TDA7850 4 x 50 W MOSFET quad bridge power amplifier Features

TDA7850 4 x 50 W MOSFET quad bridge power amplifier Features

TDA7850

4 x 50 W MOSFET quad bridge power amplifier

Features

High output power capability:

– 4 x 50 W/4

 max.

– 4 x 30 W/4

 @ 14.4 V, 1 kHz, 10 %

– 4 x 80 W/2

 max.

– 4 x 55 W/2

 @ 14.4V, 1 kHz, 10 %

MOSFET output power stage

Excellent 2

 driving capability

Hi-Fi class distortion

Low output noise

ST-BY function

Mute function

Automute at min. supply voltage detection

Low external component count:

– Internally fixed gain (26 dB)

– No external compensation

– No bootstrap capacitors

On board 0.35 A high side driver

Protections:

Output short circuit to gnd, to V s

, across the load

Very inductive loads

Overrating chip temperature with soft thermal limiter

Output DC offset detection

Load dump voltage

Fortuitous open gnd

Reversed battery

Flexiwatt25

(Vertical)

Flexiwatt25

(Horizontal)

ESD

Description

The TDA7850 is a breakthrough MOSFET technology class AB audio power amplifier in

Flexiwatt 25 package designed for high power car radio. The fully complementary P-Channel/N-

Channel output structure allows a rail to rail output voltage swing which, combined with high output current and minimized saturation losses sets new power references in the car-radio field, with unparalleled distortion performances.

The TDA7850 integrates a DC offset detector.

Table 1.

Device summary

Order code

TDA7850

TDA7850H

Package

Flexiwatt25 (Vertical)

Flexiwatt25 (Horizontal

Packing

Tube

Tube

September 2013 Rev 6 1/18

www.st.com

1

2

3

5

6

Contents

Contents

1

4

TDA7850

Block diagram and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2

Standard test and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4

Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1

SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2

Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3

Standby and muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4

DC offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5

Heatsink definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2/18

TDA7850

List of tables

List of tables

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3/18

List of figures

List of figures

TDA7850

Figure 1.

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.

Standard test and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 3.

Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 4.

Components and top copper layer of the

Figure 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 5.

Bottom copper layer

Figure 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 6.

Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 7.

Output power vs. supply voltage (R

L

= 4

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 8.

Output power vs. supply voltage (R

L

= 2

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

= 4

). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 9.

Distortion vs. output power (R

L

Figure 10.

Figure 11.

Distortion vs. output power (R

Distortion vs. frequency (R

L

L

= 2

). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

= 4

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 12.

Distortion vs. frequency (R

L

= 2

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 13.

Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 14.

Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 15.

Output attenuation vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 16.

Power dissipation and efficiency vs. output power (R

L

= 4

, SINE) . . . . . . . . . . . . . . . . . 12

Figure 17.

Figure 18.

Figure 19.

Power dissipation and efficiency vs. output power (R

Power dissipation vs. output power (R

Power dissipation vs. output power (R

L

L

L

= 2

, SINE) . . . . . . . . . . . . . . . . . 12

= 4

, audio program simulation) . . . . . . . . . . . . . 13

= 2

, audio program simulation) . . . . . . . . . . . . . 13

Figure 20.

ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 13

Figure 21.

Flexiwatt25 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 15

Figure 22.

Flexiwatt25 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 16

4/18

TDA7850

1

Block diagram and application circuit

Block diagram and application circuit

Figure 1.

Block diagram

Vcc1

ST-BY

MUTE

IN1

0.1

μF

IN2

0.1

μF

IN3

0.1

μF

IN4

0.1

μF

AC-GND

0.47

μF

SVR

47

μF

Vcc2

HSD

470

μF

HSD/V

OFF_DET

OUT1+

OUT1-

PW-GND

OUT2+

OUT2-

PW-GND

OUT3+

OUT3-

PW-GND

OUT4+

OUT4-

PW-GND

100nF

TAB S-GND

D94AU158D

1.2 Standard test and application circuit

Figure 2.

Standard test and application circuit

ST-BY

MUTE

IN1

R1

10K

R2

47K

C1

0.1

μF

IN2

C2 0.1

μF

IN3

C3 0.1

μF

IN4

C4 0.1

μF

C8

0.1

μF

C7

2200

μF

Vcc1-2

6

Vcc3-4

20

C9

1

μF

C10

1

μF

4

22

11

9

8

7

5

2

3

12 17

18

19

15

S-GND

14

13

C5

0.47

μF

16

SVR

C6

47

μF

10 25

HSD/OD

R3

*)

1

21

24

23

TAB

*) R3 = 10k

Ω to be placed when pin 25 is used as offset detector.

OUT1

OUT2

OUT3

OUT4

D95AU335C

5/18

Pin description

6/18

Figure 3.

Pin connection (top view)

TAB

P-GND2

OUT2-

ST-BY

OUT2+

V

CC

OUT1-

P-GND1

OUT1+

SVR

IN1

IN2

S-GND

IN4

IN3

AC-GND

OUT3+

P-GND3

OUT3-

V

CC

OUT4+

MUTE

OUT4-

P-GND4

HSD

1

25

IN3

AC-GND

OUT3+

P-GND3

OUT3-

V

CC

OUT4+

MUTE

OUT4-

P-GND4

HSD

TAB

P-GND2

OUT2-

ST-BY

OUT2+

V

CC

OUT1-

P-GND1

OUT1+

SVR

IN1

IN2

S-GND

IN4

1

Vertical

D94AU159A

Horizontal

25

D06AU1655

TDA7850

TDA7850 Electrical specifications

3.1 Absolute maximum ratings

Table 2.

Symbol

V

S

V

S (DC)

V

S (pk)

Absolute maximum ratings

Parameter

Operating supply voltage

DC supply voltage

Peak supply voltage (for t = 50 ms)

I

O

P tot

T j

T stg

Output peak current repetitive (duty cycle 10 % at f = 10 Hz) non repetitive (t = 100

s)

Power dissipation T case

= 70 °C

Junction temperature

Storage temperature

Table 3.

Symbol

Thermal data

Parameter

R th j-case

Thermal resistance junction to case

Value

18

28

50

9

10

80

150

-55 to 150

Unit

V

V

V

A

A

W

°C

°C

Max.

Value

1

Unit

°C/W

7/18

Electrical specifications TDA7850

Table 4.

Symbol

I q1

V

OS dV

OS

Electrical characteristics

(Refer to the test and application diagram, V

S

= 14.4 V; R

L

= 4

; R g

= 600

; f = 1 kHz;

T amb

= 25 °C; unless otherwise specified).

Parameter Test condition Min. Typ.

Max.

Unit

Quiescent current R

L

=

Play mode / Mute mode

100 180 280

±50 mA mV Output offset voltage

During mute ON/OFF output offset voltage

During Standby ON/OFF output offset voltage

Voltage gain

ITU R-ARM weighted see

Figure 20

-10

-10

25 26

+10

+10

27 mV mV dB G v dG v

Channel gain unbalance ±1 dB

P o

P o max.

e

No

C

T

I

SB

I pin5

V

SB out

V

SB in

A

M

V

M out

V

M in

Max. output power

(1)

THD Distortion

SVR Supply voltage rejection f ch

R i

High cut-off frequency

Input impedance

Cross talk

Standby current consumption

ST-BY pin current

Standby out threshold voltage

Standby in threshold voltage

Mute attenuation

Mute out threshold voltage

Mute in threshold voltage

V

S

= 13.2 V; THD = 10 %

V

S

= 13.2 V; THD = 1 %

V

S

= 14.4 V; THD = 10 %

V

S

= 14.4 V; THD = 1 %

V

S

= 14.4 V; THD = 10 %, 2

V

S

= 14.4 V; R

L

= 4

V

S

= 14.4 V; R

L

= 2

P o

= 4W

P o

= 15W; R

L

= 2

"A" Weighted

Bw = 20 Hz to 20 kHz f = 100 Hz; V r

= 1Vrms

P

O

= 0.5 W f = 1 kHz P

O

= 4 W f = 10 kHz P

O

= 4 W

V

ST-BY

= 1.5 V

V

ST-BY

= 0 V

V

ST-BY

= 1.5 V to 3.5 V

(Amp: ON)

(Amp: OFF)

P

Oref

= 4 W

(Amp: Play)

(Amp: Mute)

23

16

28

20

50

50

100

80

60

2.75

80

3.5

25

19

30

23

55

50

85

0.006

0.015

35

50

75

300

100

70

60

90

0.02

0.03

50

70

120

-

-

20

10

±1

1.5

1.5

W

W

W

%

V dB

KHz

K

 dB

A

A

V

V dB

V

V

8/18

TDA7850 Electrical specifications

Table 4.

Electrical characteristics (continued)

(Refer to the test and application diagram, V

S

= 14.4 V; R

L

= 4

; R g

= 600

; f = 1 kHz;

T amb

= 25 °C; unless otherwise specified).

Parameter Test condition Min. Typ.

Max.

Unit Symbol

V

I

AM in pin23

V

S

automute threshold

Muting pin current

(Amp: Mute)

Att

80 dB; P

Oref

= 4 W

(Amp: Play)

Att < 0.1 dB; P

O

= 0. 5W

V

MUTE

= 1.5 V

(Sourced Current)

V

MUTE

= 3.5 V

HSD section

V dropout

I prot

Dropout voltage

Current limits

Offset detector (Pin 25)

I

O

= 0.35 A; V

S

= 9 to 16 V

V

M_ON

V

M_OFF

V

OFF

Mute voltage for DC offset detection enabled

V

ST-BY

= 5 V

V

V

25_T

25_F

Detected differential output offset V

ST-BY

= 5 V; V mute

= 8 V

Pin 25 voltage for detection =

TRUE

V

ST-BY

= 5 V; V mute

= 8 V

V

OFF

> ±4 V

Pin 25 Voltage for detection =

FALSE

V

ST-BY

= 5 V; V mute

= 8 V

V

OFF

> ±2 V

1.

Saturated square wave output.

6.5

7

-5

400

8

±2

0

12

7

7.5

12

0.25

±3

8

18

18

0.6

800

6

±4

1.5

V

A

A

V mA

V

V

V

V

V

9/18

Electrical specifications

Figure 4.

Components and top copper layer of the

Figure 2

.

TDA7850

Figure 5.

Bottom copper layer

Figure 2

.

10/18

TDA7850

0.001

0.1

1

Po (W)

10 100

AC00068

0.001

10 100

Electrical specifications

3.4 Electrical characteristic curves

Figure 6.

Quiescent current vs. supply voltage

160

150

140

130

200

Id (mA)

190

180

Vi = 0

RL =

170

120

110

100

8 10 12

Vs (V)

14 16

Figure 7.

Output power vs. supply voltage

(R

L

= 4

)

18

AC00064

55

50

45

40

35

30

25

80

75

70

65

60

20

15

10

5

8

P o

(W)

R

L

= 4

Ω f = 1 KHz

9 10 11 12 13

V s

(V)

14

Po-max

15

THD= 10%

THD= 1%

16 17 18

AC00064

Figure 8.

Output power vs. supply voltage

(R

L

= 2

)

130

120

110

100

90

80

70

60

50

40

30

20

10

0

8

Po (W)

R

L

= 2

Ω f = 1 KHz

9 10 11 12 13

Vs (V)

14 15

Po-max

THD=10%

16

THD=1%

Figure 9.

Distortion vs. output power

10

THD (%)

V

S

R

L

= 14.4 V

= 4

Ω

1

0.1

0.01

17 18

AC00066

0.001

0.1

(R

L

= 4

)

1 f = 10 KHz f = 1 KHz

P o

(W)

10

Figure 10.

Distortion vs. output power

(R

L

= 2

)

10

THD (%)

V

S

= 14.4 V

RL = 2Ω

1

0.1

0.01

f = 10 KHz f = 1 KHz

Figure 11.

Distortion vs. frequency

(R

L

= 4

)

10

THD (%)

1

V

S

R

L

= 14.4 V

= 4

Ω

P o

= 4 W

0.1

0.01

100

AC00067

1000 f (Hz)

10000 100000

AC00069

11/18

Electrical specifications TDA7850

Figure 12.

Distortion vs. frequency

(R

L

= 2

)

10

THD (%)

1

V

S

R

L

= 14.4 V

= 2

Ω

P o

= 8 W

0.1

0.01

0.001

10 100 1000 f (Hz)

10000

Figure 13.

Crosstalk vs. frequency

-60

-70

-80

-90

100000

AC00070

-100

10

-20

CROSSTALK (dB)

-30

-40

R

L

= 4

Ω

P

R o

= 4 W g

= 600

Ω

-50

100 1000 f (Hz)

10000 100000

AC00071

Figure 14.

Supply voltage rejection vs. frequency

-20

SVR (dB)

-30

Rg = 600Ω

Vripple = 1 Vrms

-40

-50

-60

-70

-80

-90

-100

10 100 1000 f (Hz)

10000

Figure 15.

Output attenuation vs. supply

0

-20

-40

-60

-80

100000

AC00072

-100

5

OUTPUT ATTN (dB)

R

L

= 4

Ω

P o

= 4 W ref

6

voltage

7

Vs (V)

8 9 10

AC00073

Figure 16.

Power dissipation and efficiency vs. output power (R

L

= 4

, SINE)

20

10

0

0

50

40

30

90

P tot

(W)

80

70

60

V

S

R

L

= 14.4 V

= 4 x 4

Ω f = 1 KHz SINE

2 4 6 8

η

η (%)

90

80

70

60

50

P tot

10

10 12 14 16 18 20 22 24 26 28 30

0

P o

(W)

AC00074

40

30

20

Figure 17.

Power dissipation and efficiency vs. output power (R

L

= 2

, SINE)

180

Ptot (W)

160

140

120

100

80

60

V

R

S

L

= 14.4 V

= 4 x 2

Ω f = 1 KHz SINE

40

20

0

0 5 10 15 20 25

P o

(W)

30 35

η

40

P tot

45

η (%)

50 55

0

20

10

90

80

70

60

50

40

30

AC00075

12/18

TDA7850 Electrical specifications

Figure 18.

Power dissipation vs. output power

(R

L

= 4

, audio program simulation)

Figure 19.

Power dissipation vs. output power

(R

L

= 2

, audio program simulation)

30

P tot

(W)

25

V

R

S

= 13.2 V

L

= 4 x 4

Ω

GAUSSIAN NOISE

20

15

10

5

0 1 2

CLIP START

3

P o

(W)

4 5 6

AC00076

60

55

50

45

40

35

30

25

20

15

10

5

0

P tot

(W)

V

R

S

= 13.2 V

L

= 4 x 2

Ω

GAUSSIAN NOISE

2 4

CLIP START

P o

(W)

6 8 10

AC00077

Figure 20.

ITU R-ARM frequency response, weighting filter for transient pop

10

Output attenuation (dB)

-10

0

-20

-30

-40

-50

10 100 1000

Hz

10000 100000

AC00343

13/18

Application hints TDA7850

Referred to the circuit of

Figure 2

.

4.1 SVR

Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during

ON/OFF transients. To conveniently serve both needs, Its minimum recommended value

is 10µF.

The TDA7850's inputs are ground-compatible and can stand very high input signals (±

8Vpk) without any performance degradation.

If the standard value for the input capacitors (0.1µF) is adopted, the low frequency cut-off will amount to 16 Hz.

4.3 Standby muting

Standby and Muting facilities are both CMOS compatible. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470k

 equivalent resistance should be present between the power supply and the muting and

ST-BY pins.

R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises.

About the standby, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms.

The TDA7850 integrates a DC offset detector to avoid that an anomalous DC offset on the inputs of the amplifier may be multiplied by the gain and result in a dangerous large offset on the outputs which may lead to speakers damage for overheating. The feature is enabled by the MUTE pin (according to table 3) and works with the amplifier unmuted and with no signal on the inputs.

The DC offset detection is signaled out on the HSD pin. To ensure the correct functionality of the Offset Detector it is necessary to connect a pulldown 10 kW resistor between HSD and ground.

14/18

Under normal usage (4 Ohm speakers) the heatsink's thermal requirements have to be deduced from

Figure 18

, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurrence (worst-case) will cause P diss

= 26 W. Assuming T amb

= 70 °C and T

CHIP

= 150 °C as boundary conditions, the heatsink's thermal resistance should be approximately 2°C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation.

TDA7850 Package information

In order to meet environmental requirements, ST (also) offers these devices in ECOPACK

® packages. ECOPACK

®

packages are lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard

JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 21.

Flexiwatt25 (vertical) mechanical data and package dimensions

L4

L5

M

M1

N

O

R

R1

R2

DIM.

A

B

C

D

E

F (1)

G

G1

MIN.

4.45

1.80

0.75

0.37

mm

TYP.

MAX.

MIN.

4.50

1.90

1.40

0.90

0.39

4.65

2.00

1.05

0.42

0.57

0.175

0.070

0.029

0.014

inch

TYP.

0.177

0.074

0.055

0.035

0.015

MAX.

0.183

0.079

0.041

0.016

0.022

0.80

1.00

1.20

0.031

0.040

0.047

23.75

24.00

24.25

0.935

0.945

0.955

H (2) 28.90

29.23

29.30

1.139

1.150

1.153

H1 17.00

0.669

H2

H3

12.80

0.80

0.503

0.031

L (2) 22.07

22.47

22.87

0.869

0.884

0.904

L1 18.57

18.97

19.37

0.731

0.747

0.762

L2 (2) 15.50

15.70

15.90

0.610

0.618

0.626

L3 7.70

7.85

7.95

0.303

0.309

0.313

3.70

3.60

5

3.5

4.00

4.00

2.20

2

1.70

0.5

0.3

0.197

0.138

4.30

0.145

0.157

0.169

4.40

0.142

0.157

0.173

0.086

0.079

0.067

0.02

0.12

0.049

0.019

R3

R4

V

V1

V2

1.25

0.50

5˚ (T p.)

3˚ (Typ.)

20˚ (Typ.)

V3 45˚ (Typ.)

(1): dam-bar protusion not included

(2): molding protusion included

OUTLINE AND

MECHANICAL DATA

Flexiwatt25 (vertical)

V

C

B

V

H

H1

V3

H3

R3

H2

A

R4

V1

N

R

R2

L L1

V1

V2

Pin 1

G

G1

F

R2

FLEX25ME

L5

R1

D

R1

M

R1

E

M1

7034862

15/18

Package information TDA7850

Figure 22.

Flexiwatt25 (horizontal) mechanical data and package dimensions

R1

R2

R3

R4

V

V1

V2

V3

DIM.

C

D

A

B

E

F (1)

mm inch

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

4.45

4.50

4.65

0.175

0.177

0.183

1.80

1.90

2.00

0.070

0.074

0.079

1.40

2.00

0.055

0.079

0.37

0.39

0.42

0.014

0.015

0.016

0.57

0.022

G 0.75

1.00

1.25

0.029

0.040

0.049

G1 23.70

24.00

24.30

0.933

0.945

0.957

H (2) 28.90

29.23

29.30

1.139

1.150

1.153

H1

H2

17.00

12.80

0.669

0.503

H3 0.80

0.031

L (2) 21.64

22.04

22.44

0.852

0.868

0.883

N

P

R

M

M1

M2

L1 10.15

10.5

10.85

0.40

0.413

0.427

L2 (2) 15.50

15.70

15.90

0.610

0.618

0.626

L3 7.70

7.85

7.95

0.303

0.309

0.313

L4

L5

L6

5.15

1.80

5

5.45

1.95

5.85

2.10

0.203

0.070

0.197

0.214

0.077

0.23

0.083

2.75

3.00

4.73

5.61

2.20

3.50

0.108

0.118

0.186

0.220

0.086

3.20

3.50

3.80

0.126

0.138

0.15

1.70

0.067

0.138

0.50

0.30

1.25

0.50

5 (Typ.)

3 (Typ.)

20 (Typ.)

45 (Typ.)

0.02

0.12

0.049

0.02

(1): dam-bar protusion not included; (2): molding protusion included

OUTLINE AND

MECHANICAL DATA

Flexiwatt25

(Horizontal)

7399733 C

16/18

TDA7850 Revision history

Table 5.

Date

Document revision history

22-Nov-2006

27-Feb-2007

09-Oct-2007

12-Sep-2008

07-Nov-2008

17-Sep-2013

Revision

1

2

3

4

5

6

Changes

Initial release.

Added

Chapter 3.4: Electrical characteristic curves

.

Updated the values for the dV

OS

and I q1

parameters on the

Table 4

.

Added

Figure 20 on page 13

.

Updated

Figure 2: Standard test and application circuit

.

Updated

Section 4.4: DC offset detector

and

Section 4.3: Standby and muting

.

Updated the values of V

OS

and THD parameters on the

Table 4

.

Modified max. values of the THD distortion in

Table 4: Electrical characteristics on page 8

.

Updated Disclaimer.

17/18

TDA7850

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS

OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE

SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)

AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS

OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT

PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS

EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY

DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE

DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

18/18

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project