The Free High School Science Texts: Textbooks for High School Students Chemistry

The Free High School Science Texts: Textbooks for High School Students Chemistry
FHSST Authors
The Free High School Science Texts:
Textbooks for High School Students
Studying the Sciences
Chemistry
Grades 10 - 12
Version 0
November 9, 2008
ii
Copyright 2007 “Free High School Science Texts”
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.
STOP!!!!
Did you notice the FREEDOMS we’ve granted you?
Our copyright license is different! It grants freedoms
rather than just imposing restrictions like all those other
textbooks you probably own or use.
• We know people copy textbooks illegally but we would LOVE it if you copied
our’s - go ahead copy to your hearts content, legally!
• Publishers’ revenue is generated by controlling the market, we don’t want any
money, go ahead, distribute our books far and wide - we DARE you!
• Ever wanted to change your textbook? Of course you have! Go ahead, change
ours, make your own version, get your friends together, rip it apart and put
it back together the way you like it. That’s what we really want!
• Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do
it all, do it with your colleagues, your friends, or alone but get involved!
Together we can overcome the challenges our complex and diverse country
presents.
• So what is the catch? The only thing you can’t do is take this book, make
a few changes and then tell others that they can’t do the same with your
changes. It’s share and share-alike and we know you’ll agree that is only fair.
• These books were written by volunteers who want to help support education,
who want the facts to be freely available for teachers to copy, adapt and
re-use. Thousands of hours went into making them and they are a gift to
everyone in the education community.
FHSST Core Team
Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton
FHSST Editors
Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield
FHSST Contributors
Rory Adams ; Prashant Arora ; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ;
Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura
Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni
Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr.
Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom
Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ;
Nicholas Hatcher ; Dr. Mark Horner ; Robert Hovden ; Mfandaidza Hove ; Jennifer Hsieh ;
Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ;
Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek ; Dr. Komal Maheshwari ;
Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ;
Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ;
Tyrone Negus ; Thomas O’Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ;
Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya
Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean
Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ;
Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon ; Mike Stringer ;
Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle
Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ;
Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal
Yacoob ; Jean Youssef
Contributors and editors have made a sincere effort to produce an accurate and useful resource.
Should you have suggestions, find mistakes or be prepared to donate material for inclusion,
please don’t hesitate to contact us. We intend to work with all who are willing to help make
this a continuously evolving resource!
www.fhsst.org
iii
iv
Contents
I
II
Introduction
1
Matter and Materials
3
1 Classification of Matter - Grade 10
1.1
1.2
5
Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
1.1.1
Heterogeneous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
1.1.2
Homogeneous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
1.1.3
Separating mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
Pure Substances: Elements and Compounds . . . . . . . . . . . . . . . . . . . .
9
1.2.1
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
1.2.2
Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
1.3
Giving names and formulae to substances . . . . . . . . . . . . . . . . . . . . . 10
1.4
Metals, Semi-metals and Non-metals . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1
Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2
Non-metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3
Semi-metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5
Electrical conductors, semi-conductors and insulators . . . . . . . . . . . . . . . 14
1.6
Thermal Conductors and Insulators . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7
Magnetic and Non-magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . 17
1.8
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 What are the objects around us made of? - Grade 10
21
2.1
Introduction: The atom as the building block of matter . . . . . . . . . . . . . . 21
2.2
Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1
Representing molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3
Intramolecular and intermolecular forces . . . . . . . . . . . . . . . . . . . . . . 25
2.4
The Kinetic Theory of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5
The Properties of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 The Atom - Grade 10
3.1
35
Models of the Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1
The Plum Pudding Model . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2
Rutherford’s model of the atom
v
. . . . . . . . . . . . . . . . . . . . . . 36
CONTENTS
3.1.3
3.2
3.3
CONTENTS
The Bohr Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
How big is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1
How heavy is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2
How big is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Atomic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1
The Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2
The Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4
Atomic number and atomic mass number . . . . . . . . . . . . . . . . . . . . . 40
3.5
Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6
3.7
3.8
3.9
3.5.1
What is an isotope? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2
Relative atomic mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Energy quantisation and electron configuration . . . . . . . . . . . . . . . . . . 46
3.6.1
The energy of electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.2
Energy quantisation and line emission spectra . . . . . . . . . . . . . . . 47
3.6.3
Electron configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.4
Core and valence electrons . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.5
The importance of understanding electron configuration . . . . . . . . . 51
Ionisation Energy and the Periodic Table . . . . . . . . . . . . . . . . . . . . . . 53
3.7.1
Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.2
Ionisation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
The Arrangement of Atoms in the Periodic Table . . . . . . . . . . . . . . . . . 56
3.8.1
Groups in the periodic table
. . . . . . . . . . . . . . . . . . . . . . . . 56
3.8.2
Periods in the periodic table . . . . . . . . . . . . . . . . . . . . . . . . 58
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Atomic Combinations - Grade 11
63
4.1
Why do atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2
Energy and bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3
What happens when atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4
Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1
The nature of the covalent bond . . . . . . . . . . . . . . . . . . . . . . 65
4.5
Lewis notation and molecular structure . . . . . . . . . . . . . . . . . . . . . . . 69
4.6
Electronegativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7
4.8
4.6.1
Non-polar and polar covalent bonds . . . . . . . . . . . . . . . . . . . . 73
4.6.2
Polar molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Ionic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.1
The nature of the ionic bond . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.2
The crystal lattice structure of ionic compounds . . . . . . . . . . . . . . 76
4.7.3
Properties of Ionic Compounds . . . . . . . . . . . . . . . . . . . . . . . 76
Metallic bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8.1
The nature of the metallic bond . . . . . . . . . . . . . . . . . . . . . . 76
4.8.2
The properties of metals . . . . . . . . . . . . . . . . . . . . . . . . . . 77
vi
CONTENTS
4.9
CONTENTS
Writing chemical formulae
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.9.1
The formulae of covalent compounds . . . . . . . . . . . . . . . . . . . . 78
4.9.2
The formulae of ionic compounds . . . . . . . . . . . . . . . . . . . . . 80
4.10 The Shape of Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10.1 Valence Shell Electron Pair Repulsion (VSEPR) theory . . . . . . . . . . 82
4.10.2 Determining the shape of a molecule . . . . . . . . . . . . . . . . . . . . 82
4.11 Oxidation numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5 Intermolecular Forces - Grade 11
91
5.1
Types of Intermolecular Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2
Understanding intermolecular forces . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3
Intermolecular forces in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6 Solutions and solubility - Grade 11
101
6.1
Types of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2
Forces and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3
Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7 Atomic Nuclei - Grade 11
107
7.1
Nuclear structure and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2
The Discovery of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3
Radioactivity and Types of Radiation . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4
7.3.1
Alpha (α) particles and alpha decay . . . . . . . . . . . . . . . . . . . . 109
7.3.2
Beta (β) particles and beta decay . . . . . . . . . . . . . . . . . . . . . 109
7.3.3
Gamma (γ) rays and gamma decay . . . . . . . . . . . . . . . . . . . . . 110
Sources of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.1
Natural background radiation . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.2
Man-made sources of radiation . . . . . . . . . . . . . . . . . . . . . . . 113
7.5
The ’half-life’ of an element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6
The Dangers of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.7
The Uses of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.8
Nuclear Fission
7.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.8.1
The Atomic bomb - an abuse of nuclear fission . . . . . . . . . . . . . . 119
7.8.2
Nuclear power - harnessing energy . . . . . . . . . . . . . . . . . . . . . 120
Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.10 Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.10.1 Age of Nucleosynthesis (225 s - 103 s) . . . . . . . . . . . . . . . . . . . 121
7.10.2 Age of Ions (103 s - 1013 s) . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.10.3 Age of Atoms (1013 s - 1015 s) . . . . . . . . . . . . . . . . . . . . . . . 122
7.10.4 Age of Stars and Galaxies (the universe today) . . . . . . . . . . . . . . 122
7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
vii
CONTENTS
CONTENTS
8 Thermal Properties and Ideal Gases - Grade 11
125
8.1
A review of the kinetic theory of matter . . . . . . . . . . . . . . . . . . . . . . 125
8.2
Boyle’s Law: Pressure and volume of an enclosed gas . . . . . . . . . . . . . . . 126
8.3
Charles’s Law: Volume and Temperature of an enclosed gas . . . . . . . . . . . 132
8.4
The relationship between temperature and pressure . . . . . . . . . . . . . . . . 136
8.5
The general gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.6
The ideal gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.7
Molar volume of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.8
Ideal gases and non-ideal gas behaviour . . . . . . . . . . . . . . . . . . . . . . 146
8.9
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9 Organic Molecules - Grade 12
151
9.1
What is organic chemistry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2
Sources of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.3
Unique properties of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.4
Representing organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.4.1
Molecular formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.4.2
Structural formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.4.3
Condensed structural formula . . . . . . . . . . . . . . . . . . . . . . . . 153
9.5
Isomerism in organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.6
Functional groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.7
The Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.7.1
The Alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.7.2
Naming the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.7.3
Properties of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.7.4
Reactions of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.7.5
The alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.7.6
Naming the alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.7.7
The properties of the alkenes . . . . . . . . . . . . . . . . . . . . . . . . 169
9.7.8
Reactions of the alkenes
9.7.9
The Alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
. . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.7.10 Naming the alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.8
9.9
The Alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.8.1
Naming the alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.8.2
Physical and chemical properties of the alcohols . . . . . . . . . . . . . . 175
Carboxylic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.9.1
Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.9.2
Derivatives of carboxylic acids: The esters . . . . . . . . . . . . . . . . . 178
9.10 The Amino Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.11 The Carbonyl Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
viii
CONTENTS
CONTENTS
10 Organic Macromolecules - Grade 12
185
10.1 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.2 How do polymers form? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.2.1 Addition polymerisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.2.2 Condensation polymerisation . . . . . . . . . . . . . . . . . . . . . . . . 188
10.3 The chemical properties of polymers . . . . . . . . . . . . . . . . . . . . . . . . 190
10.4 Types of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.5 Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.5.1 The uses of plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.5.2 Thermoplastics and thermosetting plastics . . . . . . . . . . . . . . . . . 194
10.5.3 Plastics and the environment . . . . . . . . . . . . . . . . . . . . . . . . 195
10.6 Biological Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.6.1 Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10.6.2 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.6.3 Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
III
Chemical Change
209
11 Physical and Chemical Change - Grade 10
211
11.1 Physical changes in matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.2 Chemical Changes in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
11.2.1 Decomposition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.2.2 Synthesis reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.3 Energy changes in chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . 217
11.4 Conservation of atoms and mass in reactions . . . . . . . . . . . . . . . . . . . . 217
11.5 Law of constant composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.6 Volume relationships in gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
12 Representing Chemical Change - Grade 10
223
12.1 Chemical symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.2 Writing chemical formulae
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.3 Balancing chemical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.3.1 The law of conservation of mass . . . . . . . . . . . . . . . . . . . . . . 224
12.3.2 Steps to balance a chemical equation
. . . . . . . . . . . . . . . . . . . 226
12.4 State symbols and other information . . . . . . . . . . . . . . . . . . . . . . . . 230
12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
13 Quantitative Aspects of Chemical Change - Grade 11
233
13.1 The Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
13.2 Molar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
13.3 An equation to calculate moles and mass in chemical reactions . . . . . . . . . . 237
ix
CONTENTS
13.4 Molecules and compounds
CONTENTS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.5 The Composition of Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
13.6 Molar Volumes of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
13.7 Molar concentrations in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.8 Stoichiometric calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
14 Energy Changes In Chemical Reactions - Grade 11
255
14.1 What causes the energy changes in chemical reactions? . . . . . . . . . . . . . . 255
14.2 Exothermic and endothermic reactions . . . . . . . . . . . . . . . . . . . . . . . 255
14.3 The heat of reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
14.4 Examples of endothermic and exothermic reactions . . . . . . . . . . . . . . . . 259
14.5 Spontaneous and non-spontaneous reactions . . . . . . . . . . . . . . . . . . . . 260
14.6 Activation energy and the activated complex . . . . . . . . . . . . . . . . . . . . 261
14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
15 Types of Reactions - Grade 11
267
15.1 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
15.1.1 What are acids and bases? . . . . . . . . . . . . . . . . . . . . . . . . . 267
15.1.2 Defining acids and bases . . . . . . . . . . . . . . . . . . . . . . . . . . 267
15.1.3 Conjugate acid-base pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 269
15.1.4 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
15.1.5 Acid-carbonate reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 274
15.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
15.2.1 Oxidation and reduction
. . . . . . . . . . . . . . . . . . . . . . . . . . 277
15.2.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
15.3 Addition, substitution and elimination reactions . . . . . . . . . . . . . . . . . . 280
15.3.1 Addition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
15.3.2 Elimination reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
15.3.3 Substitution reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
15.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
16 Reaction Rates - Grade 12
287
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
16.2 Factors affecting reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
16.3 Reaction rates and collision theory . . . . . . . . . . . . . . . . . . . . . . . . . 293
16.4 Measuring Rates of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
16.5 Mechanism of reaction and catalysis . . . . . . . . . . . . . . . . . . . . . . . . 297
16.6 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
16.6.1 Open and closed systems . . . . . . . . . . . . . . . . . . . . . . . . . . 302
16.6.2 Reversible reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
16.6.3 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
16.7 The equilibrium constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
x
CONTENTS
CONTENTS
16.7.1 Calculating the equilibrium constant . . . . . . . . . . . . . . . . . . . . 305
16.7.2 The meaning of kc values . . . . . . . . . . . . . . . . . . . . . . . . . . 306
16.8 Le Chatelier’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
16.8.1 The effect of concentration on equilibrium . . . . . . . . . . . . . . . . . 310
16.8.2 The effect of temperature on equilibrium . . . . . . . . . . . . . . . . . . 310
16.8.3 The effect of pressure on equilibrium . . . . . . . . . . . . . . . . . . . . 312
16.9 Industrial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
16.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
17 Electrochemical Reactions - Grade 12
319
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
17.2 The Galvanic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
17.2.1 Half-cell reactions in the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . 321
17.2.2 Components of the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . . . . 322
17.2.3 The Galvanic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
17.2.4 Uses and applications of the galvanic cell . . . . . . . . . . . . . . . . . 324
17.3 The Electrolytic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
17.3.1 The electrolysis of copper sulphate . . . . . . . . . . . . . . . . . . . . . 326
17.3.2 The electrolysis of water . . . . . . . . . . . . . . . . . . . . . . . . . . 327
17.3.3 A comparison of galvanic and electrolytic cells . . . . . . . . . . . . . . . 328
17.4 Standard Electrode Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
17.4.1 The different reactivities of metals . . . . . . . . . . . . . . . . . . . . . 329
17.4.2 Equilibrium reactions in half cells . . . . . . . . . . . . . . . . . . . . . . 329
17.4.3 Measuring electrode potential . . . . . . . . . . . . . . . . . . . . . . . . 330
17.4.4 The standard hydrogen electrode . . . . . . . . . . . . . . . . . . . . . . 330
17.4.5 Standard electrode potentials . . . . . . . . . . . . . . . . . . . . . . . . 333
17.4.6 Combining half cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
17.4.7 Uses of standard electrode potential . . . . . . . . . . . . . . . . . . . . 338
17.5 Balancing redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
17.6 Applications of electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 347
17.6.1 Electroplating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
17.6.2 The production of chlorine . . . . . . . . . . . . . . . . . . . . . . . . . 348
17.6.3 Extraction of aluminium
. . . . . . . . . . . . . . . . . . . . . . . . . . 349
17.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
IV
Chemical Systems
353
18 The Water Cycle - Grade 10
355
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
18.2 The importance of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
18.3 The movement of water through the water cycle . . . . . . . . . . . . . . . . . . 356
18.4 The microscopic structure of water . . . . . . . . . . . . . . . . . . . . . . . . . 359
xi
CONTENTS
CONTENTS
18.4.1 The polar nature of water . . . . . . . . . . . . . . . . . . . . . . . . . . 359
18.4.2 Hydrogen bonding in water molecules . . . . . . . . . . . . . . . . . . . 359
18.5 The unique properties of water . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
18.6 Water conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
19 Global Cycles: The Nitrogen Cycle - Grade 10
369
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
19.2 Nitrogen fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
19.3 Nitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
19.4 Denitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
19.5 Human Influences on the Nitrogen Cycle . . . . . . . . . . . . . . . . . . . . . . 372
19.6 The industrial fixation of nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . 373
19.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
20 The Hydrosphere - Grade 10
377
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
20.2 Interactions of the hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
20.3 Exploring the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
20.4 The Importance of the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . 379
20.5 Ions in aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
20.5.1 Dissociation in water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
20.5.2 Ions and water hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
20.5.3 The pH scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
20.5.4 Acid rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
20.6 Electrolytes, ionisation and conductivity . . . . . . . . . . . . . . . . . . . . . . 386
20.6.1 Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
20.6.2 Non-electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
20.6.3 Factors that affect the conductivity of water . . . . . . . . . . . . . . . . 387
20.7 Precipitation reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
20.8 Testing for common anions in solution . . . . . . . . . . . . . . . . . . . . . . . 391
20.8.1 Test for a chloride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
20.8.2 Test for a sulphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
20.8.3 Test for a carbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
20.8.4 Test for bromides and iodides . . . . . . . . . . . . . . . . . . . . . . . . 392
20.9 Threats to the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
20.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
21 The Lithosphere - Grade 11
397
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
21.2 The chemistry of the earth’s crust . . . . . . . . . . . . . . . . . . . . . . . . . 398
21.3 A brief history of mineral use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
21.4 Energy resources and their uses . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
xii
CONTENTS
CONTENTS
21.5 Mining and Mineral Processing: Gold . . . . . . . . . . . . . . . . . . . . . . . . 401
21.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
21.5.2 Mining the Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
21.5.3 Processing the gold ore . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
21.5.4 Characteristics and uses of gold . . . . . . . . . . . . . . . . . . . . . . . 402
21.5.5 Environmental impacts of gold mining . . . . . . . . . . . . . . . . . . . 404
21.6 Mining and mineral processing: Iron . . . . . . . . . . . . . . . . . . . . . . . . 406
21.6.1 Iron mining and iron ore processing . . . . . . . . . . . . . . . . . . . . . 406
21.6.2 Types of iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
21.6.3 Iron in South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
21.7 Mining and mineral processing: Phosphates . . . . . . . . . . . . . . . . . . . . 409
21.7.1 Mining phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
21.7.2 Uses of phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
21.8 Energy resources and their uses: Coal . . . . . . . . . . . . . . . . . . . . . . . 411
21.8.1 The formation of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
21.8.2 How coal is removed from the ground . . . . . . . . . . . . . . . . . . . 411
21.8.3 The uses of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
21.8.4 Coal and the South African economy . . . . . . . . . . . . . . . . . . . . 412
21.8.5 The environmental impacts of coal mining . . . . . . . . . . . . . . . . . 413
21.9 Energy resources and their uses: Oil . . . . . . . . . . . . . . . . . . . . . . . . 414
21.9.1 How oil is formed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
21.9.2 Extracting oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
21.9.3 Other oil products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
21.9.4 The environmental impacts of oil extraction and use . . . . . . . . . . . 415
21.10Alternative energy resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
21.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
22 The Atmosphere - Grade 11
421
22.1 The composition of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . 421
22.2 The structure of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 422
22.2.1 The troposphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
22.2.2 The stratosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
22.2.3 The mesosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
22.2.4 The thermosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
22.3 Greenhouse gases and global warming . . . . . . . . . . . . . . . . . . . . . . . 426
22.3.1 The heating of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . 426
22.3.2 The greenhouse gases and global warming . . . . . . . . . . . . . . . . . 426
22.3.3 The consequences of global warming . . . . . . . . . . . . . . . . . . . . 429
22.3.4 Taking action to combat global warming . . . . . . . . . . . . . . . . . . 430
22.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
xiii
CONTENTS
CONTENTS
23 The Chemical Industry - Grade 12
435
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
23.2 Sasol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
23.2.1 Sasol today: Technology and production . . . . . . . . . . . . . . . . . . 436
23.2.2 Sasol and the environment . . . . . . . . . . . . . . . . . . . . . . . . . 440
23.3 The Chloralkali Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
23.3.1 The Industrial Production of Chlorine and Sodium Hydroxide . . . . . . . 442
23.3.2 Soaps and Detergents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
23.4 The Fertiliser Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
23.4.1 The value of nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
23.4.2 The Role of fertilisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
23.4.3 The Industrial Production of Fertilisers . . . . . . . . . . . . . . . . . . . 451
23.4.4 Fertilisers and the Environment: Eutrophication . . . . . . . . . . . . . . 454
23.5 Electrochemistry and batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
23.5.1 How batteries work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
23.5.2 Battery capacity and energy . . . . . . . . . . . . . . . . . . . . . . . . 457
23.5.3 Lead-acid batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
23.5.4 The zinc-carbon dry cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
23.5.5 Environmental considerations . . . . . . . . . . . . . . . . . . . . . . . . 460
23.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
A GNU Free Documentation License
467
xiv
Chapter 11
Physical and Chemical Change Grade 10
Matter is all around us. The desks we sit at, the air we breathe and the water we drink, are all
examples of matter. But matter doesn’t always stay the same. It can change in many different
ways. In this chapter, we are going to take a closer look at physical and chemical changes that
occur in matter.
11.1
Physical changes in matter
A physical change is one where the particles of the substances that are involved in the change
are not broken up in any way. When water is heated for example, the temperature and energy
of the water molecules increases and the liquid water evaporates to form water vapour. When
this happens, some kind of change has taken place, but the molecular structure of the water has
not changed. This is an example of a physical change.
H2 O(l) → H2 O(g)
Conduction (the transfer of energy through a material) is another example of a physical change.
As energy is transferred from one material to another, the energy of each material is changed,
but not its chemical makeup. Dissolving one substance in another is also a physical change.
Definition: Physical change
A change that can be seen or felt, but that doesn’t involve the break up of the particles in
the reaction. During a physical change, the form of matter may change, but not its identity.
A change in temperature is an example of a physical change.
There are some important things to remember about physical changes in matter:
• Arrangement of particles
When a physical change occurs, the particles (e.g. atoms, molecules) may re-arrange
themselves without actually breaking up in any way. In the example of evaporation that
we used earlier, the water molecules move further apart as their temperature (and therefore
energy) increases. The same would be true if ice were to melt. In the solid phase, water
molecules are packed close together in a very ordered way, but when the ice is heated, the
molecules overcome the forces holding them together and they move apart. Once again,
the particles have re-arranged themselves, but have not broken up.
H2 O(s) → H2 O(l)
211
11.2
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
solid
gas
liquid
Figure 11.1: The arrangement of water molecules in the three phases of matter
Figure 11.1 shows this more clearly. In each phase of water, the water molecule itself stays
the same, but the way the molecules are arranged has changed.
In a physical change, the total mass, the number of atoms and the number of molecules
will always stay the same.
• Energy changes
Energy changes may take place when there is a physical change in matter, but these energy
changes are normally smaller than the energy changes that take place during a chemical
change.
• Reversibility
Physical changes in matter are usually easier to reverse than chemical changes. Water
vapour for example, can be changed back to liquid water if the temperature is lowered.
Liquid water can be changed into ice by simply increasing the temperature, and so on.
11.2
Chemical Changes in Matter
When a chemical change takes place, new substances are formed in a chemical reaction. These
new products may have very different properties from the substances that were there at the start
of the reaction.
The breakdown of copper(II) chloride to form copper and chlorine is an example of chemical
change. A simplified diagram of this reaction is shown in figure 11.2. In this reaction, the initial
substance is copper(II) chloride but, once the reaction is complete, the products are copper and
chlorine.
Cl
Cu
Cl
Cu
+
Cl
Cl
CuCl2 → Cu + Cl2
Figure 11.2: The decomposition of copper(II) chloride to form copper and chlorine
Definition: Chemical change
The formation of new substances in a chemical reaction. One type of matter is changed
into something different.
There are some important things to remember about chemical changes:
• Arrangement of particles
212
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
11.2
During a chemical change, the particles themselves are changed in some way. In the
example of copper (II) chloride that was used earlier, the CuCl2 molecules were split
up into their component atoms. The number of particles will change because each one
CuCl2 molecule breaks down into one copper atom (Cu) and one chlorine molecule (Cl2 ).
However, what you should have noticed, is that the number of atoms of each element
stays the same, as does the total mass of the atoms. This will be discussed in more detail
in a later section.
• Energy changes
The energy changes that take place during a chemical reaction are much greater than those
that take place during a physical change in matter. During a chemical reaction, energy
is used up in order to break bonds, and then energy is released when the new product is
formed. This will be discussed in more detail in section ??.
• Reversibility
Chemical changes are far more difficult to reverse than physical changes.
Two types of chemical reactions are decomposition reactions and synthesis reactions.
11.2.1
Decomposition reactions
A decomposition reaction occurs when a chemical compound is broken down into elements or
smaller compounds. The generalised equation for a decomposition reaction is:
AB → A + B
One example of such a reaction is the decomposition of hydrogen peroxide (figure 11.3) to form
hydrogen and oxygen according to the following equation:
2H2 O2 → 2H2 O + O2
H
H
O
O
H
H
H
O
H
O
H
H
+
O
O
Figure 11.3: The decomposition of H2 O2 to form H2 O and O2
The decomposition of mercury (II) oxide is another example.
Activity :: Experiment : The decomposition of mercury (II) oxide
Aim:
To observe the decomposition of mercury (II) oxide when it is heated.
Note: Because this experiment involves mercury, which is a poisonous substance,
it should be done in a fume cupboard, and all the products of the reaction must be
very carefully disposed of.
Apparatus:
Mercury (II) oxide (an orange-red product); two test tubes; a large beaker; stopper and delivery tube; Bunsen burner; wooden splinter.
213
O
O
11.2
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
delivery
tube
c cb
b
c
b
rubber
stopper
b bc
c
c
b
bc bc
c b
c
cb
b
bc bc
c bc
b
cbc
b
bubbles of
oxygen gas
collecting in
second test
tube
mercury
(II) oxide
water
bunsen
burner
Method:
1. Put a small amount of mercury (II) oxide in a test tube and heat it gently over
a Bunsen burner. Then allow it to cool. What do you notice about the colour
of the mercury (II) oxide?
2. Heat the test tube again, and note what happens. Do you notice anything on
the walls of the test tube? Record these observations.
3. Test for the presence of oxygen using a glowing splinter.
Results:
• During the first heating of mercury (II) oxide, the only change that took place
was a change in colour from orange-red to black and then back to its original
colour.
• When the test tube was heated again, deposits of mercury formed on the inner
surface of the test tube. What colour is this mercury?
• The glowing splinter burst into flame when it was placed in the test tube,
meaning that oxygen is present.
Conclusions:
When mercury is heated, it decomposes to form mercury and oxygen. The
chemical decomposition reaction that takes place can be written as follows:
2HgO → 2Hg + O2
11.2.2
Synthesis reactions
During a synthesis reaction, a new product is formed from smaller elements or compounds.
The generalised equation for a synthesis reaction is as follows:
A + B → AB
214
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
11.2
One example of a synthesis reaction is the burning of magnesium in oxygen to form magnesium
oxide. The equation for the reaction is:
2M g + O2 → 2M gO
Figure 11.4 shows the chemical changes that take place at a microscopic level during this chemical
reaction.
Mg
Mg
+
O
O
Mg
O
Mg
Figure 11.4: The synthesis of magnesium oxide (MgO) from magnesium and oxygen
Activity :: Experiment : Chemical reactions involving iron and sulfur
Aim:
To demonstrate the synthesis of iron sulfide from iron and sulfur.
Apparatus:
5.6 g iron filings and 3.2 g powdered sulfur; porcelain dish; test tube; bunsen
burner
Method:
1. Before you carry out the experiment, write a balanced equation for the reaction
you expect will take place.
2. Measure the quantity of iron and sulfur that you need and mix them in a
porcelain dish.
3. Take some of this mixture and place it in the test tube. The test tube should
be about 1/3 full.
4. This reaction should ideally take place in a fume cupboard. Heat the test tube
containing the mixture over the Bunsen burner. Increase the heat if no reaction
takes place. Once the reaction begins, you will need to remove the test tube
from the flame. Record your observations.
215
O
11.2
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
5. Wait for the product to cool before breaking the test tube with a hammer.
Make sure that the test tube is rolled in paper before you do this, otherwise
the glass will shatter everywhere and you may be hurt.
6. What does the product look like? Does it look anything like the original reactants? Does it have any of the properties of the reactants (e.g. the magnetism
of iron)?
Results:
• After you removed the test tube from the flame, the mixture glowed a bright
red colour. The reaction is exothermic and produces energy.
• The product, iron sulfide, is a dark colour and does not share any of the
properties of the original reactants. It is an entirely new product.
Conclusions:
A synthesis reaction has taken place. The equation for the reaction is:
F e + S → F eS
Activity :: Investigation : Physical or chemical change?
Apparatus:
Bunsen burner, 4 test tubes, a test tube rack and a test tube holder, small
spatula, pipette, magnet, a birthday candle, NaCl (table salt), 0.1M AgNO3 , 6M
HCl, magnesium ribbon, iron filings, sulfur.
Method:
1. Place a small amount of wax from a birthday candle into a test tube and heat
it over the bunsen burner until it melts. Leave it to cool.
2. Add a small spatula of NaCl to 5 ml water in a test tube and shake. Then use
the pipette to add 10 drops of AgNO3 to the sodium chloride solution.
3. Take a 5 cm piece of magnesium ribbon and tear it into 1 cm pieces. Place
two of these pieces into a test tube and add a few drops of 6M HCl. NOTE:
Be very careful when you handle this acid because it can cause major burns.
4. Take about 0.5 g iron filings and 0.5 g sulfur. Test each substance with a
magnet. Mix the two samples in a test tube, and run a magnet alongside the
outside of the test tube.
5. Now heat the test tube that contains the iron and sulfur. What changes do
you see? What happens now, if you run a magnet along the outside of the test
tube?
6. In each of the above cases, record your observations.
Questions:
Decide whether each of the following changes are physical or chemical and give
a reason for your answer in each case. Record your answers in the table below:
Description
Physical
chemical
change
melting candle wax
dissolving NaCl
mixing NaCl with AgNO3
tearing magnesium ribbon
adding HCl to magnesium ribbon
mixing iron and sulfur
heating iron and sulfur
216
or
Reason
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
11.3
11.3
Energy changes in chemical reactions
All reactions involve some change in energy. During a physical change in matter, such as the
evaporation of liquid water to water vapour, the energy of the water molecules increases. However, the change in energy is much smaller than in chemical reactions.
When a chemical reaction occurs, some bonds will break, while new bonds may form. Energy
changes in chemical reactions result from the breaking and forming of bonds. For bonds to
break, energy must be absorbed. When new bonds form, energy will be released because the
new product has a lower energy than the ’inbetween’ stage of the reaction when the bonds in
the reactants have just been broken.
In some reactions, the energy that must be absorbed to break the bonds in the reactants, is less
than the total energy that is released when new bonds are formed. This means that in the overall
reaction, energy is released. This type of reaction is known as an exothermic reaction. In other
reactions, the energy that must be absorbed to break the bonds in the reactants, is more than
the total energy that is released when new bonds are formed. This means that in the overall
reaction, energy must be absorbed from the surroundings. This type of reaction is known as an
endothermic reaction. In the earlier part of this chapter, most decomposition reactions were
endothermic, and heating was needed for the reaction to occur. Most of the synthesis reactions
were exothermic, meaning that energy was given off in the form of heat or light.
More simply, we can describe the energy changes that take place during a chemical reaction as:
Total energy absorbed to break bonds - Total energy released when new bonds form
So, for example, in the reaction...
2M g + O2 → 2M gO
Energy is needed to break the O-O bonds in the oxygen molecule so that new Mg-O bonds can
be formed, and energy is released when the product (MgO) forms.
Despite all the energy changes that seem to take place during reactions, it is important to
remember that energy cannot be created or destroyed. Energy that enters a system will have
come from the surrounding environment, and energy that leaves a system will again become part
of that environment. This principle is known as the principle of conservation of energy.
Definition: Conservation of energy principle
Energy cannot be created or destroyed. It can only be changed from one form to another.
Chemical reactions may produce some very visible, and often violent, changes. An explosion,
for example, is a sudden increase in volume and release of energy when high temperatures are
generated and gases are released. For example, NH4 NO3 can be heated to generate nitrous oxide.
Under these conditions, it is highly sensitive and can detonate easily in an explosive exothermic
reaction.
11.4
Conservation of atoms and mass in reactions
The total mass of all the substances taking part in a chemical reaction is conserved during a
chemical reaction. This is known as the law of conservation of mass. The total number of
atoms of each element also remains the same during a reaction, although these may be arranged
differently in the products.
We will use two of our earlier examples of chemical reactions to demonstrate this:
217
11.4
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
• The decomposition of hydrogen peroxide into water and oxygen
2H2 O2 → 2H2 O + O2
H
H
O
H
O
H
H
O
H
O
H
H
+
O
O
O
Left hand side of the equation
Total atomic mass = (4 × 1) + (4 × 16) = 68 u
Number of atoms of each element = (4 × H) + (4 × O)
Right hand side of the equation
Total atomic mass = (4 × 1) + (2 × 16) + (2 × 16) = 68 u
Number of atoms of each element = (4 × H) + (4 × O)
Both the atomic mass and the number of atoms of each element are conserved in the
reaction.
• The synthesis of magnesium and oxygen to form magnesium oxide
2M g + O2 → 2M gO
Mg
Mg
+
O
O
Mg
O
Mg
O
Left hand side of the equation
Total atomic mass = (2 × 24.3) + (2 × 16) = 80.6 u
Number of atoms of each element = (2 × Mg) + (2 × O)
Right hand side of the equation
Total atomic mass = (2 × 24.3) + (2 × 16) = 80.6 u
Number of atoms of each element = (2 × Mg) + (2 × O)
Both the atomic mass and the number of atoms of each element are conserved in the
reaction.
Activity :: Demonstration : The conservation of atoms in chemical reactions
Materials:
• Coloured marbles or small balls to represent atoms. Each colour will represent
a different element.
218
O
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
11.5
• Prestik
Method:
1. Choose a reaction from any that have been used in this chapter or any other
balanced chemical reaction that you can think of. To help to explain this
activity, we will use the decomposition reaction of calcium carbonate to produce
carbon dioxide and calcium oxide.
CaCO3 → CO2 + CaO
2. Stick marbles together to represent the reactants and put these on one side of
your table. In this example you may for example join one red marble (calcium),
one green marble (carbon) and three yellow marbles (oxygen) together to form
the molecule calcium carbonate (CaCO3 ).
3. Leaving your reactants on the table, use marbles to make the product molecules
and place these on the other side of the table.
4. Now count the number of atoms on each side of the table. What do you notice?
5. Observe whether there is any difference between the molecules in the reactants
and the molecules in the products.
Discussion
You should have noticed that the number of atoms in the reactants is the same
as the number of atoms in the product. The number of atoms is conserved during
the reaction. However, you will also see that the molecules in the reactants and
products is not the same. The arrangement of atoms is not conserved during the
reaction.
11.5
Law of constant composition
In any given chemical compound, the elements always combine in the same proportion with each
other. This is the law of constant proportions.
The law of constant composition says that, in any particular chemical compound, all samples
of that compound will be made up of the same elements in the same proportion or ratio. For
example, any water molecule is always made up of two hydrogen atoms and one oxygen atom in
a 2:1 ratio. If we look at the relative masses of oxygen and hydrogen in a water molecule, we
see that 94% of the mass of a water molecule is accounted for by oxygen, and the remaining 6%
is the mass of hydrogen. This mass proportion will be the same for any water molecule.
This does not mean that hydrogen and oxygen always combine in a 2:1 ratio to form H2 O.
Multiple proportions are possible. For example, hydrogen and oxygen may combine in different proportions to form H2 O2 rather than H2 O. In H2 O2 , the H:O ratio is 1:1 and the mass
ratio of hydrogen to oxygen is 1:16. This will be the same for any molecule of hydrogen peroxide.
11.6
Volume relationships in gases
In a chemical reaction between gases, the relative volumes of the gases in the reaction are present
in a ratio of small whole numbers if all the gases are at the same temperature and pressure. This
relationship is also known as Gay-Lussac’s Law.
For example, in the reaction between hydrogen and oxygen to produce water, two volumes of
H2 react with 1 volume of O2 to produce 2 volumes of H2 O.
219
11.7
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
2H2 + O2 → 2H2 O
In the reaction to produce ammonia, one volume of nitrogen gas reacts with three volumes of
hydrogen gas to produce two volumes of ammonia gas.
N2 + 3H2 → 2N H3
This relationship will also be true for all other chemical reactions.
11.7
Summary
• Matter does not stay the same. It may undergo physical or chemical changes
• A physical change means that the form of matter may change, but not its identity. For
example, when water evaporates, the energy and the arrangement of water molecules will
change, but not the structure of the water molecule itself.
• During a physical change, the arrangement of particles may change but the mass, number
of atoms and number of molecules will stay the same.
• Physical changes involve small changes in energy, and are easily reversible.
• A chemical change occurs when one form of matter changes into something else. A
chemical reaction involves the formation of new substances with different properties.
For example, carbon dioxide reacts with water to form carbonic acid.
CO2 + H2 O → H2 CO3
• A chemical change may involve a decomposition or synthesis reaction. During chemical
change, the mass and number of atoms is conserved, but the number of molecules is not
always the same.
• Chemical reactions involve larger changes in energy. During a reaction, energy is needed
to break bonds in the reactants, and energy is released when new products form. If the
energy released is greater than the energy absorbed, then the reaction is exothermic. If the
energy released is less than the energy absorbed, then the reaction is endothermic. These
chemical reactions are not easily reversible.
• Decomposition reactions are usually endothermic and synthesis reactions are usually
exothermic.
• The law of conservation of mass states that the total mass of all the substances taking
part in a chemical reaction is conserved and the number of atoms of each element in the
reaction does not change when a new product is formed.
• The conservation of energy principle states that energy cannot be created or destroyed,
it can only change from one form to another.
• The law of constant composition states that in any particular compound, all samples of
that compound will be made up of the same elements in the same proportion or ratio.
• Gay-Lussac’s Law states that in a chemical reaction between gases, the relative volumes
of the gases in the reaction are present in a ratio of small whole numbers if all the gases
are at the same temperature and pressure.
Exercise: Summary exercise
1. Complete the following table by saying whether each of the descriptions is an
example of a physical or chemical change:
220
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
Description
Physical
chemical
11.7
or
hot and cold water mix together
milk turns sour
a car starts to rust
food digests in the stomach
alcohol disappears when it is placed on your skin
warming food in a microwave
separating sand and gravel
fireworks exploding
2. For each of the following reactions, say whether it is an example of a synthesis
or decomposition reaction:
(a)
(b)
(c)
(d)
(N H4 )2 CO3 → 2N H3 + CO2 + H2 O
4F e + 3O2 → 2F e2 O3
N2 (g) + 3H2 (g) → 2N H3
CaCO3 (s) → CaO + CO2
3. For the following equation:
CaCO3 → CO2 + CaO
Show that the ’law of conservation of mass’ applies.
221
11.7
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10
222
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: FrontCover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.
MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections A and A above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:
1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
469
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.
14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.
15. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organisation as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.
COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the
terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.
470
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.
AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.
If the Cover Text requirement of section A is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.
TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section A) to Preserve its Title (section A) will typically require changing the actual
title.
TERMINATION
You may not copy, modify, sub-license, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sub-license or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.
FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
471
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.
ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
c YEAR YOUR NAME. Permission is granted to copy, distribute and/or
Copyright modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
472
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement