STM32L071x8 STM32L071xB STM32L071xZ Access line ultra-low-power 32-bit MCU ARM®-based Cortex®-M0+, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, ADC Datasheet - production data Features • • • • • • • • Ultra-low-power platform – 1.65 V to 3.6 V power supply – -40 to 125 °C temperature range – 0.29 µA Standby mode (3 wakeup pins) – 0.43 µA Stop mode (16 wakeup lines) – 0.86 µA Stop mode + RTC + 20 KB RAM retention – Down to 93 µA/MHz in Run mode – 5 µs wakeup time (from Flash memory) – 41 µA 12-bit ADC (conversion at 10ksps) Core: ARM® 32-bit Cortex®-M0+ with MPU – From 32 kHz up to 32 MHz max. – 0.95 DMIPS/MHz Reset and supply management – Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) Clock sources – 1 to 25 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – High speed internal 16 MHz factory-trimmed RC (+/- 1%) – Internal low-power 37 kHz RC – Internal multispeed low-power 65 kHz to 4.2 MHz RC – PLL for CPU clock Pre-programmed bootloader – USART, I2C, SPI supported Development support – Serial wire debug supported Up to 84 fast I/Os (78 I/Os 5V tolerant) Memories – Up to 192 KB Flash memory with ECC(2 banks with read-while-write capability) – 20 KB RAM – 6 KB of data EEPROM with ECC – 20-byte backup register – Sector protection against R/W operation October 2015 This is information on a product in full production. )%*$ LQFP32 7x7 mm LQFP48 7x7 mm LQFP64 10x10 mm LQFP100 14x14 mm UFQFPN32 5x5 mm UFBGA64 TFBGA64 5x5mm )%*$ UFBGA100 7x7 mm WLCSP49 (3.294x3.258 mm) • • • • • • • • • Rich Analog peripherals – 12-bit ADC 1.14 Msps up to 16 channels (down to 1.65 V) – 2x ultra-low-power comparators (window mode and wake up capability, down to 1.8 V) 7-channel DMA controller, supporting ADC, SPI, I2C, USART, Timers 10x peripheral communication interfaces 4x USART (2 with ISO 7816, IrDA), 1x UART (low power) 2x SPI 16 Mbits/s 3x I2C (2 with SMBus/PMBus) 11x timers: 2x 16-bit with up to 4 channels, 2x 16-bit with up to 2 channels, 1x 16-bit ultra-low-power timer, 1x SysTick, 1x RTC, 2x 16-bit basic, and 2x watchdogs (independent/window) CRC calculation unit, 96-bit unique ID All packages are ECOPACK®2 Table 1. Device summary Reference Part number STM32L071x8 STM32L071V8, STM32L071K8, STM32L071C8 STM32L071xB STM32L071VB, STM32L071RB, STM32L071CB, STM32L071KB STM32L071xZ STM32L071VZ, STM32L071RZ, STM32L071CZ, STM32L071KZ DocID027101 Rev 2 1/135 www.st.com Contents STM32L071xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 ARM® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 24 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.9 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.12 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.12.1 3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27 3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.15 2/135 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22) . . . . . . . . . . . 28 3.14.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.4 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DocID027101 Rev 2 STM32L071xx Contents 3.15.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.15.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 31 3.15.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 31 3.15.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 32 3.16 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 32 3.17 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 59 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DocID027101 Rev 2 3/135 4 Contents 7 STM32L071xx 6.3.16 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.17 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.2 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.4 TFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 7.5 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 7.6 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.7 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.8 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.9.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4/135 DocID027101 Rev 2 STM32L071xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ultra-low-power STM32L071xx device features and peripheral counts . . . . . . . . . . . . . . . 11 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16 Functionalities depending on the working mode (from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STM32L071xx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 STM32L071xxx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Alternate functions port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate functions port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Alternate functions port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Alternate functions port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Alternate functions port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Alternate functions port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 59 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Current consumption in Run mode, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Current consumption in Run mode vs code type, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Current consumption in Run mode, code with data processing running from RAM . . . . . . 64 Current consumption in Run mode vs code type, code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 68 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 69 Average current consumption during Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 73 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DocID027101 Rev 2 5/135 6 List of tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. 6/135 STM32L071xx LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 83 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 112 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 TFBGA64 recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . . . 117 WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 121 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 123 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 126 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 STM32L071xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DocID027101 Rev 2 STM32L071xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. STM32L071xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 STM32L071xx LQFP100 pinout - 14 x 14 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32L071xx UFBGA100 ballout - 7x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32L071xx LQFP64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32L071xx TFBGA64 ballout - 5x 5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32L071xx WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32L071xx LQFP48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STM32L071xx LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STM32L071xx UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 IDD vs VDD, at TA= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 79 VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 97 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 97 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 108 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball DocID027101 Rev 2 7/135 8 List of figures Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. 8/135 STM32L071xx grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 113 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 114 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 TFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 122 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 124 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 125 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 126 LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 DocID027101 Rev 2 STM32L071xx 1 Introduction Introduction The ultra-low-power STM32L071xx are offered in 9 different package types from 32 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L071xx microcontrollers suitable for a wide range of applications: • Gas/water meters and industrial sensors • Healthcare and fitness equipment • Remote control and user interface • PC peripherals, gaming, GPS equipment • Alarm system, wired and wireless sensors, video intercom This STM32L071xx datasheet should be read in conjunction with the STM32L0x1xx reference manual (RM0377). For information on the ARM® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical Reference Manual, available from the www.arm.com website. Figure 1 shows the general block diagram of the device family. DocID027101 Rev 2 9/135 32 Description 2 STM32L071xx Description The access line ultra-low-power STM32L071xx microcontrollers incorporate the highperformance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals. The STM32L071xx devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes. The STM32L071xx devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock. Moreover, the STM32L071xx devices embed standard and advanced communication interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART (LPUART), . The STM32L071xx also include a real-time clock and a set of backup registers that remain powered in Standby mode. The ultra-low-power STM32L071xx devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications. 10/135 DocID027101 Rev 2 STM32L071xx 2.1 Description Device overview Table 2. Ultra-low-power STM32L071xx device features and peripheral counts Peripheral STM32L 071K8 STM32L STM32L 071C8 071V8 Flash (Kbytes) 64 Kbytes Data EEPROM (Kbytes) 3 Kbytes STM32L 071KB STM32L 071CB 4 Basic 2 LPTIMER 1 1/1/1/1 1/(0) 2/(1) 1/(0) 2/(1) 1/(0) 2/(1) I2C 2 3 2 3 2 3 USART 3 4 3 4 3 4 GPIOs 1 23 37 84 25(1) 40(2) Clocks: HSE/LSE/HSI/MSI/LSI 12-bit synchronized ADC Number of channels 84 51(3) 25(1) 40(2) 84 51(3) 1 16(3) 1 10 1 13(2) 1 16 1 16(3) 1/1/1/1/1 1 10 1 13 1 16 1 10 1 13(2) Comparators 1 16 2 Max. CPU frequency Operating voltage STM32L 071RZ 20 Kbytes LPUART 32 MHz 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option Operating temperatures Packages STM32L 071VZ 6 Kbytes RTC/SYSTICK/IWDG /WWDG Com. interfaces STM32L 071CZ 192 Kbytes Generalpurpose SPI/(I2S) STM32L 071KZ 128 Kbytes RAM (Kbytes) Timers STM32L STM32L 071VB 071RB Ambient temperature: –40 to +125 °C Junction temperature: –40 to +130 °C UFQFPN LQFP48 32 LQFP/ UFBGA 100 UFQFPN/ LQFP48, LQFP32 WLCSP49 1. UFQFPN32 has 2 GPIOs less than LQFP32. 2. LQFP48 has three GPIOs less than WLCSP49. 3. TFBGA64 has one GPIO, one ADC input less than LQFP64. LQFP/ UFBGA 100 DocID027101 Rev 2 LQFP/ TFBGA 64 UFQFPN/ LQFP48, LQFP32 WLCSP49 LQFP/ UFBGA 100 LQFP/ TFBGA 64 11/135 32 Description STM32L071xx Figure 1. STM32L071xx block diagram 7HPS VHQVRU 6:' 6:' )/$6+ ((3520 %227 ),5(:$// &257(;0&38 )PD[0+] 5$0 038 '%* '0$ 19,& (;7, $ 3 % $'& $,1[ 63, 0,62026, 6&.166 86$57 5;7;576 &76&. 7,0 FK 7,0 FK %5,'*( 3$>@ *3,23257$ 3%>@ *3,23257% &203 ,13,10287 &203 ,13,10287 /37,0 ,1,1 (75287 &5& %5,'*( 5$0. $+%)PD[0+] 7,0 7,0 $ 3 % 26&B,1 26&B287 +6( +6,0 /6, ,:'* 3// 06, 6&/6'$ 60%$ ,& 6&/6'$ ,& 6&/6'$ 60%$ 86$57 5;7;576 &76&. 86$57 5;7;576 &76&. 7,0 5;7;576 &76&. 5;7;576 &76 0,620&. 026,6' 6&.&.166 :6 FK 7,0 FK 86$57 57& /38$57 %&.35(* 63,,6 5(6(7&/. :.83[ 26&B,1 26&B287 ,& ::'* /6( 39'B,1 95()B287 308 1567 9''$ 9'' 5(*8/$725 06Y9 12/135 DocID027101 Rev 2 STM32L071xx 2.2 Description Ultra-low-power device continuum The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM® Cortex®-M4, including ARM® Cortex®-M3 and ARM® Cortex®-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 ultra-low-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements. DocID027101 Rev 2 13/135 32 Functional overview STM32L071xx 3 Functional overview 3.1 Low-power modes The ultra-low-power STM32L071xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply. There are three power consumption ranges: • Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz • Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz • Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off. • Low-power run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited. • Low-power sleep mode This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on. Stop mode with RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USART/I2C/LPUART/LPTIMER wakeup events. 14/135 DocID027101 Rev 2 STM32L071xx • Functional overview Stop mode without RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events. • Standby mode with RTC The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. • Standby mode without RTC The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. Table 3. Functionalities depending on the operating power supply range Functionalities depending on the operating power supply range Operating power supply range ADC operation Dynamic voltage scaling range I/O operation VDD = 1.65 to 1.71 V ADC only, conversion time up to 570 ksps Range 2 or range 3 Degraded speed performance VDD = 1.71 to 1.8 V(1) ADC only, conversion time up to 1.14 Msps Range 1, range 2 or range 3 Degraded speed performance VDD = 1.8 to 2.0 V(1) Conversion time up to 1.14 Msps Range1, range 2 or range 3 Degraded speed performance DocID027101 Rev 2 15/135 32 Functional overview STM32L071xx Table 3. Functionalities depending on the operating power supply range (continued) Functionalities depending on the operating power supply range Operating power supply range ADC operation Dynamic voltage scaling range I/O operation VDD = 2.0 to 2.4 V Conversion time up to 1.14 Msps Range 1, range 2 or range 3 Full speed operation VDD = 2.4 to 3.6 V Conversion time up to 1.14 Msps Range 1, range 2 or range 3 Full speed operation 1. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz. Table 4. CPU frequency range depending on dynamic voltage scaling CPU frequency range Dynamic voltage scaling range 16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws) Range 1 8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws) Range 2 32 kHz to 4.2 MHz (0ws) Range 3 Table 5. Functionalities depending on the working mode (from Run/active down to standby) (1)(2) Standby Run/Active Sleep CPU Y -- Y -- -- -- Flash memory O O O O -- -- RAM Y Y Y Y Y -- Backup registers Y Y Y Y Y Y EEPROM O O O O -- -- Brown-out reset (BOR) O O O O O DMA O O O O -- Programmable Voltage Detector (PVD) O O O O O O - Power-on/down reset (POR/PDR) Y Y Y Y Y Y Y IPs 16/135 DocID027101 Rev 2 Lowpower sleep Stop Lowpower run Wakeup capability O Wakeup capability O O -- Y STM32L071xx Functional overview Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)(1)(2) Standby Run/Active Sleep High Speed Internal (HSI) O O -- -- (3) -- High Speed External (HSE) O O O O -- -- Low Speed Internal (LSI) O O O O O O Low Speed External (LSE) O O O O O O Multi-Speed Internal (MSI) O O Y Y -- -- Inter-Connect Controller Y Y Y Y Y -- RTC O O O O O O O RTC Tamper O O O O O O O O Auto WakeUp (AWU) O O O O O O O O USART O O O O O(4) O -- O -- IPs Lowpower sleep Stop Lowpower run Wakeup capability Wakeup capability LPUART O O O O O(4) SPI O O O O -- I2C O O O O O(5) ADC O O -- -- -- -- Temperature sensor O O O O O -- Comparators O O O O O 16-bit timers O O O O -- LPTIMER O O O O O O IWDG O O O O O O WWDG O O O O -- SysTick Timer O O O O GPIOs O O O O 0 µs 0.36 µs 3 µs 32 µs Wakeup time to Run mode DocID027101 Rev 2 -O O -- --- O O --- O O 3.5 µs 2 pins 50 µs 17/135 32 Functional overview STM32L071xx Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)(1)(2) IPs Run/Active Sleep Lowpower run Stop Lowpower sleep Standby Wakeup capability Wakeup capability 0.28 µA (No 0.4 µA (No RTC) VDD=1.8 V RTC) VDD=1.8 V Consumption VDD=1.8 to 3.6 V (Typ) Down to 140 µA/MHz (from Flash memory) Down to 37 µA/MHz (from Flash memory) Down to 8 µA 0.65 µA (with 0.8 µA (with =1.8 V RTC) VDD=1.8 V RTC) V DD Down to 4.5 µA 0.29 µA (No 0.4 µA (No RTC) VDD=3.0 V RTC) VDD=3.0 V 1 µA (with RTC) 0.85 µA (with VDD=3.0 V RTC) VDD=3.0 V 1. Legend: “Y” = Yes (enable). “O” = Optional can be enabled/disabled by software) “-” = Not available 2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes. 3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore. 4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock. 5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception. 3.2 Interconnect matrix Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes. Table 6. STM32L0xx peripherals interconnect matrix Interconnect source 18/135 Lowpower sleep Stop Y Y - Y Y Y Y Y Y Y - Interconnect action Run TIM2,TIM21, TIM22 Timer input channel, trigger from analog signals comparison Y Y LPTIM Timer input channel, trigger from analog signals comparison Y TIMx Timer triggered by other timer Y COMPx TIMx LowSleep power run Interconnect destination DocID027101 Rev 2 STM32L071xx Functional overview Table 6. STM32L0xx peripherals interconnect matrix (continued) Interconnect source Lowpower sleep Stop Y Y - Y Y Y Y Y Y Y Y - Timer input channel and trigger Y Y Y Y - LPTIM Timer input channel and trigger Y Y Y Y Y ADC Conversion trigger Y Y Y Y - Interconnect action Run TIM21 Timer triggered by Auto wake-up Y Y LPTIM Timer triggered by RTC event Y TIMx Clock source used as input channel for RC measurement and trimming TIMx RTC All clock source GPIO 3.3 LowSleep power run Interconnect destination ARM® Cortex®-M0+ core with MPU The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including: • a simple architecture that is easy to learn and program • ultra-low power, energy-efficient operation • excellent code density • deterministic, high-performance interrupt handling • upward compatibility with Cortex-M processor family • platform security robustness, with integrated Memory Protection Unit (MPU). The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier. The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers. Owing to its embedded ARM core, the STM32L071xx are compatible with all ARM tools and software. DocID027101 Rev 2 19/135 32 Functional overview STM32L071xx Nested vectored interrupt controller (NVIC) The ultra-low-power STM32L071xx embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels. The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC: • includes a Non-Maskable Interrupt (NMI) • provides zero jitter interrupt option • provides four interrupt priority levels The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode. This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.4 Reset and supply management 3.4.1 Power supply schemes 3.4.2 • VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. Power supply supervisor The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry. Two versions are available: • The version with BOR activated at power-on operates between 1.8 V and 3.6 V. • The other version without BOR operates between 1.65 V and 3.6 V. After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on). When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits the POR area. Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the 20/135 DocID027101 Rev 2 STM32L071xx Functional overview internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up. The devices feature an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.4.3 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. 3.5 • MR is used in Run mode (nominal regulation) • LPR is used in the Low-power run, Low-power sleep and Stop modes • Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR). Clock management The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: • Clock prescaler To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Safe clock switching Clock sources can be changed safely on the fly in Run mode through a configuration register. • Clock management To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source Three different clock sources can be used to drive the master clock SYSCLK: • – 1-25 MHz high-speed external crystal (HSE), that can supply a PLL – 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy. Auxiliary clock source Two ultra-low-power clock sources that can be used to drive the real-time clock: DocID027101 Rev 2 21/135 32 Functional overview • STM32L071xx – 32.768 kHz low-speed external crystal (LSE) – 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision. RTC clock source The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock. • Startup clock After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS) This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled. • Clock-out capability (MCO: microcontroller clock output) It outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See Figure 2 for details on the clock tree. 22/135 DocID027101 Rev 2 STM32L071xx Functional overview Figure 2. Clock tree #9 (QDEOH:DWFKGRJ /6,5& /HJHQG +6( +LJKVSHHGH[WHUQDOFORFNVLJQDO +6, +LJKVSHHGLQWHUQDOFORFNVLJQDO /6, /RZVSHHGLQWHUQDOFORFNVLJQDO /6( /RZVSHHGH[WHUQDOFORFNVLJQDO 06, 0XOWLVSHHGLQWHUQDOFORFNVLJQDO :DWFKGRJ/6 /6,WHPSR 57&6(/ 57&HQDEOH /6(26& 57& /6(WHPSR /68 /6' #9 #9 06,5& /6, /6( 06, /HYHOVKLIWHUV #9 /6' 0+] 0&26(/ $'&HQDEOH $'&&/. 0&2 QRWGHHSVOHHS #9 +6,5& /HYHOVKLIWHUV #9 &.B3:5 QRWGHHSVOHHS FNBUFKV +6, 6\VWHP &ORFN 06, +6, +6( #9 +6(26& /HYHOVKLIWHUV #9 3//65& /68 #9 0+]&ORFN 'HWHFWRU 3//&/. #9 FNBSOOLQ 3// QRWVOHHSRU GHHSVOHHS +&/. 6\V7LFN 7LPHU $+% 35(6& « $3% 35(6& 0+] PD[ 3&/.WR$3% SHULSKHUDOV 3HULSKHUDO FORFNHQDEOH WR7,0[ ,I$3%SUHVF [ HOVH[ /6' )&/. ; /HYHOVKLIWHUV #9''&25( +6(SUHVHQWRUQRW QRWVOHHSRU GHHSVOHHS &ORFN 6RXUFH &RQWURO $3% 35(6& 3HULSKHUDO FORFNHQDEOH 3&/.WR$3% 0+] SHULSKHUDOV PD[ 3HULSKHUDO FORFNHQDEOH ,I$3%SUHVF [ HOVH[ /6, 6<6&/. WR7,0[ 3HULSKHUDO FORFNHQDEOH /6( +6, 3HULSKHUDO FORFNHQDEOH 3&/. 3HULSKHUDO FORFNHQDEOH /37,0&/. /38$57 8$57&/. ,&&/. 06Y9 DocID027101 Rev 2 23/135 32 Functional overview 3.6 STM32L071xx Low-power real-time clock and backup registers The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. Its main features are the following: • • • • • • • • • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format Automatically correction for 28, 29 (leap year), 30, and 31 day of the month Two programmable alarms with wake up from Stop and Standby mode capability Periodic wakeup from Stop and Standby with programmable resolution and period On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. The RTC clock sources can be: • • • • 3.7 A 32.768 kHz external crystal A resonator or oscillator The internal low-power RC oscillator (typical frequency of 37 kHz) The high-speed external clock General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz. Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC, USARTs, I2C, LPUART, LPTIMER or comparator events. 24/135 DocID027101 Rev 2 STM32L071xx 3.8 Functional overview Memories The STM32L071xx devices have the following features: • 20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses). • The non-volatile memory is divided into three arrays: – 64, 128 or 192 Kbytes of embedded Flash program memory – 6 Kbytes of data EEPROM – Information block containing 32 user and factory options bytes plus 8 Kbytes of system memory Flash program and data EEPROM are divided into two banks. This allows writing in one bank while running code or reading data from the other bank. The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options: • Level 0: no protection • Level 1: memory readout protected. The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected • Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse) The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the nonvolatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the volatile data segment (RAM). The whole non-volatile memory embeds the error correction code (ECC) feature. 3.9 Boot modes At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options: • Boot from Flash memory • Boot from System memory • Boot from embedded RAM The boot loader is located in System memory. It is used to reprogram the Flash memory by using SPI1(PA4, PA5, PA6, PA7) or SPI2 (PB12, PB13, PB14, PB15), I2C1 (PB6, PB7) or I2C2 (PB10, PB11), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32™ microcontroller system memory boot mode AN2606 for details. DocID027101 Rev 2 25/135 32 Functional overview 3.10 STM32L071xx Direct memory access (DMA) The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, LPUART, general-purpose timers, and ADC. 3.11 Analog-to-digital converter (ADC) A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L071xx device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference). It performs conversions in singleshot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 µA at 10 kSPS, ~240 µA at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase. The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V. The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668). An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. 3.12 Temperature sensor The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. 26/135 DocID027101 Rev 2 STM32L071xx Functional overview To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 7. Temperature sensor calibration values Calibration value name 3.12.1 Description Memory address TSENSE_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B TSENSE_CAL2 TS ADC raw data acquired at temperature of 130 °C VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available for ADC). The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 8. Internal voltage reference measured values Calibration value name VREFINT_CAL 3.13 Description Raw data acquired at temperature of 25 °C VDDA = 3 V Memory address 0x1FF8 0078 - 0x1FF8 0079 Ultra-low-power comparators and reference voltage The STM32L071xx embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). • One comparator with ultra low consumption • One comparator with rail-to-rail inputs, fast or slow mode. • The threshold can be one of the following: – External I/O pins – Internal reference voltage (VREFINT) – submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator. Both comparators can wake up the devices from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical). DocID027101 Rev 2 27/135 32 Functional overview 3.14 STM32L071xx Timers and watchdogs The ultra-low-power STM32L071xx devices include three general-purpose timers, one lowpower timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer. Table 9 compares the features of the general-purpose and basic timers. Table 9. Timer feature comparison Timer Counter resolution Counter type Prescaler factor DMA request generation TIM2, TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM21, TIM22 16-bit Up, down, up/down Any integer between 1 and 65536 No 2 No TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.14.1 Capture/compare Complementary channels outputs General-purpose timers (TIM2, TIM3, TIM21 and TIM22) There are four synchronizable general-purpose timers embedded in the STM32L071xx device (see Table 9 for differences). TIM2, TIM3 TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output. The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2/TIM3 have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. TIM21 and TIM22 TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3, full-featured general-purpose timers. They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock. 28/135 DocID027101 Rev 2 STM32L071xx 3.14.2 Functional overview Low-power Timer (LPTIM) The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: 3.14.3 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous / one shot mode • Selectable software / hardware input trigger • Selectable clock source – Internal clock source: LSE, LSI, HSI or APB clock – External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) • Programmable digital glitch filter • Encoder mode Basic timer (TIM6, TIM7) These timers can be used as a generic 16-bit timebase. 3.14.4 SysTick timer This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches ‘0’. 3.14.5 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. 3.14.6 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. DocID027101 Rev 2 29/135 32 Functional overview STM32L071xx 3.15 Communication interfaces 3.15.1 I2C bus Up to three I2C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes. Each I2C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os. 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as well as programmable analog and digital noise filters. Table 10. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop mode on address match. Each I2C interface can be served by the DMA controller. Refer to Table 11 for an overview of I2C interface features. Table 11. STM32L071xx I2C implementation I2C features(1) I2C1 I2C2 I2C3 7-bit addressing mode X X X 10-bit addressing mode X X X Standard mode (up to 100 kbit/s) X X X Fast mode (up to 400 kbit/s) X X X Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X(2) X Independent clock X - X SMBus X - X Wakeup from STOP X - X 1. X = supported. 2. See Table 15: STM32L071xxx pin definition on page 39 for the list of I/Os that feature Fast Mode Plus capability 30/135 DocID027101 Rev 2 STM32L071xx 3.15.2 Functional overview Universal synchronous/asynchronous receiver transmitter (USART) The four USART interfaces (USART1, USART2, USART4 and USART5) are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode. All USART interfaces can be served by the DMA controller. Table 12 for the supported modes and features of USART interfaces. Table 12. USART implementation USART modes/features(1) USART1 and USART2 USART4 and USART5 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X - LIN mode X - Dual clock domain and wakeup from Stop mode X - Receiver timeout interrupt X - Modbus communication X - Auto baud rate detection (4 modes) X - Driver Enable X X 1. X = supported. 3.15.3 Low-power universal asynchronous receiver transmitter (LPUART) The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wake up the system from Stop mode. The Wakeup events from Stop mode are programmable and can be: • Start bit detection • Or any received data frame • Or a specific programmed data frame DocID027101 Rev 2 31/135 32 Functional overview STM32L071xx Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. 3.15.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. The SPIs can be served by the DMA controller. Refer to Table 13 for the differences between SPI1 and SPI2. Table 13. SPI/I2S implementation SPI features(1) SPI1 SPI2 Hardware CRC calculation X X I2S mode - X TI mode X X 1. X = supported. 3.16 Cyclic redundancy check (CRC) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.17 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. 32/135 DocID027101 Rev 2 STM32L071xx Pin descriptions 9'' 966 3( 3( 3% 3% %227 3% 3% 3% 3% 3% 3' 3' 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$ Figure 3. STM32L071xx LQFP100 pinout - 14 x 14 mm /4)3 9'' 9'',2 966 9'' 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3' 3' 3' 3' 3' 3' 3' 3' 3% 3% 3% 3% 3( 3( 3( 3( 3( 9'' 3& 3&26&B,1 3&26&B287 3+ 3+ 3+26&B,1 3+26&B287 1567 3& 3& 3& 3& 966$ 95() 95() 9''$ 3$ 3$ 3$ 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 966 9'' 4 Pin descriptions 06Y9 1. The above figure shows the package top view. 2. I/O supplied by VDDIO2. DocID027101 Rev 2 33/135 51 Pin descriptions STM32L071xx Figure 4. STM32L071xx UFBGA100 ballout - 7x 7 mm & ' , ϱ Ϯ 3( 3( 3( WϮ 3% 3% 3% 3& 3( 3( 9'' 3% 3& 26& 3( B,1 3& 26& 9'' B287 ϯ ϰ ϭ 3% %227 3' ϲ ϳ ϴ ϵ ϭ 3' 3% 3% 3$ 3$ 3$ 3$ 3' 3' 3' 3' 3& 3& 3$ 3' 3' 3& 9'' 3$ 3$ 3$ 3& 3& 3& 3& 966 966 9'' ,2 9'' 966 966 3+ 3+ 26&B,1 3+ 26&B 3+ 287 3& ϭ 1567 9'' 3' 3' 3' 3' 3' 3' 3% 3% 3% : 966$ 3& 3& < 95() 3& 3$ 3$ 3& > 95() 3$ 3$ 3$ 3& 3% 3( 3( 3( 3% 3% D 9''$ 3$ 3$ 3% 3% 3( 3( 3( 3( 3( 3$ 3' 3' 3% 3( 06Y9 1. The above figure shows the package top view. 2. I/O supplied by VDDIO2. s s^ ^ W ϵ W ϴ KK dϬ W ϳ W ϲ W ϱ W ϰ W ϯ WϮ WϭϮ Wϭϭ WϭϬ W ϭϱ W ϭϰ Figure 5. STM32L071xx LQFP64 pinout - 10 x 10 mm ϲϰ ϲϯ ϲϮ ϲϭ ϲϬ ϱϵ ϱϴ ϱϳ ϱϲ ϱϱ ϱϰ ϱϯ ϱϮ ϱϭ ϱϬ ϰϵ ϰϴ ϭ ϰϳ Ϯ ϰϲ ϯ ϰϱ ϰ ϰϰ ϱ ϰϯ ϲ ϰϮ ϳ ϰϭ ϴ >Y&Wϲϰ ϰϬ ϵ ϯϵ ϭϬ ϯϴ ϭϭ ϯϳ ϭϮ ϯϲ ϭϯ ϯϱ ϭϰ ϯϰ ϭϱ ϯϯ ϭϲ ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϱ Ϯϲ Ϯϳ Ϯϴ Ϯϵ ϯϬ ϯϭ ϯϮ s/KϮ s^^ W ϭϯ W ϭϮ W ϭϭ W ϭϬ W ϵ W ϴ Wϵ Wϴ Wϳ Wϲ W ϭϱ W ϭϰ W ϭϯ W ϭϮ W ϯ s^^ s W ϰ W ϱ W ϲ W ϳ Wϰ Wϱ W Ϭ W ϭ W Ϯ Wϭ Ϭ Wϭ ϭ s^^ s s Wϭϯ W ϭϰͲK^ ϯϮͺ/E W ϭϱͲK^ ϯϮͺKh d W ,ϬͲK^ ͺ/E W ,ϭͲK^ͺKhd EZ^d WϬ Wϭ WϮ Wϯ s^^ s WϬ W ϭ W Ϯ 06Y9 1. The above figure shows the package top view. 2. I/O supplied by VDDIO2. 34/135 DocID027101 Rev 2 STM32L071xx Pin descriptions Figure 6. STM32L071xx TFBGA64 ballout - 5x 5 mm $ 3& 26& B,1 3& 3% 3% 3% % 3& 26& B287 9'' 3% %227 3+ 26&B,1 966 3% ' 3+ 26&B 287 9'' ( 1567 ) 966$ & 3$ 3$ 3$ 3' 3& 3& 3$ 3% 3& 3$ 3$ 3$ 3% 966 966 966 3$ 3& 3& 3& 9'' 9'' 9'' ,2 3& 3& 3& 3$ 3$ 3% 3& 3% 3% * 95() 3$ 3$ 3$ 3% 3% 3% 3% + 9''$ 3$ 3$ 3$ 3& 3& 3% 3% 06Y9 1. The above figure shows the package top view. 2. I/O supplied by VDDIO2. DocID027101 Rev 2 35/135 51 Pin descriptions STM32L071xx Figure 7. STM32L071xx WLCSP49 ballout $ 9'' ,2 3$ 3% 3% %227 3% 9'' % 3$ 3$ 3% 3% 3% 9'' 3& & 3$ 3$ 3% 3& 3& ' 3$ 3$ 3% 966 ( 3% 3$ 3% ) 3% 3( * 3% 9'' 3& 26& B,1 3& 26& B287 1567 3+ 26&B,1 3+ 26&B 287 3$ 3$ 95() 3& 3% 3$ 3$ 3$ 9''$ 3% 3% 3$ 3$ 3$ 06Y9 1. The above figure shows the package top view. 2. I/O supplied by VDDIO2. 36/135 DocID027101 Rev 2 STM32L071xx Pin descriptions 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ Figure 8. STM32L071xx LQFP48 pinout - 7 x 7 mm /4)3 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 966 9'' 9'' 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 966$ 9''$ 3$ 3$ 3$ 069 1. The above figure shows the package top view. 2. I/O supplied by VDDIO2. 9'' 3&26&B,1 3&26&B287 /4)3 3$ 3$ 3$ 3$ 3$ 3$ 3$ 9'' 3$ 3$ 3$ 3$ 3$ 3% 3% 966 1567 9''$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 3$ 966 %227 Figure 9. STM32L071xx LQFP32 pinout 06Y9 1. The above figure shows the package top view. DocID027101 Rev 2 37/135 51 Pin descriptions STM32L071xx 966 9'',2 3$ 3$ 3$ 3$ 3$ 3$ 9'' 3$ 3$ 3$ 3$ 3$ 3% 3% 966 3&26&B,1 3&26&B287 1567 966$ 9''$ 3$ 3$ 3$ %227 3% 3% 3% 3% 3$ 9'' 966 Figure 10. STM32L071xx UFQFPN32 pinout 06Y9 1. The above figure shows the package top view. 2. I/O supplied by VDDIO2. Table 14. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TC Standard 3.3V I/O B RST Notes Pin functions 38/135 Definition Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID027101 Rev 2 STM32L071xx Pin descriptions Table 15. STM32L071xxx pin definition LQFP32 UFQFPN32(1) LQFP48 LQFP64 UFBGA64 WLCSP49 LQFP100 UFBG100 Pin type I/O structure Note Pin number - - - - - - 1 B2 PE2 I/O FT - TIM3_ETR - - - - - - - 2 A1 PE3 I/O FT - TIM22_CH1, TIM3_CH1 - - - - - - - 3 B1 PE4 I/O FT - TIM22_CH2, TIM3_CH2 - - - - - - - 4 C2 PE5 I/O FT - TIM21_CH1, TIM3_CH3 - - - - - - - 5 D2 PE6 I/O FT - TIM21_CH2, TIM3_CH4 RTC_TAMP3/WKUP3 1 - 1 1 B2 B6 6 E2 VDD S - - 2 2 A2 B7 7 C1 PC13 I/O 2 1 3 3 A1 C6 8 D1 PC14OSC32_IN (PC14) 3 2 4 4 B1 C7 9 E1 - - - - - - 10 - - - - - - - - 5 - - 4 3 - - Pin name (function after reset) Alternate functions Additional functions - - - FT - - RTC_TAMP1/ RTC_TS/ RTC_OUT/WKUP2 I/O FT - - OSC32_IN PC15OSC32_OUT (PC15) I/O TC - - OSC32_OUT F2 PH9 I/O FT - - - 11 G2 PH10 I/O FT - - - 5 C1 D6 12 F1 PH0-OSC_IN I/O (PH0) TC - - OSC_IN 6 6 D1 D7 13 G1 PH1OSC_OUT (PH1) I/O TC - - OSC_OUT 7 7 E1 D5 14 H2 NRST I/O - - - - - LPTIM1_IN1, EVENTOUT, LPUART1_RX, I2C3_SCL ADC_IN10 ADC_IN11 ADC_IN12 - 8 E3 C5 15 H1 PC0 I/O FTf - - - 9 E2 C4 16 J2 PC1 I/O FTf - LPTIM1_OUT, EVENTOUT, LPUART1_TX, I2C3_SDA - - - 10 F2 E7 17 J3 PC2 I/O FTf - LPTIM1_IN2, SPI2_MISO/I2S2_MCK DocID027101 Rev 2 39/135 51 Pin descriptions STM32L071xx Table 15. STM32L071xxx pin definition (continued) Note VREF- S - - - L1 VREF+ S - - - M1 VDDA S - - - - TIM2_CH1, USART2_CTS, TIM2_ETR, USART4_TX, COMP1_OUT COMP1_INM, ADC_IN0, RTC_TAMP2/WKUP1 - EVENTOUT, TIM2_CH2, USART2_RTS_DE, TIM21_ETR, USART4_RX COMP1_INP, ADC_IN1 - TIM21_CH1, TIM2_CH3, USART2_TX, LPUART1_TX, COMP2_OUT COMP2_INM, ADC_IN2 COMP2_INP, ADC_IN3 Pin type - UFBG100 - LQFP100 - WLCSP49 S UFBGA64 ADC_IN13 LQFP64 LPTIM1_ETR, SPI2_MOSI/I2S2_SD LQFP48 - UFQFPN32(1) FT LQFP32 I/O structure Pin number - - - 11 - - 18 K2 PC3 I/O - 4 8 12 F1 - 19 J1 VSSA - - - - - - 20 K1 - - - - G1 E6 21 5 5 9 13 H1 F7 22 6 7 8 6 7 8 10 11 12 14 15 16 G2 E5 23 H2 E4 24 F3 F6 25 L2 M2 K3 Pin name (function after reset) PA0 PA1 PA2 I/O TTa I/O I/O FT FT Alternate functions Additional functions 9 9 13 17 G3 G7 26 L3 PA3 I/O FT - TIM21_CH2, TIM2_CH4, USART2_RX, LPUART1_RX - - - 18 C2 - 27 D3 VSS S - - - - - - - 19 D2 - 28 H3 VDD S - - - - 10 10 14 20 H3 F5 29 M3 PA4 I/O TC - SPI1_NSS, USART2_CK, TIM22_ETR COMP1_INM, COMP2_INM, ADC_IN4 11 11 15 21 F4 G6 30 K4 PA5 I/O TC - SPI1_SCK, TIM2_ETR, TIM2_CH1 COMP1_INM, COMP2_INM, ADC_IN5 40/135 DocID027101 Rev 2 STM32L071xx Pin descriptions Table 15. STM32L071xxx pin definition (continued) 12 12 13 13 16 22 G4 G5 31 L4 PA6 I/O FT Note I/O structure Pin name (function after reset) Pin type UFBG100 LQFP100 WLCSP49 UFBGA64 LQFP64 LQFP48 UFQFPN32(1) LQFP32 Pin number Alternate functions Additional functions - SPI1_MISO, TIM3_CH1, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT ADC_IN6 ADC_IN7 17 23 H4 F4 32 M4 PA7 I/O FT - SPI1_MOSI, TIM3_CH2, TIM22_CH2, EVENTOUT, COMP2_OUT - - - 24 H5 - 33 K5 PC4 I/O FT - EVENTOUT, LPUART1_TX ADC_IN14 - - - 25 H6 - 34 L5 PC5 I/O FT - LPUART1_RX ADC_IN15 14 14 18 26 F5 G4 35 M5 PB0 I/O FT - EVENTOUT, TIM3_CH3 ADC_IN8, VREF_OUT 15 15 19 27 G5 D3 36 M6 PB1 I/O FT - TIM3_CH4, LPUART1_RTS_DE ADC_IN9, VREF_OUT G6 E3 37 L6 PB2 I/O FT - LPTIM1_OUT, I2C3_SMBA - - - 20 28 - - - - - - 38 M7 PE7 I/O FT - USART5_CK/USART5_ RTS_DE - - - - - - - 39 L7 PE8 I/O FT - USART4_TX - - - - - - - 40 M8 PE9 I/O FT - TIM2_CH1, TIM2_ETR, USART4_RX - - - - - - - 41 L8 PE10 I/O FT - TIM2_CH2, USART5_TX - - - - - - - 42 M9 PE11 I/O FT - TIM2_CH3, USART5_RX - - - - - - - 43 L9 PE12 I/O FT - TIM2_CH4, SPI1_NSS - - - - - - - 44 M10 PE13 I/O FT - SPI1_SCK - - - - - - - 45 M11 PE14 I/O FT - SPI1_MISO - - - - - - - 46 M12 PE15 I/O FT - SPI1_MOSI - DocID027101 Rev 2 41/135 51 Pin descriptions STM32L071xx Table 15. STM32L071xxx pin definition (continued) - - - - 21 29 G7 G3 47 L10 PB10 I/O FT FT Note I/O structure Pin name (function after reset) Pin type UFBG100 LQFP100 WLCSP49 UFBGA64 LQFP64 LQFP48 UFQFPN32(1) LQFP32 Pin number Alternate functions Additional functions - TIM2_CH3, LPUART1_TX, SPI2_SCK, I2C2_SCL, LPUART1_RX - - EVENTOUT, TIM2_CH4, LPUART1_RX, I2C2_SDA, LPUART1_TX - 22 30 H7 F3 48 L11 PB11 I/O 16 16 23 31 D6 D4 49 F12 VSS S - - - 17 17 24 32 E6 G2 50 G12 VDD S - - - - - - 25 33 H8 G1 51 L12 PB12 I/O FT - SPI2_NSS/I2S2_WS, LPUART1_RTS_DE, I2C2_SMBA, EVENTOUT - - 26 34 G8 F2 52 K12 PB13 I/O FTf - SPI2_SCK/I2S2_CK, MCO, LPUART1_CTS, I2C2_SCL, TIM21_CH1 - - - - 27 35 F8 F1 53 K11 PB14 I/O FTf - SPI2_MISO/I2S2_MCK, RTC_OUT, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2 - - 28 36 F7 E1 54 K10 PB15 I/O FT - SPI2_MOSI/I2S2_SD, RTC_REFIN - - - - - - - 55 K9 PD8 I/O FT - LPUART1_TX - - - - - - - 56 K8 PD9 I/O FT - LPUART1_RX - - - - - - - 57 J12 PD10 I/O FT - - - - - - - 58 J11 PD11 I/O FT - LPUART1_CTS - - - - - - - 59 J10 PD12 I/O FT - LPUART1_RTS_DE - - - - - - - 60 H12 PD13 I/O FT - - - - - - - - 61 H11 PD14 I/O FT - - - - - - - - 62 H10 PD15 I/O FT - - - - - 37 F6 - 63 E12 PC6 I/O FT - TIM22_CH1, TIM3_CH1 - - - - 38 E7 - 64 E11 PC7 I/O FT - TIM22_CH2, TIM3_CH2 - 42/135 DocID027101 Rev 2 - STM32L071xx Pin descriptions Table 15. STM32L071xxx pin definition (continued) LQFP48 LQFP64 UFBGA64 WLCSP49 Pin type I/O structure Note - - 39 E8 - 65 E10 PC8 I/O FT - TIM22_ETR, TIM3_CH3 - - - - 40 D8 - 66 D12 PC9 I/O FTf - TIM21_ETR, TIM3_CH4, I2C3_SDA - 18 18 29 41 D7 D1 67 D11 PA8 I/O FTf - MCO, EVENTOUT, USART1_CK, I2C3_SCL - 19 19 30 42 C7 E2 68 D10 PA9 I/O FTf - MCO, USART1_TX, I2C1_SCL, I2C3_SMBA - 20 20 31 43 C6 C1 69 C12 PA10 I/O FTf - USART1_RX, I2C1_SDA - - SPI1_MISO, EVENTOUT, USART1_CTS, COMP1_OUT - - 21 21 32 44 UFBG100 UFQFPN32(1) - LQFP100 LQFP32 Pin number C8 D2 70 B12 Pin name (function after reset) PA11 I/O FT Alternate functions Additional functions 22 22 33 45 B8 B1 71 A12 PA12 I/O FT - SPI1_MOSI, EVENTOUT, USART1_RTS_DE, COMP2_OUT 23 23 34 46 A8 C2 72 A11 PA13 I/O FT - SWDIO, LPUART1_RX - - - - - - - 73 C11 VDD S - - - - - 35 47 D5 - 74 F11 VSS S - - - - 24 36 48 E5 A1 75 G11 VDDIO2 S - - - 24 25 37 49 A7 B2 76 A10 PA14 I/O - SWCLK, USART2_TX, LPUART1_TX - - FT A9 PA15 I/O FT - SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1, USART4_RTS_DE - 78 B11 PC10 I/O FT - LPUART1_TX, USART4_TX - B6 - 79 C10 PC11 I/O FT - LPUART1_RX, USART4_RX - C5 - 80 B10 PC12 I/O FT - USART5_TX, USART4_CK - 25 - 38 50 A6 A2 77 - - - 51 B7 - - - 52 - - - 53 DocID027101 Rev 2 43/135 51 Pin descriptions STM32L071xx Table 15. STM32L071xxx pin definition (continued) LQFP32 UFQFPN32(1) LQFP48 LQFP64 UFBGA64 WLCSP49 LQFP100 UFBG100 Pin type I/O structure Note Pin number - - - - - - 81 C9 PD0 I/O FT - TIM21_CH1, SPI2_NSS/I2S2_WS - - - - - - - 82 B9 PD1 I/O FT - SPI2_SCK/I2S2_CK - - - - 54 B5 - 83 C8 PD2 I/O FT - LPUART1_RTS_DE, TIM3_ETR, USART5_RX - - - - - - - 84 B8 PD3 I/O FT - USART2_CTS, SPI2_MISO/I2S2_MCK - - - - - - - 85 B7 PD4 I/O FT - USART2_RTS_DE, SPI2_MOSI/I2S2_SD - - - - - - - 86 A6 PD5 I/O FT - USART2_TX - - - - - - - 87 B6 PD6 I/O FT - USART2_RX - - - - - - - 88 A5 PD7 I/O FT - USART2_CK, TIM21_CH2 - - SPI1_SCK, TIM2_CH2, EVENTOUT, USART1_RTS_DE, USART5_TX COMP2_INM - SPI1_MISO, TIM3_CH1, TIM22_CH1, USART1_CTS, USART5_RX, I2C3_SDA COMP2_INP COMP2_INP COMP2_INP 26 - 27 26 39 40 55 56 A5 A3 89 A4 B3 90 A8 A7 Pin name (function after reset) PB3 PB4 I/O FT I/O FTf Alternate functions Additional functions 28 27 41 57 C4 A4 91 C5 PB5 I/O FT - SPI1_MOSI, LPTIM1_IN1, I2C1_SMBA, TIM3_CH2/TIM22_CH2, USART1_CK, USART5_CK/USART5_ RTS_DE 29 28 42 58 D3 B4 92 B5 PB6 I/O FTf - USART1_TX, I2C1_SCL, LPTIM1_ETR, 44/135 DocID027101 Rev 2 STM32L071xx Pin descriptions Table 15. STM32L071xxx pin definition (continued) 30 29 43 59 C3 C3 93 B4 PB7 31 30 44 60 B4 A5 94 A4 BOOT0 I/O FTf I Note I/O structure Pin name (function after reset) Pin type UFBG100 LQFP100 WLCSP49 UFBGA64 LQFP64 LQFP48 UFQFPN32(1) LQFP32 Pin number Alternate functions Additional functions - USART1_RX, I2C1_SDA, LPTIM1_IN2, USART4_CTS COMP2_INP, VREF_PVD_IN - - - - - 45 61 B3 B5 95 A3 PB8 I/O FTf - I2C1_SCL - - - 46 62 A3 A6 96 B3 PB9 I/O FTf - EVENTOUT, I2C1_SDA, SPI2_NSS/I2S2_WS - - - - - - - 97 C3 PE0 I/O FT - EVENTOUT - - - - - - - 98 A2 PE1 I/O FT - EVENTOUT - 47 63 D4 - 99 D3 VSS S - - - 48 64 E4 A7 100 C4 VDD S - - - 32 31 - 32 1. UFQFPN32 pinout differs from other STM32 devices except STM32L07xxx and STM32L8xxx. DocID027101 Rev 2 45/135 51 AF0 DocID027101 Rev 2 Port A Port AF1 AF2 SPI1/SPI2/I2S2/U SPI1/SPI2/I2S2/L SART1/2/ PUART1/ LPUART1/LPTIM SPI1/SPI2/I2S2/I2 USART5/LPTIM1 1/ /TIM2/3/EVENTO C1/TIM2/21 TIM2/21/22/ UT/ EVENTOUT/ SYS_AF SYS_AF PA0 - PA1 - AF3 AF4 I2C1/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT AF5 AF6 AF7 I2C1/2/ I2C3/LPUART1/C LPUART1/ SPI2/I2S2/I2C2/U OMP1/2/ USART4/ SART1/ TIM3 UASRT5/TIM21/E TIM2/21/22 VENTOUT USART2_CTS TIM2_ETR USART4_TX COMP1_OUT EVENTOUT TIM2_CH2 USART2_RTS_D E TIM21_ETR USART4_RX - PA2 TIM21_CH1 TIM2_CH3 USART2_TX - LPUART1_TX COMP2_OUT PA3 TIM21_CH2 TIM2_CH4 USART2_RX - LPUART1_RX - PA4 SPI1_NSS - - USART2_CK TIM22_ETR - - PA5 SPI1_SCK - TIM2_ETR TIM2_CH1 - - PA6 SPI1_MISO TIM3_CH1 LPUART1_CTS TIM22_CH1 EVENTOUT COMP1_OUT PA7 SPI1_MOSI TIM3_CH2 - TIM22_CH2 EVENTOUT COMP2_OUT PA8 MCO USART1_CK - - I2C3_SCL PA9 MCO - USART1_TX - I2C1_SCL I2C3_SMBA PA10 - - USART1_RX - I2C1_SDA - PA11 SPI1_MISO - EVENTOUT USART1_CTS - - COMP1_OUT PA12 SPI1_MOSI - EVENTOUT USART1_RTS_ DE - - COMP2_OUT PA13 SWDIO - - - - LPUART1_RX - PA14 SWCLK - - - USART2_TX - LPUART1_TX - PA15 SPI1_NSS TIM2_ETR EVENTOUT USART2_RX TIM2_CH1 USART4_RTS_D E - EVENTOUT STM32L071xx TIM2_CH1 Pin descriptions 46/135 Table 16. Alternate functions port A AF0 Port DocID027101 Rev 2 Port B SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF AF1 AF2 SPI1/SPI2/I2S2/ LPUART1/ SPI1/SPI2/I2S2/I USART5/LPTIM 1/TIM2/3/EVENT 2C1/TIM2/21 OUT/ SYS_AF AF3 AF4 AF5 AF6 AF7 I2C1/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2/I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT I2C3/LPUART1/ COMP1/2/ TIM3 EVENTOUT TIM3_CH3 - - - - PB1 - TIM3_CH4 LPUART1_RTS_DE - - - PB2 - LPTIM1_OUT - - - I2C3_SMBA PB3 SPI1_SCK TIM2_CH2 EVENTOUT USART1_RTS_DE USART5_TX - PB4 SPI1_MISO TIM3_CH1 TIM22_CH1 USART1_CTS USART5_RX I2C3_SDA PB5 SPI1_MOSI LPTIM1_IN1 TIM3_CH2/ TIM22_CH2 USART1_CK USART5_CK/ USART5_RTS_D E - PB6 USART1_TX I2C1_SCL LPTIM1_ETR - - - - PB7 USART1_RX I2C1_SDA LPTIM1_IN2 - - USART4_CTS - PB8 - - I2C1_SCL - - - PB9 - EVENTOUT I2C1_SDA SPI2_NSS/ I2S2_WS - - PB10 - TIM2_CH3 LPUART1_TX SPI2_SCK I2C2_SCL LPUART1_RX PB11 EVENTOUT TIM2_CH4 LPUART1_RX - I2C2_SDA LPUART1_TX PB12 SPI2_NSS/I2S2_WS LPUART1_RTS_ DE I2C2_SMBA EVENTOUT - PB13 SPI2_SCK/I2S2_CK MCO LPUART1_CTS I2C2_SCL TIM21_CH1 - PB14 SPI2_MISO/ I2S2_MCK RTC_OUT LPUART1_RTS_DE I2C2_SDA TIM21_CH2 - PB15 SPI2_MOSI/ I2S2_SD RTC_REFIN - - - - - I2C1_SMBA - - Pin descriptions 47/135 PB0 STM32L071xx Table 17. Alternate functions port B AF0 Port SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF AF2 SPI1/SPI2/I2S2/I2C1/ TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/ LPTIM1/TIM2/3 /EVENTOUT/SYS_AF AF3 AF4 AF5 AF6 AF7 I2C1/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT I2C3/LPUART1/ COMP1/2/ TIM3 DocID027101 Rev 2 PC0 LPTIM1_IN1 EVENTOUT LPUART1_RX I2C3_SCL PC1 LPTIM1_OUT EVENTOUT LPUART1_TX I2C3_SDA PC2 LPTIM1_IN2 SPI2_MISO/ I2S2_MCK PC3 LPTIM1_ETR SPI2_MOSI/ I2S2_SD PC4 EVENTOUT LPUART1_TX PC5 Port C AF1 LPUART1_RX PC6 TIM22_CH1 TIM3_CH1 PC7 TIM22_CH2 TIM3_CH2 PC8 TIM22_ETR TIM3_CH3 PC9 TIM21_ETR TIM3_CH4 PC10 LPUART1_TX USART4_TX PC11 LPUART1_RX USART4_RX PC12 Pin descriptions 48/135 Table 18. Alternate functions port C USART5_TX I2C3_SDA USART4_CK PC13 PC14 PC15 STM32L071xx AF0 AF1 AF2 AF4 AF5 AF6 AF7 SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF SPI1/SPI2/I2S2/I2C1/ TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF I2C1/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT I2C3/LPUART1/ COMP1/2/TIM3 PD0 TIM21_CH1 SPI2_NSS/I2S2_WS - - - - - - PD1 - SPI2_SCK/I2S2_CK - - - - - - PD2 LPUART1_RTS_ DE TIM3_ETR - - - USART5_RX - PD3 USART2_CTS SPI2_MISO/ I2S2_MCK - - - - - PD4 USART2_RTS_D E SPI2_MOSI/I2S2_SD - - - - - - PD5 USART2_TX - - - - - - - PD6 USART2_RX - - - - - - - PD7 USART2_CK TIM21_CH2 - - - - - - PD8 LPUART1_TX - - - - - - PD9 LPUART1_RX - - - - - - PD10 - - - - - - - PD11 LPUART1_CTS - - - - - - PD12 LPUART1_RTS_ DE - - - - - - PD13 - - - - - - - PD14 - - - - - - - - - - - - - DocID027101 Rev 2 Port D Port PD15 49/135 Pin descriptions AF3 STM32L071xx Table 19. Alternate functions port D AF0 DocID027101 Rev 2 Port E Port SPI1/SPI2/I2S2/ USART1/2/ LPUART1/LPTI M1/ TIM2/21/22/ EVENTOUT/ SYS_AF AF1 AF2 AF3 AF4 AF5 AF6 AF7 SPI1/SPI2/I2S2/ LPUART1/ USART5/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF I2C1/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT SPI1/SPI2/I2S2/I2C1 /TIM2/21 I2C3/LPUART1/ COMP1/2/TIM3 PE0 - EVENTOUT - - - - - PE1 - EVENTOUT - - - - - PE2 - TIM3_ETR - - - - - PE3 TIM22_CH1 TIM3_CH1 - - - - - PE4 TIM22_CH2 - TIM3_CH2 - - - - - PE5 TIM21_CH1 - TIM3_CH3 - - - - - PE6 TIM21_CH2 - TIM3_CH4 - - - - - PE7 - - - - - USART5_CK/U SART5_RTS_D E - PE8 - - - - - USART4_TX - PE9 TIM2_CH1 TIM2_ETR - - - USART4_RX - PE10 TIM2_CH2 - - - - USART5_TX - PE11 TIM2_CH3 - - - - - USART5_RX - PE12 TIM2_CH4 - SPI1_NSS - - - - - PE13 - SPI1_SCK - - - - - PE14 - SPI1_MISO - - - - - PE15 - SPI1_MOSI - - - - - Pin descriptions 50/135 Table 20. Alternate functions port E STM32L071xx AF0 Port SPI1/SPI2/ I2S2/USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF Port H PH0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SPI1/SPI2/I2S2 /I2C1/TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/ LPTIM1/TIM2/3/ EVENTOUT/ SYS_AF I2C1/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2/I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT I2C3/ LPUART1/ COMP1/2/ TIM3 - - - - - - - PH1 - - - - - - - - PH9 - - - - - - - - PH10 - - - - - - - - STM32L071xx Table 21. Alternate functions port H DocID027101 Rev 2 Pin descriptions 51/135 Memory mapping 5 STM32L071xx Memory mapping Figure 11. Memory map [)))))))) [( [( [))) &RUWH[0 SHULSKHUDOV )/0/24 [ RESERVED [& [)) !(" [ RESERVED [$ [ [))))))) 2SWLRQE\WHV !0" [ [ 6\VWHP PHPRU\ !0" [ [ RESERVED [ 3HULSKHUDOV [ RESERVED [ 65$0 [ 'DWD((3520EDQN 'DWD((3520EDQN )ODVKSURJUDPEDQN )ODVKSURJUDPEDQN RESERVED &2'( &LASHSYSTEMMEMORY OR32!-DEPENDING ON"//4 CONFIGURATION [ [ 5HVHUYHG 06Y9 1. Refer to the STM32L071xx reference manual for details on the Flash memory organization for each memory size. 52/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the 1.65 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 12. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 13. Figure 12. Pin loading conditions Figure 13. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 DLF DocID027101 Rev 2 DLF 53/135 107 Electrical characteristics 6.1.6 STM32L071xx Power supply scheme Figure 14. Power supply scheme 287 *3,2V ,1 /HYHOVKLIWHU 6WDQGE\SRZHUFLUFXLWU\ 26&57&:DNHXS ORJLF57&EDFNXS UHJLVWHUV ,2 /RJLF .HUQHOORJLF &38 'LJLWDO 0HPRULHV 9'' 9'' 5HJXODWRU 1îQ) î) 966 9''$ 9''$ 95() Q) ) Q) ) 95() 95() $'& $QDORJ 5&3//&203 « 966$ 06Y9 6.1.7 Current consumption measurement Figure 15. Current consumption measurement scheme 9''$ ,'' 1[9'' 1îQ) î) 1[966 06Y9 54/135 DocID027101 Rev 2 STM32L071xx 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 22: Voltage characteristics, Table 23: Current characteristics, and Table 24: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 22. Voltage characteristics Symbol VDD–VSS VIN(2) Definition Min Max External main supply voltage (including VDDA, VDDIO2 VDD)(1) –0.3 4.0 Input voltage on FT and FTf pins VSS − 0.3 VDD+4.0 Input voltage on TC pins VSS − 0.3 4.0 Input voltage on BOOT0 VSS VDD + 4.0 VSS − 0.3 4.0 Input voltage on any other pin |ΔVDD| Variations between different VDDx power pins - 50 |VDDA-VDDx| Variations between any VDDx and VDDA power pins(3) - 300 Variations between all different ground pins including VREF- pin - 50 - 0.4 |ΔVSS| VREF+ –VDDA Allowed voltage difference for VREF+ > VDDA VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV V see Section 6.3.11 1. All main power (VDD,, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 23 for maximum allowed injected current values. 3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and device operation. VDDIO2 is independent from VDD and VDDA: its value does not need to respect this rule. DocID027101 Rev 2 55/135 107 Electrical characteristics STM32L071xx Table 23. Current characteristics Symbol Ratings Max. ΣIVDD(2) Total current into sum of all VDD power lines (source)(1) 105 ΣIVSS(2) (1) Total current out of sum of all VSS ground lines (sink) 105 ΣIVDDIO2 Total current into VDDIO2 power line (source) 25 IVDD(PIN) Maximum current into each VDD power pin (source)(1) IVSS(PIN) IIO ΣIIO(PIN) IINJ(PIN) ΣIINJ(PIN) 100 (1) Maximum current out of each VSS ground pin (sink) 100 Output current sunk by any I/O and control pin except FTf pins 16 Output current sunk by FTf pins 22 Output current sourced by any I/O and control pin -16 Total output current sunk by sum of all IOs and control pins except PA11 and PA12(2) 90 Total output current sunk by PA11 and PA12 25 Total output current sourced by sum of all IOs and control pins(2) -90 Injected current on FT, FFf, RST and B pins Unit mA -5/+0(3) Injected current on TC pin ± 5(4) Total injected current (sum of all I/O and control pins)(5) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 22 for maximum allowed input voltage values. 4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 22: Voltage characteristics for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 24. Thermal characteristics Symbol TSTG TJ 56/135 Ratings Storage temperature range Maximum junction temperature DocID027101 Rev 2 Value Unit –65 to +150 °C 150 °C STM32L071xx Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 25. General operating conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency - 0 32 fPCLK1 Internal APB1 clock frequency - 0 32 fPCLK2 Internal APB2 clock frequency - 0 32 BOR detector disabled 1.65 3.6 BOR detector enabled, at power on 1.8 3.6 BOR detector disabled, after power on 1.65 3.6 Must be the same voltage as VDD(1) 1.8 3.6 V 1.65 3.6 V 2.0 V ≤ VDD ≤ 3.6 V -0.3 5.5 1.65 V ≤ VDD ≤ 2.0 V -0.3 5.2 VDD VDDA VDDIO2 Standard operating voltage Analog operating voltage (all features) Standard operating voltage - Input voltage on FT, FTf and RST pins(2) VIN Input voltage on BOOT0 pin - 0 5.5 Input voltage on TC pin - -0.3 VDD+0.3 UFBGA100 package - 351 LQFP100 package - 488 TFBGA64 package - 313 Power dissipation at TA = 85 °C (range 6) LQFP64 package or TA =105 °C (rage 7) (3) WLCSP49 package - 435 - 417 LQFP48 package - 370 UFQFPN32 package - 556 LQFP32 package - 333 UFBGA100 package - 88 LQFP100 package - 122 TFBGA64 package - 78 LQFP64 package - 109 WLCSP49 package - 104 LQFP48 package - 93 UFQFPN32 package - 139 LQFP32 package - 83 PD Power dissipation at TA = 125 °C (range 3) (3) DocID027101 Rev 2 MHz V V mW 57/135 107 Electrical characteristics STM32L071xx Table 25. General operating conditions (continued) Symbol TA TJ Parameter Conditions Min Max Maximum power dissipation (range 6) –40 85 Maximum power dissipation (range 7) –40 105 Maximum power dissipation (range 3) –40 125 Junction temperature range (range 6) -40 °C ≤ TA ≤ 85 ° –40 105 Junction temperature range (range 7) -40 °C ≤ TA ≤ 105 °C –40 125 Junction temperature range (range 3) -40 °C ≤ TA ≤ 125 °C –40 130 Temperature range Unit °C 1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and normal operation. 2. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled. 3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 24: Thermal characteristics on page 56). 58/135 DocID027101 Rev 2 STM32L071xx 6.3.2 Electrical characteristics Embedded reset and power control block characteristics The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in Table 25. Table 26. Embedded reset and power control block characteristics Symbol Parameter Conditions VDD rise time rate tVDD(1) VDD fall time rate TRSTTEMPO(1) Reset temporization Min Typ Max BOR detector enabled 0 - ∞ BOR detector disabled 0 - 1000 BOR detector enabled 20 - ∞ BOR detector disabled 0 - 1000 VDD rising, BOR enabled - 2 3.3 0.4 0.7 1.6 Falling edge 1 1.5 1.65 Rising edge 1.3 1.5 1.65 Falling edge 1.67 1.7 1.74 Rising edge 1.69 1.76 1.8 Falling edge 1.87 1.93 1.97 Rising edge 1.96 2.03 2.07 Falling edge 2.22 2.30 2.35 Rising edge 2.31 2.41 2.44 Falling edge 2.45 2.55 2.6 Rising edge 2.54 2.66 2.7 Falling edge 2.68 2.8 2.85 Rising edge 2.78 2.9 2.95 Falling edge 1.8 1.85 1.88 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 Rising edge 2.08 2.14 2.18 Falling edge 2.20 2.24 2.28 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 Rising edge 2.87 2.94 2.99 VDD rising, BOR VPOR/PDR Power on/power down reset threshold VBOR0 Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 DocID027101 Rev 2 disabled(2) Unit µs/V ms V 59/135 107 Electrical characteristics STM32L071xx Table 26. Embedded reset and power control block characteristics (continued) Symbol Parameter VPVD6 Conditions PVD threshold 6 Hysteresis voltage Vhyst Min Typ Max Falling edge 2.97 3.05 3.09 Rising edge 3.08 3.15 3.20 BOR0 threshold - 40 - All BOR and PVD thresholds excepting BOR0 - 100 - Unit V mV 1. Guaranteed by characterization results. 2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details. 6.3.3 Embedded internal reference voltage The parameters given in Table 28 are based on characterization results, unless otherwise specified. Table 27. Embedded internal reference voltage calibration values Calibration value name Description Memory address Raw data acquired at temperature of 25 °C VDDA= 3 V VREFINT_CAL 0x1FF8 0078 - 0x1FF8 0079 Table 28. Embedded internal reference voltage(1) Symbol Parameter VREFINT out(2) Internal reference voltage Conditions Min Typ Max Unit – 40 °C < TJ < +125 °C 1.202 1.224 1.242 V TVREFINT Internal reference startup time - - 2 3 ms VVREF_MEAS VDDA and VREF+ voltage during VREFINT factory measure - 2.99 3 3.01 V AVREF_MEAS Accuracy of factory-measured VREFINT value(3) Including uncertainties due to ADC and VDDA/VREF+ values - - ±5 mV TCoeff(4) Temperature coefficient –40 °C < TJ < +125 °C - 25 100 ppm/°C ACoeff(4) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm VDDCoeff(4) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V TS_vrefint(4)(5) ADC sampling time when reading the internal reference voltage - 5 10 - µs TADC_BUF(4) Startup time of reference voltage buffer for ADC - - - 10 µs IBUF_ADC(4) Consumption of reference voltage buffer for ADC - - 13.5 25 µA IVREF_OUT(4) VREF_OUT output current(6) - - - 1 µA VREF_OUT output load - - - 50 pF CVREF_OUT 60/135 (4) DocID027101 Rev 2 STM32L071xx Electrical characteristics Table 28. Embedded internal reference voltage(1) (continued) Symbol Parameter Conditions Min Typ Max Unit Consumption of reference voltage buffer for VREF_OUT and COMP - - 730 1200 nA VREFINT_DIV1(4) 1/4 reference voltage - 24 25 26 VREFINT_DIV2(4) 1/2 reference voltage - 49 50 51 VREFINT_DIV3(4) 3/4 reference voltage - 74 75 76 ILPBUF(4) % VREFINT 1. Refer to Table 40: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current consumption (IREFINT). 2. Guaranteed by test in production. 3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes. 4. Guaranteed by design. 5. Shortest sampling time can be determined in the application by multiple iterations. 6. To guarantee less than 1% VREF_OUT deviation. 6.3.4 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 15: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise. The current consumption values are derived from the tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25: General operating conditions unless otherwise specified. The MCU is placed under the following conditions: • All I/O pins are configured in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance unless otherwise specified. • When the peripherals are enabled fAPB1 = fAPB2 = fAPB • When PLL is on, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used) • The HSE user clock applied to OSCI_IN input follows the characteristic specified in Table 42: High-speed external user clock characteristics • For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins • For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not specified otherwise The parameters given in Table 49, Table 25 and Table 26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25. DocID027101 Rev 2 61/135 107 Electrical characteristics STM32L071xx Table 29. Current consumption in Run mode, code with data processing running from Flash memory Symbol Parameter fHCLK (MHz) Typ Max(1) 1 190 250 2 345 380 4 650 670 4 0,8 0,86 8 1,55 1,7 16 2,95 3,1 8 1,9 2,1 16 3,55 3,8 32 6,65 7,2 0,065 39 130 0,524 115 210 4,2 700 770 Range2, Vcore=1.5 V VOS[1:0]=10 16 2,9 3,2 Range1, Vcore=1.8 V VOS[1:0]=01 32 Condition Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) IDD (Run from Flash memory) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Run mode code executed from Flash memory MSI clock source HSI clock source (16MHz) Range3, Vcore=1.2 V VOS[1:0]=11 Unit µA mA µA mA 7,15 7,4 1. Guaranteed by characterization results at 125 °C, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). Table 30. Current consumption in Run mode vs code type, code with data processing running from Flash memory Symbol Parameter Supply IDD current in (Run Run mode, from code Flash executed memory) from Flash memory Conditions Range 3, VCORE=1.2 V, VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL on)(1) Range 1, VCORE=1.8 V, VOS[1:0]=01 1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). 62/135 DocID027101 Rev 2 fHCLK Typ Dhrystone 650 CoreMark 655 Fibonacci 4 MHz 485 while(1) 385 while(1), 1WS, prefetch off 375 Dhrystone 6,65 CoreMark 6,9 Fibonacci 32 MHz 6,75 while(1) 5,8 while(1), prefetch off 5,5 Unit µA mA STM32L071xx Electrical characteristics Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS ,''P$ 9''9 & & & & & & 06Y9 Figure 17. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS ,''P$ 9''9 & & & & & & 06Y9 DocID027101 Rev 2 63/135 107 Electrical characteristics STM32L071xx Table 31. Current consumption in Run mode, code with data processing running from RAM Symbol Parameter fHCLK (MHz) Typ Max(1) 1 175 230 2 315 360 4 570 630 4 0,71 0,78 8 1,35 1,6 16 2,7 3 8 1,7 1,9 16 3,2 3,7 32 6,65 7,1 0,065 38 98 0,524 105 160 4,2 615 710 Range2, Vcore=1.5 V VOS[1:0]=10 16 2,85 3 Range1, Vcore=1.8 V VOS[1:0]=01 32 Condition Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) IDD (Run from RAM) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Run mode code executed from RAM, Flash memory switched off Range3, Vcore=1.2 V VOS[1:0]=11 MSI clock HSI clock source (16 MHz) Unit µA mA µA mA 6,85 7,3 1. Guaranteed by characterization results at 125 °C, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). Table 32. Current consumption in Run mode vs code type, code with data processing running from RAM(1) Symbol Parameter Conditions fHCLK Dhrystone IDD (Run from RAM) Supply current in Run mode, code executed from RAM, Flash memory switched off fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL on)(2) Range 3, VCORE=1.2 V, VOS[1:0]=11 Range 1, VCORE=1.8 V, VOS[1:0]=01 CoreMark Fibonacci 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). 64/135 DocID027101 Rev 2 4 MHz 670 410 375 Dhrystone 6,65 CoreMark Fibonacci Unit 570 while(1) while(1) 1. Guaranteed by characterization results, unless otherwise specified. Typ 32 MHz 6,95 5,9 5,2 µA mA STM32L071xx Electrical characteristics Table 33. Current consumption in Sleep mode Symbol Parameter fHCLK (MHz) Typ Max(1) 1 43,5 110 2 72 140 4 130 200 4 160 220 8 305 380 16 590 690 8 370 460 16 715 840 32 1650 2000 0,065 18 93 0,524 31,5 110 4,2 140 230 Range2, Vcore=1.5 V VOS[1:0]=10 16 665 850 Range1, Vcore=1.8 V VOS[1:0]=01 32 1750 2100 1 57,5 130 2 84 160 4 150 220 4 170 240 8 315 400 16 605 710 8 380 470 16 730 860 32 1650 2000 0,065 29,5 110 0,524 44,5 120 4,2 150 240 Range2, Vcore=1.5 V VOS[1:0]=10 16 680 930 Range1, Vcore=1.8 V VOS[1:0]=01 32 1750 2200 Condition Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Sleep mode, Flash memory switched OFF Range3, Vcore=1.2 V VOS[1:0]=11 MSI clock HSI clock source (16 MHz) IDD (Sleep) Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Sleep mode, Flash memory switched ON Range3, Vcore=1.2 V VOS[1:0]=11 MSI clock HSI clock source (16MHz) Unit µA 1. Guaranteed by characterization results at 125 °C, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). DocID027101 Rev 2 65/135 107 Electrical characteristics STM32L071xx Table 34. Current consumption in Low-power run mode Symbol Parameter fHCLK (MHz) Typ Max(1) 9,45 12 14 58 21 64 36,5 160 14,5 18 19,5 60 26 65 42 160 26,5 30 27,5 60 31 66 TA = 105°C 37,5 77 TA = 125°C 53,5 170 TA = − 40 to 25°C 24,5 34 30 82 38,5 90 TA = 125°C 58 120 TA = − 40 to 25°C 30,5 40 36,5 88 45 96 TA = 125°C 64,5 120 TA = − 40 to 25°C 45 56 TA = 55°C 48 96 51 110 TA = 105°C 59,5 120 TA = 125°C 79,5 150 Condition TA = − 40 to 25°C TA = 85°C MSI clock = 65 kHz, fHCLK= 32 kHz TA = 105°C 0,032 TA = 125°C TA = − 40 to 25°C All peripherals OFF, code TA = 85°C MSI clock = 65 kHz, executed from 0,065 fHCLK= 65kHz RAM, Flash TA = 105°C memory switched TA = 125°C OFF, VDD from 1.65 to 3.6 V TA = − 40 to 25°C TA = 55°C MSI clock=131 kHz, fHCLK= 131 kHz IDD (LP Run) Supply current in Low-power run mode TA = 85°C TA = 85°C MSI clock = 65 kHz, fHCLK= 32 kHz All peripherals OFF, code MSI clock = 65 kHz, executed from fHCLK= 65 kHz Flash memory, VDD from 1.65 V to 3.6 V TA = 105°C TA = 85°C TA = 105°C MSI clock = 131 kHz, fHCLK= 131 kHz TA = 85°C 1. Guaranteed by characterization results at 125 °C, unless otherwise specified. 66/135 DocID027101 Rev 2 0,131 0,032 0,065 0,131 Unit µA STM32L071xx Electrical characteristics Figure 18. IDD vs VDD, at TA= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS ,''P$ ( ( ( ( ( ( ( ( ( 9''9 06Y9 Table 35. Current consumption in Low-power sleep mode Symbol Parameter Condition Max (1) MSI clock = 65 kHz, fHCLK= 32 kHz, TA = − 40 to 25°C Flash memory OFF 4,7 - TA = − 40 to 25°C 17 24 TA = 85°C 19,5 30 TA= 105°C 23 47 TA= 125°C 32,5 70 TA= − 40 to 25°C 17 24 TA= 85°C 20 31 TA = 105°C 23,5 47 TA = 125°C 32,5 70 TA= − 40 to 25°C 19,5 27 TA = 55°C 20,5 28 TA = 85°C 22,5 33 TA = 105°C 26 50 TA= 125°C 35 73 MSI clock = 65 kHz, fHCLK= 32 kHz All peripherals Supply current in OFF, code IDD Low-power sleep executed from (LP Sleep) mode Flash memory, VDD from 1.65 to 3.6 V Typ MSI clock = 65 kHz, fHCLK= 65 kHz MSI clock = 131kHz, fHCLK= 131 kHz Unit µA 1. Guaranteed by characterization results at 125 °C, unless otherwise specified. DocID027101 Rev 2 67/135 107 Electrical characteristics STM32L071xx Table 36. Typical and maximum current consumptions in Stop mode Symbol Parameter Max(1) Unit Conditions Typ TA = − 40 to 25°C 0,43 1,00 TA = 55°C 0,735 2,50 TA= 85°C 2,25 4,90 TA = 105°C 5,3 13,00 TA = 125°C 12,5 28,00 IDD (Stop) Supply current in Stop mode µA 1. Guaranteed by characterization results at 125 °C, unless otherwise specified. Figure 19. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive ( ( ( ( ,''P$ ( ( ( ( 9''9 & & & & & & 06Y9 68/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Figure 20. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off ( ( ( ,''P$ ( ( ( ( 9''9 & & & & & & 06Y9 Table 37. Typical and maximum current consumptions in Standby mode Symbol Parameter Typ Max(1) TA = − 40 to 25°C 0,855 1,70 TA = 55 °C - 2,90 TA= 85 °C - 3,30 TA = 105 °C - 4,10 TA = 125 °C - 8,50 TA = − 40 to 25°C 0,29 0,60 TA = 55 °C 0,32 1,20 TA = 85 °C 0,5 2,30 TA = 105 °C 0,94 3,00 TA = 125 °C 2,6 7,00 Conditions Independent watchdog and LSI enabled IDD Supply current in Standby (Standby) mode Independent watchdog and LSI off Unit µA 1. Guaranteed by characterization results at 125 °C, unless otherwise specified DocID027101 Rev 2 69/135 107 Electrical characteristics STM32L071xx Table 38. Average current consumption during Wakeup System frequency Current consumption during wakeup HSI 1 HSI/4 0,7 MSI clock = 4,2 MHz 0,7 MSI clock = 1,05 MHz 0,4 MSI clock = 65 KHz 0,1 Reset pin pulled down - 0,21 BOR on - 0,23 IDD (Wakeup from With Fast wakeup set StandBy) With Fast wakeup disabled MSI clock = 2,1 MHz 0,5 MSI clock = 2,1 MHz 0,12 Symbol parameter IDD (Wakeup from Supply current during Wakeup from Stop) Stop mode IDD (Reset) IDD (Power-up) 70/135 DocID027101 Rev 2 Unit mA STM32L071xx Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions: • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on Table 39. Peripheral current consumption in Run or Sleep mode(1) Typical consumption, VDD = 3.0 V, TA = 25 °C Peripheral APB1 Low-power sleep and run CRS 2.5 2 2 2 I2C1 11 9.5 7.5 9 I2C3 11 9 7 9 LPTIM1 10 8.5 6.5 8 LPUART1 8 6.5 5.5 6 SPI2 9 4.5 3.5 4 USART2 14.5 12 9.5 11 USART4 5 4 3 5 USART5 5 4 3 5 TIM2 10.5 8.5 7 9 TIM3 12 10 8 11 TIM6 3.5 3 2.5 2 TIM7 3.5 3 2.5 2 WWDG 3 2 2 2 ADC1(2) 5.5 5 3.5 4 4 3 3 2.5 USART1 14.5 11.5 9.5 12 TIM21 7.5 6 5 5.5 TIM22 7 6 5 6 FIREWALL 1.5 1 1 0.5 DBGMCU 1.5 1 1 0.5 SYSCFG 2.5 2 2 1.5 SPI1 APB2 Range 2, Range 3, Range 1, VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 DocID027101 Rev 2 Unit µA/MHz (fHCLK) µA/MHz (fHCLK) 71/135 107 Electrical characteristics STM32L071xx Table 39. Peripheral current consumption in Run or Sleep mode(1) (continued) Typical consumption, VDD = 3.0 V, TA = 25 °C Peripheral Range 2, Range 3, Range 1, VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 Low-power sleep and run GPIOA CortexM0+ core GPIOB I/O port GPIOC 3.5 3 2.5 2.5 3.5 2.5 2 2.5 8.5 6.5 5.5 7 GPIOD CortexM0+ core GPIOE I/O port GPIOH 1 0.5 0.5 0.5 8 6 5 6 1.5 1 1 0.5 1.5 1 1 1 0(3) 0(3) 0(3) 10 8 6.5 8.5 204 162 130 202 2.5 2 2 1 CRC FLASH DMA1 AHB All enabled PWR (3) 0 Unit µA/MHz (fHCLK) µA/MHz (fHCLK) µA/MHz (fHCLK) µA/MHz (fHCLK) 1. Data based on differential IDD measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production. 2. HSI oscillator is off for this measure. 3. Current consumption is negligible and close to 0 µA. 72/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Table 40. Peripheral current consumption in Stop and Standby mode(1) Symbol IDD(PVD / BOR) - IREFINT - - Typical consumption, TA = 25 °C Peripheral LSE Low drive(2) VDD=1.8 V VDD=3.0 V 0.7 1.2 - 1.7 0.11 0,13 - LSI 0.27 0.31 - IWDG 0.2 0.3 - LPTIM1, Input 100 Hz 0.01 0,01 - LPTIM1, Input 1 MHz 11 12 - LPUART1 - 0,5 - RTC 0.16 0,3 Unit µA 1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode. 2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN and OSC32_OUT.- 6.3.5 Wakeup time from low-power mode The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode: • Sleep mode: the clock source is the clock that was set before entering Sleep mode • Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4. • Standby mode: the clock source is the MSI oscillator running at 2.1 MHz All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25. Table 41. Low-power mode wakeup timings Symbol tWUSLEEP Parameter Conditions Wakeup from Sleep mode tWUSLEEP_ Wakeup from Low-power sleep mode, fHCLK = 262 kHz LP Typ Max fHCLK = 32 MHz 7 8 fHCLK = 262 kHz Flash memory enabled 7 8 fHCLK = 262 kHz Flash memory switched OFF 9 10 DocID027101 Rev 2 Unit Number of clock cycles 73/135 107 Electrical characteristics STM32L071xx Table 41. Low-power mode wakeup timings (continued) Symbol tWUSTOP tWUSTDBY 74/135 Parameter Conditions Typ Max fHCLK = fMSI = 4.2 MHz Wakeup from Stop mode, regulator in Run fHCLK = fHSI = 16 MHz mode fHCLK = fHSI/4 = 4 MHz 5.0 8 4.9 7 8.0 11 fHCLK = fMSI = 4.2 MHz Voltage range 1 5.0 8 fHCLK = fMSI = 4.2 MHz Voltage range 2 5.0 8 fHCLK = fMSI = 4.2 MHz Voltage range 3 5.0 8 7.3 13 13 23 28 38 fHCLK = fMSI = 262 kHz 51 65 fHCLK = fMSI = 131 kHz 100 120 fHCLK = MSI = 65 kHz 190 260 fHCLK = fHSI = 16 MHz 4.9 7 fHCLK = fHSI/4 = 4 MHz 8.0 11 fHCLK = fHSI = 16 MHz Wakeup from Stop mode, regulator in lowfHCLK = fHSI/4 = 4 MHz power mode, code running from RAM fHCLK = fMSI = 4.2 MHz 4.9 7 7.9 10 4.7 8 Wakeup from Standby mode FWU bit = 1 fHCLK = MSI = 2.1 MHz 65 130 Wakeup from Standby mode FWU bit = 0 fHCLK = MSI = 2.1 MHz 2.2 3 fHCLK = fMSI = 2.1 MHz Wakeup from Stop mode, regulator in lowfHCLK = fMSI = 1.05 MHz power mode fHCLK = fMSI = 524 kHz DocID027101 Rev 2 Unit µs ms STM32L071xx 6.3.6 Electrical characteristics External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 21. Table 42. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Unit CSS is on or PLL is used 1 8 32 MHz CSS is off, PLL not used 0 8 32 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time 12 - - tr(HSE) tf(HSE) OSC_IN rise or fall time - - 20 OSC_IN input capacitance - 2.6 - pF 45 - 55 % - - ±1 µA Cin(HSE) ns - DuCy(HSE) Duty cycle IL OSC_IN Input leakage current V VSS ≤ VIN ≤ VDD 1. Guaranteed by design. Figure 21. High-speed external clock source AC timing diagram 9+6(+ 9+6(/ WU+6( WI+6( W:+6( W:+6( W 7+6( (;7(5 1$/ &/2&. 6285& ( I+6(BH[W 26& B,1 ,/ 670/[[ DLF DocID027101 Rev 2 75/135 107 Electrical characteristics STM32L071xx Low-speed external user clock generated from an external source The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 25. Table 43. Low-speed external user clock characteristics(1) Symbol Parameter Conditions fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSE) tw(LSE) OSC32_IN high or low time tr(LSE) tf(LSE) OSC32_IN rise or fall time CIN(LSE) Typ Max Unit 1 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 465 - ns - - 10 - - 0.6 - pF - 45 - 55 % VSS ≤ VIN ≤ VDD - - ±1 µA OSC32_IN input capacitance DuCy(LSE) Duty cycle IL Min OSC32_IN Input leakage current 1. Guaranteed by design, not tested in production Figure 22. Low-speed external clock source AC timing diagram 9/6(+ 9/6(/ WU/6( WI/6( W:/6( W:/6( W 7/6( (;7(5 1$/ &/2&. 6285& ( I/6(BH[W 26&B,1 ,/ 670/[[ DLF 76/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 44. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 44. HSE oscillator characteristics(1) Symbol Parameter Conditions fOSC_IN Oscillator frequency RF Feedback resistor Gm Maximum critical crystal transconductance tSU(HSE) (2) Startup time Min Typ - 1 - - Startup VDD is stabilized Max Unit 25 MHz 200 - kΩ - - 700 µA /V - 2 - ms 1. Guaranteed by design. 2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 23). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 23. HSE oscillator circuit diagram I+6(WRFRUH 5P /P 5) &2 &/ 26&B,1 &P JP 5HVRQDWRU 5HVRQDWRU &RQVXPSWLRQ FRQWURO 670 26&B287 &/ DLE DocID027101 Rev 2 77/135 107 Electrical characteristics STM32L071xx Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 45. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 45. LSE oscillator characteristics(1) Symbol fLSE Gm Conditions(2) Min(2) Typ Max Unit - 32.768 - kHz LSEDRV[1:0]=00 lower driving capability - - 0.5 LSEDRV[1:0]= 01 medium low driving capability - - 0.75 LSEDRV[1:0] = 10 medium high driving capability - - 1.7 LSEDRV[1:0]=11 higher driving capability - - 2.7 VDD is stabilized - 2 - Parameter LSE oscillator frequency Maximum critical crystal transconductance tSU(LSE)(3) Startup time µA/V s 1. Guaranteed by design. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 24. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I/6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: 78/135 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID027101 Rev 2 STM32L071xx 6.3.7 Electrical characteristics Internal clock source characteristics The parameters given in Table 46 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25. High-speed internal 16 MHz (HSI16) RC oscillator Table 46. 16 MHz HSI16 oscillator characteristics Symbol fHSI16 TRIM (1)(2) ACCHSI16 (2) Parameter Conditions Min Typ Max Unit Frequency VDD = 3.0 V - 16 - MHz HSI16 usertrimmed resolution Trimming code is not a multiple of 16 - ± 0.4 0.7 % Trimming code is a multiple of 16 - Accuracy of the factory-calibrated HSI16 oscillator - ± 1.5 % VDDA = 3.0 V, TA = 25 °C -1(3) - 1(3) % VDDA = 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 % VDDA = 3.0 V, TA = -10 to 70 °C -2 - 2 % VDDA = 3.0 V, TA = -10 to 85 °C -2.5 - 2 % VDDA = 3.0 V, TA = -10 to 105 °C -4 - 2 % -5.45 - 3.25 % VDDA = 1.65 V to 3.6 V TA = − 40 to 125 °C tSU(HSI16)(2) HSI16 oscillator startup time - - 3.7 6 µs IDD(HSI16)(2) HSI16 oscillator power consumption - - 100 140 µA 1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). 2. Guaranteed by characterization results. 3. Guaranteed by test in production. Figure 25. HSI16 minimum and maximum value versus temperature 9PLQ 9W\S 9PD[ 9PD[ 9PLQ 06Y9 DocID027101 Rev 2 79/135 107 Electrical characteristics STM32L071xx Low-speed internal (LSI) RC oscillator Table 47. LSI oscillator characteristics Symbol Parameter Min Typ Max Unit fLSI(1) LSI frequency 26 38 56 kHz DLSI(2) LSI oscillator frequency drift 0°C ≤ TA ≤ 85°C -10 - 4 % LSI oscillator startup time - - 200 µs LSI oscillator power consumption - 400 510 nA tsu(LSI)(3) IDD(LSI) (3) 1. Guaranteed by test in production. 2. This is a deviation for an individual part, once the initial frequency has been measured. 3. Guaranteed by design. Multi-speed internal (MSI) RC oscillator Table 48. MSI oscillator characteristics Symbol fMSI ACCMSI DTEMP(MSI)(1) DVOLT(MSI)(1) 80/135 Parameter Condition Typ MSI range 0 65.5 - MSI range 1 131 - MSI range 2 262 - MSI range 3 524 - MSI range 4 1.05 - MSI range 5 2.1 - MSI range 6 4.2 - Frequency error after factory calibration - ±0.5 - MSI oscillator frequency drift 0 °C ≤ TA ≤ 85 °C - ±3 - MSI range 0 − 8.9 +7.0 MSI range 1 − 7.1 +5.0 MSI range 2 − 6.4 +4.0 MSI range 3 − 6.2 +3.0 MSI range 4 − 5.2 +3.0 MSI range 5 − 4.8 +2.0 MSI range 6 − 4.7 +2.0 - - 2.5 Frequency after factory calibration, done at VDD= 3.3 V and TA = 25 °C MSI oscillator frequency drift VDD = 3.3 V, − 40 °C ≤ TA ≤ 110 °C MSI oscillator frequency drift 1.65 V ≤ VDD ≤ 3.6 V, TA = 25 °C DocID027101 Rev 2 Max Unit kHz MHz % % %/V STM32L071xx Electrical characteristics Table 48. MSI oscillator characteristics (continued) Symbol IDD(MSI)(2) tSU(MSI) tSTAB(MSI)(2) fOVER(MSI) Parameter MSI oscillator power consumption MSI oscillator startup time MSI oscillator stabilization time MSI oscillator frequency overshoot Condition Typ Max Unit MSI range 0 0.75 - MSI range 1 1 - MSI range 2 1.5 - MSI range 3 2.5 - MSI range 4 4.5 - MSI range 5 8 - MSI range 6 15 - MSI range 0 30 - MSI range 1 20 - MSI range 2 15 - MSI range 3 10 - MSI range 4 6 - MSI range 5 5 - MSI range 6, Voltage range 1 and 2 3.5 - MSI range 6, Voltage range 3 5 - MSI range 0 - 40 MSI range 1 - 20 MSI range 2 - 10 MSI range 3 - 4 MSI range 4 - 2.5 MSI range 5 - 2 MSI range 6, Voltage range 1 and 2 - 2 MSI range 3, Voltage range 3 - 3 Any range to range 5 - 4 Any range to range 6 - µA µs µs MHz 6 1. This is a deviation for an individual part, once the initial frequency has been measured. 2. Guaranteed by characterization results. DocID027101 Rev 2 81/135 107 Electrical characteristics 6.3.8 STM32L071xx PLL characteristics The parameters given in Table 49 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25. Table 49. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 2 - 24 MHz PLL input clock duty cycle 45 - 55 % fPLL_OUT PLL output clock 2 - 32 MHz tLOCK PLL input = 16 MHz PLL VCO = 96 MHz - 115 160 µs Jitter Cycle-to-cycle jitter - ± 600 ps IDDA(PLL) Current consumption on VDDA - 220 450 IDD(PLL) Current consumption on VDD - 120 150 fPLL_IN µA 1. Guaranteed by characterization results. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 6.3.9 Memory characteristics RAM memory Table 50. RAM and hardware registers Symbol VRM Parameter Conditions Data retention mode(1) STOP mode (or RESET) Min Typ Max Unit 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode). Flash memory and data EEPROM Table 51. Flash memory and data EEPROM characteristics Symbol 82/135 Conditions Min Typ Max(1) Unit - 1.65 - 3.6 V Erasing - 3.28 3.94 Programming - 3.28 3.94 Parameter VDD Operating voltage Read / Write / Erase tprog Programming time for word or half-page DocID027101 Rev 2 ms STM32L071xx Electrical characteristics Table 51. Flash memory and data EEPROM characteristics Symbol IDD Min Typ Max(1) Unit Average current during the whole programming / erase operation - 500 700 µA Maximum current (peak) TA = 25 °C, VDD = 3.6 V during the whole programming / erase operation - 1.5 2.5 mA Parameter Conditions 1. Guaranteed by design. Table 52. Flash memory and data EEPROM endurance and retention Value Symbol Parameter Cycling (erase / write) Program memory NCYC(2) Min(1) Unit 10 Cycling (erase / write) EEPROM data memory Cycling (erase / write) Program memory TA = -40°C to 105 °C 100 kcycles 0.2 Cycling (erase / write) EEPROM data memory Data retention (program memory) after 10 kcycles at TA = 85 °C Data retention (EEPROM data memory) after 100 kcycles at TA = 85 °C tRET(2) Conditions Data retention (program memory) after 10 kcycles at TA = 105 °C Data retention (EEPROM data memory) after 100 kcycles at TA = 105 °C Data retention (program memory) after 200 cycles at TA = 125 °C Data retention (EEPROM data memory) after 2 kcycles at TA = 125 °C TA = -40°C to 125 °C 2 30 TRET = +85 °C 30 TRET = +105 °C years 10 TRET = +125 °C 1. Guaranteed by characterization results. 2. Characterization is done according to JEDEC JESD22-A117. 6.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. DocID027101 Rev 2 83/135 107 Electrical characteristics STM32L071xx Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 53. They are based on the EMS levels and classes defined in application note AN1709. Table 53. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 32 MHz induce a functional disturbance conforms to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25 °C, fHCLK = 32 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). 84/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 54. EMI characteristics Symbol Parameter SEMI Conditions VDD = 3.6 V, Peak level TA = 25 °C, LQFP100 package compliant with IEC 61967-2 DocID027101 Rev 2 Monitored frequency band Max vs. frequency range at 32 MHz 0.1 to 30 MHz -7 30 to 130 MHz 14 130 MHz to 1 GHz 9 EMI Level 2 Unit dBµV - 85/135 107 Electrical characteristics 6.3.11 STM32L071xx Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 55. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions Class Maximum value(1) 2 2000 TA = +25 °C, Electrostatic discharge conforming to voltage (human body model) ANSI/JEDEC JS-001 TA = +25 °C, conforming to ANSI/ESD STM5.3.1. Electrostatic discharge VESD(CDM) voltage (charge device model) Unit V C4 500 1. Guaranteed by characterization results. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 56. Electrical sensitivities Symbol LU 86/135 Parameter Static latch-up class Conditions TA = +125 °C conforming to JESD78A DocID027101 Rev 2 Class II level A STM32L071xx 6.3.12 Electrical characteristics I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator frequency deviation). The test results are given in the Table 57. Table 57. I/O current injection susceptibility Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on BOOT0 -0 NA Injected current on PA0, PA4, PA5, PC15, PH0 and PH1 -5 0 Injected current on any other FT, FTf pins -5 (1) NA Injected current on any other pins -5 (1) +5 Unit mA 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. DocID027101 Rev 2 87/135 107 Electrical characteristics 6.3.13 STM32L071xx I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under the conditions summarized in Table 25. All I/Os are CMOS and TTL compliant. Table 58. I/O static characteristics Symbol VIL VIH Vhys Ilkg RPU Parameter Input low level voltage Input high level voltage I/O Schmitt trigger voltage hysteresis (2) Input leakage current (4) Weak pull-up equivalent resistor(5) RPD Weak pull-down equivalent resistor CIO I/O pin capacitance (5) Conditions Min Typ Max TC, FT, FTf, RST I/Os - - 0.3VDD BOOT0 pin - - 0.14VDD(1) All I/Os 0.7 VDD - - Standard I/Os - 10% VDD(3) - BOOT0 pin - 0.01 - VSS ≤ VIN ≤ VDD All I/Os except for PA11, PA12, BOOT0 and FTf I/Os - - ±50 VSS ≤ VIN ≤ VDD, PA11 and PA12 I/Os - - -50/+250 VSS ≤ VIN ≤ VDD FTf I/Os - - ±100 VDD≤ VIN ≤ 5 V All I/Os except for PA11, PA12, BOOT0 and FTf I/Os - - 200 VDD≤ VIN ≤ 5 V FTf I/Os - - 500 VDD≤ VIN ≤ 5 V PA11, PA12 and BOOT0 - - 10 µA VIN = VSS 30 45 60 kΩ VIN = VDD 30 45 60 kΩ - - 5 - pF nA 2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results. 3. With a minimum of 200 mV. Guaranteed by characterization results. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). DocID027101 Rev 2 V nA 1. Guaranteed by characterization. 88/135 Unit STM32L071xx Electrical characteristics Figure 26. VIH/VIL versus VDD (CMOS I/Os) 9,/9,+9 LQV DOOS 9 '' 3+ 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' + 3 9 ,+PLQ 3& 7 %22 9 ' ' PLQ 9,+PLQ LUH UHTX DUG WDQG 6V &02 WV9 ,+ PHQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 9,/PD[ 9''9 06Y9 Figure 27. VIH/VIL versus VDD (TTL I/Os) 9,/9,+9 SLQV DOO 3+ ' ' 9 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' 3+ LQ 9 ,+P 3& 7 %22 77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9 9,+PLQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG 9,/PD[ 77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9 9''9 06Y9 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±15 mA with the non-standard VOL/VOH specifications given in Table 59. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD(Σ) (see Table 23). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS(Σ) (see Table 23). DocID027101 Rev 2 89/135 107 Electrical characteristics STM32L071xx Output voltage levels Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25. All I/Os are CMOS and TTL compliant. Table 59. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2), IIO = +8 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 VDD-0.4 - (1) Output low level voltage for an I/O pin TTL port(2), IIO =+ 8 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 (3)(4) Output high level voltage for an I/O pin TTL port(2), IIO = -6 mA 2.7 V ≤ VDD ≤ 3.6 V 2.4 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +15 mA 2.7 V ≤ VDD ≤ 3.6 V - 1.3 VOH(3)(4) Output high level voltage for an I/O pin IIO = -15 mA 2.7 V ≤ VDD ≤ 3.6 V VDD-1.3 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +4 mA 1.65 V ≤ VDD < 3.6 V - 0.45 VOH(3)(4) Output high level voltage for an I/O pin IIO = -4 mA V -0.45 1.65 V ≤ VDD ≤ 3.6 V DD VOL VOH Output low level voltage for an FTf VOLFM+(1)(4) I/O pin in Fm+ mode Unit V - IIO = 20 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 IIO = 10 mA 1.65 V ≤ VDD ≤ 3.6 V - 0.4 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 23. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣIIO(PIN). 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 23. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣIIO(PIN). 4. Guaranteed by characterization results. 90/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 28 and Table 60, respectively. Unless otherwise specified, the parameters given in Table 60 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25. Table 60. I/O AC characteristics(1) OSPEEDRx[1:0] bit value(1) Symbol fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time 00 01 Fmax(IO)out Maximum frequency(3) 10 tf(IO)out tr(IO)out Output rise and fall time Fmax(IO)out Maximum frequency(3) 11 Fm+ configuration(4) - Min Max(2) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400 CL = 50 pF, VDD = 1.65 V to 2.7 V - 100 CL = 50 pF, VDD = 2.7 V to 3.6 V - 125 CL = 50 pF, VDD = 1.65 V to 2.7 V - 320 CL = 50 pF, VDD = 2.7 V to 3.6 V - 2 CL = 50 pF, VDD = 1.65 V to 2.7 V - 0.6 CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 CL = 50 pF, VDD = 1.65 V to 2.7 V - 65 CL = 50 pF, VDD = 2.7 V to 3.6 V - 10 CL = 50 pF, VDD = 1.65 V to 2.7 V - 2 CL = 50 pF, VDD = 2.7 V to 3.6 V - 13 CL = 50 pF, VDD = 1.65 V to 2.7 V - 28 CL = 30 pF, VDD = 2.7 V to 3.6 V - 35 CL = 50 pF, VDD = 1.65 V to 2.7 V - 10 CL = 30 pF, VDD = 2.7 V to 3.6 V - 6 CL = 50 pF, VDD = 1.65 V to 2.7 V - 17 - 1 - 10 Parameter tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) Conditions tf(IO)out Output fall time tr(IO)out Output rise time - 30 Maximum frequency(3) - 350 - 15 - 60 8 - fmax(IO)out tf(IO)out Output fall time tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller CL = 50 pF, VDD = 2.5 V to 3.6 V CL = 50 pF, VDD = 1.65 V to 3.6 V - Unit kHz ns MHz ns MHz ns MHz ns MHz ns KHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design. 3. The maximum frequency is defined in Figure 28. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration. DocID027101 Rev 2 91/135 107 Electrical characteristics STM32L071xx Figure 28. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU,2RXW WI,2RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´ 6.3.14 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU , except when it is internally driven low (see Table 61). Unless otherwise specified, the parameters given in Table 61 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 25. Table 61. NRST pin characteristics Symbol VIL(NRST) (1) Parameter Conditions Min Typ NRST input low level voltage - VSS - 0.8 - 1.4 - VDD IOL = 2 mA 2.7 V < VDD < 3.6 V - - IOL = 1.5 mA 1.65 V < VDD < 2.7 V - - - - 10%VDD(2) - mV Weak pull-up equivalent resistor(3) VIN = VSS 30 45 60 kΩ NRST input filtered pulse - - - 50 ns NRST input not filtered pulse - 350 - - ns VIH(NRST)(1) NRST input high level voltage NRST output low level VOL(NRST)(1) voltage Vhys(NRST)(1) RPU VF(NRST)(1) VNF(NRST) (1) NRST Schmitt trigger voltage hysteresis Max Unit V 0.4 1. Guaranteed by design. 2. 200 mV minimum value 3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. 92/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Figure 29. Recommended NRST pin protection 9'' ([WHUQDOUHVHWFLUFXLW 538 1567 ,QWHUQDOUHVHW )LOWHU ) 670/[[ DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 61. Otherwise the reset will not be taken into account by the device. 6.3.15 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 62 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 25: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 62. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit - 3.6 V VDDA V VDDA Analog supply voltage for ADC on - 1.65 VREF+ Positive reference voltage - 1.65 VREF- Negative reference voltage - - 0 - Current consumption of the ADC on VDDA and VREF+ 1.14 Msps - 200 - 10 ksps - 40 - Current consumption of the ADC on VDD(1) 1.14 Msps - 70 - 10 ksps - 1 - Voltage scaling Range 1 0.14 - 16 Voltage scaling Range 2 0.14 - 8 Voltage scaling Range 3 0.14 - 4 Sampling rate 12-bit resolution 0.01 - 1.14 MHz External trigger frequency fADC = 16 MHz, 12-bit resolution - - 941 kHz - - - 17 1/fADC IDDA (ADC) fADC fS(2) fTRIG(2) ADC clock frequency µA MHz VAIN Conversion voltage range - 0 - VREF+ V RAIN(2) External input impedance See Equation 1 and Table 63 for details - - 50 kΩ RADC(2) Sampling switch resistance - - - 1 kΩ DocID027101 Rev 2 93/135 107 Electrical characteristics STM32L071xx Table 62. ADC characteristics (continued) Symbol Parameter CADC(2) Internal sample and hold capacitor tCAL(2)(3) Calibration time Conditions Min Typ Max Unit - - - 8 pF fADC = 16 MHz 5.2 µs - 83 1/fADC 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle ADC clock = HSI16 WLATENCY(4) tlatr(2) JitterADC tS(2) tUP_LDO(2)(3) tSTAB(2)(3) tConV(2) ADC_DR register write latency Trigger conversion latency fADC = fPCLK/2 = 16 MHz 0.266 µs fADC = fPCLK/2 8.5 1/fPCLK fADC = fPCLK/4 = 8 MHz 0.516 µs fADC = fPCLK/4 16.5 1/fPCLK fADC = fHSI16 = 16 MHz 0.252 - 0.260 µs fADC = fHSI16 - 1 - 1/fHSI16 fADC = 16 MHz 0.093 - 10 µs - 1.5 - 160.5 1/fADC Internal LDO power-up time - - - 10 µs ADC stabilization time - ADC jitter on trigger conversion Sampling time Total conversion time (including sampling time) fADC = 16 MHz, 12-bit resolution 12-bit resolution 14 1 - 1/fADC 10.13 14 to 162 (tS for sampling +12.5 for successive approximation) µs 1/fADC 1. A current consumption proportional to the APB clock frequency has to be added (see Table 39: Peripheral current consumption in Run or Sleep mode). 2. Guaranteed by design. 3. This parameter only includes the ADC timing. It does not take into account register access latency. 4. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the conversion is complete and has the same latency. Equation 1: RAIN max formula TS - – R ADC R AIN < ------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). 94/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Table 63. RAIN max for fADC = 14 MHz Ts (cycles) tS (µs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design. Table 64. ADC accuracy(1)(2)(3) Symbol Parameter Conditions Min Typ Max ET Total unadjusted error - 2 4 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 2.5 ED Differential linearity error - 1 1.5 10.2 11 11.3 12.1 - Effective number of bits 1.65 V < VDDA = VREF+< 3.6 V, range 1/2/3 ENOB Effective number of bits (16-bit mode oversampling with ratio =256)(4) SINAD Signal-to-noise distortion 63 69 - Signal-to-noise ratio 63 69 - SNR Signal-to-noise ratio (16-bit mode oversampling with ratio =256)(4) 70 76 - THD Total harmonic distortion - -85 -73 ET Total unadjusted error - 2 5 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 3 - 1 2 1.65 V < VREF+ <VDDA < 3.6 V, range 1/2/3 ED Differential linearity error ENOB Effective number of bits 10.0 11.0 - SINAD Signal-to-noise distortion 62 69 - SNR Signal-to-noise ratio 61 69 - THD Total harmonic distortion - -85 -65 Unit LSB bits dB LSB bits dB 1. ADC DC accuracy values are measured after internal calibration. DocID027101 Rev 2 95/135 107 Electrical characteristics STM32L071xx 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode. Figure 30. ADC accuracy characteristics 966$ (* ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH 7KHLGHDOWUDQVIHUFXUYH (QGSRLQWFRUUHODWLRQOLQH (7 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW LGHDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH (7 (2 (/ (' /6%,'($/ 9''$ 069 Figure 31. Typical connection diagram using the ADC 9''$ 97 5$,1 9$,1 $,1[ &SDUDVLWLF 97 6DPSOHDQGKROG$'& FRQYHUWHU 5$'& ELW FRQYHUWHU ,/Q$ &$'& 06Y9 1. Refer to Table 62: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 96/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 32 or Figure 33, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip. Figure 32. Power supply and reference decoupling (VREF+ not connected to VDDA) 670/[[ 95() )Q) 9''$ )Q) 966$ 95()± 069 Figure 33. Power supply and reference decoupling (VREF+ connected to VDDA) 670/[[ 62%&6$$! &N& 62%&n633! 069 DocID027101 Rev 2 97/135 107 Electrical characteristics 6.3.16 STM32L071xx Temperature sensor characteristics Table 65. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3 V TS_CAL2 TS ADC raw data acquired at 0x1FF8 007E - 0x1FF8 007F temperature of 130 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B Table 66. Temperature sensor characteristics Symbol TL(1) Parameter VSENSE linearity with temperature Avg_Slope (1) Average slope ±5°C(2) Min Typ Max Unit - ±1 ±2 °C 1.48 1.61 1.75 mV/°C 640 670 700 mV µA V130 Voltage at 130°C IDDA(TEMP)(3) Current consumption - 3.4 6 tSTART(3) Startup time - - 10 TS_temp(4)(3) ADC sampling time when reading the temperature 10 - - µs 1. Guaranteed by characterization results. 2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte. 3. Guaranteed by design. 4. Shortest sampling time can be determined in the application by multiple iterations. 6.3.17 Comparators Table 67. Comparator 1 characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit 3.6 V VDDA Analog supply voltage - 1.65 R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 - VDDA Comparator startup time - - 7 10 - - 3 10 - - ±3 ±10 mV Comparator offset variation in VDDA = 3.6 V, VIN+ = 0 V, worst voltage stress conditions VIN- = VREFINT, TA = 25 °C 0 1.5 10 mV/1000 h Current consumption(3) - 160 260 nA VIN tSTART td Voffset dVoffset/dt ICOMP1 Propagation delay(2) Comparator offset - kΩ V µs 1. Guaranteed by characterization. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. 98/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Table 68. Comparator 2 characteristics Symbol VDDA VIN Conditions Min Typ Max(1) Unit Analog supply voltage - 1.65 - 3.6 V Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 1.65 V ≤ VDDA ≤ 2.7 V - 1.8 3.5 2.7 V ≤ VDDA ≤ 3.6 V - 2.5 6 1.65 V ≤ VDDA ≤ 2.7 V - 0.8 2 2.7 V ≤ VDDA ≤ 3.6 V - 1.2 4 - ±4 ±20 mV VDDA = 3.3V, TA = 0 to 50 °C, V- = VREFINT, 3/4 VREFINT, 1/2 VREFINT, 1/4 VREFINT. - 15 30 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 Parameter tSTART Comparator startup time td slow Propagation delay(2) in slow mode td fast Propagation delay(2) in fast mode Voffset Comparator offset error dThreshold/ dt ICOMP2 Threshold voltage temperature coefficient Current consumption(3) µs µA 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included. DocID027101 Rev 2 99/135 107 Electrical characteristics 6.3.18 STM32L071xx Timer characteristics TIM timer characteristics The parameters given in the Table 69 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 69. TIMx characteristics(1) Symbol Parameter tres(TIM) Conditions Timer resolution time fTIMxCLK = 32 MHz Timer external clock frequency on CH1 to CH4 fEXT ResTIM tCOUNTER Max Unit 1 - tTIMxCLK 31.25 - ns 0 fTIMxCLK/2 MHz 0 16 MHz 16 bit 65536 tTIMxCLK 2048 µs fTIMxCLK = 32 MHz Timer resolution - 16-bit counter clock period when internal clock is selected (timer’s prescaler disabled) - tMAX_COUNT Maximum possible count Min 1 fTIMxCLK = 32 MHz 0.0312 - - 65536 × 65536 tTIMxCLK fTIMxCLK = 32 MHz - 134.2 s 1. TIMx is used as a general term to refer to the TIM2, TIM6, TIM21, and TIM22 timers. 6.3.19 Communications interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm) : with a bit rate up to 100 kbit/s • Fast-mode (Fm) : with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s. The I2C timing requirements are guaranteed by design when the I2C peripheral is properly configured (refer to the reference manual for details). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics). All I2C SDA and SCL I/Os embed an analog filter (see Table 70 for the analog filter characteristics). 100/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics The analog spike filter is compliant with I2C timings requirements only for the following voltage ranges: • Fast mode Plus: 2.7 V ≤ VDD ≤ 3.6 V and voltage scaling Range 1 • Fast mode: – 2 V ≤ VDD ≤ 3.6 V and voltage scaling Range 1 or Range 2. – VDD < 2 V, voltage scaling Range 1 or Range 2, Cload < 200 pF. In other ranges, the analog filter should be disabled. The digital filter can be used instead. Note: In Standard mode, no spike filter is required. Table 70. I2C analog filter characteristics(1) Symbol Parameter Conditions Min Max Range 1 tAF Maximum pulse width of spikes that are suppressed by the analog filter Unit 100(3) 50(2) Range 2 - Range 3 ns - 1. Guaranteed by characterization results. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered SPI characteristics Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 25. Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 71. SPI characteristics in voltage Range 1 (1) Symbol Parameter Conditions Min Typ Master mode Duty(SCK) SPI clock frequency Duty cycle of SPI clock frequency - Slave mode Transmitter 1.71<VDD<3.6V - - 12(2) Slave mode Transmitter 2.7<VDD<3.6V - - 16(2) Slave mode 30 50 70 DocID027101 Rev 2 Unit 16 - Slave mode receiver fSCK 1/tc(SCK) Max 16 MHz % 101/135 107 Electrical characteristics STM32L071xx Table 71. SPI characteristics in voltage Range 1 (1) (continued) Symbol Parameter Conditions Min Typ Max tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+ 2 Master mode 0 - - Slave mode 3 - - Master mode 7 - - Slave mode 3.5 - - tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO Data output access time Slave mode 15 - 36 tdis(SO) Data output disable time Slave mode 10 - 30 Slave mode 1.65 V<VDD<3.6 V - 18 41 Slave mode 2.7 V<VDD<3.6 V - 18 25 Master mode - 4 7 Slave mode 10 - - Master mode 0 - - tv(SO) Data output valid time tv(MO) th(SO) th(MO) Data output hold time Unit ns 1. Guaranteed by characterization results. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. 102/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Table 72. SPI characteristics in voltage Range 2 (1) Symbol Parameter Conditions Min Typ Master mode fSCK 1/tc(SCK) SPI clock frequency Slave mode Transmitter 1.65<VDD<3.6V Max Unit 8 - - Slave mode Transmitter 2.7<VDD<3.6V 8 MHz 8(2) Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 0 - - Slave mode 3 - - Master mode 11 - - Slave mode 4.5 - - tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO Data output access time Slave mode 18 - 52 tdis(SO) Data output disable time Slave mode 12 - 42 Slave mode - 20 56.5 Master mode - 5 9 Slave mode 13 - - Master mode 3 - - tv(SO) Data output valid time tv(MO) th(SO) th(MO) Data output hold time % ns 1. Guaranteed by characterization results. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. DocID027101 Rev 2 103/135 107 Electrical characteristics STM32L071xx Table 73. SPI characteristics in voltage Range 3 (1) Symbol Parameter Min Typ fSCK 1/tc(SCK) SPI clock frequency - - Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 1.5 - - Slave mode 6 - - Master mode 13.5 - - Slave mode 16 - - tsu(MI) Conditions Data input setup time tsu(SI) th(MI) Data input hold time th(SI) Master mode Slave mode Max 2 2(2) ta(SO Data output access time Slave mode 30 - 70 tdis(SO) Data output disable time Slave mode 40 - 80 Slave mode - 30 70 Master mode - 7 9 Slave mode 25 - - Master mode 8 - - tv(SO) Data output valid time tv(MO) th(SO) Data output hold time th(MO) Unit MHz % ns 1. Guaranteed by characterization results. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. Figure 34. SPI timing diagram - slave mode and CPHA = 0 166LQSXW 6&.,QSXW W68166 &3+$ &32/ &3+$ &32/ WK166 WF6&. WZ6&.+ WZ6&./ W962 WD62 0,62 287387 WK62 06%287 %,7287 06%,1 %,7,1 WU6&. WI6&. WGLV62 /6%287 WVX6, 026, ,1387 /6%,1 WK6, DLF 104/135 DocID027101 Rev 2 STM32L071xx Electrical characteristics Figure 35. SPI timing diagram - slave mode and CPHA = 1(1) 166LQSXW 6&.,QSXW W68166 &3+$ &32/ WF6&. WK166 WZ6&.+ WZ6&./ &3+$ &32/ WY62 WD62 0,62 287 3 87 WK62 06 % 2 87 WVX6, 026, , 1387 WU6&. WI6&. %, 7 287 WGLV62 /6% 287 WK6, % , 7 ,1 0 6% ,1 /6% ,1 DL 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Figure 36. SPI timing diagram - master mode(1) +LJK 166LQSXW 6&.2XWSXW &3+$ &32/ 6&.2XWSXW WF6&. &3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0, 0,62 ,13 87 WZ6&.+ WZ6&./ 06%,1 WU6&. WI6&. %,7,1 /6%,1 WK0, 026, 287387 06%287 % , 7287 WY02 /6%287 WK02 DLF 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID027101 Rev 2 105/135 107 Electrical characteristics STM32L071xx I2S characteristics Table 74. I2S characteristics(1) Symbol Parameter Conditions Min Max Unit fMCK I2S Main clock output - 256 x 8K 256xFs (2) MHz fCK I2S clock frequency Master data: 32 bits - 64xFs Slave data: 32 bits - 64xFs DCK I2S clock frequency duty cycle Slave receiver 30 70 tv(WS) WS valid time Master mode - 15 th(WS) WS hold time Master mode 11 - tsu(WS) WS setup time Slave mode 6 - th(WS) WS hold time Slave mode 2 - Master receiver 0 - Slave receiver 6.5 - Master receiver 18 - Slave receiver 15.5 - Slave transmitter (after enable edge) - 77 Master transmitter (after enable edge) - 8 Slave transmitter (after enable edge) 18 - Master transmitter (after enable edge) 1.5 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) tv(SD_MT) th(SD_ST) th(SD_MT) Data input setup time Data input hold time Data output valid time Data output hold time MHz % ns 1. Guaranteed by characterization results. 2. 256xFs maximum value is equal to the maximum clock frequency. Note: 106/135 Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition. DocID027101 Rev 2 STM32L071xx Electrical characteristics Figure 37. I2S slave timing diagram (Philips protocol)(1) &.,QSXW WF&. &32/ &32/ WZ&.+ WK:6 WZ&./ :6LQSXW WY6'B67 WVX:6 6'WUDQVPLW /6%WUDQVPLW 06%WUDQVPLW %LWQWUDQVPLW WVX6'B65 /6%UHFHLYH 6'UHFHLYH WK6'B67 /6%WUDQVPLW WK6'B65 06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH DLE 1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 38. I2S master timing diagram (Philips protocol)(1) TF#+ TR#+ #+OUTPUT TC#+ #0/, TW#+( #0/, TV73 TH73 TW#+, 73OUTPUT TV3$?-4 3$TRANSMIT ,3"TRANSMIT -3"TRANSMIT ,3"RECEIVE ,3"TRANSMIT TH3$?-2 TSU3$?-2 3$RECEIVE "ITNTRANSMIT TH3$?-4 -3"RECEIVE "ITNRECEIVE ,3"RECEIVE AIB 1. Guaranteed by characterization results. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID027101 Rev 2 107/135 107 Package information 7 STM32L071xx Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at www.st.com. ECOPACK® is an ST trademark. 7.1 LQFP100 package information Figure 39. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline MM C ! ! ! 3%!4).'0,!.% # '!5'%0,!.% $ , $ ! + CCC # , $ 0). )$%.4)&)#!4)/. E 1. Drawing is not to scale. Dimensions are in millimeters. 108/135 % % % B DocID027101 Rev 2 ,?-%?6 STM32L071xx Package information Table 75. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID027101 Rev 2 109/135 133 Package information STM32L071xx Figure 40. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint AIC 1. Dimensions are expressed in millimeters. Device marking for LQFP100 The following figure gives an example of topside marking versus pin 1 position identifier location. Figure 41. LQFP100 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 670/ 9=75 5HYLVLRQFRGH 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 110/135 DocID027101 Rev 2 STM32L071xx 7.2 Package information UFBGA100 package information Figure 42. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ $ ( $EDOO $EDOO LGHQWLILHU LQGH[DUHD = H ; ( $ = ' ' H < 0 %277209,(: EEDOOV HHH 0 = < ; III 0 = 7239,(: $&B0(B9 1. Drawing is not to scale. Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 0.600 - - 0.0236 A1 - - 0.110 - - 0.0043 A2 - 0.450 - - 0.0177 - A3 - 0.130 - - 0.0051 0.0094 A4 - 0.320 - - 0.0126 - b 0.240 0.290 0.340 0.0094 0.0114 0.0134 D 6.850 7.000 7.150 0.2697 0.2756 0.2815 D1 - 5.500 - - 0.2165 - E 6.850 7.000 7.150 0.2697 0.2756 0.2815 E1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - Z - 0.750 - - 0.0295 - DocID027101 Rev 2 111/135 133 Package information STM32L071xx Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint 'SDG 'VP $&B)3B9 Table 77. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) Dimension 112/135 Recommended values Pitch 0.5 Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm DocID027101 Rev 2 STM32L071xx LQFP64 package information Figure 44. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ 6($7,1*3/$1( & $ $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( E ( 7.3 Package information H :B0(B9 1. Drawing is not to scale. Table 78. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - DocID027101 Rev 2 113/135 133 Package information STM32L071xx Table 78. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint AIC 1. Dimensions are expressed in millimeters. 114/135 DocID027101 Rev 2 STM32L071xx Package information Device marking for LQFP64 The following figure gives an example of topside marking versus pin 1 position identifier location. Figure 46. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ 5 670/ 5%7 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027101 Rev 2 115/135 133 Package information 7.4 STM32L071xx TFBGA64 package information Figure 47. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline ( $ ( ) H + ) ' ' EEDOOV HHH 0 & % $ III 0 & $ % H $EDOO LQGH[DUHD 7239,(: $EDOO LGHQWLILHU %277209,(: & 6HDWLQJSODQH GGG & $ $ $ $ 6,'(9,(: 5B0(B9 1. Drawing is not to scale. Table 79. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data inches(1) millimeters Symbol 116/135 Min Typ Max Min Typ Max A - - 1.200 - - 0.0472 A1 0.150 - - 0.0059 - - A2 - 0.200 - - 0.0079 - A4 - - 0.600 - - 0.0236 b 0.250 0.300 0.350 0.0098 0.0118 0.0138 D 4.850 5.000 5.150 0.1909 0.1969 0.2028 D1 - 3.500 - - 0.1378 - E 4.850 5.000 5.150 0.1909 0.1969 0.2028 E1 - 3.500 - - 0.1378 - DocID027101 Rev 2 STM32L071xx Package information Table 79. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max e - 0.500 - - 0.0197 - F - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint 'SDG 'VP 069 Table 80. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA) Dimension Note: Recommended values Pitch 0.5 Dpad 0.27 mm Dsm 0.35 mm typ. (depends on the soldermask registration tolerance) Solder paste 0.27 mm aperture diameter. Non solder mask defined (NSMD) pads are recommended. 4 to 6 mils solder paste screen printing process. DocID027101 Rev 2 117/135 133 Package information STM32L071xx Device marking for TFBGA64 The following figure gives an example of topside marking versus ball A 1 position identifier location. Figure 49. TFBGA64 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ /5=+ 'DWHFRGH <HDUZHHN < :: 5HYLVLRQ FRGH 5 %DOO$ 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 118/135 DocID027101 Rev 2 STM32L071xx 7.5 Package information WLCSP49 package information Figure 50. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale package outline H EEE = ) $EDOOORFDWLRQ $ * 'HWDLO$ H ( H H $ ' $ $ %RWWRPYLHZ %XPSVLGH 6LGHYLHZ $ E %XPS )URQWYLHZ $ HHH = = E[ FFF GGG ( =;< = 1RWH $ 2ULHQWDWLRQ UHIHUHQFH 'HWDLO$ URWDWHG 6HDWLQJSODQH 1RWH DDD [ ' 7RSYLHZ :DIHUEDFNVLGH $B0(B9 1. Drawing is not to scale. DocID027101 Rev 2 119/135 133 Package information STM32L071xx Table 81. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - - 0.025 - - 0.0010 - b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 3.259 3.294 3.329 0.1283 0.1297 0.1311 E 3.223 3.258 3.293 0.1269 0.1283 0.1296 e - 0.400 - - 0.0157 - e1 - 2.400 - - 0.0945 - e2 - 2.400 - - 0.0945 - F - 0.447 - - 0.0176 - G - 0.429 - - 0.0169 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 A3 (2) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Figure 51. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale recommended footprint 'SDG 'VP 120/135 DocID027101 Rev 2 069 STM32L071xx Package information Table 82. WLCSP49 recommended PCB design rules (0.4 mm pitch) Dimension Recommended values Pitch 0.4 260 µm max. (circular) Dpad 220 µm recommended Dsm 300 µm min. (for 260 µm diameter pad) PCB pad design Non-solder mask defined via underbump allowed. Device marking for WLCSP49 The following figure gives an example of topside marking versus ball A 1 position identifier location. Figure 52. WLCSP49 marking example (package top view) %DOO LQGHQWLILHU 3URGXFWLGHQWLILFDWLRQ /&= 'DWHFRGH 5HYLVLRQFRGH < :: 5 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027101 Rev 2 121/135 133 Package information 7.6 STM32L071xx LQFP48 package information Figure 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $ 0). )$%.4)&)#!4)/. % E 1. Drawing is not to scale. 122/135 % % B DocID027101 Rev 2 "?-%?6 STM32L071xx Package information Table 83. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID027101 Rev 2 123/135 133 Package information STM32L071xx Figure 54. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint AID 1. Dimensions are expressed in millimeters. Device marking for LQFP48 The following figure gives an example of topside marking versus pin 1 position identifier location. Figure 55. LQFP48 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 670/ &=7 'DWHFRGH < :: 5HYLVLRQFRGH 3LQ LQGHQWLILHU 5 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 124/135 DocID027101 Rev 2 STM32L071xx LQFP32 package information Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM CCC '!5'%0,!.% # + $ ! , $ , $ 0). )$%.4)&)#!4)/. % % % B 7.7 Package information E [email protected]&@7 1. Drawing is not to scale. DocID027101 Rev 2 125/135 133 Package information STM32L071xx Table 84. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint 1. Dimensions are expressed in millimeters. 126/135 DocID027101 Rev 2 6?&0?6 STM32L071xx Package information Device marking for LQFP32 The following figure gives an example of topside marking versus pin 1 position identifier location. Figure 58. LQFP32 marking example (package top view) 670/ 3URGXFWLGHQWLILFDWLRQ .=7 'DWHFRGH < :: 5HYLVLRQFRGH 3LQLQGHQWLILHU 5 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027101 Rev 2 127/135 133 Package information 7.8 STM32L071xx UFQFPN32 package information Figure 59. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline ' $ H ' $ $ GGG & & 6($7,1* 3/$1( E H ( E ( ( / 3,1,GHQWLILHU ' / !"?-%?6 1. Drawing is not to scale. 128/135 DocID027101 Rev 2 STM32L071xx Package information Table 85. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.152 - - 0.0060 - b 0.180 0.230 0.280 0.0071 0.0091 0.0110 D 4.900 5.000 5.100 0.1929 0.1969 0.2008 D1 3.400 3.500 3.600 0.1339 0.1378 0.1417 D2 3.400 3.500 3.600 0.1339 0.1378 0.1417 E 4.900 5.000 5.100 0.1929 0.1969 0.2008 E1 3.400 3.500 3.600 0.1339 0.1378 0.1417 E2 3.400 3.500 3.600 0.1339 0.1378 0.1417 e - 0.500 - - 0.0197 - L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 60. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat recommended footprint $%B)3B9 1. Dimensions are expressed in millimeters. DocID027101 Rev 2 129/135 133 Package information STM32L071xx Device marking for UFQFPN32 The following figure gives an example of topside marking versus pin 1 position identifier location. Figure 61. UFQFPN32 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ /.= 'DWHFRGH < :: 5HYLVLRQFRGH 5 3LQ LQGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 130/135 DocID027101 Rev 2 STM32L071xx 7.9 Package information Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max × ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 86. Thermal characteristics Symbol ΘJA Parameter Value Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch 36 Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch 60 Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch 54 Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch 48 Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch 64 Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch 41 Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm / 0.5 mm pitch 57 DocID027101 Rev 2 Unit °C/W 131/135 133 Package information STM32L071xx Figure 62. Thermal resistance ϰϬϬϬ ϯϱϬϬ >Y&WEϯϮ ϯϬϬϬ hY&EϯϮ >Y&Wϰϴ ϮϱϬϬ 3'P: t>^Wϰϵ d&'ϲϰ ϮϬϬϬ >Y&Wϲϰ ϭϱϬϬ >Y&WϭϬϬ h&'ϭϬϬ ϭϬϬϬ ϱϬϬ Ϭ ϭϮϱ ϭϬϬ ϳϱ ϱϬ 7HPSHUDWXUH& 7.9.1 Ϯϱ Ϭ 06Y9 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 132/135 DocID027101 Rev 2 STM32L071xx 8 Part numbering Part numbering Table 87. STM32L071xx ordering information scheme Example: STM32 L 071 R 8 T 6 D TR Device family STM32 = ARM-based 32-bit microcontroller Product type L = Low power Device subfamily 071 = Access line Pin count K = 32 pins C = 48/49 pins R = 64 pins V = 100 pins Flash memory size 8 = 64 Kbytes B = 128 Kbytes Z = 192 Kbytes Package T = LQFP H = TFBGA I = UFBGA U = UFQFPN Y = WLCSP pins Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C 3 = Industrial temperature range, –40 to 125 °C Options No character = VDD range: 1.8 to 3.6 V and BOR enabled D = VDD range: 1.65 to 3.6 V and BOR disabled Packing TR = tape and reel No character = tray or tube For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. DocID027101 Rev 2 133/135 133 Revision history 9 STM32L071xx Revision history Table 88. Document revision history Date Revision 02-Sep-2015 1 Initial release 2 Changed confidentiality level to public. Updated datasheet status to “production data”. Modified ultra-low-power platform features on cover page. In Table 15: STM32L071xxx pin definition: – changed pin name to VDDIO2 for the following pins: UFQFPN32 pin 24, LQFP48 pin 36, LQFP64 pin 48, UFBGA64 pin E5, WLCSP49 pin A1, LQFP100 pin 75 and UFBGA100 pin G11. – Added note related to UFQFPN32. In Section 6: Electrical characteristics, updated notes related to values guaranteed by characterization. Updated |ΔVSS| definition to include VREF- in Table 22: Voltage characteristics. Updated fTRIG and VAIN maximum value, added VREF+ and VREFin Table 62: ADC characteristics. Added Section : Device marking for LQFP100. Updated Figure 42: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline and Table 75: LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data. Added Section : Device marking for LQFP100, Section : Device marking for LQFP64, Section : Device marking for TFBGA64 and Section : Device marking for WLCSP49. Updated Figure 55: LQFP48 marking example (package top view). 26-Oct-2015 134/135 Changes DocID027101 Rev 2 STM32L071xx IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID027101 Rev 2 135/135 135
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement