This specification defines a CRASH ... BOLLARD BARRICADE SYSTEM – DELTA Model DSC701. PROCUREMENT SPECIFICATION

This  specification  defines  a  CRASH ... BOLLARD BARRICADE SYSTEM – DELTA Model DSC701. PROCUREMENT SPECIFICATION
PROCUREMENT SPECIFICATION
MODEL DSC701 HYDRAULIC BOLLARD BARRICADE SYSTEM
SYNOPSIS
This specification defines a CRASH TESTED - CRASH CERTIFIED - HIGH SECURITY –
BOLLARD BARRICADE SYSTEM – DELTA Model DSC701.

The basic system can consists of one or more vertical lift BOLLARDS together with a
HYDRAULIC POWER UNIT, OPERATING CONTROLS, POWER CIRCUITS, OPERATING
LOGIC, SAFETY AND ENVIRONMENTAL OPTIONS.

The BOLLARD(S) may be specified with Standard or Custom Cast Outer Shells to match
existing ARCHITECTURAL TREATMENTS or STYLES.
1.0
PATENT LICENSE.
The CRASH CERTIFIED HYDRAULIC BOLLARD SYSTEM shall be fully licensed for
manufacture under U.S. Patent Numbers: 4,576,508 and 4,715,742
2.0
SYSTEM CONFIGURATION
2.1
BOLLARD(S) STANDARD CONFIGURATION
2.1
BOLLARD ARRANGEMENT. The system shall have a total of ____ Bollards arrayed in
accordance with either 2.1.1 or 2.1.2. (specify the total number of Bollards in the system
whether operated independently or in combination).
Select either 2.1.1 or 2.1.2 to define the operating pattern of the Bollards within the
system.
2.1.1
Single Bollards Individual Operated. Each individual Bollard shall be operated
independently from any other Bollard within the system. Each Bollard shall have its own
controls.
2.1.2
Multi Bollards Operating in Sets. Bollard system shall have ____ sets (specify the number
of sets). Each set shall consist of ___ Bollards (specify the number of Bollards per set).
Each set of Bollards shall have its own controls and operate independently from each
other set within the system.
2.1.3
Construction. Bollard shall be a below grade assembly containing a heavy steel cylindrical
weldment capable of being raised to an above grade position. The guard position shall
present a formidable obstacle to approaching vehicles. Upon impact, forces shall be first
absorbed by the weldment and then transmitted to the foundation of the unit.
2.1.4
Bollard Height. Height of the Bollard shall be 35 inches (889 mm) as measured from the
top of the foundation frame to the top of the Bollard assembly.
Copyright 2003 Delta Scientific Corporation
Page 1 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
2.1.5
Bollard Dimensions. Bollard shall be 12.75 inches (324 mm) in diameter.
2.1.6
Finish. The foundation and underside of the Bollard shall be asphalt emulsion coated for
corrosion protection. The roadway plates shall have a non skid surface. The above grade
portion of the Bollard shall be white and have yellow/black diagonal stripes (or alternately).
2.2
BOLLARDS(S) WITH ARCHITECTURAL ENHANCEMENTS
2.2.1
BOLLARD ARRANGEMENT. The system shall have a total of ____ Bollards arrayed in
accordance with either 2.2.1 or 2.2.2. (specify the total number of Bollards in the system
whether operated independently or in combination).
Select either 2.2.1 or 2.2.2 to define the operating pattern of the Bollards within the
system.
2.2.2
Single Bollards Individual Operated. Each individual Bollard shall be operated
independently from any other Bollard within the system. Each Bollard shall have its own
controls.
2.2.3
Multi Bollards Operating in Sets. Bollard system shall have ____ sets (specify the number
of sets). Each set shall consist of ___ Bollards (specify the number of Bollards per set).
Each set of Bollards shall have its own controls and operate independently from each
other set within the system.
2.2.4
Construction. Bollard shall be a below grade assembly containing a heavy steel cylindrical
weldment capable of being raised to an above grade position. The guard position shall
present a formidable obstacle to approaching vehicles. Upon impact, forces shall be first
absorbed by the weldment and then transmitted to the foundation of the unit.
Architectural Enhanced Outer Shells shall be cast from a free machining aluminum alloy and be
free of cracks, uneven surface texture, excessive parting line offset or particle inclusions.
Optionally they shall be supplied in fiberglass.
2.2.5
Bollard Diameter, with Architectural Enhancement in place shall not be greater than 15.25
inches (387 mm) in diameter. (Refer to DELTA drawing 08474 for design envelop for
enhancement).
2.2.7
Bollard Height: shall be 39 inches (990 mm) as measured from the top of the foundation
frame to the top of the Bollard assembly.
2.2.8
Finish.
2.2.8.1
Steel Structure. The foundation and underside of the Bollard shall be asphalt
emulsion coated for corrosion protection. The roadway plates shall have a non
skid surface. The above grade portion of the Bollard shall be finished with an
industrial enamel primer.
Copyright 2003 Delta Scientific Corporation
Page 2 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
2.2.8.2
Architectural Enhancement. Standard Aluminum Cast Outer Shells shall first be
primed with an industrial enamel primer then finished with an industrial grade
enamel. Highlight colors shall be of equivalent quality.
2.2.8.3
Custom Architectural Enhancement Outer Shells shall be finished in accordance
with customer instructions.
2.3
HYDRAULIC POWER UNIT (HPU)
2.3.1
Hydraulic Circuit. Circuit shall incorporate the design concepts as described by U. S.
Patent # 4,490,068 – Re. 33,201. Unit shall consist of an electrically driven hydraulic
pump which shall pressurize a high pressure manifold connected to a hydraulic type
accumulator. Electrically actuated valves shall be installed on the manifold to allow oil to be
driven to the up and/or down side of a double acting hydraulic cylinder to raise and lower
the Bollard. The hydraulic circuit shall include all necessary control logic, interconnect lines
and valves to override and lock out the normal speed control valve(s) for emergency fast
operation of the Bollard(s).
2.3.2
Main Power. The electric motor driving the hydraulic pump shall be fed from (specify actual
site voltage, phase and frequency, i.e. 230/3/60). Motor shall be sufficiently sized for the
expected number of barricade operations.
2.3.3
Power Off Operation. The accumulator shall be sized to allow three full cycle operations of
a single Bollard in the event of a power outage. Enhanced power off capability can be
selected as an option. The bi-directional control valves shall be manually operable in the
event of a power outage.
2.3.4
Manual Operation. A hand pump shall be furnished to allow the Bollards to be raised
manually in the event of a prolonged power interruption.
2.3.5
Construction. The hydraulic power unit and accessories shall be mounted and wired on an
integral steel skid. The HPU shall fit in an envelope 60 inches W x 36 inches D x 60
inches H (1524 mm W x 914 mm D x 1524 mm H). The HPU shall be mounted indoors or
in an optional weather resistant enclosure.
2.4
CONTROL AND LOGIC CIRCUITS
The following circuits and control stations shall be furnished:
2.4.1
2.4.1.1
Control Circuit. A control circuit shall be provided to interface between all Bollard control
stations and the pneumatic power unit. This circuit shall contain all relays, timers and other
devices necessary for the Bollard operation.
Voltage. The control circuit shall operate from a 120 volt, 50/60 Hz supply
(optionally 240 volt, 50/60 Hz or 24 VDC). An internally mounted transformer shall
reduce this to 24 VDC for all external control stations.
Copyright 2003 Delta Scientific Corporation
Page 3 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
2.4.1.2
Power Consumption. The control circuit power consumption shall not exceed 250
watts basic load, plus 200 watts for each Bollard in the system.
2.4.1.3
Construction. The control circuit shall be mounted in a general purpose enclosure.
All device interconnect lines shall be run to terminal strips.
(The following control station(s) can be specified)
2.4.2
Remote Control Panel. A remote control panel shall be supplied to control the Bollard
operation. This panel shall have a key lockable main switch with "main power on" and
"panel on" lights. Buttons to raise or lower each Bollard (or sets of Bollards) shall be
provided. Bollard up and down indicator lights shall be included for each Bollard (or set).
The emergency fast operate (EFO) feature shall be operated from a push button larger
than the normal controls (optionally a covered toggle switch). The EFO shall also be
furnished with EFO active light and reset button.
2.4.2.1
Voltage. The remote control panel shall operate on 24 VDC.
2.4.2.2
Construction. The remote control station shall be a standard 19 inch electronics
rack type surface mount panel with all devices wired to a terminal strip on the back.
2.4.2.3
(Option) Panel shall be equipped with a timer circuit to notify the operator via an
annunciator "squealer" that the Bollard has been left in the down position for too
long a time period. The time interval shall be customer selectable.
(Select Control Panel 2.3.3 instead of 2.3.2 if Slave Panel 2.3.4 is desired.)
2.4.3
Remote Control Master Panel. A remote control master panel shall be supplied to control
Bollard function. This panel shall have a key lockable main switch with "main power on" and
"panel on" lights. Buttons to raise and lower each Bollard (or set) shall be provided. Bollard
"up" and "down" indicator lights shall be included for each Bollard (or set). The emergency
fast operate circuit (EFO) feature shall be operated from a push button larger than the
normal controls (optionally a covered toggle switch). The EFO shall be furnished with EFO
active light and reset button. The remote control master panel shall have a key lockable
switch to arm or disarm the remote slave panel(s). An indicator light shall show if the slave
panel is armed.
2.4.3.1
Voltage. The remote control panel shall operate on 24 VDC.
2.4.3.2
Construction. The remote control station shall be a standard 19 inch electronics
rack type surface mount panel with all devices wired to a terminal strip on the back.
2.4.3.3
(Option) Panel shall be equipped with a timer circuit to notify the operator via an
annunciator "squealer" that the Bollard has been left in the down position for too
long a time period. The time interval shall be customer selectable.
Copyright 2003 Delta Scientific Corporation
Page 4 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
2.4.4
Remote Control Slave Panel. A remote control slave panel shall also be supplied to control
the Bollard operation. This panel shall have a "panel on" light that is lit when enabled by a
switch on the remote control master panel. Buttons to raise or lower each Bollard (or set)
shall be provided. Bollard "up" and "down" indicator lights shall be included for each Bollard
(or set). The emergency fast operate (EFO) feature shall be operated from a push button
larger than the normal controls (optionally a covered toggle switch). When the slave panel
EFO is pushed, an EFO "active" lamp will light and operation of the Bollard(s) will not be
possible until reset at the master panel.
2.4.4.1
Voltage. The remote control panel shall operate on 24 VDC.
2.4.4.2
Construction. The remote control station shall be a standard 19 inch electronics
rack type surface mount panel with all devices wired to a terminal strip on the back.
2.4.4.3
(Option) Panel shall be equipped with a timer circuit to notify the operator via an
annunciator "squealer" that the Bollard has been left in the down position for too
long a time period. The time interval shall be customer selectable. The alarm is
reset when the Bollards are returned to the up position.
3.0
ACCESSORY EQUIPMENT Any or all of the following may be selected.:
3.1
Auxiliary Emergency Fast Operate Circuit. A separate hydraulic circuit consisting of a
pressure reserve source, operating control logic and interconnect lines and valves shall
be supplied. This circuit shall provide an available source of power to operate the
Bollard(s) at emergency fast speed (as specified in 4.4.2), even after power off or manual
operation or high frequency operation has depleted the normal reserve capacity. This
system will operate in conjunction with and from normal EFO controls.
3.2
Electro-Mechanical Signal Gate. A electrically operated wood arm signal gate shall be
supplied to alert vehicle drivers of the Bollard position. The gate operate shall interface
with the Bollard at the control circuit. The control circuit shall close the gate at the Bollard
"up" command and remain closed until the Bollard is fully lowered. The wood arm shall be
___ foot ( 6, 8, 10 or 12 foot can be specified) long and be striped with reflective
yellow/black tape. The gate assembly shall be mountable directly to the roadway surface.
3.3
Stop/Go Traffic Lights. Red/Green 8 inch traffic lights shall be supplied to alert vehicle
drivers of the Bollard position. The green light shall indicate that the Bollard is fully down.
All other positions shall cause the light to show red. Brackets shall be supplied to allow
light(s) to be located on a (3.5 inch OD post) (wall) (3.5 inch OD post - back to back). The
light operating voltage shall be 120 volts (alternately 240 volts), power consumption 40
watts per light.
3.4
Sump Pump. A self priming sump pump shall be supplied to drain water collected in the
Bollard foundation. The pump shall have the capacity to remove ____ inches per minute of
rainfall a distance of ______ feet to customer supplied discharge drain. Pump operating
voltage shall be 120/1/50-60 (alternately 240/1/50-60).
Copyright 2003 Delta Scientific Corporation
Page 5 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
3.5
Safety Interlock Detector. A Bollard vehicle detector safety loop shall be supplied to
prevent the Bollard from being accidentally raised under an authorized vehicle. The
detector shall utilize digital logic have fully automatic tuning for stable and accurate long
term reliability. The output of the detector shall delay any Bollard rise signal (except for
EFO command) when a vehicle is over the loop.
3.6
Enhanced Power Off Capability. The hydraulic accumulator shall be sized to provide ____
full cycle operations of a single Bollard (or sets of Bollards).
3.7
Weather Resistant HPU Enclosure. A lockable weather resistant enclosure shall be
provided for the HPU. The design shall provide for easy access to the HPU for
maintenance and emergency operation of the hydraulic system. Enclosure shall be
provided with a corrosion resistant coating and shall be 60 inches W x 36 inches D x 60
inches H (1524 mm W x 914 mm D x 1524 mm H).
4.0
PERFORMANCE
4.1
EXPERIENCE. Bollard and auxiliary equipment shall be of proven design. Manufacturer
shall have over 1700 Bollard type vehicle barriers in field operation for a minimum of 5
years with documented field experience for all major components and design features.
4.2
QUALIFICATION TESTS. Bollard design shall have successfully passed actual full scale
crash tests conducted by a qualified independent agency.
4.2.1
Performance Evaluation. The Bollard shall have been certified by the United States
Department of State to have a performance evaluation per D.O.S. Specification SD-SDT0201 (Dated April 1985) of K8/L2.
4.3
STOPPING CAPACITY.
4.3.1
Normal Operation. Bollard(s) shall provide excellent security and positive control of normal
traffic in both directions by providing an almost insurmountable obstacle to non-armored or
non-tracked vehicles. The Bollard system shall be designed to stop a vehicle attacking
from either direction and continue to operate when the vehicle is within the weight and
velocity characteristics as defined in paragraph 4.3.1.1, minor repairs excepted.
4.3.2
High Energy Attack. Bollard(s) shall be designed to stop and immobilize nonarmored or non-tracked vehicles with weight and velocity characteristics as
defined in paragraph 4.3.2.1. The Bollard system shall be designed to destroy the
front suspension system, steering linkage, engine crank case and portions of the
drive train. Significant damage to the Bollard system is probable at these levels.
4.3.2.1
The Bollard shall be capable of stopping and destroying a vehicle(s) weighing:
15,000 pounds at 71 mph (2.5E6 LB-FT)
30,000 pounds at 52 mph (2.71E6 LB-FT)
Copyright 2003 Delta Scientific Corporation
Page 6 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
4.4
SPEED OF OPERATION.
4.4.1
Normal Operation. Each Bollard (or set) shall be capable of being raised or lowered in 3 to
15 seconds (customer adjustable) when operated at a repetition rate not greater than
specified in paragraph 4.5. Bollard direction shall be instantly reversible at any point in its
cycle from the control stations.
4.4.2
Emergency Fast Operation. Bollard shall rise to the guard position from fully down in 1.5
seconds maximum when the emergency fast operate button is pushed provided the
system has not previously been exhausted by power off or manual operation or high
speed cycle rates exceeding that specified in paragraph 4.5. Bollard shall remain in the up
and locked position (normal up/down buttons inoperable) until the EFO condition is reset.
(See 3.1 for auxiliary emergency fast operate system option.)
4.5
FREQUENCY OF OPERATION. Bollard shall be capable of ____ (specify up to 200
cycles per hour) complete up/down cycles per hour.
5.0
ENVIRONMENTAL DATA (Please supply the following):
Bollard shall operate satisfactorily under the following environmental conditions:
5.1
Extremes in temperature
Yearly maximum drybulb temp ______f/c
Yearly minimum drybulb temp ______f/c
5.2
Rainfall
Yearly average ______inches
Maximum expected hourly rate______inches/hour
5.3
Snowfall
Maximum expected hourly rate______ inches/hour
Roadway will be (mechanically/manually/chemically) cleared ________.
6.0
QUALITY ASSURANCE PROVISIONS
6.1
Testing. Upon completion, the Bollard system will be fully tested in the manufacturer's
shop. In addition to complete cycle testing to verify function and operating speeds, the
following checks shall be made:
6.1.1
Identification. A nameplate with manufacturer's name, model number, serial number and
year built shall be located within the maintenance access area.
6.1.2
Workmanship. The Bollard and subsystems shall have a neat and workmanlike
appearance.
6.1.3
Dimensions. Principal dimensions shall be checked against drawings and ordering
information.
Copyright 2003 Delta Scientific Corporation
Page 7 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
6.1.4
Finish. Coatings shall be checked against ordering information and shall be workmanlike in
appearance.
7.0
PREPARATION FOR SHIPMENT
7.1
The Bollard system shall be crated or mounted on skids as necessary to prevent damage
from handling. The shipping container(s) shall be of sufficient structural integrity to enable
the assembly to be lifted and transported by overhead crane or forklift without failure.
8.0
MANUFACTURER'S DATA
8.1
Drawings and installation data. The Bollard system drawings and installation, maintenance
and operating manuals shall be sent to purchaser within 4 weeks of order. ___ additional
copies shall be supplied (1 copy supplied at no cost).
9.0
DISCLAIMER
Please note - careful consideration must be devoted to the selection, placement and
design of a Bollard installation. Just as in the case of any Barricade system, perimeter
security device or security gate that blocks a roadway or drive, care must be taken to
ensure that approaching vehicles as well as pedestrians are fully aware of the Bollards
and their operation. Proper illumination, clearly worded warning signs, auxiliary devices
such as semaphore gates, stop-go signal lights, audible warning devices, speed bumps,
flashing lights, beacons, etc. should be considered. Delta has information available on
many such auxiliary safety equipment not specifically listed herein. It is strongly
recommended that an architect and or a traffic and or safety engineer be consulted prior
to installation of a Bollard system. Delta will offer all possible assistance in designing the
operating equipment, controls and the overall system but we are not qualified nor do we
purport to offer either traffic or safety engineering information.
10.0
PROCUREMENT SOURCE
The Model DSC701 Bollard Barricade System shall be purchased from:
DELTA SCIENTIFIC CORPORATION
40355 Delta Lane
Palmdale, California, 93551, USA
Phone (661)575-1100
FAX (661)575-1109
email [email protected]
[email protected]
www.deltascientific.com
Copyright 2003 Delta Scientific Corporation
Page 8 of 8
All Rights Reserved
Document: Procurement Specification, Model DSC701
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement