RADIATION HARDENED IRHF57230 POWER MOSFET 200V, N-CHANNEL

RADIATION HARDENED IRHF57230 POWER MOSFET 200V, N-CHANNEL
PD - 93788A
RADIATION HARDENED
POWER MOSFET
THRU-HOLE (TO-39)
IRHF57230
200V, N-CHANNEL
4#
TECHNOLOGY
c
Product Summary
Part Number Radiation Level
IRHF57230
100K Rads (Si)
IRHF53230
300K Rads (Si)
RDS(on)
0.22Ω
0.22Ω
ID
7.3A
7.3A
IRHF54230
600K Rads (Si)
0.22Ω
7.3A
IRHF58230
1000K Rads (Si)
0.275Ω
7.3A
International Rectifier’s R5TM technology provides
high performance power MOSFETs for space applications. These devices have been characterized for
Single Event Effects (SEE) with useful performance
up to an LET of 80 (MeV/(mg/cm2)). The combination
of low RDS(on) and low gate charge reduces the power
losses in switching applications such as DC to DC
converters and motor control. These devices retain
all of the well established advantages of MOSFETs
such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.
TO-39
Features:
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Ultra Low RDS(on)
Neutron Tolerant
Identical Pre- and Post-Electrical Test Conditions
Repetitive Avalanche Ratings
Dynamic dv/dt Ratings
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current ➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy ➁
Avalanche Current ➀
Repetitive Avalanche Energy ➀
Peak Diode Recovery dv/dt ➂
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
Units
7.3
4.5
29
25
0.2
±20
110
7.3
2.5
7.0
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
300 (0.063 in./1.6mm from case for 10s)
0.98 (Typical)
C
g
For footnotes refer to the last page
www.irf.com
1
07/15/02
IRHF57230
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Typ Max Units
Test Conditions
BVDSS
Drain-to-Source Breakdown Voltage
∆BVDSS/∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
200
—
—
V
VGS = 0V, ID = 1.0mA
—
0.25
—
V/°C
Reference to 25°C, ID = 1.0mA
—
—
0.22
Ω
2.0
7.0
—
—
—
—
—
—
4.0
—
10
25
V
S( )
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
7.0
100
-100
50
7.4
20
25
100
35
30
—
nC
VDS = VGS, ID = 1.0mA
VDS > 15V, IDS = 4.5A ➃
VDS=160V ,VGS=0V
VDS = 160V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID = 7.3A
VDS = 100V
ns
VDD = 100V, ID = 7.3A
VGS =12V, RG = 7.5Ω
Ω
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
VGS = 12V, ID = 4.5A ➃
µA
nA
nH Measured from Drain lead (6mm /0.25in.
from package) to Source lead (6mm /0.25in.
from package) with Source wires internally
bonded from Source Pin to Drain Pad
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
1030
187
18
—
—
—
pF
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
t rr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
7.3
29
1.5
262
1.81
Test Conditions
A
V
ns
µC
Tj = 25°C, IS = 7.3A, VGS = 0V ➃
Tj = 25°C, IF = 7.3A, di/dt ≤ 100A/µs
VDD ≤ 25V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
RthJA
Junction-to-Case
Junction-to-Ambient
Min Typ Max Units
—
—
—
—
5.0
175
°C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHF57230
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Test Conditions
Up to 600K Rads(Si)1 1000K Rads (Si)2 Units
Min
Max
Min
Max
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source ➃
On-State Resistance (TO-3)
Static Drain-to-Source ➃
On-State Resistance (TO-39)
Diode Forward Voltage ➃
200
2.0
—
—
—
—
—
4.0
100
-100
10
0.204
200
1.5
—
—
—
—
—
4.0
100
-100
25
0.255
µA
Ω
VGS = 0V, ID = 1.0mA
VGS = VDS, ID = 1.0mA
VGS = 20V
VGS = -20 V
VDS= 160V, VGS =0V
VGS = 12V, ID =4.5A
—
0.22
—
0.275
Ω
VGS = 12V, ID =4.5A
—
1.5
1.5
V
VGS = 0V, IS = 7.3A
—
V
nA
1. Part numbers IRHF57230, IRHF53230 and IRHF54230
2. Part number IRHF58230
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
Br
I
Au
LET
(MeV/(mg/cm2))
36.7
59.8
82.3
Energy
(MeV)
309
341
350
VDS (V)
Range
(µm) @VGS=0V @VGS=-5V @VGS=-10V @VGS=-15V @VGS=-20V
39.5
200
200
150
100
50
32.5
200
100
40
35
30
28.4
50
35
25
—
—
250
VDS
200
Br
I
Au
150
100
50
0
0
-5
-10
-15
-20
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHF57230
Pre-Irradiation
100
100
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
10
5.0V
1
20µs PULSE WIDTH
T = 25 C
°
J
0.1
0.1
1
10
10
5.0V
1
10
15
V DS = 50V
20µs PULSE WIDTH
7
8
9
10
11
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
R DS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
2.5
TJ = 150 ° C
6
10
100
Fig 2. Typical Output Characteristics
TJ = 25 ° C
5
°
J
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1
20µs PULSE WIDTH
T = 150 C
0.1
0.1
100
VDS , Drain-to-Source Voltage (V)
100
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
ID = 7.3A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1500
Ciss
1200
900
Coss
600
Crss
300
20
VGS , Gate-to-Source Voltage (V)
1800
C, Capacitance (pF)
IRHF57230
ID = 7.3A
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
1
10
0
100
10
20
30
40
50
Q G , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
100
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
10us
10
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
VDS = 160V
VDS = 100V
VDS = 40V
TJ = 150 ° C
1
TJ = 25 ° C
V GS = 0 V
0.1
0.0
0.5
1.0
1.5
2.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
2.5
10
100us
1ms
1
10ms
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHF57230
Pre-Irradiation
8.0
RD
VDS
I D , Drain Current (A)
VGS
D.U.T.
RG
6.0
+
-VDD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
4.0
Fig 10a. Switching Time Test Circuit
2.0
VDS
90%
0.0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
0.20
1
0.10
0.05
P DM
0.02
0.01
0.1
t1
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHF57230
1 5V
L
VD S
D .U .T.
RG
IA S
VGS
20V
D R IV E R
+
- VD D
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
A
EAS , Single Pulse Avalanche Energy (mJ)
250
ID
3.3A
4.6A
BOTTOM 7.3A
TOP
200
150
100
50
0
25
V (B R )D S S
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHF57230
Pre-Irradiation
Footnotes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature.
➁ VDD = 50V, starting TJ = 25°C, L= 4.0 mH
Peak IL = 7.3A, VGS = 12V
➂ ISD ≤ 7.3A, di/dt ≤ 320A/µs,
VDD ≤ 200V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
➄ Total Dose Irradiation with VGS Bias.
12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
➅ Total Dose Irradiation with VDS Bias.
160 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — TO-205AF (Modified TO-39)
LEGEND
1- SOURCE
2- GATE
3- DRAIN
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 07/02
8
www.irf.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement