Emerson KAT4000 Network Hardware User Manual

User’s Manual
from Emerson Network Power ™
Embedded Computing
KAT4000: AMC Carrier for ATCA®
April 2007
The information in this manual has been checked and is believed to be accurate and reliable. HOWEVER, NO RESPONSIBILITY IS ASSUMED BY ARTESYN COMMUNICATION PRODUCTS FOR ITS USE OR FOR ANY INACCURACIES. Specifications are subject to change
without notice. ARTESYN COMMUNICATION PRODUCTS DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF USE OR OTHER APPLICATION OF ANY PRODUCT, CIRCUIT, OR PROGRAM
DESCRIBED HEREIN. This document does not convey any license under Artesyn Communication Products patents or the rights of others.
Artesyn and the Artesyn logo are registered trademarks of Artesyn Technologies and are
used by Artesyn Communication Products under license from Artesyn Technologies. All
other trademarks are property of their respective owners.
Revision Level:
Principal Changes:
Date:
10007175-00
Original release
January 2007
10007175-01
Added “Appendix A”
February 2007
10007175-02
Added PCIe functionality; Released 10 GbE-1 GbE
fat pipe switch
April 2007
Copyright © 2007 Artesyn Communication Products. All rights reserved.
Emerson. Consider It Solved is a trademark, and Business-Critical Continuity,
Emerson Network Power, and the Emerson Network Power logo are trademarks
and service marks of Emerson Electric Co. © 2007 Emerson Electric Co.
Regulatory Agency Warnings & Notices
The Emerson KAT4000 meets the requirements set forth by the Federal Communications
Commission (FCC) in Title 47 of the Code of Federal Regulations. The following information
is provided as required by this agency.
This device complies with part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device
must accept any interference received, including interference that may cause undesired
operation.
FCC RULES AND REGULATIONS — PART 15
This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception,
which can be determined by turning the equipment off and on, the user is encouraged to
try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna
• Increase the separation between the equipment and receiver
• Connect the equipment into an outlet on a circuit different from that to which the
receiver is connected
• Consult the dealer or an experienced radio/TV technician for help
Caution: Making changes or modifications to the KAT4000 hardware without the explicit consent of
Emerson Network Power could invalidate the user’s authority to operate this equipment.
!
EMC COMPLIANCE
The electromagnetic compatibility (EMC) tests used a KAT4000 model that includes a front
panel assembly from Emerson Network Power.
Caution: For applications where the KAT4000 is provided without a front panel, or where the front
panel has been removed, your system chassis/enclosure must provide the required
!
electromagnetic interference (EMI) shielding to maintain CE compliance.
10007175-02
KAT4000 User’s Manual
i
Regulatory Agency Warnings & Notices
(continued)
EC Declaration of Conformity
According to EN 45014:1998
Manufacturer’s Name:
Emerson Network Power
Embedded Computing
Manufacturer’s Address:
8310 Excelsior Drive
Madison, Wisconsin 53717
Declares that the following product, in accordance with the requirements of 89/336/EEC, EMC
Directive and 99/5/EC, RTTE Directive and their amending directives,
Product:
ATCA Carrier
Model Name/Number:
KAT4000/10007505-xx
has been designed and manufactured to the following specifications:
EN55022:1998 Information Technology Equipment, Radio disturbance characteristics, Limits and
methods of measurement
EN55024:1998 Information Technology Equipment, Immunity characteristics, Limits and methods
of measurement
EN300386 V.1.3.1 Electromagnetic compatibility and radio spectrum matters (ERM);
Telecommunication network equipment; EMC requirements
As manufacturer we hereby declare that the product named above has been designed to comply
with the relevant sections of the above referenced specifications. This product complies with the
essential health and safety requirements of the EMC Directive and RTTE Directive. We have an
internal production control system that ensures compliance between the manufactured products
and the technical documentation.
Bill Fleury
Compliance Engineer
Issue date: April 3, 2007
ii
KAT4000 User’s Manual
10007175-02
Contents
1 Overview
Components and Features . . . . . . . . . . . 1-1
KAT4000 Options. . . . . . . . . . . . . . . . 1-3
Functional Overview . . . . . . . . . . . . . . . . 1-5
Physical Memory Map . . . . . . . . . . . . . . . 1-6
AMC Mapping . . . . . . . . . . . . . . . . . . . . . . 1-9
Additional Information . . . . . . . . . . . . . 1-10
Product Certification . . . . . . . . . . . .1-10
UL Certification . . . . . . . . . . . . . . . . .1-11
RoHS Compliance. . . . . . . . . . . . . . .1-11
Terminology and Notation . . . . . . .1-12
Technical References. . . . . . . . . . . .1-12
Machine State Register. . . . . . . . . . . 3-9
Peripheral Interface . . . . . . . . . . . . . . . . 3-10
MPC8548 Peripheral Modules . . . . . . . 3-11
Three-Speed Ethernet Controllers
(TSEC) . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Local Bus Controller (LBC) . . . . . . . 3-12
Chip Select Generation. . . . . . . . . . 3-12
Processor Reset and Clocking Signals. 3-12
MPC8548 Exception Handling . . . . . . . 3-13
JTAG/COP Interface . . . . . . . . . . . . . . . . 3-14
No Processor Configuration . . . . . . . . . 3-15
4 Common Switch Region
2 Setup
Electrostatic Discharge . . . . . . . . . . . . . . 2-1
KAT4000 Circuit Board . . . . . . . . . . . . . . 2-1
Front Panel . . . . . . . . . . . . . . . . . . . . . 2-4
Connectors . . . . . . . . . . . . . . . . . . . . . 2-4
Header JP4 . . . . . . . . . . . . . . . . . . . . . . 2-5
Jumpers . . . . . . . . . . . . . . . . . . . . . . . . 2-5
JTAG Interfaces . . . . . . . . . . . . . . . . . . 2-9
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . .2-10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . .2-13
KAT4000 Setup . . . . . . . . . . . . . . . . . . . . 2-15
Identification Numbers . . . . . . . . . .2-15
Power Requirements . . . . . . . . . . . .2-16
Environmental Considerations . . .2-16
Troubleshooting . . . . . . . . . . . . . . . . . . . 2-17
Technical Support . . . . . . . . . . . . . .2-17
Product Repair . . . . . . . . . . . . . . . . .2-18
3 Central Processing Unit
MPC8548 Functions . . . . . . . . . . . . . . . . . 3-3
Microprocessor Core (e500). . . . . . . . . . 3-3
L1 Cache. . . . . . . . . . . . . . . . . . . . . . . . 3-3
L2 Cache. . . . . . . . . . . . . . . . . . . . . . . . 3-3
Timer/Counter . . . . . . . . . . . . . . . . . . 3-4
PCI Device and Vendor ID Assignment.
3-4
L2 Control Register (L2CR) . . . . . . . . 3-4
Hardware Implementation Dependent
0 Register. . . . . . . . . . . . . . . . . . . . . . . 3-6
Hardware Implementation Dependent
1 Register. . . . . . . . . . . . . . . . . . . . . . . 3-7
Interrupts and Exception Processing. . . 3-8
10007175-02
Ethernet Core Switch (optional) . . . . . . .4-2
Switch Configuration . . . . . . . . . . . . 4-3
High-Speed Serial Data Path
Configuration . . . . . . . . . . . . . . . . . . . 4-3
On-Board Path Device Settings 4-4
Off-Board Path Device Settings 4-4
Ethernet Transceivers . . . . . . . . . . . . 4-5
Ethernet Address for the KAT4000 . . . . .4-5
Ethernet Address for the GbE Fat Pipe Switch
Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
PCI Express Switch (optional) . . . . . . . . . .4-7
PCI Express Interface . . . . . . . . . . . . . 4-8
EEPROM Interface . . . . . . . . . . . . . . . 4-9
JTAG Controller Interface . . . . . . . . . 4-9
5 Fat Pipe Switch Module
GbE Fat Pipe Switch Module . . . . . . . . . . .5-2
GbE Fat Pipe Switch Module Circuit
Board . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Components and Features. . . . . . . . 5-5
GbE Fat Pipe Switch Module PLD . . 5-6
Product ID/Version Register . . 5-6
Scratch Register . . . . . . . . . . . . . 5-7
I2C Register. . . . . . . . . . . . . . . . . 5-7
Signal Detect Register . . . . . . . 5-8
Switch Reset Register . . . . . . . . 5-8
Module Status Register . . . . . . 5-8
Switch GPIO Register . . . . . . . . 5-9
GPIN/LED Register . . . . . . . . . . . 5-9
10 GbE-1 GbE Fat Pipe Switch Module 5-11
10 GbE-1 GbE Fat Pipe Switch Module
Circuit Board. . . . . . . . . . . . . . . . . . . 5-13
Components and Features. . . . . . . 5-14
KAT4000 User’s Manual
iii
Contents
(continued)
10 GbE-1 GbE Fat Pipe Switch Module
PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Product ID/Version Register. . 5-16
Scratch Register . . . . . . . . . . . .5-17
I2C Register . . . . . . . . . . . . . . . .5-17
Reserved Register 1 . . . . . . . . .5-18
Switch Reset Register . . . . . . . 5-18
Module Status Register . . . . . . 5-19
Switch GPIO Register. . . . . . . . 5-19
GPIN/LED Register . . . . . . . . . . 5-20
10 GbE-10 GbE Fat Pipe Switch Module5-21
sRIO Fat Pipe Switch Module . . . . . . . . 5-22
6 Memory Configuration
Boot Memory Configuration . . . . . . . . . .6-1
User Flash. . . . . . . . . . . . . . . . . . . . . . . . . . .6-1
On-Card SDRAM . . . . . . . . . . . . . . . . . . . . .6-2
NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . .6-2
NVRAM Allocation . . . . . . . . . . . . . . . . . . .6-3
7 CPLD
PLD Register Summary . . . . . . . . . . . . . . .7-1
Version and ID Registers . . . . . . . . . . . . . .7-2
Product ID Register (PIDR) . . . . . . . . 7-2
Hardware Version Register (HVR) . . 7-3
PLD Version Register (PVR) . . . . . . . 7-3
Configuration Registers . . . . . . . . . . . . . .7-4
Hardware Configuration Register 0
(HCR0) . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
PLL Configuration Register (PLLC). . 7-4
Miscellaneous Registers . . . . . . . . . . . . . .7-5
LED Control Register (LEDR). . . . . . . 7-5
Jumper Settings Register (JSR). . . . . 7-6
RTM GPIO State Register (RGSR). . . 7-6
RTM GPIO Control Register (RGCR) 7-7
MISC Control Register (MISC) . . . . . 7-7
Scratch Register 1 (SCR1) . . . . . . . . . 7-8
Boot and Reset Registers . . . . . . . . . . . . .7-8
Reset Event Register (RER) . . . . . . . . 7-8
Reset Command Register 1 (RCR1) 7-9
Reset Command Register 2 (RCR2)7-10
Boot Device Redirection Register
(BDRR) . . . . . . . . . . . . . . . . . . . . . . . .7-11
Clock Synchronizer Registers . . . . . . . . 7-13
Clock Synchronizer Control Registers 13 (CSC1—CSC3) . . . . . . . . . . . . . . . . . 7-13
iv
KAT4000 User’s Manual
10007175-02
Clock Synchronizer Primary Source
Registers 1-3 (CPS1—CPS3) . . . . . . 7-14
Clock Synchronizer Secondary Source
Registers 1-3 (CSS1—CSS3) . . . . . . 7-15
Clock Control Registers (CCR1—CCR14)
7-17
Clock Synchronizer Interrupt Registers
(CSI1-CSI3) . . . . . . . . . . . . . . . . . . . . 7-18
JTAG Interface . . . . . . . . . . . . . . . . . . . . . 7-19
8 AMC Sites
AMC Connectors . . . . . . . . . . . . . . . . . . . .8-2
AMC Signals. . . . . . . . . . . . . . . . . . . . . . . . .8-2
Pin Assignments . . . . . . . . . . . . . . . . . . . . .8-4
SATA Lines . . . . . . . . . . . . . . . . . . . . . . . . . .8-6
9 System Management
IPMC Overview . . . . . . . . . . . . . . . . . . . . . .9-1
IPMI Messaging. . . . . . . . . . . . . . . . . . . . . .9-3
IPMI Completion Codes . . . . . . . . . . 9-4
IPMB Protocol . . . . . . . . . . . . . . . . . . . . . . .9-5
SIPL Protocol . . . . . . . . . . . . . . . . . . . . . . . .9-6
Message Bridging . . . . . . . . . . . . . . . . . . . .9-7
Standard Commands. . . . . . . . . . . . . . . . .9-9
Vendor Commands . . . . . . . . . . . . . . . . 9-12
Get Status Command . . . . . . . . . . . 9-12
Get Serial Interface Properties
Command . . . . . . . . . . . . . . . . . . . . . 9-14
Set Serial Interface Properties
Command . . . . . . . . . . . . . . . . . . . . . 9-15
Get Debug Level Command . . . . . 9-16
Set Debug Level Command . . . . . . 9-17
Get Hardware Address Command 9-17
Set Hardware Address Command 9-18
Get Handle Switch Command. . . . 9-18
Set Handle Switch Command . . . . 9-19
Get Payload Communication Time-Out
Command . . . . . . . . . . . . . . . . . . . . . 9-19
Set Payload Communication Time-Out
Command . . . . . . . . . . . . . . . . . . . . . 9-20
Enable Payload Control Command9-20
Disable Payload Control Command . . .
9-20
Reset IPMC Command . . . . . . . . . . 9-21
Hang IPMC Command . . . . . . . . . . 9-21
Bused Resource Control Command . . .
9-22
Contents
(continued)
Bused Resource Status Command 9-22
Graceful Reset Command. . . . . . . . 9-23
Diagnostic Interrupt Results . . . . .9-24
Get Payload Shutdown Time-Out
Command . . . . . . . . . . . . . . . . . . . . . 9-24
Set Payload Shutdown Time-Out
Command . . . . . . . . . . . . . . . . . . . . . 9-25
Get Module State Command . . . . . 9-25
Enable AMC Site Command . . . . . . 9-26
Disable AMC Site Command . . . . .9-26
IPMC Watchdog Timer Commands. . . 9-27
Watchdog Timer Actions . . . . . . . . 9-27
Watchdog Timer Use Field and
Expiration Flags . . . . . . . . . . . . . . . . 9-27
Using the Timer Use Field and
Expiration Flags. . . . . . . . . . . . . 9-28
Watchdog Timer Event Logging . . 9-28
Monitor Support for Watchdog
Timer . . . . . . . . . . . . . . . . . . . . . 9-29
Reset Watchdog Timer Command9-29
Set Watchdog Timer Command . . 9-29
Get Watchdog Timer Command. . 9-31
FRU LEDs . . . . . . . . . . . . . . . . . . . . . . . . . 9-33
Get FRU LED Properties Command9-34
Get LED Color Capabilities Command .
9-34
Set FRU LED State Command. . . . . 9-36
Get FRU LED State Command . . . . 9-38
Entities and Entity Associations . . . . . . 9-39
Sensors and Sensor Data Records . . . . 9-40
FRU Inventory . . . . . . . . . . . . . . . . . . . . . 9-44
E-Keying . . . . . . . . . . . . . . . . . . . . . . . . . . 9-45
Base Point-to-Point Connectivity . 9-45
Carrier Point-to-Point Connectivity9-46
Firmware Upgrade . . . . . . . . . . . . . . . . . 9-47
Firmware Upgrade Status Command . .
9-47
Firmware Upgrade Start Command . . .
9-48
Firmware Upgrade Prepare Command
9-49
Firmware Upgrade Write Command . .
9-49
Firmware Upgrade Complete
Command . . . . . . . . . . . . . . . . . . . . . 9-50
Firmware Upgrade Restore Backup
Command . . . . . . . . . . . . . . . . . . . . . 9-50
Firmware Upgrade Backup Revision
Command . . . . . . . . . . . . . . . . . . . . . 9-51
10007175-02
Firmware Upgrade Termination . . 9-51
Firmware Upgrade Sequence . . . . 9-51
10 Synchronization Clocks
MT9045 and MT9046 Clock Synchronizers .
10-2
11 Real-Time Clock
Block Diagram. . . . . . . . . . . . . . . . . . . . . 11-1
Operation . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Clock Operation . . . . . . . . . . . . . . . . . . . 11-2
12 Connectors
Zone 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Zone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Zone 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
13 Rear Transition Module
Components and Features . . . . . . . . . . 13-1
Functional Overview . . . . . . . . . . . . . . . 13-2
Circuit Board . . . . . . . . . . . . . . . . . . . . . . 13-3
Face Plate. . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Connectors . . . . . . . . . . . . . . . . . . . . . . . 13-5
Console Serial Ports. . . . . . . . . . . . . 13-5
Ethernet Port . . . . . . . . . . . . . . . . . . 13-6
Zone 3 . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Identification Numbers . . . . . . . . . 13-7
Installation. . . . . . . . . . . . . . . . . . . . . . . . 13-7
14 Monitor
Command-Line Features. . . . . . . . . . . . 14-1
Basic Operation . . . . . . . . . . . . . . . . . . . 14-4
Power-up/Reset Sequence . . . . . . 14-4
POST Diagnostic Results . . . . . . . . 14-6
Monitor SDRAM Usage . . . . . . . . . . 14-6
Monitor Recovery and Updates . . . . . . 14-6
Recovering the Monitor . . . . . . . . . 14-7
Resetting Environment Variables . 14-7
Updating the Monitor via TFTP . . . 14-7
Monitor Command Reference . . . . . . . 14-8
Command Syntax . . . . . . . . . . . . . . 14-8
Command Help . . . . . . . . . . . . . . . . 14-9
KAT4000 User’s Manual
v
Contents
(continued)
Typographic Conventions . . . . . . . 14-9
Boot Commands. . . . . . . . . . . . . . . . . . . 14-9
bootd . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
bootelf . . . . . . . . . . . . . . . . . . . . . . . .14-9
bootm . . . . . . . . . . . . . . . . . . . . . . . .14-9
bootp . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
bootv . . . . . . . . . . . . . . . . . . . . . . . .14-10
bootvx . . . . . . . . . . . . . . . . . . . . . . .14-10
dhcp . . . . . . . . . . . . . . . . . . . . . . . . .14-10
rarpboot. . . . . . . . . . . . . . . . . . . . . .14-11
tftpboot . . . . . . . . . . . . . . . . . . . . . .14-11
File Load Commands . . . . . . . . . . . . . . 14-12
loadb . . . . . . . . . . . . . . . . . . . . . . . .14-12
loads . . . . . . . . . . . . . . . . . . . . . . . . .14-12
Memory Commands . . . . . . . . . . . . . . 14-12
cmp. . . . . . . . . . . . . . . . . . . . . . . . . .14-13
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .14-13
find . . . . . . . . . . . . . . . . . . . . . . . . . .14-13
md. . . . . . . . . . . . . . . . . . . . . . . . . . .14-13
mm . . . . . . . . . . . . . . . . . . . . . . . . . .14-14
nm. . . . . . . . . . . . . . . . . . . . . . . . . . .14-14
mw . . . . . . . . . . . . . . . . . . . . . . . . . .14-14
Flash Commands . . . . . . . . . . . . . . . . . 14-15
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .14-15
erase . . . . . . . . . . . . . . . . . . . . . . . . .14-15
flinfo . . . . . . . . . . . . . . . . . . . . . . . . .14-15
protect . . . . . . . . . . . . . . . . . . . . . . .14-16
EEPROM/I2C Commands . . . . . . . . . . 14-16
eeprom . . . . . . . . . . . . . . . . . . . . . .14-16
icrc32 . . . . . . . . . . . . . . . . . . . . . . . .14-17
iloop . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imd . . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imd2 . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imm . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imm2 . . . . . . . . . . . . . . . . . . . . . . . .14-17
imw. . . . . . . . . . . . . . . . . . . . . . . . . .14-18
inm . . . . . . . . . . . . . . . . . . . . . . . . . .14-18
iprobe . . . . . . . . . . . . . . . . . . . . . . . .14-18
iprobe2. . . . . . . . . . . . . . . . . . . . . . .14-18
switchsrom . . . . . . . . . . . . . . . . . . .14-18
IPMC Commands . . . . . . . . . . . . . . . . . 14-18
fru . . . . . . . . . . . . . . . . . . . . . . . . . . .14-18
fruinit . . . . . . . . . . . . . . . . . . . . . . . .14-19
fruled . . . . . . . . . . . . . . . . . . . . . . . .14-19
ipmcfw . . . . . . . . . . . . . . . . . . . . . . .14-19
sensor. . . . . . . . . . . . . . . . . . . . . . . .14-19
Environment Parameter Commands 14-20
vi
KAT4000 User’s Manual
10007175-02
printenv. . . . . . . . . . . . . . . . . . . . . . 14-21
saveenv . . . . . . . . . . . . . . . . . . . . . . 14-21
setenv . . . . . . . . . . . . . . . . . . . . . . . 14-21
Test Commands . . . . . . . . . . . . . . . . . . 14-21
diags. . . . . . . . . . . . . . . . . . . . . . . . . 14-21
mtest . . . . . . . . . . . . . . . . . . . . . . . . 14-21
um . . . . . . . . . . . . . . . . . . . . . . . . . . 14-22
Other Commands. . . . . . . . . . . . . . . . . 14-22
autoscr. . . . . . . . . . . . . . . . . . . . . . . 14-22
base . . . . . . . . . . . . . . . . . . . . . . . . . 14-22
bdinfo . . . . . . . . . . . . . . . . . . . . . . . 14-22
coninfo . . . . . . . . . . . . . . . . . . . . . . 14-22
crc32 . . . . . . . . . . . . . . . . . . . . . . . . 14-22
date . . . . . . . . . . . . . . . . . . . . . . . . . 14-22
echo . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
enumpci . . . . . . . . . . . . . . . . . . . . . 14-23
go . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
help . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
iminfo . . . . . . . . . . . . . . . . . . . . . . . 14-23
isdram . . . . . . . . . . . . . . . . . . . . . . . 14-23
loop . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
memmap . . . . . . . . . . . . . . . . . . . . 14-24
moninit . . . . . . . . . . . . . . . . . . . . . . 14-24
pci. . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
phy . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
ping . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
reset . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
run . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
script . . . . . . . . . . . . . . . . . . . . . . . . 14-26
showmac. . . . . . . . . . . . . . . . . . . . . 14-26
showpci . . . . . . . . . . . . . . . . . . . . . . 14-26
sleep. . . . . . . . . . . . . . . . . . . . . . . . . 14-26
switch_reg . . . . . . . . . . . . . . . . . . . 14-27
version . . . . . . . . . . . . . . . . . . . . . . . 14-27
vlan. . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
Environment Variables . . . . . . . . . . . . 14-28
Troubleshooting. . . . . . . . . . . . . . . . . . 14-31
Download Formats. . . . . . . . . . . . . . . . 14-32
Binary. . . . . . . . . . . . . . . . . . . . . . . . 14-32
Motorola S-Record . . . . . . . . . . . . 14-32
15 Acronym List
16 Appendix A
No-CPU KAT4000 . . . . . . . . . . . . . . . . . . . .A-1
Contents
(continued)
Ethernet Switch Configuration . . . . . . . A-2
Default Switch Configuration . . . . . A-2
Serial Command Line Interface (CLI). . . A-3
Log In/Log Out Procedures. . . . . . . . A-3
Help Utility. . . . . . . . . . . . . . . . . . . . . . A-3
Command Hierarchy . . . . . . . . . . . . . A-4
Command Usage Instructions . . . . . A-5
Commands . . . . . . . . . . . . . . . . . . . . . A-5
Command Overview . . . . . . . . . A-6
System Commands . . . . . . . . . . A-8
Console Commands . . . . . . . . . A-8
Port Commands . . . . . . . . . . . . . A-9
MAC Commands . . . . . . . . . . .A-10
10007175-02
VLAN Commands . . . . . . . . . . A-12
Aggregation/Trunking Commands
A-13
User Group Commands . . . . . A-14
QoS Commands. . . . . . . . . . . . A-14
Mirror Commands . . . . . . . . . . A-16
IP Commands . . . . . . . . . . . . . . A-16
Debug Commands . . . . . . . . . A-17
Web Interface . . . . . . . . . . . . . . . . . . . . . A-18
17 Appendix B
Sensor Data Records . . . . . . . . . . . . . . . . .B-1
KAT4000 User’s Manual
vii
(blank page)
viii
KAT4000 User’s Manual
10007175-02
Figures
Figure 1-1:
General System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Figure 1-2:
KAT4000 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Figure 1-3:
AMC Port Mapping Regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Figure 2-1:
Component Map, Top (Rev. 02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-2:
Component Map, Bottom (Rev. 02). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-3:
KAT4000 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Figure 2-4:
Jumper, Fuse and Switch Locations, Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Figure 2-5:
Jumper, Fuse and Switch Locations, Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Figure 2-6:
JTAG Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Figure 2-7:
LEDs, Top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Figure 2-8:
LEDs, Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Figure 2-9:
KAT4000 Reset Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Figure 3-1:
MPC8548 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 3-2:
Processor JTAG/COP Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Figure 3-3:
Processor JTAG/COP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Figure 4-1:
Board Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Figure 4-2:
VSC7376 GbE Switch Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Figure 4-3:
PEX 8524 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Figure 4-4:
PEX 8524 SPI EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Figure 5-1:
AMC Port Map Fat Pipes Region–GbE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Figure 5-2:
Signal Routing of the GbE Fat Pipe Switch Module on the KAT4000 . . . . . . . . . . . . . . 5-2
Figure 5-3:
GbE Fat Pipe Switch Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Figure 5-4:
GbE Fat Pipe Switch Module Component Map, Top (Rev. 00). . . . . . . . . . . . . . . . . . . . 5-4
Figure 5-5:
GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 00) . . . . . . . . . . . . . . . . 5-4
Figure 5-6:
GbE Fat Pipe Switch JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Figure 5-7:
GbE Fat Pipe Switch Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Figure 5-8:
AMC Port Map Fat Pipes Region–10 GbE-1 GbE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Figure 5-9:
Signal Routing of the 10 GbE-1 GbE Fat Pipe Switch Module on the KAT4000 . . . . 5-11
Figure 5-10:
10 GbE-1 GbE Fat Pipe Switch Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Figure 5-11:
10 GbE-1 GbE Fat Pipe Switch Module Component Map, Top (Rev. 01) . . . . . . . . . . 5-13
Figure 5-12:
10 GbE-1 GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 01) . . . . . . 5-13
Figure 5-13:
10 GbE-1 GbE Fat Pipe Switch JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Figure 5-14:
10 GbE-1 GbE Fat Pipe Switch Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Figure 5-15:
AMC Port Map Fat Pipes Region–10 GbE-10 GbE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Figure 5-16:
Signal Routing of the 10 GbE-10 GbE Fat Pipe Switch Module on the KAT4000 . . . 5-21
Figure 5-17:
AMC Port Map Fat Pipes Region–sRIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Figure 5-18:
Signal Routing of the sRIO Fat Pipe Switch Module on the KAT4000. . . . . . . . . . . . . 5-22
Figure 7-1:
Boot Device Redirection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Figure 7-2:
PLD JTAG Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Figure 8-1:
AMC B+ Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
10007175-02
KAT4000 User’s Manual
ix
Figures
x
(continued)
KAT4000 User’s Manual
Figure 8-2:
Diagram of SATA line connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
Figure 9-1:
IPMC Connections Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Figure 9-2:
Extension Command Request Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
Figure 9-3:
Extension Command Response Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
Figure 9-4:
IPMB Entity Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-40
Figure 10-1:
Synchronization Clock Circuit Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Figure 11-1:
M41T00 Real-Time Clock Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Figure 12-1:
Zone 1 Connector, P10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Figure 12-2:
Zone 2 Connectors, J20 and J23, and Zone 3 Connectors, J30-J32. . . . . . . . . . . . . . . 12-3
Figure 12-3:
Zone 3 Connector, J33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7
Figure 13-1:
RTM General System Block Diagram with Face Plate . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Figure 13-2:
RTM Component Map, Top (Rev. 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
Figure 13-3:
Micro-D Console Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Figure 13-4:
Standard Console Cable Wiring, #10007665-xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Figure 13-5:
Installing a KAT-Z3DB RTM on the KAT4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8
Figure 14-1:
Example Monitor Start-up Display for KAT4000 with GbE Fat Pipe Switch Module 14-2
Figure 14-2:
ule
Example Monitor Start-up Display for KAT4000 with 10 GbE-1 GbE Fat Pipe Switch Mod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
Figure 14-3:
Power-up/Reset Sequence Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5
Figure A-1:
No-CPU KAT4000 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Figure A-2:
Web Interface for the Ethernet Core Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-20
10007175-02
Tables
Table 1-1:
KAT4000 Address Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Table 1-2:
Regulatory Agency Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Table 1-3:
Technical References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Table 2-1:
Circuit Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Table 2-2:
JP4 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Table 2-3:
Jumpers–JP2 and JP7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Table 2-4:
J35 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Table 2-5:
Typical Power Requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-6:
Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-7:
Air Flow Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 3-1:
MPC8548 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Table 3-2:
PCI Device and Vendor ID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Table 3-3:
MPC8548 Peripheral Request Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Table 3-4:
MPC8548 Chip Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Table 3-5:
MPC8548 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Table 3-6:
Processor JTAG/COP Pin Assignments (P1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Table 4-1:
KAT4000 PHYs and Address Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-2:
Ethernet Core Switch Off-Board Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-3:
GbE Fat Pipe Module Ethernet Switch Off-Board Ports. . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Table 4-4:
Ethernet Port Address Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Table 4-5:
PEX 8524 JTAG Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Table 5-1:
GbE Fat Pipe PLD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Table 5-2:
BCM56580 Switch Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Table 5-3:
10 GbE-1 GbE Fat Pipe PLD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Table 6-1:
Memory Configuration Jumper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
NVRAM Memory Map, User EEPROM 1 (write protected)1 . . . . . . . . . . . . . . . . . . . . . . 6-3
Table 6-2:
Table 6-3:
NVRAM Memory Map, User EEPROM 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Table 7-1:
PLD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Table 7-2:
JP3 PLD JTAG Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
Table 7-3:
JP1 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Table 8-1:
B1-B4 AMC Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Table 9-1:
Network Function Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Table 9-2:
Completion Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
Table 9-3:
Format for IPMI Request Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
Table 9-4:
Format for IPMI Response Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
Table 9-5:
IPMC IPMI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
Table 9-6:
Vendor Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Table 9-7:
Get Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13
Table 9-8:
Get Serial Interface Properties Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14
Table 9-9:
Set Serial Interface Properties Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
10007175-02
KAT4000 User’s Manual
xi
Tables
xii
(continued)
KAT4000 User’s Manual
Table 9-10:
Get Debug Level Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16
Table 9-11:
Set Debug Level Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Table 9-12:
Get Hardware Address Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Table 9-13:
Set Hardware Address Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Table 9-14:
Get Handle Switch Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Table 9-15:
Set Handle Switch Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
Table 9-16:
Get Payload Communication Time-Out Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
Table 9-17:
Set Payload Communication Time-Out Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
Table 9-18:
Disable Payload Control Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
Table 9-19:
Reset IPMC Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21
Table 9-20:
Hang IPMC Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21
Table 9-21:
Bused Resource Control Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22
Table 9-22:
Bused Resource Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23
Table 9-23:
Graceful Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24
Table 9-24:
Diagnostic Interrupt Results Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24
Table 9-25:
Get Payload Shutdown Time-Out Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25
Table 9-26:
Set Payload Shutdown Time-Out Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25
Table 9-27:
Get Module State Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25
Table 9-28:
Enable AMC Site Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-26
Table 9-29:
Disable AMC Site Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-26
Table 9-30:
IPMC Watchdog Timer Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-27
Table 9-31:
Reset Watchdog Timer Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-29
Table 9-32:
Set Watchdog Timer Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-30
Table 9-33:
Get Watchdog Timer Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-31
Table 9-34:
FRU LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33
Table 9-35:
Get FRU LED Properties Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34
Table 9-36:
Get LED Color Capabilities Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34
Table 9-37:
Set FRU LED State Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-36
Table 9-38:
Get FRU LED State Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-38
Table 9-39:
IPMI Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-40
Table 9-40:
Event Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-43
Table 9-41:
FRU Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-44
Table 9-42:
Link Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-45
Table 9-43:
Firmware Upgrade Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-47
Table 9-44:
Firmware Upgrade Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-47
Table 9-45:
Firmware Upgrade Start Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-48
Table 9-46:
Firmware Upgrade Prepare Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-49
Table 9-47:
Firmware Upgrade Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-50
Table 9-48:
Firmware Upgrade Complete Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-50
Table 9-49:
Firmware Upgrade Restore Backup Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-51
Table 9-50:
Firmware Upgrade Backup Revision Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-51
10007175-02
Tables
(continued)
Table 11-1:
RTC Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Table 12-1:
Zone 1 Connector, P10 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Table 12-2:
Zone 2 Connector, J20 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
Table 12-3:
Zone 2 Connector, J23 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Table 12-4:
Zone 3 Connector, J30 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Table 12-5:
Zone 3 Connector, J31 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Table 12-6:
Zone 3 Connector, J32 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
Table 12-7:
Zone 3 Connector, J33 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7
Table 13-1:
RTM Circuit Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Table 13-2:
Console Serial Port Pin Assignments, P1, P2 and P4-P7 . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Table 13-3:
Ethernet Port Pin Assignments, P3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Table 14-1:
Debug LED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
Table 14-2:
POST Diagnostic Results–Bit Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6
Table 14-3:
Monitor Address per Flash Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-7
Table 14-4:
Static IP Ethernet Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10
Table 14-5:
DHCP Ethernet Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11
Table 14-6:
Standard Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
Table 14-7:
Optional Environment Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-30
Table A-1:
General Command Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Table B-1:
IPMI Sensor Data Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Table B-2:
KAT4000 IPMC SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Table B-3:
Hot Swap SDR Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Table B-4:
IPMB Physical SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4
Table B-5:
BMC Watchdog SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
Table B-6:
+3.3 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
Table B-7:
+2.5 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
Table B-8:
+1.8 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-11
Table B-9:
+1.2 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-13
Table B-10:
+1.0 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-15
Table B-11:
CPU Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-17
Table B-12:
Inflow Temp SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-19
Table B-13:
Outflow Temp SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-21
Table B-14:
Version Change SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-24
Table B-15:
B1 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-25
Table B-16:
B2 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-27
Table B-17:
B3 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-28
Table B-18:
B4 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-30
Table B-19:
B1 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-31
Table B-20:
B1 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-33
Table B-21:
B2 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-35
Table B-22:
B2 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-36
10007175-02
KAT4000 User’s Manual
xiii
Tables
xiv
(continued)
KAT4000 User’s Manual
Table B-23:
B3 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-38
Table B-24:
B3 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-40
Table B-25:
B4 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-41
Table B-26:
B4 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-43
Table B-27:
-48V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-45
Table B-28:
-48V Current SDR Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-47
Table B-29:
-48V Source A Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-48
Table B-30:
-48V Source B Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-50
Table B-31:
+3.3V Management SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-52
Table B-32:
+12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54
Table B-33:
-12V Current SDR Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-56
Table B-34:
F/W (Firmware) Progress SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-58
10007175-02
Registers
Register 3-1:
L2 Control Register (L2CR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Register 3-2:
MPC8548 Hardware Implementation Dependent Register 0 (HID0) . . . . . . . . . . . . . 3-6
Register 3-3:
MPC8548 Hardware Implementation Dependent Register 1 (HID1) . . . . . . . . . . . . . 3-8
Register 3-4:
CPU Machine State Register (MSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Register 5-1:
Product ID/Version Register (PIDV) at 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Register 5-2:
Scratch Register (SCR) at 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Register 5-3:
I2C Register (I2C) at 0x02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Register 5-4:
Signal Detect Register (SDET) at 0x03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Register 5-5:
Switch Reset Register (SRST) at 0x04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Register 5-6:
Module Status Register (STAT) at 0x05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Register 5-7:
Switch GPIO Register (GPIO) at 0x06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Register 5-8:
GPIN/LED Register (GPLED) at 0x07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Register 5-9:
Product ID/Version Register (PIDV) at 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Register 5-10: Scratch Register (SCR) at 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Register 5-11: I2C Register (I2C) at 0x02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Register 5-12: Reserved Register 1 at 0x03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Register 5-13: Switch Reset Register (SRST) at 0x04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Register 5-14: Module Status Register (STAT) at 0x05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Register 5-15: Switch GPIO Register (GPIO) at 0x06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Register 5-16: GPIN/LED Register (GPLED) at 0x07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
Register 7-1:
Product ID Register (PIDR) at 0xfc40,0000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Register 7-2:
Hardware Version Register (HVR) at 0xfc40,0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Register 7-3:
PLD Version Register (PVR) at 0xfc40,0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Register 7-4:
Hardware Configuration Register 0 (HCR0) at 0xfc40,0010 . . . . . . . . . . . . . . . . . . . . . 7-4
Register 7-5:
PLL Configuration Register (PLLC) at 0xfc40,000c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Register 7-6:
LED Control Register (LEDR) at 0xfc40,001c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Register 7-7:
Jumper Settings Register (JSR) at 0xfc40,0018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Register 7-8:
RTM GPIO State Register (RGSR) at 0xfc40,0038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Register 7-9:
RTM GPIO Control Register (RGCR) at 0xfc40,003c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Register 7-10: MISC Control Register (MISC) at 0xfc40,0034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Register 7-11: Scratch Register 1 (SCR1) at 0xfc40,002c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Register 7-12: Reset Event Register (RER) at 0xfc40,0020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Register 7-13: Reset Command Register 1 (RCR1) at 0xfc40,0024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Register 7-14: Reset Command Register 2 (RCR2) at 0xfc40,0028 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Register 7-15: Boot Device Redirection Register (BDRR) at 0xfc40,0030 . . . . . . . . . . . . . . . . . . . . . . 7-12
Register 7-16: Clock Synchronizer Control Registers 1-3 (CSC1-CSC3) at 0xfc40,0040, 0xfc40,0044,
0xfc40,0048, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Register 7-17: Clock Synchronizer Primary Source Registers 1-3 (CPS1-CPS3) at 0xfc40,0050,
0xfc40,0054, 0xfc40,0058, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
Register 7-18: Clock Synchronizer Secondary Source Registers 1-3 (CSS1-CSS3) at 0xfc40,0060,
0xfc40,0064, 0xfc40,0068, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15
10007175-02
KAT4000 User’s Manual
i
Registers
(continued)
Register 7-19: Clock Control Registers 1-14 (CCR1-CCR14) at 0xfc40,0070, 0xfc40,0074,
0xfc40,0078, 0xfc40,007c, 0xfc40,0080, 0xfc40,0084, 0xfc40,0088, 0xfc40,008c, 0xfc40,0090,
0xfc40,0094, 0xfc40,0098, 0xfc40,009c, 0xfc40,00a0, 0xfc40,00a4, respectively . . . . . . . . . . . . . . 7-17
Register 7-20: Clock Synchronizer Interrupt Registers 1-3 (CSI1-CSI3) at 0xfc40,00a8, 0xfc40,00ac,
0xfc40,00b0, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
Register 9-1:
ii
KAT4000 User’s Manual
Enable Payload Control Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
10007175-02
Section 1
Overview
The KAT4000 is a single-slot Advanced Telecom Computing Architecture (AdvancedTCA®,
ATCA™) carrier with up to four Advanced Mezzanine Cards (AMC) expansion modules. This
expansion capability enables a wide variety of control and packet processing applications
such as WAN access, traffic processing, signaling gateways, media gateways, and many
others. ATCA is an open architecture telecom platform as defined by the PICMG® 3.0 Revision 2.0 AdvancedTCA™ Base Specification.
The KAT4000 features on-board Ethernet and PCI Express switches for the AdvancedMC
Common Options Region, where the majority of control plane data flows, and a flexible
modular Fat Pipe Switch (FPS) to address data plane traffic in the AdvancedMC Fat Pipes
Region. The FPS is implemented using a plug-over module, enabling simple maintenance
and a rapid upgrade path when a newer switch fabric is required. An optional on-board processor gives users additional processing power and can be used to off-load system management or OA&M functionality.
The KAT4000 is an intelligent Field Replaceable Unit (FRU) and implements a redundant
System Management Bus (SMB). It also fully supports the Intelligent Platform Management
Interface (IPMI) with AdvancedTCA extensions to support standards-based shelf management, allowing it to be monitored by a local shelf management controller or by a remote
OA&M system over Ethernet.
COMPONENTS AND FEATURES
The following is a brief summary of the KAT4000 hardware components and features:
Processor: The Central Processing Unit (CPU) is a Freescale® Semiconductor MPC8548 PowerQUICC
III™ processor, operating at a rate of up to 1.3 GHz with a 533 MHz DDR2 bus. The
MPC8548 contains 32-kB separate level-one (L1) data and instruction caches, and 512-kB
L2 cache. The processor has a local bus that connects to the socketed, NOR, and NAND
flash; Ethernet core switch; fat pipe switch module; and PLD. The processor also has a
COP/JTAG for debugging purposes. Chapter 3 provides more information.
SDRAM: The KAT4000 includes a 64M x 72-bit Double Data Rate Two (DDR2) Synchronous Dynamic
Random Access Memory (SDRAM) Small-Outline Dual In-line Memory Module (SO-DIMM).
Options include 512 megabytes and 1 gigabyte. The interface implements eight additional
bits to permit the use of Error-Correcting Code (ECC). SDRAM is only implemented on the
processor KAT4000 board configuration. “On-Card SDRAM” on page 6-2 provides more
information.
Flash: The KAT4000 includes three independent Flash regions—socketed, NOR, and NAND. The
blade is capable of booting from either an 8-bit, 32-pin PLCC ROM socket up to 512 kilobytes in size, or from a 16-bit NOR Flash region that consists of one or two Flash devices.
10007175-02
KAT4000 User’s Manual
1-1
Overview:
Components and Features
The NOR Flash consists of two 16 megabyte banks. The supported NAND flash is 512 megabytes or 1 gigabyte. Flash is only implemented on the processor KAT4000 board configuration. Chapter 6 provides more information.
CPLD: The KAT4000 uses a Complex Programmable Logic Device (CPLD) to control board reset
logic, the Board Configuration, Board Revision and User LED registers, and miscellaneous
board logic. Register access to the PLD is only available on the processor KAT4000 board
configuration. Chapter 7 provides more information.
Ethernet: Depending on the configuration, the KAT4000 Ethernet interface consists of: Reduced
Gigabit (RGMII)/Serial Gigabit (SGMII)/1000Base-BX Serializer-Deserializer (SerDes) Ethernet core or fat pipe switch module (Vitesse VSC7376), and 1000Base-BX (SerDes) devices
to the AMC sites.
One 10/100 eTSEC port from the MPC8548 is available through Zone 3 for Rear Transition
Module (RTM) access. This port is for development purposes only.
Serial I/O: An EIA-232 console serial port from the MPC8548 (serial 1) is available through an on-board
header and is optionally routable to Zone 3 for Rear Transition Module (RTM) access. The
default serial port settings are: 9,600 baud, 8 data, no parity, and 1 stop bit. This port is for
development purposes only.
A second serial port (serial 2) allows the MPC8548 to communicate with the Intelligent Platform Management Controller (IPMC). The default serial port settings are: 115,200 baud, 8
data, no parity, and 1 stop bit.
I2C Bus: The private IPMC I2C bus consists of the following devices: temp sensors, the -48V converter, AMC A-to-D converters, and an optional connection to Zone 3 for Rear Transition
Module (RTM) access.
One processor I2C bus links to the following: two user SEEPROMs, the CPU init SEEPROM,
the Real-Time Clock (RTC), the SO-DIMM, and the fat pipe switch module, if used. Another
processor I2C bus provides an optional connection to Zone 3 for Rear Transition Module
(RTM) access.
JTAG Hubs: The IPMC controls the two Joint Test Action Group (JTAG) interfaces (hubs). One JTAG hub
is connected to seven ports: the KSL PLD, the IPMC PLD, the fat pipe switch module, and the
four AMC sites. The other hub is connected to five ports: the VSC7376 switch, the PEX8524
switch, the clock synchronizers, the IPMC GPIO, and GbE PHYs. See “JTAG Interfaces” on
page 2-9 for more information.
AMC Sites: The KAT4000 has four single-width, mid-size Advanced Mezzanine Card (AMC) sites which
allow for use of up to four compatible AMC modules. Double-width and compact modules
can also be accommodated. B+ style AMC connectors are used. The KAT4000 complies
1-2
KAT4000 User’s Manual
10007175-02
Overview:
Components and Features
with the PICMG® AMC.0 Revision 2.0 Advanced Mezzanine Card Base Specification with the
exception of a couple non-conformances. See the KAT4000 Errata for details. Each AMC site
is individually configurable. Chapter 8 provides more information.
System Management: The KAT4000 supports an Intelligent Platform Management Interface (IPMI) based on a
Renesas microcontroller with a UART interface for processor to IPMC communication (fixed
rate at 115,200 baud) and dual redundant IPMB-A/B interfaces. The IPMC allows for features such as remote shutdown, remote reset, payload voltage monitoring, temperature
monitoring, and access to Field Replaceable Unit (FRU) data. Chapter 9 provides more
information.
Synchronization Clock: The synchronization clock interface consists of MT9045 or MT9046 T1/E1 system synchronizers. Chapter 10 provides more information.
RTC: The Real-Time Clock (RTC) is an ST®Microelectronics M41T00 Serial Access Timekeeper®.
Chapter 11 provides more information.
Caution: There are no serviceable parts in this product. Return all damaged boards to Emerson for
repair (see page 2-18).
!
KAT4000 Options
No-CPU Configuration: A no-CPU KAT4000 board configuration is available. This configuration includes 256 Kb of
SRAM memory used by the internal 8051 microcontroller on the VSC7376 Ethernet core
switch for run time code storage. This configuration omits SDRAM and NOR and NAND
flash. Appendix A provides more information.
Ethernet Core Switch: The Ethernet core switch provides the interconnect between the fat pipe switch module,
the Ethernet ports on the AMC sites, two channels on the ATCA backplane Base fabric, the
processor, and the Update Channel (optional). A Vitesse VSC7376 GbE switch implements
this function. “Ethernet Core Switch (optional)” on page 4-2 provides more information.
PCI Express Switch: The PCIe switch provides the interconnect between the AMC sites, the processor, and the
fat pipe switch module. A PLX Technology PEX 8524 PCIe switch implements this function.
“PCI Express Switch (optional)” on page 4-7 provides more information.
Note: Of the Ethernet core switch and the PCI Express switch, at least one of the two switches must be used on the
board. The board can also use both switches.
10007175-02
KAT4000 User’s Manual
1-3
Overview:
Components and Features
Fat Pipe Switch Module:
A high-speed fat pipe switch is provided as a plug-over module. It supports GbE, Serial
Rapid IO (sRIO), PCI Express (PCIe) or 10 Gigabit Ethernet (10 GbE). This switch provides an
interconnect between the AMC sites, the ATCA high-speed fabric ports, the processor, the
PCIe switch and the Ethernet core switch. See “Fat Pipe Switch Module”, Chapter 5, for
information on your module’s configuration.
Rear Transition Module (RTM):
The optional transition modules provide access to 16 or 32 ports when AMCs are installed
on the KAT4000. AMC site ports 12-20 are routed to Zone 3 for Rear Transition Module
(RTM) I/O. 64 AMC signals route to 264 pins in Zone 3 (see “Zone 3” on page 12-4). There
are nine T1/E1 ports per AMC site routed as differential pairs (64 signals). There are separate I2C connections to the IPMC and the processor, and two ports each from the fat pipe
switch module and the Ethernet Core switch. A serial port and GbE port are provided for
development purposes only.
1-4
KAT4000 User’s Manual
10007175-02
Overview:
Functional Overview
FUNCTIONAL OVERVIEW
The following block diagram provides a functional overview for the KAT4000:
Figure 1-1: General System Block Diagram
To Zone 3
(Optional)
NAND
Flash
Main PLD
RTC
User 1
SEEPROM
GbE
PHY
PCIe
(x1 or x4)
User 2
SEEPROM
GbE
To Zone 3
SERDES GbE
sRIO (x4)
SROM
DDR2-667
2GB
-48V
Cnvrtr
Private I2C
AMC
A-to-D
I 2C
Clock
IPMC
I 2C
Fat Pipe
3
To Zone 3
RGMII
Xfmr
Xfmr
(2)
2
IPMB
Sensors
Base
10007175-02
EIA-232
Xcvr
Serial
Header
4 SERDES
(no conn.
for
GbE)
Fat Pipe Switch Module
Fabric Options:
GbE, sRIO,
10-1 GbE or 10-10 GbE
High Speed
Fabric A
J23
P10
To processor
GMII/RGMII
PCIe
GbE
PHYs (2)
PLD
Socketed
Flash
MPC8548
Processor
CPU Init
SEEPROM
PCIe or GbE
on port 1
Serial 2
NOR
Flash
To Update Channel
on J20 (Optional)
4 SERDES
Optional
GbE
PHYs (2)
SO-DIMM
4 SERDES
SERDES
SERDES
SERDES
2 SGMII
Local bus
Serial 1
10/100 Debug Eth (MII)
VSC7376
Ethernet Core Switch
Layer 2 (Optional)
2 SERDES
IPMB-L I2C
PEX8524
PCI Express Switch
(Optional)
To Zone 3
2 SERDES
To local bus
AMC (x4) Single-Width,
Half-/Full-/Extended-Height
Serial
Header
4 SERDES
EIA-232
Transceiver
To
local
bus
Xfmr
4 SERDES
10/100
PHY
High Speed
Fabric B
To Eth
Core
Switch
(Opt.)
2
4
Clock
J20
To Eth
Core
Switch
9 2
Zone 3
Connections
(Opt.)
RTM I/O
(Optional)
Zone 3
KAT4000 User’s Manual
1-5
Overview:
Physical Memory Map
PHYSICAL MEMORY MAP
Fig. 1-2 illustrates the KAT4000 memory map:
Figure 1-2: KAT4000 Memory Map
Hex Address
FC40,00B0
FC40,00AC
FC40,00A8
FC40,00A4
Hex Address
FFFF,FFFF
FFF0,0000
FF80,0000
FF70,0000
FC88,0000
FC80,0000
FC48,0000
FC40,0000
FC18,0000
FC14,0000
FC40,00A0
FC40,009C
FC40,0098
FC40,0094
Boot Area (1 MB)
Reserved
CCSRBAR (MPC8548 Registers, 1 MB)
Reserved
Socketed Flash (if installed) (512 KB)
Reserved
CPLD Registers (512 KB)
Reserved
Fat Pipe Switch Registers
(if installed) (256 KB)
Reserved
FC12,0000
Ethernet Core Switch Registers (128 KB)
FC10,0000
Reserved
FC00,8000
NAND Flash (32 KB)
FC00,0000
Reserved
E200,0000
NOR Flash (32 MB)
E000,0000
PCIe Switch or sRIO Fat Pipe Module
(if installed) (1 GB)
A000,0000
8000,0000
PCI Express Switch
(if installed) (512 MB)
3FFF,FFFF
Reserved
0000,0000
SDRAM
DDR2
(512 MB)
FC40,007C
FC40,0078
FC40,0074
FC40,0070
FC40,006C
FC40,0068
FC40,0064
FC40,0060
FC40,005C
FC40,0058
FC40,0054
FC40,0050
FC40,004C
FC40,0048
FC40,0044
FC40,0040
FC40,003C
FC40,0038
FC40,0034
FC40,0030
FC40,002C
FC40,0028
FC40,0024
Reserved
1FFF,FFFF
FC40,0090
FC40,008C
FC40,0088
FC40,0084
FC40,0080
SDRAM
DDR2
(1 GB)
FC40,0020
FC40,001C
FC40,0018
FC40,0014
FC40,0010
FC40,000C
FC40,0008
FC40,0004
FC40,0000
1-6
KAT4000 User’s Manual
10007175-02
Clock Sync. Interrupt Register 3
Clock Sync. Interrupt Register 2
Clock Sync. Interrupt Register 1
Clock Control, aTCA CLK3 B Register
Clock Control, aTCA CLK3 A Register
Clock Control, AMC4 CLK3 Register
Clock Control, AMC4 CLK2 Register
Clock Control, AMC4 CLK1 Register
Clock Control, AMC3 CLK3 Register
Clock Control, AMC3 CLK2 Register
Clock Control, AMC3 CLK1 Register
Clock Control, AMC2 CLK3 Register
Clock Control, AMC2 CLK2 Register
Clock Control, AMC2 CLK1 Register
Clock Control, AMC1 CLK3 Register
Clock Control, AMC1 CLK2 Register
Clock Control, AMC1 CLK1 Register
Reserved
Clock Sync. Secondary Source 3
Clock Sync. Secondary Source 2
Clock Sync. Secondary Source 1
Reserved
Clock Sync. Primary Source 3
Clock Sync. Primary Source 2
Clock Sync. Primary Source 1
Reserved
Clock Sync. Control Register 3
Clock Sync. Control Register 2
Clock Sync. Control Register 1
RTM GPIO Control Register
RTM GPIO State Register
MISC Control Register
Boot Device Redirection Register
Scratch Register 1
Reset Command Register 2
Reset Command Register 1
Reset Event Register
LED Control Register
Jumper Settings Register
Reserved
Hardware Config. Register 0
PLL Configuration Register
PLD Version Register
Hardware Version Register
Product ID Register
Overview:
Physical Memory Map
Table 1-1 summarizes the physical addresses for the KAT4000 and provides references to
more detailed information:
Table 1-1: KAT4000 Address Summary
Physical
Address (hex):
Access
Mode:
Description:
FFF0,0000
R/W
Boot Area (1 MB)
–
FF80,0000
–
Reserved
–
See Page:
FF70,0000
W
–
CCSRBAR (MPC8548 Registers, 1 MB)
1
–
FC88,0000
Reserved
–
FC80,0000
R/W
Socketed Flash (if installed) (512 KB)
6-1
FC48,0000
–
Reserved
–
FC40,00B0
R/W
Clock Synchronizer Interrupt Register 3 (CSI3)
7-18
FC40,00AC
R/W
Clock Synchronizer Interrupt Register 2 (CSI2)
7-18
FC40,00A8
R/W
Clock Synchronizer Interrupt Register 1 (CSI1)
7-18
FC40,00A4
R/W
Clock Control, aTCA CLK3 B Register (CCR14)
7-17
FC40,00A0
R/W
Clock Control, aTCA CLK3 A Register (CCR13)
7-17
FC40,009C
R/W
Clock Control, AMC4 CLK3 Register (CCR12)
7-17
FC40,0098
R/W
Clock Control, AMC4 CLK2 Register (CCR11)
7-17
FC40,0094
R/W
Clock Control, AMC4 CLK1 Register (CCR10)
7-17
FC40,0090
R/W
Clock Control, AMC3 CLK3 Register (CCR9)
7-17
FC40,008C
R/W
Clock Control, AMC3 CLK2 Register (CCR8)
7-17
FC40,0088
R/W
Clock Control, AMC3 CLK1 Register (CCR7)
7-17
FC40,0084
R/W
Clock Control, AMC2 CLK3 Register (CCR6)
7-17
FC40,0080
R/W
Clock Control, AMC2 CLK2 Register (CCR5)
7-17
FC40,007C
R/W
Clock Control, AMC2 CLK1 Register (CCR4)
7-17
FC40,0078
R/W
Clock Control, AMC1 CLK3 Register (CCR3)
7-17
FC40,0074
R/W
Clock Control, AMC1 CLK2 Register (CCR2)
7-17
FC40,0070
R/W
Clock Control, AMC1 CLK1 Register (CCR1)
7-17
FC40,006C
–
Reserved
–
FC40,0068
R/W
Clock Synchronizer Secondary Source Register 3 (CSS3)
7-15
FC40,0064
R/W
Clock Synchronizer Secondary Source Register 2 (CSS2)
7-15
FC40,0060
R/W
Clock Synchronizer Secondary Source Register 1 (CSS1)
7-15
FC40,005C
–
Reserved
–
FC40,0058
R/W
Clock Synchronizer Primary Source Register 3 (CPS3)
7-14
FC40,0054
R/W
Clock Synchronizer Primary Source Register 2 (CPS2)
7-14
FC40,0050
R/W
Clock Synchronizer Primary Source Register 1 (CPS1)
7-14
FC40,004C
–
Reserved
–
FC40,0048
R/W
Clock Synchronizer Control Register 3 (CSC3)
7-13
FC40,0044
R/W
Clock Synchronizer Control Register 2 (CSC2)
7-13
FC40,0040
R/W
Clock Synchronizer Control Register 1 (CSC1)
7-13
10007175-02
KAT4000 User’s Manual
1-7
Overview:
1-8
Physical Memory Map
Physical
Address (hex):
Access
Mode:
Description:
See Page:
(continued)
FC40,003C
R/W
RTM GPIO Control Register (RGCR)
7-7
FC40,0038
R
RTM GPIO State Register (RGSR)
7-6
FC40,0034
R/W
MISC Control (PCIe, SIO, I2C, Test Clock) Register (MISC)
7-7
FC40,0030
R
Boot Device Redirection Register (BDRR)
7-12
FC40,002C
R/W
Scratch Register 1 (SCR1)
7-8
FC40,0028
W
Reset Command Register 2 (RCR2)
7-10
FC40,0024
W
Reset Command Register 1 (RCR1)
7-9
FC40,0020
R
Reset Event Register (RER)
7-9
FC40,001C
R/W
LED Control Register (LEDR)
7-5
FC40,0018
R
Jumper Settings Register (JSR)
7-6
FC00,0014
–
Reserved
–
FC40,0010
R
Hardware Configuration Register 0 (HCR0)
7-4
FC40,000C
R/W
PLL Configuration Register (PLLC)
7-4
7-3
FC40,0008
R
PLD Version Register (PVR)
FC40,0004
R
Hardware Version Register (HVR)
7-3
FC40,0000
R
Product ID Register (PIDR)
7-2
FC18,0000
–
Reserved
–
FC14,0000
R/W
Fat Pipe Ethernet Switch Registers (if installed) (256 KB)
5-2
FC12,0000
–
Reserved
–
FC10,0000
R/W
Ethernet Core Switch Registers (128 KB)
4-2
FC00,8000
–
Reserved
–
FC00,0000
R/W
6-2
E200,0000
–
NAND Flash (32 KB)
1
Reserved
E000,0000
R/W
NOR Flash (32 MB)
6-1
A000,0000
R/W
4-7 or 5-22
–
8000,0000
R/W
PCI Express Switch or sRIO Fat Pipe Switch Module (if installed)
(1 GB)2
PCI Express Switch (if installed) (512 MB)2
4000,0000
–
Reserved1
–
0000,0000
R/W
SDRAM DDR2 (512 MB/1 GB)
6-2
4-7
1.
Depends on Flash/memory size.
2.
Both the PCI Express Switch and sRIO Fat Pipe Switch Module are optional. If both devices are discovered onboard, then the PCIe
switch will be allocated 512 MB and the sRIO fat pipe switch module will be allocated 1 GB of addressable space. If neither device
is found onboard, the entire 1.5 GB area is reserved.
KAT4000 User’s Manual
10007175-02
Overview:
AMC Mapping
AMC MAPPING
The figure below shows how the KAT4000 maps to the ports defined by the AMC.0 specification:
Figure 1-3: AMC Port Mapping Regions
Port #
Basic Connector
Port Mapping
()*
()*
"#$
&-()*
%
&'
+,
.
/
+,
(
,"4
1/
/
/6'
(
,"4
1/
#1'6/
&'
(
,"4
1/
/
/6'
Extended Connector
!
!
%
&'
01
3
2
."
Port #
+,
(4#5
6"
."
."
1
/
B4
B3
B2
B1
."
1
/
8
! B2
! B1
B3
! ! 7
+,
(4#5
6"
."
7
+,
(4#5
6"
."
10007175-02
+,
+,
+,
+,
Port #
&.%
(4#5
6"
."
B4
&.%
&.%
Port #
+,
+,
+,
+,
Port #
+,
KAT4000 User’s Manual
1-9
Overview:
Additional Information
Clocks: This region supports a subset of the clock architecture, as defined in the AMC.0 specification.
Common Options: This region supports essential interfaces that are common across multiple Fat Pipe implementations.
Fat Pipes: This region supports data path connections including GbE, sRIO, PCIe, and 10 GbE. It can
carry large amounts of data without significantly degrading the speed of transmission.
Extended Options: This region supports Rear Transition Modules. Also, it may be used to extend the Common
Options and Fat Pipes Regions, when required.
x1, x2, x4: This refers to the link width of the port (the number of lanes that can be used to interconnect between two link partners).
ADDITIONAL INFORMATION
This section lists the KAT4000 hardware regulatory certifications and briefly discusses the
terminology and notation conventions used in this manual. It also lists general technical
references.
Mean time between failures (MTBF) has been calculated at greater than 315,816 hours for
the KAT4000 and greater than 264,795 hours for the KAT4000 with a GbE fat pipe switch
module. MTBFs were calculated using Method I Case 3, Telcordia Issue 1 model at 30° C.
Product Certification
The KAT4000 hardware has been tested to comply with various safety, immunity, and
emissions requirements as specified by the Federal Communications Commission (FCC),
Industry Canada (IC), Underwriters Laboratories Inc.® (UL), and the European Union Directives (CE mark). The following table summarizes this compliance:
Table 1-2: Regulatory Agency Compliance
Type:
Safety
Specification:
IEC60950/EN60950 – Safety of Information Technology Equipment
(Western Europe)
UL60950, CSA C22.2 No. 60950, Third Edition – Safety of Information
Technology Equipment, including Electrical Business Equipment (BINational)
AS/NZS 60950:2000 – Safety Standard for Australia and New Zealand
Global IEC – CB Scheme Report IEC 60950, all country deviations
1-10
KAT4000 User’s Manual
10007175-02
Overview:
Additional Information
Type:
Specification: (continued)
Environmental
NEBS™: Telcordia™ GR-63 (applies to an entire system) –
Section 4.3 Equipment Handling Criteria;
Section 4.4.1 Earthquake Environment and Criteria (Zone 4);
Section 4.4.3 Office Vibration Environment and Criteria;
Section 4.4.4 Transportation Vibration Criteria
EMC
FCC Part 15, Class B – Title 47, Code of Federal Regulations, Radio
Frequency Devices
ICES 003, Class A – Industry Canada Interference-causing Equipment
Standard for Digital Apparatus
NEBS: Telcordia GR-1089 level 3 – Emissions and Immunity (circuit pack
level testing only)
EN300386 – Electromagnetic Compatibility and Radio Spectrum Matters
(ERM), Telecommunication Network Equipment, Electromagnetic
Compatibility (EMC) Requirements
AS/NZS 3548 003 – Standard for radiated and conducted emissions for
Australia and New Zealand, Class A
Emerson maintains test reports that provide specific information regarding the methods
and equipment used in compliance testing. Unshielded external I/O cables, loose screws, or
a poorly grounded chassis may adversely affect the KAT4000’s ability to comply with any of
the stated specifications.
UL Certification
The UL web site at ul.com has a list of Emerson’s UL certifications.
1 To find the list, go to the web site and search in the online certifications directory using
Emerson’s UL file number, E190079. There is a list for products distributed in the United
States, as well as a list for products shipped to Canada.
2 Products are listed by board type followed by the model name and/or number. The
KAT4000 is an AdvancedTCA (ATCA) blade. The model number is KAT4000’s Printed Circuit
Board (PCB) artwork number, which is 10007505-xx.
RoHS Compliance
The KAT4000, all fat pipe modules listed in Chapter 5, and the RTM described in Chapter 13
are compliant with the European Union’s RoHS (Restriction of Use of Hazardous Substances) directive created to limit harm to the environment and human health by restricting the use of harmful substances in electrical and electronic equipment. Effective July 1,
2006, RoHS restricts the use of six substances: cadmium (Cd), mercury (Hg), hexavalent
chromium (Cr (VI)), polybrominated biphenyls (PBBs), polybrominated diphenyl ethers
10007175-02
KAT4000 User’s Manual
1-11
Overview:
Additional Information
(PBDEs) and lead (Pb). Configurations that are RoHS compliant are built with lead-free solder. Configurations that are 5-of-6 are built with tin-lead solder per the lead-in-solder RoHS
exemption.
To obtain a certificate of conformity (CoC) for the KAT4000 or other modules, send an email to sales@artesyncp.com or call 1-800-356-9602. Have the part number(s) (e.g.,
C000####-##) for your configuration(s) available when contacting Emerson.
Terminology and Notation
Active low signals: An active low signal is indicated with an asterisk * after the signal name.
Byte, word: Throughout this manual byte refers to 8 bits, word refers to 16 bits, and long word refers to
32 bits, double long word refers to 64 bits.
PLD: This manual uses the acronym, PLD, as a generic term for programmable logic device (also
known as FPGA, CPLD, EPLD, etc.).
Radix 2 and 16: Hexadecimal numbers end with a subscript 16 or begin with 0x. Binary numbers are shown
with a subscript 2.
Technical References
Further information on basic operation and programming of the KAT4000 components can
be found in the following documents:
Table 1-3: Technical References
Device / Interface:
AMC/ATCA
Document: 3
Advanced Mezzanine Card Base Specification
(PICMG® AMC.0 Rev. 2.0: November 15, 2006)
PCI Express and Advanced Switching on AdvancedMC
(PICMG® AMC.1 Rev. 1.0: January 20, 2005)
AdvancedTCA® Base Specification
(PICMG® 3.0 Rev. 2.0: March 18, 2005)
Engineering Change Notice 3.0-2.0-001
(PICMG® 3.0 Rev. 2.0: ECN 3.0-2.0-001; June 15, 2005)
AdvancedTCA® Ethernet/Fibre Channel for AdvancedTCA® Systems
(PICMG® 3.1 Rev. 1.0: January 22, 2003)
http://www.picmg.org
CPLD
MAX®II Device Handbook
(Altera® MII5V1-1.3, Preliminary; December 2004)
http://www.altera.com
1-12
KAT4000 User’s Manual
10007175-02
Overview:
Additional Information
Device / Interface:
CPU
Document: 3
MPC8548E PowerQUICC III™ Integrated Host Processor Family Preliminary
Reference Manual
(Freescale® Semiconductor MPC8548ERM Rev. 1: July 2005)
http://www.freescale.com
EEPROM
ATMEL® 2-Wire Serial EEPROM 64K AT24C64B Data Sheet
(ATMEL® Corp., Rev. 3350D-SEEPR: May 2005)
http://www.atmel.com/literature
Ethernet
HawX-G26 – 26-Port 10/100/1000 Managed Layer 2 Ethernet Switch,
VSC7376 Data Sheet
(Vitesse Semiconductor Corp., VMDS-10133 Rev. 2.1: August 2005)
HawX-G26 Reference Board Manual/Software Manual
(Vitesse Semiconductor Corp., RBM0007 Rev. 09: November 24, 2005)
http://www.vitesse.com
88E1111 Integrated 10/100/1000 Ultra Gigabit Ethernet Transceiver
Datasheet
(Marvell® Doc. No. MV-S100649-00, Rev. G: February 10, 2006)
http://www.marvell.com
BCM5241 10/100Base-TX/FX Mini- Φ ™ Transceiver Preliminary Data Sheet
(Broadcom® Corporation Document 5241-DS03-R 6/21/05)
http://www.broadcom.com
Flash
Intel® StrataFlash® Embedded Memory (P30) Data Sheet
(Intel, Order Number: 306666 Rev. 002: August 2005)
http://www.intel.com
AMD® AM29LV040B 4 Megabit (512 K x 8-Bit) CMOS 3.0 Volt-only, Uniform
Sector 32-Pin Flash Memory Data Sheet
(Advanced Micro Devices, Inc. Publication #21354 Rev: E; June 11, 2004)
http://www.amd.com
mDOC H3 Embedded Flash Drive (EFD) featuring Embedded TrueFFS® Flash
Management Software Preliminary Data Sheet
(M-Systems Flash Disk Pioneers Ltd., 92-DS-1205-10 Rev: 0.2; June 2006)
http://www.m-systems.com/mobile
Hot Swap™
LTC®4211 Hot Swap Controller with Multifunction Current Control
(Linear Technology Corporation LT/TP 0702 2K 4211f)
LTC®4300A-1/LTC 4300A-2 Hot Swappable 2-Wire Bus Buffers
(Linear Technology Corporation LT/TP 0203 2K sn4300a)
http://www.linear.com
Hot Swap Specification
(PICMG® 2.1 Rev. 2.0: January 17, 2001)
http://www.picmg.org
10007175-02
KAT4000 User’s Manual
1-13
Overview:
Additional Information
Device / Interface:
IPMI/IPMB
Document: 3
IPMI — Intelligent Platform Management Interface Specification v2.0
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer Corp., Rev.
1.0; Feb. 12, 2004)
IPMB — Intelligent Platform Management Bus Communications Protocol
Specification v1.0
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer Corp., Rev.
1.0; Nov. 15, 1999)
IPMI Platform Management FRU Information Storage Definition v1.0
(Intel, Document Revision 1.1; Sept. 27, 1999)
http://www.intel.com/design/servers/ipmi/spec.htm
Renesas 16-Bit Single-Chip Microcomputer Hardware Manual, H8S/2168
Group
(Renesas Technology Corp., Rev. 3.00; March 12, 2004)
http://www.renesas.com
JTAG
SCANSTA112 7-port Multidrop IEEE 1149.1 (JTAG) Multiplexer Data Sheet
(National Semiconductor Corp., DS200512, May 2004)
http://www.national.com
PCI Express
PCI Express™ Base Specification Revision 1.0
(PCI Special Interest Group (PCI-SIG), July 22, 2002)
http://www.pcisig.com
PEX 8524 Versatile PCI Express™ Switch Preliminary Data Book
(PLX Technology, Inc. Version 0.99: June 2005)
http://www.plxtech.com
Real-Time Clock
Serial Access Timekeeper® M41T00
(ST®Microelectronics, June 2004)
http://www.st.com
SDRAM (SO-DIMM)
Module
512MB 64Mx72 DDR2 SDRAM Unbuffered SO-DIMM ECC Product
Specification
(Virtium Technology, Inc. Part Number VL491T6553B-D5/CC Rev. 1.3:
August 2005)
http://www.virtium.com
Serial
Interface
TIA/EIA-232-F: Interface Between Data Terminal Equipment and Data CircuitTerminating Equipment Employing Serial Binary Data Interchange
(Electronic Industries Association, October 1997)
http://www.eia.com
Synchronization
Clock Interface
MT9045 T1/E1/OC3 System Synchronizer Data Sheet
(Zarlink™ Semiconductor Inc., February 2005)
MT9046 T1/E1 System Synchronizer with Holdover Data Sheet
(Zarlink™ Semiconductor Inc., February 2005)
http://www.zarlink.com
1-14
KAT4000 User’s Manual
10007175-02
Overview:
Additional Information
3. Frequently, the most current information regarding addenda/errata for specific documents may be found
on the corresponding web site.
10007175-02
KAT4000 User’s Manual
1-15
(blank page)
1-16
KAT4000 User’s Manual
10007175-02
Section 2
Setup
This chapter describes the physical layout of the board and the setup process, including
power requirements and environmental considerations. This chapter also includes troubleshooting, service, and warranty information.
ELECTROSTATIC DISCHARGE
Before you begin the setup process, please remember that electrostatic discharge (ESD)
can easily damage the components on the KAT4000 hardware. Electronic devices, especially those with programmable parts, are susceptible to ESD, which can result in operational failure. Unless you ground yourself properly, static charges can accumulate in your
body and cause ESD damage when you touch the board.
Caution: Use proper static protection and handle KAT4000 boards only when absolutely necessary.
Always wear a wriststrap to ground your body before touching a board. Keep your body
!
grounded while handling the board. Hold the board by its edges–do not touch any
components or circuits. When the board is not in an enclosure, store it in a static-shielding
bag.
To ground yourself, wear a grounding wriststrap. Simply placing the board on top of a
static-shielding bag does not provide any protection–place it on a grounded dissipative
mat. Do not place the board on metal or other conductive surfaces.
KAT4000 CIRCUIT BOARD
The KAT4000 is a 16-layer, 8U form factor circuit board that conforms to the PICMG 3.0
Rev. 2 and AMC.0 Rev. 2 mechanical specifications with the exception of a couple non-conformances. See the KAT4000 Errata for details. It has the following physical dimensions:
Table 2-1: Circuit Board Dimensions
Width:
Depth:
Thickness:
Component
Height (top side):
Component Height
(bottom side):
12.687 in.
(322.25 mm)
11.024 in.
(280.0 mm)
0.075 in.
(1.9 mm)
< 0.84 in.
(21.33 mm)
< 0.144 in.
(3.65 mm)
The following figures show the component maps for the KAT4000 circuit board. Figures are
also provided for the front panel, LEDs, fuse, jumper and JTAG locations.
10007175-02
KAT4000 User’s Manual
2-1
Setup:
KAT4000 Circuit Board
Figure 2-1: Component Map, Top (Rev. 02)
CR26
CR25
CR24
CR23
CR22
CR20
CR11
CR17
CR13
CR15
U63
R296
K2
Polar Key
ATCA Guide
XXXX-
R295
C389
YYYYYY
R358
R2088
R271
R356
C2034
C2037
C460
R357
R355
C2038
C457
R2089
C381
C390
C388
U59
C386
R309
RN60
C397
RN59
C375
R257
R285
RN36
C311
C310
U78
NAND Flash
RN23
R322
R256
R321
R320
R319
R318
C304
J2
R255
J10
C324
C302
U51
R222
RN39
RN43
RN46
RN38
RN42
RN45
RN52
RN55
C470
RN49
RN51
RN54
RN57
RN48
RN50
RN53
RN56
C469
R359
RN61
C468
C459
C98
R2119
R2120
C454
C451
R2048
C446
R2124
R2049
C444
C450
C453
U71
PHY
R347
U80
Flash
R337
L7
L11
C452
C416
R365
U70
PHY
J3
C365
U65
PHY
RN30
RN26
C383
U50
C295
R345
C445
C420
RN32
RN31
U66
PHY
R254
R302
R313
R301
R312
R183
R178
CR37
CR38
CR39
U79
U82
1000Base-T 1000Base-T
C455
C364
C363
C292
C362
C331
C361
R264
R182
R176
R170
R169
R159
R158
R154
C252
R149
R150
R146
R151
R145
R155
R136
R141
R135
R140
CR36
R346
CR35
R344
C253
C242
C228
C208
C456
C294
C293
C89
SW1
R263
C330
M3
U30
JP2
R181
R177
R184
C107
C67
C449
C422
C426
C427
R330
C421
RN34
C417
RN33
RN29
RN28
R280
R239
R247
C297
C257
C230
R171
C243
C269
C268
C68
C16
J20
80-pin ATCA
Zone 2
Connector
R317
C407
M4
C315
C314
C267
R137
C17
C333
C317
C316
C254
C165
C108
C69
R314
C332
C123
L1
C18
U60
C255
C109 C124
R107
R2053
C318
C258
C229
R131
C134
C197
C125
C190
C126
C99
C111
C110
R108
C75
U2
C7
C11
U11
R2052
C319
C290
C296
C184
U12
C95
C19
C136
C70
C97
R2045
C96
R91
C49
R44
R39
R27
R12
R25
R28
C1
R26
C2
C256
L12
R336
C321
C320
C149
C76
R14
R13
C112
R109
R265
C135
C32
R45
C50
R16
R15
R93
L8
C298
C271
R2051
C137
C127
U13
C77
C342
R279
C138
R179
C270
R2050
C259
C113
R66
C57
U57
C301
C272
C244
C218
C209
C202
C170
C161
C162
C261
C260
C139
C90
C100
C114
C71
C150
C101
C140
RN27
R180
C299
C128
C115
C58
C465
J34
C448
C347
R248
C20
C429
C423
C262
C186
R147
R152
R148
R142
R127
R132
R138
U3
C408
C185
C72
C428
R338
C325
R218
C129
C73
C466
R339
C116
C21
R348
C366
R210
R253
U44
R209
R208
C106
U62
48->12 volt Power Supply
C360 R278
C33
R46
C8
C12
C23
C402
R281
Y4
L2
C22
U67
PHY
C401
U61
R282
C41
R40
R41
C3
R31
C418
R2123 C2040
U41
C42
C117
R30
R29
C4
R17
C198 C231
C118
C51
R19
R18
L9
R350
U72
C447
C405
C400
C91
R351
U73
R349
C2039
C92
R20
C419
C411
C396
M5
U74
C443
C326
R340
C425
R219
R202
C232
C409
R203
C233
C151
C52
C410
R266
R204
C234
C152
C119
SW2
K1
Polar Key
ATCA Guide
U75
R341
C439
U35
C235
C153
R342
C432
C2003
U29
C154
C413
C424
C155
C440
C431
Y5
C2002
C156
R343
R333
C438
C157
C120
RN25
C59
C406
R240
C60
R236
C61
C24
C412
U58
R243
R2001
C26
C25
RN37
R334
C348
C2001C2000
C158
U69
C350
C349
C339
RN17
R2016
R2018
R2002
C62
C245
C63
C27
C246
U42
C28
U81
100Base-T
R360
C433
C430
C248
C247
C236
C219
C211
C210
C187
C172
C171
R143
C166
R139
R133
R121
R118
R113
R112
L3
C351
R362
R361
L13
C434
C441
RN13
R363
RN58
C435
L10
C367
R94
R1159
R364
RN64
RN62
C414
U77
R353
R352
C436
RN47
U49
C464
J23
80-pin ATCA
Zone 2
Connector
R221
R217
R216
R190
R153
C183
C463
R277
C462
R276
C182
L20
C2044
R144
Y1
R193
C88
C359
C338
R234
U54
JP1
JP7
C346
R242
R233
R262
U40
U9
PLD
U22
R246
C40
C382
C329
R92
M2
R220
R215
R207
R191
R126
R9
R192
C196
R252
R65
R166
R229
U39
R165
R61
R164
R227
R163
R226
R4
R162
R225
R161
R224
C357
C356
C355
C354
U10
F2
R261
C87
R78
R67
C74
R1158
R3
C442
C404
R228
R60
C46
R5
R230
R167
U25
C358
C47
R62
R6
R231
R168
U17
R63
R7
U48
R232
R64
R8
J4
R275
R89
R90
R80
C48
R79
U1
F6
R260
P10
34-pin ATCA
Zone 1
Connector
C328
F5
M1
R223
R116
R117
C83
R187
U38
R214
R189
R188
C105
C403
R251
F4
C303
R2085
R274
C353
C2030
C2031
F3
R201
E1
CR34
CR33
CR32
CR31
CR30
CR29
CR28
R130
CR27
CR21
CR19
CR18
CR16
CR14
CR12
CR10
CR9
CR7
CR5
R10
CR3
R11
R1
CR1
U47
R2
F1
2-2
KAT4000 User’s Manual
10007175-02
00000000-00 D
CR41
C306
C305
RN44
R354
C437
C415
RN40
C467
C275
C274
C273
Y6
RN63
C308
C307
R2029 R2034
R2028 R2035
R335
C277
C276
R2063
RN41
M6
R332
C309
R331
R205
C278
R329
C279
R2027 R2033
R2026 R2032
R2030
R2037
R206
R2031
R2036
C265
C264
C340
R241
C336
U43
C280
R185
C263
C203
R323
R268
C312
C284
R237
C286
C285
J30
80-pin ATCA
Zone 3
Connector
RN65
R1204
RN22
R324
R267
C191
C188
C163
C141
R95
R42
R325
U55
C282
C220
C204
C221
C176
C130
R81
C313
C281
R97
R96
R82
U68
MPC8548
Processor
R2062
R306
R305
R304
R303
C327
C287
C283
C249
C237
C174 C175
C143
C131
R98
R83
R298
C344
R249
C213
C222
C212
C173
R99
R84
C142
C132
R85
C102
R101
R100
R291
C266
C223
C193
C205
RN1
RN6
R104
R86
R292
C368
R287
C181
C144 C159 C167 C177 C192 C199
R102
R87
R293
R283
R290
R244
C288
C178 C179
C145
RN7
C133
C121
R103
C43
R284
R288
R105
R88
C341
RN35
U45
C239
C289
C180
C146
RN10
RN9
C103
RN8
RN5
RN4
RN3
RN2
C200
C168
U76
SRAM
R328
R327
R289
L5
C44
C30
R47
R310
RN24
C251
C201
C194
C195
C189
C169
C164
C148
C160
C147
C84
U4
C9
J31
80-pin ATCA
Zone 3
Connector
C399
C387
R326
C78
C53
C10
U46
JP3
R311
C398
C384
C369
C241
C215
C227
C226
C207
C250
C224
C225
C214
C240
C206
R124
R129
R123
R128
R134
R120
R125
R115
R110
C79
C13
R212
R211
U52
C238
R43
R196
R195
R2013
C85
R119
R122
C80
R114
C36
R2014
C122
R32
C300
C374
C93
U31
R299
R308
C376
R213
R172
R300
M7
RN16
C54
R33
C391
L6
R269
R307
R198
R173
C104
R34
C380
R250
RN19
RN21
R157
U5
C81
R53
C5
C392
C377
C371
C370
R194
C82
C37
C34
C6
C378
C372
C337
R200
R199
U20 U23 U26
J32
80-pin ATCA
Zone 3
Connector
JP4
C393
R270
U33
U32
R2015
C38
C35
R21
C323
Y2
RN18
R2012
L4
R23
C379
C373
U21 U24 U27
R51
R52
R48
C14
R22
R294
U53
U34
R174
R160
C94
C55
R156
C216
RN15
U64
DDR2
SO-DIMM
J1
R258
Y3
R197
R35
R24
M8
C334
R186
R2009
U14 U15 U16
U8
R2007
U6
R2008
U7
R2006
R2005
R2004
C56
C45
R54
C29
C31
R50
R49
C39
R38
R36
C335
U37
R175
RN14
RN12
C64
C15
C291
U18
PLD
C65
R37
R259
RN20
RN11
C343
R286
R238
C217
C66
J33
24-pin
ATCA
Connector
C458
C394
C385
U56
C2035
R272
C345
R245
C461
R273
C352
C2036
C86
U36
Clock
U28
Clock
U19
Clock
C395
U2000
R235
C322
CR40
CR2
CR8
CR4
CR6
COPYRIGHT 2006
R297
P1
Setup:
KAT4000 Circuit Board
Figure 2-2: Component Map, Bottom (Rev. 02)
COPYRIGHT 2006
R731
C587 R720
R721
C2029
R578
R572
R563
R546
R543
R535
R529
R518
R436
R420
R410
R399
R396
R388
R378
R375
R373
R370
R368
R366
R771
C710
R750
R371
00
J20
R2024
R2023
R770
R678
R671
R666
R667
R652
R639
R632
R615
R610
R606
R607
R600
R453
R446
R437
C478
C479
C476
C712
R2086
C553
C547
C570
R733
R668
R653
R640
R616
R611
R723
C588 R722
C562
R2069
C2032
C2033
R2054
C549
R2070
R423
R2056 R457
C714
R751
R448
R441
C715
C554
C571
C595
R760
R761
R782
R783
R673
R670
R655
R642
R635
R618
R613
R614
R2132
C2024
C2025
C2026
R784
R1077
R1078
R752
C574
C564
R785
C784
C877
C830
C861
R1097
R1098
R1094
R1090
R1085
R1086
R1083
R1080
R1081
C804
C807
R1203
R1202
R1136
R1135
R1133
C879
R1138
R1149
R1139
R1140 R1137
R1131
R1134
C827
R2099
R2096
F10
R2098
R2097
C881
R1058
R1059
R1060
R1061
C862
U97
C882
C866 R1068
R1156
C648
C813
C889 C890
R1024 R1025 R1026
R1017
R1143
RN78
U98
R1087
M9
R2094
R2093 R2095
R1095
R1088
M10
R1103
R1065
C892
R883
C841 R1028
R1063
R1064
C863
U99
R1096
C637
C639
R866
R867
R868
U94
R1069
C867
R982
R992 C814
R993
R994
R995
C815
U93
C837 R1027
R1009
R1062
R1049 C854
R2075
10007175-02
U92
Flash
C764
R1151
R1099
R1100
R1101
R1102
C812 R1003
R1057
R940
R2092
R602
R577
R579
R503
R479
R467
R459
R445
R435
R409
R398
R395
R387
F9
C811
R939
RN77
R2073
R2071
R2072
R2074
C2013
C662
C663
C762
C763 R966
C686
R882
C636
C609
C586
R704
R705
R706
RN75
R749
R664 R665
R758
R759
R818
R819
R820
R821
R822
R823
R824
R825
R826
R827
R828
R829
R830
R831
R832
R833
C657
C658
C659
C660
C661
RN76
C627
C617
C632
C633
C634
C635
RN74
C628
C629
C630
C631
RN73
C616
R757
U89
C618
C569
C546
R542
R528
R517
R2038R562
R568 R569
L16 C551
C545
C529
R501 R502
C506
L14
C505
L15 C534
C528
C539
RN66
C515
R638
R2100
R2103
R1079
R1016 C848
R2078
R748
R1157
C626
U90
R1146
R637
R1130
C847
R954
R1132
R927
R928
C723
R926
R925
R920
C810
C885
R1200
C860
R1046
U91
Flash
R808
R809
R810
R811
R812
R813
R814
R815
R816
R817
R1153
R663
R662
R651
R636
RN68
R1129
C888
R1082
R1055
R1056
C859
R1047
R1048
C831
R991
R981
R970
R971
R965
C760
C759
C751
R948
R946
R949 C761
R2102
R2101
C791
C709
C739
R1125
C2005
R2115 R1201 R1015
C840 R2111
C738
C691
C692
C722
C776
C699
C707
C737
C721
C829
C777
C793
C903
R1113
C836
C809 C828
C803
C749
C750
L19
R2041
R1052
R1053 C874C878
R1054
C2006
R2057
C823
C802
C775
C833
C2004
C797
C834
C756 C774 C800 C825
C745 C757 C792 C801 C826 C835
C746
C748
C758
C891
R990
R980
R2114
C799
C808
C773
C755
C747
C708
R1008
R1002
C698
C690
C730
C720
C734 C735 C736
R913
R914
C728
C706 C729
C824
C806
C902
C899
R1014
C704
C681
C685
C744 C772
R2058
R1023
C798
C754
C733
C671
R805
R806
C568
R464
R461
R408
R374
R372
R369
R367
F8
R2059
R747
R718
R719
C552
R561
C504
C678
C669
C2017
C2018
C585
R560
RN67
R466
C638
R630
C533
C501
R465
R878
R877
R875
R865
R767
CR42
R650 R661
R434
C670
C684
C656
R756
R629
R548
R549
R550
R551
R552
R553
R554
R555
R556
R557
R558
R559
R631
R394
C514
C493
C475
R393
C509
C510
R2137
R432
R433
C517
C518
C544
C513
R431
R2079
C532
R429
C607
C608
C614
C615
C593
C538
R430
R392
C682
C683
R900
R897
C771
C703
R1018
R1019
R1020
R1021
R1022
R807
C500
C492
C474
C491
C473
R428
R390
C677
R769
R729
R541
R539
R527
R516
R489
R478
CR2003
R391
R1150
R2010
R58
R56
R389
R745 R746
R803
R804
R1152
C579
C567
C527
C644
R889
R890
R891
R892
R880 R893
R881 R894
R895
R896
R1154
C582
R1155
C573
C566
C537
R1147
R647
R648
R649
R717
C536
R627
R628
C697
C680
C705
R802
C584
C2014
C2015
C2016
R660
R684
C832
C726
C679
R886
R887
R888
C643
RN70
C581
C535
C521
R625
R626
R570
R571
R540
R538
R526
R515
R488
R477
CR2002
R57
R2011
R2061
RN72
RN69
R2064 C561
R1142 R1145
CR2000
C508
R622
R623
R624
C667
C668
R2060
C727
C606
C583
R2090
C689
R646
C789
C790
R2091
R837
R838
C796
RN71
R957
R953
R947
C732
R938
R937
R932
R924
R923
R919
R911
R912
R906
C725
C753
R1066
R1067
C805
R936
R931
R921
R905
R922
R918
R910
R909
C724
R2127
R2128
R2129
R2130
R755
R744
R681
C565
C577 C578
R680
U88
C719
R682
R683
R1148 R1141
C526
C905
R1124
R1119
R1120
R1117
R1118
R1112
R1108
R1109
C887
C560
R716
R1144
C520
C901
C849
R2080 R798
R799
R800
R801
R765
R766
C507
C900
R742 R743
R715
C592 R728
C2023
C2022
R658 R659
R599
R55
R1115
R1116
C898
R1107
U96
R1051
C846
C559
R677
R989
R1001
R796
U95
C845
C576
R676
R988
R1000
R797
R397
U83
VSC7376 GbE Switch
R1128
L18
C752
R987
R999
R2021R2022
R764 C601
C2019
R740 R741
R657
C2020
C2021
R768
R2081
C558
R609
R598
R545
R537
R794
R795
R1123
C894
R986
R998
C844
R754
C543
C540
R2125
C531
R2126
C519
C602
C603
C604
C605
R2112
R2116
C872
C873
R2121 R2122 R2117 R2118
C688
R792
R793
R711
R712
R713
R714
R1114
C893
C702
C642 C655 C666
R2113
C864
C865
R964
R944
C557
R675
R873
R874
C641
C822
C868
C869
C870
C871
R2110
R963
R943 C718
C654 C676
R709
R710
R1037
C852
R1038
R1039
R1040
R1041
R1042
R1043
R1044
R1045
C853
C857 C858
C743
C687
C653
C575
R674
C623 R864
R707
R708
C839
C742 C770 C788
R916
R917
R908
R903
R656
R857
R979
R904
R315 R899
R316 R885
R872
R862
R863
R856
R835
R836
R525
R506
R492
C556
R534
R523
R524
R486
R487
R762
R763
C625
C769 C795
C843
C731
C696
C622
C897
R1105
R871
C621
R2109
C768
C647 C652 C675
R870
R1013
R1007
R997
R985
R977
R976 R978
R969
R962
C701
R951
R952
C600
C591
R860
R861
R1012
R1011
R1006
C665 C674
C640
R834
R2020
R961
R942 C717
R869
R859
R858
R855
R739
C695 R935
R1111
R1104
C886
C856
R960
C651
C624
C896
R1093
C855
C821
R930
L17
R975
U87
R929
C620
R619
R620
R621
C838
C842
R753
C741 C767 C787
R934
C694
C883
R974
C766 C794
C740
R564 R573
R565 R574
R566 R575
R567 R576
R2003 R2019
R2000 R2017
C880
R959
C646 C650 C673
U84
PEX8524 Switch
R2040R2039
R1050
C850
R1029
R1030
R1031
R1032
R1033
R1034
R1035
R1036
C851
C820
C765
C700
R1004
R1005
R996
R984
R973
R968
R958
R956
R950
R941 C716
C619
C664 C672
C645
R727
R427
R726
R738
R2082
R955
C693 R933
C649
R737
R983
R972
R967
R945
R1010
R884
R915
R907
R902
R879
R876
R1084
C786
R790
R791
C590
C2028
C2027
R452
C876
C785
R901
R898
R451
R1092
R1089
R533
R522
R504
R505
C783
R786
R787
R788
R789
R507
R508
R509
R510
R511
R512
R513
R514
R1075
R1076
C782
C2011
R2083
C598
C599
C612
C613
R493
R494
R495
R496
R497
R498
R499
R500
CR43 CR44
R1073
R1074
C2012
R736
R645
R1071
R1072
C778
C779
C780
C781
R735
C589 R724
R725
C580
C572
C555
R643
R644
U101
R1127
R1121
R1122
C563
R840
R841
R842
R843
R844
R845
R846
R847
R848
R849
R850
R851
R852
R853
R854
R2131
C542
R485
R450
C2042
R2134
C2043
C550
C904
R1126
C548
R694
R695
R696 R2108
R697
R698
R699
R700
R701
R702
R703
R1110
R1106
R1091
R734
R679
R672
R669
R654
R641
R633
R634
R617
R612
R608
R601
R544
R536
R532
R531
R521
C503
R1205
R1206
R1207
R1208
R587
R588
R589
R590
R591
R592
R593
R594
R595
R596
R597
U100
R839
C594
C525
R491
R483
R484
R476
R463
C485
R419
R444
R407
R443
C530
C502
R426
R418
R406
C484
R2133
R2136
C2041
R380
R381
R382
R383
R384
C895
U85
R490
R482
R481
R475
C516
C512
R480
R460
R458
R449
R442
R425
R417
R2104
R2105
R2106
R2107
SW3
U2002
C713
C523 C524
R462
R2076 R2077
R77
R76
R778
R2084 R779
R780
R781
R2065
R424
R416
R415
C495
C490
C488
C489
C477
R386
Q5
R732
U86
CR2001
R59
R776
R777
C499 R111
R106
R2066
R385
C472
R377
R473
R474
C596
C597
C610
C611
R685
R686
R687
R688
R689
R690
R691
R692
R693
R2055
R530
R2025
R439
R440
R414
C496
C497
R405
R404
R470
R471
R472
R2068
C2007
C819
R774
R775
C541
R469
R455
R456
C483
R547
R520
R2067
R411
R412
R413
R580
R581
R582
R583
R584
R585
R586
C522
R468
C498
R400
R401
R402
R403
R519
R376
C471
J35
C487
R379
C511
R454
R447
R438
R422
R421
C494
C480
C481 C486
C482
R2087
CR2004
R68
C2008
C818
C711
R772
R773
F7
C2010
C816
C2009
C817
R730
R603
R604
R605
KAT4000 User’s Manual
2-3
Setup:
KAT4000 Circuit Board
Front Panel
The front panel, shown in Fig. 2-3, consists of four single-width, mid-size Advanced Mezzanine Card (AMC) sites (double-width and compact modules can be accommodated), a hot
swap LED, an out of service LED, two user LEDs (see “LEDs” on page 2-10 for more information), and a reset switch.
Note: When using a compact AMC module, the module must have a front panel that fully covers the front opening
of the KAT4000 to maintain EMC compliance.
Figure 2-3: KAT4000 Front Panel
B4
H/S
Hot
Reset Swap
AMC4
Switch LED
RST
AMC3
B3
AMC2
B2
3
2
Out of service
and user LEDs
OOS
B1
KAT4000
Front Panel
AMC1
Note: The electromagnetic compatibility (EMC) tests used a KAT4000 model that includes a front panel assembly
from Emerson.
Caution: For applications where the KAT4000 is provided without a front panel, or where the front
panel has been removed, your system chassis/enclosure must provide the required
!
electromagnetic interference (EMI) shielding to maintain CE compliance.
Connectors
The KAT4000 circuit board has various connectors (see Fig. 2-1), summarized as follows:
EIA-232: A serial port is accessible off of the CPU through an on-board header for development purposes and routes to Zone 3.
Ethernet: A 10/100 Ethernet port is accessible off of the CPU through Zone 3.
AMC Expansion Sites J1-J4:
Each site is capable of supporting an AMC module, depending on the configuration, using
B+ style AMC connectors. J1-J4 map to sites B1-B4 (see Table 8-1 for pin assignments).
Backplane Connectors: Whether individual backplane connectors are populated on the KAT4000 depends on the
specific product configuration. PICMG 3.0 specification defines three connector zones on
the backplane:
• Zone 1 is the power connection (dual redundant -48V DC) and system management
connections—P10
• Zone 2 is the data transport interface covering: Base, Fabric, and Synchronization clock
interfaces—J20 through J24
2-4
KAT4000 User’s Manual
10007175-02
Setup:
KAT4000 Circuit Board
• Zone 3 (ATCA) is for the optional Rear Transition Module (RTM) I/O interconnect—J30
through J33
P10: This connector provides the power and IPMB to the KAT4000. The P10 connector has four
levels of sequential mating to provide the proper functionality during live insertion or
extraction of the KAT4000. See Table 12-1 for the pin assignments.
J20, J23: The 80-pin Zone 2 (ZD) connectors provide three levels of sequential mating. See Table 12-2
and Table 12-3 for pin assignments.
J30-J32: The 80-pin Zone 3 (ZD) connectors provide an interconnect to an optional RTM. Connections include AMC ports 12-20, serial ports, a debug Ethernet port, and various other interfaces. See Table 12-4, Table 12-5 and Table 12-6 for pin assignments.
J33: The 24-pin Zone 3 connector provides the 3.3 volt, 12 volt, and transmit/receive signals to
the AMCs. See Table 12-7 for the pin assignments.
J2000: This hot swap switch header is a connector only–a switch assembly (P/N 10005468-xx)
connects to this socket.
Header JP4
JP4 is the 16-pin serial port header for the IPMC debug console, fat pipe debug console, and
host debug console. See Table 2-2 for signal descriptions. See Fig. 2-4 for the header’s location.
Table 2-2: JP4 Signal Descriptions
Jumper:
JP4
Pin:
Signal Description:
Pin:
Signal Description:
1
IPMC_RS232_TX
2
GND
3
IPMC_RS232_RX
4
GND
5
no connect
6
GND
7
FP_CONN_RX
8
GND
9
FP_CONN_TX
10
GND
11
no connect
12
GND
13
HOST_CONN_RX
14
GND
15
HOST_CONN_TX
16
GND
Jumpers
The following KAT4000 jumpers select the boot device, SROM initialization, logic probe,
and whether the IPMC will communicate with the shelf manager system. See Table 2-3 for
jumper descriptions. Fig. 2-4 and Fig. 2-5 show jumper, switch and fuse locations.
10007175-02
KAT4000 User’s Manual
2-5
Setup:
KAT4000 Circuit Board
Table 2-3: Jumpers–JP2 and JP7
Jumper:
JP2
Shunt Description:
1:2 IPMC Mode bit MD2
out-factory use only–used for initial programming of the IPMC
controller (default)
3:4 IPMC Mode bit MD1
out-factory use only–used for initial programming of the IPMC
controller (default)
Register
Map:
N/A
1:2 Boot from socket
in-boot from ROM socket (default)
out-boot from soldered flash
3:4 Ignore SROM
in-CPU ignores SROM (default)
out-CPU loads from SROM
JP7
5:6 Boot redirect (see Register Map 7-4 and Register Map 7-15)
in-disabled The board only attempts to boot from the device
specified by JP7 1:2.
out- enabled (default) The board cycles through the boot
devices until a valid boot image is executed.
7-7
7:8 Logic probe–Reserved
out-(default)
9:10 Standalone (SA) mode
in-in ATCA standalone mode, the IPMC disconnects IPMB-0, then
activates/deactivates the board itself
out-in ATCA normal mode, the IPMC communicates with the
shelf manager to activate/deactivate the board (default)
Note: Jumper settings for JP7 pins 1:2, 3:4 and 5:6 are not applicable to the no-CPU KAT4000 board configuration.
2-6
KAT4000 User’s Manual
10007175-02
Setup:
KAT4000 Circuit Board
Figure 2-4: Jumper, Fuse and Switch Locations, Top
P1 - CPU JTAG/COP
U63
R296
C389
YYYYYY
R358
R2088
R356
C2034
C2037
R357
RN60
R1204
RN35
RN62
RN64
RN63
R2120
R335
R331
C467
C454
C450
R2119
R2048
C449
C446
C451
R332
C422
C426
R330
C421
C425
C432
C424
C431
RN34
RN25
L12
R337
L11 C452
R336
L7 C416
RN26
RN30
R302
R313
U70
PHY
R301
R312
U65
PHY
CR36
U79
CR37
CR38
CR39
1000Base-T
SW1 - IPMC Reset
C455
R264
SW1
R263
R184
R210
1 3
R253
U44
R209
2 4
JP2
M3
U49
U62
48->12 volt Power Supply
R217
R221
R216
R190
C462
U54
C346
R242
R233
JP1 - PLD Config. Header
R262
C338
R234
2
JP1
1
R246
C329
R92
R220
R215
R207
R191
R192
R230
R229
U39
R166
R165
R164
R60
R4
R227
R162
R225
R161
R224
C356
C355
C354
F2
R261
C87
R78
C74
R67
U10
U38
C403
F1R251
- Fuse
forU47
48-Volt Supply to P10, 1A
R2085
C353
10007175-02
F4
F1
F3
E1
R201
C2030
C2031
CR32
CR31
CR34
CR33
CR30
CR29
CR28
R130
CR27
CR19
CR21
CR18
CR16
CR14
CR12
CR10
CR9
CR7
CR5
R10
CR3
R11
CR1
R274
C303
R214
R188
R187
F5
M1
R223
R116
R117
R189
C105
R1
F6
R260
P10
F5
- Fuse
34-pin
ATCA
Zone
1
for
48-Volt
Supply to Power Supply, 10A
Connector
C328
C83
R2
F6 - Fuse
for 48-Volt Supply to Power Supply, 10A
C442
C357
R226
R1158
R3
F2 - Fuse
C404
for 48-Volt Supply to P10, 1A
R228
R163
C46
R5
R231
R168
R167
U25
R61
R6
R252
U48
R232
C47
JP7 - Boot
1:2 Boot from socket (default–installed)
3:4 Ignore SROM
5:6 Enable boot redirection
7:8 Logic probe
9:10 Standalone (SA) mode
J4
R275
R64
R126
U17
R63
2 4 6 8 10
JP7
1 3 5 7 9
C382
M2
C358
R80
R89
R90
R79
C48
C196
R62
JP2 - IPMC
1:2 IPMC Mode bit MD2
3:4 IPMC Mode bit MD1
J23
80-pin ATCA
Zone 2
Connector
C359
U40
U22
R65
R7
U82
1000Base-T
C463
R153
R193
C464
R277
R276
U1
R8
CR41
U80
Flash
R347
C445
C420
RN32
RN33
RN29
U66
PHY
R317
C456
CR35
U9
PLD
R9
CR40
C453
U71
PHY
R346
C242
C228
C208
RN31
C271
R183
R178
J20
80-pin ATCA
Zone 2
Connector
C361
C330
R181
C465
J34
C363
R208
C183
R348
C362
C331
C182
L20
C466
R350
U72
C448
C417
C364
C292
U30
R177
C383
R279
C365
U50
C106
C40
K1
Polar Key
ATCA Guide
R365
R254
C332
C88
C2044
L8
J3
C315
R182
R170
R169
R176
R159
R158
C252
R154
R141
R146
R149
R150
R145
R155
R151
R140
RN28
R280
R239
C301
C272
R247
M4
C316
C107
Y1
SW2
R349
R338
C407
C294
R144
C468
C459
R351
U73
C428
C298
C270
C297
C257
C230
C318
C314
C253
C190
C197
C184
C99
C89
U60
RN27
R180
C244
C218
C209
C202
C170
C161
C150
R171
C243
C333
C319
C296
C293
R137
C67
R265
R314
C267
R136
C68
C16
R2053
C317
C290
C268
R135
C69
C17
C342
C254
C165
C134
C123
L1
C18
R2052
C269 C295
C109 C124
R107
C321
C255
C108
C7
C11
C256
C258
C229
R131
R108
C98
U2
C19
C162
C149
C111 C126
C110 C125
C95
U11
C75
R44
R39
R25
R26
R2050
C90
C49
C112
R109
R2045
C96
U12
C76
R27
C139
C138
C100
C97
C70
R93
R91
U57
C320
R359
U74
R345
C262
C186
R152
R148
R147
R142
R132
R138
R127
C101
C32
R45
U13
C77
C50
R16
R28
R2051
C137
C127
C57
R12
R179
C113
R66
C58
C1
C261
C260
C259
C136
C71
C140
C135
C20
C128
C114
R341
C347
C360 R278
C33
R46
C8
C12
C23
U3
C299
C129
C115
RN56
SW2 - Main Reset
U81
100Base-T
C469
R340
R339
C408
C185
C116
RN53
R361
R360
C366
R248
C72
C418
U67
PHY
C401
U61
R282
R281
L9
C470
R363
R362
RN61
U75
R2123 C2040
C325
R218
RN50
C2039
C402
Y4
C117
C73
C411
C405
U41
R40
R41
R29
C198 C231
C413
C410 C419
C396
M5
RN48
C440
R342
C430
C326
RN57
C441
R333
C429
R219
R202
RN54
R343
R334
C423
R203
RN51
C433
R266
R204
C232
RN49
R344
C234
C406
C400
L2
R13
C390
C339
Y5
U35
C235
C412
U58
C41
C21
L10
U69
C42
C22
RN45
RN37
C427
C248
C247
C236
C219
C211
C2003
C233
C118
C51
RN42
RN58
L13
C434
C348
C2001C2000
C153
RN38
C350
C349
C409
C154
RN46
C351
C2002
U29
C155
C91
C52
C2
C388
RN36
U51
C367
C157
C120
RN43
RN55
R2124
C324
R222
RN39
RN52
C435
C439
R185
J10
C92
R14
C458
C457
U59
R255
R364
R353
R352
C436
C414
U77
R354
C437
C415
RN47
R2049
C304
RN44
C443
C305
J2
C447
C274
C273
Y6
RN40
C444
C306
R2063
RN41
R2029 R2034
R2028 R2035
C438
C307
C245
C246
RN17
C151
R15
C386
R318
U42
C152
C3
RN23
R268
R237
R319
M6
R243
C59
R320
R329
C276
C275
U78
NAND Flash
R321
R2031
R2036
C309
C308
J30
80-pin ATCA
Zone 3
Connector
RN65
R323
R2027 R2033
R2026 R2032
R240
C60
R324
R322
R256
C336
R236
C61
C24
R325
R2030
R2037
R205
C278
C277
C302
C210
C187
C172
R143
C171
C166
R139
R133
R121
R118
RN13
R2001
C26
C25
R2062
R305
R267
C264
C221
C220
C279
U68
MPC8548
Processor
R306
R304
R303
R249
C223
C213
C222
C265
C205
C204
C191
C340
R241
U43
R206
R2016
R2018
R2002
C62
R112
R113
C63
C27
R298
RN24
R291
C310
C282
C280
R94
R31
R355
C380
R271
C374
C266
R95
C311
C283
C263
C141
R96
U55
C313
C312
C284
C281
C203
C130
J31
80-pin ATCA
Zone 3
Connector
1
U76
SRAM
R285
C369
R293
R292
C368
C344
R244
R1159
R30
2
R309
RN59
RN21
C241
C225
C250
C224
C214
C240
RN22
C201
C194
C206
C195
C189
C169
C193
C287
C286
C249
C176
C175
C174
R97
R284
R283
R287
C173
R98
C188
R99
R84
C142
R85
R83
C131
C156
C4
C398
R310
R327
R290
C285
C238
C237
C163
R100
C341
C327
C119
R18
C399
R328
R288
C181
C180
C178 C179
C145
C143
C132
R101
R86
C102
R87
U45
C289
C212
JP3 - PLD Prog. JTAG
JP3
R311
C375 C397
R257
C288
C158
R17
R299
C387
C251
C226
C215
C227
C207
R134
C164
C148
C160
C146
RN9
C103
RN5
RN10
RN4
RN8
RN3
RN7
RN2
RN1
RN6
R102
R82
C28
R20
R2089
C381
R286
R238
R250
RN19
C93
U46
1
R326
C239
C144 C159 C167 C177 C192 C199
R103
R88
C44
C30
R47
C133
C121
R104
L3
R19
R300
C384
R289
R105
R42
C10
R212
R211
U52
C200
C168
C122
U4
C9
C300
R186
R157
C94
R124
R120
R125
R115
R129
R123
R119
C147
L5
C43
C13
R196
R195
2
R308
C376
R2013
C84
R81
R43
R32
R34
R270
C85
C78
R122
R110
C79
C53
R33
C391
L6
R269
RN16
R114
C80
R2014
R128
C36
C54
C5
R156
R2008
C81
J32
80-pin ATCA
Zone 3
Connector
C392
C377
M7
R213
JP4 - Serial Port:
1-4 IPMC
7-10 Fat Pipe Module
13-16 Host CPU
15
C370
R198
U31
R172
C393
C378
C372
C371
R307
R199
J33
24-pin
ATCA
Connector
JP4
R194
C82
C37
C104
R21
C379
C373
C337
R200
U32
R173
U20 U23 U26
R2015
C38
R53
C6
R294
U53
C323
U64
DDR2
SO-DIMM
J1
R258
R197
C35
R22
16
M8
Y3
Y2
U33
RN18
R2012
C34
R24
R259
C335
U37
C334
U34
R174
U21 U24 U27
L4
R23
R175
C216
RN15
R160
U7
R2007
U8
R2009
U14 U15 U16
U6
R2006
R2005
R2004
C45
R54
C29
C56
C55
U5
C39
C31
R48
C14
R51
R50
R49
R35
R52
R36
C15
RN14
RN12
C64
R37
C291
U18
PLD
C65
R38
C343
RN20
RN11
C217
C66
C2035
C394
C385
C461
R272
U56
C2038
R273
C352
C345
R245
C460
C86
U36
Clock
U28
Clock
C395
U2000
R235
C322
U19
Clock
K2
Polar Key
ATCA Guide
XXXX-
R295
P1
1
C2036
CR26
CR24
CR25
CR23
CR20
CR22
CR11
CR17
CR13
CR15
CR2
CR8
CR4
CR6
%)&.+92
R297
2
F4 - Fuse
for 48-Volt Supply to Power Supply, 8A
7
0
F3 - Fuse
for 48-Volt Supply to Power Supply, 8A
KAT4000 User’s Manual
2-7
Setup:
KAT4000 Circuit Board
Figure 2-5: Jumper, Fuse and Switch Locations, Bottom
J2000 - Hot Swap Switch Header
%)&.+92
R750
C553
R2087
C570
R733
R668
R653
R640
R616
R611
R723
C588 R722
C2032
C2033
C562
R2069
R2054
C549
R2070
R778
R2084 R779
R780
R781
R751
C595
R760
R761
R782
R673
R670
R655
R642
R635
R618
R613
R614
R450
R783
C2024
C2025
C2026
R1071
R1072
R784
R752
C574
C564
C784
C901
C905
R1124
R1119
R1120
R1117
R1118
R1112
R1108
R1109
C891
R1082
C847
R1079
R1016 C848
R1097
R1098
R1094
R1090
R1085
R1086
R1083
R1080
R1081
C804
C807
R1203
R1202
R1136
R1135
R991
R981
R970
R971
R965
C760
C759
C751
R948
R946
R1133
C827
R1138
C879
R954
R1149
R1139
R1140 R1137
R1134
R1131
R1132
C810
R2099
R2096
F10
R2098
R2097
C811
U92
Flash
C881
U97
C866 R1068
C813
R1156
C648
C636
C764
R1151
R1057
R1058
R1059
R1060
R1061
C862
C609
M9
R2094
R2093 R2095
C841 R1028
R1063
R1064
C863
R1065
R1095
U99
R1096
U94
R1069
C867
R1088
M10
R1103
C892
C639
R883
U93
C837 R1027
R1009
R1062
R1049 C854
R982
R2075
C637
R992 C814
R2073
R2071
R2072
R2074
R602
R866
R867
R868
C882
U98
R1087
R2092
R993
R994
R995
C815
C889 C890
RN78
R1024 R1025 R1026
R1017
R940
R1099
R1100
R1101
R1102
C812 R1003
R939
R1143
R882
C662
C663
C762
C763 R966
C686
RN77
RN75
R749
R818
R819
R820
R821
R822
R823
R824
R825
R826
R827
R828
R829
R830
R831
R832
R833
C657
C658
C659
C660
C661
R1113
C903
R2100
R2103
C2005
C2006
R2115 R1201 R1015
C840 R2111
C830
C861
R2102
R2101
C888
C2004
C823
C885
R1200
C860
R1046
C902
C899
L19
R1125
R1130
R1129
C887
R1014
R1008
R1002
C859
R1047
R1048
C831
RN76
C627
C632
C633
C634
C635
RN74
U90
C628
C629
C630
C631
RN73
C617
U89
C569
R664 R665
R577
R579
R503
R479
R467
10007175-02
C738
R927
R928
R913
R914
C750
R1157
C626
C616
R757
C586
L16 C551
C546
R2038R562
R568 R569
R542
R528
R517
R459
R445
R435
R409
R398
R395
R387
R374
R372
R369
R367
F9
C2013
R1055
R1056
U91
Flash
F9 - Fuse
for 3.3-Volt Supply to (P1) COP/JTAG, 0.75A
R704
R705
R706
C829
C803
C777
C793
R2041
R1052
R1053 C874C878
R1054
C836
C809 C828
C739
C723
R926
R925
R920
R900
R897
R808
R809
R810
R811
R812
R813
R814
R815
C618
R758
R759
C749
C776
C709
R748
R2078
R663
R662
R651
R636
C545
C529
R501 R502
C506
L14
C505
L15 C534
C528
C539
RN66
C515
R638
C802
C775
C833
R949 C761
R1146
R637
R2114
C834
C756 C774 C800 C825
C748
C758
R1018
R1019
R1020
R1021
R1022
R1023
C824
C806
C745 C757 C792 C801 C826 C835
C746
C747
C737
C691
C692
C722
C593
C568
RN68
C734 C735 C736
C699
C707
C721
C708
C791
C720
C698
C690
R805
R806
R816
R817
R1153
R650 R661
R2057
C728
C706 C729
C798
C799
C755
C808
C773
R2058
C730
C638
R878
R877
R875
R865
R767
R747
R718
R719
C797
C704
C681
C671
C685
R957
R953
R947
C732
C754
C744 C772
C733
C677
C678
C669
R2059
C670
C684
C656
R990
R980
C727
RN72
R756
C2017
C2018
C552
R561
F8
R2061
RN70
R769
R729
R2079
R630
C585
R560
RN67
R466
C504
R408
F8 - Fuse (optional)
for 2.5-Volt Supply to (P1) COP/JTAG, 0.75A
R1150
R1152
C579
C567
CR42
R464
R461
R465
R745 R746
C582
R1155
C573
C566
R629
C533
C501
R434
C607
C608
C614
C615
R631
R2137
R432
R433
R394
C517
C518
C514
C493
C475
R393
C509
C510
R548
R549
R550
R551
R552
R553
R554
R555
R556
R557
R558
R559
C544
C513
R431
C683
C832
C790
C771
C703
C705
C682
C789
C726
C697
R807
C532
R429
C680
C753
F10 - Fuse
for 3.3-Volt Supply to (JP3) JTAG, 0.75A
R803
R804
C538
R430
C500
R428
C492
C474
C491
C473
R391
C644
R889
R890
R891
R892
R880 R893
R881 R894
R895
R896
R1154
R541
R539
R527
R516
R489
R478
CR2003
R389
R392
KAT4000 User’s Manual
R717
C527
R58
R56
R390
2-8
R1147
R647
R648
R649
C679
C689
R802
C584
C2014
C2015
C2016
R684
C667
C668
R2060
R886
R887
R888
C643
C796
C725
R938
R937
R932
R924
R923
R919
R911
R912
R906
RN71
RN69
C581
R660
C537
R627
R628
C606
C583
R2064 C561
C536
R2010
C535
C521
R625
R626
R570
R571
R540
R538
R526
R515
R488
R477
CR2002
R2011
R622
R623
R624
R2090
R765
R766
R646
R1142 R1145
CR2000
C508
R57
C526
R2091
R837
R838
R1066
R1067
C805
R936
R931
R921
R905
R744
R922
R918
R910
R909
U88
C724
R2127
R2128
R2129
R2130
R755
R681
C565
C577 C578
R680
R658 R659
C719
R682
R683
R1148 R1141
C520
C900
C849
C560
R716
R1144
C507
R1115
R1116
C898
R1107
R742 R743
R715
C592 R728
C2023
C2022
R797
U96
R1051
C846
R989
R1001
R796
U95
C845
R677
C559
R599
R55
R1128
L18
C752
C576
R676
R2021R2022
R764 C601
C2019
R740 R741
R657
C2020
C2021
R768
R2081
C558
R609
R598
R545
R537
R987
R999
R988
R1000
R2080 R798
R799
R800
R801
R397
U83
VSC7376 GbE Switch
R1123
C894
R986
R998
C844
R754
C543
C540
R2125
C531
R2126
C519
C602
C603
C604
C605
R711
R712
R713
R714
R2112
R2116
C872
C873
R2121 R2122 R2117 R2118
C688
R792
R793
R794
R795
R2113
C864
C865
R964
R944
R675
R873
R874
C702
C642 C655 C666
R1114
C893
C654 C676
C641
C822
C868
C869
C870
C871
R2110
R963
R943 C718
C575
R674
C557
R709
R710
R1037
C852
R1038
R1039
R1040
R1041
R1042
R1043
R1044
R1045
C853
C857 C858
C743
C687
C653
R656
C623 R864
R707
R708
R979
R916
R917
R908
R903
C625
R857
C839
C843
C731
R904
R315 R899
R316 R885
R872
R862
R863
R856
R835
R836
R525
R506
R492
C556
R534
R523
R524
R486
R487
C622
C769 C795
C742 C770 C788
R2109
C768
C696
R1012
R1011
R1006
R951
R952
C600
C647 C652 C675
R870
R1013
R1007
R997
R985
R977
R976 R978
R969
R962
R942 C717
R869
R859
R858
R855
R739
R961
R871
C621
R762
R763
C701
C897
R1105
C856
U87
C591
R860
R861
R834
C695 R935
C665 C674
C640
R1111
R1104
C886
C855
L17
C842
R975
R753
C821
R960
C651
C624
C896
R1093
C883
C880
R1084
R974
C765
R727
C838
R930
R2020
R619
R620
R621
R1050
C850
R1029
R1030
R1031
R1032
R1033
R1034
R1035
R1036
C851
C820
C766 C794
C741 C767 C787
R934
R929
C620
R564 R573
R565 R574
R566 R575
R567 R576
R2003 R2019
R2000 R2017
R959
R958
R956
R950
C700
C646 C650 C673
C694
R1004
R1005
R996
R984
R973
R968
C664 C672
C645
R941 C716
C619
R726
R738
R2082
R955
C693 R933
C649
R737
R1010
R945
R983
R972
R967
R884
C740
R2040R2039
C877
C786
R879
R876
R915
R907
R902
C590
C2028
C2027
R427
U84
PEX8524 Switch
C876
C785
R790
R791
R901
R898
R451
R1092
R1089
R533
R522
R504
R505
C783
R786
R787
R507
R508
R509
R510
R511
R512
R513
R514
R1077
R1078
R785
R788
R789
R493
R494
R495
R496
R497
R498
R499
R500
R1075
R1076
C782
C2011
C2012
R736
R2083
C598
C599
C612
C613
R452
U101
CR43 CR44
R1073
R1074
C778
C779
C780
C781
R735
C589 R724
R725
R645
C580
C572
C555
R643
R644
R840
R841
R842
R843
R844
R845
R846
R847
R848
R849
R850
R851
R852
R853
R854
R1127
R1121
R1122
C563
C904
R1126
C571
C542
R485
C550
U100
R839
C594
R694
R695
R696 R2108
R697
R698
R699
R700
R701
R702
R703
C554
R1110
R1106
R1091
C548
R2131
R587
R588
R589
R590
R591
R592
R593
R594
R595
R596
R597
R536
R532
R531
R521
C503
C2042
R2134
C2043
R2132
C715
R734
R679
R672
R669
R654
R641
R633
R634
R617
R612
R608
R601
R544
C525
R491
R483
R484
R476
R463
R1205
R1206
R1207
R1208
U85
R490
R482
R481
C502
R426
R419
R444
R407
R443
C714
C895
C530
C516
C512
R480
R460
R475
R380
C713
U86
C523 C524
R462
R381
R382
R383
R384
C485
R77
R76
R418
R406
C484
R2133
R2136
C2041
SW3
Q5
C2007
C819
R732
R448
R441
R458
R449
R442
R425
R417
R2104
R2105
R2106
R2107
CR2001
U2002
C712
R776
R777
R2065
R424
R416
R415
C495
C490
C488
C489
C477
R386
C2008
C818
C711
R772
R773
C596
C597
C610
C611
C499 R111
R106
R2076 R2077
R59
R423
R2056 R457
R473
R474
R2068
R2066
R385
C472
R377
R2025
R440
R439
C496
C497
R414
R405
R404
C483
C710
R775
R2055
J35 - IPMC JTAG/Emulation Header
R68
R771
R774
R685
R686
R687
R688
R689
R690
R691
R692
R693
C541
R470
R471
R472
R530
R455
R456
R520
R2067
R411
R412
R413
R580
R581
R582
R583
R584
R585
R586
R547
R469
C547
R468
C498
R400
R401
R402
R403
C522
R376
C471
J35
C487
R519
C511
R454
R447
R438
R422
R421
C494
C480
C481 C486
C482
F7
R770
R678
R671
R666
R667
R652
R639
R632
R615
R610
R606
R607
R600
R453
R446
R437
1
R731
C478
C479
C476
R2086
CR2004
R379
SW3 - Front Panel Reset
R721
R371
00
2
F7 - Fuse
for 3.3-Volt Supply to (J35) JTAG, 0.75A
C2010
C816
C2009
C817
R730
C587 R720
C2029
R578
R572
R563
R546
R543
R535
R529
R518
R436
R420
R410
R399
R396
R388
R375
R378
R373
R370
R368
R366
J20
R2024
R2023
R603
R604
R605
Setup:
KAT4000 Circuit Board
JTAG Interfaces
The KAT4000 provides the capability for JTAG type boundary scan testing. The IPMC controls the two JTAG interfaces (hubs), see Fig. 2-6. One JTAG hub is connected to the fat pipe
switch module, two PLDs, and the four AMC sites. The other hub is connected to the Ethernet core switch, the PCI Express switch, the processor, the GbE PHYs, and the synchronization clock circuitry. See Fig. 2-4 and Fig. 2-5 for the location of individual headers.
Figure 2-6: JTAG Hubs
Prog.
Header JP3
Config.
Header JP1
AMC 1
Port 1
Port 1
JTAG/Debug
Header J35
IPMC GPIO
Master
Port 2
SCANSCA112
JTAG
Multiplexer
SCANSTA112
Port 0
Port 3
JTAG Multiplexer
Port 6
GbE PHY
(5)
Port 4
Clock
Synch. (3)
PEX8524
PCI Express Switch
KSL PLD
VSC7376
Ethernet Core Switch
Layer 2
IPMC PLD
AMC 2
AMC 3
Port 6
AMC 4
Port 4
Port 5
Port 5
MPC8548
Processor
Port 2
SCANSCA112
JTAG
Multiplexer
SCANSTA112
Port 0
Port 3
JTAG Multiplexer
Master
COP/JTAG
P1
Fat Pipe
Switch Module
P1: The 16-pin JTAG/COP P1 header is provided for debug purposes for the processor. This interface provides for boundary-scan testing and COP debugger support of the CPU (see Fig. 3-2)
and is compliant with the IEEE 1149.1 standard. The header pin assignments are defined in
Table 3-6.
Caution: Install a shunt on JP1 pins 1:2 before using the JTAG/COP interface (P1) to enable CPU
JTAG/COP access. Attempting to use the JTAG/COP interface without this shunt in place may
!
cause damage to the board. Refer to Table 7-3 for JP1 pin details.
JP3: The 10-pin JTAG JP3 header is provided for programming In-System Programmable (ISP)
PLDs (see Fig. 7-2). The header pin assignments are defined in Table 7-2.
10007175-02
KAT4000 User’s Manual
2-9
Setup:
KAT4000 Circuit Board
JP1: The 10-pin JP1 configuration header is provided for PLD programming. Installing a shunt on
JP1, pins 1:2, enables the JP3 PLD programming header. The header pin assignments are
defined in Table 7-3.
J35: J35 is the 14-pin IPMC JTAG/emulation header. See Table 2-4 for signal descriptions.
Table 2-4: J35 Signal Descriptions
Jumper:
J35
Pin:
Signal Description:
Pin:
1
IPMC_TCK
2
Signal Description:
GND
3
IPMC_TRST*
4
GND
5
IPMC_TDO
6
GND
7
IPMC_EMUL_RESI*
8
3_3 volts
9
IPMC_TMS
10
GND
11
IPMC_TDI
12
GND
13
IPMC_RES*
14
GND
LEDs
See Fig. 2-7 for the on-board Light-Emitting Diodes (LEDs). The KAT4000 has four front
panel LEDs. See Fig. 2-8 for their location. The debug LED codes are defined in Table 14-1. The
front panel LEDs include:
2 and 3: The yellow (CR2000) and green (CR2002) LEDs are user defined.
OOS: The Out Of Service (CR2003) programmable LED controlled by the IPMI controller is either
red (North America) or yellow (Europe). When lit, this LED indicates the KAT4000 is in a
failed state.
HS: The blue Hot Swap LED (CR2001) displays four states:
On-the board can be safely extracted
Off-the board is operating and not safe for extraction
Long blink-insertion in progress
Short blink-requesting permission for extraction
Caution: Do not remove the KAT4000 while the blue LED is blinking.
!
2-10
KAT4000 User’s Manual
Reference the PICMG® 3.0 Revision 2.0 AdvancedTCA™ Base Specification for more detailed
LED information.
10007175-02
>"
/
?"'
1"6/
@
1"6/
@
1"6/
@
1"6/
@
1"6/
@
1"6/
<
#/
?"'
1"6/
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
PCIe Lane Good
&
&
&!
&
&
&
&
&
&
&
&
&
&!
&
&
&
&
&
&!
&
10007175-02
& & &
;:.*:2:0
Status:
10/100
Debug
Ethernet
;:.*:2:0
(A:2:0
(A:2:0
(:2:0
2(:2.@.2):0
&
&
CPU Status
<:+&*0= &
<:&00= &
<:(2:%<2= &
&
&
&
&
&
&
&
0;<+:0=
0;<+:0=
0;<+:0=
0;<+:0=
:0=
Boot Device
:0=
(2:0=
Debug
&
&
&
&
:0;<+:0
:0;<+:0
:0;<+:0
:0;<+:0
Internal 8051 Debug
Setup:
KAT4000 Circuit Board
Figure 2-7: LEDs, Top
2(:.*:0
Activity:
Fat Pipe, Core Switch,
Base PHYs
& &!
IPMC PLD Status
KAT4000 User’s Manual
2-11
Setup:
KAT4000 Circuit Board
Figure 2-8: LEDs, Bottom
CR2001
CR2000
CR2002
CR2003
2-12
KAT4000 User’s Manual
;<:0:%**
Hot Swap
0:%**
User
0:%**
User
0:%**-0&:%**
B&-,/C
Out of Service
10007175-02
Setup:
KAT4000 Circuit Board
Reset
The reset signals are routed to the PLD. See Chapter 7 for the reset registers. The following
sources can reset the KAT4000:
Front Panel: The front panel reset switch can reset the board.
Remote IPMI: The KAT4000 is capable of being reset remotely via the IPMI controller.
Software: Software is capable of asserting reset to the individual modules (see “reset” on
page 14-25).
Processor: The processor is also capable of resetting the board.
RTM: If a rear transition module is used that utilizes the Zone 3 reset signal, the board can be
reset from the RTM.
10007175-02
KAT4000 User’s Manual
2-13
Setup:
KAT4000 Circuit Board
Figure 2-9: KAT4000 Reset Diagram
3_3V
3_3V
DEBUG_HRESET*
DEBUG_SRESET*
DEBUG_TRST*
CPU
COP/
JTAG
%:9&(2:* 9&(2:&E:*
%:(&(2:*
<:2&(2:*
%:2&(2:*
<:9&(2:*
<:(&(2:*
HRESET_REQ*
CPU_TRST*
CPU_SRESET*
CPU_HRESET*
MPC8548
Processor
3_3V
(9:&(2:*
1_5V
1_5V
3_3V
PWR_OK
Voltage
Monitor
250mS
Delay
PWRGD_OR
3_3V
3_3V
Front Panel
RESET
3_3V
POR_RST*
Voltage
Monitor
%(:*
OSC_EN
Soldered Flash
16/32/64MB
Clock Tree
25 MHz
125 MHz
20 MHz
33 MHz
IPMC
Core Switch
Port 3 PHY
Core Switch
Port 2 PHY
%&:&(2:*
%&(A:&(2:*
250ms
Delay
PB_RST*
A&:%
FLASH_RST*
CORESW_RST*
KSL
CPLD
Ethernet
Core Switch
Base Channel 2
;:&(2:*
BC_RST*
Base Channel 1
GbE PHY
3_3V_MP
33 MHz
3_3V
2_5V
1_8V
1_2V
1_0V
1_1V_CPU_CORE
OSC33_IPMC
**0:&(2:*
3_3V_MP
L_PAYLD_EN
FP_PWR_GOOD
3_3V_PWRGD
2_5V_PWRGD
1_8V_PWRGD
1_2V_PWRGD
1_0V_PWRGD
CPU_CORE_PWRGD
**0:A&:&(2:*
AMCs
Bn_EN*
IPMC
PLD
)0:&(2:*
/4
0;<+:&(2:*
SCANSCA112_RST*
PLD JTAG
MUX
IPMC_PO_RST*
:&(2:*
IPMC_RES*
Voltage
Monitor
250mS
Delay
Hotswap 3_3V_MP
Switch
PRIV_I2C_SCL
PRIV_I2C_SDA
IPMC
NVRAM
I2C
I/O Port
AMCs
.:&(2:*
00&:&(2:*
E_HANDLE
OSC_EN
-48V
to 12V
Brick
2-14
IPMC
BMR-H8S
16-Bit uP
PAYLD_RST*
48A_OK*
48B_OK*
KAT4000 User’s Manual
EDEBUG_RST*
FP_RST*
NAND Flash
256/512MB
Debug 10/100
Ethernet PHY
10007175-02
Fat Pipe
GbE PHY
CLK_SYNC1_RST*
CLK_SYNC2_RST*
CLK_SYNC3_RST*
3_3V_MP
IPMC_RST_PB*
NAND_WARM_RST*
3_3V
:()*BDC:&(2:*
IPMC 3_3V_MP
RESET
NAND_RST*
PCIE_RST*
DDR2_RST*
MT9046 Clock
Synchronizers
(3)
PCI Express
Switch
DDR2
SODIMM
Fat Pipe
Module Site
Setup:
KAT4000 Setup
KAT4000 SETUP
For step-by-step setup instructions, see the KAT4000 Quick Start Guide, #10008585-xx, or
the KAT4000 Quick Start Guide for the No-CPU Carrier Board, #10008506-xx.
You need the following items to set up and check the operation of the Emerson KAT4000:
❐ KAT4000 carrier
❐ ATCA chassis and power supply
❐ Compatible AMC modules
❐ Console serial cable(s)
❐ Optional rear transition module and cable
❐ CRT terminal
Save the antistatic bag and box for future shipping or storage.
Note: This guide assumes that the host is running Red Hat Linux 9.0. If you use a different Linux distribution, you’ll
have to adapt these instructions to your implementation.
Identification Numbers
Before you install the KAT4000 circuit board in a system, you should record the following
information:
❐ The board serial number: 711— _______________________________________ .
The board serial number appears on a bar code sticker located on the back of the board.
❐ The board product identification: _____________________________________ .
This sticker is located near the board serial number.
❐ The monitor version: _______________________________________________ .
The version number of the monitor is on the monitor start-up display.
❐ The operating system version and part number:__________________________ .
This information is labeled on the master media supplied by Emerson or another vendor.
❐ Any custom or user ROM installed, including version and serial number:
________________________________________________________________ .
It is useful to have these numbers available when you contact the Technical Support
department at Emerson.
10007175-02
KAT4000 User’s Manual
2-15
Setup:
KAT4000 Setup
Power Requirements
The KAT4000 draws all payload power from the dual redundant -48 volt inputs on the ATCA
connector P10 (Zone 1). Under normal operating conditions, the power requirement is
shared between the two -48 volt supplies. Power is limited to 200 watts maximum (including AMC and optional RTM sites), with 80W maximum per site and a combined max of
120W to all four sites and the RTM, if used. Optional RTMs receive their power from the
KAT4000. Table 2-5 lists the board’s typical power requirements.
Table 2-5: Typical Power Requirement
Configuration:
Watts:
1.3 GHz 8548 processor, 1 GB DDR2 SDRAM,
No AMC modules
40 W
Note: When the KAT4000 is powered off, so is the RTM.
The exact power requirements for the KAT4000 circuit board depend upon the specific
configuration of the board, including the CPU frequency and amount of memory installed
on the board. Please contact Emerson Technical Support at 1-800-327-1251 if you have
specific questions regarding the board’s power requirements.
Environmental Considerations
As with any printed circuit board, be sure that air flow to the board is adequate. Chassis
constraints and other factors greatly affect the air flow rate. The environmental requirements are shown in Table 2-6 and Table 2-7.
Table 2-6: Environmental Requirements
Environment:
Range:
Relative Humidity:
Operating
Temperature
0° to +55° Centigrade, ambient
(at board)
Not to exceed 85%
(non-condensing)
Storage Temperature
—40° to 70° Centigrade
Not to exceed 95%
(non-condensing)
Altitude
0 to 4,000 meters above sea level
n/a
Table 2-7: Air Flow Requirements
Configuration:
1.3 GHz processor with
1
1 GB DDR2 SDRAM
4 AMC
modules
Power/Temperature:
Air Flow:
182 W @ 55° C
(35.5 W per AMC)
21 CFM
1. The physical placement of AMC modules greatly affects air flow requirements. Air flow is required at the
processor to maintain junction temperature less than 105° C at specified ambient temperature.
2-16
KAT4000 User’s Manual
10007175-02
Setup:
Troubleshooting
Cooling requirements are a function of operating software, AMC power consumption and
AMC airflow resistance. The KAT4000 thermal performance must be verified in the end
user’s operating environment. Contact Emerson Technical Support at 1-800-327-1251 for
more information.
TROUBLESHOOTING
For instructions on how to properly install and configure the KAT4000 in a system, see the
KAT4000 Quick Start Guide, #10008585-xx, or the KAT4000 Quick Start Guide for the No-CPU
Carrier Board, #10008506-xx. If difficulty persists after referencing the Quick Start Guide,
use this checklist:
❐ Be sure all modules are seated firmly: the AMC modules on the KAT4000, the RTM on
the KAT4000 (if used), and the KAT4000 in the card cage.
❐ Verify the jumper settings (see Table 2-3).
❐ Be sure the system is not overheating.
❐ Check the cables and connectors to be certain they are secure.
❐ Check your power supply for proper DC voltages.
❐ Check that your terminal is connected to a console port.
Technical Support
If you need help resolving a problem with your KAT4000, visit
http://www.artesyncp.com/support/index.html#postsales on the Internet or send e-mail
to support@artesyncp.com. Please have the following information available:
• KAT4000 serial number
• monitor revision level
• product identification from the sticker on the KAT4000 board
• version and part number of the operating system (if applicable)
• whether your board has been customized for options such as a higher processor speed
or additional memory
• license agreements (if applicable)
If you do not have Internet access, please call Emerson for further assistance:
(800) 327-1251 or (608) 826-8006 (US)
44-131-475-7070 (UK)
10007175-02
KAT4000 User’s Manual
2-17
Setup:
Troubleshooting
Product Repair
If you plan to return the board to Emerson Network Power for service, visit
http://www.artesyncp.com/support on the internet or send e-mail to
serviceinfo@artesyncp.com to obtain a Return Merchandise Authorization (RMA) number.
We will ask you to list which items you are returning and the board serial number, plus your
purchase order number and billing information if your KAT4000 hardware is out of warranty. Contact our Test Services Department for any warranty questions. If you return the
board, be sure to enclose it in an antistatic bag, such as the one in which it was originally
shipped. Send it prepaid to:
Emerson Network Power, Embedded Computing
Test Services Department
8310 Excelsior Drive
Madison, WI 53717
RMA #____________
Please put the RMA number on the outside of the package so we can handle your problem
efficiently. Our service department cannot accept material received without an RMA number.
2-18
KAT4000 User’s Manual
10007175-02
Section 3
Central Processing Unit
This chapter is an overview of the processor logic (optional) on the KAT4000. It includes
information on the CPU, exception handling, and the I/O parallel port pin assignments. The
KAT4000 uses a Freescale MPC8548 PowerQUICC III™ microprocessor. For more detailed
information, refer to the MPC8548E PowerQUICC III™ Integrated Host Processor Family Reference Manual. Refer to Fig. 3-1 for a block diagram of the MPC8548. The MPC8548 is divided
into two main system blocks as outlined in the following table:
Table 3-1: MPC8548 Features
Category:
MPC8548 Key Features:
Microprocessor Core
Embedded e500 Core
Full 32-bit Book E architecture, integer data types of 8, 16, and 32 bits,
32-bit floating-point data type, capable of issuing and completing two
instructions per clock cycle, 7 pipeline stages, Auxiliary Processing
Units (APUs), page address translation, core registers, memory
management unit
L1 Cache
32-kilobyte data and 32-kilobyte instruction cache, 32-byte line,
eight-way set associative, parity protection
L2 Cache
512 kilobytes, eight-way set associative
CPU Core Speed
1 GHz or 1.3 GHz, with a 400 MHz or 533 MHz DDR2 bus, respectively
Peripheral Modules
Ethernet
Four 10/100/1000 enhanced three-speed controllers (eTSEC), full/half-duplex support, for high-speed interconnect, a set of multiplexed
pins support two high-speed interface standards: 1x/4x serial RapidIO
(with message unit) and up to x4 PCI Express
Local Bus Controller (LBC)
DDR2 SDRAM memory controller, General Purpose Chip Select
Machine (GPCM), and three User-Programmable Machines (UPM)
High-Speed Serial
Interfaces
PCIe, sRIO
10007175-02
KAT4000 User’s Manual
3-1
Central Processing Unit:
Figure 3-1: MPC8548 Block Diagram
0<&2
F%&
'
I2C
.
/""/
(#6/>
'
I2C
.
/""/
IRQs
.//6
/""/
B.C
Serial
DDR2 SDRAM
Flash GPIO
MII, GMII,
TBI, RTBI,
RGMII, RMII
MII, GMII,
TBI, RTBI,
RGMII, RMII
MII, GMII,
TBI, RTBI,
RGMII, RMII
RTBI, RGMII,
RMII
;
#5(&
;
./6#
#5
5/#>
6"
00&
/""/
/
;
0
#5
/
"
;6
#"
;6
/""/
2(
--
+,
%*
(4#5
,/#
2(
--
+,
(/"
&.%
/
.
/
/""/
4x RapidIO
8x PCI Express
7,
.7F
/""/
PCI-X
133 MHz
75"
0
/""/
2(
--
+,
2(
--
+,
The MPC8548 PowerQUICC III version follows the PowerQUICC II communications processor. Some new MPC8548 features used on the KAT4000 include:
• e500 core 32-bit implementation of the Book E architecture
• Serial Management Channel (SMC) UART functionality implemented in SCC
• Four integrated 10/100/1000 Ethernet controllers
• Double Data Rate Two (DDR2) SDRAM memory controller
• 4-port On-Chip Network (OCeaN) full crossbar switch fabric
• Enhanced debug features
For more detailed information, reference the Freescale application note Migrating from
PowerQUICC II to PowerQUICC III.
3-2
KAT4000 User’s Manual
10007175-02
Central Processing Unit:
MPC8548 Functions
MPC8548 FUNCTIONS
The MPC8548 provides the following functions on the KAT4000 module.
• Dual UART devices
• Two I2C controllers
• Programmable interrupt controller
• DDR2 SDRAM memory controller
• General-purpose I/O (GPIO)
• Chip select generation for the local bus devices
• DMA capability
• PCI-X bus interface
• sRIO or PCIe controller
• Four three-speed Ethernet controllers
MICROPROCESSOR CORE (E500)
L1 Cache
The MPC8548 processor implements two separate 32-kilobyte, level-one (L1) instruction
and data caches that are eight-way, set-associative. The L1 supports a four-state modified/exclusive/shared/invalid (MESI) cache coherency protocol. The caches also employ
pseudo-least recently used (PLRU) replacement algorithms within each way.
L2 Cache
The internal 512 kilobyte L2 cache is an eight-way set associative instruction and data
cache. The L2 cache is fully pipelined to provide 32 bytes per clock to the L1 caches. The L2
Control (L2CTL) register configures and operates the L2 SRAM array. The L2CTL is
read/write and contents are cleared during power-on reset.
The L2 cache is cleared following a power-on or hard reset. Before enabling the L2 cache,
configuration parameters must be set in the L2CR and the L2 tags must be globally invalidated. Initialize the L2 cache during system start-up per the following sequence:
1 Power-on reset is automatically performed by the assertion of HRESET* signal.
2 Verify that L2CR[L2E] = 0.
3 Perform an L2 global invalidate by setting L2CR[L21].
10007175-02
KAT4000 User’s Manual
3-3
Central Processing Unit:
Microprocessor Core (e500)
4 Poll L2CR[L2I] until it is cleared.
5 Enable the L2 cache for normal operation and then set the L2CR[L2E].
Timer/Counter
Each of the four 32-bit wide timer/counters can be selected to operate as a timer or a
counter. Each timer/counter increments with every TCLK rising edge. In counter mode, the
counter counts down to terminal count, stops, and issues an interrupt. In timer mode, the
timer counts down, issues an interrupt on terminal count, reloads itself to the programmed
value, and continues to count. Reads from the counter or timer are completed directly from
the counter, and writes are to the timer/counter register.
PCI Device and Vendor ID Assignment
The KAT4000 has been assigned the following PCI identification number:
Table 3-2: PCI Device and Vendor ID
Vendor ID:
Device ID:
Description:
0x1223
0x001B
Reported by the PCI bridge
The KAT4000 sets the PCI revision ID to the hardware version number located in the CPLD’s
Hardware Version register (Register Map 7-2).
L2 Control Register (L2CR)
Register 3-1: L2 Control Register (L2CR)
0
1
L2E
L2I
16
17
reserved
2
3
4
5
L2SIZ
6
8
reserved
18
19
20
21
L2
LO
L2
SLC
R
L2LF
R
22
23
9
10
11
12
L2
DO
L2I0
R
L2IN
TDIS
27
28
29
L2STA
SHDIS
R
24
L2LFRID
reserved
L2E: L2 Enable—enables L2 cache or memory-mapped SRAM (L2 array).
0 L2 array disabled
1 L2 array enabled
L2I: L2 Flash Invalidate
0 L2 status and LRU bits are not being cleared
1 Clears all L2 status bits and LRU
3-4
KAT4000 User’s Manual
10007175-02
13
15
L2SRAM
30
31
L2STASH
Central Processing Unit:
Microprocessor Core (e500)
L2SIZ: L2 SRAM Size—indicates the total available L2 SRAM size (read-only).
00 Reserved
01 256 kilobyte
10 512 kilobyte
11 1024 kilobyte
L2DO: L2 Data-Only mode (reserved in full memory-mapped SRAM mode)
0 L2 cache allocates entries for instruction fetches that miss in the L2
1 L2 cache allocates entries for processor data loads that miss in the L2
L2IO: L2 Instruction Only—causes L2 cache to allocate lines for instruction cache transactions only
(reserved in full memory-mapped SRAM mode).
0 L2 cache entries allocated for data loads that miss in the L2 and for processor L1
castouts
1 L2 cache allocates entries for instruction fetch misses
L2INTDIS: L2 read Intervention Disable (reserved for full memory-mapped SRAM mode)
0 Cache intervention enabled
1 Cache intervention disabled
L2SRAM: L2 cache/memory-mapped SRAM block assignment
L2SIZ = L2BLKSIZ (1 block):
000 Block 0 = cache
001 Block 0 = SRAM0
010-111 Reserved
L2SIZ = L2BLKSIZx2 (2 blocks):
Block 0
Block 1
000 Not used
Cache
001 SRAM0
Not used
010 SRAM0
Cache
011 SRAM0
SRAM1
100-111 Reserved
L2LO: L2 cache Lock Overflow—sticky bit sets when an overlook condition is detected in L2 cache
(reserved in full memory-mapped SRAM mode).
0 Lock overflow not detected (clear L2LO in software)
1 Lock overflow condition detected
L2SLC: L2 Snoop Lock Clear—sticky bit sets when a snoop invalidated a locked data cache line
(reserved in full memory-mapped SRAM mode).
0 Snoop did not invalidate (clear L2LO in software)
1 Snoop invalidated a locked line
10007175-02
KAT4000 User’s Manual
3-5
Central Processing Unit:
Microprocessor Core (e500)
L2LFR: L2 cache Lock bits Flash Reset—L2 cache must be enabled for reset to occur (reserved in full
memory-mapped SRAM mode).
0 L2 cache lock bits are not cleared or the clear operation completed
1 Reset operation clears each L2 cache line’s lock bits
L2LFRID: L2 cache Lock bits Flash Reset select Instruction or Data—indicates whether data, instruction, or both bits are reset.
00 Not used
01 Reset data locks if L2LFR=1
10 Reset instruction locks if L2LFR=1
11 Reset both data and instruction locks if L2LFR=1
L2STASHDIS: L2 Stash allocate Disable—disables allocation of lines for stashing.
00 L2 allocates lines
01 L2 does not allocate lines
L2STASH: L2 Stash configuration—reserves regions of cache for stash-only operation.
00 No stash-only region
01 One-half of the array is stash-only
10 One-quarter of the array is stash-only
11 One-eighth of the array is stash-only
Hardware Implementation Dependent 0 Register
The Hardware Implementation Dependent 0 (HID0) register contains bits for
CPU-specific features. Most of these bits are cleared on initial power-up of the KAT4000.
Please refer to the MPC8548 PowerQuicc III Integrated Communications Processor Reference
Manual for more detailed descriptions of the HIDx registers. The following register map
summarizes HID0 for the MPC8548 processor:
Register 3-2: MPC8548 Hardware Implementation Dependent Register 0 (HID0)
32
33
39
EM
CP
reserved
48
49
50
R
TB
EN
STB
CLK
51
55
reserved
40
41
42
DOZ
E
NAP
SLP
56
57
58
EN_
MAS7
DCF
A
43
47
reserved
62
reserved
63
NOP
TI
EMCP: Enable Machine Check Pin—masks further machine check exceptions caused by assertion of
MCP*.
0 MCP* is disabled
1 MCP* is enabled
3-6
KAT4000 User’s Manual
10007175-02
Central Processing Unit:
Microprocessor Core (e500)
R: Reserved should be cleared.
DOZE: Doze power management mode
0 Doze mode disabled
1 Doze mode enabled
NAP: Nap power management mode
0 Nap mode disabled
1 Nap mode enabled
SLP: Sleep power management mode enable
0 Sleep mode disabled
1 Sleep mode enabled
TBEN: Time Base Enable
0 Time base disabled (no counting)
1 Time base enabled
STBCLK: Select Time Base Clock—functions if the time base is enabled.
0 Time base is based on the processor clock
1 Time base is based on the TBCLK (RTC) input
EN_MAS7: Enable MAS7 update—enables updating MAS7 by tibre and tibsx.
0 MAS7 is not updated
1 MAS7 is updated
DCFA: Data Cache Flush Assist—forces data cache to ignore invalid sets on miss replacement selection.
0 DCFA is disabled
1 DCFA is enabled
NOPTI: No-op the data and instruction cache touch instructions
0 dcbt, dcbst, and icbt are enabled
1 dcbt, dcbst, and icbt are treated as no-ops
Hardware Implementation Dependent 1 Register
One of the functions of the Hardware Implementation Dependent 1 (HID1) register is to
display the state of the PLL_CFG[0:4] signals. The following register map summarizes HID1
for the MPC8548 CPU:
10007175-02
KAT4000 User’s Manual
3-7
Central Processing Unit:
Interrupts and Exception Processing
Register 3-3: MPC8548 Hardware Implementation Dependent Register 1 (HID1)
32
33
34
39
PLL_MODE
48
49
reserved
40
PLL_CFG
50
51
AST
ME
ABE
45
reserved
46
47
RFXE
R
52
63
reserved
PLL_MODE: Read-only for integrated devices
01 Fixed value for MPC8548
PLL_CFG: This is reflected directly from configuration input pins (read-only). PLL_CFG[0-4] corresponds to the integer divide ratio and PLL_CFG is the half-mode bit.
00010 0 ratio of 2:1
00010 1 ratio of 5:2 (2.5:1)
00011 0 ratio of 3:1
00011 1 ratio of 7:2 (3.5:1)
R: Reserved should be cleared.
RFXE: Read Fault Exception Enable—controls whether assertion of core_fault_in causes a machine
check interrupt.
0 Assertion of core_fault_in cannot cause a machine check
1 A machine check can occur due to assertion of core_fault_in
ASTME: Address bus Streaming Mode Enable
0 Mode disabled
1 Mode enabled
ABE: Address Broadcast Enable for dcbf, dcbst, dcbi, dcbic, icbic, mbar, msync, tlbsync
0 Disable address broadcasting for cache and TLB control operations
1 Enable address broadcasting for cache and TLB control operations
INTERRUPTS AND EXCEPTION PROCESSING
The interrupt process begins when an exception occurs. The MPC8548 e500 core processes
three types of interrupts: machine check, critical, or noncritical. Each interrupt type has
separate control and status register sets as listed in the following priority:
Machine Check (highest priority):
Machine Check Save and Restore registers (MCSRR0/MCSRR1) save state when they are
taken, and use rfmci instruction to restore state. The machine check enable bit, MSR[ME],
can mask these interrupts.
3-8
KAT4000 User’s Manual
10007175-02
Central Processing Unit:
Interrupts and Exception Processing
Noncritical: The processor is able to change program flow to handle conditions generated by external
signals, errors, or unusual conditions. The Save and Restore registers, SRR0/SRR1, save
state when they are taken and use the rfi instruction to restore state. The external interrupt
enable bit, MSR[EE], can mask these asynchronous interrupts.
Critical: The Critical Save and Restore registers, CSRR0/CSRR1, save state when they are taken during a noncritical interrupt or regular program flow and use the rfci instruction to restore
state. The critical enable bit, MSR[CE], can mask these interrupts. This interrupt also
includes watchdog timer time-out inputs.
Machine State Register
The Machine State register (MSR) configures the state of the MPC8548. On initial power-up
of the KAT4000, most of the MSR bits are cleared. Please refer to the MPC8548 PowerQuicc
III Integrated Communications Processor Reference Manual for more detailed descriptions of
the individual bit fields.
Register 3-4: CPU Machine State Register (MSR)
32
36
reserved
37
38
UCLE
SPE
48
49
50
51
52
53
54
EE
PR
R
ME
R
UBLE
DE
39
44
reserved
55
57
reserved
45
46
47
WE
CE
R
62
63
58
59
60
61
IS
D
R
PM
reserved
R: Reserved should be cleared.
UCLE: User-mode Cache Lock Enable—restricts user-mode cache-line locking by the operating system.
0 Any cache lock instruction takes a cache-locking DSI exception
1 A cache-locking DSI is not taken
SPE: Signal Processing Engine enable
0 An SPE APU unavailable exception occurs
1 Software can execute supported SPE and SPFP APU instructions
WE: Wait state Enable—allows the core complex to signal a request for power management.
0 CPU continues processing
1 CPU enters wait state
CE: Critical Enable
0 Critical input and watchdog timer interrupts disabled
1 Critical input and watchdog timer interrupts enabled
10007175-02
KAT4000 User’s Manual
3-9
Central Processing Unit:
Peripheral Interface
EE: External interrupt Enable—allows the processor to take external input, fixed-interval timer,
system management, performance monitor, or decrementer interrupts.
0 Disabled
1 Enabled
PR: Privilege level
0 Supervisor-level instructions are executed
1 User-level instructions are executed
ME: Machine check Enable
0 Machine check interrupts disabled
1 Machine check interrupts enabled
UBLE: User BTB Lock Enable
0 Execution of the BTB lock instructions for user mode disabled
1 Execution of the BTB lock instructions for user mode enabled
IS: Instruction address Space
0 CPU directs all instruction fetches to address space 0
1 CPU directs all instruction fetches to address space 1
DS: Data address Space
0 CPU directs data memory accesses to address space 0
1 CPU directs data memory accesses to address space 1
PM: Marks a process for the Performance Monitor
0 Process is not marked
1 Process is marked
PERIPHERAL INTERFACE
The MPC8548 uses the peripheral bus to communicate with its peripherals. Table 3-3 lists
the order in which the processor handles requests from peripherals.
Table 3-3: MPC8548 Peripheral Request Priority
Priority:
Function:
Request:
Highest
1
Reset in the Communication Processor Command register (CPCR)
or System Reset (SRESET*)
2
SDMA bus error
3
Commands issued to the CPCR
4
Emergency (from FCCs, MCCs, and SCCs)
IDMA(1-4) emulation (default option 1)11
5
3-10
KAT4000 User’s Manual
6
FCC1 receive
7
FCC1 transmit
10007175-02
Central Processing Unit:
Priority:
Lowest
MPC8548 Peripheral Modules
Function:
Request: (continued)
8
MCC1 receive
9
MCC2 receive
10
MCC1 transmit
11
MCC2 transmit
12
FCC2 receive
13
FCC2 transmit
14
FCC3 receive
15
FCC3 transmit
16
SCC1 receive
17
SCC1 transmit
18
SCC2 receive
19
SCC2 transmit
20
SCC3 receive
21
SCC3 transmit
22
SCC4 receive
23
SCC4 transmit
24
11
IDMA(1-4) Emulation (option 2)
25
SMC1 receive
26
SMC1 transmit
27
SMC2 receive
28
SMC2 transmit
29
SPI receive
30
SPI transmit
31
I2C receive
32
I2C transmit
33
RISC timer table
34
IDMA(1-4) emulation (option 3)11
1. The priority of each IDMA channel is programmed independently.
MPC8548 PERIPHERAL MODULES
Three-Speed Ethernet Controllers (TSEC)
Two TSECs incorporate a MAC sublayer that supports 10 Mbps, 100 Mbps, and 1 Gbps
Ethernet networks. See Chapter 4 for information on the Ethernet interface.
10007175-02
KAT4000 User’s Manual
3-11
Central Processing Unit:
Processor Reset and Clocking Signals
Local Bus Controller (LBC)
The MPC8548 LBC connects to external memory, DSP and ASIC devices. There are three
separate state machines:
• General-Purpose Chip Select Machine (GPCM) controls access to asynchronous devices
• User Programmable Machine (UPM) interfaces synchronous devices
• The Synchronous DRAM (SDRAM) controller provides access to standard SDRAM
Chip Select Generation
The MPC8548 memory controller functions as a chip select (CS) generator to access onboard memory devices, saving the board’s area which results in reduced cost, power consumption, and increased flexibility. Table 3-4 lists the chip selects for the KAT4000 module.
Table 3-4: MPC8548 Chip Select
Select:
Assignment:
CS0*
Boot (Socketed or NOR Flash)
CS1*
Flash 0
22
CS2*
Flash 1
CS3*
Socketed Flash
CS4*
KSL Programmable Logic Device (PLD)
CS5*
NAND Flash
CS6*
Ethernet Core Switch
CS7*
Fat Pipe
2. Jumper selectable (see “Jumpers” on page 2-5 for jumper options).
PROCESSOR RESET AND CLOCKING SIGNALS
The MPC8548 external reset and clocking signals include:
HRESET*: Hard Reset input completely resets the MPC8548 and causes a power-on reset (POR)
sequence.
HRESET_REQ*: Hard Reset Request output causes internal block requests that HRESET* be asserted. This
can be requested by a hardware device, for example a watchdog timer event.
SRESET*: Soft Reset input causes a machine check interrupt assertion to the e500 core to undergo its
soft reset sequence.
READY: Ready output means the MPC8548 has completed the reset operation and is not in a
power-down (nap, doze, or sleep) or debug state.
3-12
KAT4000 User’s Manual
10007175-02
Central Processing Unit:
MPC8548 Exception Handling
SYSCLK: System Clock is the primary clock input to the e500 core and all the devices and interfaces
that operate synchronously with the core.
RTC: Real-Time Clock is an input to the MPC8548. Optionally, it can be used to clock the e500
core timer facilities and by the MPC8548 PIC global timer facilities.
MPC8548 EXCEPTION HANDLING
Each type of CPU exception transfers control to a different address in the vector table. The
vector table normally occupies the first 8 kilobytes of RAM (with a base address of
0000,000016) or Flash (with a base address of E000,000016). An unassigned vector position
may be used to point to an error routine or for code or data storage.
Table 3-5 lists the exceptions recognized by the MPC8548 and the conditions that cause
them.
Table 3-5: MPC8548 Exceptions
Type:
Vector
Offset Hex
Address:
reserved
00000
—
IVOR0
Critical Input
00100
Caused when MSR[CE]=1
IVOR1
Machine Check
00200
Caused when MSR[ME]=1
IVOR2
Data Storage
Interrupt (DSI)
00300
Caused by one of the following exception conditions: read
access control, write access control, byte-ordering, cache
locking or storage synchronization
IVOR3
Instruction Storage
Interrupt (ISI)
00400
Caused by one of the following exception conditions:
execute access control or byte-ordering
IVOR4
External Interrupt
00500
Caused when MSR[EE]=1
IVOR5
Alignment
00600
Caused when the processor core cannot perform a
memory access
IVOR6
Program Check
00700
Caused by one of the following exception conditions:
illegal instruction, privileged instruction, trap or
unimplemented operation
IVOR7
Floating-Point
Unavailable
00800
If MSR[FP]=0, the floating point registers are disabled and
attempting to execute any floating point instruction
causes a floating point unavailable exception
IVOR:
Notes:
IVOR8
System Call
00900
Caused by the execution of a System Call (sc) instruction
IVOR10
Decrementer
00A00
Caused when TSR[DIS]=1, TCR[DIE]=1 and MSR[EE]=1
IVOR11
Interval Timer
00B00
Caused when TSR[FIS]=1, TCR[FIE]=1 and MSR[EE]=1
IVOR12
Watchdog Timer
00C00
Caused when TSR[WIS]=1, TCR[WIE]=1 and MSR[CE]=1
IVOR13
Data TLB Error
00D00
Caused by a Data TLB Miss exception condition
IVOR14
Instruction TLB Error
00E00
Caused by an Instruction TLB Miss exception condition
10007175-02
KAT4000 User’s Manual
3-13
Central Processing Unit:
JTAG/COP Interface
IVOR:
Type:
Vector
Offset Hex
Address:
IVOR15
Debug
00F00
Notes: (continued)
Caused when a debug exception exists in the DBSR and
when DBCR0[IDM]=1 and MSR[DE]=1
JTAG/COP INTERFACE
A single JTAG/COP header is provided for debug purposes for the processor. This interface
provides for boundary-scan testing of the CPU (see Fig. 3-2) and is compliant with the IEEE
1149.1 standard. The header pin assignments are defined in Table 3-6.
Caution: Install a shunt on JP1 pins 1:2 before using the JTAG/COP interface (P1) to enable CPU
JTAG/COP access. Attempting to use the JTAG/COP interface without this shunt in place may
!
cause damage to the board. Refer to Table 7-3 for JP1 pin details.
Figure 3-2: Processor JTAG/COP Diagram
3_3V (2.5V optional)
.75A
PICO_FUSE
3_3V
Internal PU
TDO
TDI
TCK
TMS
MPC8548
Processor
5.11K
CPU_TDO
CPU_TDI
CPU_TCK
CPU_TMS
TRST*
5.11K
CPU_CKSTP_OUT*
CPU_HRESET*
CPU_SRESET*
CPU_TRST*
KAT4000 User’s Manual
CPU_TDO
TDO
CPU_TDI
CPU_TCK
TCK
CPU_TMS
TMS
DEBUG_SRESET*
DEBUG_HRESET*
CPU_CKSTP_OUT*
15
KSL
PLD
DEBUG_HRESET*
DEBUG_SRESET*
DEBUG_TRST*
Figure 3-3: Processor JTAG/COP Header
3-14
COP
Debug
TDI
3_3V
CKSTP_OUT*
5.11K
10007175-02
2
TRST*
5.11K
16
Central Processing Unit:
No Processor Configuration
Table 3-6: Processor JTAG/COP Pin Assignments (P1)
Pin:
Signal:
Pin:
Signal:
1
CPU_TDO
2
Not connected
3
CPU_TDI
4
DEBUG_TRST*
5
Not connected
6
JT_3_ 3V (fused)
7
CPU_TCK
8
Not connected
9
CPU_TMS
10
Not connected
11
DEBUG_SRESET*
12
GND
13
DEBUG_HRESET*
14
Not connected
15
CPU_CKSTP_OUT*
16
GND
CPU_CKSTP_OUT*: Checkstop Output—when asserted, this output signal indicates that the CPU has detected a
checkstop condition and has ceased operation.
CPU_TCK: Test Clock Input—scan data is latched at the rising edge of this signal.
CPU_TDI: Test Data Input—this signal acts as the input port for scan instructions and data.
CPU_TDO: Test Data Output—this signal acts as the output port for scan instructions and data.
CPU_TMS: Test Mode Select—this input signal is the test access port (TAP) controller mode signal.
DEBUG_HRESET*: Hard Reset—this input signal indicates that a complete Power-on Reset must be initiated by
the processor.
DEBUG_SRESET*: Soft Reset—this input signal indicates that the processor must initiate a System Reset interrupt.
DEBUG_TRST*: Test Reset—this input signal resets the test access port.
NO PROCESSOR CONFIGURATION
If a processor is not used on the KAT4000, the Ethernet core switch and GbE fat pipe switch
module (optional) are managed by an 8051 microcontroller internal to each switch. Custom configuration of the switch is possible through one of two user interfaces on each
switch. See “Appendix A” for more information.
10007175-02
KAT4000 User’s Manual
3-15
(blank page)
3-16
KAT4000 User’s Manual
10007175-02
Section 4
Common Switch Region
The KAT4000 supports multiple interfaces. This chapter describes the Ethernet core switch,
switch configuration, Ethernet address and PCI Express switch. The board area network
(BAN) refers to the routing of the Ethernet ports using the Vitesse VSC7376 Gigabit Ethernet (GbE) core switch or the PCIe ports using the PEX 8524 PCI Express switch. The Ethernet
core switch provides the interconnect between the fat pipe switch module, the Ethernet
ports on the AMC sites, the processor, two channels on the ATCA backplane base fabric,
Zone 3, and the Update Channel (optional) (see Fig. 4-1). The PCI Express switch provides
the interconnect between the AMC sites, the processor, and the fat pipe switch module.
Both switches are optional, however at least one of the two must be used on the board. The
board can also use both switches.
Figure 4-1: Board Area Network
AMC (x4) Single Wide,
Mid-Size or Compact
PEX8524
PCI Express Switch
(Optional)
/
7 /
7
PCIe or GbE
on port 1
Optional
4 SERDES
GbE
GbE
PHYs (2)
GMII/RGMII
/
SERDES
GbE
GbE
GbE
SERDES
To Update Channel
on J20 (Optional)
4 SERDES
2 SGMII
PCIe
2 SERDES
7–10
4,6
VSC7376
0,2:B1 12,13:B2
Ethernet Core
18,20:B3 22,24:B4
Switch
Layer 2
11
(Optional)
15,17
14,16
GbE
PHYs (2)
10/100 Debug Eth (MII)
2(-2(
2(
RGMII
MPC8548
Processor
(Optional)
PCIe
(x1 or x4)
GbE
PHY
2(
SERDES
10/100
PHY
Xfmr
Xfmr
(2)
Xfmr
To Zone 3
(Optional)
IPMB
Base
P10
10007175-02
8–11:B3
GbE Fat Pipe 14–17:B4
Switch Module 18–21:B2
12
(Optional)
22–25:B1
13
4–7
0–3
High Speed
Fabric A
J23
4 SERDES
GbE
4 SERDES
To Zone 3
2 SERDES
/
PCIe
SERDES
8:B1 9:B2
10:B3 11:B4
1
0
High Speed
Fabric B
To
Core
Eth
Switch
(Opt.)
4
Clock
J20
To
Core
Eth
Switch
2
Zone 3
Connections
(Opt.)
RTM I/O
(Optional)
Zone 3
KAT4000 User’s Manual
4-1
Common Switch Region:
Ethernet Core Switch (optional)
ETHERNET CORE SWITCH (OPTIONAL)
The optional Vitesse VSC7376 GbE switch is a multilayer switch with 26 tri-speed
(10/100/1000 Mbps) SGMII Ethernet ports and integrated 1000Base-BX (SerDes) interfaces. The GbE switch supports the following:
• Two SGMII Ethernet ports connected from the switch to the ATCA backplane base fabric
via PHYs (PICMG 3.0)
• Two 1000Base-BX (SerDes) Ethernet ports routed between the processor and the switch
• Up to two 1000Base-BX (SerDes) Ethernet ports routed between each AMC site and the
switch (AMC.2)
• One 1000Base-BX (SerDes) Ethernet port routed between the fat pipe switch module
and the switch (AMC.2)
• Four 1000Base-BX (SerDes) Ethernet ports connected from the switch to the Update
Channel interface on J20 on the backplane (optional)
• Two 1000Base-BX (SerDes) Ethernet ports routed between the switch and Zone 3
Features of the switch include:
• Layer 2 switching capable of running 26 GbE ports at full bit rate
• Layer 2 features implemented: jumbo frames, port mirroring, quality-of-service and
traffic shaping
• Automatic configuration to a user definable default state at power-up; these include
non-volatile Virtual Local Area Network (VLAN) table settings with the ability to modify
in the field. The configuration and management of the switch is done via the processor
local bus. In the no-CPU configuration, the on-chip 8051 microprocessor controls
configuration and management of the switch.
• IEEE 802.1Q and port-based VLANs, IEEE 802.1D spanning tree protocol, and IEEE
802.3AD link aggregation control protocol
See Fig. 4-2 for a block diagram of the switch. For more information, reference the HawXG26 – 26-Port 10/100/1000 Managed Layer 2 Ethernet Switch, VSC7376 Data Sheet.
Note: Proprietary information on the Vitesse switch is not available in this user’s manual. Please refer to the Vitesse
web site for documentation, http://www.vitesse.com.
4-2
KAT4000 User’s Manual
10007175-02
Common Switch Region:
Ethernet Core Switch (optional)
Figure 4-2: VSC7376 GbE Switch Block Diagram
Frame Bus
one for each
front port
Policer
Categorizer
Shaper
Rewriter
Shared RX and
TX FIFO
Port Block
Port Block
Shared RX and
TX FIFO
Policer
Categorizer
Analyzer/Arbiter
Shaper
Rewriter
8051 CPU (iCPU)
RS232 Interface
Serial Interface
Parallel Interface
MII Management Interface
Control/Status
Registers
RS232
MIIM
GPIO
10/100/1000
MAC
SGMII/SerDes
10/100/1000
MAC
SGMII/SerDes
SI
PI or iCPU
RAM/Flash
Switch Configuration
The processor has a local bus connection to the Ethernet core switch and the fat pipe switch
module (reads and writes directly to the registers). On power-up, the configuration values
are read from flash and the chip is initialized.
To configure the switch, see the KAT4000 Quick Start Guide, #10008585-xx. For the no-CPU
KAT4000 Ethernet switch configuration, see Appendix A or the KAT4000 Quick Start Guide
for the No-CPU Carrier Board, #10008506-xx.
High-Speed Serial Data Path Configuration
The KAT4000 design implements several types of high-speed serial protocols: Gbe, sRIO,
and PCIe. Proper setup of the devices driving data onto and receiving data from the interconnecting transmission lines is important for optimal performance. Configurable device
parameters include drive strength, gain, impedance, equalization, and pre-emphasis. The
configuration of some serial paths has been set by Emerson and should not be changed. For
paths that go off the board (e.g., to AMC sites, the backplane), the user must be aware of
device register settings for devices at both ends of the transmission line and set them
appropriately to meet device specifications and achieve full bandwidth performance.
10007175-02
KAT4000 User’s Manual
4-3
Common Switch Region:
Ethernet Core Switch (optional)
On-Board Path Device Settings
Caution: On-board device values are determined by Emerson. Do not change these values. Altering
on-board device values could cause system failure.
!
Note: Proprietary information regarding register function or effect is not available in this user’s manual. Please
contact the PHY or switch manufacturer directly for details.
Table 4-1 lists the KAT4000 PHYs and their respective addresses.
Table 4-1: KAT4000 PHYs and Address Values
PHY:
Address:
Base Channel 1/TSEC2
0x2
Base Channel 2/TSEC3
0x3
TSEC2 (from CPU to Ethernet switch)
0x4
TSEC3 (from CPU to Ethernet switch)
0x5
Fat Pipe/TSEC4
0x6
The Ethernet core switch has the following on-board ports: 14, 15, 16 and 17. The Ethernet
switch on the GbE fat pipe switch module uses on-board port 13.
Off-Board Path Device Settings
Modify off-board register values with the switch_reg or phy commands. See “phy” on
page 14-25 or “switch_reg” on page 14-27 for details.
Note: Proprietary information regarding register function or effect is not available in this user’s manual. Please
contact the switch manufacturer directly for details.
Table 4-2 shows the Ethernet core switch default off-board ports.
Table 4-2: Ethernet Core Switch Off-Board Ports
4-4
KAT4000 User’s Manual
Destination:
Port:
Update Channel
7,8,9,10
Zone 3
4,6
AMC1-4
12,13,18,20,1
10007175-02
Common Switch Region:
Ethernet Address for the KAT4000
Table 4-3 shows the GbE fat pipe’s Ethernet switch default off-board ports.
Table 4-3: GbE Fat Pipe Module Ethernet Switch Off-Board Ports
Destination:
Port:
AMC1
22,23,24,25
AMC2
18,19,20,21
AMC3
8,9,10,11
AMC4
14,15,16,17
Fabric Channel 1
4,5,6,7
Fabric Channel 2
0,1,2,3
Ethernet Transceivers
The Marvell 88E1111 gigabit Ethernet transceivers are used to interface between the processor MACs and the Ethernet switch ports. They are also used to connect two switch ports
to the backplane base channel 1 and 2 interfaces. The 88E1111 device is
10/100/1000BASE-T IEEE 802.3 compliant.
The Broadcom BCM5241 10/100BASE-TX/FX transceiver provides a physical interface to
the processor’s debug Ethernet MAC (eTSEC1). The BCM5241 complies with the IEEE 802.3
standard.
ETHERNET ADDRESS FOR THE KAT4000
The Ethernet address for your board is a unique identifier on a network and must not be
altered. The address consists of 48 bits (Medium Access Control—MAC [47:0]) divided into
two equal parts. The upper 24 bits define a unique identifier that has been assigned to Artesyn Communication Products by IEEE. The lower 24 bits are defined by Artesyn for identification of each of our products.
The Ethernet address for the KAT4000 is a binary number referenced as 12 hexadecimal
digits separated into pairs, with each pair representing eight bits. The address assigned to
the KAT4000 has the following form:
00 80 F9 xx yy zz
00 80 F9 is Artesyn’s identifier. The last three bytes of the Ethernet address comprise the
data for the Ethernet addresses in non-volatile memory (NVRAM). The KAT4000 has been
assigned the Ethernet address range 00:80:F9:92:00:00 to 00:80:F9:95:FF:FF. The format is
shown in Table 4-4.
10007175-02
KAT4000 User’s Manual
4-5
Common Switch Region:
Ethernet Address for the GbE Fat Pipe
Table 4-4: Ethernet Port Address Numbering
Offset:
MAC:
Byte 5
15:0
Byte 4
Byte 3
Byte 2
23:16
47:24
Description:
Ethernet
Identifier
(Hex):
LSB of (serial number -1000)
—
MSB of (serial number -1000)
—
Port 4 (eTSEC4)
95
Port 3 (eTSEC3)
94
Port 2 (eTSEC2)
93
Port 1 (eTSEC1)
92
Assigned to Artesyn by IEEE
F9
Byte 1
80
Byte 0
00
The last pair of hex numbers correspond to the following formula: n — 1000, where n is the
unique serial number assigned to each board. For example, if the serial number of a
KAT4000 is 2867, the calculated value is 1867 (74B16). Therefore, the board’s port 2 Ethernet address is 00:80:F9:93:07:4B. The ports are assigned as follows: eTSEC1—Ethernet
debug port, eTSEC2—Ethernet core switch, eTSEC3—Ethernet core switch, and eTSEC4—fat
pipe switch module.
ETHERNET ADDRESS FOR THE GBE FAT PIPE SWITCH MODULE
The GbE fat pipe switch module has been assigned the Ethernet address range
00:80:F9:06:C0:00 to 00:80:F9:06:FF:FF. The address format is the same as described in
“Ethernet Address for the KAT4000”.
4-6
KAT4000 User’s Manual
10007175-02
Common Switch Region:
PCI Express Switch (optional)
PCI EXPRESS SWITCH (OPTIONAL)
The optional PLX Technology, Inc. PEX 8524 PCI Express switch device contains 24 PCI
Express lanes and up to six ports. The PCIe switch supports the following:
• One port connected from each AMC site to the switch (AMC.0 and AMC.1)
• One port connected from the processor to the switch (one x1 or one x4 port)
• Four lanes connected from the fat pipe switch module to the switch with these possible
port configurations: four x1 ports, two x2 ports or one x4 port.
Features of the switch include:
• PCI Express interface at 2.5 Gbps transfer rate
• 24 PCI Express lanes (SerDes [7:0] and [32:16]) and up to six ports (assign x1, x2, or x4
lanes to ports 0, 1, 8, 9, 10 or 11)
• Link power management states (L0, L0s, L1, L2/L3 Ready and L3) and device power
management states (D0 and D3hot)
• EEPROM interface signals
• JTAG boundary scan interface signals
• Compliant with PCI Express Base 1.0a and PCI Standard Hot Plug r1.0
Note: The device ID for the PEX 8524 switch reads “8532h” because the PEX 8524 and PEX 8532 share the same
base device.
For more information, reference the PEX 8524 Versatile PCI Express™ Switches Data Book.
Note: Proprietary information on the PCIe switch is not available in this user’s manual. Please refer to the PLX
Technology web site for documentation, http://www.plxtech.com.
10007175-02
KAT4000 User’s Manual
4-7
Common Switch Region:
PCI Express Switch (optional)
PCI Express Interface
Figure 4-3: PEX 8524 Block Diagram
Station 0
Lanes
Station 1
Ingress
Scheduler
Egress
Scheduler
Crossbar
Switch
Ingress
Crossbar
Switch
Egress
Lanes
Port 0
PCI Express
Upstream
Station 0
Non-Blocking
Crossbar
Switch Fabric
PCI Express
Downstream
Station 1
Crossbar
Switch
Egress
Crossbar
Switch
Ingress
Egress
Scheduler
Ingress
Scheduler
The stations implement the PCI Express Base 1.0a Physical, Data Link, and Transaction layers.
Each PCI Express station is able to support up to 16 integrated Serializer/De-serializer
1000Base-BX (SerDes) modules, which provide PCI Express hardware interface lanes. These
lanes can be configured to support up to four PCI Express ports per station. The PEX 8524
contains two stations (Station 0 and Station 1), connected by non-blocking Crossbar Switch
fabric.
From the system model viewpoint, each PCI Express port is a virtual PCI-to-PCI bridge
device and contains its own set of PCI Express Configuration registers. One of the ports on
either station can be designated the Upstream port (or primary bus in PCI terms). Through
use of the Upstream port, the firmware configures the other ports during standard PCI enumeration.
Note: The PCI Express Upstream Station supports Upstream ports and Downstream ports at the same time, but
lanes from different stations cannot be combined to form ports.
4-8
KAT4000 User’s Manual
10007175-02
Common Switch Region:
PCI Express Switch (optional)
EEPROM Interface
The PEX 8524 has an embedded 64-kilobyte SPI EEPROM controller. This direct interface
provides the 7.8 MHz serial clock (EE_SK), chip select (EE_CS*), and data output (EE_DO)
for the EEPROM; and receives data input (EE_DI) from the EEPROM.
Figure 4-4: PEX 8524 SPI EEPROM Interface
+3.3 V
+3.3 V
PEX 8524
EE_CS*
Initialization
Serial
EEPROM
EE_DI
EE_DO
EE_SK
Serial
EEPROM
Controller
(
(
Configuration Data
Port 0
Port 1
Port 8
Port 9
Port 10 Port 11
JTAG Controller Interface
The PEX 8524 supports a five pin JTAG interface that complies with IEEE standard 1149.1
and 1149.6 Boundary-Scan signals. The JTAG interface consists of the following signals:
Table 4-5: PEX 8524 JTAG Signals
Signal:
Signal
Name:
Type:
Description:
JTAG_ TCK
Test clock
in
This is the clock source for the PEX 8524
Test Access Port (TAP) and may be any
frequency from 0 to 10 MHz.
JTAG_ TDI
Test data input
in
This inputs data to the TAP.
JTAG_ TDO
Test data
output
out
This transmits serial data from the TAP.
JTAG_ TMS
Test mode
select
in
The TAP state machine uses the TMS to
determine the TAP mode.
JTAG_ TRST*
Test reset
in
This resets JTAG and the TAP. It should be
toggled or held at 0 for the PEX 8524 to
function properly.
10007175-02
KAT4000 User’s Manual
4-9
(blank page)
4-10
KAT4000 User’s Manual
10007175-02
Section 5
Fat Pipe Switch Module
The fat pipe switch module is a plug-over module that provides a high-speed interconnect
between the AMC modules, the ATCA high-speed fabric ports, the processor, and the
Ethernet core switch or the PCIe switch on the KAT4000. There are four configurations of
the fat pipe switch module: GbE, 10 GbE-1 GbE, 10 GbE-10 GbE and sRIO.
Note: The 10 GbE-10 GbE and sRIO modules are not yet available for order.
All fat pipe switch configurations support:
• Four ports connected from each AMC site to the fat pipe switch capable of
interchangeably using GbE, sRIO or 10 GbE protocols
• Eight GbE 1000Base-BX (SerDes) ports connected from the backplane high-speed fabric
to the fat pipe switch
• Two ports connected from the fat pipe switch to Zone 3 for (optional) RTM access
The GbE and 10 GbE configurations also provide:
• One port for a dedicated GbE channel from the MPC8548 processor to the fat pipe
switch
• One port for a dedicated GbE channel from the Ethernet core switch to the fat pipe
switch
The sRIO configuration also provides:
• One or four ports for a dedicated sRIO channel from the MPC8548 processor to the fat
pipe switch
10007175-02
KAT4000 User’s Manual
5-1
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
GBE FAT PIPE SWITCH MODULE
Fig. 5-1 shows how the GbE fat pipe switch module maps to ports defined by the AMC.0
specification; see Fig. 1-3 for the full port mapping diagram.
Figure 5-1: AMC Port Map Fat Pipes Region–GbE
Port #
Basic
Connector
Port Mapping
+,
+,
+,
+,
&'
01
+,
(4#5
6"
."
Fat Pipes: This region supports data path connections such as GbE. It can carry large amounts of data
without significantly degrading the speed of transmission.
x1: This refers to the link width of the port (the number of lanes that can be used to interconnect between two link partners).
The following diagram shows the implementation of the GbE fat pipe switch module on the
KAT4000:
Figure 5-2: Signal Routing of the GbE Fat Pipe Switch Module on the KAT4000
AMC (x4) Single Wide,
Half/Full/Extended Height
VSC7376
Ethernet Core Switch
Layer 2
4 GbE
GbE
RGMII
Fat Pipe
I2C
MPC8548
Processor
GbE
PHY
GbE
Fat Pipe Switch Module
GbE
Local bus
4 GbE
Base
5-2
KAT4000 User’s Manual
2 GbE
10007175-02
High Speed
Fabric A
J23
4 GbE
High Speed
Fabric B
Clock
J20
RTM I/O
(Optional)
Zone 3
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
The following block diagram provides a functional overview for the GbE fat pipe switch
module:
Figure 5-3: GbE Fat Pipe Switch Module Block Diagram
Switch
SRAM*
Flash*
Power
Supplies (2)
Clock
Clock
VSC7376
26-port GbE Switch
PLD
SEEPROM
JTAG
(8) GbE ports
SPI Management
Interface
8-bit data bus
Address bus
GPIO
I2C SDA/SCL
GPIO
(18) GbE
ports
120-pin high-speed
connector
=
25
(4#5
(&
"5
/
">
?","
45
5
7<
2
,/
180-pin high-speed connector
10007175-02
KAT4000 User’s Manual
5-3
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
GbE Fat Pipe Switch Module Circuit Board
The following figures show the component maps for the GbE fat pipe switch module circuit
board.
C1
C2
Y1
R2
J1
R1
C3
Figure 5-4: GbE Fat Pipe Switch Module Component Map, Top (Rev. 00)
R8
C11
C10
C13
R16 R17
C12
C18
R35
(for processorless
KAT4000)
U6
Switch SRAM
R48
R47
C22
L2
C23
R50
C5
C6
C7
C17
R57
R58
R59
R60
R61
R62
R63
R64
R65
R66
R67
R68
R69
R70
R71
R72
R73
R74
R75
R76
R77
R78
R79
R80
R53
R54
R55
R56
L1
CR1
R40
R41
R42
R44
R43
R46
R45
R49
R52
R51
C21
R39
U4
EEPROM
R37 R38
R36
R34
R24
R25
R26
U5
VSC7376 26-Port
GbE Switch
U2
R32
U1
C19
C20
R21
R23
C15
C16
U3
PLD
C14
R9
C9
R10
C8
R12
R11
R14
R15
R20
R19
R22
R28
R27
R30
R29
R31
R33
R18 R13
R7
R6
R5
R4
R3
C4
U7 Flash
(for processorless
KAT4000)
J2
C24
C124
C131
C129
C130
C127
C136
C135
C144
C143
C151
C148
C150
C149
C155
C152
C154
C153
R120
R123
R121
R125
R122
R124
R149
R165
R164
R166
R133
R134
R135
R162
R161
R160
R159
R163
R136
R137
R138
R139
R140
R131
R132
R148
R150
R155
R157
CR2
CR3
CR4
C11
R91
R95
R94
C166
10007175-02
R156
R158
XXXX-
KAT4000 User’s Manual
R90
R89
R93
R92
R96
C157
R98
R97
C160
R99
R141
R100
R143
R142
R101
R144
R102
R147
R145
R128
R106
R107
R103
R146
C161
C162
R108
R109
R110
R111
R113
R114
R115
R112
R116
C163
C164
YYYYYY
5-4
C12
R88
R151
C137
C128
C85
C74
C89
C111
C109
R87
R86
C156
C159
R117
C103
00001234-00-AA D
R118
C104
C115 C114
C158
C165
R119
C117 C116
R152
C139
C140
C98
C57
C66
C65
C71
C70
C78
C87
C94
C95
C110
R127
C141
C90
R104
C133
C142
C147
C134
C75
C121 C120 C119
C123 C122
C146 C138 C132 C125 C118 C112 C105
C91
C106
R105
C107
R129
C108
R130
C99
R85
C82
C92
C145
C76
C83
C100
C80
C81
C77
C84
C93
C101
C102
C58
C68
C67
C73
C72
C79
C88
C97
C96
CR5
C59
R153
C60
C86
R83
C61
C69
R126
C62
C64
R84
R154
C63
C46
C45
C44
C43
C42
C41
C40
C39
C54
C53
C52
C51
C50
C49
C48
C47
C56
R82
C55
R81
C32
C31
C30
C29
C28
C27
C26
C25
C38
C37
C36
C35
C34
C33
Figure 5-5: GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 00)
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
Components and Features
The following is a summary of the GbE fat pipe switch module hardware components and
features:
VSC7376, HawX-G26 GbE Switch:
The Vitesse VSC7376 GbE switch is a multilayer switch with 26 tri-speed (10/100/1000
Mbps) SGMII Ethernet ports and integrated 1000Base-BX (SerDes) interfaces. It is located
from FC16,0000-FC17,FFFF. This type of switch is also used on the KAT4000 board. For
more information about the VSC7376, see “Ethernet Core Switch (optional)” on page 4-2.
The default fat pipe switch is not configured. To configure the switch, see the KAT4000
Quick Start Guide, #10008585-xx.
PLD: The PLD is the interface between the local bus and the VSC7376 parallel interface. It contains registers for fat pipe module control. For more information, see “GbE Fat Pipe Switch
Module PLD.”
I2C SROM EEPROM: The 64 Kb EEPROM is used to store VSC7376 configuration information.
Flash: (Available only with the no-CPU KAT4000 board.) The 4 Mb asynchronous flash is used to
store firmware on the VSC7376 switch.
SRAM Memory: (Available only with the no-CPU KAT4000 board.) The 256 Kb asynchronous SRAM is used
by the on-board VSC7376 firmware.
JTAG: Resistors allow the JTAG to bypass the switch. See Fig. 5-6 for details.
Figure 5-6: GbE Fat Pipe Switch JTAG
TMS, TCK
/
5 PLD_TDI
2
PLD
PLD_TDO_R
PLD_TDO
VSC7376
Ethernet
Switch
VSC7376_TDO_R
VSC7376_TDO
2
5
2
LEDs: CR2-4 (green) and CR5 (red) on the bottom side of the board are generic LEDs for use by
the firmware.
High-Speed Connectors:
10007175-02
KAT4000 User’s Manual
5-5
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
J1 is a 120-pin high-speed connector that provides an interface to the four AMC sites, the
Ethernet core switch and an 88E1111 Gigabit PHY. J2 is a 180-pin high-speed connector
that provides an interface to the RTM channel, clock, PLD, processor, and Zone 2 via fabric
channels 1 and 2.
Reset: Reset of the GbE fat pipe switch is shown in Fig. 5-7.
Figure 5-7: GbE Fat Pipe Switch Reset
3_3V
/
5 RESET*
2
SWITCH_TRST*
PLD
SWITCH_RST*
VSC7376
GbE
Switch
GbE Fat Pipe Switch Module PLD
The PLD is used to interface to the fat pipe VSC7376 Ethernet switch and is located from
FC14,0000-FC15,FFFF. Internal registers of the PLD can only be accessed by the KAT4000’s
CPU when not using the built-in 8051 microcontroller on the VSC7376 switch. The PLD cannot be accessed via the 8051 microcontroller. Table 5-1 lists the 8-bit PLD registers followed
by the register bit descriptions.
Table 5-1: GbE Fat Pipe PLD Registers
Address
Offset (hex):
Access
Mode:
Mnemonic:
Register Name:
Register
Map:
5-1
0x00
R
PIDV
Product ID/Version Register
0x01
R/W
SCR
Scratch Register
5-2
0x02
R/W
I2C
I2C Register
5-3
0x03
R/W
SDET
Signal Detect Register
5-4
0x04
R/W
SRST
Switch Reset Register
5-5
0x05
R
STAT
Module Status Register
5-6
0x06
R/W
GPIO
Switch GPIO Register
5-7
0x07
R/W
GPLED
GPIN/LED Register
5-8
Product ID/Version Register
The read-only Product ID/Version register indicates the product type, PLD code version,
and hardware version. The values of these bits are hard-coded inside the PLD.
5-6
KAT4000 User’s Manual
10007175-02
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
Register 5-1: Product ID/Version Register (PIDV) at 0x00
7
6
5
4
3
2
1
0
PID3
PID2
PID1
PID0
PVER1
PVER0
HVER1
HVER0
PID3–PID0: Product ID
0000 Fat Pipe Module, GbE
0001 Fat Pipe Module, sRIO
0010 Fat Pipe Module, 10 GbE-1 GbE
0011 Fat Pipe Module, 10 GbE-10 GbE
(All other values are reserved)
PVER1, PVER0: PLD Version
00 Revision 00
HVER1, HVER0: Hardware Version
00 Revision 00
Scratch Register
The Scratch register can be used by software for reads and writes. Accessing this register
does not have any affect on operations. Default is 0x00.
Register 5-2: Scratch Register (SCR) at 0x01
7
6
5
4
3
2
1
0
SCR7
SCR6
SCR5
SCR4
SCR3
SCR2
SCR1
SCR0
SCR7–SCR0: Scratch
I2C Register
The I2C register controls operations on the I2C bus. Default is 0x0f.
Register 5-3: I2C Register (I2C) at 0x02
7
6
5
reserved
4
3
2
1
0
SDA
SCL
ADD1
ADD0
R: Reserved
SDA: SDA Control
0 Drives logic “0” on the I2C data line
1 Tristates I2C data line (pulled high externally)
10007175-02
KAT4000 User’s Manual
5-7
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
SCL: SCL Control
0 Drives logic “0” on the I2C clock line
1 Tristates I2C clock line (pulled high externally)
ADD1, ADD0: I2C Address
Values in these bits drive address to I2C ROM
Signal Detect Register
The Signal Detect register drives the signal detect signals on the VSC7376 Ethernet switch.
Default is 0x00.
Register 5-4: Signal Detect Register (SDET) at 0x03
7
6
5
4
3
2
1
0
SDET7
SDET6
SDET5
SDET4
SDET3
SDET2
SDET1
SDET0
SDET7–SDET0: Signal Detect State
0 Drives logic low on net
1 Tristate output. Signal is externally pulled high
Switch Reset Register
The Switch Reset register allows for software control of reset to the VSC7376 Ethernet
switch. Default is 0x00.
Register 5-5: Switch Reset Register (SRST) at 0x04
7
6
5
4
reserved
3
2
1
0
SRST
R: Reserved
SRST: Switch Reset
0 Switch not held in reset
1 Switch held in reset
Note: Software must ensure that the switch is held in reset for the minimum amount of time as listed in the
VSC7376 Ethernet switch data sheet.
Module Status Register
The read-only Module Status register contains information relating to the module status,
such as power supply state, switch operational mode, and switch interrupt state.
5-8
KAT4000 User’s Manual
10007175-02
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
Register 5-6: Module Status Register (STAT) at 0x05
7
6
5
reserved
4
3
2
1
0
CPU
S2V5
S1V2
INT1
INT0
R: Reserved
CPU: Switch Mode
0 Internal 8051 microcontoller disabled, parallel interface used for management access
1 Internal 8051 microcontroller enabled
S2V5: 2.5V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
S1V2: 1.2V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
INT1, INT0: Switch Interrupts
0 No interrupt pending
1 Interrupt pending
Switch GPIO Register
The Switch GPIO register drives the GPIO signals on the VSC7376 Ethernet switch. Default is
0x00.
Register 5-7: Switch GPIO Register (GPIO) at 0x06
7
6
5
4
3
2
1
0
GPIO7
GPIO6
GPIO5
GPIO4
GPIO3
GPIO2
GPIO1
GPIO0
GPIO7–GPIO0: GPIO State
0 Drive logic low
1 Drive logic high
Note: When the internal 8051 microcontroller is enabled, GPIOs 5:4 are disabled, as they are used for other functions. The PLD will tristate these pins.
GPIN/LED Register
The GPIN/LED register controls general purpose inputs to the PLD from the carrier. There
are also four LEDs which are under software control.
10007175-02
KAT4000 User’s Manual
5-9
Fat Pipe Switch Module:
GbE Fat Pipe Switch Module
Register 5-8: GPIN/LED Register (GPLED) at 0x07
7
6
5
4
3
2
1
0
GPIO2
GPIO1
GPIO0
RSVD
LED3
LED2
LED1
LED0
GPIO2–GPIO0: General Purpose Input from VSC7376
RSVD: Reserved
LED3–LED0: LED State
0 Off
1 On
5-10
KAT4000 User’s Manual
10007175-02
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
10 GBE-1 GBE FAT PIPE SWITCH MODULE
Fig. 5-8 shows how the 10 GbE-1 GbE fat pipe switch module maps to ports defined by the
AMC.0 specification; see Fig. 1-3 for the full port mapping diagram.
Figure 5-8: AMC Port Map Fat Pipes Region–10 GbE-1 GbE
Port #
Basic
Connector
Port Mapping
+,
+,
+,
+,
&'
01
+,7
+,
(4#5
6"
."
Fat Pipes: This region supports data path connections such as GbE. It can carry large amounts of data
without significantly degrading the speed of transmission.
x4: This refers to the link width of the port (the number of lanes that can be used to interconnect between two link partners).
The following diagram shows the implementation of the 10 GbE-1 GbE fat pipe switch
module on the KAT4000:
Figure 5-9: Signal Routing of the 10 GbE-1 GbE Fat Pipe Switch Module on the KAT4000
=.1
5
+,
#/
4#5
/G
+,
/6
1/
5
1
5
+,
#/
4#5
.1
5
+,
#/
4#5
/G
+,
/6
1/
5
1
5
<
AMC (x4) Single Wide,
Half/Full/Extended Height
VSC7376
Ethernet Core Switch
Layer 2
(Optional)
4
MPC8548
Processor
Local bus
PCIe (x1)
Base
10007175-02
GbE
GbE*
Fat Pipe Switch Module
10 GbE-1 GbE
High Speed
Fabric A
J23
10 GbE
10 GbE
Fat Pipe
GbE
PHY
10 GbE
RGMII
I2C
High Speed
Fabric B
Clock
J20
RTM I/O
(Optional)
Zone 3
KAT4000 User’s Manual
5-11
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
The following block diagram provides a functional overview for the 10 GbE-1 GbE fat pipe
switch module:
Figure 5-10: 10 GbE-1 GbE Fat Pipe Switch Module Block Diagram
Clocks (2)
I2C SDA/SCL
LED Interface
8-bit data bus
Address bus
GPIO
SDA/SCL
JTAG
PCI
Management
Interface
(3) 10 GbE ports
GPIO
PLD
Clock
BCM56580
16-port GbE/
4-port 10 GbE Switch
(17) GbE
ports
120-pin high-speed
connector
Power
Supplies (2)
Power
Supply
PEX8111
PCIe to PCI
Bridge
SROM
Clock
PCIe
JTAG
180-pin high-speed connector
5-12
KAT4000 User’s Manual
10007175-02
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
10 GbE-1 GbE Fat Pipe Switch Module Circuit Board
The following figures show the component maps for the 10 GbE-1 GbE fat pipe switch module circuit board.
U2
PLD
Y1
R37
C246
C269
U12
R30
R31
C139
C133
C129
C135
C140
C137
C136
C17
C138
C14
R26
C339
C337
U1
R25
R24
L1
C13
R18
R164
C134
C234
C279
C284 CR10
C10
C11
R206
C174
C338
C336
C16
C15
C23
C20
C19
R166
CR7
CR1
J2
C8
C463 C462
L24
C266
L3 C160 C274 L20 C242 L12 L16 C256
R209
Y7
C3
R210R233
C29
C28
C27
R29
C56
R174
R2
R224
R231
R204
U6
R10
C9
R9 R13
U9
C170
C458
C6
C7 C5
R200
R21
C141
R165
R161
C132
R163
R162
C238
L9 C217
C166
C146
C145
C214 L8 L4 C164
R20
PCIe to PCI
R81
U13
U8
BCM56580
16-Port GbE/
4-Port 10 GbE
Switch
C432 C429 C431
C142
C127
R19
U4
U5
PEX8111
C249
C455
C18
C12
R235
R236
CR8
CR6
CR9
R232
R227
R214
R184
R213
R28
R187
R212
R194
R180
R186
C252
C261
C151
J1
R84
J3
JTAG
R203
C24
C131
C459
C130
Figure 5-11: 10 GbE-1 GbE Fat Pipe Switch Module Component Map, Top (Rev. 01)
Y2
Figure 5-12: 10 GbE-1 GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 01)
C428
R15
R195
C493
R196
R211
R3
R8
R201
C456
R7
R6
R5
R4
CR5
CR4
CR3
CR2
R197
R22
J5
R12
R16
R17
C128
R14
R218
R27
R205
R199
C443
J4
C450
C454
R11
R216
R217
C490
C489
C430
R229
R228
C85
C4
R88
C86
R1
YYYYYY
C461
R168
R208 R167
R207 R169
R175 R170
C460
L13
L19
C439
L23
R223
C444
C451
C438 C440
C441
C436
U3
R36
R215
C492
C491
C437
R189
R188
R234
R190
C113
C179
L5
C445
C433
R230
C447C435
C449
C442
C448
C446
C126
C347
C346
C392
C393
C400
C401
C399
C398
C388
C389
C353
C350
C359
C358
R156
R149
R147
R155
R87
R98
R136
R135
R134
R133
R140
R139
R138
R137
R158
R120
R121
R122
L14
C177
C251
C218
C484
C156
C259 C224
C203
C344
C345
C395
C394
C403
C402
C396
C397
C391
C390
C352
C351
C356
C357
C355
C354
R52
10007175-02
C434
R183 R225
R185 R226
R198 R181
C452
R182
C453
C220
C201 C223
C186 C222
C183
C467
C187
C193
C180C464
C204
C373
C374
C377
C376
C385
C384
C387
C386
C361
C360
C367
C366
C369
C368
R35
R39
R38
C272
C32 C2
C31 C1
C408
C411
C407
C410
C409
C406
C405
C404
C424
C427
C423
C426
C144
C143
C425
C422
C421
C420
C417
C419
C412
C413
C414
C415
C418
C416
C342
C343
C341
C340
C349
C348
C253
C196 C190
C241 C270 C244
C375
C372
C382
C383
C380
C381
C378
C379
C363
C362
C364
C365
C370
C371
C250
C482
C197
C154 C226 C178
C481C332
C198C189
C268
C473
C476
C192 C202
C483
C285
C169
C330C323
C335C311 C229
C182 C470
C287
C236
C248
C331 C247
C157
C165
C329
C207
326 C205
C334 C230C188
C194
C333C308
C471
C465
C208
C468 C184
C162
C200
C305
C303
C280
C233
C474
C322
C479
C254 C282C309
C255 C313C324
C237
C171
C211
C167
C206
C267
C278
C478
C475
C290
C232
C319 C265 C314
C312
C210
C320
C227 C199
C185
C277
C163
C191
C283
C300
C306
C289
C307
C302
C298 C301
C212
C469
C158 C480
C321 C264 C486
C299
C273C327C
C240C245 C316
C472
C293
C216
C153
XXXX-
L21
L22
C26
C25
C22
C21
L11
L10
C175
C275 C477
C304
C297
C488
L18
C292
C296
C317 C173
C328
C228
C485
C310 C325
C315 C318 C219
C291
R171
C295
C466
C294
C262C215
C213 C258C181
C155
C221
C152
L6
R172 R173R179
C487
L2
R141
R34 R142 R191
R32
R202
L7
R23
R33
L17
L15
R192
C457
00001234-00-AA D
KAT4000 User’s Manual
5-13
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
Components and Features
The following is a summary of the 10 GbE-1 GbE fat pipe switch module hardware components and features:
BCM56580 10 GbE-1 GbE Switch:
The Broadcom BCM56580 is a Layer 2 and 3 network switch with sixteen GbE ports and four
10 GbE ports. The switch uses integrated XAUI SerDes for the 10 GbE ports to the ATCA fabric channels and a single SerDes lane for each 1 GbE port to the AMC modules, complying
with the CX-4 and PICMG 3.1 standards. Table 5-2 defines connectivity for the switch’s ports
when the fat pipe module is installed on the KAT4000. For more information about this
switch, reference the BCM56580 16-Port 2.5 GbE Multilayer Switch with Four 10-GbE/HiGig™
Ports Data Sheet at www.broadcom.com.
Table 5-2: BCM56580 Switch Ports
5-14
KAT4000 User’s Manual
Port #:
10 GbE-1 GbE Switch
Connection:
XG1
Fabric Channel 1 (FC1) ports 0-3
XG2
Fabric Channel 2 (FC2) ports 0-3
XG3
Reserved
XG4
CPU or Core Switch, build-time
configured option (1 GbE only)
GE1
AMC 1 port 4
GE2
AMC 1 port 5
GE3
AMC 1 port 6
GE4
AMC 1 port 7
GE5
AMC 2 port 4
GE6
AMC 2 port 5
GE7
AMC 2 port 6
GE8
AMC 2 port 7
GE9
AMC 3 port 4
GE10
AMC 3 port 5
GE11
AMC 3 port 6
GE12
AMC 3 port 7
GE13
AMC 4 port 4
GE14
AMC 4 port 5
GE15
AMC 4 port 6
GE16
AMC 4 port 7
10007175-02
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
PEX 8111 PCIe to PCI Bridge:
The BCM56580 switch is managed by the PCIe connection from the MPC8548 via the
PEX8111 bridge chip. The PCIe to PCI bridge supports forward and reverse transparent
bridging between the PCIe and PCI buses. The bridge’s PCI Express port has a single x1 link
with a maximum throughput of 250 MB/sec per transmit and receive direction. The PEX
8111 is compliant with the PCI Local Bus Specification (rev. 3.0), the PCI to PCI Bridge Architecture Specification (rev. 1.1), the PCI Express Base Specification (rev. 1.0a) and the PCI
Express to PCI/PCI-X Bridge Specification (rev. 1.0). For more information about this bridge,
reference the PEX 8111 ExpressLane™ PCI Express to PCI Bridge Data Sheet at www.plxtech.com.
PLD: The PLD is the interface between the local bus, the BCM56580 switch, and the PEX 8111
PCIe to PCI bridge. It contains registers for fat pipe module control. For more information,
see “10 GbE-1 GbE Fat Pipe Switch Module PLD.”
SPI SROM EEPROM: The 128 Kb EEPROM is used to store PEX 8111 bridge configuration information.
JTAG: A jumper allows the JTAG to bypass the switch and/or the PEX bridge. See Fig. 5-12 for
details.
Figure 5-13: 10 GbE-1 GbE Fat Pipe Switch JTAG
TMS, TCK
/
5 PLD_TDI
2
PLD
PLD_TDO_R
PLD_TDO
BCM56580
10 GbE-1 GbE
Switch
BCM_TDO_R
BCM_TDO
PEX 8111 PEX_TDO_R
Bridge
PEX_TDO
2
5
2
H
LEDs: CR2 (green) and CR3-5 (red) on the bottom side of the board are generic LEDs for use by
the firmware.
High-Speed Connectors:
J1 is a 120-pin high-speed connector that provides an interface to the four AMC sites, the
BCM56580 switch, and the PEX 8111 PCIe to PCI bridge. J2 is a 180-pin high-speed connector that provides an interface to the RTM channel, PCIe channel, PLD, the I2C connection to
the processor, and Zone 2 via fabric channels 1 and 2.
J4 and J5 are PMC connectors that attach to a PCI analyzer for debug use only.
Reset: Reset of the 10 GbE-1 GbE fat pipe switch is shown in Fig. 5-14.
10007175-02
KAT4000 User’s Manual
5-15
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
Figure 5-14: 10 GbE-1 GbE Fat Pipe Switch Reset
BCM_PCI_RESET*
RESET*
PLD
BCM56580
10 GbE-1 GbE
Switch
BCM_TRST*
PEX_PCI_RESET*1
PCIE_RST*
/
5
2
1asserted with PCIE_RST
or for PCI Express Hot Reset
or when PCI Express link is down
PEX8111
Bridge
10 GbE-1 GbE Fat Pipe Switch Module PLD
The PLD is used to interface to the BCM56580 switch. Table 5-3 lists the 8-bit PLD registers
followed by the register bit descriptions.
Table 5-3: 10 GbE-1 GbE Fat Pipe PLD Registers
Address
Offset (hex):
Access
Mode:
Mnemonic:
Register Name:
Register
Map:
5-9
0x00
R
PIDV
Product ID/Version Register
0x01
R/W
SCR
Scratch Register
5-10
0x02
R/W
I2C
I2C Register
5-11
0x03
R
–
Reserved 1
5-12
0x04
R/W
SRST
Switch Reset Register
5-13
0x05
R
STAT
Module Status Register
5-14
0x06
R/W
GPIO
Switch GPIO Register
5-15
0x07
R/W
GPLED
GPIN/LED Register
5-16
Product ID/Version Register
The read-only Product ID/Version register indicates the product type, PLD code version,
and hardware version. The values of these bits are hard-coded inside the PLD.
Register 5-9: Product ID/Version Register (PIDV) at 0x00
5-16
KAT4000 User’s Manual
7
6
5
4
3
2
1
0
PID3
PID2
PID1
PID0
PVER1
PVER0
HVER1
HVER0
10007175-02
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
PID3–PID0: Product ID
0000 Fat Pipe Module, GbE
0001 Fat Pipe Module, sRIO
0010 Fat Pipe Module, 10 GbE-1 GbE
0011 Fat Pipe Module, 10 GbE-10 GbE
(All other values are reserved)
PVER1, PVER0: PLD Version
00 Revision 00
HVER1, HVER0: Hardware Version
00 Revision 00
Scratch Register
The Scratch register can be used by software for reads and writes. Accessing this register
does not have any affect on operations. Default is 0x00.
Register 5-10: Scratch Register (SCR) at 0x01
7
6
5
4
3
2
1
0
SCR7
SCR6
SCR5
SCR4
SCR3
SCR2
SCR1
SCR0
SCR7–SCR0: Scratch
I2C Register
The I2C register controls operations on the I2C bus. Default is 0x0f.
Register 5-11: I2C Register (I2C) at 0x02
7
6
reserved
5
4
3
2
1
0
SDAS
SCLS
SDAC
SCLC
ADD1
ADD0
R: Reserved
SDAS: SDA State
This read-only bit gives the current state of the I2C SDA line
SCLS: SCL State
This read-only bit gives the current state of the I2C SCL line
SDAC: SDA Control
0 Drives logic “0” on the I2C data line
1 Tristates I2C data line (pulled high externally)
10007175-02
KAT4000 User’s Manual
5-17
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
SCLC: SCL Control
0 Drives logic “0” on the I2C clock line
1 Tristates I2C clock line (pulled high externally)
ADD1, ADD0: I2C Address
Values in these bits drive address to the Ethernet switch
Reserved Register 1
This read-only register is reserved for future use.
Register 5-12: Reserved Register 1 at 0x03
7
6
5
4
3
2
1
0
reserved
R: Reserved
Switch Reset Register
The Switch Reset register allows for software control of reset to the BCM56580 Ethernet
switch. Default is 0x00.
Register 5-13: Switch Reset Register (SRST) at 0x04
7
6
5
4
reserved
3
2
1
0
EE_WP
JTAG_EN
RESET
R: Reserved
EE_WP: PCI Bus Bridge EEPROM Write Protect
0 Writing to EEPROM is disabled
1 Writing to EEPROM is enabled
JTAG_EN: Switch JTAG Enable
0 JTAG is disabled, switch does not operate. Switch register CMIC_TAP_CONTROL is
enabled for JTAG control of the switch via PCI or I2C. When this bit is cleared, the PLD and
PCI bus bridge are inaccessible over JTAG.
1 JTAG is enabled, normal switch operation
RESET: Switch Reset
0 Switch not held in reset
1 Switch held in reset
5-18
KAT4000 User’s Manual
10007175-02
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
Note: Software must ensure that the switch is held in reset for the minimum amount of time as listed in the Ethernet switch data sheet.
Module Status Register
The read-only Module Status register contains information relating to the module status,
such as power supply state, switch operational mode, and switch interrupt state.
Register 5-14: Module Status Register (STAT) at 0x05
7
6
5
reserved
4
3
2
1
0
S3V3
S2V5
S1V0
reserved
R: Reserved
S3V3: 3.3V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
S2V5: 2.5V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
S1V2: 1.0V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
Switch GPIO Register
The Switch GPIO register drives the GPIO signals on the PLX8111 PCIe to the PCI bridge.
Default is 0x00.
Register 5-15: Switch GPIO Register (GPIO) at 0x06
7
6
5
4
3
2
1
0
DIR3
DIR2
DIR1
DIR0
GPIO3
GPIO2
GPIO1
GPIO0
DIR3–DIR0: GPIO Direction
0 GPIOx bit reflects the state of the GPIO pin. The corresponding GPIO State bit becomes
read-only.
1 GPIOx bit drives the GPIO pin according to the state of the corresponding bit.
10007175-02
KAT4000 User’s Manual
5-19
Fat Pipe Switch Module:
10 GbE-1 GbE Fat Pipe Switch Module
GPIO3–GPIO0: GPIO State
0 Logic low
1 Logic high
GPIN/LED Register
The GPIN/LED register controls general purpose inputs to the PLD from the carrier. There
are also four LEDs which are under software control.
Register 5-16: GPIN/LED Register (GPLED) at 0x07
7
6
5
4
3
2
1
0
GPIO2
GPIO1
GPIO0
LEDCTRL
LED3
LED2
LED1
LED0
GPIO2–GPIO0: General Purpose Input
LEDCTRL: LED Mode Control
0 LEDs 2:0 indicate insufficient voltage:
LED3 PCI Express Link Up
LED2 3.3V supply low
LED1 2.5V supply low
LED0 1.0V supply low
1 LEDs 3:0 are controlled by bits 3:0
LED3–LED0: LED State
0 Off
1 On
5-20
KAT4000 User’s Manual
10007175-02
Fat Pipe Switch Module:
10 GbE-10 GbE Fat Pipe Switch Module
10 GBE-10 GBE FAT PIPE SWITCH MODULE
Fig. 5-15 shows how the 10 GbE-10 GbE fat pipe switch module maps to ports defined by the
AMC.0 specification; see Fig. 1-3 for the full port mapping diagram.
Note: This fat pipe switch module option is currently not available for order.
Figure 5-15: AMC Port Map Fat Pipes Region–10 GbE-10 GbE
Port #
Basic
Connector
Port Mapping
+,
&'
01
+,7
+,
(4#5
6"
."
Fat Pipes: This region supports data path connections such as 10 GbE. It can carry large amounts of
data without significantly degrading the speed of transmission.
x4: This refers to the link width of the port (the number of lanes that can be used to interconnect between two link partners).
The following diagram shows the implementation of the 10 GbE-10 GbE fat pipe switch
module on the KAT4000:
Figure 5-16: Signal Routing of the 10 GbE-10 GbE Fat Pipe Switch Module on the KAT4000
=.1
5
+,
#/
4#5
/G
+,
/6
1/
5
1
5
+,
#/
4#5
.1
5
+,
#/
4#5
/G
+,
/6
1/
5
1
5
<
AMC (x4) Single Wide,
Half/Full/Extended Height
MPC8548
Processor
Local bus
PCIe (x1)
Base
10007175-02
GbE*
Fat Pipe Switch Module
10 GbE-10 GbE
High Speed
Fabric A
J23
10 GbE
10 GbE
I2C
GbE
PHY
10 GbE
RGMII
Fat Pipe
10 GbE
VSC7376
Ethernet Core Switch
Layer 2
(Optional)
High Speed
Fabric B
Clock
J20
RTM I/O
(Optional)
Zone 3
KAT4000 User’s Manual
5-21
Fat Pipe Switch Module:
sRIO Fat Pipe Switch Module
SRIO FAT PIPE SWITCH MODULE
Fig. 5-17 shows how the sRIO fat pipe switch module maps to ports defined by the AMC.0
specification; see Fig. 1-3 for the full port mapping diagram.
Note: This fat pipe switch module option is currently not available for order.
Figure 5-17: AMC Port Map Fat Pipes Region–sRIO
Port #
Basic
Connector
Port Mapping
&.%
&.%
&'
01
&.%
(4#5
6"
."
Fat Pipes: This region supports data path connections such as sRIO. It can carry large amounts of data
without significantly degrading the speed of transmission.
x1, x4: This refers to the link width of the port (the number of lanes that can be used to interconnect between two link partners).
The following diagram shows the implementation of the sRIO fat pipe switch module on
the KAT4000:
Figure 5-18: Signal Routing of the sRIO Fat Pipe Switch Module on the KAT4000
AMC (x4) Single Wide,
Half/Full/Extended Height
sRIO (x4)
MPC8548
Processor
Serial RIO (x4)
Local bus
Fat Pipe Switch Module
sRIO
Base
5-22
KAT4000 User’s Manual
10007175-02
High Speed
Fabric A
J23
sRIO (x4)
sRIO (x4)
I2C
sRIO (x4)
Fat Pipe
High Speed
Fabric B
Clock
J20
RTM I/O
(Optional)
Zone 3
Section 6
Memory Configuration
The KAT4000 includes the following memory devices:
• Two banks of NOR Flash (32 MB total) and one bank of socketed Flash (512 KB)
• Up to 1gigabyte of DDR2 Synchronous DRAM (SDRAM)
• Up to 1 gigabyte of NAND Flash
• Two 8-kilobyte banks of non-volatile serial EEPROM memory
BOOT MEMORY CONFIGURATION
The KAT4000 boot default is the 8-bit ROM socket which occupies the physical address
space beginning at FC80,0000. Removing the shunt on jumper JP7, pins 1:2, uses the onboard Flash as the boot device. Read bit 5 of Jumper Settings register at FC40,0018 (see
Register Map 7-7) for the boot device selection.
Table 6-1: Memory Configuration Jumper
Jumper:
Function:
Options:
JP7
pins 1:2
Selects monitor
boot device
Jumper out, User Flash
Jumper in, ROM socket
Default
Configuration:
Jumper in, ROM socket
USER FLASH
The KAT4000 supports three independent Flash regions, one socketed and two NOR. The
KAT4000 will boot from either region and is selected by jumper JP7 (1:2); socketed Flash is
the default. User Flash starts at location E000,000016 with one megabyte at the base of
Flash reserved for the monitor.
• Two banks of NOR Flash are available, 16 MB each (see Table 14-3 for memory address
details).
• One bank of socketed Flash in a 32-pin PLCC includes up to 512 kilobytes.
The Flash devices interface to the most significant data bits of the PowerPC data bus. For
example, if the data path is 64 bits wide, the PowerPC data bus is declared as D[0:63],
where D0 is the most significant bit and D63 is the least significant bit. The interface to NOR
flash memory is 16-bits, which uses bits 0 to 15 on the processor data bus.
If booting from user Flash, the processor initially maps one megabyte addressing of Flash
memory (beginning at FFF0,000016) at the top of the address space. When an 8-bit Flash
device is installed in the PLCC socket, it always appears at FC80,000016 (and is mirrored at
FFF0,000016 when the socket is the boot device).
10007175-02
KAT4000 User’s Manual
6-1
Memory Configuration:
On-Card SDRAM
Caution: When removing socketed PLCC devices, always use an extraction tool designed specifically
for that task. Otherwise, you risk damaging the PLCC device.
!
The KAT4000 supports a redundant boot bank. This boot bank is automatically used if the
primary bank fails to boot properly. The primary and redundant banks are designated from
the local processor as well as remotely over IPMI. The watchdog timer on the MPC8548 will
be used to change the boot select direction after a watchdog expiration event.
ON-CARD SDRAM
The KAT4000 supports 512 megabytes and 1 gigabyte of 72-bit wide DDR2 SDRAM. This
interface implements eight additional bits to permit the use of Error-Correcting Code
(ECC). ECC can also be disabled for specific configurations. The SDRAM interface clock
speed is 200 MHz.
A low profile, small-outline, dual inline memory module (SO-DIMM) is installed in a 200-pin
socket to reduce board density and routing constraints. An I2C serial EEPROM on the SODIMM provides the serial presence detects (SPD). SDRAM occupies physical addresses from
0000,000016 to 3FFF,FFFF16.
In addition to the basic SDRAM control functions, the chip provides several additional
DRAM-related functions and contains the following performance enhancing features:
• Supports page mode—minimizing SDRAM cycles on multiple transactions to the same
SDRAM page and can be configured to support up to 16 simultaneously opened pages
• Supports Error-Correcting Code (ECC) and Read-Modify-Write (RMW) in the case of
partial writes (smaller than 64-bit) to DRAM
• ECC provides single bit error correction and two bit error detection
NAND FLASH
The KAT4000 uses 512 MB or 1 GB of M-systems DiskOnChip NAND Flash, starting at physical address FC00,0000, for non-volatile RAM storage and True Flash File System (TFFS). The
DiskOnChip incorporates an embedded flash controller and memory, and features hardware protection and security-enabling features, an enhanced programmable boot block
enabling eXecute In Place (XIP) functionality using 16-bit access, user-controlled One Time
Programmable (OTP) partitions, and 6-bit Error Detection Code/Error Correction Code
(EDC/ECC).
6-2
KAT4000 User’s Manual
10007175-02
Memory Configuration:
NVRAM Allocation
NVRAM ALLOCATION
The KAT4000 uses two eight-kilobyte I2C SROMs for storing non-volatile information such
as board, monitor, and operating system configurations, as well as information specific to a
user’s application. All Emerson-specific data is stored in the upper two kilobits of each
device. The remainder of each device is available for the user’s application. Table 6-2 and
Table 6-3 define the organization of data within the SROMs.
Table 6-2: NVRAM Memory Map, User EEPROM 1 (write protected)
1
Address Offset (hex):
Name:
0x1FF0-0x1FFF
0x1FE0-0x1FEF
Boot verify secondary area
2
Boot verify primary area
Window Size (bytes):
0x1EE0-0x1EEF
Operating system parameters
0x0000-0x1EDF
User defined
2
16
16
3
256
7903
1. EEPROM 1 is write protected to facilitate securing data.
2. The boot verify areas are for redundancy (e.g., if an application stops working, access the secondary boot
data area to bring up a working application).
3. The operating system parameters area is for future VxWorks implementation.
Table 6-3: NVRAM Memory Map, User EEPROM 2
Address Offset (hex):
Name:
0x1FF0-0x1FFF
Emerson reserved area4
Window Size (bytes):
5887
0x0800-0x08FF
Miscellaneous
256
0x07F0-0x07FF
Power-on self test (POST)
16
0x0000-0x07EF
User defined
2032
4. The Emerson reserved area is for Emerson internal use only for test software error logging and
miscellaneous data storage.
10007175-02
KAT4000 User’s Manual
6-3
(blank page)
6-4
KAT4000 User’s Manual
10007175-02
Section 7
CPLD
In addition to reset and interrupt registers, the complex programmable logic device (CPLD)
provides the peripheral bus interface for: user LEDs, configuration jumpers, board revision,
boot device selection, and the hardware configuration register. The CPLD is in-system programmable (ISP). A single JTAG interface is provided for local programming. Remote programming via the IPMC is also possible.
All reset sources and loads are connected to the CPLD. The board can be remotely reset via
the IPMI controller. Software can also assert a board-level reset.
PLD REGISTER SUMMARY
The PLD registers start at address FC40,000016. Table 7-1 lists the 8-bit PLD registers followed by the register bit descriptions.
Table 7-1: PLD Registers
Address
Offset (hex):
Mnemonic:
Register Name:
Register Map:
0x00
PIDR
Product ID
7-1
7-2
0x04
HVR
Hardware Version
0x08
PVR
PLD Version
7-3
0x0C
PLLC
PLL Configuration
7-5
0x10
HCR0
Hardware Configuration 0
7-4
0x14
—
Reserved
—
0x18
JSR
Jumper Settings
7-7
0x1C
LEDR
LED Control
7-6
0x20
RER
Reset Event
7-12
0x24
RCR1
Reset Command 1
7-13
0x28
RCR2
Reset Command 2
7-14
0x2C
SCR1
Scratch 1
7-11
0x30
BDRR
Boot Device Redirection
7-15
0x34
MISC
MISC Control
7-10
0x38
RGSR
RTM GPIO State
7-8
0x3C
RGCR
RTM GPIO Control
7-9
0x40
CSC1
Clock Synchronizer Control 1
0x44
CSC2
Clock Synchronizer Control 2
0x48
CSC3
Clock Synchronizer Control 3
0x4C
—
Reserved
0x50
CPS1
Clock Synchronizer Primary Source 1
0x54
CPS2
Clock Synchronizer Primary Source 2
0x58
CPS3
Clock Synchronizer Primary Source 3
0x5C
—
Reserved
10007175-02
7-16
—
7-17
—
KAT4000 User’s Manual
7-1
CPLD:
Version and ID Registers
Address
Offset (hex):
Mnemonic:
Register Name:
Register Map:
(continued)
0x60
CSS1
Clock Synchronizer Secondary Source 1
0x64
CSS2
Clock Synchronizer Secondary Source 2
0x68
CSS3
Clock Synchronizer Secondary Source 3
0x6C
—
Reserved
0x70
CCR1
Clock Control, AMC1 CLK1
0x74
CCR2
Clock Control, AMC1 CLK2
0x78
CCR3
Clock Control, AMC1 CLK3
0x7C
CCR4
Clock Control, AMC2 CLK1
0x80
CCR5
Clock Control, AMC2 CLK2
0x84
CCR6
Clock Control, AMC2 CLK3
0x88
CCR7
Clock Control, AMC3 CLK1
0x8C
CCR8
Clock Control, AMC3 CLK2
0x90
CCR9
Clock Control, AMC3 CLK3
0x94
CCR10
Clock Control, AMC4 CLK1
0x98
CCR11
Clock Control, AMC4 CLK2
0x9C
CCR12
Clock Control, AMC4 CLK3
0xA0
CCR13
Clock Control, aTCA CLK3 A
0xA4
CCR14
Clock Control, aTCA CLK3 B
0xA8
CSI1
Clock Synchronizer Interrupt 1
0xAC
CSI2
Clock Synchronizer Interrupt 2
0xB0
CSI3
Clock Synchronizer Interrupt 3
7-18
—
7-19
7-20
VERSION AND ID REGISTERS
Product ID Register (PIDR)
The read-only Product ID register indicates the product name and configuration. The values
of these bits are defined by strapping resistors. Default register values are shown in the bottom row of the register table.
Register 7-1: Product ID Register (PIDR) at 0xfc40,0000
7-2
KAT4000 User’s Manual
7
6
PID1
PID0
0
0
5
4
3
reserved
2
1
0
ECS
PCIE
configuration
dependent
10007175-02
CPLD:
Version and ID Registers
PID1, PID0: PID Select
00 KAT4000
01 Reserved
10 Reserved
11 Reserved
R: Reserved
ECS: Ethernet Core Switch
1 Ethernet Core Switch is installed
0 Ethernet Core Switch is not installed
PCIE: PCI Express Switch
1 PCI Express Switch is installed
0 PCI Express Switch is not installed
Hardware Version Register (HVR)
The read-only Hardware Version register indicates artwork revision and notifies of any
other change to the hardware. The values of these bits are defined by strapping resistors.
Register 7-2: Hardware Version Register (HVR) at 0xfc40,0004
7
6
5
4
3
2
reserved
1
0
HVR1
HVR0
R: Reserved
HVR1, HVR0: Hardware Version Register
This is hard-coded in the PLD and changes with every major PCB version. Version starts at
Ox00.
PLD Version Register (PVR)
The read-only PLD Version register provides a hard-coded tracking number that changes
with each CPLD code release.
Register 7-3: PLD Version Register (PVR) at 0xfc40,0008
7
6
5
4
3
2
1
0
PCV7
PCV6
PCV5
PCV4
PCV3
PCV2
PCV1
PCV0
PCV7-0: PLD Code Version
This is hard-coded in the PLD and changes with every major code version. Version starts at
Ox00.
10007175-02
KAT4000 User’s Manual
7-3
CPLD:
Configuration Registers
CONFIGURATION REGISTERS
Hardware Configuration Register 0 (HCR0)
The read-only Hardware Configuration 0 register indicates various settings of the particular
product configuration. The values of these bits are defined by strapping resistors. Default
register values are configuration dependent.
Register 7-4: Hardware Configuration Register 0 (HCR0) at 0xfc40,0010
7
6
reserved
5
4
BDR
3
reserved
2
1
0
CF1
CF0
DDRF
R: Reserved
BDR: BDR Enable
1 Enable boot redirect circuitry
0 Disable boot redirect circuitry
CF1, CF0, DDRF: CCB and Core Frequencies (MHz)
Bits 2:0:
CCB:
Core:
000
400
800
001
533
800
010
400
1000
011
533
800
100
400
1200
101
533
1333
110
reserved
111
reserved
PLL Configuration Register (PLLC)
The PLL Configuration register indicates PLL settings for the MPC8548 processor. The initial
values of these bits are defined by strapping resistors. The values can be overwritten by
software. Default register values are configuration dependent.
Register 7-5: PLL Configuration Register (PLLC) at 0xfc40,000c
7
6
5
4
3
2
1
0
R
CORE2
CORE1
CORE0
SYS3
SYS2
SYS1
SYS0
R: Reserved
7-4
KAT4000 User’s Manual
10007175-02
CPLD:
Miscellaneous Registers
CORE2-0: Core CCB PLL Ratio
000 Reserved
001 Reserved
010 Reserved
011 3:2
100 Reserved
101 5:2
110 3:1
111 Reserved
SYS3-0: System CCB PLL Ratio
0000 16:1
1100 12:1
All others are reserved
MISCELLANEOUS REGISTERS
LED Control Register (LEDR)
The KAT4000 has multiple light-emitting diodes (LED) for status and software development (see Section “LEDs” for LED location and description). The LED Control register controls the card’s LEDs. Setting (1) the bit enables the LED. By default, the LEDs are not set.
Default is 0xd0. Default register values are shown in the bottom row of the register table.
Register 7-6: LED Control Register (LEDR) at 0xfc40,001c
7
6
5
4
3
2
1
0
CPUR
CPUG
R
LDM
DBG3
DBG2
DBG1
DBG0
1
1
1
0
0
0
0
CPUR: CPU Red LED
1 On
0 Off
CPUG: CPU Green LED
1 On
0 Off
R: Reserved
10007175-02
KAT4000 User’s Manual
7-5
CPLD:
Miscellaneous Registers
LDM: LED Debug Mode
Setting (0) puts the four debug LEDs into user mode allowing software to turn them off/on
individually. By default, they are in hardware debug mode and are connected to specific
internal/external signals.
1 Debug mode probes are enabled (default)
0 Debug mode probes are disabled
DBG3-0: Debug LEDs
1 On
0 Off
Jumper Settings Register (JSR)
The read-only Jumper Settings register indicates miscellaneous external settings. Default
register values are configuration dependent.
Register 7-7: Jumper Settings Register (JSR) at 0xfc40,0018
7
6
5
4
3
2
1
0
PRB
IROM
BFS
R
TID3
TID2
TID1
TID0
PRB: Logic Probe Input State
IROM: Ignore SROM
1 SROM ignored
0 SROM not ignored
BFS: Boot From Socket
1 Boot from socketed flash (default)
0 Boot from NOR flash
R: Reserved
TID3-0: Transition Module ID
RTM GPIO State Register (RGSR)
The read-only RTM GPIO State register reads the state of the GPIO lines to/from the RTM.
Default register values are configuration dependent.
Register 7-8: RTM GPIO State Register (RGSR) at 0xfc40,0038
7-6
KAT4000 User’s Manual
7
6
5
4
3
2
1
0
RIO7
RIO6
RIO5
RIO4
RIO3
RIO2
RIO1
RIO0
10007175-02
CPLD:
Miscellaneous Registers
RIO7-0: 1 Logic “1" on the net
0 Logic “0" on the net
RTM GPIO Control Register (RGCR)
The RTM GPIO Control register controls GPIO between the carrier card and the Rear Transition Module (RTM). The GPIO pin buffers are open collector. Set (1) the bit if the RTM will
drive the GPIO line to avoid contention. Default register values are shown in the bottom
row of the register table.
Register 7-9: RTM GPIO Control Register (RGCR) at 0xfc40,003c
7
6
5
4
3
2
1
0
RGC7
RGC6
RGC5
RGC4
RGC3
RGC2
RGC1
RGC0
1
1
1
1
1
1
1
1
RGC7-0: 1 Tristates the driver on the GPIO line, externally pulled high
0 Drives logic “0" onto the GPIO line
MISC Control Register (MISC)
The MISC Control register controls miscellaneous functions of the board (PCIe, SIO, I2C,
Test Clock). Default register values are shown in the bottom row of the register table.
Register 7-10: MISC Control Register (MISC) at 0xfc40,0034
7
6
5
4
3
2
1
0
PCIE
SRWP1
SRWP0
FWP1
FWP0
NFWP
SDA
SCL
1
1
1
0
0
1
1
1
PCIE: PCIe Root Complex
1 Root complex for PCIe system
0 Not the root complex for PCIe system
SRWP1: Serial ROM 1 Write Protect
1 Write protected
0 Not write protected
SRWP0: Serial ROM 0 Write Protect
1 Write protected
0 Not write protected
10007175-02
KAT4000 User’s Manual
7-7
CPLD:
Boot and Reset Registers
FWP1: Flash 1 Write Protect
1 Not write protected
0 Write protected
FWP0: Flash 0 Write Protect
1 Not write protected
0 Write protected
NFWP: NAND Flash Write Protect
1 Write protected
0 Not write protected
SDA: I2C SDA Output Driver State
Bit state indicates PLD’s output level on the bus
SCL: I2C SCL Output Driver State
Bit state indicates PLD’s output level on the bus
Scratch Register 1 (SCR1)
Scratch register 1 can be used as a reading/writing test register. Default register values are
shown in the bottom row of the register table.
Register 7-11: Scratch Register 1 (SCR1) at 0xfc40,002c
7
6
5
4
3
2
1
0
SCR7
SCR6
SCR5
SCR4
SCR3
SCR2
SCR1
SCR0
0
0
0
0
0
0
0
0
SCR7-0: Scratch bits
BOOT AND RESET REGISTERS
The reset signals are routed to and distributed by the CPLD. To support this functionality,
the CPLD includes three registers: one indicates the reason for the last reset, and the other
two force one of several types of reset.
Reset Event Register (RER)
The read-only Reset Event register contains the bit corresponding to the most recent event
which caused a reset. If the entire register does not contain a bit (1), it is a Power On Reset
(POR) condition. Default register values are dependent on reset events.
7-8
KAT4000 User’s Manual
10007175-02
CPLD:
Boot and Reset Registers
Register 7-12: Reset Event Register (RER) at 0xfc40,0020
7
6
5
4
3
2
1
0
R
SHR
WE
COPS
COPH
PAYR
R
PBR
R: Reserved
SHR: Software Issued Hard Reset
1 The last reset was caused by a write to the Reset Command register
WE: Watchdog Expiration
1 A reset was caused by the expiration of the watchdog timer
COPS: MPC8548 COP Soft Reset
1 A COP header soft reset (SRESET) has occurred
COPH: MPC8548 COP Hard Reset
1 A COP header hard reset (HRESET) has occurred
PAYR: Payload Reset
1 An IPMC Payload reset has occurred
PBR: Push Button Reset
1 The switch (POR_RST) caused a reset
Reset Command Register 1 (RCR1)
Reset Command registers 1 and 2 force one of several types of resets, as shown below. A
reset sequence is initiated by writing a one to a valid bit, then the bit is automatically
cleared. Set only one bit in this register at a time. If reset when in a locked state, a clock synchronizer will issue a loss of lock interrupt. To prevent this, mask the interrupt from registers 0xa8, 0xaC or 0xb0. The hardware will issue resets to the clock synchronizers for 10ms.
Software must wait at least 10ms before accessing these devices. Default register values
are shown in the bottom row of the register table.
Register 7-13: Reset Command Register 1 (RCR1) at 0xfc40,0024
7
6
5
4
3
2
1
0
CPUH
CSR1
CSR2
CSR3
PCIE
I2C
FSHR
CER
0
0
0
0
0
0
0
0
CPUH: CPU Hard Reset
1 Reset
0 No reset (default)
10007175-02
KAT4000 User’s Manual
7-9
CPLD:
Boot and Reset Registers
CSR1: Clock Synchronizer 1 Reset
1 Reset
0 No reset (default)
CSR2: Clock Synchronizer 2 Reset
1 Reset
0 No reset (default)
CSR3: Clock Synchronizer 3 Reset
1 Reset
0 No reset (default)
PCIE: PCI Express Reset
1 Reset
0 No reset (default)
I2C: I2C Bus Reset
1 Reset
0 No reset (default)
FSHR: NOR Flash Reset
1 Resets NOR flash to a known state
0 No reset (default)
CER: Core Ethernet Reset
1 Reset
0 No reset (default)
Reset Command Register 2 (RCR2)
Set only one bit in this register at a time. If reset when in a locked state, a clock synchronizer
will issue a loss of lock interrupt. To prevent this, mask the interrupt from registers 0xa8,
0xaC or 0xb0. The hardware will issue resets to the clock synchronizers for 10ms. Software
must wait at least 10ms before accessing these devices. Default register values are shown
in the bottom row of the register table.
Register 7-14: Reset Command Register 2 (RCR2) at 0xfc40,0028
7
6
5
4
FPR
DER
BCR
NFR
0
0
0
0
FPR: Fat Pipe Module Reset
1 Reset
0 No reset (default)
7-10
KAT4000 User’s Manual
10007175-02
3
2
1
reserved
0
CPLD:
Boot and Reset Registers
DER: Debug Ethernet Reset
1 Reset
0 No reset (default)
BCR: Base Channel Ethernet Reset
1 Reset
0 No reset (default)
NFR: NAND Flash Reset
1 Reset
0 No reset (default)
R: Reserved
Boot Device Redirection Register (BDRR)
The read-only Boot Device Redirection register indicates which of the three devices the CPU
is using as the boot device. The BDRR also indicates which device was set as the initial boot
device (see Fig. 7-1). The Boot Redirected Bit, BRB[7], is set (1) when the current boot device
does not match the initial default boot device. This indicates that the image in the default
device was defective, the watchdog timer expired, and the next device was tried. The boot
redirect circuitry is enabled or disabled by Register Map 7-4. Default register values are
dependent on boot settings.
10007175-02
KAT4000 User’s Manual
7-11
CPLD:
Boot and Reset Registers
Figure 7-1: Boot Device Redirection
H
&
!
Socketed
ROM
1:2 Boot from socket–default
5:6 Boot device redirection is disabled
;
(#$
H6/
&
H
&
&
Flash 1
Socketed
ROM
!
Flash 0
1:2 Boot from soldered flash
5:6 Boot device redirection is enabled–default
Initial
Register 7-15: Boot Device Redirection Register (BDRR) at 0xfc40,0030
7
BRB
6
5
reserved
4
3
2
1
0
BSJ
R
SKT
FL1
FL0
BRB: Boot Redirected Bit
1 The current boot device does not match the initial default boot device.
R: Reserved
BSJ: Boot from Socket Jumper
1 Active boot device is socketed flash.
SKT: Socket Boot Device
1 The board booted from socket flash.
FL1: Flash 1 Boot Device
1 The board booted from flash bank 1.
FL0: Flash 0 Boot Device
1 The board booted from flash bank 0.
7-12
KAT4000 User’s Manual
10007175-02
CPLD:
Clock Synchronizer Registers
CLOCK SYNCHRONIZER REGISTERS
Clock Synchronizer Control Registers 1-3 (CSC1—CSC3)
The Clock Synchronizer Control registers control the functionality of the clock synchronizer
devices. Default is 0x40 for register 1 and 0x00 for registers 2 and 3.
Register 7-16: Clock Synchronizer Control Registers 1-3 (CSC1-CSC3) at 0xfc40,0040, 0xfc40,0044, 0xfc40,0048,
respectively
7
6
5
4
3
2
FS2
FS1
MS2
MS1
PCCI
RSEL
1
0
reserved
Default register values for CSC1are shown in the following row.
0
1
0
0
0
0
Default register values for CSC2 and CSC3 are shown in the following row.
0
0
0
0
0
0
FS2, FS1: Input Frequency Select
00 19.44 MHz
01 8 KHz
10 1.544 MHz
11 2.048 MHz
MS2, MS1: Mode Select
00 Normal
01 Holdover
10 Freerun
11 Reserved
PCCI: Phase Continuity Control Input
Controls state changes between Holdover and Normal modes. Please refer to Chapter 7 for
further details.
RSEL: Input Reference Select
1 Secondary Clock
0 Primary Clock
R: Reserved
10007175-02
KAT4000 User’s Manual
7-13
CPLD:
Clock Synchronizer Registers
Clock Synchronizer Primary Source Registers 1-3 (CPS1—CPS3)
The Clock Synchronizer Primary Source registers define the input primary source to the
three clock synchronizer devices. Default is 0x00 for register 1, 0x02 for register 2 and 0x04
for register 3.
Register 7-17: Clock Synchronizer Primary Source Registers 1-3 (CPS1-CPS3) at 0xfc40,0050, 0xfc40,0054, 0xfc40,0058,
respectively
7
6
5
reserved
4
3
2
1
0
PRI4
PRI3
PRI2
PRI1
PRI0
Default register values for CPS1 are shown in the following row.
0
0
0
0
0
Default register values for CPS2 are shown in the following row.
0
0
0
1
0
Default register values for CPS3 are shown in the following row.
0
R: Reserved
PRI4-0: Primary Input Source Selection
7-14
KAT4000 User’s Manual
Bit:
Input Source:
00000
aTCA CLK1 A
00001
aTCA CLK1 B
00010
aTCA CLK2 A
00011
aTCA CLK2 B
00100
aTCA CLK3 A
00101
aTCA CLK3 B
00110
AMC1 CLK1
00111
AMC1 CLK2
01000
AMC1 CLK3
01001
AMC2 CLK1
01010
AMC2 CLK2
01011
AMC2 CLK3
01100
AMC3 CLK1
10007175-02
0
1
0
0
CPLD:
Clock Synchronizer Registers
Bit:
Input Source:
01101
AMC3 CLK2
01110
AMC3 CLK3
01111
AMC4 CLK1
10000
AMC4 CLK2
10001
AMC4 CLK3
10010
reserved
...
11111
reserved
Clock Synchronizer Secondary Source Registers 1-3 (CSS1—CSS3)
The Clock Synchronizer Secondary Source registers define the input secondary source to
the three clock synchronizer devices. Default is 0x01 for register 1, 0x03 for register 2 and
0x05 for register 3.
Register 7-18: Clock Synchronizer Secondary Source Registers 1-3 (CSS1-CSS3) at 0xfc40,0060, 0xfc40,0064, 0xfc40,0068,
respectively
7
6
5
reserved
4
3
2
1
0
SEC4
SEC3
SEC2
SEC1
SEC0
Default register values for CSS1 are shown in the following row.
0
0
0
0
1
Default register values for CSS2 are shown in the following row.
0
0
0
1
1
Default register values for CSS3 are shown in the following row.
0
0
1
0
1
R: Reserved
SEC4-0: Secondary Input Source Selection
Bit:
Input Source:
00000
aTCA CLK1 A
00001
aTCA CLK1 B
00010
aTCA CLK2 A
10007175-02
KAT4000 User’s Manual
7-15
CPLD:
Clock Synchronizer Registers
Bit:
Input Source:
00011
aTCA CLK2 B
00100
aTCA CLK3 A
00101
aTCA CLK3 B
00110
AMC1 CLK1
00111
AMC1 CLK2
01000
AMC1 CLK3
01001
AMC2 CLK1
01010
AMC2 CLK2
01011
AMC2 CLK3
01100
AMC3 CLK1
01101
AMC3 CLK2
01110
AMC3 CLK3
01111
AMC4 CLK1
10000
AMC4 CLK2
10001
AMC4 CLK3
10010
reserved
...
11111
7-16
KAT4000 User’s Manual
reserved
10007175-02
CPLD:
Clock Synchronizer Registers
Clock Control Registers (CCR1—CCR14)
The Clock Control registers control the source clock to the various clock destinations.
Default is 0x0E for all 14 registers. Default register values are shown in the bottom row of
the register table.
Register 7-19: Clock Control Registers 1-14 (CCR1-CCR14) at 0xfc40,0070, 0xfc40,0074, 0xfc40,0078, 0xfc40,007c,
0xfc40,0080, 0xfc40,0084, 0xfc40,0088, 0xfc40,008c, 0xfc40,0090, 0xfc40,0094, 0xfc40,0098,
0xfc40,009c, 0xfc40,00a0, 0xfc40,00a4, respectively
7
OE
6
5
reserved
4
3
2
1
0
CSS4
CSS3
CSS2
CSS1
CSS0
0
1
1
1
0
0
OE: Clock Enable
0 Tristates clock driven to site
1 Drives selected clock source to site
R: Reserved
CSS4-0: Clock Source Select
Defines source of clock to be driven to site. If “self” is selected as source, logic “0” will be
driven.
Bit:
Input Source:
Clock Control
Register:
00000
AMC1 CLK1
1
00001
AMC1 CLK2
2
00010
AMC1 CLK3
3
00011
AMC2 CLK1
4
00100
AMC2 CLK2
5
00101
AMC2 CLK3
6
00110
AMC3 CLK1
7
00111
AMC3 CLK2
8
01000
AMC3 CLK3
9
01001
AMC4 CLK1
10
01010
AMC4 CLK2
11
01011
AMC4 CLK3
12
01100
aTCA CLK1 A
—
01101
aTCA CLK1 B
—
01110
aTCA CLK2 A
—
01111
aTCA CLK2 B
—
10000
aTCA CLK3 A
13
10007175-02
KAT4000 User’s Manual
7-17
CPLD:
Clock Synchronizer Registers
Clock Control
Register:
Bit:
Input Source:
10001
aTCA CLK3 B
14
10010
Sync #1 - 19.44 MHz
—
10011
Sync #1 - 2.048 MHz
—
10100
Sync #1 - 1.544 MHz
—
10101
8 KHz (see note)
—
10110
Sync #2 - 19.44 MHz
—
10111
Sync #2 - 2.048 MHz
—
11000
Sync #2 - 1.544 MHz
—
11001
Sync #3 - 19.44 MHz
—
11010
Sync #3 - 2.048 MHz
—
11011
Sync #3 - 1.544 MHz
—
11100
reserved
—
reserved
—
...
—
11111
Note: This 8 KHz source is generated by the PLD based off Sync 1 clocks. Therefore, the Sync 1 part must be enabled
for this clock to be active.
Clock Synchronizer Interrupt Registers (CSI1-CSI3)
The Clock Synchronizer Interrupt registers control the clock synchronizer interrupts.
Default is 0xc0 for all three registers. Default register values are shown in the bottom row of
the register table.
Register 7-20: Clock Synchronizer Interrupt Registers 1-3 (CSI1-CSI3) at 0xfc40,00a8, 0xfc40,00ac, 0xfc40,00b0, respectively
7
6
5
4
3
2
1
0
HM
PM
HIC
PIC
HPI
PPI
HS
PS
1
1
0
0
0
0
0
0
HM, PM: Holdover and PLL Lock Loss Interrupt Masks (read/write)
1 Masks interrupt from being generated to CPU
0 Allows interrupt to be generated to CPU
Note: Bits (3:2) are not affected by bits (7:6).
HIC, PIC: Holdover and PLL Lock Loss Interrupt Clear (write-only)
Setting (1) the bit clears interrupts.
7-18
KAT4000 User’s Manual
10007175-02
CPLD:
JTAG Interface
HPI, PPI: Holdover and PLL Lock Loss Pending Interrupt (read-only)
1 Interrupt latched
0 No interrupt latched
HS, PS: Holdover and PLL Lock Loss Status (read-only)
1 Indicates synchronizer in holdover/PLL lock loss state
0 Indicates synchronizer not in holdover, PLL locked
JTAG INTERFACE
The KAT4000 provides a single 10-pin JTAG header (JP3) for in-system programming of onboard PLDs, as well as Altera PLDs on AMC site 1 (see Fig. 7-2). The header pin assignments
are defined in Table 7-2.
Table 7-2: JP3 PLD JTAG Pin Assignments
Pin:
Description:
Pin:
1
Test Clock Input (TCK)
2
ground 1
3
Test Data Output (TDO)
4
3.3 volts VCC
5
Test Mode Select (TMS)
6
not connected
7
not connected
8
not connected
9
Test Data Input (TDI)
10
ground 2
10007175-02
Description:
KAT4000 User’s Manual
7-19
CPLD:
JTAG Interface
Figure 7-2: PLD JTAG Diagram
AMC 1
Port 1
Config.
Header JP1
Programming
Header JP3
Master
Port 2
SCANSCA112
JTAG
Multiplexer
SCANSTA112
Port 0
Port 3
JTAG Multiplexer
KSL PLD
IPMC PLD
Port 6
Port 4
Port 5
Fat Pipe
Switch Module
JP1 is the configuration header for PLD programming. Installing a shunt on jumper JP1, pins
1:2, enables the JP3 PLD programming header. The header pin assignments are defined in
Table 7-3.
Table 7-3: JP1 Pin Assignments
Shunt Description:
1:2 TRANS: Enable programming via header (enables CPU JTAG/COP access)
3:4 LSBSEL0: Select KSL PLD
5:6 LSBSEL1: Select AMC Site 1
7:8 LSBSEL5: Select Fat Pipe Module
9:10 LSBSEL6: Select IPMC PLD
7-20
KAT4000 User’s Manual
10007175-02
Section 8
AMC Sites
The KAT4000 provides four Advanced Mezzanine Card (AMC) sites capable of supporting
the following AMC form factors: single- or double-width; mid-size or compact. Total power
of the AMC sites, including optional RTMs, shall not exceed 120 watts. B+ style AMC connectors are used. Each site is individually configurable.
Note: When using a compact AMC module, the module must have a front panel that fully covers the front opening
of the KAT4000 to maintain EMC compliance.
Note: See PICMG® AMC.0 Rev. 2.0 Advanced Mezzanine Card Base Specification for the maximum allowable component height and PCB width for a custom AMC module designed specifically for the KAT4000.
The following features are supported by all AMC interfaces:
Serial Ports: These TTL level signals are for general purpose serial communications. The KAT4000 routes
the serial ports from the AMC sites directly to the Zone 3 connectors.
10/100/1000 Ethernet Ports:
The KAT4000 provides up to two 1000Base-BX Ethernet ports from each AMC site into the
Ethernet core switch (VSC7376).
PCI Express Ports: (Optional) The KAT4000 provides one PCIe port from each AMC site into the PCI Express
switch (PEX 8524).
GbE, sRIO, PCIe or 10 GbE Ports:
The KAT4000 provides four ports from each AMC site into the fat pipe switch module
(optional) capable of using GbE, sRIO, PCIe or 10 GbE protocols.
User I/O: The AMC connectors provide the user-defined I/O for custom connectivity. The KAT4000
routes the user I/O pins from the AMC sites directly to the Zone 3 connectors.
IPMB-L: The local IPMB interfaces between the KAT4000’s IPMC and the AMC sites’ MMC.
10007175-02
KAT4000 User’s Manual
8-1
AMC Sites:
AMC Connectors
AMC CONNECTORS
The connectors for modules B1 through B4 have 170 pins (see Fig. 8-1) and support the
Ethernet core switch, the PCI Express Switch, the Fat Pipe Switch module, and Zone 3. Refer
to the component map in Fig. 2-1 for the location and orientation of the AMC B+ connectors
on the KAT4000.
Figure 8-1: AMC B+ Connector
AMC SIGNALS
The following signals are available on all four connectors. All signals are bi-directional
unless stated otherwise. A sustained tristate line is driven high for one clock cycle before
float. The signals are the same for each connector since they are differential pairs. Bn stands
for B1 through B4.
AMCn_RXD/TXDn+/-: Differential pairs from AMC cards B1-B4 to the fat pipe switch module.
Bn_CONSOLE_TX/RX+/-:Serial ports from AMC sites to Zone 3.
Bn_EN*: ENABLE
This signal connects to the IPMC PLD and enables the MMC on the board.
Bn_LEDCTRL_TX/RX+/-: Serial ports from AMC sites to Zone 3.
Bn_P1_RX/TX+/-: Power connectors to configuration capacitors for GbE or PCI Express.
Bn_PS1*: Connects to the IPMC PLD via a BMR H8S microcontroller.
Bn_SATA1_RXD/TXD+/-:Optional module connectivity test loop to B3 Sata 1, B4 Sata 2, B1 Sata 1 and B1 Sata 2,
respectively.
Bn_SATA2_RXD/TXD+/-:Optional module connectivity test loop to B4 Sata 1, B3 Sata 2, B2 Sata 2 B2 Sata 1, respectively.
Bn_TRINGn/RRINGn+/-: Input (receive) and output (transmit) signals to Zone 3.
8-2
KAT4000 User’s Manual
10007175-02
AMC Sites:
AMC Signals
Bn_TTIPn/RTIPn+/-: Input (receive) and output (transmit) signals to Zone 3.
CLK1+/-: CLOCK 1
Connects to the AMC synchronization clock transceivers.
CLK2+/-: CLOCK 2
Connects to the AMC synchronization clock transceivers.
EXPn_B_RX4/TX4+/-: Optional test loop to B3 port 8 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively. PCI Express
interface port output (transmit) or input (receive) signals differential pairs.
EXPn_B_RX5/TX5+/-: Optional test loop to B3 port 9 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively.
EXPn_B_RX6/TX6+/-: Optional test loop to B3 port 10 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively.
EXPn_B_RX7/TX7+/-: Optional test loop to B3 port 11 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively.
GIGn_RX/TX+/-: Gigabit Ethernet differential pairs to Ethernet core switch ports 0, 12, 18 and 11, respectively.
PCIE_REFCLKn+/-: CLOCK 3
Connects to the PCI Express clock.
Bn_SCL: SERIAL I2C CLOCK
To IPMC I2C buffer.
Bn_SDA: SERIAL I2C DATA/ADDRESS
To IPMC I2C buffer.
TCK: TEST CLOCK INPUT (JTAG) clocks state information and test data into and out of the device
during operation of the TAP.
TDI: TEST DATA INPUT (JTAG) serially shifts test data and test instructions into the device during
TAP operations.
TDO: TEST DATA OUTPUT (JTAG) serially shifts test data and test instructions out of the device
during TAP operations.
TMS: TEST MODE SELECT (JTAG) controls the state of the TAP controller (input signal) in the
device.
TRST*: TEST RESET (JTAG) is the asynchronous reset for the JTAG controller (input signal).
10007175-02
KAT4000 User’s Manual
8-3
AMC Sites:
Pin Assignments
PIN ASSIGNMENTS
Each connector has 170 pins (see Fig. 8-1) and supports PCIe and GbE signals, the Ethernet
core switch, the PCI Express switch, the fat pipe switch module, user I/O configuration signals and Zone 3.
Table 8-1: B1-B4 AMC Pin Assignments
8-4
KAT4000 User’s Manual
Pin:
B1-B4 Signal:
Pin:
B1-B4 Signal:
1
GND
2
12 V
3
Bn_PS1*
4
3.3 V
5
3.3 V
6
Reserved
7
GND
8
Reserved
9
12 V
10
GND
11
GIGn_RX+
12
GIGn_RX-
13
GND
14
GIGn_TX+
15
GIGn_TX-
16
GND
17
3.3 V
18
12 V
19
GND
20
Bn_P1_RX+
21
Bn_P1_RX-
22
GND
23
Bn_P1_TX+
24
Bn_P1_TX-
25
GND
26
3.3 V
27
12 V
28
GND
29
Bn_SATA1_RXD+
30
Bn_SATA1_RXD-
31
GND
32
Bn_SATA1_TXD+
33
Bn_SATA1_TXD-
34
GND
35
Bn_SATA2_RXD+
36
Bn_SATA2_RXD-
37
GND
38
Bn_SATA2_TXD+
39
Bn_SATA2_TXD-
40
GND
41
Bn_EN*
42
12 V
43
GND
44
AMCn_RXD4+
45
AMCn_RXD4-
46
GND
47
AMCn_TXD4+
48
AMCn_TXD4-
49
GND
50
AMCn_RXD5+
51
AMCn_RXD5-
52
GND
53
AMCn_TXD5+
54
AMCn_TXD5-
55
GND
56
Bn_SCL
57
12 V
58
GND
59
AMCn_RXD6+
60
AMCn_RXD6-
61
GND
62
AMCn_TXD6+
63
AMCn_TXD6-
64
GND
65
AMCn_RXD7+
66
AMCn_RXD7-
10007175-02
AMC Sites:
Pin Assignments
Pin:
B1-B4 Signal:
Pin:
B1-B4 Signal:
67
GND
68
AMCn_TXD7+
69
AMCn_TXD7-
70
GND
71
Bn_SDA
72
12 V
73
GND
74
Bn_CLK1+
75
Bn_CLK1-
76
GND
77
Bn_CLK2+
78
Bn_CLK2-
79
GND
80
Bn_CLK3+
81
Bn_CLK3-
82
GND
83
GND
84
12 V
85
GND
86
GND
87
EXPn_B_TX4-
88
EXPn_B_TX4+
89
GND
90
EXPn_B_RX4-
91
EXPn_B_RX4+
92
GND
93
EXPn_B_TX5-
94
EXPn_B_TX5+
95
GND
96
EXPn_B_RX5-
97
EXPn_B_RX5+
98
GND
99
EXPn_B_TX6-
100
EXPn_B_TX6+
101
GND
102
EXPn_B_RX6-
103
EXPn_B_RX6+
104
GND
105
EXPn_B_TX7-
106
EXPn_B_TX7+
107
GND
108
EXPn_B_RX7-
109
EXPn_B_RX7+
110
GND
111
Bn_CONSOLE_RX-
112
Bn_CONSOLE_TX+
113
GND
114
Bn_LEDCTRL_RX-
115
Bn_LEDCTRL_TX+
116
GND
117
Bn_RRING1-
118
Bn_RTIP1+
119
GND
120
Bn_TRING1-
121
Bn_TTIP1+
122
GND
123
Bn_RRING2-
124
Bn_RTIP2+
125
GND
126
Bn_TRING2-
127
Bn_TTIP2+
128
GND
129
Bn_RRING3-
130
Bn_RTIP3+
131
GND
132
Bn_TRING3-
133
Bn_TTIP3+
134
GND
135
Bn_RRING4-
136
Bn_RTIP4+
137
GND
138
Bn_TRING4-
139
Bn_TTIP4+
140
GND
141
Bn_RRING5-
142
Bn_RTIP5+
143
GND
144
Bn_TRING5-
10007175-02
KAT4000 User’s Manual
8-5
AMC Sites:
SATA Lines
Pin:
B1-B4 Signal:
Pin:
B1-B4 Signal:
145
Bn_TTIP5+
146
GND
147
Bn_RRING6-
148
Bn_RTIP6+
149
GND
150
Bn_TRING6-
151
Bn_TTIP6+
152
GND
153
Bn_RRING7-
154
Bn_RTIP7+
155
GND
156
Bn_TRING7-
157
Bn_TTIP7+
158
GND
159
Bn_RRING8-
160
Bn_RTIP8+
161
GND
162
Bn_TRING8-
163
Bn_TTIP8+
164
GND
165
TCK
166
TMS
167
TRST*
168
TDO
169
TDI
170
GND
SATA LINES
This section displays the SATA line connections for AMCs in the KAT4000. Use SATA lines to
link AMC modules with storage devices (e.g., SATA hard drive or Emerson Ethernet test
card).
Figure 8-2: Diagram of SATA line connections
8-6
KAT4000 User’s Manual
B4
B3
B2
B1
(2
(2
(2
(2
(2
(2
(2
(2
10007175-02
Section 9
System Management
The KAT4000 provides an intelligent hardware management system, as defined in the
AdvancedTCA® Base Specification (PICMG® 3.0; AMC.0). This system implements an Intelligent Platform Management Controller (IPMC) based on the proprietary BMR-H8S-ATCA®
reference design from Pigeon Point Systems.
The KAT4000 IPMC implements all the standard Intelligent Platform Management Interface
(IPMI) commands and provides hardware interfaces for other system management features such as Hot Swap control, LED control, power control, and temperature and voltage
monitoring. The IPMC also supports an EIA-232 interface for serial communications via the
Serial Interface Protocol Lite (SIPL) IPMI commands.
IPMC OVERVIEW
The basic features of the KAT4000 IPMC include:
• Conformance to ATCA Base Specification (PICMG 3.0)
• Geographical addressing according to PICMG 3.0
• Ability to read and write Field Replaceable Unit (FRU) data on each capable AMC site
• Ability to reset IPMC from IPMB-0
• Ability to read an inlet and outlet temperature sensor
• Ability to read payload voltage/current levels
• Ability to send event messages to a specified receiver
• All sensors generate assertion and/or de-assertion event messages
• Support for fault tolerant field upgrades
• Support for field updates of firmware via the payload processor interface
• Hardware added to accommodate console redirection over IPMB
10007175-02
KAT4000 User’s Manual
9-1
System Management:
IPMC Overview
The following block diagram shows the IPMC connections for the KAT4000.
Figure 9-1: IPMC Connections Block Diagram
Payload
Power Enables and
AMC Sites (B1-B4):
Management
Payload
Processor
Interface
Boot
Device
Select
Payload
Reset
Temperature Sensors
<
%6"
2
(/
!
!
<
."
2
(/
<&2
CPU Present
.
;6
AMC Sites (B1-B4):
Ready,
Payload Power Current Monitor
:@
:@
:@
<:/
:@
: @
IPMC Debug
Console
RTM: Present
IPMC
:@
@"'
(/
AMC Sites (B1-B4): Enable
RTM: Payload Power Enable
RTM: Management Power Enable
Pigeon Point
Reference Design
9(0
B///>C
<&2
0
0&
0
0
ShMC Present
(from JP7)
IPMC Reset
Switch
.
KAT4000 User’s Manual
10007175-02
.;7;
*;
IPMB-B
IPMB-A
.;7
*;
9IDJ
."
IPMB-0
9-2
Hot Swap Switch
.
."
Front
Panel
LEDs
System Management:
IPMI Messaging
IPMI MESSAGING
All IPMI messages contain a Network Function Code field, which defines the category for a
particular command. Each category has two codes assigned to it–one for requests and one
for responses. The code for a request has the least significant bit of the field set to zero,
while the code for a response has the least significant bit of the field set to one. Table 9-1
lists the network function codes (as defined in the IPMI specification) used by the IPMC.
Table 9-1: Network Function Codes
Hex Code
Value(s):
Name:
Type:
Description:
00, 01
Chassis
chassis device
requests/responses
00 = command/request, 01 = response:
common chassis control and status functions
02, 03
Bridge
bridge requests/
responses
02 = request, 03 = response:
message contains data for bridging to the next
bus. Typically, the data is another message,
which also may be a bridging message. This
function is only present on bridge nodes.
04, 05
Sensor/
Event
sensor and event
requests/responses
04 = command/request, 05 = response:
for configuration and transmission of Event
Messages and system Sensors. This function
may be present on any node.
06, 07
App
application
requests/responses
06 = command/request, 07 = response:
message is implementation-specific for a
particular device, as defined by the IPMI
specification
08, 09
Firmware
firmware transfer
requests/responses
08 = command/request, 09 = response:
firmware transfer messages match the format
of application messages, as determined by the
particular device
0A, 0B
Storage
non-volatile
storage requests/
responses
0A = command/request, 0B = response:
may be present on any node that provides
nonvolatile storage and retrieval services
0C-2F
Reserved
–
reserved: 36 network functions (18 pairs)
30-3F
OEM
–
vendor specific: 16 network functions (8 pairs).
The vendor defines functional semantics for
cmd and data fields. The cmd field must hold
the same value in requests and responses for a
given operation to support IPMI message
handling and transport mechanisms. The
controller’s Manufacturer ID value identifies
the vendor or group.
10007175-02
KAT4000 User’s Manual
9-3
System Management:
IPMI Messaging
IPMI Completion Codes
All IPMI response messages contain a hexadecimal Completion Code field that indicates the
status of the operation. Table 9-2 lists the Completion Codes (as defined in the IPMI specification) used by the IPMC.
Table 9-2: Completion Codes
Code:
Description:
Generic Completion Codes 00, C0-FF
9-4
KAT4000 User’s Manual
00
Command completed normally
C0
Node busy–command could not be processed because command-processing
resources are temporarily unavailable
C1
Invalid command–indicates an unrecognized or unsupported command
C2
Command invalid for given LUN
C3
Time-out while processing command, response unavailable
C4
Out of space–command could not be completed because of a lack of storage space
required to execute the given command operation
C5
Reservation canceled or invalid Reservation ID
C6
Request data truncated
C7
Request data length invalid
C8
Request data field length limit exceeded
C9
Parameter out of range–one or more parameters in the data field of the Request are
out of range. This is different from Invalid data field code (CC) because it indicates that
the erroneous field(s) has a contiguous range of possible values.
CA
Cannot return number of requested data bytes
CB
Requested sensor, data, or record not present
CC
Invalid data field in Request
CD
Command illegal for specified sensor or record type
CE
Command response could not be provided
CF
Cannot execute duplicated request–for devices that cannot return the response
returned for the original instance of the request. These devices should provide separate
commands that allow the completion status of the original request to be determined.
An Event Receiver does not use this completion code, but returns the 00 completion
code in the response to (valid) duplicated requests.
D0
Command response could not be provided, SDR Repository in update mode
D1
Command response could not be provided, device in firmware update mode
D2
Command response could not be provided, Baseboard Management Controller (BMC)
initialization or initialization agent in progress
D3
Destination unavailable–cannot deliver request to selected destination. (This code can
be returned if a request message is targeted to SMS, but receive message queue
reception is disabled for the particular channel.)
D4
Cannot execute command, insufficient privilege level
D5
Cannot execute command, parameter(s) not supported in present state
FF
Unspecified error
10007175-02
System Management:
Code:
IPMB Protocol
Description: (continued)
Device-Specific (OEM) Codes 01-7E
01-7E
Device specific (OEM) completion codes–command-specific codes (also specific for a
particular device and version). Interpretation of these codes requires prior knowledge
of the device command set.
Command-Specific Codes 80-BE
80-BE
Standard command-specific codes–reserved for command-specific completion codes
(described in this chapter)
IPMB PROTOCOL
The IPMB message protocol is designed to be robust and support many different physical
interfaces. The IPMC supports messages over the IPMB interface. Messages are defined as
either a request or a response, as indicated by the least significant bit in the Network Function Code of the message. Table 9-3 shows the format of an IPMI request message followed
by each byte description.
Table 9-3: Format for IPMI Request Message
Byte:
1
2
3
4
5
6
7:N
N+1
Bits:
7
6
5
4
3
2
1
0
rsSA
netFn
rsLUN
Checksum
rqSA
rqSeq
rqLUN
Command
Data
Checksum
• The first byte contains the responder’s Slave Address, rsSA.
• The second byte contains the Network Function Code, netFn, and the responder’s
Logical Unit Number, rsLUN.
• The third byte contains the two’s-complement checksum for the first two bytes.
• The fourth byte contains the requester’s Slave Address, rqSA.
• The fifth byte contains the requester’s Sequence Number, rqSeq, and requester’s
Logical Unit Number, rqLUN. The Sequence number may be used to associate a specific
response to a specific request.
• The sixth byte contains the Command Number.
10007175-02
KAT4000 User’s Manual
9-5
System Management:
SIPL Protocol
• The seventh byte and beyond contain parameters for specific commands (if required).
• The final byte is the two’s-complement checksum of all of the message data after the
first checksum.
An IPMI response message (see Table 9-4) is similar to a IPMI request message. The main difference is that the seventh byte contains the Completion Code, and the eighth byte and
beyond hold data received from the controller (rather than data to send to the controller).
Also, the Slave Address and Logical Unit Number for the requester and responder are
swapped.
Table 9-4: Format for IPMI Response Message
Byte:
Bits:
7
6
1
2
3
4
5
6
7
8:N
N+1
5
4
3
2
1
0
rqSA
netFn
rqLUN
Checksum
rsSA
rsSeq
rsLUN
Command
Completion Code
Data
Checksum
SIPL PROTOCOL
The KAT4000 IPMC supports the Serial Interface Protocol Lite (SIPL) protocol. It supports
raw IPMI messages in SIPL and handles these messages the same way as it handles IPMI
messages from the IPMB-O bus, except that the replies route to either the payload or serial
debug interface. Messages are entered as case-insensitive hex-ASCII pairs, separated
optionally by a space, as shown in the following examples:
[18 00 22]<newline>
[180022]<newline>
The IPMC does not, however, support SIPL ASCII text commands, as defined by the IPMI
specification.
The KAT4000 IPMC does support Pigeon Point Systems extension commands, implemented as OEM IPMI commands. These commands use Network Function Codes 2E/2F
(hex), and the message body is transferred similarly to raw IPMI messages, as described
previously.
9-6
KAT4000 User’s Manual
10007175-02
System Management:
Message Bridging
The following figures show an example of an extension command request and response,
respectively.
Figure 9-2: Extension Command Request Example
[B8 00 01 0A 40 00 12]
Data
Pigeon Point IANA
Command Code
rqSeq (0016) / Bridge (002)
NetFn Code (2E16) / LUN (002)
Figure 9-3: Extension Command Response Example
[BC 00 01 00 0A 40 00 34]
Data
Pigeon Point IANA
Completion Code
Command Code
rqSeq (00 16) / Bridge (002)
NetFn Code (2F16) / LUN (002)
MESSAGE BRIDGING
The Message Bridging facility is responsible for bridging messages between various interfaces of the KAT4000 IPMC. As required by the AMC.0 specification, the KAT4000 IPMC
supports message bridging between the IPMB-0 and IPMB-L interfaces using the standard
Send Message command.
10007175-02
KAT4000 User’s Manual
9-7
System Management:
Message Bridging
The KAT4000 IPMC also supports message bridging between the Payload Interface and
IPMB-O, which allows the payload to send custom messages to and receive them from
other shelf entities, such as the shelf manager. Message bridging is implemented using the
Send/Get Message commands and also via LUN 10 of the KAT4000 IPMC.
The following example illustrates how the Send/Get Message and Get Address Info commands can be used by the payload software to get the physical location of the board in the
shelf:
1 The payload software sends the Get Address Info command to the BMR-H8S-ATCA. Using
the SIPL protocol:
[B0 xx 01 00]
2 The BMR-H8S-ATCA returns its IPMB address in the Get Address Info reply. In this example,
7216 is the IPMB-O address of the H8S ATCA.
{B4 00 01 00 00 FF 72 FF 00 01 07]
3 The payload software composes a Get Address Info command requesting the responder to
provide its addressing information for FRU device 0. The request is composed in the IPMB
format. The responder address is set to 2016 (for the shelf manager). The requester address
is set to the value obtained in the previous step.
{20 B0 30 72 00 01 00 8D]
4 The payload software forwards the command composed in the previous step to the shelf
manager using the Send Message command. The Send/Get Message in SIPL format is:
[18 xx 34 40 20 B0 30 72 00 01 00 8D]
5 The BMR-H8S-ATCA firmware sends the Get Address Info request to the shelf manager,
waits for a reply to this request, and sends this reply to the payload software in the
Send/Get Message response.
[1C 00 34 00 72 B4 DA 20 00 01 00 00 41 82 FF 00 FF 00 1E]
6 The payload software extracts the Get Address info reply from the Send/Get Message
response and gets the physical address of the board from it.
The second message bridging implementation, bridging via LUN 10, allows the payload to
receive responses to requests sent to IPMB-0 via the Send Message command with request
tracking disabled, as well as receive requests from IPMB-0. To provide this functionality, the
KAT4000 IPMC places all messages coming to LUN 10 from IPMB-0 in a dedicated Receive
Message Queue, and those messages are processed by the payload instead of the IPMC
firmware. To read messages from the Receive Message Queue, the payload software uses
the standard Get Message command. The payload software is notified about messages
coming to LUN 10 via the Get Status command of the SIPL protocol and the payload notification mechanism, or, if the LPC/KCS-based Payload Interface is used, using the KCS interrupt. The Receive Message Queue of the KAT4000 IPMC is limited to 128 bytes, which is
9-8
KAT4000 User’s Manual
10007175-02
System Management:
Standard Commands
sufficient for storing at least three IPMB messages, but may be not enough for a larger
number of messages. Taking this into account, the payload software must read messages
from the queue as fast as possible, caching them on the on-carrier payload side for further
handling, if it is necessary. If the Receive Message Queue is full, the KAT4000 IPMC rejects
all requests coming to LUN 10 with the C0h (Node Busy) completion code and discards all
responses coming to this LUN.
STANDARD COMMANDS
The intelligent peripheral management controller (IPMC) supports standard IPMI commands to query board information and to control the behavior of the board. These commands provide a means to:
• identify the controller
• reset the controller
• return the controller’s self-test results
• read and write the controller’s SROMs
• read the temperature, voltage, and watchdog sensors
• get specific information, such as thresholds, for each sensor
• read and write the Field Replaceable Unit (FRU) data
• reserve and read the Sensor Data Record (SDR) repository
• configure event broadcasts
• bridge an IPMI request to the public IPMB and return the response
Table 9-5 lists the IPMI commands supported by the IPMC along with the hexadecimal values
for each command’s Network Function Code (netFn), Logical Unit Number (LUN), and
Command Code (Cmd).
Note: All values are hexadecimal.
Table 9-5: IPMC IPMI Commands
Command:
netFn:
LUN:
Cmd:
Set Event Receiver
Sensor/Event
04, 05
00
00
Get Event Receiver
Sensor/Event
04, 05
00
01
Platform Event (Event Message)
Sensor/Event
04, 05
00
02
Get Device SDR Information
Sensor/Event
04, 05
00
20
Get Device SDR
Sensor/Event
04, 05
00
21
Reserve Device SDR Repository
Sensor/Event
04, 05
00
22
Get Sensor Reading Factors
Sensor/Event
04, 05
00
23
10007175-02
KAT4000 User’s Manual
9-9
System Management:
9-10
KAT4000 User’s Manual
Standard Commands
Command: (continued)
netFn:
Set Sensor Hysteresis
Sensor/Event
04, 05
00
24
Get Sensor Hysteresis
Sensor/Event
04, 05
00
25
LUN:
Cmd:
Set Sensor Thresholds
Sensor/Event
04, 05
00
26
Get Sensor Thresholds
Sensor/Event
04, 05
00
27
Set Sensor Event Enable
Sensor/Event
04, 05
00
28
Get Sensor Event Enable
Sensor/Event
04, 05
00
29
Rearm Sensor Events
Sensor/Event
04, 05
00
2A
Get Sensor Events
Sensor/Event
04, 05
00
2B
Get Sensor Reading
Sensor/Event
04, 05
00
2D
Set Sensor Type
Sensor/Event
04, 05
00
2E
Get Sensor Type
Sensor/Event
04, 05
00
2F
Get Device ID
Application
06, 07
00
01
Broadcast 'Get Device ID'
Application
06, 07
00
01
Cold Reset
Application
06, 07
00
02
Warm Reset
Application
06, 07
00
03
Get Self Test Results
Application
06, 07
00
04
Get Device GUID
Application
06, 07
00
08
Reset Watchdog Timer
Application
06, 07
00
22
Set Watchdog Timer
Application
06, 07
00
24
Get Watchdog Timer
Application
06,07
00
25
Send Message
Application
06,07
00
34
Get FRU Inventory Area Info
Storage
0A, 0B
00
10
Read FRU Data
Storage
0A, 0B
00
11
Write FRU Data
Storage
0A, 0B
00
12
Get PCIMG Properties
PICMG
2C, 2D
00
00
Get Address Info
PICMG
2C, 2D
00
01
FRU Control
PICMG
2C, 2D
00
04
Get FRU LED Properties
PICMG
2C, 2D
00
05
Get LED Color Capabilities
PICMG
2C, 2D
00
06
Set FRU LED State
PICMG
2C, 2D
00
07
Get FRU LED State
PICMG
2C, 2D
00
08
Set IPMB State Command
PICMG
2C, 2D
00
09
Set FRU Activation Policy
PICMG
2C, 2D
00
0A
Get FRU Activation Policy
PICMG
2C, 2D
00
0B
Set FRU Activation
PICMG
2C, 2D
00
0C
Get Device Locator Record ID
PICMG
2C, 2D
00
0D
Get Port State
PICMG
2C, 2D
00
0E
Set Port State
PICMG
2C, 2D
00
0F
Compute Power Properties
PICMG
2C, 2D
00
10
Set Power Level
PICMG
2C, 2D
00
11
10007175-02
System Management:
Standard Commands
Command: (continued)
netFn:
Get Power Level
PICMG
2C, 2D
00
12
Bused Resource Control
(Release, Query, Force, Bus
Free)
PICMG
2C, 2D
00
17
LUN:
Cmd:
The IPMC implements many standard IPMI commands. For example, software can use the
watchdog timer commands to monitor the system’s health. Normally, the software resets
the watchdog timer periodically to prevent it from expiring. The IPMI specification allows
for different actions such as reset, power off, and power cycle, to occur if the timer expires.
The watchdog’s ‘timer use’ fields can keep track of which software (Operating System, System Management, etc.) started the timer. Also, the time-out action and ‘timer use’ information can be logged automatically to the System Event Log (SEL) when the time-out
occurs. Please refer to the IPMI specification (listed in Table 1-3) for details about each command’s request and response data. The IPMC also implements ATCA commands, see the
ATCA Base Specification (PICMG 3.0).
10007175-02
KAT4000 User’s Manual
9-11
System Management:
Vendor Commands
VENDOR COMMANDS
The IPMC supports additional IPMI commands that are specific to Pigeon Point and/or
Emerson. This section provides detailed descriptions of those extensions.
Table 9-6: Vendor Command Summary
Command:
netFn:
LUN:
Cmd:
Get Status
OEM
2E, 2F
00
00
Get Serial Interface Properties
OEM
2E, 2F
00
01
Set Serial Interface Properties
OEM
2E, 2F
00
02
Get Debug Level
OEM
2E, 2F
00
03
Set Debug Level
OEM
2E, 2F
00
04
Get Hardware Address
OEM
2E, 2F
00
05
Set Hardware Address
OEM
2E, 2F
00
06
Get Handle Switch
OEM
2E, 2F
00
07
Set Handle Switch
OEM
2E, 2F
00
08
Get Payload Communication
Time-Out
OEM
2E, 2F
00
09
Set Payload Communication
Time-Out
OEM
2E, 2F
00
0A
0B
Enable Payload Control
OEM
2E, 2F
00
Disable Payload Control
OEM
2E, 2F
00
0C
Reset IPMC
OEM
2E, 2F
00
0D
Hang IPMC
OEM
2E, 2F
00
0E
Bused Resource Control
OEM
2E, 2F
00
0F
Bused Resource Status
OEM
2E, 2F
00
10
Graceful Reset
OEM
2E, 2F
00
11
Diagnostic Interrupt Results
OEM
2E, 2F
00
12
Get Payload Shutdown TimeOut
OEM
2E, 2F
00
15
Set Payload Shutdown TimeOut
OEM
2E, 2F
00
16
Get Module State
OEM
2E, 2F
00
27
Enable AMC Site
OEM
2E, 2F
00
28
Disable AMC Site
OEM
2E, 2F
00
29
Get Status Command
The IPMC firmware notifies the payload about changes of all status bits except for bits 0-2
by sending an unprintable character (ASCII 07, BELL) over the Payload Interface. The payload is expected to use the Get Status command to identify pending events and other SIPL
9-12
KAT4000 User’s Manual
10007175-02
System Management:
Vendor Commands
commands to provide a response (if necessary). The event notification character is sent in a
synchronous manner, and does not appear in the contents of SIPL messages sent to the
payload.
Table 9-7: Get Status Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Bit [7] Graceful Reboot Request
If set to 1, indicates that the payload is requested to initiate the
graceful reboot sequence
Response Data
(continued)
Bit [6] Diagnostic Interrupt Request
If set to 1, indicates that a payload diagnostic interrupt request
has arrived
Bit [5] Shutdown Alert
If set to 1, indicates that the payload is going to be shutdown
Bit [4] Reset Alert
If set to 1, indicates that the payload is going to be reset
Bit [3] Sensor Alert
If set to 1, indicates that at least one of the IPMC sensors
detects threshold crossing
Bits [2:1] Mode
The current IPMC modes are defined as:
0 Normal
1 Standalone
2 Manual Standalone
Bit [0] Control
If set to 0, the IPMC control over the payload is disabled
6
Bits [4:7] Metallic Bus 2 Events
These bits indicate pending Metallic Bus 2 requests arrived from
the shelf manager:
0 Metallic Bus 2 Query
1 Metallic Bus 2 Release
2 Metallic Bus 2 Force
3 Metallic Bus 2 Free
Bits [0:3] Metallic Bus 1 Events
These bits indicate pending Metallic Bus 1 requests arrived from
the shelf manager:
0 Metallic Bus 1 Query
1 Metallic Bus 1 Release
2 Metallic Bus 1 Force
3 Metallic Bus 1 Free
10007175-02
KAT4000 User’s Manual
9-13
System Management:
Type:
Response Data
(continued)
Vendor Commands
Byte:
Data Field: (continued)
7
Bits [4:7] Clock Bus 2 Events
These bits indicate pending Clock Bus 2 requests arrived from
the shelf manager:
0 Clock Bus 2 Query
1 Clock Bus 2 Release
2 Clock Bus 2 Force
3 Clock Bus 2 Free
Bits [0:3] Clock Bus 1 Events
These bits indicate pending Clock Bus 1 requests arrived from
the shelf manager:
0 Clock Bus 1 Query
1 Clock Bus 1 Release
2 Clock Bus 1 Force
3 Clock Bus 1 Free
8
Bits [4:7] Reserved
Bits [0:3] Clock Bus 3 Events
These bits indicate pending Clock Bus 3 requests arrived from
the shelf manager:
0 Clock Bus 3 Query
1 Clock Bus 3 Release
2 Clock Bus 3 Force
3 Clock Bus 3 Free
Get Serial Interface Properties Command
The Get Serial Interface Properties command is used to get the properties of a particular
serial interface.
Table 9-8: Get Serial Interface Properties Command
9-14
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Interface ID
0 Serial Debug Interface
1 Payload Interface
10007175-02
System Management:
Vendor Commands
Type:
Byte:
Data Field: (continued)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Bit [7] Echo On
If this bit is set, the IPMC enables echo for the given serial
interface
Bits [6:4] Reserved
Bits [3:0] Baud Rate ID
The baud rate ID defines the interface baud rate as follows:
0 9600 bps
1 19200 bps
2 38400 bps
3 57600 bps (unsupported)
4 115200 bps (unsupported)
Set Serial Interface Properties Command
The Set Serial Interface Properties command is used to set the properties of a particular
serial interface.
Table 9-9: Set Serial Interface Properties Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Interface ID
0 Serial Debug Interface
1 Payload Interface
5
Bit [7] Echo On
If this bit is set, the IPMC enables echo for the given serial
interface
Bits [6:4] Reserved
Bits [3:0] Baud Rate ID
The baud rate ID defines the interface baud rate as follows:
0 9600 bps
1 19200 bps
2 38400 bps
3 57600 bps (unsupported)
4 115200 bps (unsupported)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
10007175-02
KAT4000 User’s Manual
9-15
System Management:
Vendor Commands
Get Debug Level Command
The Get Debug Level command gets the current debug level of the IPMC firmware.
Table 9-10: Get Debug Level Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Bits [7:5] Reserved
Response Data
Bit [4] IPMB Dump Enable
If set to 1, the IPMC provides a trace of IPMB messages that
are arriving to/going from the IPMC via IPMB-O
Bit [3] Payload Logging Enable
If set to 1, the IPMC provides a trace of SIPL activity on the
Payload Interface onto the Serial Debug interface
Bit [2] Alert Logging Enable
If set to 1, the IPMC outputs important alert messages onto the
Serial Debug interface
Bit [1] Low-level Error Logging Enable
If set to 1, the IPMC outputs low-level error/diagnostic
messages onto the Serial Debug interface
Bit [0] Error Logging Enable
If set to 1, the IPMC outputs error/diagnostic messages onto
the Serial Debug interface
9-16
KAT4000 User’s Manual
10007175-02
System Management:
Vendor Commands
Set Debug Level Command
The Set Debug Level command sets the current debug level of the IPMC firmware.
Table 9-11: Set Debug Level Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Bits [7:5] Reserved
Bit [4] IPMB Dump Enable
If set to 1, the IPMC provides a trace of IPMB messages that
are arriving to/going from the IPMC via IPMB-O
Bit [3] Payload Logging Enable
If set to 1, the IPMC provides a trace of SIPL activity on the
Payload Interface onto the Serial Debug interface
Bit [2] Alert Logging Enable
If set to 1, the IPMC outputs important alert messages onto the
Serial Debug interface
Bit [1] Low-level Error
If set to 1, the IPMC outputs low-level error/diagnostic
messages onto the Serial Debug interface
Bit [0] Error Logging Enable
If set to 1, the IPMC outputs error/diagnostic messages onto
the Serial Debug interface
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Get Hardware Address Command
The Get Hardware Address command reads the hardware address of the IPMC.
Table 9-12: Get Hardware Address Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Hardware Address
10007175-02
KAT4000 User’s Manual
9-17
System Management:
Vendor Commands
Set Hardware Address Command
The Set Hardware Address command allows overriding of the hardware address read from
hardware when the IPMC operates in (Manual) Standalone mode.
Table 9-13: Set Hardware Address Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Hardware Address
If set to 00, the ability to override the hardware address is
disabled
NOTE: A hardware address change only takes effect after an
IPMC reset. See “Reset IPMC Command” on page 9-21.
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Get Handle Switch Command
The Get Handle Switch command reads the state of the Hot Swap handle of the IPMC. Overriding of the handle switch state is allowed only if the IPMC operates in (Manual) Standalone
mode.
Table 9-14: Get Handle Switch Command
9-18
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Handle Switch Status
0x00 The handle switch is open
0x01 The handle switch is closed
0x02 The handle switch state is read from hardware
10007175-02
System Management:
Vendor Commands
Set Handle Switch Command
The Set Handle Switch command sets the state of the Hot Swap handle switch in (Manual)
Standalone mode.
Table 9-15: Set Handle Switch Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Handle Switch Status
0x00 The handle switch is open
0x01 The handle switch is closed
0x02 The handle switch state is read from hardware
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
Get Payload Communication Time-Out Command
The Get Payload Communication Time-Out command reads the payload communication
time-out value.
Table 9-16: Get Payload Communication Time-Out Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Payload Time-out
Payload communication time-out measured in hundreds of
milliseconds. Thus, the payload communication time-out
may vary from 0.1 to 25.5 seconds.
10007175-02
KAT4000 User’s Manual
9-19
System Management:
Vendor Commands
Set Payload Communication Time-Out Command
The Set Payload Communication Time-Out command sets the payload communication
time-out value.
Table 9-17: Set Payload Communication Time-Out Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Payload Time-out
Payload communication time-out measured in hundreds of
milliseconds. Thus, the payload communication time-out
may vary from 0.1 to 25.5 seconds.
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
Enable Payload Control Command
The Enable Payload Control command enables payload control from the Serial Debug interface.
Register 9-1: Enable Payload Control Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Disable Payload Control Command
The Disable Payload Control command disables payload control from the Serial Debug
interface.
Table 9-18: Disable Payload Control Command
9-20
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
10007175-02
System Management:
Vendor Commands
Reset IPMC Command
The Reset IPMC command allows the payload to reset the IPMC over the SIPL.
Table 9-19: Reset IPMC Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Reset Type Code
0x00 Cold IPMC reset to the current mode
0x01 Cold IPMC reset to the Normal mode
0x02 Cold IPMC reset to the Standalone mode
0x03 Cold IPMC reset to the Manual Standalone mode
0x04 Reset the IPMC and enter Upgrade mode
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
Hang IPMC Command
The IPMC provides a way to test the watchdog timer support by implementing the Hang
IPMC command, which simulates firmware hanging by entering an endless loop.
Table 9-20: Hang IPMC Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
10007175-02
KAT4000 User’s Manual
9-21
System Management:
Vendor Commands
Bused Resource Control Command
To send a Bused Resource Control command to the shelf manager, the payload uses the
Bused Resource Control command of the SIPL.
Table 9-21: Bused Resource Control Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Command Types for Shelf Manager to Board
0 Query if board has control of the bus
1 Release requests a board to release control of the bus
2 Force board to release control of bus immediately
3 Bus Free informs board that the bus is available
Command Types for Board to Shelf Manager
0 Request to seize control of the bus
1 Relinquish control of the bus, Shelf Manager can reassign
control of bus
2 Notify Shelf Manager that control of the bussed resource has
been transferred to this board from another authorized board
Response Data
5
Bused Resource ID
0 Metallic Test Bus pair #1
1 Metallic Test Bus pair #2
2 Synch clock group 1 (CLK1A and CLK1B pairs)
3 Synch clock group 2 (CLK2A and CLK2B pairs)
3 Synch clock group 3 (CLK3A and CLK3B pairs)
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Status
0 Ack; Shelf Manager acknowledges that board has control
1 Error; same as Ack, but Shelf Manager believes board should
not have been given control of the resource (optional)
2 Deny; Shelf Manager denies control of resource by the board
Bused Resource Status Command
If the IPMC receives a Bused Resource Control command from IPMB-0, it asserts an appropriate event and notifies the payload which uses the Bused Resource Status command over
the SIPL. When the IPMC receives a Bused Resource Status command, the respective bit in
the IPMC status is cleared.
The payload must issue a Bused Resource Status command before the payload communication time-out time. If the payload does not issue such a command before the payload
communication time-out time, the IPMC sends the 0xC3 completion code (Time-Out) in
the appropriate Bused Resource Control command reply.
9-22
KAT4000 User’s Manual
10007175-02
System Management:
Vendor Commands
Table 9-22: Bused Resource Status Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
Command Types for Shelf Manager to Board
0 Query if board has control of the bus
(0=In control, 1= No control)
1 Release request a board to release control of the bus
(0=Ack, 1=Refused, 2=No control)
2 Force board to release control of bus immediately
(0=Ack, 1=No control)
3 Bus Free informs board that the bus is available
(0=Accept, 1=Not needed)
Command Types for Board to Shelf Manager
0 Request to seize control of the bus
(0=Grant, 1=Busy, 2=Defer, 3=Deny)
1 Relinquish control of the bus, Shelf Manager can reassign
control of bus (0=Ack, 1=Error)
2 Notify Shelf Manager that control of the bussed resource has
been transferred to this board from another authorized board
(0=Ack, 1=Error, 2=Deny)
Response Data
5
Bused Resource ID
0 Metallic Test Bus pair #1
1 Metallic Test Bus pair #2
2 Synch clock group 1 (CLK1A and CLK1B pairs)
3 Synch clock group 2 (CLK2A and CLK2B pairs)
4 Synch clock group 3 (CLK3A and CLK3B pairs)
6
Status
0 Ack; Shelf Manager acknowledges that board has control
1 Error; same as Ack, but Shelf Manager believes board should
not have been given control of the resource (optional)
2 Deny; Shelf Manager denies control of resource by the board
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Graceful Reset Command
The IPMC supports the Graceful Reboot option of the FRU Control command. On receiving
such a command, the IPMC sets the Graceful Reboot Request bit of the IPMC status, sends a
status update notification to the payload, and waits for the Graceful Reset command from
the payload. If the IPMC receives such a command before the payload communication
time-out time, it sends the 0x00 completion code (Success) to the shelf manager. Otherwise the 0xCC completion code is sent.
10007175-02
KAT4000 User’s Manual
9-23
System Management:
Vendor Commands
The IPMC does not reset the payload on receiving the Graceful Reset command or timeout. If the IPMC participation is necessary, the payload must request the IPMC to perform a
payload reset. The Graceful Reset command is also used to notify the IPMC about the completion of the payload shutdown sequence.
Table 9-23: Graceful Reset Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Diagnostic Interrupt Results
The IPMC supports the Issue Diagnostic Interrupt feature of the FRU Control command. The
payload is notified about a diagnostic interrupt over the SIPL. The payload is expected to
return diagnostic interrupt results before the payload communication time-out using the
Diagnostic Interrupt Results command of the SIPL.
Table 9-24: Diagnostic Interrupt Results Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
If the payload responds before the payload communication
time-out, the diagnostic interrupt return code is forwarded to
the shelf controller as the completion code of the FRU Control
command response. Otherwise, the 0xCC completion code is
returned.
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
Get Payload Shutdown Time-Out Command
When the shelf manager commands the IPMC to shut down the payload (i.e. sends the Set
Power Level (0) command), the IPMC notifies the payload by asserting an appropriate alert
and sending an alert notification to the payload. Upon receiving this notification, the payload software is expected to initiate the payload shutdown sequence. After performing this
sequence, the payload should send the Graceful Reset command to the IPMC over the Payload Interface to notify the IPMC that the payload shutdown is complete.
9-24
KAT4000 User’s Manual
10007175-02
System Management:
Vendor Commands
To avoid deadlocks that may occur if the payload software does not respond, the IPMC provides a special time-out for the payload shutdown sequence. If the payload does not send
the Graceful Reset command within a definite period of time, the IPMC assumes that the
payload shutdown sequence is finished, and sends a Module Quiesced Hot Swap event to
the KAT4000 controller.
Table 9-25: Get Payload Shutdown Time-Out Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5:6
Time-Out measured in hundreds of milliseconds, LSB first
Set Payload Shutdown Time-Out Command
The Set Payload Shutdown Time-Out command is defined as follows.
Table 9-26: Set Payload Shutdown Time-Out Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4:5
Time-Out measured in hundreds of milliseconds, LSB first
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Get Module State Command
The Get Module State command is used to query the state of an AMC via any of the external
interfaces.
Table 9-27: Get Module State Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
AMC Site ID
10007175-02
KAT4000 User’s Manual
9-25
System Management:
Vendor Commands
Type:
Byte:
Data Field: (continued)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
AMC Status
0 0 = AMC site is enabled
1 = AMC site is disabled
1 0 = AMC is not present
1 = AMC is present
2 0 = Management power is disabled
1 = Management power is enabled
3 0 = Management power is bad
1 = Management power is good
4 0 = Payload power is disabled
1 = Payload power is enabled
5 0 = Payload power is bad
1 = Payload power is good
6 0 = IPMB-L buffer is not attached
1 = IPMB-L buffer is attached
7 0 = IPMB-L buffer is not ready
1 = IPMB-L buffer is ready
Enable AMC Site Command
The Enable AMC Site command is used to enable an AMC site.
Table 9-28: Enable AMC Site Command
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
AMC Site ID
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
Disable AMC Site Command
The Disable AMC Site command is used to disable an AMC site. If an AMC site is disabled,
the IPMC firmware ignores the AMC inserted and acts as if the AMC is not present.
Table 9-29: Disable AMC Site Command
9-26
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1:3
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4
AMC Site ID
10007175-02
System Management:
IPMC Watchdog Timer Commands
Type:
Byte:
Data Field: (continued)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
IPMC WATCHDOG TIMER COMMANDS
The IPMC implements a standardized ‘Watchdog Timer’ that can be used for a number of
system time-out functions by System Management Software (SMS) or by the monitor. Setting a time-out value of zero allows the selected time-out action to occur immediately. This
provides a standardized means for devices on the IPMB to perform emergency recovery
actions.
Table 9-30: IPMC Watchdog Timer Commands
Command:
See Page:
Optional/Mandatory:
Reset Watchdog Timer
9-29
M
Set Watchdog Timer
9-29
M
Get Watchdog Timer
9-31
M
Watchdog Timer Actions
The following actions are available on expiration of the Watchdog Timer:
• System Reset
• System Power Off
The System Reset and System Power Off on time-out selections are mutually exclusive. The
watchdog timer is stopped whenever the system is powered down. A command must be
sent to start the timer after the system powers up.
Watchdog Timer Use Field and Expiration Flags
The watchdog timer provides a ‘timer use’ field that indicates the current use assigned to
the watchdog timer. The watchdog timer provides a corresponding set of ‘timer use expiration’ flags that are used to track the type of time-out(s) that had occurred.
The time-out use expiration flags retain their state across system resets and power cycles,
as long as the IPMC remains powered. The flags are normally cleared solely by the Set
Watchdog Timer command; with the exception of the “don’t log” flag, which is cleared
after every system hard reset or timer time-out.
10007175-02
KAT4000 User’s Manual
9-27
System Management:
IPMC Watchdog Timer Commands
The Timer Use fields indicate:
Monitor FRB-2 Time-out:
A Fault-resilient Booting, level 2 (FRB-2) time-out has occurred. This indicates that the last
system reset or power cycle was due to the system time-out during POST, presumed to be
caused by a failure or hang related to the bootstrap processor.
Monitor POST Time-out:
In this mode, the time-out occurred while the watchdog timer was being used by the monitor for some purpose other than FRB-2 or OS Load Watchdog.
OS Load Time-out: The last reset or power cycle was caused by the timer being used to ‘watchdog’ the interval
from ‘boot’ to OS up and running. This mode requires system management software, or OS
support. The monitor should clear this flag if it starts this timer during POST.
SMS ‘OS Watchdog’ Time-out:
This indicates that the timer was being used by System Management Software (SMS). During run-time, SMS starts the timer, then periodically resets it to keep it from expiring. This
periodic action serves as a ‘heartbeat’ that indicates that the OS (or at least the SMS task) is
still functioning. If SMS hangs, the timer expires and the IPMC generates a system reset.
When SMS enables the timer, it should make sure the ‘SMS’ bit is set to indicate that the
timer is being used in its ‘OS Watchdog’ role.
OEM: This indicates that the timer was being used for an OEM-specific function.
Using the Timer Use Field and Expiration Flags
The software that sets the Timer Use field is responsible for managing the associated Timer
Use Expiration flag. For example, if System Management Software (SMS) sets the timer use
to “SMS/OS Watchdog,” then that same SMS is responsible for acting on and clearing the
associated Timer Use Expiration flag.
In addition, software should only interpret or manage the expiration flags for watchdog
timer uses that it set. For example, the monitor should not report watchdog timer expirations or clear the expiration flags for non-monitor uses of the timer. This is to allow the software that did set the Timer Use to see that a matching expiration occurred.
Watchdog Timer Event Logging
By default, the IPMC will automatically log the corresponding sensor-specific watchdog
sensor event when a timer expiration occurs. A “don’t log” bit is provided to temporarily
disable the automatic logging. The “don’t log” bit is automatically cleared (logging reenabled) whenever a timer expiration occurs.
9-28
KAT4000 User’s Manual
10007175-02
System Management:
IPMC Watchdog Timer Commands
Monitor Support for Watchdog Timer
If a system “Warm Reset” occurs, the watchdog timer may still be running while the monitor executes POST. Therefore, the monitor should take steps to stop or restart the watchdog timer early in POST. Otherwise, the timer may expire later during POST or after the OS
has booted.
Reset Watchdog Timer Command
The Reset Watchdog Timer command is used for starting and restarting the Watchdog
Timer from the initial countdown value that was specified in the Set Watchdog Timer command.
If a pretime-out interrupt has been configured, the Reset Watchdog Timer command will
not restart the timer once the pretime-out interval has been reached. The only way to stop
the timer once it has reached this point is via the Set Watchdog Timer command.
Table 9-31: Reset Watchdog Timer Command
Type:
Byte:
Data Field:
Request Data
—
—
Response Data
1
Completion Code
Set Watchdog Timer Command
The Set Watchdog Timer command is used for initializing and configuring the watchdog
timer. The command is also used for stopping the timer.
If the timer is already running, the Set Watchdog Timer command stops the timer (unless
the “don’t stop” bit is set) and clears the Watchdog pretime-out interrupt flag (see Get
Message Flags command in the IPMI specification v1.5). IPMC hard resets, system hard
resets, and the Cold Reset command also stop the timer and clear the flag.
Byte 1: This selects the timer use and configures whether an event will be logged on expiration.
Byte 2: This selects the time-out action and pretime-out interrupt type.
Byte 3: This sets the pretime-out interval. If the interval is set to zero, the pretime-out action
occurs concurrently with the time-out action.
Byte 4: This clears the Timer Use Expiration flags. A bit set in byte 4 of this command clears the corresponding bit in byte 5 of the Get Watchdog Timer command.
Bytes 5 and 6: These hold the least significant and most significant bytes, respectfully, of the countdown
value. The Watchdog Timer decrement is one count/100 ms. The counter expires when the
count reaches zero. If the counter is loaded with zero and the Reset Watchdog command is
issued to start the timer, the associated timer events occur immediately.
10007175-02
KAT4000 User’s Manual
9-29
System Management:
IPMC Watchdog Timer Commands
Table 9-32: Set Watchdog Timer Command
9-30
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1
Timer Use
[7] 1b=don’t log
[6] 1b=don’t stop timer on Set Watchdog Timer command (new
for IPMI v1.5) new parameters take effect immediately. If
timer is already running, countdown value will get set to
given value and countdown will continue from that point.
If timer is already stopped, it will remain stopped. If the
1
pretime-out interrupt bit is set, it will get cleared.
0b=timer stops automatically when Set Watchdog Timer
command is received
[5:3] reserved
[2:0] timer use (logged on expiration when “don’t log” bit = 0b)
000b=reserved
001b=Monitor FRB-2
010b=Monitor/POST
011b=OS Load
100b=SMS/OS
101b=OEM
110b-111b=reserved
2
Timer Actions
[7] reserved
[6:4] pretime-out interrupt (logged on expiration when “don’t
log” bit = 0b)
000b=none
001b=SMI
010b=NMI/Diagnostic Interrupt
011b=Messaging Interrupt (this is the same interrupt as
allocated to the messaging interface)
100b, 111b =reserved
[3] reserved
[2:0] time-out action
000b=no action
001b=Hard Reset
010b=Power Down
011b=Power Cycle
100b, 111b=reserved
3
Pretime-out interval in seconds, ‘1’ based
10007175-02
System Management:
IPMC Watchdog Timer Commands
Type:
Byte:
Data Field: (continued)
Request Data
(continued)
4
Timer Use Expiration flags clear
(0b=leave alone, 1b=clear timer use expiration bit)
[7] reserved
[6] reserved
[5] OEM
[4] SMS/OS
[3] OS Load
[2] Monitor/POST
[1] Monitor FRB-2
[0] reserved
5
Initial countdown value, lsbyte (100 ms/count)
Response Data
6
Initial countdown value, msbyte
1
Completion Code
1. Potential race conditions exist with implementation of this option. If the Set Watchdog Timer command is
sent just before a pretime-out interrupt or time-out is set to occur, the time-out could occur before the
command is executed. To avoid this condition, it is recommended that software set this value no closer
than three counts before the pretime-out or time-out value is reached.
Get Watchdog Timer Command
This command retrieves the current settings and present countdown of the watchdog
timer. The Timer Use Expiration flags in byte 5 retain their states across system resets and
system power cycles. With the exception of bit 6 in the Timer Use byte, the Timer Use Expiration flags are cleared using the Set Watchdog Timer command. They may also become
cleared because of a loss of IPMC power, firmware update, or other cause of IPMC hard
reset. Bit 6 of the Timer Use byte is automatically cleared to 0b whenever the timer times
out, is stopped when the system is powered down, enters a sleep state, or is reset.
Table 9-33: Get Watchdog Timer Command
Type:
Byte:
Data Field:
Request Data
—
—
10007175-02
KAT4000 User’s Manual
9-31
System Management:
9-32
KAT4000 User’s Manual
IPMC Watchdog Timer Commands
Type:
Byte:
Data Field: (continued)
Response Data
1
Completion Code
2
Timer Use
[7] 1b=don’t log
[6] 1b=timer is started (running)
0b=timer is stopped
[5:3] reserved
[2:0] timer use (logged on expiration if “don’t log” bit = 0)
000b=reserved
001b=Monitor FRB-2
010b=Monitor/POST
011b=OS Load
100b=SMS/OS
101b=OEM
110b, 111b=reserved
3
Timer Actions
[7] reserved
[6:4] pretime-out interrupt
000b=none
001b=SMI
010b=NMI/Diagnostic Interrupt
011b=Messaging Interrupt (this would be the same interrupt
as
allocated to the messaging interface)
100b, 111b =reserved
[3] reserved
[2:0] time-out action
000b=no action
001b=Hard Reset
010b=Power Down
011b=Power Cycle
100b, 111b=reserved
4
Pretime-out interval in seconds, ‘1’based
5
Timer Use Expiration flags (1b=timer expired while associated ‘use’
was selected)
[7] reserved
[6] reserved
[5] OEM
[4] SMS/OS
[3] OS Load
[2] Monitor/POST
[1] Monitor FRB-2
[0] reserved
10007175-02
System Management:
FRU LEDs
Data Field: (continued)
Type:
Byte:
Response Data
6
Initial countdown value, lsbyte (100 ms/count)
(continued)
7
Initial countdown, msbyte
8
Present countdown value, lsbyte. The initial countdown value and
present countdown values should match immediately after the
countdown is initialized via a Set Watchdog Timer command and
after a Reset Watchdog Timer has been executed.
Note that internal delays in the IPMC may require software to delay
up to 100 ms before seeing the countdown value change and be
reflected in the Get Watchdog Timer command.
9
Present countdown value, msbyte
FRU LEDS
This section describes the front panel LEDs controlled by the IPMC and documents how to
control each LED with the standard FRU LED commands. Reference the PICMG® 3.0 Revision
2.0 AdvancedTCA® Base Specification for more detailed information.
The KAT4000 has four Light-Emitting Diodes (LEDs) on the front panel. See Fig. 2-3 for their
location.
Table 9-34: FRU LEDs
ID
(hex):
Reference
Designator:
Hot
Swap
00
CR2001
The blue Hot Swap LED displays four states:
On—the board can be safely extracted
Off—the board is operating and not safe for
extraction,
Long blink—insertion is in progress
Short blink—requesting permission for
extraction
OOS
01
CR2003
The Out Of Service programmable LED
controlled by the IPMI controller is either red
(North America) or amber (Europe). When lit,
this LED indicates the KAT4000 is in a failed
state.
2
02
CR2002
The green LED is user defined, but frequently is
used as an In Service indicator. When used as an
In Service indicator, a lit LED indicates that the
KAT4000 is functioning properly.
3
03
CR2000
The amber LED is user defined.
LEDs:
10007175-02
Description:
KAT4000 User’s Manual
9-33
System Management:
FRU LEDs
Get FRU LED Properties Command
This command allows software to determine which LEDs are under IPMC control.
Table 9-35: Get FRU LED Properties Command
Type:
Byte:
Data Field:
Request Data
1
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
2
FRU Device ID
Response Data
1
Completion Code
2
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
3
General Status LED Properties—indicates the FRU’s ability to
control the four general status LEDs. When a bit is set, the FRU
can control the associated LED.
Bits [7:4] Reserved, set to 0
Bit [3] LED3
Bit [2] LED2
Bit [1] LED1
Bit [0] Blue LED
4
Application Specific LED Count—is the number of application
specific LEDs under IPMC control.
00h-FBh Number of application-specific LEDs under IPMC
control. If none are present, this field is 00h.
FCh-FFh Reserved
Get LED Color Capabilities Command
LED 1 can be either red or amber, this command is used to determine the valid color prior to
issuing a Set FRU LED State command.
Table 9-36: Get LED Color Capabilities Command
9-34
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
2
FRU Device ID
3
LED ID
FFh Reserved
10007175-02
System Management:
FRU LEDs
Type:
Byte:
Data Field: (continued)
Response Data
1
Completion Code
CCh If the LED ID contained in the Request data is not present
on the FRU
2
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
3
LED Color Capabilities—when a bit is set, the LED supports the
color.
Bit [7] Reserved, set to 0
Bit [6] LED supports white
Bit [5] LED supports orange
Bit [4] LED supports amber
Bit [3] LED supports green
Bit [2] LED supports red
Bit [1] LED supports blue
Bit [0] Reserved, set to 0
4
Default LED Color in Local Control State
Bit [7] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
5
Default LED Color in Override State
Bit [7] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
10007175-02
KAT4000 User’s Manual
9-35
System Management:
FRU LEDs
Set FRU LED State Command
The Set FRU LED State command allows the state of the FRU LEDs to be controlled by the
management system.
Table 9-37: Set FRU LED State Command
9-36
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
2
FRU Device ID
3
LED ID
00h Blue LED (Hot Swap)
01h LED 1 (OOS)
02h LED 2
03h LED 3
04h-FEh OEM defined LEDs
FFh Lamp Test (all LEDs under management control are
addressed)
10007175-02
System Management:
Type:
Response Data
FRU LEDs
Byte:
Data Field: (continued)
4
LED Function
00h LED off override
01h-FAh LED blinking override
FBh Lamp Test state Turn on LED specified in byte 3 for the
duration specified in byte 5, then return to the highest
priority state.
FCh LED state restored to Local Control state
FDh-FEh Reserved
FFh LED on override
5
On Duration
LED on-time is measured in tens of milliseconds
Lamp Test time in hundreds of milliseconds if byte 4=FBh, time
value must be less than 128. Other values when Byte 4=FBh are
reserved. Otherwise, this field is ignored and shall be set to 0h.
6
Color When Illuminated—sets the override color when LED Function
is 01h-FAh and FFh. This byte sets the Local Control color when LED
Function is FCh. This byte may be ignored during Lamp Test or may
be used to control the color during the lamp test when LED
Function is FBh.
Bits [7:4] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Use Blue
2h Use Red
3h Use Green
4h Use Amber
5h Use Orange
6h Use White
7h-Dh Reserved
Eh Do not change
Fh Use default color
1
Completion Code
2
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
10007175-02
KAT4000 User’s Manual
9-37
System Management:
FRU LEDs
Get FRU LED State Command
The Get FRU LED State command allows the state of the FRU LEDs to be controlled by the
management system.
Table 9-38: Get FRU LED State Command
Type:
Byte:
Data Field:
Request Data
1
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
2
FRU Device ID
3
LED ID
00h Blue LED (Hot Swap)
01h LED 1 (OOS)
02h LED 2
03h LED 3
04h-FEh OEM defined LEDs
FFh Reserved
1
Completion Code
2
PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
3
LED States
Bits [7:3] Reserved, set to 0
Bit [2] 1b if Lamp Test has been enabled
Bit [1] 1b if override state has been enabled
Bit [2] 1b if IPMC has a Local control state
4
Local Control LED Function
00h LED is off (default if Local Control not supported)
01h-FAh LED is blinking Off duration specified by this byte,
on duration specified by byte 5 (in tens of
milliseconds)
FBh-FEh Reserved
FFh LED is on
5
On Duration
LED on-time is measured in tens of milliseconds
Lamp Test time in hundreds of milliseconds if byte 4=FBh, time
value must be less than 128. Other values when Byte 4=FBh are
reserved. Otherwise, this field is ignored and shall be set to 0h.
Response Data
9-38
KAT4000 User’s Manual
10007175-02
System Management:
Type:
Entities and Entity Associations
Byte:
Data Field: (continued)
6
Local Control Color
Bits [7:4] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
7
Override State LED Function—is required if either override state or
Lamp Test is in effect.
00h LED override state is off
01h-FAh LED override state is blinking Off duration is
specified by this byte, on duration specified by
byte 8 (in tens of milliseconds)
FBh-FEh Reserved
FFh LED override state is on
8
Override State On Duration—is required if either override state or
Lamp Test is in effect (in tens of milliseconds).
9
Override State Color
Bits [7:4] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
10
Lamp Test Duration—is optional if Lamp Test is not in effect
(hundreds of milliseconds).
ENTITIES AND ENTITY ASSOCIATIONS
The AdvancedTCA specification (see PICMG Engineering Change Notice 3.0 listed in Table 13) uses Entity IDs and Instances to describe physical components associated with FRUs.
Device-relative Entities are unique to a specific IPMC and are referenced as follows in the
specification:
r(<ipmb>,<lun>,<Entity ID>,<Entity Instance – 60>)
Using this terminology, a KAT4000 (CPU and no PCIe configuration) installed in Logical Slot
1 (IPMB 82) has the description in Fig. 9-4.
10007175-02
KAT4000 User’s Manual
9-39
System Management:
Sensors and Sensor Data Records
Figure 9-4: IPMB Entity Structure
FRU 0 r(82, 0, A0, 0) - PICMG Front Board
FHot SwapF sensor (Type F0)
FIPMB PhysicalF sensor (Type F1)
FInflow TempF sensor (Type 01)
FOutflow TempF sensor (Type 01)
FF/W ProgressF sensor (Type 0F)
r(82, 0 , 03, 0) - Processor
FBMC WatchdogF sensor (Type 23)
FCPU VoltF sensor (Type 02)
r(82, 0, 0A, 0) - Power Supply
F-48V VoltF sensor (Type 02)
F-48V CurrF sensor (Type 03)
F-48V Feed A VoltF sensor (Type 02)
F-48V Feed B VoltF sensor (Type 02)
FG3.3V MgmtF sensor (Type 02)
FG12V VoltF sensor (Type 02)
FG12V CurrF sensor (Type 03)
r(82, 0, 14, 0) - Power Module
FG3.3VF sensor (Type 02)
FG2.5VF sensor (Type 02)
FG1.8VF sensor (Type 02)
FG1.2VF sensor (Type 02)
FG1.0VF sensor (Type 02)
FRU 1 r(82, 0, C1, 5) - PICMG AMC Module
FB1 Hot SwapF sensor (Type F0)
FB1 G12V CurrF sensor (Type 03)
FB1 G12V VoltF sensor (Type 02)
FRU 2 r(82, 0, C1, 6) - PICMG AMC Module
FB2 Hot SwapF sensor (Type F0)
FB2 G12V CurrF sensor (Type 03)
FB2 G12V VoltF sensor (Type 02)
FRU 3 r(82, 0, C1, 7) - PICMG AMC Module
FB3 Hot SwapF sensor (Type F0)
FB3 G12V CurrF sensor (Type 03)
FB3 G12V VoltF sensor (Type 02)
FRU 4 r(82, 0, C1, 8) - PICMG AMC Module
FB4 Hot SwapF sensor (Type F0)
FB4 G12V CurrF sensor (Type 03)
FB4 G12V VoltF sensor (Type 02)
SENSORS AND SENSOR DATA RECORDS
The KAT4000 implements a number of sensors as described in Table 9-39. “Appendix B”
details the KAT4000 Sensor Data Record (SDR) parameter values. All values are hexadecimal.
Table 9-39: IPMI Sensors
9-40
Sensor Name:
Sensor Type:
Event/Reading Type:
Entity ID:
Entity
Instance:
Event
Gen:
Hot Swap
PICMG FRU Hot Swap=F0
Sensor-specific
Discrete=6F
PICMG Front
Board=A0
Devicerelative=60
Yes
B1 Hot Swap
PICMG FRU Hot Swap=F0
Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Devicerelative=61
Yes
KAT4000 User’s Manual
10007175-02
System Management:
Sensors and Sensor Data Records
Sensor Name:
(continued)
Sensor Type:
Event/Reading Type:
Entity ID:
Entity
Instance:
Event
Gen:
B2 Hot Swap
PICMG FRU Hot Swap=F0
Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Devicerelative=62
Yes
B3 Hot Swap
PICMG FRU Hot Swap=F0
Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Devicerelative=63
Yes
B4 Hot Swap
PICMG FRU Hot Swap=F0
Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Devicerelative=64
Yes
IPMB Physical
PICMG IPMB Physical
Link=F1
Sensor-specific
Discrete=6F
PICMG Front
Board=A0
Devicerelative=60
Yes
BMC Watchdog2
Watchdog 2=23
Sensor-specific
Discrete=6F
Processor=03
Devicerelative=60
Yes
-48V Volt
Voltage=02
Threshold=01
Power Supply=0A
Devicerelative=60
Yes
-48V Curr
Current=03
Threshold=01
Power Supply=0A
Devicerelative=60
Yes
-48V Feed A Volt
Voltage=02
Threshold=01
Power Supply=0A
Devicerelative=60
Yes
-48V Feed B Volt
Voltage=02
Threshold=01
Power Supply=0A
Devicerelative=60
Yes
+3.3V Mgmt
Voltage=02
Threshold=01
Power Supply=0A
Devicerelative=60
Yes
+12V Volt
Voltage=02
Threshold=01
Power Supply=0A
Devicerelative=60
Yes
+12V Curr
Current=03
Threshold=01
Power Supply=0A
Devicerelative=60
Yes
+3.3V
Voltage=02
Threshold=01
Power
Module/DC-to-DC
Converter=14
Devicerelative=60
Yes
+2.5V
Voltage=02
Threshold=01
Power
Module/DC-to-DC
Converter=14
Devicerelative=60
Yes
+1.8V
Voltage=02
Threshold=01
Power
Module/DC-to-DC
Converter=14
Devicerelative=60
Yes
+1.5V3
Voltage=02
Threshold=01
Power
Module/DC-to-DC
Converter=14
Devicerelative=60
Yes
+1.2V
Voltage=02
Threshold=01
Power
Module/DC-to-DC
Converter=14
Devicerelative=60
Yes
+1.0V
Voltage=02
Threshold=01
Power
Module/DC-to-DC
Converter=14
Devicerelative=60
Yes
10007175-02
KAT4000 User’s Manual
9-41
System Management:
Sensors and Sensor Data Records
Sensor Name:
(continued)
Sensor Type:
Event/Reading Type:
Entity ID:
Entity
Instance:
Event
Gen:
CPU Volt
Voltage=02
Threshold=01
Processor=03
Devicerelative=60
Yes
B1 +12 Volt
Voltage=02
Threshold=01
PICMG AMC
Module=C1
Devicerelative=61
Yes
B1 +12 Curr
Current=03
Threshold=01
PICMG AMC
Module=C1
Devicerelative=61
Yes
B2 +12 Volt
Voltage=02
Threshold=01
PICMG AMC
Module=C1
Devicerelative=62
Yes
B2 +12 Curr
Current=03
Threshold=01
PICMG AMC
Module=C1
Devicerelative=62
Yes
B3 +12 Volt
Voltage=02
Threshold=01
PICMG AMC
Module=C1
Devicerelative=63
Yes
B3 +12 Curr
Current=03
Threshold=01
PICMG AMC
Module=C1
Devicerelative=63
Yes
B4 +12 Volt
Voltage=02
Threshold=01
PICMG AMC
Module=C1
Devicerelative=64
Yes
B4 +12 Curr
Current=03
Threshold=01
PICMG AMC
Module=C1
Devicerelative=64
Yes
Inflow Temp
Temperature=01
Threshold=01
PICMG Front
Board=A0
Devicerelative=60
Yes
Outflow Temp
Temperature=01
Threshold=01
PICMG Front
Board=A0
Devicerelative=60
Yes
F/W Progress2
System Firmware
Progress (0F)
Sensor-specific
Discrete=6F
PICMG Front
Board=A0
Devicerelative=60
Yes
2.
Only supported on configurations with a CPU.
3.
Only supported on configurations with a CPU and PCIe switch.
The IPMC implements a Device Sensor Data Record (SDR) Repository that contains SDRs for
the IPMC, the FRU device, and each sensor. A system management controller may use the
Get Device SDR command to read the repository and dynamically discover the capabilities
of the board. Please refer to the IPMI specification (listed in Table 1-3) for more information
on using Sensor Data Records and the Device SDR Repository.
Under certain circumstances, some sensors connected to the IPMC can generate Event
Messages for the system management controller. To enable these messages, the system
management controller must send a Set Event Receiver command to the IPMC, along with
the address of the Event Receiver. Table 9-40 shows the format of an Event Message.
9-42
KAT4000 User’s Manual
10007175-02
System Management:
Sensors and Sensor Data Records
Note: Each byte has eight bits.
Table 9-40: Event Message Format
Byte:
Field:
0
RsSA
Description:
Responder’s Slave Address (Address of Event Receiver)
1
NetFn/RsLUN
Net Function Code (0x04) in upper 6 bits; Responder’s LUN in
lower 2 bits
2
Chk1
Checksum #1
3
RqSA
Requester’s Slave Address (Address of our board on IPMB)
4
RqSeq/RqLUN
Request Sequence number in upper 6 bits; Requester’s LUN in
low 2 bits
5
Cmd
Command (Always 0x02 for event message)
6
EvMRev
Event Message Revision (0x04 for IPMI 1.5)
7
Sensor Type
Indicates event class or type of sensor that generated the
message
8
Sensor Number
A unique number indicating the sensor that generated the
message
9
Event Dir/Event
Type
Upper bit indicates direction (0 = Assert, 1 = Deassert); Lower 7
bits indicate type of threshold crossing or state transition
10
Event Data 0
Data for sensor and event type
11
Event Data 1
(Optional) Data for sensor and event type
12
Event Data 2
(Optional) Data for sensor and event type
13
Chk2
Checksum #2
Event-generating sensors with a Threshold Event/Reading Type (0x01) initiate an event
message when a sensor reading crosses the defined threshold. The default thresholds for a
particular sensor are retrieved by sending the IPMC a Get Sensor Thresholds command. The
system management controller must send the IPMC a Get Sensor Reading command to
retrieve the current sensor reading. Please refer to the IPMI specification listed in Table 1-3
for complete details on using these commands.
10007175-02
KAT4000 User’s Manual
9-43
System Management:
FRU Inventory
FRU INVENTORY
The IPMC stores Field Replaceable Unit (FRU) information in its boot memory (SROM). The
data structure contains information such as the product name, part number, serial number,
manufacturing date, and E-keying information. Please refer to the IPMI specification for
complete details on the FRU data structure. Table 9-41 lists the general contents of the
KAT4000’s FRU information.
Table 9-41: FRU Definitions
Item:
Description:
Common Header
Version
Version number of the overall FRU data structure defined by the
IPMI FRU specification
Internal Use Area
Version
Version number of the Internal Use Area data structure defined by
the IPMI FRU specification
Internal Use Size
0x100 bytes are allocated for customer use in this area
Board Information Area
Version
Version number of the Board Information Area data structure
defined by the IPMI FRU specification
Language Code
0x01 = English
Manufacturing Date/Time
Variable, expressed as the number of minutes since 12:00 AM on
January 1, 1996
Board Manufacturer
“Emerson Network Power, Embedded Computing”
Board Product Name
“KAT4000”
Board Serial Number
Variable, formatted as “711A-XXXX”
Board Part Number
Variable, formatted as “10XXXXXX-YY-Z”
FRU File ID
Variable, for example: “p711a_c01”
Product Information Area
Version
Version number of the Product Information Area data structure
defined by the IPMI FRU specification
Language Code
0x01 = English
Manufacturer Name
“Emerson Network Power, Embedded Computing”
Product Name
“KAT4000”
Product Part/Model Number
Variable, formatted as “10XXXXXX-YY-Z”
Product Version
Not used, same information is provided by the part number
Product Serial Number
Variable, formatted as “711A-XXXX”
Asset Tag
Not Used
FRU File ID
Variable, for example: “p711a_c01”
Multi Record Area
E-Keying Records
9-44
KAT4000 User’s Manual
See “E-Keying”
10007175-02
System Management:
E-Keying
Item:
Description: (continued)
Maximum Module Current
(Per Site)
7.0 Amps
Maximum Internal Current
(All Sites)
15.0 Amps
E-KEYING
This section details the interfaces governed by E-keying and the protocols they support.
Specifically, this includes the interfaces implemented by the KAT4000 and the E-keying definition that corresponds to each interface.
The IPMC supports E-keying for the KAT4000 per the PICMG® 3.0, Revision 2.0; PICMG®
3.1, Revision 1.0; and AMC.x specifications. The e-keying information for the blade is stored
in the Board Point-to-Point Connectivity Record and Carrier Connectivity Record located in
the MultiRecord Area of the FRU Inventory Information (see page 9-44). The Board Pointto-Point Connectivity Record and Carrier Connectivity Record each contain a Link Descriptor list, where each Link Descriptor details one type of point-to-point protocol supported by
the referenced channels.
Base Point-to-Point Connectivity
The KAT4000 supports one 10/100/1000BASE-T port on Base Interface Channels 0 and 1,
and also four 10/100/1000BASE-BX ports on the Update Interface Channels. Depending on
the configuration, the KAT4000 can support one of the following on Fabric Interface Channels A and B:
• One, two or four 1000BASE-BX ports (GbE Fat Pipe Module Configurations)
• sRIO x4 ports (sRIO Fat Pipe Switch Module Configurations)
• 10 GbE ports (10 GbE-1 GbE or 10 GbE-10 GbE Fat Pipe Switch Module Configurations)
Table 9-42 shows the Point-to-Point Connectivity Record Link Descriptors for the KAT4000
with a GbE Fat Pipe Switch Module.
Table 9-42: Link Descriptors
Field:
Value:
Description:
Link Designator
000100000000b
Port 0 Enabled; Base Interface; Channel 1
Link Type
01h
PICMG 3.0 Base Interface 10/100/1000BASE-T
Link Type Extension
0000b
Link Grouping ID
00h
Independent Channel
Link Designator
000100000001b
Port 0 Enabled; Base Interface; Channel 2
Link Type
01h
PICMG 3.0 Base Interface 10/100/1000BASE-T
Link Type Extension
0000b
10007175-02
KAT4000 User’s Manual
9-45
System Management:
E-Keying
Description: (continued)
Field:
Value:
Link Grouping ID
00h
Independent Channel
Link Designator
111101000000b
Port 3,2,1,0 Enabled; Fabric Interface; Channel 1
Link Type
01h
PICMG 3.1 Ethernet Fabric Interface
Link Type Extension
0000b
Fixed 1000BASE-BX
Link Grouping ID
00h
Independent Channel
Link Designator
001101000000b
Port 1,0 Enabled; Fabric Interface; Channel 1
Link Type
01h
PICMG 3.1 Ethernet Fabric Interface
Link Type Extension
0000b
Fixed 1000BASE-BX
Link Grouping ID
00h
Independent Channel
Link Designator
000101000000b
Port 0 Enabled; Fabric Interface; Channel 1
Link Type
01h
PICMG 3.1 Ethernet Fabric Interface
Link Type Extension
0000b
Fixed 1000BASE-BX
Link Grouping ID
00h
Independent Channel
Link Designator
111101000001b
Port 3,2,1,0 Enabled; Fabric Interface; Channel 2
Link Type
01h
PICMG 3.1 Ethernet Fabric Interface
Link Type Extension
0000b
Fixed 1000BASE-BX
Link Grouping ID
00h
Independent Channel
Link Designator
001101000001b
Port 1,0 Enabled; Fabric Interface; Channel 2
Link Type
01h
PICMG 3.1 Ethernet Fabric Interface
Link Type Extension
0000b
Fixed 1000BASE-BX
Link Grouping ID
00h
Independent Channel
Link Designator
000101000001b
Port 0 Enabled; Fabric Interface; Channel 2
Link Type
01h
PICMG 3.1 Ethernet Fabric Interface
Link Type Extension
0000b
Fixed 1000BASE-BX
Link Grouping ID
00h
Independent Channel
Link Designator
111110000001b
Port 3,2,1,0 Enabled; Update Channel Interface;
Channel 1
Link Type
01h
OEM Specific
Link Type Extension
0000b
Link Grouping ID
00h
Independent Channel
Carrier Point-to-Point Connectivity
The KAT4000 supports one 1000BASE-BX port on AMC port 0 of AMC site B1, B2, B3, and
B4. The KAT4000 supports either 1000BASE-BX or PCIe (x1) on AMC port 1 of AMC sites B1,
B2, B3, and B4, depending on the configuration.
9-46
KAT4000 User’s Manual
10007175-02
System Management:
Firmware Upgrade
FIRMWARE UPGRADE
The IPMC firmware upgrade is performed using a set of special upgrade request and reply
messages that are delivered to and from the IPMC in the same way as standard IPMI commands (for more information, refer to Intelligent Platform Management Bus Communication
Protocol specification). These upgrade commands are collectively referred to as the
Upgrade protocol in this specification.
All upgrade commands have the net function codes 08h/09h that are reserved by the IPMI
specification for firmware upgrade commands. Each upgrade request is protected with a
checksum that helps to validate the upgrade requests in case they are delivered to the
IPMC over a serial interface. A request is considered to be valid if the sum of all of the network function code/LUN byte, the command code byte, and the request body bytes is 0
modulo 256. If the checksum validation fails, the Boot Loader sends a reply with the 0xCC
(Invalid Data In Request). The request sender is expected to resend the upgrade request in
this case. The upgrade replies are not protected with checksums. Table 9-43 provides a summary of the firmware upgrade commands supported by the Boot Loader.
Table 9-43: Firmware Upgrade Command Summary
Command:
netFn:
Firmware Upgrade Status
Firmware
08, 09
LUN:
Cmd:
00
00
Firmware Upgrade Start
Firmware
08, 09
00
01
Firmware Upgrade Prepare
Firmware
08, 09
00
02
Firmware Upgrade Write
Firmware
08, 09
00
03
Firmware Upgrade Complete
Firmware
08, 09
00
04
Firmware Upgrade Restore Backup
Firmware
08, 09
00
05
Firmware Upgrade Backup Revision
Firmware
08, 09
00
06
The following sections detail the format of the firmware upgrade requests and replies.
Firmware Upgrade Status Command
The Firmware Upgrade Status command queries the Boot Loader or the IPMC firmware
about the firmware upgrade status. This command is supported by both the IPMC firmware
and the Boot Loader, which return the current firmware upgrade status and cause in the
Firmware Upgrade Status reply.
Table 9-44: Firmware Upgrade Status Command
Type:
Byte:
Data Field:
Request Data
1
Checksum
10007175-02
KAT4000 User’s Manual
9-47
System Management:
Firmware Upgrade
Type:
Byte:
Data Field: (continued)
Response Data
1
Completion Code
2:4
PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5
Upgrade Status
0 IPMC is not in the firmware upgrade mode
1 IPMC is in the firmware upgrade mode but upgrade session
has not been opened yet
2 IPMC is in the firmware upgrade mode and an upgrade session
has already been opened (must send Firmware Upgrade Start to
open it)
6
Upgrade Cause, if the Upgrade Status parameter is not 0:
0 Boot Loader has read an ESC character from the Serial Debug
Interface
1 The firmware has received a Firmware Upgrade Start
command
2 The master H8S® IPMC firmware checksum is invalid
3 A watchdog reset has occurred while starting the new IPMC
firmware
4 The slave H8S IPMC firmware has failed (i.e. has been in reset
for too long)
Firmware Upgrade Start Command
The Firmware Upgrade Start command switches the IPMC to the upgrade mode. If the
IPMC firmware receives this command, it stores a special magic number in a reserved location of SRAM indicating that the Boot Loader is requested to enter the upgrade mode,
sends a reply with the 0xC0 (Node Busy) completion code, and reboots. When the
requestor receives the Node Busy reply, it resends the Firmware Upgrade Start request. By
this time, the IPMC firmware has already rebooted to the Boot Loader. When the Boot
Loader receives the Firmware Upgrade Start request, it checks if a firmware upgrade session has not been opened yet. If it has, the Boot Loader returns a reply with the 0xD1
(Device In Firmware Update Mode) completion code. If a firmware upgrade session has not
been opened yet, the Boot Loader opens it and returns a success reply. This command is
supported by both the IPMC firmware and the Boot Loader.
Table 9-45: Firmware Upgrade Start Command
9-48
KAT4000 User’s Manual
Type:
Byte:
Data Field:
Request Data
1
Checksum
Response Data
1
Completion Code
10007175-02
System Management:
Firmware Upgrade
Firmware Upgrade Prepare Command
The Firmware Upgrade Prepare command prepares the IPMC for programming of a new
firmware image. Preparation of the slave H8S flash memory includes only erasing the slave
H8S flash, while preparation of the master H8S flash memory includes the following:
• Erasing the backup copies of the firmware in the master H8S flash
• Making a backup copy of the master H8S firmware in the master H8S flash
• Fetching the slave H8S firmware over SPI and making a backup copy of it in the master
H8S flash
• Erasing the master H8S firmware area
This command is supported only by the Boot Loader. If the IPMC firmware receives this
command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-46: Firmware Upgrade Prepare Command
Type:
Byte:
Data Field:
Request Data
1
This specifies the target device that should be prepared for
programming and must have one of the following values:
0 The flash memory of the master H8S
1 The flash memory of the slave H8S
2
Checksum
Response Data
1
Completion Code
Firmware Upgrade Write Command
The Firmware Upgrade Write command programs a portion of a new firmware image onto
the IPMC. The Boot Loader internally gathers data transferred to it via Firmware Upgrade
Write requests and programs it to flash when the Boot Loader has accumulated an entire
flash page. This command is supported only by the Boot Loader. If the IPMC firmware
receives this command, it sends a reply with the 0xC1 (Invalid Command) completion code.
10007175-02
KAT4000 User’s Manual
9-49
System Management:
Firmware Upgrade
Table 9-47: Firmware Upgrade Write Command
Type:
Byte:
Data Field:
Request Data
1
Specifies the target device that is to be programmed with the
data provided in the request body. The offset of the location at
which the data is to be programmed to the target devices is a 3byte value supplied in little-endian format.
2:4
Offset LSB/MSB
The offset of the location at which the data is to be programmed
to the target devices is a 3-byte value supplied in little-endian
format.
5:N
Data 1/N
Data is required to be transferred sequentially, because the
IPMC firmware does not support the read-modify-write
operations.
Response Data
N+1
Checksum
1
Completion Code
Firmware Upgrade Complete Command
The Firmware Upgrade Complete command completes the programming of the IPMC.
When the Boot Loader receives this request, it writes any remaining cached data to flash,
sends a success reply, exits the upgrade mode, and reboots. After reboot, the Boot Loader
performs the standard firmware integrity checks and if they are a success, boots the IPMC
firmware. This command is supported only by the Boot Loader. If the IPMC firmware
receives this command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-48: Firmware Upgrade Complete Command
Type:
Byte:
Data Field:
Request Data
1
Checksum
Response Data
1
Completion Code
Firmware Upgrade Restore Backup Command
The Firmware Upgrade Restore Backup command makes the Boot Loader restore the firmware from the backup image. If the Boot Loader receives this command, it does the following:
• Erases the slave H8S flash memory
• Erases the master H8S firmware area
• Programs the slave H8S firmware with the backup image stored in the master H8S flash
memory
• Programs the master H8S firmware area with the backup image stored in the master
H8S flash memory
9-50
KAT4000 User’s Manual
10007175-02
System Management:
Firmware Upgrade
This command is only supported by the Boot Loader. If the IPMC firmware receives this
command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-49: Firmware Upgrade Restore Backup Command
Type:
Byte:
Request Data
1
Data Field:
Checksum
Response Data
1
Completion Code
Firmware Upgrade Backup Revision Command
The Firmware Upgrade Backup Revision command reads the revision of the backup firmware images stored in the master H8S flash memory. When the Boot Loader receives this
command, it validates the checksums of the backup firmware images of the master and
slave H8Ss. If either of the images is corrupted (the checksum is bad), the 0xCB (Requested
Data Not Present) completion code is returned. Otherwise, the Boot Loader extracts the
major and minor revision of the backup firmware and returns them.
This command is only supported by the Boot Loader. If the IPMC firmware receives this
command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-50: Firmware Upgrade Backup Revision Command
Type:
Byte:
Request Data
1
Data Field:
Checksum
Response Data
1
Completion Code
2:3
Major and Minor Revisions of the backup firmware
Firmware Upgrade Termination
The Boot Loader exits the upgrade mode upon an explicit request (the Firmware Upgrade
Complete command) from the upgrade initiator. Additionally, the Boot Loader tracks the
traffic coming from the firmware upgrade initiator and, if the upgrade data channel has
been idle for more than a configurable amount of time, the Boot Loader closes the current
upgrade session and reverts to the normal mode. This ensures that the Boot Loader does
not get stuck if the upgrade initiator accidentally loses its connection to the KAT4000 or
shelf, or does not communicate for another reason.
Firmware Upgrade Sequence
The normal IPMC firmware upgrade sequence is as follows (in the simple configuration).
1 The IPMC firmware receives a Firmware Upgrade Start command. After parsing this
command, the firmware sends a Node Busy reply and reboots to the Boot Loader. The Boot
Loader enters the upgrade node.
10007175-02
KAT4000 User’s Manual
9-51
System Management:
Firmware Upgrade
2 The upgrade initiator resends the Firmware Upgrade Start command and the Boot Loader
returns a success reply indicating that an upgrade session has been opened.
3 The upgrade initiator issues a Firmware Upgrade Prepare (master H8S flash) command to
erase the master H8S flash. The Boot Loader erases the master H8S flash and returns a
success reply.
4 The upgrade initiator sequentially writes the new master H8S firmware to the master H8S
flash using the Flash Upgrade Write command. The Boot Loader acknowledges each write
by sending a success reply to the upgrade initiator.
5 The upgrade initiator issues a Firmware Upgrade Prepare (slave H8S flash) command to
erase the slave H8S flash. The Boot Loader writes the cached data to the master H8S flash,
erases the slave H8S flash, and returns a success reply.
6 The upgrade initiator sequentially writes the new slave H8S firmware to the slave H8S flash
using the Flash Upgrade Write command. The Boot Loader acknowledges each write by
sending a success reply to the upgrade initiator.
7 The upgrade initiator sends a Firmware Upgrade Complete command to finish the firmware
upgrade. The Boot Loader writes the remaining cached data to the slave H8S flash and
reboots the IPMC. After reset, the Boot Loader validates the master H8S firmware
checksum and passes control to the IPMC.
9-52
KAT4000 User’s Manual
10007175-02
Section 10
Synchronization Clocks
The KAT4000 implements a flexible clocking circuit based on a clock selection/holdover
chip with a PLD wrapper. This PLD wrapper allows local software control of the source clock
selection from these input options: backplane CLK1A/B, backplane CLK2A/B, backplane
CLK3A/B, AMCn TCLKA, AMCn TCLKB or AMCn FCLKA. Any of these clock sources can be
sent to the following output clocks: backplane CLK3A/B, AMCn TCLKA, AMCn TCLKB or
AMCn FCLKA. Transceiver buffers are used to convert all M-LVDS clocks to/from TTL levels.
CLK1 and CLK2 on the backplane are inputs only. See Fig. 10-1 for a diagram of this circuitry.
See “Clock Synchronizer Registers” on page 7-13 for information on configuring the stratum clock buffers, selecting the primary and secondary clock sources, and selecting the
output source.
Note: The pins for TCLKC and TCLKD are routed to the Zone 3 connector interface. If these signals are used on a
rear transition module, there could be a conflict with an AMC module that uses these clocks.
Figure 10-1: Synchronization Clock Circuit Diagram
AMC 3
AMC 2
AMC 1
K
9
9
K
9
9
K
9
AMC 4
9
K
9
2 2; =
2 2; =
2 2; =
Clock
Transceiver
Clock
Transceiver
Clock
Transceiver
Clock
Transceiver
(#/>
//>
Clock
Selection 3
Clock
Transceiver
Three Frequency
Output Paths:
19.44 MHz
1.54 MHz
2.048 MHz
Primary and Secondary
Clock Inputs
E-key Enable
from Processor
</
"#$
Clock
Transceiver
!
9
9
Clock
Transceiver
</
"#$
//>
(#/>
Clock
Selection 2
/"
5
!
9
/"
5
(#/>
//>
Clock
Selection 1
9
/"
5
PCIe REFCLK
Distribution
PCIe Clock
Source
PLD Wrapper
Processor
Interface
via Local Bus
9
2 2; =
ATCA J20
* FCLKA is either a PCIe REFCLK or standard clock signal.
10007175-02
KAT4000 User’s Manual
10-1
Synchronization Clocks:
MT9045 and MT9046 Clock
All clock circuitry and the synchronization clock interface meets all hard requirements as
stated in the latest PICMG3.0 and AMC.0 specifications, as well as those in all relevant AMC
subspecifications.
• Backplane CLK1A/B and CLK2A/B inputs are Stratum Level 4E and Stratum Level 3 or 3E
sources, respectively, from the main system clock source. There are no specific Stratum
level requirements for the on-board output clocks that may be driven from these
Stratum level input clocks.
• Backplane CLK3A/B output is selectable as 8 kHz, 1.544 MHz, 2.048 MHz or 19.44 MHz.
• Backplane CLK3A/B is a derived REF clk and has no specific Stratum level quality
requirements.
• Backplane clock interfaces are designed to work within the specified bused M-LVDS
electrical requirements.
• AMC synchronization clocks are sourced from or drive the ATCA backplane
synchronization clock interface.
• AMC clock interfaces are designed to work within the specified point-to-point M-LVDS
electrical requirements.
• Clocks received from and transmitted to AMC sites have no specific Stratum level quality
requirements.
A configuration of this board is available with no clock interface circuitry.
MT9045 AND MT9046 CLOCK SYNCHRONIZERS
The MT9045 and MT9046 T1/E1 System Synchronizers contain a digital phase-locked loop
(DPLL), which provides timing and synchronization signals for multitrunk T1 and E1 primary
rate transmission links. The devices have reference switching and frequency holdover capabilities to help maintain connectivity during temporary synchronization interruptions. The
MT9045 is compliant to Stratum 3 and Stratum 4/4E specifications. The MT9046 can be
used to provide a cost-reduced clock interface, compliant to only Stratum 4/4E specifications.
10-2
KAT4000 User’s Manual
10007175-02
Section 11
Real-Time Clock
The standard Real-Time Clock (RTC) for the KAT4000 is provided by an M41T00 device from
STMicroelectronics. This device has power sense circuitry and uses eight bytes of non-volatile RAM for the clock/calendar function. The M41T00 is powered from the +3.3 volt rail
during normal operation, and uses a single, super capacitor which provides a minimum two
hour backup.
BLOCK DIAGRAM
Figure 11-1: M41T00 Real-Time Clock Block Diagram
OSC1
OSC0
Oscillator
32.768 KHz
Divider
VBAT
Seconds
Minutes
FT/OUT
VCC
VSS
1Hz
Voltage
Sense and
Switch
Circuitry
Century/Hours
Control
Logic
Day
Date
Month
SCL
SDA
Serial
Bus
Interface
Year
Address
Register
Control
OPERATION
The M41T00 clock operates as a slave device on the serial bus. To obtain access, the RTC
implements a start condition followed by the correct slave address (D0h). Access the eight
bytes in the following order:
1 Seconds register
2 Minutes register
3 Century/Hours register
4 Day register
5 Date register
6 Month register
10007175-02
KAT4000 User’s Manual
11-1
Real-Time Clock:
Clock Operation
7 Years register
8 Control register
The M41T00 clock continually monitors the supply voltage (Vcc) for an out of tolerance
condition. If Vcc falls below switch-over voltage (Vso), the M41T00:
• Terminates an access in progress
• Resets the device address counter
• Does not recognize inputs (prevents erroneous data from being written)
At power-up, the M41T00 uses Vcc at Vso and recognizes inputs.
CLOCK OPERATION
Read the seven Clock registers one byte at a time or in a sequential block. Access the Control register (address location 7) independently. An update to the Clock registers is delayed
for 250 ms to allow the read to be completed before the update occurs. This delay does not
alter the actual clock time. The eight byte clock register sets the clock and reads the date
and time from the clock, as summarized in Table 11-1.
Table 11-1: RTC Register Map
Address:
D7
00
01
02
03
04
05
06
07
D6
D5
Data:
D4
D3
D2
D1
D0
Function/Range:
BCD Format
ST
10 Seconds
Seconds
Seconds
00—59
X
10 Minutes
Minutes
Minutes
00—59
Hours
Century/
Hours
0-1/
00-23
Day
01—07
CEB
CB
10 Hours
X
X
X
X
X
X
X
OUT
FT
X
10 Date
X
10 M
10 Years
S
X
Day
Date
Date
01—31
Month
Month
01—12
Years
00—99
Control
—
Years
Calibration
ST: Stop bit
1 Stops the oscillator
0 Restarts the oscillator within one second
CEB: Century Enable Bit
1 Causes CB to toggle either from 0 to 1 or from 1 to 0 at the turn of the century
0 CB will not toggle
CB: Century Bit
11-2
KAT4000 User’s Manual
10007175-02
Real-Time Clock:
Clock Operation
Day: Day of the week
Date: Day of the month
OUT: Output level
1 Default at initial power-up
0 FT/OUT (pin 7) driven low when FT is also zero
FT: Frequency Test bit
1 When oscillator is running at 32,768 Hz, the FT/OUT pin will toggle at 512 Hz
0 The FT/OUT pin is an output driver (default at initial power-up)
S: Sign bit
1 Positive calibration
0 Negative calibration
Calibration: Calibration bits The calibration circuit adds or subtracts counts from the oscillator divider
circuit at the divide by 256 stage. The number of times pulses are blanked (subtracted, negative calibration) or split (added, positive calibration) depends on this five-bit byte. Adding
counts accelerates the clock, and subtracting counts slows the clock down.
X: Don’t care bit
10007175-02
KAT4000 User’s Manual
11-3
(blank page)
11-4
KAT4000 User’s Manual
10007175-02
Section 12
Connectors
There are multiple connectors on the KAT4000. Reference Fig. 2-1 and Fig. 2-2 for their locations. Whether individual backplane connectors are populated on the KAT4000 depends on
the specific product configuration. The backplane connectors, Zones 1 through 3, are
described in this chapter.
ZONE 1
Connector P10 provides the ATCA Zone 1 power (dual redundant -48V DC) and system
management connections. Four levels of sequential mating provide proper functionality
during live insertion or extraction.
Figure 12-1: Zone 1 Connector, P10
1
Table 12-1: Zone 1 Connector, P10 Pin Assignments
Pin:
Signal:
Insertion Sequence:
1
reserved
NA
2
reserved
NA
3
reserved
NA
4
reserved
NA
5
Hardware Address bit 0 (HA0)
third
6
HA1
third
7
HA2
third
8
HA3
third
9
HA4
third
10
HA5
third
11
HA6
third
12
HA7 (odd parity bit)
third
10007175-02
KAT4000 User’s Manual
12-1
Connectors:
Zone 2
Pin:
Signal:
Insertion Sequence:
13
IPMBA Clock (SCL port A)
third
14
IPMBA Data (SDA port A)
third
15
IPMBB Clock (SCL port B)
third
16
IPMBB Data (SDA port B)
third
17
no connect
third
18
no connect
third
19
no connect
third
20
no connect
third
21
no connect
third
22
no connect
third
23
no connect
third
24
no connect
third
25
Shelf ground
first
26
Logic ground
first
27
Enable B
fourth
28
Voltage Return A (-48RTNA)
first
29
Voltage Return B (-48RTNB)
first
30
-48 volt Early A
first
31
-48 volt Early B
first
32
Enable A
fourth
33
-48 volt A (-48A)
second
34
-48 volt B (-48B)
third
ZONE 2
Zone 2 (ZD) defines five backplane connectors, J20 through J24, which support the data
transport interface. The KAT4000 is a Base node board supporting two Base channels,
therefore only the J23 connector is installed to support the 10BASE-T, and/or 100BASE-TX,
and/or 1000BASE-T Ethernet. Connector J20 is also used for the optional Update Channel
and synchronization clock interface. Each connector provides 40 differential signal contact
pairs, with each pair carrying an individual L-shaped ground contact. The ZD-style connector provides three levels of sequential mating, the third and shortest signal level is not used
with PICMG 3.0 backplanes. The Zone 2 connector array supports four different interfaces
to the ATCA backplane:
• Base Node Interface (J23) supports two Base channels
• Fabric Interface (J23) supports two Fabric channels (The fabric interface connection is
controlled by the system E-keying process)
12-2
KAT4000 User’s Manual
10007175-02
Connectors:
Zone 2
• Six signal pairs (12 pins) are available to support the optional Synchronization Clock
Interface (J20) for 8 KHz, 19.44 KHz, and user defined clocks
• Ten signal pairs are available for an optional Update Channel interface (J20)
Figure 12-2: Zone 2 Connectors, J20 and J23, and Zone 3 Connectors, J30-J32
Row H
Row G
Row F
Row E
Row D
Row C
Row B
Row A
10
6
5
1
Table 12-2: Zone 2 Connector, J20 Pin Assignments
Row:
AB
CD
1
CLK1A+
CLK1A-
CLK1B+
CLK1B-
2
no connect
no connect
no connect
no connect
3
UC_TX2+
UC_TX2-
UC_RX2+
UC_RX2-
4
UC_TX0+
UC_TX0-
UC_RX0+
UC_RX0-
5-10
no connect
no connect
no connect
no connect
Row:
EF
GH
1
CLK2A+
CLK2A-
CLK2B+
2
CLK3A+
CLK3A-
CLK3B+
CLK2BCLK3B-
3
UC_TX3+
UC_TX3-
UC_RX3+
UC_RX3-
4
UC_TX1+
UC_TX1-
UC_RX1+
UC_RX1-
5-10
no connect
no connect
no connect
no connect
In Table 12-3, example B1_Dx[m]p signifies:
• x is the differential pair (A-D)
10007175-02
KAT4000 User’s Manual
12-3
Connectors:
Zone 3
• m is the logical slot number (1-16)
• p is the polarity (+, -)
Table 12-3: Zone 2 Connector, J23 Pin Assignments
Row:
Interface:
1
Fabric Channel 2
2
3
Fabric Channel 1
4
CD
Tx2[2]-
Rx2[2]+
Tx0[2]+
Tx0[2]-
Rx0[2]+
Rx2[2]Rx0[2]-
Tx2[1]+
Tx2[1]-
Rx2[1]+
Rx2[1]-
Tx0[1]+
Tx0[1]-
Rx0[1]+
Rx0[1]-
XBC1_TR0+
XBC1_TR0-
XBC1_TR1+
XBC1_TR1-
Base Ethernet 2
XBC2_TR0+
XBC2_TR0-
XBC2_TR1+
XBC2_TR1-
na
no connect
Tx3[2]+
Tx3[2]-
Rx3[2]+
Tx1[2]+
Tx1[2]-
Rx1[2]+
Rx1[2]-
Tx3[1]+
Tx3[1]-
Rx3[1]+
Rx3[1]-
5
Base Ethernet 1
6
7-10
Row:
Interface:
1
Fabric Channel 2
2
3
AB
Tx2[2]+
Fabric Channel 1
4
EF
GH
Rx3[2]-
Tx1[1]+
Tx1[1]-
Rx1[1]+
Rx1[1]-
XBC1_TR2+
XBC1_TR2-
XBC1_TR3+
XBC1_TR3-
Base Ethernet 2
XBC2_TR2+
XBC2_TR2-
XBC2_TR3+
XBC2_TR3-
na
no connect
5
Base Ethernet 1
6
7-10
ZONE 3
These optional Zone 3 type A connectors, J30 through J33, support a Rear Transition Module (RTM). Features include:
• Two SerDes ports from the Ethernet core switch
• Routing all AMC user I/O
• Power routed to support active logic with hot swap control
• I2C bus from IPMC for system management purposes
• I2C bus from payload processor
• Payload processor debug Ethernet port connection
• KAT4000 with CPU: Console serial port interfaces for the payload processor
• KAT4000 without CPU: Console serial port interfaces for the Ethernet core switch and fat
pipe Ethernet switch console ports
Connectors J30 through J32 use the same ZD-style connector as Zone 2.
12-4
KAT4000 User’s Manual
10007175-02
Connectors:
Zone 3
Spare AMC site I/O will all be routed to Zone 3 as generic differential pairs, carrying anything from SerDes to TDM signals to single-ended GPIO signals, and is capable of data rates
as high as 3.125 Gbps.
Table 12-4: Zone 3 Connector, J30 Pin Assignments
Row:
AB
CD
1
FP_CONN_TX
FP_CONN_RX
B3_RTIP4
B3_RRING4
2
B3_TTIP6
B3_TRING6
B3_RTIP6
B3_RRING6
3
B3_TTIP8
B3_TRING8
B3_RTIP8
B3_RRING8
4
RTM_ENET_TX+
RTM_ENET_TX-
no connect
no connect
5
RTM_ENET_RX+
RTM_ENET_RX-
B4_RTIP2
B4_RRING2
6
HOST_CONN_TX
HOST_CONN_RX
RTM_ID1
PB_RST*
7
B4_TTIP3
B4_TRING3
IPMC_RST_PB*
RTM_ID0
8
B4_TTIP4
B4_TRING4
RTM_ID3
no connect
9
B4_TTIP5
B4_TRING5
B4_RTIP5
B4_RRING5
10
B4_TTIP7
B4_TRING7
B4_RTIP7
B4_RRING7
Row:
EF
GH
1
B3_TTIP5
B3_TRING5
B3_RTIP5
B3_RRING5
2
B3_TTIP7
B3_TRING7
B3_RTIP7
B3_RRING7
3
GIG6_TX+
GIG6_TX-
no connect
no connect
4
no connect
no connect
B4_TTIP2
B4_TRING2
5
B4_TTIP1
B4_TRING1
B4_RTIP1
B4_RRING1
6
GIG6_RX+
GIG6_RX-
RTM_PS1_CONN*
AMC_PP_EN*
7
B4_RTIP3
B4_RRING3
RTM_ID2
no connect
8
no connect
no connect
B4_RTIP4
B4_RRING4
9
B4_TTIP6
B4_TRING6
B4_RTIP6
B4_RRING6
10
B4_TTIP8
B4_TRING8
B4_RTIP8
B4_RRING8
Table 12-5: Zone 3 Connector, J31 Pin Assignments
Row:
AB
CD
1
no connect
no connect
RTM_GPIO7
RTM_GPIO6
2
B2_TTIP3
B2_TRING3
RTM_GPIO5
RTM_GPIO4
3
B2_TTIP4
B2_TRING4
no connect
no connect
4
B2_TTIP5
B2_TRING5
B2_RTIP5
B2_RRING5
5
B2_TTIP7
B2_TRING7
B2_RTIP7
B2_RRING7
6
RTM_RX0+
RTM_RX0-
no connect
no connect
7
RTM_RX1+
RTM_RX1-
B3_TTIP2
B3_TRING2
8
B3_TTIP1
B3_TRING1
B3_RTIP1
B3_RRING1
9
no connect
no connect
RTM_RX2+
RTM_RX2-
10
B3_RTIP3
B3_RRING3
RTM_RX3+
RTM_RX3-
10007175-02
KAT4000 User’s Manual
12-5
Connectors:
Zone 3
Row:
EF
GH
1
no connect
no connect
RTM_GPIO3
2
B2_RTIP3
B2_RRING3
RTM_GPIO1
RTM_GPIO2
RTM_GPIO0
3
GIG4_TX+
GIG4_TX-
B2_RTIP4
B2_RRING4
4
B2_TTIP6
B2_TRING6
B2_RTIP6
B2_RRING6
5
B2_TTIP8
B2_TRING8
B2_RTIP8
B2_RRING8
6
GIG4_RX+
GIG4_RX-
no connect
no connect
7
RTM_TX0+
RTM_TX0-
B3_RTIP2
B3_RRING2
8
RTM_TX1+
RTM_TX1-
no connect
no connect
9
B3_TTIP3
B3_TRING3
RTM_TX2+
RTM_TX2-
10
B3_TTIP4
B3_TRING4
RTM_TX3+
RTM_TX3-
Table 12-6: Zone 3 Connector, J32 Pin Assignments
Row:
AB
FP_CONN_TX
FP_CONN_RX
no connect
no connect
2
no connect
no connect
B1_TTIP2
B1_TRING2
3
B1_TTIP1
B1_TRING1
B1_RTIP1
B1_RRING1
4
no connect
no connect
RTM_PS0_
CONN
no connect
5
B1_RTIP3
B1_RRING3
no connect
no connect
6
no connect
no connect
B1_RTIP4
B1_RRING4
7
B1_TTIP6
B1_TRING6
B1_RTIP6
B1_RRING6
8
B1_TTIP8
B1_TRING8
B1_RTIP8
B1_RRING8
9
no connect
no connect
no connect
no connect
10
no connect
no connect
B2_RTIP2
B2_RRING2
Row:
12-6
KAT4000 User’s Manual
CD
1
EF
GH
1
HOST_CONN_TX
HOST_CONN_RX
no connect
no connect
2
I2C_RTM_SCL_
BUFF
I2C_RTM_SDA_
BUFF
B1_RTIP2
B1_RRING2
3
no connect
no connect
no connect
no connect
4
B1_TTIP3
B1_TRING3
12V_RTM
no connect
5
B1_TTIP4
B1_TRING4
no connect
no connect
6
B1_TTIP5
B1_TRING5
B1_RTIP5
B1_RRING5
7
B1_TTIP7
B1_TRING7
B1_RTIP7
B1_RRING7
8
no connect
no connect
no connect
no connect
9
no connect
no connect
B2_TTIP2
B2_TRING2
10
B2_TTIP1
B2_TRING1
B2_RTIP1
B2_RRING1
10007175-02
Connectors:
Zone 3
Figure 12-3: Zone 3 Connector, J33
1
6
D
C
B
A
Table 12-7: Zone 3 Connector, J33 Pin Assignments
A (AMC4):
B (AMC3):
C (AMC2):
D (AMC1):
1
B4_CONSOLE_TX
B3_CONSOLE_TX
B2_CONSOLE_TX
B1_CONSOLE_TX
2
B4_CONSOLE_RX
B3_CONSOLE_RX
B2_CONSOLE_RX
B1_CONSOLE_RX
3
GND
GND
GND
GND
4
B4_LEDCTRL_TX
B3_LEDCTRL_TX
B2_LEDCTRL_TX
B1_LEDCTRL_TX
5
B4_LEDCTRL_RX
B3_LEDCTRL_RX
B2_LEDCTRL_RX
B1_LEDCTRL_RX
6
12V RTM
IPMB_RTM_SDA_
BUFF
3.3 V MP RTM
IPMB_RTM_SCL_
BUFF
10007175-02
KAT4000 User’s Manual
12-7
(blank page)
12-8
KAT4000 User’s Manual
10007175-02
Section 13
Rear Transition Module
The KAT-Z3DB is an optional, single-slot ATCA Rear Transition Module (RTM) providing rear
shelf I/O access for the KAT4000. This RTM is for development purposes only. It has not
been tested for EMI, EMC or ESD.
This RTM connects to the KAT4000’s Zone 3 connectors, J30-J32, and ATCA connector, J33.
This chapter describes the physical layout of the RTM and the installation process.
COMPONENTS AND FEATURES
ATCA RTM Form Factor: The RTM has a K1 alignment feature in Zone 2, an A1 Zone 3 alignment and keying feature,
Zone 3 connectors, an ESD discharge strip, four AMC site serial ports, an ethernet debug
port, a host serial port, a fat pipe serial port, and board and IPMI reset switches.
Console Port Interface: EIA-232 is routed through six micro-D connectors (P1, P2, P4-P7) and one RJ45 connector
(P3) at the rear I/O face plate.
Reset: The RTM front panel provides two reset switches: a board reset and an IPMI reset.
Note: The RTM reset switches are not functional with the rev. 00 KAT4000.
10007175-02
KAT4000 User’s Manual
13-1
Rear Transition Module:
Functional Overview
FUNCTIONAL OVERVIEW
The following block diagram provides a functional overview for the KAT-Z3DB.
Figure 13-1: RTM General System Block Diagram with Face Plate
KAT-Z3DB
Serial I/O
Connector
EIA-232
10/100 PHY
Zone 3
Connectors
Micro D
SER
FP
Serial Port to the
Fat Pipe Switch Module
Micro D
SER
Host
Serial Port to the CPU
RJ45
Enet
User I/O
Board Reset
13-2
KAT4000 User’s Manual
10/100BASE-T
Debug Ethernet Port
Board Reset Switch
IPMI Reset
IPMI Reset Switch
Micro D
SER
AMC4
Serial Port to AMC4
Micro D
SER
AMC3
Serial Port to AMC3
Micro D
SER
AMC2
Serial Port to AMC2
Micro D
SER
AMC1
Serial Port to AMC1
10007175-02
Rear Transition Module:
Circuit Board
CIRCUIT BOARD
The KAT-Z3DB circuit board is a rear transition module assembly. It uses a 6-layer printed
circuit board with the following dimensions.
Table 13-1: RTM Circuit Board Dimensions
Width:
Depth:
12.687 in. (322.25 mm)
3.481 in. (88.42 mm)
The following figure shows the component map for the KAT-Z3DB circuit board.
10007175-02
KAT4000 User’s Manual
13-3
Rear Transition Module:
Circuit Board
Figure 13-2: RTM Component Map, Top (Rev. 00)
A1
ATCA Guide
P33
24-Pin
R26
R25
R23
R24
P32
ATCA
80-Pin
R6
R5
R9
R10
R13
R14
R1
R4
R22
R21
P3
RJ45
SW1 SW2
K1
ATCA Guide
L14
L15
L16
L13
P6
Micro D
L12
L9
L10
L11
P5
Micro D
L8
L6
L5
L7
P4
Micro D
KAT4000 User’s Manual
L20
L17
L18
L19
P7
Micro D
R18
13-4
P1
Micro D
R12
R11
L1
L3
L2
L4
R19
R20
CR1
P30
ATCA
80-Pin
P2
Micro D
L23
L22
L24
L21
R7
R8
P31
ATCA
80-Pin
R17
10007175-02
Rear Transition Module:
Face Plate
FACE PLATE
The rear face plate includes openings for six 9-pin micro-D connectors and one RJ45 connector for serial I/O (see Fig. 13-1). There are also two reset switches: a board reset and an
IPMI reset.
CONNECTORS
There are several connectors on the KAT-Z3DB (see Fig. 13-2). Descriptions and pin assignments are listed below.
Console Serial Ports
There are multiple asynchronous console serial ports on the face plate. P1 is for the host
serial port, P2 is for the fat pipe serial port, and P4-P7 are for AMC sites 1-4. These ports
operate at EIA-232 signal levels, but do not provide any handshaking functionality. The connectors for the console ports are micro-DB9 connectors, with the following pin assignments.
Table 13-2: Console Serial Port Pin Assignments, P1, P2 and P4-P7
Pin:
Signal:
Pin:
Signal:
1
no connect
6
no connect
2
RXD (Data In)
7
no connect
3
TXD (Data Out)
8
no connect
4
no connect
9
no connect
5
ground
The standard Emerson console cable (#10007665-xx) is cross-pinned, as shown in Fig. 13-4.
A straight-through 9-pin cable (#10007664-xx) also is available.
Figure 13-3: Micro-D Console Cable
DB9
Connector
Ferrite
Micro D
Connector
Pin 5
Pin 1
10007175-02
KAT4000 User’s Manual
13-5
Rear Transition Module:
Setup
Figure 13-4: Standard Console Cable Wiring, #10007665-xx
DB9 Connector
Micro DB9 Connector
24
/
Ethernet Port
The face plate has one 10/100BASE-T Ethernet port, P3, for debug purposes that routes
through P30 to the GbE Core Switch. This port is not functional with the no-CPU KAT4000
configuration. This is a standard RJ45 connector, with the following pin assignments.
Table 13-3: Ethernet Port Pin Assignments, P3
Pin:
Signal:
Pin:
1
TX+
5
Signal:
no connect
2
TX-
6
RX-
3
RX+
7
no connect
4
no connect
8
no connect
Zone 3
P30-P32 are the ATCA 80-pin Zone 3 (ZD) connectors for routing serial host and fat pipe
data. See Table 12-4, Table 12-5 and Table 12-6 for pin assignments.
The 24-pin Zone 3 P33 connector routes serial I/O to the AMCs. See Table 12-7 for pin assignments.
SETUP
You need the following items to set up and check the operation of the Emerson KAT-Z3DB:
❐ The KAT4000 baseboard
❐ Compatible AMC modules
❐ Micro-D cable, Emerson part number C0007665-00 (cross-pinned) or C0007664-00
(straight-through)
13-6
KAT4000 User’s Manual
10007175-02
Rear Transition Module:
Installation
❐ Card cage and power supply
❐ Computer terminal
When you unpack the module, save the antistatic bag and box for future shipping or storage.
Identification Numbers
Before you install the KAT-Z3DB in a system, you should record the following information:
• The board serial number: 711G- _____________________________________ .
The board serial number appears on a bar code sticker located at the top of the board
near A1 (see Fig. 13-2).
• The board product identification (ID): ________________________________ .
This product ID sticker is located in the middle of the board across from P5 and P6 (see
Fig. 13-2).
It is useful to have these numbers available when you contact Technical Support at Emerson.
INSTALLATION
Caution: To avoid damaging the module and/or baseboard, do not force the module onto the
baseboard.
!
Caution: Use proper static protection and handle KAT4000 boards only when absolutely necessary.
Always wear a wriststrap to ground your body before touching a board. Keep your body
!
grounded while handling the board. Hold the board by its edges–do not touch any
components or circuits. When the board is not in an enclosure, store it in a static-shielding
bag.
When installing a KAT-Z3DB to the backplane, follow these guidelines:
1 To prevent ESD damage to the KAT4000, wear a grounding wrist strap and use a grounded
work surface while handling the board.
Note: The ESD strip on the bottom edge of the RTM provides a controlled discharge path before the Zone 3 connectors engage.
2 The KAT-Z3DB receives all its power from the front board. To install or remove the KATZ3DB, either Hot Swap the KAT4000 or install the KAT-Z3DB with the KAT4000’s Hot Swap
switch open (no power).
3 First align the RTM Zone 3 connectors (P30-P33) to the KAT4000 connectors (J30-J33).
Then align both two-pin ATCA guides: the RTM’s A1 (Zone 3) and K1 (Zone 2) to the
10007175-02
KAT4000 User’s Manual
13-7
Rear Transition Module:
Installation
KAT4000’s K2 and K1, respectively. Finally mate the RTM’s P33 to the KAT4000 J33
connector and manually push in the module.
4 Lock the Hot Swap ejector handles.
Figure 13-5: Installing a KAT-Z3DB RTM on the KAT4000
KA
T4
00
H
S
AM ER
C1
KA
TZ
H
S
AM ER
C2
S
AM ER
C3
S
AM ER
C4
3D
3
3 et
ard
es
t
et
En
se
Re
S
Ho ER
st
SE
FP R
AR
TE
S
KA
N
T-Z
3D
B
13-8
KAT4000 User’s Manual
10007175-02
H
Bo
IR
IPM
B
0
Section 14
Monitor
The KAT4000 monitor is based on the Embedded PowerPC Linux Universal Boot (U-Boot)
Project program, available under the GNU General Public License (GPL). For instructions on
how to obtain the source code for this GPL program, please visit http://www.artesyncp.com, send an e-mail to support@artesyncp.com, or call Emerson at (800) 327-1251.
This chapter describes the monitor’s basic features, operation, and configuration
sequences. This chapter also serves as a reference for the monitor commands and functions.
COMMAND-LINE FEATURES
The KAT4000 monitor uses a command-line interface with the following features:
Auto-Repeat: After entering a command, you can re-execute it simply by pressing the ENTER or RETURN
key.
Command History: Recall previously entered commands using the up and down arrow keys.
TFTP Boot: You can use the TFTP protocol to load application images via Ethernet into the KAT4000’s
memory.
Auto-Boot: You can store specific boot commands in the environment to be executed automatically
after reset.
Flash Programming: You can write application images into Flash via the U-Boot command line. The upper 1 MB at
the base of Flash and 128 KB of each Flash bank is reserved for the monitor and environment
variables. One megabyte is reserved at the second bank of flash. The moninit command will
load both banks of flash (see “moninit” on page 14-24) with the monitor and default environment variables.
When BDRR is enabled (see Table 2-3) and the monitor is loaded to both banks of flash (see
“moninit” on page 14-24), the hardware watchdog timer may cause a reset that will then
boot from the next flash bank (see Fig. 7-1).
At power-up or after a reset, the monitor runs diagnostics and reports the results in the
start-up display, see Fig. 14-1. During the power-up sequence, the monitor configures the
board according to the environment variables (see “Environment Variables” on
page 14-28). If the configuration indicates that autoboot is enabled, the monitor attempts
to load the application from the specified device. If the monitor is not configured for autoboot or a failure occurs during power-up, the monitor enters normal command-line mode.
Also, the optional “e-keying” environment variable enables connections at power-up, for
debug purposes only, to the Update Channel and payload ports that go off the KAT4000.
See Table 14-7 for more information.
10007175-02
KAT4000 User’s Manual
14-1
Monitor:
Command-Line Features
The monitor command prompt in Fig. 14-1 is the result of a successful hardware boot of the
KAT4000 with a GbE fat pipe switch module.
Figure 14-1: Example Monitor Start-up Display for KAT4000 with GbE Fat Pipe Switch Module
U-Boot 1.1.4 (Jan
Hardware initialization
Monitor command prompt
14-2
KAT4000 User’s Manual
9 2007 - 11:15:43)1.01d
CPU:
8548_E, Version: 2.0, (0x80390020)
Core: E500, Version: 2.0, (0x80210020)
Clock Configuration:
CPU: 999 MHz, CCB: 399 MHz,
DDR: 199 MHz, LBC: 49 MHz
Board:KAT4000 AMC Carrier
Emerson Network Power, Embedded Computing
cPLD Ver: 2
I2C: ready
Clearing ALL of memory
...............................
DRAM: 512 MB
Testing Top 1M Area of DRAM.......PASSED
Relocating code to RAM
FLASH: [16MB@e0000000][16MB@e1000000]32 MB
L2 cache: enabled
PCIe: none
In:
serial
Out: serial
Err: serial
Ser#: 1086
Diags Mem:
PASSED
Diags I2C:
PASSED
Diags Flash:
PASSED
BootDev: Soldered Flash (Bank 1)
I-cache enabled
D-cache enabled (write-through)
L2 cache enabled . (L2CTL: 0xa0000000)
(write-through)
IPMC: v0.1.1
DOC: Turbo Mode
Net: eTSEC1, eTSEC2, eTSEC3, eTSEC4
Core Eth Sw: VSC7376
Fat Pipe Eth Sw: VSC7376
KAT4000 (Mon 1.01d)=>
10007175-02
Monitor:
Command-Line Features
The monitor command prompt in Fig. 14-2 is the result of a successful hardware boot of the
KAT4000 with a 10 GbE-1 GbE fat pipe switch module.
Figure 14-2: Example Monitor Start-up Display for KAT4000 with 10 GbE-1 GbE Fat Pipe Switch Module
U-Boot 1.1.4 (Apr 03 2007 - 15:20:30)1.3d
Hardware initialization
Monitor command prompt
CPU:
8548_E, Version: 2.0, (0x80390020)
Core: E500, Version: 2.0, (0x80210020)
Clock Configuration:
CPU: 999 MHz, CCB: 399 MHz,
DDR: 199 MHz, LBC: 49 MHz
Board: KAT4000 AMC Carrier
Emerson Network Power, Embedded Computing
cPLD Ver: 5
I2C:
ready
Clearing ALL of memory
................
DRAM: 512 MB
Testing Top 1M Area of DRAM........PASSED
Relocating code to RAM
FLASH: [16MB@e0000000][16MB@e1000000]32 MB
PCIe:
Waiting for PCIe Devices...
Bus Dev Vend DevID Class Int
04 00 14e4 b580 0280 00
03 00 10b5 8111 0604 00
02 01 10b5 8532 0604 00
02 02 10b5 8532 0604 00
02 03 10b5 8532 0604 00
02 08 10b5 8532 0680 00
02 09 10b5 8532 0604 00
02 0a 10b5 8532 0604 00
09 00 1957 7011 0b20 00
02 0b 10b5 8532 0604 00
01 00 10b5 8532 0604 00
In:
serial
Out:
serial
Err:
serial
Ser#: 1114
Diags Mem:
PASSED
Diags I2C:
PASSED
Diags Flash:
PASSED
BootDev: Socket
I-cache enabled
D-cache enabled (write-through)
L2 cache enabled. (L2CTL: 0x20000000)
(write-through)
IPMC: v0.2.1
DOC:
Turbo Mode
Net: eTSEC1, eTSEC2, eTSEC3
Core Eth Sw: VSC7376
Fat Pipe Eth Sw: BCM56580
autoboot in 1 seconds (hit 'h' to stop)
KAT4000 (Mon 1.3d)=>
10007175-02
KAT4000 User’s Manual
14-3
Monitor:
Basic Operation
This prompt is also displayed as an indication that the monitor has finished executing a
command or function invoked at the command prompt (except when the command loads
and jumps to a user application). The hardware product name, KAT4000, and the current
software version number are displayed in the prompt.
Prior to the console port being available, the monitor will display a four-bit hexadecimal
value on LED1 through LED4 to indicate the power-up status (see Table 14-1). See Fig. 2-7 for
the debug LED locations. In the event of a specific initialization error, the LED pattern will be
displayed and the board initialization will halt.
Table 14-1: Debug LED Codes
LED Code:
Power-up Status:
LED Value:
BOARD_PRE_INIT
start booting, setup BATs done
0x01
SERIAL_INIT
console init done
0x02
CHECKBOARD
get processor and bus speeds done
0x03
0x04
SDRAM_INIT
RAM / ECC init done
AFTER_RELOC
U-Boot relocated to RAM done
0x05
MISC_R
final init including Ethernet done
0x06
GONE_TO_PROMPT
—
0x00
BASIC OPERATION
The monitor performs various configuration tasks upon power-up or reset. This section
describes the monitor operation during initialization of the KAT4000 board. The flowchart
(see Fig. 14-3) illustrates the power-up and global reset sequence (bold text indicates environment variables).
Power-up/Reset Sequence
The KAT4000 monitor follows the boot sequence in Fig. 14-3 before auto-booting the operating system or application software. At power-up or board reset, the monitor performs
hardware initialization, diagnostic routines, autoboot procedures, free memory initialization, and if necessary, invokes the command line. The U-Boot monitor also detects if the
optional PCI Express and serial Rapid I/O switches are present. Note that the U-Boot monitor
has the ability to timeout while waiting for PCIE_WAIT. See Table 14-6 for default environment variables settings.
14-4
KAT4000 User’s Manual
10007175-02
Monitor:
Basic Operation
Figure 14-3: Power-up/Reset Sequence Flowchart
RESET
Initialize HID0
Initialize MSR
Relocate the
MPC8548
CCSRBDR base
address
Map LAWBARs/
TLBs
Invalidate the
L2 cache
LED 0001
Invalidate and
enable the L1
data cache
Init. serial port per
baudrate
environment var.
LED 0011
Is module a
root complex
Yes
Enumerate PCI
per enumerate
environment
variable
No
Display version
string
Display CPU,
board, and bus
speed
LED 0100
Initialize
I2C
Init. SDRAM. Clear
per clearmem and
configure per ecc
environment vars.
Perform board
diagnostics per
powerondiags
environment var.
Display board
serial number
Enable MPC8548
external interrupts
Relocate IRQ
handlers and
IRQ traps
Initialize Ethernet
ports
Initialize
disk-on-chip
Setup initial stack
and data region
in cache
Configure the
MPC8548 device
chip selects
Initialize
final stack
Relocate U-Boot
to RAM
LED 0110
Configure dcache
per cachemode
and dcache
environment vars.
Configure icache
per icache
environment
variable
Initialize
flash
Enable icache
LED 0010
Initialize malloc
area
Initialize the
U-Boot
environment
Configure L2
cache per l2cache
and l2mode
environment vars.
Initialize core
Ethernet switch,
if installed
Initialize fat pipe
Ethernet switch,
if installed
Turn off debug
LEDs and blink
front panel red
LED per blinked
environment var.
Display LED 0111
Initialize
PCIe
10007175-02
Main Loop
KAT4000 User’s Manual
14-5
Monitor:
Monitor Recovery and Updates
POST Diagnostic Results
The KAT4000 Power-On Self-Test (POST) diagnostic results are stored as a 32-bit value in I2C
NVRAM at the offset 0x1DD8-0x1DDB. Errors will also be stored in the Vital Products Data
section and FRU user space area for access by other devices. Each bit indicates the results of
a specific test, therefore this field can store the results of up to 32 diagnostic tests. Table 142 assigns the bits to specific tests.
Table 14-2: POST Diagnostic Results–Bit Assignments
Bit:
Diagnostic Test:
0
SDRAM
1
Flash
2
I2 C
Value:
3
Ethernet Core Switch
0
Passed the test
4
Reserved
1
Failure detected
5
PCIe Timeout (if Root Complex)
(currently not implemented)
6-31
Reserved
Monitor SDRAM Usage
Monitor SDRAM usage is typically around 1 MB for monitor code and stack support. Please
note that the monitor stack grows downward from below where the monitor code resides
(in the upper 512 KB). The monitor C stack will typically not grow beyond 512 KB, therefore
the upper 1 MB of SDRAM is reserved for monitor use.
Note: The monitor has the ability to preserve (not overwrite) areas of memory defined by the pram environment
variable.
Caution: Any writes to these areas can cause unpredictable operation of the monitor.
!
MONITOR RECOVERY AND UPDATES
This section describes how to recover and/or update the monitor, given one or more of the
following conditions:
• If there is no console output, the monitor may be corrupted and need recovering (see
the “Recovering the Monitor” section).
• If the monitor still functions, but is not operating properly, then you may need to reset
the environment variables (see the “Resetting Environment Variables” section).
• If you are having Ethernet problems in the monitor, you may need to set the serial
number, since the MAC address is calculated from the serial number variable.
14-6
KAT4000 User’s Manual
10007175-02
Monitor:
Monitor Recovery and Updates
Recovering the Monitor
1 Make sure that a monitor ROM device is installed in the PLCC socket on the KAT4000.
2 Ensure there is a jumper on JP7, across pins 1 and 2.
3 Issue the following command, where serial_number is the board’s serial number, at the
monitor prompt:
KAT4000 (1.0) => moninit serial_number
moninit will also reset environment variables to the default state.
4 To boot from soldered flash, power down the board and remove the jumper from JP7, pins 1
and 2.
The monitor always resides in the top 512 KB block of NOR flash as shown in Table 14-3.
Table 14-3: Monitor Address per Flash Device
Address Range (hex):
Device:
E1F8,0000-E1FF,FFFF
Monitor Location in Flash Bank1 (16 MB)
E0F8,0000-E0FF,FFFF
Monitor Location in Flash Bank0 (16 MB)
E1F6,0000-E1F6,1000
Redundant Environment Variables
E0F6,0000-E0F6,1000
Environment Variables
Resetting Environment Variables
To restore the monitor’s standard environment variables, execute the following commands
and insert the appropriate data in the italicized fields:
KAT4000 (1.0) => moninit serial_number noburn
Note: Press the ‘s’ key on the keyboard during reset to force the default environment variables to be loaded. See
“Environment Variables” for more information.
Optionally, save your settings:
KAT4000 (1.0) => saveenv
Updating the Monitor via TFTP
To update the monitor via TFTP, ensure that an appropriate VLAN is set up in the Ethernet
switch (see the KAT4000 Quick Start Guide, #10008585-xx) and execute the following commands, inserting the appropriate data in the italicized fields:
If necessary, edit your network settings:
KAT4000
KAT4000
KAT4000
KAT4000
KAT4000
(1.0)
(1.0)
(1.0)
(1.0)
(1.0)
=>
=>
=>
=>
=>
setenv
setenv
setenv
setenv
setenv
ipaddr 192.168.1.100
gatewayip 192.168.1.1
netmask 255.255.255.0
serverip 10.64.16.168
ethport all
10007175-02
KAT4000 User’s Manual
14-7
Monitor:
Monitor Command Reference
Optionally, save your settings:
KAT4000 (1.0) => saveenv
TFTP the new monitor (binary) image to memory location 0x100000:
KAT4000 (1.0) => tftpboot 100000 path_to_file_on_tftp_server
Update the monitor:
KAT4000 (1.0) => moninit serial_number 100000
If moninit( ) fails, burn the new monitor to a ROM and follow the recovery steps in the
“Recovering the Monitor” section.
MONITOR COMMAND REFERENCE
This section describes the syntax and typographic conventions for the KAT4000 monitor
commands. Subsequent sections in this chapter describe individual commands, which fall
into the following categories: boot, memory, Flash, environment variables, test, and other
commands.
Command Syntax
The monitor uses the following basic command syntax:
<Command> <argument 1> <argument 2> <argument 3>
• The command line accepts three different argument formats: string, numeric, and
symbolic. All command arguments must be separated by spaces with the exception of
argument flags, which are described below.
• Monitor commands that expect numeric arguments assume a hexadecimal base.
• All monitor commands are case sensitive.
• Some commands accept flag arguments. A flag argument is a single character that
begins with a period (.). There is no white space between an argument flag and a
command. For example, md.b 80000 is a valid monitor command, while md .b 80000
is not.
• Some commands may be abbreviated by typing only the first few characters that
uniquely identify the command. For example, you can type h instead of help. However,
commands cannot be abbreviated when accessing online help. You must type help and
the full command name.
14-8
KAT4000 User’s Manual
10007175-02
Monitor:
Boot Commands
Command Help
Access all available monitor commands by pressing the ? key or entering help. Access the
monitor online help for individual commands by typing help <command>. The full command name must be entered to access the online help.
Typographic Conventions
In the following command descriptions, text in Courier shows the command format.
Square brackets [ ] enclose optional arguments, and angled brackets < > enclose required
arguments. Italic type indicates a variable or field that requires input.
BOOT COMMANDS
The boot commands provide facilities for booting application programs and operating systems from various devices.
bootd
Execute the command stored in the “bootcmd” environment variable.
Definition:
bootd
bootelf
The bootelf command boots from an ELF image in memory, where address is the load
address of the ELF image.
Definition:
bootelf [ address ]
bootm
The bootm command boots an application image stored in memory, passing any entered
arguments to the called application. When booting a Linux kernel, arg can be the address of
an initrd image. If addr is not specified, the environment variable loadaddr is used as the
default.
Definition:
bootm [addr [arg …]]
bootp
The bootp command boots an image via a network connection using the BootP/TFTP protocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr and
bootfile are used as the default.
Definition:
bootp [loadAddress] [bootfilename]
10007175-02
KAT4000 User’s Manual
14-9
Monitor:
Boot Commands
To use network download commands (e.g., bootp, bootvx, rarpboot, tftpboot), the environment variables listed in Table 14-4 must be configured. To set a static IP, these environment variables must be specified through the command line interface.
Table 14-4: Static IP Ethernet Configuration
Environment Variable:
Description:
ipaddr
Local IP address for the board.
serverip
TFTP/NFS server address.
netmask
Net mask.
gatewayip
Gateway IP address.
netdev
ethaddr
eth0 - default
1
MAC address
1. Ensure that each MAC address on the network is unique.
bootv
The bootv command checks the checksum on the primary image (in Flash) and boots it, if
valid. If it is not valid, it checks the checksum on the secondary image (in Flash) and boots it,
if valid. If neither checksum is valid, the command returns back to the monitor prompt.
Definition: Verify bootup.
bootv
Write image to Flash and update NVRAM.
bootv <primary|secondary> write <source> <dest> <size>
Update NVRAM based on image already in Flash.
bootv <primary|secondary> update <source> <size>
Check validity of images in Flash.
bootv <primary|secondary> check
bootvx
The bootvx command boots VxWorks® from an ELF image, where address is the load
address of the VxWorks ELF image. To use this command, the environment variables listed
in Table 14-4 must be configured.
Definition:
bootvx [ address ]
dhcp
The dhcp command invokes a Dynamic Host Configuration Protocol (DHCP) client to obtain
IP and boot parameters by sending out a DHCP request and waiting for a response from a
server.
14-10
KAT4000 User’s Manual
10007175-02
Monitor:
Boot Commands
Definition:
dhcp [loadaddress] [bootfilename]
To use the dhcp command, your DHCP server must be configured with the variables designated in Table 14-5.
Table 14-5: DHCP Ethernet Configuration
Environment Variable:
Description:
Value2:
ipaddr
Local IP address for the board. Configured
by DHCP.
e.g., 192.168.1.1
serverip
TFTP/NFS server address. This value must
be configured after the DHCP IP address is
3
acquired.
e.g., 192.168.1.2
netmask
Net mask. Obtained by DHCP.
—
gatewayip
Gateway IP address. Obtained by DHCP.
—
netdev
Ethernet device. Obtained by DHCP.
eth0
MAC address
00:80:F9:xx:xx:xx
Boot image from TFTP server after DHCP
acquisition.
no
ethaddr
4
autoload
5
2. Values for ethaddr, netdev and autoload are set by the user.
3. The value obtained by the DHCP server may not be applicable to your development application.
4. Ensure that each MAC address on the network is unique.
5. If autoload is not set or configured to “yes,” ensure that the DHCP provides proper information for
autoboot. If proper autoboot information is not provided, an error may occur.
rarpboot
The rarpboot command boots an image via a network connection using the RARP/TFTP
protocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr
and bootfile are used as the default. To use this command, the environment variables listed
in Table 14-4 must be configured.
Definition:
rarpboot [loadaddress] [bootfilename]
tftpboot
The tftpboot command loads an image via a network connection using the TFTP protocol.
The environment variable’s ipaddr and serverip are used as additional parameters to this
command. If loadaddress or bootfilename is not specified, the environment variables
loadaddr and bootfile are used as the default. To use this command, the environment variables listed in Table 14-4 must be configured.
The port used is defined by the ethport environment variable. If all is selected for ethport,
the TFTP process will cycle through each port until a connection is found or all ports have
failed.
10007175-02
KAT4000 User’s Manual
14-11
Monitor:
File Load Commands
Definition:
tftpboot [loadaddress] [bootfilename]
FILE LOAD COMMANDS
The file load commands load files over the serial port.
loadb
The loadb command loads a binary file over the serial port. The command takes two
optional parameters:
offset: The address offset parameter allows the file to be stored in a location different than what is
indicated within the binary file by adding the value off to the file’s absolute address.
baudrate: The baudrate parameter allows the file to be loaded at baud instead of the monitor’s console baudrate.
The file is not automatically executed, the loadb command only loads the file into memory.
Definition:
loadb [off] [baud]
loads
The loads command loads an S-Record file over the serial port. The command takes two
optional parameters:
offset: The address offset parameter allows the file to be stored in a location different than what is
indicated within the S-Record file by adding the value off to the file’s absolute address.
baudrate: The baudrate parameter allows the file to be loaded at baud instead of the monitor’s console baudrate.
The file is not automatically executed, the loads command only loads the file into memory.
Definition:
loads [off] [baud]
MEMORY COMMANDS
The memory commands allow you to manipulate specific regions of memory. For some
memory commands, the data size is determined by the following flags:
Definition: The flag .b is for data in 8-bit bytes.
Definition: The flag .w is for data in 16-bit words.
Definition: The flag .l is for data in 32-bit long words.
These flags are optional arguments and describe the objects on which the command operates. If you do not specify a flag, memory commands default to 32-bit long words. Numeric
arguments are in hexadecimal.
14-12
KAT4000 User’s Manual
10007175-02
Monitor:
Memory Commands
cmp
The cmp command compares count objects between addr1 and addr2. Any differences are
displayed on the console display.
Definition:
cmp [.b, .w, .l] addr1 addr2 count
cp
The cp command copies count objects located at the source address to the target address.
Note: If the target address is located in the range of the Flash device, it will program the Flash with count objects
from the source address. The cp command does not erase the Flash region prior to copying the data. The Flash
region must be manually erased using the erase command prior to using the cp command.
Definition:
cp [.b, .w, .l] source target count
Example: In this example, the cp command is used to copy 0x1000, 32-bit values from address
0x100000 to address 0x80000.
=> cp 100000 80000 1000
find
The find command searches from base_addr to top_addr looking for pattern. For the find
command to work properly, the size of pattern must match the size of the object flag. The -a
option searches for the absence of the specified pattern.
Definition:
find [.b, .w, .l] [-a] base_addr top_addr pattern
Example: In this example, the find command is used to search for the 32-bit pattern 0x12345678 in
the address range starting at 0x40000, and ending at 0x80000.
=> find.1 40000 80000 12345678
Searching from 0x00040000 to 0x00080000
Match found: data = 0x12345678 Adrs = 0x00050a6c
=>
md
The command md displays the contents of memory starting at address. The number of
objects displayed can be defined by an optional third argument, # of objects. The memory’s
numerical value and its ASCII equivalent is displayed.
Definition:
md [.b, .w, .l] address [# of objects]
Example: In this example, the md command is used to display thirty-two 16-bit words starting at the
physical address 0x80000.
=> md.w 80000 20
00080000: ffff ffff ffff ffff ffff ffff ffff ffff
00080010: ffff ffff ffff ffff ffff ffff ffff ffff
00080020: ffff ffff ffff ffff ffff ffff ffff ffff
10007175-02
................
................
................
KAT4000 User’s Manual
14-13
Monitor:
Memory Commands
00080030: ffff ffff ffff ffff ffff ffff ffff ffff
................
mm
The mm command modifies memory one object at a time. Once started, the command line
prompts for a new value at the starting address. After a new value is entered, pressing
ENTER auto-increments the address to the next location. Pressing ENTER without entering a
new value leaves the original value for that address unchanged. To exit the mm command,
enter a non-valid hexadecimal value (such as x) followed by ENTER.
Definition:
mm [.b, .w, .l] address
Example: In this example, the mm command is used to write random 8-bit data starting at the physical address 0x80000.
=> mm.b 80000
00080000: ff ? 12
00080001: ff ? 23
00080002: ff ? 34
00080003: ff ? 45
00080004: ff ?
00080005: ff ? x
=> md.b 80000 6
00080000: 12 23 34 45 ff ff
=>
.#4E
nm
The nm command modifies a single object repeatedly. Once started, the command line
prompts for a new value at the selected address. After a new value is entered, pressing
ENTER modifies the value in memory and then the new value is displayed. The command
line then prompts for a new value to be written at the same address. Pressing ENTER without entering a new value leaves the original value unchanged. To exit the nm command,
enter a non-valid hexadecimal value (such as x) followed by ENTER.
Definition:
nm [.b, .w, .l] address
mw
The command mw writes value to memory starting at address. The number of objects modified can be defined by an optional fourth argument, count.
Definition:
mw [.b, .w, .l] address value [count]
Example: In this example, the mw command is used to write the value 0xabba three times starting at
the physical address 0x80000.
=> mw.w 80000 abba 3
=> md 80000
00080000: abbaabba abbaffff ffffffff ffffffff
00080010: ffffffff ffffffff ffffffff ffffffff
14-14
KAT4000 User’s Manual
10007175-02
................
................
Monitor:
Flash Commands
00080020:
00080030:
00080040:
00080050:
00080060:
00080070:
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
................
................
................
................
................
................
FLASH COMMANDS
The Flash commands affect the StrataFlash device on the KAT4000 circuit board. There is
one Flash bank on the KAT4000 board. The following Flash commands access the individual
Flash bank as Flash bank 1. To access the individual sectors within each Flash bank, the sector numbers start at 0 and end at one less than the total number of sectors in the bank. For a
Flash bank with 128 sectors, the following Flash commands access the individual sectors as
0 through 127.
cp
The cp command can be used to copy data into the Flash device. For the cp command syntax, refer to “Memory Commands” on page 14-12.
erase
The erase command erases the specified area of Flash memory.
Definition: Erase all of the sectors in the address range from start to end.
erase start end
Erase all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.
erase N:SF[-SL]
Erase all of the sectors in Flash bank # N.
erase bank N
Erase all of the sectors in all of the Flash banks.
erase all
flinfo
The flinfo command prints out the Flash device’s manufacturer, part number, size, number
of sectors, and starting address of each sector.
Definition: Print information for all Flash memory banks.
flinfo
Print information for the Flash memory in bank # N.
flinfo N
10007175-02
KAT4000 User’s Manual
14-15
Monitor:
EEPROM/I2C Commands
protect
The protect command enables or disables the Flash sector protection for the specified Flash
sector. Protection is implemented using software only. The protection mechanism inside
the physical Flash part is not being used.
Definition: Protect all of the Flash sectors in the address range from start to end.
protect on start end
Protect all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.
protect on N:SF[-SL]
Protect all of the sectors in Flash bank # N.
protect on bank N
Protect all of the sectors in all of the Flash banks.
protect on all
Remove protection on all of the Flash sectors in the address range from start to end.
protect off start end
Remove protection on all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.
protect off N:SF[-SL]
Remove protection on all of the sectors in Flash bank # N.
protect off bank N
Remove protection on all of the sectors in all of the Flash banks.
protect off all
EEPROM/I2C COMMANDS
This section describes commands that allow you to read and write memory on the serial
EEPROMs and I2C devices.
eeprom
The eeprom command reads and writes from the EEPROM. For example:
eeprom read 53 100000 1800 100
reads 100 bytes from offset 0x1800 in serial EEPROM 0x53 (right-shifted 7-bit address) and
places it in memory at address 0x100000.
Definition: Read/write cnt bytes from devaddr EEPROM at offset off.
eeprom read devaddr addr off cnt
eeprom write devaddr addr off cnt
14-16
KAT4000 User’s Manual
10007175-02
Monitor:
EEPROM/I2C Commands
icrc32
The icrc32 computes a CRC32 checksum.
Definition:
icrc32 chip address[.0, .1, .2] count
iloop
The iloop command reads in an infinite loop on the specified address range.
Definition:
iloop chip address[.0, .1, .2] [# of objects]
imd
The imd command displays the primary I2C bus memory. For example:
imd 53 1800.2 100
displays 100 bytes from offset 0x1800 of I2C device 0x53 (right-shifted 7-bit address). The
.2 at the end of the offset is the length, in bytes, of the offset information sent to the
device. The serial EEPROMs all have two-byte offset lengths. The Real-Time Clock (RTC) has
a one-byte offset length. The temperature sensors have zero-byte offset lengths.
Definition:
imd chip address[.0, .1, .2] [# of objects]
imd2
The imd2 command displays the secondary I2C bus memory. For example:
imd 53 1800.2 100
displays 100 bytes from offset 0x1800 of I2C device 0x53 (right-shifted 7-bit address). The
.2 at the end of the offset is the length, in bytes, of the offset information sent to the
device. The serial EEPROMs all have two-byte offset lengths. The RTC has a one-byte offset
length. The temperature sensors have zero-byte offset lengths.
Definition:
imd2 chip address[.0, .1, .2] [# of objects]
imm
The imm command modifies the primary I2C memory and automatically increments the
address.
Definition:
imm chip address[.0, .1, .2]
imm2
The imm2 command modifies the secondary I2C memory and automatically increments
the address.
Definition:
imm2 chip address[.0, .1, .2]
10007175-02
KAT4000 User’s Manual
14-17
Monitor:
IPMC Commands
imw
The imw command writes (fills) memory.
Definition:
imw chip address[.0, .1, .2] value [count]
inm
The inm command modifies I2C memory, reads it, and keeps the address.
Definition:
inm chip address[.0, .1, .2]
iprobe
The iprobe command probes to discover valid primary I2C bus chip addresses.
Definition:
iprobe
iprobe2
The iprobe command probes to discover valid secondary I2C bus chip addresses.
Definition:
iprobe2
switchsrom
The switchsrom command reads bytes from the VSC7376 GbE switch EEPROM and writes
bytes to the EEPROM.
Definition:
switchsrom read <offset> <size>
switchsrom write <source address> <size>
IPMC COMMANDS
IPMI Baseboard Management Controller (BMC) watchdog is supported and serviced
throughout the monitor boot process. The BMC watchdog is disabled if the monitor goes to
the monitor prompt.
fru
The fru command opens, closes, saves, sets, shows, dumps, and loads fru data to and from
the IPMC.
Definition:
fru <command> [ arg1 arg2 … ]
command := [ open | close | save | set | show | dump | load | create ]
fru open <id>
fru close
fru save
fru set <section [chassis|board|product]><field><value>
fru set <section> <field> <value>
section := [ chassis | board | product ]
14-18
KAT4000 User’s Manual
10007175-02
Monitor:
IPMC Commands
fru set chassis <field> <value>
field := [ type | part | serial ]
fru set board <field> <value>
field := [ date | maker | name | serial | part | file ]
fru set product <field> <value>
field := [ maker | name | part | version |serial | asset | file ]
fru show
fru dump <address>
fru load <address><size>
Set data in the internal use area.
fru set internal <source addr> <internal use offset> <count>
The fru create command loads a default fru image to a blank fru device.
fru create <id> default <product name>
fru create <id> <address> <size> <product name>
fruinit
The fruinit command initializes the following fru data fields: part number, build date, and
serial number in the board and product sections.
Definition:
fruinit <fru id> <part number> <build date> [ serial number ]
fruled
The fruled command allows the application programmer to get the status of the red out-ofservice LED or to turn the LED on or off when an application fails to load.
Definition:
fruled get <fru id> <led id> <led state> <led function (on/off)> <on time> <color>
fruled set <fru id> <led id> <led function (on/off)> <on time> <color>
Example: Turns the red out-of-service LED on.
fruled set 0 1 0xff 0 2
Turns the red out-of-service LED off.
fruled set 0 1 0 0 2
ipmcfw
The ipmcfw command restores the previous IPMC firmware from the backup IPMC firmware stored in the controller. The upgrade argument upgrades the IPMC firmware with the
upgrade image held in memory.
Definition:
ipmcfw [restore] [upgrade <source address>]
sensor
The sensor command probes, reads, and prints the sensor information from the IPMI.
10007175-02
KAT4000 User’s Manual
14-19
Monitor:
Environment Parameter Commands
Definition:
sensor [probe|read|dump]
Sensor probe prints out each sensor number and name.
sensor probe <sensor number>
Sensor read prints out the sensor reading for sensor.
sensor read <sensor number>
Sensor dump prints out the raw Sensor Data Record (SDR) information for sensor.
sensor dump <sensor number>
ENVIRONMENT PARAMETER COMMANDS
The monitor uses on-board, non-volatile memory for the storage of environment parameters. Environment parameters are stored as ASCII strings with the following format.
<Parameter Name>=<Parameter Value>
Some environment variables are used for board configuration and identification by the
monitor. The environment parameter commands deal with the reading and writing of these
parameters. Refer to “Environment Variables” on page 14-28 for a list of monitor environment variables.
Redundant environment parameters allow you to store a “backup” copy of environment
parameters should they ever become corrupt. The redundant environment parameters are
only used if the main parameters are corrupt.
To save environment variables:
1 Use moninit to save default environment variables to both primary and secondary
environment parameters.
2 Use saveenv to save to the primary environment variables.
3 Set the next save to the secondary image. For example:
Primary Env Variables
(0xE0F6,0000)
Secondary Env Variables,
if installed
(0xE1F6,0000)
14-20
KAT4000 User’s Manual
10007175-02
Monitor:
Test Commands
printenv
The printenv command displays all of the environment variables and their current values to
the display.
Definition: Print the values of all environment variables.
printenv
Print the values of all environment variable (exact match) ‘name’.
printenv name …
saveenv
The saveenv command writes the environment variables to non-volatile memory.
Definition:
saveenv
setenv
The setenv command adds new environment variables, sets the values of existing environment variables, and deletes unwanted environment variables.
Definition: Set the environment variable name to value or adds the new variable name and value to the
environment.
setenv name value
Removes the environment variable name from the environment.
setenv name
TEST COMMANDS
The commands described in this section perform diagnostic and memory tests.
diags
The diags command runs the Power-On Self-Test (POST).
Definition:
diags
mtest
The mtest command performs a simple SDRAM read/write test.
Definition:
mtest [start [end [pattern]]]
10007175-02
KAT4000 User’s Manual
14-21
Monitor:
Other Commands
um
The um command is a destructive memory test. Press the ‘q’ key to quit this test; the monitor completes running the most recent iteration, and exits to the default prompt after displaying cumulative results for the completed iterations.
Definition:
um [.b, .w, .l] base_addr [top_addr]
OTHER COMMANDS
This section describes all the remaining commands supported by the KAT4000 monitor.
autoscr
The autoscr command runs a script, starting at address addr, from memory.
A valid autoscr header must be present.
Definition:
autoscr [addr]
base
The base command prints or sets the address offset for memory commands.
Definition: Displays the address offset for the memory commands.
base
Sets the address offset for the memory commands to off.
base off
bdinfo
The bdinfo command displays the Board Information Structure.
Definition:
bdinfo
coninfo
The coninfo command displays the information for all available console devices.
Definition:
coninfo
crc32
The crc32 command computes a CRC32 checksum on count bytes starting at address.
Definition:
crc32 address count
date
The date command will set or get the date and time, and reset the RTC device.
14-22
KAT4000 User’s Manual
10007175-02
Monitor:
Other Commands
Definition: Set the date and time.
date [MMDDhhmm[[CC]YY][.ss]]
Display the date and time.
date
Reset the RTC device.
date reset
echo
The echo command echoes args to console.
Definition:
echo [args..]
enumpci
The enumpci command enumerates the PCIe bus (when the hardware is the PCIe Root
Complex in the system).
Definition:
enumpci
go
The go command runs an application at address addr, passing the optional argument arg to
the called application.
Definition:
go addr [arg…]
help
The help (or ?) command displays the online help. Without arguments, all commands are
displayed with a short usage message for each. To obtain more detailed information for a
specific command, enter the desired command as an argument.
Definition:
help [command …]
iminfo
The iminfo command displays the header information for an application image that is
loaded into memory at address addr. Verification of the image contents (magic number,
header, and payload checksums) are also performed.
Definition:
iminfo addr [addr …]
isdram
The isdram command displays the SDRAM configuration information (valid chip values
range from 50 to 57).
10007175-02
KAT4000 User’s Manual
14-23
Monitor:
Other Commands
Definition:
isdram addr
loop
The loop command executes an infinite loop on address range.
Definition:
loop [.b, .w, .l] address number_of_objects
memmap
The memmap command displays the board’s memory map layout.
Definition:
memmap
moninit
The moninit command resets the NVRAM and serial number, and it writes the monitor to
Flash. The KAT4000 must be booted from the boot socket for this command to function in
the default state. The proper region of Flash memory will be unlocked and erased prior to
copying the monitor software into it.
The command flags, .s or .d, force the monitor to be programmed to a single (.s) bank of
flash or dual (.d) banks of flash. If the command flags are not used, then moninit checks for
the number of banks of flash. If there are two banks of flash, then moninit automatically
programs both banks for redundancy. Also, the serial number can be obtained from the fru
data if “fru” is used as a parameter.
Definition: Initialize environment variables and serial number in NVRAM and copy the monitor from the
socket to NOR (soldered) Flash.
moninit[.s, .d] <serial# or “fru”>
Initialize environment variables and serial number in NVRAM but do not update the monitor
in NOR Flash.
moninit[.s, .d] <serial# or “fru”> noburn
Initialize environment variables and serial number in NVRAM and copy the monitor from
<src_address> into NOR Flash.
moninit[.s, .d] <serial# or “fru”> <src_address>
pci
The pci command enumerates the PCI bus. It displays enumeration information about each
detected device. The pci command allows you to display values for and access the PCI Configuration Space.
Definition: Display a short or long list of PCI devices on the bus specified by bus.
pci [bus] [long]
14-24
KAT4000 User’s Manual
10007175-02
Monitor:
Other Commands
Show the header of PCI device bus.device.function.
pci header b.d.f
Display the PCI configuration space (CFG).
pci display[.b, .w, .l] b.d.f [address] [# of objects]
Modify, read, and keep the CFG address.
pci next[.b, .w, .l] b.d.f address
Modify, automatically increment the CFG address.
pci modify[.b, .w, .l] b.d.f address
Write to the CFG address.
pci write[.b, .w, .l] b.d.f address value
phy
The phy command reads or writes to the contents of the PHY registers. The values changed
via this command are not persistent and clear after a hard or soft reset. The port options are
all, eTSEC1, eTSEC2, eTSEC3, and eTSEC4, and base1 and base2 via the switch. “R” reads the
register contents at the address specified. “W” writes the address value to the register
address specified. “A” reads the contents of all registers.
Definition:
phy [port] [R|W|A] (address) (value)
Example: The following is an example of a read of register address 0x1a.
phy eTSEC2 r 0x1a
The following is an example of a write to register address 0x1a where 0 is the data to write.
phy eTSEC2 w 0x1a 0
ping
The ping command sends a ping over Ethernet to check if the host can be reached. The port
used is defined by the ethport environment variable. If all is selected for ethport, the ping
process cycles through each port until a connection is found or all ports have failed.
Definition:
ping host
reset
The reset command performs a hard reset of the CPU by writing to the reset register on the
board. Without any arguments, the KAT4000 CPU is reset.
Definition:
reset
10007175-02
KAT4000 User’s Manual
14-25
Monitor:
Other Commands
run
The run command runs the commands in an environment variable var.
Definition:
run var [ … ]
Use $ for variable substitution; the syntax “$(variable_name)” should be used for variable
expansion.
Example:
=> setenv cons_opts console=tty0 console=ttyS0,\$(baudrate)
=> printenv cons_opts cons_opts=console=tty0 console=ttyS0,$(baudrate)
Use the \ character to escape execution of the $ as seen in the setenv command above. In
this example, the value for baudrate will be inserted when cons_opts is executed.
script
The script command runs a list of monitor commands out of memory. The list is an ASCII
string of commands separated by the ; character and terminated with the ;; characters. <script address> is the starting location of the script.
Note: A script is limited to 1000 characters.
Definition:
script <script address>
showmac
The showmac command displays the Processor MAC addresses assigned to each Ethernet
port.
Definition:
showmac
showpci
The showpci command scans the PCIe bus and lists the base address of the devices. The
default PCI interface is PCI 1.
Definition:
showpci
sleep
The sleep command executes a delay of N seconds.
Definition: Delay execution for N seconds (N is a decimal value).
sleep N
14-26
KAT4000 User’s Manual
10007175-02
Monitor:
Other Commands
switch_reg
The switch_reg command reads or writes to the Ethernet core switch or fat pipe Ethernet
switch registers. The values changed via this command are not persistent and clear after a
hard or soft reset. Option values are as follows: switch (core or fp), port (0 - 25), block (1-7),
and sub-block (0-15). “R” reads the register contents at the address specified. “W” writes
the address value to the register address specified.
Definition:
switch_reg [switch] [port op | block sub-block op [R|W]] (address) (value)
Example: The following is an example of a read of register address 0x1a.
switch_reg core 0 r 0x1a
The following is an example of a write to register address 0x1a where 0 is the data to write.
switch_reg core 0 w 0x1a 0
version
The version command displays the monitor’s current version number.
Definition:
version
vlan
The vlan command creates one or more new VLANs using vid as the VLAN identification
(VID) value and deletes one or more existing VLANs whose VLAN ID matches the VLAN ID
value vid. These variables are set using a comma-separated list of port names. This command sets an untagged port-based VLAN and the VLAN table entry with the port’s default
VID. In this configuration, each port is assigned to one VLAN.
Definition:
vlan add [core|fp] <vid1>=portlist1> <vid2>=<portlist2>…
vlan delete [core|fp] <vid1> <vid2>…
vlan show [core|fp]
Example: To create VLAN 1 on the core switch:
vlan add core 1=14,15
To create VLANs 2-3 on the fat pipe switch:
vlan add fp 2=18,17,0,3,19,22,6 3=21,17,1,4,20,23,10
To delete VLAN 1 on the core switch:
vlan delete core 1
To delete VLANs 2-3 on the fat pipe switch:
vlan delete fp 2 3
To delete all VLANs on the fat pipe switch:
vlan delete fp all
10007175-02
KAT4000 User’s Manual
14-27
Monitor:
Environment Variables
To show VLANs in use on the fat pipe switch:
vlan show fp
ENVIRONMENT VARIABLES
Press the ‘s’ key on the keyboard during reset to force the default monitor environment variables to be loaded during hardware initialization but before diagnostic testing.
Table 14-6 lists the monitor’s standard environment variables.
Table 14-6: Standard Environment Variables
14-28
KAT4000 User’s Manual
Variable:
Default
Value:
baudrate
9600
Console baud rate.
Valid rates: 9600, 14400, 19200, 38400, 57600, 115200
bmc_wd_timeout
-1
This sets the time-out in seconds for the BMC watchdog
before booting the OS. If set to -1, then the BMC watchdog
is disabled before booting the OS.
Valid options: -1, 1-65535
bootcmd
""
Command to execute when auto-booting or executing the
‘bootd’ command.
bootdelay
1
Choose the number of seconds the Monitor counts down
before booting user application code.
Valid options: time in seconds, -1 to disable autoboot
bootfile
""
Path to boot file on server (used with TFTP)—set this to
“path/file.bin” to specify filename and location of the file to
load.
bootretry
-1
Set the number of seconds the Monitor counts down before
booting user application code (used only with autoboot). If
the boot commands fails, it will try again after bootretry
seconds.
Valid options: time in seconds, -1 to disable bootretry
bootstopkey
h
Press during power-up/reset initialization to terminate the
monitor autoboot sequence and go to the monitor prompt.
cachemode
write
Sets the L1 cache mode to write-through or copy-back.
Valid options: write, copy
clearmem
on
Select whether to clear unused SDRAM (memory used by
monitor is excluded) on power-up and reset.
Valid options: on, off
dcache
on
Enables the processor L1 data cache.
Valid options: on, off
ecc
on
Enable ECC initialization—all of memory is cleared during
ECC initialization. Valid options: on, off
Description:
10007175-02
Monitor:
Environment Variables
Variable:
Default
Value:
ecc_1bit_report
off
Select the reporting of single bit, correctable ECC errors to
the console (errors of 2 or more bits are always reported).
Valid options: on, off
enumerate
on
PCI bus enumeration. Valid options: on, off
ethaddr
00:80:F9:
92:00:0000:80:F9:
92:FF:FF
KAT4000 board Ethernet address for TSEC_1 port. The last
digits are the board serial number in hex.
eth1addr
00:80:F9:
93:00:0000:80:F9:
93:FF:FF
KAT4000 board Ethernet address for TSEC_2 port. The last
digits are the board serial number in hex.
eth2addr
00:80:F9:
94:00:0000:80:F9:
94:FF:FF
KAT4000 board Ethernet address for TSEC_3 port. The last
digits are the board serial number in hex.
eth3addr
00:80:F9:
95:00:0000:80:F9:
95:FF:FF
KAT4000 board Ethernet address for TSEC_4 port. The last
digits are the board serial number in hex.
ethport
all
Select which Ethernet port will be used for TFTP and ping.
Valid options: all, eTSEC1, eTSEC2, eTSEC3, eTSEC4
The ports are assigned as follows: eTSEC1—Ethernet debug
port, eTSEC2—Ethernet core switch, eTSEC3—Ethernet core
switch, and eTSEC4—fat pipe switch module.
fru_id
undefined
Corresponds to KAT4000 processing resources.
Valid options: Not defined in default configuration—
reported at bootup from the IPMC
gatewayip
0.0.0.0
Select the network gateway machine IP address.
hostname
EMERSON
_KAT4000
Target hostname
icache
on
Enables the processor L1 instruction cache.
Valid options: on, off
Description: (continued)
ipaddr
0.0.0.0
Board IP address
l2cache
on
Enables the L2 cache.
Valid options: on, off
loadaddr
0x100000
Define the address to download user application code to
(used with TFTP).
logical_slot
undefined
ATCA chassis logical slot number of KAT4000 location. Valid
options: Not defined in default configuration—reported at
bootup from the IPMC
model
KAT4000
Board model number
netmask
0.0.0.0
Board sub-network mask
10007175-02
KAT4000 User’s Manual
14-29
Monitor:
Environment Variables
Variable:
Default
Value:
pcie_wait
0
Specifies time to wait until PCIe enumeration occurs. When
hit ‘q’ during pcie_wait, no PCIe enumeration will occur and
a POST fail flag will be set. Valid options: <??> time in
seconds
physical_slot
undefined
ATCA chassis physical slot number of KAT4000 location.
Valid options: Not defined in default configuration—
reported at bootup from the IPMC
powerondiags
on
Turns POST diagnostics on or off after power-on/reset. Valid
options: on, off
preboot
undefined
Command to execute immediately before auto-booting or
coming to the prompt.
rootpath
eng/
artesyn/
Pathname of the NFS’ server root file system.
serial#
xxxxx
Board serial number
serverip
0.0.0.0
Boot server IP address
shelf_addr
undefined
ATCA chassis shelf address provided by shelf-manager.
Valid options: Not defined in default configuration—
reported at bootup from the IPMC
stderr
serial
Sets the standard destination for console error reporting.
Valid options: serial, nc (Net Console)
stdin
serial
Sets the standard source for console input.
Valid options: serial, nc (Net Console)
stdout
serial
Sets the standard destination for console output.
Valid options: serial, nc (Net Console)
switch_srom_init
off
Switch initialization: EEPROM or over PCI (default).
Valid options: on, off
tftp_port
TSEC_1
Selects which Ethernet port will be used for tftp. Valid
options: all, TSEC_1, TSEC_2, TSEC_3, TSEC_4
write_enable_socket
off
Enable writing to the flash socket.
Valid options: on, off
Description: (continued)
The monitor supports optional environment variables that enable additional functionality.
The moninit command (see “moninit” on page 14-24) clears all environment variables and
sets the standard environment variables to the default values. All optional environment
variables are removed after moninit. However, it can clear all optional variables. Table 14-7
lists the monitor’s optional environment variables.
Table 14-7: Optional Environment Variables
14-30
KAT4000 User’s Manual
Variable6:
Description:
app_lock_base
Assigns where to start block lock protection at the base of NOR (soldered) flash.
If assigned region does not fall within the NOR flash area, no user/application
locking will occur, except for the monitor block-locking protection.
10007175-02
Monitor:
Troubleshooting
Variable6:
Description: (continued)
app_lock_size
Size of user NOR (soldered) flash protection area.
bootverifycmd
Sets the U-Boot boot command that is used to execute the primary and
secondary application images when using the bootv command. If not defined,
bootv uses the U-Boot go command as the default.
dhcp-client-id
Populates the Client Identifier (Option 61) in the DHCP request Packet. See
“dhcp” on page -10.
dhcp-user-class
Populates the User Class Information (Option 77) in the DHCP request Packet.
See “dhcp” on page -10.
e_keying
Enables the Update Channels and payload ports that go off the KAT4000: fat
pipe switch module to high-speed fabric, fat pipe switch module to AMCs, and
GbE from fat pipe switch module to Ethernet core switch. For debug use only. If
e-keying is set to ”on” or if the variable is not present, the ports are disabled. The
e-keying variable is only used on power-up.
pri_bootargs
Sets the boot arguments that are passed into the primary application images
when using the bootv command. If not defined, bootv will pass the bootargs
configuration parameters into the primary application image.
pci_memsize
Sets the amount of SDRAM memory made available on the PCI bus. The
minimum setting is 16 megabytes. If not set, 128 MB of SDRAM are available
over PCI. This parameter takes a hex value.
Valid options: all, size in hex (0x8000000=128 MB)
pram
This memory region is at the very top of memory and can be reserved—not to be
cleared on start-up or reset. Default size of the protected memory region is 0.
pram is defined in kilobytes and is a base 10 number. The smallest allowable size
is 4 (4 kB) and the largest recommended size is 32768 (32 MB). pram should be 4
kB aligned, otherwise U-Boot will round pram to the next 4 kB size.
sec_bootargs
Sets the boot arguments that are passed into the secondary application images
when using the bootv command. If not defined, bootv will pass the bootargs
configuration parameters into both the primary and secondary application
images.
6. The moninit command does not initialize these variables. Each parameter is only defined if a change from
the default setting is desired and is not defined after initialization of the environment variables.
TROUBLESHOOTING
To bypass the full board initialization sequence, attach a terminal to the console located on
the front of the KAT4000. Configure the terminal parameters to be:
9600 bps, no parity, 8 data bits, 1 stop bit
Reset the KAT4000 while holding down the ‘s’ key. Pressing the ‘s’ key forces a configuration based on default environment variables.
10007175-02
KAT4000 User’s Manual
14-31
Monitor:
Download Formats
DOWNLOAD FORMATS
The KAT4000 monitor supports binary and Motorola S-Record download formats, as
described in the following sections.
Binary
The binary formats (and associated commands) include:
• Executable binary files (go)
• VxWorks and QNX® ELF (bootm, bootvx, or bootelf)
• Compressed (gzipped) VxWorks and QNX ELF (bootm)
• Linux kernel images (bootm)
• Compressed (gzipped) Linux kernel images (bootm)
Motorola S-Record
S-Record download uses the standard Motorola S-Record format. This includes load
address, section size, and checksum all embedded in an ASCII file.
14-32
KAT4000 User’s Manual
10007175-02
Section 15
Acronym List
AMC
ASCII
ATA
ATCA
BIOS
BDRR
BMC
Cmd
CPU
CRT
CSA
CT
DDR2
EC
ECC
EIA
EMC
ESD
ETSI
FCC
FRU
GbE
GMII
GNU
GPIO
GPL
I2C
IANA
IEC
IO
IPMB
IPMC
IPMI
ISP
IVOR
JTAG
LED
Advanced Mezzanine Card
American Standard Code for Information Interchange
Advanced Technology Attachment
Advanced Telecom Computing Architecture or AdvancedTCA
Basic Input/output System
Boot Device Redirection Register
Baseboard Management Controller
Command code
Central Processing Unit
Cathode Ray Tube
Canadian Standards Association
Computer Telephony
Double Data Rate Two
European Community
Error-correcting Code
Electronic Industries Alliance
Electromagnetic Compatibility
Electrostatic Discharge
European Telecommunications Standards Institute
Federal Communications Commission
Field Replaceable Unit
Gigabit Ethernet
Gigabit Media Independent Interface
GNU’s Not Unix
General Purpose Input Output
General Public License
Inter-integrated Circuit
Internet Assigned Numbers Authority
International Electrotechnical Commission
Input/Output
Intelligent Platform Management Bus
Intelligent Platform Management Controller
Intelligent Platform Management Interface
In-system Programmable
Interrupt Vector Offset Register
Joint Test Action Group
Light-emitting Diode
10007175-02
KAT4000 User’s Manual
15-1
Acronym List:
(continued)
LPC
LUN
MAC
MMC
NEBS
netFn
OEM
OS
PCI
PCIe
PHY
PLD
POST
RMA
RMII
RTC
RTM
SATA
SDR
SDRAM
SEL
SERDES
SGMII
SMC
SO-DIMM
SPI
sRIO
SROM
TBD
TDM
UART
UL
USB
XAUI
15-2
KAT4000 User’s Manual
Low Pin Count
Logical Unit Number
Medium/media Access Control/controller
Module Management Controller
Network Equipment-Building System
Network Function Code
Original Equipment Manufacturer
Operating System
Peripheral Component Interconnect
PCI Express
Physical Interface
Programmable Logic Device (also known as FPGA, CPLD, EPLD)
Power-on Self Test
Return Merchandise Authorization
Reduced Media Independent Interface
Real-Time Clock
Rear Transition Module
Serial ATA
Sensor Data Record
Synchronous Dynamic Random Access Memory
System Event Log
Serializer/Deserializer
Serial Gigabit Media Independent Interface
Serial Management Channel
Small-Outline Dual In-line Memory Module
Serial Peripheral Interface
Serial Rapid IO
Serial Read Only Memory
To Be Determined
Time Division Multiplexed
Universal Asynchronous Receiver/Transmitter
Underwriters Laboratories
Universal Serial Bus
X (10) Gigabit Attachment Unit Interface
10007175-02
Section A
Appendix A
NO-CPU KAT4000
The following block diagram provides a functional overview for the no-CPU KAT4000 board
configuration. This configuration includes 256 Kb of SRAM memory used by the internal
8051 microcontroller on the VSC7376 Ethernet core switch for run time code storage. This
configuration omits SDRAM and NOR and NAND flash. Also, this configuration may not support some IPMC payload features.
Figure A-1: No-CPU KAT4000 System Block Diagram
AMC (x4) Single-Width,
Half-/Full-/Extended-Height
GbE
PHYs (2)
Clock
To Zone 3
Socketed
Flash
Private I2C
AMC
A-to-D
-48V
Cnvrtr
Sensors
Serial 2
Switch
SRAM
4 SERDES
IPMC
EIA-232
Xcvr
Serial
Header
PCIe
(x1 or x4)
2
IPMB
Base
High Speed
Fabric A
J23
P10
10007175-02
To
Core
Eth
Switch
(Opt.)
4 SERDES
Xfmr
Xfmr
(2)
Fat Pipe Switch Module
To
local
bus
GbE
sRIO
(x4)
4 SERDES
Local bus
2 SERDES
To Zone 3
4 SERDES
SERDES
SERDES
SERDES
2 SGMII
IPMB-L I2C
PCIe or GbE
on port 1
VSC7376
Ethernet Core Switch
Layer 2 (Optional)
To Update Channel
on J20 (Optional)
PEX8524
PCI Express Switch
(Optional)
2
High Speed
Fabric B
4
Clock
J20
To
Core
Eth
Switch
9 2
RTM I/O
(Optional)
Zone 3
KAT4000 User’s Manual
A-1
Appendix A:
Ethernet Switch Configuration
ETHERNET SWITCH CONFIGURATION
If a processor is not used on the KAT4000, the Ethernet core switch and GbE fat pipe switch
module (optional) are managed by an 8051 microcontroller internal to each switch. Custom configuration of the switch is possible through one of two user interfaces on each
switch:
1 Serial command line interface (CLI)
2 Web interface
Both interfaces use the VSC7376 switch’s internal 8051 microprocessor to accept commands and configure the switch. Configuration changes are stored in a serial EEPROM and
will remain through system reset.
Note: The web interface offers only a subset of the CLI configuration options. Therefore, an Ethernet switch configured via the CLI may not reflect properly on the web interface.
Note: Switching between interfaces while configuring a switch is not recommended.
To configure the switches and VLANs, or set up the COM port via the serial Command Line
Interface (CLI) or web interface, see the KAT4000 Quick Start Guide for the No-CPU Carrier
Board, #10008506-xx.
Default Switch Configuration
The default switch configuration is a VLAN unaware L2 switch with automatic learning/aging enabled on all ports:
• System: The system name string is p711_core or p711_fatpipe.
• Console: The password string is empty and inactivity timeout is disabled. The prompt is
“>”.
• Port: All used ports are enabled and flow control is disabled. Max frame size is 1518.
• MAC table: The table is empty, auto learning and aging is enabled. The aging timer is
300 seconds.
• VLANs: The KAT4000 Quick Start Guide for the No-CPU Carrier Board, #10008506-xx,
defines the default port-based VLANs for the no-CPU KAT4000’s Ethernet core switch
and GbE fat pipe switch module. See page 14-27 for the monitor vlan command.
• Aggregation: No ports are aggregated, but aggregation mode is set to XOR.
• User Groups: User group 1 exists and includes all ports.
• QoS: Port mode is enabled. The four highest VLAN tag priorities are given high priority.
Default priority is high. All shaper and policers are disabled.
A-2
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
• Mirror: Mirroring is disabled.
• IP: IP mode is disabled and no IP address/mask/gateway is configured. To enable the
web interface, an IP address must be configured.
SERIAL COMMAND LINE INTERFACE (CLI)
Through the serial-based switch configuration, you have all the configuration options
found in the web application and more. The command line offers the option of configuring
the devices directly, without having to create a separate VLAN just for the web configuration. The direct serial method allows for the board to be fully configured without using a
dedicated Ethernet port for configuration. General CLI usage instructions and command
details are described below.
Log In/Log Out Procedures
1 To get access to the CLI, log in when prompted. No password is required.
2 Logout at any time and at any context level using the exit command.
Help Utility
Access help by pressing the ? key or entering help. The help info depends on the context:
• At top level, a list of command groups is displayed.
• At group level, a list of the command syntaxes for the current group is displayed.
• If the help command is issued for a specific command, the command syntax and a
description of the command are shown.
The command hierarchy and the help utility are demonstrated in the following example:
> ? <enter>
Commands at top level:
System – System commands
Console – Console commands
Port – Port commands
MAC - MAC table commands
VLAN – VLAN commands
Aggregation – Aggregation/Trunking commands
User Group – User Group commands
QoS – QoS commands
Mirror – Mirror commands
IP – IP commands
Debug - Debug commands
> console <enter>
Console> ? <enter>
Commands at Console level:
Console Configuration
Console Password [<password>]
Console Timeout [<timeout>]
10007175-02
KAT4000 User’s Manual
A-3
Appendix A:
Serial Command Line Interface (CLI)
Console Prompt [<prompt string>]
-----Up
Console> password ?
Syntax:
Console Password [<password>]
Description:
Set or display console password. The empty string (“”) disables the password check.
[<password>]: Password string of up to 16 characters.
Console>
Command Hierarchy
The CLI is hierarchical with two levels, top level and group level. The group level consists of
the following groups:
• System
• Console
• Port
• MAC
• VLAN
• Aggregation
• User Group
• QoS
• Mirror
• IP
• Debug
• Test
Note: The “Test” group is for Emerson internal use only.
At top level, enter a command by giving the full command string, including group, or
change context into a group by entering the name of the group.
At group level, enter commands for the particular group chosen without specifying the
group name or return to the top level by entering the up command.
The current level and group is indicated by the prompt. At top level, the prompt will be:
>
At group level, the prompt will display the actual group, for example:
System>
A-4
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
Also, at group level use the slash (/) key to refer to a context relative to the top level (e.g.,
from the system group, enter a /console/configuration command or change context into
the console group by entering /console).
Command Usage Instructions
• Commands are not case-sensitive.
• Use the horizontal arrow-keys . and . to move the cursor within the command you are
entering.
• Use the backspace key (provided you are using a terminal that sends the BS (8) character
when the backspace key is pressed) to delete chars from the command you are
entering.
• Use the vertical arrow-keys . and . to scroll through a command history buffer of the
latest 20 commands issued.
• If using a terminal that supports <home> and <end> keys (e.g., HyperTerminal), use
these keys to move the cursor to respectively the start of the command line and the end
of the command line.
Commands
Table A-1 shows general parameter types used in command syntaxes and descriptions.
Note: The following command types use port IDs versus the port number (i.e., the physical number of the port).
Port numbers (“port #”=”port ID”-1) are used when discussing Ethernet switch ports. For example, VLAN port
ID 1 is the same as Ethernet switch port 0.
Table A-1: General Command Types
Command
Type:
Description:
<port>
Port identifier: Any number in the range 1-26.
<portlist>
Comma and/or dash separated port list. This type can be used for specifying
individual ports or a range of ports. The keyword ‘none’ can be used to specify
an empty port list. The keyword ‘all’ can be used to specify all ports.
Example: 1,3,8-12
<macaddress>
MAC Address; format: “hh-hh-hh-hh-hh-hh”, “hh:hh:hh:hh:hh:hh” or
“hhhhhhhhhhhh”. The hh is a hexadecimal number in the range 0x00 to 0xFF.
Example: 00-00-24-F1-02-03
<vid>
VLAN ID: Decimal number in the range 1-4095. The keyword ‘all’ can be used to
specify all VLAN IDs. See note.
10007175-02
KAT4000 User’s Manual
A-5
Appendix A:
Serial Command Line Interface (CLI)
Command
Type:
<vidlist>
Description: (continued)
Comma and/or dash separated VLAN ID list. This type can be used for specifying
individual VLAN IDs or a range of VLAN IDs. The keyword ‘none’ can be used to
specify an empty VLAN ID list.
Example: 1,2,4-6
<class>
Internal class of service, 1-8 (highest=1).
<grouplist>
Comma and/or dash separated user group list. This type can be used for
specifying individual user groups or a range of user groups. The range is 1-26.
The <portlist> type is very useful when setting up multiple ports in the same mode. For
example, the following commands will divide the ports into two untagged VLANs and
enable VLAN awareness:
Example:
vlan
vlan
vlan
vlan
vlan
add 1 1-8
add 2 9-16
pvid 1-8 1
pvid 9-16 2
aware all enable
Command Overview
?
Help
Up
Exit
System Configuration [all]
System Restore Default [keepIP]
System Name [<name>]
System Initialize [<serialnum>]
System Reboot
Console Configuration
Console Password [<password>]
Console Timeout [<timeout>]
Console Prompt [<prompt_string>]
Port Configuration [<portlist>]
Port Mode [<portlist>] [<mode>]
Port Flow Control [<portlist>] [enable|disable]
Port State [<portlist>] [enable|disable]
Port MaxFrame [<portlist>] [<framesize>|reset]
Port Statistics [<portlist>] [clear]
Port Excessive Collisions Drop [enable|disable]
MAC Configuration
MAC Add <macaddress> <portlist>|none [<vid>]
MAC Delete <macaddress> [<vid>]
MAC Lookup <macaddress> [<vid>]
MAC Table <vidlist>
MAC Flush
MAC Agetime [<agetime>]
MAC Learning [<enable|disable>]
VLAN Configuration [<portlist>]
VLAN Add <vidlist> [<portlist>]
VLAN Delete <vidlist>
VLAN Lookup <vidlist>
A-6
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
VLAN Aware [<portlist>] [enable|disable]
VLAN PVID [<portlist>] [<vid>|none]
VLAN Frame Type [<portlist>] [all|tagged]
Aggr Configuration
Aggr Add <portlist>
Aggr Delete <portlist>
Aggr Lookup <portlist>
Aggr Mode [smac|dmac|xor]
User Group Configuration
User Group Add <grouplist> [<portlist>]
User Group Delete <grouplist>
User Group Lookup <grouplist>
QoS Configuration [<portlist>]
QoS Mode [<portlist>] [tag|port|diffserv]
QoS Default [<portlist>] [<class>]
QoS Tagprio [<portlist>] [<tagpriolist>] [<class>]
QoS DiffServ [<dscpno>] [<class>]
QoS Userprio [<portlist>] [<tagprio>]
QoS Shaper [<portlist>] [disable|<rate>]
QoS Policer [<portlist>] [disable|<rate>]
Mirror Configuration
Mirror Port [<port>]
Mirror Source [<portlist>] [enable|disable]
IP Configuration
IP Setup [<ipaddress> [<ipmask> [<ipgateway>]]] [<vid>]
IP Mode [enable|disable]
IP ARP
IP Ping <ip_addr> <number_of_passes>
Debug Read Register <block> [<subblock>] <address>
Debug Write Register <block> <subblock> <address> <value>
Debug PHY Read <portlist> [<address>]
Debug PHY Write <portlist> <address> <value>
Debug SetRegs [clear | <address>] [<port_no>] [<value>]
Detailed Command Descriptions:
Some of the commands have optional parameters. If the optional parameter is omitted, a
default value may be used or the command may display the current setting (i.e., function as
a get command).
In Example 1, the omitted parameter is interpreted as the display command:
Example 1: Syntax:
System Name [<name>]
>system name <enter>
System Name: SuperSwitch-01
In Example 2, the omitted parameter is interpreted as the default value (VLAN ID 1):
Example 2: Syntax:
MAC Add <macaddress> <portlist> [<vid>]
>mac add 010203ABCDEF 16 <enter>
The following sections list the individual commands by showing the syntax and a description of each command.
10007175-02
KAT4000 User’s Manual
A-7
Appendix A:
Serial Command Line Interface (CLI)
System Commands
System Configuration: Syntax:
System Configuration [all]
Description: Show system name, software version, hardware version and management
MAC address. Optionally show the full configuration.
[all]: Show the total switch configuration (Default: System configuration only).
System Restore Default:Syntax:
System Restore Default [keepIP]
Description: Restore factory default configuration.
[keepIP]: Preserve IP configuration (Default: Not preserved).
System Name: Syntax:
System Name [<name>]
Description: Set or show the system name. The empty string (“”) clears the system name.
[<name>]: String of up to 16 characters (Default: Show system name).
System Initialize: Syntax:
System Initialize [<serialnum>]
Description: Set Ethernet address and initialize NVRAM to default configuration.
[<serialnum>]: Second half of the carrier board’s serial number, for example, 1001, if the
serial number is 711A-1001 (Default: Show serial number).
System Reboot: Syntax:
System Reboot
Description: Reboot the switch.
Console Commands
Console Configuration: Syntax:
Console Configuration
Description: Show configured console password and timeout.
Console Password: Syntax:
Console Password [<password>]
Description: Set or show the console password. The empty string (“”) disables the password
check.
A-8
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
[<password>]: Password string of up to 16 characters.
Console Timeout: Syntax:
Console Timeout [<timeout>]
Description: Set or show the console inactivity timeout in seconds. The value zero disables
timeout.
[<timeout>]: Timeout value in seconds, 0, 60-10000.
Console Prompt: Syntax:
Console Prompt [<prompt_string>]
Description: Set or show the console prompt string. The empty string (“”) clears the
prompt string.
[<prompt_string>]: Command prompt string of up to 10 characters.
Port Commands
Port Configuration: Syntax:
Port Configuration [<portlist>]
Description: Show the configured and current speed, duplex mode, flow control mode and
state for the port.
<portlist>: Port list (Default: All ports).
Port Mode: Syntax:
Port Mode [<portlist>] [<mode>]
Description: Set or show the speed and duplex mode for the port.
<portlist>: Port list (Default: All ports).
<mode>: Port speed and duplex mode (Default: Show configured and current mode).
10hdx: 10 Mbit/s, half duplex.
10fdx: 10 Mbit/s, full duplex.
100hdx: 100 Mbit/s, half duplex.
100fdx: 100 Mbit/s, full duplex.
1000fdx: 1 Gbit/s, full duplex.
auto: Auto negotiation of speed and duplex.
Port Flow Control: Syntax:
Port Flow Control [<portlist>] [enable|disable]
Description: Set or show flow control mode for the port.
<portlist>: Port list (Default: All ports).
10007175-02
KAT4000 User’s Manual
A-9
Appendix A:
Serial Command Line Interface (CLI)
[enable|disable]: Enable/disable flow control (Default: Show flow control mode).
Port State: Syntax:
Port State [<portlist>] [enable|disable]
Description: Set or show the state for the port.
<portlist>: Port list (Default: All ports).
[enable|disable]: Enable/disable port state (Default: Show state).
Port MaxFrame: Syntax:
Port MaxFrame [<portlist>] [<framesize>|reset]
Description: Set or show the maximum frame size in bytes (including FCS) for frames
received on the port. Tagged frames are allowed to be 4 bytes longer than the maximum
frame size. Use the reset option to return to the default setting.
[<portlist>]: Port list (Default: All ports).
[<framesize>|reset]: Maximum frame size or reset to 1518 bytes (Default: Show maximum
frame size).
Port Statistics: Syntax:
Port Statistics [<portlist>] [clear]
Description: Show or clear statistics for the port.
<portlist>: Port list (Default: All ports).
[clear]: Clear port statistics (Default: Show statistics).
Port Excessive Collisions Drop:
Syntax:
Port Excessive Collisions Drop [enable|disable]
Description: Enable or disable drop of frames when excessive collisions occur in half duplex
mode.
[enable|disable]: Enable/disable frame drop (Default: Show excessive collisions drop
mode).
MAC Commands
MAC Configuration: Syntax:
MAC Configuration
Description: Show the permanently stored MAC table and the MAC aging timer.
MAC Add: Syntax:
A-10
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
MAC Add <macaddress> <portlist>|none [<vid>]
Description: Add a static MAC address table entry and VLAN ID on ports.
<macaddress>: MAC address, 12-digit hex string, optionally separated with dashes or colons
(e.g., 010203ABCDEF, 01-02-03-AB-CD-EF or 01:02:03:AB:CD:EF).
<portlist>: Port list. Use ”none” to specify no ports.
[<vid>]: VLAN ID, 1-4095 (Default: 1).
MAC Delete: Syntax:
MAC Delete <macaddress> [<vid>]
Description: Delete MAC address and VLAN ID.
<macaddress>: MAC address, 12-digit hex string, optionally separated with dashes or colons
(e.g., 010203ABCDEF, 01-02-03-AB-CD-EF or 01:02:03:AB:CD:EF).
[<vid>]: VLAN ID (Default: 1).
MAC Lookup: Syntax:
MAC Lookup <macaddress> [<vid>]
Description: Lookup MAC address and VLAN ID.
<macaddress>: MAC address, 12-digit hex string, optionally separated with dashes or colons
(e.g., 010203ABCDEF, 01-02-03-AB-CD-EF or 01:02:03:AB:CD:EF).
[<vid>]: VLAN ID, 1-4095 (Default: 1).
MAC Table: Syntax:
MAC Table <vidlist>
Description: Show MAC table for the VLAN IDs specified. Since the list can be very long, only
the first 20 entries are shown.
<vidlist>: VLAN ID list.
MAC Flush: Syntax:
MAC Flush
Description: Removes non-static MAC address table entries.
MAC Age Time: Syntax:
MAC Agetime [<agetime>]
Description: Set or show the MAC age timer in seconds. The value zero disables aging.
[<agetime>]: Age timer in seconds, 0 or 10-65535 (Default: Show timer).
MAC Learning: Syntax:
10007175-02
KAT4000 User’s Manual
A-11
Appendix A:
Serial Command Line Interface (CLI)
MAC Learning [<enable|disable>]
Description: Enable/disable MAC table auto-learning.
[enable|disable]: Enable or disable MAC table learning (default: disable).
VLAN Commands
VLANs use port IDs versus the port number (i.e., the physical number of the port). Port
numbers (“port #”=”port ID”-1) are used when discussing Ethernet switch ports. For example, VLAN port ID 1 is the same as Ethernet switch port 0.
VLAN Configuration: Syntax:
VLAN Configuration [<portlist>]
Description: Show the VLAN aware mode, port VLAN ID and accepted frame type for the
port and the permanently stored VLAN table.
[<portlist>]: Port list (Default: All ports).
VLAN Add: Syntax:
VLAN Add <vidlist> [<portlist>]
Description: Add VLAN entry and include ports in member set.
<vidlist>: VLAN ID list.
[<portlist>]: Port list (Default: All ports).
VLAN Delete: Syntax:
VLAN Delete <vidlist>
Description: Delete VLAN entry (all ports excluded from member set).
<vidlist>: VLAN ID list.
VLAN Lookup: Syntax:
VLAN Lookup <vidlist>
Description: Lookup VLAN entry and show port list.
<vidlist>: VLAN ID list.
VLAN Aware: Syntax:
VLAN Aware [<portlist>] [enable|disable]
Description: Set or show the VLAN awareness mode for the port. VLAN aware ports will strip
the VLAN tag from received frames and insert the tag in transmitted frames (except PVID).
VLAN unaware ports will not strip the tag from received frames or insert the tag in transmitted frames.
A-12
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
[<portlist>]: Port list (Default: All ports).
[enable|disable]: Enable/disable VLAN awareness (Default: Show awareness).
VLAN PVID: Syntax:
VLAN PVID [<portlist>] [<vid>|none]
Description: Set or show the port VLAN ID. Untagged frames received on the port will be
classified to this VLAN ID. Frames classified to this VLAN ID will be sent untagged on the
port.
[<portlist>]: Port list (Default: All ports).
[<vid>|none]: Port VLAN ID, 1-4095 (Default: Show PVID).
The ’none’ option can be used for trunk links.
VLAN Frame Type: Syntax:
VLAN Frame Type [<portlist>] [all|tagged]
Description: Set or show the accepted frame type for the port.
[<portlist>]: Port list (Default: All ports).
[all|tagged]: Accept all or only tagged (Default: Show frame type).
Aggregation/Trunking Commands
Aggregation Configuration:
Syntax:
Aggr Configuration
Description: Shows the aggregation groups and the aggregation mode.
Aggregation Add: Syntax:
Aggr Add <portlist>
Description: Add link aggregation group including ports.
<portlist>: Aggregation port list.
Aggregation Delete: Syntax:
Aggr Delete <portlist>
Description: Delete link aggregation group.
<portlist>: Port list. Aggregations including any of the ports will be deleted.
Aggregation Lookup: Syntax:
Aggr Lookup <portlist>
10007175-02
KAT4000 User’s Manual
A-13
Appendix A:
Serial Command Line Interface (CLI)
Description: Lookup and display link aggregation group.
<portlist>: Port list. Aggregations including any of the ports will be shown.
Aggregation Mode: Syntax:
Aggr Mode [smac|dmac|xor]
Description: Set or show link aggregation traffic distribution mode.
[smac|dmac|xor]: Aggregation mode, SMAC, DMAC or XOR (Default: Show mode).
User Group Commands
User groups provide a way other than VLANs for making port groupings. With user groups it
is possible to share a port between more user groups.
User Group Configuration:
Syntax:
User Group Configuration
Description: Show the user groups.
User Group Add: Syntax:
User Group Add <grouplist> [<portlist>]
Description: Add user group entry including the ports.
<grouplist>: User group ID list.
[<portlist>]: Port list (Default: All ports).
User Group Delete: Syntax:
User Group Delete <grouplist>
Description: Delete user group entry.
<grouplist>: User group ID list.
User Group Lookup: Syntax:
User Group Lookup <grouplist>
Description: Lookup user group entry and show port members.
<grouplist>: User group ID list.
QoS Commands
QoS Configuration: Syntax:
QoS Configuration [<portlist>]
A-14
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
Description: Show the configured QoS mode, default class and DSCP mapping for the port.
[<portlist>]: Port list (Default: All ports).
QoS Mode: Syntax:
QoS Mode [<portlist>] [tag|port|diffserv]
Description: Set or show the QoS mode for the port.
[<portlist>]: Port list (Default: All ports).
[tag|port|diffserv]: Enable tag, port or IP differentiated services class of service for the
port (Default: Show mode).
QoS Default: Syntax:
QoS Default [<portlist>] [<class>]
Description: Set or show the default class. In tag mode, the default class is used for
untagged frames. In port mode, the default class is used as the port priority. In diffserv
mode, the default class is used for non-IP frames.
[<portlist>]: Port list (Default: All ports).
[<class>]: Internal class of service (Default: Show class).
QoS Tagprio: Syntax:
QoS Tagprio [<portlist>] [<tagpriolist>] [<class>]
Description: Set or show the VLAN user priority mapping.
[<portlist>]: Port list (Default: All ports).
[<tagpriolist>]: VLAN user priority list, 0-7 (Default: All user priorities).
[<class>]: Internal class of service (Default: Show class).
QoS DiffServ: Syntax:
QoS DiffServ [<dscpno>] [<class>]
Description: Set or show the IP Differentiated Services mapping.
[<dscpno>]: IP DSCP list, 0-63 (Default: All DSCP values).
[<class>]: Internal class of service (Default: Show class).
QoS Userprio: Syntax:
QoS Userprio [<portlist>] [<tagprio>]
Description: Set or show the default VLAN user priority for received untagged frames.
[<portlist>]: Port list (Default: All ports).
10007175-02
KAT4000 User’s Manual
A-15
Appendix A:
Serial Command Line Interface (CLI)
[<tagprio>]: VLAN tag user priority, 0-7 (Default: Show user priority).
QoS Shaper: Syntax:
QoS Shaper [<portlist>] [disable|<rate>]
Description: Set or show the shaper configuration.
[<portlist>]: Port list (Default: All ports).
[disable|<rate>]: Disable or set leaky bucket rate to a % of the port speed [0%-100%]
(Default: Show shaper rate).
QoS Policer: Syntax:
QoS Policer [<portlist>] [disable|<rate>]
Description: Set or show the policer configuration.
[<portlist>]: Port list (Default: All ports).
[disable|<rate>]: Disable or set leaky bucket rate to a % of the port speed [0%-100%]
(Default: Show policer rate).
Mirror Commands
Mirror Configuration: Syntax:
Mirror Configuration
Description: Show the mirror destination port and mirror mode for source ports.
Mirror Port: Syntax:
Mirror Port [<port>]
Description: Set or show the mirror destination port.
[<port>]: Mirror destination port (Default: Show mirror port).
Mirror Source: Syntax:
Mirror Source [<portlist>] [enable|disable]
Description: Set or show the source port mirror mode.
[<portlist>]: Source port list (Default: All ports).
[enable|disable]: Enable/disable mirroring of frames received on port (Default: Show mir-
ror mode).
IP Commands
IP Configuration: Syntax:
A-16
KAT4000 User’s Manual
10007175-02
Appendix A:
Serial Command Line Interface (CLI)
IP Configuration
Description: Show configured IP address, mask, gateway, VLAN ID and mode.
IP Setup: Syntax:
IP Setup [ipaddress> [<ipmask> [ipgateway>]]] [<vid>]
Description: Set or show IP configuration.
[<ipaddress>]: IP address (Default: Show IP configuration).
[<ipmask>]: IP subnet mask (Default: Subnet mask for address class).
[<ipgateway>]: Default IP gateway (Default: 0.0.0.0).
[<vid>]: VLAN ID, 1-4095 (Default: 1).
IP Mode: Syntax:
IP Mode [enable|disable]
Description: Activate or deactivate the IP configuration.
[enable|disable]: Enable/disable IP (Default: Show IP mode).
IP Arp: Syntax:
IP Arp
Description: Show the current content of the ARP table.
IP Ping: Syntax:
IP Ping <ip_addr> <number_of_passes>
Description: Send one ICMP ECHO packet to the IP address provided.
<ip_addr>: IP address to ping.
<number_of_passes>: Number of passes to ping (default: 1).
Debug Commands
Debug Read Register: Syntax:
Debug Read Register <block> [<subblock>] <address>
Description: Read register address.
<block>: Block identifier, 0-7 or 0x0-0x7.
<subblock>: Sub block identifier, 0-15 or 0x0-0xf.
<address>: Register address within block, 0-255 or 0x00-0xff.
Debug Write Register: Syntax:
10007175-02
KAT4000 User’s Manual
A-17
Appendix A:
Web Interface
Debug Write Register <block> <subblock> <address> <value>
Description: Write value to register address.
<block>: Block identifier, 0-7 or 0x0-0x7.
<subblock>: Sub block identifier, 0-15 or 0x0-0xf.
<address>: Register address within block, 0-255 or 0x00-0xff.
<value>: Register value, 0-4294967295 or 0x00000000-0xffffffff.
Debug PHY Read: Syntax:
Debug PHY Read <portlist> [<address>]
Description: Read PHY register for port.
<portlist>: Port list.
[<address>]: Register address, 0-31 or 0x00-0x1f (Default: Read all registers).
Debug PHY Write: Syntax:
Debug PHY Write <portlist> <address> <value>
Description: Write value to PHY register for port.
<portlist>: Port list.
<address>: Register address, 0-31 or 0x00-0x1f.
<value>: Register value to write, 0-65535 or 0x0000-0xffff.
Debug SetRegs: Syntax:
Debug SetRegs [clear | <address>] [<port_no>] [<value>]
Description: Saves user manual defined switch registers to EEPROM to make values persistent, or clears/resets register values.
<address>: Register address, 0x1a or 0x1b.
<port_no>: Port number, 0-25.
<value>: Register value to be stored.
WEB INTERFACE
From the web interface it is possible to:
• Set port mode
• Enable/disable flow control
• Configure simple port-based VLANs
A-18
KAT4000 User’s Manual
10007175-02
Appendix A:
Web Interface
• Configure aggregation groups
• Configure QoS
• Read and clear statistics counters
• Restore system defaults
Note: The web interface uses port IDs versus the port number (i.e., the physical number of the port). Port numbers
(“port #”=”port ID”-1) are used when discussing Ethernet switch ports. For example, VLAN port ID 1 is the
same as Ethernet switch port 0.
All operations are password protected. The password must be entered at login. The password is the same as that used in the command line interface.
IP mode is disabled in the factory default configuration. To use the web interface, first
enable and configure the IP via the command line interface. Set the IP address, mask, and
gateway according to your environment. Provided below is an example of how to enable
the web interface via the command line interface (CLI):
>IP Setup 10.10.129.189 255.255.255.0 10.10.128.14.1 1
It is recommended that the port you plan to use to access the web interface be on its own
dedicated VLAN. This is because in systems where two or more KAT4000 ports are connected to another Ethernet switch, it may not be possible to access the web interface
through that Ethernet switch (depending on the switch and how it is configured).
Note: It is possible to configure the switch so the web interface is no longer accessible. For example, if configured to
access the interface through VID 1 by default, always be sure that the port you are using to access the web
interface remains on VLAN 1. If the web interface is no longer accessible, use the CLI to recover.
10007175-02
KAT4000 User’s Manual
A-19
Appendix A:
Web Interface
Figure A-2: Web Interface for the Ethernet Core Switch
A-20
KAT4000 User’s Manual
10007175-02
Section B
Appendix B
SENSOR DATA RECORDS
This appendix details the KAT4000 IPMI Sensor Data Record (SDR) parameter values from
“Sensors and Sensor Data Records” on page 9-40. Table B-1 is a summary of all the KAT4000
SDRs with a link to the detailed sensor record. All values are hexadecimal. The no-CPU
KAT4000 configuration includes all of the SDRs listed in Table B-1 with the exception of the
following: BMC Watchdog, CPU Volt, and F/W (Firmware) Progress.
Table B-1: IPMI Sensor Data Record
Sensor Name:
Record ID
(hex):
Table Information:
KAT4000
0000
Table B-2 on page B-2
Hot Swap
0001
Table B-3 on page B-2
IPMB Physical
0002
Table B-4 on page B-4
Table B-5 on page B-5
BMC Watchdog
0003
+3.3 Volt
0004
Table B-6 on page B-7
+2.5 Volt
0005
Table B-7 on page B-9
Table B-8 on page B-11
+1.8 Volt
0006
+1.2 Volt
0007
Table B-9 on page B-13
+1.0 Volt
0008
Table B-10 on page B-15
CPU Volt
0009
Table B-11 on page B-17
Inflow Temp
000a
Table B-12 on page B-19
Outflow Temp
000b
Table B-13 on page B-21
Version Change
000c
Table B-14 on page B-24
Table B-15 on page B-25
B1 Hot Swap
000d
B2 Hot Swap
000e
Table B-16 on page B-27
B3 Hot Swap
000f
Table B-17 on page B-28
B4 Hot Swap
0010
Table B-18 on page B-30
B1 +12V Current
0011
Table B-19 on page B-31
B1 +12V Volt
0012
Table B-20 on page B-33
B2 +12V Current
0013
Table B-21 on page B-35
B2 +12V Volt
0014
Table B-22 on page B-36
B3 +12V Current
0015
Table B-23 on page B-38
B3 +12V Volt
0016
Table B-24 on page B-40
B4 +12V Current
0017
Table B-25 on page B-41
B4 +12V Volt
0018
Table B-26 on page B-43
-48V Volt
0019
Table B-27 on page B-45
-48V Current
001a
Table B-28 on page B-47
-48V Source A Volt
001b
Table B-29 on page B-48
-48V Source B Volt
001c
Table B-30 on page B-50
+3.3V Management
001d
Table B-31 on page B-52
10007175-02
KAT4000 User’s Manual
B-1
Appendix B:
Sensor Data Records
Sensor Name:
Record ID
(hex):
Table Information:
(continued)
+12V Volt
001e
Table B-32 on page B-54
+12V Current
001f
Table B-33 on page B-56
F/W (Firmware) Progress
0020
Table B-34 on page B-58
Table B-2: KAT4000 IPMC SDR Description
KAT4000:
Value:
Parameter:
Status:
Record ID
0000
—
—
SDR Version
51
—
—
Record Type
12
Controller
—
Record Length
12
—
—
Device Slave Address
00
—
—
Channel Number
00
—
—
Power State Notification /
Global Notification
cc
ACPI System Power State
notification required
ACPI Device Power State
notification required
Device Capabilities
29
Controller Status
dynamic
Controller Logs Init Agent Errors
yes
Log Init Agent Errors Accessing Controller
yes
Misc Controller Info
enable event message
generation from controller
IPMB Event Generator
—
FRU Inventory Device
—
Sensor Device
—
FRU Entity ID
a0
PICMG Front Board
—
FRU Entity Instance
60
—
—
OEM
00
—
—
Table B-3: Hot Swap SDR Description
B-2
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0001
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
33
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
a0
()
—
Entity Instance
60
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
41
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
()
—
—
Sensor Type
f0
Event/Reading Type Code
6f
Sensor Specific
Assertion Event Mask
00ff
—
—
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
00ff
—
—
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
00
Unspecified
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
10007175-02
KAT4000 User’s Manual
B-3
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
c8
—
—
Table B-4: IPMB Physical SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0002
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
38
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
a0
()
—
Entity Instance
60
—
—
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
Sensor Type
f1
()
—
Event/Reading Type Code
6f
Sensor Specific
—
Assertion Event Mask
000f
Deassertion Event Mask
0000
Discrete Reading Mask
000f
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Sensor Units 2 - Base Unit
B-4
41
Init Events
KAT4000 User’s Manual
00
Modifier Unit
none
Percentage
no
Unspecified
—
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum
Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going
Threshold Hyst Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cd
—
—
Table B-5: BMC Watchdog SDR Description
KAT4000 Records:
Value:
Parameter:
Record ID
0003
—
Status:
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
03
Processor
—
10007175-02
KAT4000 User’s Manual
B-5
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Entity Instance
60
—
—
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Init Events
—
Sensor Capabilities
41
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
Sensor Type
23
Watchdog2
—
Event/Reading Type Code
6f
Sensor Specific
—
Assertion Event Mask
010f
Timer Interrupt
—
Power Cycle
—
Power Down
—
Hard Reset
—
Timer Expired
status only
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
010f
Timer Interrupt
—
Sensor Units 1
Sensor Units 2 - Base Unit
B-6
Sensor Data Records
00
00
Power Cycle
—
Power Down
—
Hard Reset
—
Timer Expired
status only
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Unspecified
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
—
Accuracy, Accuracy Exp
00
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Normal Minimum
00
—
—
Sensor Maximum Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-6: +3.3 Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0004
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
30
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
14
Power Module / DC-to-DC Converter
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
10007175-02
KAT4000 User’s Manual
B-7
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Capabilities
69
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4801
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
Discrete Reading Mask
Sensor Units 1
B-8
Sensor Data Records
4801
3f3f
00
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Lower Non-Critical Going Low
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
a2
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
cc
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Normal Maximum
d6
—
—
Normal Minimum
c2
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f5
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
a3
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going
Threshold Hyst Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
c5
—
—
Table B-7: +2.5 Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0005
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
30
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
14
Power Module / DC-to-DC Converter
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
10007175-02
KAT4000 User’s Manual
B-9
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Capabilities
69
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
Deassertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
3f3f
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
B-10
Sensor Data Records
00
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
7b
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
cc
—
—
Normal Maximum
d6
—
—
Normal Minimum
c2
—
—
Sensor Maximum
Reading
ff
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f4
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
a3
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
c5
—
—
Table B-8: +1.8 Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0006
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
30
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
14
Power Module / DC-to-DC Converter
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
Sensor Type
69
02
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
10007175-02
KAT4000 User’s Manual
B-11
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
Deassertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
3f3f
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
B-12
Sensor Data Records
00
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
62
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
b8
—
—
Normal Maximum
cb
—
—
Normal Minimum
a6
—
—
Sensor Maximum
Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
dd
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Lower Non-Recoverable
Threshold
93
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going
Threshold Hyst Value
03
—
—
OEM
00
—
—
ID String Type / Length Code
c5
—
—
Table B-9: +1.2 Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0007
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
30
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
14
Power Module / DC-to-DC Converter
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
Deassertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
10007175-02
KAT4000 User’s Manual
B-13
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Discrete Reading Mask
3f3f
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
B-14
Sensor Data Records
00
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
62
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
7b
—
—
Normal Maximum
87
—
—
Normal Minimum
6f
—
—
Sensor Maximum
Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
93
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
62
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going Threshold Hyst
Value
03
—
—
OEM
00
—
—
ID String Type / Length Code
c5
—
—
Table B-10: +1.0 Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0008
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
30
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
14
Power Module / DC-to-DC Converter
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
Deassertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
10007175-02
KAT4000 User’s Manual
B-15
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Discrete Reading Mask
3f3f
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
B-16
Sensor Data Records
00
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
62
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
67
—
—
Normal Maximum
76
—
—
Normal Minimum
57
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
7b
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
52
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going Threshold Hyst
Value
03
—
—
OEM
00
—
—
ID String Type / Length Code
c5
—
—
Table B-11: CPU Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Record ID
0009
—
Status:
—
SDR Version
51
Sensor Model v1.5
—
Record Type
01
Full Sensor Record
—
Record Length
33
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
03
Processor
—
Entity Instance
60
—
—
Sensor Initialization
7f
Sensor Capabilities
Sensor Type
69
02
Init Scanning
—
Init Sensor Type
—
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
Deassertion Event Mask
4000
Lower Non-Recoverable Threshold
comparison returned
10007175-02
KAT4000 User’s Manual
B-17
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Discrete Reading Mask
3f3f
Upper Non-Recoverable Threshold
settable
Sensor Units 1
B-18
Sensor Data Records
00
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
04
Volts
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
Linear
—
M
62
—
—
—
M, Tolerance
00
—
B
00
—
—
B, Accuracy
00
—
—
—
Accuracy, Accuracy Exp
00
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
71
—
—
Normal Maximum
7c
—
—
Normal Minimum
66
—
—
Sensor Maximum
Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
87
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
5a
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going Threshold Hyst
Value
03
—
—
OEM
00
—
—
ID String Type / Length Code
c8
—
—
Table B-12: Inflow Temp SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
000a
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
36
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
a0
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Sensor Type
01
Temperature
—
Event/Reading Type Code
01
Threshold
—
10007175-02
KAT4000 User’s Manual
B-19
Appendix B:
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Assertion Event Mask
7a95
Lower Non-Recoverable Threshold
comparison returned
Lower Critical Threshold
comparison returned
Deassertion Event Mask
Discrete Reading Mask
Sensor Units 1
B-20
Sensor Data Records
7a95
3f3f
80
Lower Non-Critical Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Upper Critical Going High
supported
Upper Non-Critical Going High
supported
Lower Non-Recoverable Going Low
supported
Lower Critical Going Low
supported
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Lower Critical Threshold
comparison returned
Lower Non-Critical Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Upper Critical Going High
supported
Upper Non-Critical Going High
supported
Lower Non-Recoverable Going Low
supported
Lower Critical Going Low
supported
Lower Non-Critical Going Low
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
twos complement
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
01
Degrees C
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
64
—
—
M, Tolerance
00
—
—
B
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
e0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
16
—
—
Normal Maximum
37
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
7f
—
—
Sensor Minimum Reading
80
—
—
Upper Non-Recoverable
Threshold
4b
—
—
Upper Critical Threshold
41
—
—
Upper Non-Critical Threshold
37
—
—
Lower Non-Recoverable
Threshold
f1
—
—
Lower Critical Threshold
f6
—
—
Lower Non-Critical Threshold
fb
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
cb
—
—
Table B-13: Outflow Temp SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
000b
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
a0
—
—
Entity Instance
60
—
—
10007175-02
KAT4000 User’s Manual
B-21
Appendix B:
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Sensor Type
01
Temperature
—
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
7a95
Lower Non-Recoverable Threshold
comparison returned
Lower Critical Threshold
comparison returned
Deassertion Event Mask
B-22
Sensor Data Records
KAT4000 User’s Manual
7a95
Lower Non-Critical Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Upper Critical Going High
supported
Upper Non-Critical Going High
supported
Lower Non-Recoverable Going Low
supported
Lower Critical Going Low
supported
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Lower Critical Threshold
comparison returned
Lower Non-Critical Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Upper Critical Going High
supported
Upper Non-Critical Going High
supported
Lower Non-Recoverable Going Low
supported
Lower Critical Going Low
supported
Lower Non-Critical Going Low
supported
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Discrete Reading Mask
3f3f
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
80
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
twos complement
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
01
Degrees C
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
64
—
—
—
M, Tolerance
00
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
e0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
20
—
—
Normal Maximum
37
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
7f
—
—
Sensor Minimum Reading
80
—
—
Upper Non-Recoverable
Threshold
55
—
—
Upper Critical Threshold
4b
—
—
Upper Non-Critical Threshold
41
—
—
Lower Non-Recoverable
Threshold
f1
—
—
Lower Critical Threshold
f6
—
—
Lower Non-Critical Threshold
fb
—
—
10007175-02
KAT4000 User’s Manual
B-23
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-14: Version Change SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
000c
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
39
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
a0
—
—
Entity Instance
60
—
—
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
B-24
41
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
—
—
—
Sensor Type
2b
Event/Reading Type Code
6f
Sensor Specific
Assertion Event Mask
00ff
—
—
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
00ff
—
—
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
00
Unspecified
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
ce
—
—
Table B-15: B1 Hot Swap SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
000d
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
36
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
65
—
—
10007175-02
KAT4000 User’s Manual
B-25
Appendix B:
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
B-26
Sensor Data Records
41
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
—
—
—
Sensor Type
f0
Event/Reading Type Code
6f
Sensor Specific
Assertion Event Mask
00ff
—
—
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
00ff
—
—
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
00
Unspecified
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cb
—
—
Table B-16: B2 Hot Swap SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
000e
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
36
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
66
—
—
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
41
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
—
—
—
Sensor Type
f0
Event/Reading Type Code
6f
Sensor Specific
Assertion Event Mask
00ff
—
—
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
00ff
—
—
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Sensor Units 2 - Base Unit
00
Modifier Unit
none
Percentage
no
Unspecified
—
10007175-02
KAT4000 User’s Manual
B-27
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going
Threshold Hyst Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cb
—
—
Table B-17: B3 Hot Swap SDR Description
B-28
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
000f
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
36
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
67
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
41
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
—
—
—
Sensor Type
f0
Event/Reading Type Code
6f
Sensor Specific
Assertion Event Mask
00ff
—
—
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
00ff
—
—
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
00
Unspecified
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
10007175-02
KAT4000 User’s Manual
B-29
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cb
—
—
Table B-18: B4 Hot Swap SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0010
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
36
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
68
—
—
Sensor Initialization
67
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
—
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
—
—
—
Sensor Type
f0
Event/Reading Type Code
6f
Sensor Specific
Assertion Event Mask
00ff
—
—
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
00ff
—
—
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Sensor Units 2 - Base Unit
B-30
41
Init Events
Sensor Scanning
KAT4000 User’s Manual
00
Modifier Unit
none
Percentage
no
Unspecified
—
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cb
—
—
Table B-19: B1 +12V Current SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0011
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
65
—
—
10007175-02
KAT4000 User’s Manual
B-31
Appendix B:
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Current
—
Sensor Type
03
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
Sensor Units 1
B-32
Sensor Data Records
3838
00
Upper Non-Recoverable Going High
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
05
Amps
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
8a
—
—
—
M, Tolerance
40
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
66
—
—
Normal Maximum
bf
—
—
Normal Minimum
00
—
—
Sensor Maximum
Reading
ff
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
ff
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-20: B1 +12V Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0012
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
65
—
—
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
10007175-02
KAT4000 User’s Manual
B-33
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Discrete Reading Mask
3838
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
B-34
00
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
06
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
e0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
c8
—
—
Normal Maximum
d6
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
fe
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f0
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
ID String Type / Length Code
cc
—
—
Table B-21: B2 +12V Current SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0013
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
66
—
—
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Current
—
Sensor Type
03
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
Sensor Units 1
Sensor Units 2 - Base Unit
3838
00
05
Upper Non-Recoverable Going High
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Amps
—
10007175-02
KAT4000 User’s Manual
B-35
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
8a
—
—
M, Tolerance
40
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
66
—
—
Normal Maximum
bf
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
ff
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-22: B2 +12V Volt SDR Description
B-36
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0014
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
66
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
Sensor Units 1
3838
00
Upper Non-Recoverable Going High
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
06
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
e0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
c8
—
—
Normal Maximum
d6
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
fe
—
—
10007175-02
KAT4000 User’s Manual
B-37
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f0
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-23: B3 +12V Current SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0015
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
67
—
—
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
B-38
69
Init Hysteresis
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Current
—
Sensor Type
03
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Discrete Reading Mask
3838
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
00
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
05
Amps
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
8a
—
—
—
M, Tolerance
40
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
66
—
—
Normal Maximum
bf
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
ff
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going
Threshold Hyst Value
00
—
—
OEM
00
—
—
10007175-02
KAT4000 User’s Manual
B-39
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
ID String Type / Length Code
cc
—
—
Table B-24: B3 +12V Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0016
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
67
—
—
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
Sensor Units 1
Sensor Units 2 - Base Unit
B-40
69
Init Hysteresis
KAT4000 User’s Manual
3838
00
04
Upper Non-Recoverable Going High
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Volts
—
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
06
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
e0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
c8
—
—
Normal Maximum
d6
—
—
Normal Minimum
00
—
—
Sensor Maximum
Reading
fe
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f0
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going
Threshold Hyst Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-25: B4 +12V Current SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0017
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
10007175-02
KAT4000 User’s Manual
B-41
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Entity Instance
68
—
—
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Current
—
Sensor Type
03
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
Sensor Units 1
B-42
Sensor Data Records
3838
00
Upper Non-Recoverable Going High
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
05
Amps
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
8a
—
—
—
M, Tolerance
40
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
66
—
—
Normal Maximum
bf
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
ff
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
ff
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-26: B4 +12V Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0018
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
c1
AMC Module
—
Entity Instance
68
—
—
Sensor Initialization
5d
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
10007175-02
KAT4000 User’s Manual
B-43
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Discrete Reading Mask
3838
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Sensor Units 1
B-44
00
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
06
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
e0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
c8
—
—
Normal Maximum
d6
—
—
Normal Minimum
00
—
—
Sensor Maximum
Reading
fe
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f0
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
OEM
00
—
—
ID String Type / Length Code
cc
—
—
Table B-27: -48V Volt SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
0019
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
34
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
0a
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4801
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4801
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Lower Non-Critical Going Low
supported
10007175-02
KAT4000 User’s Manual
B-45
Appendix B:
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Discrete Reading Mask
3f3f
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Sensor Units 1
B-46
Sensor Data Records
00
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
04
Volts
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
23
—
—
M, Tolerance
40
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
d0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
a5
—
—
Normal Maximum
f8
—
—
Normal Minimum
7c
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f8
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
7c
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
c9
—
—
Table B-28: -48V Current SDR Description
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
001a
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
34
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
0a
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Current
—
Sensor Type
03
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
3838
Upper Non-Recoverable Going High
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
10007175-02
KAT4000 User’s Manual
B-47
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
05
Amps
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
11
—
—
M, Tolerance
40
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
93
—
—
Normal Maximum
ef
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
ff
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
c9
—
—
Table B-29: -48V Source A Volt SDR Description
B-48
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
001b
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
3a
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
0a
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4801
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
Discrete Reading Mask
4801
3f3f
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Lower Non-Critical Going Low
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
10007175-02
KAT4000 User’s Manual
B-49
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
04
Volts
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
1a
—
—
M, Tolerance
40
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
d0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
ab
—
—
Normal Maximum
ff
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
ff
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going
Threshold Hyst Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
cf
—
—
Table B-30: -48V Source B Volt SDR Description
B-50
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
001c
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
3a
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
0a
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4801
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
Discrete Reading Mask
4801
3f3f
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Lower Non-Critical Going Low
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
10007175-02
KAT4000 User’s Manual
B-51
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
04
Volts
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
1a
—
—
M, Tolerance
40
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
d0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
ab
—
—
Normal Maximum
ff
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
ff
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
cf
—
—
Table B-31: +3.3V Management SDR Description
B-52
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
001d
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
35
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
0a
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4801
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
Discrete Reading Mask
4801
3f3f
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Lower Non-Critical Going Low
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
10007175-02
KAT4000 User’s Manual
B-53
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
04
Volts
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
aa
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
c0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
c3
—
—
Normal Maximum
cc
—
—
Normal Minimum
b9
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
e9
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
9c
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
ca
—
—
Table B-32: +12V Volt SDR Description
B-54
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
001e
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
34
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
0a
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Voltage
—
Sensor Type
02
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
4801
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
Discrete Reading Mask
4801
3f3f
Lower Non-Critical Going Low
supported
Lower Non-Recoverable Threshold
comparison returned
Upper Non-Recoverable Going High
supported
Lower Non-Critical Going Low
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Lower Non-Recoverable Threshold
settable
Lower Critical Threshold
settable
Lower Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Lower Non-Recoverable Threshold
readable
Lower Critical Threshold
readable
Lower Non-Critical Threshold
readable
10007175-02
KAT4000 User’s Manual
B-55
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
04
Volts
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
06
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
R exp, B Exp
e0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
c8
—
—
Normal Maximum
d6
—
—
Normal Minimum
ba
—
—
Sensor Maximum Reading
ff
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
f0
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
a0
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
02
—
—
Negative-Going Threshold Hyst
Value
02
—
—
OEM
00
—
—
ID String Type / Length Code
c9
—
—
Table B-33: -12V Current SDR Description
B-56
KAT4000 Records:
Value:
Parameter:
Status:
Record ID
001f
—
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
34
—
—
KAT4000 User’s Manual
10007175-02
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
0a
—
—
Entity Instance
60
—
—
Sensor Initialization
7f
Init Scanning
—
Init Sensor Type
—
Sensor Capabilities
69
Init Hysteresis
—
Init Thresholds
—
Init Events
—
Sensor Scanning
enabled
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
hysteresis is settable/readable
Sensor Threshold Access
threshold is settable/readable
Event Message Control
global disable only
Current
—
Sensor Type
03
Event/Reading Type Code
01
Threshold
—
Assertion Event Mask
0800
Upper Non-Recoverable Going High
supported
Deassertion Event Mask
4800
Lower Non-Recoverable Threshold
comparison returned
Discrete Reading Mask
Sensor Units 1
3838
00
Upper Non-Recoverable Going High
supported
Upper Non-Recoverable Threshold
settable
Upper Critical Threshold
settable
Upper Non-Critical Threshold
settable
Upper Non-Recoverable Threshold
readable
Upper Critical Threshold
readable
Upper Non-Critical Threshold
readable
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
Sensor Units 2 - Base Unit
05
Amps
—
Sensor Units 3 - Modifier Unit
00
Unspecified
—
Linearization
00
—
—
M
6d
—
—
—
M, Tolerance
00
—
B
00
—
—
B, Accuracy
00
—
—
Accuracy, Accuracy Exp
00
—
—
10007175-02
KAT4000 User’s Manual
B-57
Appendix B:
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
R exp, B Exp
d0
—
—
Analog Characteristic Flags
07
—
—
Nominal Reading
53
—
—
Normal Maximum
a1
—
—
Normal Minimum
00
—
—
Sensor Maximum Reading
fe
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
cf
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
03
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
c9
—
—
Table B-34: F/W (Firmware) Progress SDR Description
B-58
KAT4000 Records:
Value:
Parameter:
Record ID
0020
—
Status:
—
SDR Version
51
—
—
Record Type
01
Full Sensor Record
—
Record Length
37
—
—
Sensor Owner ID
00
—
—
Sensor Owner LUN
00
—
—
Sensor Number
00
—
—
Entity ID
a0
—
—
Entity Instance
60
—
—
Sensor Initialization
67
KAT4000 User’s Manual
Init Scanning
—
Init Sensor Type
—
Init Events
—
Sensor Scanning
enabled
Event Generation
enabled
10007175-02
Appendix B:
Sensor Data Records
Status: (continued)
KAT4000 Records:
Value:
Parameter:
Sensor Capabilities
41
Ignore Sensor
no
Auto Re-Arm
enabled
Sensor Hysteresis
no hysteresis
Sensor Threshold Access
no threshold
Event Message Control
global disable only
—
Sensor Type
0f
System Firmware Progress
Event/Reading Type Code
6f
Sensor Specific
—
Assertion Event Mask
0007
System Firmware Progress
—
System Firmware Hang
—
System Firmware Error
—
Deassertion Event Mask
0000
—
—
Discrete Reading Mask
0007
System Firmware Progress
—
System Firmware Hang
—
System Firmware Error
—
Sensor Units 1
00
Analog Data Format
unsigned
Rate Unit
none
Modifier Unit
none
Percentage
no
—
Sensor Units 2 - Base Unit
00
unspecified
Sensor Units 3 - Modifier Unit
00
unspecified
—
Linearization
00
—
—
M
00
—
—
M, Tolerance
00
—
—
B
00
—
—
B, Accuracy
00
—
—
—
Accuracy, Accuracy Exp
00
—
R exp, B Exp
00
—
—
Analog Characteristic Flags
00
—
—
Nominal Reading
00
—
—
Normal Maximum
00
—
—
Normal Minimum
00
—
—
Sensor Maximum
Reading
00
—
—
Sensor Minimum Reading
00
—
—
Upper Non-Recoverable
Threshold
00
—
—
Upper Critical Threshold
00
—
—
Upper Non-Critical Threshold
00
—
—
Lower Non-Recoverable
Threshold
00
—
—
10007175-02
KAT4000 User’s Manual
B-59
Appendix B:
B-60
Sensor Data Records
KAT4000 Records:
Value:
Parameter:
Status: (continued)
Lower Critical Threshold
00
—
—
Lower Non-Critical Threshold
00
—
—
Positive-Going Threshold Hyst
Value
00
—
—
Negative-Going Threshold Hyst
Value
00
—
—
OEM
00
—
—
ID String Type / Length Code
cc
—
—
KAT4000 User’s Manual
10007175-02
Index
A
air flow rate . . . . . . . . . . . . . . . . . .2-16
AMC
connectors . . . . . . . . . . . . . 2-4, 8-2
custom modules . . . . . . . . . . . . . 8-1
overview . . . . . . . . . . . . . . . . . . . 1-2
pin assignments . . . . . . . . . . . . . 8-4
reference manual . . . . . . . . . . .1-12
ATCA
reference manual . . . . . . . . . . .1-12
B
back panel
connectors . . . . . . . . . . . . . . . . . 2-4
binary download format . . . . . . .14-32
block diagram
CPU . . . . . . . . . . . . . . . . . . . . . . . 3-2
general system . . . . . . . . . . . . . . 1-5
IPMC connections . . . . . . . . . . . . 9-2
real-time clock . . . . . . . . . . . . .11-1
board
optional devices . . . . . . . . . . . . . 1-3
product ID . . . . . . . . . . . . . . . . .2-15
serial number . . . . . . . . . . . . . .2-15
boot
from redundant boot bank . . . . . 6-2
memory configuration . . . . . . . . 6-1
boot commands, monitor . . . . . .14-9
C
caution statements
board install/remove . . . . . . . .13-7
boards without front panel . . . . . 2-4
removing socketed PLCC device. 6-2
writes to monitor area . . . . . . .14-6
chip-select generator, CPU . . . . . .3-12
circuit board dimensions . . . . . . . . 2-1
compliance . . . . . . . . . . . . . . . . . .1-10
component map
bottom . . . . . . . . . . . . . . . . . . . . 2-3
top . . . . . . . . . . . . . . . . . . . . . . . 2-2
connectors
AMC pin assignments . . . . . . . . . 8-4
backplane zones 1-3 . . . . . . . . .12-1
console port . . . . . . . . . . . . . . .13-5
J20 through J24 . . . . . . . . . . . . .12-2
J30 through J33 . . . . . . . . . . . . .12-4
overview . . . . . . . . . . . . . . . . . . . 2-4
P1, P2, P4-P7 pinouts . . . . . . . .13-5
P10 . . . . . . . . . . . . . . . . . . . . . . 12-1
contents, table of . . . . . . . . . . . . . . ii-iii
CPLD
JTAG header . . . . . . . . . . . . . . . 7-19
reference manual . . . . . . . . . . . 1-12
registers . . . . . . . . . . . . . . . . . . . 7-1
CPU
block diagram . . . . . . . . . . . . . . 3-2
cache memory . . . . . . . . . . . . . . 3-3
chip-select generator . . . . . . . . 3-12
exception handling . . . . . . . . . . 3-13
functions on the KAT4000 . . . . . 3-3
interrupts and exceptions . . . . . 3-8
overview . . . . . . . . . . . . . . . . . . . 1-1
peripheral request priority . . . . 3-10
reference manual . . . . . . . . . . . 1-13
reset and clocking signals. . . . . 3-12
custom AMC requirements . . . . . . 8-1
customer support. See technical
support.
D
DRAM . . . . . . . . . . . . . . . . . . . . . . . 6-2
overview . . . . . . . . . . . . . . . . . . . 1-1
reference manual . . . . . . . . . . . 1-14
E
EEPROM
reference manual . . . . . . . . . . . 1-13
EIA-232
connector . . . . . . . . . . . . . . . . . . 2-4
E-keying . . . . . . . . . 9-45, 12-2, 14-1
environment parameter commands,
monitor. . . . . . . . . . . . . . . . . . . .14-20
environment variables . . . . . . . . . 14-7
equipment for setup . . . . . . . . . . . 2-15
ESD prevention . . . . . . . . . . . . . . . . 2-1
Ethernet
address . . . . . . . . . . . . . . . . . . . . 4-5
Artesyn identifier . . . . . . . . . . . . 4-5
connector . . . . . . . . . . . . . . . . . . 2-4
core switch . . . . . . . . . . . . . . . . . 4-2
overview . . . . . . . . . . . . . . . . . . . 1-2
reference manual . . . . . . . . . . . 1-13
transceivers . . . . . . . . . . . . . . . . 4-5
ethernet core switch
overview . . . . . . . . . . . . . . . . . . . 1-3
Ethernet switch configuration . . . . 4-3
exception handling, CPU . . . . . . . 3-13
10007175-02
F
fat pipe switch
10 GbE-1 GbE . . . . . . . . . . . . . . 5-11
PLD registers . . . . . . . . 5-16
10 GbE-10 GbE . . . . . . . . . . . . . 5-21
GbE . . . . . . . . . . . . . . . . . . . . . . . 5-2
PLD registers . . . . . . . . . 5-6
overview . . . . . . . . . . . . . . . 1-4, 5-1
sRIO . . . . . . . . . . . . . . . . . . . . . 5-22
features
IPMI . . . . . . . . . . . . . . . . . . . . . . 9-1
overview . . . . . . . . . . . . . . . . . . . 1-1
figures, list of . . . . . . . . . . . . . . . . .iii-ix
file load commands, monitor . . . 14-12
Flash
commands, monitor . . . . . . . 14-15
overview . . . . . . . . . . . . . . . . . . . 1-1
reference manual . . . . . . . . . . . 1-13
regions . . . . . . . . . . . . . . . . . . . . 6-1
fuses . . . . . . . . . . . . . . . . . . . . . . . . 2-8
G
GbE switch
features . . . . . . . . . . . . . . . . . . . 4-2
glossary of acronyms . . . . . . . . . . 15-1
grounding . . . . . . . . . . . . . . . . . . . 2-1
H
hardware implementation dependent
registers (HIDx) . . . . . . . . . 3-6 to 3-8
header, JP4 . . . . . . . . . . . . . . . . . . . 2-5
Hot Swap . . . . . . . . . . . . . . . . . . . 2-10
reference manual . . . . . . . . . . . 1-13
I
I2C bus
overview . . . . . . . . . . . . . . . . . . . 1-2
installation of the board . . . . . . . . 2-15
IPMB
reference manual . . . . . . . . . . . 1-14
IPMI
completion codes . . . . . . . . . . . 9-4
E-keying information . . . . . . . . 9-45
entity IDs and instances . . . . . . 9-39
FRU information . . . . . . . . . . . . 9-44
network function codes . . . . . . . 9-3
reference manual . . . . . . . . . . . 1-14
request/response messages . . . 9-5
KAT4000 User’s Manual
i-1
(continued)
Serial Interface Protocol Lite (SIPL)
protocol . . . . . . . . . . . . . . . . . . . 9-6
standard commands . . . . . . . . . . 9-9
vendor commands . . . . . . . . . .9-12
IPMI sensor data records . . . . . . . . . B-1
J
JP4 header . . . . . . . . . . . . . . . . . . . . 2-5
JTAG
CPLD configuration header, JP1 2-10
CPLD interface . . . . . . . . . . . . .7-19
CPLD JTAG header, JP3 . . . . . . . . 2-9
CPU JTAG/COP . . . . . . . . . . . . .3-14
CPU JTAG/COP header, P1 . . . . . 2-9
interface . . . . . . . . . . . . . . . . . . . 1-2
IPMC JTAG/emulation header, J35 . .
2-10
optional interfaces . . . . . . . . . . . 2-9
JTAG hubs
overview . . . . . . . . . . . . . . . . . . . 1-2
jumpers . . . . . . . . . . . . . . . . . . . . . . 2-8
device selection . . . . . . . . . . . . . 2-5
L
L2 cache, CPU . . . . . . . . . . . . . . . . . 3-3
LEDs . . . . . . . . . . . . . . . . . . . . . . .2-10
FRU/IPMC . . . . . . . . . . . . . . . . .9-33
M
machine state register (MSR) . . . . . 3-9
mean time between failures (MTBF) . . .
1-10
memory
boot device . . . . . . . . . . . . . . . . . 6-1
commands, monitor . . . . . . . .14-12
monitor
auto-booting . . . . . . . . . . . . . .14-1
auto-repeat. . . . . . . . . . . . . . . .14-1
basic operation . . . . . . . . . . . . .14-4
boot commands . . . . . . . . . . . .14-9
command history . . . . . . . . . . .14-1
command reference . . . . . . . . .14-8
command syntax . . . . . . . . . . .14-8
command-line interface . . . . . .14-1
environment parameter commands
14-20
environment variables . . . . . .14-28
file load commands . . . . . . . .14-12
Flash commands . . . . . . . . . . .14-15
Flash programming . . . . . . . . .14-1
i-2
KAT4000 User’s Manual
memory commands . . . . . . . .14-12
Motorola S-record . . . . . . . . .14-32
other commands . . . . . . . . . .14-22
power-up/reset sequence flowchart
ipmcfw . . . . . . . . . . . . . . . . . . 14-19
iprobe . . . . . . . . . . . . . . . . . . . 14-18
isdram . . . . . . . . . . . . . . . . . . 14-23
loadb . . . . . . . . . . . . . . . . . . . 14-12
loads. . . . . . . . . . . . . . . . . . . . 14-12
loop . . . . . . . . . . . . . . . . . . . . 14-24
md . . . . . . . . . . . . . . . . . . . . . 14-13
memmap . . . . . . . . . . . . . . . . 14-24
mm. . . . . . . . . . . . . . . . . . . . . 14-14
moninit . . . . . . . . . . . . . . . . . 14-24
mtest . . . . . . . . . . . . . . . . . . . 14-21
mw . . . . . . . . . . . . . . . . . . . . . 14-14
nm . . . . . . . . . . . . . . . . . . . . . 14-14
pci . . . . . . . . . . . . . . . . . . . . . 14-24
phy . . . . . . . . . . . . . . . . . . . . . 14-25
ping . . . . . . . . . . . . . . . . . . . . 14-25
printenv . . . . . . . . . . . . . . . . . 14-21
protect . . . . . . . . . . . . . . . . . . 14-16
rarpboot . . . . . . . . . . . . . . . . . 14-11
reset . . . . . . . . . . . . . . . . . . . . 14-25
run . . . . . . . . . . . . . . . . . . . . . 14-26
saveenv . . . . . . . . . . . . . . . . . 14-21
script . . . . . . . . . . . . . . . . . . . 14-26
sensor . . . . . . . . . . . . . . . . . . . 14-19
setenv . . . . . . . . . . . . . . . . . . 14-21
showmac . . . . . . . . . . . . . . . . 14-26
showpci . . . . . . . . . . . . . . . . . 14-26
sleep . . . . . . . . . . . . . . . . . . . . 14-26
switch_reg . . . . . . . . . . . . . . . 14-27
switchsrom . . . . . . . . . . . . . . 14-18
tftpboot . . . . . . . . . . . . . . . . . 14-11
um . . . . . . . . . . . . . . . . . . . . . 14-22
version . . . . . . . . . . . . . . . . . . 14-27
vlan. . . . . . . . . . . . . . . . . . . . . 14-27
14-5
recovery . . . . . . . . . . . . . . . . . . 14-6
start-up display of KAT4000 with 10
GbE-1 GbE fat pipe module . . . 14-3
start-up display of KAT4000 with GbE
fat pipe module . . . . . . . . . . . . 14-2
test commands . . . . . . . . . . .14-21
TFTP booting . . . . . . . . . . . . . . 14-1
troubleshooting . . . . . . . . . . .14-31
typographic conventions . . . . . 14-9
U-Boot . . . . . . . . . . . . . . . . . . . 14-1
updates . . . . . . . . . . . . . . . . . . 14-7
version number . . . . . . . . . . . . 2-15
monitor commands
autoscr . . . . . . . . . . . . . . . . . .14-22
base . . . . . . . . . . . . . . . . . . . .14-22
bdinfo . . . . . . . . . . . . . . . . . . .14-22
bootd . . . . . . . . . . . . . . . . . . . . 14-9
bootelf . . . . . . . . . . . . . . . . . . . 14-9
bootm . . . . . . . . . . . . . . . . . . . 14-9
bootp . . . . . . . . . . . . . . . . . . . . 14-9
bootv . . . . . . . . . . . . . . . . . . .14-10
bootvx . . . . . . . . . . . . . . . . . .14-10
cmp . . . . . . . . . . . . . . . . . . . .14-13
coninfo . . . . . . . . . . . . . . . . . .14-22
cp . . . . . . . . . . . . . . . 14-13, 14-15
crc32 . . . . . . . . . . . . . . . . . . .14-22
date . . . . . . . . . . . . . . . . . . . .14-22
dhcp . . . . . . . . . . . . . . . . . . . .14-10
diags . . . . . . . . . . . . . . . . . . . .14-21
echo . . . . . . . . . . . . . . . . . . . .14-23
eeprom . . . . . . . . . . . . . . . . . .14-16
enumpci . . . . . . . . . . . . . . . . .14-23
erase . . . . . . . . . . . . . . . . . . . .14-15
find . . . . . . . . . . . . . . . . . . . . .14-13
flinfo . . . . . . . . . . . . . . . . . . . .14-15
fru . . . . . . . . . . . . . . . . . . . . . .14-18
fruinit . . . . . . . . . . . . . . . . . . .14-19
fruled . . . . . . . . . . . . . . . . . . .14-19
go . . . . . . . . . . . . . . . . . . . . . .14-23
help . . . . . . . . . . . . . . 14-9, 14-23
icrc32 . . . . . . . . . . . . . . . . . . .14-17
iloop . . . . . . . . . . . . . . . . . . . .14-17
imd . . . . . . . . . . . . . . . . . . . . .14-17
iminfo . . . . . . . . . . . . . . . . . . .14-23
imm . . . . . . . . . . . . . . . . . . . .14-17
imw . . . . . . . . . . . . . . . . . . . .14-18
inm . . . . . . . . . . . . . . . . . . . . .14-18
10007175-02
N
NAND flash . . . . . . . . . . . . . . . . . . . 6-2
no-CPU KAT4000 . . . . . . . . . . . . . . A-1
Ethernet switch configuration . . A-2
default settings . . . . . . . A-2
overview . . . . . . . . . . . . . . . . . . . 1-3
serial command line interface (CLI) .
A-3
VLAN setup . . . . . . . . . . . . . . . . A-2
web interface . . . . . . . . . . . . . . A-18
notation conventions . . . . . . . . . . 1-12
NVRAM memory map . . . . . . . . . . 6-3
O
operating temperature . . . . . . . . 2-16
(continued)
overview, IPMI . . . . . . . . . . . . . . . . . 9-1
P
PCI
device and vendor ID . . . . . . . . . 3-4
revision ID . . . . . . . . . . . . . . . . . . 3-4
signals . . . . . . . . . . . . . . . . . . . . . 8-2
PCI Express switch
EEPROM controller . . . . . . . . . . . 4-9
features. . . . . . . . . . . . . . . . . . . . 4-7
JTAG . . . . . . . . . . . . . . . . . . . . . . 4-9
overview . . . . . . . . . . . . . . . . . . . 1-3
reference manual . . . . . . . . . . .1-14
PLD
overview . . . . . . . . . . . . . . . . . . . 1-2
power supply requirements . . . . .2-16
product code, Ethernet . . . . . . . . . . 4-5
product ID . . . . . . . . . . . . . . . . . . .2-15
product repair . . . . . . . . . . . . . . . .2-18
programmable logic device (PLD) 5-6,
5-16, 7-1
R
real-time clock
block diagram . . . . . . . . . . . . . .11-1
operation . . . . . . . . . . . . . . . . .11-1
overview . . . . . . . . . . . . . . . . . . . 1-3
reference manual . . . . . . . . . . .1-14
register map . . . . . . . . . . . . . . .11-2
redundant boot bank . . . . . . . . . . . 6-2
references, manuals, and data books . .
1-12
registers
10 GbE-1 GbE fat pipe switch module
5-16 to 5-20
10 GbE-10 GbE fat pipe switch
module . . . . . . . . . . . .5-16 to 5-20
BDRR . . . . . . . . . . . . . . . . . . . . .7-11
boot and reset . . . . . . . 7-8 to 7-12
CCR . . . . . . . . . . . . . . . . . . . . . .7-17
clock synchronizer . . .7-13 to 7-19
configuration . . . . . . . . . 7-4 to 7-5
CPS . . . . . . . . . . . . . . . . . . . . . .7-14
CSC . . . . . . . . . . . . . . . . . . . . . .7-13
CSI . . . . . . . . . . . . . . . . . . . . . . .7-18
CSS . . . . . . . . . . . . . . . . . . . . . .7-15
GbE fat pipe switch module . 5-6 to
5-9
HCR0 . . . . . . . . . . . . . . . . . . . . . . 7-4
HVR . . . . . . . . . . . . . . . . . . . . . . . 7-3
JSR . . . . . . . . . . . . . . . . . . . . . . . 7-6
LEDR . . . . . . . . . . . . . . . . . . . . . . 7-5
MISC . . . . . . . . . . . . . . . . . . . . . . 7-7
miscellaneous. . . . . . . . . 7-5 to 7-8
PIDR . . . . . . . . . . . . . . . . . . . . . . 7-2
PLLC . . . . . . . . . . . . . . . . . . . . . . 7-4
PVR . . . . . . . . . . . . . . . . . . . . . . . 7-3
RCR1 . . . . . . . . . . . . . . . . . . . . . . 7-9
RCR2 . . . . . . . . . . . . . . . . . . . . . 7-10
RER . . . . . . . . . . . . . . . . . . . . . . . 7-8
RGCR . . . . . . . . . . . . . . . . . . . . . 7-7
RGSR . . . . . . . . . . . . . . . . . . . . . . 7-6
SCR1 . . . . . . . . . . . . . . . . . . . . . . 7-8
version and ID . . . . . . . . . 7-2 to 7-3
regulatory certifications . . . . . . . . 1-10
reset
and clocking signals, CPU . . . . . 3-12
sources . . . . . . . . . . . . . . . . . . . 2-13
returning boards . . . . . . . . . . . . . . 2-18
RoHS . . . . . . . . . . . . . . . . . . . . . . . 1-11
RTC
overview . . . . . . . . . . . . . . . . . . . 1-3
RTM
block diagram . . . . . . . . . . . . . 13-2
circuit board . . . . . . . . . . . . . . . 13-3
connectors . . . . . . . . . . . . . . . . 13-5
face plate . . . . . . . . . . . . . . . . . 13-5
features . . . . . . . . . . . . . . . . . . 13-1
installation . . . . . . . . . . . . . . . . 13-7
overview . . . . . . . . . . . . . . . . . . . 1-4
setup . . . . . . . . . . . . . . . . . . . . 13-6
S
SATA lines . . . . . . . . . . . . . . . . . . . . 8-6
SDR . . . . . . . . . . . . . . . . . . . . . . . . 9-40
SDRAM. See DRAM.
sensor data records . . . . . . . . . . . 9-40
serial command line interface (CLI)
aggregation/trunking commands . .
A-13
command hierarchy . . . . . . . . . . A-4
command overview . . . . . . . . . . A-6
commands . . . . . . . . . . . . . . . . . A-5
console commands . . . . . . . . . . A-8
debug commands . . . . . . . . . .A-17
help . . . . . . . . . . . . . . . . . . . . . . A-3
IP commands . . . . . . . . . . . . . .A-16
log in/log out . . . . . . . . . . . . . . . A-3
MAC commands . . . . . . . . . . . .A-10
mirror commands . . . . . . . . . .A-16
no-CPU KAT4000 . . . . . . . . . . . . A-3
10007175-02
port commands . . . . . . . . . . . . . A-9
QoS commands . . . . . . . . . . . . A-14
system commands . . . . . . . . . . . A-8
user group commands . . . . . . . A-14
VLAN commands . . . . . . . . . . . A-12
serial data path configuration . . . . 4-3
serial I/O
connector . . . . . . . . . . . . . . . . . . 2-4
overview . . . . . . . . . . . . . . . . . . . 1-2
serial interface
reference manual . . . . . . . . . . . 1-14
serial number . . . . . . . . . . . . . . . . 2-15
user ROM . . . . . . . . . . . . . . . . . 2-15
serial ports, console . . . . . . . . . . . 13-5
setup requirements . . . . . . . . . . . 2-15
signal descriptions, PCI. . . . . . . . . . 8-2
specifications
environmental . . . . . . . . . . . . . 2-16
mechanical . . . . . . . . . . . . . . . . . 2-1
power . . . . . . . . . . . . . . . . . . . . 2-16
SROM . . . . . . . . . . . . . . . . . . . . . . . 6-3
static control . . . . . . . . . . . . . . . . . 2-1
switches . . . . . . . . . . . . . . . . . . . . . 2-8
synchronization clock . . . . . . . . . . 10-1
overview . . . . . . . . . . . . . . . . . . . 1-3
reference manual . . . . . . . . . . . 1-14
system management
overview . . . . . . . . . . . . . . . . . . . 1-3
T
table of contents . . . . . . . . . . . . . . ii-iii
tables, list of . . . . . . . . . . . . . . . . . .iv-xi
technical references . . . . . . . . . . . 1-12
technical support
terminology . . . . . . . . . . . . . . . . . 1-12
test commands, monitor . . . . . . 14-21
timer/counters . . . . . . . . . . . . . . . . 3-4
troubleshooting
general . . . . . . . . . . . . . . . . . . . 2-17
monitor . . . . . . . . . . . . . . . . . 14-31
U
UL certifications . . . . . . . . . . . . . . 1-11
UL file number . . . . . . . . . . . . . . . 1-11
V
version
monitor . . . . . . . . . . . . . . . . . . 2-15
operating system . . . . . . . . . . . 2-15
VLAN setup . . . . . . . . . . . . . . . . . . . 4-3
KAT4000 User’s Manual
i-3
(continued)
W
watchdog timer . . . . . . . . . . . . . .9-27
watchdog, BMC . . . . . . 14-18, 14-28
i-4
KAT4000 User’s Manual
web interface
no-CPU KAT4000 . . . . . . . . . . .A-18
VLAN setup . . . . . . . . . . . . . . . .A-18
10007175-02
Z
zone 1-3 connectors. . . . . . . . . . . 12-1
Notes
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
10007175-02
KAT4000 User’s Manual
Emerson Network Power.
The global leader in enabling
Business-Critical Continuity™.
■ AC Power Systems
■ Connectivity
■ DC Power Systems
■ Embedded Computing
■ Embedded Power
■ Integrated Cabinet Solutions
■ Outside Plant
■ Power Switching & Controls
■ Precision Cooling
■ Services
■ Site Monitoring
■ Surge & Signal Protection
Business-Critical Continuity, Emerson Network Power and the
Emerson Network Power, Embedded Computing
Emerson Network Power logo are trademarks and
8310 Excelsior Drive ■ Madison, WI 53717-1935 USA
service marks of Emerson Electric Co.
US Toll Free: 1-800-356-9602 ■ Voice: +1-608-831-5500 ■ FAX: 1-608-831-4249
© 2006 Emerson Electric Co.
Email: info@artesyncp.com
www.artesyncp.com
E M E R S O N.
C O N S I D E R I T S O L V E D.™