The Free High School Science Texts: Textbooks for High School Students Mathematics

The Free High School Science Texts: Textbooks for High School Students Mathematics
FHSST Authors
The Free High School Science Texts:
Textbooks for High School Students
Studying the Sciences
Mathematics
Grades 10 - 12
Version 0
September 17, 2008
ii
iii
Copyright 2007 “Free High School Science Texts”
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.
STOP!!!!
Did you notice the FREEDOMS we’ve granted you?
Our copyright license is different! It grants freedoms
rather than just imposing restrictions like all those other
textbooks you probably own or use.
• We know people copy textbooks illegally but we would LOVE it if you copied
our’s - go ahead copy to your hearts content, legally!
• Publishers revenue is generated by controlling the market, we don’t want any
money, go ahead, distribute our books far and wide - we DARE you!
• Ever wanted to change your textbook? Of course you have! Go ahead change
ours, make your own version, get your friends together, rip it apart and put
it back together the way you like it. That’s what we really want!
• Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it
all, do it with your colleagues, your friends or alone but get involved! Together
we can overcome the challenges our complex and diverse country presents.
• So what is the catch? The only thing you can’t do is take this book, make
a few changes and then tell others that they can’t do the same with your
changes. It’s share and share-alike and we know you’ll agree that is only fair.
• These books were written by volunteers who want to help support education,
who want the facts to be freely available for teachers to copy, adapt and
re-use. Thousands of hours went into making them and they are a gift to
everyone in the education community.
iv
FHSST Core Team
Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton
FHSST Editors
Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield
FHSST Contributors
Rory Adams ; Prashant Arora ; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ;
Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura
Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni
Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr.
Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom
Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ;
Nicholas Hatcher ; Dr. Mark Horner ; Mfandaidza Hove ; Robert Hovden ; Jennifer Hsieh ;
Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ;
Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek ; Dr. Komal Maheshwari ;
Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ;
Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ;
Tyrone Negus ; Thomas O’Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ;
Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya
Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean
Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ;
Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon ; Mike Stringer ;
Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle
Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ;
Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal
Yacoob ; Jean Youssef
Contributors and editors have made a sincere effort to produce an accurate and useful resource.
Should you have suggestions, find mistakes or be prepared to donate material for inclusion,
please don’t hesitate to contact us. We intend to work with all who are willing to help make
this a continuously evolving resource!
www.fhsst.org
v
vi
Contents
I
Basics
1
1 Introduction to Book
1.1
II
3
The Language of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grade 10
3
5
2 Review of Past Work
7
2.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
2.2
What is a number? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
2.3
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
2.4
Letters and Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
2.5
Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
2.6
Multiplication and Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
2.7
Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
2.8
Negative Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9
2.8.1
What is a negative number? . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8.2
Working with Negative Numbers . . . . . . . . . . . . . . . . . . . . . . 11
2.8.3
Living Without the Number Line . . . . . . . . . . . . . . . . . . . . . . 12
Rearranging Equations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Fractions and Decimal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.12 Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.12.1 Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12.2 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12.3 Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12.4 Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.13 Mathematical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.14 Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.15 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Rational Numbers - Grade 10
23
3.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2
The Big Picture of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
vii
CONTENTS
CONTENTS
3.4
Forms of Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5
Converting Terminating Decimals into Rational Numbers . . . . . . . . . . . . . 25
3.6
Converting Repeating Decimals into Rational Numbers . . . . . . . . . . . . . . 25
3.7
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Exponentials - Grade 10
29
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3
Laws of Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1
Exponential Law 1: a0 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2
Exponential Law 2: am × an = am+n . . . . . . . . . . . . . . . . . . . 30
4.3.3
Exponential Law 3: a−n =
4.3.4
4.4
m
1
an , a
n
6= 0 . . . . . . . . . . . . . . . . . . . . 31
Exponential Law 4: a ÷ a = am−n . . . . . . . . . . . . . . . . . . . 32
4.3.5
Exponential Law 5: (ab)n = an bn . . . . . . . . . . . . . . . . . . . . . 32
4.3.6
Exponential Law 6: (am )n = amn . . . . . . . . . . . . . . . . . . . . . 33
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Estimating Surds - Grade 10
37
5.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2
Drawing Surds on the Number Line (Optional) . . . . . . . . . . . . . . . . . . 38
5.3
End of Chapter Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Irrational Numbers and Rounding Off - Grade 10
41
6.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2
Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3
Rounding Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7 Number Patterns - Grade 10
7.1
45
Common Number Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.1
Special Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2
Make your own Number Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.1
7.4
Patterns and Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8 Finance - Grade 10
53
8.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2
Foreign Exchange Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3
8.2.1
How much is R1 really worth? . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.2
Cross Currency Exchange Rates
8.2.3
Enrichment: Fluctuating exchange rates . . . . . . . . . . . . . . . . . . 57
. . . . . . . . . . . . . . . . . . . . . . 56
Being Interested in Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
viii
CONTENTS
8.4
Simple Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.4.1
8.5
8.6
8.7
CONTENTS
Other Applications of the Simple Interest Formula . . . . . . . . . . . . . 61
Compound Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5.1
Fractions add up to the Whole . . . . . . . . . . . . . . . . . . . . . . . 65
8.5.2
The Power of Compound Interest . . . . . . . . . . . . . . . . . . . . . . 65
8.5.3
Other Applications of Compound Growth . . . . . . . . . . . . . . . . . 67
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.6.1
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.6.2
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9 Products and Factors - Grade 10
71
9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2
Recap of Earlier Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2.1
Parts of an Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2.2
Product of Two Binomials . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2.3
Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3
More Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.4
Factorising a Quadratic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.5
Factorisation by Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.6
Simplification of Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.7
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10 Equations and Inequalities - Grade 10
83
10.1 Strategy for Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Solving Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3 Solving Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.4 Exponential Equations of the form ka(x+p) = m . . . . . . . . . . . . . . . . . . 93
10.4.1 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5 Linear Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.6 Linear Simultaneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.1 Finding solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.2 Graphical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.3 Solution by Substitution
. . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.7 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.7.2 Problem Solving Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.7.3 Application of Mathematical Modelling
. . . . . . . . . . . . . . . . . . 104
10.7.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.8 Introduction to Functions and Graphs . . . . . . . . . . . . . . . . . . . . . . . 107
10.9 Functions and Graphs in the Real-World . . . . . . . . . . . . . . . . . . . . . . 107
10.10Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ix
CONTENTS
CONTENTS
10.10.1 Variables and Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.10.2 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.10.3 The Cartesian Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.10.4 Drawing Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.10.5 Notation used for Functions
. . . . . . . . . . . . . . . . . . . . . . . . 110
10.11Characteristics of Functions - All Grades . . . . . . . . . . . . . . . . . . . . . . 112
10.11.1 Dependent and Independent Variables . . . . . . . . . . . . . . . . . . . 112
10.11.2 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.11.3 Intercepts with the Axes . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.11.4 Turning Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.11.5 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.11.6 Lines of Symmetry
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.11.7 Intervals on which the Function Increases/Decreases . . . . . . . . . . . 114
10.11.8 Discrete or Continuous Nature of the Graph . . . . . . . . . . . . . . . . 114
10.12Graphs of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.12.1 Functions of the form y = ax + q . . . . . . . . . . . . . . . . . . . . . 116
10.12.2 Functions of the Form y = ax2 + q . . . . . . . . . . . . . . . . . . . . . 120
10.12.3 Functions of the Form y =
a
x
+ q . . . . . . . . . . . . . . . . . . . . . . 125
10.12.4 Functions of the Form y = ab(x) + q . . . . . . . . . . . . . . . . . . . . 129
10.13End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11 Average Gradient - Grade 10 Extension
135
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2 Straight-Line Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.3 Parabolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12 Geometry Basics
139
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.2 Points and Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.3.1 Measuring angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.3.2 Special Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.3.3 Special Angle Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.3.4 Parallel Lines intersected by Transversal Lines . . . . . . . . . . . . . . . 143
12.4 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.4.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.4.2 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.4.3 Other polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.4.4 Extra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.5.1 Challenge Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
x
CONTENTS
13 Geometry - Grade 10
CONTENTS
161
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
13.2 Right Prisms and Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
13.2.1 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
13.2.2 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
13.3 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.3.1 Similarity of Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.4 Co-ordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.4.2 Distance between Two Points . . . . . . . . . . . . . . . . . . . . . . . . 172
13.4.3 Calculation of the Gradient of a Line . . . . . . . . . . . . . . . . . . . . 173
13.4.4 Midpoint of a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
13.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
13.5.1 Translation of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
13.5.2 Reflection of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14 Trigonometry - Grade 10
189
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
14.2 Where Trigonometry is Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.3 Similarity of Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.4 Definition of the Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 191
14.5 Simple Applications of Trigonometric Functions . . . . . . . . . . . . . . . . . . 195
14.5.1 Height and Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.5.2 Maps and Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
14.6 Graphs of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . 199
14.6.1 Graph of sin θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
14.6.2 Functions of the form y = a sin(x) + q . . . . . . . . . . . . . . . . . . . 200
14.6.3 Graph of cos θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14.6.4 Functions of the form y = a cos(x) + q
. . . . . . . . . . . . . . . . . . 202
14.6.5 Comparison of Graphs of sin θ and cos θ . . . . . . . . . . . . . . . . . . 204
14.6.6 Graph of tan θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.6.7 Functions of the form y = a tan(x) + q . . . . . . . . . . . . . . . . . . 205
14.7 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
15 Statistics - Grade 10
211
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
15.2 Recap of Earlier Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
15.2.1 Data and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 211
15.2.2 Methods of Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 212
15.2.3 Samples and Populations . . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.3 Example Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
xi
CONTENTS
CONTENTS
15.3.1 Data Set 1: Tossing a Coin . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.3.2 Data Set 2: Casting a die . . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.3.3 Data Set 3: Mass of a Loaf of Bread . . . . . . . . . . . . . . . . . . . . 214
15.3.4 Data Set 4: Global Temperature . . . . . . . . . . . . . . . . . . . . . . 214
15.3.5 Data Set 5: Price of Petrol . . . . . . . . . . . . . . . . . . . . . . . . . 215
15.4 Grouping Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
15.4.1 Exercises - Grouping Data
. . . . . . . . . . . . . . . . . . . . . . . . . 216
15.5 Graphical Representation of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 217
15.5.1 Bar and Compound Bar Graphs . . . . . . . . . . . . . . . . . . . . . . . 217
15.5.2 Histograms and Frequency Polygons . . . . . . . . . . . . . . . . . . . . 217
15.5.3 Pie Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
15.5.4 Line and Broken Line Graphs . . . . . . . . . . . . . . . . . . . . . . . . 220
15.5.5 Exercises - Graphical Representation of Data
. . . . . . . . . . . . . . . 221
15.6 Summarising Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
15.6.1 Measures of Central Tendency . . . . . . . . . . . . . . . . . . . . . . . 222
15.6.2 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.6.3 Exercises - Summarising Data
. . . . . . . . . . . . . . . . . . . . . . . 228
15.7 Misuse of Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
15.7.1 Exercises - Misuse of Statistics . . . . . . . . . . . . . . . . . . . . . . . 230
15.8 Summary of Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
15.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
16 Probability - Grade 10
235
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.2 Random Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.2.1 Sample Space of a Random Experiment . . . . . . . . . . . . . . . . . . 235
16.3 Probability Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
16.3.1 Classical Theory of Probability . . . . . . . . . . . . . . . . . . . . . . . 239
16.4 Relative Frequency vs. Probability . . . . . . . . . . . . . . . . . . . . . . . . . 240
16.5 Project Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
16.6 Probability Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
16.7 Mutually Exclusive Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
16.8 Complementary Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
16.9 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
III
Grade 11
17 Exponents - Grade 11
249
251
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
17.2 Laws of Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
√
m
17.2.1 Exponential Law 7: a n = n am . . . . . . . . . . . . . . . . . . . . . . 251
17.3 Exponentials in the Real-World . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
17.4 End of chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
xii
CONTENTS
CONTENTS
18 Surds - Grade 11
18.1 Surd Calculations . . . . . . . . . .
√
√ √
18.1.1 Surd Law 1: n a n b = n ab
√
p
n
a
18.1.2 Surd Law 2: n ab = √
. .
n
b
√
m
18.1.3 Surd Law 3: n am = a n . .
255
. . . . . . . . . . . . . . . . . . . . . . . . 255
. . . . . . . . . . . . . . . . . . . . . . . . 255
. . . . . . . . . . . . . . . . . . . . . . . . 255
. . . . . . . . . . . . . . . . . . . . . . . . 256
18.1.4 Like and Unlike Surds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
18.1.5 Simplest Surd form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
18.1.6 Rationalising Denominators . . . . . . . . . . . . . . . . . . . . . . . . . 258
18.2 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
19 Error Margins - Grade 11
261
20 Quadratic Sequences - Grade 11
265
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
20.2 What is a quadratic sequence? . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
20.3 End of chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
21 Finance - Grade 11
271
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
21.2 Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
21.3 Simple Depreciation (it really is simple!) . . . . . . . . . . . . . . . . . . . . . . 271
21.4 Compound Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
21.5 Present Values or Future Values of an Investment or Loan . . . . . . . . . . . . 276
21.5.1 Now or Later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
21.6 Finding i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
21.7 Finding n - Trial and Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
21.8 Nominal and Effective Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . 280
21.8.1 The General Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
21.8.2 De-coding the Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 282
21.9 Formulae Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
21.9.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
21.9.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
21.10End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
22 Solving Quadratic Equations - Grade 11
287
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
22.2 Solution by Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
22.3 Solution by Completing the Square . . . . . . . . . . . . . . . . . . . . . . . . . 290
22.4 Solution by the Quadratic Formula . . . . . . . . . . . . . . . . . . . . . . . . . 293
22.5 Finding an equation when you know its roots . . . . . . . . . . . . . . . . . . . 296
22.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
xiii
CONTENTS
CONTENTS
23 Solving Quadratic Inequalities - Grade 11
301
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
23.2 Quadratic Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
23.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
24 Solving Simultaneous Equations - Grade 11
307
24.1 Graphical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
24.2 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
25 Mathematical Models - Grade 11
313
25.1 Real-World Applications: Mathematical Models . . . . . . . . . . . . . . . . . . 313
25.2 End of Chatpter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
26 Quadratic Functions and Graphs - Grade 11
321
26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
26.2 Functions of the Form y = a(x + p)2 + q
. . . . . . . . . . . . . . . . . . . . . 321
26.2.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
26.2.2 Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
26.2.3 Turning Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
26.2.4 Axes of Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
26.2.5 Sketching Graphs of the Form f (x) = a(x + p)2 + q . . . . . . . . . . . 325
26.2.6 Writing an equation of a shifted parabola . . . . . . . . . . . . . . . . . 327
26.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
27 Hyperbolic Functions and Graphs - Grade 11
329
27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
27.2 Functions of the Form y =
a
x+p
+q
. . . . . . . . . . . . . . . . . . . . . . . . 329
27.2.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
27.2.2 Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
27.2.3 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
27.2.4 Sketching Graphs of the Form f (x) =
a
x+p
+ q . . . . . . . . . . . . . . 333
27.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
28 Exponential Functions and Graphs - Grade 11
335
28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
28.2 Functions of the Form y = ab(x+p) + q . . . . . . . . . . . . . . . . . . . . . . . 335
28.2.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
28.2.2 Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
28.2.3 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
28.2.4 Sketching Graphs of the Form f (x) = ab(x+p) + q . . . . . . . . . . . . . 338
28.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
29 Gradient at a Point - Grade 11
341
29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
29.2 Average Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
29.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
xiv
CONTENTS
30 Linear Programming - Grade 11
CONTENTS
345
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
30.2.4 Feasible Region and Points . . . . . . . . . . . . . . . . . . . . . . . . . 346
30.2.5 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
30.3 Example of a Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
30.4 Method of Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
30.5 Skills you will need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
30.5.1 Writing Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 347
30.5.2 Writing the Objective Function . . . . . . . . . . . . . . . . . . . . . . . 348
30.5.3 Solving the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
30.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
31 Geometry - Grade 11
357
31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
31.2 Right Pyramids, Right Cones and Spheres . . . . . . . . . . . . . . . . . . . . . 357
31.3 Similarity of Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
31.4 Triangle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
31.4.1 Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
31.5 Co-ordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
31.5.1 Equation of a Line between Two Points . . . . . . . . . . . . . . . . . . 368
31.5.2 Equation of a Line through One Point and Parallel or Perpendicular to
Another Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
31.5.3 Inclination of a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
31.6 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
31.6.1 Rotation of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
31.6.2 Enlargement of a Polygon 1 . . . . . . . . . . . . . . . . . . . . . . . . . 376
32 Trigonometry - Grade 11
381
32.1 History of Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
32.2 Graphs of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . 381
32.2.1 Functions of the form y = sin(kθ) . . . . . . . . . . . . . . . . . . . . . 381
32.2.2 Functions of the form y = cos(kθ) . . . . . . . . . . . . . . . . . . . . . 383
32.2.3 Functions of the form y = tan(kθ) . . . . . . . . . . . . . . . . . . . . . 384
32.2.4 Functions of the form y = sin(θ + p) . . . . . . . . . . . . . . . . . . . . 385
32.2.5 Functions of the form y = cos(θ + p) . . . . . . . . . . . . . . . . . . . 386
32.2.6 Functions of the form y = tan(θ + p) . . . . . . . . . . . . . . . . . . . 387
32.3 Trigonometric Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
32.3.1 Deriving Values of Trigonometric Functions for 30◦ , 45◦ and 60◦ . . . . . 389
32.3.2 Alternate Definition for tan θ . . . . . . . . . . . . . . . . . . . . . . . . 391
xv
CONTENTS
CONTENTS
32.3.3 A Trigonometric Identity . . . . . . . . . . . . . . . . . . . . . . . . . . 392
32.3.4 Reduction Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
32.4 Solving Trigonometric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 399
32.4.1 Graphical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
32.4.2 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
32.4.3 Solution using CAST diagrams . . . . . . . . . . . . . . . . . . . . . . . 403
32.4.4 General Solution Using Periodicity . . . . . . . . . . . . . . . . . . . . . 405
32.4.5 Linear Trigonometric Equations . . . . . . . . . . . . . . . . . . . . . . . 406
32.4.6 Quadratic and Higher Order Trigonometric Equations . . . . . . . . . . . 406
32.4.7 More Complex Trigonometric Equations . . . . . . . . . . . . . . . . . . 407
32.5 Sine and Cosine Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
32.5.1 The Sine Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
32.5.2 The Cosine Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
32.5.3 The Area Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
32.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
33 Statistics - Grade 11
419
33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
33.2 Standard Deviation and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 419
33.2.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
33.2.2 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
33.2.3 Interpretation and Application . . . . . . . . . . . . . . . . . . . . . . . 423
33.2.4 Relationship between Standard Deviation and the Mean . . . . . . . . . . 424
33.3 Graphical Representation of Measures of Central Tendency and Dispersion . . . . 424
33.3.1 Five Number Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
33.3.2 Box and Whisker Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 425
33.3.3 Cumulative Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
33.4 Distribution of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
33.4.1 Symmetric and Skewed Data . . . . . . . . . . . . . . . . . . . . . . . . 428
33.4.2 Relationship of the Mean, Median, and Mode . . . . . . . . . . . . . . . 428
33.5 Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
33.6 Misuse of Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
33.7 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
34 Independent and Dependent Events - Grade 11
437
34.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
34.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
34.2.1 Identification of Independent and Dependent Events
. . . . . . . . . . . 438
34.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
IV
Grade 12
35 Logarithms - Grade 12
443
445
35.1 Definition of Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
xvi
CONTENTS
CONTENTS
35.2 Logarithm Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
35.3 Laws of Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
35.4 Logarithm Law 1: loga 1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
35.5 Logarithm Law 2: loga (a) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
35.6 Logarithm Law 3: loga (x · y) = loga (x) + loga (y) . . . . . . . . . . . . . . . . . 448
35.7 Logarithm Law 4: loga xy = loga (x) − loga (y) . . . . . . . . . . . . . . . . . 449
35.8 Logarithm Law 5: loga (xb ) = b loga (x) . . . . . . . . . . . . . . . . . . . . . . . 450
√
35.9 Logarithm Law 6: loga ( b x) = logab(x) . . . . . . . . . . . . . . . . . . . . . . . 450
35.10Solving simple log equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
35.10.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
35.11Logarithmic applications in the Real World . . . . . . . . . . . . . . . . . . . . . 454
35.11.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
35.12End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
36 Sequences and Series - Grade 12
457
36.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
36.2 Arithmetic Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
36.2.1 General Equation for the nth -term of an Arithmetic Sequence . . . . . . 458
36.3 Geometric Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
36.3.1 Example - A Flu Epidemic . . . . . . . . . . . . . . . . . . . . . . . . . 459
36.3.2 General Equation for the nth -term of a Geometric Sequence . . . . . . . 461
36.3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
36.4 Recursive Formulae for Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 462
36.5 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
36.5.1 Some Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
36.5.2 Sigma Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
36.6 Finite Arithmetic Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
36.6.1 General Formula for a Finite Arithmetic Series . . . . . . . . . . . . . . . 466
36.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
36.7 Finite Squared Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
36.8 Finite Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
36.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
36.9 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
36.9.1 Infinite Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . 471
36.9.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
36.10End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
37 Finance - Grade 12
477
37.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
37.2 Finding the Length of the Investment or Loan . . . . . . . . . . . . . . . . . . . 477
37.3 A Series of Payments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
37.3.1 Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
xvii
CONTENTS
CONTENTS
37.3.2 Present Values of a series of Payments . . . . . . . . . . . . . . . . . . . 479
37.3.3 Future Value of a series of Payments . . . . . . . . . . . . . . . . . . . . 484
37.3.4 Exercises - Present and Future Values . . . . . . . . . . . . . . . . . . . 485
37.4 Investments and Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
37.4.1 Loan Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
37.4.2 Exercises - Investments and Loans . . . . . . . . . . . . . . . . . . . . . 489
37.4.3 Calculating Capital Outstanding . . . . . . . . . . . . . . . . . . . . . . 489
37.5 Formulae Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
37.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
37.5.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
37.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
38 Factorising Cubic Polynomials - Grade 12
493
38.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
38.2 The Factor Theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
38.3 Factorisation of Cubic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 494
38.4 Exercises - Using Factor Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 496
38.5 Solving Cubic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
38.5.1 Exercises - Solving of Cubic Equations . . . . . . . . . . . . . . . . . . . 498
38.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
39 Functions and Graphs - Grade 12
501
39.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
39.2 Definition of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
39.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
39.3 Notation used for Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
39.4 Graphs of Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
39.4.1 Inverse Function of y = ax + q . . . . . . . . . . . . . . . . . . . . . . . 503
39.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
39.4.3 Inverse Function of y = ax2
. . . . . . . . . . . . . . . . . . . . . . . . 504
39.4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
39.4.5 Inverse Function of y = ax . . . . . . . . . . . . . . . . . . . . . . . . . 506
39.4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
39.5 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
40 Differential Calculus - Grade 12
509
40.1 Why do I have to learn this stuff? . . . . . . . . . . . . . . . . . . . . . . . . . 509
40.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
40.2.1 A Tale of Achilles and the Tortoise . . . . . . . . . . . . . . . . . . . . . 510
40.2.2 Sequences, Series and Functions . . . . . . . . . . . . . . . . . . . . . . 511
40.2.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
40.2.4 Average Gradient and Gradient at a Point . . . . . . . . . . . . . . . . . 516
40.3 Differentiation from First Principles . . . . . . . . . . . . . . . . . . . . . . . . . 519
xviii
CONTENTS
CONTENTS
40.4 Rules of Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
40.4.1 Summary of Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . 522
40.5 Applying Differentiation to Draw Graphs . . . . . . . . . . . . . . . . . . . . . . 523
40.5.1 Finding Equations of Tangents to Curves
. . . . . . . . . . . . . . . . . 523
40.5.2 Curve Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
40.5.3 Local minimum, Local maximum and Point of Inflextion . . . . . . . . . 529
40.6 Using Differential Calculus to Solve Problems . . . . . . . . . . . . . . . . . . . 530
40.6.1 Rate of Change problems . . . . . . . . . . . . . . . . . . . . . . . . . . 534
40.7 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
41 Linear Programming - Grade 12
539
41.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
41.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
41.2.1 Feasible Region and Points . . . . . . . . . . . . . . . . . . . . . . . . . 539
41.3 Linear Programming and the Feasible Region . . . . . . . . . . . . . . . . . . . 540
41.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
42 Geometry - Grade 12
549
42.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
42.2 Circle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
42.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
42.2.2 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
42.2.3 Theorems of the Geometry of Circles . . . . . . . . . . . . . . . . . . . . 550
42.3 Co-ordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
42.3.1 Equation of a Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
42.3.2 Equation of a Tangent to a Circle at a Point on the Circle . . . . . . . . 569
42.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
42.4.1 Rotation of a Point about an angle θ . . . . . . . . . . . . . . . . . . . . 571
42.4.2 Characteristics of Transformations . . . . . . . . . . . . . . . . . . . . . 573
42.4.3 Characteristics of Transformations . . . . . . . . . . . . . . . . . . . . . 573
42.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
43 Trigonometry - Grade 12
577
43.1 Compound Angle Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
43.1.1 Derivation of sin(α + β) . . . . . . . . . . . . . . . . . . . . . . . . . . 577
43.1.2 Derivation of sin(α − β) . . . . . . . . . . . . . . . . . . . . . . . . . . 578
43.1.3 Derivation of cos(α + β) . . . . . . . . . . . . . . . . . . . . . . . . . . 578
43.1.4 Derivation of cos(α − β) . . . . . . . . . . . . . . . . . . . . . . . . . . 579
43.1.5 Derivation of sin 2α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
43.1.6 Derivation of cos 2α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
43.1.7 Problem-solving Strategy for Identities . . . . . . . . . . . . . . . . . . . 580
43.2 Applications of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . 582
43.2.1 Problems in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 582
xix
CONTENTS
CONTENTS
43.2.2 Problems in 3 dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 584
43.3 Other Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
43.3.1 Taxicab Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
43.3.2 Manhattan distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
43.3.3 Spherical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
43.3.4 Fractal Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
43.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
44 Statistics - Grade 12
591
44.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
44.2 A Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
44.3 Extracting a Sample Population . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
44.4 Function Fitting and Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 594
44.4.1 The Method of Least Squares
. . . . . . . . . . . . . . . . . . . . . . . 596
44.4.2 Using a calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
44.4.3 Correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
44.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
45 Combinations and Permutations - Grade 12
603
45.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
45.2 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
45.2.1 Making a List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
45.2.2 Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
45.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
45.3.1 The Factorial Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
45.4 The Fundamental Counting Principle . . . . . . . . . . . . . . . . . . . . . . . . 604
45.5 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
45.5.1 Counting Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
45.5.2 Combinatorics and Probability . . . . . . . . . . . . . . . . . . . . . . . 606
45.6 Permutations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
45.6.1 Counting Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
45.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
45.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
V
Exercises
613
46 General Exercises
615
47 Exercises - Not covered in Syllabus
617
A GNU Free Documentation License
619
xx
Chapter 16
Probability - Grade 10
16.1
Introduction
Very little in mathematics is truly self-contained. Many branches of mathematics touch and
interact with one another, and the fields of probability and statistics are no different. A basic
understanding of probability is vital in grasping basic statistics, and probability is largely abstract
without statistics to determine the ”real world” probabilities.
Probability theory is concerned with predicting statistical outcomes. A simple example of a
statistical outcome is observing a head or tail when tossing a coin. Another simple example of a
statistical outcome is obtaining the numbers 1, 2, 3, 4, 5, or 6 when rolling a die. (We say one
die, many dice.)
For a fair coin, heads should occur for 21 of the number of tosses and for a fair die, each number
should occur for 16 of the number of rolls. Therefore, the probability of observing a head on one
toss of a fair coin is 21 and that for obtaining a four on one roll of a fair die is 16 .
In earlier grades, the idea has been introduced that different situations have different probabilities
of occurring and that for many situations there are a finite number of different possible outcomes.
In general, events from daily life can be classified as either:
• certain that they will happen; or
• certain that they will not happen; or
• uncertain.
This chapter builds on earlier work and describes how to calculate the probability associated with
different situations, and describes how probability is used to assign a number describing the level
of chance or the odds associated with aspects of life. The meanings of statements like: ‘The
HIV test is 85% reliable.’ will also be explained.
16.2
Random Experiments
The term random experiment or statistical experiment is used to describe any repeatable experiment or situation, with individual experiments having one of a set of outcomes or results. A set
of outcomes is known as an event. For example, the act of tossing a coin or rolling a die can
be considered to be simple random experiments. With the results of either a heads or tails or
one of {1,2,3,4,5,6} being the outcomes. These experiments are repeatable and yield different
outcomes each time.
16.2.1
Sample Space of a Random Experiment
The set of all possible outcomes in a random experiment plays an important role in probability
theory and is known as the sample space. The letter S is used to indicate the sample space.
235
16.2
CHAPTER 16. PROBABILITY - GRADE 10
Using the terminology of set theory, the elements of S are then the outcomes of the random
experiment. For example, when tossing a coin the sample space S is made up of {heads,tails}.
Worked Example 72: Sample Space
Question: What outcomes make up the sample space S when rolling a die.
Answer
Step 3 : Determine all the possible outcomes
The possible outcomes when rolling a die are: 1, 2, 3, 4, 5 and 6.
Step 4 : Define the sample space, S
For rolling a die, the sample space is S = {1,2,3,4,5,6}.
A set of outcomes is referred to as an event. For example, when rolling a die the outcomes that
are an even number (i.e. {2,4,6}) would be referred to as an event. It is clear that outcomes
and events are subsets of the sample space, S.
A Venn diagram can be used to show the relationship between the outcomes of a random
experiment, the sample space and events associated with the outcomes. The Venn diagram
in Figure 16.1 shows the difference between the universal set, a sample space and events and
outcomes as subsets of the sample space.
Universal set
Sample space, S
Event B
Event A
Figure 16.1: Diagram to show difference between the universal set and the sample space. The
sample space is made up of all possible outcomes of a statistical experiment and an event is a
subset of the sample space.
Venn diagrams can also be used to indicate the union and intersection between events in a
sample space (Figure 16.2).
Worked Example 73: Random Experiments
Question: In a box there are pieces of paper with the numbers from 1 to 9 written
on them.
S = {1; 2; 3; 4; 5; 6; 7; 8; 9}
Answer
Step 1 : Consider the events:
• Drawing a prime number; P = {2, 3, 5, 7}
236
CHAPTER 16. PROBABILITY - GRADE 10
16.2
Sample space, S
Event, A
Sample Space S
Event, B
Event A
Event B
Figure 16.2: Venn diagram to show (left) union of two events, A and B, in the sample space S
and (right) intersection of two events A and B, in the sample space S. The crosshatched region
indicates the intersection.
• Drawing an even number; E = {2, 4, 6, 8}
Step 2 : Draw a diagram
S
P
E
5
9
2
4
1
6
7
3
8
Step 3 : Find the union
The union of P and E is the set of all elements in P or in E (or in both). P or E =
2, 3, 4, 5, 6, 7, 8. P or E is also written P ∪ E.
Step 4 : Find the intersection
The intersection of P and E is the set of all elements in both P and E. P and E =
2. P and E is also written as P ∩ E.
Step 5 : Find the number in each set
We use n(S) to refer to the number of elements in a set S, n(X) for the number
of elements in X, etc.
∴ n(S) =
9
n(P ) =
n(E) =
4
4
n(P ∪ E) =
n(P ∩ E) =
7
2
237
16.3
CHAPTER 16. PROBABILITY - GRADE 10
Exercise: Random Experiments
1. S = {whole numbers from 1 to 16}, X = {even numbers from 1 to 16} and
Y = {prime numbers from 1 to 16}
A Draw a Venn diagram S, X and Y .
B Write down n(S), n(X), n(Y ), n(X ∪ Y ), n(X ∩ Y ).
2. There are 79 Grade 10 learners at school. All of these take either Maths,
Geography or History. The number who take Geography is 41, those who take
History is 36, and 30 take Maths. The number who take Maths and History
is 16; the number who take Geography and History is 6, and there are 8 who
take Maths only and 16 who take only History.
A Draw a Venn diagram to illustrate all this information.
B How many learners take Maths and Geography but not History?
C How many learners take Geography only?
D How many learners take all three subjects?
3. Pieces of paper labelled with the numbers 1 to 12 are placed in a box and the
box is shaken. One piece of paper is taken out and then replaced.
A What is the sample space, S?
B Write down the set A, representing the event of taking a piece of paper
labelled with a factor 12.
C Write down the set B, representing the event of taking a piece of paper
labelled with a prime number.
D Represent A, B and S by means of a Venn diagram.
E Write down
i. n(S)
ii. n(A)
iii. n(B)
iv. n(A ∩ B)
v. n(A ∪ B)
F Is n(A ∪ B) = n(A) + n(B) − n(A ∩ B)?
16.3
Probability Models
The word probability relates to uncertain events or knowledge, being closely related in meaning
to likely, risky, hazardous, and doubtful. Chance, odds, and bet are other words expressing similar
ideas.
Probability is connected with uncertainty. In any statistical experiment, the outcomes that occur
may be known, but exactly which one might not be known. Mathematically, probability theory
formulates incomplete knowledge pertaining to the likelihood of an occurrence. For example, a
meteorologist might say there is a 60% chance that it will rain tomorrow. This means that in 6
of every 10 times when the world is in the current state, it will rain.
A probability is a real number between 0 and 1. In everyday speech, probabilities are usually given
as a percentage between 0% and 100%. A probability of 100% means that an event is certain,
whereas a probability of 0% is often taken to mean the event is impossible. However, there is
a distinction between logically impossible and occurring with zero probability; for example, in
selecting a number uniformly between 0 and 1, the probability of selecting 1/2 is 0, but it is
not logically impossible. Further, it is certain that whichever number is selected will have had a
probability of 0 of being selected.
Another way of referring to probabilities is odds. The odds of an event is defined as the ratio
of the probability that the event occurs to the probability that it does not occur. For example,
0.5
= 1, usually written ”1 to 1” or ”1:1”. This
the odds of a coin landing on a given side are 0.5
means that on average, the coin will land on that side as many times as it will land on the other
side.
238
CHAPTER 16. PROBABILITY - GRADE 10
16.3.1
16.3
Classical Theory of Probability
1. Equally likely outcomes are outcomes which have an equal chance of happening. For
example when a fair coin is tossed, each outcome in the sample space S = heads, tails is
equally likely to occur.
2. When all the outcomes are equally likely (in any activity), you can calculate the probability
of an event happening by using the following definition:
P(E)=number of favourable outcomes/total number of possible outcomes
P(E)=n(E)/n(S)
For example, when you throw a fair dice the possible outcomes are S = {1,2,3,4,5,6} i.e
the total number of possible outcomes n(S)=6.
Event 1: get a 4
The only possible outcome is a 4, i.e E=4 i.e number of favourable outcomes: n(E)=1.
Probability of getting a 4 = P(4)=n(E)/n(S)=1/6.
Event 2: get a number greater than 3
Favourable outcomes: E = {4,5,6}
Number of favourable outcomes: n(E)=3
Probability of getting a number more than 3 = P(more than 3) = n(E)/n(S)=3/6=1/2
Worked Example 74: Classical Probability
Question: Various probabilities relating to a deck of cards
Answer
A standard deck of cards (without jokers) has 52 cards. If we randomly draw a
card from the deck, we can think of each card as a possible outcome. Therefore,
there are 52 total outcomes. We can now look at various events and calculate their
probabilities:
1. Out of the 52 cards, there are 13 clubs. Therefore, if the event of interest is
drawing a club, there are 13 favourable outcomes, and the probability of this
13
event is 52
= 41 .
2. There are 4 kings (one of each suit). The probability of drawing a king is
4
1
52 = 13 .
3. What is the probability of drawing a king OR a club? This example is slightly
more complicated. We cannot simply add together the number of number of
outcomes for each event separately (4 + 13 = 17) as this inadvertently counts
16
.
one of the outcomes twice (the king of clubs). The correct answer is 52
Exercise: Probability Models
1. A bag contains 6 red, 3 blue, 2 green and 1 white balls. A ball is picked at
random. What is the probablity that it is:
A
B
C
D
red
blue or white
not green
not green or red?
2. A card is selected randomly from a pack of 52. What is the probability that it
is:
239
16.4
CHAPTER 16. PROBABILITY - GRADE 10
A
B
C
D
E
the 2 of hearts
a red card
a picture card
an ace
a number less than 4?
3. Even numbers from 2 -100 are written on cards. What is the probability of
selecting a multiple of 5, if a card is drawn at random?
16.4
Relative Frequency vs. Probability
There are two approaches to determining the probability associated with any particular event of
a random experiment:
1. determining the total number of possible outcomes and calculating the probability of each
outcome using the definition of probability
2. performing the experiment and calculating the relative frequency of each outcome
Relative frequency is defined as the number of times an event happens in a statistical experiment
divided by the number of trials conducted.
It takes a very large number of trials before the relative frequency of obtaining a head on a toss
of a coin approaches the probability of obtaining a head on a toss of a coin. For example, the
data in Table 16.1 represent the outcomes of repeating 100 trials of a statistical experiment 100
times, i.e. tossing a coin 100 times.
H
H
T
H
T
H
T
H
T
T
T
H
T
H
H
T
T
T
H
T
T
H
H
T
H
T
H
T
T
T
H
H
T
T
H
T
T
H
T
H
H
T
T
H
T
T
T
T
H
H
T
H
H
T
T
H
H
T
H
T
H
H
T
T
H
T
T
T
H
T
H
T
H
H
T
T
T
T
T
T
H
T
T
T
T
H
H
H
H
H
H
T
H
T
H
H
T
T
T
T
Table 16.1: Results of 100 tosses of a fair coin. H means that the coin landed heads-up and T
means that the coin landed tails-up.
The following two worked examples show that the relative frequency of an event is not necessarily
equal to the probability of the same event. Relative frequency should therefore be seen as an
approximation to probability.
Worked Example 75: Relative Frequency and Probability
Question: Determine the relative frequencies associated with each outcome of the
statistical experiment detailed in Table 16.1.
Answer
Step 1 : Identify the different outcomes
There are two unique outcomes: H and T.
Step 2 : Count how many times each outcome occurs.
240
CHAPTER 16. PROBABILITY - GRADE 10
Outcome
H
T
16.4
Frequency
44
56
Step 3 : Determine the total number of trials.
The statistical experiment of tossing the coin was performed 100 times. Therefore,
there were 100 trials, in total.
Step 4 : Calculate the relative frequency of each outcome
Probability of H
Relative Frequency of T
frequency of outcome
number of trials
44
=
100
= 0.44
=
frequency of outcome
number of trials
56
=
100
= 0.56
=
The relative frequency of the coin landing heads-up is 0.44 and the relative frequency
of the coin landing tails-up is 0.56.
Worked Example 76: Probability
Question: Determine the probability associated with an evenly weighted coin landing
on either of its faces.
Answer
Step 1 : Identify the different outcomes
There are two unique outcomes: H and T.
Step 2 : Determine the total number of outcomes.
There are two possible outcomes.
Step 3 : Calculate the probability of each outcome
Relative Frequency of H
Relative Frequency of T
number of favourable outcomes
total number of outcomes
1
=
2
= 0.5
=
number of favourable outcomes
total number of outcomes
1
=
2
= 0.5
=
The probability of an evenly weighted coin landing on either face is 0.5.
241
16.5
CHAPTER 16. PROBABILITY - GRADE 10
16.5
Project Idea
Perform an experiment to show that as the number of trials increases, the relative frequency
approaches the probability of a coin toss. Perform 10, 20, 50, 100, 200 trials of tossing a coin.
16.6
Probability Identities
The following results apply to probabilities, for the sample space S and two events A and B,
within S.
P (S) = 1
(16.1)
P (A ∩ B) = P (A) × P (B)
(16.2)
P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
(16.3)
Worked Example 77: Probabilty identitys
Question: What is the probability of selecting a black or red card from a pack of
52 cards
Answer
P(S)=n(E)/n(S)=52/52=1. because all cards are black or red!
Worked Example 78: Probabilty identitys
Question: What is the probability of drawing a club or an ace with one single pick
from a pack of 52 cards
Answer
Step 1 : Identify the identity which describes the situation
P (club ∪ ace) = P (club) + P (ace) − P (club ∩ ace)
Step 2 : Calculate the answer
=
=
=
=
1
+
4
1
+
4
16
52
4
13
1
1
1
−
×
13
4 13
1
1
−
13 52
Notice how we have used P (C ∪ A) = P (C) + P (A) − P (C ∩ A).
242
CHAPTER 16. PROBABILITY - GRADE 10
16.7
Exercise: Probability Identities
Answer the following questions
1. Rory is target shooting. His probability of hitting the target is 0.7. He fires five shots.
What is the probability that:
A All five shots miss the center?
B At least 3 shots hit the center?
2. An archer is shooting arrows at a bullseye. The probability that an arrow hits the bullseye
is 0.4. If she fires three arrows, what is the probability that:
A All the arrows hit the bullseye,
B only one of the arrows hit the bullseye?
3. A dice with the numbers 1,3,5,7,9,11 on it is rolled. Also a fair coin is tossed.
A Draw a sample space diagram to show all outcomes.
B What is the probability that:
i. A tail is tossed and a 9 rolled?
ii. A head is tossed and a 3 rolled?
4. Four children take a test. The probability of each one passing is as follows. Sarah: 0.8,
Kosma: 0.5, Heather: 0.6, Wendy: 0.9. What is the probability that:
A all four pass?
B all four fail?
C at least one passes?
5. With a single pick from a pack of 52 cards what is the probability that the card will be an
ace or a black card?
16.7
Mutually Exclusive Events
Mutually exclusive events are events, which cannot be true at the same time.
Examples of mutually exclusive events are:
1. A die landing on an even number or landing on an odd number.
2. A student passing or failing an exam
3. A tossed coin landing on heads or landing on tails
This means that if we examine the elements of the sets that make up A and B there will be
no elements in common. Therefore, A ∩ B = ∅ (where ∅ refers to the empty set). Since,
P (A ∩ B) = 0, equation 16.3 becomes:
P (A ∪ B) = P (A) + P (B)
for mutually exclusive events.
243
16.8
CHAPTER 16. PROBABILITY - GRADE 10
Exercise: Mutually Exclusive Events
Answer the following questions
1. A box contains coloured blocks. The number of each colour is given in the following table.
Colour
Number of blocks
Purple
24
Orange
32
White
41
Pink
19
A block is selected randomly. What is the probability that the block will be:
A purple
B purple or white
C pink and orange
D not orange?
2. A small private school has a class with children of various ages. The table gies the number
of pupils of each age in the class.
3 years female
6
3 years male
2
4 years female
5
4 years male
7
5 years female
4
5 years male
6
If a pupil is selceted at random what is the probability that the pupil will be:
A a female
B a 4 year old male
C aged 3 or 4
D aged 3 and 4
E not 5
F either 3 or female?
3. Fiona has 85 labeled discs, which are numbered from 1 to 85. If a disc is selected at
random what is the probability that the disc number:
A ends with 5
B can be multiplied by 3
C can be multiplied by 6
D is number 65
E is not a multiple of 5
F is a multiple of 4 or 3
G is a multiple of 2 and 6
H is number 1?
16.8
Complementary Events
The probability of complementary events refers to the probability associated with events not
occurring. For example, if P (A) = 0.25, then the probability of A not occurring is the probability
associated with all other events in S occurring less the probability of A occurring. This means
that
P (A′ ) = 1 − P (A)
where A’ refers to ‘not A’ In other words, the probability of ‘not A’ is equal to one minus the
probability of A.
244
CHAPTER 16. PROBABILITY - GRADE 10
Worked Example 79: Probability
Question: If you throw two dice, one red and one blue, what is the probability that
at least one of them will be a six?
Answer
Step 1 : Work out probability of event 1
To solve that kind of question, work out the probability that there will be no six.
Step 2 : Work out probability of event 2
The probability that the red dice will not be a six is 5/6, and that the blue one will
not be a six is also 5/6.
Step 3 : Probability of neither
So the probability that neither will be a six is 5/6 × 5/6 = 25/36.
Step 4 : Probability of one
So the probability that at least one will be a six is 1 − 25/36 = 11/36.
Worked Example 80: Probability
Question: A bag contains three red balls, five white balls, two green balls and four
blue balls:
1. Calculate the probability that a red ball will be drawn from the bag.
2. Calculate the probability that a ball which is not red will be drawn
Answer
Step 1 : Find event 1
Let R be the event that a red ball is drawn:
• P(R)-n(R)/n(S)=3/14
• R and R’ are complementary events
Step 2 : Find the probabilitys
∴ P(R’) = 1 - P(R) = 1 -3/14 = 11/14
Step 3 : Alternate way to solve it
• Alternately P(R’) = P(B) + P(W) + P(G)
• P(R’) = 4/14 + 5/14 + 2/14 = 11/14
Extension: Interpretation of Probability Values
The probability of an event is generally represented as a real number between 0 and
1, inclusive. An impossible event has a probability of exactly 0, and a certain event
has a probability of 1, but the converses are not always true: probability 0 events are
not always impossible, nor probability 1 events certain. The rather subtle distinction
between ”certain” and ”probability 1” is treated at greater length in the article on
”almost surely”.
Most probabilities that occur in practice are numbers between 0 and 1, indicating
the event’s position on the continuum between impossibility and certainty. The closer
an event’s probability is to 1, the more likely it is to occur.
For example, if two mutually exclusive events are assumed equally probable, such
as a flipped or spun coin landing heads-up or tails-up, we can express the probability
of each event as ”1 in 2”, or, equivalently, ”50%” or ”1/2”.
245
16.8
16.9
CHAPTER 16. PROBABILITY - GRADE 10
Probabilities are equivalently expressed as odds, which is the ratio of the probability of one event to the probability of all other events. The odds of heads-up, for
the tossed/spun coin, are (1/2)/(1 - 1/2), which is equal to 1/1. This is expressed
as ”1 to 1 odds” and often written ”1:1”.
Odds a:b for some event are equivalent to probability a/(a+b). For example, 1:1
odds are equivalent to probability 1/2, and 3:2 odds are equivalent to probability
3/5.
16.9
End of Chapter Exercises
1. A group of 45 children were asked if they eat Frosties and/or Strawberry Pops. 31 eat
both and 6 eat only Frosties. What is the probability that a child chosen at random will
eat only Strawberry Pops?
2. In a group of 42 pupils, all but 3 had a packet of chips or a Fanta or both. If 23 had
a packet of chips and 7 of these also had a Fanta, what is the probability that one pupil
chosen at random has:
A Both chips and Fanta
B has only Fanta?
3. Use a Venn diagram to work out the following probabilities from a die being rolled:
A A multiple of 5 and an odd number
B a number that is neither a multiple of 5 nor an odd number
C a number which is not a multiple of 5, but is odd.
4. A packet has yellow and pink sweets. The probability of taking out a pink sweet is 7/12.
A What is the probability of taking out a yellow sweet
B If 44 if the sweets are yellow, how many sweets are pink?
5. In a car park with 300 cars, there are 190 Opals. What is the probability that the first car
to leave the car park is:
A an Opal
B not an Opal
6. Tamara has 18 loose socks in a drawer. Eight of these are orange and two are pink.
Calculate the probability that the first sock taken out at random is:
A Orange
B not orange
C pink
D not pink
E orange or pink
F not orange or pink
7. A plate contains 9 shortbread cookies, 4 ginger biscuits, 11 chocolate chip cookies and 18
Jambos. If a biscuit is selected at random, what is the probability that:
A it is either a ginger biscuit of a Jambo?
B it is NOT a shortbread cookie.
8. 280 tickets were sold at a raffle. Ingrid bought 15 tickets. What is the probability that
Ingrid:
A Wins the prize
B Does not win the prize?
246
CHAPTER 16. PROBABILITY - GRADE 10
16.9
9. The children in a nursery school were classified by hair and eye colour. 44 had red hair
and not brown eyes, 14 had brown eyes and red hair, 5 had brown eyes but not red hair
and 40 did not have brown eyes or red hair.
A How many children were in the school
B What is the probility that a child chosen at random has:
i. Brown eyes
ii. Red hair
C A child with brown eyes is chosen randomly. What is the probability that this child
will have red hair
10. A jar has purple, blue and black sweets in it. The probability that a sweet, chosen at
random, will be purple is 1/7 and the probability that it will be black is 3/5.
A If I choose a sweet at random what is the probability that it will be:
i. purple or blue
ii. Black
iii. purple
B If there are 70 sweets in the jar how many purple ones are there?
C 1/4 if the purple sweets in b) have streaks on them and rest do not. How many
purple sweets have streaks?
11. For each of the following, draw a Venn diagram to represent the situation and find an
example to illustrate the situation.
A A sample space in which there are two events that are not mutually exclusive
B A sample space in which there are two events that are complementary.
12. Use a Venn diagram to prove that the probability of either event A or B occuring is given
by: (A and B are not exclusive)
P(A or B) = P(A) + P(B) - P(A and B)
13. All the clubs are taken out of a pack of cards. The remaining cards are then shuffled and
one card chosen. After being chosen, the card is replaced before the next card is chosen.
A What is the sample space?
B Find a set to represent the event, P, of drawing a picture card.
C Find a set for the event, N, of drawing a numbered card.
D Represent the above events in a Venn diagram
E What description of the sets P and N is suitable? (Hint: Find any elements of P in
N and N in P.)
14. Thuli has a bag containing five orange, three purple and seven pink blocks. The bag
is shaken and a block is withdrawn. The colour of the block is noted and the block is
replaced.
A What is the sample space for this experiment?
B What is the set describing the event of drawing a pink block, P?
C Write down a set, O or B, to represent the event of drawing either a orange or a
purple block.
D Draw a Venn diagram to show the above information.
247
16.9
CHAPTER 16. PROBABILITY - GRADE 10
248
Appendix A
GNU Free Documentation License
Version 1.2, November 2002
c 2000,2001,2002 Free Software Foundation, Inc.
Copyright 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.
PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.
APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
619
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD and standardconforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.
The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or non-commercially,
provided that this License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section A.
You may also lend copies, under the same conditions stated above, and you may publicly display
copies.
COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
620
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: FrontCover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.
MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections A and A above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:
1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
621
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.
14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.
15. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organisation as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.
COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the
terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.
622
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.
AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.
If the Cover Text requirement of section A is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.
TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section A) to Preserve its Title (section A) will typically require changing the actual
title.
TERMINATION
You may not copy, modify, sub-license, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sub-license or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.
FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
623
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.
ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
c YEAR YOUR NAME. Permission is granted to copy, distribute and/or
Copyright modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
624
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement