EFFECT OF MIXED-GRASS COVER AND by Barney Paul Popkin

EFFECT OF MIXED-GRASS COVER  AND by Barney Paul Popkin
EFFECT OF MIXED-GRASS COVER AND
NATIVE-SOIL FILTER ON URBAN RUNOFF QUALITY
by
Barney Paul Popkin
A Thesis Submitted to the Faculty of the
DEPARTMENT OF HYDROLOGY AND WATER RESOURCES
In Partial Fulfillment of the Requirements
For the Degree of
MASTER OF SCIENCE
WITH A MAJOR IN HYDROLOGY
In the Graduate College
THE UNIVERSITY OF ARIZONA
1973
STATEMENT BY AUTHOR
This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the
Library.
Brief quotations from this thesis are allowable
without special permission, provided that accurate acknowledgement of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript
in whole or in part may be granted by the head of the major
department or the Dean of the Graduate College when in his
judgment the proposed use of the material is in the interests of scholarship. In all other instances, however,
permission must be obtained from the author.
SIGNED:
APPROVAL BY THESIS DIRECTOR
This thesis has been approved on the date shown below:
(1)-Le--12)%-.A-X4 2 ,40uk.4g.L.1
(—)
SOL DONALD RESNICK
Professor of Hydrology
and Water Resources
Date
ACKNOWLEDGMENTS
Gratitude is expressed to: Mr. Blencowe Daniel and
the Directors of the Tucson Medical Center for use of their
land; Prof. C. Brent Cluff, Drs. Kenneth J. DeCook and
Lorne G. Wilson, and the late Al Hurley for early planning
and design; Messrs. Dennis Scheall, William J. Staggs, their
assistants and other friends for construction and maintenance,John and Mary Falk for irrigation supply; thesis advisor Prof. Sol D. Resnick, graduate committee chairman Dr.
Eugene S. Simpson and committee member Dr. Robert A. Phillips
for constructive counseling; Mr. and Mrs. Walter Popkin for
personal encouragement; Ms. Susan H. Kuyper for personal
support; and the immortal George Frederick Handel for his
Watermusic.
Appreciation is given to the staffs of the Sanitary
Engineering Laboratory, Soil and Water Testing Laboratory
and Water Resources Research Center of The University of
Arizona for their cooperation. Recognition is made of the
assistance of the University Computer Center.
Research upon which this paper is based, Project No.
B-023-ARIZ, was supported in part by funds provided by the
United Stated Department of Interior, Office of Water
iii
iv
Resources Research, as authorized under the Water Resources
Research Act of 1964.
This thesis is dedicated to those workers who collect
and interpret hydrologic data in hope of understanding,
describing and predicting the operation of water-related
processes.
TABLE OF CONTENTS
Page
LIST OF TABLES vii
LIST OF ILLUSTRATIONS viii
ABSTRACT ix
1
3
5
7
INTRODUCTION
Justification
Objective
PREVIOUS WORK
Urban Hydrology in Arid Lands
Grass Filtration
Soil Filtration METHODS OF DATA COLLECTION AND ANALYSIS 7
9
12
17
17
25
25
25
Experimental Facilities
Operational Procedure
Experimental Method
Analytical Method
31
RESULTS
Numerical Results Trial I Trial II Trial III
Trial IV Graphical Results Sources of Errors 31
33
34
35
37
38
41
INTERPRETATION OF RESULTS 43
CONCLUSIONS AND RECOMMENDATIONS
46
54
FUTURE STUDIES V
vi
TABLE OF CONTENTS--Continued
Page
APPENDIX A:
SUMMARY OF WATER-QUALITY STANDARDS AND
CRITERIA
57
APPENDIX B:
SOURCE AND SIGNIFICANCE OF WATER-QUALITY
CONSTITUENTS IN URBAN RUNOFF WATER . . 62
APPENDIX C:
METHODS OF BIOLOGICAL AND CHEMICAL
ANALYSIS OF WATER SAMPLES
APPENDIX D:
BASIC WATER-QUALITY DATA FOR FALL 1971
TRIALS
APPENDIX E:
SUMMARY OF WATER-QUALITY DATA FOR TRIALS
AT GRASS AND SOIL FILTER WATER-TREATMENT
PILOT PLANT IN TUCSON, ARIZONA
79
GRAPHICAL ANALYSIS OF SELECTED WATERQUALITY DATA FOR FALL 1971 TRIALS . . .
91
APPENDIX F:
REFERENCES
71
73
106 .
•
LIST OF TABLES
Table
1.
2.
Page
Arcadia Wash Water Quality, July 1969 to
October 1970 Comparison of Tucson Urban Storm Runoff Quality
with Recommended Standards 4
6
3.
Chemical Analysis of Lysimeter Soil Samples
21
4.
Textural Analysis of Lysimeter Soil Samples
22
5. Package Specifications for Grass Seed Cultivated 23
6.
Summary of Fall 1971 Trials at Grass and Soil
Filter Water-Treatment Pilot Plant in Tucson,
Arizona 7. Conditions at Grass and Soil Filter WaterTreatment Pilot Plant in Tucson, Arizona During Fall 1971 Trials
8.
26
27
Textural Analysis of Grass-Filtered Sediment . . . 28
9. Estimated Quality of Filtered Urban Storm Runoff . 49
vii
LIST OF ILLUSTRATIONS
Figure
Page
1. Design of Grass and Soil Filter WaterTreatment Pilot Plant in Tucson, Arizona . .
. 18
2. Location of Grass and Soil Filter WaterTreatment Pilot Plant in Tucson, Arizona . .
. 19
vi i i
ABSTRACT
A grass-covered soil filter of native calcareous
loam, 200-feet long, 4-feet wide and 5-feet deep, was tested
for effectiveness as a water-quality treatment for Tucson
urban storm runoff. Water was pumped from Arcadia Wash and
applied to the filter in four trials in Fall 1971. Inflow
and outflow volumes were measured, sampled and analyzed for
important water-quality variables.
For grass and grass-soil filtration respectively,
the following maximum percent reductions, compared to untreated runoff, occurred: For chemical oxygen demand (COD),
19 and 88; for suspended solids, 34 and 99.6; for volatile
suspended solids, 26 and 97; for turbidity, 97 and 98; for
total coliforms, 84 and 98; and for fecal coliforms, 50 and
98.
Grass-soil filtration, during the four trials, produced water too saline for most uses. After the initial
stabilization period, grass-soil filtration was more effective
than grass filtration in water-quality improvement. Grasssoil filtration had, with time, increasing COD and salt concentrations in the early part of each trial, and decreasing
infiltration rates.
ix
X
Grass maturity and soil compaction, following construction of the filter, initially increased efficiency of
the water-quality improvement process. Grass filtration
upgraded cool-season urban runoff for recreation, irrigation,
artificial groundwater recharge, fisheries and wildlife,
except in the initial part of some trials and in the grassestablishment period when COD, volatile suspended solids
and coliforms increased. Chlorination of treated runoff is
necessary, particularly for warm-season flows, when recreational water use is anticipated.
INTRODUCTION
Water in semiarid and arid urban regions is a limited resource which must be managed economically and efficiently. Water problems in such an environment are unique
in two ways: The watershed properties change rapidly in time
with urbanization, and hydrologic inputs of meteorological
phenomena are difficult to predict. Hydrologic effects of
urban growth include: An increase in water demand; an increase
in storm runoff peaks and volume resulting in an increase in
flood hazard; and degradation of streamflow quality. Southwestern cities are growing at rates that make these hydrologic effects significant. This growth is reflected by the
increase in construction of flood-detention and routing
structures, public water supply pipelines, water wells, and
water and wastewater treatment plants.
The University of Arizona undertook an interdisciplinary Urban Hydrology Study with support of the Office of
Water Resources Research, U.S. Department of the Interior,
in response to water management problems in an arid urban
area. Objectives of the above project are the following:
1) The collection and interpretation of hydrologic
data in the Tucson, Arizona metropolitan region.
1
2
2)
The development of management procedures for
urban runoff in arid lands.
3)
The application of a systems approach with
interdisciplinary objectives to the problems
defined.
4) The training of students with an interest in
water resources.
Considered is a management procedure for reducing
flood peaks by diverting channel flow over grassed strips to
detention areas and lined surface ponds. Benefits would be
flood-control protection, reduction of costs incurred by
replacement of small hydraulic structures and water use for
landscaping and water-related recreation. Ponds could be
used for water detention and subsequent release to stream
channels, or recharge facilities,or for development as recreational areas. Groundwater recharging could be achieved
by channels, pits, shafts or wells following water-quality
treatment. This plan has benefits of recharge and recreation. Recreation could include water-related activites,
open spaces with or without ponds, greenbelts or golfways.
Reclaimed flood water could supplement irrigation water for
a park or serve as the source for artificial recharge. Captured flood waters could be used to support greenbelts and
parks with ponds. After treatment, storm runoff might supply
water-related recreation. Utilization of flood water for
3
recharge or recreation would reduce demands from limited
groundwater and costly surface-water supplies. The total
management plan would consider total costs, nature of predictability of streamflow quality and quantity, political
initiative and legal factors. Such a scheme requires comprehensive analysis (Water Resources Research Center
[W.R.R.C.2, 1969.
Justification
Water quality is important for both recharge and recreation. Recharge water should be free of algae, bacteria,
dissolved gases, organic material, sediment and turbidity.
It should be of a caliber which will not degrade the water
stored in the aquifer if groundwater quality is to be preserved. Surface-ponded water has quality restrictions depending on intended use. Water for fishing, public consumtion, swimming and types of irrigation must meet legal and
public health standards (Federal Water Pollution Control
Administration [F.W.P.C.A.], 1968). See Appendix A, p. 57.
Storm runoff in the Tucson metropolitan area, see
Table 1, is typically high in fecal and total coliform bacteria, organic matter, sediment and turbidity, while low in
total dissolved solids and most inorganic chemical constituents. It may at times have a high temperature and contain
traces of pesticides and phenols. It is generally unsuitable for drinking and recreational uses without treatment.
d
1
0
0,
I
st
1
.4
h
-;
4
04
.
1
1 0 fi id .0 tO 0 I
r's
•
•
•
•
•
.
.0 tr- 0 ri 4 I
I
1
CI
sO
0.
o
•-•
t.
r. 4
0
•
tO
S-
61
•
id
•
4
I
I
I
ri
•
e'N
0)
0 •
I,
-1
e°.
•
4
Ch
0
I
ri
.
I
0 0 h .°1
0 1C, 0
•
. •
0 0 0 • •
0 0 N .-4 .-1
tO
0
•
1, ,
CO
ri
ei 0 0
•
,-
.^
es 4
I
t.
.0 ri
kt.
•
0
0
•
•
.
,nr•Nri0
ese
C)
0
m
1-1
0 Q
c:0
•
•
•
NNNN
Q
N
,-; .-f
-31,1
04
(Ne
4
m
0 0 000 0 0 d
0
4
4.4
•••n
cn
tn
0
DO
N N
ri
N
•
N
N
,
I
0
y
•
03 I
o
cr• --t
N
•
0, tO
4 0, el
•
0000
•11
0.
.4
I
"
0
4,4,
•
•
fi Ci
r-
o
0, 0, 43h-t0 0
•
«'0 0 \ .4 ..4 4 w'
U) 4U)
03 0, I-- 0 00• N ...4 •--4 0.1 .-1 .-4 ...1 .-4
r- 0
h 0, N
,..1
•-;
.
ri
.
ri
sp r", r-1
•
• •
.13 c; Io ses sr.
N N LN
NO, ;Il
h. 40 000
•
0
N
sr;
0
tr% 47. N
«S
ri
(si r:
0 sO
20„.
ri
0
•
•
01 1
°
N
•
10 <0
riN
1"..
t- 2 G .4)
es os
,
n-4 h <0 O.
I
D:, 0 g.1
N
0 0 0 0 0 0
NO -4 tO
I
1
1
I
I
I
0. NO <00111
CY 61 I I I
(ti
z g
,0 ,6 4 4 es. 4 4
z g
00
0 N Os -1 VO LN 4 0 h 0 h.
• •
•
•
4 .r. N -.; ri
CO N
(..) g
I
I
0 0 tO 0 sO 0 0 ,c, ts- 0 4U) O' In N : I I
.
.
.
.
•
•
•
•
N •-1. (...• a. e.., OS .., "0 ‘0 s0
I•••
•-•,
'0
N
...
1
I
.0 el r.", r..1 VS N N N N N .--1 4 N m.
I
I
O
0
0
t's
'O C NU)
N .-4
ss.
C.) [10
4
'S
C..•
00
8000-10N
o
LIN tr•
1•14
N
• •
.
•
•
0 00
op o
0
N
ct,
4
°g
P.
Q
0
VO
N
r-I
CO
es.
co Do
N
CD
•
•
cs, r-4
I
I
I
I
r r r
0 0
Os 0, h
N CD m
•res Ci 0, -4 Os
H .-1 n- 4.-4 .-1 0, H 04 01 ,C0
4-1
N
4 «s to •nn Os N
-t 4••5 to N
CN1
.-4
N 1
•40•-1
•-.4
1
S D:, 0 se. -1 -1 h s0
N 4 .4 •0 .4D sa
0 t- 0 0`. CO Cc\ CO ri vo
N
CD rat WN
.. 1ri
ri
N
cp.
rat
m
û.
N
0. C 0
r•N
N N 4 04 0. , t) cv
rat rat
4=,
I
N I
4 .0 ,.... cv
0,
h Os
Ca OD
OD
HE
o.,
•
-4 -1 -4 ..,-,
4
NO
0, 00 h 0
•0
to
trs CD
Ca 00
CD o-4 .-4
N
.-1
f-4 E
Ca
C; 4 .4
4 ri
tr, 05.S
4
N 0 ,4", 0,
0 e's
‘.0 N
h
el 4 0, 4-1
tO
\
N
h to .13 00
ri ri
nt N 'O v.
-C
OO
«s040N 0
N O• 4-4 0, N 4 s NO el
VI, CD 4
N CD -4 0, 0 tO Os
•IN es 4 N
N r^t
N
ri .4 ri
0
Ch. -4 0 0 0 tO
N
•
•
•
0 0 0 0 0 0 trN N. 0 rat te ON •0 4`,
‘I's 1.r• V:14
C-a• N CO
CO CO CO CO CO
tO
r-1
0.n 0 0
N. C....,
CO
cs.
os 0, os 0, os
o
000000000
.0 .0 .0 st) ,C) VI) h 000
h
h h h h 0- N N h h N
0, C^ 0, 0, 0, C" 0, Cs ON 0, Os Os Os 0, Os Os Os os Os
ri ri
•-n
rai
/-1
rat
...I
•
4-1
•
n-1
• •
•
• •
•
•
•
•
• •
0- 0 ln 0 04 0
,-4 N N
rd
`,"
te
•
•
•
..
•
ta{
a
:A 0 .1 V
.) °a d d d Cl
cl 1
;'
.2
.2
'0‘'
.2 .2 0) 0 0
4
5
Table 2. Methods of water-quality treatment, consistent
with water management in the arid environment, require
evaluation. Consideration of water quality in water-supply
development is particularly important in this environmentally conscious era (Carlin, 1971).
Objective
This research paper presents an analysis of the
effectiveness of a grass and soil filter as a water-quality
treatment for Tucson urban storm runoff. This research
considers a broad range of biological, chemical, and physical properties of runoff treated by filtration under field
conditions. Of particular interest are chemical oxygen
demand, total dissolved solids, suspended and volatile suspended solids, turbidity, and coliform bacteria. These
variables are important because they limit the use of urban
runoff for domestic, recreational, and agricultural use.
See Appendices A and B, p. 57 and 62. Pesticides, phenols,
and trace elements were not considered in this study because
the few recorded analyses of these variables indicate concentrations well below all public health standards.
A
preliminary evaluation of the filter was presented to the
Arizona Adademy of Science (Popkin, 1972). Quantification
of the effectiveness of this treatment process should be
useful for urban watershed management in an arid region.
6
0
0
CD
..,
C
0
• el
4,
CI
la
7
C9
H
0
C)
CO
.
,
:
0
:1
tn :
.
.
O
0
. ,
k'
.--I 0
.-1
0
V
0
0
CD
0./
A
4, 1 ..d.
AC)
r
t
.
un
cv
y
,--n
y
0
.. Z
0..
LA
0
0_4
CD
CD I-,
.•- 0
LA >
0
4-10
0
..r)
cn
4-)
0>
00
0
1-1
i
CO
0'
:
N)
CD
LA
CD
LA
0
0
CD
Ln
0
LA
n1
441
0
.-.
c..1
A
A
A
A
A
o
o
o
0
cp
o
a)
L.
00
o ..
ct Ln
.
LAO
•
NJ .0-
•
o
• E
Let H
IC?
0 >
Lc) 0
LA 0
.-,
IA
)0
n
H
Ln
Ln
Ln
•--I
CD
Le)
01
NI
11C01
C. 0
0
..dt CO
Ln
•
en
o
0
Ln
Lc"
4 .5
ct,
ct,
cy
y
to
LAO
0
0
C'-1
.-.
to
o
...., t.
0
H
LAO
• E
LAO
N-0
C))
0 >
LAO
0 0
CO
e_4
Ln
V.,
to
c)
C.4
Ln
•
V/
NI
1
o
.--1
.-,
CO
IC
>-.
.
.
c.-.
LI)
LEI
•
0
.--.
co
CI-,
Ln
L/1
1
0
.
CO
H
0
Ln
•
•-,
V
at
to
c
0
Z
..)
.
0
c)
,-1
0
0
Ln
V
4-1
O
•
v•L
o
o
O
01
1"-n
IX)
E
E
7
0
0
c,
t/4
I
LAC
LAC
CO
c.d
1--1
v't
OIC
OC
LA
>
•,1
•
•Lt
e-4
1-1
V)
•
C)
•
a.
•
CO
>4
1••••1
E
0
U
tr)
•10
• NI
...-1
0
0
CO
NI
\
Z.
•--1
-....,
ba
..--,
>...
10.0
.7} 0 0
>
I
l/I •LS:
•
••-•-' . X
010
, I : nZ rrL.
C
CO
a
5
00
›,.
X
..-,
.
.
t.o
5
X
CI
...C...
-
----CO
a
X
••
L0
ft,
'7
H
I-•
0
2:
0
St
k
O
V)
.--/
0
C
H
0
0
0
--,
n -•
.C
0.
0
(..)
g
F.
E
a
• >.
•-. 0 CO
0
0
I-) ‹
•
•-t
• X
LI 0 ri
C I 7. re.
0
P.
1-1
00
2'
H
0
O.4
E
>,
1-1
....„
a.
0
C
0
-••-,
• ',-,
00 CC
"7 > H
C.) ee, 7
>
L.,
N-I •-• C
O- U)
101M
0
>
.<
(COLA
..-1
al
O
=
0.0
.
P.
cl
0-,
VI
4,
•NI
C
O
4.-n
C
0
•••
1.1
0
5
tn
a+
C?
.0
C)
>
•-n
•
0
0
••
}.
4.,
..-1
7
•N,
0
tfl
VI
>1
0
Ii
--1
t0
NI -....
1) 0?)
4-• E
0
f--.
0
0.
OC
01
0
u
co.
PREVIOUS WORK
Hydrologic literature is abundant in studies related
to urban problems and water treatment by grass and soil
filtration. However, most urban hydrology investigations
are based in humid regions and rarely in arid or semi-arid
lands. Grass and soil filtration research is generally
restricted to a few biological or chemical parameters and
processes as observed in a laboratory setting. Literature
reviewed here was selected because of its relevance to the
objectives of this thesis.
Urban Hydrology in Arid Lands
Mische (1971) reviewed water-quality investigations,
treatment of storm water runoff and water reclamation projects in the urban environment with a view toward using
urban storm runoff as a raw water source. Reviewed studies
were undertaken in Cincinnati, Detroit, Durham (North Carolina), Leningrad, Moscow, Seattle, Stockholm, Tulsa and
Washington (D.C.). Mische found that the quality of urban
runoff is variable throughout the world and requires study
in terms of topographical and land-use variables, climate
and hydrology.
Mische (1971) presented the case and problems involved for treating Tucson urban runoff by coagulation for
7
8
use as a water supply. DeCook (1970) conceived of a water
industry in Tucson which includes storm runoff as an augmented water source. He suggested that urbanization may
increase its volume of storm runoff by three to five fold.
Atala (1969) preliminarily described municipal surface runoff in Tucson. Dharmadikari (1970) compared the quality of
runoff from diversified watersheds in Tucson. Resnick and
DeCook (1970) discussed a water-management plan for storm
runoff in arid urban environments using Tucson as a model.
This plan has historical roots in a publication of The
University of Arizona and U.S. Geological Survey (1959).
The plan was outlined in the popular press by Terlizzi (1972).
It is developed in detail in U.S. Office of Water Resources
Research Project Completion Report on Matching Grant B 023
-
ARIZ (in Prep.) as a result of W.R.R.C. (1969).
The influence of urbanization on water quality of
storm runoff is recognized in the literature. Weibal,
Anderson and Woodward (1964) presented a discussion of
streamflow regulation for water-quality control in urban
areas. They were concerned with the potential waste load
of urban storm runoff with regard to chemical oxygen demand,
biological oxygen demand, suspended solids, phosphates and
nitrogen. Geldrich, Best, Kenner and Von Donsel (1968)
observed seasonal differences in bacteria] densities in
urban and rural runoff due to fecal contamination from cats,
9
dogs and rodents. They concluded that urban storm water
can be a major source of pollution to bathing beaches, water
supplies and public recreation in Ohio. Cleveland, Reid
and Walters (1969) reviewed pollution from urban land activity. McGriff (1972) observed that urbanization degrades the
quality of surface and ground water as it increases sediment
load carried by streams, reduces groundwater recharge, promotes eutrophication and causes serious temperature variations in streams. DeCook (1970) recognized that urban runoff quality depends on a complex association of environmental factors.
Grass Filtration
Improving the quality of sewage effluent or flood
water by grass filtration is a practice well documented in
the literature. According to Searle (1949), the City of
Melbourne, Australia has employed grass filtration for
domestic sewage treatment since 1932. With average hydraulic loading of about 0.1 acre feet per acre per day (ac ft/
ac/day) and a detention time of 3.1 days, biochemical oxygen
demand (BOD) was reduced during filtration from 322 mg/1 to
less than 20 mg/1, and suspended solids were reduced to
20 mg/l. Searle (1949, p. 1) noted "that purification is
effected by the reduction of the organic pollution by oxygen dissolved at the water surface, and in the presence of a
biologically active film built up on the herbage."
10
Porges and Hopkins (1955) reported that BOD, suspended solids and bacterial populations were reduced by 67,
99 and 89 percent respectively with a hydraulic loading of
0.04 ac ft/ac/day and an average detention time of 14.5
hours.
Hopkins, Neel, and Nelson (1956) reported 55 per-
cent and virtually complete removal of BOD and suspended
solids respectively for a loading of 0.09 ac ft/ac/day with
a 25-hour detention. Truesdale, Birkbeck and Shaw (1964)
found the dicotyledonous forbe species Ranunculus
sceleratus effective in improving tertiary sewage effluent
in three treatment plots in England. They concluded "The
observation that loadings as high as 1 million gallons per
acre per day can be satisfactory applied to grass plots
makes this a particularly attractive 'polishing' method comparing favourably both in loading and purification with
treatment by slow sand filters " (Truesdale and others,
1964, p. 23).
Wilson and Lehman (1966) used three parallel Bermuda
grass strips to test the effectiveness of grass filtration
on sewage effluent. Coarse particles were removed in the
first trial with an average grass height of about four
inches, and a maximum BOD reduction of about 44 percent with
a loading of 1.5 ac ft/ac/day and a detention time of about
8.5 hours. Suspended solids were removed in the second
trail with an average grass height of about 14 inches, and
a maximum BOD reduction of about 33 percent with a loading
11
of 1.4 ac ft/ac/day and an 8.5 hour detention. The third
trial, for grass height of 14 inches, loading of 1.7
ac ft/ac/day and duration of eight hours, showed BOD removal of 18 percent, and COD reduction of 21 percent. It was
concluded that "grass height and density should be great
enough to ensure operation of the grass plots as true filters," that "COD is a more reliable method for characterizing treatment than BOD in samples containing high algal concentrations," and that "Bermuda grass demonstrated the
ability to tolerate and recover from inundation and prolonged flooding"
(Wilson and Lehman, 1966, p. 19).
Wilson (1967) reviewed the work of Brown (1943), who
referred to the "vegetative screen" or "dense growth of
vegetation through which sediment-laden water must flow to
enter a reservoir." Wilson (1967) stated the requirements
for grasses selected for filtration as:
"(a) Deep root systems to resist scouring if swift
currents develop
(b) Dense, well ramified top growth
(c) Resistance to flooding and drought
(d) Ability to recover growth subsequent to inundation with sediment
(e) Yield economic returns either through the production of seed or hay"
(Wilson, 1967, p.35).
12
Wilson (1967) reported on grass filtration trials at
two locations in Arizona, analyzing sediment deposit, fil-
tration length and grass recovery after inundation. He suggested mechanical sedimentation, as developed by Cox and
Palmer (1948) and Palmer (1946), and adsorption, as developed by Jorden (1962, 1963) as possible mechanisms for sediment reduction by grass filtration. Wilson and Cluff (1962)
were successful in letting grass take the mud out of water.
Lehman (1968) investigated grass filtration of domestic sewage effluent for trace element removal by applying oxidation-
pond treated waste water to a half-acre plot of common
Bermuda grass. Large quantities of iron, manganese and
copper were taken up by the grass.
Soil Filtration
When polluted water moves through soil, dynamic biological, chemical and physical processes occur. Some of
these processes are nitrification, denitrification, miscible
displacement, dispersion, diffusion, adsorption, hydration,
leaching, solution, eluviation, calcification and ion exchange. Babcock's (1963) classical paper on the theory of
the chemical properties of soil colloidal systems at equilibrium extended thermodynamics to the soil-water system.
Dutt, Shaffer and Moore (1972) have developed a comprehensive computer simulation model of the dynamic biophysicochemical processes in soils.
13
Flow through porous media, when encroaching fluid is
completely mixable, or miscible, with media fluid, is called
miscible displacement (Sadler, Taylor, Willardson, and
Keller, 1965). The process occurs when percolating water
mixes with the soil solution of a different salt concentration. Molecular diffusion, hydrodynamic dispersion, and
chemical and physical interactions between the media and the
solute affect miscible displacement (Sadler, and others,
1965; Nielsen and Biggar, 1962).
Sadler and others (1965) concluded that hydrodynamic
dispersion is a result of the complexities of the pore system. Molecular diffusion, they concurred, is the spreading
of an invading fluid by the "intrinsic motion of the molecules: Mineralogical, textural and structural soil components
are important factors in miscible displacement as well as
most other soil-water processes" (Sadler and others, 1965,
p. 348).
Adsorption strongly influences the quality of percolating water. Clay minerals generally have negatively
charged surfaces because of broken chemical bonds, traceelement and isomorphic substitution in the clay matrix.
Clay minerals enter into ion-exchange reactions, even with
organic cations and bacterial populations (Gieseking, 1949;
Boyd and others, 1969; and Kagawa, 1971). The classical
ion exchange of inorganics is discussed by Wilkins (1970),
14
Jensen and Riley (1970) and Reininger (1970) in laboratory
and computer-simulation studies. Lehman (1968) indicated
that iron, manganese, nickel, copper, zinc, lead and cadmium
were removed from domestic sewage effluent by adsorption in
a lysimeter study. Sidle and Johnson (1972) showed how
nitrogen was reduced by adsorption of ammonium on exchange
sites in soil and by denitrification when sewage effluent
was passed through turfgrass-soil pots. Nitrogen adsorption
is discussed by Pruel and Schroepfer (1968).
Organic cations are held on clay surfaces by van der
Waals and coulombic forces (Hendricks, 1941). Greenland
(1965) comprehensively reviewed the interaction between
clays and organic compounds. The stability of the cationclay complex depends on the nature of the bond and the complex where water and organic molecules compete for adsorption sites on clay surfaces (Tahoun, 1971). Organic cations
are adsorbed on clay, forming several types of complexes
depending on the exchangeable cation (Tahoun and Mortland,
1966a, 1966b). Polar nonionic organics are adsorbed by clay
minerals through the formation of hydrogen bonds (MacEwan,
1948). Exchangeable cations on clay surfaces affect the
degree of clay expansion upon a given organic: expansion is
smaller for larger cations with greater charge (Barshad,
1952). Adsorption increases organic-matter resistance to
15
microbal attack and increases the interlamellar spacing of
the clay mineral resulting in clay swelling (MacEwan, 1948).
Stone (1958) suggested that soil filtration reduces
the bacterial content of sewage. Merrell, Katko and Pintler
(1965) described the Santee, California waste water reclamation process which improves effluent quality by soil filtration. Boyd and others (1969) studied the effects of particulate matter and bacterial surface charge on bacteria mobility.
They found that "the size of sand granules and the specific
type of ion present in bacterial suspensions greatly affected the mobility of bacteria through sand columns " (Boyd
and others, 1969, p. ii). Soil-moisture content, presence
of organic matter and/or available nutritional compounds,
and bacterial strain were the most important factors in
persistency of bacteria in that laboratory study. Stone
(1958), Bocko (1965) and Merrell and others (1965) indicated
that Escherichia coli reductions may be obtained by filtering sewage effluent through four to seven feet of fine sand
under aerobic conditions.
Takai, Kagawa and Kobo (1969) and Kagawa (1971)
presented evidence of soil used as adsorbent for bacteria
in the framework of "selective adsorption." Merrell and
others (1965) showed that bacteria adsorption is dependent
on pH. Coliforms are negatively charged Gram-negative
bacteria, with respect to staining. Krasil'nilov (1961)
16
indicated that Gram-positive bacteria are more adsorbed by
soil than Gram-negative ones. Gunnison and Marshall (1937)
and Zvyagintsev (1959) did not find this tendency with charcoal and glass as adsorbants. Kagawa (1971) found that
Gram-positive bacteria (Micrococcus sp. II, Bacillus sp.,
Brevibacterium sp.) were more adsorbed than Gram-negative
bacteria (Pseudomonas spp. I and II, Micrococcus sp. I).
He also noted that bacteria cells in the exponential growth
stage were more adsorbed than the cells in the stationary
growth stage in his laboratory study. Kagawa (1971, p. 150)
observed that "bacteria which have the abilities to decompose polymeric organic substances such as starch and gelatin
are more adapted to live on the organic sites of the surface
of soil particles than those bacteria which have not these
abilities."
METHODS OF DATA COLLECTION AND ANALYSIS
Experimental facilities and operational procedures
are described in this section. Facilities consist of a
grass and soil filter water-treatment pilot plant. Operational procedures consist of experimental and analytical
methods.
Experimental Facilities
A grass and soil filter water-treatment pilot plant,
Figure 1, was constructed through the Water Resources Research Center in the Summer of 1971 on Tucson Medical Center property in northeast Tucson, about 200 feet west of
ephemeral Arcadia Wash, see Figure 2. Mische (1971, p. 38)
described Arcadia Watershed as being 60.4 percent residential, 6.1 percent commercial and 0.0 percent industrial.
The watershed is 13.3 percent paved 15.6 percent undeveloped and open, 2.1 percent grassed parks, 1.7 percent unpaved
roads and 0.8 percent institutions. Population density is
6.98 people per acre. Storm runoff water in the watershed
is routed through streets and the unlined Arcadia Wash. The
Wash joins ephemeral Alamo Wash, which drains an urbanizing
area to the east. The two united washes then flow unnamed
and merge with Rillito Creek, a major ephemeral stream to
17
18
GRASS £3i
SOIL FILTER
INTAKE
PUMP
INTAKE PIPE
Figure 1.
Desi gn of Grass and Soil Filter
Wate r-Treatment Pilot Plant in
Tucs on, Arizona
19
RILLITO CREEK
(. GLENN STREET
I rl
.
U
PI WTI( -... -- 1.. •,_
PLANTir
1 TUCSON S
'
i MEDICAL .•
•
•11/4„i CENTER
ARCADIA
WASH
•
0
0.5
MILES
TUCSON
1.0
î
ARIZONA
Figure
2.
Location of Grass and Soil Filter
Water-Treatment Pilot Plant in
Tucson, Arizona
20
the north. Arcadia Wash, above the filter, drains a four
square mile urban watershed. Plant design was based on
results of a literature search, soil sampling and experience. This site was selected because of potential recreational development nearby and its representative watershed
properties.
The pilot plant is a lysimeter approximately 200-feet
long, 4-feet wide and 5-feet deep consisting of repacked
native calcareous loam. See Tables 3 and 4 for chemical and
textural analyses of lysimeter soil samples. The lysimeter
is covered with common rye in Fall and Winter, and Bermuda
grass in Spring and Summer. Surface area of the lysimeter
is 750 square feet. See Table 5 for specifications of grass
seed cultivated. A one-percent slope is maintained from the
top to the bottom of the filter. Lysimeter base and sides,
below the ground surface, are lined with sprayed asphalt
and two layers of 10-millimeter thick black plastic sheeting,
installed in strips 16 feet wide and 100 feet long. The
lined base is gravel-packed around a six-inch diameter sawslotted polyvinyl chloride (PVC) pipeline to accept and
transport seepage water to a 5-foot long, 3-foot wide and
10-foot deep sump of concrete block. Surface walls of the
filter, above the ground surface, consist of two tiers of
8 by8 by16-inch block, covered with plastic, chicken wire
21
00
NO
rH
L1)00
CD
00
'cl*
CA
rH
00
rH
CA
•
In
•
CA d-
CD
d- Ch
rH
,JD d-On
0r
Ch
;
-71-
a)
-
c3
rjj
On
CD
CA
Ch
C,
CD
CA
Ch nID
nID
CD
CD
On
On
Ch
CD
•
ct 0 .1-)
0 p
•
I
rd
E 1-1
4-)
0
E 0
rH
NO
LI-4
0
NO
1.11
CD
00
CD
f-H
rH
\ID Nn
CD
CD
CA
I
CD
On
a)
1-1
LH
4-)COO
CA
00
CD
a) a) E 4
E 4- 0 (..)
cd E
•ri 0
E t4-1 a) cd
CA
H
Un
r-l
00
00
CD
CD
CA
•
•
CD
Ln \D
'DO
CD
On
00
rH
LO
Cq
a)
r-1
•
Ln
>,
0
• (r)
0
44
‘,0
CA
•
•
On
CA
CA
CA
CD
r-i
-i
tfl
,—,
t-1 4-) • H 0
4 0 0 0
4-4 0 E
rH
4-1
(f)
00a)
r-1
CD
CA
01
NO
Ln
00
-1-)
CD
On
d-
ni 0
d-
0
CD
00
CD
00
CA
1".--
CD
0.) (ll (r)
4 4-) 4-)
4 ) • 1-i g
-
1..)
cn
co
0
•ct
Cq
PA
g (-H
H
a) o
c.)
0 4 a) in or
4 4--)
E
-
00
CD
bA
H 0
r-i
*".n
g
1-1
.H
4-);-n Cd • H
4-) (1)
b.0 r-1
4-) cd
0 • H •H
Ct
g a)
a)
o
cd 4 E +-)
cd 4-) 4-)
4-)0f-1
(./) 4-) 4-)
14-1
0 cd cd
;-4
a)
g a)
0 E
C.) (..) tac)
tr)
t-1-1
0 0,5
NI 0 cd ;,-4
0
00
g
,--1
(1)0
en
rH
Nn
00
M
4-)
PA
0
rH
.7t
Cd
F 4
-
bD
E
,--• 4-)
cd cd
cf)
X X
0 +--) U
,--i cd cd
,0 U) k
4-)
,--i
k
0 .H 0
U)
"
00
,--4
-----__.
t-_)4
:21
E
+
..
cd
c__)
tr)
0
Z
,--1
---,_
cd
4
c.)
k
a)
4-.)
7i P4 H rH
g E tr)
cd cd cd tu) 0
•
E
0
..
.H
,t0
P-,
4--)
cd
c_.)
d- 4-4 -k
00
cr) (1)
00
r-1
r-i
Pl+ 4-) gt.n 4J4)
E P E 'H
cd 0 cd
(n
(.0 D
cya
22
Table 4. Textural Analysis of Lysimeter Soil Samples
Sample
Numb e r a
Sand
Percentage
Silt
Clay
1
48.5
35.5
16.0
2
38.0
36.0
26.0
3
44.0
25.2
20.8
4
36.0
37.0
27.0
OESamples 1 and 2 were taken at the upper end of the lysimeter from 1- and 4-foot depths. Sample 3 was taken at
the center of the lysimeter from 1-foot depth. Sample 4
was taken at the lower end of the lysimeter from 1-foot
depth.
23
v)
U)
v)
4-) cd co cd
Ln k t4-4
0
g
N-- b1:1 0
v)
cd
..,
--
rtj
a)
Li-i (r)
Ti a) a) ›-,,--1 o v)
g a) 1--) H ,--1
o
v)
I
0
rd
'X
v) c1-1 0
000v)00
_sn 4-) k cd
Cf)
cd H bi)
4-)
LH rd
0 0
›.
4-10 •
g ki V)
k +-) g
(f) o
10 •H
"d 4-)
bi) g ,-1
rd ni
•H cd 4-) ,in
a) v
(r) cd
ct 1-1 E ,-g
tr) U) cd k d v)
O
44 -1.-, 0
c.)
0
-d sa, cv H H
co
pL., 4-1 •H 0
,g 4-) rH
pL,
cd) d ci-) 0 • H 0 v) k
1 O+-)
I 0 ty) E
, v) cd d
L-1-1
cd 0
0
t-1 g-, ri
0 E4--, --, r'--
0 0
0 ''
r-I O0 d 0 H -d
Q)a
P4--) A-)
CD g4
0
cd U a) cd
cd
g
0 Pq cd -1--) ,-1 ^ ••
I
0 ,-0
Lk 0 .< g
0
cd v)
0 rd cci
4-i (4-1 rH g H g
b4 u)
v) 73
rH
bo 4-) +-) a..) a)
•H cd
•H cd •TH
g 0 ? 0 0 •H
0 ,-g
0 a) .,-1
ki ,g • 'd
,_g
• 4-) H k
.H te-d cd 4-) r-I cd rci
v) -k) -1-) 4---) CNI tr) g bI) 4--)
U) 'HQ
0 g
r---- g 0
X
r--1 a)
c----- OC) cd 0
a) v) cr g a) cci v)
•H 4-1
0 g Cr) g ,-I
•c-I ,--1 U g
Cf) 0 U 4-1 •)-1 rH •H 5:1-, k ,-0
V)
cr)
u)
cd gp_,
(3H
24
and plaster. Sump blocks and wall plaster
are painted with
colorundum sealer to prevent seepage.
A gasoline-powered centrifugal pump with a capacity
less than one-third of a cubic foot per second was installed
on the west bank of the Wash to divert storm runoff through
a three-inch diameter PVC pipeline. A coarsely screened
intake hose was placed in the channel bottom. The pipeline
ends at a three-inch Parshall flume at the surface inlet,
where surface inflow is measured. Surface outflow from the
filter is measured by a one foot H flume at the surface outlet. Both flumes have staff gages and continuous stage
recorders. Subsurface outflow is collected in a sump and
measured by a staff gage and by pumping to calibrated barrels through a gasoline-powered submersible pump, or is
calculated from the difference between inflow and outflow.
A plastic non-recording raingage, plastic funnels for precipitation sampling, and an equipment storage trailer are
impounded by the 230 foot long, 50 foot wide and 6 foot
-
-
-
high chain-linkedfence which surrounds the pilot plant. A
recording raingage, two small ponds to hold treated and untreated runoff, and a city water meter were installed in
Spring 1972 after most of the data for this study were
collected.
25
Operational Procedure
Experimental and analytical methods comprise the
operational procedure used in this investigation.
Experimental Method
A runoff-producing storm, sufficient to supply the
intake pump with water, is called a trial. Four trials,
each associated with a discrete runoff event, are summarized in Table 6 and occurred in the Fall of 1971. Table 7
summarizes conditions at the treatment plant for each
trial. The procedure was to pump water to the lysimeter,
noting time and flume stage. Water samples were taken from
the wash, surface-inflow and surface-outflow flumes, and
seepage discharge pipe. Water temperatures were taken at
these points as a routine measure and because of its possible importance in modeling. Precipitation was measured
during and between trials, and sampled for the last two
trials. Grass-filtered sediment was measured for each trial
as a rough estimate of the inflow properties. See Tables 6
and 8. The intake hose was placed in the channel bottom for
the first two trials, and raised about 0.2 feet above the
channel bottom for the last two trials.
Analytical Method
Surface inflow and surface outflow were calculated
to within about 10 percent accuracy with the help of the
•
•
•
•
26
CD
CD
O)
\D
CD
CD
SI
•• CD
\.. D a)
0
CD
CD
1-r)
•
CD
CD CD
N- r--I
0-1
•
Ce)
0
CV
CV
00
•
SI
00
nID
CV
Cr)
SI
If)
0
0 0
01
0
00
CV
00
r-I
V")
CD
Cr)
CV
oC)
CD
CD
‘.0
nCD
N--
1-1
4-)
L)
C)
..o
..i- ca.,
r-i
rH CO
rH rH
CD
CD
CD
^
00
CO
CD
CD
CV
^
C---- 00
C--- 00
CD
CD
00
^
CD
L.r)
Cr)
..
CD
Lo
rH
"
nC) 00
r-I 00
CO
x--I
.
rH
CD SI
rH r-1
00
•
00
1-1
Cr)
V)
C---
VD
C---
rH
C.n
CD
C)
•
CD
00
00
N-.
cn
te)
cD
•
0,1
CV
Ce)
Cr)
CD
Cr)
(,)
Ln
•
CD
C')
CD
SI
00 CT)
Ln •
01
•
r-I
CD
Ln r 1
., (V
CV r--1
CD
•
til
CD CD
-
-
-
.--1
Cld
ID.°
01)
,_,
e---,
rH
\--,
4--
rui
0
br)
E
mi
....0
O
rH
4-4
•
P
0 •H
r-H
t-p CH
4-) 0
) )
4- -1-
g
HL) g
1
cd
1 'd 0
0 -H)0
C)
(
C)ci-. ca a)
L) L)
cd k
kt k U
4-) k
4-1 CD
tf) in 0
,c) 0 P -,
kp.,.,
k____,cd '—
( r)
----.
r-,
O
4-)"-----.
4-)
tH
u
•1-1cm).._.,
r-i
fa)
rai
00
C--•
CD
CD
Ir)
r-I
1-1
•71C")
•
CD
CD
\D
r-I
k
4)
,----,
L)k
.-.
Cd
g
r-,
g
"H
,.._..,
r-,
rH ,----.
cit g
)
0.0•H
n-....• ,..--•
Cd
Ln
"----..
• H
‘.._,
,----,
E
P-I
0.0
a)
.H
Cd
,.....n
Cd
k
.._,
:-?-
(n
W
0
W
0
rH
4-1
k
L)•H
4- 1
0
4-1
A-)
k
W
m
g
•H
cd
cd
0
• H
k•
kt
4-1
4-)
•H
r-iQ
Cd
4--)
g
o
• HH
-P
.HH
I
.--1
( f)L
f=1-n
• Hk
',..)
Cd
o
k
---,
00
0
k
I
• H
T ik
-
4i
00
k
cr)
'ci
•H
4-)
cd
LI-1
0
g
-,...)
g
0
C.)
W
r-N
L)
Cd
rH
P.,
04
C)
nID
tH
CD 0
0 E r-i
r--.1
LI-I
LH rH
4--, 0 -H
Cq
›,
cd
Ce `---' ,----,
f---,
C)
cd
Lr)
r--1
e--.
c.)
ca
C---,
m
k
,g
4-)
W
,--)
r--I
rH
e• n
,_,
r ,
rH
te)
LO
CD
CD
CV
L.r)
CD CD
0
(-)
-P
01)
'd
k • H
>,
)..
(f)
0
01)
Cd
k
0
0
01)
Ci
L4
0
>
0
CO
Cd
k
0
0
r.
0
01)
Cd
kt
0
;->
27
•
,---1
•
cd
•H
O C)k
4--) L1-+ 0
r-i -I--)
4--)Cll
O Cd 'Ci
4-) CD
4
g riz3
0
rH H a)
CD ,-g
g
4--) F-n
g • H
Cd
0
4
u
O
g 0
cd
cd ,_.
E 4--)
k H
X 4- 1
4-)00
V)
• H
gl-, (f)
p.., 4-)
0
E cd k
cd
4 b.0 tu)
cf) 0
cd 4 •H
r--I
• H
0
,-g
tr)
•
PL,
cd tIO
T-i
r-i
cd
0
• H11-1
Cd 0 cd
•-•1
•H 1-1 a)
'-cd 1-1-4 T-i
cd k
cd
• H
• H-dei
as 4—)Pcd
O
•‹
rH
k
-d
g
• H
k
cn 4-.)
O
cd ,10 (1)
eHe
-•:: k
k
g
cd
•H u
C)
(..)
tr)
Cd'-do0
0
.-g
a)
L) ,-4
t-1-1 cd
ii
a)
rn
CDPC)'ci
u)PL,
g u
.H cd n-i
r
g
4--)
0
C)
0
tr)
0
Cd •--)
ell
H cd ,-X
,...
p.,(-1-i
cd
-4)
0U)0
,--
cd
.,--1
k
p., in p.,
cf) tn a)
cd cd E
cd
cf)
•
0 •
r-e
'4-)
0
)ll 4
1-1
A-)
g
0.)
V) b0
cd
•H
m •
0 • H • (4-I0E
' -d
4 4
0 ,o H
H
4-)4--)
Cd
O in • H cd
a) 4--)
tu)
,-- cd -I-) k
'-c3
,-- 0
0
^
(/)
0
•
Cricri
U rd
C) .1-1
•H H 1-i cd
.1--)
•
(f)
cd ,1:)
cd
•P
b0
a)
.-4
giq
0 cf) cd 0
g •H
•H
cd cd
k
a) o a) 4--)
,..
k
r—i
4
HIC)
g
4--)
•H
C) cri
4-)
g ,-g
HC)0
Cll
O E U cd
'•
0
0
k
cd b•DPC),..o
0 •---1 c-I-1 9-1
0
U
cd
V) • H
HU)0
1--1
0
1 ,sn
H
1 0
cd
1--1
ro
?-. (/) v) •H
1D.0
4--)
cd • H
V)
,-i
(1.) r-1 1-1-1 (I)
0
•H Cd
A--)
•H 0
N
g•H
Cf) Cd 0
tn
k • H
Cd
cd k cn k
O 4-Pb
;-) b.0
0k
O
Cll
•<
PLI
P
0
00
4 -H
cd
H
en
r-I
(ll 4--)
U) C)
H
ci)
ce
cdPC)
cd 1 1
(- -
Q.)
E
Cd
c./D
CL)
0
0 N E
cd
.< c>
U)
Cll
Cd
•H
crip
H
H H
H H H
H
28
Table 8. Textural Analysis of Grass-Filtered Sediment
Percentage
Silt
Trial
Sand
I
98.0
0.0
2.0
II
98.0
0.0
2.0
III
98.0
0.3
1.7
IV
98.0
0.2
0.8
Clay
29
Center's Wang desk computer to determine mass flow. The
budget equation of I - 0 = AS was used to calculate subsurface outflow-abstractions, where I is surface-inflow
volume, 0 is surface-outflow volume and AS is change in
subsurface outflow abstractions. All abstractions of rain-
fall, evapotranspiration and soil-water storage are included in the AS term.
Water samples were selectively analyzed for chemical
oxygen demand (COD), total and fecal coliform, turbidity
and suspended and volatile suspended solids by the Sanitary
Engineering Laboratory of the Department of Civil Engineering. Selective samples were analyzed for inorganic chemical constituents by the Soil and Water Testing Laboratory
of the Department of Soils, Water and Engineering. Source
and significance of water-quality constituents in urban
runoff is presented in Appendix B, p. 62. Methods of biological and chemical analysis conform to those suggested in
Standard Methods (1971), and are presented in Appendix C,
p. 71.
Various time series were plotted for the waterquality data using arithmetic, dimensionless, logarithmic
and semi-logarithmic scales. Sample mean and standard
deviation were computed with the assistance of the University Computer Center, to serve as a basis of comparison between sets of data for different trials. Criteria for
30
reporting water-quality data now suggests that statements
concerning precision, accuracy, standard deviation, range,
upper- and lower-limit equations, and alpha and beta levels
be published (Analytical Quality Control Laboratory, 1972).
This practice is not followed here because it is not yet
the procedure of the analytical laboratories employed.
RESULTS
Numerical results of this study are presented in
terms of hydraulic loading capacity, infiltration rate,
surface and subsurface flow durations, and percent change
in values of water-quality variables for each trial. Graphical results are described in this section for selected
water-quality measures. Basic water-quality data for the
four trials are presented in Appendix D. Tables 6 and 7
and Appendix E summarize volumetric and biophysicochemical
results of the trials. A graphical presentation of selected
water-quality data is given in Appendix F. Sources of
errors are enumerated in this chapter.
Numerical Results
Common terms used in this section are defined as
follows: Average hydraulic load or loading capacity is the
total volume of water applied over the surface area in the
total time, and has units of acre feet per acre per day
(ac ft/ac/day). Surface- and subsurface-flow duration is the
length of time of storm runoff application to the surface of
the filter or length of time of seepage through the filter
in hours. Average surface-inflow rate is the total volume
of water applied to the filter surface for the total time
of application in units of gallons per minute (gpm).
31
32
Average infiltration rate is the total volume of water transmitted through the filter as seepage, per area of filter
surface, for the total application time in inches per hour
(in/hr). Percent decrease or increase in a water-quality
measure is calculated by the ratio of the difference between
value of the average inflow and value of the average outflow,
multiplied by 100 and divided by the value of the average
inflow. Percent decrease is equivalent to percent reduction.
Arithmetic average or sample mean is the commonest
measure of central tendency of a set of data, and is used in
this text to describe the central tendency of values of
water-quality variables. Sample mean,
of n observations,
is defined as
3z.
E x. ,
i=1 1
th observation. Standard
where x- is the value of the i
the commonest measure of scatter, and is
deviation, s
the positive square root of the variance. Standard devia-
tion is defined as
•
A listing of values of sample mean, standard deviation and
water-quality measures is
percent increase or decrease for
given in Appendix E.
33
Numerical analysis of water-quality data by each
trial is presented in this section.
Trial I
Trial I had an average hydraulic load of 15.7 ac ft/
ac/day for a 5.0 hour duration. Volume of subsurface
outflow-abstractions was 2,200 gallons with a 29 hour seepage duration. Average surface-inflow and infiltration rates
were 60 gpm and 0.941 in/hr. Hence, twelve percent of the
inflow volume resulted in subsurface outflow-abstractions.
The grass filtered 20.5 cubic feet of coarse sediment from
the 18,350 gallon surface-inflow volume. Average height of
the grass cover was one inch. See Table 6, P. 26.
For grass and grass-soil filtration respectively, the
following percent changes, compared to untreated runoff
samples, occurred: For COD, increased 103 and 900; for
suspended solids, decreased 26 and 64; for volatile suspended solids, increased 19 and decreased 66; for turbidity,
decreased 9 and 68; for total coliforms, decreased 37 and 96;
for fecal coliforms, increased 41 and decreased at least 86.
See Appendix E, p. 79.
Grass-filtered samples were almost identical to
surface-inflow samples for specific conductance, TDS, total
hardness, pH, temperature, calcium, magnesium, sodium,
chloride, sulfate, bicarbonate, carbonate, nitrate and
phosphate contents. Specific conductance, TDS and total
34
hardness of grass-soil filtered samples increased by
8,690,
6,600 and 7,400 percent over surface-inflow samples.
Calcium content of grass-soil filtered samples increased by
5,120, magnesium by 22,050, sodium by 4,080, chloride by
36,400, sulfate by 12,200, bicarbonate by 217, nitrate by
9,900 and phosphate by 57 percent. Carbonate content in-
creased from 0 to 15 mg/1 from surface-inflow to subsurfaceoutflow samples. The pH decreased from 8.6 to 7.2 from
inflow to subsurface-outflow samples. Subsurface-outflow
samples had a yellowish color.
Trial II
Trial II had an average hydraulic load of 12.8ac ft/
ac/day for a 29.5-hour duration. Volume of subsurface outflow-
abstractions was 10,800 gallons with a 337-hour seepage duration. Average surface-inflow and infiltration rates were
50 gpm and 0.783 in/hr. Hence, twelve percent of the inflow
volume resulted in subsurface outflow-abstractions. The
grass filtered 30.0 cubic feet of coarse sediment from the
88,000-gallon surface-inflow volume. Average height of the
grass cover was one and one-half inches. See Table 6, p.26.
For grass and grass-soil filtration respectively,
the following percent changes, compared to untreated runoff
samples, occurred: For COD, decreased 9 and 48; for suspended solids, decreased 34 and 92; for volatile suspended
solids, decreased 26 and 89; for turbidity, decreased 6 and
35
89; for total coliforms, increased 148 and decreased 78;
and for fecal coliforms, increased 29 and decreased 53.
Temperature of grass-filtered samples increased 38 percent.
See Appendix E, p. 79 .
Surface-outflow samples were almost identical to
surface-inflow samples for specific conductance, TDS, pH,
temperature, magnesium, sodium, potassium, silica, chloride,
sulfate, bicarbonate, carbonate, nitrate and phosphate contents. Calcium content and total hardness increased 268
and 95 percent from surface-inflow to surface-outflow samples. Specific conductance, TDS and total hardness of
grass-soil filtered samples increased by 2,090, 2,250 and
1,930 percent. Calcium content of grass-soil filtered
samples increased by 1,260, magnesium by 5,225, sodium by
1,090, potassium by 1,455, silica by 342, chloride by 4,460,
sulfate by 10,300, bicarbonate by 208, nitrate by 4,080,
and ph sphate by 18 percent. Carbonate content increased
from 0 to 2.3 mg/1 from surface-inflow to subsurface-outflow
samples. The pH increased from 7.6 to 8.0 from surfaceinflow to subsurface-outflow samples.
Trial III
Trial III had an average hydraulic load of 3.8 ac ft/
ac/day for an 18.8-hour duration. Volume of subsurface
outflow-abstractions was 1,600 gallons with a 133-hour
seepage duration. Average surface-inflow and infiltration
36
rates were 15 gpm and 0.182 in/hr. Hence, eleven percent
of the inflow volume resulted in subsurface outflowabstractions. The grass filtered 3.7 cubic feet of coarse
sediment from the 16,600-gallon surface-inflow volume.
Average height of the grass cover was two inches. See
Table 6, P. 26.
For grass and grass-soil filtration respectively, the
following percent changes, compared to untreated runoff
samples, occurred: For COD, decreased 21 and 59; for suspended solids, increased 20 and decreased 99; for volatile
suspended solids, increased 10 and decreased 97; for turbidity, increased 15 and decreased 98; for total coliforms,
decreased 84 and 95; and for fecal coliforms, decreased 50
and 96 percent. Temperature of grass-soil filtered samples
increased 220 percent. See Appendix E, p. 79.
Surface-outflow samples were almost identical to
surface-inflow samples for specific conductance, TDS, total
hardness, pH, temperature, calcium, magnesium, sodium,
potassium, silica, chloride, sulfate, bicarbonate, carbonate,
nitrate and phosphate contents. Specific conductance, TDS,
and total hardness of grass-soil filtered samples increased
by 1,750, 1,800 and 1,900 percent. Calcium content of
grass-filtered samples increased by 1,165, magnesium by
7,200 , sodium by 6,400, potassium by 1,340, silica by 260,
chloride by 178, sulfate by 12,530, bicarbonate by 370,
37
nitrate by 590 and phosphate by 218 percent. Carbonate content increased from 0 to 4.7 mg/1 from surface-inflow to
subsurface-outflow samples. The pH increased from 7.7 to
8.1 from surface-inflow to subsurface-outflow samples.
Trial IV
Trial IV had an average hydraulic load of 9.2 ac ft/
ac/day for a 3.2-hour duration. Volume of subsurface
outflow-abstractions was 700 gallons with a 220-hour seepage
duration. Average surface-inflow and infiltration rates
were 35 gpm and 0.468 in/hr. Hence, ten percent of the inflow volume resulted in subsurface outflow-abstractions.
The grass filtered 2.8 cubic feet of coarse sediment from
the 6,900-gallon surface-inflow volume. Average height of
the grass cover was two inches. See Table 6, p. 26.
For grass and grass-soil filtration respectively, the
following percent changes, compared to untreated runoff
samples, occurred: For COD, increased 6 and decreased 88;
for suspended solids, decreased 35 and 99.6; for volatile
suspended solids, decreased 17 and 97; for turbidity,
decreased 97 and 98; for total coliforms, increased 80 and
decreased 98; and for fecal coliforms, increased 160 and
decreased 98. Temperature of grass-soil filtered samples
increased 275 percent. See Appendix E, p. 79.
38
Surface-outflow samples were almost identical to
surface-inflow samples for specific conductance, TDS, total
hardness, pH, temperature, calcium, magnesium, sodium,
potassium, silica, chloride, sulfate, bicarbonate, carbonate,
nitrate and phosphate contents. Specific conductance, TDS,
total hardness of grass-soil filtered samples increased by
1,120, 1,115 and 1,260 percent. Calcium content of grasssoil filtered samples increased by 780, magnesium by 3,770,
sodium by 4,040, potassium by 483, silica by 418, chloride
by 88, sulfate by 6,440, bicarbonate by 292, nitrate by 895
and phosphate by 176 percent. Carbonate content increased
from 0 to 2.6 mg/1 from surface-inflow to subsurface-outflow
samples. The pH increased from 7.7 to 8.1 from surfaceinflow to subsurface-outflow samples.
Graphical Results
Fourteen arithmetic and semi-logarithmic graphs were
used to convey information concerning chemical oxygen demand
(COD), suspended and volatile suspended solids, turbidity,
total and fecal coliforms, and total dissolved solids (TDS)
for surface-inflow, surface-outflow and subsurface-outflow
samples. These graphs are presented in Appendix F, p.91.
A general pattern of water-quality changes is observed for the time series of surface and subsurface outflow
for the four trials: 1) There is a decrease in the average
39
concentration for each water-quality property from trial to
succeeding trial; 2) there is an initially high or initially increasing concentration value of each property followed
by decreasing values in a particular trial. This second
feature has the appearance of a gamma distribution, but more
data is needed to be certain.
COD, Figures Fl and F2, followed the general pattern
of reduction described as the pattern for grass and grasssoil filtration of urban storm runoff. Outflow samples had
higher COD values than inflow samples for the early part of
all trials. Suspended solids, Figures F3 and F4, were similarly reduced when storm runoff moved through the pilot
plant. Grass-soil filtration was more effective than grass
filtration in removing suspended solids. Most of the grasssoil filtered samples had suspended solids concentrations in
the low range of precipitation water samples. Removal of
suspended solids increased with grass development and soil
settling. This feature also held for volatile suspended
solids, Figures F5 and F6, where volatiles initially increased at the early part of all trials.
Turbidity graphs, Figures F7 and F8, indicate that
grass-soil filtration, after a few hours, reduced turbidity
in the low range of precipitation water samples. Grass-soil
filtered samples decreased in turbidity as grass developed
and soil settled; that is, turbidity values were lowest for
40
the later trials. Grass-soil filtration was more effective
than grass filtration in reducing turbidity.
Total coliforms of outflow samples, Figures F9 and
F10, generally decreased with succeeding trials, but may
increase in the early part of any trial. Total and fecal
coliforms in subsurface-outflow samples, Figures 10 and F12,
showed a decrease in concentration within each trial and
from early to late trials, and followed the general pattern
of water-quality changes. Coliform content of surfaceoutflow samples, Figures F9 and Fll, also followed this pattern, except in the third trial when later samples had increasing coliform densities. Increasing grass and soil
establishment was more effective in the removal of coliforms
from runoff. Grass-soil filtration was more effective than
grass filtration in reducing coliform densities.
TDS of samples filtered by grass, Figure F13, remained relatively constant and were almost identical to inflow
samples for all trials. Grass-soil filtered samples,
Figure F14, showed very high salt concentrations for all
trials, diminishing significantly with later trials. The
first two trials exhibited early increases, followed by
decreases in salts in the grass-filtered samples. This
trend in dissolved solids content in subsurface-outflow
samples decreases with later trials.
41
Sources of Errors
Processes at work in this experiment are very dynamic.
Absorption, adsorption, desorption, diffusion, dispersion,
hydrolosis, ion exchange, migration, miscible displacement,
nitrification and ionization are kinetic phenomena. They
vary in time and space, according to flow rates, soil-water
potential, temperature and media properties. The measuring
and sampling regime in this research is not sensitive to all
the physicochemical activity at play. Therefore, the data
must be appreciated with particular uncertainties in view.
These examples apply:
1)
Likely initial increases in COD and TDS may not
appear in the surface-outflow samples because of
time of data collection.
2)
Leaching effects are most pronounced with unsaturated flow regimes of small seepage-water volumes.
3)
Effects of temperature variations in the lysimeter are lumped in COD, coliform and salt concentrations of all outflow samples.
4)
Averaging data without volumetric weighting may
produce unrepresentative numbers, though these
values are likely in the proper range.
42
5)
Errors, generally on the order of ten percent,
are commonplace in calculating flow rates. Such
errors will affect computations of hydraulic
loading capacity, surface inflow rate, infiltration rate and flow duration of seepage.
6)
Errors in analyses of samples may be caused by
sampling technique, transportation delays, method
of analysis and laboratory skill. The largest
of these errors will be reflected in bacteriological analyses.
(Standard Methods, 1971;
Analytical Quality Control Laboratory, 1972)
INTERPRETATION OF RESULTS
Chemical oxygen demand (COD), suspended and volatile
suspended solids, turbidity and coliforms in urban storm
runoff are reduced by grass and grass-soil filtration.
These water-quality measures are related to each other: bacteria, for example, may be reduced with removal of suspended
solids and comprise some of the organic matter showing up as
COD. Initial increase in these measures in the early part
of the trials over grass reflect a grass flushing or washing.
High COD and total dissolved solids (TDS) in grass-soil filtered samples represent leaching of organic matter and soluble salts previously in the soil. Increased temperature of
subsurface-outflow samples indicate the warming effect of
soil-water processes. Reduced suspended solids for inflow
samples and grass-filtered sediment in the last two trials
reflect the higher elevation of the intake hose in the
stream channel.
Seven additional trials, conducted after the conclusion of data collection for this study during Spring, Summer
and Fall storm runoff events of 1972, indicated that dissolved solids from soil leaching became considerably reduced
with time. Leaching of soluble inorganic minerals approached
equilibrium after seven trials, where grass-soil filtered
43
44
samples contained less than 500 mg/1 TDS, close to the 494
mg/1 average value for lysimeter soil samples. Hence, these
earlier trials represent a breaking-in, leaching or stabilization period for the grass-soil filtration treatment.
Variables, such as suspended and volatile suspended solids,
which showed increase by filtration, other than washed organic matter as COD and leached salts as TDS, may be the result of collecting too few samples. The seven additional
trials included warm-season runoff events, which produced
storm runoff with high temperature, COD and coliform densities. Some of the untreated storm runoff samples for these
flows had COD, and total and fecal coliform densities which
exceeded those of untreated domestic sewage in the City of
Tucson (Trueblood, 1973).
Increased grass development and soil settling initially increased the effectiveness of the treatment process
to produce a better quality effluent in the stabilization
period. Grass development, measured as grass height from
trial to succeeding trial, increased and produced more efficient reduction in constituent concentrations. A grassestablishment period is noted in the first trial, where COD,
volatile suspended solids and coliforms increased in surfaceoutflow samples. Soil compaction, attested by decrease in
infiltration rates, also produced more efficient reduction
in constituent concentrations. The fact that increased
45
reduction percentages are not smooth or linear from trial to
succeeding trial may be partially due to small sampling size
and use of volumetrically unweighted averages.
Volumes of storm runoff which may be treated by filtration are important for planning purposes. For the four
Fall trials, average hydraulic loads ranged from 3.8 to 15.7,
and averaged 10.4 ac ft/ac/day. However, these loads depended on pump characteristics rather than on theoretically or
experimentally derived application rates. Nevertheless,
this is equivalent to treating 2.9 million gallons per day
(mgd) or 8.9 ac ft/day per acre of grass by grass filtration.
Average infiltration rates for all eleven trials ranged from
0.115 to 1.154, and averaged 0.747 in/hr. These rates depended on relatively long-term applications in the early
trials during which soil settling occurred, and short-term
applications in the later trials during which short-term
storm events occurred. Nevertheless, this is equivalent to
treating 0.5 mgd or 1.5 ac ft/day per acre of grass-soil
filter by grass-soil filtration.
CONCLUSIONS AND RECOMMENDATIONS
Grass and grass-soil filtration improves the quality of Tucson urban storm runoff with respect to chemical
oxygen demand (COD), suspended and volatile suspended
solids, turbidity and coliform bacteria. Grass-soil filtration is more effective than grass filtration in reducing the
value of these water-quality measures. Both treatments may
be coupled to effectively improve the quality of urban storm
runoff for important uses. See Appendix A, p. 57. Grasssoil filtration initially increases COD and total dissolved
solids (TDS) during the stabilization period by leaching of
soil minerals and has a decreasing capacity as infiltration
rates decrease. Grass filtration, which does not increase
salt content, initially increases COD, volatile suspended
solids and coliforms during the establishment period and
has no inherent limit on hydraulic loading capacity as long
as grass is not submerged by flows. Grass filtration allows
for flood irrigation of grassed strips, and may help maintain a grass cover even with intermittent flows, while
sprinkler irrigation requires a readily available irrigation
supply. Following the grass-establishment and grass-soil
stabilization periods, grass and grass-soil filtration then
can serve as a treatment for storm runoff in the spirit
46
47
consistent with water management in the arid urban environment. A discussion of a water-management plan developed in
this spirit is given on pages 2 -4, and 8, and in the forthcoming U.S. Office of Water Resources Research Project Completion Report for Matching Grant B-023-ARIZ (in Prep.).
Specific improvements in water quality are observed
as a result of grass and grass-soil filtration. Reductions
in COD, suspended and volatile suspended solids, turbidity
and coliforms are in agreement with the reviewed literature,
which showed significant reduction of these variables by
filtration. Specifically, reductions by grass filtration
are in good agreement with the following: Brown (1943),
regarding biochemical oxygen demand (BOD) and suspended
solids; Searle (1949), regarding suspended solids, using
lower hydraulic loads; Porges and Hopkins (1955), regarding
BOD, coliforms and suspended solids, using lower hydraulic
loads; Hopkins and others (1956), regarding BOD and suspended solids, using lower hydraulic loads; Wilson and Lehman
(1966), regarding BOD, COD and suspended solids, using
lower hydraulic loads and gentler surface slopes; and Wilson
(1967), regarding suspended solids, using smaller inflow
rates and gentler surface slopes. Reductions by grass-soil
filtration are in good agreement with Stone (1958), Bocko
(1965) and Merrell and others (1965) with respect to removal
of conform bacteria. As discussed in the previous chapter,
48
p. 45, ideal hydraulic loads, to use under field operating
conditions described in this paper, have yet to be determined.
For grass and grass-soil filtration respectively,
the following maximum percent reductions, compared to untreated runoff, occurred during the four trials: For COD,
19 and 88; for suspended solids, 34 and 99.6; for volatile
suspended solids, 26 and 97; for turbidity, 97 and 98; for
total conforms, 84 and 98; and for fecal coliforms, 50 and
98. The seven later trials equalled or exceeded these percentage reductions. Though reduction percentages are high
for conform bacteria, highly polluted warm-season inflows
are rather excessive in coliform densities, so that high
reduction percentages still produced fairly contaminated
water for Summer trials. Water used for recreation should
be chlorinated after filtration, particularly for warm or
highly polluted inflows, to insure residual protection
against disease. Table 9 shows the estimated quality of
filtered urban storm runoff based on all eleven trials,
where grass establishment and grass-soil stabilization is
assumed.
Based on previous experience, grass should be
allowed to develop to at least two inches in height before
treatment begins and should not be submerged during runoff
applications. A sediment trap or settling basin is
49
Table 9. Estimated Quality of Filtered Urban Storm
Runoff a
Water-Quality Variable
Cool-season flow
Chemical oxygen demand,
mg/1
Suspended solids, mg/1
Volatile suspended
solids, mg/1
Turbidity, mg/1
Total coliforms Y ,
MPN/100m1
Fecal coliformsY,
MPN/100m1
Total dissolved solids,
mg/1
Warm-season flow
Chemical oxygen demand,
mg/1
Suspended solids, mg/1
Volatile suspended
solids, mg/1
Turbidity, mg/1
Total coliformsY,
MPN/100m1
Fecal coliforms Y ,
MPN/100m1
Total dissolved solids,
mg/1
Urban Storm Runoff
Grass Grass-Soil
Untreated
Filtered Filtered'
100
1,000
38
650
1
4
100
800
74
24
3
2
50,000
8,000
100
4,000
100
8
180
180
180
200
15,000
76
9,750
2
60
200
1,100
148
33
6
2
2,000,000
300,000
4,000
600,000
20,000
1,000
220
220
220
a Based on eleven trials.
Grass establishment and grass-soil stabalization is assumed.
Y Chlorination of a dose of 3 mg/1 of chlorine, after filtra-
tion, reduces coliform density to zero.
SO
recommended to precede grass filtration, and coagulationflocculation may be necessary for highly polluted inflows.
Mische's laboratory work (1971) indicated that coagulationflocculation and three-day storage may remove 40 to 75 percent COD, 90 to 95 percent turbidity, 90 percent total
coliforms and 90 percent fecal coliforms from untreated
storm runoff from Arcadia Wash. Wilson (1967) suggested
this additional treatment for sediment removal of highly
polluted inflows.
Grass filtration upgraded cool-season urban runoff
as shown in the first four trials for recreation, artificial groundwater recharge, fisheries and wildlife, except
in the initial part of some trials and during the grassestablishment period. Comparison of results, Table E6,
with recreational criteria, Table A2, indicates that grass
filtration removes fecal coliforms to the extent that
treated water may be used for general and non-contact recreation. Such water, when chlorinated, may be used for
artificial groundwater recharge to improve the quality of
the native groundwater with respect to salinity. Comparison of results, Table E18, with drinking-water criteria,
Table Al, indicates that grass filtration does not increase
TDS, so that runoff filtered through grass may be suitable
for drinking if the untreated runoff is low in salts and if
coliforms can be removed or destroyed. Grass-soil
51
filtration, Table E6, removes fecal coliforms to the extent
that treated water may be used for general, non-contact and
primary recreation, Table A2. Grass-soil treatment,
Table E19, during the stabilization period, increased TDS
to make treated water unusable for drinking, Table Al, and
possibly unusable for irrigation and recharge, Tables A2
and A3. However, following stabilization of the grass-soil
filter after about seven trials, succeeding trials indicate
that TDS content of grass-soil filtered samples is below
the U.S. Public Health Service criteria of 500 mg/1 for
drinking water. Before these filtered waters can be recommended for domestic use, however, analyses of pesticides,
phenols, trace elements (Lehman, 1968), viruses and other
limiting water-quality variables, Table Al, should be investigated.
Runoff treated by grass filtration during the
grass-establishment period is high in COD, volatile suspended solids, and coliforms, while runoff treated by grasssoil filtration is high in COD and TDS during the grass-soil
stabilization period. These waters may be returned to the
channel, or diluted in a recreational lake with runoff
treated after grass establishment and grass-soil stabiliza-
tion. On the basis of the eleven trials, the volumeweighted averages of surface-outflow samples had values of
water-quality measures below the limits for recreational
52
water use. On the basis of the eleven
trials, the volumeweighted averages of subsurface-outflow samples had values
of water-quality measures below the limits
for recreational
use, but TDS were still quite high, and exceeded 4000 mg/l.
The combination of all filtered runoff overall eleven
trials, would produce a treated water of about 500 mg/1 TDS,
at which time the lake would be available for recreational
use.
Suspended and volatile suspended sediment and turbidity are reduced by grass and grass-soil filtration, and
may further be reduced by diverting water from elevations
above the channel bottom. This can be achieved by a floating intake system. Rye grass and Bermuda grass,which
covered the soil surface in the four Fall trials and the
seven later trials respectively, both grew adequately without irrigation, other than for initial grass establishment,
under a precipitation regime of about 14 inches per year and
the described application of untreated runoff.. Both
grasses grew adequately through the deposited sediment imposed on the surface by grass filtration. This confirms a
conclusion by Wilson (1967) and Wilson and Lehman (1966).
Wilson (1967, p. 37) also argued that "grass filtration is
an effective, economical, first-stage procedure for reducing sediment in flood water." Grass maintenance for removal
of high sediment loads may require manual shoveling of
53
entrapped sediment from grass filters, at least in the
grass-establishment period. By taking storm runoff from the
top of the channel flow, by using a sediment trap as a
spillway preceding application to the filter, and by using
a grass filter to remove remaining sediment and turbidity,
captured urban storm runoff can be used for recreation.
FUTURE STUDIES
Some of the following suggested studies are already
being done by the author and others. Seven storm runoff
events of 1972 were diverted to the treatment facility to
produce more trials, where Bermuda grass replaced rye. Results of these seven trials are drawn upon freely in the
previous two chapters. Results of all eleven trials will be
summarized in the forthcoming U.S. Office of Water Resources
Research, Project Completion Report for Matching Grant B023-ARIZ (in Prep.). Perhaps the Water Resources Research Center will continue to pursue experiments utilizing this grass
and soil water-treatment pilot plant.
Small ponds, approximately 10 by 10 by 4 feet were
constructed in Spring 1972 to store treated and untreated
storm runoff for observation of biological activity and
chemical stability. These ponds may be stocked with algaeor mosquito-eating'fish. Studies in this area should properly be conducted by a biologist. Preliminary results are
that grass-soil filtered water in the pond serves as a breeding
niche for tadpoles, while the sediment- and algae-rich
untreated storm runoff in the pond supports no macroscopie
water-borne life over long periods. This may be because
nutrients for breeding are leached from soil and washed from
54
55
grass, and/or constituents toxic to breeding are removed
from storm runoff by filtration.
Unsaturated soil-water samples and more spatially
distributed samples should be collected by suction cups to
delineate zones of water-quality changes. Such samples
could be useful in evaluating models of water-quality dynamics through soils. Pesticide, phenol and trace-element
analyses might be performed as continued monitoring of these
parameters in Tucson as urban storm runoff will likely indicate increasing concentrations.
An integrated engineering design for a recreational
facility at Tucson Medical Center should be completed to use
urban storm runoff to supplement irrigation and recreation
requirements and reduce flood peaks. A groundwater recharge
facility might be part of the scheme to make use of potentially lost storm runoff. The design would include the conjunctive operation of flood control, water treatment, recreation, irrigation and recharge activities as a watermanagement procedure. Hydrologic, economic and legal factors
must be considered in this flood-water management plan.
Field studies are recommended to relate hydraulic
load. Slope, grass density and height, grass type and length
of plot to efficiency of reduction of COD, suspended and
volatile suspended solids, turbidity and coliform density of
urban storm runoff. Determination of ideal hydraulic
56
loadings and realistic infiltration rates need to be made.
This could be done at the existing grass and soil filter
water-treatment pilot plant. Research should also be directed to determine the expected length of service of grass and
soil filtration, and the influences of soil compaction on
seepage rates. Existing mathematical models predicting expected water-quality effects by filtration should be modified
and evaluated in the context of management of urban storm
runoff.
Most of these studies will require new funding, and
must therefore successfully compete against other worthwhile
water resources projects. The author believes that research
proposals developed from this investigation should meet with
enthusiasm as an operating water-treatment facility is
achieved, and that interest in urban hydrology, flood control, water-quality control and water-resources management
is reasonably assured.
APPENDIX A
SUMMARY OF WATER-QUALITY STANDARDS AND CRITERIA
57
58
06
iaoliei
...too»
e.g
7.
0
1
1
1
I
.0
vl
1.
0
*0
In 0
.0U
OM
0.0
OM
tou
u
00
M0
Cu
:
mx
Oa,
0.
um01.
M017. 2.
0Ou.
O. 6 y
41.43 e
' l'
OY
)6) 0 0
MY. m
E. E
•-n G vo
1
1
1
1
1
1
00 E 6
6 1.1
0
O
..,..
....
m
ra
E
.0 0..
01
tso
.
0
0
y.
X.
0
•H
00
0
0.
IAN.V)
.
000 00 00
004)50
N
y
C
X
6)
0
00000o..
gm0
OXT
.
0
u
.-o
M
..
00
0
0
m.
.
.<
...
...0 0
,..my
u0.m.
.
.
,
AUO 0
CCC
0 00
Um....,
ell
.o10,5
I UN.
...).. V U
C.) 7,o
=E0
..
0
0..
..,,It.e.........e....o.
g
Oa
4
o
M4
. 00
017,
.E0
.
1.00
....
-00.
. r3 0
6=6)
0 .
5- O. -C
0,-“—.00
mo
I
.
m00
.
0
00000,.
:
10 NOS --,) 1 0 0"I N16 NMI .6- N000
0
U
U
mr
0
r::4
o
4-1
;-1
4-)
4-1
...
. ^ ^
=.....
......
U. te
e ..
an .....
,-,
m
NO
...o
.
CS .
y
OC0
6,7
7
0
y y
E
.00
7 0 In
..U.
.SE
N6..
.0.1
W
.
an ...
0
0. 0
.
IN
00000000
4-fl.040000.N44N04.000
000000.0
N
.000
•
00
0
0
.
.
o
›.
7 m
%. li
-- .
CY
6.
U
.
0
A
4
0
.
a
M
.0
7
4
W
O
r—i
Cd
.
0
U
a.
0.
c3
V
5.
0T
.0
C
C.
U
.
.
.
.
0
y
o..
a.
OM
7:
>,
N
&
0
V)
C
UM
YU
0 .
m,
W4
6 7
M
0
U
0
0
m)
.
.m0..0
al
a.. 0
• CW V)
O. 6, 4
x
NC,...)a)
COY m m p m
0.07,),000700X)0.7,7XU.M
f,U, I- C. , ... :Z. , ,, U7. ylUci.v...---.
C
0
U
Sn
O
T,
!,7
...
1
7
-°
M..
04
W,
CO
M
6.
N
.
›
... 0. <W,JUUM,
K
0
I-..
MI
.NWN.N
>0
.W.0010
*to.
InG
ll 0). mr3
0 0
0406
... V, a 0
•0
it
CC
...,,m
m
.0
up,
m
O
•
U.m.67.-70W
:nee
.
0 O.
N.
00
re,
w
07
,. -C.0
0
0
,
U.
ON, ,:n . )0
59
g
so es
I
/
I
ttttt
I
*0
Cs1
A
A
1
I
I
1
1
1
1
1
1
I
•
0
n-.0.
vov
AAA
9A
0
o
:-.
1.
E
r-.1
I.
...
O 0 o 0
0 >
0 0
0
o .
. 0
o 04
En v
40.
WE
.2. 4.-4
•
I
o
1
I
ttttt
. lo1
LA I
I-- 0
I
.4
0
0 0
.... o
C.
•
• 0
0 O LA O 9 0
0
0
.
10
• 0
o
0
41,
.
▪
•
0
0
It
0
4. E
LA
4E,
0
00
.
ol
0
7.1
0; t.
0.0
00"0
r
10 V
n.
*
0.
0
in
9
0
0
0
0 0
", 9
v• . o 01 E, 0 0
0
0
V/
0
1,4
0
E
E
E
...
In
s's:
.
g
0 V •-,
1•••
I-
0 0M
-0 CI
.
2 2 .2
O
2
so 4-, 0
.
0 0
.0•
V
O
E
44 0
'40'
I.
.0
.
O
0
X
O
4.1
.0
U
s!
O
-
'44.0
- Jo
.0 -0
f.'
0.,
,
.
8 .ss 0
OS
E
040
E
.•
>-.
4
04.4
...1 0 LI 0
.I.,
Iv
.0
U 0 0 ...,
0 ll 0'
0
X.
5
7
•
0
2 E.;
-‘ .
u
0V
>
44V
f, .
O
0. 4., r,
4.1
-. 0
41
.0
. 0 0 9
. . , . . .s,i. s :•2. .
. •50 s. ,,,
9
C
O
V.0
2 7.
t
, r
,
04.0
O
E
'I... .
0
2 2 .0 $.
0.06
0 00
044
.2 ts' ,
M'0
O
g
‘0 VI
Oi 0
H 0
I. 9
. 40 En 0 41
.
4.1 4.1
..., a.o
0, ..4
4./
.., •0
.... 0 o.I 0
O
0 1...
0 ,-.• .0
4, u 0
4.4
• .0
. ••-•
rt. g '0*
C°
••• "'
7
014
• 4,7 =
V) 0 • 0 • 00 E
91
• 4... >.E 3C C
.440
= U u 0
9 . *I 10
C"
On
!
4.
. )., : .!
0
t..
., '0:4, 1
."
22,
0
...:
= . 0 ....
,--- E 0 .0 00 "C.
0 0 a. 7 IC 0
0 .0 •--. .5.,,
0 •••n
° •'-'
-0. .....
' .1
(J
'.C1
4.1 V
tn 1--;
V.07
, ...7
MEZ
'
4 %' ' ', ' 2.
Ts j-r` •
.... - • x
''t.' c n ..-?. :2
2
' :. ..:,. "
0
:::.
420
t.)
o
.'
:7".'
OG 17
9 i ,
es
,n
O-.....o
s';: 't ....
0
tO
•-.,
.
.
,I
1I
2 o .
' '
... n••• •
2. S
ri. is, ,-;!
'.-'.)
o
222.;222
u
0 .. . = 0 0 >4
a. 4, 0 0 . • u rt, V
O
E 1-. C 1-, 0 it.
•
• 00 0 ....
s
0
•
En 0
0
I-. .... 0 . VI 0
0 >
• • - 4, C
o . t... 0 4-. . 0
0 E 0 ..... 0 > > 7 0 s.
E.., 0. x
= 'i0.00
7:: 4
u
44
Ed 0 7 ,
O
•-• 0 0
.
CIOOV 0
. 1- C-. 1.., t...4
O
o ,- .0 <
; g fs z g• s%0
4,E0V.
1. .. .0 09 1.• • ..n
1,
0.0
C• 0
v v
•
•
•
▪
60
bk)
0
I H
•H
/•-n •
4-)-p04-'
H oC.)
H in
4-4
k
0
c.)
•H
fa, 0
bO
• ccl
Q)4-)
C.) CL)
•H •H
"O
U
a)
k03
n0
•
ki c".Y)
a.) 14-1
cd
t-k
Q) "E
• • H
y)
H
4-) • 0,
4-)
•
Ça,
;-1
Q)0
g H r--1
•ri 0 cd
z;)
c-,r)
rt
k
0
cn
cd (-H 0
4
• H
A-)
0
LH
a>
(1-)
•4-1
4-)
g
0
• a) 4-)
cf) •
u
o
o o o
cd bz) t.r) V)
4-) g
E •
cd
•H U
rd • r-I • H
u
•H •
• H tuD • H
4-)
q-1
Ci • H • H
cd •
cd
al3P,
k •
0
g
Hi an
0 cd
o • H
o 4-) g
(u)
oHOin
C)
•H
a) ,o
P
•
cd
4-)
H •
rci •H cd
0
ni • ri
$-4 ri H
cd cd
(1)
cr)
cd c.)
4-)
cd 4
•
0
(!)
ri HI 0
• r-i
cL) (r)
g 4-) 0
cd
v) cd g k
• H • ri
LH 4-) 1.f)
•
Cd
cf) 4
4-)
H 4-)
4-0
Cd 4-)
k
U
CL a)
g 0
••• 0 0 • H
Q) a) rH
•
ri
g
g o g -P ca
bk) •H • H Cd CD
4-)
O
•
Q)
4-
g
P-4 H
Ug
lm
•
-
•
( -)
,d • H
0\c,
CD Cd
4-)
-0
o
-k
•
Cd • H • H
•
C.)
14_4
L
'H0
u«) -1-4•
5•H 0
4-)
tn
P.
a)
ra.
0
4_
Q)
Ç.
• H riC73'in
• 73 a.) k •
(L)•
F_A g
b-C) .p
a)
4-)
ccs 4-)
4-)
b0 a)
g
u
Ct
H
•
a.) 0(4-10L-1., k0cdr-L,
C...D cd 0
•
k
0 5
H r--I5
o b.0
a) •,-4 0
o
-g
6
a)
cd g g
.< 0 ni
u • U
4--)
t
0
U)
ri ri 4-)
• •H
CD ri
\
• H ri Cd C_.)
a.) cL)
k
o
E
a) k
4 0
O
Cd 4-) bk) 0 ri 0 4-)
•
•
H ri
ID
kkgm.-1
L)•
-cl
▪ CO ,C1 0
0 a) u-)
0.1›,
" 0 4-) a) co" 10
Cd • H
œ
a) a) o • H a)
•
Cd CdH
cn 4-) • • H
0 0 1/)
(I) H
Sai CD
-d f•-n
g • a) (-)
0
k cd
• H
(f)
H0
0
. HO
rd
(
-1-4
4 g
• H -1-)
4 • H 4-)
cd •H
o
a) cd ao k
4-) • H
cr)
•H c.) C.)
C-)
If)(r) o •H
H Q) k 4 0 t
L) a) g
0
ri • H
LH
4-)
• H Cd
•H
tn 4-) g
•H
o-)
o
O
P.4
r,
0
cf)
u
cd
g
4-) 0
k
N
rIrH
4-)
0
k
-P
••
g -g • H
•r-1
-g
4-)inkg
•H
• H cd
4-) •7F4 k N
cd
C.)
• H a) 4
0'• g
(24
4--) • 4
H
,-g
k 0
0
•H CL) ri H
Q)
t
-
•
•
•
cf)
CCL
W.-,
y-;
T--1
a) 4
ri-,
Cr)
co < W
• k
61
1
.
•
1
••
•
t—I t 'CS
g
•H
rH rH
CD
O
g)
cd
cd cd
C)
k
•‹
a) cq "--1
.0•-- H(
o
en
•
p.,
,---i
cd
g
0
cl)
4-4 I u)
g • Nr)
C.)
0 (1) •-i E en ••-1
cll
cd 4-) 0 0 .1-1
0 c) 0) bo •
cd 0 ;-4 rd
•H U ----, a) rd ;-•
cf)
4-) cd cz) Hi •H cd
r-14
b-0 •
CD g 4-1 4-4
"
I 0 (- H
›.0") 0 ••--1 • p.,
•-4 0
rH
4-4
cd g nC) p., 0
X
4-) 0
4-) 4-)H
0
• en
t
O 0
er> • cn 4-)
'd
0
In
g •H
u) "
Lr)
g
cd " u)
4)o 0 CL,
0
7:3 •H
00 •-1 ‘......•
(1.) 1.)
'C:3
,O ›...
7:3 en y
• "d t
•
H 1-1
kcd0OU
CD c> d- 4-1
Cd 0 >-n
00 CD r-1
Cd 1.)
"ci cr) 4-)
cd 'd 4--)
--1
'd P. ,
-d en
1--1 n0 t-H '-0
,-'
•HU -.cd
E •H E 0
•
4-)
0
"ci
cd
rd
rd
•
H
g
g
O
0 g u)
1-)
1)
PC1 0 0 U) U")
p.,
4-) 0.) • H
•H 0 0
U)4-4cd I)
• H • ri ,..0
r0 r--I t-1-1 1-0 tf) cti
U) 0Q)
in -ci ,.o
U
0
-P -4--)
(1)
0 ,.. •H •
k(1) g
g f-1
•H
cd cd in •-I
cf) e.) •--I Ln u> en
P r-i cd
;--1 C)
P2i
4:21
,--N
N
I
•
H
C)
P.,
44
C)
+-) „0 4-40
4--) in
cd cd tn
4-4 U t-H 4-4 U
c°
. int-ed
o ,--1
11)H
rn
zi
czc-..id 'P
cd
0 0 -H
• 0
•
$--1 Q),0
•-I
• I) n-4
•-•I
4-)
•-i
u) g
cd
0
g .12'
O
cd O
ul •
----.. r-i cd =
4--) v)
U
4-) e\° SI4 0 24 g -i
a04-1
to a) 4-) P-• 0 cd
O-. E 4-)
ri
0U)
-
•
ri
g
d
E
0
t:10 0 0 U
E
PI-1 X)
(
DE
AI
PA
.
en
•
•
(1,) H
C) rH•
H tr) • H
E
C)
X
(f) P.,,•—,
CO
• H
E
r- 0 (J)
4-4 4-) '-0 ^
C1
• 0 ,g 4-) g' 00
0
N.- 4-) On a) cd
0 e-r>
^ 0
g a) 'H
'-.1 r-iT--1
O)
••-i u)
• H
t_r>
• E (..) o ,---i
g
•P
c)
en •--I
(
44
P- ,-
I
•
ri
1
Cd
V)
;
I
C)
I
t
r
i
0
r-1 V 1--1 4-4
,-ci
4-1 G
,---1 a.) c) eil 4-> ir)
b.0
0
\ • ri "ci
0 u ..
cd ,--1
Q) k
.-c3 ,--1
y
✓
tiO 'd g
10 ,-O 0
g •
ton r--.1
•
.-i •H ---...
Q)
E • H Ct
Cd
0
Sai••
g g
> • .T-1
(r) or-IC
„0
cn rd
rH 4-) 0 4--) •
rd
C
D
g-1 H
r«IC •H 0 H Onrd
L)
\ • tH • r-1 en C__)
C) •-i e.)
• H cl)
0
H P.
•H k
g
• OZ g en ,_o •
•,--1
r--I U g ,---i 0 • ,-.4
E
1-1 0 y .4--) •H
..
P-,
en
E •,-1
d0 E
0 g 0
1-0
4-4
0 •H
"
m Q) .r-1 v oc) rd 00U) - •--• •--1 Ln •
(f) rd
>-,•-i •1-1
.4-) •H cd ,----,
rc,
O
r
0 - r-I 0 4-) r----•
te)
,• -sn
-1 .-1 .1-1 4-1 ro I
O cd •--1 0 g cN1
cd v)
U) (..) t
(1)
•H
.•
g
"ci • cd .1-1 en P.,
If) 0
r-i "•-n r-.1 '"
cd bn cd 1-1 g 00
+-) 0 cd o
4-)
O
0 k 4-) 0)
-
a) Q H
U)
•—I 0 "•
rH
o 1.0
en rd
ni ,.o cd cn 0 0 0-)
E-1 1-r) E--1 ü-1 tn • 1
4-4 C..7 1-1
H
rd 00"
o • P cl-1 1-r) • •
o
4
m
0
0 0 cd U
• H te) t-0 X U •
r-T-1 • rH F-14
4-) t--1
4-)
tr)
• r-I
›,
0
cd
"d 0 0
t?",)g
(f) .\°
o
C/) "
•--i
CO
cd • H
1-0 in
0 •
1-1
V)
•H V en 0 LI-1 -0 U
0
•H
•
4,-) U
-d
0 r)..,
g
•-i 0 0 •-i 0 •H • ct . r--1
cd k -1-)
.1_.) a) u
(r) •
0 cd rH 1.) 4-) 1.) f-T-n
gli`--'
cd
(1) 4.4
E--4
TH
r-I • "Ci
U
cd •-n cl)
• H •<
U
•H
4-)
rH
g Q)0 4 0
0
a) 1-1 cn
U) OU)
cn
ei) cd •H
P-1 E-, 'd
4_
`--'
44
CD g Le) U) cf)
V) 0
, rH E
• H A I cd u)
LI-1 4-)
L.) •r-4
•H 4 • H
"d 4-) E
;.-1
g P-• O
1.) 4-4 0 G ,.
g
cd
tO
--1
•,,: • H 0 7:i U 0
APPENDIX B
SOURCE AND SIGNIFICANCE OF WATER-QUALITY
CONSTITUENTS IN URBAN RUNOFF WATER
62
•
63
-o
n
f'-`
N.
I
... I k'-D4-)
cd 0 U 0
0 «Œ cn Li--+
kkcii-)
4-) tr, ,-1
a) 0 4 4-.)
Lk cd T-i
'ci
g
É--s
's 03 CD I cO
'Hu)Ln 0 k.0
I ''H
-i >-,
EOO
-d cn
000
.1-1 •H br) A--)
r---I
k
Ti
ta r--I
cn g cd
0 cd 0 0 ••
4-) g 4-)o ct x o "H a)o,
0 Q)
,g •H CD cd
U
>.,71 1).0
k in 4-)
0 k 0 bA•H
-P 4-) 0 cd
(4-4 0 cd
(A ,g „g ,n 4-) >--,
çai M b4)
g 0 ,-.
E ›..-, 0 k
;?_.:
0 4--) ,g (-H (1) u) 0 •c cd 0
4-)0
g (1) 0 P-, 4-)1:1) ,...0
cd
a)
cd (..) o
•H 0
0 eg
•H cn E 0 0 o
o r-i ,g
C.) k tn
U) C)
,--ILI-i
;--r
-I-) rH
S-1 •H
r-i U ,---,
0
U 0
•H • H 'd cn cd
• 4--) cd
g cd rli 4-) k - 4-) "ci cd 0 1:=1) k
Lk U
cn "d g 0
g - cn g C-D
•H
ct •"-I g (1) c0 g
•H 0 ct
>, g cd •H
g
•H co a)
u
k
k cd
0- (I )
n-i
0 - cd in 4 r:q -d ' -d o 4-) ,-,
.1-1 4--)j
,-, g g cr) tn 00
4-) ••• cd
4--) g -t
ce rd (NI o nc)
(D cd k g • •,--; 0 0 tn cd "0 .1-)E
cn
,--1 1-1
cd
g
4-) 4
k .,-i
g k bn 0 •H A-) E \--'
0 0 •H cn 0 •H
cd • •H p.,
4 E (DO v) cn bn•H •H '-zi g (/) k 4-) Or-1L
n v) 0
4--)
4--) •H k 0 cd k
I cd ,---, 0
-d
g k 0 k
...
0 cd 4--) 0 n, 0 0 1=1 1-r)
'-0
k 240
a)
..0 ,-O ..,
(1) 1-14-)
O _0
T-1 cd 0
C.) 0 -d •cdcda)a)
4--) cd
g ,-1
u Li-i 4--)
_g
tr) cf)
4-) -g
cd N 9-1 0OU
U)Clii
-I-) g 0
0 •H
gt, 0 k
cd •
0 E • - •H 0 cd
b.15,-1 r-1
•H rti 4-)
4-1 (D
4-) (f)
k CD
nC3 . H g 0 cn 4--) 0 g k cd >, 4-) N- (= 4-) U
O)0 g
a.) _g ct cd •H 0 0 4
g
1.--i 0 v) 4-)
,---,
4-) (...) 4-) A-) 0 Ln TH pq
•
II)
cd
0
.H
4 cd 4--)
•
•H
1-1 U
cf)
-
•H
u k
cd cd cd t-k
▪
,n
"
'H •
k cd
cn
cd 0 4-> „g 0
E 4-> 0 bA 4-)
• H tri
0 cd
,g cd
1-1 E
cli U
N •H
a)
bA
• g
o •H
'cf
•H bA
k 0 0 cd
•
00 U
a)
g
4-)
.P
• H p,
-P0
g P-1
o
r• :=)
o 0
cd
u
o
,_g o
'cl
, -I
.7-1
o
k •H 'ci bn
cn 0 U 0..) cd
•H a) k n.. •
(A cd E
4-) (I)
'-ci k 0 Lk
0
a)(13
i-ia)a)k
kcn
LH cd .-. +-)
1-1
be 0
0 (..) cn cd - g (-1-4 U
,n
•H
Cliva)•H ;-I
V) •H
ni P-0-1 •P
0 -P cr) (I)
,-1 4-) g
4-) 0 g E ..----- (I)
cd d a) -g cd 4 o d ai) a)
r-i 4-.) P.,
4-) PL., gl., E E
64
k
t---,
I
I
0
\0
O
.-n
1
I CO
I
1-.1
tn
• r'l 0 CZ) rZi (.7)
"0
L 0
1--1
LI-I 0 •H (-1-1
I
CV 7:i
Q).'14--i cd •--i 0 •H •H Cd 0 E
Cd
k 4-, Lk E I-I
O
0 4-) 4--)0
4-)
l4- cci 0X 411
k
0 0 g 0 0 0 4
u) t' ,0
(1) " CD 0 r-i U U -cd co
kt PO t U , -0 kt
•
U k Q 4-) cd
Cr) V) •H
C3
tO
4
'H
cd cd LP 0
L.)
0
•H in •
O
E N----i
0
P
Cd • H .1-1 X 0 • H 0
-) tr) 4-4r0 b.0
r0
t-Z a) ca
O ri Ct 0
E
O•--IO U)0
b0 0 4-)
•H k (f)
p_4 3O
o
,C)
ff) (4-1 U
(i)
cd U
4--)
k 0
°
• H
kt LI-I k al
• tH
0 •--4 4--) 0 (4-4 •H '-ti >•,,_
'.
(f) •H (f) (4-1 p4
• H ,0 ',.?.. 0 Cif
cd ,n d
0' 0
k CI)
a.) ,•-•1
od dd .._,
"ci
0 cd
k k
• k r-i 0 •H
0
cd 0
0 • H S-I U) • e----n
k4-> •
t:)0-,U4--)00u)r----
0 r-4
a) k (73
U 4-)
0 )..0
,-1-1 • H 0 cn ca
0 (1.) U 0 r-1 ca)
Lki • H
,'
LI-I cd ,---1 u ,-I
4-)
-I-)
U
••-n
4 p.,•H
E
(f) c6 O
cd
E0
(r) c a E 0 c)
U 0
•H L) (f)
0 N ,--1
4-4 0 ••••0 .H ---._
k _Z_,
cd ••• (.1) 4-) 0
bf) 0 0
bird •c: ri,
i-4
4--) 0 c)I 0
0 •H
k 4--, •••
4-> "0 •,--I 0 cd
'-0 fa, 0 +-) -I-) 0 0 o
E 4-, •H (f) k (r) 1-1
4--) 0 X ,---,
0 cr)
in ,--1
Lr) V)
•
CD PA a) a)
F-1
N-I--, CY)
Cd --1 E U. ) --(
Cd
EP-4 0
•-1
(J Y-, -0 • • r-4 0
--1 o o
4
v)
• 'd 0 U k 0 cd -0
0
tO
0
in 0
g ^Uua)oq--1 • H
E .1--) •••
ca tr) o .,-1 •-n •H
V) t4--i 0 k >-,
0 0 t
4-H
.1--) U LH 4--)-I-)
cd 4--) '-c:i
•
.-4 o • , --I .0
u P a) }-, b1) 0 V) t 0
•H
k •,--1
(-1-1
•H 0 U cd 4-)
u) k cd 0 nd
pi, k
• H ^ 0 r--1 ri A- )0 .1--, • H 0 0 E
E
t
q .--)
U)
0., 0 u) E 4-) cci tOrzi 0 k -,,C._..) U)
-
O cd(:) cd-P) tO0
Z bOC_) U cd E E
r-1
I
I
I
773
0
rd
0 0
• H
c d '7::) c,11) r4: i) 47j) • i c t , ,.... Ti
r,
-
O
I
001.` 1
LI-11
--1.--1-.10,3
.,--i O.-) c.)
EX•H 0 cd•-1
I-I 4-) 'Ci "ci
U •H cd 4-) 14-1 • H
•
•
.1-1 ri E rl
t
r-I
4-.)
p,
'ci r-4 k Çat • r-1 E (...)
k
OH ça.,,—i a) • H 0 E—I
H 0., CH t $21.4 -1-) 4-) L.) ‘-'
u
Ci)
cd •
;-n
,f21
•H a)
ct
›n • H
(L)
U) ,0
(J) cd
E ttO
k 0
cd p,r-i
O
cd •H
bi)
4 in
O cd cd bD ce
4-)
•,-4
k
rs'ci
U)
cer
-
i
ce >-,
'73 cd
•
k A-)
0_1 t
•H
O k
r-4 ti)
ce
O '-1
•H
r-I 4-) F-1 E (f)
O Cd 0 0 cd
•
E 4-) U
00
ti)
-P
ce .Hi
cd
4-) 0 4 in 4
U cd • 4-)
•
cd
k
U tip
•r4
ce Ci) -4
ce::
(4-1
4-) co -d
E • HI RI • H
•
cd E • H
cd
tO 0 0 0 • H
U
CH
u)
it
••I
•H
„COOL-04-) .1-1
0•H
• ,L) 0
cd
0 0 PiJd)
cd k
0O ' cm
0 I p, 4-) • H C2
4--)0
T-10.-COL0 1-0 0")
E
v)r-4
•
bn
"ird
I
g
0 1 in H H 0 •H
4_) 4-) H
03 rd H ra,
03
-P
•,:G
CL)
-P cd g
Ln
c
d
03
" cd
4
,.---,
4-) 4-) g •--1
0 4-) P
tr)
U) cd 0
•H g
g
ct ,0 4-) • H
cd • H CL)
• H r--1
. I O
b°
I1
rH
N.
a) cf) Li)
H U
to g cd • H a) • 4--) d 4-)
rH
• p 0 ,g ç tO g H d
O)
4-) a) g
o
4-) cf) cd tO•H
r
g 40 d
k
0
rH
r-I
1,0
• H Cd
g 4-) rH (1) Cf)
Cf) cd •H
tO
U E
g
ct
HO(f)01-1o3
-P
E
-1--)
0 (f)
(f) g
Or-4 (f) -
d
cd
H
cd
Cll
rd cf) rd
cd
0
'-'
4-) ,--1
• ••
--1
1J Q)
0
bk)
d cd -P g O cf)
•H •r4
S-1
•H .,--1 V) 0 '0
(1.) ri 0
CD E
4--) a) H (I) d
c.) 4 CL) 3-4 L) H
cd C) +J bd) v) CL)
42
a) a)
4
rd E rd 4-) 4--)
kin
Cd
CCS
a) cd H g -g H
cf)
t . p .p 0
00o3 -g PL,
LI-1
'Ht-I
•H
a) 4-4rd a)
1-1 _g 4-)cdE
H
(f)a)(f)a)
g,
4-) g ms
-P v) g c)
0 0 • H )41
r-1
p.4 g-H «3 a) 0 d 0
Q)0
cd
g H -g d cd ,-C)
•< 0E in 0EN,---1
1--1t3ZHin0cd
cd 4--)
•H
'0
g
•-1
0 ,--1 cd
•H cld • H
4-) V) k g
cd
i
Cr)
H
cd
0 4-)(1)
gi.,0
rd cf) d rd
cd •,-1 ri
H rd g 0
•H
• H 1-1
u-) •
d in,--1
Or- 4
;-t
H rd
_g
cd g H •--,
cd 0
0
cf)
g
-P a) -P Ct •
cd
a) cc!
a) H
H 1 in
cf) a) 0 a) a)
4-)
,o 4-) cf)
, c- it r_1
0 3c t. 4 0 3 • cl
.c
V)
0 P., k
tr)
te-Ci ,C) 0 in /---n
g • H
r- Q) rH
.1-1
•H X - p_, 4--) 1---4--) 0 cn
cd a)
Cd .1-1 (1.)
" k 1 -1
H 'd 4-) in 0
CL)cd a) -0 -
g g g rd
g
• r-I (..) U 'd "Cl.
,•••-,
c)
4-)
cd 0
,g 0
0d
k 4- L:LO g
CI) •
4-) •
CL)
V) 7) g CL)'k"
cd
in tiin a) .H 0
cn c-H O., v) L) g.,
Q)0
0
rd
CD • H
0 E H t-i r-I
00Sal
• H ni 1.) -P rH (L)
0 LH
k
0
cll ,-I
k o3 4-) o 4-1
U g 4 cd • n-1 „d
.1,
,J0<z
cd
4-) g cn -4-)
cf) U (I)
ri_l .
(4-4
Ç.
a)
r--.
Q)4),--1
0 H
0 . H
4-) O.)
o
L)
;--,
a
k
d
4-)
0 rH
0
Cd r---.
ct
sa, E
•H P..
4-) 0r-10a)
in
c.)
a) 4_,
r_r_., ........,
E
k •
sa,
E
a)
a) H
,--1 ri 0 0
4-) • H ›,
4-) U) V)
• H g • H Cd
4 in(1)
0 cf) (.)
cf) • E v) H
o •H Cd •H PL,LH a)
4 -) 0 •
•4-) o 'd0P-N• d H g o
a)
U cu rd 0
,-1 U • H ,..
bt) Ct
r-1 • H
(4-1 c)
H 4_) • H ,C) 4-4 O.) G •P
0 V) • H (1)
• H V) • H -P k • ri 0
a)
o (I) cd d (-H o
XtOd ••,-)Hoi
cf)
n-i
P.,
4--) r-i >-, 4-) H 0
cd 0 •H
L4-4 0 cd 4-) 0 0 H cd 0 ,_g 0
•Yog
•,--1(30oE-PU
a) 0 0 • H rd • H
.1-1 Cd
in••• CO k
g ..b1).-0 ,.0
k E
I H H 0 Cd $:1,
V) k O..)
Cd . H"di
a) 4-)
0 4-Q)4agH
0
o
(4-1
•H
•H 4-) g 'd cd
cd •H cd (f)
bo co in 7) • H .< cd 4 0
"
" 0
4-)
65
P-n
^ CD E
.--
,-
0
,..---,
cd
cf)
A-)
Ln
0
0kcn
•H 4-) H
n•-4 cf) o 4-)
;.-1
) r-1 k 4- 411.)
".1
0
) 0 (1)
Q)
E Cl.)
,--,
rH
NCr)
C1)
in 1-1 .1-1 1-1
ci ni ,--1 b
ç
m
0 v)
SD,
k
a) at • H 0 0
H • H Cd V) • H 1:1) O.) 0 0 0
cd
d 4--) E •H
(f) o ,--4 o cli
Ln g r14 .-0 4-)
0)
CAEa) ,_
03
a)
Ct • H \ --'
CI-1
H-I 1-1
(1) (f) CIC
-P b(),Z C.) E CD 0...) rH
7:5 cd
cd cd
U •H g
cd • H i-i g
bz
ct • ,-i
- •H U cf)
>.,
U
cd •H cd 0 U cn d g
tiO c
'bO g k
.
bl)
rH 0
1 H
H
›, 0 0 1 O 0 1
4-) -d ---<_:-. rd 4 4--) ,a)
• H
(2) • H -I--) Cd et)
n-1 V) 1-1 U
',-
Ct CD
Ce 1 4-1
,-
• •
66
I
TS
Cd
' H ›, 0
rH 4--) • H a) N
0 .•
'H
k k u) 0 cr) ni 0
E -H) 0 •H r-C, " 0 cd
0
bO 0 ,n g ,-• g
•-gOktgif)0,-(L)
1-1 (./-) cu
"*--,. 4f) rH
ri •H k L) •H
eno-1-, g
4-)
0 o ni
CD g V) E t--1 cd cd _D •H
----- 0
tv)
•-1 ,s2, cd ,_'.4
c..)c-,
k 0
•
cd S:), L1-1 .-
c0 " E •--1 0
•H 4-) 0 CD k •H A-) 4--) p..,
cd
0 0 0 cf)
1-1 cd
--...
cf)
r-1
kt k ,_
(-1-1 g1, 0 0 •H 4-)cf) 4-)CL) cd•H00
0 '-.,-. cD bi)
O cd c-1
cd cf) 0 CD
PL,
0
cd 1-r) ,-
k
4-) 4-) (-H k t.t.o co E ,---,
a) p
A-) cd
Ln ,---,
0 a) 4 (-H 0
rH
0 tn cd ct 0 cd E 1-1
'p0CJ) U)g 0
O
0 g
cD
1----4-)
4-) 4-) cd
0 Ek4O 0 4--) •,--I
tr) r-i CD 0 CID 0-,
•
0 •H
,g (75 cr3 ,g t-i-i p
0
0 •,--1
k ._
I
-. -P •H cd bi) 0 ul
bZ, 4-) ia) A-)A-)
0
rH 1 -4->
,-d v) F-1 in
O
ni cf) g (1) tv) g
a) 0 .1-1 0 0
CL) k U k "ii U
nt
1.) -d cf) •H cd tr)
t)f)
a)
= •H
0
k a) cL) g
0 cf) •t-1 •H cf) pl,
0 E g •-i cd C) k
4-) cr) 0 > rd 00EP-, A-) H
o,
•H
•H
bOU) o., g
cd 4-),,g
TH k 0 g o g 0 ,H
(fl U)cd 4-)
ci) Lr-----, >,
0 X k •
,4 -ci U •H
t:10 g
a) g 4-)
g
4-)CD 4-) g (4-4
a ,----, k .H 0 (1) cn E cd
4-) g o o
ct
E ,--,
0 • cd 0 ,--1
Ct
"
TH
c-D cf) 4-)•H a) (z)
kt 4-)•
•H
U)(7) -0 g c.r) TH 4-) c) k r---
--1 cd 0
, c) 4-)
• •--1 •-• 0 q cd cd cg 0 cl)
k •H
g •H (-1-1
\__, cr3 u H v)
n-i (-H r-1
g 0 u 4...) .p
Lk (r) -0 ^ k ---.. c- 4-) H-1 •H
0 0 ;--4 cr) ci) to T-I
"
!--1
,.0 g, cd k. 4-) E
a) X 0 cd
pp.,•H
,--i • -
o
• o
(f) • -0 ,0 • cn ‹), -d a) 0V)
4-) cd
,-.
4-)4f)
g
rH rH V)
rH Cd 0
-H
(
a)
in E
0 .--
0
•
u L) v) g
O
0
cr) •H
rH
4.f)
-d
• H
0
0 4-)
cd
L) E ,-ci cd
N
.H 0N
E k •--I •H
•--1
O
U) '-k 0 ,H
Ii)
,-rg r--i
U -d 1--1 cd
- d
a)
a)
rH
O k
v) 0
cf) A->
• H cd
Ç-s4
>•
-4--)
tf)
rH rH • >-,
LkOcnk
0 cn r-i C.)
• H Ur) • H
,-4 • H 0 (-1-1
c_.) -0 cr) 0
k k ra_. 0
0 tr) cd cd 0 cd ,..c1 ,_.
C_)
(..)
•H i in
H
0
.4--)
cd
•H g
(I)
(f) cd
E
•-cao , --,
Ln .-i 4-)go
bi)
CD 0 ,_ •H g_,,g 4-) ,g E
cd
•H U (4-1
L1-1 -P
0 ›-. — • E
cd a) Pl.
E cf) •--1 •73 -cl
in t—i ,.0 rH
a) k k -d
cd --i
g ,-1
0 •H g c.) g v) ,-Li 4-) cd cd g
V)
4-)
g
0
•
+-) -d
0 cq cd g •
rH '- o 4-) ,--i ,4 •H E
‘.CD
. r-4
Çl.,
cd
g
cd
4-) 0 -d
• r-4 cD ,4 H
(..) E 4-) cd
rH
,cd .---4
0
Cd CD
T -1
(r)
9-
A-)
0
• k (..)
cL) E 0
•-ci •H 4-- ) (n
v) Or--I
>, a)
,—(
cd
- -1--)
r---1 bl) Ln a)
Cd Cd
g E
k E 0
•H •H
a)
0 g cd cd
c...D cd L) ,--
cd
•
- r
67
rd
g
c
d
'p-1
V)
vi g 1-4 E
P ,--I •H
Q).(
O p -I-I
t-i k ..0
0
•H Q).
0
0 0 g to
4
I I a) tO P cd
cf) •H (L) E
a) P
v)
g
H E
Li-i a)
CD
v) 0 4-) •H ' rH
v)
cd v) b1)•H
Q) V)
0 g -I--)
a)
•H k
'Ci • H
00 #-) (1)
O ›, v)
P-n cd
ct- E
• H I-Q)
U
0
-P ,-• • H 0 -I-)
•
•H
06 t -1--) ,-C M ›-, v) 4--) rd
u) . H -P o al
.H 0 tn
E E 0 E (1) 0
4-)
. H
rH • H 4
4 CO g g
•P
E
cd 0 Pi v) • H 1-1
a)
a)
g
0k
• 4-) • Ct CCS 4-)
cd P ID.0 E ,-i
• V) • H 0
g rd v) 4-4 4-) g
4 a) g
ça.rd
4
0Q)
0 4--) 0
•H a) v) •H cd a)
P. • H '173 0 g
g k
L)
V -1-) LH t-1 41
•H a) v) P 4-)cl) 0 E g P cd
• H
C.)
Cd
Cd 0 0
O ;-4 POOLP
4P
cd4-.)
v) E E • H 4--i
g bki a) a)
rH P p., P.•H 0
4-) Ça. v)Obi)
•1-1
-1-) Lk 0)
Cd
4-)ci )
cd cd
a) P tr)
g E a) g •
•• cd (4-1 4-) E a) 4-) cd a) 4--)
u C_.) ,g rd a)
(-H b.0 ci d rH • H br)
(!) 0) k 0 cd
4-) g tO
a)
V)al)
4--) (1)
0 g (..) •!--I a.) 1) g
P rd a)
• H M 0 • H • H .1-1
•H E a.) ça,
•H
c.)-• Hg •H rd a)
-P f-1 -P rd
rd
rd • 4 • rd >, -P E ¢.0-1 g rd p
k 0 •-1 4-logg • H
kV)
0
V) --1 cd cd •H
4-)
0 0
4-) 0 cr) • H 0 •,-1 ,o cll
cd C.) L-1-4 (-H tis) I0000•• -k
E ri
+--)
U
• H (1)
rd t)t) U
cd 4
E c-I-I v)
• H V)
4--) a)
br3
k 4 k
4 P. 0
I
I g a)
os
•H
0 •H 4--)
E 0 0 (-1-1
0 • •-4 cf) •
o o --( •,--A
• H Lk
v) Sa. E 4--) ,.0 •H
Q)a)
a) v) • H4-1 P I
E
cd
• H r-1
M 1-1 cll• H g
b•04 4--) CD g 0) E • H
;:l. 4-)
P rd a) v) 4 0
cd 4-) ',.. v) g g
P 4-) v)
•--I v) cd rd a)
,-4
cd U od 0 a) cd cd
O g A-) P g a)
cd • H cd cd
0 cp 0 v) (1) cd
rri
+..)
E
ri
)
C_.)
,_.
4-) 4 4-1 p.,44 cn
.-T-, cci in (1.) F-IN
4 v)
4 0
t-i
4-) cd
g •H
E PL, 10
g
Cd
0
M
,-Z
,--. V) U G) rH O V) g CD , Cd
o
V)0
.., g
,-- k t)j) Cd
U LH
o o ,--1
o
>..,
v)
r-i
4
cd
ID.°
V) -1 b4
O g •H -g • H
E o
U 4
H •--1 U
E EE
-H.
(
rd
a) ,
in E
-
4
.
• 1-1 (ID
-4-)
0 M 0 • H E
0 M • H
k 0 rcj
rd v) ,--4 4-)
(4-i
U a)
v) L) 4-)
-d v)
Q) r---1
• H
• CD g 0 cd
rH 0 V) 0
O V)
• H r-,
U)g
4-) r-1 1:1)
v) rd cd cd ---.... g
•H
4 --1 b.0•H
f=1 cd -P 4--) E n-f
a)
g E cd
0 • H
• H CY"
•• H 0 g.
•
v) v)
1.) a) cl) P
v)
a) • • H g t).0 a)
V) 7Zi E E -k b•O F-4 -1-)
•H g •H
•H cd cd cd
rH 0 4-)
0 v) u)
q cd ,--i tr) -P ', -; ,---i
rd
cd ,---,
,---,
•,--1 4->
u g
0 Cd 73
g
P
4-) • H
v)
bi)
a)
E
b-0
g a)
0 G-1•1
k
0 -I--)
• PCL)
(f)
•-_,
-P
cd
-P0c..)
•H p.,
• H
V) k
g Ç11r-1
0
• H
(-)
Cr)
d
0
V)
cd
0 rd
-d v) v) g
Cd
0 ?-1
• • H ••
n-1 0 v) v)
0 cr) a) a)
( r)
gg
v) rct • H • H
•H g k P
(:: Cil ,.0C
4
g
Cil cm
Cd
Z E
•.__)
•H
v)
E v)
• H 03V)
• H Cd
U g
r-1 CIO
C'd Cd00
Cr) 0-1
C...) ,' - ,"
E •H
Cd
t-i-i
ct ,..-,
C-.)
,..--• E
•
4-) Cd
0
.---,
4-)
0
g ›.• 1-1
•H
..,
0 '-li k
'-d
g
O
g ri
tk..- cs' •
cd P v)
v)
,- U Cr)
P >.
v)
v)
‘-i e. 0 o -1-)
4--) •---i 0 tIO g g g
v) cd ,L) P •H a) •H
0 • H . r--{ Cd k U)
E U E 1-1 ,..c a) v)
k 0
a) 0
E P-I rH g (1) P-•* 1-1E
g
O 0 •
• H
k U r-1 V)
k
E
0
•
•
•
•
•
68
I
E
bA -ci
H-1
I
'0
tO
g g
4
I ----I
g a)
I-4Hu
g (f)
•H cd
tn 4-) H 0 00
0 •,-1 cd rH 0 a)
cd U 0 • H • H a)
,-,sn v)
cd 4-) H a)
b0 g
• H •-1 ,-C r-1 ,.. A--) •
g f) • 0
V) rCT3
-I
4-)(1) ,r--1
-C
E
H 0 v) U
g •H cd -d cd 4-) 4 g cd ,-.4
-g a)
• H 4-) E • 0 (-CS U C>
Cl g kl tn tn v) 4-) Hi
• H
C_J
g • H 4-1 '--...
k g j(1-)
Ln
0 t>0 0
C) cisa,
g a) 0 a)
g P., F-i ,---1 IDA
-d
•H
I -P
•H CCS rH 0 4-) 0
• H 1-1
E
C.)
• H
rd g E
rd •H U to cd
•0
p2, E •Hi 4-)•
H Ct
cd cd cd
•
tr)
0
0 tn •H
ro
tn
4-) c.) 4 •-d (.1) ,—i Cf) e--.
0
-1-) CCI V) 0 r-1 • H 4-) 0
rd ,12, V) •H
a)
g u-)
0 4-) cd • cNI 4-) Lo
H p ,!--',
a)
- g
a) H • '-ci H
0
H g •,--1
cd cNi
a) CD ,. k g g -d U
cd
• H 4-) V) CCÇ 0
c.) -d cd p.,
U
cr) 4
-I--) b•C1 4 -) 0 P., •H g
k
4-)
cd 4-) g V) E A-)kl
0 • HH 4- rd
tn H •,-; U
H C) C)
4-1
•H E a) • H 0 0
H cd
'd
44 • %---,
0
cd cd
• 'd E
g
A-) rH U g a) cd
0 4
g cd 0 (n
tn 0
4-) rH
H u«)
E 4-'
•H • H V) •HO4-)
• ct
g cr) cll -ci U
g a) • "--, 0 0
H4 U
c.)
kt
g
ct cr) (f)
0 0 0 U £-4 k
g O4- rq C.) g
cd ,—i g cti • cd -d 0
• E H 0 bA,.0 c.) •Ht cd 0
4--) • H • H Ct
\ 0 0
,- cd 9-1 I-H 0 ,_g f—I 0
H a) A-) H
o › -d
H-t
-P
c:n £-1 -d
t--4 U
-d
cr) g
g O,--1 U) cd tn H H g -1-)cd g cd
• T.'i
l'H
C150
H 0 a) 0
o
• H 4-1 • H Cd 1-1 • H O-, a) c73 0
(n a) g v) 4 `••••-, tr)
I-H en 0 H 4-) 4 H • H
0 4-)Cf)
4 • r-i 0 b,D -d o
4-) g
a)oo4-)-Icocno4-)
a)E,.o
ga)b/)
(f)
cd
4 tn •H CD k 4
U
p., cd 0 g
L)
4->
k • H 4-) g gz'
-d
E cd 4 U cd in
•
tn E
Li 0 tn -ci 0
cd •H E 0
Ct • H 4-),-1
v) H 0 a)
•H -d
nd a) 0 1
4-4 Uce-,-)cdI-1-1r-1(1)
,-to 4-) 1-1 1--1
0 (llUk g
g(L)
O 4--) U +-) -ci H g lu ,-1
,—I i—i a) A-) a) ,--A a) cd 4-) o
4-)
U 0 k cd -d
H cd 0 0 g cd C) .H 0
cd 4-) •H 4
H 0 cd 4
•H cd g g r. 0 4-) • H
a,g-o4coc.)ELHO
ci) L) tr) _P) H In -0
•Ht 1-1
cn v) H
v)
C.D
g
• H
rd
0
U
.
a) tr),.--,
rd ,- a.)
a) o
r•- ›. 0
U
0
-
bA
tn g
cl • 0 •H
H tO g en k
+-) 0
g cd ni
O g
,0
4-)
v) „g H 4--) tn
y) P_, 4-) PL, g
O H E
0
0 0
CT3
-
g cd -ci p., -d
0 r7j
E •
H 42, g
H
g
V)
a) 4-) "d
C1
'd ••
g • H
g E H '-ci • H k
•H C--) 4-)
>4 0 . H
•H
rH
g
rld b4
g g
g ai g cl
Cd
0
a) E 4--)
v) v) cd g
0
,-z
U g 0 •H •
c.) en
H g 0
4--) t-cl cd g
0 • H b+0
k
E g 1-1
•H
OC)
cd
- kt
H • H 0 0 •
k in g kl ,-0
(-H cd -ci p_, cd vt4 -4 0 • H 0
O C)4
-) • H E •H H
H
4--) H-1
(4-1
g
'ci g (4-1 0 H 0
-ci p., 'd cd cd
O g 0
a) 0 rH L) a) 4-)0
g
•Hl
Oi4-) cd
O 4- •
H
H-i
g
tr)
tn H U ',... tn
rH • 0 Cd 4-)
O --i a)
O U)cd
0
0 v) I4-1 0 tn
-1 CI) E
1-1
V) f—i g 4-1 gd 0 -1-)U)
Ln
4-) 4-) • H
V) • H 0 •-1
in
•,--1 -ci
•-c3
g V)
c.) cd ,-4
,-,•,-1 cti
•H 0 H
•HOggg
0 g v)
cd H cd
c) cd
9
•‹
P
s---'
f=1 fl) • H V) ,-C) E
n-_-, (1..)
O
..--.
4-)d-
cd
-1-)0
0
a) A-)
4-)4: co
CIOs._..
•
g
g
H
4-) a)
•H Ça,
4-) 0
v) kt
• a-,
O•
C..)
,-C)
o ;-,
a)
cd
4 -)
..0
4-Ocd
c d
u -cs
H
g):1 Cd
(4-4
,—;
g
r)
(
f:2:1 V) Ct • H • H
-d
69
cn
bO
-ci
0
1 g
0 •
g 0 •
-g'
i
i
g
14.
•H 9-1 LI-1
Ou)
cd U v)
PL,
0 •H 0 • H 0
C) Z U 0 i -0
Hik
g E
H
• m
g g -0 0
0 -0 0 • ,-g
4-)
a) ,--i 0 >-, m
b0 0 cd 0 -cd
cd 0 -0 0 1:10
,g cn rd 1 ,--1 „g ,g cd 4-4 ,0 4-) cd • 0 g
H 0
b.0 H 0 bO•H
4-) 0 0 b0
tO +-A 4--) (1)
g U (f) H • H V) a) 0..,
,—I p.,
cd ,g
1:10
g •H •H 0 cd H -d cd
co
,=- 0 cd
• H r-I "g E LH Q) 0 LI-I 0 0
co b,0
(..) -I-) L:).0 ,g g
g CD 0
o-
(..) 1-Z
,..
E
g .
tr) g .1-1 Cd Cd r.-I U Cd
LI-1 U ct cr) -P
0 V) •H g cd LH 0 cd -H)
•H !--1 V)
H H cd •H
0 • H
•H
1-1 • H0V)V)
Cd 0 a) U -1--)
g co
4 to U 0
4-) >-,,..o k4- g -d g H
o
• H LI-I
Co
,..g
a) •H
ai cd
'0 co co cd 0 g 0 0 >--,
•H a) Z 0
4-)
4-4
4-) 4--) • H
0 H U 4-) Cd L)
H E PLI
Cd HI A-) g
cf) co
ci) Ln co -1-)
4-)
,---, b0 0
LH
g E 0 C.) •H
,_g E cd
0 E cd C) •H
g a) • cv b.0 4-) 4-) 0 " 0 0 g Cr -1 • 4--) ci) 4-)
H cn +-) E V)
CL) (:).0 Cf) (:) 0 t ' g
(1) ,.0 E 0
LH ?HA rH :?.... • H
t).0 • H
0 g
Oc • c:;) in
0 .'V)
0 +-) r0 LH cd 0 0 g a)
g 0 ni 0
g H
4-) cd cd 4-)
1---I
cd g 0 4-) 0 H cd r--I
ti) cd ,-1
cf)
0 C)
•--' cn
kcb
g .-1 a) o
(,) 4-) bc, b4,0
0 b0,_o to
U
-0 • 0 E cr) g .1-3 A-)
u)
v)
Hi cd
b.0 H cd 0 0
cd • cl) H H-4 U 0 • H
g .H >-, • H H
0 0 H
Cd 0 H 4--) H
H
g OC'-.
'--..
g 7) 't cd g 4-)
c.) H b,0
• H
H
•,-4 cd cd •
0 rH 0 • H r-ci b.0 0 •H
r--I g
0 0 H 0 cd H co
H co U
0
4 cd "-I
g E 4-4 4] 4-) 0 b0 ,_g • H .1-) 0 rH H 0 0
0 C) CD • r -I gl,' -I-)
b0 c) 4-) H cd
cd 0 g 0 0 tIO
cd 4-) •H
,..g -0
c-) ,Ag '73 '0 co cd
•H 0
0 -P 1-c-) H ,---1 cd ,g H •H g H g 0 0 -P g
-1--) r_-_, g •H ,_
r-i ,---4 cf) (,) .7i- +.) tIoLH v) p., rd 4-4 • H ,LD U 0 0
P-1-1 0
1-1 P-I-A PA
1
4-) C...)
0
U N .
• H1 • H U)
g r-I r---I
Cd • H •H
H H cf)
0
LH 71)
0
^ 4--)
•,--1 0 cci
>», bt) 4 4
cd cd 0
c)
bO
Q) Q) 0
f::: v)
(1)
cn
cd 0 -P
H
•
cd
g E
. H E 0
4-)
CV)
bi0
bo
g
0
H "ri
O g
+-) cd
O
•
(1)
r-1
"
b,0
H
cf) g g
0
4 -) • H • H
U • g
cf) 0 H g
E
1--1 bi1P-C) 0
0 •H H g E
H 0 0 E
LH co 4-) cd 0
0 H-1 C..)
't rd r0
a) g
:
cd g g •
• H Q) V)
CV)4-) k
r--I
cn ,-- "ci LI-1 C)
co U 0 0 4-)
•H 0 v) co cd
P
-.1
:
•
70
((IV)
k
g (1) ®
a, cd
k
cd cd ••
g
U)
O
cf)
>,
IDLY-0
Q) LH
0 tri ,e
HI Hi
1-1
,4 -H)
rH Cd
•1-) (1)
1-1 (r) 4-) cd
O
Pj • H
U
t-1
rH • H 0 ÇI C d 4-) • H
Ln Cd
U k 4-) V 0 rd
Q.)
g
LH P-c-1 tu!) Cd Cd
r -1 g
4-1 4-i 0 .1-i
(f)
O 0 e:14
••-• 0
II)
•
•—i
k
• cd F-•
(f)
O k
0 cd rH
-1-1H4
t -1
cd 4-) 4-) 0 v)
U
(f) "ci
•H
1 -1
0
-1-I 0 0 k g a)
1-1 0 44 4-4cd
••-f
4-)
(
•(
APPENDIX C
METHODS OF BIOLOGICAL AND CHEMICAL
ANALYSIS OF WATER SAMPLES
Table Cl.
Analytical Procedures of the Sanitary Engineering Laboratory of the Department of Civil
Engineering, University of Arizona, based on
Standard Methods (1971)
Parameter
Method
Chemical oxygen demand
Dichromate reflux method
Suspended solids
Filtration and evaporation
Volatile suspended solids
Ignition of filtered residue
Total coliform bacteria
Membrane filter technique
Fecal coliform bacteria
Membrane filter technique
Turbidity
Spectrophotometric method
71
72
Table C2.
Analytical Procedures of the Soil and Water
Testing Laboratory of the Department of Soils,
Water and Engineering, University of Arizona,
based on Standard Methods (1971)
Parameter
Equipment and/or Method
Hydrogen ion concentration (pH) Glass electrode pH meter
Total dissolved solids
Summation of ions
Total hardness
Summation of equivalents of
calcium and magnesium
Specific conductance
Conductivity meter
Calcium
Titration with EDTA at
high pH
Magnesium
Titration with EDTA
Sodium
Atomic absorption
Potassium
Atomic absorption
Carbonate
Titration with acid
Bicarbonate
Titration with acid to
pH 4.5
Chloride
Titration with silver
nitrate
Sulfate
Gravimetric by precipitation of barium sulfate
Nitrate
Phenoldisulphonic acid
method
Phosphate
Total phosphate
Silica
Heteropoly blue method
APPENDIX D
BASIC WATER-QUALITY DATA FOR FALL
73
1971
TRIALS
▪
▪
•
▪
74
1
1
1
I
1
1
I
I
1
1
I
1
1
1
1
I
1
1
1
.1
‘0
(n lto
LT1 ,
,
I
0
Le, 1.0
1
1
1
1
1
1
)0
1./1
VD
I
CO
1
1
1
1
1
I
1
rn oo
CLe, V,
N
1.0
.
<D
01 Cl
•
ni•ort
ri
h, g 0
0
000
•
11.
0 CD CD CD 0 CD 0
hl N1 ,r r, fq
c.) ri •••n
0 N
•CD
000 Co CD 0 CD CD CD CD CD
0 0 0 0 0 0 0 CD CD
0 000
r-I
r, , nr, r,
cT
r,
hi
,q
,, V V VV,,
,1 Lfl10 Cl
r,
VVVVVVV
•
1-1
•••n E
no
0,• co co 0
0
E•••n
0 0 0 CD 0 0 0 0 0 0 0 0 0 0 CD 0 0
0 0 0 0 vt
c,
,Co
•cr
/111-1
.111,1111111
•••••.
<-1 00
111i1111111
o
O nt
vs vo
4-1
E
co
0
o
i
.
rt
tr) 1,1
DO
c)
th 1-1 vD
ti
tt
1'11
1
1
1
1
VI C•4010 , 000l ,
N
<D 1.1 N i ni,
• I
0 CD 0 0 0 0 CD
.
0 00
•
co ni
111,
00E
co
•it
CV
1,1
v-1
ni:
00'
ri lO
-
rf
00
ri
(n, v, , 0 eV
b0
•
XE
,
•
• Lo
•,,r co Ln Ni I r-, o 0 n 0 0 ,4
•
•
•
• i
I
0, ri'.
• I
.
•
•
•
• .
LO .
0 .,
0 Ch
1 1-1 . hl e-1 CV 1-1 y-1 . N-' •JD '
005
• .1
, 1-1 , 1-1 . ,.. . r-I N . N 1-1 .--1 . 1 n
DO
ri
O,
0 00
00
CO , ni, CO 10 10 VD 0 0 <D I 10 1
ri i 010 •c•
CV ,
1-1 1-1 1-1
N r_r nil ri 1 ri •-I
i
r
E
ni ni nt
0 O l Co CD
el
ri S L/1 .
0 .1
ri
••••••
ri 11)
•,} 0 g Cr
r-1
'
0 •••••
00
,D ul
L) 00
Z
, cr,ni01 M11 V1 ni ni ni
LO
vD
cD
000
)
E
ni,
LO vD N-101005
vD co th
ri
0
•
000000
7
I
'ri '
lOI M1
r,
r,
0
CI
cc
,4-,
4
1-1
n-1
.
CD . CD . Ln co
riNI
cis
ni
nir,
'-410 10 vt ri ,. ni' h, 0,
. (n' ri' N- 00
1-1
1,1rim
'N-10 1000
LO
o 0 0 0 0 .
o,
4- ,
ri
on
ri
c00,1,1 'CI ' 0,4 ,1,-1 ,000 or, imorn,,n,ro,,,,....1
o
o
1000
.0 . C> . CD 0
. . , CV , r, , 1-1 cv ,4 cq c. , vD rq : ,,,; 1 IN1 1 N
Z
hl eV (V fq . 0 . -cc . <7` d.
0
n.c
ri
as co
00 , 0 n 0 i 0 0 0 0 0 0 0 '0
• • 1
• 1
• 1
•
•
• • • • •
00 00
1 0 1 g, 0 g, go
,,,,, 1
10'
cv NI , CV , t4 o CV CV 1,1 CV hl h/ Co, I N. 1 cv I
Cg CV tol (V CV 1 VD :
XE
h/
.1
0
ri
vt
CO
I
ri
1
. •. D h,
CD ri'
<D
e
,,0101U
v-I
nzi
O a vs
oo .o ,co ,toor00000 .o . o , 0 0 000. o , o .coo
,--1. ,o n ,--f ..r-iro,-.4,--1.o-co.o...,1 ,4 0 1-1 40 cv 1 4ro . Lo '0000
.1
O
,--I
,-I
•e-1
.
01
U
.,-,
•ri
x
,. 4,T,
u u U
g
,,
L.
.141
g
b;
bbbb tb •
1-.
1.-.
,
0 C 0
I
•40 •-I DO •C• 0 L.0 CV <D CO CO <1- CD CO 0 N
Ln 1,-- c0 L.0 0 sot ,4 •-•1 n h• 0 0 L.,, 0, h- N3
NI NI C, , , re) r.n .4- c».1 , cv , nO ,0 , ...,1 c,1 Cr, V) Ln V7 , t`n , ,C, 1001 (n0 ..4. , -1g g g
1-1
vit 10 <D vt N1 DO ,1• .., •0 1-•1
E
0010 h. , , , , 0 0 sr, sO 1,1 s.0 , 10 tiD VD ,C) sfD VD 10 LO (n10 CD 0 0 ,-1 1-1 ,-1 1-1
•
• .
•
•
•
•
•
•
•
•
•
•
• .
• •
•
•
•
•
•
•
•
•
•
.
•
•
• •
00. CO CO 00 CO CO CO CO CO 00 00 CO CO CO CO CO . OD CO 00 CO . CO Ihr CO Dh, th th. , ,
17 .
ri
1
LO '00 . CD .1 ol ,1 ',D s.0 •ne ',"I 1 N . , Lel Ln e•r, ./1 '05 o 1•0 . 0 cr•
,
-1 ri 1 /-1 I 0 . ,, ,-1 DO 1-I_4 I, DO 1 1-0 . N 1 N /-1 r, CD •-, . DO i 01 o r, <D
bo
.
....1
I' ' 1,-1 . •-1 n-1 •-I , •-..1 . 1-1 . 1-1 . 1-1 . v-1 I-1 1-1 . 1-1 'o . 0 . ...
1 Cn
co
ri
(
)
ca
bb
le- N-00
co
th,
01
v-I
ri
Cf)
N-
CO
V) E:
In co ..-I al co n.)
CV V..
- , s..0 1 ,1 <D
,D, hg •0
OU
0
0
4..n 4_1 4,
• ,..,
.,.,
or,
VI CA .,
0
0
0
a. C.
. r- r-a. E
E E
E-•
>
0,0
N-
1.)
I-1
.N1
co
1-, ,,
g Ci g
g g g
g g W
g
ri
0 00
1-1
,4
,, 1-, . r-1 I 1-1 i 1-1 4-, 1-, 1-1 ri ,-1 •--I o ,, , 1-1 . ri 1-, 1-1 ,-, ,, . th . CV .
hl , 1.1
Li
0
rH0101.1-1
E
o
•
•
n
VI
./1i
0,.. 0, ›,
.:1)
0, 0 0
(1)
•
cn cn ch
•H
,
CD 01 , 00 1 01 i01 CD .7 01 01 vt hl 1 DO 1 ,, . 0 ch co co c, 1
10,,,, ,,.
,..-1 .
C.-1 .-1,1-111-111-1 t,,Iv-I.t, N1,11,1<,,,--,,-1,,110'
g, 1 <,- . ON-II
g
CO
,-I
1-4
u
..-1
ri 0 010
co n) os 0 nt r•-• nt 1001 n) n• 0 co 0 as ni c N-10
LO 1-10 •Ct N Cl 00 1') N N .0. 1., I, ,.. PO N CO •--1 v-I r4 1-1 1-,
hi
0110 . , . C CO ,-1 CO 0 N 0 . •-.0 . 0 Cl rol •-.• , , CO eV OC el h 0 L/1 C. , ,, tr,
Le, , g, N 0
- - r,o ,..0 . ,..0 o•O •••r C. ,4 0 ,r. 0., ,0 r--• . ,,n ce h- •zr <7.
CO L/1 N GO CO 0 Li) 0 L.0 1.0 1 ,1 ,..1 CD tc, CA .1 ,,, g• •cf. ••1 N1 hl ,-1 Cl
<I t4 0
Tri
v--I
1.,,
crs 0 4 vs cn r
r
000
U u U
0
0
0
> > >
15 0 10
,g ,„0 „g
N
0
<D 10
g,
0
1,
•
•-•n
).•
•
c- 1)
.
.-.
F.
O
.0 0 0 C. C• 0 0 0 C. 0 0 0 0 0 0 0 .1 0 0 0 0 '0. 0 0 0 CO
C ,,, 1.., , Ln r, Ln ..:,. , CO 0 t., , 0 , , , •-• ,D .• 0 , CO </' te, ort g- Pl
Ln , vo 0 n) co
h- •C "I• cO h- ,.0 0 vl Ln •,-1- .-0 rn 0 . ••"1 Ln v,
U.
C
crs.
I('
,,
/-1
I'D
,
vt
1...1
•
ET) t:
•
;ci 7
Cr! tf Lr.
N r, tn ,.1
V! V: V:
ri ri
• ni_Q
•
on Ln 0) Ln In rn cn
a a a
a a a.
1.,
01 41 :•-• 0-
N 1. '0 .-, 1, ,' N
,C,
,
CO c-, 0 ,, , .ritn.on.01•.,:' •-• 1, •-.1
C' 0 CD 0 CD 0 0 CD 0 0 ,-o r, •-. coco 0 0 0 0 h, /, •-• COCO
It •-, ,--t
e,
,-I
000
C•
.1
“,
1-.
1--
v)
0 C
CCC
..., .--.,
•,..) v)
C
v,
0
u,
000
t--1
1,0
LO
0 C C
.., ,-,
0
C-'
C
0
C C
If' (n V`
4' ,-V: ;':'
Ln
75
0.
11111
E
11111
L/1
F.
2 X
E
•
f 1 f.1
T .
C, 0D N-1 1`.1
..
o
,4
E
Fm
• 00 0
in 01Ln 0,0 r- o CC .0
p„,1,-,1
I
F na
F 0, 01 0.10.0
In r4 .0 n .1..0 in to to In
0 0 .7 0. n 0 .7 0 0 0 0
,-,,-1101,--11
1
0 0 c0 0)0 0 0 0 o 0
tnr,10$0r-tnirni
1,11
I
101
1
IN1
1111,0
1chl
1
I
o
to ,-/1,-.41,-,111,...,111
11111
1
.
1
.0
1
1
01
111
11
111.
IIII1N
VVV V LIVVV VV V
•
5
Fr, 0,
Co01,0
IC F CL toO in.4. In
•
I
1101111'0
0 0 0
lry
L.)
N1, 4
0
CO . I
• CO
`••••-
CNI
11111111111
1 N,
.111.
.1.
p
to
'
11..11111.
11111111111
c/)
•
O r.-• 0 0 0 0 0 0 0 0
LO
P. E
o
01110,111N-11
11
1h.
01110111m11111
N
I to
N
•
•
•
00 ,e
u.o n0
0 0 0 0 0 0 0 0 0 0 0
...1.1.1ii
01..011i$01111.0
to
04
Z E
t•-n
00.0
r-1 0WL/Iln000,0010
0 0 .1 1-1 0 0 00 In COO
to
,0111M111M11111,D
..111•111.11111.
,-.4111 , 1111,N11111,0
to to M In In In N
0 0 0 0 0 0
0 L/1 W LIC Ul
-t L0 0 .0 O to
N to to
f
011101111,111100
1c...31
1
1
11
IrH
to1
0000Ln
00 (10 r01(0 -t
to NI
to
1010
0 0 0 0 0 0 0 0 0 0 0
1
to C
0 0 0 0 0 N 0101000
1,NIN1 1
N111.011
1,-/1
1
1.-.1
I
11
1
1
lc,
.$
$
$cr,
1
E
NNNNNNNNNNN
CL) on
E
10$
01 01 0
0 0.1 00) .4 0 N N. C.
N LIto 1.0 N to to N . 41 I4-1 .41
N to N
110011
$
$r--$
$
toto
I
.111,./111
11111
to
000
0E
0
r• SO
10 (001
CO I-I F CO F
to '-ito__totototo to
0
1 0 10 1 I
1 0 1 1 1 0111110
to
tcd
X E
in
11111111111
11111111111
to to 'to
1
I I
I 1
N to
cd bd
Z E
•••••$
on 00
E
0 0 0 0 0 0 0 0 0 0 0
0 OD 0 VD '010 00 0 10
00000000000
FFIFF
FIFFF
...AI
•
ll,1.4
cn r r-o to to c) r- r- F
Lflo 0 0
0 0 0 0
0
0 0.0.0.1,10$110,$
N 0r- 0o .4 10 001
to 0LILI(00 0 N 0
0 0 0 0 0 0 0 0 0 0 0
Ncol..0.1mt
to to
$
lItoIIlQ1lI$110
COCO
/
1
tw.
1,4)11
101
IN.
r. v. v. v. v. r. v, v. v.
00 '0 '0 1 I 1 CD iiieli
,1
o i
to p i
M IC
• 04 1 i
na
I
M to 'to I N
0 0 0 0 000 10CD 100
0000000J11J)LILfl
00000 00 NNNTn
11
10
I,.
I
0000000010001
N1 .1 fLs LO r-
00.0
F ..1 NI N In In In
•
N
O.
(0
O
E
,4
En\
Q1 00
E
.41.0101,1
.7,411011071
N.F. F.11
0110
,0 r- 0 10
OD F 01 03
to to
CA r. V,
V1 to to to VO V,
,,
.
.
.
r- r- r-
.
.
.
.
n
I
110
IU1
1,y111.11n111111
Ln Ln I LO $ tn $ I 1 0 1 . . N 40
iliti•
.1•1•iiI•ile•
.
1 1 i ,, t
r, C, ' r- 1 ,, 1 1 6
to 00(0
Ln
.
.0; .100.
IN. I
.
t, ,, ,, r, ,, t-
V, kiD , 1,111,11 101111,11111 1,1
to
to CT 1 r, $ osioichillun .114, F
, , , , F
,...,
$
.-.00000-00001 co r-to F I F , F , , Ito
oo r- r- co r- r- r••• r- r. r- t•-•
01
9-1
F ct Cn Ln CI r-0011
CA LI CO
0 1,, CO ,--1 .., CV C, to CD CD OD
to into v-4 F tsI to to F
0 tr,
r-- 1000
F to to to t-
0
F
to 10 I CO . $41
F
in
1010
1
0
I
I
1M1 I
1 1 IM1
1 01
N0
1 00
I
1, 1011---.11, 11
(00.0
E
44
toto I
I V) I I
L/1 I
F
I I
101
I I 100
IM 1
$itii
1.111,1
I
I $
an
r, 0- r. 0. .. 0. r, r, 0. ..
v.
r. v. v. r. v. NA r.
0
003000tiODlOtoOtto00 00 CD CD .0 CD 0
y,
Clf4 OC 01 ,D N. 0,
Cl ,O
0 QQ00L0LflIOtoI0to0tototol_1I_V0 Itototo
LJ
•
010 0 to IN In .0 11 N 00to
C
0 0
LC.
Sd
• r.
O
N1 , C N 0)01 0
M 0 Ln
0 0 0 0 .0 0 0 C. 0 N.
NNI
Y-1
to
IN
CO Cl
▪
76
CL
L)
tl) 0
ri r, ri ri rA
a
CV
.0
•
r,
...1. 11111 40 1-; VDit ,)
,
rA1,011er11
1.0-.11111,n AD cOeL0
CD.CD .110,
t ,,00i
qD
cD 0
,y
11
oiii
o CD. CD
CD
I
1-S I
1
1
CV N1
rn rA
r,
;
un ;
ri
H
-or
40101.011140111 0, 1 1 1 t
111.11111r-1.0.
r-I I rI 1,111
•
H
r0 0
00 0
•i
I
n
•
I
N11111,4N4
Ln Ln
11.1vt rn
iti CA
1
ullrHict 11103
ih-11-:- 11100 1 g 1 reiii i 1 NT04
03
rt
0
; 00
""•-•
b0
.1
i 00
•
•
1
Lni.cr
1
t
; c7
1
1 C7
111•11
1
i
1•1
1P
VD
11II11111
•
• cy
‘c,
1_410
VD ul
0340 0
Cn
1 CDI
$P1.1r411.0
t
1
1
1
III
r-1 1_4
l• 04101r-1
•-I
I04 0.1 NI 041
1
i
101041
tc•Ii.
P.:.llILflIIIIJ3IlIIlct
(0)
hviCD(CD111,11111 .--iililhn hn CDICD Nt N, CViiiigtVil.0
vt 1 rn
; rn 11111 CA r, Ln I 1 7 Un un Un 1 1 i
v7 t <y 1 Ln t
1 VD f
ri
0
1
00
CDICD.C71.10
P-n
CD.
111
CD CD CD
1111
4
CD CD CD C711
1 1 ;
CD i CD
ri
I" ."-
0
00
Z.
11 10 0, CD
N, 1 ict 1 ri III N,11103111
311•1111•;11ii• 03 03
•
I.r•
NI
IriI,4
1
1 hg
1
1
1 g-,
1
i
1
1
i CD
i
4 i vt 1 01
030304 1 1
vy 1,111 00 : NI 1
un rn Ln
r, g-,
1 g-,
1 CD g-,
1
ri
1
1
i
1
1
1
i
ri
.3
0 00
1 1/11CD 1 i0 CDICD
C,1 1 04 10 111 vtlitLn
1NI111111111-1 N, 011, 1
1
1
0411 4 1,1
0
Cl 5
ri
1-1 00
1 st 1 i i CD 1 1
1 0 I eV i 04
r, 1 g-, I g-, 1 i
r, ; 1
VD
r, 1 1 1 1 1
CD CD CD11111CD1Ln
1/51
Cn CA tO
rH
i
CD CO 1
I
10000
CD CD
CA ri
r
,f I rl - rn MI 1 1 t
I Ln 1 FO 1110311103 11111 04 0 <
10-• 1 1 1 1 110 1- 4 041000 01 04 1 1 1
010,1031 1 1001
VI NI
CA 04 CA CA
,c01c7i110,1iI
CD CD1CD • CD CD1i
CD11i11CD
CD f CD 1
1
1 1
03 040
vD CD 1111103 103
h4
0303
cfn
r, r, ri r,
CA
0
11.0 IN,I
r1-1
1
1
03
ri CA CA CA
,f vD
03<
E
1
r ri r
ri
0 (74
1.-1 r.
N,
• r-1
•
ri
0 011111104 1
Pf=..ct .03400303
07
H
• r-15
•
r,
r-1
QD CD. CDtio.,, , ,c,
Or' 00$11110 1 CD
I
r-
oi1
r,
r,
cr4 c0
I 04010401 0)07 CA C0 00 1, 0)
r,
r,
r, r, r-1
rH
r 1
,0 s..0 40 40
sO
ri
1
cn
Cn
11.0104 1
CA
CA
illCD
I
• 1
r-
NJ
I
CD 1 CD 1
1 1
CD 1 1 1 CD
11111
010
05
cn
• h,
cn
1 1
10
I g°
I I IN
I VI 1 I 1
1 I 1.rt
1 1 1 0
co
00
1
loo.
iVli
,
r-s10,../ Ir, 1110311103 I
11--1 1
1
1I I r. 1
r-1I 1--11r.
N,
o
.. .11r
i
•tri. 1
11111010
1 0,
1111ir1
1 VD
1
1
NT
r, -10303 IlilIt/Si101
r, .
VhIlilir,
on csa
1
i
1
1 CV i
ri f
1111 I, 40 03 1 ...- s0 cl' 0111 I 10101
1 1 1 1 H 1.0 .0 I 04 N, 10< 1111103119 1
1-0
03
to 40 10 sO
1,1
0 1
I 0 I 0 I I 1 0 I I
.4 I co I 1 1 1 1 0 1 1 1 0 1
11-411
, 1
N1,11,1111,
0
1.,r
Ln Ln Ln 1.1
!Pl i
r/-) I 50 I 03 1110311103 11111 VI ci ri I cA (0 101/3
03 1
, 00CD
1111
100304
00 Cn 1
i 1 h, 11111 03 03 Vs] 1 CD on CD CD
e V7
vD
rl CD v1.
Ln
0300 00
sT 11111 030303
I
1 un
Cn I vD I vt t
•
VD I vt t Ln 1
CD
1111111
I
I c) 11103 11103 111110
.1.1.1•111•11111•
V7 03
11C, 03 <
ilh4li i
1
1011.41v111151
• g
i
NJ
Ln
1
C7 e CD
1
1 CD CD CD 1 CD CD C7 CD i 1
vt CD CD I CD CD CD CD $ 1 1 i 1 CD $ CD i
. ri L0 <1. I 030 1-1 03 1 1 $ 1 i V7 1 Un
rn N, VD03en
I I
1
1
I
I
,:n un ri
I 0 1-1 1-1
1
I
1
1
1 1 1 1
1 VD1U1 I
CA Cn Un un 001 1 $
r-1 1
N
1..1-1 ri H 1
1
1
1
1
1
1
,0 1 03
1
1
5
0.
un
i h, I ,p 1110311 1
0,
. r,
I
r,
00
N, 1001
CVir,11-11
1,1
1
1
r-Ili
1 1 1 C,
11-7
Chli
101 I I 1 1 0
;
VI 11111
N,
1-, I 03 03
N 1,1
Ll.r, cn c
cf) 00
ChIChlr-,
r, 1 NT 1 ,r
r-11
itictillh,
11103 1
r.
;
Vh VD
00 03030
iii1CD
1 1 1 1 i r, Vh CV 1-1
itlii
1
r- Ln
rn e
N,11jiN,I oo
04
0
03 034010
VD VD
0310
r,
---
r-
CA r-IVD 0A vt CA
r, ri
4 1 1 Cn
0100403
Cn c0
1 1 1,3 0310
VD
f
IIIN,IIIN, p
cicr) I 01110311
tr)
ro 1
111111011
1
CO
I 1 1 1 0 1
11111041
NS
,1
1
VI
11031031i
vytitttun
1
1
o
i
1
o
1
11
1111i
7.. 0
u1OlIIIN,
ri
10
tn tO
10 E
.0
I
VD
I
t
-41
I
:I
00
O
$••
r-1 3
CO 00
1111
0 000
Ln
rA C, V1 ,}
40 V:, V- 00 Ch 0 r,
7.1
CD
C)
Ln
10111=1
1
I
I
10 03 10r
1111,
ri
00 ./0: V1 h,1 04 1 1 .1 1 1-1
i h, 03 03030303
i
I
I
1
I
1
1
rA
i
1
1
1
I
1
I
I
1
1
1
1
1
CD r
Ln c.
vc.
11,1 N
<040
, r. oo
03 1•-n 01 0 ri 0
Kir, Cg 0i
1,7 N 1, 1
CO CV
N NI c.,
trl 10 1.0 Ni 10 r0
C=C, CD CD CD CD CD CD C7 ri ri
44.
1
V1 1 1 1 00 i
r, 1
t
III1
1 r4 1
OC IN "-I N 00 IN
, N r,I r--
N
s-,
O
t ,O
CD i VI i VI i
rA
,7 Itt
r,
10
r, oo cn
0A
ro
Ln
VD
00 C,
on
r, -, ri 0 CD CD CD CD CD CD CD CD rt
rA
CD
r,
r. NI In 03
L,/ ,D
,-;
77
P.
E
0+0
E•-•
q- q-U)r--OCtD Cl303
ri qqqqqqqqqqi
L11ti tn ri)
0.1 C
`,0 i7
ri ri
r, N 0
00 Ch
•01-
rir.
-
qq
•••• Cf,
P
E
•
LO 01 CO 0) 03 C.
CO en t1.11
N)
ri ri . ri ri
r,
O
i
.
, •-1 CD CD CD CD .
N
•
0
000
(..)
•
ri
.1 h. 5
r--1 1.
000
(0qq
V) .
toNi coN
CV 0 0 0 0 .
v V
0
p
CV 0.1
.
1nct
t1-1
CV MI Or 01
a
rH
.7. ri..
Oc
•
E
Cl
t
'O
MI tin
P IS 0 01 . V) 00 VI Ci) .
.
Ch
•
0.0
irt
1003 0 , ON) giii.. 0 CI ln ri NO) 0 CV MI In ,C) NI .
• • .
itit lin r- oo ce • • r-,•
• • •
•
Ci 1 0
ri . ri o. CD 0 0 0
. o . ,--t
V
C,
CO
N
1../)
/./-)
ri rist cn N I
V
0 h
CO 00 Cr, n
toN
ri tri ri . tri ri .
• ri.
•
I
01
N
riri 0 0
. itcr
• 1.01.
'O ,l'011lllllt
.
en•
NI I
I I
Ni
03 CV LO Ul CO Ln h N. 0 p p
03O)003Ni
O3
iCi•
N ri h
.0 r- CD CD C4
Cl rn 03 Ln Ln Ni
0 0 0 0 0 0 0
Ln
u) Ln d-LA Ln Ln 0
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CD . CD CD CD C7 CD CD
qq
co
cr CA ‘S 03 0)03
C.
• . . . • • ri
. .
qqqqqq 00000
Cl
000
E
err
Cl r,
r.1 .
Ln
ri
r,
,07 NOCOOCOOD 00000000100000010
Ln CD C4 Ln CD CD CD C, CD P Ln c,
. 10 0 0 1-1, 0 0
0-1 Ln Ln 01 0%')
.
N r- 0303
1-1
0 00
t/DE
oo
Ch
qq cf Ni • ri • Ni • • • lin to.
r, Ch ri ici• . CO C1 CA .
rn to
qq
cl tn to to
qq
rn en rn
ri ri rH qq _qq_qq_ qq
n•••n
ri Cd
O0 N P
O . 01 i.CD
OW o030303W03OD'O0303'O03'Or-)O
cv (-4 CV
N N CV h CV Ci4
ict
tn
E
1 Ch CO Cir N .)
tin th 0 ri qqco
Ni . NiNitototo Ni
O
00 1oqqtoœtoOD03 03'OqqqqU)01NiNi-OON NiO
•cr
N
N N N LO 00 1.0 VD 1J1 CO ri N
Ni tin VI en Ni tin In en to to to rn
C, C)
qq
•
I
Ni . q1 03 0 Ci NI CD
00
C`i . CD CV Cl MI tin .0Cl t03 03EU)
o
Ln .
•
E
•
00 00
X E
•
to
a
u
a.)
to. 0 0
03 0.0
.0
O
•
•
u
CD CD 00 0000 0 CD CC CD c, LI Ni 13 cc: 00 00 u,
qqIrt 7,
qq4l44
4,
qq
n•n..„
E PO
2 E
o.)
o
• Ij
0 CO
E
1 10
I
lit.to
111.11
Ni Ni
cDy,
Ln CD CO CD ri Ni
to po trI Cl CA
r- cn r-
Cn cv
C4 CA I. C, C4 CD C4 CO .
. • • • • • • • VD
cn Ni Ul Ni Ni Ni Ni Ni rH r, Ni Ni rt Ni Ni C, Ni Ni C4 CV
CD 0 CM 0 Ni
.
Ni 00 rct P N
r0- qq tin VI CO 1, 1
0 0 0 0 0 0 0 0 qqC-- 0 CI) d- CO In 030) ln 03 N
"ch Ln Ie1 1h03 LO
<I- ln tin
. .
• • • • • •
ri 0
C0 CV 00 0, CO
ID .
•
Itoun lOcolO Lo
qqqqqq qq qqqq
NNNNN qq to Ni 01
•
03 Ni co cc) co Ni10 03 co
0303
ml, 0003
CD CI cl.
Ni Ni Ni Ni Ni Ni Ni Ni VI TH d- t-,1 CO N V-1 CO Ni Ni Ni
NiOl
tin to Ni tin Cl V) tin IS
CD CD CD CD
CD ' 000000
CD CD C7 CD CD C-CD
C, tin
CD . Cl rH
Cl tqqqqqqqqqqqq
c, 00 c, 0000 0 0 000 0000 000 .0
d- Ni Ni Ni Ni Ni Ni Ni Ni N)
. N qq to 03 Ni to 10 Ln Ni
qq VI qq qq qq qq qq .4 010030-030Ni Ni NiNi Ni Ni Ni Ni Ni Ni
,o Ni P Ni riS Ni 03
CD . VD ,D CO cV
.
VI cl tO rn CO
a
0 h.
O
00
C)
CV CO CD tr. N qq
p Ln
Lr.
CO .
cn 1 IN) en ID CO itcli
Ni0
.
r)
CO 00 to Ni
0, 00
1..."7 O Ni
) qq 1.0 P
Ni Ln
Ni Ni
c,
C,
co so
co h- 1"-- CI,r-- Ni r-a
.
•
•
•
•
•
•
•
•
-
•
•
. .
•
•
•
.
.
.
0-0-0-0-0-0-0r- r- n n co co co 03 00 CO CO CO CO CO r,
rH . CO CO NI 0
•
•
•
•
•
•
•
01 t00 CO h N CO CO
s
cl- . 0 CO Ln N , .
. . 0.1 . cv . NI N
03 . 0 0 0 O . .
Ni . en rn rn In In N.
N 03 IN) sO c0 1-1, CT N) ..1- c0 0 <0 . .1 I-- 01 •.0 0) . N Ln .1
. . . p . NI 0 . N . LO a. CI) v::. Ln . 0 c0 o1 .-I . N.
,_.„ ..__. ., ., ry . . . c0 N. N) 0 rn tn N) . In en
. Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni
N . .0. ri. 0 cn rn .
I
VD . CD CO ri CI ul .
.
ri . Cl
.
I.
1N
•
ce
r, r.e o. ,..., r., en ni .0 ••=r .tr en d. . In . en N en .....e vr ro
..i
030 0-030NI 0- 03
.. N.
.
CO
i
rI.
✓
tn ,0 CV Ul Ul ttl Cn 1n r, c.-- 0 co
01 C "0 Cl Ul 10 ,7 rH CV Ch
rito
03 03 0)
Ch P 0 ,D Ni ri .
03 0- Cl 10 0- CD cr Ln
.
.0
E o ao cp co La c co o
o o c, r-. r, 1-- oo .
NI Ni InI
.
• r,
00
n o n•n o 00 CO . P CO N , N y,
C) ri N N . n1 P N Lr. N ... v. rH
o
•,.. ,,- 1, 1 Hl. 0 I -- Cl 01
CU
CI
.--1
.
I-,
N VI
ii,
.--I N
NI In '•- ri, tin •••• C4 VI . Ln ,C2. , . 0 0 .-.,
Ni CO C, . N tn •-i- t o
. . ri N 4-, 1, 1 N N . P pi C. 0 0 C' •-i' C C‘ C. ° ° 0 0 C' C C' '--. '-' '-' '-'
in
N
N
N
.
,
0
0
0
0
..,...
.
rt
0
0
0
(1)
V.
1/1
.,-.
Ln
10
101-.
..,,:
F-
▪
78
•cr
Cr, Cl -0 0 40015,./ 50 '5-5. I
co co co C, CO cor) r-• G 0,
00 0
e tn
eeeee
•
.1
E
0
en
0 c41
,0
. 0 0 0 0 I
V
•
Ê
.-.1m
• 000
0
F. C.-)
LOtflN-CO,04OCo
V') 0 0 CD CD
0 0,
0 0 0 0 0 0 0 I
n . ,
o o.
04.1
1 0
cu
....p.,
. »
CO
•
• • n-•.. n , 1 '4, n IV) .
GA
Co tn el 1 1 ) c41 1 1 1 NI 0
40E
ON-C)
CI , 1 V) 0 1, 1 0) 01 0 0 00 .
0.4 .1.1 Co Co Co Ln Co Co Co Co VI
I
0 oo
0 0 0 0 0 0 0 0 0 0 0 0 .
tn CO p OS 0 r-- 0 .7'0 '0 40.0
.1 1--..
•
• •
• • •
• • •
•
• •
•
. 0
I so Le,...n CO CO C0 ,0 01 01 0
0 OD
Z E
•--
CC Un CD CO ,
e L0 L0c, o o Lo Ln r• -• 0 r-... ,
000
co
Ê
.
.1
.1
N.00
0
0
1"--. 0 .1 C", N7 ,
L/1 ../1 ‘0 00 01.0
.., .--1 r, .-,
co
E
01-1
\
o
X E
0
U
0 00 0 , 0 0
00)0
0E
4-,
i0
+-I
E
0 01)
Ê
0)110)0
X E
c,
N.
v-i
\
o co co
00 000 000
r-. ,...), cq
os
co
4-,
cr) V) co) 0O4-
o
.
VD
.
0.
.
0.1 , : Co
Co 5-1 vr 11, ) 0 . . .
.1
rn
(V 01 •-•
• •. 1-• 0
s- s-n 0 Co
• ii 0 E-, -o o
o
..o
s-,•-n
••-n (:) E ii o v)
40 GO O
r)
G r, 040
U • ... 0.00
0
O
0 40.0
. 0 . ••• E
re O. 4-1 0
0 40 E g 0
Co 00 .0 N-0 0
Co NI V) NI • 1.0 • CO
000
I--
5 0
0.0004
7:1
0
._G
• • 0040.0
COO Co CO ctl I
4:
4-1
0, n10 Co Co . Co
. . . LnL/1 Ln 1---.. WI ../1 Ln ....0
..--1 . . NI CV IN NI rq
o
0. 0
,-I
. II E ,--I 4-, 0
O 0C-10
cd >
III
o II
COE
Co Co 0
0 ,--I —.0 0
,
C, III.•
•
• • , ..0.1
CO Cl) 0
4-1 tn
i , •,/.. 0
CV OA WI CV . I I t'l I
CI V) Or-1
03 0 0
>, • .- 0 01 VI .S-1
Co ln .7 C --. OD r, t0 e o. , ../) e t0 cy,
40
1-..
040
. . . 0 0 Cl ,--1 ,1- 0 1--. C. CC
•
•ri 0 .1-. E-., .
,, ,-, ,-, .. .1 ..I ...NI 0 '0,-4 0)044
0 4-I 4, 11 C 1,
0400
tr, • , -4 0
000
CY g 40V) . 0
•
• ..7 00 CI Ln .z/- NI t-40 04
0, I
. 0 00 0 0. 14
t..) VI CV N. ,0 , CD , I , CI- LII Lll ,40
4-,E 0
.--,-,--1 1-1 1-1 r-I ,
0 0
•• 03. S-I
4-.. 0 0 e In 0.,
,..0 e
0
10 0.0414
1
4.44-,
105040
e
e...1
co
o
e
40 I
0 co cc co
)4H EV') NI V/ ..‘,0 01 CV ,I. 0. 1 .1 . 01 ,
k
e 0
,
e e e CV CV 0.1 1.,1 tn
CO
1.,-1 7
r-0 40
••-n
N-
1-, e f... e e
o4-4 0
.-G ..., .0
.,....0 04 04 N/ Co L0 00 0 r
e
el el e c-,4 I
co
e
e
04
e
,
C et 4... 0
0
0 0)0
:.,...0 0
0. •I .1-' 4-. 0 Cii
Q14.)
4-1 .'0 0
CI
0 ..-.I 0 /-.
.P 10 V. VI 0 g
'-400001)1
03 VI VI
0. 0 10 .1
00 ..1-1 0.
11 0
00)..0
U
0. /0 .0 1, 4 4-.
f-I
E-0
P. 0
Ê
• 4.-.
0
U ..?..
•
1.10
0-1 0 Cl> 0 4.1
0000 cd -K
VI 0 7' •,n t.n a
0
g I.. 40
0)0)
E-40
4000
0 VI 0
0.0 II 40.-I
CO tn ,7 0401 01 0-4 . 0 , 1 . 00 , 0 .
Co CS 0.1 0,
0,0 co 00 .4.1, 1 NI V) ‘IC NI 40 0 10 .
II 40 .1-.1 CI 4-I E
cycK r0 tn 1010 10 10 10 . 000
cd
0 010
0
II VI
co
O
u.,
vs
V)
• 000
Co
e
•tO4O'.0\OLflCo
Ln
.0 0 1)1.0 0
4., 0-1 (A 03 VI 0
•., 0.0
eh 0 li I, I.. I,
00 0)0
0 0t-J r.) VI
00 0E- 0.
so
0 ••
1"-- h. GO r•- c0 co r•-• c0 CO c0 c0 t--.4014.)
II I. 0
••••I I, f-,
I,
a, 0 0.) 0 0
.
CO
.
.
•
•
•
• •
•
•
•
.
•,, crl cd
Cf)
r....
0..,
n---.. 4,4 e e e 04 10 10 10 ,
0 V) 0-1 0 .1- 1 40 •
10 GO
10
CO Co Co ,4 00.0 0 t-401 Cl Co Cl., ,
0
0>
E- E
.1 . .4 . c, .1 V) s0 CI C0 . NI rn , Oil 40 0 VI $0 I-I
N.
•--i .1 . .--1 ,4 1-1 CA r,.., 04 ,
-H
40 4-' 0
CD
e
0
0
0
_C
e
e
e 0.1 ....1 ‘,. ul r. .1. tr) r, 0 1 1 I
Le) cf) .0 .0 .0 e ctl
V) GO
I . I
k 40 E e
O o co
>
. I .
" el .0
7
k
Co•,..0
u,
^
C
•
E-.
•--1
e
o40 th 0 V. 0
.
,, CO Co co CO 0,4 ,r, FO I, Co I f I
0 0 ., . 0 0 0
10
tr)
• •-1
• I I I
Co Co 00
. :-.. LI-, 0---1
50
'fEE
5. •H 0 0
I I I
5, N. Co0
O 01 40 )-r40 14 0
10
O
•-n
11.1 00
1-• e
.0
iC5.,'
CD CD tn. Ln -1.004 C4 CA CD ,O , .1.
, 5--.
1"... N- t- ,H ,4 ,-i 5-4 ,H ,4 ,4
Lf1V5,5
i
0
1.
cd
5-e
C-5
If5
. .,
c, •-: 10 . C 0 0
CT •-n •-•
400
Y _C. .--,
O
o
•n
0 0-.1 0 4-1 0
12L
1.00
0 "C •.
0 '0.--1 u.7 0-
-G
n osn
c)
, --, ,-. ,.. 4-,
c: •.-c 0 m 0 cs 0
c —.: c 1.:- o vn o
01
....,
c,
1
.1 0 0 0 0 0 0 0 0 0 0 0 0 0
c0
.
0 0 0
cr
IC, :P.
lf
APPENDIX E
SUMMARY OF WATER-QUALITY DATA FOR TRIALS
AT GRASS AND SOIL FILTER WATER-TREATMENT
PILOT PLANT IN TUCSON, ARIZONA
79
80
c)
•
r,
ov
VD ,D
Ln
VD
+
,-..
++
.-4
en
oo Ln
,D Ln
I ri
Ch CD
CD 0) 0)
i NV ri OD
en,
VD
e
CD
CD CD cr
CD , 0
Ch
I
ri ri ri CD
Li, P
Ch
1
I CV:, CD NV
VI
I CT
LI
en 04 00e
ct cr en cV P CD 00 CD ,0
•een,HenCV OV 0, 4 CD $ OD 04 OD
+.1 e
01 p
O4
0 V)
Cy < V) V) co
CD
C)
CD
0. <4
+.
0)
C0 VO V)
04
ri 0 V)
<4 u) (.0 (40
CD
C)
CL, <4 V) u)
1-1
r,
oo
CD
170
I
r-I
Ch
-1 0) oo un
CV OD OD NI
1
P I CD VD ri
• • •
I
Ul cr VD
Ni N1
0
g 7
,-.
ou)
oo Ln
VD
VD VD CD
04 CO <7
i CV CO CO
ri
r,
NV
I
o ri ri ri
cn
un Ln rq Lo
. . . .
NV
CD CD CD CD CD
r, r, r,
OV
OD
V, NI NI LO
I CO 00 00 04
u
OD
0
C)
r-q
:IC
ri 04 PI NI OD
ri
$
vi
0.
CV
+
0,1 NV .4.
CD
VD
C)
CO
r,
ri vi
1
C
V
CD
Q.
oo c,
OA
..n
{-•
O
o
u
0. CD co
')V)V)
0,
CD
CD co
<4 c0 cO QD
CL
.1.1- 0.
< U0
CD
CD
CD
00
VD LI
CL <4 c0
CO
cO
•
81
)))
+
ri
cl .
0 0
yag
+
.0 CO
Ln
CO
I n
r,
ri
+ 1
r, qD siD Ln
g
. 00 0) CD
g
ri
i j O.
ta) 0)
1
hl
00
Ln cf
ro
hl CD
I fgq Vg V, Ln
I, VD
g +7. VD +t 00
VIj ri ri
cw .ac
r, 0 Lo
(1)
ni YI yn yn
ri
coco VDj Ln
t
VD
hl
r,
ri
1.,D
g g ri VI ch
CD
Na. r-
1 ri ri ri V..
,i
I i I Vg.
VD
1Ln fg hl Ign
1
yn cq
yn
co
co ,t
ri
$ 1 1 ri
4111
cojcccc
ri CD VD un c,)
,t
cccc
yn ri
i ri ri ri
CD
r, CD Ln
Lo ci]
CD
r, cD on
y) Ul Ln
CD
r, CD cn
CL
ggt 00 LO
cn
1-1
g
+-)
. Ch Oh ri
g ta0
ri
VD VD VD ++
ri V4 hl V/ CD
ri
i ri ri ri Cg.
O E
g
O .r-4
1001
I
,--, 0,
V,1
ri Ch
VD
g
c.,
cd tr)
• O
0 r-q
1 0 0
0
O
0.
oc')
i0
i 0 CD
cd cd
0
in
00 001CD
00
/X)
00 0
•
•M
r
000
VD
ICD CD 0 Ln
CD CD 0 VD
CD CD CD +T
000
Ln
L.
iCD
00 00
CD
r•-) o
0 0 0 rv
, CD 01
cn
<0)(')&)
CD
hi cD y)
a. cn cn cn
0
o
<
I
I
000
0 '0
cr
On 000't
Dr
1111 vi
iigi ri
CD
CD Ln
cf) cn
I 0 0 0 NI
CD
r--.0
ra an y) Ln
82
0 10
4", 0,
+
1 rH rH CO 00
o
rH 00 AD et
eq
. .
,o
C. Cl
•
.1. co
eT
•
•
rH rH
Ln
no ON c0 G,
0 Lr,
O4tO
ON
V
I
I
:
1-1 CA MI tl r,
CD tl tl
rH C4 Ul
CA CD r,
ru <a
1 (0
CD C,
I LO
040 ON) tI
Ln
Ln Ln
CD
Ul CD Cl
1
CA
0
0
00
0
CO
M
1,
M
M
M
+
0+
+
+
1 rH VD VD Un
rH CA CI tl 111
et rH V--
1
rH
•
NI CA VD
c)
c)
,, o ooZ — O U)
co
«c cr)
co
a Ln 4.,D
a..<mcocn
CO
I
CD C0 (0 C0 C.14000
CD CD Un
(0 CI 04
0
_ION) N)
.0 cl.
rH
o
aacocnco
/
i
000
0 G,
•
I i et r4
•
.
1
•
•
Ln
C0 M
i rH rH
1
CA
1
.71
•
1 Cg CO VD
c.,
un
CA
lan
•
et 1.-- CO rH
/ VD CA CA C,
un
Un
i r4 . rH et
.
1
I
rH
:
qD
O:1
0,
ce, co Ln
I
000000U)
oo Ln
CA
1
rH
un
NJ
:=.40o1
eaec(CnOcn
0
0
0...cCOLOCn Ce.•QCnenW
0e<te,(4W
• r
•
▪
83
o
0
0
la 0
LI n-n
-0 C.
E
•-n o, co 10
an an
taa
c7,
•-•
O
-0
Q
•".1
g
0V)
.
•
•
1 •cr.
41 4)
VI ir0
<1.)
g
•
g
P. .0 0
1
t s
I •-n pp .0
cd
1
•
I
X ›.
"a
0 0
—I
0I
a. <
In
caa
csi
ra
+
1
+
I
c•-• c.1 .0 0 s..0
•
•
•
• •
0 CI)
<:c cf) Cn V)
vo
0
0
csa
so
r-
0
o
a. <c
v)
sn
0
I
I
o
V) V) V)
I
I
r•-1
otO o
o
o
pc•
•
•40 t•-• H 0. 0 ,C) .0 0
c-i
O 40
o
•
•
1000
0 C•I
I
0 .0 10 rs)u
0
1
0 CO
0
:
so so so
E
O al
Z
ca.
0
ta.
rvl
+
+
0
CD —I
g
b•O
O E
t.))
00.
1 •-.1 0, CO LA
I H 0 0 1-0
fl
HI
In
H
040
Z()
O
0
1. •
'H
1
.
0
104-I
V) 0
0
(1)
g
b.0
cd
L)))
i
1 •,/. 0
I', 1
I
H
II
n1
r-
i
i
I
un
1
•
•cf.
•
oc
sn
•
1,1000
0
I
I
1
•
1000•Cr
itittn
I
0)04
.4-
NI
rq c.., rn
. .4..4- 0, ,n
cl.
al
i
•Cl-
0
o
0
Ci)
O. <c
H
0 cr)
c/o cr)
I
I
c, (.., r".1 N) 0
HI
4*.
,.1
HI
.4
•
0 1, 1 M-1 IV 0
H
H
0o
n—n o cn
v)0. <c,
a. .4 r./•)
0 vp
0
Z1tO0 U)
O. <U)
H
84
o
(-1-1
r-1
0
a) r-1
4-) \
0
1
,
1
LL.
0
Ln
c..n
U
.0 a.
01E
7 c3
bi)
r,
•
,
CA CO Co
C/)
4 r+
VD VD
Co
n
0 01 FA
r i ,I- 0501
-.... cr 4-.,
I
I t•-• c•J CV
10CDCV
4 10,-1.
I
•
•
•
1 0 0 CD . I 000
0
P-o--1
p14
vi 0,2 VI Pn Pl
lO1
I
I Co CO COOS
I I I I .4.
1 CV C• , 1 01. 1
I
I
I •cr
i0000
. 1•I 10
•
.
•
•
•
1
•
I 0000 I . . I 0
O E
00
cd
f:14Pl
cf)
P.1
hn
Pl "hh
FY 01 VD
1 r, hl
CV VD
CD fq Fi FY
• •
I 0000
CD
'
OUI
I
•
000
C•
0000
C)
CD CD CD CD
CD
F, CD
(/)
cC (,) co cn
CD r,,...
CV •-•1
•
•
•
•
Ln
• 0 0
CD
C)
•
V) V) V)
CD
CD ul
VD
vl co (c)
g.
0.
01
010)
CI)
I-1
1 r,
r, CO
1 r, Co 50
r,
Cor
,
h4 VI tO VI
r,
r,
r, CA
1-4
ci
0 0
1+ +.1
c0
- 40 CC
-
ci
I
00,
++,
CC >
I
1
000
r CO .4-I 0 CO Co Co
I I 0H
1000,--1
•
•
•
•
I
1 1000
1 000 0
I I I I t•-)
1
1
1
•
441.0
(00
0
01
•
I 1.0
CO VD 0 CV
CC
CO Co Co N.
rn P: p: Ix;
•
r-. r-. cc,
%.0 f-.
•
•
•
•
r..
•
•
00
•
•
•
•
•
r--
00
a,
cD
3 .4 c) cy,
cc co cn Ln
>
CD
O
g.
C)
r. 0 (n
CD
.. 0 ul
.. CD ul
LO Ln LT)
V) (0
CL
o
LII
FY
FY
FY
FY
01 VD Ln
ofl:
-
• 7
• r
85
c,
so
co
rA rA rA MI
rA rA wA rA NI
11,LIU•1
I
No N) c7,
11110
.il.00
rA
lioirA
•cr
rn
0
r-i
g tO
0
1
1 1
1
VD VD Ln
rA
g g
o • ri
ci)
1
cd 0
•
11111
I
I
r--1
1
I
1
1111 CA
E
•,-1
Cf) ci]
i
1
1
I
1
11111
.1111
11111
1
I M••• OD
1
•
•
I 1
co
In
•
•
<1. .7 0
NI
00
•
•
‘0
sr/
co
•
c
C.
-c 0 L(n
V)U,U,n/)
CD
CD cil
o.
•
c‘i
CD
I
I
It.,in,
!Ili
CD
•1,-1 fa,
11CD
ISO
Sl
,,
cr, cr) ri)
<
(D
0
cc cl.
c."/ Ci
cq
CD
0
v)
(no
cp
o.
(nu) ri)
FA
FA
FA
FA
FA
FA
Lfl
•cr
NJ
c.4
0
-1-
-P
O
-
1
-P
g bià
'O Ui
O E
g
rq
Cg rA ri NI
rA rA rA ri MI
o
O
• fi)
cf) 0
Cf) r-i
1) 4-)
1
Ci
:
Ci
4-,
0
Cr)
1 0 1 1
I 0 i i
. ,J, .-n ro
is0
GD
r.
1 1.01111
I •o:f
1
ICD
SOS,
1111
c.)
VD
V)
O cd
P-1
1 I CO e—I
I 1 0 CO
,
O
0000
0 0 rn c‘i 0000
Ln •,1- Ln 0
t,) V] Ln ,0
rq NI 0 c0
. . . •
. . • .
• • . •
0 NI M.4 VI rn
0 cv ni 1('7 sp
,,) 1.1 rn ,4 r.
1
In
At
.
rn
n)
o •-n
• ra
>
CD
Zl—I
o
C,
CC/)
v) o0 V)
,,
CD
CD
CD
co
CL. V/ V) V)
C..
<
CD
(/)
V) V) V)
G.
ci)
•H
1.4
n—•
.2
CD
V)
CD
ul
cil ul
•
86
0
Ci
.0
0
(X)
N
c.1
+
0
-0
E
O
Z
0.
Ch CO LO
ri
E
0
V)
vi
MD Ul vi rA
VI VI
ri
ri
ri
ri
ri
O
0
••-i
rd
N.
1
cd
•
CD 0,j
• •
r-.
r coi •j
i
• • w)
•
0
a
• • Ln Ln
• •-.4
I ri C5 <I-
g
•
0, ri
•
•
j
I
s s
a
1
0•
• •
• 01
118...zr
a (0 cl• Ca <0 I Ca V) CI . 0 V) , 0 .0 0 0 0 0 cv
• . .--• c.] 0
f o) 0 0 I,
V, irl- .0i VI .0.
l.r, C.. ..... I , ri.
• 0 cd
X
ri
co
•
• CO oo co rn
I ri
a
••••n
V) gl
0
ri ri
CD
I tv) eV 0.1 irr
ri
ri ri ri
CD
., CD 0
V) CO
CD
<D
r.O
G c/7 ri) tr)
CD
ict
0
CD
a
CD
CD
vr
1-100
CD
.Vh
0
+
.1.
CD co
co co co
VD V) (/)
CD
CO
LH
ri ri 1-1
(V
0 COI
G
,D
C.1
1-1
CDO
•:1+
0
r-i
4-)
g
-P
g g
o •H
C.)
o
o
b,0
O E
I
tr)
•-n
.0 0.
•
d
(I)
r-i
irl
• r-I
I
CO
cn 00
0)0)
0 al
z to
LO
ri
Ln
ri
ri
V, VI VI ei ri ri ri 01
ri
O
.0
0
.v-,
0 •F, -,
I
it,
:
O
Ln
0
0
ri
i
CI
+
O •.
>
i
C4 .0
. t--. CO
Ip•cr 01 -
•
o
cn En
: 1.4 C3. V:.
Ln <1.
1-.1
•
Iri I-4 0 Ch
ilii00
CO
.--1
vi
V)
Ch 00
cr
: V7 ..d: 4 Ch
VI
Ln
(0
I CO •:1- Co. . I II
ir-I N30.41
Ill, Ol
.• • • •
/1.1
iir-1 ri 0,1
1 vl
: .4 c.; r4 ..4-
.
r, CO VI ,r
• . • • <1.
ri VI VI r, ri
CV
01 •7 Ln ,
•
.
•
•
CD VI VI VI .1
ir
ri
ri
a•
o cn
cn
<
L.jOto00-0 c/)
(f)
< cn cO
n-n
(/)
cn
87
o
O
0
I, 0
O
•0 0
• nt
cd Ni
'7 cd
C •n4
•
>
4, 0
V) CZ
I
c/I
CO
Q)
CD cd
>
01
6
C, ,, CO
1 r, ,7 vp
n I IO I/1 CA
I
I i NI N-I CO
1 I •-• 0 0
I
I
1
i
I NI NI SO
CI 0 I, Ni
Ni r,
CO Ln rct N
un
N4
Ni Ni Ni
I r, r, Ni r,
4
o
o
0 C,I SO
1•
•
•
I VI N CO CA
I 01 0 Ni
I 0,
s0
I JO Ni
I 1,1 N Ni CV
I
1 CO Ni CO SO
1 N I, N. ,I•
n tc) ICI N)
I
•
•
•
•
:
1
i
CO 4D
NJ
r N N CO
/ 1--1 ••••• NA
$
I Ni Ln co Ni
ci. CO
Ln .0
Ni
o
ta.
o
O
cf) cr) Ln
<
n-n cn
cn Cr)
cn
0
0V)
v) tr) (r)
0
0
cn
0
ca)
Ni
•H
o
CD a)
0
0
Ni 0
•
O
Cf.
al
0 0
0
O kk
Ni
O
U U
0
r-4
0
0
NJNi
,o
0
r,
NiCO
vo
CO
r4
.0
Ni
+
+
+
Ln
cri
n, r4 pl nn .41
+
0
CC
O. V
I
r,
aD CL
Q)))
r, CA CO Ln
I
r,
VD VZ
OC)
1 1-1
r,
Cn
Z
•0 0
OU)
I
I
7 cd
Z
II
I
.
C)
on cro
C
cd
0 0 GO
U
F.
U
C.o
1•••
rl•
I
I
Ni
k •H
I
CA
•
•
•
'0 0
I
0 • ri
N. 0
1
r CO SO Ni
•
•
i
•
•
•
.
Grlr
•
NiO
rcl•
>
I
I
1
1
100
1
1
•
1 1 •I
I s.0
I
1,0
V) Ci
C
CC
'Q Q)
>
0 0) CI 1, 1
NI r-1 .-, 1, 1
N
CD
O
,..?, Ni OC/)
(0
cy ‹ cil u) 00
1 N4 OD CO NI ,C, 1-, 0 Cl N)
1 Ni .r, ki ,
v-1 1-1
'0
1
CO
NJ
Ni
Ni
CD
Z. ,. CD ul
7. <4 01 U1 u)
C)
Z F.
F4 ., U1
CD ri,
GO (/)
I CO rt Ul 0.
i 1.-1 r-I 1-1 r,
i
CO
.
CD
ar ,. CD ul
C,.., <C (1) 00 ci)
0
V)
Ni
n•nI
1-1
88
.0) LO
CO 0)
0
CO
CO 01
+
fq .1 CO
00,0,1
40 141 t4-1
1
CO 0 c0
• •
N
cf
r,
C) 141
N-
OD
en In
• •
.
(NI
VD 10 , 0
Ln
r,
o Lo
O
0 0 141 0 CO
0 40 ON0 )0
N 0.1
0
CO .1)
c0 0. 0 1.1)
)0 04 i-0
CD
On<
0 v)
V)uD0)
0
a. ‹
1--1 0 Cn
ZN-
.2
C.0
OD
t.")
+
.
I
CO ). •er
1•0 1)0 CO
1 . . . .
0
.....- . 0 Cr)
0
',..d . 0 V)
cf) an 03
a. G v> an to
O
000 0
N-000
V 000 NI
00 oo
0
0
C))
0 if)
v)
an co co
V)
0
N
0)
.1.
Iv)
C,
+
,'nNIN1Nit,. .1 .1
I Li, .1 .1 CO
N. v...1I
(tilt
O.
.
V) 0
:
10
,4
• N- 0
N- co no
un Ln
NI
r,
.
CV NI 0
N ••I- Lil )41 0
.
0
...0 ,--, 0 an
0.4!. (4 cr. V)
1.n
i
I
1 1
0
.
I
I
1 01
0
CO
.
0
7..-= F. 0 co
0. < (r) (.0 CI)
89
c,
C
C3
,
Ch
0303
, c
Ci
c
c
c3
.n
01
03
CA
Hi
Hi
4 -1
+
,
+
++
cu.
0
0 4-*
.0
C.
CO Ul
I-4100Ln
4,1
LM
r,co
ICD
0 E
7 rl
Z
o
F-4 H
CG 4-,
1-0 0
H
g
11.0
CD
Ln
03
n-•
>
CL
030G-e
I t-_
HI
•
CO
CA
r--00rlccœ a ccICA
cm co
Hi
I
VA
0
03 03030
CO CM
<7
CM
1-4
CD
CD
CD
—CU)
co
CD ul, CD u),.
CD V)
uP up V)
co up up a. <CI) uo uo
up co uP
0
LA
in0
(Vcc
0
H/
H
1-1
.1.
0
0
VD
1.0
.1.
H
.1-
CV
+
tut
0
trt
$.4 0
1
r4 a031/)
op up
,ct
rit to rn
un
I-, CO
z ci)
1000001
40140 •
..r, rl r-
Ln
I
1.40 r4a)
rq op CA
r-
tiis
r4
CD
I
1M CA
IN cr CA00
CA VD
Ln CA
•
0 3G
4-1
H
WI 4, 1143.'3 QG
• 00
>
4-, C.,
r.4 V) CZ
op
+
1 CD ct
cr
.r, in '-403.114
I
1,4 I.,
G
CD
4 1 1 1 cr
NJ
0, to <0
HI C1 ‘0I
HHH
C)
Z
,-n CD vl
CL -"C U00) uo
H
r I
0 H
c.1 Ca 0
ct.
CM CO
G
,Am MI H HI I.fl cs- cr 00
I 1-1 H HI
4-, r,
H
HI p
CD
CD
Z. ..4 CD ul'''' .. C) V)
ra. : -Z co 0 up
in. .r,C 0 up up
H
H
CD
:ic .--. CD <0
a. .:4 up 0 co
▪
90
p..
0
g
Cl cd
O
C.) C)
U
).)..
O
U U
g 0
H
co
Or-.
0,
H C7,
+
ta. H CL
.44
0
H 0
0 H
.00.
E
Cg ri CO
o
; rH VD 10
Ln
r..1 rn1 rnrn
I H H
1-1 I,
z to
o
$4 -H
g 4,
o 1 1.0 Ul
•"c7
g •••4
•
1
>
1
'0 .44
r,
rn
g
0
hl VI VI
(0 .44
•
1.
o
r,
I t•-• ln 03 N
I KI 10 'CC
C.1
I r, .1 up
17
>
, Ln C4 C) CO
• • • •
1 Cn Ln r,
1 hl nt al
P
,1
I
4, 1)
V) 0
CD
Ci
C)
O
4, V) tO
00 ci. 01 03 V)
CC 00 CC
CD
co
-r- o
g4 <4 00 V) 0,1
pi, <4 U]
00
up
CD
F. CD 0
c.. <4 (n cp co
;
I .CP N LOto
0000
51 -4
3 F. CD
o. <4 Ln GO
CD
(1)
01
H
0
O 17
4, V, cr)
•
C41
0)
O
1.
O
o.
00
k).
0 0
g o
00
010
(.
o
1.0)
c•-1
-0
o-
H C4 H CO
H
H
I
40E
5
I H 0101 fri c..4 4.0 4") 44")
I
H
H
N
0)
H
Zto
o
-o o
• .4
cl 4,
'0 cl
•H
>
4, CD
U0 az
z
I CD VI 00I
C.4 VI nt
•
s
•
•
•
•
•
s fr rH 01
. CD nr ul
4D VD CDr
01 00
rH rq N.
I I • H H
•
•
1
I
a)
CO
0 RI
>
i G, C. fg 1-1
1 CD C4 Cr c)
1 r, 4D .1 C4
o
0o
1.
F.
. CD On Ln vl00000 CD
0.-i
rH
1 CD Ch r- -4-
.rr- .0 n- ,, o ...0. 10 1-11
nt nr .1
stl
1
..z1
o
co c
r,
1-1 N
Ln c-I
ri
1/1
OA
a)
o
o
'00
CD 01 C4
CD C4 nt
I V1 ri VI
I
-4 s-4I
•-n 0
4 cr) cn
•,
0
n-n 0 cr)
a. .4 ci)
cn
H
.1)
P. .1( CO V) VI
r,
.2," H
CO
P.<UD
toto
APPENDIX
F
GRAPHICAL ANALYSIS OF SELECTED
WATER-QUALITY DATA FOR FALL
91
1971 TRIALS
92
1/ON 01 NI S31d1NVS im1.Jin0-33vA1ns
AO ONIAN30 N3OAX0 1V3IMH3
93
(0
o
o
0 0
Lf) 0
(N.;
1/01N01 NI STicitAIVS mo1uino-33vA8nsens
AO ONVV130 N39AX0 1V3IV43H3
94
VOW 001 NI S31c11 \IVS m01Ldino-30VAMS
NI sa nas C130N3ciSfIS
,
95
0
CO
(\i
(7)
i
ir re)
re)
I I
.,
co
tu
Q -
iE
a)
E .ao
<
a
I
4 : :1
.c(I)
:3
NiP
'31
.zr
II
La
„,
I
<
CT
LL
I—
CO
°
Zi
• ro
Ei E . si)
1—
C
E
d
a
,
•Ea
I o E
0, cr)
6 11
.c
rl
o
o
_
J
: 0——
- ...,
D—
0
II
d) I I
: E a
0
rs 0
C°
—
w I I
7:1- (1)
Z.
4 _.
(4)
co
0
ce)
c
i f, ,
o ..-
o
o :'_-_
6 '
1
Q00
: 70 a)
1— •Zi ct
J
-_-,5 ca.
<105
EC. F. 2.2
1-- ca ci.
1/0IN 01 NI S31c1RIVS
—33vJzdns9ns
NI S0110S 020N3dSCIS
96
1/901 01 NI STHINVS m01uino-33vJuns
NI S0110S 030N3dSrIS 3111V10A
97
N•
ro
ro
.
cv
o
-
t)
r-•
co
0
1-
TS.
1E
1 E
: E a
0
0
I
(. / )
in
cii Eo
11 (f)
T
.-
3
H
0
'"
0
,..
E
2
e
I—
<
P
I-1
0
0
6 E 0
1--
Zi
8
=
0
0 .-
/— .'1-
8.:
IN-
H
li
0
d.)
(ID
0 ''''
EE o
I-
u) z 0
0
"70"
0
<1 ct-
6 43
LJ
:a 1 l
:
mg
3 f
1(
.
czo
CD
•H
-
.cf ri
o : El 4 o 7.;
i E 0 e,
Z
‹
cn
a.)
•vUJ
i E a
•
al 7cr):s
. 0E
.
.H
(7) u) cn
°
..
.
1 -.
• Li-i
o
Z
CV
t-
0
II
it
os
— 0
ca co
1t
a.i , ai
i
i
4., 1•
Q.7:1 4,
Q.
01)
o
c.iœ
0
(JD
II-
'CI
iT 0 7:3
°:
.....1
re)
C)
Q. P.
Q. u-)
i'l up
•*-
1/91A/ NI S31cIlAIVS mc1dino-33vJnsons
NI SO 110S 03CIN3dSnS 311.1\710A
98
-
1 /ON 001 NI SrHMS mœuino-GovJuns
JO A110 Iowa
99
/ 0 IA1 01 NI ST h:HAWS mo1uino-33vAinsens
JO A 1 10188(U
-
100
TRI AL I
Arcadia Wash Sample = 120,000
7.\17-177.
0
maln
/TRIAL
IV
Arcadia Wash Sample = 10,000
Precipitation Sample <10
=MIEN
1:1
SSE.
UMW
• • 1\.• .
• • • rn
•
Arcadia Wash Samples 14,0004Y 20,000
Precipitation: 0
LLL
2
3
4
5
10
15 20
TIME SINCE RUNOFF APPLICATION BEGAN IN HRS.
Figure F9. Total Coliform Series of Surface Outflow
101
cri
CE
0
O
O
o...
O
0
0
0,.
0
0.1
t4
0
0 0
0
0—
00V
TS:.
0 _
—
— Q.
"0
" E
0
0
0
CV co It)
II
0
(1)
I
Ci) il
0
— 43
0 0
0. w
1 :EL ,ti E •-t 0 E 0 o g
o
t....i u) 0
u-, cAl o
I ..c .6
1 . ..c
IA
II) C
0
r
—
,)
I E
)
(0
„ 3 " ;°
O
0
3
I,
ca.
E] 3 0-.2 H 3 ..
0
_, -.:-.,
_, -..6. a _1 :is
-‹ -.0<
I 0- cx 0 .._ 41 .
. ET .
c-2
EE C.) g> CC- e
I-.
, ,
I-
.C1
'
I-
:ri ct
101001/ NdVg NI S31dINVS mo1.dino-33v.d8nsens
AO S311 ISN3CI li*JOA1 100 1V10.1
-
102
N%
2! 10 4
0.
2
Li
oz
_
cn
UJ (1)
U
J
0
A
TRIAL III
Arcadia Wash Samples= 4,500 4- 3,800 Precipitation Sample =0
6
(7) a.
%
0
‘TRIAL 11
Lu ‹
0 in
.ri
Arcadia Wash
Sample =5,000
n
2
\
10 3 ......_
—
rz 0
ink
0 fil
-_
U1..
--
a= •
• P.&
__--ii•-:
—-±
.-J D
I
-
TRIAL ET -...***-- ........
)
Arcadia Wash Sample =3 ,00 0
T T — ------
— Precipitation Sample <10
t,s•
•
_
0 0
0
......
6
.
UJ
_1 (,)
cx cz(
—D ....... • •
.••
.••
6
uj cc
2
LL. D 2•10
0
1
2
34510
15
20
TIME SINCE RUNOFF APPLICATION BEGAN IN HOURS
Figure Fll. Fecal Coliform Series of Surface
Outflow
103
1N 001/NclIA1 001 NI STlcilAVS mo1Hino-33vAinsens
AO S31.1.1SN3G Vai0A1100 1V03A
104
1/0V4 01 NI SrldNVS m01.din0-20VJ8f1S
JO S0110S 03A10SSIO 1V10.1.
105
Erldr—m17'
1/9N 0001 NI S31dINVS M01U1f 10 —3ovAinsens
sanas CI3N1OSSIG 1V101.
-
-
REFERENCES
Analytical Quality Control Laboratory, 1972, Handbook for
analytical quality control in water and wastewater
laboratories: U.S. Environmental Protection Agency,
Cincinnati, Ohio.
Atala, R. 0., 1969, Characteristics of municipal surface
runoff: M.S. Thesis, Univ. of Ariz., 55p.
Babcock, K. L., 1963, Theory of the chemical properties of
soil colloidal systems at equilibrium: Hilgardia,
v. 34, no. 11, p. 417-542.
Barshad, I., 1952, Factors affecting the interlayer expansion of vermiculite and montmorillonite with
organic substances: Soil Sci. Soc. Amer. Proc.,
v. 16, no. 2, p. 176-182.
Bocko, J., 1965, Soil as a meduum for sewage purification:
Roczniki Gleboznawcze, v. 15, no. 2, p. 497-598
(Polish).
Boyd, J. W., Yoshida, T., Vereen, L. E., Cada, R. L., and
Morrison, S. M., 1969, Bacterial response to the
soil environment: Colo. State Univ., Sanitary
Engineering Papers No. 5, 22 p.
Brown, C. B., 1943, The control of reservoir silting:
U.S. Dept. Agr. Misc. Pub. No. 521.
Carlin, A., 1971, Water resources development in an
environmentally conscious era: Water Resources Bull.
v. 7, no. 2, p. 221-227.
Cleveland, J. G., Reid, G. W., and Walters, P. R., October
1969, Pollution from urban land activity: Amer.
Soc. Civil Engcs.Annual and Environmental Meeting,
Chicago, Reprint 1033.
Cox, M. B., and Palmer, V. j., 1948, Results of tests on
vegetated waterways and methods of field application:
Okla.Agr. Exp. Sta., Misc. Pub. No. M, 12p.
106
107
DeCook, K. J., 1970, Economic feasibility of selective
adjustments in use of salvageable waters in the
Tucson region, Arizona,:Ph.D. Dissertation, Univ.
of Ariz. 216p.
Dharmadikari, V. V., 1970, Quality of runoff from diversified
urban watersheds: M.S. Thesis, Univ. of Ariz., 107p.
Dutt, G. R., Shaffer, M. J., and Moore, W. J., 1972,
Computer simulation model of dynamic bio-physicochemical processes in soils: Univ. of Ariz. Agr.
Exp. Sta. Bull. 196, 101p.
Federal Water Pollution Control Administration, 1968, Report
of the committee on water quality criteria: U.S.
Dept. Interior, Washington, D.C., 234p.
Geldrich, E. E., Best, L. C., Kenner, B. A., and Von Donsel,
D. J., 1968, The bacteriological aspects of storm
water pollution: Jour. Wat. Poll. Control Fed.,
v. 40, no. 2, pt. 1, P. 1861.
Gieseking, J. E., 1949, The clay minerals in soils: Advances
in Agronomy, v. 1, p. 159-204.
Greenland, D. J., 1965, Interaction between clays and organic
compounds in soils, Part II. Adsorption of soil
organic compounds and its effect on soil properties:
Soils and Fertilizers, v. 28, no. 6, p. 521-532.
Gunnison, J. B., and Marshall, M. S., 1937, Adsorption of
bacteria by inert particulate reagents: Jour.
Bacteriology, v. 33, P. 401-409.
Hendricks, S. B., 1941, Base exchange of the clay mineral
montmorillonite for organic cations and its dependence upon adsorption due to van der Waals forces:
Jour. Phys. Chem. v. 45, p. 65-81.
Hopkins, G. J., Neel, J. K., and Nelson, F. L., 1956,
Evaluation of broad field disposal of sugar beet
wastes:Sewage and Industrial Wastes, v. 28, no. 12,
p. 1466-1474.
Jensen, D. R. and Riley, J. P., 1970, Computer simulation
of the hydro-salinity flow system: Utah Water Research Laboratory.
108
Jorden, R. M., 1962, Relationship of gravel filtration to
exhibited sediment charge: M.S. Thesis, Univ. of
Ariz., 53 p.
, 1963, Electrophoretic studies of filtration:
Jour. Amer. Water Works Assn., v. 25, p. 771-782.
Kagawa, H., 1971, Adsorption of bacteria by soil: Soil
Science and Plant Nutrition, v. 17, no. 4, p. 150153.
Kagawa, H., and Takai, Y., 1969, Jour. Sci. Soil Manure,
Japan, v. 40, p. 332, in Kagawa (1971, p. 153).
Krasil'nilov, N. A., 1961, Soil microorganisms and higher
plants: The Israel Program for Scientific Translations, translated from Russian, p. 171.
Lehman, G. S., 1968, Soil and grass filtration of domestic
sewage effluent for the removal of trace elements:
Ph.D. Dissertation, Univ. of Ariz., 108p.
MacEwan, D. M. C., 1948, Complex formation between
montmorillonite and halloysite and certain organic
liquids: Trans. Faraday Soc., v. 44, pt. 6, p. 349367.
McGauhey, P. H., 1968, Engineering management of water
quality: New York, McGraw-Hill Book Co. 295p.
McGriff, E. C., Jr., 1972, The effects of urbanization on
water quality: Jour. Environmental Quality, v. 1,
no. 1, p. 86-89.
McKee, J. E., and Wolf, H. W., 1963, Water quality criteria:
The Resources Agency of California, State Water
Control Bd. Pub. No. 3-A, p. 88-102.
Merrell, J. C., Katko, A., and Pintler, H. E., 1965, The
Santee recreation project, Santee, California -- a
summary report: U.S. Public Health Serv. Pub. No.
999, WP-27,67p.
Mische, E. F., 1971, The potential of urban runoff as a
water resource: Ph.D. Dissertation, Univ. of Ariz.
179p.
Nielsen, D. R., and Biggar, J. W., 1962, Miscible displacement, Part III. Theoretical considerations: Soil
Sci. Soc. Amer. Proc., v. 26, No. 3, p.216-221.
109
Palmer, V. J., 1946, Retardance coefficients for low flow
in channels lined with vegetation: Trans. Amer.
Philosophical Soc.,v. 27, p. 187-197.
Popkin, B. P., 1971, Ground-water resources of Montgomery
County, Texas: Tex. Wat. Devel. Bd., Rept. 136,
149p.
, 1972, Effect of grass and soil filter on Tucson
urban runoff: a preliminary evaluation: Ariz. Acad.
Sci. and Amer. Wat. Resources Assn., Hydrology and
Water Resources in Arizona and the Southwest, v. 2,
p. 235-261.
Porges, R., and Hopkins, G. J., 1955, Broad field disposal
of beet sugar wastes: Sewage and Industrial Wastes,
v. 27, no. 10, p. 1160-1170.
Pruel, H. C., and Schroepfer, G. J., 1968, Travel of
nitrogen in soils: Jour. Wat. Poll. Control Fed.,
v. 40, no. 1, p. 30-48.
Reiniger, P., 1970, Movement and exchange of sodium and
calcium in calcareous gypseous soils, a computer
approach to soil chromatography: Ph.D. Dissertation,
Hewbrew Univ., 172p.
Resnick, S. D. and DeCook, K. J., 1970, Hydrologic and
environmental controls on water management in an
arid urban area: Amer. Assn. Adv. Sci., Annual
Meeting, Chicago, 16p.
Sadler, L. D. M., Taylor, S. A., Willardson, L. S., and
Keller, J., 1965, Misciple displacement of soluble
salts in reclaiming a salted soil: Soil Sci.,
v. 100, no. 5, p. 348-355.
Sawyer, C. N., and McCarty, P. L., 1967, Chemistry
sanitary engineers: New York, McGraw-Hill Book
Co., 518p.
Searle, S. S., 1949, The use of grass filtration areas for
sewage purification: Paper presented to the 12th
Annual Conference of Sewerage Engineers and
Operators.
110
Sidle, R. C., and Johnson, G. V., 1972, Evaluation of a
turf grass-soil system to utilize and purify
municipal waste water: Ariz. Acad. Sci. and
Amer. Wat. Resources Assn., Hydrology and Water
Resources in Arizona and the Southwest, v. 2,
p. 277-289.
Standard methods for the examination of water and waste
water, 13th ed., 1971: Amer. Pub. Health Assn.,
Amer. Wat. Works Assn., and Wat. Poll. Control
Fed., New York, 874p.
Stone, R., 1958, Land disposal of sewage and industrial
wastes: Jour. Sewage and Industrial Wastes,
v. 25, p. 406-418.
Tahoun, S. A., 1971, Amide-water interaction on
montmorillonite surface: U.A.R. Jour. Soil Sc.,
v. 11, no. 2, p. 193-203.
Tahoun, S. A., and Mortland, M. M., 1966a, Complexes of
montmorillonite with primary, secondary and
tertiary amides, Part I. Protonation of amides on
the surface of montmorillomite: Soil Sci., v. 102,
no. 4, p. 248-254.
, 1966b, Complexes of montmorillonite with primary,
secondary and tertiary amides, Part II. Coordination of amides on the surface of montmorillonite:
Soil Sc., v. 102, no. 5, p. 314-321.
Takai, Y., Kagawa, H., and Kobo, K., 1969, Jour. Sci.
Soil Manure, Japan, v. 40, p. 358 in Kagawa (1971,
p. 150).
Terlizzi, J., May 25, 1972, Collapsible floodwater dams
proposed: Tucson Daily Citizen, v. 33, May 25,
1972, p. 33.
Trueblood, E. J., 1973, Waste water laboratory supervisor,
Tucson Waste Water Treatment Plant, Tucson, Arizona,
personal communication.
Truesdale, G. A., Birkbeck, A. E., and Shaw, D., 1964,
A critical examination of some methods of further
treatment of effluents from percolating filters:
Jour. and Proc. Inst. of Sewage Purification,
v. 8, no. 1, p. 3-23.
111
University of Arizona and U.S. Geological Survey, 1959,
Capturing additional water in the Tucson area:
U.S. Geol. Surv., Open-File Rept.,59p.
U.S. Office of Water Resources Research, Project Completion Report for Matching Grant B-023-ARIZ., 1973,
(In preparation).
U.S. Public Health Service, 1962, Public Health Service
drinking water standards: Public Health Serv.
Pub. 956, 61p.
Water Resources Research Center, University of Arizona,
1969, Hydrological and environmental controls of
water management in semi-arid urban areas: A
research proposal to the U.S. Office of Water
Resources Research, 24p.
Weibel, S. R., Anderson,
1964, Urban land
pollution: Jour.
no. 7, pt. 2, p.
R. J., and Woodward, R. L.,
runoff as a factor in stream
Wat. Poll. Control Fed., v. 36,
914-924.
Wilkins, D. W., 1970, A laboratory method for predicting
effluent concentrations using soil profile models:
M.S. Thesis, N. M. State Univ., 78p.
Wilson, L. G., 1967, Sediment removal from flood waters
by grass infiltration: Amer. Soc. Agr. Engrs.
Trans., v. 10., no. 1, p. 35-37.
, 1971, Investigations on the subsurface disposal
of waste effluents at inland sites: Univ. of Ariz.,
Wat. Resources Research Center, Final Report on
contract No. 14-01-0001-1805 to U.S. Dept. Interior,
10 5
Wilson, L. G., and Cluff, C. B., 1962, Letting grass take
the mud out of water: Progressive Agr. in Ariz.,
v. 15, no. 6, p. 12.
Wilson, L. G., and Lehman, G. S., 1966, Grass filtration
of sewage effluent for quality improvement prior to
attificial recharge: Amer. Soc. Agr. Engrs.,Paper
No. 66-716, 21 p.
World Health Organization, 1963, International standards
for drinking water, 2nd ed.:Geneva, Switzerland,
206 p.
112
Zvyagintsev, D. G., 1959, Adsorption of microorganisms
by soil particles: Soy. Soil Sci. (Microbiologiya),
v. 28, no. 1, (p. 140-144), p. 104 (Russian).
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement