STM32L071x8 STM32L071xB STM32L071xZ

STM32L071x8 STM32L071xB STM32L071xZ
STM32L071x8 STM32L071xB
STM32L071xZ
Access line ultra-low-power 32-bit MCU ARM®-based Cortex®-M0+,
up to 192KB Flash, 20KB SRAM, 6KB EEPROM, ADC
Datasheet - production data
Features
•
•
•
•
•
•
•
•
Ultra-low-power platform
– 1.65 V to 3.6 V power supply
– -40 to 125 °C temperature range
– 0.29 µA Standby mode (3 wakeup pins)
– 0.43 µA Stop mode (16 wakeup lines)
– 0.86 µA Stop mode + RTC + 20 KB RAM
retention
– Down to 93 µA/MHz in Run mode
– 5 µs wakeup time (from Flash memory)
– 41 µA 12-bit ADC (conversion at 10ksps)
Core: ARM® 32-bit Cortex®-M0+ with MPU
– From 32 kHz up to 32 MHz max.
– 0.95 DMIPS/MHz
Reset and supply management
– Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
Clock sources
– 1 to 25 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– High speed internal 16 MHz factory-trimmed RC
(+/- 1%)
– Internal low-power 37 kHz RC
– Internal multispeed low-power 65 kHz to
4.2 MHz RC
– PLL for CPU clock
Pre-programmed bootloader
– USART, I2C, SPI supported
Development support
– Serial wire debug supported
Up to 84 fast I/Os (78 I/Os 5V tolerant)
Memories
– Up to 192 KB Flash memory with ECC(2 banks
with read-while-write capability)
– 20 KB RAM
– 6 KB of data EEPROM with ECC
– 20-byte backup register
– Sector protection against R/W operation
October 2015
This is information on a product in full production.
)%*$
LQFP32 7x7 mm
LQFP48 7x7 mm
LQFP64 10x10 mm
LQFP100 14x14 mm
UFQFPN32
5x5 mm
UFBGA64
TFBGA64
5x5mm
)%*$
UFBGA100
7x7 mm
WLCSP49
(3.294x3.258 mm)
•
•
•
•
•
•
•
•
•
Rich Analog peripherals
– 12-bit ADC 1.14 Msps up to 16 channels (down
to 1.65 V)
– 2x ultra-low-power comparators (window mode
and wake up capability, down to 1.8 V)
7-channel DMA controller, supporting ADC, SPI,
I2C, USART, Timers
10x peripheral communication interfaces
4x USART (2 with ISO 7816, IrDA), 1x UART (low
power)
2x SPI 16 Mbits/s
3x I2C (2 with SMBus/PMBus)
11x timers: 2x 16-bit with up to 4 channels, 2x 16-bit
with up to 2 channels, 1x 16-bit ultra-low-power
timer, 1x SysTick, 1x RTC, 2x 16-bit basic, and 2x
watchdogs (independent/window)
CRC calculation unit, 96-bit unique ID
All packages are ECOPACK®2
Table 1. Device summary
Reference
Part number
STM32L071x8
STM32L071V8, STM32L071K8,
STM32L071C8
STM32L071xB
STM32L071VB, STM32L071RB,
STM32L071CB, STM32L071KB
STM32L071xZ
STM32L071VZ, STM32L071RZ,
STM32L071CZ, STM32L071KZ
DocID027101 Rev 2
1/135
www.st.com
Contents
STM32L071xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3
ARM® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6
Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 24
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10
Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12.1
3.13
Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27
3.14
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15
2/135
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.14.1
General-purpose timers (TIM2, TIM3, TIM21 and TIM22) . . . . . . . . . . . 28
3.14.2
Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14.3
Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14.4
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14.5
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14.6
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DocID027101 Rev 2
STM32L071xx
Contents
3.15.1
I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15.2
Universal synchronous/asynchronous receiver transmitter (USART) . . 31
3.15.3
Low-power universal asynchronous receiver transmitter (LPUART) . . . 31
3.15.4
Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 32
3.16
Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 32
3.17
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 59
6.3.3
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.4
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.5
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.8
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.11
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.12
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.13
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.14
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.15
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DocID027101 Rev 2
3/135
4
Contents
7
STM32L071xx
6.3.16
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.17
Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.18
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
7.4
TFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.5
WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
7.6
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.9
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.9.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4/135
DocID027101 Rev 2
STM32L071xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ultra-low-power STM32L071xx device features and peripheral counts . . . . . . . . . . . . . . . 11
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16
Functionalities depending on the working mode
(from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STM32L071xx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32L071xxx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Alternate functions port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Alternate functions port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Alternate functions port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Alternate functions port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Alternate functions port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Alternate functions port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 59
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current consumption in Run mode, code with data processing running from
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Current consumption in Run mode vs code type,
code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Current consumption in Run mode, code with data processing running from RAM . . . . . . 64
Current consumption in Run mode vs code type,
code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 69
Average current consumption during Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 73
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID027101 Rev 2
5/135
6
List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
6/135
STM32L071xx
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 83
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 112
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
TFBGA64 recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . . . 117
WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 121
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 123
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 126
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
STM32L071xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
DocID027101 Rev 2
STM32L071xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
STM32L071xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
STM32L071xx LQFP100 pinout - 14 x 14 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32L071xx UFBGA100 ballout - 7x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L071xx LQFP64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L071xx TFBGA64 ballout - 5x 5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32L071xx WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32L071xx LQFP48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32L071xx LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32L071xx UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IDD vs VDD, at TA= 25 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 79
VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 97
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 97
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 108
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
DocID027101 Rev 2
7/135
8
List of figures
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
8/135
STM32L071xx
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 113
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 114
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
TFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 122
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 124
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 125
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 126
LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
DocID027101 Rev 2
STM32L071xx
1
Introduction
Introduction
The ultra-low-power STM32L071xx are offered in 9 different package types from 32 pins to
100 pins. Depending on the device chosen, different sets of peripherals are included, the
description below gives an overview of the complete range of peripherals proposed in this
family.
These features make the ultra-low-power STM32L071xx microcontrollers suitable for a wide
range of applications:
•
Gas/water meters and industrial sensors
•
Healthcare and fitness equipment
•
Remote control and user interface
•
PC peripherals, gaming, GPS equipment
•
Alarm system, wired and wireless sensors, video intercom
This STM32L071xx datasheet should be read in conjunction with the STM32L0x1xx
reference manual (RM0377).
For information on the ARM® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical
Reference Manual, available from the www.arm.com website.
Figure 1 shows the general block diagram of the device family.
DocID027101 Rev 2
9/135
32
Description
2
STM32L071xx
Description
The access line ultra-low-power STM32L071xx microcontrollers incorporate the highperformance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a
memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash
program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive
range of enhanced I/Os and peripherals.
The STM32L071xx devices provide high power efficiency for a wide range of performance.
It is achieved with a large choice of internal and external clock sources, an internal voltage
adaptation and several low-power modes.
The STM32L071xx devices offer several analog features, one 12-bit ADC with hardware
oversampling, two ultra-low-power comparators, several timers, one low-power timer
(LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick
which can be used as timebases. They also feature two watchdogs, one watchdog with
independent clock and window capability and one window watchdog based on bus clock.
Moreover, the STM32L071xx devices embed standard and advanced communication
interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART
(LPUART), .
The STM32L071xx also include a real-time clock and a set of backup registers that remain
powered in Standby mode.
The ultra-low-power STM32L071xx devices operate from a 1.8 to 3.6 V power supply (down
to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR
option. They are available in the -40 to +125 °C temperature range. A comprehensive set of
power-saving modes allows the design of low-power applications.
10/135
DocID027101 Rev 2
STM32L071xx
2.1
Description
Device overview
Table 2. Ultra-low-power STM32L071xx device features and peripheral counts
Peripheral
STM32L
071K8
STM32L STM32L
071C8
071V8
Flash (Kbytes)
64 Kbytes
Data EEPROM (Kbytes)
3 Kbytes
STM32L
071KB
STM32L
071CB
4
Basic
2
LPTIMER
1
1/1/1/1
1/(0)
2/(1)
1/(0)
2/(1)
1/(0)
2/(1)
I2C
2
3
2
3
2
3
USART
3
4
3
4
3
4
GPIOs
1
23
37
84
25(1)
40(2)
Clocks:
HSE/LSE/HSI/MSI/LSI
12-bit synchronized
ADC
Number of channels
84
51(3)
25(1)
40(2)
84
51(3)
1
16(3)
1
10
1
13(2)
1
16
1
16(3)
1/1/1/1/1
1
10
1
13
1
16
1
10
1
13(2)
Comparators
1
16
2
Max. CPU frequency
Operating voltage
STM32L
071RZ
20 Kbytes
LPUART
32 MHz
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option
Operating
temperatures
Packages
STM32L
071VZ
6 Kbytes
RTC/SYSTICK/IWDG
/WWDG
Com.
interfaces
STM32L
071CZ
192 Kbytes
Generalpurpose
SPI/(I2S)
STM32L
071KZ
128 Kbytes
RAM (Kbytes)
Timers
STM32L STM32L
071VB
071RB
Ambient temperature: –40 to +125 °C
Junction temperature: –40 to +130 °C
UFQFPN
LQFP48
32
LQFP/
UFBGA
100
UFQFPN/ LQFP48,
LQFP32 WLCSP49
1.
UFQFPN32 has 2 GPIOs less than LQFP32.
2.
LQFP48 has three GPIOs less than WLCSP49.
3.
TFBGA64 has one GPIO, one ADC input less than LQFP64.
LQFP/
UFBGA
100
DocID027101 Rev 2
LQFP/
TFBGA
64
UFQFPN/ LQFP48,
LQFP32 WLCSP49
LQFP/
UFBGA
100
LQFP/
TFBGA
64
11/135
32
Description
STM32L071xx
Figure 1. STM32L071xx block diagram
7HPS
VHQVRU
6:'
6:'
)/$6+
((3520
%227
),5(:$//
&257(;0&38
)PD[0+]
5$0
038
'%*
'0$
19,&
(;7,
$
3
%
$'&
$,1[
63,
0,62026,
6&.166
86$57
5;7;576
&76&.
7,0
FK
7,0
FK
%5,'*(
3$>@
*3,23257$
3%>@
*3,23257%
&203
,13,10287
&203
,13,10287
/37,0
,1,1
(75287
&5&
%5,'*(
5$0.
$+%)PD[0+]
7,0
7,0
$
3
%
26&B,1
26&B287
+6(
+6,0
/6,
,:'*
3//
06,
6&/6'$
60%$
,&
6&/6'$
,&
6&/6'$
60%$
86$57
5;7;576
&76&.
86$57
5;7;576
&76&.
7,0
5;7;576
&76&.
5;7;576
&76
0,620&.
026,6'
6&.&.166
:6
FK
7,0
FK
86$57
57&
/38$57
%&.35(*
63,,6
5(6(7&/.
:.83[
26&B,1
26&B287
,&
::'*
/6(
39'B,1
95()B287
308
1567
9''$
9''
5(*8/$725
06Y9
12/135
DocID027101 Rev 2
STM32L071xx
2.2
Description
Ultra-low-power device continuum
The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary
core up to ARM® Cortex®-M4, including ARM® Cortex®-M3 and ARM® Cortex®-M0+. The
STM32Lx series are the best choice to answer your needs in terms of ultra-low-power
features. The STM32 ultra-low-power series are the best solution for applications such as
gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in
features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers,
128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly
cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and
long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all
STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other
hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to
respond to the latest market feature and efficiency requirements.
DocID027101 Rev 2
13/135
32
Functional overview
STM32L071xx
3
Functional overview
3.1
Low-power modes
The ultra-low-power STM32L071xx support dynamic voltage scaling to optimize its power
consumption in Run mode. The voltage from the internal low-drop regulator that supplies
the logic can be adjusted according to the system’s maximum operating frequency and the
external voltage supply.
There are three power consumption ranges:
•
Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
•
Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz
•
Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz
Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.
•
Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal
regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both
limited.
•
Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode to minimize the regulator’s operating current. In Low-power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the Run
mode with the regulator on.
Stop mode with RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still
running. The voltage regulator is in the low-power mode.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the
processor can serve the interrupt or resume the code. The EXTI line source can be any
GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event
(if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup
events, the USART/I2C/LPUART/LPTIMER wakeup events.
14/135
DocID027101 Rev 2
STM32L071xx
•
Functional overview
Stop mode without RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and
LSE crystal oscillators are disabled.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The voltage regulator is in the low-power mode. The device can be woken up from Stop
mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or
resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the
comparator 1 event or comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events.
•
Standby mode with RTC
The Standby mode is used to achieve the lowest power consumption and real time
clock. The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,
RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
•
Standby mode without RTC
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire VCORE domain is powered off. The
PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off.
After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.
Table 3. Functionalities depending on the operating power supply range
Functionalities depending on the operating power supply range
Operating power supply
range
ADC operation
Dynamic voltage
scaling range
I/O operation
VDD = 1.65 to 1.71 V
ADC only,
conversion time up
to 570 ksps
Range 2 or
range 3
Degraded speed
performance
VDD = 1.71 to 1.8 V(1)
ADC only,
conversion time up
to 1.14 Msps
Range 1, range 2 or
range 3
Degraded speed
performance
VDD = 1.8 to 2.0 V(1)
Conversion time up
to 1.14 Msps
Range1, range 2 or
range 3
Degraded speed
performance
DocID027101 Rev 2
15/135
32
Functional overview
STM32L071xx
Table 3. Functionalities depending on the operating power supply range (continued)
Functionalities depending on the operating power supply range
Operating power supply
range
ADC operation
Dynamic voltage
scaling range
I/O operation
VDD = 2.0 to 2.4 V
Conversion time up
to 1.14 Msps
Range 1, range 2 or
range 3
Full speed operation
VDD = 2.4 to 3.6 V
Conversion time up
to 1.14 Msps
Range 1, range 2 or
range 3
Full speed operation
1. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.
Table 4. CPU frequency range depending on dynamic voltage scaling
CPU frequency range
Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws)
Range 1
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws)
Range 2
32 kHz to 4.2 MHz (0ws)
Range 3
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (1)(2)
Standby
Run/Active
Sleep
CPU
Y
--
Y
--
--
--
Flash memory
O
O
O
O
--
--
RAM
Y
Y
Y
Y
Y
--
Backup registers
Y
Y
Y
Y
Y
Y
EEPROM
O
O
O
O
--
--
Brown-out reset
(BOR)
O
O
O
O
O
DMA
O
O
O
O
--
Programmable
Voltage Detector
(PVD)
O
O
O
O
O
O
-
Power-on/down
reset (POR/PDR)
Y
Y
Y
Y
Y
Y
Y
IPs
16/135
DocID027101 Rev 2
Lowpower
sleep
Stop
Lowpower
run
Wakeup
capability
O
Wakeup
capability
O
O
--
Y
STM32L071xx
Functional overview
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (continued)(1)(2)
Standby
Run/Active
Sleep
High Speed
Internal (HSI)
O
O
--
--
(3)
--
High Speed
External (HSE)
O
O
O
O
--
--
Low Speed Internal
(LSI)
O
O
O
O
O
O
Low Speed
External (LSE)
O
O
O
O
O
O
Multi-Speed
Internal (MSI)
O
O
Y
Y
--
--
Inter-Connect
Controller
Y
Y
Y
Y
Y
--
RTC
O
O
O
O
O
O
O
RTC Tamper
O
O
O
O
O
O
O
O
Auto WakeUp
(AWU)
O
O
O
O
O
O
O
O
USART
O
O
O
O
O(4)
O
--
O
--
IPs
Lowpower
sleep
Stop
Lowpower
run
Wakeup
capability
Wakeup
capability
LPUART
O
O
O
O
O(4)
SPI
O
O
O
O
--
I2C
O
O
O
O
O(5)
ADC
O
O
--
--
--
--
Temperature
sensor
O
O
O
O
O
--
Comparators
O
O
O
O
O
16-bit timers
O
O
O
O
--
LPTIMER
O
O
O
O
O
O
IWDG
O
O
O
O
O
O
WWDG
O
O
O
O
--
SysTick Timer
O
O
O
O
GPIOs
O
O
O
O
0 µs
0.36 µs
3 µs
32 µs
Wakeup time to
Run mode
DocID027101 Rev 2
-O
O
--
---
O
O
---
O
O
3.5 µs
2 pins
50 µs
17/135
32
Functional overview
STM32L071xx
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (continued)(1)(2)
IPs
Run/Active
Sleep
Lowpower
run
Stop
Lowpower
sleep
Standby
Wakeup
capability
Wakeup
capability
0.28 µA (No
0.4 µA (No
RTC) VDD=1.8 V RTC) VDD=1.8 V
Consumption
VDD=1.8 to 3.6 V
(Typ)
Down to
140 µA/MHz
(from Flash
memory)
Down to
37 µA/MHz
(from Flash
memory)
Down to
8 µA
0.65 µA (with
0.8 µA (with
=1.8
V
RTC)
VDD=1.8 V
RTC)
V
DD
Down to
4.5 µA
0.29 µA (No
0.4 µA (No
RTC) VDD=3.0 V RTC) VDD=3.0 V
1 µA (with RTC)
0.85 µA (with
VDD=3.0 V
RTC) VDD=3.0 V
1. Legend:
“Y” = Yes (enable).
“O” = Optional can be enabled/disabled by software)
“-” = Not available
2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.
3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the
peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need
it anymore.
4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup
on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep
running the HSI clock.
5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up
the HSI during reception.
3.2
Interconnect matrix
Several peripherals are directly interconnected. This allows autonomous communication
between peripherals, thus saving CPU resources and power consumption. In addition,
these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power
run, Low-power sleep and Stop modes.
Table 6. STM32L0xx peripherals interconnect matrix
Interconnect
source
18/135
Lowpower
sleep
Stop
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
-
Interconnect action
Run
TIM2,TIM21,
TIM22
Timer input channel,
trigger from analog
signals comparison
Y
Y
LPTIM
Timer input channel,
trigger from analog
signals comparison
Y
TIMx
Timer triggered by other
timer
Y
COMPx
TIMx
LowSleep power
run
Interconnect
destination
DocID027101 Rev 2
STM32L071xx
Functional overview
Table 6. STM32L0xx peripherals interconnect matrix (continued)
Interconnect
source
Lowpower
sleep
Stop
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
-
Timer input channel and
trigger
Y
Y
Y
Y
-
LPTIM
Timer input channel and
trigger
Y
Y
Y
Y
Y
ADC
Conversion trigger
Y
Y
Y
Y
-
Interconnect action
Run
TIM21
Timer triggered by Auto
wake-up
Y
Y
LPTIM
Timer triggered by RTC
event
Y
TIMx
Clock source used as
input channel for RC
measurement and
trimming
TIMx
RTC
All clock
source
GPIO
3.3
LowSleep power
run
Interconnect
destination
ARM® Cortex®-M0+ core with MPU
The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a
broad range of embedded applications. It offers significant benefits to developers, including:
•
a simple architecture that is easy to learn and program
•
ultra-low power, energy-efficient operation
•
excellent code density
•
deterministic, high-performance interrupt handling
•
upward compatibility with Cortex-M processor family
•
platform security robustness, with integrated Memory Protection Unit (MPU).
The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor
core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional
energy efficiency through a small but powerful instruction set and extensively optimized
design, providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to its embedded ARM core, the STM32L071xx are compatible with all ARM tools and
software.
DocID027101 Rev 2
19/135
32
Functional overview
STM32L071xx
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L071xx embed a nested vectored interrupt controller able to
handle up to 32 maskable interrupt channels and 4 priority levels.
The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:
•
includes a Non-Maskable Interrupt (NMI)
•
provides zero jitter interrupt option
•
provides four interrupt priority levels
The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved
through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also
significantly reduces the overhead when switching from one ISR to another.
To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to enter rapidly stop or standby mode.
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.4
Reset and supply management
3.4.1
Power supply schemes
3.4.2
•
VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
•
VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
Power supply supervisor
The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
Two versions are available:
•
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
•
The other version without BOR operates between 1.65 V and 3.6 V.
After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits
the POR area.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
20/135
DocID027101 Rev 2
STM32L071xx
Functional overview
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note:
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive
at power-up.
The devices feature an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.4.3
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
3.5
•
MR is used in Run mode (nominal regulation)
•
LPR is used in the Low-power run, Low-power sleep and Stop modes
•
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,
LSI, LSE crystal 32 KHz oscillator, RCC_CSR).
Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
•
Clock prescaler
To get the best trade-off between speed and current consumption, the clock frequency
to the CPU and peripherals can be adjusted by a programmable prescaler.
•
Safe clock switching
Clock sources can be changed safely on the fly in Run mode through a configuration
register.
•
Clock management
To reduce power consumption, the clock controller can stop the clock to the core,
individual peripherals or memory.
•
System clock source
Three different clock sources can be used to drive the master clock SYSCLK:
•
–
1-25 MHz high-speed external crystal (HSE), that can supply a PLL
–
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able
to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1
MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE),
the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source
Two ultra-low-power clock sources that can be used to drive the real-time clock:
DocID027101 Rev 2
21/135
32
Functional overview
•
STM32L071xx
–
32.768 kHz low-speed external crystal (LSE)
–
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.
RTC clock source
The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system
clock.
•
Startup clock
After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI).
The prescaler ratio and clock source can be changed by the application program as
soon as the code execution starts.
•
Clock security system (CSS)
This feature can be enabled by software. If an HSE clock failure occurs, the master
clock is automatically switched to HSI and a software interrupt is generated if enabled.
Another clock security system can be enabled, in case of failure of the LSE it provides
an interrupt or wakeup event which is generated if enabled.
•
Clock-out capability (MCO: microcontroller clock output)
It outputs one of the internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
22/135
DocID027101 Rev 2
STM32L071xx
Functional overview
Figure 2. Clock tree
#9
(QDEOH:DWFKGRJ
/6,5&
/HJHQG
+6( +LJKVSHHGH[WHUQDOFORFNVLJQDO
+6, +LJKVSHHGLQWHUQDOFORFNVLJQDO
/6, /RZVSHHGLQWHUQDOFORFNVLJQDO
/6( /RZVSHHGH[WHUQDOFORFNVLJQDO
06, 0XOWLVSHHGLQWHUQDOFORFNVLJQDO
:DWFKGRJ/6
/6,WHPSR
57&6(/
57&HQDEOH
/6(26&
57&
/6(WHPSR
/68
/6'
#9
#9
06,5&
/6,
/6(
06,
/HYHOVKLIWHUV
#9
/6'
0+]
0&26(/
$'&HQDEOH
$'&&/.
0&2
QRWGHHSVOHHS
#9
+6,5&
/HYHOVKLIWHUV
#9
&.B3:5
QRWGHHSVOHHS
FNBUFKV
+6,
6\VWHP
&ORFN
06,
+6,
+6(
#9
+6(26&
/HYHOVKLIWHUV
#9
3//65&
/68
#9
0+]&ORFN
'HWHFWRU
3//&/.
#9
FNBSOOLQ 3//
QRWVOHHSRU
GHHSVOHHS
+&/.
6\V7LFN
7LPHU
$+%
35(6&
«
$3%
35(6&
0+]
PD[
3&/.WR$3%
SHULSKHUDOV
3HULSKHUDO
FORFNHQDEOH
WR7,0[
,I$3%SUHVF [
HOVH[
/6'
)&/.
;
/HYHOVKLIWHUV
#9''&25(
+6(SUHVHQWRUQRW
QRWVOHHSRU
GHHSVOHHS
&ORFN
6RXUFH
&RQWURO
$3%
35(6&
3HULSKHUDO
FORFNHQDEOH
3&/.WR$3%
0+]
SHULSKHUDOV
PD[
3HULSKHUDO
FORFNHQDEOH
,I$3%SUHVF [
HOVH[
/6,
6<6&/.
WR7,0[
3HULSKHUDO
FORFNHQDEOH
/6(
+6,
3HULSKHUDO
FORFNHQDEOH
3&/.
3HULSKHUDO
FORFNHQDEOH
/37,0&/.
/38$57
8$57&/.
,&&/.
06Y9
DocID027101 Rev 2
23/135
32
Functional overview
3.6
STM32L071xx
Low-power real-time clock and backup registers
The real time clock (RTC) and the 5 backup registers are supplied in all modes including
standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user
application data. They are not reset by a system reset, or when the device wakes up from
Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
•
•
•
•
•
•
•
•
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
Two programmable alarms with wake up from Stop and Standby mode capability
Periodic wakeup from Stop and Standby with programmable resolution and period
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy
2 anti-tamper detection pins with programmable filter. The MCU can be woken up from
Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
The RTC clock sources can be:
•
•
•
•
3.7
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 37 kHz)
The high-speed external clock
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated alternate function registers. All GPIOs are high current capable.
Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate
function configuration of I/Os can be locked if needed following a specific sequence in order
to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated
IO bus with a toggling speed of up to 32 MHz.
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 29 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected
to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC,
USARTs, I2C, LPUART, LPTIMER or comparator events.
24/135
DocID027101 Rev 2
STM32L071xx
3.8
Functional overview
Memories
The STM32L071xx devices have the following features:
•
20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
•
The non-volatile memory is divided into three arrays:
–
64, 128 or 192 Kbytes of embedded Flash program memory
–
6 Kbytes of data EEPROM
–
Information block containing 32 user and factory options bytes plus 8 Kbytes of
system memory
Flash program and data EEPROM are divided into two banks. This allows writing in one
bank while running code or reading data from the other bank.
The user options bytes are used to write-protect or read-out protect the memory (with
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:
•
Level 0: no protection
•
Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are
connected or boot in RAM is selected
•
Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in
RAM selection disabled (debugline fuse)
The firewall protects parts of code/data from access by the rest of the code that is executed
outside of the protected area. The granularity of the protected code segment or the nonvolatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the
volatile data segment (RAM).
The whole non-volatile memory embeds the error correction code (ECC) feature.
3.9
Boot modes
At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:
•
Boot from Flash memory
•
Boot from System memory
•
Boot from embedded RAM
The boot loader is located in System memory. It is used to reprogram the Flash memory by
using SPI1(PA4, PA5, PA6, PA7) or SPI2 (PB12, PB13, PB14, PB15), I2C1 (PB6, PB7) or
I2C2 (PB10, PB11), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32™
microcontroller system memory boot mode AN2606 for details.
DocID027101 Rev 2
25/135
32
Functional overview
3.10
STM32L071xx
Direct memory access (DMA)
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, LPUART,
general-purpose timers, and ADC.
3.11
Analog-to-digital converter (ADC)
A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital
converter is embedded into STM32L071xx device. It has up to 16 external channels and 3
internal channels (temperature sensor, voltage reference). It performs conversions in singleshot or scan mode. In scan mode, automatic conversion is performed on a selected group of
analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling
rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all
frequencies (~25 µA at 10 kSPS, ~240 µA at 1MSPS). An auto-shutdown function
guarantees that the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate from a supply voltage down to
1.65 V.
The ADC features a hardware oversampler up to 256 samples, this improves the resolution
to 16 bits (see AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.
3.12
Temperature sensor
The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN18 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
26/135
DocID027101 Rev 2
STM32L071xx
Functional overview
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 7. Temperature sensor calibration values
Calibration value name
3.12.1
Description
Memory address
TSENSE_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3 V
0x1FF8 007A - 0x1FF8 007B
TSENSE_CAL2
TS ADC raw data acquired at
temperature of 130 °C
VDDA= 3 V
0x1FF8 007E - 0x1FF8 007F
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available
for ADC). The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
Table 8. Internal voltage reference measured values
Calibration value name
VREFINT_CAL
3.13
Description
Raw data acquired at
temperature of 25 °C
VDDA = 3 V
Memory address
0x1FF8 0078 - 0x1FF8 0079
Ultra-low-power comparators and reference voltage
The STM32L071xx embed two comparators sharing the same current bias and reference
voltage. The reference voltage can be internal or external (coming from an I/O).
•
One comparator with ultra low consumption
•
One comparator with rail-to-rail inputs, fast or slow mode.
•
The threshold can be one of the following:
–
External I/O pins
–
Internal reference voltage (VREFINT)
–
submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail
comparator.
Both comparators can wake up the devices from Stop mode, and be combined into a
window comparator.
The internal reference voltage is available externally via a low-power / low-current output
buffer (driving current capability of 1 µA typical).
DocID027101 Rev 2
27/135
32
Functional overview
3.14
STM32L071xx
Timers and watchdogs
The ultra-low-power STM32L071xx devices include three general-purpose timers, one lowpower timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.
Table 9 compares the features of the general-purpose and basic timers.
Table 9. Timer feature comparison
Timer
Counter
resolution
Counter type
Prescaler factor
DMA
request
generation
TIM2,
TIM3
16-bit
Up, down,
up/down
Any integer between
1 and 65536
Yes
4
No
TIM21,
TIM22
16-bit
Up, down,
up/down
Any integer between
1 and 65536
No
2
No
TIM6,
TIM7
16-bit
Up
Any integer between
1 and 65536
Yes
0
No
3.14.1
Capture/compare Complementary
channels
outputs
General-purpose timers (TIM2, TIM3, TIM21 and TIM22)
There are four synchronizable general-purpose timers embedded in the STM32L071xx
device (see Table 9 for differences).
TIM2, TIM3
TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit
prescaler. It features four independent channels each for input capture/output compare,
PWM or one-pulse mode output.
The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22
general-purpose timers via the Timer Link feature for synchronization or event chaining.
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used
to generate PWM outputs.
TIM2/TIM3 have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
TIM21 and TIM22
TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit
prescaler. They have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3,
full-featured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
28/135
DocID027101 Rev 2
STM32L071xx
3.14.2
Functional overview
Low-power Timer (LPTIM)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
3.14.3
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous / one shot mode
•
Selectable software / hardware input trigger
•
Selectable clock source
–
Internal clock source: LSE, LSI, HSI or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by the Pulse Counter Application)
•
Programmable digital glitch filter
•
Encoder mode
Basic timer (TIM6, TIM7)
These timers can be used as a generic 16-bit timebase.
3.14.4
SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit downcounter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches ‘0’.
3.14.5
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
3.14.6
Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
DocID027101 Rev 2
29/135
32
Functional overview
STM32L071xx
3.15
Communication interfaces
3.15.1
I2C bus
Up to three I2C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.
Each I2C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to
400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.
7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with
configurable mask) are also supported as well as programmable analog and digital noise
filters.
Table 10. Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
≥ 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain
independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop
mode on address match.
Each I2C interface can be served by the DMA controller.
Refer to Table 11 for an overview of I2C interface features.
Table 11. STM32L071xx I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
7-bit addressing mode
X
X
X
10-bit addressing mode
X
X
X
Standard mode (up to 100 kbit/s)
X
X
X
Fast mode (up to 400 kbit/s)
X
X
X
Fast Mode Plus with 20 mA output drive I/Os (up to 1
Mbit/s)
X
X(2)
X
Independent clock
X
-
X
SMBus
X
-
X
Wakeup from STOP
X
-
X
1. X = supported.
2. See Table 15: STM32L071xxx pin definition on page 39 for the list of I/Os that feature Fast Mode Plus
capability
30/135
DocID027101 Rev 2
STM32L071xx
3.15.2
Functional overview
Universal synchronous/asynchronous receiver transmitter (USART)
The four USART interfaces (USART1, USART2, USART4 and USART5) are able to
communicate at speeds of up to 4 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 driver enable (DE)
signals, multiprocessor communication mode, master synchronous communication and
single-wire half-duplex communication mode. USART1 and USART2 also support
SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto
baud rate feature and has a clock domain independent from the CPU clock, allowing to
wake up the MCU from Stop mode.
All USART interfaces can be served by the DMA controller.
Table 12 for the supported modes and features of USART interfaces.
Table 12. USART implementation
USART modes/features(1)
USART1 and USART2
USART4 and USART5
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode
X
X
Smartcard mode
X
-
Single-wire half-duplex communication
X
X
IrDA SIR ENDEC block
X
-
LIN mode
X
-
Dual clock domain and wakeup from Stop mode
X
-
Receiver timeout interrupt
X
-
Modbus communication
X
-
Auto baud rate detection (4 modes)
X
-
Driver Enable
X
X
1. X = supported.
3.15.3
Low-power universal asynchronous receiver transmitter (LPUART)
The devices embed one Low-power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wake up the
system from Stop mode. The Wakeup events from Stop mode are programmable and can
be:
•
Start bit detection
•
Or any received data frame
•
Or a specific programmed data frame
DocID027101 Rev 2
31/135
32
Functional overview
STM32L071xx
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
3.15.4
Serial peripheral interface (SPI)/Inter-integrated sound (I2S)
Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or
slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output
channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the
I2S interfaces is configured in master mode, the master clock can be output to the external
DAC/CODEC at 256 times the sampling frequency.
The SPIs can be served by the DMA controller.
Refer to Table 13 for the differences between SPI1 and SPI2.
Table 13. SPI/I2S implementation
SPI features(1)
SPI1
SPI2
Hardware CRC calculation
X
X
I2S mode
-
X
TI mode
X
X
1. X = supported.
3.16
Cyclic redundancy check (CRC) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
3.17
Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
32/135
DocID027101 Rev 2
STM32L071xx
Pin descriptions
9''
966
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3'
3'
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
Figure 3. STM32L071xx LQFP100 pinout - 14 x 14 mm
/4)3
9''
9'',2
966
9''
3$
3$
3$ 3$
3$
3$
3&
3&
3&
3&
3'
3'
3'
3'
3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
9''
3&
3&26&B,1
3&26&B287
3+
3+
3+26&B,1
3+26&B287
1567
3&
3&
3&
3&
966$
95()
95()
9''$
3$
3$
3$
3$
966
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3(
3(
3(
3(
3(
3(
3(
3(
3(
3%
3%
966
9''
4
Pin descriptions
06Y9
1. The above figure shows the package top view.
2. I/O supplied by VDDIO2.
DocID027101 Rev 2
33/135
51
Pin descriptions
STM32L071xx
Figure 4. STM32L071xx UFBGA100 ballout - 7x 7 mm
&
'
,
ϱ
Ϯ
3(
3(
3(
WϮ
3%
3%
3%
3&
3(
3(
9''
3%
3&
26& 3(
B,1
3&
26& 9''
B287
ϯ
ϰ
ϭ
3% %227 3'
ϲ
ϳ
ϴ
ϵ
ϭ
3'
3%
3%
3$
3$
3$
3$
3'
3'
3'
3' 3&
3&
3$
3'
3' 3&
9''
3$
3$
3$
3&
3&
3&
3&
966
966
9''
,2
9''
966
966
3+
3+
26&B,1
3+
26&B 3+
287
3&
ϭ
1567 9''
3' 3'
3'
3' 3'
3'
3% 3%
3%
:
966$
3&
3&
<
95()
3&
3$
3$
3&
>
95()
3$
3$
3$
3&
3%
3(
3( 3( 3%
3%
D
9''$
3$
3$
3%
3%
3(
3( 3( 3(
3(
3$
3'
3'
3%
3(
06Y9
1. The above figure shows the package top view.
2. I/O supplied by VDDIO2.
s
s^ ^
W ϵ
W ϴ
KK dϬ
W ϳ
W ϲ
W ϱ
W ϰ
W ϯ
WϮ
WϭϮ
Wϭϭ
WϭϬ
W ϭϱ
W ϭϰ
Figure 5. STM32L071xx LQFP64 pinout - 10 x 10 mm
ϲϰ ϲϯ ϲϮ ϲϭ ϲϬ ϱϵ ϱϴ ϱϳ ϱϲ ϱϱ ϱϰ ϱϯ ϱϮ ϱϭ ϱϬ ϰϵ
ϰϴ
ϭ
ϰϳ
Ϯ
ϰϲ
ϯ
ϰϱ
ϰ
ϰϰ
ϱ
ϰϯ
ϲ
ϰϮ
ϳ
ϰϭ
ϴ
>Y&Wϲϰ
ϰϬ
ϵ
ϯϵ
ϭϬ
ϯϴ
ϭϭ
ϯϳ
ϭϮ
ϯϲ
ϭϯ
ϯϱ
ϭϰ
ϯϰ
ϭϱ
ϯϯ
ϭϲ
ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϱ Ϯϲ Ϯϳ Ϯϴ Ϯϵ ϯϬ ϯϭ ϯϮ
s/KϮ
s^^
W ϭϯ
W ϭϮ
W ϭϭ
W ϭϬ
W ϵ
W ϴ
Wϵ
Wϴ
Wϳ
Wϲ
W ϭϱ
W ϭϰ
W ϭϯ
W ϭϮ
W ϯ
s^^
s W ϰ
W ϱ
W ϲ
W ϳ
Wϰ
Wϱ
W Ϭ
W ϭ
W Ϯ
Wϭ Ϭ
Wϭ ϭ
s^^
s s Wϭϯ
W ϭϰͲK^ ϯϮͺ/E
W ϭϱͲK^ ϯϮͺKh d
W ,ϬͲK^ ͺ/E
W ,ϭͲK^ͺKhd
EZ^d
WϬ
Wϭ
WϮ
Wϯ
s^^ s WϬ
W ϭ
W Ϯ
06Y9
1. The above figure shows the package top view.
2. I/O supplied by VDDIO2.
34/135
DocID027101 Rev 2
STM32L071xx
Pin descriptions
Figure 6. STM32L071xx TFBGA64 ballout - 5x 5 mm
$
3&
26&
B,1
3&
3%
3%
3%
%
3&
26&
B287
9''
3%
%227
3+
26&B,1
966
3%
'
3+
26&B
287
9''
(
1567
)
966$
&
3$
3$
3$
3'
3&
3&
3$
3%
3&
3$
3$
3$
3%
966
966
966
3$
3&
3&
3&
9''
9''
9''
,2
3&
3&
3&
3$
3$
3%
3&
3%
3%
*
95()
3$
3$
3$
3%
3%
3%
3%
+
9''$
3$
3$
3$
3&
3&
3%
3%
06Y9
1. The above figure shows the package top view.
2. I/O supplied by VDDIO2.
DocID027101 Rev 2
35/135
51
Pin descriptions
STM32L071xx
Figure 7. STM32L071xx WLCSP49 ballout
$
9''
,2
3$
3%
3%
%227
3%
9''
%
3$
3$
3%
3%
3%
9''
3&
&
3$
3$
3%
3&
3&
'
3$
3$
3%
966
(
3%
3$
3%
)
3%
3(
*
3%
9''
3&
26&
B,1
3&
26&
B287
1567
3+
26&B,1
3+
26&B
287
3$
3$
95()
3&
3%
3$
3$
3$
9''$
3%
3%
3$
3$
3$
06Y9
1. The above figure shows the package top view.
2. I/O supplied by VDDIO2.
36/135
DocID027101 Rev 2
STM32L071xx
Pin descriptions
9''
966 3%
3%
%227
3%
3%
3%
3%
3%
3$
3$
Figure 8. STM32L071xx LQFP48 pinout - 7 x 7 mm
/4)3
9'',2
966 3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
966
9''
9''
3&
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
966$
9''$
3$
3$
3$
069
1. The above figure shows the package top view.
2. I/O supplied by VDDIO2.
9''
3&26&B,1
3&26&B287
/4)3
3$
3$
3$
3$
3$
3$
3$
9''
3$
3$
3$
3$
3$
3%
3%
966
1567
9''$
3$
3$
3$
3%
3%
3%
3%
3%
3$
966
%227
Figure 9. STM32L071xx LQFP32 pinout
06Y9
1. The above figure shows the package top view.
DocID027101 Rev 2
37/135
51
Pin descriptions
STM32L071xx
966
9'',2
3$
3$
3$
3$
3$
3$
9''
3$
3$
3$
3$
3$
3%
3%
966
3&26&B,1
3&26&B287
1567
966$
9''$
3$
3$
3$
%227
3%
3%
3%
3%
3$
9''
966
Figure 10. STM32L071xx UFQFPN32 pinout
06Y9
1. The above figure shows the package top view.
2. I/O supplied by VDDIO2.
Table 14. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
I/O structure
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during
and after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TC
Standard 3.3V I/O
B
RST
Notes
Pin functions
38/135
Definition
Dedicated BOOT0 pin
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and
after reset.
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
DocID027101 Rev 2
STM32L071xx
Pin descriptions
Table 15. STM32L071xxx pin definition
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA64
WLCSP49
LQFP100
UFBG100
Pin type
I/O structure
Note
Pin number
-
-
-
-
-
-
1
B2
PE2
I/O
FT
-
TIM3_ETR
-
-
-
-
-
-
-
2
A1
PE3
I/O
FT
-
TIM22_CH1, TIM3_CH1
-
-
-
-
-
-
-
3
B1
PE4
I/O
FT
-
TIM22_CH2, TIM3_CH2
-
-
-
-
-
-
-
4
C2
PE5
I/O
FT
-
TIM21_CH1, TIM3_CH3
-
-
-
-
-
-
-
5
D2
PE6
I/O
FT
-
TIM21_CH2, TIM3_CH4 RTC_TAMP3/WKUP3
1
-
1
1
B2 B6
6
E2
VDD
S
-
-
2
2
A2 B7
7
C1
PC13
I/O
2
1
3
3
A1 C6
8
D1
PC14OSC32_IN
(PC14)
3
2
4
4
B1 C7
9
E1
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
5
-
-
4
3
-
-
Pin name
(function after
reset)
Alternate functions Additional functions
-
-
-
FT
-
-
RTC_TAMP1/
RTC_TS/
RTC_OUT/WKUP2
I/O
FT
-
-
OSC32_IN
PC15OSC32_OUT
(PC15)
I/O
TC
-
-
OSC32_OUT
F2
PH9
I/O
FT
-
-
-
11
G2
PH10
I/O
FT
-
-
-
5
C1 D6 12
F1
PH0-OSC_IN
I/O
(PH0)
TC
-
-
OSC_IN
6
6
D1 D7 13
G1
PH1OSC_OUT
(PH1)
I/O
TC
-
-
OSC_OUT
7
7
E1 D5 14
H2
NRST
I/O
-
-
-
-
-
LPTIM1_IN1,
EVENTOUT,
LPUART1_RX,
I2C3_SCL
ADC_IN10
ADC_IN11
ADC_IN12
-
8
E3 C5 15
H1
PC0
I/O FTf
-
-
-
9
E2 C4 16
J2
PC1
I/O FTf
-
LPTIM1_OUT,
EVENTOUT,
LPUART1_TX,
I2C3_SDA
-
-
-
10
F2 E7 17
J3
PC2
I/O FTf
-
LPTIM1_IN2,
SPI2_MISO/I2S2_MCK
DocID027101 Rev 2
39/135
51
Pin descriptions
STM32L071xx
Table 15. STM32L071xxx pin definition (continued)
Note
VREF-
S
-
-
-
L1
VREF+
S
-
-
-
M1
VDDA
S
-
-
-
-
TIM2_CH1,
USART2_CTS,
TIM2_ETR,
USART4_TX,
COMP1_OUT
COMP1_INM,
ADC_IN0,
RTC_TAMP2/WKUP1
-
EVENTOUT,
TIM2_CH2,
USART2_RTS_DE,
TIM21_ETR,
USART4_RX
COMP1_INP,
ADC_IN1
-
TIM21_CH1,
TIM2_CH3,
USART2_TX,
LPUART1_TX,
COMP2_OUT
COMP2_INM,
ADC_IN2
COMP2_INP,
ADC_IN3
Pin type
-
UFBG100
-
LQFP100
-
WLCSP49
S
UFBGA64
ADC_IN13
LQFP64
LPTIM1_ETR,
SPI2_MOSI/I2S2_SD
LQFP48
-
UFQFPN32(1)
FT
LQFP32
I/O structure
Pin number
-
-
-
11
-
-
18
K2
PC3
I/O
-
4
8
12
F1
-
19
J1
VSSA
-
-
-
-
-
-
20
K1
-
-
-
-
G1 E6 21
5
5
9
13
H1 F7 22
6
7
8
6
7
8
10
11
12
14
15
16
G2 E5 23
H2 E4 24
F3
F6 25
L2
M2
K3
Pin name
(function after
reset)
PA0
PA1
PA2
I/O TTa
I/O
I/O
FT
FT
Alternate functions Additional functions
9
9
13
17
G3 G7 26
L3
PA3
I/O
FT
-
TIM21_CH2,
TIM2_CH4,
USART2_RX,
LPUART1_RX
-
-
-
18
C2
-
27
D3
VSS
S
-
-
-
-
-
-
-
19
D2
-
28
H3
VDD
S
-
-
-
-
10 10
14
20
H3 F5 29
M3
PA4
I/O
TC
-
SPI1_NSS,
USART2_CK,
TIM22_ETR
COMP1_INM,
COMP2_INM,
ADC_IN4
11 11
15
21
F4 G6 30
K4
PA5
I/O
TC
-
SPI1_SCK, TIM2_ETR,
TIM2_CH1
COMP1_INM,
COMP2_INM,
ADC_IN5
40/135
DocID027101 Rev 2
STM32L071xx
Pin descriptions
Table 15. STM32L071xxx pin definition (continued)
12 12
13 13
16
22
G4 G5 31
L4
PA6
I/O
FT
Note
I/O structure
Pin name
(function after
reset)
Pin type
UFBG100
LQFP100
WLCSP49
UFBGA64
LQFP64
LQFP48
UFQFPN32(1)
LQFP32
Pin number
Alternate functions Additional functions
-
SPI1_MISO,
TIM3_CH1,
LPUART1_CTS,
TIM22_CH1,
EVENTOUT,
COMP1_OUT
ADC_IN6
ADC_IN7
17
23
H4 F4 32
M4
PA7
I/O
FT
-
SPI1_MOSI,
TIM3_CH2,
TIM22_CH2,
EVENTOUT,
COMP2_OUT
-
-
-
24
H5
-
33
K5
PC4
I/O
FT
-
EVENTOUT,
LPUART1_TX
ADC_IN14
-
-
-
25
H6
-
34
L5
PC5
I/O
FT
-
LPUART1_RX
ADC_IN15
14 14
18
26
F5 G4 35
M5
PB0
I/O
FT
-
EVENTOUT, TIM3_CH3
ADC_IN8,
VREF_OUT
15 15
19
27
G5 D3 36
M6
PB1
I/O
FT
-
TIM3_CH4,
LPUART1_RTS_DE
ADC_IN9,
VREF_OUT
G6 E3 37
L6
PB2
I/O
FT
-
LPTIM1_OUT,
I2C3_SMBA
-
-
-
20
28
-
-
-
-
-
-
38
M7
PE7
I/O
FT
-
USART5_CK/USART5_
RTS_DE
-
-
-
-
-
-
-
39
L7
PE8
I/O
FT
-
USART4_TX
-
-
-
-
-
-
-
40
M8
PE9
I/O
FT
-
TIM2_CH1, TIM2_ETR,
USART4_RX
-
-
-
-
-
-
-
41
L8
PE10
I/O
FT
-
TIM2_CH2,
USART5_TX
-
-
-
-
-
-
-
42
M9
PE11
I/O
FT
-
TIM2_CH3,
USART5_RX
-
-
-
-
-
-
-
43
L9
PE12
I/O
FT
-
TIM2_CH4, SPI1_NSS
-
-
-
-
-
-
-
44 M10
PE13
I/O
FT
-
SPI1_SCK
-
-
-
-
-
-
-
45 M11
PE14
I/O
FT
-
SPI1_MISO
-
-
-
-
-
-
-
46 M12
PE15
I/O
FT
-
SPI1_MOSI
-
DocID027101 Rev 2
41/135
51
Pin descriptions
STM32L071xx
Table 15. STM32L071xxx pin definition (continued)
-
-
-
-
21
29
G7 G3 47 L10
PB10
I/O
FT
FT
Note
I/O structure
Pin name
(function after
reset)
Pin type
UFBG100
LQFP100
WLCSP49
UFBGA64
LQFP64
LQFP48
UFQFPN32(1)
LQFP32
Pin number
Alternate functions Additional functions
-
TIM2_CH3,
LPUART1_TX,
SPI2_SCK, I2C2_SCL,
LPUART1_RX
-
-
EVENTOUT,
TIM2_CH4,
LPUART1_RX,
I2C2_SDA,
LPUART1_TX
-
22
30
H7 F3 48 L11
PB11
I/O
16 16
23
31
D6 D4 49 F12
VSS
S
-
-
-
17 17
24
32
E6 G2 50 G12
VDD
S
-
-
-
-
-
-
25
33
H8 G1 51 L12
PB12
I/O
FT
-
SPI2_NSS/I2S2_WS,
LPUART1_RTS_DE,
I2C2_SMBA,
EVENTOUT
-
-
26
34
G8 F2 52 K12
PB13
I/O FTf
-
SPI2_SCK/I2S2_CK,
MCO, LPUART1_CTS,
I2C2_SCL, TIM21_CH1
-
-
-
-
27
35
F8
F1 53 K11
PB14
I/O FTf
-
SPI2_MISO/I2S2_MCK,
RTC_OUT,
LPUART1_RTS_DE,
I2C2_SDA, TIM21_CH2
-
-
28
36
F7 E1 54 K10
PB15
I/O
FT
-
SPI2_MOSI/I2S2_SD,
RTC_REFIN
-
-
-
-
-
-
-
55
K9
PD8
I/O
FT
-
LPUART1_TX
-
-
-
-
-
-
-
56
K8
PD9
I/O
FT
-
LPUART1_RX
-
-
-
-
-
-
-
57 J12
PD10
I/O
FT
-
-
-
-
-
-
-
58 J11
PD11
I/O
FT
-
LPUART1_CTS
-
-
-
-
-
-
-
59 J10
PD12
I/O
FT
-
LPUART1_RTS_DE
-
-
-
-
-
-
-
60 H12
PD13
I/O
FT
-
-
-
-
-
-
-
-
61 H11
PD14
I/O
FT
-
-
-
-
-
-
-
-
62 H10
PD15
I/O
FT
-
-
-
-
-
37
F6
-
63 E12
PC6
I/O
FT
-
TIM22_CH1, TIM3_CH1
-
-
-
-
38
E7
-
64 E11
PC7
I/O
FT
-
TIM22_CH2, TIM3_CH2
-
42/135
DocID027101 Rev 2
-
STM32L071xx
Pin descriptions
Table 15. STM32L071xxx pin definition (continued)
LQFP48
LQFP64
UFBGA64
WLCSP49
Pin type
I/O structure
Note
-
-
39
E8
-
65 E10
PC8
I/O
FT
-
TIM22_ETR, TIM3_CH3
-
-
-
-
40
D8
-
66 D12
PC9
I/O FTf
-
TIM21_ETR,
TIM3_CH4, I2C3_SDA
-
18 18
29
41
D7 D1 67 D11
PA8
I/O FTf
-
MCO, EVENTOUT,
USART1_CK,
I2C3_SCL
-
19 19
30
42
C7 E2 68 D10
PA9
I/O FTf
-
MCO, USART1_TX,
I2C1_SCL, I2C3_SMBA
-
20 20
31
43
C6 C1 69 C12
PA10
I/O FTf
-
USART1_RX,
I2C1_SDA
-
-
SPI1_MISO,
EVENTOUT,
USART1_CTS,
COMP1_OUT
-
-
21 21
32
44
UFBG100
UFQFPN32(1)
-
LQFP100
LQFP32
Pin number
C8 D2 70 B12
Pin name
(function after
reset)
PA11
I/O
FT
Alternate functions Additional functions
22 22
33
45
B8 B1 71 A12
PA12
I/O
FT
-
SPI1_MOSI,
EVENTOUT,
USART1_RTS_DE,
COMP2_OUT
23 23
34
46
A8 C2 72 A11
PA13
I/O
FT
-
SWDIO, LPUART1_RX
-
-
-
-
-
-
-
73 C11
VDD
S
-
-
-
-
-
35
47
D5
-
74 F11
VSS
S
-
-
-
-
24
36
48
E5 A1 75 G11
VDDIO2
S
-
-
-
24 25
37
49
A7 B2 76 A10
PA14
I/O
-
SWCLK, USART2_TX,
LPUART1_TX
-
-
FT
A9
PA15
I/O
FT
-
SPI1_NSS, TIM2_ETR,
EVENTOUT,
USART2_RX,
TIM2_CH1,
USART4_RTS_DE
-
78 B11
PC10
I/O
FT
-
LPUART1_TX,
USART4_TX
-
B6
-
79 C10
PC11
I/O
FT
-
LPUART1_RX,
USART4_RX
-
C5
-
80 B10
PC12
I/O
FT
-
USART5_TX,
USART4_CK
-
25
-
38
50
A6 A2 77
-
-
-
51
B7
-
-
-
52
-
-
-
53
DocID027101 Rev 2
43/135
51
Pin descriptions
STM32L071xx
Table 15. STM32L071xxx pin definition (continued)
LQFP32
UFQFPN32(1)
LQFP48
LQFP64
UFBGA64
WLCSP49
LQFP100
UFBG100
Pin type
I/O structure
Note
Pin number
-
-
-
-
-
-
81
C9
PD0
I/O
FT
-
TIM21_CH1,
SPI2_NSS/I2S2_WS
-
-
-
-
-
-
-
82
B9
PD1
I/O
FT
-
SPI2_SCK/I2S2_CK
-
-
-
-
54
B5
-
83
C8
PD2
I/O
FT
-
LPUART1_RTS_DE,
TIM3_ETR,
USART5_RX
-
-
-
-
-
-
-
84
B8
PD3
I/O
FT
-
USART2_CTS,
SPI2_MISO/I2S2_MCK
-
-
-
-
-
-
-
85
B7
PD4
I/O
FT
-
USART2_RTS_DE,
SPI2_MOSI/I2S2_SD
-
-
-
-
-
-
-
86
A6
PD5
I/O
FT
-
USART2_TX
-
-
-
-
-
-
-
87
B6
PD6
I/O
FT
-
USART2_RX
-
-
-
-
-
-
-
88
A5
PD7
I/O
FT
-
USART2_CK,
TIM21_CH2
-
-
SPI1_SCK, TIM2_CH2,
EVENTOUT,
USART1_RTS_DE,
USART5_TX
COMP2_INM
-
SPI1_MISO,
TIM3_CH1,
TIM22_CH1,
USART1_CTS,
USART5_RX,
I2C3_SDA
COMP2_INP
COMP2_INP
COMP2_INP
26
-
27 26
39
40
55
56
A5 A3 89
A4 B3 90
A8
A7
Pin name
(function after
reset)
PB3
PB4
I/O
FT
I/O FTf
Alternate functions Additional functions
28 27
41
57
C4 A4 91
C5
PB5
I/O
FT
-
SPI1_MOSI,
LPTIM1_IN1,
I2C1_SMBA,
TIM3_CH2/TIM22_CH2,
USART1_CK,
USART5_CK/USART5_
RTS_DE
29 28
42
58
D3 B4 92
B5
PB6
I/O FTf
-
USART1_TX,
I2C1_SCL,
LPTIM1_ETR,
44/135
DocID027101 Rev 2
STM32L071xx
Pin descriptions
Table 15. STM32L071xxx pin definition (continued)
30 29
43
59
C3 C3 93
B4
PB7
31 30
44
60
B4 A5 94
A4
BOOT0
I/O FTf
I
Note
I/O structure
Pin name
(function after
reset)
Pin type
UFBG100
LQFP100
WLCSP49
UFBGA64
LQFP64
LQFP48
UFQFPN32(1)
LQFP32
Pin number
Alternate functions Additional functions
-
USART1_RX,
I2C1_SDA,
LPTIM1_IN2,
USART4_CTS
COMP2_INP,
VREF_PVD_IN
-
-
-
-
-
45
61
B3 B5 95
A3
PB8
I/O FTf
-
I2C1_SCL
-
-
-
46
62
A3 A6 96
B3
PB9
I/O FTf
-
EVENTOUT,
I2C1_SDA,
SPI2_NSS/I2S2_WS
-
-
-
-
-
-
-
97
C3
PE0
I/O
FT
-
EVENTOUT
-
-
-
-
-
-
-
98
A2
PE1
I/O
FT
-
EVENTOUT
-
47
63
D4
-
99
D3
VSS
S
-
-
-
48
64
E4 A7 100 C4
VDD
S
-
-
-
32 31
-
32
1. UFQFPN32 pinout differs from other STM32 devices except STM32L07xxx and STM32L8xxx.
DocID027101 Rev 2
45/135
51
AF0
DocID027101 Rev 2
Port A
Port
AF1
AF2
SPI1/SPI2/I2S2/U
SPI1/SPI2/I2S2/L
SART1/2/
PUART1/
LPUART1/LPTIM
SPI1/SPI2/I2S2/I2 USART5/LPTIM1
1/
/TIM2/3/EVENTO
C1/TIM2/21
TIM2/21/22/
UT/
EVENTOUT/
SYS_AF
SYS_AF
PA0
-
PA1
-
AF3
AF4
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
AF5
AF6
AF7
I2C1/2/
I2C3/LPUART1/C
LPUART1/
SPI2/I2S2/I2C2/U
OMP1/2/
USART4/
SART1/
TIM3
UASRT5/TIM21/E
TIM2/21/22
VENTOUT
USART2_CTS
TIM2_ETR
USART4_TX
COMP1_OUT
EVENTOUT
TIM2_CH2
USART2_RTS_D
E
TIM21_ETR
USART4_RX
-
PA2
TIM21_CH1
TIM2_CH3
USART2_TX
-
LPUART1_TX
COMP2_OUT
PA3
TIM21_CH2
TIM2_CH4
USART2_RX
-
LPUART1_RX
-
PA4
SPI1_NSS
-
-
USART2_CK
TIM22_ETR
-
-
PA5
SPI1_SCK
-
TIM2_ETR
TIM2_CH1
-
-
PA6
SPI1_MISO
TIM3_CH1
LPUART1_CTS
TIM22_CH1
EVENTOUT
COMP1_OUT
PA7
SPI1_MOSI
TIM3_CH2
-
TIM22_CH2
EVENTOUT
COMP2_OUT
PA8
MCO
USART1_CK
-
-
I2C3_SCL
PA9
MCO
-
USART1_TX
-
I2C1_SCL
I2C3_SMBA
PA10
-
-
USART1_RX
-
I2C1_SDA
-
PA11
SPI1_MISO
-
EVENTOUT
USART1_CTS
-
-
COMP1_OUT
PA12
SPI1_MOSI
-
EVENTOUT
USART1_RTS_
DE
-
-
COMP2_OUT
PA13
SWDIO
-
-
-
-
LPUART1_RX
-
PA14
SWCLK
-
-
-
USART2_TX
-
LPUART1_TX
-
PA15
SPI1_NSS
TIM2_ETR
EVENTOUT
USART2_RX
TIM2_CH1
USART4_RTS_D
E
-
EVENTOUT
STM32L071xx
TIM2_CH1
Pin descriptions
46/135
Table 16. Alternate functions port A
AF0
Port
DocID027101 Rev 2
Port B
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
AF1
AF2
SPI1/SPI2/I2S2/
LPUART1/
SPI1/SPI2/I2S2/I USART5/LPTIM
1/TIM2/3/EVENT
2C1/TIM2/21
OUT/
SYS_AF
AF3
AF4
AF5
AF6
AF7
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT
I2C3/LPUART1/
COMP1/2/
TIM3
EVENTOUT
TIM3_CH3
-
-
-
-
PB1
-
TIM3_CH4
LPUART1_RTS_DE
-
-
-
PB2
-
LPTIM1_OUT
-
-
-
I2C3_SMBA
PB3
SPI1_SCK
TIM2_CH2
EVENTOUT
USART1_RTS_DE
USART5_TX
-
PB4
SPI1_MISO
TIM3_CH1
TIM22_CH1
USART1_CTS
USART5_RX
I2C3_SDA
PB5
SPI1_MOSI
LPTIM1_IN1
TIM3_CH2/
TIM22_CH2
USART1_CK
USART5_CK/
USART5_RTS_D
E
-
PB6
USART1_TX
I2C1_SCL
LPTIM1_ETR
-
-
-
-
PB7
USART1_RX
I2C1_SDA
LPTIM1_IN2
-
-
USART4_CTS
-
PB8
-
-
I2C1_SCL
-
-
-
PB9
-
EVENTOUT
I2C1_SDA
SPI2_NSS/
I2S2_WS
-
-
PB10
-
TIM2_CH3
LPUART1_TX
SPI2_SCK
I2C2_SCL
LPUART1_RX
PB11
EVENTOUT
TIM2_CH4
LPUART1_RX
-
I2C2_SDA
LPUART1_TX
PB12
SPI2_NSS/I2S2_WS
LPUART1_RTS_
DE
I2C2_SMBA
EVENTOUT
-
PB13
SPI2_SCK/I2S2_CK
MCO
LPUART1_CTS
I2C2_SCL
TIM21_CH1
-
PB14
SPI2_MISO/
I2S2_MCK
RTC_OUT
LPUART1_RTS_DE
I2C2_SDA
TIM21_CH2
-
PB15
SPI2_MOSI/
I2S2_SD
RTC_REFIN
-
-
-
-
-
I2C1_SMBA
-
-
Pin descriptions
47/135
PB0
STM32L071xx
Table 17. Alternate functions port B
AF0
Port
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
AF2
SPI1/SPI2/I2S2/I2C1/
TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3
/EVENTOUT/SYS_AF
AF3
AF4
AF5
AF6
AF7
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/E
VENTOUT
I2C3/LPUART1/
COMP1/2/
TIM3
DocID027101 Rev 2
PC0
LPTIM1_IN1
EVENTOUT
LPUART1_RX
I2C3_SCL
PC1
LPTIM1_OUT
EVENTOUT
LPUART1_TX
I2C3_SDA
PC2
LPTIM1_IN2
SPI2_MISO/
I2S2_MCK
PC3
LPTIM1_ETR
SPI2_MOSI/
I2S2_SD
PC4
EVENTOUT
LPUART1_TX
PC5
Port C
AF1
LPUART1_RX
PC6
TIM22_CH1
TIM3_CH1
PC7
TIM22_CH2
TIM3_CH2
PC8
TIM22_ETR
TIM3_CH3
PC9
TIM21_ETR
TIM3_CH4
PC10
LPUART1_TX
USART4_TX
PC11
LPUART1_RX
USART4_RX
PC12
Pin descriptions
48/135
Table 18. Alternate functions port C
USART5_TX
I2C3_SDA
USART4_CK
PC13
PC14
PC15
STM32L071xx
AF0
AF1
AF2
AF4
AF5
AF6
AF7
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
SPI1/SPI2/I2S2/I2C1/
TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3
/EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/E
VENTOUT
I2C3/LPUART1/
COMP1/2/TIM3
PD0
TIM21_CH1
SPI2_NSS/I2S2_WS
-
-
-
-
-
-
PD1
-
SPI2_SCK/I2S2_CK
-
-
-
-
-
-
PD2
LPUART1_RTS_
DE
TIM3_ETR
-
-
-
USART5_RX
-
PD3
USART2_CTS
SPI2_MISO/
I2S2_MCK
-
-
-
-
-
PD4
USART2_RTS_D
E
SPI2_MOSI/I2S2_SD
-
-
-
-
-
-
PD5
USART2_TX
-
-
-
-
-
-
-
PD6
USART2_RX
-
-
-
-
-
-
-
PD7
USART2_CK
TIM21_CH2
-
-
-
-
-
-
PD8
LPUART1_TX
-
-
-
-
-
-
PD9
LPUART1_RX
-
-
-
-
-
-
PD10
-
-
-
-
-
-
-
PD11
LPUART1_CTS
-
-
-
-
-
-
PD12
LPUART1_RTS_
DE
-
-
-
-
-
-
PD13
-
-
-
-
-
-
-
PD14
-
-
-
-
-
-
-
-
-
-
-
-
-
DocID027101 Rev 2
Port D
Port
PD15
49/135
Pin descriptions
AF3
STM32L071xx
Table 19. Alternate functions port D
AF0
DocID027101 Rev 2
Port E
Port
SPI1/SPI2/I2S2/
USART1/2/
LPUART1/LPTI
M1/
TIM2/21/22/
EVENTOUT/
SYS_AF
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3
/EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT
SPI1/SPI2/I2S2/I2C1
/TIM2/21
I2C3/LPUART1/
COMP1/2/TIM3
PE0
-
EVENTOUT
-
-
-
-
-
PE1
-
EVENTOUT
-
-
-
-
-
PE2
-
TIM3_ETR
-
-
-
-
-
PE3
TIM22_CH1
TIM3_CH1
-
-
-
-
-
PE4
TIM22_CH2
-
TIM3_CH2
-
-
-
-
-
PE5
TIM21_CH1
-
TIM3_CH3
-
-
-
-
-
PE6
TIM21_CH2
-
TIM3_CH4
-
-
-
-
-
PE7
-
-
-
-
-
USART5_CK/U
SART5_RTS_D
E
-
PE8
-
-
-
-
-
USART4_TX
-
PE9
TIM2_CH1
TIM2_ETR
-
-
-
USART4_RX
-
PE10
TIM2_CH2
-
-
-
-
USART5_TX
-
PE11
TIM2_CH3
-
-
-
-
-
USART5_RX
-
PE12
TIM2_CH4
-
SPI1_NSS
-
-
-
-
-
PE13
-
SPI1_SCK
-
-
-
-
-
PE14
-
SPI1_MISO
-
-
-
-
-
PE15
-
SPI1_MOSI
-
-
-
-
-
Pin descriptions
50/135
Table 20. Alternate functions port E
STM32L071xx
AF0
Port
SPI1/SPI2/
I2S2/USART1/2/
LPUART1/
LPTIM1/
TIM2/21/22/
EVENTOUT/
SYS_AF
Port H
PH0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SPI1/SPI2/I2S2
/I2C1/TIM2/21
SPI1/SPI2/I2S2/
LPUART1/
USART5/
LPTIM1/TIM2/3/
EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT
SPI2/I2S2/I2C2/
USART1/
TIM2/21/22
I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT
I2C3/
LPUART1/
COMP1/2/
TIM3
-
-
-
-
-
-
-
PH1
-
-
-
-
-
-
-
-
PH9
-
-
-
-
-
-
-
-
PH10
-
-
-
-
-
-
-
-
STM32L071xx
Table 21. Alternate functions port H
DocID027101 Rev 2
Pin descriptions
51/135
Memory mapping
5
STM32L071xx
Memory mapping
Figure 11. Memory map
[))))))))
[(
[(
[)))
&RUWH[0
SHULSKHUDOV
)/0/24
[
RESERVED
[&
[))
!("
[
RESERVED
[$
[
[)))))))
2SWLRQE\WHV
!0"
[
[
6\VWHP
PHPRU\
!0"
[
[
RESERVED
[
3HULSKHUDOV
[
RESERVED
[
65$0
[
'DWD((3520EDQN
'DWD((3520EDQN
)ODVKSURJUDPEDQN
)ODVKSURJUDPEDQN
RESERVED
&2'(
&LASHSYSTEMMEMORY
OR32!-DEPENDING
ON"//4
CONFIGURATION
[
[
5HVHUYHG
06Y9
1. Refer to the STM32L071xx reference manual for details on the Flash memory organization for each memory size.
52/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 12.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 13.
Figure 12. Pin loading conditions
Figure 13. Pin input voltage
0&8SLQ
0&8SLQ
& S)
9,1
DLF
DocID027101 Rev 2
DLF
53/135
107
Electrical characteristics
6.1.6
STM32L071xx
Power supply scheme
Figure 14. Power supply scheme
287
*3,2V
,1
/HYHOVKLIWHU
6WDQGE\SRZHUFLUFXLWU\
26&57&:DNHXS
ORJLF57&EDFNXS
UHJLVWHUV
,2
/RJLF
.HUQHOORJLF
&38
'LJLWDO
0HPRULHV
9''
9''
5HJXODWRU
1îQ)
î—)
966
9''$
9''$
95()
Q)
—)
Q)
—)
95()
95()
$'&
$QDORJ
5&3//&203
«
966$
06Y9
6.1.7
Current consumption measurement
Figure 15. Current consumption measurement scheme
9''$
,''
1[9''
1îQ)
î—)
1[966
06Y9
54/135
DocID027101 Rev 2
STM32L071xx
6.2
Electrical characteristics
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 22: Voltage characteristics,
Table 23: Current characteristics, and Table 24: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 22. Voltage characteristics
Symbol
VDD–VSS
VIN(2)
Definition
Min
Max
External main supply voltage
(including VDDA, VDDIO2 VDD)(1)
–0.3
4.0
Input voltage on FT and FTf pins
VSS − 0.3
VDD+4.0
Input voltage on TC pins
VSS − 0.3
4.0
Input voltage on BOOT0
VSS
VDD + 4.0
VSS − 0.3
4.0
Input voltage on any other pin
|ΔVDD|
Variations between different VDDx power pins
-
50
|VDDA-VDDx|
Variations between any VDDx and VDDA power
pins(3)
-
300
Variations between all different ground pins
including VREF- pin
-
50
-
0.4
|ΔVSS|
VREF+ –VDDA Allowed voltage difference for VREF+ > VDDA
VESD(HBM)
Electrostatic discharge voltage
(human body model)
Unit
V
mV
V
see Section 6.3.11
1. All main power (VDD,, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2.
VIN maximum must always be respected. Refer to Table 23 for maximum allowed injected current values.
3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and device operation. VDDIO2 is independent
from VDD and VDDA: its value does not need to respect this rule.
DocID027101 Rev 2
55/135
107
Electrical characteristics
STM32L071xx
Table 23. Current characteristics
Symbol
Ratings
Max.
ΣIVDD(2)
Total current into sum of all VDD power lines (source)(1)
105
ΣIVSS(2)
(1)
Total current out of sum of all VSS ground lines (sink)
105
ΣIVDDIO2
Total current into VDDIO2 power line (source)
25
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)
IVSS(PIN)
IIO
ΣIIO(PIN)
IINJ(PIN)
ΣIINJ(PIN)
100
(1)
Maximum current out of each VSS ground pin (sink)
100
Output current sunk by any I/O and control pin except FTf
pins
16
Output current sunk by FTf pins
22
Output current sourced by any I/O and control pin
-16
Total output current sunk by sum of all IOs and control pins
except PA11 and PA12(2)
90
Total output current sunk by PA11 and PA12
25
Total output current sourced by sum of all IOs and control
pins(2)
-90
Injected current on FT, FFf, RST and B pins
Unit
mA
-5/+0(3)
Injected current on TC pin
± 5(4)
Total injected current (sum of all I/O and control pins)(5)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)
must never be exceeded. Refer to Table 22 for maximum allowed input voltage values.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 22: Voltage characteristics for the maximum allowed input voltage
values.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 24. Thermal characteristics
Symbol
TSTG
TJ
56/135
Ratings
Storage temperature range
Maximum junction temperature
DocID027101 Rev 2
Value
Unit
–65 to +150
°C
150
°C
STM32L071xx
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 25. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK
Internal AHB clock frequency
-
0
32
fPCLK1
Internal APB1 clock frequency
-
0
32
fPCLK2
Internal APB2 clock frequency
-
0
32
BOR detector disabled
1.65
3.6
BOR detector enabled, at power
on
1.8
3.6
BOR detector disabled, after
power on
1.65
3.6
Must be the same voltage as
VDD(1)
1.8
3.6
V
1.65
3.6
V
2.0 V ≤ VDD ≤ 3.6 V
-0.3
5.5
1.65 V ≤ VDD ≤ 2.0 V
-0.3
5.2
VDD
VDDA
VDDIO2
Standard operating voltage
Analog operating voltage
(all features)
Standard operating voltage
-
Input voltage on FT, FTf and RST pins(2)
VIN
Input voltage on BOOT0 pin
-
0
5.5
Input voltage on TC pin
-
-0.3
VDD+0.3
UFBGA100 package
-
351
LQFP100 package
-
488
TFBGA64 package
-
313
Power dissipation at TA = 85 °C (range 6) LQFP64 package
or TA =105 °C (rage 7) (3)
WLCSP49 package
-
435
-
417
LQFP48 package
-
370
UFQFPN32 package
-
556
LQFP32 package
-
333
UFBGA100 package
-
88
LQFP100 package
-
122
TFBGA64 package
-
78
LQFP64 package
-
109
WLCSP49 package
-
104
LQFP48 package
-
93
UFQFPN32 package
-
139
LQFP32 package
-
83
PD
Power dissipation at TA = 125 °C (range
3) (3)
DocID027101 Rev 2
MHz
V
V
mW
57/135
107
Electrical characteristics
STM32L071xx
Table 25. General operating conditions (continued)
Symbol
TA
TJ
Parameter
Conditions
Min
Max
Maximum power dissipation
(range 6)
–40
85
Maximum power dissipation
(range 7)
–40
105
Maximum power dissipation
(range 3)
–40
125
Junction temperature range (range 6)
-40 °C ≤ TA ≤ 85 °
–40
105
Junction temperature range (range 7)
-40 °C ≤ TA ≤ 105 °C
–40
125
Junction temperature range (range 3)
-40 °C ≤ TA ≤ 125 °C
–40
130
Temperature range
Unit
°C
1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and normal operation.
2. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 24: Thermal characteristics
on page 56).
58/135
DocID027101 Rev 2
STM32L071xx
6.3.2
Electrical characteristics
Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
ambient temperature condition summarized in Table 25.
Table 26. Embedded reset and power control block characteristics
Symbol
Parameter
Conditions
VDD rise time rate
tVDD(1)
VDD fall time rate
TRSTTEMPO(1) Reset temporization
Min
Typ
Max
BOR detector enabled
0
-
∞
BOR detector disabled
0
-
1000
BOR detector enabled
20
-
∞
BOR detector disabled
0
-
1000
VDD rising, BOR enabled
-
2
3.3
0.4
0.7
1.6
Falling edge
1
1.5
1.65
Rising edge
1.3
1.5
1.65
Falling edge
1.67
1.7
1.74
Rising edge
1.69
1.76
1.8
Falling edge
1.87
1.93
1.97
Rising edge
1.96
2.03
2.07
Falling edge
2.22
2.30
2.35
Rising edge
2.31
2.41
2.44
Falling edge
2.45
2.55
2.6
Rising edge
2.54
2.66
2.7
Falling edge
2.68
2.8
2.85
Rising edge
2.78
2.9
2.95
Falling edge
1.8
1.85
1.88
Rising edge
1.88
1.94
1.99
Falling edge
1.98
2.04
2.09
Rising edge
2.08
2.14
2.18
Falling edge
2.20
2.24
2.28
Rising edge
2.28
2.34
2.38
Falling edge
2.39
2.44
2.48
Rising edge
2.47
2.54
2.58
Falling edge
2.57
2.64
2.69
Rising edge
2.68
2.74
2.79
Falling edge
2.77
2.83
2.88
Rising edge
2.87
2.94
2.99
VDD rising, BOR
VPOR/PDR
Power on/power down reset
threshold
VBOR0
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage detector
threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
DocID027101 Rev 2
disabled(2)
Unit
µs/V
ms
V
59/135
107
Electrical characteristics
STM32L071xx
Table 26. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
VPVD6
Conditions
PVD threshold 6
Hysteresis voltage
Vhyst
Min
Typ
Max
Falling edge
2.97
3.05
3.09
Rising edge
3.08
3.15
3.20
BOR0 threshold
-
40
-
All BOR and PVD thresholds
excepting BOR0
-
100
-
Unit
V
mV
1. Guaranteed by characterization results.
2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.
6.3.3
Embedded internal reference voltage
The parameters given in Table 28 are based on characterization results, unless otherwise
specified.
Table 27. Embedded internal reference voltage calibration values
Calibration value name
Description
Memory address
Raw data acquired at
temperature of 25 °C
VDDA= 3 V
VREFINT_CAL
0x1FF8 0078 - 0x1FF8 0079
Table 28. Embedded internal reference voltage(1)
Symbol
Parameter
VREFINT out(2)
Internal reference voltage
Conditions
Min
Typ
Max
Unit
– 40 °C < TJ < +125 °C
1.202
1.224
1.242
V
TVREFINT
Internal reference startup time
-
-
2
3
ms
VVREF_MEAS
VDDA and VREF+ voltage during
VREFINT factory measure
-
2.99
3
3.01
V
AVREF_MEAS
Accuracy of factory-measured
VREFINT value(3)
Including uncertainties
due to ADC and
VDDA/VREF+ values
-
-
±5
mV
TCoeff(4)
Temperature coefficient
–40 °C < TJ < +125 °C
-
25
100
ppm/°C
ACoeff(4)
Long-term stability
1000 hours, T= 25 °C
-
-
1000
ppm
VDDCoeff(4)
Voltage coefficient
3.0 V < VDDA < 3.6 V
-
-
2000
ppm/V
TS_vrefint(4)(5)
ADC sampling time when
reading the internal reference
voltage
-
5
10
-
µs
TADC_BUF(4)
Startup time of reference
voltage buffer for ADC
-
-
-
10
µs
IBUF_ADC(4)
Consumption of reference
voltage buffer for ADC
-
-
13.5
25
µA
IVREF_OUT(4)
VREF_OUT output current(6)
-
-
-
1
µA
VREF_OUT output load
-
-
-
50
pF
CVREF_OUT
60/135
(4)
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Table 28. Embedded internal reference voltage(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Consumption of reference
voltage buffer for VREF_OUT
and COMP
-
-
730
1200
nA
VREFINT_DIV1(4)
1/4 reference voltage
-
24
25
26
VREFINT_DIV2(4)
1/2 reference voltage
-
49
50
51
VREFINT_DIV3(4)
3/4 reference voltage
-
74
75
76
ILPBUF(4)
%
VREFINT
1. Refer to Table 40: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current
consumption (IREFINT).
2. Guaranteed by test in production.
3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
4. Guaranteed by design.
5. Shortest sampling time can be determined in the application by multiple iterations.
6. To guarantee less than 1% VREF_OUT deviation.
6.3.4
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, temperature, I/O pin loading, device software configuration, operating
frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 15: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified
otherwise.
The current consumption values are derived from the tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 25: General operating
conditions unless otherwise specified.
The MCU is placed under the following conditions:
•
All I/O pins are configured in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time and prefetch is adjusted depending on fHCLK
frequency and voltage range to provide the best CPU performance unless otherwise
specified.
•
When the peripherals are enabled fAPB1 = fAPB2 = fAPB
•
When PLL is on, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used)
•
The HSE user clock applied to OSCI_IN input follows the characteristic specified in
Table 42: High-speed external user clock characteristics
•
For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins
•
For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not
specified otherwise
The parameters given in Table 49, Table 25 and Table 26 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Table 25.
DocID027101 Rev 2
61/135
107
Electrical characteristics
STM32L071xx
Table 29. Current consumption in Run mode, code with data processing running from
Flash memory
Symbol
Parameter
fHCLK
(MHz)
Typ
Max(1)
1
190
250
2
345
380
4
650
670
4
0,8
0,86
8
1,55
1,7
16
2,95
3,1
8
1,9
2,1
16
3,55
3,8
32
6,65
7,2
0,065
39
130
0,524
115
210
4,2
700
770
Range2,
Vcore=1.5 V
VOS[1:0]=10
16
2,9
3,2
Range1,
Vcore=1.8 V
VOS[1:0]=01
32
Condition
Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
IDD (Run
from Flash
memory)
Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01
Supply current in Run
mode code executed
from Flash memory
MSI clock source
HSI clock source
(16MHz)
Range3,
Vcore=1.2 V
VOS[1:0]=11
Unit
µA
mA
µA
mA
7,15
7,4
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Table 30. Current consumption in Run mode vs code type,
code with data processing running from Flash memory
Symbol
Parameter
Supply
IDD
current in
(Run
Run mode,
from
code
Flash executed
memory) from Flash
memory
Conditions
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
fHSE = fHCLK up to
16 MHz included, fHSE
= fHCLK/2 above 16
MHz (PLL on)(1)
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
62/135
DocID027101 Rev 2
fHCLK
Typ
Dhrystone
650
CoreMark
655
Fibonacci
4 MHz
485
while(1)
385
while(1), 1WS,
prefetch off
375
Dhrystone
6,65
CoreMark
6,9
Fibonacci
32 MHz
6,75
while(1)
5,8
while(1), prefetch off
5,5
Unit
µA
mA
STM32L071xx
Electrical characteristics
Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS
,''P$
9''9
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9
Figure 17. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS
,''P$
9''9
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9
DocID027101 Rev 2
63/135
107
Electrical characteristics
STM32L071xx
Table 31. Current consumption in Run mode, code with data processing running from RAM
Symbol
Parameter
fHCLK
(MHz)
Typ
Max(1)
1
175
230
2
315
360
4
570
630
4
0,71
0,78
8
1,35
1,6
16
2,7
3
8
1,7
1,9
16
3,2
3,7
32
6,65
7,1
0,065
38
98
0,524
105
160
4,2
615
710
Range2,
Vcore=1.5 V
VOS[1:0]=10
16
2,85
3
Range1,
Vcore=1.8 V
VOS[1:0]=01
32
Condition
Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
IDD (Run
from RAM)
Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01
Supply current in Run
mode code executed
from RAM, Flash
memory switched off
Range3,
Vcore=1.2 V
VOS[1:0]=11
MSI clock
HSI clock source
(16 MHz)
Unit
µA
mA
µA
mA
6,85
7,3
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Table 32. Current consumption in Run mode vs code type,
code with data processing running from RAM(1)
Symbol
Parameter
Conditions
fHCLK
Dhrystone
IDD (Run
from
RAM)
Supply current in
Run mode, code
executed from
RAM, Flash
memory switched
off
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL on)(2)
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
CoreMark
Fibonacci
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
64/135
DocID027101 Rev 2
4 MHz
670
410
375
Dhrystone
6,65
CoreMark
Fibonacci
Unit
570
while(1)
while(1)
1. Guaranteed by characterization results, unless otherwise specified.
Typ
32 MHz
6,95
5,9
5,2
µA
mA
STM32L071xx
Electrical characteristics
Table 33. Current consumption in Sleep mode
Symbol
Parameter
fHCLK (MHz)
Typ
Max(1)
1
43,5
110
2
72
140
4
130
200
4
160
220
8
305
380
16
590
690
8
370
460
16
715
840
32
1650
2000
0,065
18
93
0,524
31,5
110
4,2
140
230
Range2,
Vcore=1.5 V
VOS[1:0]=10
16
665
850
Range1,
Vcore=1.8 V
VOS[1:0]=01
32
1750
2100
1
57,5
130
2
84
160
4
150
220
4
170
240
8
315
400
16
605
710
8
380
470
16
730
860
32
1650
2000
0,065
29,5
110
0,524
44,5
120
4,2
150
240
Range2,
Vcore=1.5 V
VOS[1:0]=10
16
680
930
Range1,
Vcore=1.8 V
VOS[1:0]=01
32
1750
2200
Condition
Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01
Supply current in
Sleep mode, Flash
memory switched
OFF
Range3,
Vcore=1.2 V
VOS[1:0]=11
MSI clock
HSI clock source
(16 MHz)
IDD
(Sleep)
Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01
Supply current in
Sleep mode, Flash
memory switched
ON
Range3,
Vcore=1.2 V
VOS[1:0]=11
MSI clock
HSI clock source
(16MHz)
Unit
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
DocID027101 Rev 2
65/135
107
Electrical characteristics
STM32L071xx
Table 34. Current consumption in Low-power run mode
Symbol
Parameter
fHCLK
(MHz)
Typ
Max(1)
9,45
12
14
58
21
64
36,5
160
14,5
18
19,5
60
26
65
42
160
26,5
30
27,5
60
31
66
TA = 105°C
37,5
77
TA = 125°C
53,5
170
TA = − 40 to 25°C
24,5
34
30
82
38,5
90
TA = 125°C
58
120
TA = − 40 to 25°C
30,5
40
36,5
88
45
96
TA = 125°C
64,5
120
TA = − 40 to 25°C
45
56
TA = 55°C
48
96
51
110
TA = 105°C
59,5
120
TA = 125°C
79,5
150
Condition
TA = − 40 to 25°C
TA = 85°C
MSI clock = 65 kHz,
fHCLK= 32 kHz
TA = 105°C
0,032
TA = 125°C
TA = − 40 to 25°C
All peripherals
OFF, code
TA = 85°C
MSI clock = 65 kHz,
executed from
0,065
fHCLK= 65kHz
RAM, Flash
TA = 105°C
memory switched
TA = 125°C
OFF, VDD from
1.65 to 3.6 V
TA = − 40 to 25°C
TA = 55°C
MSI clock=131 kHz,
fHCLK= 131 kHz
IDD
(LP Run)
Supply
current in
Low-power
run mode
TA = 85°C
TA = 85°C
MSI clock = 65 kHz,
fHCLK= 32 kHz
All peripherals
OFF, code
MSI clock = 65 kHz,
executed from
fHCLK= 65 kHz
Flash memory,
VDD from 1.65 V
to 3.6 V
TA = 105°C
TA = 85°C
TA = 105°C
MSI clock =
131 kHz,
fHCLK= 131 kHz
TA = 85°C
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
66/135
DocID027101 Rev 2
0,131
0,032
0,065
0,131
Unit
µA
STM32L071xx
Electrical characteristics
Figure 18. IDD vs VDD, at TA= 25 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS
,''P$
(
(
(
(
(
(
(
(
(
9''9
06Y9
Table 35. Current consumption in Low-power sleep mode
Symbol
Parameter
Condition
Max
(1)
MSI clock = 65 kHz,
fHCLK= 32 kHz,
TA = − 40 to 25°C
Flash memory OFF
4,7
-
TA = − 40 to 25°C
17
24
TA = 85°C
19,5
30
TA= 105°C
23
47
TA= 125°C
32,5
70
TA= − 40 to 25°C
17
24
TA= 85°C
20
31
TA = 105°C
23,5
47
TA = 125°C
32,5
70
TA= − 40 to 25°C
19,5
27
TA = 55°C
20,5
28
TA = 85°C
22,5
33
TA = 105°C
26
50
TA= 125°C
35
73
MSI clock = 65 kHz,
fHCLK= 32 kHz
All peripherals
Supply current in
OFF, code
IDD
Low-power sleep
executed from
(LP Sleep)
mode
Flash memory, VDD
from 1.65 to 3.6 V
Typ
MSI clock = 65 kHz,
fHCLK= 65 kHz
MSI clock = 131kHz,
fHCLK= 131 kHz
Unit
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
DocID027101 Rev 2
67/135
107
Electrical characteristics
STM32L071xx
Table 36. Typical and maximum current consumptions in Stop mode
Symbol
Parameter
Max(1) Unit
Conditions
Typ
TA = − 40 to 25°C
0,43
1,00
TA = 55°C
0,735
2,50
TA= 85°C
2,25
4,90
TA = 105°C
5,3
13,00
TA = 125°C
12,5
28,00
IDD (Stop) Supply current in Stop mode
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
Figure 19. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive
(
(
(
(
,''P$
(
(
(
(
9''9
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9
68/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Figure 20. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks off
(
(
(
,''P$
(
(
(
(
9''9
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9
Table 37. Typical and maximum current consumptions in Standby mode
Symbol
Parameter
Typ
Max(1)
TA = − 40 to 25°C
0,855
1,70
TA = 55 °C
-
2,90
TA= 85 °C
-
3,30
TA = 105 °C
-
4,10
TA = 125 °C
-
8,50
TA = − 40 to 25°C
0,29
0,60
TA = 55 °C
0,32
1,20
TA = 85 °C
0,5
2,30
TA = 105 °C
0,94
3,00
TA = 125 °C
2,6
7,00
Conditions
Independent watchdog
and LSI enabled
IDD
Supply current in Standby
(Standby)
mode
Independent watchdog
and LSI off
Unit
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified
DocID027101 Rev 2
69/135
107
Electrical characteristics
STM32L071xx
Table 38. Average current consumption during Wakeup
System frequency
Current
consumption
during wakeup
HSI
1
HSI/4
0,7
MSI clock = 4,2 MHz
0,7
MSI clock = 1,05 MHz
0,4
MSI clock = 65 KHz
0,1
Reset pin pulled down
-
0,21
BOR on
-
0,23
IDD (Wakeup from With Fast wakeup set
StandBy)
With Fast wakeup disabled
MSI clock = 2,1 MHz
0,5
MSI clock = 2,1 MHz
0,12
Symbol
parameter
IDD (Wakeup from Supply current during Wakeup from
Stop)
Stop mode
IDD (Reset)
IDD (Power-up)
70/135
DocID027101 Rev 2
Unit
mA
STM32L071xx
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following tables. The
MCU is placed under the following conditions:
•
all I/O pins are in input mode with a static value at VDD or VSS (no load)
•
all peripherals are disabled unless otherwise mentioned
•
the given value is calculated by measuring the current consumption
–
with all peripherals clocked off
–
with only one peripheral clocked on
Table 39. Peripheral current consumption in Run or Sleep mode(1)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
APB1
Low-power
sleep and
run
CRS
2.5
2
2
2
I2C1
11
9.5
7.5
9
I2C3
11
9
7
9
LPTIM1
10
8.5
6.5
8
LPUART1
8
6.5
5.5
6
SPI2
9
4.5
3.5
4
USART2
14.5
12
9.5
11
USART4
5
4
3
5
USART5
5
4
3
5
TIM2
10.5
8.5
7
9
TIM3
12
10
8
11
TIM6
3.5
3
2.5
2
TIM7
3.5
3
2.5
2
WWDG
3
2
2
2
ADC1(2)
5.5
5
3.5
4
4
3
3
2.5
USART1
14.5
11.5
9.5
12
TIM21
7.5
6
5
5.5
TIM22
7
6
5
6
FIREWALL
1.5
1
1
0.5
DBGMCU
1.5
1
1
0.5
SYSCFG
2.5
2
2
1.5
SPI1
APB2
Range 2,
Range 3,
Range 1,
VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11
DocID027101 Rev 2
Unit
µA/MHz
(fHCLK)
µA/MHz
(fHCLK)
71/135
107
Electrical characteristics
STM32L071xx
Table 39. Peripheral current consumption in Run or Sleep mode(1) (continued)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
Range 2,
Range 3,
Range 1,
VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11
Low-power
sleep and
run
GPIOA
CortexM0+ core GPIOB
I/O port
GPIOC
3.5
3
2.5
2.5
3.5
2.5
2
2.5
8.5
6.5
5.5
7
GPIOD
CortexM0+ core GPIOE
I/O port
GPIOH
1
0.5
0.5
0.5
8
6
5
6
1.5
1
1
0.5
1.5
1
1
1
0(3)
0(3)
0(3)
10
8
6.5
8.5
204
162
130
202
2.5
2
2
1
CRC
FLASH
DMA1
AHB
All enabled
PWR
(3)
0
Unit
µA/MHz
(fHCLK)
µA/MHz
(fHCLK)
µA/MHz
(fHCLK)
µA/MHz
(fHCLK)
1. Data based on differential IDD measurement between all peripherals off an one peripheral with clock
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz
(range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.
2. HSI oscillator is off for this measure.
3. Current consumption is negligible and close to 0 µA.
72/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Table 40. Peripheral current consumption in Stop and Standby mode(1)
Symbol
IDD(PVD / BOR)
-
IREFINT
-
-
Typical consumption, TA = 25 °C
Peripheral
LSE Low
drive(2)
VDD=1.8 V
VDD=3.0 V
0.7
1.2
-
1.7
0.11
0,13
-
LSI
0.27
0.31
-
IWDG
0.2
0.3
-
LPTIM1, Input 100 Hz
0.01
0,01
-
LPTIM1, Input 1 MHz
11
12
-
LPUART1
-
0,5
-
RTC
0.16
0,3
Unit
µA
1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.
2.
LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN
and OSC32_OUT.-
6.3.5
Wakeup time from low-power mode
The wakeup times given in the following table are measured with the MSI or HSI16 RC
oscillator. The clock source used to wake up the device depends on the current operating
mode:
•
Sleep mode: the clock source is the clock that was set before entering Sleep mode
•
Stop mode: the clock source is either the MSI oscillator in the range configured before
entering Stop mode, the HSI16 or HSI16/4.
•
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 25.
Table 41. Low-power mode wakeup timings
Symbol
tWUSLEEP
Parameter
Conditions
Wakeup from Sleep mode
tWUSLEEP_ Wakeup from Low-power sleep mode,
fHCLK = 262 kHz
LP
Typ
Max
fHCLK = 32 MHz
7
8
fHCLK = 262 kHz
Flash memory enabled
7
8
fHCLK = 262 kHz
Flash memory switched OFF
9
10
DocID027101 Rev 2
Unit
Number
of clock
cycles
73/135
107
Electrical characteristics
STM32L071xx
Table 41. Low-power mode wakeup timings (continued)
Symbol
tWUSTOP
tWUSTDBY
74/135
Parameter
Conditions
Typ
Max
fHCLK = fMSI = 4.2 MHz
Wakeup from Stop mode, regulator in Run
fHCLK = fHSI = 16 MHz
mode
fHCLK = fHSI/4 = 4 MHz
5.0
8
4.9
7
8.0
11
fHCLK = fMSI = 4.2 MHz
Voltage range 1
5.0
8
fHCLK = fMSI = 4.2 MHz
Voltage range 2
5.0
8
fHCLK = fMSI = 4.2 MHz
Voltage range 3
5.0
8
7.3
13
13
23
28
38
fHCLK = fMSI = 262 kHz
51
65
fHCLK = fMSI = 131 kHz
100
120
fHCLK = MSI = 65 kHz
190
260
fHCLK = fHSI = 16 MHz
4.9
7
fHCLK = fHSI/4 = 4 MHz
8.0
11
fHCLK = fHSI = 16 MHz
Wakeup from Stop mode, regulator in lowfHCLK = fHSI/4 = 4 MHz
power mode, code running from RAM
fHCLK = fMSI = 4.2 MHz
4.9
7
7.9
10
4.7
8
Wakeup from Standby mode
FWU bit = 1
fHCLK = MSI = 2.1 MHz
65
130
Wakeup from Standby mode
FWU bit = 0
fHCLK = MSI = 2.1 MHz
2.2
3
fHCLK = fMSI = 2.1 MHz
Wakeup from Stop mode, regulator in lowfHCLK = fMSI = 1.05 MHz
power mode
fHCLK = fMSI = 524 kHz
DocID027101 Rev 2
Unit
µs
ms
STM32L071xx
6.3.6
Electrical characteristics
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the
recommended clock input waveform is shown in Figure 21.
Table 42. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source
frequency
Conditions
Min
Typ
Max
Unit
CSS is on or
PLL is used
1
8
32
MHz
CSS is off, PLL
not used
0
8
32
MHz
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time
12
-
-
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
-
-
20
OSC_IN input capacitance
-
2.6
-
pF
45
-
55
%
-
-
±1
µA
Cin(HSE)
ns
-
DuCy(HSE) Duty cycle
IL
OSC_IN Input leakage current
V
VSS ≤ VIN ≤ VDD
1. Guaranteed by design.
Figure 21. High-speed external clock source AC timing diagram
9+6(+
9+6(/
WU+6(
WI+6(
W:+6(
W:+6(
W
7+6(
(;7(5 1$/
&/2&. 6285& (
I+6(BH[W
26& B,1
,/
670/[[
DLF
DocID027101 Rev 2
75/135
107
Electrical characteristics
STM32L071xx
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 25.
Table 43. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
fLSE_ext
User external clock source
frequency
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
tw(LSE)
tw(LSE)
OSC32_IN high or low time
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time
CIN(LSE)
Typ
Max
Unit
1
32.768
1000
kHz
0.7VDD
-
VDD
V
-
VSS
-
0.3VDD
465
-
ns
-
-
10
-
-
0.6
-
pF
-
45
-
55
%
VSS ≤ VIN ≤ VDD
-
-
±1
µA
OSC32_IN input capacitance
DuCy(LSE) Duty cycle
IL
Min
OSC32_IN Input leakage current
1. Guaranteed by design, not tested in production
Figure 22. Low-speed external clock source AC timing diagram
9/6(+
9/6(/
WU/6(
WI/6(
W:/6(
W:/6(
W
7/6(
(;7(5 1$/
&/2&. 6285& (
I/6(BH[W
26&B,1
,/
670/[[
DLF
76/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 44. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 44. HSE oscillator characteristics(1)
Symbol
Parameter
Conditions
fOSC_IN Oscillator frequency
RF
Feedback resistor
Gm
Maximum critical crystal
transconductance
tSU(HSE)
(2)
Startup time
Min Typ
-
1
-
-
Startup
VDD is stabilized
Max Unit
25
MHz
200
-
kΩ
-
-
700
µA
/V
-
2
-
ms
1. Guaranteed by design.
2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is
enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 23). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 23. HSE oscillator circuit diagram
I+6(WRFRUH
5P
/P
5)
&2
&/
26&B,1
&P
JP
5HVRQDWRU
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
670
26&B287
&/
DLE
DocID027101 Rev 2
77/135
107
Electrical characteristics
STM32L071xx
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 45. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 45. LSE oscillator characteristics(1)
Symbol
fLSE
Gm
Conditions(2)
Min(2)
Typ
Max
Unit
-
32.768
-
kHz
LSEDRV[1:0]=00
lower driving capability
-
-
0.5
LSEDRV[1:0]= 01
medium low driving capability
-
-
0.75
LSEDRV[1:0] = 10
medium high driving capability
-
-
1.7
LSEDRV[1:0]=11
higher driving capability
-
-
2.7
VDD is stabilized
-
2
-
Parameter
LSE oscillator frequency
Maximum critical crystal
transconductance
tSU(LSE)(3) Startup time
µA/V
s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software)
to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
26&B,1
I/6(
'ULYH
SURJUDPPDEOH
DPSOLILHU
N+]
UHVRQDWRU
26&B287
&/
069
Note:
78/135
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DocID027101 Rev 2
STM32L071xx
6.3.7
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 46 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 25.
High-speed internal 16 MHz (HSI16) RC oscillator
Table 46. 16 MHz HSI16 oscillator characteristics
Symbol
fHSI16
TRIM
(1)(2)
ACCHSI16
(2)
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
VDD = 3.0 V
-
16
-
MHz
HSI16 usertrimmed resolution
Trimming code is not a multiple of 16
-
± 0.4
0.7
%
Trimming code is a multiple of 16
-
Accuracy of the
factory-calibrated
HSI16 oscillator
-
± 1.5
%
VDDA = 3.0 V, TA = 25 °C
-1(3)
-
1(3)
%
VDDA = 3.0 V, TA = 0 to 55 °C
-1.5
-
1.5
%
VDDA = 3.0 V, TA = -10 to 70 °C
-2
-
2
%
VDDA = 3.0 V, TA = -10 to 85 °C
-2.5
-
2
%
VDDA = 3.0 V, TA = -10 to 105 °C
-4
-
2
%
-5.45
-
3.25
%
VDDA = 1.65 V to 3.6 V
TA = − 40 to 125 °C
tSU(HSI16)(2)
HSI16 oscillator
startup time
-
-
3.7
6
µs
IDD(HSI16)(2)
HSI16 oscillator
power consumption
-
-
100
140
µA
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
2. Guaranteed by characterization results.
3. Guaranteed by test in production.
Figure 25. HSI16 minimum and maximum value versus temperature
9PLQ
9W\S
9PD[
9PD[
9PLQ
06Y9
DocID027101 Rev 2
79/135
107
Electrical characteristics
STM32L071xx
Low-speed internal (LSI) RC oscillator
Table 47. LSI oscillator characteristics
Symbol
Parameter
Min
Typ
Max
Unit
fLSI(1)
LSI frequency
26
38
56
kHz
DLSI(2)
LSI oscillator frequency drift
0°C ≤ TA ≤ 85°C
-10
-
4
%
LSI oscillator startup time
-
-
200
µs
LSI oscillator power consumption
-
400
510
nA
tsu(LSI)(3)
IDD(LSI)
(3)
1. Guaranteed by test in production.
2. This is a deviation for an individual part, once the initial frequency has been measured.
3. Guaranteed by design.
Multi-speed internal (MSI) RC oscillator
Table 48. MSI oscillator characteristics
Symbol
fMSI
ACCMSI
DTEMP(MSI)(1)
DVOLT(MSI)(1)
80/135
Parameter
Condition
Typ
MSI range 0
65.5
-
MSI range 1
131
-
MSI range 2
262
-
MSI range 3
524
-
MSI range 4
1.05
-
MSI range 5
2.1
-
MSI range 6
4.2
-
Frequency error after factory calibration
-
±0.5
-
MSI oscillator frequency drift
0 °C ≤ TA ≤ 85 °C
-
±3
-
MSI range 0
− 8.9
+7.0
MSI range 1
− 7.1
+5.0
MSI range 2
− 6.4
+4.0
MSI range 3
− 6.2
+3.0
MSI range 4
− 5.2
+3.0
MSI range 5
− 4.8
+2.0
MSI range 6
− 4.7
+2.0
-
-
2.5
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
MSI oscillator frequency drift
VDD = 3.3 V, − 40 °C ≤ TA ≤ 110 °C
MSI oscillator frequency drift
1.65 V ≤ VDD ≤ 3.6 V, TA = 25 °C
DocID027101 Rev 2
Max Unit
kHz
MHz
%
%
%/V
STM32L071xx
Electrical characteristics
Table 48. MSI oscillator characteristics (continued)
Symbol
IDD(MSI)(2)
tSU(MSI)
tSTAB(MSI)(2)
fOVER(MSI)
Parameter
MSI oscillator power consumption
MSI oscillator startup time
MSI oscillator stabilization time
MSI oscillator frequency overshoot
Condition
Typ
Max Unit
MSI range 0
0.75
-
MSI range 1
1
-
MSI range 2
1.5
-
MSI range 3
2.5
-
MSI range 4
4.5
-
MSI range 5
8
-
MSI range 6
15
-
MSI range 0
30
-
MSI range 1
20
-
MSI range 2
15
-
MSI range 3
10
-
MSI range 4
6
-
MSI range 5
5
-
MSI range 6,
Voltage range 1
and 2
3.5
-
MSI range 6,
Voltage range 3
5
-
MSI range 0
-
40
MSI range 1
-
20
MSI range 2
-
10
MSI range 3
-
4
MSI range 4
-
2.5
MSI range 5
-
2
MSI range 6,
Voltage range 1
and 2
-
2
MSI range 3,
Voltage range 3
-
3
Any range to
range 5
-
4
Any range to
range 6
-
µA
µs
µs
MHz
6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
DocID027101 Rev 2
81/135
107
Electrical characteristics
6.3.8
STM32L071xx
PLL characteristics
The parameters given in Table 49 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 25.
Table 49. PLL characteristics
Value
Symbol
Parameter
Unit
Min
Typ
Max(1)
PLL input clock(2)
2
-
24
MHz
PLL input clock duty cycle
45
-
55
%
fPLL_OUT
PLL output clock
2
-
32
MHz
tLOCK
PLL input = 16 MHz
PLL VCO = 96 MHz
-
115
160
µs
Jitter
Cycle-to-cycle jitter
-
± 600
ps
IDDA(PLL)
Current consumption on VDDA
-
220
450
IDD(PLL)
Current consumption on VDD
-
120
150
fPLL_IN
µA
1. Guaranteed by characterization results.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
6.3.9
Memory characteristics
RAM memory
Table 50. RAM and hardware registers
Symbol
VRM
Parameter
Conditions
Data retention mode(1)
STOP mode (or RESET)
Min
Typ
Max
Unit
1.65
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
Flash memory and data EEPROM
Table 51. Flash memory and data EEPROM characteristics
Symbol
82/135
Conditions
Min
Typ
Max(1)
Unit
-
1.65
-
3.6
V
Erasing
-
3.28
3.94
Programming
-
3.28
3.94
Parameter
VDD
Operating voltage
Read / Write / Erase
tprog
Programming time for
word or half-page
DocID027101 Rev 2
ms
STM32L071xx
Electrical characteristics
Table 51. Flash memory and data EEPROM characteristics
Symbol
IDD
Min
Typ
Max(1)
Unit
Average current during
the whole programming /
erase operation
-
500
700
µA
Maximum current (peak) TA = 25 °C, VDD = 3.6 V
during the whole
programming / erase
operation
-
1.5
2.5
mA
Parameter
Conditions
1. Guaranteed by design.
Table 52. Flash memory and data EEPROM endurance and retention
Value
Symbol
Parameter
Cycling (erase / write)
Program memory
NCYC(2)
Min(1)
Unit
10
Cycling (erase / write)
EEPROM data memory
Cycling (erase / write)
Program memory
TA = -40°C to 105 °C
100
kcycles
0.2
Cycling (erase / write)
EEPROM data memory
Data retention (program memory) after
10 kcycles at TA = 85 °C
Data retention (EEPROM data memory)
after 100 kcycles at TA = 85 °C
tRET(2)
Conditions
Data retention (program memory) after
10 kcycles at TA = 105 °C
Data retention (EEPROM data memory)
after 100 kcycles at TA = 105 °C
Data retention (program memory) after
200 cycles at TA = 125 °C
Data retention (EEPROM data memory)
after 2 kcycles at TA = 125 °C
TA = -40°C to 125 °C
2
30
TRET = +85 °C
30
TRET = +105 °C
years
10
TRET = +125 °C
1. Guaranteed by characterization results.
2. Characterization is done according to JEDEC JESD22-A117.
6.3.10
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
DocID027101 Rev 2
83/135
107
Electrical characteristics
STM32L071xx
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 53. They are based on the EMS levels and classes
defined in application note AN1709.
Table 53. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP100, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 32 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
84/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 54. EMI characteristics
Symbol Parameter
SEMI
Conditions
VDD = 3.6 V,
Peak level TA = 25 °C,
LQFP100 package
compliant with IEC 61967-2
DocID027101 Rev 2
Monitored
frequency band
Max vs.
frequency
range at
32 MHz
0.1 to 30 MHz
-7
30 to 130 MHz
14
130 MHz to 1 GHz
9
EMI Level
2
Unit
dBµV
-
85/135
107
Electrical characteristics
6.3.11
STM32L071xx
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 55. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Conditions
Class
Maximum
value(1)
2
2000
TA = +25 °C,
Electrostatic discharge
conforming to
voltage (human body model)
ANSI/JEDEC JS-001
TA = +25 °C,
conforming to
ANSI/ESD STM5.3.1.
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
Unit
V
C4
500
1. Guaranteed by characterization results.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 56. Electrical sensitivities
Symbol
LU
86/135
Parameter
Static latch-up class
Conditions
TA = +125 °C conforming to JESD78A
DocID027101 Rev 2
Class
II level A
STM32L071xx
6.3.12
Electrical characteristics
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator
frequency deviation).
The test results are given in the Table 57.
Table 57. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on BOOT0
-0
NA
Injected current on PA0, PA4, PA5, PC15,
PH0 and PH1
-5
0
Injected current on any other FT, FTf pins
-5 (1)
NA
Injected current on any other pins
-5 (1)
+5
Unit
mA
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.
DocID027101 Rev 2
87/135
107
Electrical characteristics
6.3.13
STM32L071xx
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the conditions summarized in Table 25. All I/Os are CMOS and TTL
compliant.
Table 58. I/O static characteristics
Symbol
VIL
VIH
Vhys
Ilkg
RPU
Parameter
Input low level voltage
Input high level voltage
I/O Schmitt trigger voltage hysteresis
(2)
Input leakage current (4)
Weak pull-up equivalent resistor(5)
RPD
Weak pull-down equivalent resistor
CIO
I/O pin capacitance
(5)
Conditions
Min
Typ
Max
TC, FT, FTf, RST
I/Os
-
-
0.3VDD
BOOT0 pin
-
-
0.14VDD(1)
All I/Os
0.7 VDD
-
-
Standard I/Os
-
10% VDD(3)
-
BOOT0 pin
-
0.01
-
VSS ≤ VIN ≤ VDD
All I/Os except for
PA11, PA12, BOOT0
and FTf I/Os
-
-
±50
VSS ≤ VIN ≤ VDD,
PA11 and PA12 I/Os
-
-
-50/+250
VSS ≤ VIN ≤ VDD
FTf I/Os
-
-
±100
VDD≤ VIN ≤ 5 V
All I/Os except for
PA11, PA12, BOOT0
and FTf I/Os
-
-
200
VDD≤ VIN ≤ 5 V
FTf I/Os
-
-
500
VDD≤ VIN ≤ 5 V
PA11, PA12 and
BOOT0
-
-
10
µA
VIN = VSS
30
45
60
kΩ
VIN = VDD
30
45
60
kΩ
-
-
5
-
pF
nA
2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
3. With a minimum of 200 mV. Guaranteed by characterization results.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
DocID027101 Rev 2
V
nA
1. Guaranteed by characterization.
88/135
Unit
STM32L071xx
Electrical characteristics
Figure 26. VIH/VIL versus VDD (CMOS I/Os)
9,/9,+9
LQV
DOOS 9 '' 3+
3&
9 ,+PLQ W%227 IRU
S
H[FH 9 '' +
3
9 ,+PLQ 3&
7
%22
9 '
'
PLQ
9,+PLQ
LUH
UHTX
DUG
WDQG
6V
&02
WV9 ,+
PHQ
9 ,/PD[
'
9 '
,QSXWUDQJHQRW
JXDUDQWHHG
&026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9''
9,/PD[
9''9
06Y9
Figure 27. VIH/VIL versus VDD (TTL I/Os)
9,/9,+9
SLQV
DOO
3+
'
'
9
3&
9 ,+PLQ W%227 IRU
S
H[FH 9 '' 3+
LQ
9 ,+P 3&
7
%22
77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9
9,+PLQ
9 ,/PD[
'
9 '
,QSXWUDQJHQRW
JXDUDQWHHG
9,/PD[
77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9
9''9
06Y9
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±15 mA with the non-standard VOL/VOH specifications given in Table 59.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD(Σ) (see Table 23).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS(Σ) (see Table 23).
DocID027101 Rev 2
89/135
107
Electrical characteristics
STM32L071xx
Output voltage levels
Unless otherwise specified, the parameters given in Table 59 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 25. All I/Os are CMOS and TTL compliant.
Table 59. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O
pin
VOH(3)
Output high level voltage for an I/O
pin
Conditions
Min
Max
CMOS port(2),
IIO = +8 mA
2.7 V ≤ VDD ≤ 3.6 V
-
0.4
VDD-0.4
-
(1)
Output low level voltage for an I/O
pin
TTL port(2),
IIO =+ 8 mA
2.7 V ≤ VDD ≤ 3.6 V
-
0.4
(3)(4)
Output high level voltage for an I/O
pin
TTL port(2),
IIO = -6 mA
2.7 V ≤ VDD ≤ 3.6 V
2.4
-
VOL(1)(4)
Output low level voltage for an I/O
pin
IIO = +15 mA
2.7 V ≤ VDD ≤ 3.6 V
-
1.3
VOH(3)(4)
Output high level voltage for an I/O
pin
IIO = -15 mA
2.7 V ≤ VDD ≤ 3.6 V
VDD-1.3
-
VOL(1)(4)
Output low level voltage for an I/O
pin
IIO = +4 mA
1.65 V ≤ VDD < 3.6 V
-
0.45
VOH(3)(4)
Output high level voltage for an I/O
pin
IIO = -4 mA
V -0.45
1.65 V ≤ VDD ≤ 3.6 V DD
VOL
VOH
Output low level voltage for an FTf
VOLFM+(1)(4)
I/O pin in Fm+ mode
Unit
V
-
IIO = 20 mA
2.7 V ≤ VDD ≤ 3.6 V
-
0.4
IIO = 10 mA
1.65 V ≤ VDD ≤ 3.6 V
-
0.4
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 23.
The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and
must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 23. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be
respected and must not exceed ΣIIO(PIN).
4. Guaranteed by characterization results.
90/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 28 and
Table 60, respectively.
Unless otherwise specified, the parameters given in Table 60 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 25.
Table 60. I/O AC characteristics(1)
OSPEEDRx[1:0]
bit value(1)
Symbol
fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
00
01
Fmax(IO)out Maximum frequency(3)
10
tf(IO)out
tr(IO)out
Output rise and fall time
Fmax(IO)out Maximum frequency(3)
11
Fm+
configuration(4)
-
Min
Max(2)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
400
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
100
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
125
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
320
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
2
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
0.6
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
30
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
65
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
10
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
2
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
13
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
28
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
35
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
10
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
6
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
17
-
1
-
10
Parameter
tf(IO)out
tr(IO)out
Output rise and fall time
fmax(IO)out
Maximum frequency(3)
Conditions
tf(IO)out
Output fall time
tr(IO)out
Output rise time
-
30
Maximum frequency(3)
-
350
-
15
-
60
8
-
fmax(IO)out
tf(IO)out
Output fall time
tr(IO)out
Output rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
CL = 50 pF, VDD = 2.5 V to 3.6 V
CL = 50 pF, VDD = 1.65 V to 3.6 V
-
Unit
kHz
ns
MHz
ns
MHz
ns
MHz
ns
MHz
ns
KHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port
configuration register.
2. Guaranteed by design.
3. The maximum frequency is defined in Figure 28.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed
description of Fm+ I/O configuration.
DocID027101 Rev 2
91/135
107
Electrical characteristics
STM32L071xx
Figure 28. I/O AC characteristics definition
(;7(51$/
287387
21&/
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI”7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´
6.3.14
DLG
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU , except when it is internally driven low (see Table 61).
Unless otherwise specified, the parameters given in Table 61 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 25.
Table 61. NRST pin characteristics
Symbol
VIL(NRST)
(1)
Parameter
Conditions
Min
Typ
NRST input low level voltage
-
VSS
-
0.8
-
1.4
-
VDD
IOL = 2 mA
2.7 V < VDD < 3.6 V
-
-
IOL = 1.5 mA
1.65 V < VDD < 2.7 V
-
-
-
-
10%VDD(2)
-
mV
Weak pull-up equivalent
resistor(3)
VIN = VSS
30
45
60
kΩ
NRST input filtered pulse
-
-
-
50
ns
NRST input not filtered pulse
-
350
-
-
ns
VIH(NRST)(1) NRST input high level voltage
NRST output low level
VOL(NRST)(1)
voltage
Vhys(NRST)(1)
RPU
VF(NRST)(1)
VNF(NRST)
(1)
NRST Schmitt trigger voltage
hysteresis
Max Unit
V
0.4
1. Guaranteed by design.
2. 200 mV minimum value
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is around 10%.
92/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Figure 29. Recommended NRST pin protection
9''
([WHUQDOUHVHWFLUFXLW
538
1567
,QWHUQDOUHVHW
)LOWHU
—)
670/[[
DLF
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 61. Otherwise the reset will not be taken into account by the device.
6.3.15
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 62 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 25: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 62. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
3.6
V
VDDA
V
VDDA
Analog supply voltage for
ADC on
-
1.65
VREF+
Positive reference voltage
-
1.65
VREF-
Negative reference voltage
-
-
0
-
Current consumption of the
ADC on VDDA and VREF+
1.14 Msps
-
200
-
10 ksps
-
40
-
Current consumption of the
ADC on VDD(1)
1.14 Msps
-
70
-
10 ksps
-
1
-
Voltage scaling Range 1
0.14
-
16
Voltage scaling Range 2
0.14
-
8
Voltage scaling Range 3
0.14
-
4
Sampling rate
12-bit resolution
0.01
-
1.14
MHz
External trigger frequency
fADC = 16 MHz,
12-bit resolution
-
-
941
kHz
-
-
-
17
1/fADC
IDDA (ADC)
fADC
fS(2)
fTRIG(2)
ADC clock frequency
µA
MHz
VAIN
Conversion voltage range
-
0
-
VREF+
V
RAIN(2)
External input impedance
See Equation 1 and
Table 63 for details
-
-
50
kΩ
RADC(2)
Sampling switch resistance
-
-
-
1
kΩ
DocID027101 Rev 2
93/135
107
Electrical characteristics
STM32L071xx
Table 62. ADC characteristics (continued)
Symbol
Parameter
CADC(2)
Internal sample and hold
capacitor
tCAL(2)(3)
Calibration time
Conditions
Min
Typ
Max
Unit
-
-
-
8
pF
fADC = 16 MHz
5.2
µs
-
83
1/fADC
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2
-
4.5
-
fPCLK
cycle
ADC clock = PCLK/4
-
8.5
-
fPCLK
cycle
ADC clock = HSI16
WLATENCY(4)
tlatr(2)
JitterADC
tS(2)
tUP_LDO(2)(3)
tSTAB(2)(3)
tConV(2)
ADC_DR register write
latency
Trigger conversion latency
fADC = fPCLK/2 = 16 MHz
0.266
µs
fADC = fPCLK/2
8.5
1/fPCLK
fADC = fPCLK/4 = 8 MHz
0.516
µs
fADC = fPCLK/4
16.5
1/fPCLK
fADC = fHSI16 = 16 MHz
0.252
-
0.260
µs
fADC = fHSI16
-
1
-
1/fHSI16
fADC = 16 MHz
0.093
-
10
µs
-
1.5
-
160.5
1/fADC
Internal LDO power-up time
-
-
-
10
µs
ADC stabilization time
-
ADC jitter on trigger
conversion
Sampling time
Total conversion time
(including sampling time)
fADC = 16 MHz,
12-bit resolution
12-bit resolution
14
1
-
1/fADC
10.13
14 to 162 (tS for sampling +12.5
for successive approximation)
µs
1/fADC
1. A current consumption proportional to the APB clock frequency has to be added (see Table 39: Peripheral current
consumption in Run or Sleep mode).
2. Guaranteed by design.
3. This parameter only includes the ADC timing. It does not take into account register access latency.
4. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the
conversion is complete and has the same latency.
Equation 1: RAIN max formula
TS
- – R ADC
R AIN < ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
94/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Table 63. RAIN max for fADC = 14 MHz
Ts (cycles)
tS (µs)
RAIN max (kΩ)(1)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design.
Table 64. ADC accuracy(1)(2)(3)
Symbol
Parameter
Conditions
Min
Typ
Max
ET
Total unadjusted error
-
2
4
EO
Offset error
-
1
2.5
EG
Gain error
-
1
2
EL
Integral linearity error
-
1.5
2.5
ED
Differential linearity error
-
1
1.5
10.2
11
11.3
12.1
-
Effective number of bits
1.65 V < VDDA = VREF+< 3.6 V,
range 1/2/3
ENOB
Effective number of bits (16-bit mode
oversampling with ratio =256)(4)
SINAD
Signal-to-noise distortion
63
69
-
Signal-to-noise ratio
63
69
-
SNR
Signal-to-noise ratio (16-bit mode
oversampling with ratio =256)(4)
70
76
-
THD
Total harmonic distortion
-
-85
-73
ET
Total unadjusted error
-
2
5
EO
Offset error
-
1
2.5
EG
Gain error
-
1
2
EL
Integral linearity error
-
1.5
3
-
1
2
1.65 V < VREF+ <VDDA < 3.6 V,
range 1/2/3
ED
Differential linearity error
ENOB
Effective number of bits
10.0
11.0
-
SINAD
Signal-to-noise distortion
62
69
-
SNR
Signal-to-noise ratio
61
69
-
THD
Total harmonic distortion
-
-85
-65
Unit
LSB
bits
dB
LSB
bits
dB
1. ADC DC accuracy values are measured after internal calibration.
DocID027101 Rev 2
95/135
107
Electrical characteristics
STM32L071xx
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.
Figure 30. ADC accuracy characteristics
966$
(*
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH
(7 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW
LGHDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW
LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP
GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
(7
(2
(/
('
/6%,'($/
9''$
069
Figure 31. Typical connection diagram using the ADC
9''$
97
5$,1
9$,1
$,1[
&SDUDVLWLF
97
6DPSOHDQGKROG$'&
FRQYHUWHU
5$'&
ELW
FRQYHUWHU
,/“Q$
&$'&
06Y9
1. Refer to Table 62: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
96/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 32 or Figure 33,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed as close as possible to the chip.
Figure 32. Power supply and reference decoupling (VREF+ not connected to VDDA)
670/[[
95()
—)Q)
9''$
—)Q)
966$ 95()±
069
Figure 33. Power supply and reference decoupling (VREF+ connected to VDDA)
670/[[
62%&6$$!
—&N&
62%&n633!
069
DocID027101 Rev 2
97/135
107
Electrical characteristics
6.3.16
STM32L071xx
Temperature sensor characteristics
Table 65. Temperature sensor calibration values
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C, VDDA= 3 V
TS_CAL2
TS ADC raw data acquired at
0x1FF8 007E - 0x1FF8 007F
temperature of 130 °C, VDDA= 3 V
0x1FF8 007A - 0x1FF8 007B
Table 66. Temperature sensor characteristics
Symbol
TL(1)
Parameter
VSENSE linearity with temperature
Avg_Slope
(1)
Average slope
±5°C(2)
Min
Typ
Max
Unit
-
±1
±2
°C
1.48
1.61
1.75
mV/°C
640
670
700
mV
µA
V130
Voltage at 130°C
IDDA(TEMP)(3)
Current consumption
-
3.4
6
tSTART(3)
Startup time
-
-
10
TS_temp(4)(3)
ADC sampling time when reading the temperature
10
-
-
µs
1. Guaranteed by characterization results.
2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.
3. Guaranteed by design.
4. Shortest sampling time can be determined in the application by multiple iterations.
6.3.17
Comparators
Table 67. Comparator 1 characteristics
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
3.6
V
VDDA
Analog supply voltage
-
1.65
R400K
R400K value
-
-
400
-
R10K
R10K value
-
-
10
-
Comparator 1 input voltage
range
-
0.6
-
VDDA
Comparator startup time
-
-
7
10
-
-
3
10
-
-
±3
±10
mV
Comparator offset variation in VDDA = 3.6 V, VIN+ = 0 V,
worst voltage stress conditions VIN- = VREFINT, TA = 25 °C
0
1.5
10
mV/1000 h
Current consumption(3)
-
160
260
nA
VIN
tSTART
td
Voffset
dVoffset/dt
ICOMP1
Propagation
delay(2)
Comparator offset
-
kΩ
V
µs
1. Guaranteed by characterization.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to
the reference.
3. Comparator consumption only. Internal reference voltage not included.
98/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Table 68. Comparator 2 characteristics
Symbol
VDDA
VIN
Conditions
Min
Typ
Max(1)
Unit
Analog supply voltage
-
1.65
-
3.6
V
Comparator 2 input voltage range
-
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
25
1.65 V ≤ VDDA ≤ 2.7 V
-
1.8
3.5
2.7 V ≤ VDDA ≤ 3.6 V
-
2.5
6
1.65 V ≤ VDDA ≤ 2.7 V
-
0.8
2
2.7 V ≤ VDDA ≤ 3.6 V
-
1.2
4
-
±4
±20
mV
VDDA = 3.3V, TA = 0 to 50 °C,
V- = VREFINT,
3/4 VREFINT,
1/2 VREFINT,
1/4 VREFINT.
-
15
30
ppm
/°C
Fast mode
-
3.5
5
Slow mode
-
0.5
2
Parameter
tSTART
Comparator startup time
td slow
Propagation delay(2) in slow mode
td fast
Propagation delay(2) in fast mode
Voffset
Comparator offset error
dThreshold/
dt
ICOMP2
Threshold voltage temperature
coefficient
Current consumption(3)
µs
µA
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to
the reference.
3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.
DocID027101 Rev 2
99/135
107
Electrical characteristics
6.3.18
STM32L071xx
Timer characteristics
TIM timer characteristics
The parameters given in the Table 69 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 69. TIMx characteristics(1)
Symbol
Parameter
tres(TIM)
Conditions
Timer resolution time
fTIMxCLK = 32 MHz
Timer external clock frequency on CH1
to CH4
fEXT
ResTIM
tCOUNTER
Max
Unit
1
-
tTIMxCLK
31.25
-
ns
0
fTIMxCLK/2
MHz
0
16
MHz
16
bit
65536
tTIMxCLK
2048
µs
fTIMxCLK = 32 MHz
Timer resolution
-
16-bit counter clock period when
internal clock is selected (timer’s
prescaler disabled)
-
tMAX_COUNT Maximum possible count
Min
1
fTIMxCLK = 32 MHz 0.0312
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 32 MHz
-
134.2
s
1. TIMx is used as a general term to refer to the TIM2, TIM6, TIM21, and TIM22 timers.
6.3.19
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm) : with a bit rate up to 100 kbit/s
•
Fast-mode (Fm) : with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s.
The I2C timing requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to the reference manual for details). The SDA and SCL I/O requirements
are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain.
When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is
disabled, but is still present. Only FTf I/O pins support Fm+ low level output current
maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os
characteristics).
All I2C SDA and SCL I/Os embed an analog filter (see Table 70 for the analog filter
characteristics).
100/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
The analog spike filter is compliant with I2C timings requirements only for the following
voltage ranges:
•
Fast mode Plus: 2.7 V ≤ VDD ≤ 3.6 V and voltage scaling Range 1
•
Fast mode:
–
2 V ≤ VDD ≤ 3.6 V and voltage scaling Range 1 or Range 2.
–
VDD < 2 V, voltage scaling Range 1 or Range 2, Cload < 200 pF.
In other ranges, the analog filter should be disabled. The digital filter can be used instead.
Note:
In Standard mode, no spike filter is required.
Table 70. I2C analog filter characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Range 1
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter
Unit
100(3)
50(2)
Range 2
-
Range 3
ns
-
1. Guaranteed by characterization results.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
SPI characteristics
Unless otherwise specified, the parameters given in the following tables are derived from
tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 25.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 71. SPI characteristics in voltage Range 1 (1)
Symbol
Parameter
Conditions
Min
Typ
Master mode
Duty(SCK)
SPI clock frequency
Duty cycle of SPI clock
frequency
-
Slave mode
Transmitter
1.71<VDD<3.6V
-
-
12(2)
Slave mode
Transmitter
2.7<VDD<3.6V
-
-
16(2)
Slave mode
30
50
70
DocID027101 Rev 2
Unit
16
-
Slave mode
receiver
fSCK
1/tc(SCK)
Max
16
MHz
%
101/135
107
Electrical characteristics
STM32L071xx
Table 71. SPI characteristics in voltage Range 1 (1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
tsu(NSS)
NSS setup time
Slave mode, SPI
presc = 2
4*Tpclk
-
-
th(NSS)
NSS hold time
Slave mode, SPI
presc = 2
2*Tpclk
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
Tpclk-2
Tpclk
Tpclk+
2
Master mode
0
-
-
Slave mode
3
-
-
Master mode
7
-
-
Slave mode
3.5
-
-
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO
Data output access time
Slave mode
15
-
36
tdis(SO)
Data output disable time
Slave mode
10
-
30
Slave mode
1.65 V<VDD<3.6 V
-
18
41
Slave mode
2.7 V<VDD<3.6 V
-
18
25
Master mode
-
4
7
Slave mode
10
-
-
Master mode
0
-
-
tv(SO)
Data output valid time
tv(MO)
th(SO)
th(MO)
Data output hold time
Unit
ns
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI)
which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be
achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
102/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Table 72. SPI characteristics in voltage Range 2 (1)
Symbol
Parameter
Conditions
Min
Typ
Master mode
fSCK
1/tc(SCK)
SPI clock frequency
Slave mode Transmitter
1.65<VDD<3.6V
Max
Unit
8
-
-
Slave mode Transmitter
2.7<VDD<3.6V
8
MHz
8(2)
Duty(SCK)
Duty cycle of SPI clock
frequency
Slave mode
30
50
70
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4*Tpclk
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2*Tpclk
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
Tpclk-2
Tpclk
Tpclk+2
Master mode
0
-
-
Slave mode
3
-
-
Master mode
11
-
-
Slave mode
4.5
-
-
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO
Data output access time
Slave mode
18
-
52
tdis(SO)
Data output disable time
Slave mode
12
-
42
Slave mode
-
20
56.5
Master mode
-
5
9
Slave mode
13
-
-
Master mode
3
-
-
tv(SO)
Data output valid time
tv(MO)
th(SO)
th(MO)
Data output hold time
%
ns
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
DocID027101 Rev 2
103/135
107
Electrical characteristics
STM32L071xx
Table 73. SPI characteristics in voltage Range 3 (1)
Symbol
Parameter
Min
Typ
fSCK
1/tc(SCK)
SPI clock frequency
-
-
Duty(SCK)
Duty cycle of SPI clock
frequency
Slave mode
30
50
70
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4*Tpclk
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2*Tpclk
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
Tpclk-2
Tpclk
Tpclk+2
Master mode
1.5
-
-
Slave mode
6
-
-
Master mode
13.5
-
-
Slave mode
16
-
-
tsu(MI)
Conditions
Data input setup time
tsu(SI)
th(MI)
Data input hold time
th(SI)
Master mode
Slave mode
Max
2
2(2)
ta(SO
Data output access time
Slave mode
30
-
70
tdis(SO)
Data output disable time
Slave mode
40
-
80
Slave mode
-
30
70
Master mode
-
7
9
Slave mode
25
-
-
Master mode
8
-
-
tv(SO)
Data output valid time
tv(MO)
th(SO)
Data output hold time
th(MO)
Unit
MHz
%
ns
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
Figure 34. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
W962
WD62
0,62
287387
WK62
06%287
%,7287
06%,1
%,7,1
WU6&.
WI6&.
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
104/135
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Figure 35. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ WF6&.
WK166
WZ6&.+
WZ6&./
&3+$ &32/ WY62
WD62
0,62
287 3 87
WK62
06 % 2 87
WVX6,
026,
, 1387
WU6&.
WI6&.
%, 7 287
WGLV62
/6% 287
WK6,
% , 7 ,1
0 6% ,1
/6% ,1
DL
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Figure 36. SPI timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
&3+$ &32/ 6&.2XWSXW
WF6&.
&3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
06%,1
WU6&.
WI6&.
%,7,1
/6%,1
WK0,
026,
287387
06%287
% , 7287
WY02
/6%287
WK02
DLF
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID027101 Rev 2
105/135
107
Electrical characteristics
STM32L071xx
I2S characteristics
Table 74. I2S characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
fMCK
I2S Main clock output
-
256 x 8K
256xFs (2)
MHz
fCK
I2S clock frequency
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
DCK
I2S clock frequency duty
cycle
Slave receiver
30
70
tv(WS)
WS valid time
Master mode
-
15
th(WS)
WS hold time
Master mode
11
-
tsu(WS)
WS setup time
Slave mode
6
-
th(WS)
WS hold time
Slave mode
2
-
Master receiver
0
-
Slave receiver
6.5
-
Master receiver
18
-
Slave receiver
15.5
-
Slave transmitter (after enable edge)
-
77
Master transmitter (after enable edge)
-
8
Slave transmitter (after enable edge)
18
-
Master transmitter (after enable edge)
1.5
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
tv(SD_MT)
th(SD_ST)
th(SD_MT)
Data input setup time
Data input hold time
Data output valid time
Data output hold time
MHz
%
ns
1. Guaranteed by characterization results.
2. 256xFs maximum value is equal to the maximum clock frequency.
Note:
106/135
Refer to the I2S section of the product reference manual for more details about the sampling
frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral
behavior, source clock precision might slightly change them. DCK depends mainly on the
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.
DocID027101 Rev 2
STM32L071xx
Electrical characteristics
Figure 37. I2S slave timing diagram (Philips protocol)(1)
&.,QSXW
WF&.
&32/ &32/ WZ&.+
WK:6
WZ&./
:6LQSXW
WY6'B67
WVX:6
6'WUDQVPLW
/6%WUDQVPLW
06%WUDQVPLW
%LWQWUDQVPLW
WVX6'B65
/6%UHFHLYH
6'UHFHLYH
WK6'B67
/6%WUDQVPLW
WK6'B65
06%UHFHLYH
%LWQUHFHLYH
/6%UHFHLYH
DLE
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 38. I2S master timing diagram (Philips protocol)(1)
TF#+
TR#+
#+OUTPUT
TC#+
#0/,
TW#+(
#0/,
TV73
TH73
TW#+,
73OUTPUT
TV3$?-4
3$TRANSMIT
,3"TRANSMIT
-3"TRANSMIT
,3"RECEIVE
,3"TRANSMIT
TH3$?-2
TSU3$?-2
3$RECEIVE
"ITNTRANSMIT
TH3$?-4
-3"RECEIVE
"ITNRECEIVE
,3"RECEIVE
AIB
1. Guaranteed by characterization results.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DocID027101 Rev 2
107/135
107
Package information
7
STM32L071xx
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at www.st.com.
ECOPACK® is an ST trademark.
7.1
LQFP100 package information
Figure 39. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline
MM
C
!
!
!
3%!4).'0,!.%
#
'!5'%0,!.%
$
,
$
!
+
CCC #
,
$
0).
)$%.4)&)#!4)/.
E
1. Drawing is not to scale. Dimensions are in millimeters.
108/135
%
%
%
B
DocID027101 Rev 2
,?-%?6
STM32L071xx
Package information
Table 75. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID027101 Rev 2
109/135
133
Package information
STM32L071xx
Figure 40. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
AIC
1. Dimensions are expressed in millimeters.
Device marking for LQFP100
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 41. LQFP100 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670/
9=75
5HYLVLRQFRGH
'DWHFRGH
< ::
3LQ
LQGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
110/135
DocID027101 Rev 2
STM32L071xx
7.2
Package information
UFBGA100 package information
Figure 42. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline
= 6HDWLQJSODQH
GGG =
$ $ $
$ $
(
$EDOO
$EDOO
LGHQWLILHU LQGH[DUHD
=
H
;
(
$
=
'
'
H
<
0
%277209,(:
‘EEDOOV
‘ HHH 0 = < ;
‘ III 0 =
7239,(:
$&B0(B9
1. Drawing is not to scale.
Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
0.600
-
-
0.0236
A1
-
-
0.110
-
-
0.0043
A2
-
0.450
-
-
0.0177
-
A3
-
0.130
-
-
0.0051
0.0094
A4
-
0.320
-
-
0.0126
-
b
0.240
0.290
0.340
0.0094
0.0114
0.0134
D
6.850
7.000
7.150
0.2697
0.2756
0.2815
D1
-
5.500
-
-
0.2165
-
E
6.850
7.000
7.150
0.2697
0.2756
0.2815
E1
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
Z
-
0.750
-
-
0.0295
-
DocID027101 Rev 2
111/135
133
Package information
STM32L071xx
Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
ddd
-
-
0.080
-
-
0.0031
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint
'SDG
'VP
$&B)3B9
Table 77. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Dimension
112/135
Recommended values
Pitch
0.5
Dpad
0.280 mm
Dsm
0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.280 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
DocID027101 Rev 2
STM32L071xx
LQFP64 package information
Figure 44. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
6($7,1*3/$1(
&
$
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
E
(
7.3
Package information
H
:B0(B9
1. Drawing is not to scale.
Table 78. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DocID027101 Rev 2
113/135
133
Package information
STM32L071xx
Table 78. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint
AIC
1. Dimensions are expressed in millimeters.
114/135
DocID027101 Rev 2
STM32L071xx
Package information
Device marking for LQFP64
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 46. LQFP64 marking example (package top view)
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670/
5%7
'DWHFRGH
< ::
3LQ
LQGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027101 Rev 2
115/135
133
Package information
7.4
STM32L071xx
TFBGA64 package information
Figure 47. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
grid array package outline
(
$
(
)
H
+
)
'
'
‘EEDOOV
‘ HHH 0 & % $
‘ III 0 &
$
%
H
$EDOO
LQGH[DUHD
7239,(:
$EDOO
LGHQWLILHU
%277209,(:
& 6HDWLQJSODQH
GGG &
$
$
$ $
6,'(9,(:
5B0(B9
1. Drawing is not to scale.
Table 79. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
grid array package mechanical data
inches(1)
millimeters
Symbol
116/135
Min
Typ
Max
Min
Typ
Max
A
-
-
1.200
-
-
0.0472
A1
0.150
-
-
0.0059
-
-
A2
-
0.200
-
-
0.0079
-
A4
-
-
0.600
-
-
0.0236
b
0.250
0.300
0.350
0.0098
0.0118
0.0138
D
4.850
5.000
5.150
0.1909
0.1969
0.2028
D1
-
3.500
-
-
0.1378
-
E
4.850
5.000
5.150
0.1909
0.1969
0.2028
E1
-
3.500
-
-
0.1378
-
DocID027101 Rev 2
STM32L071xx
Package information
Table 79. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
grid array package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
e
-
0.500
-
-
0.0197
-
F
-
0.750
-
-
0.0295
-
ddd
-
-
0.080
-
-
0.0031
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
,grid array recommended footprint
'SDG
'VP
069
Table 80. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Dimension
Note:
Recommended values
Pitch
0.5
Dpad
0.27 mm
Dsm
0.35 mm typ. (depends on the soldermask
registration tolerance)
Solder paste
0.27 mm aperture diameter.
Non solder mask defined (NSMD) pads are recommended.
4 to 6 mils solder paste screen printing process.
DocID027101 Rev 2
117/135
133
Package information
STM32L071xx
Device marking for TFBGA64
The following figure gives an example of topside marking versus ball A 1 position identifier
location.
Figure 49. TFBGA64 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
/5=+
'DWHFRGH <HDUZHHN
<
::
5HYLVLRQ
FRGH
5
%DOO$
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
118/135
DocID027101 Rev 2
STM32L071xx
7.5
Package information
WLCSP49 package information
Figure 50. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package outline
H
EEE =
)
$EDOOORFDWLRQ
$
*
'HWDLO$
H
(
H
H
$
'
$
$
%RWWRPYLHZ
%XPSVLGH
6LGHYLHZ
$
E
%XPS
)URQWYLHZ
$
HHH =
=
E[
FFF
GGG
(
=;<
=
1RWH
$
2ULHQWDWLRQ
UHIHUHQFH
'HWDLO$
URWDWHG
6HDWLQJSODQH
1RWH
DDD
[
'
7RSYLHZ
:DIHUEDFNVLGH
$B0(B9
1. Drawing is not to scale.
DocID027101 Rev 2
119/135
133
Package information
STM32L071xx
Table 81. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
-
0.175
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
-
0.025
-
-
0.0010
-
b(3)
0.220
0.250
0.280
0.0087
0.0098
0.0110
D
3.259
3.294
3.329
0.1283
0.1297
0.1311
E
3.223
3.258
3.293
0.1269
0.1283
0.1296
e
-
0.400
-
-
0.0157
-
e1
-
2.400
-
-
0.0945
-
e2
-
2.400
-
-
0.0945
-
F
-
0.447
-
-
0.0176
-
G
-
0.429
-
-
0.0169
-
aaa
-
-
0.100
-
-
0.0039
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee
-
-
0.050
-
-
0.0020
A3
(2)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 51. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
'SDG
'VP
120/135
DocID027101 Rev 2
069
STM32L071xx
Package information
Table 82. WLCSP49 recommended PCB design rules (0.4 mm pitch)
Dimension
Recommended values
Pitch
0.4
260 µm max. (circular)
Dpad
220 µm recommended
Dsm
300 µm min. (for 260 µm diameter pad)
PCB pad design
Non-solder mask defined via underbump allowed.
Device marking for WLCSP49
The following figure gives an example of topside marking versus ball A 1 position identifier
location.
Figure 52. WLCSP49 marking example (package top view)
%DOO
LQGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
/&=
'DWHFRGH
5HYLVLRQFRGH
< :: 5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027101 Rev 2
121/135
133
Package information
7.6
STM32L071xx
LQFP48 package information
Figure 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
CCC #
+
!
$
$
,
,
$
0).
)$%.4)&)#!4)/.
%
E
1. Drawing is not to scale.
122/135
%
%
B
DocID027101 Rev 2
"?-%?6
STM32L071xx
Package information
Table 83. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID027101 Rev 2
123/135
133
Package information
STM32L071xx
Figure 54. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
AID
1. Dimensions are expressed in millimeters.
Device marking for LQFP48
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 55. LQFP48 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670/
&=7
'DWHFRGH
< ::
5HYLVLRQFRGH
3LQ
LQGHQWLILHU
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
124/135
DocID027101 Rev 2
STM32L071xx
LQFP32 package information
Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
CCC
'!5'%0,!.%
#
+
$
!
,
$
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
7.7
Package information
E
[email protected]&@7
1. Drawing is not to scale.
DocID027101 Rev 2
125/135
133
Package information
STM32L071xx
Table 84. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
126/135
DocID027101 Rev 2
6?&0?6
STM32L071xx
Package information
Device marking for LQFP32
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 58. LQFP32 marking example (package top view)
670/
3URGXFWLGHQWLILFDWLRQ
.=7
'DWHFRGH
< ::
5HYLVLRQFRGH
3LQLQGHQWLILHU
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027101 Rev 2
127/135
133
Package information
7.8
STM32L071xx
UFQFPN32 package information
Figure 59. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
'
$
H
'
$
$
GGG &
&
6($7,1*
3/$1(
E
H
(
E
( (
/
3,1,GHQWLILHU
'
/
!"?-%?6
1. Drawing is not to scale.
128/135
DocID027101 Rev 2
STM32L071xx
Package information
Table 85. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
A3
-
0.152
-
-
0.0060
-
b
0.180
0.230
0.280
0.0071
0.0091
0.0110
D
4.900
5.000
5.100
0.1929
0.1969
0.2008
D1
3.400
3.500
3.600
0.1339
0.1378
0.1417
D2
3.400
3.500
3.600
0.1339
0.1378
0.1417
E
4.900
5.000
5.100
0.1929
0.1969
0.2008
E1
3.400
3.500
3.600
0.1339
0.1378
0.1417
E2
3.400
3.500
3.600
0.1339
0.1378
0.1417
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 60. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
recommended footprint
$%B)3B9
1. Dimensions are expressed in millimeters.
DocID027101 Rev 2
129/135
133
Package information
STM32L071xx
Device marking for UFQFPN32
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 61. UFQFPN32 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
/.=
'DWHFRGH
<
::
5HYLVLRQFRGH
5
3LQ
LQGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
130/135
DocID027101 Rev 2
STM32L071xx
7.9
Package information
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 86. Thermal characteristics
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
UFQFPN32 - 5 x 5 mm / 0.5 mm pitch
36
Thermal resistance junction-ambient
LQFP32 - 7 x 7 mm / 0.8 mm pitch
60
Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm / 0.5 mm pitch
54
Thermal resistance junction-ambient
WLCSP49 - 0.4 mm pitch
48
Thermal resistance junction-ambient
TFBGA64 - 5 x 5 mm / 0.5 mm pitch
64
Thermal resistance junction-ambient
LQFP64 - 10 x 10 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm / 0.5 mm pitch
41
Thermal resistance junction-ambient
UFBGA100 - 7 x 7 mm / 0.5 mm pitch
57
DocID027101 Rev 2
Unit
°C/W
131/135
133
Package information
STM32L071xx
Figure 62. Thermal resistance
ϰϬϬϬ
ϯϱϬϬ
>Y&WEϯϮ
ϯϬϬϬ
hY&EϯϮ
>Y&Wϰϴ
ϮϱϬϬ
3'P:
t>^Wϰϵ
d&'ϲϰ
ϮϬϬϬ
>Y&Wϲϰ
ϭϱϬϬ
>Y&WϭϬϬ
h&'ϭϬϬ
ϭϬϬϬ
ϱϬϬ
Ϭ
ϭϮϱ
ϭϬϬ
ϳϱ
ϱϬ
7HPSHUDWXUHƒ&
7.9.1
Ϯϱ
Ϭ
06Y9
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
132/135
DocID027101 Rev 2
STM32L071xx
8
Part numbering
Part numbering
Table 87. STM32L071xx ordering information scheme
Example:
STM32 L
071
R
8
T
6
D TR
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
071 = Access line
Pin count
K = 32 pins
C = 48/49 pins
R = 64 pins
V = 100 pins
Flash memory size
8 = 64 Kbytes
B = 128 Kbytes
Z = 192 Kbytes
Package
T = LQFP
H = TFBGA
I = UFBGA
U = UFQFPN
Y = WLCSP pins
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
3 = Industrial temperature range, –40 to 125 °C
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
DocID027101 Rev 2
133/135
133
Revision history
9
STM32L071xx
Revision history
Table 88. Document revision history
Date
Revision
02-Sep-2015
1
Initial release
2
Changed confidentiality level to public.
Updated datasheet status to “production data”.
Modified ultra-low-power platform features on cover page.
In Table 15: STM32L071xxx pin definition:
– changed pin name to VDDIO2 for the following pins:
UFQFPN32 pin 24, LQFP48 pin 36, LQFP64 pin 48, UFBGA64
pin E5, WLCSP49 pin A1, LQFP100 pin 75 and UFBGA100 pin
G11.
– Added note related to UFQFPN32.
In Section 6: Electrical characteristics, updated notes related to
values guaranteed by characterization.
Updated |ΔVSS| definition to include VREF- in Table 22: Voltage
characteristics.
Updated fTRIG and VAIN maximum value, added VREF+ and VREFin Table 62: ADC characteristics.
Added Section : Device marking for LQFP100.
Updated Figure 42: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm
pitch, ultra fine pitch ball grid array package outline and Table 75:
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data.
Added Section : Device marking for LQFP100, Section : Device
marking for LQFP64, Section : Device marking for TFBGA64 and
Section : Device marking for WLCSP49.
Updated Figure 55: LQFP48 marking example (package top
view).
26-Oct-2015
134/135
Changes
DocID027101 Rev 2
STM32L071xx
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID027101 Rev 2
135/135
135
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement