure 10. Distortion vs. frequency

(R

L

= 2

Ω)

10

THD (% )

1

V s

R

L

= 14.4 V

= 2

Ω

Po = 8 W

0.1

0.01

Figure 11. Crosstalk vs. frequency

-70

-80

-90

100000

AC00030

-100

10

-20

CROSSTALK (dB)

-30

-40

R

L

= 4

Ω

P

R o g

= 4W

= 600

Ω

-50

-60

100

0.001

10 100 1000 f (Hz)

10000

1000 f (Hz)

10000 100000

AC00031

Figure 12. Supply voltage rejection vs. frequency

-20

SVR (dB)

-30

R g

= 600

Ω

V ripple

= 1Vrms

-40

-50

-60

-70

-80

-90

-100

10 100 1000 f (Hz)

10000

-40

-60

-80

100000

AC00032

-100

5

Figure 13. Output attenuation vs. supply voltage

OUTPUT ATTN (dB)

0

R

L

= 4

Ω

Po = 4 W ref

-20

6 7

V s

(V)

8 9 10

AC00033

Figure 14.

Power dissipation and efficiency vs. output power (R

L

= 4

Ω, SINE)

50

40

30

20

10

0

0

90

P tot

(W)

80

70

60

V

R s

L

= 14.4 V

= 4 x 4

Ω f = 1 KHz SINE

2 4 6

P

η tot

η (%)

90

80

70

10

8 10 12 14 16 18 20 22 24 26 28

0

P o

(W)

AC00034

60

50

40

30

20

Figure 15. Power dissipation and efficiency vs. output power (R

L

= 2

Ω, SINE)

100

80

60

40

20

180

P tot

(W)

160

140

120

V s

R

L

= 14.4 V

= 4 x 2

Ω f = 1 KHz SINE

0

0 5 10 15 20 25

P o

(W)

P tot

30 35

η

40

η (%)

90

80

70

60

45 50

0

AC00035

50

40

30

20

10

10/15 Doc ID 17714 Rev 1

TDA7851F Electrical specifications

-20

-30

-40

-50

10

Figure 16. Power dissipation vs. output power

(R

L

= 4

Ω, audio program simulation)

30

P tot

(W)

Figure 17.

Power dissipation vs. output power

(R

L

= 2

Ω, audio program simulation)

25

20

15

10

5

0

V s

R

L

= 14.4 V

= 4 x 4

Ω

GAUSSIAN NOISE

1 2

CLIP START

3

P o

(W)

4 5 6

AC00036

35

30

25

20

15

10

5

0

60

55

50

45

40

P tot

(W)

V

R s

L

= 14.4 V

= 4 x 2

Ω

GAUSSIAN NOISE

2

CLIP START

4

P o

(W)

6 8 10

AC00037

Figure 18.

ITU R-ARM frequency response, weighting filter for transient pop

10

Output attenuation (dB)

-10

0

100 1000

Hz

10000 100000

AC00343

Doc ID 17714 Rev 1 11/15

Application hints TDA7851F

4.1 SVR

Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during

ON/OFF transients.To conveniently serve both needs, its minimum recommended value

is 10

µF.

The TDA7851's inputs are ground-compatible and can stand very high input signals

(± 8 Vpk) without any performance degradation.

If the standard value for the input capacitors (0.1 µF) is adopted, the low frequency cut-off amounts to 16 Hz.

The input capacitors should be 1/4 of the capacitor connected to AC-GND pin for optimum pop performance.

4.3 Standby muting

Standby and muting facilities are both CMOS-compatible. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470 k

Ω equivalent resistance should be present between the power supply and muting and standby pins.

R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noise.

About standby, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5 V /ms.

Under normal usage (4 Ohm speakers) the heatsink's thermal requirements have to be deduced from

Figure 16

, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurrence (worst-case) causes P diss

= 26 W. Assuming T amb

= 70 °C and T

CHIP

= 150 °C as boundary conditions, the heatsink's thermal resistance should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation.

12/15 Doc ID 17714 Rev 1

TDA7851F Package information

In order to meet environmental requirements, ST offers these devices in different grades of

ECOPACK

®

packages, depending on their level of environmental compliance. ECOPACK

® specifications, grade definitions and product status are available at:

www.st.com

.

ECOPACK

®

is an ST trademark.

Figure 19.

Flexiwatt25 mechanical data and package dimensions

DIM.

mm inch

A

B

C

D

E

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

4.45

1.80

0.75

0.37

4.50

1.90

1.40

4.65

2.00

0.175

0.070

0.177

0.074

0.055

0.183

0.079

0.90

1.05

0.029

0.035

0.041

0.39

0.42

0.014

0.015

0.016

F (1)

G

G1

0.80

23.75

1.00

24.00

0.57

1.20

24.25

0.031

0.935

0.040

0.945

0.022

0.047

0.955

H (2) 28.90

29.23

29.30

1.139

1.150

1.153

H1

H2

17.00

12.80

0.669

0.503

H3 0.80

0.031

L (2) 22.07

22.47

22.87

0.869

0.884

0.904

L1 18.57

18.97

19.37

0.731

0.747

0.762

L2 (2) 15.50

15.70

15.90

0.610

0.618

0.626

L3 7.70

7.85

7.95

0.303

0.309

0.313

L4

L5

5

3.5

0.197

0.138

M

M1

N

O

R

R1

3.70

3.60

4.00

4.00

2.20

2

1.70

0.5

4.30

4.40

0.145

0.142

0.157

0.157

0.086

0.079

0.067

0.02

0.169

0.173

R2

R3

R4

V

V1

0.3

1.25

0.50

5˚ (T p.)

3˚ (Typ.)

V2

V3

20˚ (Typ.)

45˚ (Typ.)

(1): dam-bar protusion not included

(2): molding protusion included

0.12

0.049

0.019

OUTLINE AND

MECHANICAL DATA

Flexiwatt25 (vertical)

V

C

B

V

H

H1

V3

H3

R3

H2

A

R4

V1

N

R

R2

L L1

V1

V2

Pin 1

G

G1

F

R2

FLEX25ME

L5

R1

R1

M

D

R1

E

M1

7034862

Doc ID 17714 Rev 1 13/15

Revision history

Table 5.

Date

09-Jul-2010

Document revision history

Revision

1 Initial release.

Changes

TDA7851F

14/15 Doc ID 17714 Rev 1

TDA7851F

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS

OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT

RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING

APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,

DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE

GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17714 Rev 1 15/15

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project