S9KEA128P80M48SF0 KEA128 Sub-Family Data Sheet


Add to my manuals
32 Pages

advertisement

S9KEA128P80M48SF0 KEA128 Sub-Family Data Sheet | Manualzz

Freescale Semiconductor

Data Sheet: Technical Data

Document Number S9KEA128P80M48SF0

Rev 4, 09/2014

S9KEA128P80M48SF0

KEA128 Sub-Family Data

Sheet

Supports the following:

S9KEAZ64AMLK(R),

S9KEAZ128AMLK(R),

S9KEAZ64AVLK(R),

S9KEAZ128AVLK(R),

S9KEAZ64ACLK(R),

S9KEAZ128ACLK(R),

S9KEAZ64AMLH(R),

S9KEAZ128AMLH(R),

S9KEAZ64AVLH(R),

S9KEAZ128AVLH(R),

S9KEAZ64ACLH(R) and

S9KEAZ128ACLH(R)

Key features

• Operating characteristics

– Voltage range: 2.7 to 5.5 V

– Flash write voltage range: 2.7 to 5.5 V

– Temperature range (ambient): -40 to 125°C

• Performance

– Up to 48 MHz ARM® Cortex-M0+ core

– Single cycle 32-bit x 32-bit multiplier

– Single cycle I/O access port

• Memories and memory interfaces

– Up to 128 KB flash

– Up to 16 KB RAM

• Clocks

– Oscillator (OSC) - supports 32.768 kHz crystal or 4

MHz to 24 MHz crystal or ceramic resonator; choice of low power or high gain oscillators

– Internal clock source (ICS) - internal FLL with internal or external reference, 37.5 kHz pre-trimmed internal reference for 48 MHz system clock

– Internal 1 kHz low-power oscillator (LPO)

• System peripherals

– Power management module (PMC) with three power modes: Run, Wait, Stop

– Low-voltage detection (LVD) with reset or interrupt, selectable trip points

– Watchdog with independent clock source (WDOG)

– Programmable cyclic redundancy check module

(CRC)

– Serial wire debug interface (SWD)

– Aliased SRAM bitband region (BIT-BAND)

– Bit manipulation engine (BME)

• Security and integrity modules

– 80-bit unique identification (ID) number per chip

• Human-machine interface

– Up to 71 general-purpose input/output (GPIO)

– Two 32-bit keyboard interrupt modules (KBI)

– External interrupt (IRQ)

• Analog modules

– One up to 16-channel 12-bit SAR ADC, operation in

Stop mode, optional hardware trigger (ADC)

– Two analog comparators containing a 6-bit DAC and programmable reference input (ACMP)

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© 2014 Freescale Semiconductor, Inc.

• Timers

– One 6-channel FlexTimer/PWM (FTM)

– Two 2-channel FlexTimer/PWM (FTM)

– One 2-channel periodic interrupt timer (PIT)

– One pulse width timer (PWT)

– One real-time clock (RTC)

• Communication interfaces

– Two SPI modules (SPI)

– Up to three UART modules (UART)

– Two I2C modules (I2C)

– One MSCAN module (MSCAN)

• Package options

– 80-pin LQFP

– 64-pin LQFP

2

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Table of Contents

1 Ordering parts.......................................................................................4

4.2.2

FTM module timing....................................................... 16

1.1 Determining valid orderable parts............................................... 4

2 Part identification................................................................................. 4

2.1 Description...................................................................................4

2.2 Format..........................................................................................4

2.3 Fields............................................................................................4

2.4 Example....................................................................................... 5

3 Ratings..................................................................................................5

3.1 Thermal handling ratings............................................................. 5

3.2 Moisture handling ratings............................................................ 5

3.3 ESD handling ratings................................................................... 6

3.4 Voltage and current operating ratings..........................................6

4 General................................................................................................. 7

4.1 Nonswitching electrical specifications........................................ 7

4.1.1

DC characteristics.......................................................... 7

4.1.2

Supply current characteristics........................................ 13

4.1.3

EMC performance..........................................................15

4.2 Switching specifications.............................................................. 15

4.2.1

Control timing................................................................ 15

4.3 Thermal specifications.................................................................17

4.3.1

Thermal characteristics.................................................. 17

5 Peripheral operating requirements and behaviors................................ 19

5.1 Core modules............................................................................... 19

5.1.1

SWD electricals .............................................................19

5.2 External oscillator (OSC) and ICS characteristics.......................20

5.3 NVM specifications..................................................................... 22

5.4 Analog..........................................................................................23

5.4.1

ADC characteristics....................................................... 23

5.4.2

Analog comparator (ACMP) electricals.........................25

5.5 Communication interfaces........................................................... 26

5.5.1

SPI switching specifications.......................................... 26

5.5.2

MSCAN......................................................................... 29

6 Dimensions...........................................................................................29

6.1 Obtaining package dimensions.................................................... 29

7 Pinout................................................................................................... 30

7.1 Signal multiplexing and pin assignments.................................... 30

8 Revision History...................................................................................30

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

3

Ordering parts

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to

freescale.com

and perform a part number search for the following device numbers: KEAZ128.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q B KEA A C FFF M T PP N

4

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field

Q

B

KEA

A

C

Description

Qualification status

Memory type

Kinetis Auto family

Key attribute

CAN availability

Values

• S = Automotive qualified

• P = Prequalification

• 9 = Flash

• KEA

• Z = M0+ core

• F = M4 W/ DSP & FPU

• C= M4 W/ AP + FPU

• N = CAN not available

• (Blank) = CAN available

Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Field

FFF

M

T

PP

N

Description

Program flash memory size

Maskset revision

Temperature range (°C)

Package identifier

Packaging type

Values

• 128 = 128 KB

• A = 1 st

Fab version

• B = Revision after 1 st

version

• C = –40 to 85

• V= –40 to 105

• M = –40 to 125

• LH = 64 LQFP (10 mm x 10 mm)

• LK = 80 LQFP (14 mm x 14 mm)

• R = Tape and reel

• (Blank) = Trays

Ratings

2.4 Example

This is an example part number:

S9KEAZ128AMLK

3 Ratings

3.1 Thermal handling ratings

Symbol Description

T

STG

T

SDR

Storage temperature

Solder temperature, lead-free

Min.

–55

Max.

150

260

Unit

°C

°C

Notes

1

2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic

Solid State Surface Mount Devices.

3.2 Moisture handling ratings

Symbol Description

MSL Moisture sensitivity level

Min.

Max.

3

Unit

Notes

1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic

Solid State Surface Mount Devices.

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

5

Ratings

3.3 ESD handling ratings

Symbol Description

V

HBM

V

CDM

I

LAT

Electrostatic discharge voltage, human body model

Electrostatic discharge voltage, charged-device model

Latch-up current at ambient temperature of °C

Min.

–6000

–500

–100

Max.

+6000

+500

+100

Unit

V

V mA

Notes

1

2

3

1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body

Model (HBM).

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for

Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:

• Test was performed at 125 °C case temperature (Class II).

• I/O pins pass +100/-100 mA I-test with I

DD

• I/O pins pass +50/-100 mA I-test with I

DD

.

current limit at 400 mA (V

DD

collapsed during positive injection).

current limit at 1000 mA for V

DD

.

• Supply groups pass 1.5 V ccmax

• RESET_B pin was only tested with negative I-test due to product conditioning requirement.

6

3.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V

SS associated with the pin is enabled.

or V

DD

) or the programmable pullup resistor

Symbol

V

DD

I

DD

V

IN

I

D

V

DDA

Table 1. Voltage and current operating ratings

Description

Digital supply voltage

Maximum current into V

DD

Input voltage except true open drain pins

Input voltage of true open drain pins

Instantaneous maximum current single pin limit (applies to all port pins)

Analog supply voltage

Min.

–0.3

–0.3

–0.3

–25

V

DD

– 0.3

Max.

6.0

120

V

DD

+ 0.3

1

6

25

V

DD

+ 0.3

Unit

V mA

V

V mA

V

1. Maximum rating of V

DD

also applies to V

IN

.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

General

4 General

4.1

Nonswitching electrical specifications

4.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol

V

OH

I

OHT

V

OL

I

OLT

V

IH

V

IL

V hys

|I

In

|

Table 2. DC characteristics

Output high voltage

Descriptions

Operating voltage

All I/O pins, except PTA2 and PTA3, standard-drive strength

High current drive pins, high-drive strength

2

Output high current

Output low voltage

Output low current

Input high voltage

Input low voltage

Max total I

OH

for all ports

All I/O pins, standard-drive strength

High current drive pins, high-drive strength

2

Max total I

OL

for all ports

All digital inputs

All digital inputs

5 V, I load

= –5 mA

3 V, I load

= –2.5 mA

5 V, I load

= –20 mA

3 V, I load

= –10 mA

5 V

3 V

5 V, I load

= 5 mA

3 V, I load

= 2.5 mA

5 V, I load

=20 mA

3 V, I load

= 10 mA

5 V

3 V

4.5≤V

DD

<5.5 V

2.7≤V

DD

<4.5 V

4.5≤V

DD

<5.5 V

Min

2.7

V

DD

– 0.8

V

DD

– 0.8

V

DD

– 0.8

V

DD

– 0.8

0.65 × V

DD

0.70 × V

DD

2.7≤V

DD

<4.5 V —

Input hysteresis

Input leakage current

All digital inputs

Per pin (pins in high impedance input mode)

V

IN

= V

DD

or V

SS

0.06 × V

DD

Typical

1

0.1

Max

5.5

–100

–60

0.8

0.8

0.8

0.8

100

60

0.35 ×

V

DD

0.30 ×

V

DD

1

Table continues on the next page...

Unit

V

V

V

V

V mA

V

V

V

V mA mV

µA

V

V

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

7

Nonswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol

|I

INTOT

|

R

PU

R

PU

3

I

IC

C

In

V

RAM

Total leakage combined for all port pins

Pullup resistors

Descriptions

Pullup resistors

DC injection

current

4

,

5

,

6

Pins in high impedance input mode

All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)

PTA2 and PTA3 pins

Single pin limit

Total MCU limit, includes sum of all stressed pins

Input capacitance, all pins

RAM retention voltage

V

IN

= V

DD

or V

SS

V

IN

< V

SS

, V

IN

> V

DD

Min

30.0

30.0

-2

-5

2.0

Typical

1

Max

2

50.0

60.0

2

25

7

Unit

µA kΩ kΩ mA pF

V

1. Typical values are measured at 25 °C. Characterized, not tested.

2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.

3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.

4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V

SS open drain I/O pins that are internally clamped to V

SS

.

and V

DD

. PTA2 and PTA3 are true

5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.

6. Power supply must maintain regulation within operating V conditions. If the positive injection current (V

In

> V

DD

DD

range during instantaneous and operating maximum current

) is higher than I

DD

, the injection current may flow out of V result in external power supply going out of regulation. Ensure that external V

DD

DD

and could

load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Symbol

V

POR

V

LVDH

V

LVW1H

V

LVW2H

V

LVW3H

V

LVW4H

V

HYSH

Table 3. LVD and POR specification

Description

POR re-arm voltage

1

Falling low-voltage detect threshold—high range (LVDV =

1)

2

Falling lowvoltage warning threshold— high range

Level 1 falling

(LVWV = 00)

Level 2 falling

(LVWV = 01)

Level 3 falling

(LVWV = 10)

Level 4 falling

(LVWV = 11)

High range low-voltage detect/ warning hysteresis

Min

1.5

4.2

4.3

4.5

4.6

4.7

Typ

1.75

4.3

4.4

4.5

4.6

4.7

100

Table continues on the next page...

Max

2.0

4.4

4.5

4.6

4.7

4.8

Unit

V

V

V

V

V

V mV

8

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Symbol

V

LVDL

V

LVW1L

V

LVW2L

V

LVW3L

V

LVW4L

V

HYSDL

V

HYSWL

V

BG

Nonswitching electrical specifications

Table 3. LVD and POR specification (continued)

Description

Falling low-voltage detect threshold—low range (LVDV = 0)

Falling lowvoltage warning threshold—low range

Level 1 falling

(LVWV = 00)

Level 2 falling

(LVWV = 01)

Level 3 falling

(LVWV = 10)

Level 4 falling

(LVWV = 11)

Low range low-voltage detect hysteresis

Low range low-voltage warning hysteresis

Buffered bandgap output

3

1. Maximum is highest voltage that POR is guaranteed.

2. Rising thresholds are falling threshold + hysteresis.

3. voltage Factory trimmed at V

DD

= 5.0 V, Temp = 125 °C

Min

2.56

2.62

2.72

2.82

2.92

1.14

Typ

2.61

2.7

2.8

2.9

3.0

40

80

1.16

Max

2.66

2.78

2.88

2.98

3.08

1.18

Unit

V

V

V

V

V mV mV

V

V

DD

-V

OH

(V)

I

OH

(mA)

Figure 1. Typical V

DD

-V

OH

Vs. I

OH

(standard drive strength) (V

DD

= 5 V)

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

9

Nonswitching electrical specifications

V

DD

-V

OH

(V)

I

OH

(mA)

Figure 2. Typical V

DD

-V

OH

Vs. I

OH

(standard drive strength) (V

DD

= 3 V)

V

DD

-V

OH

(V)

I

OH

(mA)

Figure 3. Typical V

DD

-V

OH

Vs. I

OH

(high drive strength) (V

DD

= 5 V)

10

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Nonswitching electrical specifications

V

DD

-V

OH

(V)

I

OH

(mA)

Figure 4. Typical V

DD

-V

OH

Vs. I

OH

(high drive strength) (V

DD

= 3 V)

V

OL

(V)

I

OL

(mA)

Figure 5. Typical V

OL

Vs. I

OL

(standard drive strength) (V

DD

= 5 V)

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

11

Nonswitching electrical specifications

V

OL

(V)

I

OL

(mA)

Figure 6. Typical V

OL

Vs. I

OL

(standard drive strength) (V

DD

= 3 V)

V

OL

(V)

12

I

OL

(mA)

Figure 7. Typical V

OL

Vs. I

OL

(high drive strength) (V

DD

= 5 V)

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Nonswitching electrical specifications

V

OL

(V)

I

OL

(mA)

Figure 8. Typical V

OL

Vs. I

OL

(high drive strength) (V

DD

= 3 V)

4.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Parameter

Run supply current FEI mode, all modules clocks enabled; run from flash

Run supply current FEI mode, all modules clocks disabled and gated; run from flash

Table 4. Supply current characteristics

Symbol

RI

DD

RI

DD

Core/Bus

Freq

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

V

DD

(V)

5

3

5

Typical

1

7.9

4.9

2.3

7.8

5.5

3.8

2.3

11.1

8

5

2.4

11

Max

Table continues on the next page...

Unit

mA mA

Temp

-40 to 125 °C

-40 to 125 °C

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

13

Nonswitching electrical specifications

Table 4. Supply current characteristics (continued)

Parameter Symbol V

DD

(V)

Typical

1

Max

Run supply current FBE mode, all modules clocks enabled; run from RAM

Run supply current FBE mode, all modules clocks disabled and gated; run from

RAM

Wait mode current FEI mode, all modules clocks enabled

RI

DD

RI

DD

WI

DD

SI

DD

Core/Bus

Freq

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

48/24 MHz

24/24 MHz

12/12 MHz

1/1 MHz

3

5

3

5

3

5

3

5

3

Stop mode supply current no clocks active (except 1 kHz

LPO clock)

3

ADC adder to Stop

ADLPC = 1

ADLSMP = 1

ADCO = 1

MODE = 10B

ADICLK = 11B

ACMP adder to Stop

— 5

3

2.4

8.3

6.4

4.2

2.2

8.4

6.5

4.3

2.3

11.4

7.7

4.7

2.3

11.3

7.6

4.6

2.3

2

1.9

7.7

5.4

3.7

2.2

14.7

9.8

6

2.4

14.6

9.6

5.9

86

82

— 5

3

12

12

Table continues on the next page...

7.1

2

7.2

2

170

2

160

2

12.5

2

9.5

2

14.9

2

12.8

2

Unit

mA mA mA

µA

µA

µA

Temp

-40 to 125 °C

-40 to 125 °C

-40 to 125 °C

-40 to 125 °C

-40 to 125 °C

-40 to 125 °C

-40 to 125 °C

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

14 Freescale Semiconductor, Inc.

Parameter

LVD adder to Stop

4

Table 4. Supply current characteristics (continued)

Switching specifications

Symbol

Core/Bus

Freq

V

DD

(V)

5

3

Typical

1

130

125

Max

Unit

µA

Temp

-40 to 125 °C

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. The high current is observed at high temperature.

3. RTC adder cause <1 µA I

DD

increase typically, RTC clock source is 1 kHz LPO clock.

4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on

freescale.com

for advice and guidance specifically targeted at optimizing EMC performance.

• AN2321: Designing for Board Level Electromagnetic Compatibility

• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS

Microcontrollers

• AN1263: Designing for Electromagnetic Compatibility with Single-Chip

Microcontrollers

• AN2764: Improving the Transient Immunity Performance of Microcontroller-Based

Applications

• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-

Based Systems

4.2

Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num Rating

1 System and core clock

2 Bus frequency (t cyc

= 1/f

Bus

)

3 Internal low power oscillator frequency

4

External reset pulse width

2

Symbol

f

Sys f

Bus f

LPO t extrst

Min

DC

DC

0.67

1.5 × t cyc

Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Typical

1

1.0

Max

48

24

1.25

Unit

MHz

MHz

KHz ns

15

Switching specifications

Num

5 Reset low drive

6 IRQ pulse width

Rating

7

8

Keyboard interrupt pulse width

Asynchronous path

2

Synchronous path

3

Asynchronous path

2

Synchronous path

— Port rise and fall time -

Normal drive strength (load

= 50 pF)

4

Port rise and fall time - high drive strength (load = 50 pF)

4

Symbol

t rstdrv t

ILIH t

IHIL t

ILIH t

IHIL t

Rise t

Fall t

Rise t

Fall

Min

34 × t cyc

100

1.5 × t cyc

100

1.5 × t cyc

Typical

1

10.2

9.5

5.4

4.6

1. Typical values are based on characterization data at V

DD

= 5.0 V, 25 °C unless otherwise stated.

2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.

  may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

4. Timing is shown with respect to 20% V

DD

and 80% V

DD

levels. Temperature range -40 °C to 125 °C.

t extrst

RESET_b pin

Max

KBIPx

Figure 9. Reset timing

t

IHIL

Unit

ns ns ns ns ns ns ns ns ns

IRQ/KBIPx t

ILIH

Figure 10. KBIPx timing

4.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function

Timer clock frequency

External clock frequency

Symbol

f

Timer f

TCLK

Table 6. FTM input timing

Min

f

Bus

0

Max

f

Sys f

Timer

/4

Unit

Hz

Hz

Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

16 Freescale Semiconductor, Inc.

Function

External clock period

External clock high time

External clock low time

Input capture pulse width

Table 6. FTM input timing (continued)

Symbol

t

TCLK t clkh t clkl t

ICPW

Min

4

1.5

1.5

1.5

Max

 

Thermal specifications

Unit

t cyc t cyc t cyc t cyc t

TCLK t clkh

TCLK t clkl

Figure 11. Timer external clock

t

ICPW

FTMCHn

FTMCHn t

ICPW

Figure 12. Timer input capture pulse

4.3

Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is userdetermined rather than being controlled by the MCU design. To take P

I/O

into account in power calculations, determine the difference between actual pin voltage and V

SS

or V

DD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V

SS small.

or V

DD

will be very

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

17

Thermal specifications

Board type

Single-layer (1S)

Four-layer (2s2p)

Single-layer (1S)

Four-layer (2s2p)

Table 7. Thermal attributes

Symbol

R

R

R

θJA

θJA

θJMA

Description

Thermal resistance, junction to ambient (natural convection)

Thermal resistance, junction to ambient (natural convection)

Thermal resistance, junction to ambient (200 ft./min. air speed)

R

θJMA

Thermal resistance, junction to ambient (200 ft./min. air speed)

R

θJB

Thermal resistance, junction to board

R

θJC

Ψ

JT

Thermal resistance, junction to case

Thermal characterization parameter, junction to package top outside center (natural convection)

64 LQFP 80 LQFP

71 57

53

59

46

35

20

5

44

47

38

28

15

3

Unit

°C/W

°C/W

°C/W

°C/W

°C/W

°C/W

°C/W

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site

(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.

3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.

6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T

J

) in °C can be obtained from:

T

J

= T

A

+ (P

D

×

θ

JA

)

Where:

T

A

= Ambient temperature, °C

θ

JA

= Package thermal resistance, junction-to-ambient, °C/W

P

D

= P int

+ P

I/O

P int

= I

DD

× V

DD

, Watts - chip internal power

P

I/O

= Power dissipation on input and output pins - user determined

For most applications, P

I/O between P

D

and T

J

(if P

I/O

<< P int

and can be neglected. An approximate relationship

is neglected) is:

P

D

= K ÷ (T

J

+ 273 °C)

Solving the equations above for K gives:

K = P

D

× (T

A

+ 273 °C) +

θ

JA

× (P

D

)

2

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

18 Freescale Semiconductor, Inc.

Notes

1

,

2

1

,

3

1

,

3

1

,

3

4

5

6

Peripheral operating requirements and behaviors

where K is a constant pertaining to the particular part. K can be determined by measuring

P

D

(at equilibrium) for an known T

A

. Using this value of K, the values of P be obtained by solving the above equations iteratively for any value of T

A

.

D

and T

J

can

5 Peripheral operating requirements and behaviors

5.1 Core modules

5.1.1 SWD electricals

Table 8. SWD full voltage range electricals

Symbol

J1

Description

Operating voltage

SWD_CLK frequency of operation

• Serial wire debug

Min.

2.7

0

J2

J3

J4

J9

J10

J11

J12

SWD_CLK cycle period

SWD_CLK clock pulse width

• Serial wire debug

SWD_CLK rise and fall times

SWD_DIO input data setup time to SWD_CLK rise

SWD_DIO input data hold time after SWD_CLK rise

SWD_CLK high to SWD_DIO data valid

SWD_CLK high to SWD_DIO high-Z

1/J1

20

10

3

5

3

35

Max.

5.5

24

J2

J3 J3

SWD_CLK (input)

J4 J4

Figure 13. Serial wire clock input timing

ns ns ns ns ns ns ns

Unit

V

MHz

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

19

Peripheral operating requirements and behaviors

SWD_CLK

SWD_DIO

SWD_DIO

J11

J12

SWD_DIO

SWD_DIO

J11

J9

J10

Input data valid

Output data valid

Output data valid

Figure 14. Serial wire data timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num

1

2

3

4

5

Crystal or resonator frequency

Characteristic

Low range (RANGE = 0)

High range (RANGE = 1)

Feedback resistor

Series resistor -

Low Frequency

Series resistor -

High Frequency

Series resistor -

High Frequency,

High-Gain Mode

Load capacitors

Low Frequency, Low-Power

Mode

3

Low Frequency, High-Gain

Mode

High Frequency, Low-Power

Mode

High Frequency, High-Gain

Mode

Low-Power Mode

3

High-Gain Mode

Low-Power Mode

3

4 MHz

8 MHz

Symbol

f lo f hi

C1, C2

R

F

R

S

R

S

Min

31.25

4

Typical

1

32.768

See Note

2

10

1

1

0

200

0

0

0

Max

39.0625

24

Unit

kHz

MHz

MΩ

MΩ

MΩ

MΩ kΩ kΩ kΩ kΩ kΩ

Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

20 Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num Characteristic

16 MHz

6

7

8

9

10

Crystal start-up time low range =

32.768 kHz crystal; High range = 20 MHz

crystal

4 , 5

Low range, low power

Low range, high gain

High range, low power

High range, high gain

Internal reference start-up time

Internal reference clock (IRC) frequency trim range

T = 125 °C, V

DD

= 5 V Internal reference clock frequency, factory trimmed

,

DCO output frequency range

FLL reference = fint_t, flo, or fhi/RDIV

11 Factory trimmed internal oscillator accuracy

12 Deviation of IRC over temperature when trimmed at

T = 25 °C, V

DD

=

5 V

13

14

15

T = 125 °C, V

Long term jitter of DCO output clock (averaged over 2 ms interval)

7

DD

= 5 V

Over temperature range from

-40 °C to 125°C

Frequency accuracy of DCO output using factory trim value

Over temperature range from

-40 °C to 125°C

FLL acquisition time

4 , 6

Symbol

t

CSTL t

CSTH t

IRST f int_t f int_ft f dco

Δf int_ft

Δf int_t

Δf dco_ft t

Acquire

C

Jitter

Min

31.25

40

-0.8

-1

-2.3

Typical

1

0

1000

800

3

1.5

20

37.5

0.02

Max

50

39.0625

50

0.8

0.8

0.8

2

0.2

Unit

kΩ ms ms ms ms

µs kHz kHz

MHz

%

%

% ms

%f dco

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. See crystal or resonator manufacturer's recommendation.

3. Load capacitors (C

1

,C

2

), feedback resistor (R

F

) and series resistor (R

S

) are incorporated internally when RANGE = HGO =

0.

4. This parameter is characterized and not tested on each device.

5. Proper PC board layout procedures must be followed to achieve specifications.

6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f

Bus

.

Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V

DD for a given interval.

and V

SS

and variation in crystal oscillator frequency increase the C

Jitter

percentage

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

21

Peripheral operating requirements and behaviors

EXTAL

OSC

R

F

XTAL

R

S

Crystal or Resonator

C

1

C

2

Figure 15. Typical crystal or resonator circuit

5.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Characteristic

Supply voltage for program/erase –40 °C to 125 °C

Supply voltage for read operation

NVM Bus frequency

NVM Operating frequency

Erase Verify All Blocks

Erase Verify Flash Block

Erase Verify Flash Section

Read Once

Program Flash (2 word)

Program Flash (4 word)

Program Once

Erase All Blocks

Erase Flash Block

Erase Flash Sector

Unsecure Flash

Verify Backdoor Access Key

Set User Margin Level

FLASH Program/erase endurance T

L

= -40 °C to 125 °C

to T

H

Table 10. Flash characteristics

Symbol

V prog/erase

Min

1

2.7

Typical

2

V

Read f

NVMBUS f

NVMOP t

VFYALL t

RD1BLK t

RD1SEC t

RDONCE t

PGM2 t

PGM4 t

PGMONCE t

ERSALL t

ERSBLK t

ERSPG t

UNSECU t

VFYKEY t

MLOADU n

FLPE

0.12

0.21

0.20

95.42

95.42

19.10

95.42

10 k

2.7

1

0.8

0.13

0.21

0.21

100.18

100.18

20.05

100.19

100 k

1

Table continues on the next page...

Max

3

5.5

0.31

0.49

0.21

100.30

100.30

20.09

100.31

482

415

5.5

24

1.05

2605

2579

485

464

Unit

4

V

V

MHz

MHz t cyc t cyc t cyc t cyc ms ms ms ms ms ms ms t cyc t cyc

Cycles

22

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors

Table 10. Flash characteristics (continued)

Characteristic

Data retention at an average junction temperature of T

Javg

= 85°C after up to

10,000 program/erase cycles

Symbol

t

D_ret

Min

1

15

Typical

2

100

Max

3

Unit

4

years

1. Minimum times are based on maximum f

NVMOP

and maximum f

NVMBUS

2. Typical times are based on typical f

NVMOP

and maximum f

NVMBUS

3. Maximum times are based on typical f

NVMOP

and typical f

NVMBUS

4. t cyc

= 1 / f

NVMBUS

plus aging

Program and erase operations do not require any special power sources other than the normal V

DD

supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

5.4 Analog

5.4.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Conditions Symbol Min

Typ

1

Max Characteri stic

Reference potential

• Low

• High

Supply voltage

Absolute

Delta to V

DD

(V

DD

-V

DDA

)

V

REFL

V

REFH

V

DDA

ΔV

DDA

V

ADIN

V

SSA

V

DDA

/2

2.7

-100

V

REFL

0

V

DDA

/2

V

DDA

5.5

+100

V

REFH

Input voltage

Input capacitance

Input resistance

Analog source resistance

ADC conversion clock frequency

12-bit mode f

ADCK f

ADCK

> 4 MHz

< 4 MHz

10-bit mode f f

ADCK

> 4 MHz

ADCK

< 4 MHz

8-bit mode

(all valid f

ADCK

)

High speed (ADLPC=0)

Low power (ADLPC=1)

C

ADIN

R

ADIN

R

AS f

ADCK

0.4

0.4

4.5

3

5.5

5

5

10

10

2

5

8.0

4.0

MHz

Unit

V

V mV

V pF kΩ kΩ

Comment

External to

MCU

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

23

Peripheral operating requirements and behaviors

1. Typical values assume V

DDA

= 5.0 V, Temp = 25°C, f

ADCK

=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

R

AS

Z

AS v

ADIN

SIMPLIFIED

INPUT PIN EQUIVALENT

CIRCUIT

Pad leakage due to input protection z

ADIN

SIMPLIFIED

CHANNEL SELECT

CIRCUIT

R

ADIN

ADC SAR

ENGINE v

AS

C

AS

R

ADIN

INPUT PIN

R

ADIN

INPUT PIN

R

ADIN

INPUT PIN

C

ADIN

Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC characteristics (V

REFH

= V

DDA

, V

REFL

= V

SSA

)

Characteristic Conditions Symbol Min

Typ

1

Max

I

DDA

— 133 — Supply current

ADLPC = 1

ADLSMP = 1

ADCO = 1

Supply current

ADLPC = 1

ADLSMP = 0

ADCO = 1

Supply current

ADLPC = 0

ADLSMP = 1

ADCO = 1

Supply current

ADLPC = 0

ADLSMP = 0

ADCO = 1

Supply current Stop, reset, module off

I

DDA

I

DDA

I

DDA

I

DDA

218

327

582

0.011

990

1

Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

24

Unit

µA

µA

µA

µA

µA

Freescale Semiconductor, Inc.

Peripheral operating requirements and behaviors

Table 12. 12-bit ADC characteristics (V

REFH

= V

DDA

, V

REFL

= V

SSA

) (continued)

Characteristic

ADC asynchronous clock source

Conversion time

(including sample time)

Conditions

High speed (ADLPC =

0)

Low power (ADLPC =

1)

Short sample

(ADLSMP = 0)

Sample time

Long sample

(ADLSMP = 1)

Short sample

(ADLSMP = 0)

Total unadjusted Error

2

Long sample

(ADLSMP = 1)

12-bit mode

10-bit mode

8-bit mode

Differential Non-

Liniarity

12-bit mode

10-bit mode

8-bit mode

Integral Non-Linearity 12-bit mode

Zero-scale error

4

10-bit mode

8-bit mode

12-bit mode

10-bit mode

Full-scale error

5

Quantization error

Input leakage error

Temp sensor slope

6

8-bit mode

12-bit mode

10-bit mode

8-bit mode

≤12 bit modes all modes

-40 °C–25 °C

25 °C–125 °C

Temp sensor voltage 25 °C

Symbol

f

ADACK t

ADC t

ADS

E

TUE

DNL

INL

E

ZS

E

FS

E

Q

E

IL m

V

TEMP25

Min

2

1.25

Typ

1

3.3

2

20

40

3.5

23.5

±0.4

±0.15

±1.0

±0.2

±0.35

±2.5

±0.3

±0.25

±5.0

±1.5

±0.8

±1.5

±0.4

±0.15

±1.5

I

In

x R

AS

3.266

3.638

1.396

Max

5

3.3

±0.5

Unit

MHz

ADCK cycles

ADCK cycles

LSB

3

LSB

3

LSB

3

LSB

3

LSB

3

LSB

3

mV mV/°C

V

1. Typical values assume V

DDA

= 5.0 V, Temp = 25 °C, f reference only and are not tested in production.

2. Includes quantization

3. 1 LSB = (V

REFH

- V

REFL

)/2

N

4. V

ADIN

= V

SSA

5. V

6. I

In

ADIN

= V

DDA

= leakage current (refer to DC characteristics)

ADCK

=1.0 MHz unless otherwise stated. Typical values are for

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

25

Peripheral operating requirements and behaviors

5.4.2 Analog comparator (ACMP) electricals

Table 13. Comparator electrical specifications

Characteristic

Supply voltage

Supply current (Operation mode)

Analog input voltage

Analog input offset voltage

Analog comparator hysteresis

(HYST=0)

Analog comparator hysteresis

(HYST=1)

Supply current (Off mode)

Propagation Delay

Symbol

V

DDA

I

DDA

V

AIN

V

AIO

V

H

V

H

I

DDAOFF t

D

Min

2.7

V

SS

- 0.3

Typical

10

15

20

60

0.4

Max

5.5

20

V

DDA

40

20

30

1

Unit

V

µA

V mV mV mV nA

µs

5.5 Communication interfaces

2

5

6

3

4

7

8

9

5.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20%

V

DD

and 80% V

DD

, unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.

Symbol Description

Table 14. SPI master mode timing

Min.

Max.

Unit Comment Nu m.

1 f op

Frequency of operation f

Bus

/2048 f

Bus

/2 Hz t

SPSCK t

Lead t

Lag t

WSPSCK t

SU t

HI t v t

HO

SPSCK period

Enable lead time

Enable lag time

Clock (SPSCK) high or low time

Data setup time (inputs)

Data hold time (inputs)

Data valid (after SPSCK edge)

Data hold time (outputs)

2 x t

Bus

1/2

1/2 t

Bus

– 30

8

8

20

2048 x t

Bus

1024 x t

Bus

25

Table continues on the next page...

ns t

SPSCK t

SPSCK ns ns ns ns ns f

Bus

is the bus clock t

Bus

= 1/f

Bus

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

26 Freescale Semiconductor, Inc.

Nu m.

10

11

Peripheral operating requirements and behaviors

Table 14. SPI master mode timing (continued)

Symbol Description Min.

Max.

Unit Comment

t

RI t

FI t

RO t

FO

Rise time input

Fall time input

Rise time output

Fall time output

— t

Bus

– 25

25 ns ns

SS1

(OUTPUT)

3 2 10 11

SPSCK

(CPOL=0)

(OUTPUT)

5

5

10

11

SPSCK

(CPOL=1)

(OUTPUT)

6 7

MISO

(INPUT)

MSB IN2

BIT 6 . . . 1

LSB IN

8

MOSI

(OUTPUT)

MSB OUT2

BIT 6 . . . 1

LSB OUT

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

9

4

SS1

(OUTPUT)

2

3 10 11 4

SPSCK

(CPOL=0)

(OUTPUT)

SPSCK

(CPOL=1)

(OUTPUT)

5 5

10 11

6 7

MISO

(INPUT)

MSB IN

2

BIT 6 . . . 1

MOSI

(OUTPUT)

8

PORT DATA MASTER MSB OUT

2

9

BIT 6 . . . 1

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

LSB IN

MASTER LSB OUT

Figure 18. SPI master mode timing (CPHA=1)

PORT DATA

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

27

38 <<CLASSIFICATION>>

<<NDA MESSAGE>>

Peripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.

1

Symbol Description

f op

Frequency of operation

Min.

0

Max.

f

Bus

/4

9

10

11

12

6

7

8

4

5

2

3

13 t dis t v t

HO t

RI t

FI t

RO t

FO t

SPSCK t

Lead t

Lag t

WSPSCK t

SU t

HI t a

SPSCK period

Enable lead time

Enable lag time

Clock (SPSCK) high or low time

Data setup time (inputs)

Data hold time (inputs)

Slave access time

Slave MISO disable time

Data valid (after SPSCK edge)

Data hold time (outputs)

Rise time input

Fall time input

Rise time output

Fall time output

4 x t

Bus

1

1 t

Bus

- 30

15

25

0

— 25

— t

Bus

— t

Bus

25

— t

Bus

- 25

Unit

Hz ns ns ns ns t

Bus t

Bus ns ns ns ns ns ns

Comment

f

Bus

is the bus clock as

defined in Control timing

.

t

Bus

= 1/f

Bus

Time to data active from high-impedance state

Hold time to highimpedance state

SPSCK

(CPOL=0)

(INPUT)

SPSCK

(CPOL=1)

(INPUT)

MISO

(OUTPUT)

8

3

MOSI

(INPUT)

NOTE: Not defined see note

6

5

SLAVE MSB

MSB IN

7

2

5

10

BIT 6 . . . 1

BIT 6 . . . 1

12

12

11

LSB IN

13 4

13

11

SLAVE LSB OUT

Figure 19. SPI slave mode timing (CPHA = 0)

SEE

NOTE

9

28

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

Dimensions

2

SPSCK

(CPOL=0)

(INPUT)

SPSCK

(CPOL=1)

(INPUT)

MISO

(OUTPUT)

MOSI

(INPUT)

NOTE: Not defined see note

8

3

5 5

10

SLAVE MSB OUT

6

MSB IN

7

12

12

11

BIT 6 . . . 1

BIT 6 . . . 1

13

4

13

SLAVE LSB OUT

LSB IN

Figure 20. SPI slave mode timing (CPHA=1)

9

5.5.2 MSCAN

Table 16. MSCAN wake-up pulse characteristics

Parameter

MSCAN wakeup dominant pulse filtered

MSCAN wakeup dominant pulse pass

Symbol

t

WUP t

WUP

Min

-

5

Typ

-

-

Max

1.5

-

Unit

µs

µs

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to

freescale.com

and perform a keyword search for the drawing’s document number:

If you want the drawing for this package

64-pin LQFP

80-pin LQFP

Then use this document number

98ASS23234W

98ASS23237W

Freescale Semiconductor, Inc.

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

29

Pinout

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of

KEA128 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Rev. 1

Rev. 2

Rev. 3

Rev. 4

Rev. No.

Table 17. Revision History

Date

11 March 2014

18 June 2014

18 July 2014

03 Sept 2014

Substantial Changes

Initial Release

• Parameter Classification section is removed.

• Classification column is removed from all the tables in the document.

• New section added - Supply current characteristics

.

• Added supported part numbers.

ESD handling ratings

section is updated.

• Figures in DC characteristics

section are updated.

• Specs updated in following tables:

Table 9

.

• Data Sheet type changed to

"Technical Data".

30

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

“Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions .

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and

Cortex-M0+ are the registered trademarks of ARM Limited.

©2014 Freescale Semiconductor, Inc.

Document Number S9KEA128P80M48SF0

Revision 4, 09/2014

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP

:

S9KEAZN8AMTG S9KEAZN8AMFK S9KEAZN64AMLC S9KEAZN64AMLH S9KEAZ128AMLH S9KEAZ128AMLK

S9KEAZN16ACLH S9KEAZN8ACTG S9KEAZN16AMLC S9KEAZ128ACLH S9KEAZN64ACLC S9KEAZN32AMLC

S9KEAZ128AVLH S9KEAZN16AMLH S9KEAZN64ACLH S9KEAZ64AMLH S9KEAZ64AVLH S9KEAZ64ACLH

S9KEAZN8ACFK S9KEAZ64AMLK S9KEAZN32AMLH S9KEAZ64ACLK S9KEAZN32ACLH S9KEAZ128ACLK

S9KEAZ128AVLK S9KEAZN16ACLC S9KEAZN32ACLC S9KEAZ64AVLK S9KEAZ128AVLHR S9KEAZ128AMLHR

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals