D A T A ... TX3 Alco Controls

D   A   T   A ...  TX3 Alco Controls
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
ALCO’s TX3 series of Thermo-Expansion Valves are
designed for air conditioning, heat pumps and commercial
refrigeration applications. The TX3 is ideal for those
applications requiring hermetic / compact size combined with
stable and accurate control over wide load and evaporating
temperature ranges.
Features
•
•
•
•
•
•
•
•
•
•
Compact size
Hermetic design
Nine sizes up to 23kW
Brazing connections with straight through configuration
Stainless steel power element resists corrosion
Large diaphragm provides smoother and consistent valve
control
Internal or external equalizer
External superheat adjustment
Version with internal check valve eliminates external check
valve for heat pump applications
Packaging units with 24 pieces, no single packs
TX3
Options
• Metric connections upon request
• Bleed function, minimum order quantity 100 pieces per
batch and type
Introduction
Thermo-Expansion Valves control the superheat of refrigerant
vapour at the outlet of the evaporator. They act as a throttle
device between the high and low pressure sides of refrigeration
system and ensure the rate of refrigerant flow into the
evaporator exactly matches the rate of evaporation of liquid
refrigerant. Thus the evaporator is fully utilized and no liquid
refrigerant may reach the compressor.
When the actual superheat is higher than the setpoint, thermo
expansion valve feeds the evaporator with more liquid
refrigerant when the actual superheat is higher than the set
point of the valve. Likewise, the valve decreases the refrigerant
flow to the evaporator when the actual superheat is lower than
the set point.
Description of bulb charges
The application ranges of thermo expansion valves are heavily
influenced by the selected charge.
Liquid charges
The behaviour of Thermo-Expansion Valves with liquid
charges is exclusively determined by temperature changes at
the bulb and not subject to any cross-ambient interference.
They feature a moderate response time and thus stabilize the
control circuit. Liquid charges cannot incorporate MOP
functions.
TX3__35010_EN_R07.doc
The maximum bulb temperatures shall not exceed the values in
the following table:
Maximum bulb temperature
Refrigerant
TX3
R 134a
R 22 / R 407C
R 404A / R 507
R 410A
88°C
71°C
66°C
66°C
TX3 with internal check valve
120°C
-
Table 1: This table refers to the maximum dehydration temperature
when the bulb and valve body are subjected to the same temperature.
TX3 with internal check valve are suitable for heat pump
applications and incorporate special liquid charges and
ballasted bulbs. Ballast in the bulb leads to slow opening and
fast closure of the valve. Maximum bulb temperature is 120 °C.
Gas charges
The behaviour of thermo expansion valves with gas charges
will be determined by the lowest temperature at any part of the
expansion valve (power assembly, capillary tube or bulb). If any
parts other than the bulb are subject to the lowest temperature,
malfunction of the expansion valve may occur (i.e. erratic low
pressure or excessive superheat). ALCO TX3 valves with gas
charges always feature MOP functions and include ballasted
bulbs. Ballast in the bulb leads to slow opening and fast closure
of the valve. Maximum bulb temperature is 120 °C.
1 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
MOP (Maximum Operating Pressure)
MOP functionality is somewhat similar to the application of a
crankcase pressure regulator. Evaporator pressures are limited
to a maximum value to protect compressors from overload
conditions.
MOP selection should be within maximum allowed low pressure
rating of the compressor and should be at approximately 3 K
above maximum evaporating temperature.
MOP
(bar)
Upper limit of evaporating temperature
R 134a
R 22
R 407C
2.3
3.3
6.4
R
404A
-18°C
R
410A
+11°C
+13°C
R 507
18 7°C
+14.5°C
12.9
S
H
E
E
T
Bleed function
In systems with some type of single phase compressor (such as
permanent split capacitor motor, small rotary compressor etc.),
it is necessary to provide some means of equalization between
high and low side pressure during “off” cycle, so that the motor
of compressor can start with minimum torque.
The required bleed hole size for a particular system is a function
of the high side and low side volumes, the pressure difference
across the valve at the time of shut-down, the required
equalization time and the amount of refrigerant charge.
Due to the many variables, each application must be tested to
determine the correct size of bleed hole. It should be
remembered that bleed hole size adds to the total effective port
area of the TXV and may affect size of valve. Final selection of
bleed hole size should be made only after thorough testing.
+17°C
Table 2: (All pressures are gauge pressure)
Practical hints:
Superheat adjustments influence the MOP:
o Increase of superheat: Decrease of MOP
o Decrease of superheat: Increase of MOP
Subcooling
Subcooling generally increases the capacity of refrigeration
system and may be accounted for when dimensioning an
expansion valve by applying the correction factor Kt.
The capacity corrections for evaporating temperature,
condensing temperature and subcooling are all incorporated in
Kt. These are in particular the liquid density upstream from the
expansion valve, the different enthalpies of liquid and vapour
phase refrigerants as well as certain part of flash gas after
expansion. The percentage of flash gas differs with various
refrigerants and depends on system conditions.
Heavy subcooling results in very small flash gas amounts and
therefore increases expansion valve capacities. These
conditions are not covered by Kt. Likewise, small flash gas
amounts lead to reduced evaporator capacities and may result
in substantial discrepancies between the capacities of the
thermo expansion valve and the evaporator.
These effects must be considered during component selection
when designing refrigeration circuits. In cases when subcooling
exceeds 15 K sizing of components (Kt, K∆p) shall be modified
accordingly. ALCO CONTROLS will be happy to assist you.
Please contact our application engineering department.
TX3__35010_EN_R07.doc
2 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Heat pump applications
There are several ways to apply an expansion valve in a heat pump:
1) Thermo-Expansion Valves with internal check valves
2) Thermo-Expansion valves with external check valves
Reverse valve
Reverse valve
Outdoor
coil
Outdoor
coil
TX3 with internal check valve
ALCO
BFK
Bi-flow
Check valve
ALCO
BFK
Bi-flow
Compressor
Indoor coil
Compressor
Accumulator
Indoor coil
Accumulator
TX3 with internal check valve
Check valve
This system is very simple because TX3 expansion valves with
integrated check valves have been used.
ALCO TX3 with internal check valve and special liquid charge is
ideal for use in heat pump applications.
This type of system employs two expansion valves and two
check valves. In this type of application, the charge of
expansion valves should be able to withstand the high
temperatures during reverse flow.
Expansion valves with gas charge are not recommended in heat
pumps with automatic operation between heating and cooling
mode due to the cross ambient effect on TXV after reversing
flow direction.
3) The TX3 are not designed to operate in Bi-flow
accordance to the following circuit
Reverse valve
Outdoor
coil
TX3 with internal check valve in normal flow
Compressor
ALCO
BFK
Bi-flow
Indoor coil
TX3 with internal check valve in reverse flow
TX3__35010_EN_R07.doc
Accumulator
Please contact ALCO CONTROLS for applications requiring
Thermo-Expansion Valves with Bi-flow capability.
3 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
Superheat
The factory setting of TX3 is made with the valve pin just
starting to move away from seat. The superheat increment
necessary to get the pin ready to move is called static
superheat (SS). A superheat increment over and beyond the
static superheat (factory setting) is necessary for the valve pin
to open to its rated capacity. This additional superheat is known
as gradient or opening superheat (OS).
The working superheat, which can be measured in field, is the
sum of static superheat and opening superheat (WS).
The opening superheat of TXV varies if the selected valve
operates at higher or lower capacities than rated capacity. It is
highly recommended to select the valve according to the rated
capacity. Using reserve capacity leads to larger opening
superheat and longer pull down time during start-up or after
defrost.
Selecting a larger valve than required in system may lead to
smaller opening superheat and/or hunting of TXV.
S
H
E
E
T
Capacity
Qr = Reserve capacity ≥ 30% Qn
Qmax.
Qr
Qn
Superheat (K)
SS
OS
WS
Static superheat setting
ALCO Thermo-Expansion Valves are factory preset for
optimum superheat settings. This setting should be modified
only if absolutely necessary. The readjustment should be at the
lowest expected evaporating temperature.
Standard superheat setting
Charge
Refrigerant
Inlet
pressure
into valve
(bar)
Conditions of setting
Saturated
Bulb
evaporating
temperature
temperature
°C
°C
Setting
Nominal
static
superheat
(SS), K
7.6
R 134a
-3.3
3.3
R 22
Liquid
R 407C
(no MOP)
8.6
-4.4
4.4
R 404A
-5.3
5.3
R 507
±0
Liquid (heat pumps)
R 22
MOP 3.3 bar
7.6
-3.3
3.3
R 134a
MOP 6.4 bar
R 22
8.6
R 407C
MOP 2.3 bar
-22.2
-17.8
4.4
R 404A
-23.1
-17.8
5.3
R 507
MOP 12.9 bar
18.9
-3.3
3.3
R 410A
±0
*) The given opening superheats valid when the capacity of selected valve is equal to the capacity of
system at design / operating conditions.
Note : All given pressures are gauge pressure.
TX3__35010_EN_R07.doc
4 / 14
Given
Nominal
opening
superheat
(OS), K *)
2.7
3.0
2.7
3.0
4.0
3.0
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
Dimensioning of Thermo-Expansion Valves

To apply proper Thermo -Expansion Valves on a system, the
following design conditions must be available:
• Cooling capacity (Q0)
• Effective pressure differential across TXV (∆p)
• Evaporating temperature / pressure
• Lowest possible condensing temperature / pressure
• Liquid temperature at the inlet of TXV
• Refrigerant
S
H
E
P
Otherwise the following formula has to be used:
R407C
40.5°C
15.5
Cooling capacity x K∆p x Kt = Nominal capacity of TXV
•
5.
35°C
Select Kt-factor according to refrigerant, liquid and
evaporating temperature from tables on pages 10-12.
Determine effective pressure differential across the
Thermo-Expansion Valve using condensing pressure,
subtract evaporating pressure and all other possible
from
tables
pressure
losses.
Select
K∆p-factor
on pages 10-12.
Example 1
A valve has to be selected for the following conditions:
• Refrigerant
R 134a
• System cooling capacity
6 kW
• Evaporating temperature
-10°C
• Lowest condensing temperature
+25°C
• Liquid temperature
+20°C
• Valve with adjustable superheat
Calculation:
1. Theoretical pressure differential:
Condensing pressure
Pc = 5.65 bar at +25°C
Evaporating pressure
P0 = 1.01 bar at -10°C
Differential pressure Pc - P0 = 5.65 - 1.01 = 4.64 bar
2. Pressure losses:
across distributor
= 1.0 bar
in piping, solenoid valve, drier,
sight glass, fitting, etc.
= 0.84 bar
Total pressure losses
= 1 + 0.84 = 1.84 bar
3. Effective pressure differential across valve:
4.64 - 1.84 = 2.8 bar
4. Correction factors:
Correction factor K∆p for the pressure differential 2.8 bar
from table on page 13 for R 134a
∆p = 2.8
K∆p = 1.5
Correction factor Kt for liquid and evaporating temperature
from table on page 13 for R 134a
at +20°C / -10°C
Kt = 0.88
T
Dimensioning of Thermo-Expansion Valves for systems
with refrigerant R 407C
As opposed to single substances (e.g. R 22, R 134a etc.) where
the phase change takes place at a constant temperature
/pressure, the evaporation and condensation of zeotropic blend
R407C is in a “gliding” form (e.g. at a constant pressure the
temperature varies within a certain range) through evaporators
and condensers.
The evaporating / condensing pressure must be determined at
saturated temperatures (bubble / dew points) for dimensioning
of Thermo-Expansion Valves.
To facilate valve dimensioning for other than the standard
conditions ALCO offers an Excel based Selection Tool. This
can be downloaded from www.emersonclimate.eu .
•
E
0°C
4.61
-6.5°C
h
Example 2
• Refrigerant
R 407C
• System cooling capacity
13 kW
• Evaporating temperature (saturated vapour)
0°C
• Lowest condensing temperature
+35°C
(saturated liquid)
• Liquid temperature
+34°C
• Non-adjustable valve with MOP
Calculation:
1. Theoretical pressure differential:
Differential pressure is Pc - P0 = 15.5 - 4.61 = 10.89 bar
2. Pressure losses:
across evaporator
= 0.3 bar
in piping, solenoid valve, drier,
sight glass, fitting, etc.
= 1.2 bar
Total pressure losses
= 0.3 + 1.2 = 1.5 bar
3. Effective pressure differential across valve:
10.89 - 1.5 = 9.39 bar
4. Correction factors:
Correction factor K∆p for the pressure differential 9.39 bar
from table on page 11 for R 407C
∆p = 9.39
K∆p = 1.09
Correction factor Kt for liquid and evaporating temperature
from table on page 11 for R 407C
at +34°C / 0°C
Kt = 0.98
5.
Calculation of nominal capacity Q0 x K∆p x Kt = Qn
6.0 x 1.5 x 0.88 = 7.92 kW.
You can select the valve from table on page 6.
Calculation of nominal capacity Q0 x K∆p x Kt = Qn
13 x 1.09 x 0.98 = 13.88
You can select the valve from table on page 6.
It is a TX3-N37 with a nominal capacity of 14.2 kW.
It is a TX3-M26 with a nominal capacity of 8.3 kW.
TX3__35010_EN_R07.doc
5 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Selection table
Refrigerant
R 134a
Nominal
capacity
kW
Type
Part No.
Type
Part No.
Equalizer
Inlet x Outlet
0,6
1,8
2,8
4,0
1,8
2,8
TX3-M01
TX3-M02
TX3-M03
TX3-M04
TX3-M22
TX3-M23
801765M
801766M
801767M
801768M
801769M
801770M
TX3-M11
TX3-M12
TX3-M13
801777M
801778M
801779M
TX3-M32
TX3-M33
801781M
801782M
Internal
Internal
Internal
Internal
Ext. 1/4"
Ext. 1/4"
1/4" x 3/8"
1/4" x 3/8"
1/4" x 3/8"
3/8" x 1/2"
1/4" x 3/8"
1/4" x 3/8"
4,0
TX3-M24
801771M
TX3-M34
801783M
Ext. 1/4"
3/8" x 1/2"
6,1
TX3-M25
801772M
TX3-M35
801784M
Ext. 1/4"
3/8" x 1/2"
Ext. 1/4"
3/8" x 1/2"
8,3
TX3-M26
TX3-M36
801785M
10,2
TX3-M27
801774M
TX3-M37
801786M
Ext. 1/4"
1/2" x 5/8"
12,1
TX3-M28
801775M
TX3-M38
801787M
Ext. 1/4"
1/2" x 5/8"
16,5
TX3-M29
801776M
TX3-M39
801788M
Ext. 1/4"
1/2" x 5/8"
0,8
TX3-H11
801730M
Internal
1/4" x 3/8"
2,3
TX3-H12
801731M
Internal
1/4" x 3/8"
801728M
TX3-H13
801732M
Internal
1/4" x 3/8"
TX3-H14
801733M
TX3-H03
5,2
TX3-H04
801729M
Internal
3/8" x 1/2"
0,8
TX3-H21
801738M
Ext. 1/4"
1/4" x 3/8"
2,3
TX3-H22
801739M
Ext. 1/4"
1/4" x 3/8"
3,6
TX3-H23
801740M
TX3-H33
801749M
Ext. 1/4"
1/4" x 3/8"
5,2
TX3-H24
801741M
TX3-H34
801750M
Ext. 1/4"
3/8" x 1/2"
3/8" x 1/2"
7,8
TX3-H25
801742M
TX3-H35
801751M
Ext. 1/4"
10,7
TX3-H26
801743M
TX3-H36
801752M
Ext. 1/4"
3/8" x 1/2"
13,1
TX3-H27
801744M
TX3-H37
801753M
Ext. 1/4"
1/2" x 5/8"
15,6
TX3-H28
801745M
TX3-H38
801754M
Ext. 1/4"
1/2" x 5/8"
21,3
TX3-H29
801746M
TX3-H39
801755M
Ext. 1/4"
1/2" x 5/8"
0,9
TX3-N01
801813M
Internal
1/4" x 3/8"
2,5
TX3-N02
801814M
TX3-N12
801827M
Internal
1/4" x 3/8"
3,9
TX3-N03
801815M
TX3-N13
801828M
Internal
1/4" x 3/8"
TX3-N14
801829M
Internal
3/8" x 1/2"
Ext. 1/4"
1/4" x 3/8"
5,6
R 407C
Connection size
with MOP *)
801773M
3,6
R 22
without MOP
0,9
TX3-N21
801817M
2,5
TX3-N22
801818M
TX3-N32
801831M
Ext. 1/4"
1/4" x 3/8"
3,9
TX3-N23
801819M
TX3-N33
801832M
Ext. 1/4"
1/4" x 3/8"
5,6
8,4
11,6
14,2
16,9
23,0
TX3-N24
TX3-N25
TX3-N26
TX3-N27
TX3-N28
TX3-N29
801820M
801821M
801822M
801823M
801824M
801825M
TX3-N34
TX3-N35
TX3-N36
TX3-N37
TX3-N38
TX3-N39
801833M
801834M
801835M
801836M
801837M
801838M
Ext. 1/4"
Ext. 1/4"
Ext. 1/4"
Ext. 1/4"
Ext. 1/4"
Ext. 1/4"
3/8" x 1/2"
3/8" x 1/2"
3/8" x 1/2"
1/2" x 5/8"
1/2" x 5/8"
1/2" x 5/8"
The nominal capacity (Qn) is based on the following conditions:
Refrigerant
Evaporating temperature
R 22, R 134a, R 404A, R 410A, R507
+4°C
R 407C
+4°C dew point
Valve selection for other operating conditions see pages 5 and 10 to 13.
Condensing temperature
+38°C
+38°C bubble / +43°C dew point
Subcooling
1K
*) see table 2 on page 2 for MOP values.
TX3__35010_EN_R07.doc
6 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Selection table
Refrigerant
Nominal
capacity
kW
Type
Part No.
Type
Part No.
Equalizer
Inlet x Outlet
0,6
1,6
TX3-S21
TX3-S22
801865M
801866M
TX3-S32
801875M
Ext. 1/4"
Ext. 1/4"
1/4" x 3/8"
1/4" x 3/8"
2,5
TX3-S23
801867M
Ext. 1/4"
1/4" x 3/8"
without MOP
R 404A
3,7
TX3-S24
801868M
R 507
5,5
TX3-S25
801869M
R 410A
Connection size
with MOP *)
TX3-S34
TX3-S36
801877M
801879M
Ext. 1/4"
3/8" x 1/2"
Ext. 1/4"
3/8" x 1/2"
7,6
TX3-S26
801870M
Ext. 1/4"
3/8" x 1/2"
9,2
TX3-S27
801871M
Ext. 1/4"
1/2" x 5/8"
11,0
TX3-S28
801872M
Ext. 1/4"
1/2" x 5/8"
15,0
TX3-S29
801873M
1/2" x 5/8"
TX3-S39
801882M
Ext. 1/4"
2,8
TX3-Z32
801942M
Ext. 1/4"
1/4" x 3/8"
4,3
TX3-Z33
801943M
Ext. 1/4"
1/4" x 3/8"
6,3
TX3-Z34
801944M
Ext. 1/4"
3/8" x 1/2"
9,4
TX3-Z35
801945M
Ext. 1/4"
3/8" x 1/2"
12,9
15,8
18,8
TX3-Z36
TX3-Z37
TX3-Z38
801946M
801947M
801948M
Ext. 1/4"
Ext. 1/4"
Ext. 1/4"
3/8" x 1/2"
1/2" x 5/8"
1/2" x 5/8"
The nominal capacity (Qn) is based on the following conditions:
Refrigerant
Evaporating temperature
R 22, R 134a, R 404A, R 410A, R507
+4°C
R 407C
+4°C dew point
Valve selection for other operating conditions see pages 5 and 10 to 13.
*) see table 2 on page 2 for MOP values.
Condensing temperature
+38°C
+38°C bubble / +43°C dew point
Subcooling
1K
Selection table for Heat Pump Applications
Refrigerant
Nominal
capacity
kW
R 407C
Adjustable
Connection size
with internal check valve and special liquid
charge for heat pump applications
without MOP
Type
Part No.
Equalizer
Inlet x Outlet
Ext. 1/4"
Ext. 1/4"
1/4" x 3/8"
1/4" x 3/8"
1/4" x 3/8"
0,9
2,5
TX3-N61
TX3-N62
806799M
806800M
3,9
TX3-N63
806801M
Ext. 1/4"
5,6
TX3-N64
806802M
Ext. 1/4"
3/8" x 1/2"
8,4
TX3-N65
806803M
Ext. 1/4"
3/8" x 1/2"
11,6
14,2
16,9
23,0
TX3-N66
TX3-N67
TX3-N68
TX3-N69
806804M
806805M
806806M
806807M
Ext. 1/4"
Ext. 1/4"
Ext. 1/4"
Ext. 1/4"
3/8" x 1/2"
1/2" x 5/8"
1/2" x 5/8"
1/2" x 5/8"
The nominal capacity (Qn) is based on the following conditions:
Refrigerant
Evaporating temperature
Condensing temperature
R 407C
+4°C dew point
+38°C bubble / +43°C dew point
Valve selection for other operating conditions see pages 5 and 13.
TX3__35010_EN_R07.doc
7 / 14
Subcooling
1K
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Determining of pressure drop across internal check valve
Reverse flow liquid capacity of internal check valve
R 407C, kW
Pressure drop
(bar)
Evaporating
temperature °C
10
15
20
25
-20
8,6
8,2
7,8
7,5
-10
8,7
8,4
8,1
7,7
7,3
7,0
0
8,9
8,6
8,2
7,9
7,5
7,2
10
9,0
8,7
8,4
8,0
7,6
7,3
-20
12,8
12,2
11,7
11,2
10,7
-10
13,0
12,5
12,1
11,6
11,0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
Liquid temperature °C
30
35
40
7,2
45
50
55
60
6,2
5,8
5,4
5,1
6,7
6,3
5,9
5,6
5,3
6,8
6,5
6,1
5,8
5,4
7,0
6,6
6,3
5,9
5,6
10,2
9,8
9,2
8,7
8,2
7,6
10,5
10,0
9,5
8,9
8,4
7,9
6,8
6,5
0
13,3
12,8
12,2
11,8
11,2
10,7
10,2
9,8
9,2
8,6
8,1
10
13,5
13,0
12,5
12,0
11,4
11,0
10,4
9,9
9,4
8,8
8,4
-20
17,1
16,3
15,6
14,9
14,3
13,6
13,0
12,3
11,6
10,9
10,2
-10
17,3
16,7
16,1
15,4
14,6
14,0
13,4
12,6
11,9
11,2
10,6
0
17,8
17,1
16,3
15,8
14,9
14,3
13,6
13,0
12,2
11,5
10,8
10
18,0
17,3
16,7
16,0
15,3
14,6
13,9
13,2
12,5
11,8
11,1
-20
18,8
17,9
17,1
16,4
15,7
15,0
14,3
13,5
12,7
11,9
11,2
-10
19,0
18,3
17,7
16,9
16,0
15,4
14,7
13,9
13,1
12,3
11,6
0
19,5
18,8
17,9
17,3
16,4
15,7
15,0
14,3
13,4
12,6
11,8
10
19,7
19,0
18,3
17,5
16,7
16,0
15,2
14,5
13,8
12,9
12,2
-20
21,4
20,4
19,5
18,7
17,9
17,0
16,3
15,4
14,5
13,6
12,7
-10
21,7
20,9
20,2
19,3
18,3
17,6
16,7
15,8
14,9
14,0
13,2
0
22,2
21,4
20,4
19,7
18,7
17,9
17,0
16,3
15,3
14,4
13,5
10
22,5
21,7
20,9
19,9
19,1
18,3
17,4
16,6
15,7
14,7
13,9
-20
23,5
22,4
21,5
20,5
19,7
18,7
17,9
16,9
16,0
15,0
14,0
-10
23,8
23,0
22,2
21,2
20,1
19,3
18,4
17,4
16,4
15,4
14,5
0
24,4
23,5
22,4
21,7
20,5
19,7
18,7
17,9
16,8
15,8
14,9
10
24,8
23,8
23,0
21,9
21,0
20,1
19,1
18,2
17,2
16,2
15,3
-20
25,7
24,5
23,4
22,4
21,5
20,4
19,5
18,5
17,4
16,3
15,3
-10
26,0
25,1
24,2
23,1
21,9
21,1
20,1
19,0
17,8
16,8
15,8
0
26,7
25,7
24,5
23,7
22,4
21,5
20,4
19,5
18,3
17,3
16,2
10
27,0
26,0
25,1
23,9
22,9
21,9
20,9
19,9
18,8
17,7
16,7
-20
27,3
26,0
24,9
23,8
22,9
21,7
20,7
19,6
18,5
17,4
16,2
-10
27,7
26,7
25,7
24,6
23,3
22,4
21,3
20,2
19,0
17,9
16,8
0
28,4
27,3
26,0
25,2
23,8
22,9
21,7
20,7
19,5
18,4
17,2
10
28,7
27,7
26,7
25,5
24,3
23,3
22,2
21,1
20,0
18,8
17,8
-20
28,8
27,4
26,2
25,1
24,1
22,9
21,9
20,7
19,5
18,3
17,1
-10
29,1
28,1
27,1
25,9
24,6
23,6
22,5
21,3
20,0
18,9
17,7
0
29,9
28,8
27,4
26,5
25,1
24,1
22,9
21,9
20,5
19,3
18,2
10
30,3
29,1
28,1
26,8
25,7
24,6
23,4
22,3
21,1
19,8
18,7
1. Select the liquid temperature.
2. Go vertically to find a capacity equal to the capacity of the system.
3. Read the corresponding pressure drop.
TX3__35010_EN_R07.doc
8 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Example 3 for heat pump applications
A heat pump with following design conditions:
Cooling mode
• Cooling capacity, R 407C
9,8 kW
• Condensing temperature
+40°C
• Evaporating temperature
+5°C
• TXV2 with internal check valve (CV2)
Heating mode
• Heating capacity, R 407C
• Condensing temperature
• Evaporating temperature
• TXV1 with internal check valve (CV1)
Reverse valve
Reverse valve
Outdoor
coil, -10°C
Outdoor
coil, +40°C
TXV1 + CV1
TXV1 + CV1
ALCO
BFK
Bi-flow
ALCO
BFK
Bi-flow
Accumulator
Indoor coil
+30°C
2.
3.
4.
5.
6.
Determine pressure drop across check valve CV1 from
table on page 8
at +40°C / +5°C
CV1 ≤ 0.4 bar
Theoretical pressure differential:
Condensing pressure Pc = 16.45 bar at +40°C
Evaporating pressure P0 = 4.47 bar at +5°C
Differential pressure
Pc - P0 = 16.45 - 4.47 = 11.98 bar
Pressure losses:
Across check valve
CV1 = 0.4 bar
Others - in piping, drier, sight glass, fitting, etc. = 0.8 bar
Total pressure losses
= 0.4 + 0.8 = 1.2 bar
Effective pressure differential across valve:
11.98 - 1.2 = 10.78 bar
Correction factors:
Correction factor K∆p for the pressure differential 10.78 bar
from table on page 10 for R 407C
∆p = 10.78
K∆p = 1.01
Correction factor Kt for liquid and evaporating temperature
from table on page 10 for R 407C
at +40°C / +5°C
Kt = 1.02
Calculation of nominal capacity Q0 x K∆p x Kt = Qn
9.8 x 1.01 x 1.02 = 10.1 kW
Select the valve from the table on page 8.
1. Determine pressure drop across check valve CV2 from table
on page 8
at +30°C / -10°C
CV2 ≤ 0.2 bar
2. Theoretical pressure differential:
Condensing pressure Pc = 12.56 bar at +30°C
Evaporating pressure P0 = 2.20 bar at -10°C
Differential pressure Pc - P0 = 12.56 - 2.20 = 10.26 bar
3. Pressure losses:
Across check valve
CV2 = 0.2 bar
Others - in piping, drier, sight glass, fitting, etc. = 0.8 bar
Total pressure losses
= 0.2 + 0.8 = 1.0 bar
4. Effective pressure differential across valve:
10.26 - 1.0 = 9.26 bar
5. Correction factors:
Correction factor K∆p for the pressure differential 9.26 bar
from table on page 10 for R 407C
∆p = 9.26
K∆p = 1.11
Correction factor Kt for liquid and evaporating temperature
from table on page 10 for R 407C
at +30°C / -10°C
Kt = 0.95
6. Calculation of nominal capacity Q0 x K∆p x Kt = Qn
5.8 x 1.11 x 0.95 = 6.12 kW
Select the valve from the table on page 8.
It is a TX3-N66 with a nominal capacity of 11.6 kW.
(TXV2 + CV2 = TX3-N66)
TX3__35010_EN_R07.doc
Accumulator
TXV2 + CV2
TXV2 + CV2
1.
Compressor
Compressor
Indoor coil
+5°C
5.8 kW
+30°C
-10°C
It is a TX3-N65 with a nominal capacity of 8.4 kW.
(TXV1 + CV1 = TX3-N65)
9 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Correction Tables
Liquid temperature
entering valve
°C
Correction factor Kt
R22
Evaporating temperature °C
+5
0
-5
-10
-15
-20
+20
+ 15
+10
-25
-30
-35
-40
-45
+ 60
1,24
1,25
1,26
1,28
1,30
1,31
1,38
1,58
1,84
2,16
2,56
3,04
3,55
4,23
+ 55
1,16
1,17
1,19
1,20
1,22
1,23
1,29
1,42
1,72
2,02
2,39
2,83
3,30
3,94
+ 50
1,10
1,11
1,12
1,13
1,15
1,16
1,21
1,39
1,62
1,89
2,24
2,66
3,10
3,68
+ 45
1,04
1,05
1,06
1,07
1,08
1,10
1,15
1,31
1,52
1,79
2,11
2,50
2,91
3,46
+ 40
0,99
1,00
1,01
1,02
1,03
1,04
1,09
1,24
1,45
1,69
2,00
2,37
2,75
3,27
+ 35
0,94
0,95
0,96
0,97
0,98
0,99
1,03
1,18
1,37
1,61
1,89
2,24
2,60
3,09
+ 30
0,90
0,91
0,92
0,93
0,94
0,95
0,99
1,13
1,31
1,55
1,83
2,13
2,47
2,93
+ 25
0,86
0,87
0,88
0,89
0,89
0,90
0,94
1,08
1,25
1,46
1,72
2,03
2,36
2,80
+ 20
0,83
+ 15
0,83
0,84
0,85
0,86
0,87
0,90
1,03
1,19
1,40
1,64
1,94
2,25
2,66
0,80
0,81
0,81
0,82
0,83
0,87
0,99
1,14
1,34
1,57
1,86
2,15
2,55
+ 10
0,78
+5
0,78
0,79
0,80
0,83
0,95
1,10
1,28
1,51
1,78
2,06
2,44
0,75
0,76
0,77
0,80
0,91
1,06
1,23
1,45
1,71
1,98
2,34
0,73
0,74
0,77
0,88
1,02
1,19
1,39
1,65
1,90
2,25
0,71
0,74
0,85
0,98
1,14
1,34
1,58
1,83
2,17
0,72
0,82
0,95
1,10
1,30
1,53
1,77
2,09
0
-5
- 10
Correction factor K∆p
∆p (bar)
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
7
8
9
K∆p
4,25
3,00
2,46
2,13
1,90
1,74
1,61
1,50
1,42
1,35
1,28
1,23
1,18
1,14
1,06
1,00
∆p (bar)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
K∆p
0,95
0,91
0,87
0,83
0,80
0,78
0,75
0,73
0,71
0,69
0,67
0,66
0,64
0,63
0,61
0,60
Liquid temperature
entering valve
R407C
Correction factor Kt
Evaporating temperature °C
°C
+20
+15
+10
+5
0
-5
-10
-15
-20
-25
+ 55
1,23
1,26
1,28
1,31
1,34
1,37
1,40
1,63
1,98
2,42
+ 50
1,13
1,15
1,17
1,19
1,22
1,24
1,27
1,48
1,79
2,18
+ 45
1,05
1,06
1,08
1,10
1,12
1,14
1,17
1,35
1,64
2,00
+ 40
0,98
0,99
1,01
1,02
1,04
1,06
1,08
1,25
1,52
1,84
+ 35
0,92
0,93
0,94
0,96
0,98
0,99
1,01
1,17
1,41
1,71
+ 30
0,87
0,88
0,89
0,90
0,92
0,93
0,95
1,10
1,32
1,60
+ 25
0,82
0,83
0,84
0,85
0,87
0,88
0,90
1,03
1,25
1,51
+ 20
0,78
0,79
0,80
0,81
0,82
0,84
0,85
0,98
1,18
1,43
+ 15
0,75
+ 10
0,76
0,77
0,78
0,80
0,81
0,93
1,12
1,35
0,73
0,74
0,75
0,76
0,77
0,89
1,07
1,29
0,71
0,72
0,73
0,74
0,85
1,02
1,23
0,69
0,70
0,71
0,81
0,98
1,18
+5
0
Correction factor K∆p
∆p (bar)
K∆p
0,5
1
4,78 3,33
1,5
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
7
8
9
2,72
2,36
2,11
1,92
1,78
1,67
1,57
1,49
1,42
1,36
1,31
1,26
1,18
1,11
∆p (bar)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
K∆p
1,05
1,01
0,96
0,92
0,89
0,86
0,83
0,81
0,79
0,76
0,75
0,73
0,71
0,70
0,68
0,67
TX3__35010_EN_R07.doc
10 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
Liquid temperature
entering valve
°C
A
T
A
S
H
E
E
T
Correction factor Kt
R404A
Evaporating temperature °C
+5
0
-5
-10
-15
-20
+20
+ 15
+10
-25
-30
-35
-40
-45
+ 55
1,38
1,42
1,46
1,50
1,55
1,61
1,68
1,96
2,36
2,83
3,43
4,16
5,12
6,34
+ 50
1,20
1,23
1,26
1,30
1,34
1,38
1,43
1,67
1,99
2,37
2,85
3,43
4,18
5,14
+ 45
1,07
1,10
1,12
1,15
1,18
1,22
1,26
1,46
1,74
2,05
2,46
2,95
3,57
4,35
+ 40
0,97
0,99
1,02
1,04
1,07
1,09
1,13
1,30
1,55
1,82
2,17
2,59
3,13
3,80
+ 35
0,90
0,91
0,93
0,95
0,97
1,00
1,02
1,18
1,40
1,64
1,96
2,33
2,80
3,38
+ 30
0,83
0,84
0,86
0,88
0,90
0,92
0,94
1,08
1,28
1,50
1,78
2,11
2,53
3,05
+ 25
0,77
0,79
0,80
0,82
0,83
0,85
0,87
1,00
1,18
1,39
1,64
1,94
2,32
2,79
+ 20
0,73
0,74
0,75
0,77
0,78
0,80
0,81
0,94
1,10
1,29
1,52
1,80
2,15
2,58
+ 15
0,70
+ 10
0,71
0,72
0,73
0,75
0,76
0,88
1,03
1,21
1,42
1,68
2,00
2,40
0,67
0,68
0,69
0,71
0,72
0,83
0,97
1,13
1,34
1,58
1,88
2,25
0,65
0,66
0,67
0,68
0,78
0,92
1,07
1,26
1,49
1,77
2,11
0,63
0,64
0,65
0,75
0,88
1,02
1,20
1,41
1,67
2,00
0,61
0,62
0,71
0,83
0,97
1,14
1,34
1,59
1,90
0,60
0,68
0,80
0,93
1,09
1,28
1,52
1,81
+5
0
-5
- 10
Correction factor K∆p
∆p (bar)
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
7
8
9
K∆p
4,55
3,21
2,62
2,27
2,03
1,86
1,72
1,61
1,52
1,44
1,37
1,31
1,26
1,21
1,14
1,07
∆p (bar)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
K∆p
1,02
0,97
0,93
0,89
0,86
0,83
0,80
0,78
0,76
0,74
0,72
0,70
0,69
0,67
0,66
0,64
Liquid temperature
entering valve
°C
Correction factor Kt
R507
Evaporating temperature °C
+5
0
-5
-10
-15
-20
+20
+15
+10
-25
-30
-35
-40
-45
+ 55
1,36
1,39
1,43
1,47
1,52
1,57
1,62
1,92
2,29
2,75
3,35
4,11
5,11
6,44
+ 50
1,19
1,22
1,24
1,28
1,31
1,35
1,40
1,64
1,95
2,33
2,81
3,43
4,23
5,29
+ 45
1,07
1,09
1,11
1,14
1,17
1,20
1,23
1,45
1,71
2,04
2,45
2,97
3,64
4,53
+ 40
0,97
0,99
1,01
1,03
1,06
1,08
1,11
1,30
1,53
1,82
2,18
2,63
3,22
3,98
+ 35
0,90
0,91
0,93
0,95
0,97
0,99
1,01
1,18
1,39
1,65
1,97
2,37
2,89
3,56
+ 30
0,83
0,85
0,86
0,88
0,89
0,91
0,93
1,09
1,28
1,51
1,80
2,17
2,63
3,23
+ 25
0,78
0,79
0,80
0,82
0,83
0,85
0,87
1,01
1,18
1,40
1,66
1,99
2,42
2,97
+ 20
0,73
0,74
0,75
0,77
0,78
0,79
0,81
0,94
1,10
1,30
1,54
1,85
2,24
2,74
+ 15
0,70
+ 10
0,71
0,72
0,73
0,75
0,76
0,88
1,03
1,21
1,44
1,73
2,09
2,55
0,67
0,68
0,69
0,70
0,72
0,83
0,97
1,14
1,35
1,62
1,95
2,38
0,64
0,65
0,67
0,68
0,78
0,92
1,07
1,27
1,52
1,83
2,23
0,62
0,63
0,64
0,74
0,87
1,02
1,20
1,43
1,73
2,10
0,60
0,61
0,70
0,82
0,96
1,14
1,35
1,63
1,98
0,58
0,67
0,78
0,91
1,08
1,28
1,54
1,87
+5
0
-5
- 10
Correction factor K∆p
∆p (bar)
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
7
8
9
K∆p
4,63
3,27
2,67
2,31
2,07
1,89
1,75
1,64
1,54
1,46
1,40
1,34
1,28
1,24
1,16
1,09
∆p (bar)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
K∆p
1,03
0,99
0,94
0,91
0,87
0,85
0,82
0,79
0,77
0,75
0,73
0,71
0,70
0,68
0,67
0,65
TX3__35010_EN_R07.doc
11 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
Liquid temperature
entering valve
°C
A
T
A
S
H
E
E
T
Correction factor Kt
R134a
Evaporating temperature °C
+5
0
-5
-10
-15
-20
+20
+ 15
+10
+ 60
1,27
1,30
1,33
1,36
1,40
1,44
1,48
1,75
2,08
2,46
-25
+ 55
1,18
1,21
1,23
1,26
1,29
1,33
1,36
1,60
1,90
2,25
+ 50
1,10
1,13
1,15
1,17
1,20
1,23
1,26
1,48
1,76
2,07
+ 45
1,04
1,06
1,08
1,10
1,12
1,15
1,17
1,38
1,63
1,92
+ 40
0,98
0,99
1,01
1,03
1,05
1,08
1,10
1,29
1,52
1,79
+ 35
0,92
0,94
0,96
0,97
0,99
1,01
1,03
1,21
1,43
1,68
+ 30
0,88
0,89
0,91
0,92
0,94
0,96
0,98
1,14
1,35
1,58
+ 25
0,83
0,85
0,86
0,87
0,89
0,91
0,92
1,08
1,27
1,49
+ 20
0,80
+ 15
0,81
0,82
0,83
0,85
0,89
0,88
1,02
1,21
1,41
0,77
0,78
0,79
0,81
0,82
0,84
0,97
1,15
1,34
0,76
0,77
0,78
0,80
0,93
1,09
1,28
0,73
0,74
0,75
0,76
0,89
1,04
1,22
0,71
0,72
0,73
0,85
1,00
1,17
0,69
0,70
0,82
0,96
1,12
0,68
0,79
0,92
1,07
+ 10
0,75
+5
0
-5
- 10
Correction factor K∆p
∆p (bar)
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
7
7,5
8
K∆p
3,50
2,48
2,02
1,75
1,57
1,43
1,32
1,24
1,17
1,11
1,06
1,01
0,97
0,94
0,90
0,88
∆p (bar)
8,5
9
9,5
10
10,5
11
11,5
12
13
14
15
16
17
18
19
20
K∆p
0,85
0,83
0,80
0,78
0,76
0,75
0,73
0,72
0,69
0,66
0,64
0,62
0,60
0,58
0,57
0,55
Liquid temperature
entering valve
°C
Correction factor Kt
R410A
Evaporating temperature °C
+5
0
-5
-10
-15
-20
+20
+15
+10
-25
-30
-35
-40
-45
+ 60
1,54
1,56
1,58
1,60
1,63
1,66
1,69
1,98
2,28
2,80
3,28
3,93
4,85
5,95
+ 55
1,35
1,36
1,38
1,40
1,42
1,44
1,46
1,71
1,96
2,41
2,81
3,36
4,13
5,05
+ 50
1,21
1,22
1,23
1,25
1,26
1,28
1,30
1,52
1,74
2,13
2,48
2,96
3,63
4,42
+ 45
1,10
1,11
1,12
1,14
1,15
1,16
1,18
1,38
1,57
1,92
2,24
2,66
3,26
3,96
+ 40
1,02
1,02
1,03
1,04
1,06
1,07
1,08
1,26
1,44
1,76
2,04
2,43
2,97
3,60
+ 35
0,95
0,95
0,96
0,97
0,98
0,99
1,00
1,17
1,33
1,62
1,88
2,24
2,73
3,31
+ 30
0,89
0,89
0,90
0,91
0,92
0,93
0,94
1,09
1,24
1,51
1,75
2,08
2,54
3,07
+ 25
0,84
0,84
0,85
0,85
0,86
0,87
0,88
1,02
1,17
1,42
1,64
1,95
2,37
2,87
+ 20
0,79
0,79
0,80
0,81
0,81
0,82
0,83
0,97
1,10
1,34
1,55
1,83
2,23
2,69
∆p (bar)
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
7
K∆p
5,31
3,75
3,07
2,66
2,37
2,17
2,01
1,88
1,77
1,68
1,60
1,53
1,47
1,42
Correction factor K∆p
∆p (bar)
7,5
8
8,5
9
9,5
14
15
16
17
18
19
20
21
22
K∆p
1,37
1,33
1,29
1,25
1,22
1,00
0,97
0,94
0,91
0,89
0,86
0,84
0,82
0,80
TX3__35010_EN_R07.doc
12 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Technical data
Compatibility *)
CFC, HCFC, HFC, Mineral
and POE lubricants
Maximum working pressure
PS: 45 bar
Factory test pressure
PT: 48.3 bar
Burst pressure
207 bar
Medium temperature range
-45 to 120°C
*) TX3 are not released for use with inflammable substances.
Charge
Refrigerant
Liquid (no MOP)
Liquid (no MOP)
Liquid (heat pump)
MOP 3.3 bar
MOP 6.4 bar
MOP 6.4 bar
R 22, R 404A, R 507
R 134a, R 407C
R 22
R 134a
R 22
R 407C
MOP 2.3 bar
MOP 2.3 bar
MOP 12.9 bar
R 404A
R 507
R 410A
Seat leakage
≤ 1% nominal capacity
Connection
Charges
Protection
Weight
ODF, copper
CFC free
salt spray test
~ 0.5 kg (individual)
Recommended evaporating
temperature range °C
-45 to +20
-25 to +20
-35 to +20
-25 to +9
-45 to +10
-25 to +12
-45 to -21
-45 to -20
-30 to +17
Shipping weights and pack quantities
Pack quantity
Minimum order quantity
Shipping weight (pack)
TX3__35010_EN_R07.doc
TX3
with standard setting
24 (no single pack)
24
12 kg
13 / 14
07.12.2009
TX3
Thermo Expansion Valves
Alco Controls
®
D
A
T
A
S
H
E
E
T
Dimensions
‘
TX3
External Equalize
Configuration View
N
H
Í
43,3
K
A
D
30° +/- 2°
Body:
Type
TX3-...1
TX3-...2
TX3-...3
TX3-...4
TX3-...5
TX3-...6
TX3-...7
TX3-...8
TX3-...9
Connection size (inch)
Inlet
Outlet
1/4”
3/8”
1/4”
3/8”
1/4”
3/8”
3/8”
1/2”
3/8”
1/2”
3/8”
1/2”
1/2”
5/8”
1/2”
5/8”
1/2”
5/8”
A
43.3
43.3
43.3
44.1
44.1
44.1
44.1
44.1
44.1
B
44.1
44.1
44.1
44.1
44.1
44.1
44.5
44.5
44.5
Roughing in dimensions (mm)
F
H
N
K
L
7.9
7.9
7.9
7.9
7.9
7.9
7.9
9.5
44.5
86.5
64.7
7.9
9.5
7.9
9.5
9.5
12.7
9.5
12.7
9.5
12.7
M
54.4
Bulb:
Charge
All charges
Special liquid charge (TX3 with check valve)
Refrigerant
Dimensions of bulb (mm)
D (length)
ØC
53.2
12.8
58.7
19.2
all
R 407C
EMERSON is not to be held responsible for erroneous literature
regarding capacities, dimensions, applications, etc. stated herein.
Products, specifications and data in this literature are subject to change
without notice. The information given herein is based on technical data
and tests which EMERSON believes to be reliable and which are in
compliance with technical knowledge of today. It is intended only for use
Emerson Electric GmbH & Co. OHG
ALCO CONTROLS
Heerstraße 111
D-71332 Waiblingen
Germany
Phone ...49-(0)7151-509-0
Fax ...49-(0)7151-509-200
www.emersonclimate.eu
TX3__35010_EN_R07.doc
Capillary tube
length
1.5 m
1.5 m
by persons having the appropriate technical knowledge and skills, at
their own discretion and risk. Our products are designed and adapted
for fixed locations. For mobile applications failures may occur. The
suitability for this has to be assured from the plant manufacturer which
may include making appropriate tests.
This document replaces all earlier versions.
Benelux
Denmark & Finland
Eastern Europe, Turkey & Iran
France, Greece, Maghreb
Deutschland, Österreich, Schweiz
Italia
Middle East & Africa
Poland
Russia & Cis
España & Portugal
Sweden & Norway
UK & Ireland
14 / 14
Phone
+31 (0)773 240 234
+32 (0)87 305 565
+32 (0)87 305 061
+33 (0)478 668 570
+49 (0)6109 6059 0
+39 02 961 78 1
+97 148 832 828
+48 (0)22 458 9205
+7 495 981 9811
+34 93 4 123 752
+32 (0)87 305 565
+44 (0)1 189 838 000
Fax
+31 (0)773 240 235
+49 24 08 929 568
+32 (0)87 305 506
+33 (0)478 668 571
+49 (0)6109 6059 40
+39 02 961 78 888
+97 148 832 848
+48 (0)22 458 9255
+7 495 981 9816
+34 93 4 124 215
+49 24 08 929 568
+44 (0)1 189 838 001
07.12.2009
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement