XC9140 Series GENERAL DESCRIPTION

XC9140  Series GENERAL DESCRIPTION
XC9140 Series
ETR04015-003
Step-Up Synchronous PFM DC/DC Converter
■ GENERAL DESCRIPTION
☆GreenOperation Compatible
The XC9140 series are step-up synchronous DC/DC converters that support ceramic capacitors and have an internal 0.6Ω
(TYP.) Nch driver transistor and an internal 0.65Ω (TYP.) Pch synchronous rectifier switch transistor. PFM control enables a low
quiescent current, making these products ideal for portable devices that require high efficiency.
When the output voltage is 3.3V and the load current is 1mA (XC9140Axx1 type and XC9140Cxx1 type), startup from an input
voltage of VIN = 0.9V is possible which means that these products can be used in applications that start using a single alkaline or
nickel-metal hydride battery. The output voltage can be set from 1.8V to 5.0V (±2.0%) in steps of 0.1V.
The XC9140 features a load disconnect function to break continuity between the input and output at shutdown (XC9140A), and
also a bypass mode function to maintain continuity between the input and output (XC9140C).
A version with a UVLO (Under Voltage Lock-out) function is also available. This function enables the prevention of battery leakage
by stopping IC’s operation when the input voltage is low. The standard product has a UVLO release voltage of 2.15V (±3.0%), and a
custom version with a release voltage selectable from between 1.65V to 2.2V, in steps of 0.05V, is also available.
■FEATURES
■APPLICATIONS
●
●
●
●
●
●
Mouses, Keyboards
Bluetooths
Household use Medical equipments
Remote controls
Game consoles
Devices with 1~3 Alkaline, 1~3 Nickel Hydride,
1 Lithium and 1 Li-ion
Input Voltage Range
:
0.9V~5.5V
Output Voltage Setting
:
1.8V~5.0V (±2.0%) 0.1V increments
Output Current
:
100mA@VOUT=3.3V, VBAT=1.8V (TYP.)
Driver Transistor
:
0.6Ω Nch driver transistor
Supply Current
:
6.3μA (VBAT=VOUT+0.5V)
Control Method
:
PFM Control
0.65Ω Pch synchronous rectifier switch transistor
High speed transient response
:
[email protected]=3.3V, VBAT=1.8V, IOUT=1→50mA
PFM Switching Current
:
350mA
Functions
:
Load Disconnection Function or
Bypass Mode Function
UVLO Function
Ceramic Capacitor
Operating Ambient Temperature
:
-40℃~+85℃
Packages
:
SOT-25, USP-6EL
Environmentally Friendly
:
EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUIT
■TYPICAL PERFORMANCE
CHARACTERISTICS
●Efficiency vs. Output Current
100
L=4.7μH
2.5V
VOUT
CL=10μF
CE
VBAT
IN=4.7μF
CCIN=10μF
GND
Efficiency : EFFI (%)
LX
VIN=0.9~5.5V
XC9140A331MR-G(VOUT=3.3V)
L=4.7μH(VLF302512M-4R7M),CIN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
80
3.0V
60
VBAT =1.8V
40
20
0
0.01
0.1
1
10
100
1000
Output Current : I OUT (mA)
1/28
XC9140 Series
■ BLOCK DIAGRAM
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
The XC9140A /XC9140C series do not have the CL discharge function.
The XC9140Axx1/XC9140Cxx1 series do not have the UVLO function.
■ PRODUCT CLASSIFICATION
●Ordering Information
XC9140①②③④⑤⑥-⑦
DESIGNATOR
①
②③
④
(*1)
(*2)
(*3)
⑤⑥-⑦
ITEM
Product Type
Output Voltage
UVLO Function
(*4)
Packages (Order Unit)
SYMBOL
DESCRIPTION
A
Load Disconnection Without CL Auto Discharge
C
VBAT Bypass Without CL Auto Discharge
18~50
Output Voltage
e.g. VOUT=3.3V⇒②=3, ③=3
1
No UVLO
2
UVLO Function VUVLO_R=2.15V
4R-G
USP-6EL (3,000/Reel)
MR-G
SOT-25 (3,000/Reel)
(*1)
The product with the CL discharge function is a semi-custom product.
(*2)
VOUT=3.3V is standard.
(*3)
The standard product has a UVLO release voltage of 2.15V. For other voltages, consult our sales department.
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
(*4)
2/28
XC9140 (Design Target)
XC9140
Series
■PIN CONFIGURATION
LX
VOUT
5
4
1
2
3
CE
GND
VBAT
SOT-25
(TOP VIEW)
* The dissipation pad for the USP-6EL package should be solder-plated in
recommended mount pattern and metal masking so as to enhance mounting
strength and heat release.
The mount pattern should be connected to GND pin (No.6).
■ PIN ASSIGNMENT
PIN NUMBER
USP-6EL
SOT-25
1
2
3
4
5
6
5
4
3
1
2
PIN NAME
FUNCTIONS
LX
VOUT
VBAT
CE
NC
GND
Switching
Output Voltage
Power Input
Chip Enable
No Connection
Ground
■ CE PIN FUNCTION
PIN NAME
SIGNAL
STATUS
CE
H
L
Active (All Series)
Stand-by (XC9140A Series) or Bypass Mode (XC9140C Series)
* Please do not leave the CE pin open.
■ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
RATINGS
BAT Pin Voltage
LX Pin Voltage
VOUT Pin Voltage
VBAT
VLX
VOUT
-0.3 ~ +7.0
-0.3 ~ VOUT+0.3 or +7.0 (*1)
CE Pin Voltage
LX Pin Current
SOT-25
USP-6EL
Operating Ambient Temperature
Storage Temperature
Power Dissipation
Ta=25˚C
UNITS
V
V
V
VCE
-0.3 ~ +7.0
-0.3 ~ +7.0
V
ILX
700
mA
Pd
Topr
Tstg
250
120
-40 ~ +85
-55 ~ +125
mW
˚C
˚C
* All voltages are described based on the GND.
(*1)
The maximum value should be either VOUT+0.3 or +7.0 or in the lowest.
3/28
XC9140 Series
■ ELECTRICAL CHARACTERISTICS
Ta=25˚C
●XC9140Axx1 Type, without UVLO function, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VBAT
Output Voltage
VOUT(E)
Operation Start Voltage
VST1
Operation Hold Voltage
VHLD
Supply Current
Input Pin Current
CONDITIONS
(*2)
Iq
IBAT
-
0.7
-
V
②
μA
③
VOUT=VOUT(T)+0.5V
(*1)
VOUT=VOUT(T)+0.5V
(*1)
0.25
1.0
μA
③
, VOUT=VCE=0V
-
0.1
1.0
μA
④
, VOUT=VCE=0V
-
0.1
1.0
μA
⑤
295
350
405
mA
②
3.1
4.6
6.0
μs
①
-
81
-
%
②
-
85
-
%
②
-
86
-
%
②
Ω
⑦
tONMAX
EFFI
EFFI
EFFI
RLXP
RLXN
E2
-
Maximum ON Time
(*5)
①
RL=1kΩ
IOUT=3mA
Resistance
V
E1
Oscillation stops,
IPFM
LX SW “Nch” ON
-
②
PFM Switching Current
Resistance
V
V
(*1)
(*4)
5.5
0.9
VBAT=VLX=VOUT(T)
LX SW “Pch” ON
-
-
ILXL
(*3)
-
-
LX Leak Current
Efficiency
CIRCUIT
IOUT=1mA
VBAT=VLX=VOUT(T)
(*3)
UNITS
while VOUT is decreasing
ISTB
Efficiency
MAX.
VPULL=1.5V, Voltage to start oscillation
Stand-by Current
(*3)
TYP.
-
(*1)
Efficiency
MIN.
VPULL=1.5V, VOUT=VOUT(T)×0.98V
VBAT=VCE=1.8V, VOUT(T)
(*1)
(*1)
=2.5V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T)
(*1)
=3.3V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T)
(*1)
=5.0V,
IOUT=30mA
VBAT=VLX=VCE=VOUT(T)+0.5V
(*1)
,
E3
IOUT=200mA
VBAT=VCE=3.3V, VOUT=1.7V
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
VBAT=VPULL=1.5V,
CE “High” Voltage
VCEH
VOUT=VOUT(T)×0.98V
(*1)
While VCE=0.3→0.75V,
Voltage to start oscillation
VBAT=VPULL=1.5V,
CE “Low” Voltage
VCEL
VOUT=VOUT(T)×0.98V
(*1)
While VCE=0.75→0.3V,
Voltage to stop oscillation
CE “High” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “Low” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
Unless otherwise stated, VBAT=VCE=1.5V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*4)
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
4/28
XC9140 (Design Target)
XC9140
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9140Cxx1 Type, without UVLO function, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VBAT
Output Voltage
VOUT(E)
Operation Start Voltage
VST1
Operation Hold Voltage
VHLD
Supply Current
Iq
Input Pin Current
(*2)
CONDITIONS
0.7
-
V
②
μA
③
E2
Maximum ON Time
tONMAX
Resistance
LX SW “Nch” ON
Resistance
(*5)
RLXP
RLXN
①
-
IOUT=3mA
(*4)
V
E1
RL=1kΩ
IPFM
LX SW “Pch” ON
-
Oscillation stops,
PFM Switching Current
EFFI
V
②
VBAT=VLX=5.5V, VCE=0V
(*3)
5.5
V
IBYP
Efficiency
-
0.9
Bypass Mode Current
EFFI
-
-
(*1)
(*3)
CIRCUIT
-
VOUT=VOUT(T)+0.5V
Efficiency
UNITS
IOUT=1mA
IBAT
EFFI
MAX.
while VOUT is decreasing
(*1)
Efficiency
TYP.
VPULL=1.5V, Voltage to start oscillation
VOUT=VOUT(T)+0.5V
(*3)
Ta=25˚C
MIN.
VPULL=1.5V, VOUT=VOUT(T)×0.98V
VBAT=VCE=1.8V, VOUT(T)
(*1)
-
0.25
1.0
μA
③
-
3.5
6.1
μA
⑥
295
350
405
mA
②
3.1
4.6
6.0
μs
①
-
81
-
%
②
-
85
-
%
②
-
86
-
%
②
Ω
⑦
(*1)
=2.5V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T)
(*1)
=3.3V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T)
(*1)
=5.0V,
IOUT=30mA
VBAT=VLX=VCE= VOUT(T)+0.5V
(*1)
,
E3
IOUT=200mA
VBAT=VCE=3.3V, VOUT=1.7V
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
VBAT=VPULL=1.5V,
CE “High” Voltage
VCEH
VOUT=VOUT(T)×0.98V
(*1)
While VCE=0.3→0.75V,
Voltage to start oscillation
VBAT=VPULL=1.5V,
VOUT=VOUT(T)×0.98V
(*1)
CE “Low” Voltage
VCEL
CE “High” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “Low” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
While VCE=0.75→0.3V,
Voltage to stop oscillation
Unless otherwise stated, VBAT=VCE=1.5V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
EFFI={[(Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)]}×100
(*4)
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
5/28
XC9140 Series
■ ELECTRICAL CHARACTERISTICS (Continued)
●XC9140Axxx types (types other than XC9140Axx1), with UVLO function, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VBAT
Output Voltage
CONDITIONS
MAX.
UNITS
-
-
5.5
V
(*2)
VPULL=1.5V, Voltage to start oscillation
E1
while VOUT is decreasing
Operation Start Voltage
VST1
IOUT=1mA
Operation Hold Voltage
VHLD
RL=1kΩ
Supply Current2
Iq
Input Pin Current2
IBAT
-
(*8)
Oscillation stops,
VOUT=VOUT(T)+0.5V
(*1)
VOUT=VOUT(T)+0.5V
(*1)
Stand-by Current
ISTB
VBAT=VLX=VOUT(T)
LX Leak Current
ILXL
VBAT=VLX=VOUT(T)
(*1)
PFM Switching Current
IPFM
IOUT=3mA
tONMAX
CIRCUIT
V
①
(*7)
V
②
-
V
②
E4
μA
③
E5
μA
③
-
VDETECT(E)
(*1)
Maximum ON Time
TYP.
-
VOUT(E)
Ta=25˚C
MIN.
-
VRELEASE(E)
, VOUT=VCE=0V
-
0.1
1.0
μA
④
, VOUT=VCE=0V
-
0.1
1.0
μA
⑤
295
350
405
mA
②
3.1
4.6
6.0
μs
①
VPULL= VRELEASE(T)+0.1V
VOUT=VOUT(T)×0.98V
(*6)
,
(*1)
Efficiency
(*3)
EFFI
VOUT(T)
(*1)
=2.5V, IOUT=30mA
-
81
-
%
②
Efficiency
(*3)
EFFI
VOUT(T)
(*1)
=3.3V, IOUT=30mA
-
85
-
%
②
Efficiency
(*3)
EFFI
VOUT(T)
(*1)
=5.0V, IOUT=30mA
-
86
-
%
②
Ω
⑦
LX SW “Pch” ON
Resistance
(*4)
LX SW “Nch” ON
Resistance
(*5)
VBAT=VLX=VCE=VOUT(T)+0.5V
RLXP
(*1)
RLXN
E3
VBAT=VCE=3.3V, VOUT=1.7V
VBAT=VPULL= VRELEASE(T)+0.1V
CE “High” Voltage
,
IOUT=200mA
VCEH
VOUT=VOUT(T)×0.98V
(*6)
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
,
(*1)
While VCE=0.3→0.75V,
Voltage to start oscillation
VBAT=VPULL= VRELEASE(T)+0.1V
CE “Low” Voltage
VOUT=VOUT(T)×0.98V
VCEL
(*6)
,
(*1)
While VCE=0.75→0.3V,
Voltage to stop oscillation
CE “High” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “Low” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
E6
μA
②
E7
V
①
V
①
UVLO Current
VBAT= VCE= VDETECT(E) - 0.1V
IDQ
,
IOUT=0mA
VPULL= VOUT= VOUT(T)×0.98V
UVLO Release Voltage
(*8)
VRELEASE(E)
(*7)
(*1)
,
VBAT= VCE
Voltage to start oscillation while
VBAT is increasing
VPULL= VOUT= VOUT(T)×0.98V
UVLO Hysteresis
Voltage
VHYS(E)
(*9)
(*1)
,
VBAT= VCE
VRELEASE(E) - Voltage to stop oscillation
0.1
0.15
0.2
(*7)
while VBAT is decreasing
(*6)
Unless otherwise stated,, VBAT=VCE=VRELEASE(T)+0.1V
(*1)
VOUT(T)= Nominal Output Voltage
(*2)
VOUT(E)= Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
including the peripheral components, is boosted by the ripple voltage average value.
(*3)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*4)
Therefore, the DC/DC circuit output voltage,
Please refer to the characteristic example.
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
(*6)
VRELEASE(T)= Nominal UVLO release voltage
(*7)
VRELEASE(E)= Actual UVLO release voltage
(*8)
VDETECT(E)=VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage
(*9)
VHYS(E)= Actual UVLO hysteresis voltage
6/28
XC9140 (Design Target)
XC9140
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9140Cxxx type (types other than XC9140Cxx1), with UVLO function, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VBAT
Output Voltage
(*2)
VOUT(E)
CONDITIONS
MAX.
UNITS
-
-
5.5
V
E1
while VOUT is decreasing
VST1
IOUT=1mA
Operation Hold Voltage
VHLD
RL=1kΩ
Supply Current2
Iq
Input Pin Current2
IBAT
VDETECT(E)
(*8)
Oscillation stops,
VOUT=VOUT(T)+0.5V
(*1)
VOUT=VOUT(T)+0.5V
(*1)
Bypass Mode Current
IBYP
VBAT=VLX= VRELEASE(T)+0.1V
PFM Switching Current
IPFM
IOUT=3mA
Maximum ON Time
TYP.
VPULL=1.5V, Voltage to start oscillation
Operation Start Voltage
tONMAX
VPULL= VRELEASE(T)+0.1V
VOUT=VOUT(T)×0.98V
(*6)
(*6)
Ta=25˚C
MIN.
, VCE=0V
,
(*1)
CIRCUIT
V
①
(*7)
V
②
-
V
②
E4
μA
③
E5
μA
③
-
VRELEASE(E)
-
5.5
8.1
μA
⑥
295
350
405
mA
②
3.1
4.6
6.0
μs
①
Efficiency
(*3)
EFFI
VOUT(T)
(*1)
-
81
-
%
②
Efficiency
(*3)
EFFI
VOUT(T)
(*1)
=3.3V, IOUT=30mA
-
85
-
%
②
Efficiency
(*3)
EFFI
VOUT(T)
(*1)
=5.0V, IOUT=30mA
-
86
-
%
②
Ω
⑦
LX SW “Pch” ON
Resistance
(*4)
LX SW “Nch” ON
Resistance
(*5)
=2.5V, IOUT=30mA
VBAT=VLX=VCE= VOUT(T)+0.5V
RLXP
,
E3
IOUT=200mA
RLXN
VBAT=VCE=3.3V, VOUT=1.7V
VBAT=VPULL= VRELEASE(T)+0.1V
CE “High” Voltage
(*1)
VCEH
VOUT=VOUT(T)×0.98V
(*6)
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
,
(*1)
While VCE=0.3→0.75V,
Voltage to start oscillation
VBAT=VPULL= VRELEASE(T)+0.1V
CE “Low” Voltage
VOUT=VOUT(T)×0.98V
VCEL
(*6)
,
(*1)
While VCE=0.75→0.3V,
Voltage to stop oscillation
CE “High” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “Low” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
E6
μA
②
E8
μA
⑥
E7
V
①
V
①
VBAT= VCE= VDETECT(E) - 0.1V
UVLO Current
IDQ
UVLO Bypass Current
IDBYP
UVLO Release Voltage
(*8)
,
IOUT=0mA
VRELEASE(E)
(*7)
VBAT= VLX= VDETECT(E) - 0.1V
(*8)
VPULL= VOUT= VOUT(T)×0.98V
(*1)
, VCE=0V
,
VBAT= VCE
Voltage to start oscillation while
VBAT is increasing
VPULL= VOUT= VOUT(T)×0.98V
UVLO Hysteresis
Voltage
VHYS(E)
(*9)
,
VBAT= VCE
VRELEASE(E) - Voltage to stop oscillation
while VBAT is decreasing
(*6)
Unless otherwise stated, VBAT=VCE= VRELEASE(T)+0.1V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
(*1)
0.1
0.15
0.2
(*7)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
including the peripheral components, is boosted by the ripple voltage average value.
(*3)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*4)
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
Therefore, the DC/DC circuit output voltage,
Please refer to the characteristic example.
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
(*6)
VRELEASE(T)= Nominal UVLO release voltage
(*7)
VRELEASE(E)= Actual UVLO release voltage
(*8)
VDETECT(E)= VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage
(*9)
VHYS(E)= Actual UVLO hysteresis voltage
7/28
XC9140 Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9140 Voltage Chart 1
SYMBOL
E1
E2
PARAMETER
Output Voltage
Supply Current
UNITS: V
UNITS: V
UNITS: μA
OUTPUT
MIN.
MAX.
1.8
1.764
1.836
1.9
1.862
1.938
2.0
1.960
2.040
2.1
2.058
2.142
2.2
2.156
2.244
2.3
2.254
2.346
2.4
2.352
2.448
2.5
2.450
2.550
2.6
2.548
2.652
2.7
2.646
2.754
2.8
2.744
2.856
2.9
2.842
2.958
3.0
2.940
3.060
3.1
3.038
3.162
3.2
3.136
3.264
3.3
3.234
3.366
3.4
3.332
3.468
3.5
3.430
3.570
3.6
3.528
3.672
3.7
3.626
3.774
3.8
3.724
3.876
3.9
3.822
3.978
4.0
3.920
4.080
4.1
4.018
4.182
4.2
4.116
4.284
4.3
4.214
4.386
4.4
4.312
4.488
4.5
4.410
4.590
4.6
4.508
4.692
4.7
4.606
4.794
4.8
4.704
4.896
4.9
4.802
4.998
5.0
4.900
5.100
VOLTAGE
8/28
E3
E4
LX SW “Pch” ON
RESISTANCE
UNITS: Ω
Supply Current2
UNITS: μA
TYP.
MAX.
TYP.
MAX.
TYP.
MAX.
6.1
9.4
0.84
1.08
6.8
9.7
6.2
9.7
0.75
0.97
6.9
9.8
6.3
10.0
0.65
0.85
7.0.
10.0
6.4
10.2
0.61
0.78
7.1
10.1
6.5
10.4
0.57
0.74
7.2
10.2
6.7
10.7
0.53
0.72
7.3
10.3
XC9140 (Design Target)
XC9140
Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9140 Voltage Chart 2
SYMBOL
E5
E6
E7
PARAMETER
Input Pin Current2
UVLO Current
UNITS: V
UNITS: μA
UNITS: μA
E8
UVLO RELEASE
VOLTAGE
UNITS: V
UVLO Bypass Current
UNITS: μA
UVLO
Release
TYP.
MAX.
TYP.
MAX.
0.71
1.50
3.25
6.00
0.73
1.60
3.27
6.10
0.75
1.60
3.29
6.20
0.77
1.60
3.31
6.20
0.79
1.70
3.33
6.30
0.82
1.70
3.35
6.30
MIN.
MAX.
1.601
1.699
1.649
1.751
1.698
1.802
1.746
1.854
1.795
1.905
1.843
1.957
1.892
2.008
1.940
2.060
1.989
2.111
2.037
2.163
2.086
2.214
2.134
2.266
TYP.
MAX.
2.15
4.10
2.20
4.20
2.30
4.20
2.35
4.30
2.40
4.30
2.45
4.40
Voltage
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
9/28
XC9140 Series
■TEST CIRCUITS
<LX SW “Nch” ON Resistance Measurement Method>
Use Test Circuit No.8 to adjust Vpull so that the LX pin voltage becomes 100mV when the Nch drive Tr is ON and then the voltage at both ends
of Rpull is measured to find the Lx SW "Nch" ON resistance.
RLXN=0.1 / {(V1 - 0.1) / 4.7)}
Note that V1 is the Rpull previous voltage when the Nch driver Tr is ON. Use an oscilloscope or other instrument to measure the LX pin voltage
and V1.
10/28
XC9140 (Design Target)
XC9140
Series
■TYPICAL APPLICATION CIRCUIT
【Reference External Components】
MANUFACTURE
PRODUCT NUMBER
VALUE
L
TDK
VLF302512M-4R7
4.7μH
CIN
TAIYO YUDEN
LMK107BJ475MA
4.7μF/10V
CL
TAIYO YUDEN
LMK107BJ106MA
10μF/10V
* When selecting components, take into consideration capacitance reduction, voltage, etc.
* The characteristics are dependent on the variation in the coil inductance value, so check these carefully in the actual product.
* A coil inductance value of 4.7 to 10.0μH can be used, but using 4.7μH is recommended.
* The ripple voltage will increase if tantalum or electrolytic capacitors are used for the load capacitor CL. The operation could also become
unstable, so carefully check this in the actual product.
11/28
XC9140 Series
■OPERATIONAL EXPLANATION
The XC9140 Series consists of a standard voltage source, a PFM comparator, a Nch driver Tr, a Pch synchronous rectifier switch Tr, a
current sense circuit, a PFM control circuit and a CE control circuit, etc. (refer to the block diagram below.)
LX
PFM Comparator Unit
CFB
RFB1
Parasitic Diode
Controller
VOUT
Current Sense
RFB2
VOUT
PFM
Comparator
CL
Discharge
Buffer
Driver
and
Inrush
Currrent
Protection
FB PFM Controller
+
GND
VOUT
VREF
CE
CE and Bypass
Controller Logic
VDD
Hysteresis UVLO
Comparator
VBAT–VOUT Detector
VBAT
+
-
Current limit PFM control is used for the control method to make it difficult for the output voltage ripple to increase even when the switching
current is superimposed, so the product can be used within a wide voltage and current range. Further, because PFM control is used, it has
excellent transient response to support low capacity ceramic capacitors to realize a compact, high-performance boost DC/DC converter.
The synchronous driver and rectifier switch Tr efficiently sends the coil energy to the capacitor connected to the VOUT pin to achieve highly
efficient operation from low to high loads.
The electrical characteristics actual output voltage VOUT(E) is the PFM comparator threshold voltage shown in the block diagram. Therefore,
the booster circuit output voltage average value, including the peripheral components, depends on the ripple voltage, so this must be carefully
evaluated before being used in the actual product.
VBAT=VCE=2.0V、VOUT=3.3V、IOUT=20mA、L=4.7μH、CL=10μF、Ta=25℃
VOUT Voltage
Average
VBAT=VCE=2.0V、VOUT=3.3V、IOUT=70mA、L=4.7μH、CL=10μF、Ta=25℃
VLX
VLX
VOUT
VOUT
VLX:2V/div
VOUT Voltage
VOUT:50mV/div
Average
ILX:200mA/div
VOUT(E)
VOUT(E)
IPFM
ILX
ILX
2[μs/div]
2[μs/div]
< Reference Voltage Source (VREF)>
The reference voltage source (VREF voltage) provides the reference voltage to ensure stable output voltage of the DC/DC converter.
< PFM Control >
①The voltage from the output voltage divided by the division resistors RFB1 and RFB2 in the IC is used as feedback voltage (FB voltage), and the PFM
comparator is compared with the FB voltage and VREF. If the FB voltage is lower than VREF, the signal is sent to the buffer driver via the PFM control circuit
and the Nch driver Tr is turned ON. If the FB voltage is higher than VREF, the PFM comparator sends a signal that does not turn ON the Nch driver Tr.
②The current sense circuit monitors the current flowing in the Nch driver Tr connected to the Lx pin when the Nch driver Tr is ON. When the
prescribed PFM switching current (IPFM) is reached, the signal is sent to the buffer driver via the PFM control circuit to turn OFF the Nch driver Tr
and turn ON the Pch synchronous rectifier switch Tr.
③The Pch synchronous rectifier switch Tr ON time (off time) is dynamically optimized internally. After the off time has passed, when the PFM
comparator confirms the VOUT voltage has exceeded the set voltage, a signal that does not allow the Nch driver Tr to be turned on is sent from the
PFM comparator to the PFM control circuit, but if the VOUT voltage remains lower than the set voltage, then Nch driver Tr ON is started.
The intervals of the above ①②③ linked operations are continuously adjusted in response to the load current to ensure the output voltage is kept
stable from low to high loads and that it is done with good efficiency.
12/28
XC9140 (Design Target)
XC9140
Series
■OPERATIONAL EXPLANATION (Continued)
<PFM Switching Current>
The PFM switching current unit monitors the current flowing in the Nch driver Tr and functions to limit the current flowing in the Nch driver Tr,
but if the load current becomes much larger than the PFM switching energy, the VOUT voltage becomes lower and prevents the coil current in the
Nch driver Tr OFF period from lowering, which affects the internal circuit delay time and results in an excessive current that is larger than the PFM
switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr.
<Load Disconnection Function, Bypass Mode>
When a "L" voltage is input to the CE pin, the XC9140A type enters into standby mode and the XC9140C type enters into bypass mode to stop
the circuit required for the boost operation.
In the standby mode the load cut-off function operates and both the Nch driver Tr and Pch synchronous rectifier switch Tr are turned OFF, which
cuts off the current to the LX pin and VOUT pin and the parasitic diode control circuit connects the parasitic diode cathode of the Pch synchronous
rectifier switch Tr to the LX pin ①. In the bypass mode the Nch driver Tr is OFF, the Pch synchronous rectifier switch Tr is ON when VLX > VOUT, and
the parasitic diode control circuit connects the parasitic diode cathode of the Pch synchronous rectifier switch Tr to the VOUT pin ②. Also, when VLX <
VOUT, the Pch synchronous rectifier switch Tr is turned OFF and the parasitic diode cathode is connected to the VOUT pin ②.
Note: Except for the moment when the VBAT voltage is input.
①
②
< VBAT-VOUT Voltage Detection Circuit>
The VBAT-VOUT voltage detection circuit compares the VBAT pin voltage with the VOUT pin voltage, and whichever is the highest is operated to
become the IC power supply (VDD).
In addition, if, during normal operation, the input voltage becomes higher than the output voltage, the Nch driver Tr is turned OFF and the
Pch synchronous rectifier switch Tr is kept ON so that the input voltage pass through to the output voltage (through mode). When the input
voltage becomes lower than the output voltage, the circuit automatically returns to the normal boost operation. This detection circuit does not
operate when in the standby mode.
<Inrush Current Protection Function>
When the VBAT or VCE power supply is input, CL is charged via the stable current that results from the inrush current protection function (refer
to graphs below). Therefore, this function minimizes potential over current from the VBAT pin to the VOUT pin.
Also, this current value depends on
the VBAT voltage. After CL is charged by the aforementioned stable current and VOUT reaches around the VBAT voltage level, the inrush current
protection function will be released after several hundred μs ~ several ms and the IC will then move to step-up mode, by pass mode or through
mode.
Inrush Current Protection Characteristics
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),IOUT =1mA,Ta=25℃
600
Inrush Current Protection (mA)
300
550
250
500
200
450
150
400
350
100
300
50
0
0.5
250
1.0
1.5
2.0
2.5
200
3.0
3.0
Input Voltage: V BAT (V)
3.5
4.0
4.5
5.0
5.5
13/28
XC9140 Series
■OPERATIONAL EXPLANATION (Continued)
<UVLO Function >
The UVLO function is selectable on the XC9140 series as an option. When the VBAT pin voltage falls below the UVLO detect voltage, the IC
stops switching or BYPASS operation and cuts off the current to the LX pin and VOUT pin (UVLO mode). In addition, when the VBAT pin voltage
recovers to above the UVLO release voltage, the IC begins operating again.
<CL Discharge Function>
With the XC9140 Series an optional CL discharge function (under development) can be selected. This function uses the Nch Tr connected
between VOUT and GND to discharge, at high speed, the load capacity CL charge when the "L" voltage is input to the CE pin (when in the IC
standby mode). This is done to prevent malfunction of the application caused by a residual charge in CL when the IC is stopped. The discharge
time is determined by the CL discharge resistance RDCHG, including the Nch Tr, and CL. The constant τ=CL×RDCHG is determined at this time, and
the following formula is used to find the output voltage discharge time. However, the CL discharge resistance RDCHG varies depending on the VBAT
or VOUT voltage, so the discharge time cannot be determined easily. Therefore, carefully check this in the actual product.
V=VOUT × e
- t /τ
or t=τIn(VOUT / V)
V: Output voltage after discharge
VOUT: Output voltage
t: Discharge time
τ: CL × RDCHG
CL: Capacity value of the load capacitor (CL)
RDCHG: Low resistance value of the CL discharge resistance.
However, this changes depending on the voltage.
The XC9140A/ XC9140C series do not have a CL discharge function as standard.
14/28
XC9140 (Design Target)
XC9140
Series
■NOTE ON USE
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected
components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the
characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA
Standard) ceramic capacitor.
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC
operation to become unstable, so reinforce the area around the GND pin of the IC in particular.
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.
5. An excessive current that is larger than the PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr, which
could destroy the IC.
6. When in the bypass mode, the internal Pch synchronous rectifier switch Tr turns ON to allow current to flow to the Lx pin and VOUT pin. When an
excessive current comes from the VOUT pin when this bypass operates, it could destroy the Pch synchronous rectifier switch Tr.
7. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.
8. The coil inductance value applicable range is 4.7μH to 10μH, but 4.7μH is recommended because at this value the coil size and DC/DC
performance are optimized. If you want to use another inductance value other than 4.7μH but which is in the above applicable range, be sure
to carefully evaluate it first before use.
9. At high temperatures, the product performance could vary causing the efficiency to decline. Evaluate this carefully before use if the product will
be used at high temperatures.
10. Please note that the leak current of the Pch synchronous rectifier switch Tr during high-temperature standby operation could cause the output
voltage to increase.
11. The output voltage ripple effect from the load current causes the output voltage average value to fluctuate, so carefully evaluate this in the
actual product before use.
12. When the booster circuit is activated by a low input voltage, during the time until the output voltage reaches about 1.7V, the PFM switching
current function might not operate causing the coil current to be superimposed. (See the figure below.)
VBAT=VCE=0→0.9V、 VOUT=1.8V、 IOUT=1mA、 L=4.7μH、 CL=10μF、 Ta=25℃
V OUT
V BAT =V CE
VBAT=VCE:1.0V/div
V LX
VOUT:1.0V/div
VLX:2.0V/div
ILX:200mA/div
ILX
200[μs/div]
V OUT
V BAT =V CE
VBAT=VCE:1.0V/div
V LX
Zoom
VOUT:1.0V/div
VLX:2.0V/div
ILX:200mA/div
ILX
50[μs/div]
V BAT=V CE=0→1.7V、 VOUT=1.8V 、IOUT=1mA、 L=4.7μH、CL=10μF、 Ta=25℃
V BAT =V CE
V LX
V BAT=V CE:1.0V/div
V OUT
VOUT:1.0V/div
VLX:2.0V/div
ILX
ILX:200mA/div
200[μs/div]
V BAT =V CE
V LX
V OUT
VBAT=VCE:1.0V/div
V OUT:1.0V/div
Zoom
VLX:2.0V/div
ILX
ILX:200mA/div
50[μs/div]
15/28
XC9140 Series
■NOTE ON USE (Continued)
13. If the CL capacity or load current becomes excessively large, the output voltage start-up time, when the power is turned on, will increase, so
the coil current might be superimposed during the time it takes for the output voltage to become sufficiently higher than the VBAT voltage.
14. If the input voltage is higher than the output voltage, then the circuit automatically enters the through mode. When the input voltage becomes
close to the output voltage, there could be repeated switching between the boost mode and through mode causing the ripple voltage to
fluctuate. (Refer to the graphic below)
V BAT=V CE=3.316V,VOUT=3.412V,IOUT=3mA,L=4.7μH,CL=10μF,Ta=25℃
VOUT
V OUT:100mV/div
VBAT
V BAT:100mV/div
VLX
V LX:2.0V/div
200[μs/div]
15. If a different power supply is connected from an external source to the XC9140A/XC9140C, the IC could be destroyed.
16. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
17. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.
18. With the XC9140A, when the VBAT or VCE power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can happen due to
the load current being more than the inrush protection current, step-up mode or through mode operations won’t function correctly.
19. With the XC9140C, when the VBAT power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can happen due to the
load current being more than the inrush protection current, by pass mode operations won’t function correctly.
20. In the case of products with the UVLO function that do not have CL discharge, the output voltage may occasionally rise due to leakage current
from the Pch synchronous switch Tr when high-temperature UVLO mode operates.
16/28
XC9140 (Design Target)
XC9140
Series
■NOTE ON USE (Continued)
●Instructions of pattern layouts
1. In order to stabilize VBAT voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VBAT and ground pins.
2. Please mount each external component as close to the IC as possible.
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of
switching may result in instability of the IC.
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.
●Recommended Pattern Layout (SOT-25)
FRONT
BACK
●Recommended Pattern Layout (USP-6EL)
FRONT
BACK
17/28
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) 効率 - 出力電流特性例
(1) Efficiency
vs. Output Current
100
XC9140A331MR-G(VOUT=3.3V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140A331MR-G(VOUT=3.3V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
100
2.5V
80
3.0V
60
Efficiency : EFFI (%)
Efficiency : EFFI (%)
2.5V
VBAT=1.8V
40
80
40
20
20
0
0
0.01
0.1
1
10
100
Output Current : IOUT (mA)
0.01
1000
100
100
1
10
100
1000
XC9140A501MR-G(VOUT=5.0V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
4.2V
4.2V
80
3.7V
Efficiency : EFFI (%)
Efficiency : EFFI (%)
0.1
Output Current : IOUT (mA)
XC9140A501MR-G(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VBAT=3.0V
60
40
20
80
VBAT=3.0V
3.7V
60
40
20
0
0.01
3.0V
VBAT=1.8V
60
0
0.1
1
10
Output Current : IOUT (mA)
100
1000
0.01
0.1
1
10
Output Current : IOUT (mA)
100
1000
(2) Output
Voltage
vs. Output Current
(2) 出力電圧
- 出力電流特性例
XC9140A331MR-G(VOUT=3.3V)
XC9140A331MR-G(VOUT=3.3V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
CL=10μF(LMK107BJ106MA)
3.7
2.5V
3.9
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
3.9
3.0V
3.5
3.3
VBAT=1.8V
3.1
3.7
2.5V
3.0V
3.5
3.3
VBAT=1.8V
3.1
2.9
2.9
0.01
0.1
1
10
Output Current : IOUT (mA)
18/28
XC9140A331MR-G(VOUT=3.3V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
100
1000
0.01
0.1
1
10
Output Current : IOUT (mA)
100
1000
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Output Current (Continued)
XC9140A501MR-G(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
5.6
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
5.6
5.4
4.2V
5.2
5.0
VBAT=3.0V
4.8
XC9140A501MR-G(VOUT=5.0V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
3.7V
5.4
4.2V
5.2
5.0
VBAT=3.0V 3.7V
4.8
4.6
4.6
0.01
0.1
1
10
100
0.01
1000
0.1
1
Output Current : IOUT (mA)
10
100
1000
Output Current : IOUT (mA)
(3) Ripple
Voltage vs. Output
Current
(3) 出力リップル電圧
- 出力電流特性例
XC9140A331MR-G(VOUT=3.3V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
300
250
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
300
200
150
2.5V
VBAT=1.8V
3.0V
100
XC9140A331MR-G(VOUT=3.3V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
250
200
3.0V
2.5V
150
100
50
50
0
0
VBAT=1.8V
0.01
0.1
1
10
100
0.01
1000
0.1
XC9140A501MR-G(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
250
200
150
3.7V
VBAT=3.0V
300
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
300
1
10
100
1000
Output Current : IOUT (mA)
Output Current : IOUT (mA)
4.2V
100
50
XC9140A501MR-G(VOUT=5.0V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
250
3.7V
4.2V
200
150
100
50
VBAT=3.0V
0
0.01
0
0.1
1
10
Output Current : IOUT (mA)
100
1000
0.01
0.1
1
10
100
1000
Output Current : IOUT (mA)
19/28
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Output
Voltage
vs. Ambient Temperature
(4) 出力電圧
- 周囲温度特性例
XC9140x50x(VOUT=5.0V)
5.3
3.5
5.2
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
XC9140x33x(VOUT=3.3V)
3.6
3.4
3.3
3.2
3.1
3.0
5.1
5.0
4.9
4.8
4.7
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature: Ta(℃)
(5) Supply
Current
vs. Ambient Temperature
(5) 消費電流
- 周囲温度特性例
XC9140xxx1
75
100
XC9140xxx1
1.8
VOUT=5.0V
3.0V
16
Input Pin Current: IBAT (μA)
Supply Current: Iq (μA)
50
2.0
18
14
12
10
8
6
4
VOUT=5.0V
3.0V
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
2
0.0
0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
(7) Stand-by
Current -vs.
Ambient Temperature
(7) スタンバイ電流
周囲温度特性例
XC9140A
3.0
Stand-by Current: ISTB (μA)
25
(6) 入力端子電流
Input Pin Current
vs. Ambient Temperature
(6)
- 周囲温度特性例
20
VOUT=5.0V
3.0V
1.8V
2.5
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
20/28
0
Ambient Temperature: Ta(℃)
75
100
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) PFMスイッチング電流
周囲温度特性例
(8) PFM
Switching Current -vs.
Ambient Temperature
(9)
- 入力電圧特性例
(9)PFMスイッチング電流
PFM Switching Current
vs. Input Voltage
XC9140
XC9140
XC9140x50x
L=4.7μH(VLF302512M-4R7M),CININ
=4.7μF(LMK107BJ475MA),
L=10μF(LMK107BJ106MA)
CLC
=10μF(LMK107BJ106MA)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
L=4.7μH(VLF302512M-4R7M),C =4.7μF(LMK107BJ475MA),
500
VOUT=5.0V
3.0V
1.8V
450
400
PFM Switching Current: IPFM (mA)
PFM Switching Current: IPFM (mA)
500
350
300
250
200
150
100
50
0
450
400
350
300
250
200
150
100
50
0
-50
-25
0
25
50
75
100
0
1
2
Ambient Temperature: Ta (℃)
(10)(10)
MAX.
ON Time -vs.
Ambient Temperature
最大ON時間
周囲温度特性例
5
6
XC9140
XC9140
LX SW “Nch” ON Resistance: RLXN (Ω)
MAX ON Time: tONMAX (us)
4
(11) LxSW"Nch"ON抵抗
Lx SW “Nch” ON Resistance
vs. Output Voltage
(11)
- 出力電圧特性例
10.0
VOUT=3.0V
5.0V
1.8V
8.0
6.0
4.0
2.0
1.2
Ta=85℃
25℃
-40℃
1.0
0.8
0.6
0.4
0.2
0.0
0.0
-50
-25
0
25
50
75
1.5
100
2.0
Ambient Temperature: Ta (℃)
3.0
3.5
4.0
4.5
5.0
(13)
- 周囲温度特性例
(13) Lxリーク電流
Lx Leak Current
vs. Ambient Temperature
XC9140Axx1
XC9140xxx1
VBAT=VLX=VCE=VOUT(E)+0.5V,IOUT=200mA
1.2
2.5
Output Voltage : VOUT (V)
- 出力電圧特性例
(12)(12)
Lx LxSW"Pch"ON抵抗
SW “Pch” ON Resistance
vs. Output Voltage
Ta=85℃
25℃
-40℃
1.0
0.8
0.6
0.4
VBAT=VLX=VOUT(E), VOUT=VCE=0V
3.0
LX Leak Current : ILXL (μA)
LX SW “Pch” ON Resistance: RLXP (Ω)
3
Input Voltage: VBAT (V)
VLX=5.0V
3.3V
1.8V
2.5
2.0
1.5
1.0
0.5
0.2
0.0
0.0
1.5
2.0
2.5
3.0
3.5
4.0
Output Voltage : VOUT (V)
4.5
5.0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
21/28
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(14) CE “High” Voltage vs. Output Voltage
(15) CE “Low” Voltage vs. Output Voltage
(14) CE"H"電圧 - 出力電圧特性例
(15) CE"L"電圧 - 出力電圧特性例
XC9140
XC9140
0.8
Ta=-40℃
0.7
CE “Low” Voltage: VCEL (V)
CE “High” Voltage: VCEH (V)
0.8
25℃
85℃
0.6
0.5
0.4
0.3
Ta=-40℃
0.7
25℃
85℃
0.6
0.5
0.4
0.3
0.2
0.2
0
1
2
3
4
5
0
6
1
Output Voltage : VOUT (V)
(16) Operation Start Voltage vs. Ambient Temperature
(16) 動作開始電圧 - 周囲温度特性例
3
4
5
(17) Operation Hold Voltage vs. Ambient Temperature
XC9140xxx1
XC9140xxx1
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),RL=VOUT(E)/1mA
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),RL=1kΩ
VOUT=1.8V
3.3V
5.0V
0.9
6
(17) 動作保持電圧 - 周囲温度特性例
1.0
Operation Hold Voltage : VHLD (V)
Operation Start Voltage : VST1 (V)
1.0
2
Output Voltage : VOUT (V)
0.8
0.7
0.6
0.5
VOUT=5.0V
3.3V
1.8V
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.4
-50
-25
0
25
50
75
-50
100
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
(18)
UVLO Release
Voltage vs. Ambient Temperature
(18)
UVLO解除電圧
- 周囲温度特性例
XC9140x18x(VOUT=1.8V)
XC9140x50x(VOUT
=5.0V)
OUT
XC9140x50x(V
=5.0V)
VRELEASE(T)= 1.65V
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
22/28
75
100
UVLO
VRELEASE (V)
(V)
UVLO Release
Release Voltage:
Voltage: V
RELEASE
UVLO Release Voltage: VRELEASE (V)
1.80
2.35
2.35
VRELEASE(T)
= 2.2V
VRELEASE(T)
=
2 2V
2.30
2.30
2.25
2.25
2.20
2.20
2.15
2.15
2.10
2.10
2.05
2.05
2.00
2.00
1.95
1.95
-50
-50
-25
-25
0
0
25
25
50
50
Ambient Temperature:
Temperature: Ta
Ambient
Ta (℃)
(℃)
75
75
100
100
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(19) UVLO Detect Voltage vs. Ambient Temperature
(19) UVLO検出電圧 - 周囲温度特性例
XC9140x18x(VOUT=1.8V)
XC9140x50x(VOUT=5.0V)
UVLO Detect Voltage: VDETECT (V)
UVLO Detect Voltage: VDETECT (V)
1.80
VRELEASE(T)= 1.65V
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
2.35
VRELEASE(T)= 2.2V
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
-50
-25
0
25
50
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
(20) UVLOヒステリシス電圧 - 周囲温度特性例
(20) UVLO Hysteresis Voltage vs. Ambient Temperature
XC9140x50x(VOUT=5.0V)
XC9140x18x(VOUT=1.8V)
0.30
VRELEASE(T)= 1.65V
UVLO Hysteresis Voltage: VHYS (V)
UVLO Hysteresis Voltage: VHYS (V)
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-50
-25
0
25
50
75
VRELEASE(T)= 2.2V
0.25
0.20
0.15
0.10
0.05
0.00
-50
100
Ambient Temperature: Ta (℃)
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
(21) No Load Input Current vs. Input Voltage
XC9140x50x(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA
XC9140x18x(VOUT=1.8V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA
30
30
VRELEASE(T)= 2.2V
Ta=25℃
25
No load Input Current: I IN (μA)
No Load Input Current: I IN (μA)
VRELEASE(T)= 1.65V
20
15
10
Ta=25℃
25
20
15
10
5
5
0
0
0.95
1.15
1.35
Input Voltage: VBAT (V)
1.55
1.75
1.0
2.0
3.0
4.0
5.0
Input Voltage: VBAT (V)
23/28
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(22)
UVLO
Bypass Current vs. Input Voltage
(22)
UVLO解除動作時のバイパス消費電流遷移状態特性例
XC9140C50x(VOUT=5.0V)
UVLO Bypass Current: IDBYP (μA)
25
VRELEASE(T)= 1.65V
Ta=25℃
20
15
10
5
UVLO Bypass Current: IDBYP (μA)
XC9140C18x(VOUT=1.8V)
25
VRELEASE(T)= 2.2V
Ta=25℃
20
15
10
5
0
0
1.0
1.5
2.0
2.5
3.0
1.0
1.5
2.0
Input Voltage: VBAT (V)
2.5
3.0
Input Voltage: VBAT (V)
(23) 出力電圧立ち上がり特性例
(23) Rising Output Voltage
XC9140x331
XC9140x331
VOUT=3.3V,VBAT=VCE=0→1.8V,RL=330Ω
VOUT=3.3V,VBAT=VCE=0→0.9V,RL=3300Ω
VOUT
VOUT
VBAT=VCE
VBAT=VCE
VLX
VLX
ILX
ILX
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140x501
XC9140x501
VOUT=5.0V,VBAT=VCE=0→3.3V,RL=500Ω
VOUT=5.0V,VBAT=VCE=0→5.5V,RL=500Ω
VOUT
VBAT=VCE
VLX
ILX
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
24/28
VBAT=VCE
VOUT
VLX
ILX
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(24)(24)
Load
Transient Response
負荷過渡応答特性例
XC9140x181
VOUT=1.8V,VBAT=VCE=0.9V,IOUT=1mA→25mA
XC9140x181
VOUT=1.8V,VBAT=VCE=0.9V,IOUT=25mA→1mA
VOUT
VOUT
VLX
VLX
ILX
ILX
IOUT
IOUT
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:25mA/div,Time:50s/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:25mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140x331
XC9140x331
VOUT=3.3V,VBAT=VCE=1.8V,IOUT=1mA→50mA
VOUT=3.3V,VBAT=VCE=1.8V,IOUT=50mA→1mA
VOUT
VOUT
VLX
VLX
ILX
ILX
IOUT
IOUT
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:50mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:50mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140x501
XC9140x501
VOUT=5.0V,VBAT=VCE=3.7V,IOUT=1mA→100mA
VOUT=5.0V,VBAT=VCE=3.7V,IOUT=100mA→1mA
VOUT
VLX
ILX
IOUT
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:100mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VOUT
VLX
ILX
IOUT
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:100mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
25/28
XC9140 Series
■PACKAGING INFORMATION
●SOT-25 (unit: mm)
●USP-6EL (unit: mm)
1.8±0.05
1PIN INDENT
0.3±0.05
1
6
2
3
5
4
(0.55)
1.5±0.05
●USP-6EL Reference Pattern Layout (unit: mm)
26/28
* A part of the pin may appear from the
※構造上、端子の一部がパッケージ側面よ
り露出する場合があります。
side of the package because of it’s
structure, but reliability of the package
and strength will not be changed below
the standard.
●USP-6EL Reference Metal Mask Design (unit: mm)
XC9140 (Design Target)
XC9140
Series
■MARKING RULE
① represents product series
MARK
SOT-25
●SOT-25
②
1
③
④
② represents output voltage
⑤
2
3
USP-6EL
●USP-6EL
①
1
④
②
⑤
③
3
XC9140C**1/2**-G
4
MARK
2
XC9140A**1/2**-G
4
5
①
PRODUCT SERIES
6
5
4
OUTPUT
VOLTAGE
MARK
9
OUTPUT
VOLTAGE
0
1.8
1
1.9
3.5
3.6
2.7
2.8
4.4
4.5
2
2.0
3.7
3
2.1
3.8
B
2.9
4.6
C
3.0
4.7
4
2.2
3.9
D
3.1
4.8
5
2.3
4.0
E
3.2
4.9
6
2.4
4.1
F
3.3
5.0
7
2.5
4.2
H
3.4
-
8
2.6
4.3
A
③ represents product function
MARK
OUTPUT
VOLTAGE
N
1.8~3.4V
P
3.5~5.0V
R
1.8~3.4V
S
T
U
V
X
3.5~5.0V
1.8~3.4V
3.5~5.0V
1.8~3.4V
3.5~5.0V
UVLO Release
Voltage
PRODUCT SERIES
No UVLO
XC9140A**1**-G
2.15
XC9140A**2**-G
No UVLO
XC9140C**1**-G
2.15
XC9140C**2**-G
④⑤ represents production lot number
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order.
(G, I, J, O, Q, W excluded)
*No character inversion used.
27/28
XC9140 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
28/28
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement