FHSST Authors The Free High School Science Texts: Textbooks for High School Students Studying the Sciences Chemistry Grades 10 - 12 Version 0 November 9, 2008 ii Copyright 2007 “Free High School Science Texts” Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”. STOP!!!! Did you notice the FREEDOMS we’ve granted you? Our copyright license is different! It grants freedoms rather than just imposing restrictions like all those other textbooks you probably own or use. • We know people copy textbooks illegally but we would LOVE it if you copied our’s - go ahead copy to your hearts content, legally! • Publishers’ revenue is generated by controlling the market, we don’t want any money, go ahead, distribute our books far and wide - we DARE you! • Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That’s what we really want! • Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents. • So what is the catch? The only thing you can’t do is take this book, make a few changes and then tell others that they can’t do the same with your changes. It’s share and share-alike and we know you’ll agree that is only fair. • These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community. FHSST Core Team Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton FHSST Editors Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan Whitfield FHSST Contributors Rory Adams ; Prashant Arora ; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ; Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ; Nicholas Hatcher ; Dr. Mark Horner ; Robert Hovden ; Mfandaidza Hove ; Jennifer Hsieh ; Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ; Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek ; Dr. Komal Maheshwari ; Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ; Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ; Tyrone Negus ; Thomas O’Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ; Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ; Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon ; Mike Stringer ; Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ; Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal Yacoob ; Jean Youssef Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don’t hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource! www.fhsst.org iii iv Contents I II Introduction 1 Matter and Materials 3 1 Classification of Matter - Grade 10 1.1 1.2 5 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Heterogeneous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Homogeneous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Separating mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pure Substances: Elements and Compounds . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Giving names and formulae to substances . . . . . . . . . . . . . . . . . . . . . 10 1.4 Metals, Semi-metals and Non-metals . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.2 Non-metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.3 Semi-metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Electrical conductors, semi-conductors and insulators . . . . . . . . . . . . . . . 14 1.6 Thermal Conductors and Insulators . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 Magnetic and Non-magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . 17 1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 What are the objects around us made of? - Grade 10 21 2.1 Introduction: The atom as the building block of matter . . . . . . . . . . . . . . 21 2.2 Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Representing molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Intramolecular and intermolecular forces . . . . . . . . . . . . . . . . . . . . . . 25 2.4 The Kinetic Theory of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 The Properties of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 The Atom - Grade 10 3.1 35 Models of the Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 The Plum Pudding Model . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Rutherford’s model of the atom v . . . . . . . . . . . . . . . . . . . . . . 36 CONTENTS 3.1.3 3.2 3.3 CONTENTS The Bohr Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 How big is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 How heavy is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 How big is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Atomic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 The Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 The Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Atomic number and atomic mass number . . . . . . . . . . . . . . . . . . . . . 40 3.5 Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 3.7 3.8 3.9 3.5.1 What is an isotope? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.2 Relative atomic mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Energy quantisation and electron configuration . . . . . . . . . . . . . . . . . . 46 3.6.1 The energy of electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6.2 Energy quantisation and line emission spectra . . . . . . . . . . . . . . . 47 3.6.3 Electron configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6.4 Core and valence electrons . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.5 The importance of understanding electron configuration . . . . . . . . . 51 Ionisation Energy and the Periodic Table . . . . . . . . . . . . . . . . . . . . . . 53 3.7.1 Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.7.2 Ionisation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 The Arrangement of Atoms in the Periodic Table . . . . . . . . . . . . . . . . . 56 3.8.1 Groups in the periodic table . . . . . . . . . . . . . . . . . . . . . . . . 56 3.8.2 Periods in the periodic table . . . . . . . . . . . . . . . . . . . . . . . . 58 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Atomic Combinations - Grade 11 63 4.1 Why do atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Energy and bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 What happens when atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.1 The nature of the covalent bond . . . . . . . . . . . . . . . . . . . . . . 65 4.5 Lewis notation and molecular structure . . . . . . . . . . . . . . . . . . . . . . . 69 4.6 Electronegativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.7 4.8 4.6.1 Non-polar and polar covalent bonds . . . . . . . . . . . . . . . . . . . . 73 4.6.2 Polar molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Ionic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.1 The nature of the ionic bond . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.2 The crystal lattice structure of ionic compounds . . . . . . . . . . . . . . 76 4.7.3 Properties of Ionic Compounds . . . . . . . . . . . . . . . . . . . . . . . 76 Metallic bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.8.1 The nature of the metallic bond . . . . . . . . . . . . . . . . . . . . . . 76 4.8.2 The properties of metals . . . . . . . . . . . . . . . . . . . . . . . . . . 77 vi CONTENTS 4.9 CONTENTS Writing chemical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.9.1 The formulae of covalent compounds . . . . . . . . . . . . . . . . . . . . 78 4.9.2 The formulae of ionic compounds . . . . . . . . . . . . . . . . . . . . . 80 4.10 The Shape of Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.10.1 Valence Shell Electron Pair Repulsion (VSEPR) theory . . . . . . . . . . 82 4.10.2 Determining the shape of a molecule . . . . . . . . . . . . . . . . . . . . 82 4.11 Oxidation numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Intermolecular Forces - Grade 11 91 5.1 Types of Intermolecular Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 Understanding intermolecular forces . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 Intermolecular forces in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Solutions and solubility - Grade 11 101 6.1 Types of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Forces and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7 Atomic Nuclei - Grade 11 107 7.1 Nuclear structure and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.2 The Discovery of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.3 Radioactivity and Types of Radiation . . . . . . . . . . . . . . . . . . . . . . . . 108 7.4 7.3.1 Alpha (α) particles and alpha decay . . . . . . . . . . . . . . . . . . . . 109 7.3.2 Beta (β) particles and beta decay . . . . . . . . . . . . . . . . . . . . . 109 7.3.3 Gamma (γ) rays and gamma decay . . . . . . . . . . . . . . . . . . . . . 110 Sources of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.1 Natural background radiation . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.2 Man-made sources of radiation . . . . . . . . . . . . . . . . . . . . . . . 113 7.5 The ’half-life’ of an element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.6 The Dangers of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.7 The Uses of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.8 Nuclear Fission 7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.8.1 The Atomic bomb - an abuse of nuclear fission . . . . . . . . . . . . . . 119 7.8.2 Nuclear power - harnessing energy . . . . . . . . . . . . . . . . . . . . . 120 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.10 Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.10.1 Age of Nucleosynthesis (225 s - 103 s) . . . . . . . . . . . . . . . . . . . 121 7.10.2 Age of Ions (103 s - 1013 s) . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.10.3 Age of Atoms (1013 s - 1015 s) . . . . . . . . . . . . . . . . . . . . . . . 122 7.10.4 Age of Stars and Galaxies (the universe today) . . . . . . . . . . . . . . 122 7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 vii CONTENTS CONTENTS 8 Thermal Properties and Ideal Gases - Grade 11 125 8.1 A review of the kinetic theory of matter . . . . . . . . . . . . . . . . . . . . . . 125 8.2 Boyle’s Law: Pressure and volume of an enclosed gas . . . . . . . . . . . . . . . 126 8.3 Charles’s Law: Volume and Temperature of an enclosed gas . . . . . . . . . . . 132 8.4 The relationship between temperature and pressure . . . . . . . . . . . . . . . . 136 8.5 The general gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.6 The ideal gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.7 Molar volume of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.8 Ideal gases and non-ideal gas behaviour . . . . . . . . . . . . . . . . . . . . . . 146 8.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9 Organic Molecules - Grade 12 151 9.1 What is organic chemistry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.2 Sources of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.3 Unique properties of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4 Representing organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4.1 Molecular formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4.2 Structural formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.4.3 Condensed structural formula . . . . . . . . . . . . . . . . . . . . . . . . 153 9.5 Isomerism in organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.6 Functional groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.7 The Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.7.1 The Alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.7.2 Naming the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.7.3 Properties of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.7.4 Reactions of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.7.5 The alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.7.6 Naming the alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.7.7 The properties of the alkenes . . . . . . . . . . . . . . . . . . . . . . . . 169 9.7.8 Reactions of the alkenes 9.7.9 The Alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9.7.10 Naming the alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.8 9.9 The Alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.8.1 Naming the alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.8.2 Physical and chemical properties of the alcohols . . . . . . . . . . . . . . 175 Carboxylic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.9.1 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 9.9.2 Derivatives of carboxylic acids: The esters . . . . . . . . . . . . . . . . . 178 9.10 The Amino Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.11 The Carbonyl Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 viii CONTENTS CONTENTS 10 Organic Macromolecules - Grade 12 185 10.1 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.2 How do polymers form? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.2.1 Addition polymerisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.2.2 Condensation polymerisation . . . . . . . . . . . . . . . . . . . . . . . . 188 10.3 The chemical properties of polymers . . . . . . . . . . . . . . . . . . . . . . . . 190 10.4 Types of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.5 Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.5.1 The uses of plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 10.5.2 Thermoplastics and thermosetting plastics . . . . . . . . . . . . . . . . . 194 10.5.3 Plastics and the environment . . . . . . . . . . . . . . . . . . . . . . . . 195 10.6 Biological Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 10.6.1 Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 10.6.2 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 10.6.3 Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 III Chemical Change 209 11 Physical and Chemical Change - Grade 10 211 11.1 Physical changes in matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11.2 Chemical Changes in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.2.1 Decomposition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 213 11.2.2 Synthesis reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 11.3 Energy changes in chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . 217 11.4 Conservation of atoms and mass in reactions . . . . . . . . . . . . . . . . . . . . 217 11.5 Law of constant composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.6 Volume relationships in gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 12 Representing Chemical Change - Grade 10 223 12.1 Chemical symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 12.2 Writing chemical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 12.3 Balancing chemical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 12.3.1 The law of conservation of mass . . . . . . . . . . . . . . . . . . . . . . 224 12.3.2 Steps to balance a chemical equation . . . . . . . . . . . . . . . . . . . 226 12.4 State symbols and other information . . . . . . . . . . . . . . . . . . . . . . . . 230 12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 13 Quantitative Aspects of Chemical Change - Grade 11 233 13.1 The Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 13.2 Molar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 13.3 An equation to calculate moles and mass in chemical reactions . . . . . . . . . . 237 ix CONTENTS 13.4 Molecules and compounds CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 13.5 The Composition of Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 13.6 Molar Volumes of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 13.7 Molar concentrations in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 13.8 Stoichiometric calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 14 Energy Changes In Chemical Reactions - Grade 11 255 14.1 What causes the energy changes in chemical reactions? . . . . . . . . . . . . . . 255 14.2 Exothermic and endothermic reactions . . . . . . . . . . . . . . . . . . . . . . . 255 14.3 The heat of reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 14.4 Examples of endothermic and exothermic reactions . . . . . . . . . . . . . . . . 259 14.5 Spontaneous and non-spontaneous reactions . . . . . . . . . . . . . . . . . . . . 260 14.6 Activation energy and the activated complex . . . . . . . . . . . . . . . . . . . . 261 14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 15 Types of Reactions - Grade 11 267 15.1 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.1 What are acids and bases? . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.2 Defining acids and bases . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.3 Conjugate acid-base pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.1.4 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 15.1.5 Acid-carbonate reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 274 15.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 15.2.1 Oxidation and reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 277 15.2.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 15.3 Addition, substitution and elimination reactions . . . . . . . . . . . . . . . . . . 280 15.3.1 Addition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 15.3.2 Elimination reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 15.3.3 Substitution reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 15.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 16 Reaction Rates - Grade 12 287 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.2 Factors affecting reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 16.3 Reaction rates and collision theory . . . . . . . . . . . . . . . . . . . . . . . . . 293 16.4 Measuring Rates of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 16.5 Mechanism of reaction and catalysis . . . . . . . . . . . . . . . . . . . . . . . . 297 16.6 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 16.6.1 Open and closed systems . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.2 Reversible reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.3 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 16.7 The equilibrium constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 x CONTENTS CONTENTS 16.7.1 Calculating the equilibrium constant . . . . . . . . . . . . . . . . . . . . 305 16.7.2 The meaning of kc values . . . . . . . . . . . . . . . . . . . . . . . . . . 306 16.8 Le Chatelier’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 16.8.1 The effect of concentration on equilibrium . . . . . . . . . . . . . . . . . 310 16.8.2 The effect of temperature on equilibrium . . . . . . . . . . . . . . . . . . 310 16.8.3 The effect of pressure on equilibrium . . . . . . . . . . . . . . . . . . . . 312 16.9 Industrial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 16.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 17 Electrochemical Reactions - Grade 12 319 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 17.2 The Galvanic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 17.2.1 Half-cell reactions in the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . 321 17.2.2 Components of the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . . . . 322 17.2.3 The Galvanic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 17.2.4 Uses and applications of the galvanic cell . . . . . . . . . . . . . . . . . 324 17.3 The Electrolytic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 17.3.1 The electrolysis of copper sulphate . . . . . . . . . . . . . . . . . . . . . 326 17.3.2 The electrolysis of water . . . . . . . . . . . . . . . . . . . . . . . . . . 327 17.3.3 A comparison of galvanic and electrolytic cells . . . . . . . . . . . . . . . 328 17.4 Standard Electrode Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 17.4.1 The different reactivities of metals . . . . . . . . . . . . . . . . . . . . . 329 17.4.2 Equilibrium reactions in half cells . . . . . . . . . . . . . . . . . . . . . . 329 17.4.3 Measuring electrode potential . . . . . . . . . . . . . . . . . . . . . . . . 330 17.4.4 The standard hydrogen electrode . . . . . . . . . . . . . . . . . . . . . . 330 17.4.5 Standard electrode potentials . . . . . . . . . . . . . . . . . . . . . . . . 333 17.4.6 Combining half cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 17.4.7 Uses of standard electrode potential . . . . . . . . . . . . . . . . . . . . 338 17.5 Balancing redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 17.6 Applications of electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.1 Electroplating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.2 The production of chlorine . . . . . . . . . . . . . . . . . . . . . . . . . 348 17.6.3 Extraction of aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . 349 17.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 IV Chemical Systems 353 18 The Water Cycle - Grade 10 355 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 18.2 The importance of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 18.3 The movement of water through the water cycle . . . . . . . . . . . . . . . . . . 356 18.4 The microscopic structure of water . . . . . . . . . . . . . . . . . . . . . . . . . 359 xi CONTENTS CONTENTS 18.4.1 The polar nature of water . . . . . . . . . . . . . . . . . . . . . . . . . . 359 18.4.2 Hydrogen bonding in water molecules . . . . . . . . . . . . . . . . . . . 359 18.5 The unique properties of water . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 18.6 Water conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 19 Global Cycles: The Nitrogen Cycle - Grade 10 369 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 19.2 Nitrogen fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 19.3 Nitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 19.4 Denitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 19.5 Human Influences on the Nitrogen Cycle . . . . . . . . . . . . . . . . . . . . . . 372 19.6 The industrial fixation of nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . 373 19.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 20 The Hydrosphere - Grade 10 377 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 20.2 Interactions of the hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 20.3 Exploring the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 20.4 The Importance of the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . 379 20.5 Ions in aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 20.5.1 Dissociation in water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 20.5.2 Ions and water hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 20.5.3 The pH scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 20.5.4 Acid rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 20.6 Electrolytes, ionisation and conductivity . . . . . . . . . . . . . . . . . . . . . . 386 20.6.1 Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 20.6.2 Non-electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 20.6.3 Factors that affect the conductivity of water . . . . . . . . . . . . . . . . 387 20.7 Precipitation reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 20.8 Testing for common anions in solution . . . . . . . . . . . . . . . . . . . . . . . 391 20.8.1 Test for a chloride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 20.8.2 Test for a sulphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 20.8.3 Test for a carbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 20.8.4 Test for bromides and iodides . . . . . . . . . . . . . . . . . . . . . . . . 392 20.9 Threats to the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 20.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 21 The Lithosphere - Grade 11 397 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 21.2 The chemistry of the earth’s crust . . . . . . . . . . . . . . . . . . . . . . . . . 398 21.3 A brief history of mineral use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 21.4 Energy resources and their uses . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 xii CONTENTS CONTENTS 21.5 Mining and Mineral Processing: Gold . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.2 Mining the Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.3 Processing the gold ore . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.4 Characteristics and uses of gold . . . . . . . . . . . . . . . . . . . . . . . 402 21.5.5 Environmental impacts of gold mining . . . . . . . . . . . . . . . . . . . 404 21.6 Mining and mineral processing: Iron . . . . . . . . . . . . . . . . . . . . . . . . 406 21.6.1 Iron mining and iron ore processing . . . . . . . . . . . . . . . . . . . . . 406 21.6.2 Types of iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 21.6.3 Iron in South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 21.7 Mining and mineral processing: Phosphates . . . . . . . . . . . . . . . . . . . . 409 21.7.1 Mining phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 21.7.2 Uses of phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 21.8 Energy resources and their uses: Coal . . . . . . . . . . . . . . . . . . . . . . . 411 21.8.1 The formation of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 21.8.2 How coal is removed from the ground . . . . . . . . . . . . . . . . . . . 411 21.8.3 The uses of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 21.8.4 Coal and the South African economy . . . . . . . . . . . . . . . . . . . . 412 21.8.5 The environmental impacts of coal mining . . . . . . . . . . . . . . . . . 413 21.9 Energy resources and their uses: Oil . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.1 How oil is formed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.2 Extracting oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.3 Other oil products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 21.9.4 The environmental impacts of oil extraction and use . . . . . . . . . . . 415 21.10Alternative energy resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 21.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 22 The Atmosphere - Grade 11 421 22.1 The composition of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . 421 22.2 The structure of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.1 The troposphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.2 The stratosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.3 The mesosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 22.2.4 The thermosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 22.3 Greenhouse gases and global warming . . . . . . . . . . . . . . . . . . . . . . . 426 22.3.1 The heating of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . 426 22.3.2 The greenhouse gases and global warming . . . . . . . . . . . . . . . . . 426 22.3.3 The consequences of global warming . . . . . . . . . . . . . . . . . . . . 429 22.3.4 Taking action to combat global warming . . . . . . . . . . . . . . . . . . 430 22.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 xiii CONTENTS CONTENTS 23 The Chemical Industry - Grade 12 435 23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 23.2 Sasol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 23.2.1 Sasol today: Technology and production . . . . . . . . . . . . . . . . . . 436 23.2.2 Sasol and the environment . . . . . . . . . . . . . . . . . . . . . . . . . 440 23.3 The Chloralkali Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 23.3.1 The Industrial Production of Chlorine and Sodium Hydroxide . . . . . . . 442 23.3.2 Soaps and Detergents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 23.4 The Fertiliser Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.1 The value of nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.2 The Role of fertilisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.3 The Industrial Production of Fertilisers . . . . . . . . . . . . . . . . . . . 451 23.4.4 Fertilisers and the Environment: Eutrophication . . . . . . . . . . . . . . 454 23.5 Electrochemistry and batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 23.5.1 How batteries work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 23.5.2 Battery capacity and energy . . . . . . . . . . . . . . . . . . . . . . . . 457 23.5.3 Lead-acid batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 23.5.4 The zinc-carbon dry cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 23.5.5 Environmental considerations . . . . . . . . . . . . . . . . . . . . . . . . 460 23.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 A GNU Free Documentation License 467 xiv Chapter 6 Solutions and solubility - Grade 11 We are surrounded by different types of solutions in our daily lives. Any solution is made up of a solute and a solvent. A solute is a substance that dissolves in a solvent. In the case of a salt (NaCl) solution, the salt crystals are the solute. A solvent is the substance in which the solute dissolves. In the case of the NaCl solution, the solvent would be the water. In most cases, there is always more of the solvent than there is of the solute in a solution. Definition: Solutes and solvents A solute is a substance that is dissolved in another substance. A solute can be a solid, liquid or gas. A solvent is the liquid that dissolves a solid, liquid, or gaseous solute. 6.1 Types of solutions When a solute is mixed with a solvent, a mixture is formed, and this may be either heterogeneous or homogeneous. If you mix sand and water for example, the sand does not dissolve in the water. This is a heterogeneous mixture. When you mix salt and water, the resulting mixture is homogeneous because the solute has dissolved in the solvent. Definition: Solution In chemistry, a solution is a homogeneous mixture that consists of a solute that has been dissolved in a solvent. A solution then is a homogeneous mixture of a solute and a solvent. Examples of solutions are: • A solid solute dissolved in a liquid solvent e.g. sodium chloride dissolved in water. • A gas solute dissolved in a liquid solvent e.g. carbon dioxide dissolved in water (fizzy drinks) or oxygen dissolved in water (aquatic ecosystems). • A liquid solute dissolved in a liquid solvent e.g. ethanol in water. • A solid solute in a solid solvent e.g. metal alloys. • A gas solute in a gas solvent e.g. the homogeneous mixture of gases in the air that we breathe. While there are many different types of solutions, most of those we will be discussing are liquids. 101 6.2 CHAPTER 6. SOLUTIONS AND SOLUBILITY - GRADE 11 6.2 Forces and solutions An important question to ask is why some solutes dissolve in certain solvents and not in others. The answer lies in understanding the interaction between the intramolecular and intermolecular forces between the solute and solvent particles. Activity :: Experiment : Solubility Aim: To investigate the solubility of solutes in different solvents. Apparatus: Salt, vinegar, iodine, ethanol Method: 1. Mix half a teaspoon of salt in 100cm3 of water 2. Mix half a teaspoon of vinegar (acetic acid) in 100cm3 of water 3. Mix a few grains of iodine in ethanol 4. Mix a few grains of iodine in 100cm3 of water Results: Record your observations in the table below: Solute Iodine Iodine Vinegar Salt Polar, non-polar or ionic solute Solvent Polar, non-polar or ionic solvent Does solute dissolve? Ethanol Water Water Water You should have noticed that in some cases, the solute dissolves in the solvent, while in other cases it does not. Conclusions: In general, polar and ionic solutes dissolve well in polar solvents, while non-polar solutes dissolve well in non-polar solvents. An easy way to remember this is that ’like dissolves like’, in other words, if the solute and the solvent have similar intermolecular forces, there is a high possibility that dissolution will occur. This will be explained in more detail below. • Non-polar solutes and non-polar solvents (e.g. iodine and ether) Iodine molecules are non-polar, and the forces between the molecules are weak van der Waals forces. There are also weak van der Waals forces between ether molecules. Because the intermolecular forces in both the solute and the solvent are similar, it is easy for these to be broken in the solute, allowing the solute to move into the spaces between the molecules of the solvent. The solute dissolves in the solvent. • Polar solutes and polar solvents (e.g. salt and water) There are strong electrostatic forces between the ions of a salt such as sodium chloride. There are also strong hydrogen bonds between water molecules. Because the strength of the intermolecular forces in the solute and solvent are similar, the solute will dissolve in the solvent. 102 CHAPTER 6. SOLUTIONS AND SOLUBILITY - GRADE 11 6.3 6.3 Solubility You may have noticed sometimes that, if you try to dissolve salt (or some other solute) in a small amount of water, it will initially dissolve, but then appears not to be able to dissolve any further when you keep adding more solute to the solvent. This is called the solubility of the solution. Solubility refers to the maximum amount of solute that will dissolve in a solvent under certain conditions. Definition: Solubility Solubility is the ability of a given substance, the solute, to dissolve in a solvent. If a substance has a high solubility, it means that lots of the solute is able to dissolve in the solvent. So what factors affect solubility? Below are some of the factors that affect solubility: • the quantity of solute and solvent in the solution • the temperature of the solution • other compounds in the solvent affect solubility because they take up some of the spaces between molecules of the solvent, that could otherwise be taken by the solute itself • the strength of the forces between particles of the solute, and the strength of forces between particles of the solvent Activity :: Experiment : Factors affecting solubility Aim: To determine the effect of temperature on solubility Method: 1. Measure 100cm3 of water into a beaker 2. Measure 100 g of salt and place into another beaker 3. Slowly pour the salt into the beaker with the water, stirring it as you add. Keep adding salt until you notice that the salt is not dissolving anymore. 4. Record the amount of salt that has been added to the water and the temperature of the solution. 5. Now increase the temperature of the water by heating it over a bunsen burner. 6. Repeat the steps above so that you obtain the solubility limit of salt at this higher temperature. You will need to start again with new salt and water! 7. Continue to increase the temperature as many times as possible and record your results. Results: Record your results in the table below: Temp (0 C) Amount of solute that dissolves in 100 cm3 of water (g) 103 6.3 CHAPTER 6. SOLUTIONS AND SOLUBILITY - GRADE 11 As you increase the temperature of the water, are you able to dissolve more or less salt? Conclusions: As the temperature of the solution increases, so does the amount of salt that will dissolve. The solubility of sodium chloride increases as the temperature increases. Exercise: Investigating the solubility of salts The data table below gives the solubility (measured in grams of salt per 100 g water) of a number of different salts at various temperatures. Look at the data and then answer the questions that follow. Temp (0 C) 0 10 20 30 40 50 60 KNO3 13.9 21.2 31.6 45.3 61.4 83.5 106.0 Solubility (g salt per 100 g H2 O) K2 SO4 NaCl 7.4 35.7 9.3 35.8 11.1 36.0 13.0 36.2 14.8 36.5 16.5 36.8 18.2 37.3 1. On the same set of axes, draw line graphs to show how the solubility of the three salts changes with an increase in temperature. 2. Describe what happens to salt solubility as temperature increases. Suggest a reason why this happens. 3. Write an equation to show how each of the following salts ionises in water: (a) KNO3 (b) K2 SO4 4. You are given three beakers, each containing the same amount of water. 5 g KNO3 is added to beaker 1, 5 g K2 SO4 is added to beaker 2 and 5 g NaCl is added to beaker 3. The beakers are heated over a bunsen burner until the temperature of their solutions is 600 C. (a) Which salt solution will have the highest conductivity under these conditions? (b) Explain your answer. Exercise: Experiments and solubility Two grade 10 learners, Siphiwe and Ann, wish to separately investigate the solubility of potassium chloride at room temperature. They follow the list of instructions shown below, using the apparatus that has been given to them: Method: 1. Determine the mass of an empty, dry evaporating basin using an electronic balance and record the mass. 2. Pour 50 ml water into a 250 ml beaker. 104 CHAPTER 6. SOLUTIONS AND SOLUBILITY - GRADE 11 6.3 3. Add potassium chloride crystals to the water in the beaker in small portions. 4. Stir the solution until the salt dissolves. 5. Repeat the addition of potassium chloride (steps a and b) until no more salt dissolves and some salt remains undissolved. 6. Record the temperature of the potassium chloride solution. 7. Filter the solution into the evaporating basin. 8. Determine the mass of the evaporating basin containing the solution that has passed through the filter (the filtrate) on the electronic balance and record the mass. 9. Ignite the Bunsen burner. 10. Carefully heat the filtrate in the evaporating basin until the salt is dry. 11. Place the evaporating basin in the desiccator (a large glass container in which there is a dehydrating agent like calcium sulphate that absorbs water) until it reaches room temperature. 12. Determine the mass of the evaporating basin containing the dry cool salt on the electronic balance and record the mass. On completion of the experiment, their results were as follows: Siphiwe’s results Temperature (0 C) 15 Mass of evaporating basin (g) 65.32 Mass of evaporating basin + salt solution (g) 125.32 Mass of evaporating basin + salt (g) 81.32 Ann’s results 26 67.55 137.55 85.75 1. Calculate the solubility of potassium chloride, using the data recorded by (a) Siphiwe (b) Ann A reference book lists the solubility of potassium chloride as 35.0 g per 100 ml of water at 250 C. (c) Give a reason why you think each obtained results different from each other and the value in the reference book. 2. Siphiwe and Ann now expand their investigation and work together. They investigate the solubility of potassium chloride at different temperatures but also the solubility of copper (II) sulphate at these same temperatures. They collect and write up their results as follows: In each experiment we used 50 ml of water in the beaker. We found the following masses of substance dissolved in the 50 ml of water. At 00 C, mass of potassium chloride is 14.0 g and copper sulphate is 14.3 g. At 100 C, 15.6 g and 17.4 g respectively. At 200 C, 17.3 g and 20.7 g respectively. At 400 C, potassium chloride mass is 20.2 g and copper sulphate is 28.5 g, at 600 C, 23.1 g and 40.0 g and lastly at 800 C, the masses were 26.4 g and 55.0 g respectively. (a) From the record of data provided above, draw up a neat table to record Siphiwe and Ann’s results. (b) Identify the dependent and independent variables in their investigation. (c) Choose an appropriate scale and plot a graph of these results. (d) From the graph, determine: i. the temperature at which the solubility of copper sulphate is 50 g per 50 ml of water. ii. the maximum number of grams of potassium chloride which will dissolve in 100 ml of water at 700 C. (IEB Exemplar Paper 2, 2006) 105 6.4 CHAPTER 6. SOLUTIONS AND SOLUBILITY - GRADE 11 6.4 Summary • In chemistry, a solution is a homogenous mixture of a solute in a solvent. • A solute is a substance that dissolves in a solute. A solute can be a solid, liquid or gas. • A solvent is a substance in which a solute dissolves. A solvent can also be a solid, liquid or gas. • Examples of solutions include salt solutions, metal alloys, the air we breathe and gases such as oxygen and carbon dioxide dissolved in water. • Not all solutes will dissolve in all solvents. A general rule is the like dissolves like. Solutes and solvents that have similar intermolecular forces are more likely to dissolve. • Polar and ionic solutes will be more likely to dissolve in polar solvents, while non-polar solutes will be more likely to dissolve in polar solvents. • Solubility is the extent to which a solute is able to dissolve in a solvent under certain conditions. • Factors that affect solubility are the quantity of solute and solvent, temperature, the intermolecular forces in the solute and solvent and other substances that may be in the solvent. Exercise: Summary Exercise 1. Give one word or term for each of the following descriptions: (a) A type of mixture where the solute has completely dissolved in the solvent. (b) A measure of how much solute is dissolved in a solution. (c) Forces between the molecules in a substance. 2. For each of the following questions, choose the one correct answer from the list provided. A Which one of the following will readily dissolve in water? i. I2 (s) ii. NaI(s) iii. CCl4 (l) iv. BaSO4 (s) (IEB Paper 2, 2005) b In which of the following pairs of substances will the dissolving process happen most readily? Solute Solvent A S8 H2 O B KCl CCl4 C KNO3 H2 O D NH4 Cl CCl4 (IEB Paper 2, 2004) 3. Which one of the following three substances is the most soluble in pure water at room temperature? Hydrogen sulphide, ammonia and hydrogen fluoride 4. Briefly explain in terms of intermolecular forces why solid iodine does not dissolve in pure water, yet it dissolves in xylene, an organic liquid at room temperature. (IEB Paper 2, 2002) 106 APPENDIX A. GNU FREE DOCUMENTATION LICENSE you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: FrontCover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: 1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. 2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. 3. State on the Title page the name of the publisher of the Modified Version, as the publisher. 4. Preserve all the copyright notices of the Document. 5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. 6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. 7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice. 8. Include an unaltered copy of this License. 9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. 469 APPENDIX A. GNU FREE DOCUMENTATION LICENSE 10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. 11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. 12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. 13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version. 14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section. 15. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles. You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. COMBINING DOCUMENTS You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”. 470 APPENDIX A. GNU FREE DOCUMENTATION LICENSE COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. TRANSLATION Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section A) to Preserve its Title (section A) will typically require changing the actual title. TERMINATION You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. 471 APPENDIX A. GNU FREE DOCUMENTATION LICENSE Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: c YEAR YOUR NAME. Permission is granted to copy, distribute and/or Copyright modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. 472
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement