The Free High School Science Texts: Textbooks for High School Students Mathematics

The Free High School Science Texts: Textbooks for High School Students Mathematics
FHSST Authors
The Free High School Science Texts:
Textbooks for High School Students
Studying the Sciences
Mathematics
Grades 10 - 12
Version 0
September 17, 2008
ii
iii
Copyright 2007 “Free High School Science Texts”
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.
STOP!!!!
Did you notice the FREEDOMS we’ve granted you?
Our copyright license is different! It grants freedoms
rather than just imposing restrictions like all those other
textbooks you probably own or use.
• We know people copy textbooks illegally but we would LOVE it if you copied
our’s - go ahead copy to your hearts content, legally!
• Publishers revenue is generated by controlling the market, we don’t want any
money, go ahead, distribute our books far and wide - we DARE you!
• Ever wanted to change your textbook? Of course you have! Go ahead change
ours, make your own version, get your friends together, rip it apart and put
it back together the way you like it. That’s what we really want!
• Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it
all, do it with your colleagues, your friends or alone but get involved! Together
we can overcome the challenges our complex and diverse country presents.
• So what is the catch? The only thing you can’t do is take this book, make
a few changes and then tell others that they can’t do the same with your
changes. It’s share and share-alike and we know you’ll agree that is only fair.
• These books were written by volunteers who want to help support education,
who want the facts to be freely available for teachers to copy, adapt and
re-use. Thousands of hours went into making them and they are a gift to
everyone in the education community.
iv
FHSST Core Team
Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton
FHSST Editors
Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield
FHSST Contributors
Rory Adams ; Prashant Arora ; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ;
Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura
Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni
Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr.
Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom
Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ;
Nicholas Hatcher ; Dr. Mark Horner ; Mfandaidza Hove ; Robert Hovden ; Jennifer Hsieh ;
Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ;
Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek ; Dr. Komal Maheshwari ;
Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ;
Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ;
Tyrone Negus ; Thomas O’Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ;
Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya
Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean
Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ;
Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon ; Mike Stringer ;
Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle
Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ;
Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal
Yacoob ; Jean Youssef
Contributors and editors have made a sincere effort to produce an accurate and useful resource.
Should you have suggestions, find mistakes or be prepared to donate material for inclusion,
please don’t hesitate to contact us. We intend to work with all who are willing to help make
this a continuously evolving resource!
www.fhsst.org
v
vi
Contents
I
Basics
1
1 Introduction to Book
1.1
II
3
The Language of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grade 10
3
5
2 Review of Past Work
7
2.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
2.2
What is a number? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
2.3
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
2.4
Letters and Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
2.5
Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
2.6
Multiplication and Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
2.7
Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
2.8
Negative Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9
2.8.1
What is a negative number? . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8.2
Working with Negative Numbers . . . . . . . . . . . . . . . . . . . . . . 11
2.8.3
Living Without the Number Line . . . . . . . . . . . . . . . . . . . . . . 12
Rearranging Equations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Fractions and Decimal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.12 Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.12.1 Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12.2 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12.3 Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12.4 Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.13 Mathematical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.14 Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.15 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Rational Numbers - Grade 10
23
3.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2
The Big Picture of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
vii
CONTENTS
CONTENTS
3.4
Forms of Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5
Converting Terminating Decimals into Rational Numbers . . . . . . . . . . . . . 25
3.6
Converting Repeating Decimals into Rational Numbers . . . . . . . . . . . . . . 25
3.7
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Exponentials - Grade 10
29
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3
Laws of Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1
Exponential Law 1: a0 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2
Exponential Law 2: am × an = am+n . . . . . . . . . . . . . . . . . . . 30
4.3.3
Exponential Law 3: a−n =
4.3.4
4.4
m
1
an , a
n
6= 0 . . . . . . . . . . . . . . . . . . . . 31
Exponential Law 4: a ÷ a = am−n . . . . . . . . . . . . . . . . . . . 32
4.3.5
Exponential Law 5: (ab)n = an bn . . . . . . . . . . . . . . . . . . . . . 32
4.3.6
Exponential Law 6: (am )n = amn . . . . . . . . . . . . . . . . . . . . . 33
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Estimating Surds - Grade 10
37
5.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2
Drawing Surds on the Number Line (Optional) . . . . . . . . . . . . . . . . . . 38
5.3
End of Chapter Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Irrational Numbers and Rounding Off - Grade 10
41
6.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2
Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3
Rounding Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7 Number Patterns - Grade 10
7.1
45
Common Number Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.1
Special Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2
Make your own Number Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.1
7.4
Patterns and Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8 Finance - Grade 10
53
8.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2
Foreign Exchange Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3
8.2.1
How much is R1 really worth? . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.2
Cross Currency Exchange Rates
8.2.3
Enrichment: Fluctuating exchange rates . . . . . . . . . . . . . . . . . . 57
. . . . . . . . . . . . . . . . . . . . . . 56
Being Interested in Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
viii
CONTENTS
8.4
Simple Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.4.1
8.5
8.6
8.7
CONTENTS
Other Applications of the Simple Interest Formula . . . . . . . . . . . . . 61
Compound Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5.1
Fractions add up to the Whole . . . . . . . . . . . . . . . . . . . . . . . 65
8.5.2
The Power of Compound Interest . . . . . . . . . . . . . . . . . . . . . . 65
8.5.3
Other Applications of Compound Growth . . . . . . . . . . . . . . . . . 67
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.6.1
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.6.2
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9 Products and Factors - Grade 10
71
9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2
Recap of Earlier Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2.1
Parts of an Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2.2
Product of Two Binomials . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2.3
Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3
More Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.4
Factorising a Quadratic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.5
Factorisation by Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.6
Simplification of Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.7
End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10 Equations and Inequalities - Grade 10
83
10.1 Strategy for Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Solving Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3 Solving Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.4 Exponential Equations of the form ka(x+p) = m . . . . . . . . . . . . . . . . . . 93
10.4.1 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5 Linear Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.6 Linear Simultaneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.1 Finding solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.2 Graphical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6.3 Solution by Substitution
. . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.7 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.7.2 Problem Solving Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.7.3 Application of Mathematical Modelling
. . . . . . . . . . . . . . . . . . 104
10.7.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.8 Introduction to Functions and Graphs . . . . . . . . . . . . . . . . . . . . . . . 107
10.9 Functions and Graphs in the Real-World . . . . . . . . . . . . . . . . . . . . . . 107
10.10Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ix
CONTENTS
CONTENTS
10.10.1 Variables and Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.10.2 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.10.3 The Cartesian Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.10.4 Drawing Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.10.5 Notation used for Functions
. . . . . . . . . . . . . . . . . . . . . . . . 110
10.11Characteristics of Functions - All Grades . . . . . . . . . . . . . . . . . . . . . . 112
10.11.1 Dependent and Independent Variables . . . . . . . . . . . . . . . . . . . 112
10.11.2 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.11.3 Intercepts with the Axes . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.11.4 Turning Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.11.5 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.11.6 Lines of Symmetry
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.11.7 Intervals on which the Function Increases/Decreases . . . . . . . . . . . 114
10.11.8 Discrete or Continuous Nature of the Graph . . . . . . . . . . . . . . . . 114
10.12Graphs of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.12.1 Functions of the form y = ax + q . . . . . . . . . . . . . . . . . . . . . 116
10.12.2 Functions of the Form y = ax2 + q . . . . . . . . . . . . . . . . . . . . . 120
10.12.3 Functions of the Form y =
a
x
+ q . . . . . . . . . . . . . . . . . . . . . . 125
10.12.4 Functions of the Form y = ab(x) + q . . . . . . . . . . . . . . . . . . . . 129
10.13End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11 Average Gradient - Grade 10 Extension
135
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2 Straight-Line Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.3 Parabolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12 Geometry Basics
139
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.2 Points and Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.3.1 Measuring angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.3.2 Special Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.3.3 Special Angle Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.3.4 Parallel Lines intersected by Transversal Lines . . . . . . . . . . . . . . . 143
12.4 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.4.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.4.2 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.4.3 Other polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.4.4 Extra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.5.1 Challenge Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
x
CONTENTS
13 Geometry - Grade 10
CONTENTS
161
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
13.2 Right Prisms and Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
13.2.1 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
13.2.2 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
13.3 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.3.1 Similarity of Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.4 Co-ordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.4.2 Distance between Two Points . . . . . . . . . . . . . . . . . . . . . . . . 172
13.4.3 Calculation of the Gradient of a Line . . . . . . . . . . . . . . . . . . . . 173
13.4.4 Midpoint of a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
13.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
13.5.1 Translation of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
13.5.2 Reflection of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14 Trigonometry - Grade 10
189
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
14.2 Where Trigonometry is Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.3 Similarity of Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.4 Definition of the Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 191
14.5 Simple Applications of Trigonometric Functions . . . . . . . . . . . . . . . . . . 195
14.5.1 Height and Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.5.2 Maps and Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
14.6 Graphs of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . 199
14.6.1 Graph of sin θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
14.6.2 Functions of the form y = a sin(x) + q . . . . . . . . . . . . . . . . . . . 200
14.6.3 Graph of cos θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14.6.4 Functions of the form y = a cos(x) + q
. . . . . . . . . . . . . . . . . . 202
14.6.5 Comparison of Graphs of sin θ and cos θ . . . . . . . . . . . . . . . . . . 204
14.6.6 Graph of tan θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.6.7 Functions of the form y = a tan(x) + q . . . . . . . . . . . . . . . . . . 205
14.7 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
15 Statistics - Grade 10
211
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
15.2 Recap of Earlier Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
15.2.1 Data and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 211
15.2.2 Methods of Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 212
15.2.3 Samples and Populations . . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.3 Example Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
xi
CONTENTS
CONTENTS
15.3.1 Data Set 1: Tossing a Coin . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.3.2 Data Set 2: Casting a die . . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.3.3 Data Set 3: Mass of a Loaf of Bread . . . . . . . . . . . . . . . . . . . . 214
15.3.4 Data Set 4: Global Temperature . . . . . . . . . . . . . . . . . . . . . . 214
15.3.5 Data Set 5: Price of Petrol . . . . . . . . . . . . . . . . . . . . . . . . . 215
15.4 Grouping Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
15.4.1 Exercises - Grouping Data
. . . . . . . . . . . . . . . . . . . . . . . . . 216
15.5 Graphical Representation of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 217
15.5.1 Bar and Compound Bar Graphs . . . . . . . . . . . . . . . . . . . . . . . 217
15.5.2 Histograms and Frequency Polygons . . . . . . . . . . . . . . . . . . . . 217
15.5.3 Pie Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
15.5.4 Line and Broken Line Graphs . . . . . . . . . . . . . . . . . . . . . . . . 220
15.5.5 Exercises - Graphical Representation of Data
. . . . . . . . . . . . . . . 221
15.6 Summarising Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
15.6.1 Measures of Central Tendency . . . . . . . . . . . . . . . . . . . . . . . 222
15.6.2 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.6.3 Exercises - Summarising Data
. . . . . . . . . . . . . . . . . . . . . . . 228
15.7 Misuse of Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
15.7.1 Exercises - Misuse of Statistics . . . . . . . . . . . . . . . . . . . . . . . 230
15.8 Summary of Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
15.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
16 Probability - Grade 10
235
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.2 Random Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.2.1 Sample Space of a Random Experiment . . . . . . . . . . . . . . . . . . 235
16.3 Probability Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
16.3.1 Classical Theory of Probability . . . . . . . . . . . . . . . . . . . . . . . 239
16.4 Relative Frequency vs. Probability . . . . . . . . . . . . . . . . . . . . . . . . . 240
16.5 Project Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
16.6 Probability Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
16.7 Mutually Exclusive Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
16.8 Complementary Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
16.9 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
III
Grade 11
17 Exponents - Grade 11
249
251
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
17.2 Laws of Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
√
m
17.2.1 Exponential Law 7: a n = n am . . . . . . . . . . . . . . . . . . . . . . 251
17.3 Exponentials in the Real-World . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
17.4 End of chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
xii
CONTENTS
CONTENTS
18 Surds - Grade 11
18.1 Surd Calculations . . . . . . . . . .
√
√ √
18.1.1 Surd Law 1: n a n b = n ab
√
p
n
a
18.1.2 Surd Law 2: n ab = √
. .
n
b
√
m
18.1.3 Surd Law 3: n am = a n . .
255
. . . . . . . . . . . . . . . . . . . . . . . . 255
. . . . . . . . . . . . . . . . . . . . . . . . 255
. . . . . . . . . . . . . . . . . . . . . . . . 255
. . . . . . . . . . . . . . . . . . . . . . . . 256
18.1.4 Like and Unlike Surds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
18.1.5 Simplest Surd form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
18.1.6 Rationalising Denominators . . . . . . . . . . . . . . . . . . . . . . . . . 258
18.2 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
19 Error Margins - Grade 11
261
20 Quadratic Sequences - Grade 11
265
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
20.2 What is a quadratic sequence? . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
20.3 End of chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
21 Finance - Grade 11
271
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
21.2 Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
21.3 Simple Depreciation (it really is simple!) . . . . . . . . . . . . . . . . . . . . . . 271
21.4 Compound Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
21.5 Present Values or Future Values of an Investment or Loan . . . . . . . . . . . . 276
21.5.1 Now or Later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
21.6 Finding i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
21.7 Finding n - Trial and Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
21.8 Nominal and Effective Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . 280
21.8.1 The General Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
21.8.2 De-coding the Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 282
21.9 Formulae Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
21.9.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
21.9.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
21.10End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
22 Solving Quadratic Equations - Grade 11
287
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
22.2 Solution by Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
22.3 Solution by Completing the Square . . . . . . . . . . . . . . . . . . . . . . . . . 290
22.4 Solution by the Quadratic Formula . . . . . . . . . . . . . . . . . . . . . . . . . 293
22.5 Finding an equation when you know its roots . . . . . . . . . . . . . . . . . . . 296
22.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
xiii
CONTENTS
CONTENTS
23 Solving Quadratic Inequalities - Grade 11
301
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
23.2 Quadratic Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
23.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
24 Solving Simultaneous Equations - Grade 11
307
24.1 Graphical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
24.2 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
25 Mathematical Models - Grade 11
313
25.1 Real-World Applications: Mathematical Models . . . . . . . . . . . . . . . . . . 313
25.2 End of Chatpter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
26 Quadratic Functions and Graphs - Grade 11
321
26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
26.2 Functions of the Form y = a(x + p)2 + q
. . . . . . . . . . . . . . . . . . . . . 321
26.2.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
26.2.2 Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
26.2.3 Turning Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
26.2.4 Axes of Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
26.2.5 Sketching Graphs of the Form f (x) = a(x + p)2 + q . . . . . . . . . . . 325
26.2.6 Writing an equation of a shifted parabola . . . . . . . . . . . . . . . . . 327
26.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
27 Hyperbolic Functions and Graphs - Grade 11
329
27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
27.2 Functions of the Form y =
a
x+p
+q
. . . . . . . . . . . . . . . . . . . . . . . . 329
27.2.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
27.2.2 Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
27.2.3 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
27.2.4 Sketching Graphs of the Form f (x) =
a
x+p
+ q . . . . . . . . . . . . . . 333
27.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
28 Exponential Functions and Graphs - Grade 11
335
28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
28.2 Functions of the Form y = ab(x+p) + q . . . . . . . . . . . . . . . . . . . . . . . 335
28.2.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
28.2.2 Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
28.2.3 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
28.2.4 Sketching Graphs of the Form f (x) = ab(x+p) + q . . . . . . . . . . . . . 338
28.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
29 Gradient at a Point - Grade 11
341
29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
29.2 Average Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
29.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
xiv
CONTENTS
30 Linear Programming - Grade 11
CONTENTS
345
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
30.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
30.2.4 Feasible Region and Points . . . . . . . . . . . . . . . . . . . . . . . . . 346
30.2.5 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
30.3 Example of a Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
30.4 Method of Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
30.5 Skills you will need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
30.5.1 Writing Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 347
30.5.2 Writing the Objective Function . . . . . . . . . . . . . . . . . . . . . . . 348
30.5.3 Solving the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
30.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
31 Geometry - Grade 11
357
31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
31.2 Right Pyramids, Right Cones and Spheres . . . . . . . . . . . . . . . . . . . . . 357
31.3 Similarity of Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
31.4 Triangle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
31.4.1 Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
31.5 Co-ordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
31.5.1 Equation of a Line between Two Points . . . . . . . . . . . . . . . . . . 368
31.5.2 Equation of a Line through One Point and Parallel or Perpendicular to
Another Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
31.5.3 Inclination of a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
31.6 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
31.6.1 Rotation of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
31.6.2 Enlargement of a Polygon 1 . . . . . . . . . . . . . . . . . . . . . . . . . 376
32 Trigonometry - Grade 11
381
32.1 History of Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
32.2 Graphs of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . 381
32.2.1 Functions of the form y = sin(kθ) . . . . . . . . . . . . . . . . . . . . . 381
32.2.2 Functions of the form y = cos(kθ) . . . . . . . . . . . . . . . . . . . . . 383
32.2.3 Functions of the form y = tan(kθ) . . . . . . . . . . . . . . . . . . . . . 384
32.2.4 Functions of the form y = sin(θ + p) . . . . . . . . . . . . . . . . . . . . 385
32.2.5 Functions of the form y = cos(θ + p) . . . . . . . . . . . . . . . . . . . 386
32.2.6 Functions of the form y = tan(θ + p) . . . . . . . . . . . . . . . . . . . 387
32.3 Trigonometric Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
32.3.1 Deriving Values of Trigonometric Functions for 30◦ , 45◦ and 60◦ . . . . . 389
32.3.2 Alternate Definition for tan θ . . . . . . . . . . . . . . . . . . . . . . . . 391
xv
CONTENTS
CONTENTS
32.3.3 A Trigonometric Identity . . . . . . . . . . . . . . . . . . . . . . . . . . 392
32.3.4 Reduction Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
32.4 Solving Trigonometric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 399
32.4.1 Graphical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
32.4.2 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
32.4.3 Solution using CAST diagrams . . . . . . . . . . . . . . . . . . . . . . . 403
32.4.4 General Solution Using Periodicity . . . . . . . . . . . . . . . . . . . . . 405
32.4.5 Linear Trigonometric Equations . . . . . . . . . . . . . . . . . . . . . . . 406
32.4.6 Quadratic and Higher Order Trigonometric Equations . . . . . . . . . . . 406
32.4.7 More Complex Trigonometric Equations . . . . . . . . . . . . . . . . . . 407
32.5 Sine and Cosine Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
32.5.1 The Sine Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
32.5.2 The Cosine Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
32.5.3 The Area Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
32.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
33 Statistics - Grade 11
419
33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
33.2 Standard Deviation and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 419
33.2.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
33.2.2 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
33.2.3 Interpretation and Application . . . . . . . . . . . . . . . . . . . . . . . 423
33.2.4 Relationship between Standard Deviation and the Mean . . . . . . . . . . 424
33.3 Graphical Representation of Measures of Central Tendency and Dispersion . . . . 424
33.3.1 Five Number Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
33.3.2 Box and Whisker Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 425
33.3.3 Cumulative Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
33.4 Distribution of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
33.4.1 Symmetric and Skewed Data . . . . . . . . . . . . . . . . . . . . . . . . 428
33.4.2 Relationship of the Mean, Median, and Mode . . . . . . . . . . . . . . . 428
33.5 Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
33.6 Misuse of Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
33.7 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
34 Independent and Dependent Events - Grade 11
437
34.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
34.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
34.2.1 Identification of Independent and Dependent Events
. . . . . . . . . . . 438
34.3 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
IV
Grade 12
35 Logarithms - Grade 12
443
445
35.1 Definition of Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
xvi
CONTENTS
CONTENTS
35.2 Logarithm Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
35.3 Laws of Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
35.4 Logarithm Law 1: loga 1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
35.5 Logarithm Law 2: loga (a) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
35.6 Logarithm Law 3: loga (x · y) = loga (x) + loga (y) . . . . . . . . . . . . . . . . . 448
35.7 Logarithm Law 4: loga xy = loga (x) − loga (y) . . . . . . . . . . . . . . . . . 449
35.8 Logarithm Law 5: loga (xb ) = b loga (x) . . . . . . . . . . . . . . . . . . . . . . . 450
√
35.9 Logarithm Law 6: loga ( b x) = logab(x) . . . . . . . . . . . . . . . . . . . . . . . 450
35.10Solving simple log equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
35.10.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
35.11Logarithmic applications in the Real World . . . . . . . . . . . . . . . . . . . . . 454
35.11.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
35.12End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
36 Sequences and Series - Grade 12
457
36.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
36.2 Arithmetic Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
36.2.1 General Equation for the nth -term of an Arithmetic Sequence . . . . . . 458
36.3 Geometric Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
36.3.1 Example - A Flu Epidemic . . . . . . . . . . . . . . . . . . . . . . . . . 459
36.3.2 General Equation for the nth -term of a Geometric Sequence . . . . . . . 461
36.3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
36.4 Recursive Formulae for Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 462
36.5 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
36.5.1 Some Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
36.5.2 Sigma Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
36.6 Finite Arithmetic Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
36.6.1 General Formula for a Finite Arithmetic Series . . . . . . . . . . . . . . . 466
36.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
36.7 Finite Squared Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
36.8 Finite Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
36.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
36.9 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
36.9.1 Infinite Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . 471
36.9.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
36.10End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
37 Finance - Grade 12
477
37.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
37.2 Finding the Length of the Investment or Loan . . . . . . . . . . . . . . . . . . . 477
37.3 A Series of Payments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
37.3.1 Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
xvii
CONTENTS
CONTENTS
37.3.2 Present Values of a series of Payments . . . . . . . . . . . . . . . . . . . 479
37.3.3 Future Value of a series of Payments . . . . . . . . . . . . . . . . . . . . 484
37.3.4 Exercises - Present and Future Values . . . . . . . . . . . . . . . . . . . 485
37.4 Investments and Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
37.4.1 Loan Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
37.4.2 Exercises - Investments and Loans . . . . . . . . . . . . . . . . . . . . . 489
37.4.3 Calculating Capital Outstanding . . . . . . . . . . . . . . . . . . . . . . 489
37.5 Formulae Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
37.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
37.5.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
37.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
38 Factorising Cubic Polynomials - Grade 12
493
38.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
38.2 The Factor Theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
38.3 Factorisation of Cubic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 494
38.4 Exercises - Using Factor Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 496
38.5 Solving Cubic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
38.5.1 Exercises - Solving of Cubic Equations . . . . . . . . . . . . . . . . . . . 498
38.6 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
39 Functions and Graphs - Grade 12
501
39.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
39.2 Definition of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
39.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
39.3 Notation used for Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
39.4 Graphs of Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
39.4.1 Inverse Function of y = ax + q . . . . . . . . . . . . . . . . . . . . . . . 503
39.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
39.4.3 Inverse Function of y = ax2
. . . . . . . . . . . . . . . . . . . . . . . . 504
39.4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
39.4.5 Inverse Function of y = ax . . . . . . . . . . . . . . . . . . . . . . . . . 506
39.4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
39.5 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
40 Differential Calculus - Grade 12
509
40.1 Why do I have to learn this stuff? . . . . . . . . . . . . . . . . . . . . . . . . . 509
40.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
40.2.1 A Tale of Achilles and the Tortoise . . . . . . . . . . . . . . . . . . . . . 510
40.2.2 Sequences, Series and Functions . . . . . . . . . . . . . . . . . . . . . . 511
40.2.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
40.2.4 Average Gradient and Gradient at a Point . . . . . . . . . . . . . . . . . 516
40.3 Differentiation from First Principles . . . . . . . . . . . . . . . . . . . . . . . . . 519
xviii
CONTENTS
CONTENTS
40.4 Rules of Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
40.4.1 Summary of Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . 522
40.5 Applying Differentiation to Draw Graphs . . . . . . . . . . . . . . . . . . . . . . 523
40.5.1 Finding Equations of Tangents to Curves
. . . . . . . . . . . . . . . . . 523
40.5.2 Curve Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
40.5.3 Local minimum, Local maximum and Point of Inflextion . . . . . . . . . 529
40.6 Using Differential Calculus to Solve Problems . . . . . . . . . . . . . . . . . . . 530
40.6.1 Rate of Change problems . . . . . . . . . . . . . . . . . . . . . . . . . . 534
40.7 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
41 Linear Programming - Grade 12
539
41.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
41.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
41.2.1 Feasible Region and Points . . . . . . . . . . . . . . . . . . . . . . . . . 539
41.3 Linear Programming and the Feasible Region . . . . . . . . . . . . . . . . . . . 540
41.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
42 Geometry - Grade 12
549
42.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
42.2 Circle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
42.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
42.2.2 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
42.2.3 Theorems of the Geometry of Circles . . . . . . . . . . . . . . . . . . . . 550
42.3 Co-ordinate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
42.3.1 Equation of a Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
42.3.2 Equation of a Tangent to a Circle at a Point on the Circle . . . . . . . . 569
42.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
42.4.1 Rotation of a Point about an angle θ . . . . . . . . . . . . . . . . . . . . 571
42.4.2 Characteristics of Transformations . . . . . . . . . . . . . . . . . . . . . 573
42.4.3 Characteristics of Transformations . . . . . . . . . . . . . . . . . . . . . 573
42.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
43 Trigonometry - Grade 12
577
43.1 Compound Angle Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
43.1.1 Derivation of sin(α + β) . . . . . . . . . . . . . . . . . . . . . . . . . . 577
43.1.2 Derivation of sin(α − β) . . . . . . . . . . . . . . . . . . . . . . . . . . 578
43.1.3 Derivation of cos(α + β) . . . . . . . . . . . . . . . . . . . . . . . . . . 578
43.1.4 Derivation of cos(α − β) . . . . . . . . . . . . . . . . . . . . . . . . . . 579
43.1.5 Derivation of sin 2α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
43.1.6 Derivation of cos 2α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
43.1.7 Problem-solving Strategy for Identities . . . . . . . . . . . . . . . . . . . 580
43.2 Applications of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . 582
43.2.1 Problems in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 582
xix
CONTENTS
CONTENTS
43.2.2 Problems in 3 dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 584
43.3 Other Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
43.3.1 Taxicab Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
43.3.2 Manhattan distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
43.3.3 Spherical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
43.3.4 Fractal Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
43.4 End of Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
44 Statistics - Grade 12
591
44.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
44.2 A Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
44.3 Extracting a Sample Population . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
44.4 Function Fitting and Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 594
44.4.1 The Method of Least Squares
. . . . . . . . . . . . . . . . . . . . . . . 596
44.4.2 Using a calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
44.4.3 Correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
44.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
45 Combinations and Permutations - Grade 12
603
45.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
45.2 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
45.2.1 Making a List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
45.2.2 Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
45.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
45.3.1 The Factorial Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
45.4 The Fundamental Counting Principle . . . . . . . . . . . . . . . . . . . . . . . . 604
45.5 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
45.5.1 Counting Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
45.5.2 Combinatorics and Probability . . . . . . . . . . . . . . . . . . . . . . . 606
45.6 Permutations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
45.6.1 Counting Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
45.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
45.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
V
Exercises
613
46 General Exercises
615
47 Exercises - Not covered in Syllabus
617
A GNU Free Documentation License
619
xx
Part IV
Grade 12
443
Chapter 35
Logarithms - Grade 12
In mathematics many ideas are related. We saw that addition and subtraction are related and
that multiplication and division are related. Similarly, exponentials and logarithms are related.
Logarithms, commonly referred to as logs, are the inverse of exponentials. The logarithm of a
number x in the base a is defined as the number n such that an = x.
So, if an = x, then:
loga (x) = n
(35.1)
Extension: Inverse Function
When we say “inverse function” we mean that the answer becomes the question
and the question becomes the answer. For example, in the equation ab = x the
“question” is “what is a raised to the power b.” The answer is “x.” The inverse
function would be loga x = b or “by what power must we raise a to obtain x.” The
answer is “b.”
The mathematical symbol for logarithm is loga (x) and it is read “log to the base a of x”. For
example, log10 (100) is “log to the base 10 of 100”.
Activity :: Logarithm Symbols : Write the following out in words. The
first one is done for you.
1.
2.
3.
4.
5.
35.1
log2 (4) is log to the base 2 of 4
log10 (14)
log16 (4)
logx (8)
logy (x)
Definition of Logarithms
The logarithm of a number is the index to which the base must be raised to give that number.
From the first example of the activity log2 (4) (read log to the base 2 of 4) means the power of
2 that will give 4. Therefore,
log2 (4) = 2
(35.2)
The index-form is then 22 = 4 and the logarithmic-form is log2 4 = 2.
445
35.2
CHAPTER 35. LOGARITHMS - GRADE 12
Definition: Logarithms
If an = x, then: loga (x) = n, where a > 0; a 6= 1 and x > 0.
Activity :: Applying the definition : Find the value of:
1. log7 343
Reasoning :
73 = 343
theref ore, log7 343 = 3
2. log2 8
3. log4
1
64
4. log10 1 000
35.2
Logarithm Bases
Logarithms, like exponentials, also have a base and log2 (2) is not the same as log10 (2).
We generally use the “common” base, 10, or the natural base, e.
The number e is an irrational number between 2.71 and 2.72. It comes up surprisingly often in
Mathematics, but for now suffice it to say that it is one of the two common bases.
Extension: Natural Logarithm
The natural logarithm (symbol ln) is widely used in the sciences. The natural logarithm is to the base e which is approximately 2.71828183.... e is like π and is another
example of an irrational number.
While the notation log10 (x) and loge (x) may be used, log10 (x) is often written log(x) in Science
and loge (x) is normally written as ln(x) in both Science and Mathematics. So, if you see the
log symbol without a base, it means log10 .
It is often necessary or convenient to convert a log from one base to another. An engineer might
need an approximate solution to a log in a base for which he does not have a table or calculator
function, or it may be algebraically convenient to have two logs in the same base.
Logarithms can be changed from one base to another, by using the change of base formula:
loga x =
logb x
logb a
(35.3)
where b is any base you find convenient. Normally a and b are known, therefore logb a is normally
a known, if irrational, number.
For example, change log2 12 in base 10 is:
log2 12 =
log10 12
log10 2
446
CHAPTER 35. LOGARITHMS - GRADE 12
35.3
Activity :: Change of Base : Change the following to the indicated base:
1. log2 (4) to base 8
2. log10 (14) to base 2
3. log16 (4) to base 10
4. logx (8) to base y
5. logy (x) to base x
35.3
Laws of Logarithms
Just as for the exponents, logarithms have some laws which make working with them easier.
These laws are based on the exponential laws and are summarised first and then explained in
detail.
loga (1) =
loga (a) =
loga (x · y) =
x
=
loga
y
loga (xb ) =
√ loga b x =
35.4
0
(35.4)
1
loga (x) + loga (y)
(35.5)
(35.6)
loga (x) − loga (y)
(35.7)
b loga (x)
loga (x)
b
(35.8)
Logarithm Law 1: loga 1 = 0
Since
Then,
a0
=
loga (1) =
=
1
loga (a0 )
0
by definition of logarithm in Equation 35.1
For example,
log2 1 = 0
and
log2 51 = 0
Activity :: Logarithm Law 1: loga 1 = 0 : Simplify the following:
1. log2 (1) + 5
2. log10 (1) × 100
3. 3 × log16 (1)
4. logx (1) + 2xy
5.
logy (1)
x
447
(35.9)
35.5
CHAPTER 35. LOGARITHMS - GRADE 12
35.5
Logarithm Law 2: loga (a) = 1
Since a1
Then,
=
loga (a) =
=
a
loga (a1 )
1
by definition of logarithm in Equation 35.1
For example,
log2 2 = 1
and
log25 25 = 1
Activity :: Logarithm Law 2: loga (a) = 1 : Simplify the following:
1. log2 (2) + 5
2. log10 (10) × 100
3. 3 × log16 (16)
4. logx (x) + 2xy
5.
logy (y)
x
Important: Useful to know and remember
When the base is 10, we do not need to state it. From the work done up to now, it is also useful
to summarise the following facts:
1. log 1 = 0
2. log 10 = 1
3. log 100 = 2
4. log 1000 = 3
35.6
Logarithm Law 3: loga (x · y) = loga (x) + loga (y)
The derivation of this law is a bit trickier than the first two. Firstly, we need to relate x and y
to the base a. So, assume that x = am and y = an . Then from Equation 35.1, we have that:
and
loga (x)
= m
(35.10)
loga (y)
= n
(35.11)
This means that we can write:
loga (x · y) =
=
=
=
loga (am · an )
loga (am+n )
Exponential Law Equation 4.4
loga (x)+loga (y)
loga (a
loga (x) + loga (y)
)
From Equation 35.10 and Equation 35.11
From Equation 35.1
448
CHAPTER 35. LOGARITHMS - GRADE 12
35.7
For example, show that log(10 · 100) = log 10 + log 100. Start with calculating the left hand
side:
log(10 · 100) = log(1000)
= log(103 )
= 3
The right hand side:
log 10 + log 100 =
=
1+2
3
Both sides are equal. Therefore, log(10 · 100) = log 10 + log 100.
Activity :: Logarithm Law 3: loga (x · y) = loga (x) + loga (y) : Write as
seperate logs:
1. log2 (8 × 4)
2. log8 (10 × 10)
3. log16 (xy)
4. logz (2xy)
5. logx (y 2 )
35.7
Logarithm Law 4: loga
x
y
= loga (x) − loga (y)
The derivation of this law is identical to the derivation of Logarithm Law 3 and is left as an
exercise.
10
For example, show that log( 100
) = log 10 − log 100. Start with calculating the left hand side:
log(
1
)
10
log(10−1 )
−1
10
) =
100
=
=
log(
The right hand side:
log 10 − log 100 =
=
1−2
−1
10
) = log 10 − log 100.
Both sides are equal. Therefore, log( 100
Activity :: Logarithm Law 4: loga
seperate logs:
1. log2 ( 85 )
2. log8 ( 100
3 )
3. log16 ( xy )
449
x
y
= loga (x) − loga (y) : Write as
35.8
CHAPTER 35. LOGARITHMS - GRADE 12
4. logz ( 2y )
5. logx ( y2 )
35.8
Logarithm Law 5: loga (xb) = b loga (x)
Once again, we need to relate x to the base a. So, we let x = am . Then,
∴
loga (xb ) =
=
loga ((am )b )
loga (am·b ) (Exponential Law in Equation 4.8)
But, m =
loga (xb ) =
loga (x)
(Assumption that x = am )
loga (ab·loga (x) )
=
b · loga (x)
(Definition of logarithm in Equation 35.1)
For example, we can show that log2 (53 ) = 3 log2 (5).
log2 (53 )
= log( 5 · 5 · 5)
= log2 5 + log2 5 + log2 5
= 3 log2 5
(∵ loga (x · y) = loga (am · an ))
Therefore, log2 (53 ) = 3 log2 (5).
Activity :: Logarithm Law 5: loga (xb ) = b loga (x) : Simplify the following:
1. log2 (84 )
2. log8 (1010 )
3. log16 (xy )
4. logz (y x )
5. logx (y 2x )
35.9
√
Logarithm Law 6: loga ( b x) =
loga (x)
b
The derivation of this law is identical to the derivation of Logarithm Law 5 and is left as an
exercise.
√
log 5
For example, we can show that log2 ( 3 5) = 32 .
√
3
log2 ( 5)
√
Therefore, log2 ( 3 5) =
1
= log( 5 3 )
1
log2 5 (∵ loga (xb ) = b loga (x))
=
3
log2 5
=
3
log2 5
3 .
450
CHAPTER 35. LOGARITHMS - GRADE 12
35.9
√
Activity :: Logarithm Law 6: loga ( b x) =
√
1. log2 ( 4 8)
√
2. log8 ( 10 10)
√
3. log16 ( y x)
√
4. logz ( x y)
√
5. logx ( 2x y)
loga (x)
b
: Simplify the following:
Worked Example 155: Simplification of Logs
Question: Simplify, without use of a calculator:
3 log 2 + log 125
Answer
Step 1 : Try to write any quantities as exponents
125 can be written as 53 .
Step 2 : Simplify
3 log 2 + log 125 =
3 log 2 + log 53
=
3 log 2 + 3 log 5
∵ loga (xb ) = b loga (x)
Step 3 : Final Answer
We cannot simplify any further. The final answer is:
3 log 2 + 3 log 5
Worked Example 156: Simplification of Logs
Question: Simplify, without use of a calculator:
2
8 3 + log2 32
Answer
Step 1 : Try to write any quantities as exponents
8 can be written as 23 . 32 can be written as 25 .
Step 2 : Re-write the question using the exponential forms of the numbers
2
2
8 3 + log2 32 = (23 ) 3 + log2 25
Step 3 : Determine which laws can be used.
We can use:
loga (xb ) = b loga (x)
Step 4 : Apply log laws to simplify
2
2
(23 ) 3 + log2 25 = (2)3 3 + 5 log2 2
Step 5 : Determine which laws can be used.
451
The final answer does not
have to be
that simple.
35.10
CHAPTER 35. LOGARITHMS - GRADE 12
We can now use loga a = 1
Step 6 : Apply log laws to simplify
2
(2)3 3 + 5 log2 2 = (2)2 + 5(1) = 4 + 5 = 9
Step 7 : Final Answer
The final answer is:
2
8 3 + log2 32 = 9
Worked Example 157: Simplify to one log
Question: Write 2 log 3 + log 2 − log 5 as the logarithm of a single number.
Answer
Step 1 : Reverse law 5
2 log 3 + log 2 − log 5 = log 32 + log 2 − log 5
Step 2 : Apply laws 3 and 4
= log 32 × 2 ÷ 5
Step 3 : Write the final answer
= log 3,6
35.10
Solving simple log equations
In grade 10 you solved some exponential equations by trial and error, because you did not know
the great power of logarithms yet. Now it is much easier to solve these equations by using
logarithms.
For example to solve x in 25x = 50 correct to two decimal places you simply apply the following
reasoning. If the LHS = RHS then the logarithm of the LHS must be equal to the logarithm of
the RHS. By applying Law 5, you will be able to use your calculator to solve for x.
Worked Example 158: Solving Log equations
Question: Solve for x: 25x = 50 correct to two decimal places.
Answer
Step 1 : Taking the log of both sides
log 25x = log 50
Step 2 : Use Law 5
x log 25 = log 50
Step 3 : Solve for x
x = log 50 ÷ log 25
x = 1,21533....
Step 4 : Round off to required decimal place
x = 1,22
452
CHAPTER 35. LOGARITHMS - GRADE 12
35.10
In general, the exponential equation should be simplified as much as possible. Then the aim is
to make the unknown quantity (i.e. x) the subject of the equation.
For example, the equation
2(x+2) = 1
is solved by moving all terms with the unknown to one side of the equation and taking all
constants to the other side of the equation
2x · 22
2
x
= 1
1
=
22
Then, take the logarithm of each side.
1
)
22
− log (22 )
log (2x ) =
log (
x log (2) =
x log (2) =
∴ x =
−2 log (2) Divide both sides by log (2)
−2
Substituting into the original equation, yields
2−2+2 = 20 = 1 X
Similarly, 9(1−2x) = 34 is solved as follows:
9(1−2x)
=
34
2(1−2x)
3
32 3−4x
=
=
34
34
3−4x
3−4x
=
=
34 · 3−2
32 take the logarithm of both sides
log(3−4x ) =
−4x log(3) =
log(32 )
2 log(3)
−4x =
2
∴x =
−
divide both sides by log(3)
1
2
Substituting into the original equation, yields
9(1−2(
−1
2 ))
= 9(1+1) = 32(2) = 34
X
Worked Example 159: Exponential Equation
Question: Solve for x in 7 · 5(3x+3) = 35
Answer
Step 1 : Identify the base with x as an exponent
There are two possible bases: 5 and 7. x is an exponent of 5.
Step 2 : Eliminate the base with no x
In order to eliminate 7, divide both sides of the equation by 7 to give:
5(3x+3) = 5
Step 3 : Take the logarithm of both sides
log(5(3x+3) ) = log(5)
Step 4 : Apply the log laws to make x the subject of the equation.
453
35.11
CHAPTER 35. LOGARITHMS - GRADE 12
(3x + 3) log(5) =
log(5) divide both sides of the equation by log(5)
3x + 3 =
3x =
1
−2
2
−
3
x =
Step 5 : Substitute into the original equation to check answer.
2
7 · 5(−3 3 +3) = 7 · 5(−2+3) = 7 · 51 = 35 X
35.10.1
Exercises
Solve for x:
1. log3 x = 2
2. 10log27 = x
3. 32x−1 = 272x−1
35.11
Logarithmic applications in the Real World
Logarithms are part of a number of formulae used in the Physical Sciences. There are formulae
that deal with earthquakes, with sound, and pH-levels to mention a few. To work out time
periods is growth or decay, logs are used to solve the particular equation.
Worked Example 160: Using the growth formula
Question: A city grows 5% every 2 years. How long will it take for the city to triple
its size?
Answer
Step 1 : Use the formula
A = P (1 + i)n Assume P = x, then A = 3x. For this example n represents a period
of 2 years, therefore the n is halved for this purpose.
Step 2 : Substitute information given into formula
3
=
log 3
=
n
=
n
=
n
(1,05) 2
n
× log 1.05 (usinglaw5)
2
2 log 3 ÷ log 1,05
45,034
Step 3 : Final answer
So it will take approximately 45 years for the population to triple in size.
454
CHAPTER 35. LOGARITHMS - GRADE 12
35.11.1
35.12
Exercises
1. The population of a certain bacteria is expected to grow exponentially at a rate of 15 %
every hour. If the initial population is 5 000, how long will it take for the population to
reach 100 000 ?
2. Plus Bank is offering a savings account with an interest rate if 10 % per annum compounded
monthly. You can afford to save R 300 per month. How long will it take you to save up
R 20 000 ? (Answer to the nearest rand)
Worked Example 161: Logs in Compound Interest
Question: I have R12 000 to invest. I need the money to grow to at least R30 000.
If it is invested at a compound interest rate of 13% per annum, for how long (in full
years) does my investment need to grow ?
Answer
Step 1 : The formula to use
A = P (1 + i)n
Step 2 : Substitute and solve for n
12 000(1 + 0,13)n
5
2
log 2,5
30 000 <
1,13n
>
n log 1,13 >
n
n
>
>
log 2,5 ÷ log 1,13
7,4972....
Step 3 : Determine the final answer
In this case we round up, because 7 years will not yet deliver the required R 30 000.
The investment need to stay in the bank for at least 8 years.
35.12
End of Chapter Exercises
1. Show that
loga
x
= loga (x) − loga (y)
y
2. Show that
loga
3. Without using a calculator show that:
log
loga (x)
√
b
x =
b
75
5
32
− 2 log + log
= log 2
16
9
243
4. Given that 5n = x and n = log2 y
A Write y in terms of n
B Express log8 4y in terms of n
C Express 50n+1 in terms of x and y
5. Simplify, without the use of a calculator:
455
35.12
CHAPTER 35. LOGARITHMS - GRADE 12
2
A 8 3 + log2 32
B log3 9 − log5
C
4−1
5
− 9−1
√
5
1
2
+ log3 92,12
6. Simplify to a single number, without use of a calculator:
log 32 − log 8
log 8
B log 3 − log 0,3
A log5 125 +
7. Given:
log3 6 = a and log6 5 = b
A Express log3 2 in terms of a.
B Hence, or otherwise, find log3 10 in terms of a and b.
8. Given:
Prove:
pq k = qp−1
k = 1 − 2 logq p
9. Evaluate without using a calculator: (log7 49)5 + log5
1
125
− 13 log9 1
10. If log 5 = 0,7, determine, without using a calculator:
A log2 5
B 10−1,4
11. Given:
M = log2 (x + 3) + log2 (x − 3)
A Determine the values of x for which M is defined.
B Solve for x if M = 4.
log x
12. Solve:
x3
= 10x2 (Answer(s) may be left in surd form, if necessary.)
13. Find the value of (log27 3)3 without the use of a calculator.
√
14. Simplify By using a calculator: log4 8 + 2 log3 27
15. Write log 4500 in terms of a and b if 2 = 10a and 9 = 10b .
16. Calculate:
52006 − 52004 + 24
52004 + 1
17. √
Solve the following equation for x without the use of a calculator and using the fact that
10 ≈ 3,16 :
6
2 log(x + 1) =
−1
log(x + 1)
18. Solve the following equation for x: 66x = 66
456
(Give answer correct to 2 decimal places.)
Chapter 36
Sequences and Series - Grade 12
36.1
Introduction
In this chapter we extend the arithmetic and quadratic sequences studied in earlier grades, to
geometric sequences. We also look at series, which is the summing of the terms in a sequence.
36.2
Arithmetic Sequences
The simplest type of numerical sequence is an arithmetic sequence.
Definition: Arithmetic Sequence
An arithmetic (or linear ) sequence is a sequence of numbers in which each new term is
calculated by adding a constant value to the previous term
For example,
1,2,3,4,5,6, . . .
is an arithmetic sequence because you add 1 to the current term to get the next term:
first term:
second term:
third term:
..
.
nth term:
1
2=1+1
3=2+1
n = (n − 1) + 1
Activity :: Common Difference : Find the constant value that is added to
get the following sequences and write out the next 5 terms.
1. 2,6,10,14,18,22, . . .
2. −5, − 3, − 1,1,3, . . .
3. 1,4,7,10,13,16, . . .
4. −1,10,21,32,43,54, . . .
5. 3,0, − 3, − 6, − 9, − 12, . . .
457
36.2
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.2.1
General Equation for the nth -term of an Arithmetic Sequence
More formally, the number we start out with is called a1 (the first term), and the difference
between each successive term is denoted d, called the common difference.
The general arithmetic sequence looks like:
a1
= a1
a2
a3
= a1 + d
= a2 + d = (a1 + d) + d = a1 + 2d
a4
...
= a3 + d = (a1 + 2d) + d = a1 + 3d
an
= a1 + d · (n − 1)
Thus, the equation for the nth -term will be:
an = a1 + d · (n − 1)
(36.1)
Given a1 and the common difference, d, the entire set of numbers belonging to an arithmetic
sequence can be generated.
Definition: Arithmetic Sequence
An arithmetic (or linear ) sequence is a sequence of numbers in which each new term is
calculated by adding a constant value to the previous term:
an = an−1 + d
(36.2)
where
• an represents the new term, the nth -term, that is calculated;
• an−1 represents the previous term, the (n − 1)th -term;
• d represents some constant.
Important: Arithmetic Sequences
A simple test for an arithmetic sequence is to check that the difference between consecutive
terms is constant:
a2 − a1 = a3 − a2 = an − an−1 = d
(36.3)
This is quite an important equation, and is the definitive test for an arithmetic sequence. If this
condition does not hold, the sequence is not an arithmetic sequence.
Extension: Plotting a graph of terms in an arithmetic sequence
Plotting a graph of the terms of sequence sometimes helps in determining the type
of sequence involved. For an arithmetic sequence, plotting an vs. n results in:
458
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
a9
36.3
an = a1 + d(n − 1)
b
a8
b
Term, an
a7
b
a6
b
a5
gradient d
b
a4
b
a3
b
a2
a1 b y-intercept, a1
1
36.3
2
3
4
5
6
Index, n
7
8
9
Geometric Sequences
Definition: Geometric Sequences
A geometric sequence is a sequence in which every number in the sequence is equal to the
previous number in the sequence, multiplied by a constant number.
This means that the ratio between consecutive numbers in the geometric sequence is a constant.
We will explain what we mean by ratio after looking at the following example.
36.3.1
Example - A Flu Epidemic
Extension: What is influenza?
Influenza (commonly called “the flu”) is caused by the influenza virus, which infects
the respiratory tract (nose, throat, lungs). It can cause mild to severe illness that
most of us get during winter time. The main way that the influenza virus is spread
is from person to person in respiratory droplets of coughs and sneezes. (This is
called “droplet spread”.) This can happen when droplets from a cough or sneeze
of an infected person are propelled (generally, up to a metre) through the air and
deposited on the mouth or nose of people nearby. It is good practise to cover your
mouth when you cough or sneeze so as not to infect others around you when you
have the flu.
Assume that you have the flu virus, and you forgot to cover your mouth when two friends came
to visit while you were sick in bed. They leave, and the next day they also have the flu. Let’s
assume that they in turn spread the virus to two of their friends by the same droplet spread the
following day. Assuming this pattern continues and each sick person infects 2 other friends, we
can represent these events in the following manner:
Again we can tabulate the events and formulate an equation for the general case:
459
36.3
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
Figure 36.1: Each person infects two more people with the flu virus.
Day, n
1
2
3
4
5
..
.
n
Number of newly-infected people
2 =2
4 = 2 × 2 = 2 × 21
8 = 2 × 4 = 2 × 2 × 2 = 2 × 22
16 = 2 × 8 = 2 × 2 × 2 × 2 = 2 × 23
32 = 2 × 16 = 2 × 2 × 2 × 2 × 2 = 2 × 24
..
.
= 2 × 2 × 2 × 2 × . . . × 2 = 2 × 2n−1
The above table represents the number of newly-infected people after n days since you first
infected your 2 friends.
You sneeze and the virus is carried over to 2 people who start the chain (a1 = 2). The next day,
each one then infects 2 of their friends. Now 4 people are newly-infected. Each of them infects
2 people the third day, and 8 people are infected, and so on. These events can be written as a
geometric sequence:
2; 4; 8; 16; 32; . . .
Note the common factor (2) between the events. Recall from the linear arithmetic sequence
how the common difference between terms were established. In the geometric sequence we can
determine the common ratio, r, by
Or, more general,
a3
a2
=
=r
a1
a2
(36.4)
an
=r
an−1
(36.5)
Activity :: Common Factor of Geometric Sequence : Determine the common factor for the following geometric sequences:
1. 5, 10, 20, 40, 80, . . .
2.
1 1 1
2,4,8, . . .
3. 7, 28, 112, 448, . . .
4. 2, 6, 18, 54, . . .
460
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.3
5. −3, 30, −300, 3000, . . .
36.3.2
General Equation for the nth -term of a Geometric Sequence
From the above example we know a1 = 2 and r = 2, and we have seen from the table that the
nth -term is given by an = 2 × 2n−1 . Thus, in general,
an = a1 · rn−1
(36.6)
where a1 is the first term and r is called the common ratio.
So, if we want to know how many people are newly-infected after 10 days, we need to work out
a10 :
an
=
a10
=
=
=
=
a1 · rn−1
2 × 210−1
2 × 29
2 × 512
1024
That is, after 10 days, there are 1 024 newly-infected people.
Or, how many days would pass before 16 384 people become newly infected with the flu virus?
an
= a1 · rn−1
16 384 = 2 × 2n−1
16 384 ÷ 2 = 2n−1
8 192 = 2n−1
213 = 2n−1
13 = n − 1
n = 14
That is, 14 days pass before 16 384 people are newly-infected.
Activity :: General Equation of Geometric Sequence : Determine the
formula for the following geometric sequences:
1. 5, 10, 20, 40, 80, . . .
2.
1 1 1
2,4,8, . . .
3. 7, 28, 112, 448, . . .
4. 2, 6, 18, 54, . . .
5. −3, 30, −300, 3000, . . .
36.3.3
Exercises
1. What is the important characteristic of an arithmetic sequence?
461
36.4
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
2. Write down how you would go about finding the formula for the nth term of an arithmetic
sequence?
3. A single square is made from 4 matchsticks. Two squares in a row needs 7 matchsticks
and 3 squares in a row needs 10 matchsticks. Determine:
A the first term
B the common difference
C the formula for the general term
D how many matchsticks are in a row of 25 squares
4. 5; x; y is an arithmetic sequence and 81; x; y is a geometric sequence. All terms in the
sequences are integers. Calculate the values of x and y.
36.4
Recursive Formulae for Sequences
When discussing arithmetic and quadratic sequences, we noticed that the difference between two
consecutive terms in the sequence could be written in a general way.
For an arithmetic sequence, where a new term is calculated by taking the previous term and
adding a constant value, d:
an = an−1 + d
The above equation is an example of a recursive equation since we can calculate the nth -term
only by considering the previous term in the sequence. Compare this with equation (36.1),
an = a1 + d · (n − 1)
(36.7)
where one can directly calculate the nth -term of an arithmetic sequence without knowing previous
terms.
For quadratic sequences, we noticed the difference between consecutive terms is given by (??):
an − an−1 = D · (n − 2) + d
Therefore, we re-write the equation as
an = an−1 + D · (n − 2) + d
(36.8)
which is then a recursive equation for a quadratic sequence with common second difference, D.
Using (36.5), the recursive equation for a geometric sequence is:
an = r · an−1
(36.9)
Recursive equations are extremely powerful: you can work out every term in the series just by
knowing previous terms. As you can see from the examples above, working out an using the
previous term an−1 can be a much simpler computation than working out an from scratch using
a general formula. This means that using a recursive formula when using a computer to work
out a sequence would mean the computer would finish its calculations significantly quicker.
462
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.5
Activity :: Recursive Formula : Write the first 5 terms of the following
sequences, given their recursive formulae:
1. an = 2an−1 + 3, a1 = 1
2. an = an−1 , a1 = 11
3. an = 2a2n−1 , a1 = 2
Extension: The Fibonacci Sequence
Consider the following sequence:
0; 1; 1; 2; 3; 5; 8; 13; 21; 34; . . .
(36.10)
The above sequence is called the Fibonacci sequence. Each new term is calculated
by adding the previous two terms. Hence, we can write down the recursive equation:
an = an−1 + an−2
36.5
(36.11)
Series
In this section we simply work on the concept of adding up the numbers belonging to arithmetic
and geometric sequences. We call the sum of any sequence of numbers a series.
36.5.1
Some Basics
If we add up the terms of a sequence, we obtain what is called a series. If we only sum a finite
amount of terms, we get a finite series. We use the symbol Sn to mean the sum of the first n
terms of a sequence {a1 ; a2 ; a3 ; . . . ; an }:
S n = a1 + a2 + a3 + . . . + an
(36.12)
For example, if we have the following sequence of numbers
1; 4; 9; 25; 36; 49; . . .
and we wish to find the sum of the first 4 terms, then we write
S4 = 1 + 4 + 9 + 25 = 39
The above is an example of a finite series since we are only summing 4 terms.
If we sum infinitely many terms of a sequence, we get an infinite series:
S ∞ = a1 + a2 + a3 + . . .
(36.13)
In the case of an infinite series, the number of terms is unknown and simply increases to ∞.
36.5.2
Sigma Notation
In this section we introduce a notation that will make our lives a little easier.
463
36.5
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
P
A sum may be written out using the summation symbol
. This symbol is sigma, which is the
capital letter “S” in the Greek alphabet. It indicates that you must sum the expression to the
right of it:
n
X
ai = am + am+1 + . . . + an−1 + an
(36.14)
i=m
where
• i is the index of the sum;
• m is the lower bound (or start index), shown below the summation symbol;
• n is the upper bound (or end index), shown above the summation symbol;
• ai are the terms of a sequence.
The index i is increased from m to n in steps of 1.
If we are summing from nP
= 1 (which implies summing from the first term in a sequence), then
we can use either Sn - or -notation since they mean the same thing:
Sn =
n
X
ai = a1 + a2 + . . . + an
(36.15)
i=1
For example, in the following sum,
5
X
i
i=1
we have to add together all the terms in the sequence ai = i from i = 1 up until i = 5:
5
X
i = 1 + 2 + 3 + 4 + 5 = 15
i=1
Examples
1.
6
X
2i
=
21 + 22 + 23 + 24 + 25 + 26
=
2 + 4 + 8 + 16 + 32 + 64
=
126
i=1
2.
10
X
(3xi ) = 3x3 + 3x4 + . . . + 3x9 + 3x10
i=3
for any value x.
Some Basic Rules for Sigma Notation
1. Given two sequences, ai and bi ,
n
X
(ai + bi ) =
n
X
i=1
i=1
464
ai +
n
X
i=1
bi
(36.16)
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.6
2. For any constant c, which is any variable not dependent on the index i,
n
X
i=1
c · ai
= c · a1 + c · a2 + c · a3 + . . . + c · an
= c (a1 + a2 + a3 + . . . + an )
n
X
ai
= c
(36.17)
i=1
Exercises
1. What is
4
P
2?
k=1
2. Determine
3
P
i.
i=−1
3. Expand
5
P
i.
k=0
4. Calculate the value of a if:
3
X
k=1
36.6
a · 2k−1 = 28
Finite Arithmetic Series
Remember that an arithmetic sequence is a set of numbers, such that the difference between
any term and the previous term is a constant number, d, called the constant difference:
an = a1 + d (n − 1)
(36.18)
where
• n is the index of the sequence;
• an is the nth -term of the sequence;
• a1 is the first term;
• d is the common difference.
When we sum a finite number of terms in an arithmetic sequence, we get a finite arithmetic
series.
The simplest arithmetic sequence is when a1 = 1 and d = 0 in the general form (36.18); in other
words all the terms in the sequence are 1:
ai
=
=
=
{ai } =
a1 + d (i − 1)
1 + 0 · (i − 1)
1
{1; 1; 1; 1; 1; . . .}
If we wish to sum this sequence from i = 1 to any positive integer n, we would write
n
X
i=1
ai =
n
X
1 = 1 + 1 + 1 + ...+ 1
i=1
465
(n times)
36.6
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
Since all the terms are equal to 1, it means that if we sum to n we will be adding n-number of
1’s together, which is simply equal to n:
n
X
1=n
(36.19)
i=1
Another simple arithmetic sequence is when a1 = 1 and d = 1, which is the sequence of positive
integers:
ai
=
=
=
{ai } =
a1 + d (i − 1)
1 + 1 · (i − 1)
i
{1; 2; 3; 4; 5; . . .}
If we wish to sum this sequence from i = 1 to any positive integer n, we would write
n
X
i = 1 + 2 + 3 + ...+ n
(36.20)
i=1
This is an equation with a very important solution as it gives the answer to the sum of positive
integers.
teresting Mathematician, Karl Friedrich Gauss, discovered this proof when he was only
Interesting
Fact
Fact
8 years old. His teacher had decided to give his class a problem which would
distract them for the entire day by asking them to add all the numbers from 1
to 100. Young Karl realised how to do this almost instantaneously and shocked
the teacher with the correct answer, 5050.
We first write Sn as a sum of terms in ascending order:
Sn = 1 + 2 + . . . + (n − 1) + n
(36.21)
We then write the same sum but with the terms in descending order:
Sn = n + (n − 1) + . . . + 2 + 1
(36.22)
We then add corresponding pairs of terms from equations (36.21) and (36.22), and we find that
the sum for each pair is the same, (n + 1):
2 Sn = (n + 1) + (n + 1) + . . . + (n + 1) + (n + 1)
(36.23)
We then have n-number of (n + 1)-terms, and by simplifying we arrive at the final result:
2 Sn
=
Sn
=
Sn =
n
X
i=1
36.6.1
n (n + 1)
n
(n + 1)
2
i=
n
(n + 1)
2
(36.24)
General Formula for a Finite Arithmetic Series
If we wish to sum any arithmetic sequence, there is no need to work it out term-for-term. We
will now determine the general formula to evaluate a finite arithmetic series. We start with the
466
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.6
general formula for an arithmetic sequence and sum it from i = 1 to any positive integer n:
n
X
ai
=
i=1
=
=
=
=
n
X
i=1
n
X
i=1
n
X
i=1
n
X
i=1
n
X
i=1
=
=
=
=
[a1 + d (i − 1)]
(a1 + di − d)
[(a1 − d) + di]
(a1 − d) +
n
X
(a1 − d) + d
(a1 − d) n +
(di)
i=1
n
X
i
i=1
dn
(n + 1)
2
n
(2a1 − 2d + dn + d)
2
n
(2a1 + dn − d)
2
n
[ 2a1 + d (n − 1) ]
2
So, the general formula for determining an arithmetic series is given by
Sn =
n
X
i=1
[ a1 + d (i − 1) ] =
n
[ 2a1 + d (n − 1) ]
2
(36.25)
For example, if we wish to know the series S20 for the arithmetic sequence ai = 3 + 7 (i − 1),
we could either calculate each term individually and sum them:
S20
=
20
X
i=1
=
[3 + 7 (i − 1)]
3 + 10 + 17 + 24 + 31 + 38 + 45 + 52 +
59 + 66 + 73 + 80 + 87 + 94 + 101 +
108 + 115 + 122 + 129 + 136
=
1390
or, more sensibly, we could use equation (36.25) noting that a1 = 3, d = 7 and n = 20 so that
S20
=
=
=
20
X
[3 + 7 (i − 1)]
i=1
20
2 [2
1390
· 3 + 7 (20 − 1)]
In this example, it is clear that using equation (36.25) is beneficial.
36.6.2
Exercises
1. The sum to n terms of an arithmetic series is Sn =
n
(7n + 15).
2
A How many terms of the series must be added to give a sum of 425?
B Determine the 6th term of the series.
2. The sum of an arithmetic series is 100 times its first term, while the last term is 9 times
the first term. Calculate the number of terms in the series if the first term is not equal to
zero.
467
36.7
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
3. The common difference of an arithmetic series is 3. Calculate the values of n for which
the nth term of the series is 93, and the sum of the first n terms is 975.
4. The sum of n terms of an arithmetic series is 5n2 − 11n for all values of n. Determine the
common difference.
5. The sum of an arithmetic series is 100 times the value of its first term, while the last term
is 9 times the first term. Calculate the number of terms in the series if the first term is
not equal to zero.
6. The third term of an arithmetic sequence is -7 and the 7t h term is 9. Determine the sum
of the first 51 terms of the sequence.
7. Calculate the sum of the arithmetic series 4 + 7 + 10 + · · · + 901.
8. The common difference of an arithmetic series is 3. Calculate the values of n for which
the nth term of the series is 93 and the sum of the first n terms is 975.
36.7
Finite Squared Series
When we sum a finite number of terms in a quadratic sequence, we get a finite quadratic series.
The general form of a quadratic series is quite complicated, so we will only look at the simple
case when D = 2 and d = (a2 − a1 ) = 3 in the general form (???). This is the sequence of
squares of the integers:
ai
=
i2
{ai }
=
=
{12 ; 22 ; 32 ; 42 ; 52 ; 62 ; . . .}
{1; 4; 9; 16; 25; 36; . . .}
If we wish to sum this sequence and create a series, then we write
Sn =
n
X
i 2 = 1 + 4 + 9 + . . . + n2
i=1
which can be written, in general, as
Sn =
n
X
i2 =
i=1
n
(2n + 1)(n + 1)
6
The proof for equation (36.26) can be found under the Advanced block that follows:
Extension: Derivation of the Finite Squared Series
We will now prove the formula for the finite squared series:
Sn =
n
X
i 2 = 1 + 4 + 9 + . . . + n2
i=1
3
We start off with the expansion of (k + 1) .
(k + 1)3
(k + 1)3 − k 3
=
k 3 + 3k 2 + 3k + 1
= 3k 2 + 3k + 1
468
(36.26)
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.8
k=1 :
23 − 13 = 3(1)2 + 3(1) + 1
k=2 :
33 − 23 = 3(2)2 + 3(2) + 1
k=3 :
..
.
k=n :
43 − 33 = 3(3)2 + 3(3) + 1
(n + 1)3 − n3 = 3n2 + 3n + 1
If we add all the terms on the right and left, we arrive at
3
(n + 1) − 1 =
n
X
(3i2 + 3i + 1)
i=1
n3 + 3n2 + 3n + 1 − 1 =
3
n3 + 3n2 + 3n =
3
n
X
n
X
i2
n
X
i+
i=1
i=1
i=1
n
X
i2 + 3
i2 +
n
X
1
i=1
3n
(n + 1) + n
2
=
1 3
3n
[n + 3n2 + 3n −
(n + 1) − n]
3
2
=
3
3
1 3
(n + 3n2 + 3n − n2 − n − n)
3
2
2
=
1 3 3 2 1
(n + n + n)
3
2
2
=
n
(2n2 + 3n + 1)
6
i2 =
n
(2n + 1)(n + 1)
6
i=1
Therefore,
n
X
i=1
36.8
Finite Geometric Series
When we sum a known number of terms in a geometric sequence, we get a finite geometric
series. We know from (??) that we can write out each term of a geometric sequence in the
general form:
an = a1 · rn−1
(36.27)
where
• n is the index of the sequence;
• an is the nth -term of the sequence;
• a1 is the first term;
• r is the common ratio (the ratio of any term to the previous term).
By simply adding together the first n terms, we are actually writing out the series
Sn = a1 + a1 r + a1 r2 + . . . + a1 rn−2 + a1 rn−1
(36.28)
We may multiply the above equation by r on both sides, giving us
rSn = a1 r + a1 r2 + a1 r3 + . . . + a1 rn−1 + a1 rn
469
(36.29)
36.8
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
You may notice that all the terms on the right side of (36.28) and (36.29) are the same, except
the first and last terms. If we subtract (36.28) from (36.29), we are left with just
rSn − Sn = a1 rn − a1
Sn (r − 1) = a1 (rn − 1)
Dividing by (r − 1) on both sides, we arrive at the general form of a geometric series:
Sn =
n
X
i=1
36.8.1
a1 · ri−1 =
a1 (rn − 1)
r−1
(36.30)
Exercises
1. Prove that
a + ar + ar2 + ... + arn−1 =
a (1 − rn )
(1 − r)
2. Find the sum of the first 11 terms of the geometric series 6 + 3 +
3
2
+
3
4
+ ...
3. Show that the sum of the first n terms of the geometric series
54 + 18 + 6 + ... + 5 ( 31 )n−1
is given by 81 − 34−n .
4. The eighth term of a geometric sequence is 640. The third term is 20. Find the sum of
the first 7 terms.
5. Solve for n:
n
P
t=1
8 ( 21 )t = 15 43 .
6. The ratio between the sum of the first three terms of a geometric series and the sum of
the 4th -, 5th − and 6th -terms of the same series is 8 : 27. Determine the common ratio
and the first 2 terms if the third term is 8.
7. Given the geometric series:
2 · (5)5 + 2 · (5)4 + 2 · (5)3 + . . .
A Show that the series converges
B Calculate the sum to infinity of the series
C Calculate the sum of the first 8 terms of the series, correct to two decimal places.
D Determine
∞
X
n=9
2 · 56−n
correct to two decimal places using previously calculated results.
8. Given the geometric sequence 1; −3; 9; . . . determine:
A The 8th term of the sequence
B The sum of the first 8 terms of the sequence.
9. Determine:
4
X
n=1
3 · 2n−1
470
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.9
36.9
Infinite Series
Thus far we have been working only with finite sums, meaning that whenever we determined the
sum of a series, we only considered the sum of the first n terms. In this section, we consider
what happens when we add infinitely many terms together. You might think that this is a silly
question - surely the answer will be ∞ when one sums infinitely many numbers, no matter how
small they are? The surprising answer is that in some cases one will reach ∞ (like when you
try to add all the positive integers together), but in some cases one will get a finite answer.
If you don’t believe this, try doing the following sum, a geometric series, on your calculator or
computer:
1
1
1
1
1
2 + 4 + 8 + 16 + 32 + . . .
You might think that if you keep adding more and more terms you will eventually get larger and
larger numbers, but in fact you won’t even get past 1 - try it and see for yourself!
We denote the sum of an infinite number of terms of a sequence by
S∞ =
∞
X
ai
i=1
When we sum the terms of a series, and the answer we get after each summation gets closer
and closer to some number, we say that the series converges. If a series does not converge, then
we say that it diverges.
36.9.1
Infinite Geometric Series
There is a simple test for knowing instantly which geometric series converges and which diverges.
When r, the common ratio, is strictly between -1 and 1, i.e. −1 < r < 1, the infinite series
will converge, otherwise it will diverge. There is also a formula for working out what the series
converges to.
Let’s start off with formula (36.30) for the finite geometric series:
Sn =
n
X
i=1
a1 · ri−1 =
a1 (rn − 1)
r−1
Now we will investigate the value of rn for −1
Take r = 21 :
n = 1 : rn = r1 = ( 12 )1 =
n = 2 : rn = r2 = ( 12 )2 =
n = 3 : rn = r3 = ( 12 )3 =
1
2
1
2
1
2
·
·
1
2
1
2
=
·
1
2
1
4
<
=
1
8
1
2
<
Since r is a fractional value in the range −1
Therefore,
Sn
=
a1 (rn − 1)
r−1
S∞
=
a1 (0 − 1)
r−1
=
−a1
r−1
=
a1
1−r
471
for − 1 < r < 1
1
4
36.10
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
The sum of an infinite geometric series is given by the formula
S∞ =
∞
X
a1 .ri−1 =
i=1
a1
1−r
for
−1
(36.31)
where a1 is the first term of the series and r is the common ratio.
36.9.2
Exercises
1. What does ( 52 )n approach as n tends towards ∞?
2. Find the sum to infinity of the geometric series 3 + 1 +
1
3
+
1
9
+ ...
3. Determine for which values of x, the geometric series
2+
2
3
(x + 1) +
2
9
(x + 1)2 + . . .
will converge.
4. The sum to infinity of a geometric series with positive terms is 4 61 and the sum of the first
two terms is 2 32 . Find a, the first term, and r, the common ratio between consecutive
terms.
36.10
End of Chapter Exercises
1. Is 1 + 2 + 3 + 4 + ... an example of a finite series or an infinite series?
2. Calculate
6
X
k+2
3 ( 31 )
k=2
3. If x + 1; x − 1; 2x − 5 are the first 3 terms of a convergent geometric series, calculate the:
A Value of x.
B Sum to infinity of the series.
4. Write the sum of the first 20 terms of the series 6 + 3 +
3
2
5. Given the geometric series: 2 · 55 + 2 · 54 + 2 · 53 + . . .
+
3
4
+ ... in
P
-notation.
A Show that the series converges.
B Calculate the sum of the first 8 terms of the series, correct to TWO decimal places.
C Calculate the sum to infinity of the series.
D Use your answer to 5c above to determine
∞
X
n=9
2 · 5(6−n)
correct to TWO decimal places.
6. For the geometric series,
54 + 18 + 6 + ... + 5 ( 31 )n−1
calculate the smallest value of n for which the sum of the first n terms is greater than
80.99.
∞
P
12( 51 )k−1 .
7. Determine the value of
k=1
8. A new soccer competition requires each of 8 teams to play every other team once.
A Calculate the total number of matches to be played in the competition.
472
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.10
B If each of n teams played each other once, determine a formula for the total number
of matches in terms of n.
9. The midpoints of the sides of square with length equal to 4 units are joined to form a
new square. The process is repeated indefinitely. Calculate the sum of the areas of all the
squares so formed.
10. Thembi worked part-time to buy a Mathematics book which cost R29,50. On 1 February
she saved R1,60, and saves everyday 30 cents more than she saved the previous day. (So,
on the second day, she saved R1,90, and so on.) After how many days did she have enough
money to buy the book?
11. Consider the geometric series:
5 + 2 12 + 1 14 + . . .
A If A is the sum to infinity and B is the sum of the first n terms, write down the value
of:
i. A
ii. B in terms of n.
B For which values of n is (A − B) <
1
24 ?
12. A certain plant reaches a height of 118 mm after one year under ideal conditions in a
greenhouse. During the next year, the height increases by 12 mm. In each successive year,
the height increases by 85 of the previous year’s growth. Show that the plant will never
reach a height of more than 150 mm.
13. Calculate the value of n if
n
P
a=1
(20 − 4a) = −20.
14. Michael saved R400 during the first month of his working life. In each subsequent month,
he saved 10% more than what he had saved in the previous month.
A How much did he save in the 7th working month?
B How much did he save all together in his first 12 working months?
C In which month of his working life did he save more than R1,500 for the first time?
15. A man was injured in an accident at work. He receives a disability grant of R4,800 in the
first year. This grant increases with a fixed amount each year.
A What is the annual increase if, over 20 years, he would have received a total of
R143,500?
B His initial annual expenditure is R2,600 and increases at a rate of R400 per year.
After how many years does his expenses exceed his income?
16. The Cape Town High School wants to build a school hall and is busy with fundraising. Mr.
Manuel, an ex-learner of the school and a successful politician, offers to donate money to
the school. Having enjoyed mathematics at school, he decides to donate an amount of
money on the following basis. He sets a mathematical quiz with 20 questions. For the
correct answer to the first question (any learner may answer), the school will receive 1
cent, for a correct answer to the second question, the school will receive 2 cents, and so
on. The donations 1, 2, 4, ... form a geometric sequence. Calculate (Give your answer to
the nearest Rand)
A The amount of money that the school will receive for the correct answer to the 20th
question.
B The total amount of money that the school will receive if all 20 questions are answered
correctly.
17. The first term of a geometric sequence is 9, and the ratio of the sum of the first eight terms
to the sum of the first four terms is 97 : 81. Find the first three terms of the sequence, if
it is given that all the terms are positive.
18. (k − 4); (k + 1); m; 5k is a set of numbers, the first three of which form an arithmetic
sequence, and the last three a geometric sequence. Find k and m if both are positive.
473
36.10
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
19. Given: The sequence 6 + p ; 10 + p ; 15 + p is geometric.
A Determine p.
B Show that the common ratio is 45 .
C Determine the 10th term of this sequence correct to one decimal place.
20. The second and fourth terms of a convergent geometric series are 36 and 16, respectively.
Find the sum to infinity of this series, if all its terms are positive.
21. Evaluate:
5 k(k + 1)
P
2
k=2
22. Sn = 4n2 + 1 represents the sum of the first n terms of a particular series. Find the second
term.
∞
P
23. Find p if:
27pk =
12
P
t=1
k=1
(24 − 3t)
24. Find the integer that is the closest approximation to:
102001 + 102003
102002 + 102002
25. Find the pattern and hence calculate:
1 − 2 + 3 − 4 + 5 − 6 . . . + 677 − 678 + . . . − 1000
26. Determine
∞
P
(x + 2)p , if it exists, when
p=1
A x=−
5
2
B x = −5
27. Calculate:
∞
P
i=1
5 · 4−i
28. The sum of the first p terms of a sequence is p (p + 1). Find the 10th term.
29. he powers of 2 are removed from the set of positive integers
1; 2; 3; 4; 5; 6; . . . ; 1998; 1999; 2000
Find the sum of remaining integers.
30. Observe the pattern below:
474
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
36.10
E
A
D
E
C
D
E
B
C
D
E
B
C
D
E
B
C
D
E
C
D
E
D
E
E
A If the pattern continues, find the number of letters in the column containing M’s.
B If the total number of letters in the pattern is 361, which letter will the last column
consist of.
31. The following question was asked in a test:
Find the value of 22005 + 22005 .
Here are some of the students’ answers:
A Megansaid the answer is 42005 .
B Stefan wrote down 24010 .
C Nina thinks it is 22006 .
D Annatte gave the answer 22005×2005 .
Who is correct? (“None of them” is also a possibility.)
32. Find the pattern and hence calculate:
1 − 2 + 3 − 4 + 5 − 6 . . . + 677 − 678 + . . . − 1000
33. Determine
∞
P
(x + 2)p , if it exists, when
p=1
5
2
B x = −5
A x=−
34. Calculate:
∞
P
i=1
5 · 4−i
475
36.10
CHAPTER 36. SEQUENCES AND SERIES - GRADE 12
35. The sum of the first p terms of a sequence is p (p + 1). Find the 10th term.
36. The powers of 2 are removed from the set of positive integers
1; 2; 3; 4; 5; 6; . . . ; 1998; 1999; 2000
Find the sum of remaining integers.
37. A shrub of height 110 cm is planted. At the end of the first year, the shrub is 120 cm tall.
Thereafter, the growth of the shrub each year is half of its growth in the previous year.
Show that the height of the shrub will never exceed 130 cm.
476
Chapter 37
Finance - Grade 12
37.1
Introduction
In earlier grades simple interest and compound interest were studied, together with the concept
of depreciation. Nominal and effective interest rates were also described. Since this chapter
expands on earlier work, it would be best if you revised the work done in Chapters 8 and 21.
If you master the techniques in this chapter, when you start working and earning you will be
able to apply the techniques in this chapter to critically assess how to invest your money. And
when you are looking at applying for a bond from a bank to buy a home, you will confidently be
able to get out the calculator and work out with amazement how much you could actually save
by making additional repayments. Indeed, this chapter will provide you with the fundamental
concepts you will need to confidently manage your finances and with some successful investing,
sit back on your yacht and enjoy the millionaire lifestyle.
37.2
Finding the Length of the Investment or Loan
In Grade 11, we used the formula A = P (1 + i)n to determine the term of the investment or
loan, by trial and error. In other words, if we know what the starting sum of money is and what
it grows to, and if we know what interest rate applies - then we can work out how long the
money needs to be invested for all those other numbers to tie up.
Now, that you have learnt about logarithms, you are ready to work out the proper algebraic
solution. If you need to remind yourself how logarithms work, go to Chapter 35 (on page 445).
The basic finance equation is:
A = P · (1 + i)n
If you don’t know what A, P , i and n represent, then you should definitely revise the work from
Chapters 8 and 21.
Solving for n:
A =
(1 + i)n =
P (1 + i)n
(A/P )
log((1 + i)n ) =
n log(1 + i) =
log(A/P )
log(A/P )
n
=
log(A/P )/ log(1 + i)
Remember, you do not have to memorise this formula. It is very easy to derive any time you
need it. It is simply a matter of writing down what you have, deciding what you need, and
solving for that variable.
477
37.3
CHAPTER 37. FINANCE - GRADE 12
Worked Example 162: Term of Investment - Logarithms
Question: If we invested R3 500 into a savings account which pays 7,5% compound
interest for an unknown period of time, at the end of which our account is worth
R4 044,69. How long did we invest the money? How does this compare with the
trial and error answer from Chapters 21.
Answer
Step 1 : Determine what is given and what is required
• P =R3 500
• i=7,5%
• A=R4 044,69
We are required to find n.
Step 2 : Determine how to approach the problem
We know that:
A =
(1 + i)n =
P (1 + i)n
(A/P )
log((1 + i)n ) =
n log(1 + i) =
log(A/P )
log(A/P )
n
=
log(A/P )/ log(1 + i)
Step 3 : Solve the problem
n
=
=
=
log(A/P )/ log(1 + i)
log( R4R3044,69
500 )
log(1 + 7,5%)
2.0
Step 4 : Write final answer
The R3 500 was invested for 2 years.
37.3
A Series of Payments
By this stage, you know how to do calculations such as ”If I want R1 000 in 3 years’ time, how
much do I need to invest now at 10% ?”
But what if we extend this as follows: If I want R1 000 next year and R1 000 the year after that
and R1 000 after three years ... how much do I need to put into a bank account earning 10%
p.a. right now to be able to afford that?”
The obvious way of working that out is to work out how much you need now to afford the
payments individually and sum them. We’ll work out how much is needed now to afford the
payment of R1 000 in a year (= R1 000 × (1,10)−1 = R909,0909), the amount needed now for
the following year’s R1 000 (= R1 000 × (1,10)−2 = R826,4463) and the amount needed now
for the R1 000 after 3 years (= R1 000 × (1,10)−3 = R751,3148). Add these together gives you
the amount needed to afford all three payments and you get R2486,85.
So, if you put R2486,85 into a 10% bank account now, you will be able to draw out R1 000 in a
year, R1 000 a year after that, and R1 000 a year after that - and your bank account will come
down to R0. You would have had exactly the right amount of money to do that (obviously!).
You can check this as follows:
478
CHAPTER 37. FINANCE - GRADE 12
Amount
Amount
Amount
Amount
Amount
Amount
Amount
at Time 0 (i.e. Now)
at Time 1 (i.e. a year later)
after the R1 000
at Time 2 (i.e. a year later)
after the R1 000
at Time 3 (i.e. a year later)
after the R1 000
37.3
=
=
=
=
=
=
2486,85(1+10%)
2735,54 - 1 000
1735,54(1+10%)
R1909,09 - 1 000
909,09(1+10%)
1 000 - 1 000
=
=
=
=
=
=
=
R2486,85
R2735,54
R1735,54
R1909,09
R909,09
R1 000
R0
Perfect! Of course, for only three years, that was not too bad. But what if I asked you how
much you needed to put into a bank account now, to be able to afford R100 a month for the
next 15 years. If you used the above approach you would still get the right answer, but it would
take you weeks!
There is - I’m sure you guessed - an easier way! This section will focus on describing how to
work with:
• annuities - a fixed sum payable each year or each month either to provide a pre-determined
sum at the end of a number of years or months (referred to as a future value annuity) or
a fixed amount paid each year or each month to repay (amortise) a loan (referred to as a
present value annuity).
• bond repayments - a fixed sum payable at regular intervals to pay off a loan. This is an
example of a present value annuity.
• sinking funds - an accounting term for cash set aside for a particular purpose and invested
so that the correct amount of money will be available when it is needed. This is an example
of a future value annuity
37.3.1
Sequences and Series
Before we progress, you need to go back and read Chapter 36 (from page 457) to revise sequences
and series.
In summary, if you have a series of n terms in total which looks like this:
a + ar + ar2 + ... + arn−1 = a[1 + r + r2 + ...rn−1 ]
this can be simplified as:
a(rn − 1)
r−1
a(1 − rn )
1−r
37.3.2
useful when r > 1
useful when 0 ≤ r < 1
Present Values of a series of Payments
So having reviewed the mathematics of Sequences and Series, you might be wondering how this
is meant to have any practical purpose! Given that we are in the finance section, you would be
right to guess that there must be some financial use to all this Here is an example which happens
in many people’s lives - so you know you are learning something practical
Let us say you would like to buy a property for R300 000, so you go to the bank to apply for
a mortgage bond. The bank wants it to be repaid by annually payments for the next 20 years,
starting at end of this year. They will charge you 15% per annum. At the end of the 20 years
the bank would have received back the total amount you borrowed together with all the interest
they have earned from lending you the money. You would obviously want to work out what the
annual repayment is going to be!
Let X be the annual repayment, i is the interest rate, and M is the amount of the mortgage
bond you will be taking out.
Time lines are particularly useful tools for visualizing the series of payments for calculations, and
we can represent these payments on a time line as:
479
37.3
CHAPTER 37. FINANCE - GRADE 12
0
X
X
X
X
X
1
2
18
19
20
Cash Flows
Time
Figure 37.1: Time Line for an annuity (in arrears) of X for n periods.
The present value of all the payments (which includes interest) must equate to the (present)
value of the mortgage loan amount.
Mathematically, you can write this as:
M = X(1 + i)−1 + X(1 + i)−2 + X(1 + i)−3 + ... + X(1 + i)−20
The painful way of solving this problem would be to do the calculation for each of the terms
above - which is 20 different calculations. Not only would you probably get bored along the way,
but you are also likely to make a mistake.
Naturally, there is a simpler way of doing this! You can rewrite the above equation as follows:
M = X(v 1 + v 2 + v 3 + ... + v 20 )
where v = (1 + i)−1 = 1/(1 + i)
Of course, you do not have to use the method of substitution to solve this. We just find this a
useful method because you can get rid of the negative exponents - which can be quite confusing!
As an exercise - to show you are a real financial whizz - try to solve this without substitution. It
is actually quite easy.
Now, the item in square brackets is the sum of a geometric sequence, as discussion in section 36.
This can be re-written as follows, using what we know from Chapter 36 of this text book:
v 1 + v 2 + v 3 + ... + v n
= v(1 + v + v 2 + ... + v n−1 )
1 − vn
)
= v(
1−v
1 − vn
=
1/v − 1
1 − (1 + i)−n
=
i
Note that we took out a common factor of v before using the formula for the geometric sequence.
So we can write:
M = X[
This can be re-written:
X=
(1 − (1 + i)−n )
]
i
M
−n )
]
[ (1−(1+i)
i
So, this formula is useful if you know the amount of the mortgage bond you need and want to
work out the repayment, or if you know how big a repayment you can afford and want to see
what property you can buy.
For example, if I want to buy a house for R300 000 over 20 years, and the bank is going to
480
CHAPTER 37. FINANCE - GRADE 12
37.3
charge me 15% per annum, then the annual repayment is:
X
=
=
M
−n )
]
[ (1−(1+i)
i
R300 000
−20 )
]
[ (1−(1,15)
0,15
= R47 928,44
This means, each year for the next 20 years, I need to pay the bank R47 928,44 per year before
I have paid off the mortgage bond.
On the other hand, if I know I will only have R30 000 a year to repay my bond, then how big a
house can I buy? That is easy ....
(1 − (1 + i)−n )
]
i
(1 − (1,15)−20 )
]
= R30 000[
0,15
= R187 779,90
M
= X[
So, for R30 000 a year for 20 years, I can afford to buy a house of R187 800 (rounded to the
nearest hundred).
The bad news is that R187 800 does not come close to the R300 000 you wanted to buy! The
good news is that you do not have to memorise this formula. In fact , when you answer questions
like this in an exam, you will be expected to start from the beginning - writing out the opening
equation in full, showing that it is the sum of a geometric sequence, deriving the answer, and
then coming up with the correct numerical answer.
Worked Example 163: Monthly mortgage repayments
Question: Sam is looking to buy his first flat, and has R15 000 in cash savings
which he will use as a deposit. He has viewed a flat which is on the market for
R250 000, and he would like to work out how much the monthly repayments would
be. He will be taking out a 30 year mortgage with monthly repayments. The annual
interest rate is 11%.
Answer
Step 1 : Determine what is given and what is needed
The following is given:
• Deposit amount = R15 000
• Price of flat = R250 000
• interest rate, i = 11%
We are required to find the monthly repayment for a 30-year mortgage.
Step 2 : Determine how to approach the problem
We know that:
M
X = (1−(1+i)−n )
]
[
i
. In order to use this equation, we need to calculate M , the amount of the mortgage
bond, which is the purchase price of property less the deposit which Sam pays upfront.
M
=
=
R250 000 − R15 000
R235 000
481
37.3
CHAPTER 37. FINANCE - GRADE 12
Now because we are considering monthly repayments, but we have been given an
annual interest rate, we need to convert this to a monthly interest rate, i12. (If you
are not clear on this, go back and revise section 21.8.)
(1 + i12)12
=
12
(1 + i12)
=
i12 =
(1 + i)
1,11
0,873459%
We know that the mortgage bond is for 30 years, which equates to 360 months.
Step 3 : Solve the problem
Now it is easy, we can just plug the numbers in the formula, but do not forget that
you can always deduce the formula from first principles as well!
X
=
=
=
M
−n )
]
[ (1−(1+i)
i
R235 000
−360 )
]
[ (1−(1.00876459)
0,008734594
R2 146,39
Step 4 : Write the final answer
That means that to buy a house for R300 000, after Sam pays a R15 000 deposit,
he will make repayments to the bank each month for the next 30 years equal to
R2 146,39.
Worked Example 164: Monthly mortgage repayments
Question: You are considering purchasing a flat for R200 000 and the bank’s mortgage rate is currently 9% per annum payable monthly. You have savings of R10 000
which you intend to use for a deposit. How much would your monthly mortgage
payment be if you were considering a mortgage over 20 years.
Answer
Step 1 : Determine what is given and what is required
The following is given:
• Deposit amount = R10 000
• Price of flat = R200 000
• interest rate, i = 9%
We are required to find the monthly repayment for a 20-year mortgage.
Step 2 : Determine how to approach the problem
We are consider monthly mortgage repayments, so it makes sense to use months as
our time period.
The interest rate was quoted as 9% per annum payable monthly, which means that
the monthly effective rate = 9%/12 = 0,75% per month. Once we have converted
20 years into 240 months, we are ready to do the calculations!
First we need to calculate M , the amount of the mortgage bond, which is the
purchase price of property less the deposit which Sam pays up-front.
M
= R200 000 − R10 000
= R190 000
482
CHAPTER 37. FINANCE - GRADE 12
37.3
The present value of our mortgage payments, X, must equate to the mortgage
amount that we borrow today, so
X × (1 + 0,75%)−1
X × (1 + 0,75%)−2
X × (1 + 0,75%)−3
X × (1 + 0,75%)−4
+
+
+
+ ...
X × (1 + 0,75%)−239 + X × (1 + 0,75%)−240
But it is clearly much easier to use our formula that work out 240 factors and add
them all up!
Step 3 : Solve the problem
X×
1 − (1 + 0,75%)−240
=
0,75%
X × 111,14495 =
X =
R190 000
R190 000
R1 709,48
Step 4 : Write the final answer
So to repay a R190 000 mortgage over 20 years, at 9% interest payable monthly,
will cost you R1 709,48 per month for 240 months.
Show me the money
Now that you’ve done the calculations for the worked example and know what the monthly
repayments are, you can work out some surprising figures. For example, R1 709,48 per month
for 240 month makes for a total of R410 275,20 (=R1 709,48 × 240). That is more than
double the amount that you borrowed! This seems like a lot. However, now that you’ve studied
the effects of time (and interest) on money, you should know that this amount is somewhat
meaningless. The value of money is dependant on its timing.
Nonetheless, you might not be particularly happy to sit back for 20 years making your R1 709,48
mortgage payment every month knowing that half the money you are paying are going toward
interest. But there is a way to avoid those heavy interest charges. It can be done for less than
R300 extra every month...
So our payment is now R2 000. The interest rate is still 9% per annum payable monthly (0,75%
per month), and our principal amount borrowed is R190 000. Making this higher repayment
amount every month, how long will it take to pay off the mortgage?
The present value of the stream of payments must be equal to R190 000 (the present value of
the borrowed amount). So we need to solve for n in:
R2 000 × [1 − (1 + 0,75%)−n ]/0,75% =
−n
1 − (1 + 0,75%)
log(1 + 0,75%)−n
=
=
−n × log(1 + 0,75%) =
−n × 0,007472 =
n =
=
R190 000
(R190 000/2 000) × 0,75%
log[(1 − (R190 000/R2 000) × 0,75%]
log[(1 − (R190 000/R2 000) × 0,75%]
−1,2465
166,8 months
13,9 years
So the mortgage will be completely repaid in less than 14 years, and you would have made a
total payment of 166,8× R2 000 = R333 600.
Can you see what is happened? Making regular payments of R2 000 instead of the required
R1,709,48, you will have saved R76 675,20 (= R410 275,20 - R333 600) in interest, and yet you
have only paid an additional amount of R290,52 for 166,8 months, or R48 458,74. You surely
483
37.3
CHAPTER 37. FINANCE - GRADE 12
know by now that the difference between the additional R48 458,74 that you have paid and
the R76 675,20 interest that you have saved is attributable to, yes, you have got it, compound
interest!
37.3.3
Future Value of a series of Payments
In the same way that when we have a single payment, we can calculate a present value or a
future value - we can also do that when we have a series of payments.
In the above section, we had a few payments, and we wanted to know what they are worth now
- so we calculated present values. But the other possible situation is that we want to look at
the future value of a series of payments.
Maybe you want to save up for a car, which will cost R45 000 - and you would like to buy it in
2 years time. You have a savings account which pays interest of 12% per annum. You need to
work out how much to put into your bank account now, and then again each month for 2 years,
until you are ready to buy the car.
Can you see the difference between this example and the ones at the start of the chapter where
we were only making a single payment into the bank account - whereas now we are making a
series of payments into the same account? This is a sinking fund.
So, using our usual notation, let us write out the answer. Make sure you agree how we come up
with this. Because we are making monthly payments, everything needs to be in months. So let
A be the closing balance you need to buy a car, P is how much you need to pay into the bank
account each month, and i12 is the monthly interest rate. (Careful - because 12% is the annual
interest rate, so we will need to work out later what the month interest rate is!)
A = P (1 + i12)24 + P (1 + i12)23 + ... + P (1 + i12)1
Here are some important points to remember when deriving this formula:
1. We are calculating future values, so in this example we use (1 + i12)n and not (1 + i12)−n .
Check back to the start of the chapter is this is not obvious to you by now.
2. If you draw a timeline you will see that the time between the first payment and when you
buy the car is 24 months, which is why we use 24 in the first exponent.
3. Again, looking at the timeline, you can see that the 24th payment is being made one
month before you buy the car - which is why the last exponent is a 1.
4. Always check that you have got the right number of payments in the equation. Check
right now that you agree that there are 24 terms in the formula above.
So, now that we have the right starting point, let us simplify this equation:
A =
=
P [(1 + i12)24 + (1 + i12)23 + . . . + (1 + i12)1 ]
P [X 24 + X 23 + . . . + X 1 ] using X = (1 + i12)
Note that this time X has a positive exponent not a negative exponent, because we are doing
future values. This is not a rule you have to memorise - you can see from the equation what the
obvious choice of X should be.
Let us reorder the terms:
A = P [X 1 + X 2 + . . . + X 24 ] = P · X[1 + X + X 2 + . . . + X 2 3]
This is just another sum of a geometric sequence, which as you know can be simplified as:
A =
=
P · X[X n − 1]/((1 + i12) − 1)
P · X[X n − 1]/i12
484
CHAPTER 37. FINANCE - GRADE 12
37.4
So if we want to use our numbers, we know that A = R45 000, n=24 (because we are looking
at monthly payments, so there are 24 months involved) and i = 12% per annum.
BUT (and it is a big but) we need a monthly interest rate. Do not forget that the trick is to
keep the time periods and the interest rates in the same units - so if we have monthly payments,
make sure you use a monthly interest rate! Using the formula from Section 21.8, we know that
(1 + i) = (1 + i12)12 . So we can show that i12 = 0,0094888 = 0,94888%.
Therefore,
45 000 =
P =
P (1,0094888)[(1,0094888)24 − 1]/0,0094888
1662,67
This means you need to invest R1 662,67 each month into that bank account to be able to pay
for your car in 2 years time.
There is another way of looking at this too - in terms of present values. We know that we need
an amount of R45 000 in 24 months time, and at a monthly interest rate of 0,94888%, the
present value of this amount is R35 873,72449. Now the question is what monthly amount at
0,94888% interest over 24 month has a present value of R35 873,72449? We have seen this
before - it is just like the mortgage questions! So let us go ahead and see if we get to the same
answer
P
= M/[(1 − (1 + i)−n )/i]
= R35 873,72449[(1 − (1,0094888)−24)/0,0094888]
= R1 662,67
37.3.4
Exercises - Present and Future Values
1. You have taken out a mortgage bond for R875 000 to buy a flat. The bond is for 30 years
and the interest rate is 12% per annum payable monthly.
A What is the monthly repayment on the bond?
B How much interest will be paid in total over the 30 years?
2. How much money must be invested now to obtain regular annuity payments of R 5 500
per month for five years ? The money is invested at 11,1% p.a., compounded monthly.
(Answer to the nearest hundred rand)
37.4
Investments and Loans
By now, you should be well equipped to perform calculations with compound interest. This
section aims to allow you to use these valuable skills to critically analyse investment and load
options that you will come across in your later life. This way, you will be able to make informed
decisions on options presented to you.
At this stage, you should understand the mathematical theory behind compound interest. However, the numerical implications of compound interest is often subtle and far from obvious.
Recall the example in section ??FIXTHIS. For an extra payment of R290,52 a month, we could
have paid off our loan in less than 14 years instead of 20 years. This provides a good illustration
of the long term effect of compound interest that is often surprising. In the following section,
we’ll aim to explain the reason for drastic deduction in times it takes to repay the loan.
37.4.1
Loan Schedules
So far, we have been working out loan repayment amounts by taking all the payments and
discounting them back to the present time. We are not considering the repayments individually.
485
37.4
CHAPTER 37. FINANCE - GRADE 12
Think about the time you make a repayment to the bank. There are numerous questions that
could be raised: how much do you still owe them? Since you are paying off the loan, surely
you must owe them less money, but how much less? We know that we’ll be paying interest on
the money we still owe the bank. When exactly do we pay interest? How much interest are we
paying?
The answer to these questions lie in something called the load schedule.
We will continue to use the example from section ??FIXTHIS. There is a loan amount of
R190 000. We are paying it off over 20 years at an interest of 9% per annum payable monthly.
We worked out that the repayments should be R1 709,48.
Consider the first payment of R1 709,48 one month into the loan. First, we can work out how
much interest we owe the bank at this moment. We borrowed R190 000 a month ago, so we
should owe:
I
=
=
=
M × i12
R190 000 × 0,75%
R1 425
We are paying them R1 425 in interest. We calls this the interest component of the repayment.
We are only paying off R1 709,48 - R1 425 = R284.48 of what we owe! This is called the
capital component. That means we still owe R190 000 - R284,48 = R189 715,52. This is called
the capital outstanding. Let’s see what happens at end of the second month. The amount of
interest we need to pay is the interest on the capital outstanding.
I
=
=
=
M × i12
R189 715,52 × 0,75%
R1 422,87
Since we don’t owe the bank as much as we did last time, we also owe a little less interest. The
capital component of the repayment is now R1 709,48 - R1 422,87 = R286,61. The capital
outstanding will be R189 715,52 - R286,61 = R189 428,91. This way, we can break each of our
repayments down into an interest part and the part that goes towards paying off the loan.
This is a simple and repetitive process. Table 37.1 is a table showing the breakdown of the first
12 payments. This is called a loan schedule.
Now, let’s see the same thing again, but with R2 000 being repaid each year. We expect the
numbers to change. However, how much will they change by? As before, we owe R1 425 in
interest in interest. After one month. However, we are paying R2 000 this time. That leaves
R575 that goes towards paying off the capital outstanding, reducing it to R189 425. By the end
of the second month, the interest owed is R1 420,69 (That’s R189 425×i12). Our R2 000 pays
for that interest, and reduces the capital amount owed by R2 000 - R1 420,69 = R579,31. This
reduces the amount outstanding to R188 845,69.
Doing the same calculations as before yields a new loan schedule shown in Table 37.2.
The important numbers to notice is the “Capital Component” column. Note that when we are
paying off R2 000 a month as compared to R1 709,48 a month, this column more than doubles?
In the beginning of paying off a loan, very little of our money is used to pay off the captital
outstanding. Therefore, even a small incread in repayment amounts can significantly increase
the speed at which we are paying off the capital.
Whatsmore, look at the amount we are still owing after one year (i.e. at time 12). When we were
paying R1 709,48 a month, we still owe R186 441,84. However, if we increase the repayments
to R2 000 a month, the amount outstanding decreases by over R3 000 to R182 808,14. This
means we would have paid off over R7 000 in our first year instead of less than R4 000. This
486
CHAPTER 37. FINANCE - GRADE 12
37.4
Time
Repayment
Interest Component
Capital Component
0
1
2
3
4
5
6
7
8
9
10
11
12
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
1
1
1
1
1
1
1
1
1
1
1
1
709,48
709,48
709,48
709,48
709,48
709,48
709,48
709,48
709,48
709,48
709,48
709,48
1
1
1
1
1
1
1
1
1
1
1
1
425,00
422,87
420,72
418,55
416,37
414,17
411,96
409,72
407,48
405,21
402,93
400,63
284,48
286,61
288,76
290,93
293,11
295,31
297,52
299,76
302,00
304,27
306,55
308,85
Capital
Outstanding
R 190 000,00
R 189 715,52
R 189 428,91
R 189 140,14
R 188 849,21
R 188 556,10
R 188 260,79
R 187 963,27
R 187 663,51
R 187 361,51
R 187 057,24
R 186 750,69
R 186 441,84
Table 37.1: A loan schedule with repayments of R1 709,48 per month.
Time
Repayment
Interest Component
Capital Component
0
1
2
3
4
5
6
7
8
9
10
11
12
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
2
2
2
2
2
2
2
2
2
2
2
2
000,00
000,00
000,00
000,00
000,00
000,00
000,00
000,00
000,00
000,00
000,00
000,00
1
1
1
1
1
1
1
1
1
1
1
1
425,00
420,69
416,34
411,97
407,55
403,11
398,63
394,12
389,58
385,00
380,39
375,74
575,00
579,31
583,66
588,03
592,45
596,89
601,37
605,88
610,42
615,00
619,61
624,26
Capital
Outstanding
R 190 000,00
R 189 425,00
R 188 845,69
R 188 262,03
R 187 674,00
R 187 081,55
R 186 484,66
R 185 883,30
R 185 277,42
R 184 667,00
R 184 052,00
R 183 432,39
R 182 808,14
Table 37.2: A loan schedule with repayments of R2 000 per month.
487
37.4
CHAPTER 37. FINANCE - GRADE 12
increased speed at which we are paying off the capital portion of the loan is what allows us to
pay off the whole load in around 14 years instead of the original 20. Note however, the effect
of paying R2 000 instead of R1 709,48 is more significant in be beginning of the loan than near
the end of the loan.
It is noted that in this instance, by paying slightly more than what the bank would ask you to
pay, you can pay off a loan a lot quicker. The natural question to ask here is: why are banks
asking us to pay the lower amount for much longer then? Are they trying to cheat us out of our
money?
There is no simple answer to this. Banks provide a service to us in return for a fee, so they are
out to make a profit. However, they need to be careful not to cheat their customers for fear
that they’ll simply use another bank. The central issue here is one of scale. For us, the changes
involved appear big. We are paying off our loan 6 years earlier by paying just a bit more a month.
To a bank, however, it doesn’t matter much either way. In all likelihoxod, it doesn’t affect their
profit margins one bit!
Remember that a bank calculates repayment amount using the same methods as we’ve been
learning. Therefore, they are correct amounts for given interest rates and terms. As a result,
which amount is repaid does generally make a bank more or less money. It’s a simple matter
of less money now or more money later. Banks generally use a 20 year repayment period by
default.
Learning about financial mathematics enables you to duplicate these calculations for yourself.
This way, you can decide what’s best for you. You can decide how much you want to repay each
month and you’ll know of its effects. A bank wouldn’t care much either way, so you should pick
something that suits you.
Worked Example 165: Monthly Payments
Question: Stefan and Marna want to buy a house that costs R 1 200 000. Their
parents offer to put down a 20% payment towards the cost of the house. They need
to get a moratage for the balance. What are their monthly repayments if the term
of the home loan is 30 years and the interest is 7,5%, compounded monthly ?
Answer
Step 1 : Determine how much money they need to borrow
R1 200 00 − R240 000 = R960 000
Step 2 : Determine how to approach the problem
Use the formula:
P =
x[1 − (1 + i)−n ]
i
Where
P = 960 000
n = 30 × 12 = 360months
i = 0,075 ÷ 12 = 0,00625
Step 3 : Solve the problem
R960 000 =
=
x =
x[1 − (1 + 0,00625)−360]
0,00625
x(143,017 627 3)
R6 712,46
Step 4 : Write the final answer
The monthly repayments = R6 712,46
488
CHAPTER 37. FINANCE - GRADE 12
37.4.2
37.5
Exercises - Investments and Loans
1. A property costs R1 800 000. Calculate the monthly repayments if the interest rate is 14%
p.a. compounded monthly and the loan must be paid of in 20 years time.
2. A loan of R 4 200 is to be returned in two equal annual instalments. If the rate of interest
os 10% per annum, compounded annually, calculate the amount of each instalment.
37.4.3
Calculating Capital Outstanding
As defined in Section 37.4.1, Capital outstanding is the amount we still owe the people we
borrowed money from at a given moment in time. We also saw how we can calculate this using
loan schedules. However, there is a significant disadvantage to this method: it is very time
consuming. For example, in order to calculate how much capital is still outstanding at time 12
using the loan schedule, we’ll have to first calculate how much capital is outstanding at time
1 through to 11 as well. This is already quite a bit more work than we’d like to do. Can you
imagine calculating the amount outstanding after 10 years (time 120)?
Fortunately, there is an easier method. However, it is not immediately why this works, so let’s
take some time to examine the concept.
Prospective method for Capital Outstanding
Let’s say that after a certain number of years, just after we made a repayment, we still owe
amount Y . What do we know about Y ? We know that using the loan schedule, we can
calculate what it equals to, but that is a lot of repetitive work. We also know that Y is the
amount that we are still going to pay off. In other words, all the repayments we are still going
to make in the future will exactly pay off Y . This is true because in the end, after all the
repayments, we won’t be owing anything.
Therefore, the present value of all outstanding future payments equal the present amount outstanding. This is the prospective method for calculating capital outstanding.
Let’s return to a previous example. Recall the case where we were trying to repay a loan
of R200 000 over 20 years. At an interested rate of 9% compounded monthly, the monthly
repayment is R1 709,48. In table 37.1, we can see that after 12 month, the amount outstanding
is R186 441,84. Let’s try to work this out using the the prospective method.
After time 12, there is still 19 × 12 = 228 repayments left of R1 709,48 each. The present value
is:
n =
i =
228
0,75%
Y
=
R1 709,48 ×
=
R186 441,92
1 − 1,0075−228
0,0075
Oops! This seems to be almost right, but not quite. We should have got R186 441,84. We
are 8 cents out. However, this is in fact not a mistake. Remember that when we worked out
the monthly repayments, we rounded to the nearest cents and arrived at R1 709,48. This was
because one cannot make a payment for a fraction of a cent. Therefore, the rounding off error
was carried through. That’s why the two figures don’t match exactly. In financial mathematics,
this is largely unavoidable.
37.5
Formulae Sheet
As an easy reference, here are the key formulae that we derived and used during this chapter.
While memorising them is nice (there are not many), it is the application that is useful. Financial
489
37.6
CHAPTER 37. FINANCE - GRADE 12
experts are not paid a salary in order to recite formulae, they are paid a salary to use the right
methods to solve financial problems.
37.5.1
P
i
n
iT
Definitions
Principal (the amount of money at the starting point of the calculation)
interest rate, normally the effective rate per annum
period for which the investment is made
Rate
the interest rate paid T times per annum, i.e. iT = Nominal Interest
T
37.5.2
Equations
Present Value - simple
Future Value - simple
Solve for i
Solve for n







Present Value - compound
Future Value - compound
Solve for i
Solve for n
= P (1 + i · n)




= P (1 + i)n



Important: Always keep the interest and the time period in the same units of time (e.g.
both in years, or both in months etc.).
37.6
End of Chapter Exercises
1. Thabo is about to invest his R8 500 bonus in a special banking product which will pay 1%
per annum for 1 month, then 2% per annum for the next 2 months, then 3% per annum
for the next 3 months, 4% per annum for the next 4 months, and 0% for the rest of the
year. The are going to charge him R100 to set up the account. How much can he expect
to get back at the end of the period?
2. A special bank account pays simple interest of 8% per annum. Calculate the opening
balance required to generate a closing balance of R5 000 after 2 years.
3. A different bank account pays compound interest of 8% per annum. Calculate the opening
balance required to generate a closing balance of R5 000 after 2 years.
4. Which of the two answers above is lower, and why?
5. After 7 months after an initial deposit, the value of a bank account which pays compound
interest of 7,5% per annum is R3 650,81. What was the value of the initial deposit?
6. Suppose you invest R500 this year compounded at interest rate i for a year in Bank T. In
the following year you invest the accumulation that you received for another year at the
same interest rate and on the third year, you invested the accumulation you received at
the same interest rate too. If P represents the present value (R500), find a pattern for
this investment. [Hint: find a formula]
7. Thabani and Lungelo are both using UKZN Bank for their saving. Suppose Lungelo makes
a deposit of X today at interest rate of i for six years. Thabani makes a deposit of 3X
at an interest rate of 0.05. Thabani made his deposit 3 years after Lungelo made his first
deposit. If after 6 years, their investments are equal, calculate the value of i and find X.
if the sum of their investment is R20 000, use X you got to find out how much Thabani
got in 6 years.
490
CHAPTER 37. FINANCE - GRADE 12
37.6
8. Sipho invests R500 at an interest rate of log(1,12) for 5 years. Themba, Sipho’s sister
invested R200 at interest rate i for 10 years on the same date that her brother made his
first deposit. If after 5 years, Themba’s accumulation equals Sipho’s, find the interest rate
i and find out whether Themba will be able to buy her favorite cell phone after 10 years
which costs R2 000.
9. Moira deposits R20 000 in her saving account for 2 years at an interest rate of 0.05. After
2 years, she invested her accumulation for another 2 years, at the same interest rate. After
4 years, she invested her accumulation for which she got for another 2 years at an interest
rate of 5 %. After 6 years she choose to buy a car which costs R26 000. Her husband,
Robert invested the same amount at interest rate of 5 % for 6 years.
A Without using any numbers, find a pattern for Moira’s investment?
B How Moira’s investment differ from Robert’s?
10. Calculate the real cost of a loan of R10 000 for 5 years at 5% capitalised monthly and half
yearly.
11. Determine how long, in years, it will take for the value of a motor vehicle to decrease to
25% of its original value if the rate of depreciation, based on the reducing-balance method,
is 21% per annum.
12. André and Thoko, decided to invest their winnings (amounting to R10 000) from their
science project. They decided to divide their winnings according to the following: Because
Andr was the head of the project and he spent more time on it, André got 65,2 % of the
winnings and Thoko got 34,8%. So, Thoko decided to invest only 0,5 % of the share of her
sum and Andrédecided to invest 1,5 % of the share of his sum. When they calculated how
much each contributed in the investment, Thoko had 25 % and André had 75 % share.
They planned to invest their money for 20 years , but, as a result of Thoko finding a job in
Australia 7 years after their initial investment. They both decided to take whatever value
was there and split it according to their initial investment(in terms of percentages). Find
how much each will get after 7 years, if the interest rate is equal to the percentage that
Thoko invested (NOT the money but the percentage).
491
37.6
CHAPTER 37. FINANCE - GRADE 12
492
Chapter 38
Factorising Cubic Polynomials Grade 12
38.1
Introduction
In grades 10 and 11, you learnt how to solve different types of equations. Most of the solutions,
relied on being able to factorise some expression and the factorisation of quadratics was studied
in detail. This chapter focusses on the factorisation of cubic polynomials, that is expressions
with the highest power equal to 3.
38.2
The Factor Theorem
The factor theorem describes the relationship between the root of a polynomial and a factor of
the polynomial.
Definition: Factor Theorem
For any polynomial, f (x), for all values of a which satisfy f (a) = 0, (x − a) is a factor of
f (x). Or, more concisely:
f (x)
= q(x)
x−a
is a polynomial.
In other words: If the remainder when dividing f (x) by (x − a) is zero, then (ax + b) is a
factor of f (x).
So if f (− ab ) = 0, then (ax + b) is a factor of f (x).
Worked Example 166: Factor Theorem
Question: Use the Factor Theorem to determine whether y − 1 is a factor of
f (y) = 2y 4 + 3y 2 − 5y + 7.
Answer
Step 1 : Determine how to approach the problem
In order for y − 1 to be a factor, f (1) must be 0.
Step 2 : Calculate f (1)
f (y) =
∴ f (1) =
=
=
2y 4 + 3y 2 − 5y + 7
2(1)4 + 3(1)2 − 5(1) + 7
2+3−5+7
7
493
38.3
CHAPTER 38. FACTORISING CUBIC POLYNOMIALS - GRADE 12
Step 3 : Conclusion
Since f (1) 6= 0, y − 1 is not a factor of f (y) = 2y 4 + 3y 2 − 5y + 7.
Worked Example 167: Factor Theorem
Question: Using the Factor Theorem, verify that y + 4 is a factor of g(y) =
5y 4 + 16y 3 − 15y 2 + 8y + 16.
Answer
Step 1 : Determine how to approach the problem
In order for y + 4 to be a factor, g(−4) must be 0.
Step 2 : Calculate f (1)
g(y) = 5y 4 + 16y 3 − 15y 2 + 8y + 16
∴ g(−4) = 5(−4)4 + 16(−4)3 − 15(−4)2 + 8(−4) + 16
= 5(256) + 16(−64) − 15(16) + 8(−4) + 16
= 1280 − 1024 − 240 − 32 + 16
= 0
Step 3 : Conclusion
Since g(−4) = 0, y + 4 is a factor of g(y) = 5y 4 + 16y 3 − 15y 2 + 8y + 16.
38.3
Factorisation of Cubic Polynomials
Cubic expressions have a highest power of 3 on the unknown variable. This means that there
should be at least 3 factors. We have seen in Grade 10 that the sum and difference of cubes is
factorised as follows.:
(x + y)(x2 − xy + y 2 ) = x3 + y 3
and
(x − y)(x2 + xy + y 2 ) = x3 − y 3
We also saw that the quadratic terms do not have rational roots.
There are many methods of factorising a cubic polynomial. The general method is similar to
that used to factorise quadratic equations. If you have a cubic polynomial of the form:
f (x) = ax3 + bx2 + cx + d
then you should expect factors of the form:
(Ax + B)(Cx + D)(Ex + F ).
(38.1)
We will deal with simplest case first. When a = 1, then A = C = E = 1, and you only have to
determine B, D and F . For example, find the factors of:
x3 − 2x2 − 5x + 6.
In this case we have
a
b
= 1
= −2
c = −5
d = 6
494
CHAPTER 38. FACTORISING CUBIC POLYNOMIALS - GRADE 12
38.3
The factors will have the general form shown in (38.1), with A = C = E = 1. We can then
use values for a, b, c and d to determine values for B, D and F . We can re-write (38.1) with
A = C = E = 1 as:
(x + B)(x + D)(x + F ).
If we multiply this out we get:
(x + B)(x + D)(x + F ) = (x + B)(x2 + Dx + F x + DF )
= x3 + Dx2 + F x2 + Bx2 + DF x + BDx + BF x + BDF
= x3 + (D + F + B)x2 + (DF + BD + BF )x + BDF
We can therefore write:
b
c
d
= −2 = D + F + B
= −5 = DF + BD + BF
= 6 = BDF.
(38.2)
(38.3)
(38.4)
This is a set of three equations in three unknowns. However, we know that B, D and F are
factors of 6 because BDF = 6. Therefore we can use a trial and error method to find B, D
and F .
This can become a very tedious method, therefore the Factor Theorem can be used to find the
factors of cubic polynomials.
Worked Example 168: Factorisation of Cubic Polynomials
Question: Factorise f (x) = x3 + x2 − 9x − 9 into three linear factors.
Answer
Step 1 : By trial and error using the factor theorem to find a factor
Try
f (1) = (1)3 + (1)2 − 9(1) − 9 = 1 + 1 − 9 − 9 = −16
Therefore (x − 1) is not a factor
Try
f (−1) = (−1)3 + (−1)2 9(−1)9 = 1 + 1 + 99 = 0
Thus (x + 1) is a factor, because f (−1) = 0.
Now divide f (x) by (x + 1) using division by inspection:
Write x3 + x2 − 9x − 9 = (x + 1)(
)
The first term in the second bracket must be x2 to give x3 if one works backwards.
The last term in the second bracket must be −9 because +1 × −9 = −9.
So we have x3 + x2 − 9x − 9 = (x + 1)(x2 ?x − 9).
Now, we must find the coefficient of the middelterm (x).
(+1)(x2 ) gives x2 . So, the coefficient of the x-term must be 0.
So f (x) = (x + 1)(x2 − 9).
Step 2 : Factorise fully
x2 − 9 can be further factorised to (x − 3)(x + 3),
and we are now left with f (x) = (x + 1)(x − 3)(x + 3)
In general, to factorise a cubic polynomial, you find one factor by trial and error. Use the factor
theorem to confirm that the guess is a root. Then divide the cubic polynomial by the factor
to obtain a quadratic. Once you have the quadratic, you can apply the standard methods to
factorise the quadratic.
For example the factors of x3 − 2x2 − 5x + 6 can be found as follows: There are three factors
which we can write as
(x − a)(x − b)(x − c).
495
38.4
CHAPTER 38. FACTORISING CUBIC POLYNOMIALS - GRADE 12
Worked Example 169: Factorisation of Cubic Polynomials
Question: Use the Factor Theorem to factorise
x3 − 2x2 − 5x + 6.
Answer
Step 1 : Find one factor using the Factor Theorem
Try
f (1) = (1)3 − 2(1)2 − 5(1) + 6 = 1 − 2 − 5 + 6 = 0
Therefore (x − 1) is a factor.
Step 2 : Division by expection
x3 − 2x2 − 5x + 6 = (x − 1)(
)
The first term in the second bracket must be x2 to give x3 if one works backwards.
The last term in the second bracket must be −6 because −1 × −6 = +6.
So we have x3 − 2x2 − 5x + 6 = (x − 1)(x2 ?x − 6).
Now, we must find the coefficient of the middelterm (x).
(−1)(x2 ) gives −x2 . So, the coefficient of the x-term must be −1.
So f (x) = (x − 1)(x2 − x − 6).
Step 3 : Factorise fully
x2 − x − 6 can be further factorised to (x − 3)(x + 2),
and we are now left with x3 − 2x2 − 5x + 6 = (x − 1)(x − 3)(x + 2)
38.4
Exercises - Using Factor Theorem
1. Find the remainder when 4x3 − 4x2 + x − 5 is divided by (x + 1).
2. Use the factor theorem to factorise x3 − 3x2 + 4 completely.
3. f (x) = 2x3 + x2 − 5x + 2
A Find f (1).
B Factorise f (x) completely
4. Use the Factor Theorem to determine all the factors of the following expression:
x3 + x2 − 17x + 15
5. Complete: If f (x) is a polynomial and p is a number such that f (p) = 0, then (x − p) is
.....
38.5
Solving Cubic Equations
Once you know how to factorise cubic polynomials, it is also easy to solve cubic equations of the
kind
ax3 + bx2 + cx + d = 0
496
CHAPTER 38. FACTORISING CUBIC POLYNOMIALS - GRADE 12
38.5
Worked Example 170: Solution of Cubic Equations
Question: Solve
6x3 − 5x2 − 17x + 6 = 0.
Answer
Step 1 : Find one factor using the Factor Theorem
Try
f (1) = 6(1)3 − 5(1)2 − 17(1) + 6 = 6 − 5 − 17 + 6 = −10
Therefore (x − 1) is NOT a factor.
Try
f (2) = 6(2)3 − 5(2)2 − 17(2) + 6 = 48 − 20 − 34 + 6 = 0
Therefore (x − 2) IS a factor.
Step 2 : Division by expection
6x3 − 5x2 − 17x + 6 = (x − 2)(
)
The first term in the second bracket must be 6x2 to give 6x3 if one works backwards.
The last term in the second bracket must be −3 because −2 × −3 = +6.
So we have 6x3 − 5x2 − 17x + 6 = (x − 2)(6x2 ?x − 3).
Now, we must find the coefficient of the middelterm (x).
(−2)(6x2 ) gives −12x2 . So, the coefficient of the x-term must be 7.
So, 6x3 − 5x2 − 17x + 6 = (x − 2)(6x2 + 7x − 3).
Step 3 : Factorise fully
6x2 + 7x − 3 can be further factorised to (2x + 3)(3x − 1),
and we are now left with x3 − 2x2 − 5x + 6 = (x − 2)(2x + 3)(3x − 1)
Step 4 : Solve the equation
6x3 − 5x2 − 17x + 6
= 0
(x − 2)(2x + 3)(3x − 1) = 0
x
1 3
= 2; ; −
3 2
Sometimes it is not possible to factorise the trinomial (”second bracket”). This is when the
quadratic formula
√
−b ± b2 − 4ac
x=
2a
can be used to solve the cubic equation fully.
For example:
Worked Example 171: Solution of Cubic Equations
Question: Solve for x: x3 − 2x2 − 6x + 4 = 0.
Answer
Step 1 : Find one factor using the Factor Theorem
Try
f (1) = (1)3 − 2(1)2 − 6(1) + 4 = 3 − 2 − 6 + 4 = −1
Therefore (x − 1) is NOT a factor.
Try
f (2) = (2)3 − 2(2)2 − 6(2) + 4 = 8 − 8 − 12 + 4 = −8
497
38.6
CHAPTER 38. FACTORISING CUBIC POLYNOMIALS - GRADE 12
Therefore (x − 2) is NOT a factor.
f (−2) = (−2)3 − 2(−2)2 − 6(−2) + 4 = −8 − 8 + 12 + 4 = 0
Therefore (x + 2) IS a factor.
Step 2 : Division by expection
x3 − 2x2 − 6x + 4 = (x + 2)(
)
The first term in the second bracket must be x2 to give x3 .
The last term in the second bracket must be 2 because 2 × 2 = +4.
So we have x3 − 2x2 − 6x + 4 = (x + 2)(x2 ?x + 2).
Now, we must find the coefficient of the middelterm (x).
(2)(x2 ) gives 2x2 . So, the coefficient of the x-term must be −4. (2x2 −4x2 = −2x2 )
So x3 − 2x2 − 6x + 4 = (x + 2)(x2 − 4x + 2).
x2 − 4x + 2 cannot be factorised any futher and we are now left with
(x + 2)(x2 − 4x + 2) = 0
Step 3 : Solve the equation
(x + 2)(x2 − 4x + 2)
(x + 2) = 0
=
or
0
(x2 − 4x + 2) = 0
Step 4 : Apply the quadratic formula for the second bracket
Always write down the formula first and then substitute the values of a, b and c.
√
−b ± b2 − 4ac
x =
2a p
−(−4) ± (−4)2 − 4(1)(2)
=
2(1)
√
4± 8
=
2√
= 2± 2
Step 5 : Final solutions
√
x = −2 or x = 2 ± 2
38.5.1
Exercises - Solving of Cubic Equations
1. Solve for x: x3 + x2 − 5x + 3 = 0
2. Solve for y: y 3 − 3y 2 − 16y − 12 = 0
3. Solve for m: m3 − m2 − 4m − 4 = 0
4. Solve for x: x3 − x2 = 3(3x + 2)
Important: :
Remove brackets and write as an equation equal to zero.
5. Solve for x if 2x3 − 3x2 − 8x = 3
38.6
End of Chapter Exercises
1. Solve for x: 16(x + 1) = x2 (x + 1)
498
CHAPTER 38. FACTORISING CUBIC POLYNOMIALS - GRADE 12
2.
38.6
A Show that x − 2 is a factor of 3x3 − 11x2 + 12x − 4
B Hence, by factorising completely, solve the equation
3x3 − 11x2 + 12x − 4 = 0
3. 2x3 − x2 − 2x + 2 = Q(x).(2x − 1) + R for all values of x. What is the value of R?
4.
A Use the factor theorem to solve the following equation for m:
8m3 + 7m2 − 17m + 2 = 0
B Hence, or otherwise, solve for x:
23x+3 + 7 · 22x + 2 = 17 · 2x
5. A challenge:
Determine the values of p for which the function
f (x) = 3p3 − (3p − 7)x2 + 5x − 3
leaves a remainder of 9 when it is divided by (x − p).
499
38.6
CHAPTER 38. FACTORISING CUBIC POLYNOMIALS - GRADE 12
500
Chapter 39
Functions and Graphs - Grade 12
39.1
Introduction
In grades 10 and 11 you have learnt about linear functions and quadratic functions as well as the
hyperbolic functions and exponential functions and many more. In grade 12 you are expected
to demonstrate the ability to work with various types of functions and relations including the
inverses of some functions and generate graphs of the inverse relations of functions, in particular
the inverses of:
y = ax + q
y = ax2
y = ax; a > 0
.
39.2
Definition of a Function
A function is a relation for which there is only one value of y corresponding to any value of x.
We sometimes write y = f (x), which is notation meaning ’y is a function of x’. This definition
makes complete sense when compared to our real world examples — each person has only one
height, so height is a function of people; on each day, in a specific town, there is only one average
temperature.
However, some very common mathematical constructions are not functions. For example, consider the relation x2 + y 2 = 4. This relation describes a circle of radius 2 centred at the origin,
as in figure 39.1. If we let x = 0, we see that y 2 = 4 and thus either y = 2 or y = −2. Since
there are two y values which are possible for the same x value, the relation x2 + y 2 = 4 is not
a function.
There is a simple test to check if a relation is a function, by looking at its graph. This test
is called the vertical line test. If it is possible to draw any vertical line (a line of constant x)
which crosses the relation more than once, then the relation is not a function. If more than one
intersection point exists, then the intersections correspond to multiple values of y for a single
value of x.
We can see this with our previous example of the circle by looking at its graph again in Figure
39.1.
We see that we can draw a vertical line, for example the dotted line in the drawing, which cuts
the circle more than once. Therefore this is not a function.
39.2.1
Exercises
1. State whether each of the following equations are functions or not:
A x+y =4
501
39.3
CHAPTER 39. FUNCTIONS AND GRAPHS - GRADE 12
2
b
1
−2
−1
1
2
−1
b
−2
Figure 39.1: Graph of y 2 + x2 = 4
B y = x4
C y = 2x
D x2 + y 2 = 4
2. The table gives the average per capita income, d, in a region of the country as a function
of the percent unemployed, u. Write down the equation to show that income is a function
of the persent unemployed.
u
d
39.3
1
22500
2
22000
3
21500
4
21000
Notation used for Functions
In grade 10 you were introduced to the notation used to ”name” a function. In a function
y = f (x), y is called the dependent variable, because the value of y depends on what you
choose as x. We say x is the independent variable, since we can choose x to be any number.
Similarly if g(t) = 2t + 1, then t is the independent variable and g is the function name. If
f (x) = 3x − 5 and you are ask to determine f (3), then you have to work out the value for f (x)
when x = 3. For example,
f (x) =
f (3) =
=
39.4
3x − 5
3(3) − 5
4
Graphs of Inverse Functions
In earlier grades, you studied various types of functions and understood the effect of various
parameters in the general equation. In this section, we will consider inverse functions.
An inverse function is a function which ”does the reverse” of a given function. More formally,
if f is a function with domain X, then f −1 is its inverse function if and only if for every x ∈ X
we have:
f −1 (f (x)) = f (f −1 (x)) = x
(39.1)
For example, if the function x → 3x + 2 is given, then its inverse function is x →
is usually written as:
f
:
f −1
:
x → 3x + 2
(x − 2)
x→
3
502
(x − 2)
. This
3
(39.2)
(39.3)
CHAPTER 39. FUNCTIONS AND GRAPHS - GRADE 12
39.4
The superscript ”-1” is not an exponent.
If a function f has an inverse then f is said to be invertible.
If f is a real-valued function, then for f to have a valid inverse, it must pass the horizontal line
test, that is a horizontal line y = k placed anywhere on the graph of f must pass through f
exactly once for all real k.
It is possible to work around this condition, by defining a multi-valued function as an inverse.
If one represents the function f graphically in a xy-coordinate system, then the graph of f −1 is
the reflection of the graph of f across the line y = x.
Algebraically, one computes the inverse function of f by solving the equation
y = f (x)
for x, and then exchanging y and x to get
y = f −1 (x)
39.4.1
Inverse Function of y = ax + q
The inverse function of y = ax + q is determined by solving for x as:
y =
ax =
x =
=
ax + q
y−q
y−q
a
1
q
y−
a
a
(39.4)
(39.5)
(39.6)
(39.7)
Therefore the inverse of y = ax + q is y = a1 x − aq .
The inverse function of a straight line is also a straight line.
For example, the straight line equation given by y = 2x − 3 has as inverse the function, y =
1
3
2 x + 2 . The graphs of these functions are shown in Figure 39.2. It can be seen that the two
graphs are reflections of each other across the line y = x.
3
2
f −1 (x) = 12 x +
−3
−2
3
2
−1
1
1
−1
2
3
f (x) = 2x − 3
−2
−3
Figure 39.2: The function f (x) = 2x − 3 and its inverse f −1 (x) = 12 x + 23 . The line y = x is
shown as a dashed line.
503
39.4
CHAPTER 39. FUNCTIONS AND GRAPHS - GRADE 12
Domain and Range
We have seen that the domain of a function of the form y = ax + q is {x : x ∈ R} and the range
is {y : y ∈ R}. Since the inverse function of a straight line is also a straight line, the inverse
function will have the same domain and range as the original function.
Intercepts
The general form of the inverse function of the form y = ax + q is y = a1 x − aq .
By setting x = 0 we have that the y-intercept is yint = − aq . Similarly, by setting y = 0 we have
that the x-intercept is xint = q.
It is interesting to note that if f (x) = ax + q, then f −1 (x) = a1 x − aq and the y-intercept of
f (x) is the x-intercept of f −1 (x) and the x-intercept of f (x) is the y-intercept of f −1 (x).
39.4.2
Exercises
1. Given f (x) = 2x − 3, find f −1 (x)
2. Consider the function f (x) = 3x − 7.
A Is the relation a function?
B Identify the domain and range.
3. Sketch the graph of the function f (x) = 3x − 1 and its inverse on the same set of axes.
4. The inverse of a function is f −1 (x) = 2x − 4, what is the function f (x)?
39.4.3
Inverse Function of y = ax2
The inverse function of y = ax2 is determined by solving for x as:
y
2
x
x
= ax2
y
=
a
r
y
=
a
(39.8)
(39.9)
(39.10)
We see that the inverse function of y = ax2 is not a function because
√ it fails the vertical line
test. If we draw a vertical line through the graph of f −1 (x) = ± x, the line intersects the
graph more than once. There has to be a restriction on the domain of a parabola for the inverse
to also be a function. Consider the function f (x) = −x2 + 9. The inverse of f can be found by
witing f (y) = x. Then
x =
y2 =
y
=
−y 2 + 9
9−x
√
± 9−x
√
√
If x ≥ 0, then 9 − x is a function. If the restriction on the domain of f is x ≤ 0 then − 9 − x
would be a function.
39.4.4
Exercises
1. The graph of f −1 is shown. Find the equation of f , given that the graph of f is a parabola.
(Do not simplify your answer)
504
CHAPTER 39. FUNCTIONS AND GRAPHS - GRADE 12
f (x) = x2
39.4
3
f −1 (x) =
2
√
x
1
−3
−2
−1
1
2
3
−1
√
f −1 (x) = − x
−2
−3
√
Figure 39.3: The function f (x) = x2 and its inverse f −1 (x) = ± x. The line y = x is shown
as a dashed line.
f −1
b (3; 1)
b
(1; 0)
2. f (x) = 2x2 .
A Draw the graph of f and state its domain and range.
B Find f −1 and state the domain and range.
C What must the domain of f be, so that f −1 is a function ?
p
3. Sketch the graph of x = − 10 − y 2 . Label a point on the graph other than the intercepts
with the axes.
4.
A Sketch the graph of y = x2 labelling a point other than the origin on your graph.
B Find the equation of the inverse of the above graph in the form y = . . ..
√
C Now sketch the y = x.
√
D The tangent to the graph of y = x at the point A(9;3) intersects the x-axis at
B. Find the equation of this tangent and hence or otherwise prove that the y-axis
bisects the straight line AB.
5. Given: g(x) = −1 +
√
x, find the inverse of g(x) in the form g −1 (x).
505
39.4
CHAPTER 39. FUNCTIONS AND GRAPHS - GRADE 12
Inverse Function of y = ax
39.4.5
The inverse function of y = ax2 is determined by solving for x as:
y
=
log(y) =
=
∴
x =
ax
(39.11)
x
log(a )
x log(a)
log(y)
log(a)
(39.12)
(39.13)
(39.14)
The inverse of y = 10x is x = 10y , which we write as y = logx. Therefore, if f (x) = 10x , then
f −1 = logx.
f (x) = 10x
3
2
1
f −1 (x) = log(x)
−3
−2
−1
1
2
3
−1
−2
−3
Figure 39.4: The function f (x) = 10x and its inverse f −1 (x) = log(x). The line y = x is shown
as a dashed line.
The exponential function and the logarithmic function are inverses of each other; the graph of
the one is the graph of the other, reflected in the line y = x. The domain of the function is equal
to the range of the inverse. The range of the function is equal to the domain of the inverse.
39.4.6
Exercises
1. Given that f (x) = [ 51 ]x , sketch the graphs of f and f −1 on the same system of axes
indicating a point on each graph (other than the intercepts) and showing clearly which is
f and which is f −1 .
2. Given that f (x) = 4−x ,
A Sketch the graphs of f and f −1 on the same system of axes indicating a point on
each graph (other than the intercepts) and showing clearly which is f and which is
f −1 .
B Write f −1 in the form y = . . ..
√
3. Given g(x) = −1 + x, find the inverse of g(x) in the form g −1 (x) = . . .
4.
A
B
C
D
Sketch the graph of y = x2 , labeling a point other than the origin on your graph.
Find the equation of the inverse of the above graph in the form y = . . .
√
Now, sketch y = x.
√
The tangent to the graph of y = x at the point A(9; 3) intersects the x-axis at
B. Find the equation of this tangent, and hence, or otherwise, prove that the y-axis
bisects the straight line AB.
506
CHAPTER 39. FUNCTIONS AND GRAPHS - GRADE 12
39.5
39.5
End of Chapter Exercises
1. Sketch the graph of x = −
2. f (x) =
1
,
x−5
p
10 − y 2 . Is this graph a function ? Verify your answer.
A determine the y-intercept of f (x)
B determine x if f (x) = −1.
3. Below, you are given 3 graphs and 5 equations.
Graph 1
y
Graph 2
y
Graph 3
y
x
x
x
A y = log3 x
B y = − log3 x
C y = log3 (−x)
D y = 3−x
E y = 3x
Write the equation that best describes each graph.
4. The graph of y = f (x) is shown in the diagram below.
y
f (x)
2
−2
A Find the value of x such that f (x) = 0.
B Evaluate f (3) + f (−1).
507
x
39.5
CHAPTER 39. FUNCTIONS AND GRAPHS - GRADE 12
5. Given g(x) = −1 +
√
x, find the inverse of g(x) in the form g −1 (x) = . . .
6. Given the equation h(x) = 3x
A Write down the inverse in the form h−1 (x) = ...
B Sketch the graphs of h(x) and h−1 (x) on teh same set of axes, labelling the intercepts
with the axes.
C For which values of x is h−1 (x) undefined ?
7.
A Sketch the graph of y = x2 , labelling a point other than the origin on your graph.
B Find the equation of the inverse of the above graph in the form y = . . .
√
C Now, sketch y = x.
√
D The tangent to the graph of y = x at the point A(9; 3) intersects the x-axis at
B. Find the equation of this tangent, and hence, or otherwise, prove that the y-axis
bisects the straight line AB.
508
Chapter 40
Differential Calculus - Grade 12
40.1
Why do I have to learn this stuff?
Calculus is one of the central branches of mathematics and was developed from algebra and
geometry. Calculus is built on the concept of limits, which will be discussed in this chapter.
Calculus consists of two complementary ideas: differential calculus and integral calculus. Only
differential calculus will be studied. Differential calculus is concerned with the instantaneous rate
of change of quantities with respect to other quantities, or more precisely, the local behaviour
of functions. This can be illustrated by the slope of a function’s graph. Examples of typical
differential calculus problems include: finding the acceleration and velocity of a free-falling body
at a particular moment and finding the optimal number of units a company should produce to
maximize its profit.
Calculus is fundamentally different from the mathematics that you have studied previously. Calculus is more dynamic and less static. It is concerned with change and motion. It deals with
quantities that approach other quantities. For that reason it may be useful to have an overview
of the subject before beginning its intensive study.
Calculus is a tool to understand many natural phenomena like how the wind blows, how water
flows, how light travels, how sound travels and how the planets move. However, other human
activities such as economics are also made easier with calculus.
In this section we give a glimpse of some of the main ideas of calculus by showing how limits
arise when we attempt to solve a variety of problems.
Extension: Integral Calculus
Integral calculus is concerned with the accumulation of quantities, such as areas
under a curve, linear distance traveled, or volume displaced. Differential and integral
calculus act inversely to each other. Examples of typical integral calculus problems
include finding areas and volumes, finding the amount of water pumped by a pump
with a set power input but varying conditions of pumping losses and pressure and
finding the amount of rain that fell in a certain area if the rain fell at a specific rate.
teresting Both Isaac Newton (4 January 1643 – 31 March 1727) and Gottfried Liebnitz
Interesting
Fact
Fact
(1 July 1646 – 14 November 1716 (Hanover, Germany)) are credited with the
‘invention’ of calculus. Newton was the first to apply calculus to general physics,
while Liebnitz developed most of the notation that is still in use today.
When Newton and Leibniz first published their results, there was some controversy over whether Leibniz’s work was independent of Newton’s. While Newton
derived his results years before Leibniz, it was only some time after Leibniz published in 1684 that Newton published. Later, Newton would claim that Leibniz
509
40.2
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
got the idea from Newton’s notes on the subject; however examination of the
papers of Leibniz and Newton show they arrived at their results independently,
with Leibniz starting first with integration and Newton with differentiation. This
controversy between Leibniz and Newton divided English-speaking mathematicians from those in Europe for many years, which slowed the development of
mathematical analysis. Today, both Newton and Leibniz are given credit for
independently developing calculus. It is Leibniz, however, who is credited with
giving the new discipline the name it is known by today: ”calculus”. Newton’s
name for it was ”the science of fluxions”.
40.2
Limits
40.2.1
A Tale of Achilles and the Tortoise
teresting Zeno (circa 490 BC - circa 430 BC) was a pre-Socratic Greek philosopher of
Interesting
Fact
Fact
southern Italy who is famous for his paradoxes.
One of Zeno’s paradoxes can be summarised by:
Achilles and a tortoise agree to a race, but the tortoise is unhappy because Achilles
is very fast. So, the tortoise asks Achilles for a head-start. Achilles agrees to give
the tortoise a 1 000 m head start. Does Achilles overtake the tortoise?
We know how to solve this problem. We start by writing:
xA
=
vA t
(40.1)
xt
=
1000 m + vt t
(40.2)
where
xA
vA
t
xt
vt
distance covered by Achilles
Achilles’ speed
time taken by Achilles to overtake tortoise
distance covered by the tortoise
the tortoise’s speed
If we assume that Achilles runs at 2 m·s−1 and the tortoise runs at 0,25 m·s−1 then Achilles
will overtake the tortoise when both of them have covered the same distance. This means that
510
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.2
Achilles overtakes the tortoise at a time calculated as:
xA
=
xt
(40.3)
vA t
−1
=
=
(40.4)
(40.5)
(2 m · s−1 − 0,25 m · s−1 )t
=
1000 + vt t
1000 m + (0,25 m · s−1 )t
t
=
(2 m · s
)t
=
=
=
=
1000 m
1000 m
1 43 m · s−1
1000 m
7
−1
4 m·s
(4)(1000)
s
7
4000
s
7
3
571 s
7
(40.6)
(40.7)
(40.8)
(40.9)
(40.10)
(40.11)
However, Zeno (the Greek philosopher who thought up this problem) looked at it as follows:
Achilles takes
1000
= 500 s
t=
2
to travel the 1 000 m head start that the tortoise had. However, in this 500 s, the tortoise has
travelled a further
x = (500)(0,25) = 125 m.
Achilles then takes another
125
= 62,5 s
2
to travel the 125 m. In this 62,5 s, the tortoise travels a further
t=
x = (62,5)(0,25) = 15,625 m.
Zeno saw that Achilles would always get closer but wouldn’t actually overtake the tortoise.
40.2.2
Sequences, Series and Functions
So what does Zeno, Achilles and the tortoise have to do with calculus?
Well, in Grades 10 and 11 you studied sequences. For the sequence
1 2 3 4
0, , , , , . . .
2 3 4 5
which is defined by the expression
1
n
the terms get closer to 1 as n gets larger. Similarly, for the sequence
an = 1 −
1 1 1 1
1, , , , , . . .
2 3 4 5
which is defined by the expression
1
n
the terms get closer to 0 as n gets larger. We have also seen that the infinite geometric series
has a finite total. The infinite geometric series is
an =
S∞ =
∞
X
i=1
a1 .ri−1 =
a1
1−r
for
−1
where a1 is the first term of the series and r is the common ratio.
511
40.2
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
We see that there are some functions where the value of the function gets close to or approaches
a certain value.
Similarly, for the function:
x2 + 4x − 12
x+6
The numerator of the function can be factorised as:
y=
y=
(x + 6)(x − 2)
.
x+6
Then we can cancel the x − 6 from numerator and denominator and we are left with:
y = x − 2.
However, we are only able to cancel the x + 6 term if x 6= −6. If x = −6, then the denominator
becomes 0 and the function is not defined. This means that the domain of the function does
not include x = −6. But we can examine what happens to the values for y as x gets close to -6.
These values are listed in Table 40.1 which shows that as x gets closer to -6, y gets close to 8.
Table 40.1: Values for the function y =
x
y=
-9
-8
-7
-6.5
-6.4
-6.3
-6.2
-6.1
-6.09
-6.08
-6.01
-5.9
-5.8
-5.7
-5.6
-5.5
-5
-4
-3
(x + 6)(x − 2)
as x gets close to -6.
x+6
(x+6)(x−2)
x+6
-11
-10
-9
-8.5
-8.4
-8.3
-8.2
-8.1
-8.09
-8.08
-8.01
-7.9
-7.8
-7.7
-7.6
-7.5
-7
-6
-5
The graph of this function is shown in Figure 40.1. The graph is a straight line with slope 1 and
intercept -2, but with a missing section at x = −6.
Extension: Continuity
We say that a function is continuous if there are no values of the independent variable
for which the function is undefined.
40.2.3
Limits
We can now introduce a new notation. For the function y =
lim
x→−6
(x + 6)(x − 2)
, we can write:
x+6
(x + 6)(x − 2)
= −8.
x+6
512
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
4
3
2
1
−9 −8 −7 −6 −5 −4 −3 −2 −1
−1
−2
−3
−4
−5
−6
−7
−8
−9
bc
Figure 40.1: Graph of y =
This is read: the limit of
(x+6)(x−2)
x+6
1 2 3 4
(x+6)(x−2)
.
x+6
as x tends to -6 is 8.
Activity :: Investigation : Limits
If f (x) = x + 1, determine:
f(-0.1)
f(-0.05)
f(-0.04)
f(-0.03)
f(-0.02)
f(-0.01)
f(0.00)
f(0.01)
f(0.02)
f(0.03)
f(0.04)
f(0.05)
f(0.1)
What do you notice about the value of f (x) as x gets close to 0.
Worked Example 172: Limits Notation
Question: Summarise the following situation by using limit notation: As x gets
close to 1, the value of the function
y =x+2
gets close to 3.
513
40.2
40.2
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Answer
This is written as:
lim x + 2 = 3
x→1
in limit notation.
We can also have the situation where a function has a different value depending on whether x
approaches from the left or the right. An example of this is shown in Figure 40.2.
4
3
2
1
−7 −6 −5 −4 −3 −2 −1
−1
1
2
3
4
5
6
7
−2
−3
−4
Figure 40.2: Graph of y = x1 .
As x → 0 from the left, y = x1 approaches −∞. As x → 0 from the right, y =
+∞. This is written in limits notation as:
lim
x→0−
1
x
approaches
1
= −∞
x
for x approaching zero from the left and
lim
x→0+
1
=∞
x
for x approaching zero from the right. You can calculate the limit of many different functions
using a set method.
Method:
Limits If you are required to calculate a limit like limx→a then:
1. Simplify the expression completely.
2. If it is possible, cancel all common terms.
3. Let x approach the a.
Worked Example 173: Limits
514
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Question: Determine
lim 10
x→1
Answer
Step 1 : Simplify the expression
There is nothing to simplify.
Step 2 : Cancel all common terms
There are no terms to cancel.
Step 3 : Let x → 1 and write final answer
lim 10 = 10
x→1
Worked Example 174: Limits
Question: Determine
lim x
x→2
Answer
Step 1 : Simplify the expression
There is nothing to simplify.
Step 2 : Cancel all common terms
There are no terms to cancel.
Step 3 : Let x → 2 and write final answer
lim x = 2
x→2
Worked Example 175: Limits
Question: Determine
x2 − 100
x→10 x − 10
lim
Answer
Step 1 : Simplify the expression
The numerator can be factorised.
(x + 10)(x − 10)
x2 − 100
=
x − 10
x − 10
Step 2 : Cancel all common terms
x − 10 can be cancelled from the numerator and denominator.
(x + 10)(x − 10)
= x + 10
x − 10
Step 3 : Let x → 1 and write final answer
x2 − 100
= 20
x→10 x − 10
lim
515
40.2
40.2
40.2.4
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Average Gradient and Gradient at a Point
In Grade 10 you learnt about average gradients on a curve. The average gradient between any
two points on a curve is given by the gradient of the straight line that passes through both
points. In Grade 11 you were introduced to the idea of a gradient at a single point on a curve.
We saw that this was the gradient of the tangent to the curve at the given point, but we did
not learn how to determine the gradient of the tangent.
Now let us consider the problem of trying to find the gradient of a tangent t to a curve with
equation y = f (x) at a given point P .
tangent
P
b
f (x)
We know how to calculate the average gradient between two points on a curve, but we need two
points. The problem now is that we only have one point, namely P . To get around the problem
we first consider a secant to the curve that passes through point P and another point on the
curve Q. We can now find the average gradient of the curve between points P and Q.
secant
P
b
f (a)
f (a − h)
b
Q
f (x)
a
a−h
If the x-coordinate of P is a, then the y-coordinate is f (a). Similarly, if the x-coordinate of Q
is a − h, then the y-coordinate is f (a − h). If we choose a as x2 and a − h as x1 , then:
y1 = f (a − h)
y2 = f (a).
We can now calculate the average gradient as:
y2 − y1
x2 − x1
=
=
f (a) − f (a − h)
a − (a − h)
f (a) − f (a − h)
h
(40.12)
(40.13)
Now imagine that Q moves along the curve toward P . The secant line approaches the tangent
line as its limiting position. This means that the average gradient of the secant approaches the
gradient of the tangent to the curve at P . In (40.13) we see that as point Q approaches point
P , h gets closer to 0. When h = 0, points P and Q are equal. We can now use our knowledge
of limits to write this as:
gradient at P = lim
h→0
f (a) − f (a − h)
.
h
(40.14)
and we say that the gradient at point P is the limit of the average gradient as Q approaches P
along the curve.
516
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.2
Activity :: Investigation : Limits
The gradient at a point x on a curve defined by f (x) can also be written as:
lim
h→0
f (x + h) − f (x)
h
(40.15)
Show that this is equivalent to (40.14).
Worked Example 176: Limits
Question: For the function f (x) = 2x2 − 5x, determine the gradient of the tangent
to the curve at the point x = 2.
Answer
Step 1 : Calculating the gradient at a point
We know that the gradient at a point x is given by:
lim
h→0
f (x + h) − f (x)
h
In our case x = 2. It is simpler to substitute x = 2 at the end of the calculation.
Step 2 : Write f (x + h) and simplify
f (x + h) =
=
=
2(x + h)2 − 5(x + h)
2(x2 + 2xh + h2 ) − 5x − 5h
2x2 + 4xh + 2h2 − 5x − 5h
Step 3 : Calculate limit
f (x + h) − f (x)
h→0
h
lim
=
=
=
=
=
=
2x2 + 4xh + 2h2 − 5x − 5h − (2x2 − 5x)
h
2x2 + 4xh + 2h2 − 5x − 5h − 2x2 + 5x
lim
h→0
h
4xh + 2h2 − 5h
lim
h→0
h
h(4x + 2h − 5)
lim
h→0
h
lim 4x + 2h − 5
h→0
4x − 5
Step 4 : Calculate gradient at x = 2
4x − 5 = 4(2) − 5 = 3
Step 5 : Write the final answer
The gradient of the tangent to the curve f (x) = 2x2 − 5x at x = 2 is 3.
517
40.2
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Worked Example 177: Limits
Question: For the function f (x) = 5x2 − 4x + 1, determine the gradient of the
tangent to curve at the point x = a.
Answer
Step 1 : Calculating the gradient at a point
We know that the gradient at a point x is given by:
f (x + h) − f (x)
h→0
h
lim
In our case x = a. It is simpler to substitute x = a at the end of the calculation.
Step 2 : Write f (x + h) and simplify
5(x + h)2 − 4(x + h) + 1
f (x + h) =
5(x2 + 2xh + h2 ) − 4x − 4h + 1
5x2 + 10xh + 5h2 − 4x − 4h + 1
=
=
Step 3 : Calculate limit
f (x + h) − f (x)
h→0
h
lim
=
=
=
=
=
=
5x2 + 10xh + 5h2 − 4x − 4h + 1 − (5x2 − 4x + 1)
h
5x2 + 10xh + 5h2 − 4x − 4h + 1 − 5x2 + 4x − 1
lim
h→0
h
2
10xh + 5h − 4h
lim
h→0
h
h(10x + 5h − 4)
lim
h→0
h
lim 10x + 5h − 4
h→0
10x − 4
Step 4 : Calculate gradient at x = a
10x − 4 = 10a − 5
Step 5 : Write the final answer
The gradient of the tangent to the curve f (x) = 5x2 − 4x + 1 at x = 1 is 10a − 5.
Exercise: Limits
Determine the following
1.
x2 − 9
x→3 x + 3
lim
2.
lim
x→3
3.
x+3
x2 + 3x
3x2 − 4x
x→2 3 − x
lim
518
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
4.
40.3
x2 − x − 12
x→4
x−4
lim
5.
lim 3x +
x→2
40.3
1
3x
Differentiation from First Principles
The tangent problem has given rise to the branch of calculus called differential calculus and
the equation:
f (x + h) − f (x)
lim
h→0
h
defines the derivative of the function f (x). Using (40.15) to calculate the derivative is called
finding the derivative from first principles.
Definition: Derivative
The derivative of a function f (x) is written as f ′ (x) and is defined by:
f (x + h) − f (x)
h→0
h
f ′ (x) = lim
(40.16)
There are a few different notations used to refer to derivatives. If we use the traditional notation
y = f (x) to indicate that the dependent variable is y and the independent variable is x, then
some common alternative notations for the derivative are as follows:
f ′ (x) = y ′ =
dy
df
d
=
=
f (x) = Df (x) = Dx f (x)
dx
dx
dx
d
are called differential operators because they indicate the operation of
The symbols D and dx
differentiation, which is the process of calculating a derivative. It is very important that you
learn to identify these different ways of denoting the derivative, and that you are consistent in
your usage of them when answering questions.
dy
is a limit and
Important: Though we choose to use a fractional form of representation, dx
dy
dy
is not a fraction, i.e. dx does not mean dy ÷ dx. dx means y differentiated with respect to
dp
d
means p differentiated with respect to x. The ‘ dx
’ is the “operator”, operating
x. Thus, dx
on some function of x.
Worked Example 178: Derivatives - First Principles
Question: Calculate the derivative of g(x) = x − 1 from first principles.
Answer
Step 1 : Calculating the gradient at a point
We know that the gradient at a point x is given by:
g(x + h) − g(x)
h→0
h
g ′ (x) = lim
Step 2 : Write g(x + h) and simplify
519
40.3
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
g(x + h) = x + h − 1
Step 3 : Calculate limit
g ′ (x)
=
=
=
=
=
g(x + h) − g(x)
h
x + h − 1 − (x − 1)
lim
h→0
h
x+h−1−x+1
lim
h→0
h
h
lim
h→0 h
lim 1
lim
h→0
h→0
= 1
Step 4 : Write the final answer
The derivative g ′ (x) of g(x) = x − 1 is 1.
Worked Example 179: Derivatives - First Principles
Question: Calculate the derivative of h(x) = x2 − 1 from first principles.
Answer
Step 1 : Calculating the gradient at a point
We know that the gradient at a point x is given by:
g(x + h) − g(x)
h→0
h
g ′ (x) = lim
Step 2 : Write g(x + h) and simplify
g(x + h) = x + h − 1
Step 3 : Calculate limit
g ′ (x)
=
=
=
=
=
g(x + h) − g(x)
h
x + h − 1 − (x − 1)
lim
h→0
h
x+h−1−x+1
lim
h→0
h
h
lim
h→0 h
lim 1
lim
h→0
h→0
= 1
Step 4 : Write the final answer
The derivative g ′ (x) of g(x) = x − 1 is 1.
520
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.4
Exercise: Derivatives
1. Given g(x) = −x2
g(x + h) − g(x)
A determine
h
B hence, determine
lim
h→0
g(x + h) − g(x)
h
C explain the meaning of your answer in (b).
2. Find the derivative of f (x) = −2x2 + 3x using first principles.
1
3. Determine the derivative of f (x) =
using first principles.
x−2
4. Determine f ′ (3) from first principles if f (x) = −5x2 .
5. If h(x) = 4x2 − 4x, determine h′ (x) using first principles.
40.4
Rules of Differentiation
Calculating the derivative of a function from first principles is very long, and it is easy to make
mistakes. Fortunately, there are rules which make calculating the derivative simple.
Activity :: Investigation : Rules of Differentiation
From first principles, determine the derivatives of the following:
1. f (x) = b
2. f (x) = x
3. f (x) = x2
4. f (x) = x3
5. f (x) = 1/x
You should have found the following:
f (x)
b
x
x2
x3
1/x = x−1
f ′ (x)
0
1
2x
3x2
−x−2
If we examine these results we see that there is a pattern, which can be summarised by:
d
(xn ) = nxn−1
dx
(40.17)
There are two other rules which make differentiation simpler. For any two functions f (x) and
g(x):
d
[f (x) ± g(x)] = f ′ (x) ± g ′ (x)
(40.18)
dx
521
40.4
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
This means that we differentiate each term separately.
The final rule applies to a function f (x) that is multiplied by a constant k.
d
[k.f (x)] = kf ′ (x)
dx
(40.19)
Worked Example 180: Rules of Differentiation
Question: Determine the derivative of x − 1 using the rules of differentiation.
Answer
Step 1 : Identify the rules that will be needed
We will apply two rules of differentiation:
d
(xn ) = nxn−1
dx
and
d
d
d
[f (x) − g(x)] =
[f (x)] −
[g(x)]
dx
dx
dx
Step 2 : Determine the derivative
In our case f (x) = x and g(x) = 1.
f ′ (x) = 1
and
g ′ (x) = 0
Step 3 : Write the final answer
The derivative of x − 1 is 1 which is the same result as was obtained earlier, from
first principles.
40.4.1
Summary of Differentiation Rules
d
dx b
=0
d
n
dx (x )
= nxn−1
d
dx (kf )
df
= k dx
d
dx (f
+ g) =
Exercise: Rules of Differentiation
x2 − 5x + 6
.
x−2
√
2. Find f ′ (y) if f (y) = y.
1. Find f ′ (x) if f (x) =
3. Find f ′ (z) if f (z) = (z − 1)(z + 1).
√
x3 + 2 x − 3
dy
4. Determine dx if y =
.
x
522
df
dx
+
dg
dx
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
5. Determine the derivative of y =
40.5
√
x3 +
40.5
1
.
3x3
Applying Differentiation to Draw Graphs
Thus far we have learnt about how to differentiate various functions, but I am sure that you are
beginning to ask, What is the point of learning about derivatives? Well, we know one important
fact about a derivative: it is a gradient. So, any problems involving the calculations of gradients
or rates of change can use derivatives. One simple application is to draw graphs of functions by
firstly determine the gradients of straight lines and secondly to determine the turning points of
the graph.
40.5.1
Finding Equations of Tangents to Curves
In section 40.2.4 we saw that finding the gradient of a tangent to a curve is the same as finding
the slope of the same curve at the point of the tangent. We also saw that the gradient of a
function at a point is just its derivative.
Since we have the gradient of the tangent and the point on the curve through which the tangent
passes, we can find the equation of the tangent.
Worked Example 181: Finding the Equation of a Tangent to a Curve
Question: Find the equation of the tangent to the curve y = x2 at the point (1,1)
and draw both functions.
Answer
Step 1 : Determine what is required
We are required to determine the equation of the tangent to the curve defined by
y = x2 at the point (1,1). The tangent is a straight line and we can find the equation
by using derivatives to find the gradient of the straight line. Then we will have the
gradient and one point on the line, so we can find the equation using:
y − y1 = m(x − x1 )
from grade 11 Coordinate Geometry.
Step 2 : Differentiate the function
Using our rules of differentiation we get:
y ′ = 2x
Step 3 : Find the gradient at the point (1,1)
In order to determine the gradient at the point (1,1), we substitute the x-value into
the equation for the derivative. So, y ′ at x = 1 is:
2(1) = 2
Step 4 : Find equation of tangent
y − y1
y−1
y
y
=
=
m(x − x1 )
(2)(x − 1)
= 2x − 2 + 1
= 2x − 1
523
40.5
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Step 5 : Write the final answer
The equation of the tangent to the curve defined by y = x2 at the point (1,1) is
y = 2x − 1.
Step 6 : Sketch both functions
y = x2
4
3
2
1
−4
−3
−2
−1
b (1,1)
1
2
3
4
−1
−2
y = 2x − 1
−3
−4
40.5.2
Curve Sketching
Differentiation can be used to sketch the graphs of functions, by helping determine the turning
points. We know that if a graph is increasing on an interval and reaches a turning point, then
the graph will start decreasing after the turning point. The turning point is also known as a
stationary point because the gradient at a turning point is 0. We can then use this information
to calculate turning points, by calculating the points at which the derivative of a function is 0.
Important: If x = a is a turning point of f (x), then:
f ′ (a) = 0
This means that the derivative is 0 at a turning point.
Take the graph of y = x2 as an example. We know that the graph of this function has a turning
point at (0,0), but we can use the derivative of the function:
y ′ = 2x
and set it equal to 0 to find the x-value for which the graph has a turning point.
2x = 0
x = 0
We then substitute this into the equation of the graph (i.e. y = x2 ) to determine the y-coordinate
of the turning point:
f (0) = (0)2 = 0
This corresponds to the point that we have previously calculated.
524
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.5
Worked Example 182: Calculation of Turning Points
Question: Calculate the turning points of the graph of the function
f (x) = 2x3 − 9x2 + 12x − 15
.
Answer
Step 1 : Determine the derivative of f (x)
Using the rules of differentiation we get:
f ′ (x) = 6x2 − 18x + 12
Step 2 : Set f ′ (x) = 0 and calculate x-coordinate of turning point
6x2 − 18x + 12 =
2
x − 3x + 2 =
(x − 2)(x − 1) =
0
0
0
Therefore, the turning points are at x = 2 and x = 1.
Step 3 : Substitute x-coordinate of turning point into f (x) to determine
y-coordinates
f (2) = 2(2)3 − 9(2)2 + 12(2) − 15
= 16 − 36 + 24 − 15
= −11
f (1) = 2(1)3 − 9(1)2 + 12(1) − 15
= 2 − 9 + 12 − 15
= −10
Step 4 : Write final answer
The turning points of the graph of f (x) = 2x3 − 9x2 + 12x − 15 are (2,-11) and
(1,-10).
We are now ready to sketch graphs of functions.
Method:
Sketching GraphsSuppose we are given that f (x) = ax3 + bx2 + cx + d, then there are five steps
to be followed to sketch the graph of the function:
1. If a > 0, then the graph is increasing from left to right, and has a maximum and then a
minimum. As x increases, so does f (x). If a < 0, then the graph decreasing is from left
to right, and has first a minimum and then a maximum. f (x) decreases as x increases.
2. Determine the value of the y-intercept by substituting x = 0 into f (x)
3. Determine the x-intercepts by factorising ax3 + bx2 + cx + d = 0 and solving for x. First
try to eliminate constant common factors, and to group like terms together so that the
expression is expressed as economically as possible. Use the factor theorem if necessary.
525
40.5
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
4. Find the turning points of the function by working out the derivative
zero, and solving for x.
df
dx
and setting it to
5. Determine the y-coordinates of the turning points by substituting the x values obtained in
the previous step, into the expression for f (x).
6. Draw a neat sketch.
Worked Example 183: Sketching Graphs
Question: Draw the graph of g(x) = x2 − x + 2
Answer
Step 1 : Determine the y-intercept
y-intercept is obtained by setting x = 0.
g(0) = (0)2 − 0 + 2 = 2
Step 2 : Determine the x-intercepts
The x-intercepts are found by setting g(x) = 0.
g(x)
=
0
=
x2 − x + 2
x2 − x + 2
which does not have real roots. Therefore, the graph of g(x) does not have any
x-intercepts.
Step 3 : Find the turning points of the function
dg
Work out the derivative dx
and set it to zero to for the x coordinate of the turning
point.
dg
= 2x − 1
dx
dg
=
dx
2x − 1 =
2x =
x =
0
0
1
1
2
Step 4 : Determine the y-coordinates of the turning points by substituting
the x values obtained in the previous step, into the expression for f (x).
y coordinate of turning point is given by calculating g( 21 ).
1
g( ) =
2
=
=
1
1
( )2 − ( ) + 2
2
2
1 1
− +2
4 2
7
4
The turning point is at ( 12 , 47 )
Step 5 : Draw a neat sketch
526
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.5
y
9
8
7
6
5
4
3
2
1
b
b
(0.5,1.75)
x
−3 −2 −1
1
2
3
4
Worked Example 184: Sketching Graphs
Question: Sketch the graph of g(x) = −x3 + 6x2 − 9x + 4.
Answer
Step 1 : Calculate the turning points
Find the turning points by setting g ′ (x) = 0.
If we use the rules of differentiation we get
g ′ (x) = −3x2 + 12x − 9
g ′ (x)
−3x2 + 12x − 9
=
=
0
0
x2 − 4x + 3 =
(x − 3)(x − 1) =
0
0
The x-coordinates of the turning points are: x = 1 and x = 3.
The y-coordinates of the turning points are calculated as:
g(x)
=
g(1) =
=
=
g(x)
=
g(3) =
=
=
−x3 + 6x2 − 9x + 4
−(1)3 + 6(1)2 − 9(1) + 4
−1 + 6 − 9 + 4
0
−x3 + 6x2 − 9x + 4
−(3)3 + 6(3)2 − 9(3) + 4
−27 + 54 − 27 + 4
4
Therefore the turning points are: (1,0) and (3,4).
527
40.5
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Step 2 : Determine the y-intercepts
We find the y-intercepts by finding the value for g(0).
= −x3 + 6x2 − 9x + 4
g(x)
yint = g(0) = −(0)3 + 6(0)2 − 9(0) + 4
= 4
Step 3 : Determine the x-intercepts
We find the x-intercepts by finding the points for which the function g(x) = 0.
g(x) = −x3 + 6x2 − 9x + 4
Use the factor theorem to confirm that (x − 1) is a factor. If g(1) = 0, then (x − 1)
is a factor.
g(x)
−x3 + 6x2 − 9x + 4
=
−(1)3 + 6(1)2 − 9(1) + 4
−1 + 6 − 9 + 4
g(1) =
=
=
0
Therefore, (x − 1) is a factor.
If we divide g(x) by (x − 1) we are left with:
−x2 + 5x − 4
This has factors
−(x − 4)(x − 1)
Therefore:
g(x) = −(x − 1)(x − 1)(x − 4)
The x-intercepts are: xint = 1, 4
Step 4 : Draw a neat sketch
y
9
8
7
6
5
4
(3,4)
b
b
3
2
1
(1,0)
(4,0)
x
b
−1
−1
1
b
2
528
3
4
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.5
Exercise: Sketching Graphs
1. Given f (x) = x3 + x2 − 5x + 3:
A Show that (x − 1) is a factor of f (x) and hence fatorise f (x) fully.
B Find the coordinates of the intercepts with the axes and the turning points
and sketch the graph
2. Sketch the graph of f (x) = x3 − 4x2 − 11x+ 30 showing all the relative turning
points and intercepts with the axes.
3.
A Sketch the graph of f (x) = x3 − 9x2 + 24x − 20, showing all intercepts
with the axes and turning points.
B Find the equation of the tangent to f (x) at x = 4.
40.5.3
Local minimum, Local maximum and Point of Inflextion
dy
) is zero at a point, the gradient of the tangent at that point is zero. It
If the derivative ( dx
means that a turning point occurs as seen in the previous example.
y
9
8
7
6
5
4
(3;4)
b
b
3
2
1
(1;0)
(4;0)
x
b
−1
−1
1
b
2
3
4
From the drawing the point (1;0) represents a local minimum and the point (3;4) the local
maximum.
A graph has a horizontal point of inflexion where the derivative is zero but the sign of the sign
of the gradient does not change. That means the graph always increases or always decreases.
529
40.6
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
y
b
(3;1)
x
From this drawing, the point (3;1) is a horizontal point of inflexion, because the sign of the
derivative stays positive.
40.6
Using Differential Calculus to Solve Problems
We have seen that differential calculus can be used to determine the stationary points of functions, in order to sketch their graphs. However, determining stationary points also lends itself to
the solution of problems that require some variable to be optimised.
For example, if fuel used by a car is defined by:
f (v) =
3 2
v − 6v + 245
80
(40.20)
where v is the travelling speed, what is the most economical speed (that means the speed that
uses the least fuel)?
If we draw the graph of this function we find that the graph has a minimum. The speed at the
minimum would then give the most economical speed.
fuel consumption (l)
60
50
40
30
20
10
0
0
10
20
30
40
50
60 70 80 90 100 110 120 130 140
speed (km·hr−1 )
We have seen that the coordinates of the turning point can be calculated by differentiating the
function and finding the x-coordinate (speed in the case of the example) for which the derivative
is 0.
Differentiating (40.20), we get:
3
v−6
40
If we set f ′ (v) = 0 we can calculate the speed that corresponds to the turning point.
530
f ′ (v) =
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.6
3
v−6
40
3
v−6
=
40
6 × 40
=
3
= 80
f ′ (v)
=
0
v
This means that the most economical speed is 80 km·hr−1 .
Worked Example 185: Optimisation Problems
Question: The sum of two positive numbers is 10. One of the numbers is multiplied
by the square of the other. If each number is greater than 0, find the numbers that
make this product a maximum.
Answer
Step 1 : Examine the problem and formulate the equations that are required
Let the two numbers be a and b. Then we have:
a + b = 10
(40.21)
We are required to minimise the product of a and b. Call the product P . Then:
P =a·b
(40.22)
We can solve for b from (40.21) to get:
b = 10 − a
(40.23)
Substitute this into (40.22) to write P in terms of a only.
P = a(10 − a) = 10a − a2
Step 2 : Differentiate
The derivative of (40.24) is:
P ′ (a) = 10 − 2a
Step 3 : Find the stationary point
Set P ′ (a) = 0 to find the value of a which makes P a maximum.
P ′ (a) =
0 =
2a =
a
=
a
=
10 − 2a
10 − 2a
10
10
2
5
Substitute into (40.27) to solve for the width.
b
= 10 − a
= 10 − 5
= 5
Step 4 : Write the final answer
The product is maximised if a and b are both equal to 5.
531
(40.24)
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Worked Example 186: Optimisation Problems
Question: Michael wants to start a vegetable garden, which he decides to fence off
in the shape of a rectangle from the rest of the garden. Michael only has 160 m of
fencing, so he decides to use a wall as one border of the vegetable garden. Calculate
the width and length of the garden that corresponds to largest possible area that
Michael can fence off.
wall
garden
length, l
40.6
width, w
Answer
Step 1 : Examine the problem and formulate the equations that are required
The important pieces of information given are related to the area and modified
perimeter of the garden. We know that the area of the garden is:
A= w·l
(40.25)
We are also told that the fence covers only 3 sides and the three sides should add
up to 160 m. This can be written as:
160 = w + l + l
(40.26)
However, we can use (40.26) to write w in terms of l:
w = 160 − 2l
(40.27)
Substitute (40.27) into (40.25) to get:
A = (160 − 2l)l = 160l − 2l2
(40.28)
Step 2 : Differentiate
Since we are interested in maximising the area, we differentiate (40.28) to get:
A′ (l) = 160 − 4l
Step 3 : Find the stationary point
To find the stationary point, we set A′ (l) = 0 and solve for the value of l that
maximises the area.
A′ (l) =
0 =
∴ 4l
=
l
=
l
=
160 − 4l
160 − 4l
160
160
4
40 m
Substitute into (40.27) to solve for the width.
w
=
=
=
=
160 − 2l
160 − 2(40)
160 − 80
80 m
532
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
Step 4 : Write the final answer
A width of 80 m and a length of 40 m will yield the maximal area fenced off.
Exercise: Solving Optimisation Problems using Differential Calculus
1. The sum of two positive numbers is 20. One of the numbers is multiplied by
the square of the other. Find the numbers that make this products a maximum.
2. A wooden block is made as shown in the diagram. The ends are right-angled
triangles having sides 3x, 4x and 5x. The length of the block is y. The total
surface area of the block is 3 600 cm2 .
3x
4x
y
300 − x2
.
x
B Find the value of x for which the block will have a maximum volume.
(Volume = area of base × height.)
A Show that y =
3. The diagram shows the plan for a verandah which is to be built on the corner
of a cottage. A railing ABCDE is to be constructed around the four edges of
the verandah.
y
C
D
x
verandah
F
B
A
E
cottage
If AB = DE = x and BC = CD = y, and the length of the railing must be 30
metres, find the values of x and y for which the verandah will have a maximum
area.
533
40.6
40.6
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.6.1
Rate of Change problems
Two concepts were discussed in this chapter: Average rate of change =
f (b)−f (a)
b−a
and Instan-
(x)
limh→0 f (x+h)−f
.
h
taneous rate of change =
When we mention rate of change, the latter
is implied. Instantaneous rate of change is the derivative. When Average rate of change is
required, it will be specifically refer to as average rate of change.
Velocity is one of the most common forms of rate of change. Again, average velocity = average
rate of change and instantaneous velocity = instantaneous rate of change = derivative.
Velocity refers to the increase of distance(s) for a corresponding increade in time (t). The
notation commonly used for this is:
v(t) =
ds
= s′ (t)
dt
Acceleration is the change in velocity for a corersponding increase in time. Therefore, acceleration
is the derivative of velocity
a(t) = v ′ (t)
This implies that acceleration is the second derivative of the distance(s).
Worked Example 187: Rate of Change
Question: The height (in metres) of a golf ball that is hit into the air after t seconds,
is given by h(t) = 20t = 5t2 . Determine
1. the average velocity of the ball during the first two seconds
2. the velocity of the ball after 1,5 seconds
3. when the velocity is zero
4. the velocity at which the ball hits the ground
5. the acceleration of the ball
Answer
Step 1 : Average velocity
Ave velocity
=
=
=
=
h(2) − h(0)
2−0
[20(2) − 5(2)2 ] − [20(0) − 5(0)2 ]
2
40 − 20
2
10 ms−1
Step 2 : Instantaneous Velocity
v(t)
=
=
dh
dt
20 − 10t
Velocity after 1,5 seconds:
v(1,5) = 20 − 10(1,5)
= 5 ms−1
Step 3 : Zero velocity
534
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
v(t)
=
0
20 − 10t =
10t =
t
40.7
0
20
=
2
Therefore the velocity is zero after 2 seconds
Step 4 : Ground velocity
The ball hits the ground when h(t) = 0
20t − 5t2
=
0
=
0
t=0
or
5t(4 − t)
t=4
The ball hits the ground after 4 seconds. The velocity after 4 seconds will be:
v(4)
= h′ (4)
= 20 − 10(4)
= 20 ms−1
The ball hits the gound at a speed of 20ms−1
Step 5 : Acceleration
a
= v ′ (t)
= −10 ms−1
40.7
End of Chapter Exercises
1. Determine f ′ (x) from first principles if:
f (x) = x2 − 6x
f (x) = 2x − x2
2. Given:
f (x) = −x2 + 3x, find f ′ (x) using first principles.
3. Determine
dx
dy
if:
A
y = (2x)2 −
B
1
3x
√
2 x−5
√
y=
x
4. Given: f (x) = x3 − 3x2 + 4
A Calculate f (−1), and hence solve the equationf (x) = 0
B Determine f ′ (x)
C Sketch the graph of f neatly and clearly, showing the co-ordinates of the turning
points as well as the intercepts on both axes.
535
40.7
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
D Determine the co-ordinates of the points on the graph of f where the gradient is 9.
5. Given: f (x) = 2x3 − 5x2 − 4x + 3. The x-intercepts of f are: (-1;0) ( 21 ;0) and (3;0).
A Determine the co-ordinates of the turning points of f .
B Draw a neat sketch graph of f . Clearly indicate the co-ordinates of the intercepts
with the axes, as well as the co-ordinates of the turning points.
C For which values of k will the equation f (x) = k , have exactly two real roots?
D Determine the equation of the tangent to the graph of f (x) = 2x3 − 5x2 − 4x + 3
at the point where x = 1.
6.
A Sketch the graph of f (x) = x3 − 9x2 + 24x − 20, showing all intercepts with the
axes and turning points.
B Find the equation of the tangent to f (x) at x = 4.
7. Calculate:
1 − x3
x→1 1 − x
lim
8. Given:
f (x) = 2x2 − x
A Use the definition of the derivative to calculate f ′ (x).
B Hence, calculate the co-ordinates of the point at which the gradient of the tangent
to the graph of f is 7.
√
9. If xy − 5 = x3 , determine dx
dy
10. Given: g(x) = (x−2 + x2 )2 . Calculate g ′ (2).
11. Given:
f (x) = 2x − 3
A Find:
B Solve:
f −1 (x)
f −1 (x) = 3f ′ (x)
12. Find f ′ (x) for each of the following:
√
5
x3
+ 10
A f (x) =
3
(2x2 − 5)(3x + 2)
B f (x) =
x2
13. Determine the minimum value of the sum of a positive number and its reciprocal.
14. If the displacement s (in metres) of a particle at time t (in seconds) is governed by the
equation s = 21 t3 − 2t, find its acceleration after 2 seconds. (Acceleration is the rate of
change of velocity, and velocity is the rate of change of displacement.)
15.
A After doing some research, a transport company has determined that the rate at
which petrol is consumed by one of its large carriers, travelling at an average speed
of x km per hour, is given by:
P (x) =
55
x
+
2x 200
litres per kilometre
i. Assume that the petrol costs R4,00 per litre and the driver earns R18,00 per
hour (travelling time). Now deduce that the total cost, C, in Rands, for a 2 000
km trip is given by:
256000
+ 40x
C(x) =
x
ii. Hence determine the average speed to be maintained to effect a minimum cost
for a 2 000 km trip.
536
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
40.7
B During an experiment the temperature T (in degrees Celsius), varies with time t (in
hours), according to the formula:
1
T (t) = 30 + 4t − t2
2
t ∈ [1; 10]
i. Determine an expression for the rate of change of temperature with time.
ii. During which time interval was the temperature dropping?
16. The depth, d, of water in a kettle t minutes after it starts to boil, is given by d =
86 − 81 t − 41 t3 , where d is measured in millimetres.
A How many millimetres of water are there in the kettle just before it starts to boil?
B As the water boils, the level in the kettle drops. Find the rate at which the water
level is decreasing when t = 2 minutes.
C How many minutes after the kettle starts boiling will the water level be dropping at
a rate of 12 81 mm/minute?
537
40.7
CHAPTER 40. DIFFERENTIAL CALCULUS - GRADE 12
538
Chapter 41
Linear Programming - Grade 12
41.1
Introduction
In Grade 11 you were introduced to linear programming and solved problems by looking at points
on the edges of the feasible region. In Grade 12 you will look at how to solve linear programming
problems in a more general manner.
41.2
Terminology
Here is a recap of some of the important concepts in linear programming.
41.2.1
Feasible Region and Points
Constraints mean that we cannot just take any x and y when looking for the x and y that
optimise our objective function. If we think of the variables x and y as a point (x,y) in the xyplane then we call the set of all points in the xy-plane that satisfy our constraints the feasible
region. Any point in the feasible region is called a feasible point.
For example, the constraints
x≥0
y≥0
mean that every (x,y) we can consider must lie in the first quadrant of the xy plane. The
constraint
x≥y
means that every (x,y) must lie on or below the line y = x and the constraint
x ≤ 20
means that x must lie on or to the left of the line x = 20.
We can use these constraints to draw the feasible region as shown by the shaded region in
Figure 41.1.
Important: The constraints are used to create bounds of the solution.
539
41.3
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
y
20
y
10
=
x
x = 20
15
5
x
5
10
15
20
Figure 41.1: The feasible region corresponding to the constraints x ≥ 0, y ≥ 0, x ≥ y and
x ≤ 20.
Important:
ax + by = c
ax + by ≤ c
If b 6= 0, feasible points must lie on the line
y = − ab x + bc
If b = 0, feasible points must lie on the line
x = c/a
If b 6= 0, feasible points must lie on or below the
line y = − ab x + cb .
If b = 0, feasible points must lie on or to the left
of the line x = c/a.
When a constraint is linear, it means that it requires that any feasible point (x,y) lies on one
side of or on a line. Interpreting constraints as graphs in the xy plane is very important since it
allows us to construct the feasible region such as in Figure 41.1.
41.3
Linear Programming and the Feasible Region
If the objective function and all of the constraints are linear then we call the problem of optimising
the objective function subject to these constraints a linear program. All optimisation problems
we will look at will be linear programs.
The major consequence of the constraints being linear is that the feasible region is always a
polygon. This is evident since the constraints that define the feasible region all contribute a line
segment to its boundary (see Figure 41.1). It is also always true that the feasible region is a
convex polygon.
The objective function being linear means that the feasible point(s) that gives the solution of a
linear program always lies on one of the vertices of the feasible region. This is very important
since, as we will soon see, it gives us a way of solving linear programs.
We will now see why the solutions of a linear program always lie on the vertices of the feasible
region. Firstly, note that if we think of f (x,y) as lying on the z axis, then the function f (x,y) =
ax + by (where a and b are real numbers) is the definition of a plane. If we solve for y in the
equation defining the objective function then
f (x,y) = ax + by
∴ y=
f (x,y)
−a
x+
b
b
(41.1)
What this means is that if we find all the points where f (x,y) = c for any real number c (i.e.
f (x,y) is constant with a value of c), then we have the equation of a line. This line we call a
level line of the objective function.
540
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
41.3
Consider again the feasible region described in Figure 41.1. Lets say that we have the objective
function f (x,y) = x − 2y with this feasible region. If we consider Equation ?? corresponding to
f (x,y) = −20
then we get the level line
1
x + 10
2
which has been drawn in Figure 41.2. Level lines corresponding to
y=
x
+5
2
x
f (x,y) = 0 or y =
2
x
f (x,y) = 10 or y = − 5
2
x
f (x,y) = 20 or y = − 10
2
f (x,y) = −10 or y =
have also been drawn in. It is very important to realise that these are not the only level lines; in
fact, there are infinitely many of them and they are all parallel to each other. Remember that if
we look at any one level line f (x,y) has the same value for every point (x,y) that lies on that
line. Also, f (x,y) will always have different values on different level lines.
y
f (x,y) = −20
20
f (x,y) = −10
15
f (x,y) = 0
10
f (x,y) = 10
5
f (x,y) = 20
x
5
10
15
20
Figure 41.2: The feasible region corresponding to the constraints x ≥ 0, y ≥ 0, x ≥ y and
x ≤ 20 with objective function f (x,y) = x − 2y. The dashed lines represent various level lines
of f (x,y).
If a ruler is placed on the level line corresponding to f (x,y) = −20 in Figure 41.2 and moved
down the page parallel to this line then it is clear that the ruler will be moving over level lines
which correspond to larger values of f (x,y). So if we wanted to maximise f (x,y) then we simply
move the ruler down the page until we reach the “lowest” point in the feasible region. This point
will then be the feasible point that maximises f (x,y). Similarly, if we wanted to minimise f (x,y)
then the “highest” feasible point will give the minimum value of f (x,y).
Since our feasible region is a polygon, these points will always lie on vertices in the feasible
region. The fact that the value of our objective function along the line of the ruler increases
as we move it down and decreases as we move it up depends on this particular example. Some
other examples might have that the function increases as we move the ruler up and decreases
as we move it down.
It is a general property, though, of linear objective functions that they will consistently increase
or decrease as we move the ruler up or down. Knowing which direction to move the ruler in
order to maximise/minimise f (x,y) = ax + by is as simple as looking at the sign of b (i.e. “is
b negative, positive or zero?”). If b is positive, then f (x,y) increases as we move the ruler up
and f (x,y) decreases as we move the ruler down. The opposite happens for the case when b is
negative: f (x,y) decreases as we move the ruler up and f (x,y) increases as we move the ruler
down. If b = 0 then we need to look at the sign of a.
541
41.3
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
If a is positive then f (x,y) increases as we move the ruler to the right and decreases if we move
the ruler to the left. Once again, the opposite happens for a negative. If we look again at the
objective function mentioned earlier,
f (x,y) = x − 2y
with a = 1 and b = −2, then we should find that f (x,y) increases as we move the ruler down
the page since b = −2 < 0. This is exactly what we found happening in Figure 41.2.
The main points about linear programming we have encountered so far are
• The feasible region is always a polygon.
• Solutions occur at vertices of the feasible region.
• Moving a ruler parallel to the level lines of the objective function up/down to the top/bottom
of the feasible region shows us which of the vertices is the solution.
• The direction in which to move the ruler is determined by the sign of b and also possibly
by the sign of a.
These points are sufficient to determine a method for solving any linear program.
Method: Linear Programming
If we wish to maximise the objective function f (x,y) then:
1. Find the gradient of the level lines of f (x,y) (this is always going to be − ab as we saw in
Equation ??)
2. Place your ruler on the xy plane, making a line with gradient − ab (i.e. b units on the
x-axis and −a units on the y-axis)
3. The solution of the linear program is given by appropriately moving the ruler. Firstly we
need to check whether b is negative, positive or zero.
A If b > 0, move the ruler up the page, keeping the ruler parallel to the level lines all
the time, until it touches the “highest” point in the feasible region. This point is
then the solution.
B If b < 0, move the ruler in the opposite direction to get the solution at the “lowest”
point in the feasible region.
C If b = 0, check the sign of a
i. If a < 0 move the ruler to the “leftmost” feasible point. This point is then the
solution.
ii. If a > 0 move the ruler to the “rightmost” feasible point. This point is then the
solution.
Worked Example 188: Prizes!
Question: As part of their opening specials, a furniture store has promised to give
away at least 40 prizes with a total value of at least R2 000. The prizes are kettles
and toasters.
1. If the company decides that there will be at least 10 of each prize, write down
two more inequalities from these constraints.
2. If the cost of manufacturing a kettle is R60 and a toaster is R50, write down an
objective function C which can be used to determine the cost to the company
of both kettles and toasters.
542
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
41.3
3. Sketch the graph of the feasibility region that can be used to determine all the
possible combinations of kettles and toasters that honour the promises of the
company.
4. How many of each prize will represent the cheapest option for the company?
5. How much will this combination of kettles and toasters cost?
Answer
Step 1 : Identify the decision variables
Let the number of kettles be xk and the number of toasters be yt and write down
two constraints apart from xk ≥ 0 and yt ≥ 0 that must be adhered to.
Step 2 : Write constraint equations
Since there will be at least 10 of each prize we can write:
xk ≥ 10
and
yt ≥ 10
Also the store has promised to give away at least 40 prizes in total. Therefore:
xk + yt ≥ 40
Step 3 : Write the objective function
The cost of manufacturing a kettle is R60 and a toaster is R50. Therefore the cost
the total cost C is:
C = 60xk + 50yt
Step 4 : Sketch the graph of the feasible region
yt
100
90
80
70
60
50
40
30
B
20
A
10
xk
10
20
30
40
50
60
70
80
90 100
Step 5 : Determine vertices of feasible region
From the graph, the coordinates of vertex A is (3,1) and the coordinates of vertex
B are (1,3).
Step 6 : Draw in the search line
The seach line is the gradient of the objective function. That is, if the equation
C = 60x + 50y is now written in the standard form y = ..., then the gradient is:
6
m=− ,
5
which is shown with the broken line on the graph.
543
41.3
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
yt
100
90
80
70
60
50
40
30
B
20
A
10
xk
10
20
30
40
50
60
70
80
90 100
Step 7 : Calculate cost at each vertex
At vertex A, the cost is:
C
=
=
60xk + 50yt
60(30) + 50(10)
=
=
1800 + 500
2300
=
=
60xk + 50yt
60(10) + 50(30)
=
=
600 + 1500
2100
At vertex B, the cost is:
C
Step 8 : Write the final answer
The cheapest combination of prizes is 10 kettles and 30 toasters, costing the company
R2 100.
Worked Example 189: Search Line Method
Question: As a production planner at a factory manufacturing lawn cutters your job
will be to advise the management on how many of each model should be produced per
week in order to maximise the profit on the local production. The factory is producing
two types of lawn cutters: Quadrant and Pentagon. Two of the production processes
that the lawn cutters must go through are: bodywork and engine work.
• The factory cannot operate for less than 360 hours on engine work for the lawn
cutters.
• The factory has a maximum capacity of 480 hours for bodywork for the lawn
cutters.
544
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
• Half an hour of engine work and half an hour of bodywork is required to produce
one Quadrant.
• One third of an hour of engine work andone fifth of an hour of bodywork is
required to produce one Pentagon.
• The ratio of Pentagon lawn cutters to Quadrant lawn cutters produced per
week must be at least 3:2.
• A minimum of 200 Quadrant lawn cutters must be produced per week.
Let the number of Quadrant lawn cutters manufactured in a week be x.
Let the number of Pentagon lawn cutters manufactured in a week be y.
Two of the constraints are:
x ≥ 200
3x + 2y ≥ 2 160
1. Write down the remaining constraints in terms of x and y to represent the
abovementioned information.
2. Use graph paper to represent the constraints graphically.
3. Clearly indicate the feasible region by shading it.
4. If the profit on one Quadrant lawn cutter is R1 200 and the profit on one
Pentagon lawn cutter is R400, write down an equation that will represent the
profit on the lawn cutters.
5. Using a search line and your graph, determine the number of Quadrant and
Pentagon lawn cutters that will yield a maximum profit.
6. Determine the maximum profit per week.
Answer
Step 1 : Remaining constraints:
1
1
x + ≤ 480
2
5
3
y
≥
x
2
Step 2 : Graphical representation
y
2400
1080
0
200
Step 3 : Profit equation
720
960
P = 1 200x + 400y
Step 4 : Maximum profit
P = 1 200(600) + 400(900)
545
41.3
41.4
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
P = R1 080 000
41.4
End of Chapter Exercises
1. Polkadots is a small company that makes two types of cards, type X and type Y. With the
available labour and material, the company can make not more than 150 cards of type X
and not more than 120 cards of type Y per week. Altogether they cannot make more than
200 cards per week.
There is an order for at least 40 type X cards and 10 type Y cards per week. Polkadots
makes a profit of R5 for each type X card sold and R10 for each type Y card.
Let the number of type X cards be x and the number of type Y cards be y, manufactured
per week.
A One of the constraint inequalities which represents the restrictions above is x ≤ 150.
Write the other constraint inequalities.
B Represent the constraints graphically and shade the feasible region.
C Write the equation that represents the profit P (the objective function), in terms of
x and y.
D On your graph, draw a straight line which will help you to determine how many of
each type must be made weekly to produce the maximum P
E Calculate the maximum weekly profit.
2. A brickworks produces “face bricks” and “clinkers”. Both types of bricks are produced and
sold in batches of a thousand. Face bricks are sold at R150 per thousand, and clinkers at
R100 per thousand, where an income of at least R9,000 per month is required to cover
costs. The brickworks is able to produce at most 40,000 face bricks and 90,000 clinkers
per month, and has transport facilities to deliver at most 100,000 bricks per month. The
number of clinkers produced must be at least the same number of face bricks produced.
Let the number of face bricks in thousands be x, and the number of clinkers in thousands
be y.
A List all the constraints.
B Graph the feasible region.
C If the sale of face bricks yields a profit of R25 per thousand and clinkers R45 per
thousand, use your graph to determine the maximum profit.
D If the profit margins on face bricks and clinkers are interchanged, use your graph to
determine the maximum profit.
3. A small cell phone company makes two types of cell phones: Easyhear and Longtalk.
Production figures are checked weekly. At most, 42 Easyhear and 60 Longtalk phones
can be manufactured each week. At least 30 cell phones must be produced each week to
cover costs. In order not to flood the market, the number of Easyhear phones cannot be
more than twice the number of Longtalk phones. It takes 23 hour to assemble an Easyhear
phone and 12 hour to put together a Longtalk phone. The trade unions only allow for a
50-hour week.
Let x be the number of Easyhear phones and y be the number of Longtalk phones manufactured each week.
A Two of the constraints are:
0 ≤ x ≤ 42
Write down the other three constraints.
546
and
0 ≤ y ≤ 60
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
41.4
B Draw a graph to represent the feasible region
C If the profit on an Easyhear phone is R225 and the profit on a Longtalk is R75,
determine the maximum profit per week.
4. Hair for Africa is a firm that specialises in making two kinds of up-market shampoo,
Glowhair and Longcurls. They must produce at least two cases of Glowhair and one case
of Longcurls per day to stay in the market. Due to a limited supply of chemicals, they
cannot produce more than 8 cases of Glowhair and 6 cases of Longcurls per day. It takes
half-an-hour to produce one case of Glowhair and one hour to produce a case of Longcurls,
and due to restrictions by the unions, the plant may operate for at most 7 hours per day.
The workforce at Hair for Africa, which is still in training, can only produce a maximum
of 10 cases of shampoo per day.
Let x be the number of cases of Glowhair and y the number of cases of Longcurls produced
per day.
A Write down the inequalities that represent all the constraints.
B Sketch the feasible region.
C If the profit on a case of Glowhair is R400 and the profit on a case of Longcurls is
R300, determine the maximum profit that Hair for Africa can make per day.
5. A transport contracter has 6 5-ton trucks and 8 3-ton trucks. He must deliver at least 120
tons of sand per day to a construction site, but he may not deliver more than 180 tons per
day. The 5-ton trucks can each make three trips per day at a cost of R30 per trip, and
the 3-ton trucks can each make four trips per day at a cost of R120 per trip. How must
the contracter utilise his trucks so that he has minimum expense ?
547
41.4
CHAPTER 41. LINEAR PROGRAMMING - GRADE 12
548
Chapter 42
Geometry - Grade 12
42.1
Introduction
Activity :: Discussion : Discuss these Research Topics
Research one of the following geometrical ideas and describe it to your group:
1. taxicab geometry,
2. sperical geometry,
3. fractals,
4. the Koch snowflake.
42.2
Circle Geometry
42.2.1
Terminology
The following is a recap of terms that are regularly used when referring to circles.
arc An arc is a part of the circumference of a circle.
chord A chord is defined as a straight line joining the ends of an arc.
radius The radius, r, is the distance from the centre of the circle to any point on the circumference.
diameter The diameter, , is a special chord that passes through the centre of the circle. The
diameter is the straight line from a point on the circumference to another point on the
circumference, that passes through the centre of the circle.
segment A segment is the part of the circle that is cut off by a chord. A chord divides a circle
into two segments.
tangent A tangent is a line that makes contact with a circle at one point on the circumference.
(AB is a tangent to the circle at point P .
549
42.2
CHAPTER 42. GEOMETRY - GRADE 12
segment
chord
a rc
rad
i us
b
O diameter
b
A
B
P tangent
Figure 42.1: Parts of a Circle
42.2.2
Axioms
An axiom is an established or accepted principle. For this section, the following are accepted as
axioms.
1. The Theorem of Pythagoras, which states that the square on the hypotenuse of a rightangled triangle is equal to the sum of the squares on the other two sides. In △ABC, this
means that AB 2 + BC 2 = AC 2
A
B
C
Figure 42.2: A right-angled triangle
2. A tangent is perpendicular to the radius, drawn at the point of contact with the circle.
42.2.3
Theorems of the Geometry of Circles
A theorem is a general proposition that is not self-evident but is proved by reasoning (these
proofs need not be learned for examination purposes).
Theorem 6. The line drawn from the centre of a circle, perpendicular to a chord, bisects the
chord.
Proof:
bO
A
P
550
B
CHAPTER 42. GEOMETRY - GRADE 12
42.2
Consider a circle, with centre O. Draw a chord AB and draw a perpendicular line from the
centre of the circle to intersect the chord at point P .
The aim is to prove that AP = BP
1. △OAP and △OBP are right-angled triangles.
2. OA = OB as both of these are radii and OP is common to both triangles.
Apply the Theorem of Pythagoras to each triangle, to get:
OA2
= OP 2 + AP 2
OB 2
= OP 2 + BP 2
However, OA = OB. So,
OP 2 + AP 2
=
OP 2 + BP 2
∴ AP 2
and AP
=
=
BP 2
BP
This means that OP bisects AB.
Theorem 7. The line drawn from the centre of a circle, that bisects a chord, is perpendicular
to the chord.
Proof:
bO
A
P
B
Consider a circle, with centre O. Draw a chord AB and draw a line from the centre of the circle
to bisect the chord at point P .
The aim is to prove that OP ⊥ AB
In △OAP and △OBP ,
1. AP = P B (given)
2. OA = OB (radii)
3. OP is common to both triangles.
∴ △OAP ≡ △OBP (SSS).
ˆ
OAP
ˆ + OBP
ˆ
OAP
ˆ
∴ OAP
∴ OP
=
ˆ
OBP
=
=
180◦ (AP B is a str. line)
ˆ = 90◦
OBP
⊥
AB
551
42.2
CHAPTER 42. GEOMETRY - GRADE 12
Theorem 8. The perpendicular bisector of a chord passes through the centre of the circle.
Proof:
bQ
A
P
B
Consider a circle. Draw a chord AB. Draw a line P Q perpendicular to AB such that P Q bisects
AB at point P . Draw lines AQ and BQ.
The aim is to prove that Q is the centre of the circle, by showing that AQ = BQ.
In △OAP and △OBP ,
1. AP = P B (given)
2. ∠QP A = ∠QP B (QP ⊥ AB)
3. QP is common to both triangles.
∴ △QAP ≡ △QBP (SAS).
From this, QA = QB. Since the centre of a circle is the only point inside a circle that has points
on the circumference at an equal distance from it, Q must be the centre of the circle.
Exercise: Circles I
1. Find the value of x:
552
CHAPTER 42. GEOMETRY - GRADE 12
42.2
a)
b)
O
O
x
x
4
R
5
P
Q
R
Q
P
PR=6
PR=8
c)
d)
R
Q
6
2
10
S
6
P
O
x
O
x
R
Q
P
PR=8
e)
f)
x
S
24
T
5
P
Q
Q
U
8
T
R
P
R
5
10
x
O
25
O
S
R
Theorem 9. The angle subtended by an arc at the centre of a circle is double the size of the
angle subtended by the same arc at the circumference of the circle.
Proof:
P
bO
A
R
B
Consider a circle, with centre O and with A and B on the circumference. Draw a chord AB.
Draw radii OA and OB. Select any point P on the circumference of the circle. Draw lines P A
and P B. Draw P O and extend to R.
ˆ = 2 · APˆ B.
The aim is to prove that AOB
ˆ = P AO
ˆ + APˆ O (exterior angle = sum of interior opp. angles)
AOR
ˆ = APˆ O (△AOP is an isosceles △)
But, P AO
553
42.2
CHAPTER 42. GEOMETRY - GRADE 12
ˆ = 2APˆ O
∴ AOR
ˆ = 2BP
ˆ O.
Similarly, BOR
So,
ˆ
AOB
=
=
ˆ + BOR
ˆ
AOR
ˆO
2APˆ O + 2BP
ˆ O)
2(APˆ O + BP
=
2(APˆ B)
=
Exercise: Circles II
1. Find the angles (a to f ) indicated in each diagram:
1.
3.
2.
J
a
J
K
45◦
b
H
Ob
K
O
Ob
K
b
c
J
H
K
4.
5.
20◦
H
6.
K
K
30◦
J 100◦
O
b
Ob
Ob
d
120◦
f
e
J
H
H
H
J
Theorem 10. The angles subtended by a chord at the circumference of a circle on the same
side of the chord are equal.
Proof:
Q
P
O
b
A
B
Consider a circle, with centre O. Draw a chord AB. Select any points P and Q on the
circumference of the circle, such that both P and Q are on the same side of the chord. Draw
lines P A, P B, QA and QB.
554
CHAPTER 42. GEOMETRY - GRADE 12
42.2
ˆ = APˆ B.
The aim is to prove that AQB
ˆ
AOB
ˆ
and AOB
ˆ
∴ 2AQB
ˆ
∴ AQB
ˆ ∠ at centre = twice ∠ at circumference
= 2AQB
ˆ
= 2AP B ∠ at centre = twice ∠ at circumference
= 2APˆ B
= APˆ B
Theorem 11. (Converse of Theorem 10) If a line segment subtends equal angles at two other
points on the same side of the line, then these four points lie on a circle.
Proof:
P
Q
R
A
B
Consider a line segment AB, that subtends equal angles at points P and Q on the same side of
AB.
The aim is to prove that points A, B, P and Q lie on the circumference of a circle.
By contradiction. Assume that point P does not lie on a circle drawn through points A, B and
Q. Let the circle cut AP (or AP extended) at point R.
ˆ
AQB
ˆ
but AQB
ˆ
∴ ARB
ˆ
but this cannot be true since ARB
ˆ ∠s on same side of chord
= ARB
= APˆ B (given)
= APˆ B
ˆ (ext. ∠ of △)
= APˆ B + RBP
∴ the assumption that the circle does not pass through P , must be false, and A, B, P and Q
lie on the circumference of a circle.
Exercise: Circles III
1. Find the values of the unknown letters.
555
42.2
CHAPTER 42. GEOMETRY - GRADE 12
A
1.
E
2.
a
F
B
21◦
15◦
I
D
G
b
H
C
3.
4.
N
J
O
c
K
17◦
M
Q
24◦
d
L
5.
P
S
T
6.
W
R
35◦
45◦
35◦
X
bO
12◦
f
e
Y
Z
U
V
Cyclic Quadrilaterals
Cyclic quadrilaterals are quadrilaterals with all four vertices lying on the circumference of a circle.
The vertices of a cyclic quadrilateral are said to be concyclic.
Theorem 12. The opposite angles of a cyclic quadrilateral are supplementary.
Proof:
556
CHAPTER 42. GEOMETRY - GRADE 12
42.2
Q
P
Ob
1
2
A
B
Consider a circle, with centre O. Draw a cyclic quadrilateral ABP Q. Draw AO and P O.
ˆ + AQP
ˆ = 180◦ and QAB
ˆ + QPˆ B = 180◦.
The aim is to prove that ABP
Ô1
Ô2
But, Ô1 + Ô2
ˆ + 2AQP
ˆ
∴ 2ABP
ˆ + AQP
ˆ
∴ ABP
ˆ + QPˆ B
Similarly, QAB
ˆ ∠s at centre
= 2ABP
ˆ ∠s at centre
= 2AQP
= 360◦
= 360◦
= 180◦
= 180◦
Theorem 13. (Converse of Theorem 12) If the opposite angles of a quadrilateral are supplementary, then the quadrilateral is cyclic.
Proof:
Q
R
P
A
B
ˆ + AQP
ˆ = 180◦ and QAB
ˆ + QPˆ B = 180◦ .
Consider a quadrilateral ABP Q, such that ABP
The aim is to prove that points A, B, P and Q lie on the circumference of a circle.
By contradiction. Assume that point P does not lie on a circle drawn through points A, B and
Q. Let the circle cut AP (or AP extended) at point R. Draw BR.
ˆ + QRB
ˆ
QAB
ˆ + QPˆ B
but QAB
ˆ
∴ QRB
ˆ
but this cannot be true since QRB
= 180◦ opp. ∠s of cyclic quad.
= 180◦ (given)
= QPˆ B
ˆ (ext. ∠ of △)
= QPˆ B + RBP
∴ the assumption that the circle does not pass through P , must be false, and A, B, P and Q
lie on the circumference of a circle and ABP Q is a cyclic quadrilateral.
557
42.2
CHAPTER 42. GEOMETRY - GRADE 12
Exercise: Circles IV
1. Find the values of the unknown letters.
1.
2.
Y
X
106◦
87◦
Ob
P
34
a
Q
b
◦
W
a
b
c
S
Z
L
3.
4.
K
R
U
a
86◦
X
H
a
114◦
57◦
I
J
V
W
Theorem 14. Two tangents drawn to a circle from the same point outside the circle are equal
in length.
Proof:
A
O
b
P
B
Consider a circle, with centre O. Choose a point P outside the circle. Draw two tangents to the
circle from point P , that meet the circle at A and B. Draw lines OA, OB and OP .
The aim is to prove that AP = BP .
In △OAP and △OBP ,
558
CHAPTER 42. GEOMETRY - GRADE 12
42.2
1. OA = OB (radii)
2. ∠OAP = ∠OP B = 90◦ (OA ⊥ AP and OB ⊥ BP )
3. OP is common to both triangles.
△OAP ≡ △OBP (right angle, hypotenuse, side)
∴ AP = BP
Exercise: Circles V
1. Find the value of the unknown lengths.
A
1.
2.
AE=5cm
AC=8cm
CE=9cm
a
G
5c
m
bF
B
bJ
b
d
E
c
b
D
b
I
8cm
H
C
3.
4.
K
Rb
2c
m
6c
m
O
b
3cm
S
P
e
f
N
M
L
b
Q
LN=7.5cm
Theorem 15. The angle between a tangent and a chord, drawn at the point of contact of the
chord, is equal to the angle which the chord subtends in the alternate segment.
Proof:
T
Q
A
O
b
P
S
R
B
559
42.2
CHAPTER 42. GEOMETRY - GRADE 12
Consider a circle, with centre O. Draw a chord AB and a tangent SR to the circle at point B.
Chord AB subtends angles at points P and Q on the minor and major arcs, respectively.
Draw a diameter BT and join A to T .
ˆ and AQB
ˆ = ABS.
ˆ
The aim is to prove that APˆ B = ABR
ˆ = ABS
ˆ as this result is needed to prove that APˆ B = ABR.
ˆ
First prove that AQB
ˆ + ABT
ˆ
ABS
ˆ
BAT
ˆ + ATˆ B
∴ ABT
ˆ
∴ ABS
ˆ
However, AQB
ˆ
∴ AQB
ˆ + QBR
ˆ
SBQ
ˆ
APˆ B + AQB
ˆ + QBR
ˆ
∴ SBQ
ˆ
From (42.1), AQB
∴ APˆ B
= 90◦ (T B ⊥ SR)
= 90◦ (∠s at centre)
= 90◦ (sum of angles in △BAT )
ˆ
= ABT
= ATˆ B( angles subtended by same chord AB)
ˆ
= ABS
= 180◦ (SBT is a str. line)
= 180◦ (ABP Q is a cyclic quad.)
ˆ
= APˆ B + AQB
ˆ
= ABS
ˆ
= ABR
560
(42.1)
CHAPTER 42. GEOMETRY - GRADE 12
42.2
Exercise: Circles VI
1. Find the values of the unknown letters.
P
1
2
Q
R
33◦
O
d
b
c
S
R
a
S
P
e
Q
O
3
O
4h-70◦
8◦
g
S
R
f
S
R
4
P
Q
17◦
3h
S
h+50◦
S
P
2h-20◦
Q
O
5
6
R
k
O
l
j
S
R
P
◦
19
i
121◦
R
Q
Q
O
7
8
O
R
Q
m
n
R
Q
o
52◦
p
T
T
r
b
O
34◦
q
S
O
S
Theorem 16. (Converse of 15) If the angle formed between a line, that is drawn through the
end point of a chord, and the chord, is equal to the angle subtended by the chord in the alternate
segment, then the line is a tangent to the circle.
Proof:
Q
A
O
b
Y
S
X
B
R
561
42.2
CHAPTER 42. GEOMETRY - GRADE 12
Consider a circle, with centre O and chord AB. Let line SR pass through point B. Chord AB
ˆ = AQB.
ˆ
subtends an angle at point Q such that ABS
The aim is to prove that SBR is a tangent to the circle.
By contradiction. Assume that SBR is not a tangent to the circle and draw XBY such that
XBY is a tangent to the circle.
ˆ
ABX
ˆ
ABS
=
=
ˆ
AQB
ˆ
AQB
ˆ
∴ ABX
ˆ
But since, ABX
ˆ
(42.2) can only be true if, XBS
=
=
ˆ
ABS
ˆ + XBS
ˆ
ABS
=
0
However,
(tan-chord theorem)
(given)
(42.2)
ˆ is zero, then both XBY and SBR coincide and SBR is a tangent to the circle.
If XBS
Exercise: Applying Theorem 9
1. Show that Theorem 9 also applies to the following two cases:
A
P
O
bO
R
R
b
P
B
A
B
562
CHAPTER 42. GEOMETRY - GRADE 12
42.2
Worked Example 190: Circle Geometry I
BD is a tangent to the circle
with centre O.
BO ⊥ AD.
Prove that:
1. CF OE is a cyclic quadrilateral
O
E
A
D
Question:
2. F B = BC
3. △COE///△CBF
F
C
4. CD2 = ED.AD
5.
OE
BC
=
CD
CO
B
Answer
1. Step 1 : To show a quadrilateral is cyclic, we need a pair of opposite
angles to be supplementary, so lets look for that.
ˆ
F OE
ˆ
F CE
= 90◦ (BO ⊥ OD)
= 90◦ (∠ subtended by diameter AE)
∴
CF OE is a cyclic quadrilateral (opposite ∠’s supplementary)
2. Step 1 : Since these two sides are part of a triangle, we are proving that
triangle to be isosceles. The easiest way is to show the angles opposite
to those sides to be equal.
ˆ = x.
Let OEC
∴
∴
∴
ˆ = x (∠ between tangent BD and chord CE)
F CB
ˆ C = x (exterior ∠ to cyclic quadrilateral CF OE)
BF
BF = BC (sides opposite equal ∠’s in isosceles △BF C)
3. Step 1 : To show these two triangles similar, we will need 3 equal angles.
We already have 3 of the 6 needed angles from the previous question.
We need only find the missing 3 angles.
ˆ
CBF
OC
180◦ − 2x (sum of ∠’s in △BF C)
OE (radii of circle O)
ˆ = x (isosceles △COE)
ECO
ˆ = 180◦ − 2x (sum of ∠’s in △COE)
COE
=
=
∴
∴
ˆ = CBF
ˆ
• COE
ˆ
ˆ
• ECO = F CB
ˆ = CFˆ B
• OEC
∴
△COE///△CBF (3 ∠’s equal)
563
42.2
CHAPTER 42. GEOMETRY - GRADE 12
4. Step 1 : This relation reminds us of a proportionality relation between
similar triangles. So investigate which triangles contain these sides and
prove them similar. In this case 3 equal angles works well. Start with
one triangle.
In △EDC
ˆ
CED
ˆ
ECD
180◦ − x (∠’s on a straight line AD)
=
90◦ − x (complementary ∠’s)
=
Step 2 : Now look at the angles in the other triangle.
In △ADC
ˆ
ACE
ˆ
CAD
ˆ and ECO)
ˆ
180◦ − x (sum of ∠’s ACE
◦
90 − x (sum of ∠’s in △CAE)
=
=
Step 3 : The third equal angle is an angle both triangles have in common.
ˆ = EDC
ˆ since they are the same ∠.
Lastly, ADC
Step 4 : Now we know that the triangles are similar and can use the
proportionality relation accordingly.
∴ △ADC///△CDE (3 ∠’s equal)
ED
CD
∴
=
CD
AD
∴ CD2 = ED.AD
5. Step 1 : This looks like another proportionality relation with a little
twist, since not all sides are contained in 2 triangles. There is a quick
observation we can make about the odd side out, OE.
OE
=
CD (△OEC is isosceles)
Step 2 : With this observation we can limit ourselves to proving triangles
BOC and ODC similar. Start in one of the triangles.
In △BCO
ˆ
OCB
ˆ
CBO
=
90◦ (radius OC on tangent BD)
=
180◦ − 2x (sum of ∠’s in △BF C)
Step 3 : Then we move on to the other one.
In △OCD
ˆ
OCD
ˆ
COD
=
=
90◦ (radius OC on tangent BD)
180◦ − 2x (sum of ∠’s in △OCE)
Step 4 : Again we have a common element.
Lastly, OC is a common side to both △’s.
Step 5 : Then, once we’ve shown similarity, we use the proportionality
relation , as well as our first observation, appropriately.
564
CHAPTER 42. GEOMETRY - GRADE 12
∴
∴
∴
42.2
△BOC///△ODC (common side and 2 equal ∠’s)
CD
CO
=
BC
CO
CD
OE
=
(OE = CD isosceles △OEC)
BC
CO
Worked Example 191: Circle Geometry II
F D is drawn parallel to the
tangent CB
Prove that:
1. F ADE is cyclic
F
Question:
C
2. △AF E///△CBD
A
3.
G
E
F C.AG
GH
=
DC.F E
BD
H
D
B
Answer
1. Step 1 : In this case, the best way to show F ADE is a cyclic quadrilateral
is to look for equal angles, subtended by the same chord.
Let ∠BCD = x
∴ ∠CAH = x (∠ between tangent BC and chord CE)
∴ ∠F DC = x (alternate ∠, F D k CB)
∴ F ADE is a cyclic quadrilateral (chord F E subtends equal ∠’s)
2. Step 1 : To show these 2 triangles similar we will need 3 equal angles.
We can use the result from the previous question.
Let ∠F EA = y
∴ ∠F DA = y (∠’s subtended by same chord AF in cyclic quadrilateral F ADE)
∴ ∠CBD = y (corresponding ∠’s, F D k CB)
∴ ∠F EA = ∠CBD
Step 2 : We have already proved 1 pair of angles equal in the previous
question.
∠BCD
=
565
∠F AE (above)
42.3
CHAPTER 42. GEOMETRY - GRADE 12
Step 3 : Proving the last set of angles equal is simply a matter of adding
up the angles in the triangles. Then we have proved similarity.
∠AF E
∠CBD
=
=
∴
180◦ − x − y (∠’s in △AF E)
180◦ − x − y (∠’s in △CBD)
△AF E///△CBD (3 ∠’s equal)
3. Step 1 : This equation looks like it has to do with proportionality relation
of similar triangles. We already showed triangles AF E and CBD similar
in the previous question. So lets start there.
DC
BD
FA
FE
DC.F E
= FA
BD
=
∴
Step 2 : Now we need to look for a hint about side F A. Looking at
triangle CAH we see that there is a line F G intersecting it parallel to
base CH. This gives us another proportionality relation.
AG
GH
=
∴
FA
(F G k CH splits up lines AH and AC proportionally)
FC
F C.AG
FA =
GH
Step 3 : We have 2 expressions for the side F A.
∴
F C.AG
DC.F E
=
GH
BD
42.3
Co-ordinate Geometry
42.3.1
Equation of a Circle
We know that every point on the circumference of a circle is the same distance away from the
centre of the circle. Consider a point (x1 ,y1 ) on the circumference of a circle of radius r with
centre at (x0 ,y0 ).
b P (x ,y )
1 1
(x0 ,y0 )
b
O
Q
Figure 42.3: Circle h with centre (x0 ,y0 ) has a tangent, g passing through point P at (x1 ,y1 ).
Line f passes through the centre and point P .
566
CHAPTER 42. GEOMETRY - GRADE 12
42.3
In Figure 42.3, △OP Q is a right-angled triangle. Therefore, from the Theorem of Pythagoras,
we know that:
OP 2 = P Q2 + OQ2
But,
PQ =
OQ =
OP
=
2
=
r
∴
y1 − y0
x1 − x0
r
(y1 − y0 )2 + (x1 − x0 )2
But, this same relation holds for any point P on the circumference. In fact, the relation holds
for all points P on the circumference. Therefore, we can write:
(x − x0 )2 + (y − y0 )2 = r2
(42.3)
for a circle with centre at (x0 ,y0 ) and radius r.
For example, the equation of a circle with centre (0,0) and radius 4 is:
(y − y0 )2 + (x − x0 )2
(y − 0)2 + (x − 0)2
y 2 + x2
=
r2
=
=
42
16
Worked Example 192: Equation of a Circle I
Question: Find the equation of a circle (centre O) with a diameter between two
points, P at (−5,5) and Q at (5, − 5).
Answer
Step 1 : Draw a picture
Draw a picture of the situation to help you figure out what needs to be done.
P
b
5
O
−5
5
−5
b
Q
Step 2 : Find the centre of the circle
We know that the centre of a circle lies on the midpoint of a diameter. Therefore
the co-ordinates of the centre of the circle is found by finding the midpoint of the
line between P and Q. Let the co-ordinates of the centre of the circle be (x0 ,y0 ),
let the co-ordinates of P be (x1 ,y1 ) and let the co-ordinates of Q be (x2 ,y2 ). Then,
567
42.3
CHAPTER 42. GEOMETRY - GRADE 12
the co-ordinates of the midpoint are:
x0
=
=
=
y0
=
=
=
x1 + x2
2
−5 + 5
2
0
y1 + y2
2
5 + (−5)
2
0
The centre point of line P Q and therefore the centre of the circle is at (0,0).
Step 3 : Find the radius of the circle
If P and Q are two points on a diameter, then the radius is half the distance between
them.
The distance between the two points is:
r=
1
PQ
2
=
=
=
=
=
=
1p
(x2 − x1 )2 + (y2 − y1 )2
2
1p
(5 − (−5))2 + (−5 − 5)2
2
1p
(10)2 + (−10)2
2
1√
100 + 100
2
r
200
4
√
50
Step 4 : Write the equation of the circle
x2 + y 2 = 50
Worked Example 193: Equation of a Circle II
Question: Find the center and radius of the circle
x2 − 14x + y 2 + 4y = −28.
Answer
Step 1 : Change to standard form
We need to rewrite the equation in the form (x − x0 ) + (y − y0 ) = r2
To do this we need to complete the square
i.e. add and subtract ( 21 cooefficient of x)2 and ( 21 cooefficient of y)2
Step 2 : Adding cooefficients
x2 − 14x + y 2 + 4y = −28
∴ x2 − 14x + (7)2 − (7)2 + y 2 + 4y + (2)2 − (2)2 = −28
Step 3 : Complete the squares
∴ (x − 7)2 − (7)2 + (y + 2)2 − (2)2 = −28
Step 4 : Take the constants to the other side
∴ (x − 7)2 − 49 + (y + 2)2 − 4 = −28
∴ (x − 7)2 + (y + 2)2 = −28 + 49 + 4
∴ (x − 7)2 + (y + 2)2 = 25
Step 5 : Read the values from the equation
∴ center is (7; −2) and the radius is 5 units
568
CHAPTER 42. GEOMETRY - GRADE 12
42.3.2
42.3
Equation of a Tangent to a Circle at a Point on the Circle
We are given that a tangent to a circle is drawn through a point P with co-ordinates (x1 ,y1 ).
In this section, we find out how to determine the equation of that tangent.
g
b P (x ,y )
1 1
h
f
(x0 ,y0 )
b
Figure 42.4: Circle h with centre (x0 ,y0 ) has a tangent, g passing through point P at (x1 ,y1 ).
Line f passes through the centre and point P .
We start by making a list of what we know:
1. We know that the equation of the circle with centre (x0 ,y0 ) is (x − x0 )2 + (y − y0 )2 = r2 .
2. We know that a tangent is perpendicular to the radius, drawn at the point of contact with
the circle.
As we have seen in earlier grades, there are two steps to determining the equation of a straight
line:
Step 1: Calculate the gradient of the line, m.
Step 2: Calculate the y-intercept of the line, c.
The same method is used to determine the equation of the tangent. First we need to find the
gradient of the tangent. We do this by finding the gradient of the line that passes through the
centre of the circle and point P (line f in Figure 42.4), because this line is a radius line and the
tangent is perpendicular to it.
mf =
y1 − y0
x1 − x0
The tangent (line g) is perpendicular to this line. Therefore,
mf × mg = −1
So,
mg = −
569
1
mf
(42.4)
42.3
CHAPTER 42. GEOMETRY - GRADE 12
Now, we know that the tangent passes through (x1 ,y1 ) so the equation is given by:
y − y1
y − y1
y − y1
y − y1
= m(x − x1 )
1
= −
(x − x1 )
mf
1
= − y1 −y0 (x − x1 )
x1 −x0
x1 − x0
(x − x1 )
= −
y1 − y0
For example, find the equation of the tangent to the circle at point (1,1). The centre of the
circle is at (0,0). The equation of the circle is x2 + y 2 = 2.
Use
y − y1 = −
with (x0 ,y0 ) = (0,0) and (x1 ,y1 ) = (1,1).
y − y1
x1 − x0
(x − x1 )
y1 − y0
x1 − x0
(x − x1 )
y1 − y0
1−0
−
(x − 1)
1−0
1
− (x − 1)
1
−(x − 1) + 1
−x + 1 + 1
= −
y−1
=
y−1
=
y
y
=
=
y
= −x + 2
Exercise: Co-ordinate Geometry
1. Find the equation of the cicle:
A
B
C
D
E
with
with
with
with
with
center
center
center
center
center
(0; 5) and radius 5
(2; 0) and radius 4
(5; 7) and radius 18
(−2; 0) and radius 6
√
(−5; −3) and radius 3
2.
A Find the equation of the circle with center (2; 1) which passes through
(4; 1).
B Where does it cut the line y = x + 1?
C Draw a sketch to illustrate your answers.
3.
A Find the equation of the circle with center (−3; −2) which passes through
(1; −4).
B Find the equation of the circle with center (3; 1) which passes through
(2; 5).
C Find the point where these two circles cut each other.
4. Find the center and radius of the following circles:
A
B
C
D
E
(x − 9)2 + (y − 6)2 = 36
(x − 2)2 + (y − 9)2 = 1
(x + 5)2 + (y + 7)2 = 12
(x + 4)2 + (y + 4)2 = 23
3(x − 2)2 + 3(y + 3)2 = 12
570
CHAPTER 42. GEOMETRY - GRADE 12
42.4
F x2 − 3x + 9 = y 2 + 5y + 25 = 17
5. Find the x− and y− intercepts of the following graphs and draw a scetch to
illustrate your answer:
A
B
C
D
(x + 7)2 + (y − 2)2 = 8
x2 + (y − 6)2 = 100
(x + 4)2 + y 2 = 16
(x − 5)2 + (y + 1)2 = 25
6. Find the center and radius of the following circles:
A
B
C
D
E
F
x2 + 6x + y 2 − 12y = −20
x2 + 4x + y 2 − 8y = 0
x2 + y 2 + 8y = 7
x2 − 6x + y 2 = 16
x2 − 5x + y 2 + 3y = − 34
x2 − 6nx + y 2 + 10ny = 9n2
7. Find the equations to the tangent to the circle:
A
B
C
D
x2 + y 2 = 17 at the point (1; 4)
x2 + y 2 = 25 at the point (3; 4)
(x + 1)2 + (y − 2)2 = 25 at the point (3; 5)
(x − 2)2 + (y − 1)2 = 13 at the point (5; 3)
42.4
Transformations
42.4.1
Rotation of a Point about an angle θ
First we will find a formula for the co-ordinates of P after a rotation of θ.
We need to know something about polar co-ordinates and compound angles before we start.
Polar co-ordinates
b
r
P
y
α
Notice that : sin α = yr ∴ y = r sin α
and
cos α = xr ∴ x = r cos α
so P can be expressed in two ways:
x
P (x; y) rectangular co-ordinates
or P (r cos α; r sin α) polar co-ordinates.
Compound angles
(See derivation of formulae in Ch. 12)
sin (α + β)
= sin α cos β + sin β cos α
cos (α + β)
= cos α cos β − sin α sin β
571
42.4
CHAPTER 42. GEOMETRY - GRADE 12
Now consider P ′ after a rotation of θ
P (x; y) = P (r cos α; r sin α)
P ′ (r cos (α + θ); r sin (α + θ))
P′
Expand the co-ordinates of P ′
b
P = (r cos α; r sin α)
b
x − co-ordinate of P ′
=
r cos (α + θ)
=
=
r [cos α cos θ − sin α sin θ]
r cos α cos θ − r sin α sin θ
=
y − co-ordinate of P ′
θ
α
x cos θ − y sin θ
=
=
r sin (α + θ)
r [sin α cos θ + sin θ cos α]
=
=
r sin α cos θ + r cos α sin θ
y cos θ + x sin θ
which gives the formula P ′ = [(x cos θ − y sin θ; y cos θ + x sin θ)].
√
So to find the co-ordinates of P (1; 3) after a rotation of 45◦ , we arrive at:
P′
=
=
=
=
[(x cos θ − y sin θ); (y cos θ + x sin θ]
i
h
√
√
(1 cos 45◦ − 3 sin 45◦ ); ( 3 cos 45◦ + 1 sin 45◦
!#
"
√
√ !
1
1
3
3
√ −√
; √ +√
2
2
2
2
!
√ √
1− 3
3+1
√ ; √
2
2
572
CHAPTER 42. GEOMETRY - GRADE 12
42.4
Exercise: Rotations
Any line OP is drawn (not necessarily in the first
quadrant), making an angle of θ degrees with
the x-axis. Using the co-ordinates of P and the
angle α, calculate the co-ordinates of P ′ , if the
line OP is rotated about the origin through α
degrees.
1.
2.
3.
4.
5.
6.
42.4.2
P
(2, 6)
(4, 2)
(5, -1)
(-3, 2)
(-4, -1)
(2, 5)
b
P
θ
α
60◦
30◦
45◦
120◦
225◦
-150◦
O
Characteristics of Transformations
Rigid transformations like translations, reflections, rotations and glide reflections preserve shape
and size, and that enlargement preserves shape but not size.
42.4.3
Characteristics of Transformations
Rigid transformations like translations, reflections, rotations and glide reflections preserve shape
and size, and that enlargement preserves shape but not size.
Activity :: : Geometric Transformations
15
10
Draw a large 15×15 grid and plot
△ABC with A(2; 6), B(5; 6) and
C(5; 1). Fill in the lines y = x and
y = −x.
A(2; 6) B(5; 6)
b
b
5
b
C(3; 4)
−15
Complete the table below , by drawing the images of △ABC under the
given transformations. The first one
has been done for you.
−10
−5
5b
−5
b
A′
10
C′
b
B′
−10
y = −x
y=x
−15
573
15
42.5
CHAPTER 42. GEOMETRY - GRADE 12
Transformation
(x; y) → (x; −y)
Description
(translation, reflection,
rotation, enlargement)
reflection about the x-axis
Co-ordinates
Lengths
Angles
A′ (2; −6)
B ′ (5; −6)
C ′ (5; −2)
A′ B ′ = 3
B′C ′ = 4
A′ C ′ = 5
B̂ ′ = 90◦
tan  = 4/3
∴ Â = 53◦ , Ĉ = 37◦
(x; y) → (x + 1; y − 2)
(x; y) → (−x; y)
(x; y) → (−y; x)
(x; y) → (−x; −y)
(x; y) → (2x; 2y)
(x; y) → (y; x)
(x; y) → (y; x + 1)
A transformation that leaves lengths and angles unchanged is called a rigid transformation. Which of the above transformations are rigid?
42.5
Exercises
1. ∆ABC undergoes several transformations forming ∆A′ B ′ C ′ . Describe the relationship
between the angles and sides of ∆KLM and ∆A′ B ′ C ′ (e.g., they are twice as large, the
same, etc.)
Transformation
Reflect
Reduce by a scale factor of 3
Rotate by 90◦
Translate 4 units right
Enlarge by a scale factor of 2
Sides
Angles
Area
2. ∆DEF has Ê = 30◦ , DE = 4 cm, EF = 5 cm. ∆DEF is enlarged by a scale factor of
6 to form ∆D′ E ′ F ′ .
A Solve ∆DEF
B Hence, solve ∆D′ E ′ F ′
3. ∆XY Z has an area of 6 cm2 . Find the area of ∆X ′ Y ′ Z ′ if the points have been transformed as follows:
A (x, y) → (x + 2; y + 3)
B (x, y) → (y; x)
574
CHAPTER 42. GEOMETRY - GRADE 12
42.5
C (x, y) → (4x; y)
D (x, y) → (3x; y + 2)
E (x, y) → (−x; −y)
F (x, y) → (x; −y + 3)
G (x, y) → (4x; 4y)
H (x, y) → (−3x; 4y)
575
42.5
CHAPTER 42. GEOMETRY - GRADE 12
576
Chapter 43
Trigonometry - Grade 12
43.1
Compound Angle Identities
43.1.1
Derivation of sin(α + β)
We have, for any angles α and β, that
sin(α + β) = sin α cos β + sin β cos α
How do we derive this identity? It is tricky, so follow closely.
Suppose we have the unit circle shown below. The two points L(a,b) and K(x,y) are on the
circle.
y
K(x; y)
b
L(a; b)
b
1
1
(α − β)
α
O
b
β
b
a
M (x; y)
x
We can get the coordinates of L and K in terms of the angles α and β. For the triangle LOK,
we have that
b
1
a
cos β =
1
sin β =
=⇒
b = sin β
=⇒
a = cos β
577
43.1
CHAPTER 43. TRIGONOMETRY - GRADE 12
Thus the coordinates of L are (cos β; sin β). In the same way as above, we can see that the
coordinates of K are (cos α; sin α). p
The identity for cos(α − β) is now determined as follows:
Using the distance formula (i.e. d = (x2 − x1 )2 + (y2 − y1 )2 or d2 = (x2 − x1 )2 + (y2 − y1 )2 ),
we can find KL2 .
T R2
=
=
=
=
=
(cos α − cos β)2 + (sin α − sin β)2
cos2 α − 2 cos α cos β + cos2 β + sin2 α − 2 sin α sin β + sin2 β
(cos2 α + sin2 α) + (cos2 β + sin2 β) − 2 cos α cos β − 2 sin α sin β
1 + 1 − 2(cos α cos β + sin α sin β)
2 − 2(cos α cos β + sin α sin β)
Now using the cosine rule for △KOL, we get
KL2
=
=
=
KO2 + LO2 − 2 · KO · LO · cos(α − β)
12 + 12 − 2(1)(1) cos(α − β)
2 − 2 · cos(α − β)
Equating our two values for T R2 , we have
2 − 2 · cos(α − β)
=⇒
cos(α − β)
=
=
2 − 2(cos α cos β + sin α · sin β)
cos α · cos β + sin α · sin β
Now let α → 90◦ − α. Then
cos(90◦ − α − β)
= cos(90◦ − α) cos β + sin(90◦ − α) sin β
= sin α · cos β + cos α · sin β
But cos(90◦ − (α + β)) = sin(α + β). Thus
sin(α + β) = sin α · cos β + cos α · sin β
43.1.2
Derivation of sin(α − β)
We can use
sin(α + β) = sin α cos β + sin β cos α
to show that
sin(α − β) = sin α cos β − sin β cos α
We know that
sin(−θ) = − sin(θ)
and
cos(−θ) = cos θ
Therefore,
sin(α − β)
43.1.3
= sin(α + (−β))
= sin α cos(−β) + sin(−β) cos α
= sin α cos β − sin β cos α
Derivation of cos(α + β)
We can use
sin(α − β) = sin α cos β − sin β cos α
to show that
cos(α + β) = cos α cos β − sin α sin β
We know that
sin(θ) = cos(90 − θ).
578
CHAPTER 43. TRIGONOMETRY - GRADE 12
43.1
Therefore,
cos(α + β)
= sin(90 − (α + β))
= sin((90 − α) − β))
= sin(90 − α) cos β − sin β cos(90 − α)
= cos α cos β − sin β sin α
43.1.4
Derivation of cos(α − β)
We found this identity in our derivation of the sin(α + β) identity. We can also use the fact that
sin(α + β) = sin α cos β + sin β cos α
to derive that
cos(α − β) = cos α cos β + sin α sin β
As
cos(θ) = sin(90 − θ),
we have that
cos(α − β)
= sin(90 − (α − β))
= sin((90 − α) + β))
= sin(90 − α) cos β + sin β cos(90 − α)
= cos α cos β + sin β sin α
43.1.5
Derivation of sin 2α
We know that
sin(α + β) = sin α cos β + sin β cos α
When α = β, we have that
sin(α + α)
43.1.6
=
sin α cos α + sin α cos α
=
=
2 sin α cos α
sin(2α)
Derivation of cos 2α
We know that
cos(α + β) = cos α cos β − sin α sin β
When α = β, we have that
cos(α + α)
= cos α cos α − sin α sin α
= cos2 α − sin2 α
= cos(2α)
However, we can also write
cos 2α = 2cos2 α − 1
and
cos 2α = 1 − 2sin2 α
by using
sin2 α + cos2 α = 1.
579
43.1
CHAPTER 43. TRIGONOMETRY - GRADE 12
Activity :: cos 2α Identity : Use
sin2 α + cos2 α = 1
to show that:
cos 2α =
43.1.7
2 cos2 α − 1
1 − 2 sin2 α
Problem-solving Strategy for Identities
The most important thing to remember when asked to prove identities is:
Important: Trigonometric Identities
Never assume that the left hand side is equal to the right hand side. You need to show that
both sides are equal.
A suggestion for proving identities: It is usually much easier simplifying the more complex side
of an identity to get the simpler side than the other way round.
Worked Example 194: Trigonometric Identities 1
√
√
Question: Prove that sin 75◦ = 2( 43+1) without using a calculator.
Answer
Step 1 : Identify a strategy
We only know the exact values of the trig functions for a few special angles (30◦ ,
45◦ , 60◦ , etc.). We can see that 75◦ = 30◦ + 45◦. Thus we can use our double-angle
identity for sin(α + β) to express sin 75◦ in terms of known trig function values.
Step 2 : Execute strategy
sin 75◦
=
sin(45◦ + 30◦ )
=
sin(45◦ ) cos(30◦ ) + sin(30◦ ) cos(45◦ )
√
1 1
3
1
√ ·
+√ ·
2 2
2 2
√
3+1
√
2 2
√
√
3+1
2
√ ×√
2 2
2
√ √
2( 3 + 1)
4
=
=
=
=
Worked Example 195: Trigonometric Identities 2
580
CHAPTER 43. TRIGONOMETRY - GRADE 12
43.1
Question: Deduce a formula for tan(α + β) in terms of tan α and tan β.
Hint: Use the formulae for sin(α + β) and cos(α + β)
Answer
Step 1 : Identify a strategy
We can reexpress tan(α + β) in terms of cosines and sines, and then use the doubleangle formulas for these. We then manipulate the resulting expression in order to
get it in terms of tan α and tan β.
Step 2 : Execute strategy
tan(α + β)
=
=
=
=
sin(α + β)
cos(α + β)
sin α · cos β + sin β · cos α
cos α · cos β − sin α · sin β
sin α·cos β
cos α·cos β
cos α·cos β
cos α·cos β
+
−
sin β·cos α
cos α·cos β
sin α·sin β
cos α·cos β
tan α + tan β
1 − tan α · tan β
Worked Example 196: Trigonometric Identities 3
Question: Prove that
sin θ + sin 2θ
= tan θ
1 + cos θ + cos 2θ
For which values is the identity not valid?
Answer
Step 1 : Identify a strategy
The right-hand side (RHS) of the identity cannot be simplified. Thus we should
try simplify the left-hand side (LHS). We can also notice that the trig function on
the RHS does not have a 2θ dependance. Thus we will need to use the doubleangle formulas to simplify the sin 2θ and cos 2θ on the LHS. We know that tan θ
is undefined for some angles θ. Thus the identity is also undefined for these θ, and
hence is not valid for these angles. Also, for some θ, we might have division by zero
in the LHS, which is not allowed. Thus the identity won’t hold for these angles also.
Step 2 : Execute the strategy
LHS
=
=
=
=
=
sin θ + 2 sin θ cos θ
1 + cos θ + (2 cos2 θ − 1)
sin θ(1 + 2 cos θ)
cos θ(1 + 2 cos θ)
sin θ
cos θ
tan θ
RHS
We know that tan θ is undefined when θ = 90◦ + 180◦n, where n is an integer. The
LHS is undefined when 1 + cos θ + cos 2θ = 0. Thus we need to solve this equation.
=⇒
1 + cos θ + cos 2θ
= 0
cos θ(1 + 2 cos θ)
= 0
581
43.2
CHAPTER 43. TRIGONOMETRY - GRADE 12
The above has solutions when cos θ = 0, which occurs when θ = 90◦ + 180◦n,
where n is an integer. These are the same values when tan θ is undefined. It
also has solutions when 1 + 2 cos θ = 0. This is true when cos θ = − 21 , and thus
θ = . . . − 240◦ , −120◦, 120◦, 240◦ , . . .. To summarise, the identity is not valid when
θ = . . . − 270◦, −240◦, −120◦ , −90◦,90◦ , 120◦ , 240◦ , 270◦, . . .
Worked Example 197: Trigonometric Equations
Question: Solve the following equation for y without using a calculator.
1 − sin y − cos 2y
= −1
sin 2y − cos y
Answer
Step 1 : Identify a strategy
Before we are able to solve the equation, we first need to simplify the left-hand side.
We do this using the double-angle formulas.
Step 2 : Execute the strategy
=⇒
=⇒
=⇒
=⇒
1 − sin y − (1 − 2 sin2 y)
2 sin y cos y − cos y
2 sin2 y − sin y
cos y(2 sin y − 1)
sin y(2 sin y − 1)
cos y(2 sin y − 1)
tan y
◦
◦
y = 135 + 180 n; n ∈ Z
= −1
= −1
= −1
= −1
43.2
Applications of Trigonometric Functions
43.2.1
Problems in Two Dimensions
Worked Example 198:
Question: For the figure below, we are given that BC = BD = x.
Show that BC 2 = 2x2 (1 + sin θ).
582
CHAPTER 43. TRIGONOMETRY - GRADE 12
b
O
b
D
43.2
A
θ
b
x
x
b
C
B
b
Answer
Step 1 : Identify a strategy
We want CB, and we have CD and BD. If we could get the angle B D̂C, then we
could use the cosine rule to determine DC. This is possible, as △ABD is a rightangled triangle. We know this from circle geometry, that any triangle circumscribed
by a circle with one side going through the origin, is right-angled. As we have two
angles of △ABD, we know AD̂B and hence B D̂C. Using the cosine rule, we can
getBC 2 .
Step 2 : Execute the strategy
AD̂B = 180◦ − θ − 90◦ = 90◦ − θ
Thus
B D̂C
=
=
=
180◦ − AD̂B
180◦ − (90◦ − θ)
90◦ + θ
Now the cosine rule gives
BC 2
= CD2 + BD2 − 2 · CD · BD · cos(B D̂C)
= x2 + x2 − 2 · x2 · cos(90◦ + θ)
= 2x2 + 2x2 [ sin(90◦ ) cos(θ) + sin(θ) cos(90◦ )]
= 2x2 + 2x2 [ 1 · cos(θ) + sin(θ) · 0]
= 2x2 (1 − sin θ)
Exercise:
1. For the diagram on the right,
A Find AÔC in terms of θ.
C
b
b
i. cos θ
ii. sin θ
iii. sin 2θ
D Now do the same for cos 2θ and tan θ.
583
b
C Using the above, show that sin 2θ =
2 sin θ cos θ.
A
O
b
B
E
θ
b
B Find an expression for:
43.2
CHAPTER 43. TRIGONOMETRY - GRADE 12
2. DA is a diameter of circle O with radius r. CA = r, AB = DE and DÔE = θ.
Show that cos θ = 14 .
E
b
D
b
θ
b
b
B
O
b
C
b
A
3. The figure on the right shows a cyclic quadrilateral with
BC
CD
=
AD
AB .
A Show that the area of the cyclic quadrilateral is DC · DA · sin D̂.
B Find expressions for cos D̂ and cos B̂ in terms of the quadrilateral sides.
C Show that 2CA2 = CD2 + DA2 + AB 2 + BC 2 .
D Suppose that BC = 10, CD = 15, AD = 4 and AB = 6. Find CA2 .
E Find the angle D̂ using your expression for cos D̂. Hence find the area of
ABCD.
D
b
C
b
b
A
b
B
43.2.2
Problems in 3 dimensions
Worked Example 199: Height of tower
Question:
D is the top of a tower of height h. Its base is at C. The triangle ABC lies on
the ground (a horizontal plane). If we have that BC = b, DB̂A = α, DB̂C = x
and DĈB = θ, show that
b sin α sin x
h=
sin(x + θ)
584
CHAPTER 43. TRIGONOMETRY - GRADE 12
43.2
D
b
h
C
b
b
θ
b
A
α
x
b
B
Answer
Step 1 : Identify a strategy
We have that the triangle ABD is right-angled. Thus we can relate the height h
with the angle α and either the length BA or BD (using sines or cosines). But we
have two angles and a length for △BCD, and thus can work out all the remaining
lengths and angles of this triangle. We can thus work out BD.
Step 2 : Execute the strategy
We have that
h
BD
=⇒
h
=
sin α
=
BD sin α
Now we need BD in terms of the given angles and length b. Considering the triangle
BCD, we see that we can use the sine rule.
sin θ
DB
=
DB
=
=⇒
sin(DB̂C)
b
b sin θ
sin(DB̂C)
But DB̂C = 180◦ − α − θ, and
sin(180◦ − α − θ)
= − sin(−α − θ)
= sin(α + θ)
So
DB
=
=
b sin θ
sin(DB̂C)
b sin θ
sin(α + θ)
Exercise:
1. The line BC represents a tall tower, with C at its foot. Its angle of elevation
from D is θ. We are also given that BA = AD = x.
585
43.3
CHAPTER 43. TRIGONOMETRY - GRADE 12
C
b
B
θ
b
α
x
b
D
x
b
A
A Find the height of the tower BC in terms of x, tan θ and cos 2α.
B Find BC if we are given that k = 140m, α = 21◦ and θ = 9◦ .
43.3
Other Geometries
43.3.1
Taxicab Geometry
Taxicab geometry, considered by Hermann Minkowski in the 19th century, is a form of geometry
in which the usual metric of Euclidean geometry is replaced by a new metric in which the distance
between two points is the sum of the (absolute) differences of their coordinates.
43.3.2
Manhattan distance
The metric in taxi-cab geometry, is known as the Manhattan distance, between two points in
an Euclidean space with fixed Cartesian coordinate system as the sum of the lengths of the
projections of the line segment between the points onto the coordinate axes.
For example, in the plane, the Manhattan distance between the point P1 with coordinates (x1 , y1 )
and the point P2 at (x2 , y2 ) is
|x1 − x2 | + |y1 − y2 |
(43.1)
Figure 43.1: Manhattan Distance (dotted and solid) compared to Euclidean Distance
√ (dashed).
In each case the Manhattan distance is 12 units, while the Euclidean distance is 36
586
CHAPTER 43. TRIGONOMETRY - GRADE 12
43.3
The Manhattan distance depends on the choice on the rotation of the coordinate system, but
does not depend on the translation of the coordinate system or its reflection with respect to a
coordinate axis.
Manhattan distance is also known as city block distance or taxi-cab distance. It is given these
names because it is the shortest distance a car would drive in a city laid out in square blocks.
Taxicab geometry satisfies all of Euclid’s axioms except for the side-angle-side axiom, as one can
generate two triangles with two sides and the angle between them the same and have them not
be congruent. In particular, the parallel postulate holds.
A circle in taxicab geometry consists of those points that are a fixed Manhattan distance from
the center. These circles are squares whose sides make a 45◦ angle with the coordinate axes.
43.3.3
Spherical Geometry
Spherical geometry is the geometry of the two-dimensional surface of a sphere. It is an example
of a non-Euclidean geometry.
In plane geometry the basic concepts are points and line. On the sphere, points are defined in
the usual sense. The equivalents of lines are not defined in the usual sense of ”straight line”
but in the sense of ”the shortest paths between points” which is called a geodesic. On the
sphere the geodesics are the great circles, so the other geometric concepts are defined like in
plane geometry but with lines replaced by great circles. Thus, in spherical geometry angles are
defined between great circles, resulting in a spherical trigonometry that differs from ordinary
trigonometry in many respects (for example, the sum of the interior angles of a triangle exceeds
180◦).
Spherical geometry is the simplest model of elliptic geometry, in which a line has no parallels
through a given point. Contrast this with hyperbolic geometry, in which a line has two parallels,
and an infinite number of ultra-parallels, through a given point.
Spherical geometry has important practical uses in celestial navigation and astronomy.
Extension: Distance on a Sphere
The great-circle distance is the shortest distance between any two points on the
surface of a sphere measured along a path on the surface of the sphere (as opposed
to going through the sphere’s interior). Because spherical geometry is rather different
from ordinary Euclidean geometry, the equations for distance take on a different form.
The distance between two points in Euclidean space is the length of a straight line
from one point to the other. On the sphere, however, there are no straight lines.
In non-Euclidean geometry, straight lines are replaced with geodesics. Geodesics on
the sphere are the great circles (circles on the sphere whose centers are coincident
with the center of the sphere).
Between any two points on a sphere which are not directly opposite each other,
there is a unique great circle. The two points separate the great circle into two
arcs. The length of the shorter arc is the great-circle distance between the points.
Between two points which are directly opposite each other (called antipodal points)
there infinitely many great circles, but all have the same length, equal to half the
circumference of the circle, or πr, where r is the radius of the sphere.
Because the Earth is approximately spherical (see spherical Earth), the equations
for great-circle distance are important for finding the shortest distance between points
on the surface of the Earth, and so have important applications in navigation.
Let φ1 ,λ1 ; φ2 ,λ2 , be the latitude and longitude of two points, respectively. Let
∆λ be the longitude difference. Then, if r is the great-circle radius of the sphere,
the great-circle distance is r∆σ, where ∆σ is the angular difference/distance and
can be determined from the spherical law of cosines as:
∆σ = arccos {sin φ1 sin φ2 + cos φ1 cos φ2 cos ∆λ}
587
43.3
CHAPTER 43. TRIGONOMETRY - GRADE 12
Extension: Spherical Distance on the Earth
The shape of the Earth more closely resembles a flattened spheroid with extreme
values for the radius of curvature, or arcradius, of 6335.437 km at the equator
(vertically) and 6399.592 km at the poles, and having an average great-circle radius
of 6372.795 km.
Using a sphere with a radius of 6372.795 km thus results in an error of up to
about 0.5%.
43.3.4
Fractal Geometry
The word ”fractal” has two related meanings. In colloquial usage, it denotes a shape that
is recursively constructed or self-similar, that is, a shape that appears similar at all scales of
magnification and is therefore often referred to as ”infinitely complex.” In mathematics a fractal
is a geometric object that satisfies a specific technical condition, namely having a Hausdorff
dimension greater than its topological dimension. The term fractal was coined in 1975 by Benot
Mandelbrot, from the Latin fractus, meaning ”broken” or ”fractured.”
Three common techniques for generating fractals are:
• Iterated function systems - These have a fixed geometric replacement rule. Cantor set,
Sierpinski carpet, Sierpinski gasket, Peano curve, Koch snowflake, Harter-Heighway dragon
curve, T-Square, Menger sponge, are some examples of such fractals.
• Escape-time fractals - Fractals defined by a recurrence relation at each point in a space
(such as the complex plane). Examples of this type are the Mandelbrot set, the Burning
Ship fractal and the Lyapunov fractal.
• Random fractals, generated by stochastic rather than deterministic processes, for example,
fractal landscapes, Lvy flight and the Brownian tree. The latter yields so-called mass- or
dendritic fractals, for example, Diffusion Limited Aggregation or Reaction Limited Aggregation clusters.
Fractals in nature
Approximate fractals are easily found in nature. These objects display self-similar structure over
an extended, but finite, scale range. Examples include clouds, snow flakes, mountains, river
networks, and systems of blood vessels.
Trees and ferns are fractal in nature and can be modeled on a computer using a recursive
algorithm. This recursive nature is clear in these examples - a branch from a tree or a frond from
a fern is a miniature replica of the whole: not identical, but similar in nature.
The surface of a mountain can be modeled on a computer using a fractal: Start with a triangle
in 3D space and connect the central points of each side by line segments, resulting in 4 triangles.
The central points are then randomly moved up or down, within a defined range. The procedure
is repeated, decreasing at each iteration the range by half. The recursive nature of the algorithm
guarantees that the whole is statistically similar to each detail.
588
CHAPTER 43. TRIGONOMETRY - GRADE 12
43.4
Summary of the Trigonomertic Rules and Identities
Pythagorean Identity
Cofuntion Identities
Ratio Identities
cos2 θ + sin2 θ = 1
sin(90◦ − θ) = cos θ
cos(90◦ − θ) = sin θ
tan θ =
Odd/Even Identities
Periodicity Identities
Double angle Identities
sin(−θ) = − sin θ
cos(−θ) = cos θ
tan(−θ) = − tan θ
sin(θ ± 360◦ ) = sin θ
cos(θ ± 360◦) = cos θ
tan(θ ± 180◦ ) = tan θ
sin(2θ) = 2 sin θ cos θ
cos (2θ) = cos2 θ − sin2 θ
cos (2θ) = 2 cos2 θ − 1
2 tan θ
tan (2θ) = 1−tan
2θ
Addition/Subtraction Identities
Area Rule
Cosine rule
sin (θ + φ) = sin θ cos φ + cos θ sin φ
sin (θ − φ) = sin θ cos φ − cos θ sin φ
cos (θ + φ) = cos θ cos φ − sin θ sin φ
cos (θ − φ) = cos θ cos φ + sin θ sin φ
tan φ+tan θ
tan (θ + φ) = 1−tan
θ tan φ
tan φ−tan θ
tan (θ − φ) = 1+tan
θ tan φ
Area = 12 bc sin A
Area = 21 ab sin C
Area = 21 ac sin B
a2 = b2 + c2 − 2bc cos A
b2 = a2 + c2 − 2ac cos B
c2 = a2 + b2 − 2ab cos C
Sine Rule
sin A
a
=
43.4
sin B
b
=
sin C
c
End of Chapter Exercises
Do the following without using a calculator.
1. Suppose cos θ = 0.7. Find cos 2θ and cos 4θ.
2. If sin θ = 74 , again find cos 2θ and cos 4θ.
3. Work out the following:
A cos 15◦
B cos 75◦
C tan 105◦
D cos 15◦
E cos 3◦ cos 42◦ − sin 3◦ sin 42◦
F 1 − 2 sin2 (22.5◦ )
4. Solve the following equations:
A cos 3θ · cos θ − sin 3θ · sin θ = − 21
B 3 sin θ = 2 cos2 θ
C
5. Prove the following identities
A sin3 θ =
3 sin θ−sin 3θ
4
589
sin θ
cos θ
43.4
CHAPTER 43. TRIGONOMETRY - GRADE 12
B cos2 α(1 − tan2 α) = cos 2α
C 4 sin θ · cos θ · cos 2θ = sin 4θ
D 4 cos3 x − 3 cos x = cos 3x
E tan y =
sin 2y
cos 2y+1
6. (Challenge question!) If a + b + c = 180◦, prove that
sin3 a + sin3 b + sin3 c = 3 cos(a/2) cos(b/2) cos(c/2) + cos(3a/2) cos(3b/2) cos(3c/2)
590
Chapter 44
Statistics - Grade 12
44.1
Introduction
In this chapter, you will use the mean, median, mode and standard deviation of a set of data
to identify whether the data is normally distributed or whether it is skewed. You will learn more
about populations and selecting different kinds of samples in order to avoid bias. You will work
with lines of best fit, and learn how to find a regression equation and a correlation coefficient.
You will analyse these measures in order to draw conclusions and make predictions.
44.2
A Normal Distribution
Activity :: Investigation :
You are given a table of data below.
75
80
91
67
75
81
70
77
82
71
78
82
71
78
83
73
78
86
74
78
86
75
79
87
1. Calculate the mean, median, mode and standard deviation of the data.
2. What percentage of the data is within one standard deviation of the mean?
3. Draw a histogram of the data using intervals 60 ≤ x < 64, 64 ≤ x < 68, etc.
4. Join the midpoints of the bars to form a frequency polygon.
If large numbers of data are collected from a population, the graph will often have a bell shape.
If the data was, say, examination results, a few learners usually get very high marks, a few very
low marks and most get a mark in the middle range. We say a distribution is normal if
• the mean, median and mode are equal.
• it is symmetric around the mean.
• ±68% of the sample lies within one standard deviation of the mean, 95% within two
standard deviations and 99% within three standard deviations of the mean.
591
44.2
CHAPTER 44. STATISTICS - GRADE 12
68%
95%
99%
x̄ − 3σ x̄ − 2σ x̄ − σ
x̄
x̄ + σ x̄ + 2σ x̄ + 3σ
What happens if the test was very easy or very difficult? Then the distribution may not be
symmetrical. If extremely high or extremely low scores are added to a distribution, then the
mean tends to shift towards these scores and the curve becomes skewed.
If the test was very difficult, the mean score is shifted to
the left. In this case, we say the distribution is positively
skewed, or skewed right.
Skewed right
If it was very easy, then many learners would get high
scores, and the mean of the distribution would be shifted
to the right. We say the distribution is negatively skewed,
or skewed left.
Skewed left
Exercise: Normal Distribution
1. Given the pairs of normal curves below, sketch the graphs on the same set of
axes and show any relation between them. An important point to remember is
that the area beneath the curve corresponds to 100%.
A Mean = 8, standard deviation = 4 and Mean = 4, standard deviation = 8
B Mean = 8, standard deviation = 4 and Mean = 16, standard deviation =
4
C Mean = 8, standard deviation = 4 and Mean = 8, standard deviation = 8
2. After a class test, the following scores were recorded:
Test Score
3
4
5
6
7
8
9
Total
Mean
Standard Deviation
A
B
C
D
E
Frequency
1
7
14
21
14
6
1
64
6
1,2
Draw the histogram of the results.
Join the midpoints of each bar and draw a frequency polygon.
What mark must one obtain in order to be in the top 2% of the class?
Approximately 84% of the pupils passed the test. What was the pass mark?
Is the distribution normal or skewed?
592
CHAPTER 44. STATISTICS - GRADE 12
44.3
3. In a road safety study, the speed of 175 cars was monitored along a specific
stretch of highway in order to find out whether there existed any link between
high speed and the large number of accidents along the route. A frequency
table of the results is drawn up below.
Speed (km.h−1 )
50
60
70
80
90
100
110
120
Number of cars (Frequency)
19
28
23
56
20
16
8
5
The mean speed was determined to be around 82 km.h−1 while the median
speed was worked out to be around 84,5 km.h−1 .
A Draw a frequency polygon to visualise the data in the table above.
B Is this distribution symmetrical or skewed left or right? Give a reason fro
your answer.
44.3
Extracting a Sample Population
Suppose you are trying to find out what percentage of South Africa’s population owns a car.
One way of doing this might be to send questionnaires to peoples homes, asking them whether
they own a car. However, you quickly run into a problem: you cannot hope to send every person
in the country a questionnaire, it would be far to expensive. Also, not everyone would reply. The
best you can do is send it to a few people, see what percentage of these own a car, and then use
this to estimate what percentage of the entire country own cars. This smaller group of people
is called the sample population.
The sample population must be carefully chosen, in order to avoid biased results. How do
we do this?
First, it must be representative. If all of our sample population comes from a very rich area,
then almost all will have cars. But we obviously cannot conclude from this that almost everyone
in the country has a car! We need to send the questionnaire to rich as well as poor people.
Secondly, the size of the sample population must be large enough. It is no good having a sample
population consisting of only two people, for example. Both may very well not have cars. But
we obviously cannot conclude that no one in the country has a car! The larger the sample
population size, the more likely it is that the statistics of our sample population corresponds to
the statistics of the entire population.
So how does one ensure that ones sample is representative? There are a variety of methods
available, which we will look at now.
Random Sampling. Every person in the country has an equal chance of being selected.
It is unbiased and also independant, which means that the selection of one person has no
effect on the selection on another. One way of doing this would be to give each person in
the country a number, and then ask a computer to give us a list of random numbers. We
could then send the questionnaire to the people corresponding to the random numbers.
Systematic Sampling. Again give every person in the country a number, and then, for
example, select every hundredth person on the list. So person with number 1 would be
selected, person with number 100 would be selected, person with number 200 would be
selected, etc.
593
44.4
CHAPTER 44. STATISTICS - GRADE 12
Stratified Sampling. We consider different subgroups of the population, and take random
samples from these. For example, we can divide the population into male and female,
different ages, or into different income ranges.
Cluster Sampling. Here the sample is concentrated in one area. For example, we consider
all the people living in one urban area.
Exercise: Sampling
1. Discuss the advantages, disadvantages and possible bias when using
A systematic sampling
B random sampling
C cluster sampling
2. Suggest a suitable sampling method that could be used to obtain information
on:
A passengers views on availability of a local taxi service.
B views of learners on school meals.
C defects in an item made in a factory.
D medical costs of employees in a large company.
3. 5% of a certain magazines’ subscribers is randomly selected. The random
number 16 out of 50, is selected. Then subscribers with numbers 16, 66, 116,
166, . . . are chosen as a sample. What kind of sampling is this?
44.4
Function Fitting and Regression Analysis
In Grade 11 we recorded two sets of data (bivariate data) on a scatter plot and then we drew a
line of best fit as close to as many of the data items as possible. Regression analysis is a method
of finding out exactly which function best fits a given set of data. We can find out the equation
of the regression line by drawing and estimating, or by using an algebraic method called “the
least squared method”, or we can use a calculator. The linear regression equation is written
ŷ = a + bx (we say y-hat) or y = A + Bx. Of course these are both variations of a more familiar
equation y = mx + c.
Suppose you are doing an experiment with washing dishes. You count how many dishes you
begin with, and then find out how long it takes to finish washing them. So you plot the data on
a graph of time taken versus number of dishes. This is plotted below.
t
200
Time taken (seconds)
180
b
160
140
b
120
100
b
80
b
60
b
40
b
20
d
0
0
1
2
3
4
Number of dishes
594
5
6
CHAPTER 44. STATISTICS - GRADE 12
44.4
If t is the time taken, and d the number of dishes, then it looks as though t is proportional to d,
ie. t = m · d, where m is the constant of proportionality. There are two questions that interest
us now.
1. How do we find m? One way you have already learnt, is to draw a line of best-fit through
the data points, and then measure the gradient of the line. But this is not terribly precise.
Is there a better way of doing it?
2. How well does our line of best fit really fit our data? If the points on our plot don’t all lie
close to the line of best fit, but are scattered everywhere, then the fit is not ’good’, and
our assumption that t = m · d might be incorrect. Can we find a quantitative measure of
how well our line really fits the data?
In this chapter, we answer both of these questions, using the techniques of regression analysis.
Worked Example 200: Fitting by hand
Question: Use the data given to draw a scatter plot and line of best fit. Now write
down the equation of the line that best seems to fit the data.
x
y
1,0
2,5
2,4
2,8
3,1
3,0
4,9
4,8
5,6
5,1
6,2
5,3
Answer
Step 1 : Drawing the graph
The first step is to draw the graph. This is shown below.
y
7
6
b
b
b
5
4
3
b
b
b
2
1
x
0
0
1
2
3
4
5
6
Step 2 : Calculating the equation of the line
The equation of the line is
y = mx + c
From the graph we have drawn, we estimate the y-intercept to be 1,5. We estimate
that y = 3,5 when x = 3. So we have that points (3; 3,5) and (0; 1,6) lie on the
line. The gradient of the line, m, is given by
m
=
=
=
y2 − y1
x2 − x1
3,5 − 1,5
3−0
2
3
So we finally have that the equation of the line of best fit is
y=
2
x + 1,5
3
595
44.4
CHAPTER 44. STATISTICS - GRADE 12
44.4.1
The Method of Least Squares
We now come to a more accurate method of finding the line of best-fit. The method is very
simple.
Suppose we guess a line of best-fit. Then at at every data point, we find the distance between
the data point and the line. If the line fitted the data perfectly, this distance should be zero for
all the data points. The worse the fit, the larger the differences. We then square each of these
distances, and add them all together.
y
b
b
b
b
b
y
The best-fit line is then the line that minimises the sum of the squared distances.
Suppose we have a data set of n points {(x1 ; y1 ), (x2 ; y2 ), . . . , (xn ,yn )}. We also have a line
f (x) = mx + c that we are trying to fit to the data. The distance between the first data point
and the line, for example, is
distance = y1 − f (x) = y1 − (mx + c)
We now square each of these distances and add them together. Lets call this sum S(m,c). Then
we have that
S(m,c) =
=
(y1 − f (x1 ))2 + (y2 − f (x2 ))2 + . . . + (yn − f (xn ))2
n
X
(yi − f (xi ))2
i=1
Thus our problem is to find the value of m and c such that S(m,c) is minimised. Let us call
these minimising values m0 and c0 . Then the line of best-fit is f (x) = m0 x + c0 . We can find
m0 and c0 using calculus, but it is tricky, and we will just give you the result, which is that
P
P
P
n ni=1 xi yi − ni=1 xi ni=1 yi
m0 =
Pn
Pn
2
n i=1 (xi )2 − ( i=1 xi )
n
n
1X
m0 X
c0 =
yi −
xi = ȳ − m0 x̄
n i=1
n i=0
Worked Example 201: Method of Least Squares
Question: In the table below, we have the records of the maintenance costs in
Rands, compared with the age of the appliance in months. We have data for 5
appliances.
appliance
age (x)
cost (y)
1
5
90
2
10
140
Answer
596
3
15
250
4
20
300
4
30
380
CHAPTER 44. STATISTICS - GRADE 12
appliance
1
2
3
4
5
Total
b
a
44.4.2
44.4
x
10
10
15
20
30
80
y
15
140
250
300
380
1160
x2
30
100
225
400
900
1650
xy
20
1400
3750
6000
11400
23000
P P
xy − x y
5 × 23000 − 80 × 1160
=
= 12
P 2
P 2 =
5 × 1650 − 802
n x − ( x)
1160 12 × 80
−
= 40
= ȳ − bx̄ =
5
5
∴ ŷ = 40 + 12x
n
P
Using a calculator
Worked Example 202: Using the Sharp EL-531VH calculator
Question: Find a regression equation for the following data:
Days (x)
Growth in m (y)
1
1,00
2
2,50
3
2,75
4
3,00
5
3,50
Answer
Step 1 : Getting your calculator ready
Using your calculator, change the mode from normal to “Stat xy”. This mode
enables you to type in bivariate data.
Step 2 : Entering the data
Key in the data as follows:
1
(x,y)
1
DATA
n=1
2
(x,y)
2,5
DATA
n=2
3
(x,y)
2,75
DATA
n=3
4
(x,y)
3,0
DATA
n=4
5
(x,y)
3,5
DATA
n=5
Step 3 : Getting regression results from the calculator
Ask for the values of the regression coefficients a and b.
RCL
RCL
a
b
gives
gives
a = 0,9
b = 0,55
∴ ŷ = 0,9 + 0,55x
597
44.4
CHAPTER 44. STATISTICS - GRADE 12
Worked Example 203: Using the CASIO fx-82ES Natural Display calculator
Question: Using a calculator determine the least squares line of best fit for the
following data set of marks.
Learner
1
2
3
4
5
Chemistry (%)
52 55 86 71 45
Accounting (%) 48 64 95 79 50
For a Chemistry mark of 65%, what mark does the least squares line predict for
Accounting?
Answer
Step 1 : Getting your calculator ready
Switch on the calculator. Press [MODE] and then select STAT by pressing [2]. The
following screen will appear:
1
3
5
7
1-VAR
+ CX2
eˆX
A . XˆB
2
4
6
8
A + BX
ln X
A . BˆX
1/X
Now press [2] for linear regression. Your screen should look something like this:
x
y
1
2
3
Step 2 : Entering the data
Press [52] and then [=] to enter the first mark under x. Then enter the other values,
in the same way, for the x-variable (the Chemistry marks) in the order in which they
are given in the data set. Then move the cursor across and up and enter 48 under y
opposite 52 in the x-column. Continue to enter the other y-values (the Accounting
marks) in order so that they pair off correctly with the corresponding x-values.
x
52
55
1
2
3
y
Then press [AC]. The screen clears but the data remains stored.
1:
3:
5:
7:
Type
Edit
Var
Reg
2:
4:
6:
Data
Sum
MinMax
Now press [SHIFT][1] to get the stats computations screen shown below. Choose
Regression by pressing [7].
1:
3:
5:
A
r
ŷ
2:
4:
B
x̂
Step 3 : Getting regression results from the calculator
a) Press [1] and [=] to get the value of the y-intercept, a = −5,065.. = −5,07(to
2 d.p.)
Finally, to get the slope, use the following key sequence: [SHIFT][1][7][2][=].
The calculator gives b = 1,169.. = 1,17(to 2 d.p.)
The equation of the line of regression is thus:
ŷ = −5,07 + 1,17x
598
CHAPTER 44. STATISTICS - GRADE 12
44.4
b) Press [AC][65][SHIFT][1][7][5][=]
This gives a (predicted) Accounting mark ofˆ= 70,938.. = 71%
Exercise:
1. The table below lists the exam results for 5 students in the subjects of Science
and Biology.
Learner
Science %
Biology %
1
55
48
2
66
59
3
74
68
4
92
84
5
47
53
A Use the formulae to find the regression equation coefficients a and b.
B Draw a scatter plot of the data on graph paper.
C Now use algebra to find a more accurate equation.
2. Footlengths and heights of 7 students are given in the table below.
Height (cm)
Footlength (cm)
170
27
163
23
131
20
181
28
146
22
134
20
166
24
A Draw a scatter plot of the data on graph paper.
B Indentify and describe any trends shown in the scatter plot.
C Find the equation of the least squares line by using algebraic methods and
draw the line on your graph.
D Use your equation to predict the height of a student with footlength 21,6
cm.
E Use your equation to predict the footlength of a student 176 cm tall.
3. Repeat the data in question 2 and find the regression line using a calculator
44.4.3
Correlation coefficients
Once we have applied regression analysis to a set of data, we would like to have a number that
tells us exactly how well the data fits the function. A correlation coefficient, r, is a tool that tells
us to what degree there is a relationship between two sets of data. The correlation coefficient
r ∈ [−1; 1] when r = −1, there is a perfect negative relationship, when r = 0, there is no
relationship and r = 1 is a perfect positive correlation.
y
y
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
b
b
b
b
b
b
b
bb
b
bb
b
b
b
b
b
b
b
bb
y
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
bb
b
b
b
b
b
b
b
b
b
x
b
b
b
Positive, strong
r ≈ 0,9
y
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
599
b
b
b
b
b
b
b
bb
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
b
b
b
b
b
b
b
b
b
b
b
b
bb
b
b
b
bb
b
b
b
b
b
bb
b
b
x
No association
r=0
b
b
b
b
b
x
Negative, fairly strong
r ≈ −0,7
We often use the correlation coefficient r2 in order to work with the strength of the correlation
only (no whether it is positive or negative).
In this case:
b
b
b
x
Positive, weak
r ≈ 0,4
b
bb
b
bb
b
b
b
b
b
b
bb
b
b
b
b
b
b
b
b
b
bb
b
b
x
Positive, fairly strong
r ≈ 0,7
b
bb
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
b
b
bb
b
b
b
b
b
b
b
b
b
b
bb
b
b
b
b
b
b
b
b
b
bb
b
b
b
b
y
b
b
bb
b
b
b
b
b
bbb
b
b
44.5
CHAPTER 44. STATISTICS - GRADE 12
r2 = 0
0 < r2 < 0,25
0,25 < r2 < 0,5
0,5 < r2 < 0,75
0,75 < r2 < 0,9
0,9 < r2 < 1
r2 = 1
no correlation
very weak
weak
moderate
strong
very strong
perfect correlation
The correlation coefficient r can be calculated using the formula
y − ȳ
1 X x − x̄
r=
n−1
sx
sy
• where n is the number of data points,
• sx is the standard deviation of the x-values and
• sy is the standard deviation of the y-values.
This is known as the Pearson’s product moment correlation coefficient. It is a long calculation
and much easier to do on the calculator where you simply follow the procedure for the regression
equation, and go on to find r.
44.5
Exercises
1. Below is a list of data concerning 12 countries and their respective carbon dioxide (CO2 )
emmission levels per person and the gross domestic product (GDP - a measure of products
produced and services delivered within a country in a year) per person.
South Africa
Thailand
Italy
Australia
China
India
Canada
United Kingdom
United States
Saudi Arabia
Iran
Indonesia
A
B
C
D
E
CO2 emmissions per capita (x)
8,1
2,5
7,3
17,0
2,5
0,9
16,0
9,0
19,9
11,0
3,8
1,2
GDP per capita (y)
3 938
2 712
20 943
23 893
816
463
22 537
21 785
31 806
6 853
1 493
986
Draw a scatter plot of the data set and your estimate of a line of best fit.
Calculate equation of the line of regression using the method of least squares.
Draw the regression line equation onto the graph.
Calculate the correlation coefficient r.
What conclusion can you reach, regarding the relationship between CO2 emission and
GDP per capita for the countries in the data set?
2. A collection of data on the peculiar investigation into a foot size and height of students
was recorded in the table below. Answer the questions to follow.
Length of right foot (cm)
25,5
26,1
23,7
26,4
27,5
24
22,6
27,1
600
Height (cm)
163,3
164,9
165,5
173,7
174,4
156
155,3
169,3
CHAPTER 44. STATISTICS - GRADE 12
44.5
A Draw a scatter plot of the data set and your estimate of a line of best fit.
B Calculate equation of the line of regression using the method of least squares or your
calculator.
C Draw the regression line equation onto the graph.
D Calculate the correlation coefficient r.
E What conclusion can you reach, regarding the relationship between the length of the
right foot and height of the students in the data set?
3. A class wrote two tests, and the marks for each were recorded in the table below. Full
marks in the first test was 50, and the second test was out of 30.
A Is there a strong association between the marks for the first and second test? Show
why or why not.
B One of the learners (in row 18) did not write the second test. Given their mark for
the first test, calculate an expected mark for the second test.
Learner
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Test 1
(Full marks: 50)
42
32
31
42
35
23
43
23
24
15
19
13
36
29
29
25
29
17
30
28
Test 2
(Full marks: 30)
25
19
20
26
23
14
24
12
14
10
11
10
22
17
17
16
18
19
17
4. A fast food company produces hamburgers. The number of hamburgers made, and the
costs are recorded over a week.
Hamburgers made Costs
495
R2382
550
R2442
515
R2484
500
R2400
480
R2370
530
R2448
585
R2805
A Find the linear regression function that best fits the data.
B If the total cost in a day is R2500, estimate the number of hamburgers produced.
C What is the cost of 490 hamburgers?
5. The profits of a new shop are recorded over the first 6 months. The owner wants to predict
his future sales. The profits so far have been R90 000 , R93 000, R99 500, R102 000,
R101 300, R109 000.
A For the profit data, calculate the linear regression function.
601
44.5
CHAPTER 44. STATISTICS - GRADE 12
B Give an estimate of the profits for the next two months.
C The owner wants a profit of R130 000. Estimate how many months this will take.
6. A company produces sweets using a machine which runs for a few hours per day. The
number of hours running the machine and the number of sweets produced are recorded.
Machine hours
3,80
4,23
4,37
4,10
4,17
Sweets produced
275
287
291
281
286
Find the linear regression equation for the data, and estimate the machine hours needed
to make 300 sweets.
602
Chapter 45
Combinations and Permutations Grade 12
45.1
Introduction
Mathematics education began with counting. At the beginning, fingers, beans, buttons, and
pencils were used to help with counting, but these are only practical for small numbers. What
happens when a large number of items must be counted?
This chapter focuses on how to use mathematical techniques to count combinations of items.
45.2
Counting
An important aspect of probability theory is the ability to determine the total number of possible
outcomes when multiple events are considered.
For example, what is the total number of possible outcomes when a die is rolled and then a coin
is tossed? The roll of a die has six possible outcomes (1, 2, 3, 4, 5 or 6) and the toss of a coin,
2 outcomes (head or tails). Counting the possible outcomes can be tedious.
45.2.1
Making a List
The simplest method of counting the total number of outcomes is by making a list:
1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T
or drawing up a table.
die
1
1
2
2
3
3
4
4
5
5
6
6
coin
H
T
H
T
H
T
H
T
H
T
H
T
Both these methods result in 12 possible outcomes, but both these methods have a lot of
repetition.
603
45.3
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
45.2.2
Tree Diagrams
One method of eliminating some of the repetition is to use tree diagrams. Tree diagrams are a
graphical method of listing all possible combinations of events from a random experiment.
1
2
3
H T H T H T
die
coin
4
5
6
T H T H T H
Figure 45.1: Example of a tree diagram. Each possible outcome is a branch of the tree.
45.3
Notation
45.3.1
The Factorial Notation
For an integer n, the notation n! (read n factorial) represents:
n × (n − 1) × (n − 2) × . . . × 3 × 2 × 1
with the special case of 0! = 1.
The factorial notation will be used often in this chapter.
45.4
The Fundamental Counting Principle
The use of lists, tables and tree diagrams is only feasible for events with a few outcomes.
When the number of outcomes grows, it is not practical to list the different possibilities and the
fundamental counting principle is used.
The fundamental counting principle describes how to determine the total number of outcomes
of a series of events.
Suppose that two experiments take place. The first experiment has n1 possible outcomes, and
the second has n2 possible outcomes. Therefore, the first experiment, followed by the second
experiment, will have a total of n1 × n2 possible outcomes. This idea can be generalised to m
experiments as the total number of outcomes for m experiments is:
n1 × n2 × n3 × . . . × nm =
Q
is the multiplication equivalent of
m
Y
ni
i=1
P
.
Note: the order in which the experiments are done does not affect the total number of possible
outcomes.
Worked Example 204: Lunch Special
Question: A take-away has a 4-piece lunch special which consists of a sandwich,
soup, dessert and drink for R25.00. They offer the following choices for :
Sandwich: chicken mayonnaise, cheese and tomato, tuna, and ham and lettuce
Soup: tomato, chicken noodle, vegetable
Dessert: ice-cream, piece of cake
Drink: tea, coffee, coke, Fanta and Sprite. How many possible meals are there?
604
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
45.5
Answer
Step 1 : Determine how many parts to the meal there are
There are 4 parts: sandwich, soup, dessert and drink.
Step 2 : Identify how many choices there are for each part
Meal Component
Number of choices
Sandwich
4
Soup
3
Dessert
2
Drink
5
Step 3 : Use the fundamental counting principle to determine how many
different meals are possible
4 × 3 × 2 × 5 = 120
So there are 120 possible meals.
45.5
Combinations
The fundamental counting principle describes how to calculate the total number of outcomes
when multiple independent events are performed together.
A more complex problem is determining how many combinations there are of selecting a group
of objects from a set. Mathematically, a combination is defined as an un-ordered collection of
unique elements, or more formally, a subset of a set. For example, suppose you have fifty-two
playing cards, and select five cards. The five cards would form a combination and would be a
subset of the set of 52 cards.
In a set, the order of the elements in the set does not matter. These are represented usually
with curly braces, for example {2, 4, 6} is a subset of the set {1,2,3,4,5,6}. Since the order of
the elements does not matter, only the specific elements are of interest. Therefore,
{2, 4, 6} = {6, 4, 2}
and {1, 1, 1} is the same as {1} because a set is defined by its elements; they don’t usually
appear more than once.
Given S, the set of all possible unique elements, a combination is a subset of the elements of S.
The order of the elements in a combination is not important (two lists with the same elements
in different orders are considered to be the same combination). Also, the elements cannot be
repeated in a combination (every element appears uniquely once).
45.5.1
Counting Combinations
Calculating the number of ways that certain patterns can be formed is the beginning of combinatorics,
the study of combinations. Let S be a set with n objects. Combinations of k objects from this
set S are subsets of S having k elements each (where the order of listing the elements does not
distinguish two subsets).
Combination without Repetition
When the order does not matter, but each object can be chosen only once, the number of
combinations is:
n!
n
=
r!(n − r)!
r
where n is the number of objects from which you can choose and r is the number to be chosen.
For example, if you have 10 numbers and wish to choose 5 you would have 10!/(5!(10 - 5)!) =
252 ways to choose.
For example how many possible 5 card hands are there in a deck of cards with 52 cards?
52! / (5!(52-5)!) = 2 598 960 combinations
605
45.6
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
Combination with Repetition
When the order does not matter and an object can be chosen more than once, then the number
of combinations is:
(n + r − 1)!
n+r−1
n+r−1
=
=
r!(n − 1)!
r
n−1
where n is the number of objects from which you can choose and r is the number to be chosen.
For example, if you have ten types of donuts to choose from and you want three donuts there
are (10 + 3 - 1)! / 3!(10 - 1)! = 220 ways to choose.
45.5.2
Combinatorics and Probability
Combinatorics is quite useful in the computation of probabilities of events, as it can be used to
determine exactly how many outcomes are possible in a given event.
Worked Example 205: Probability
Question: At a school, learners each play 2 sports. They can choose from netball,
basketball, soccer, athletics, swimming, or tennis. What is the probability that a
learner plays soccer and either netball, basketball or tennis?
Answer
Step 1 : Identify what events we are counting
We count the events: soccer and netball, soccer and basketball, soccer and tennis.
This gives three choices.
Step 2 : Calculate the total number of choices
There
are 6 sports to choose from and we choose 2 sports. There are
6
2 = 6!/(2!(6 − 2)!) = 15 choices.
Step 3 : Calculate the probability
The probability is the number of events we are counting, divided by the total number
of choices.
3
Probability = 15
= 15 = 0,2
45.6
Permutations
The concept of a combination did not consider the order of the elements of the subset to be
important. A permutation is a combination with the order of a selection from a group being
important. For example, for the set {1,2,3,4,5,6}, the combination {1,2,3} would be identical
to the combination {3,2,1}, but these two combinations are permutations, because the elements
in the set are ordered differently.
More formally, a permutation is an ordered list without repetitions, perhaps missing some elements.
This means that {1, 2, 2, 3, 4, 5, 6} and {1, 2, 4, 5, 5, 6} are not permutations of the set {1, 2, 3, 4, 5, 6}.
Now suppose you have these objects:
1, 2, 3
Here is a list of all permutations of those:
1 2 3; 1 3 2; 2 1 3; 2 3 1; 3 1 2; 3 2 1;
606
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
45.6.1
45.6
Counting Permutations
Let S be a set with n objects. Permutations of k objects from this set S refer to sequences of k
different elements of S (where two sequences are considered different if they contain the same
elements but in a different order, or if they have a different length). Formulas for the number of
permutations and combinations are readily available and important throughout combinatorics.
It is easy to count the number of permutations of size r when chosen from a set of size n (with
r ≤ n).
1. Select the first member of all permutations out of n choices because there are n distinct
elements in the set.
2. Next, since one of the n elements has already been used, the second member of the
permutation has (n − 1) elements to choose from the remaining set.
3. The third member of the permutation can be filled in (n − 2) ways since 2 have been used
already.
4. This pattern continues until there are r members on the permutation. This means that
the last member can be filled in (n − (r − 1)) = (n − r + 1) ways.
5. Summarizing, we find that there is a total of
n(n − 1)(n − 2)...(n − r + 1)
different permutations of r objects, taken from a pool of n objects. This number is denoted
by P (n, r) and can be written in factorial notation as:
P (n,r) =
n!
.
(n − r)!
For example, if we have a total of 5 elements, the integers {1, 2, 3,4,5}, how many ways are
there for a permutation of three elements to be selected from this set? In this case, n = 10 and
r = 3. Then, P (10,3) = 10!/7! = 720.
Worked Example 206: Permutations
Question: Show that a collection of n objects has n! permutations.
Answer
Proof: Constructing an ordered sequence of n objects is equivalent to choosing the
position occupied by the first object, then choosing the position of the second object,
and so on, until we have chosen the position of each of our n objects.
There are n ways to choose a position for the first object. Once its position is fixed,
we can choose from (n-1) possible positions for the second object. With the first
two placed, there are (n-2) remaining possible positions for the third object; and so
on. There are only two positions to choose from for the penultimate object, and the
nth object will occupy the last remaining position.
Therefore, according to the multiplicative principle, there are
n(n − 1)(n − 2)...2 × 1 = n!
ways of constructing an ordered sequence of n objects.
607
45.7
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
Permutation with Repetition
When order matters and an object can be chosen more than once then the number of
permutations is:
nr
where n is the number of objects from which you can choose and r is the number to be chosen.
For example, if you have the letters A, B, C, and D and you wish to discover the number of ways
of arranging them in three letter patterns (trigrams) you find that there are 43 or 64 ways. This
is because for the first slot you can choose any of the four values, for the second slot you can
choose any of the four, and for the final slot you can choose any of the four letters. Multiplying
them together gives the total.
Permutation without Repetition
When the order matters and each object can be chosen only once, then the number of
permutations is:
n!
(n − r)!
where n is the number of objects from which you can choose and r is the number to be chosen.
For example, if you have five people and are going to choose three out of these, you will have
5!/(5-3)! = 60 permutations.
Note that if n = r (meaning number of chosen elements is equal to number of elements to
choose from) then the formula becomes
n!
n!
=
= n!
(n − n)!
0!
For example, if you have three people and you want to find out how many ways you may arrange
them it would be 3! or 3 × 2 × 1 = 6 ways. The reason for this is because you can choose from
three for the initial slot, then you are left with only two to choose from for the second slot, and
that leaves only one for the final slot. Multiplying them together gives the total.
45.7
Applications
Extension: The Binomial Theorem
In mathematics, the binomial theorem is an important formula giving the expansion
of powers of sums. Its simplest version reads
n X
n k n−k
(x + y) =
x y
k
n
k=0
608
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
45.7
Whenever n is any positive integer, the numbers
n!
n
=
k
k!(n − k)!
are the binomial coefficients (the coefficients in front of powers).
For example, here are the cases n = 2, n = 3 and n = 4:
(x + y)2 = x2 + 2y + y 2
(x + y)3 = x3 + 3x2 y + 3xy 2 + y 3
(x + y)4 = x4 + 4x3 y + 6x2 y 2 + 4xy 3 + y 4
1
1
The coefficients form a triangle, where each number
is the sum of the two numbers above it:
1
3
1
1
1
2
1
3
6
4
b
b
1
4
1
b
This formula, and the triangular arrangement of the binomial coefficients, are
often attributed to Blaise Pascal who described them in the 17th century. It was,
however, known to the Chinese mathematician Yang Hui in the 13th century, the
earlier Persian mathematician Omar Khayym in the 11th century, and the even earlier
Indian mathematician Pingala in the 3rd century BC.
Worked Example 207: Number Plates
Question: The number plate on a car consists of any 3 letters of the alphabet
(excluding the vowels and ’Q’), followed by any 3 digits (0 to 9). For a car chosen
at random, what is the probability that the number plate starts with a ’Y’ and ends
with an odd digit?
Answer
Step 1 : Identify what events are counted
The number plate starts with a ’Y’, so there is only 1 choice for the first letter, and
ends with an even digit, so there are 5 choices for the last digit (1,3,5,7,9).
Step 2 : Find the number of events
Use the counting principle. For each of the other letters, there are 20 possible choices
(26 in the alphabet, minus 5 vowels and ’Q’) and 10 possible choices for each of the
other digits.
Number of events = 1 × 20 × 20 × 10 × 10 × 5 = 200 000
Step 3 : Find the number of total possible number plates
Use the counting principle. This time, the first letter and last digit can be anything.
Total number of choices = 20 × 20 × 20 × 10 × 10 × 10 = 8 000 000
Step 4 : Calculate the probability
The probability is the number of events we are counting, divided by the total number
of choices.
1
000
Probability = 8200
000 000 = 40 = 0,025
Worked Example 208: Factorial
609
45.8
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
Question: Show that
n!
=n
(n − 1)!
Answer
Method 1: Expand the factorial notation.
n × (n − 1) × (n − 2) × ... × 2 × 1
n!
=
(n − 1)!
(n − 1) × (n − 2) × ... × 2 × 1
Cancelling the common factor of (n − 1) × (n − 2) × ... × 2 × 1 on the top and
bottom leaves n.
n!
So (n−1)!
=n
n!
Method 2: We know that P (n,r) = (n−r)!
is the number of permutations of r
objects, taken from a pool of n objects. In this case, r = 1. To choose 1 object
from n objects, there are n choices.
n!
=n
So (n−1)!
45.8
Exercises
1. Tshepo and Sally go to a restaurant, where the menu is:
Starter
Main Course
Dessert
Chicken wings
Beef burger
Chocolate ice cream
Mushroom soup
Chicken burger
Strawberry ice cream
Greek salad
Chicken curry
Apple crumble
Lamb curry
Chocolate mousse
Vegetable lasagne
A How many different combinations (of starter, main meal, and dessert) can Tshepo
have?
B Sally doesn’t like chicken. How many different combinations can she have?
2. Four coins are thrown, and the outcomes recorded. How many different ways are there
of getting three heads? First write out the possibilites, and then use the formula for
combinations.
3. The answers in a multiple choice test can be A, B, C, D, or E. In a test of 12 questions,
how many different ways are there of answering the test?
4. A girl has 4 dresses, 2 necklaces, and 3 handbags.
A How many different choices of outfit (dress, necklace and handbag) does she have?
B She now buys two pairs of shoes. How many choices of outfit (dress, necklace,
handbag and shoes) does she now have?
5. In a soccer tournament of 9 teams, every team plays every other team.
A How many matches are there in the tournament?
B If there are 5 boys’ teams and 4 girls’ teams, what is the probability that the first
match will be played between 2 girls’ teams?
6. The letters of the word ’BLUE’ are rearranged randomly. How many new words (a word
is any combination of letters) can be made?
7. The letters of the word ’CHEMISTRY’ are arranged randomly to form a new word. What
is the probability that the word will start and end with a vowel?
610
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
45.8
8. There are 2 History classes, 5 Accounting classes, and 4 Mathematics classes at school.
Luke wants to do all three subjects. How many possible combinations of classes are there?
9. A school netball team has 8 members. How many ways are there to choose a captain,
vice-captain, and reserve?
10. A class has 15 boys and 10 girls. A debating team of 4 boys and 6 girls must be chosen.
How many ways can this be done?
11. A secret pin number is 3 characters long, and can use any digit (0 to 9) or any letter of the
alphabet. Repeated characters are allowed. How many possible combinations are there?
611
45.8
CHAPTER 45. COMBINATIONS AND PERMUTATIONS - GRADE 12
612
Appendix A
GNU Free Documentation License
Version 1.2, November 2002
c 2000,2001,2002 Free Software Foundation, Inc.
Copyright 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.
PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.
APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
619
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD and standardconforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.
The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or non-commercially,
provided that this License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section A.
You may also lend copies, under the same conditions stated above, and you may publicly display
copies.
COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
620
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: FrontCover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.
MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections A and A above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:
1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
621
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.
14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.
15. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organisation as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.
COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the
terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.
622
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.
AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.
If the Cover Text requirement of section A is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.
TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section A) to Preserve its Title (section A) will typically require changing the actual
title.
TERMINATION
You may not copy, modify, sub-license, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sub-license or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.
FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
623
APPENDIX A. GNU FREE DOCUMENTATION LICENSE
Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.
ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
c YEAR YOUR NAME. Permission is granted to copy, distribute and/or
Copyright modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
624
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement