STM32F091xB STM32F091xC ARM ADC, DAC & comm. interfaces, 2.0 - 3.6V

STM32F091xB STM32F091xC ARM ADC, DAC & comm. interfaces, 2.0 - 3.6V
STM32F091xB STM32F091xC
ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers,
ADC, DAC & comm. interfaces, 2.0 - 3.6V
Datasheet - production data
Features
&"'!
 Core: ARM® 32-bit Cortex®-M0 CPU,
frequency up to 48 MHz
LQFP100 14x14 mm UFQFPN48
LQFP64 10x10 mm
7x7 mm
LQFP48 7x7 mm
 Memories
– 128 to 256 Kbytes of Flash memory
– 32 Kbytes of SRAM with HW parity
 CRC calculation unit
 Reset and power management
– Digital & I/Os supply: VDD = 2.0 V to 3.6 V
– Analog supply: VDDA = VDD to 3.6 V
– Power-on/Power down reset (POR/PDR)
– Programmable voltage detector (PVD)
– Low power modes: Sleep, Stop, Standby
– VBAT supply for RTC and backup registers
 Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x6 PLL option
– Internal 40 kHz RC oscillator
– Internal 48 MHz oscillator with automatic
trimming based on ext. synchronization
 Up to 88 fast I/Os
– All mappable on external interrupt vectors
– Up to 69 I/Os with 5V tolerant capability
and 19 with independent supply VDDIO2
UFBGA100
7x7 mm
UFBGA64
5x5 mm
 12 timers
– One 16-bit advanced-control timer for 
6 channel PWM output
– One 32-bit and seven 16-bit timers, with up
to 4 IC/OC, OCN, usable for IR control
decoding or DAC control
– Independent and system watchdog timers
– SysTick timer
 Communication interfaces
– Two I2C interfaces supporting Fast Mode
Plus (1 Mbit/s) with 20 mA current sink; one
supporting SMBus/PMBus and wakeup
– Up to eight USARTs supporting master
synchronous SPI and modem control; three
with ISO7816 interface, LIN, IrDA, auto
baud rate detection and wakeup feature
– Two SPIs (18 Mbit/s) with 4 to 16
programmable bit frames, and with I2S
interface multiplexed
– CAN interface
 HDMI CEC wakeup on header reception
 12-channel DMA controller
 Serial wire debug (SWD)
 One 12-bit, 1.0 µs ADC (up to 16 channels)
– Conversion range: 0 to 3.6 V
– Separate analog supply: 2.4 V to 3.6 V
®
 All packages ECOPACK 2
 One 12-bit D/A converter (with 2 channels)
 Two fast low-power analog comparators with
programmable input and output
 Up to 24 capacitive sensing channels for
touchkey, linear and rotary touch sensors
WLCSP64
3.347x3.585mm
 96-bit unique ID
Table 1. Device summary
Reference
Part number
STM32F091xB
STM32F091CB, STM32F091RB, STM32F091VB
STM32F091xC
STM32F091CC, STM32F091RC, STM32F091VC
 Calendar RTC with alarm and periodic wakeup
from Stop/Standby
February 2015
This is information on a product in full production.
DocID026284 Rev 2
1/130
www.st.com
Contents
STM32F091xB STM32F091xC
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
ARM®-Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . 13
3.2
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14
3.5
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10
2/130
3.5.1
3.9.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.14
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.2
General-purpose timers (TIM2..3, TIM14..17) . . . . . . . . . . . . . . . . . . . . 23
3.14.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.5
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID026284 Rev 2
STM32F091xB STM32F091xC
3.14.6
Contents
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24
3.16
Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17
Universal synchronous/asynchronous receiver transmitters (USART) . . 26
3.18
Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 27
3.19
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.20
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.21
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.22
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 57
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 57
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
DocID026284 Rev 2
3/130
4
Contents
7
STM32F091xB STM32F091xC
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.16
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.17
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.18
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.19
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.20
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.21
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.22
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 125
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F091xB/xC family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 11
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Capacitive sensing GPIOs available on STM32F091xB/xC devices . . . . . . . . . . . . . . . . . 20
No. of capacitive sensing channels available on STM32F091xB/xC devices. . . . . . . . . . . 21
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F091xB/xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F091xB/xC USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM32F091xB/xC SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32F091xB/xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 43
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 44
Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 45
Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 45
Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 46
Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 46
STM32F091xB/xC peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . 48
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 60
Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 61
Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 62
Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 63
Typical current consumption, code executing from Flash, running from HSE
8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
DocID026284 Rev 2
5/130
6
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
6/130
STM32F091xB STM32F091xC
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . 108
UFBGA64 –ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data,. . . . . . . . . . . . . . 113
WLCSP64 - 64-pin, 3.347 x 3.585 mm, 0.4 mm pitch wafer level chip scale 
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . 119
UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . 123
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DocID026284 Rev 2
STM32F091xB STM32F091xC
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
UFBGA100 package ballout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
LQFP100 100-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
UFBGA64 package ball-out (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LQFP64 64-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
WLCSP64 package ballout (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
LQFP48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
UFQFPN48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32F091xB/xC memory map
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 76
HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
I2S slave timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
I2S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
UFBGA100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline . . . . . . . . . . . . . . 108
LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
UFBGA64 – ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
UFBGA64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 113
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
WLCSP64 wafer level chip size package mechanical drawing. . . . . . . . . . . . . . . . . . . . . 116
WLCSP64 - 64-pin, 3.347 x 3.585 mm, 0.4 mm pitch wafer level chip scale 
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
DocID026284 Rev 2
7/130
8
List of figures
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
8/130
STM32F091xB STM32F091xC
WLCSP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 119
LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . 122
UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DocID026284 Rev 2
STM32F091xB STM32F091xC
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F091xB/xC microcontrollers.
This document should be read in conjunction with the STM32F0xxxx reference manual
(RM0091). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the ARM Cortex-M0 core, please refer to the Cortex-M0 Technical
Reference Manual, available from the www.arm.com website.
DocID026284 Rev 2
9/130
28
Description
2
STM32F091xB STM32F091xC
Description
The STM32F091xB/xC microcontrollers incorporate the high-performance ARM CortexM0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up
to 256 Kbytes of Flash memory and 32 Kbytes of SRAM), and an extensive range of
enhanced peripherals and I/Os. The device offers standard communication interfaces (two
I2Cs, two SPIs/one I2S, one HDMI CEC and up to eight USARTs), one CAN, one 12-bit
ADC, one 12-bit DAC with two channels, seven general-purpose 16-bit timers, a 32-bit timer
and an advanced-control PWM timer.
The STM32F091xB/xC microcontrollers operate in the -40 to +85 °C and -40 to +105 °C
temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of powersaving modes allows the design of low-power applications.
The STM32F091xB/xC microcontrollers include devices in seven different packages ranging
from 48 pins to 100 pins with a die form also available upon request. Depending on the
device chosen, different sets of peripherals are included. The description below provides an
overview of the complete range of STM32F091xB/xC peripherals proposed.
These features make the STM32F091xB/xC microcontrollers suitable for a wide range of
applications such as application control and user interfaces, handheld equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
10/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Description
Table 2. STM32F091xB/xC family device features and peripheral counts
Peripheral
Flash (Kbytes)
STM32F091Cx
128
256
STM32F091Rx
128
256
SRAM (Kbytes)
Timers
Advanced
control
1 (16-bit)
General
purpose
5 (16-bit)
1 (32-bit)
Basic
2 (16-bit)
2
I
6
8
CAN
1
CEC
1
12-bit ADC 
(number of channels)
256
2 [2]
2C
USART
128
32
SPI [I2S](1)
Comm.
interfaces
STM32F091Vx
1
(10 ext. + 3 int.)
1
(16 ext. + 3 int.)
12-bit DAC
(number of channels)
1
(2)
Analog comparator
2
GPIOs
37
51
87
Capacitive sensing
channels
16
17
23
Max. CPU frequency
48 MHz
Operating voltage
Operating temperature
Packages
2.0 to 3.6 V
Ambient operating temperature: -40°C to 85°C / -40°C to 105°C
Junction temperature: -40°C to 105°C / -40°C to 125°C
LQFP48
UFQFPN48
LQFP64
UFBGA64
WLCSP64
LQFP100
UFBGA100
1. The SPI interface can be used either in SPI mode or in I2S audio mode.
DocID026284 Rev 2
11/130
28
Description
STM32F091xB STM32F091xC
Figure 1. Block diagram
32:(5
9''
6HULDO:LUH
'HEXJ
)ODVK 2EO
LQWHUIDFH
6:&/.
6:',2
DV$)
%XVPDWUL[
65$0
FRQWUROOHU
&257(;0&38
I0$; 0+]
19,&
92/75(*
9729
)ODVK*3/
8SWR.%
ELWV
65$0
.%
#9'',2
9''86%2.,1
#9''$
6833/<
683(59,6,21
325
5HVHW
,QW
3253'5
5&+60+]
1567
9''$
966$
39'
5&+60+]
*3'0$
FKDQQHOV
9'',2 WR9
966
#9''$
#9'',2
3//
;7$/26&
0+]
5&/6
5&+60+]
26&B,13)
26&B2873)
,QG:LQGRZ:'*
*3,2SRUW$
3%>@
*3,2SRUW%
3&>@
*3,2SRUW&
3'>@
*3,2SRUW'
3(>@
*3,2SRUW(
3)>@3)
3)>@
*3,2SRUW)
5(6(7
&/2&.
&21752/
$+%
GHFRGHU
3$>@
$+%3&/.
$3%3&/.
$'&&/.
&(&&/.
86$57&/.
+&/.
)&/.
3$'
$QDORJ
VZLWFKHV
;7$/N+]
026,6'
0,620&.
6&.&.
166:6DV$)
026,6'
0,620&.
6&.&.
166:6DV$)
7RXFK
6HQVLQJ
&RQWUROOHU
6<1&
FKDQQHOV
FRPSOFKDQQHOV
%5.(75LQSXWDV$)
7,0(5ELW
FK(75DV$)
7,0(5
FK(75DV$)
7,0(5
FKDQQHODV$)
7,0(5
FKDQQHOV
FRPSO%5.DV$)
7,0(5
FKDQQHO
FRPSO%5.DV$)
7,0(5
FKDQQHO
FRPSO%5.DV$)
$+%
$3%
(;7,7
:.83
%[&$1
:,QGRZ:'*
63,,6
'%*0&8
86$57
63,,6
86$57
6<6&)*,)
86$57
*3FRPSDUDWRU
86$57
,5B287DV$)
5;7;&76576
&.DV$)
5;7;&76576
&.DV$)
5;7;&76576
&.DV$)
5;7;&76576
&.DV$)
5;7;576&.DV$)
*3FRPSDUDWRU
7HPS
VHQVRU
$'LQSXWV
7$03(557&
$/$50287
3:07,0(5
86$57
,1387
,1387
287387
DV$)
26&B,1
26&B287
57&LQWHUIDFH
65$0
%
7;5;DV$)
%DFNXS
UHJ
&56
6<1&
$)
9%$7 WR9
#96:
57&
&5&
JURXSVRI
FKDQQHOV
3RZHU
&RQWUROOHU
#9
ELW
''$
$'&
86$57
5;7;576&.DV$)
86$57
5;7;576&.DV$)
86$57
,&
,)
,&
9''$
966$
+'0,&(&
7,0(5
#9''$
7,0(5
,)
5;7;576&.DV$)
6&/6'$60%$
P$IRU)0DV$)
6&/6'$
P$IRU)0DV$)
&(&DV$)
ELW
'$&
'$&B287
ELW
'$&
'$&B287
#9''$
/HJHQG
12/130
6XSSOLHGE\9''$
6XSSOLHGE\9''
6XSSOLHGE\9%$7
DocID026284 Rev 2
06Y9
STM32F091xB STM32F091xC
Functional overview
3
Functional overview
3.1
ARM®-Cortex®-M0 core with embedded Flash and SRAM
The ARM Cortex-M0 processor is the latest generation of ARM processors for
embedded systems. It has been developed to provide a low-cost platform that meets the
needs of MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced system response to
interrupts.
The ARM Cortex-M0 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F0xx family has an embedded ARM core and is therefore compatible with all
ARM tools and software.
Figure 1 shows the general block diagram of the device family.
3.2
Memories
The device has the following features:

32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states and featuring embedded parity checking with exception generation for fail-critical
applications.

The non-volatile memory is divided into two arrays:
–
up to 256 Kbytes of embedded Flash memory for programs and data
–
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
–
Level 0: no readout protection
–
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
®
Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and
boot in RAM selection disabled
–
3.3
Boot modes
At startup, the boot pin and boot selector option bits are used to select one of the three boot
options:

Boot from User Flash

Boot from System Memory

Boot from embedded SRAM
The boot pin is shared with the standard GPIO and can be disabled through the boot
selector option bits. The boot loader is located in System Memory. It is used to reprogram
the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I2C on pins
PB6/PB7.
DocID026284 Rev 2
13/130
28
Functional overview
3.4
STM32F091xB STM32F091xC
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.5
Power management
3.5.1
Power supply schemes

VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.

VDDA = from VDD to 3.6 V: external analog power supply for ADC, DAC, Reset blocks,
RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC
are used). The VDDA voltage level must be always greater or equal to the VDD voltage
level and must be provided first.

VDDIO2 = 1.65 to 3.6 V: external power supply for marked I/Os. Provided externally
through the VDDIO2 pin. The VDDIO2 voltage level is completely independent from VDD
or VDDA, but it must not be provided without a valid supply on VDD. The VDDIO2 supply
is monitored and compared with the internal reference voltage (VREFINT). When the
VDDIO2 is below this threshold, all the I/Os supplied from this rail are disabled by
hardware. The output of this comparator is connected to EXTI line 31 and it can be
used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os
list.

VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.
3.5.2
Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.

The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.

The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
14/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Functional overview
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.5.3
Voltage regulator
The regulator has two operating modes and it is always enabled after reset.

Main (MR) is used in normal operating mode (Run).

Low power (LPR) can be used in Stop mode where the power demand is reduced.
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high
impedance and the kernel circuitry is powered down, inducing zero consumption (but the
contents of the registers and SRAM are lost).
3.5.4
Low-power modes
The STM32F091xB/xC microcontrollers support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:

Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.

Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1,
USART2, USART3, COMPx, VDDIO2 supply comparator or the CEC.
The peripherals listed above can be configured to enable the HSI RC oscillator for
processing incoming data. If this is used when the voltage regulator is put in low power
mode, the regulator is first switched to normal mode before the clock is provided to the
given peripheral.

Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the RTC
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
DocID026284 Rev 2
15/130
28
Functional overview
STM32F091xB STM32F091xC
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL
input source. This oscillator can be automatically fine-trimmed by the means of the CRS
peripheral using the external synchronization.
Figure 2. Clock tree
)/,7)&/.
WR)ODVK
SURJUDPPLQJLQWHUIDFH
+6,
&56
WR,&
6<6&/.
0+]
+6,5&
WR,6
+6,
/6(
0+]
+6,5&
WR&(&
+6,
+&/.
6:
3//65&
35(',9
3//08/
3//
[[
[
+6,
3//&/.
+6(
WR$+%EXVFRUH
PHPRU\DQG'0$
WRFRUWH[6\VWHPWLPHU
)+&/.&RUWH[IUHHUXQQLQJFORFN
$+%
$+%
SUHVFDOHU
6<6&/.
$3%
SUHVFDOHU
3&/.
WR$3%SHULSKHUDOV
&66
26&B287
26&B,1
,I$3%SUHVFDOHU
[HOVH[
0+]
+6(26&
3&/.
6<6&/.
+6,
/6(
26&B,1
26&B287
/6(26&
N+]
57&&/.
WR7,0
WR86$57
WR86$57
WR86$57
WR57&
/6(
57&6(/>@
/6,5&
N+]
0&2
0&235(
0DLQFORFN
RXWSXW
WR7,0
/6,
WR,:'*
3//12',9
3//&/.
0&2
+6,
+6,
+6,
+6(
6<6&/.
/6,
/6(
0+] +6,
+6,5&
WR$'&
DV\QFKURQRXV
FORFNLQSXW
069
16/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
3.7
Functional overview
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.8
Direct memory access controller (DMA)
The 12-channel general-purpose DMAs (seven channels for DMA1 and five channels for
DMA2) manage memory-to-memory, peripheral-to-memory and memory-to-peripheral
transfers.
The DMAs support circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except
TIM14), DAC and ADC.
3.9
Interrupts and events
3.9.1
Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
®
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4
priority levels.

Closely coupled NVIC gives low latency interrupt processing

Interrupt entry vector table address passed directly to the core

Closely coupled NVIC core interface

Allows early processing of interrupts

Processing of late arriving higher priority interrupts

Support for tail-chaining

Processor state automatically saved

Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 32 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
DocID026284 Rev 2
17/130
28
Functional overview
STM32F091xB STM32F091xC
can detect an external line with a pulse width shorter than the internal clock period. Up to 88
GPIOs can be connected to the 16 external interrupt lines.
3.10
Analog to digital converter (ADC)
The 12-bit analog to digital converter has up to 16 external and 3 internal (temperature
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions
in single-shot or scan modes. In scan mode, automatic conversion is performed on a
selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 3. Temperature sensor calibration values
Calibration value name
3.10.2
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (5 °C),
VDDA= 3.3 V (10 mV)
TS_CAL2
TS ADC raw data acquired at a
temperature of 110 °C (5 °C), 0x1FFF F7C2 - 0x1FFF F7C3
VDDA= 3.3 V (10 mV)
0x1FFF F7B8 - 0x1FFF F7B9
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and comparators. VREFINT is internally connected to the ADC_IN17 input channel. The
precise voltage of VREFINT is individually measured for each part by ST during production
test and stored in the system memory area. It is accessible in read-only mode.
18/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Functional overview
Table 4. Internal voltage reference calibration values
Calibration value name
VREFINT_CAL
3.10.3
Description
Memory address
Raw data acquired at a
temperature of 30 °C (5 °C), 0x1FFF F7BA - 0x1FFF F7BB
VDDA= 3.3 V (10 mV)
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.11
Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert digital signals into analog
voltage signal outputs. The chosen design structure is composed of integrated resistor
strings and an amplifier in non-inverting configuration.
This digital Interface supports the following features:

8-bit or 12-bit monotonic output

Left or right data alignment in 12-bit mode

Synchronized update capability

Noise-wave generation

Triangular-wave generation

Dual DAC channel independent or simultaneous conversions

DMA capability for each channel

External triggers for conversion
Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger
outputs and the DAC interface is generating its own DMA requests.
3.12
Comparators (COMP)
The device embeds two fast rail-to-rail low-power comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low power) and
with selectable output polarity.
The reference voltage can be one of the following:

External I/O

DAC output pins

Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to Table 28: Embedded
internal reference voltage for the value and precision of the internal reference voltage.
Both comparators can wake up from STOP mode, generate interrupts and breaks for the
timers and can be also combined into a window comparator.
DocID026284 Rev 2
19/130
28
Functional overview
3.13
STM32F091xB STM32F091xC
Touch sensing controller (TSC)
The STM32F091xB/xC devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 2324 capacitive sensing channels
distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library, which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
Table 5. Capacitive sensing GPIOs available on STM32F091xB/xC devices
Group
1
2
3
4
20/130
Capacitive sensing
signal name
Pin
name
TSC_G1_IO1
PA0
TSC_G1_IO2
PA1
TSC_G1_IO3
PA2
TSC_G1_IO4
Capacitive sensing
signal name
Pin
name
TSC_G5_IO1
PB3
TSC_G5_IO2
PB4
TSC_G5_IO3
PB6
PA3
TSC_G5_IO4
PB7
TSC_G2_IO1
PA4
TSC_G6_IO1
PB11
TSC_G2_IO2
PA5
TSC_G6_IO2
PB12
TSC_G2_IO3
PA6
TSC_G6_IO3
PB13
TSC_G2_IO4
PA7
TSC_G6_IO4
PB14
TSC_G3_IO1
PC5
TSC_G7_IO1
PE2
TSC_G3_IO2
PB0
TSC_G7_IO2
PE3
TSC_G3_IO3
PB1
TSC_G7_IO3
PE4
TSC_G3_IO4
PB2
TSC_G7_IO4
PE5
TSC_G4_IO1
PA9
TSC_G8_IO1
PD12
TSC_G4_IO2
PA10
TSC_G8_IO2
PD13
TSC_G4_IO3
PA11
TSC_G8_IO3
PD14
TSC_G4_IO4
PA12
TSC_G8_IO4
PD15
DocID026284 Rev 2
Group
5
6
7
8
STM32F091xB STM32F091xC
Functional overview
Table 6. No. of capacitive sensing channels available on STM32F091xB/xC devices
Number of capacitive sensing channels
Analog I/O group
STM32F091Vx
STM32F091Rx
STM32F091Cx
G1
3
3
3
G2
3
3
3
G3
3
3
2
G4
3
3
3
G5
3
3
3
G6
3
3
3
G7
3
0
0
G8
3
0
0
Number of capacitive
sensing channels
24
18
17
DocID026284 Rev 2
21/130
28
Functional overview
3.14
STM32F091xB STM32F091xC
Timers and watchdogs
The STM32F091xB/xC devices include up to six general-purpose timers, two basic timers
and an advanced control timer.
Table 7 compares the features of the different timers.
Table 7. Timer feature comparison
Timer
type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Advanced
control
TIM1
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
Yes
TIM2
32-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
No
TIM3
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
No
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
No
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
Yes
TIM16,
TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
Yes
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
General
purpose
Basic
3.14.1
Capture/compare Complementary
channels
outputs
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:

Input capture

Output compare

PWM generation (edge or center-aligned modes)

One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
22/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
3.14.2
Functional overview
General-purpose timers (TIM2..3, TIM14..17)
There are six synchronizable general-purpose timers embedded in the STM32F091xB/xC
devices (see Table 7 for differences). Each general-purpose timer can be used to generate
PWM outputs, or as simple time base.
TIM2, TIM3
STM32F091xB/xC devices feature two synchronizable 4-channel general-purpose timers.
TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based
on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent
channels each for input capture/output compare, PWM or one-pulse mode output. This
gives up to 12 input captures/output compares/PWMs on the largest packages.
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.
TIM2 and TIM3 both have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
Their counters can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate
withTIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.14.3
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
3.14.4
Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
DocID026284 Rev 2
23/130
28
Functional overview
STM32F091xB STM32F091xC
operates independently from the main clock, it can operate in Stop and Standby modes. It
can be used either as a watchdog to reset the device when a problem occurs, or as a free
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.14.5
System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.14.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
3.15

A 24-bit down counter

Autoreload capability

Maskable system interrupt generation when the counter reaches 0

Programmable clock source (HCLK or HCLK/8)
Real-time clock (RTC) and backup registers
The RTC and the five backup registers are supplied through a switch that takes power either
on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit
registers used to store 20 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or when the device wakes up from Standby
mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
24/130

Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.

Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.

Programmable alarm with wake up from Stop and Standby mode capability.

Periodic wakeup unit with programmable resolution and period.

On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock.

Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.

Three anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.

Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.

Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
DocID026284 Rev 2
STM32F091xB STM32F091xC
Functional overview
The RTC clock sources can be:
3.16

A 32.768 kHz external crystal

A resonator or oscillator

The internal low-power RC oscillator (typical frequency of 40 kHz)

The high-speed external clock divided by 32
Inter-integrated circuit interfaces (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode
Plus (up to 1 Mbit/s) with 20 mA output drive on most of the associated I/Os.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). They also include programmable analog and
digital noise filters.
Table 8. Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management. I2C1 also has a clock domain independent
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address
match.
The I2C interfaces can be served by the DMA controller.
Refer to Table 9 for the differences between I2C1 and I2C2.
Table 9. STM32F091xB/xC I2C implementation
I2C features(1)
I2C1
I2C2
7-bit addressing mode
X
X
10-bit addressing mode
X
X
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus (up to 1 Mbit/s) with output drive I/Os
X
X
Independent clock
X
-
DocID026284 Rev 2
25/130
28
Functional overview
STM32F091xB STM32F091xC
Table 9. STM32F091xB/xC I2C implementation (continued)
I2C features(1)
I2C1
I2C2
SMBus
X
-
Wakeup from STOP
X
-
1. X = supported.
3.17
Universal synchronous/asynchronous receiver transmitters
(USART)
The device embeds up to eight universal synchronous/asynchronous receiver transmitters
(USART1, USART2, USART3, USART4, USART5, USART6, USART7, USART8), which
communicate at speeds of up to 6 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 DE signals,
multiprocessor communication mode, master synchronous communication and single-wire
half-duplex communication mode. USART1, USART2 and USART3 support also SmartCard
communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud
rate feature, and have a clock domain independent from the CPU clock, allowing to wake up
the MCU from Stop mode.
The USART interfaces can be served by the DMA controller.
Table 10. STM32F091xB/xC USART implementation
USART1
USART2
USART3
USART4
USART5
USART6
USART7
USART8
Hardware flow control for modem
X
X
-
Continuous communication using DMA
X
X
X
Multiprocessor communication
X
X
X
Synchronous mode
X
X
X
Smartcard mode
X
-
-
Single-wire half-duplex communication
X
X
X
IrDA SIR ENDEC block
X
-
-
LIN mode
X
-
-
Dual clock domain and wakeup from Stop mode
X
-
-
Receiver timeout interrupt
X
-
-
Modbus communication
X
-
-
Auto baud rate detection
X
-
-
Driver Enable
X
X
X
USART
modes/features(1)
1. X = supported.
26/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
3.18
Functional overview
Serial peripheral interface (SPI)/Inter-integrated sound
interfaces (I2S)
Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex
and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four
different audio standards can operate as master or slave at half-duplex communication
mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to
192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master
mode, they can output a clock for an external audio component at 256 times the sampling
frequency.
Table 11. STM32F091xB/xC SPI/I2S implementation
SPI features(1)
SPI1 and SPI2
Hardware CRC calculation
X
Rx/Tx FIFO
X
NSS pulse mode
X
I2S mode
X
TI mode
X
1. X = supported.
DocID026284 Rev 2
27/130
28
Functional overview
3.19
STM32F091xB STM32F091xC
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The device embeds a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC
controller to wakeup the MCU from Stop mode on data reception.
3.20
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.21
Clock recovery system (CRS)
The STM32F091xB/xC embeds a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC
pin or generated by user software. For faster lock-in during startup it is also possible to
combine automatic trimming with manual trimming action.
3.22
Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
28/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
4
Pinouts and pin descriptions
Pinouts and pin descriptions
Figure 3. UFBGA100 package ballout (top view)
3'
3%
3%
3$
3$
3$
3$
3'
3'
3'
3'
3&
3&
3$
3'
3'
3&
3)
3$
$
3(
3(
3% 3)%227 3'
%
3(
3(
3%
3%
3%
&
3&
3(
3(
9''
3%
'
3&
3(
966
3$
3$
3&
3&
9%$7
1&
3&
3&
3&
)
3)
3)
966
966
*
3)
3)
9'',2
9''
+
3&
1567
9''
3'
3'
3'
-
3)
3&
3&
3'
3'
3'
.
966$
3&
3$
3$
3&
/
3)
3$
3$
3$
3&
3%
0
9''$
3$
3$
3$
3%
3%
(
3'
3'
3%
3%
3%
3(
3(
3(
3%
3%
3%
3(
3(
3(
3(
3(
3(
,2SLQVXSSOLHGE\9'',2
069
DocID026284 Rev 2
29/130
42
Pinouts and pin descriptions
STM32F091xB STM32F091xC
9''
966
3(
3(
3%
3%
3)%227
3%
3%
3%
3%
3%
3'
3'
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
Figure 4. LQFP100 100-pin package pinout (top view)
/4)3
9'',2
966
3)
3$ 3$ 3$ 3$ 3$ 3$ 3&
3&
3&
3&
3'
3'
3'
3'
3'
3'
3'
3'
3%
3%
3% 3%
3$
966
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3(
3(
3(
3(
3(
3(
3(
3(
3(
3%
3%
966
9''
3(
3(
3(
3(
3(
9%$7
3&
3&26&B,1
3&26&B287
3)
3)
3)26&B,1
3)26&B287
1567
3&
3&
3&
3&
3)
966$
9''$
3)
3$
3$
3$
*0QJOTVQQMJFECZ7%%*0
069
30/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Pinouts and pin descriptions
Figure 5. UFBGA64 package ball-out (top view)
$
3&
26&B,1
3&
3%
3%
3%
3$
3$
3$
%
3&
26&B287
9%$7
3%
%227
3'
3&
3&
3$
&
3)
26&B,1
966
3%
3%
3&
3$
3$
3$
'
3)
26&B287
9''
3%
966
966
966
3$
3&
(
1567
3&
3&
9''
9''
9'',2
3&
3&
)
966$
3&
3$
3$
3%
3&
3%
3%
*
3&
3$
3$
3$
3%
3%
3%
3%
+
9''$
3$
3$
3$
3&
3&
3%
3%
/HJHQG,2SLQVXSSSOLHGE\9'',2
069
DocID026284 Rev 2
31/130
42
Pinouts and pin descriptions
STM32F091xB STM32F091xC
3&
3&26&B,1
3&26&B287
3)26&B,1
3)26&B287
1567
3&
3&
3&
3&
966$
9''$
3$
3$
966
9''
3$
3$
3%
3%
3%
3%
3%
3'
3& 3& 3& 3$
3$
3)%227
/4)3
9'',2
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
3%
966
9''
9%$7
3%
3%
9''
966
Figure 6. LQFP64 64-pin package pinout (top view)
*0QJOTVQQMJFECZ7%%*0
069
32/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Pinouts and pin descriptions
Figure 7. WLCSP64 package ballout (bottom view)
$
9''
966
3%
3%
3'
3&
3$
9'',2
%
9%$7
3&
3%
&
'
(
3%
3&
3$
966
3$
3%
3&
3$
3$
3$
3&
3%
3%
3$
3$
3&
3&
3$
3$
3&
3&
3&
3&
26&B,1 3& 3)
26&B287
3)
26&B,1 1567
3)
3&
26&B287
)
3&
3$
3$
3$
3&
3%
3%
3%
*
966$
966
9''
3$
3%
3%
3%
3%
+
9''$
3$
3$
3&
3%
3%
966
9''
,2SLQVXSSOLHGE\9'',2
DocID026284 Rev 2
069
33/130
42
Pinouts and pin descriptions
STM32F091xB STM32F091xC
3$
3$
3%
3%
3%
3%
3%
3)%227
9%$7
3&
3&26&B,1
3&26&B287
3)26&B,1
3)26&B287
1567
966$
9''$
3$
3$
/4)3
9'',2
966
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
9''
966
3%
3%
3%
3%
3$
3%
3$
3$
3$
3$
3$
3%
3%
9''
966
Figure 8. LQFP48 48-pin package pinout (top view)
,2SLQVXSSOLHGE\9'',2
069
34/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Pinouts and pin descriptions
9%$7
3$
3%
3$
3%
3%
3%
3%
3%
3)%227
3%
9''
966
Figure 9. UFQFPN48 48-pin package pinout (top view)
9'',2
966
3$
3$
3$
3)26&B287
3$
1567
3$
966$
9''$
3$
3$
3$
3$
3%
3%
3%
3%
3%
3%
3%
966
9''
3$
3$
3%
3%
8)4)31
3$
3$
3$
3&
3&26&B,1
3&26&B287
3)26&B,1
*0QJOTVQQMJFECZ7%%*0
069
Table 12. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
I/O structure
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3 V I/O
RST
Notes
Pin
functions
Definition
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset.
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
DocID026284 Rev 2
35/130
42
Pinouts and pin descriptions
STM32F091xB STM32F091xC
Table 13. STM32F091xB/xC pin definitions
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Pin type
I/O structure
B2
1
-
-
-
-
PE2
I/O
FT
TSC_G7_IO1, TIM3_ETR
-
A1
2
-
-
-
-
PE3
I/O
FT
TSC_G7_IO2, TIM3_CH1
-
B1
3
-
-
-
-
PE4
I/O
FT
TSC_G7_IO3, TIM3_CH2
-
C2
4
-
-
-
-
PE5
I/O
FT
TSC_G7_IO4, TIM3_CH3
-
D2
5
-
-
-
-
PE6
I/O
FT
TIM3_CH4
WKUP3,
RTC_TAMP3
E2
6
B2
1
B8
1
VBAT
S
-
Pin name
(function after
reset)
-
Alternate functions
Additional
functions
Backup power supply
-
WKUP2,
RTC_TAMP1,
RTC_TS,
RTC_OUT
-
OSC32_IN
-
OSC32_OUT
FT
TIM15_CH1, USART6_TX
-
I/O
FT
TIM15_CH2, USART6_RX
-
PF0-OSC_IN
(PF0)
I/O
FTf
CRS_ SYNC, I2C1_SDA
OSC_IN
6
PF1-OSC_OUT
(PF1)
I/O
FTf
I2C1_SCL
OSC_OUT
D7
7
NRST
I/O
RST
8
E7
-
PC0
I/O
TTa
EVENTOUT,
USART6_TX,
USART7_TX
ADC_IN10
E2
9
F8
-
PC1
I/O
TTa
EVENTOUT,
USART6_RX,
USART7_RX
ADC_IN11
17
F2
10
D6
-
PC2
I/O
TTa
SPI2_MISO, I2S2_MCK,
EVENTOUT, USART8_TX
ADC_IN12
18
G1
11
E6
-
PC3
I/O
TTa
SPI2_MOSI, I2S2_SD,
EVENTOUT, USART8_RX
ADC_IN13
C1
7
A2
2
B7
2
PC13
I/O
TC
D1
8
A1
3
C8
3
PC14OSC32_IN
(PC14)
I/O
TC
E1
9
B1
4
C7
4
PC15OSC32_OUT
(PC15)
I/O
TC
F2
10
-
-
-
-
PF9
I/O
G2
11
-
-
-
-
PF10
F1
12
C1
5
D8
5
G1
13
D1
6
E8
H2
14
E1
7
H1
15
E3
J2
16
J3
K2
36/130
Notes
LQFP100
Pin functions
UFBGA100
Pin numbers
(1)
(2)
(1)
(2)
(1)
(2)
DocID026284 Rev 2
Device reset input / internal reset output
(active low)
STM32F091xB STM32F091xC
Pinouts and pin descriptions
Table 13. STM32F091xB/xC pin definitions (continued)
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Pin type
I/O structure
J1
19
-
-
-
-
PF2
I/O
FT
K1
20
F1
12
G8
8
VSSA
S
-
Analog ground
M1
21
H1
13
H8
9
VDDA
S
-
Analog power supply
L1
22
-
-
-
-
PF3
I/O
FT
EVENTOUT,
USART7_RX,
USART6_CK_RTS
TTa
USART2_CTS,
TIM2_CH1_ETR,
TSC_G1_IO1,
USART4_TX
COMP1_OUT
RTC_ TAMP2,
WKUP1,
ADC_IN0,
COMP1_INM6
TTa
USART2_RTS,
TIM2_CH2,
TIM15_CH1N,
TSC_G1_IO2,
USART4_RX,
EVENTOUT
ADC_IN1,
COMP1_INP
ADC_IN2,
WKUP4,
COMP2_INM6
ADC_IN3,
COMP2_INP
L2
M2
23
24
G2
H2
14
15
F7
F6
10
11
Pin name
(function after
reset)
PA0
PA1
I/O
I/O
Notes
LQFP100
Pin functions
UFBGA100
Pin numbers
Alternate functions
Additional
functions
EVENTOUT,
USART7_TX,
USART7_CK_RTS
WKUP8
K3
25
F3
16
E5
12
PA2
I/O
TTa
USART2_TX, TIM2_CH3,
TIM15_CH1,
TSC_G1_IO3
COMP2_OUT
L3
26
G3
17
H7
13
PA3
I/O
TTa
USART2_RX,TIM2_CH4,
TIM15_CH2,
TSC_G1_IO4
D3
27
C2
18
G7
-
VSS
S
-
Ground
H3
28
D2
19
G6
-
VDD
S
-
Digital power supply
M3
K4
29
30
H3
F4
20
21
H6
F5
14
15
PA4
PA5
I/O
I/O
TTa
SPI1_NSS, I2S1_WS,
TIM14_CH1,
TSC_G2_IO1,
USART2_CK,
USART6_TX
COMP1_INM4,
COMP2_INM4,
ADC_IN4,
DAC_OUT1
TTa
SPI1_SCK, I2S1_CK,
CEC,
TIM2_CH1_ETR,
TSC_G2_IO2,
USART6_RX
COMP1_INM5,
COMP2_INM5,
ADC_IN5,
DAC_OUT2
DocID026284 Rev 2
37/130
42
Pinouts and pin descriptions
STM32F091xB STM32F091xC
Table 13. STM32F091xB/xC pin definitions (continued)
L4
31
G4
22
G5
16
PA6
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
LQFP48/UFQFPN48
Pin functions
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Pin numbers
Alternate functions
Additional
functions
TTa
SPI1_MISO, I2S1_MCK,
TIM3_CH1, TIM1_BKIN,
TIM16_CH1,
COMP1_OUT,
TSC_G2_IO3,
EVENTOUT,
USART3_CTS
ADC_IN6
ADC_IN7
M4
32
H4
23
E4
17
PA7
I/O
TTa
SPI1_MOSI, I2S1_SD,
TIM3_CH2, TIM14_CH1,
TIM1_CH1N, TIM17_CH1,
COMP2_OUT,
TSC_G2_IO4,
EVENTOUT
K5
33
H5
24
H5
-
PC4
I/O
TTa
EVENTOUT, USART3_TX
ADC_IN14
L5
34
H6
25
F4
-
PC5
I/O
TTa
TSC_G3_IO1,
USART3_RX
ADC_IN15,
WKUP5
TTa
TIM3_CH3, TIM1_CH2N,
TSC_G3_IO2,
EVENTOUT,
USART3_CK
ADC_IN8
ADC_IN9
M5
35
F5
26
G4
18
PB0
I/O
M6
36
G5
27
F3
19
PB1
I/O
TTa
TIM3_CH4,
USART3_RTS,
TIM14_CH1, TIM1_CH3N,
TSC_G3_IO3
L6
37
G6
28
H4
20
PB2
I/O
FT
TSC_G3_IO4
-
M7
38
-
-
-
-
PE7
I/O
FT
TIM1_ETR,
USART5_CK_RTS
-
L7
39
-
-
-
-
PE8
I/O
FT
TIM1_CH1N,
USART4_TX
-
M8
40
-
-
-
-
PE9
I/O
FT
TIM1_CH1, USART4_RX
-
L8
41
-
-
-
-
PE10
I/O
FT
TIM1_CH2N,
USART5_TX
-
M9
42
-
-
-
-
PE11
I/O
FT
TIM1_CH2, USART5_RX
-
L9
43
-
-
-
-
PE12
I/O
FT
SPI1_NSS, I2S1_WS,
TIM1_CH3N
-
M10
44
-
-
-
-
PE13
I/O
FT
SPI1_SCK, I2S1_CK,
TIM1_CH3
-
38/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Pinouts and pin descriptions
Table 13. STM32F091xB/xC pin definitions (continued)
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Pin type
I/O structure
M11
45
-
-
-
-
PE14
I/O
FT
SPI1_MISO, I2S1_MCK,
TIM1_CH4
-
M12
46
-
-
-
-
PE15
I/O
FT
SPI1_MOSI, I2S1_SD,
TIM1_BKIN
-
FTf
SPI2_SCK, I2S2_CK,
I2C2_SCL,
USART3_TX, CEC,
TSC_SYNC, TIM2_CH3
-
USART3_RX, TIM2_CH4,
EVENTOUT,
TSC_G6_IO1,
I2C2_SDA
-
L10
47
G7
29
G3
21
Pin name
(function after
reset)
PB10
I/O
Notes
LQFP100
Pin functions
UFBGA100
Pin numbers
Alternate functions
Additional
functions
L11
48
H7
30
H3
22
PB11
I/O
FTf
F12
49
D5
31
H2
23
VSS
S
-
Ground
G12
50
E5
32
H1
24
VDD
S
-
Digital power supply
L12
K12
K11
51
52
53
H8
G8
F8
33
34
35
G2
F2
G1
25
26
27
PB12
PB13
PB14
I/O
I/O
I/O
FT
TIM1_BKIN, TIM15_BKIN,
SPI2_NSS, I2S2_WS,
USART3_CK,
TSC_G6_IO2,
EVENTOUT
-
FTf
SPI2_SCK, I2S2_CK,
I2C2_SCL,
USART3_CTS,
TIM1_CH1N,
TSC_G6_IO3
-
FTf
SPI2_MISO, I2S2_MCK,
I2C2_SDA,
USART3_RTS,
TIM1_CH2N, TIM15_CH1,
TSC_G6_IO4
-
WKUP7,
RTC_REFIN
K10
54
F7
36
F1
28
PB15
I/O
FT
SPI2_MOSI, I2S2_SD,
TIM1_CH3N,
TIM15_CH1N,
TIM15_CH2
K9
55
-
-
-
-
PD8
I/O
FT
USART3_TX
-
K8
56
-
-
-
-
PD9
I/O
FT
USART3_RX
-
J12
57
-
-
-
-
PD10
I/O
FT
USART3_CK
-
J11
58
-
-
-
-
PD11
I/O
FT
USART3_CTS
-
DocID026284 Rev 2
39/130
42
Pinouts and pin descriptions
STM32F091xB STM32F091xC
Table 13. STM32F091xB/xC pin definitions (continued)
UFBGA64
LQFP64
WLCSP64
LQFP48/UFQFPN48
Pin type
I/O structure
J10
59
-
-
-
-
PD12
I/O
FT
USART3_RTS,
TSC_G8_IO1,
USART8_CK_RTS
-
H12
60
-
-
-
-
PD13
I/O
FT
TSC_G8_IO2,
USART8_TX
-
H11
61
-
-
-
-
PD14
I/O
FT
TSC_G8_IO3,
USART8_RX
-
H10
62
-
-
-
-
PD15
I/O
FT
TSC_G8_IO4,
CRS_SYNC,
USART7_CK_RTS
-
E12
63
F6
37
E1
-
PC6
I/O
FT
(3)
TIM3_CH1, USART7_TX
-
FT
(3)
TIM3_CH2, USART7_RX
-
TIM3_CH3, USART8_TX
-
E11
64
E7
38
D1
-
Pin name
(function after
reset)
PC7
I/O
Notes
LQFP100
Pin functions
UFBGA100
Pin numbers
Alternate functions
Additional
functions
E10
65
E8
39
E2
-
PC8
I/O
FT
(3)
D12
66
D8
40
E3
-
PC9
I/O
FT
(3)
TIM3_CH4, USART8_RX
-
D11
67
D7
41
D2
29
PA8
I/O
FT
(3)
USART1_CK, TIM1_CH1,
EVENTOUT, MCO,
CRS_SYNC
-
D10
68
C7
42
C1
30
PA9
I/O
FT
(3)
USART1_TX, TIM1_CH2,
TIM15_BKIN,
TSC_G4_IO1, I2C1_SCL
MCO
C12
69
C6
43
C2
31
PA10
I/O
FT
(3)
USART1_RX, TIM1_CH3,
TIM17_BKIN,
TSC_G4_IO2, I2C1_SDA
-
FT
(3)
CAN_RX, USART1_CTS,
TIM1_CH4, COMP1_OUT,
TSC_G4_IO3,
EVENTOUT, I2C2_SCL
-
(3)
CAN_TX, USART1_RTS,
TIM1_ETR, COMP2_OUT,
TSC_G4_IO4,
EVENTOUT, I2C2_SDA
-
(4)
IR_OUT, SWDIO
-
(3)
-
-
B12
70
C8
44
D3
32
PA11
I/O
A12
71
B8
45
B1
33
PA12
I/O
FT
A11
72
A8
46
C3
34
PA13
I/O
FT
C11
73
-
-
-
-
PF6
I/O
FT
F11
74
D6
47
B2
35
VSS
S
-
Ground
G11
75
E6
48
A1
36
VDDIO2
S
-
Digital power supply
40/130
(3)
DocID026284 Rev 2
STM32F091xB STM32F091xC
Pinouts and pin descriptions
Table 13. STM32F091xB/xC pin definitions (continued)
WLCSP64
LQFP48/UFQFPN48
A7
49
B3
37
PA14
I/O
FT
Notes
LQFP64
76
I/O structure
UFBGA64
A10
Pin name
(function after
reset)
Pin type
LQFP100
Pin functions
UFBGA100
Pin numbers
Alternate functions
Additional
functions
(4)
USART2_TX, SWCLK
-
-
(3)
A9
77
A6
50
A2
38
PA15
I/O
FT
(3)
SPI1_NSS, I2S1_WS,
USART2_RX,
USART4_RTS,
TIM2_CH1_ETR,
EVENTOUT
B11
78
B7
51
A3
-
PC10
I/O
FT
(3)
USART3_TX,
USART4_TX
-
C10
79
B6
52
C4
-
PC11
I/O
FT
(3)
USART3_RX,
USART4_RX
-
B10
80
C5
53
B4
-
PC12
I/O
FT
(3)
USART3_CK,
USART4_CK,
USART5_TX
-
C9
81
-
-
-
-
PD0
I/O
FT
(3)
SPI2_NSS, I2S2_WS,
CAN_RX
-
B9
82
-
-
-
-
PD1
I/O
FT
(3)
SPI2_SCK, I2S2_CK
CAN_TX
-
C8
83
B5
54
A4
-
PD2
I/O
FT
(3)
USART3_RTS,
TIM3_ETR, USART5_RX
-
B8
84
-
-
-
-
PD3
I/O
FT
SPI2_MISO, I2S2_MCK,
USART2_CTS
-
B7
85
-
-
-
-
PD4
I/O
FT
SPI2_MOSI, I2S2_SD,
USART2_RTS
-
A6
86
-
-
-
-
PD5
I/O
FT
USART2_TX
-
B6
87
-
-
-
-
PD6
I/O
FT
USART2_RX
-
A5
88
-
-
-
-
PD7
I/O
FT
USART2_CK
-
A8
89
A5
55
D4
39
PB3
I/O
FT
SPI1_SCK, I2S1_CK,
TIM2_CH2, TSC_G5_IO1,
EVENTOUT, USART5_TX
-
FT
SPI1_MISO, I2S1_MCK,
TIM17_BKIN, TIM3_CH1,
TSC_G5_IO2,
EVENTOUT, USART5_RX
-
A7
90
A4
56
D5
40
PB4
I/O
DocID026284 Rev 2
41/130
42
Pinouts and pin descriptions
STM32F091xB STM32F091xC
Table 13. STM32F091xB/xC pin definitions (continued)
Notes
I/O structure
Pin name
(function after
reset)
Pin type
LQFP48/UFQFPN48
Pin functions
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Pin numbers
Alternate functions
Additional
functions
WKUP6
C5
91
C4
57
C5
41
PB5
I/O
FT
SPI1_MOSI, I2S1_SD,
I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2,
USART5_CK_RTS
B5
92
D3
58
A5
42
PB6
I/O
FTf
I2C1_SCL, USART1_TX,
TIM16_CH1N,
TSC_G5_I03
-
-
B4
93
C3
59
B5
43
PB7
I/O
FTf
I2C1_SDA, USART1_RX,
USART4_CTS,
TIM17_CH1N,
TSC_G5_IO4
A4
94
B4
60
C6
44
PF11-BOOT0
I/O
FT
-
Boot memory
selection
A3
95
B3
61
A6
45
PB8
I/O
FTf
I2C1_SCL, CEC,
TIM16_CH1, TSC_SYNC,
CAN_RX
-
-
B3
96
A3
62
B6
46
PB9
I/O
FTf
SPI2_NSS, I2S2_WS,
I2C1_SDA, IR_OUT,
TIM17_CH1, EVENTOUT,
CAN_TX
C3
97
-
-
-
-
PE0
I/O
FT
EVENTOUT, TIM16_CH1
-
A2
98
-
-
-
-
PE1
I/O
FT
EVENTOUT, TIM17_CH1
-
D3
99
D4
63
A7
47
VSS
S
-
Ground
C4
100 E4
64
A8
48
VDD
S
-
Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: 
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.
3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os
are supplied by VDDIO2
4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin
and the internal pull-down on the SWCLK pin are activated.
42/130
DocID026284 Rev 2
DocID026284 Rev 2
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PA0
-
USART2_CTS
TIM2_CH1_ETR
TSC_G1_IO1
USART4_TX
-
-
COMP1_OUT
PA1
EVENTOUT
USART2_RTS
TIM2_CH2
TSC_G1_IO2
USART4_RX
TIM15_CH1N
-
-
PA2
TIM15_CH1
USART2_TX
TIM2_CH3
TSC_G1_IO3
-
-
-
COMP2_OUT
PA3
TIM15_CH2
USART2_RX
TIM2_CH4
TSC_G1_IO4
-
-
-
-
PA4
SPI1_NSS, I2S1_WS
USART2_CK
-
TSC_G2_IO1
TIM14_CH1
USART6_TX
-
-
PA5
SPI1_SCK, I2S1_CK
CEC
TIM2_CH1_ETR
TSC_G2_IO2
-
USART6_RX
-
-
PA6
SPI1_MISO, I2S1_MCK
TIM3_CH1
TIM1_BKIN
TSC_G2_IO3
USART3_CTS
TIM16_CH1
EVENTOUT
COMP1_OUT
PA7
SPI1_MOSI, I2S1_SD
TIM3_CH2
TIM1_CH1N
TSC_G2_IO4
TIM14_CH1
TIM17_CH1
EVENTOUT
COMP2_OUT
PA8
MCO
USART1_CK
TIM1_CH1
EVENTOUT
CRS_SYNC
-
-
-
PA9
TIM15_BKIN
USART1_TX
TIM1_CH2
TSC_G4_IO1
I2C1_SCL
MCO
-
-
PA10
TIM17_BKIN
USART1_RX
TIM1_CH3
TSC_G4_IO2
I2C1_SDA
-
-
-
PA11
EVENTOUT
USART1_CTS
TIM1_CH4
TSC_G4_IO3
CAN_RX
I2C2_SCL
-
COMP1_OUT
PA12
EVENTOUT
USART1_RTS
TIM1_ETR
TSC_G4_IO4
CAN_TX
I2C2_SDA
-
COMP2_OUT
PA13
SWDIO
IR_OUT
-
-
-
-
-
-
PA14
SWCLK
USART2_TX
-
-
-
-
-
-
PA15
SPI1_NSS, I2S1_WS
USART2_RX
TIM2_CH1_ETR
EVENTOUT
USART4_RTS
-
-
-
STM32F091xB STM32F091xC
Table 14. Alternate functions selected through GPIOA_AFR registers for port A
43/130
44/130
Table 15. Alternate functions selected through GPIOB_AFR registers for port B
DocID026284 Rev 2
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
PB0
EVENTOUT
TIM3_CH3
TIM1_CH2N
TSC_G3_IO2
USART3_CK
-
PB1
TIM14_CH1
TIM3_CH4
TIM1_CH3N
TSC_G3_IO3
USART3_RTS
-
PB2
-
-
-
TSC_G3_IO4
-
-
PB3
SPI1_SCK, I2S1_CK
EVENTOUT
TIM2_CH2
TSC_G5_IO1
USART5_TX
-
PB4
SPI1_MISO, I2S1_MCK
TIM3_CH1
EVENTOUT
TSC_G5_IO2
USART5_RX
TIM17_BKIN
PB5
SPI1_MOSI, I2S1_SD
TIM3_CH2
TIM16_BKIN
I2C1_SMBA
USART5_CK_RTS
-
PB6
USART1_TX
I2C1_SCL
TIM16_CH1N
TSC_G5_IO3
-
-
PB7
USART1_RX
I2C1_SDA
TIM17_CH1N
TSC_G5_IO4
USART4_CTS
-
PB8
CEC
I2C1_SCL
TIM16_CH1
TSC_SYNC
CAN_RX-
-
PB9
IR_OUT
I2C1_SDA
TIM17_CH1
EVENTOUT
CAN_TX-
SPI2_NSS, I2S2_WS
PB10
CEC
I2C2_SCL
TIM2_CH3
TSC_SYNC
USART3_TX
SPI2_SCK, I2S2_CK
PB11
EVENTOUT
I2C2_SDA
TIM2_CH4
TSC_G6_IO1
USART3_RX
-
PB12
SPI2_NSS, I2S2_WS
EVENTOUT
TIM1_BKIN
TSC_G6_IO2
USART3_CK
TIM15_BKIN
PB13
SPI2_SCK, I2S2_CK
-
TIM1_CH1N
TSC_G6_IO3
USART3_CTS
I2C2_SCL
PB14
SPI2_MISO, I2S2_MCK
TIM15_CH1
TIM1_CH2N
TSC_G6_IO4
USART3_RTS
I2C2_SDA
PB15
SPI2_MOSI, I2S2_SD
TIM15_CH2
TIM1_CH3N
TIM15_CH1N
-
-
STM32F091xB STM32F091xC
STM32F091xB STM32F091xC
Table 16. Alternate functions selected through GPIOC_AFR registers for port C
Pin name
AF0
AF1
AF2
PC0
EVENTOUT
USART7_TX
USART6_TX
PC1
EVENTOUT
USART7_RX
USART6_RX
PC2
EVENTOUT
SPI2_MISO, I2S2_MCK
USART8_TX
PC3
EVENTOUT
SPI2_MOSI, I2S2_SD
USART8_RX
PC4
EVENTOUT
USART3_TX
-
PC5
TSC_G3_IO1
USART3_RX
-
PC6
TIM3_CH1
USART7_TX
-
PC7
TIM3_CH2
USART7_RX
-
PC8
TIM3_CH3
USART8_TX
-
PC9
TIM3_CH4
USART8_RX
-
PC10
USART4_TX
USART3_TX
-
PC11
USART4_RX
USART3_RX
-
PC12
USART4_CK
USART3_CK
USART5_TX
PC13
-
-
-
PC14
-
-
-
PC15
-
-
-
Table 17. Alternate functions selected through GPIOD_AFR registers for port D
Pin name
AF0
AF1
AF2
PD0
CAN_RX
SPI2_NSS, I2S2_WS
-
PD1
CAN_TX
SPI2_SCK, I2S2_CK
-
PD2
TIM3_ETR
USART3_RTS
USART5_RX
PD3
USART2_CTS
SPI2_MISO, I2S2_MCK
-
PD4
USART2_RTS
SPI2_MOSI, I2S2_SD
-
PD5
USART2_TX
-
-
PD6
USART2_RX
-
-
PD7
USART2_CK
-
-
PD8
USART3_TX
-
-
PD9
USART3_RX
-
-
PD10
USART3_CK
-
-
PD11
USART3_CTS
-
-
PD12
USART3_RTS
TSC_G8_IO1
USART8_CK_RTS
PD13
USART8_TX
TSC_G8_IO2
-
PD14
USART8_RX
TSC_G8_IO3
-
PD15
CRS_SYNC
TSC_G8_IO4
USART7_CK_RTS
DocID026284 Rev 2
45/130
46
STM32F091xB STM32F091xC
Table 18. Alternate functions selected through GPIOE_AFR registers for port E
Pin name
AF0
AF1
PE0
TIM16_CH1
EVENTOUT
PE1
TIM17_CH1
EVENTOUT
PE2
TIM3_ETR
TSC_G7_IO1
PE3
TIM3_CH1
TSC_G7_IO2
PE4
TIM3_CH2
TSC_G7_IO3
PE5
TIM3_CH3
TSC_G7_IO4
PE6
TIM3_CH4
-
PE7
TIM1_ETR
USART5_CK_RTS
PE8
TIM1_CH1N
USART4_TX
PE9
TIM1_CH1
USART4_RX
PE10
TIM1_CH2N
USART5_TX
PE11
TIM1_CH2
USART5_RX
PE12
TIM1_CH3N
SPI1_NSS, I2S1_WS
PE13
TIM1_CH3
SPI1_SCK, I2S1_CK
PE14
TIM1_CH4
SPI1_MISO, I2S1_MCK
PE15
TIM1_BKIN
SPI1_MOSI, I2S1_SD
Table 19. Alternate functions selected through GPIOF_AFR registers for port F
46/130
Pin
name
AF0
AF1
AF2
PF0
CRS_SYNC
I2C1_SDA
-
PF1
-
I2C1_SCL
-
PF2
EVENTOUT
USART7_TX
USART7_CK_RTS
PF3
EVENTOUT
USART7_RX
USART6_CK_RTS
PF4
EVENTOUT
-
-
PF5
EVENTOUT
-
-
PF6
-
-
-
PF9
TIM15_CH1
USART6_TX
-
PF10
TIM15_CH2
USART6_RX
-
DocID026284 Rev 2
STM32F091xB STM32F091xC
5
Memory mapping
Memory mapping
Figure 10. STM32F091xB/xC memory map
[))))))))
[))
$+%
[
[(
[(
&RUWH[ 0,QWHUQDO 3HULSKHUDOV
UHVHUYHG
[&
[))
$+%
[
5HVHUYHG
[$
[
[)))))))
[))))
$3%
2SWLRQE\WHV
[
[
6\VWHPPHPRU\
5HVHUYHG
[
[)))&
$3%
[
[
5HVHUYHG
[
3HULSKHUDOV
[
)ODVKPHPRU\
[
65$0
[
5HVHUYHG
&2'(
[
)ODVKV\VWHPPHPRU\
RU65$0GHSHQGLQJRQ
%227FRQILJXUDWLRQ
[
[
5HVHUYHG
069
DocID026284 Rev 2
47/130
50
Memory mapping
STM32F091xB STM32F091xC
Table 20. STM32F091xB/xC peripheral register boundary addresses
Bus
AHB2
AHB1
48/130
Boundary address
Size
Peripheral
0x4800 1800 - 0x5FFF FFFF
~384 MB
Reserved
0x4800 1400 - 0x4800 17FF
1 KB
GPIOF
0x4800 1000 - 0x4800 13FF
1 KB
GPIOE
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~128 MB
Reserved
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
3 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH Interface
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0400 - 0x4002 0FFF
3 KB
Reserved
0x4002 0000 - 0x4002 03FF
1 KB
DMA
0x4001 8000 - 0x4001 FFFF
32 KB
Reserved
DocID026284 Rev 2
STM32F091xB STM32F091xC
Memory mapping
Table 20. STM32F091xB/xC peripheral register boundary addresses (continued)
Bus
APB
Boundary address
Size
Peripheral
0x4001 5C00 - 0x4001 7FFF
9 KB
Reserved
0x4001 5800 - 0x4001 5BFF
1 KB
DBGMCU
0x4001 4C00 - 0x4001 57FF
3 KB
Reserved
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2800 - 0x4001 2BFF
1 KB
Reserved
0x4001 2400 - 0x4001 27FF
1 KB
ADC
0x4001 2000 - 0x4001 23FF
1 KB
Reserved
0x4001 1C00 – 0x4001 1FFF
1 KB
USART8
0x4001 1800 – 0x4001 1BFF
1 KB
USART7
0x4001 1400 – 0x4001 17FF
1 KB
USART6
0x4001 0800 - 0x4001 13FF
3 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0000 - 0x4001 03FF
1 KB
SYSCFG + COMP
0x4000 8000 - 0x4000 FFFF
32 KB
Reserved
DocID026284 Rev 2
49/130
50
Memory mapping
STM32F091xB STM32F091xC
Table 20. STM32F091xB/xC peripheral register boundary addresses (continued)
Bus
APB
50/130
Boundary address
Size
Peripheral
0x4000 7C00 - 0x4000 7FFF
1 KB
Reserved
0x4000 7800 - 0x4000 7BFF
1 KB
CEC
0x4000 7400 - 0x4000 77FF
1 KB
DAC
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6C00 - 0x4000 6FFF
1 KB
CRS
0x4000 6800 - 0x4000 6BFF
1 KB
Reserved
0x4000 6400 - 0x4000 67FF
1 KB
BxCAN
0x4000 6100 - 0x4000 63FF
768 B
Reserved
0x4000 6000 - 0x4000 60FF
256 B
CAN RAM
0x4000 5C00 - 0x4000 5FFF
1 KB
Reserved
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 5000 - 0x4000 53FF
1 KB
USART5
0x4000 4C00 - 0x4000 4FFF
1 KB
USART4
0x4000 4800 - 0x4000 4BFF
1 KB
USART3
0x4000 4400 - 0x4000 47FF
1 KB
USART2
0x4000 3C00 - 0x4000 43FF
2 KB
Reserved
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 2400 - 0x4000 27FF
1 KB
Reserved
0x4000 2000 - 0x4000 23FF
1 KB
TIM14
0x4000 1800 - 0x4000 1FFF
2 KB
Reserved
0x4000 1400 - 0x4000 17FF
1 KB
TIM7
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0800 - 0x4000 0FFF
2 KB
Reserved
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions
Figure 12. Pin input voltage
0&8SLQ
0&8SLQ
& S)
9,1
069
DocID026284 Rev 2
069
51/130
104
Electrical characteristics
6.1.6
STM32F091xB STM32F091xC
Power supply scheme
Figure 13. Power supply scheme
9%$7
%DFNXSFLUFXLWU\
/6(57&
%DFNXSUHJLVWHUV
±9
3RZHUVZLWFK
9''
9&25(
[9''
5HJXODWRU
[Q)
*3,2V
,1
[—)
/HYHOVKLIWHU
287
,2
ORJLF
/HYHOVKLIWHU
9'',2
,2
ORJLF
.HUQHOORJLF
&38'LJLWDO
0HPRULHV
[966
9'',2
9'',2
9'',2
287
Q)
—)
*3,2V
,1
966
9''$
9''$
Q)
—)
95()
95()
$'&
'$&
$QDORJ
5&V3//«
966$
06Y9
Caution:
52/130
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
DocID026284 Rev 2
STM32F091xB STM32F091xC
6.1.7
Electrical characteristics
Current consumption measurement
Figure 14. Current consumption measurement scheme
,
''B9%$7
9 %$7
, ''
9 ''
9 '',2
, ''$
9 ''$
069
DocID026284 Rev 2
53/130
104
Electrical characteristics
6.2
STM32F091xB STM32F091xC
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics,
Table 22: Current characteristics and Table 23: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 21. Voltage characteristics(1)
Symbol
VDD–VSS
Ratings
Min
Max
Unit
-0.3
4.0
V
-0.3
4.0
V
-0.3
4.0
V
-
0.4
V
-0.3
4.0
V
Input voltage on FT and FTf pins
VSS  0.3
VDDIOx + 4.0
V
Input voltage on TTa pins
VSS  0.3
4.0
V
Input voltage on any other pin
VSS 0.3
4.0
V
Variations between different VDD power pins
-
50
mV
Variations between all the different ground
pins
-
50
mV
External main supply voltage
VDDIO2–VSS External I/O supply voltage
VDDA–VSS
External analog supply voltage
VDD–VDDA
Allowed voltage difference for VDD > VDDA
VBAT–VSS
External backup supply voltage
VIN(2)
|VDDx|
|VSSx VSS|
VESD(HBM)
Electrostatic discharge voltage
(human body model)
see Section 6.3.12: Electrical
sensitivity characteristics
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to for the maximum allowed injected current values.
54/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Table 22. Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into sum of all VDD power lines (source)(1)
120
IVSS
(1)
-120
Total current out of sum of all VSS ground lines (sink)
IVDD(PIN)
Maximum current into each VDD power pin (source)
(1)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
-100
IIO(PIN)
Output current sunk by any I/O and control pin
25
Output current source by any I/O and control pin
Total output current sunk by sum of all I/Os and control pins
IIO(PIN)
IINJ(PIN)(3)
-25
(2)
80
Total output current sourced by sum of all I/Os and control pins(2)
-80
Total output current sourced by sum of all I/Os supplied by VDDIO2
-40
Injected current on FT and FTf pins
-5/+0(4)
Injected current on TC and RST pin
±5
Injected current on TTa pins(5)
IINJ(PIN)
Total injected current (sum of all I/O and control
Unit
mA
±5
pins)(6)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 59: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 23. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
DocID026284 Rev 2
Value
Unit
–65 to +150
°C
150
°C
55/130
104
Electrical characteristics
STM32F091xB STM32F091xC
6.3
Operating conditions
6.3.1
General operating conditions
Table 24. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK
Internal AHB clock frequency
0
48
fPCLK
Internal APB clock frequency
0
48
VDD
Standard operating voltage
2.0
3.6
V
1.65
3.6
V
VDD
3.6
2.4
3.6
1.65
3.6
TC and RST I/O
-0.3
VDDIOx+0.3
TTa I/O
-0.3
VDDA+0.3(1)
-0.3
5.5(1)
UFBGA100
-
364
LQFP100
-
476
-
455
-
377
-
308
LQFP48
-
370
UFQFPN48
-
625
–40
85
–40
105
VDDIO2
VDDA
VBAT
VIN
I/O supply voltage
Analog operating voltage
(ADC and DAC not used)
Analog operating voltage
(ADC and DAC used)
Must not be supplied if VDD
is not present
Must have a potential equal
to or higher than VDD
Backup operating voltage
I/O input voltage
FT and FTf I/O
PD
LQFP64
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for WLCSP64
suffix 7(2)
UFBGA64
Maximum power dissipation
Ambient temperature for the
suffix 7 version
Maximum power dissipation
–40
105
Low power dissipation(3)
–40
125
Suffix 6 version
–40
105
Suffix 7 version
–40
125
TA
TJ
V
Ambient temperature for the
suffix 6 version
Junction temperature range
Low power dissipation
(3)
MHz
V
V
mW
°C
°C
°C
1. To sustain a voltage higher than VDDIOx+0.3 V, the internal pull-up/pull-down resistors must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.2: Thermal characteristics
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2:
Thermal characteristics).
56/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
6.3.2
Electrical characteristics
Operating conditions at power-up / power-down
The parameters given in Table 25 are derived from tests performed under the ambient
temperature condition summarized in Table 24.
Table 25. Operating conditions at power-up / power-down
Symbol
Parameter
VDD rise time rate
tVDD
-
VDD fall time rate
VDDA rise time rate
tVDDA
6.3.3
Conditions
-
VDDA fall time rate
Min
Max
0

20

0

20

Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 26 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Table 26. Embedded reset and power control block characteristics
Symbol
Parameter
VPOR/PDR(1)
VPDRhyst
tRSTTEMPO
(4)
Power on/power down
reset threshold
Conditions
Min
Typ
Max
Unit
Falling edge(2)
1.80
1.88
1.96(3)
V
1.84(3)
1.92
2.00
V
-
40
-
mV
1.50
2.50
4.50
ms
Rising edge
PDR hysteresis
Reset temporization
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Data based on characterization results, not tested in production.
4. Guaranteed by design, not tested in production.
Table 27. Programmable voltage detector characteristics
Symbol
Parameter
VPVD0
PVD threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
Conditions
Min
Typ
Max
Unit
Rising edge
2.1
2.18
2.26
V
Falling edge
2
2.08
2.16
V
Rising edge
2.19
2.28
2.37
V
Falling edge
2.09
2.18
2.27
V
Rising edge
2.28
2.38
2.48
V
Falling edge
2.18
2.28
2.38
V
Rising edge
2.38
2.48
2.58
V
Falling edge
2.28
2.38
2.48
V
DocID026284 Rev 2
57/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Table 27. Programmable voltage detector characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Rising edge
2.47
2.58
2.69
V
Falling edge
2.37
2.48
2.59
V
Rising edge
2.57
2.68
2.79
V
Falling edge
2.47
2.58
2.69
V
Rising edge
2.66
2.78
2.9
V
Falling edge
2.56
2.68
2.8
V
Rising edge
2.76
2.88
3
V
Falling edge
2.66
2.78
2.9
V
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
VPVD7
PVD threshold 7
VPVDhyst(1)
PVD hysteresis
-
100
-
mV
PVD current consumption
-
0.15
0.26(1)
µA
IDD(PVD)
1. Guaranteed by design, not tested in production.
6.3.4
Embedded reference voltage
The parameters given in Table 28 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Table 28. Embedded internal reference voltage
Symbol
Parameter
VREFINT
Internal reference voltage
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
VREFINT
Internal reference voltage
spread over the
temperature range
TCoeff
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.16
1.2
1.25
V
1.16
1.2
1.24(1)
V
4(2)
-
-
µs
-
-
10(2)
mV
- 100(2)
-
100(2) ppm/°C
–40 °C < TA < +85 °C
VDDA = 3 V
Temperature coefficient
1. Data based on characterization results, not tested in production.
2. Guaranteed by design, not tested in production.
58/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
6.3.5
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:

All I/O pins are in analog input mode

All peripherals are disabled except when explicitly mentioned

The Flash memory access time is adjusted to the fHCLK frequency:

–
0 wait state and Prefetch OFF from 0 to 24 MHz
–
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 29 to Table 32 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 24: General
operating conditions.
DocID026284 Rev 2
59/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Parameter
Symbol
Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6 V
All peripherals enabled
Conditions
Supply current in Run mode,
code executing from Flash
Supply current in Run mode,
code executing from RAM
Supply current in Sleep mode
IDD
Max @ TA(1)
Unit
Typ
25 °C
85 °C
105 °C
25 °C
85 °C
105 °C
48 MHz
26.9
29.5
30.3
30.6
14.7
16.1
16.3
16.4
48 MHz
26.7
29.2
30.1
30.3
14.6
16.0
16.2
16.2
32 MHz
18.0
20.4
20.8
21.0
10.1
10.8
10.9
11.0
24 MHz
14.0
15.7
16.1
16.2
8.5
9.0
9.2
9.4
8 MHz
4.8
5.3
5.5
5.9
3.0
3.2
3.3
3.5
1 MHz
1.3
1.5
1.6
1.9
1.0
1.1
1.2
1.4
48 MHz
26.8
29.4
30.2
30.5
14.7
16.1
16.3
16.3
32 MHz
18.1
20.5
20.9
21.2
10.2
10.9
11.0
11.1
24 MHz
14.1
15.9
16.2
16.4
8.6
9.1
9.2
9.5
HSI clock,
PLL off
8 MHz
4.9
5.4
5.6
5.9
3.1
3.2
3.4
3.5
HSI48
48 MHz
26.3
28.7
29.5
29.7
14.0
15.3
15.5
15.7
48 MHz
26.0
28.4
29.2
29.4
13.9
15.2
15.4
15.6
32 MHz
17.4
19.5
19.9
20.1
9.6
10.3
10.4
10.5
24 MHz
13.3
15.1
15.5
15.6
7.6
8.2
8.4
8.5
8 MHz
4.4
4.9
5.1
5.3
2.4
2.6
2.8
2.9
1 MHz
0.9
0.9
1.0
1.2
0.5
0.6
0.7
0.8
48 MHz
26.1
28.5
29.3
29.5
13.9
15.3
15.5
15.6
32 MHz
17.5
19.6
20.0
20.3
9.7
10.4
10.5
10.6
24 MHz
13.3
15.3
15.7
15.8
7.7
8.2
8.5
8.6
HSI clock,
PLL off
8 MHz
4.6
5.0
5.2
5.4
2.5
2.7
2.9
3.0
HSI48
48 MHz
17.0
18.7
19.1
19.4
3.2
3.5
3.6
3.7
48 MHz
16.9
18.5
19.0
19.3
3.1
3.5
3.5
3.6
32 MHz
11.3
12.6
12.8
13.1
2.2
2.4
2.5
2.6
24 MHz
8.6
9.8
10.0
10.1
1.7
1.9
2.0
2.0
8 MHz
2.9
3.2
3.4
3.7
0.8
0.9
0.9
1.0
1 MHz
0.4
0.6
0.6
0.7
0.3
0.4
0.4
0.5
48 MHz
17.0
18.6
19.0
19.4
3.1
3.5
3.6
3.7
32 MHz
11.4
12.7
13.0
13.2
2.3
2.5
2.6
2.7
24 MHz
8.7
9.9
10.1
10.2
1.8
2.0
2.1
2.2
8 MHz
3.0
3.3
3.5
3.8
0.8
0.9
1.0
1.1
HSE bypass,
PLL on
HSE bypass,
PLL off
HSI clock,
PLL on
HSE bypass,
PLL on
HSE bypass,
PLL off
HSI clock,
PLL on
HSE bypass,
PLL on
HSE bypass,
PLL off
HSI clock,
PLL on
HSI clock,
PLL off
60/130
Max @ TA(1)
fHCLK
Typ
HSI48
All peripherals disabled
DocID026284 Rev 2
mA
mA
STM32F091xB STM32F091xC
Electrical characteristics
1. Data based on characterization results, not tested in production unless otherwise specified.
Symbol
Para-meter
Table 30. Typical and maximum current consumption from the VDDA supply
VDDA = 2.4 V
Conditions
(1)
IDDA
Max @ TA(2)
fHCLK
Max @ TA(2)
Typ
HSI48
Supply
current in
Run or
Sleep
mode,
code
executing
from
Flash or
RAM
VDDA = 3.6 V
HSE
bypass,
PLL on
HSE
bypass,
PLL off
HSI clock,
PLL on
HSI clock,
PLL off
Unit
Typ
25 °C
85 °C
105 °C
25 °C 85 °C 105 °C
48 MHz
312
333
338
347
316
334
341
350
48 MHz
147
168
178
181
160
181
192
197
32 MHz
101
119
125
127
109
127
135
138
24 MHz
80
96
98
100
87
101
106
109
8 MHz
2.8
3.5
3.7
3.9
3.7
4.3
4.6
4.7
1 MHz
2.7
3.2
3.5
3.8
3.3
3.9
4.4
4.7
48 MHz
214
243
254
259
235
262
275
281
32 MHz
166
193
203
204
185
207
216
220
24 MHz
144
171
177
178
161
180
187
190
8 MHz
65
83
85
86
77
90
92
93
µA
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent from the
frequency.
2. Data based on characterization results, not tested in production unless otherwise specified.
DocID026284 Rev 2
61/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Table 31. Typical and maximum consumption in Stop and Standby modes
Max(1)
Typ @VDD (VDD = VDDA)
Parameter
Supply
current in
Stop
mode
IDD
Supply
current in
Standby
mode
Supply
current in
Stop
mode
Supply
current in
Standby
mode
Conditions
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
TA =
105 °C
14.8
14.9
15.1
15.4
15.8
18
51
97
Regulator in lowpower mode, all
oscillators OFF
3.3
3.4
3.6
3.8
4.1
4.4
11
53
106
LSI ON and IWDG
ON
0.9
1.0
1.1
1.2
1.3
1.4
2.3
2.7
3.6
LSI OFF and IWDG
OFF
0.6
0.7
0.8
0.9
1.0
1.1
1.9
2.3
3.0
Regulator in
run mode, all
oscillators
OFF
1.9
2.0
2.2
2.3
2.4
2.6
3.8
4.2
4.6
Regulator in
low-power
mode, all
oscillators
OFF
1.9
2.0
2.2
2.3
2.4
2.6
3.8
4.2
4.6
LSI ON and
IWDG ON
2.3
2.5
2.7
2.8
3.0
3.3
3.8
4.2
4.8
LSI OFF and
IWDG OFF
1.8
1.9
2.0
2.2
2.3
2.5
3.6
3.9
4.2
Regulator in
run mode, all
oscillators
OFF
1.2
1.2
1.3
1.3
1.4
1.4
-
-
-
Regulator in
low-power
mode, all
oscillators
OFF
1.2
1.2
1.3
1.3
1.4
1.4
-
-
-
LSI ON and
IWDG ON
1.6
1.7
1.8
1.9
2.0
2.1
-
-
-
LSI OFF and
IWDG OFF
1.1
1.1
1.1
1.2
1.3
1.3
-
-
-
VDDA monitoring OFF
Supply
current in
Standby
mode
TA =
85 °C
14.6
IDDA
Supply
current in
Stop
mode
TA =
25 °C
Regulator in run
mode, all
oscillators OFF
VDDA monitoring ON
Symbol
µA
1. Data based on characterization results, not tested in production unless otherwise specified.
62/130
Unit
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Table 32. Typical and maximum current consumption from the VBAT supply
Max(1)
= 2.7 V
= 3.3 V
= 3.6 V
RTC
domain
IDD_VBAT
supply
current
= 2.4 V
Parameter
= 1.8 V
Symbol
= 1.65 V
Typ @ VBAT
TA =
25 °C
LSE & RTC ON; “Xtal
mode”: lower driving
capability;
LSEDRV[1:0] = '00'
0.5
0.5
0.6
0.7
0.9
1.0
1.0
LSE & RTC ON; “Xtal
mode” higher driving
capability;
LSEDRV[1:0] = '11'
0.8
Conditions
TA =
TA =
85 °C 105 °C
1.3
Unit
1.8
µA
0.8
0.9
1.0
1.2
1.3
1.4
1.7
2.2
1. Data based on characterization results, not tested in production.
DocID026284 Rev 2
63/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Typical current consumption
The MCU is placed under the following conditions:

VDD = VDDA = 3.3 V

All I/O pins are in analog input configuration

The Flash access time is adjusted to fHCLK frequency:
–
0 wait state and Prefetch OFF from 0 to 24 MHz
–
1 wait state and Prefetch ON above 24 MHz

When the peripherals are enabled, fPCLK = fHCLK

PLL is used for frequencies greater than 8 MHz

AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
Table 33. Typical current consumption, code executing from Flash, running from HSE
8 MHz crystal
Typical consumption in
Run mode
Symbol
Parameter
Typical consumption in
Sleep mode
fHCLK
Unit
Peripherals Peripherals Peripherals Peripherals
enabled
disabled
enabled
disabled
IDD
IDDA
64/130
Current
consumption
from VDD
supply
Current
consumption
from VDDA
supply
48 MHz
26.7
15.1
16.4
3.8
36 MHz
20.4
11.8
12.7
3.3
32 MHz
18.5
11.0
11.4
3.0
24 MHz
14.6
8.7
9.0
2.3
16 MHz
10.2
6.1
6.4
1.8
8 MHz
5.1
3.3
3.2
1.2
4 MHz
3.3
2.2
2.3
1.1
2 MHz
2.2
1.7
1.7
1.1
1 MHz
1.6
1.4
1.4
1.1
500 kHz
1.4
1.2
1.2
1.0
48 MHz
172
36 MHz
131
32 MHz
119
24 MHz
93
16 MHz
67
8 MHz
2.7
4 MHz
2.7
2 MHz
2.7
1 MHz
2.7
500 kHz
2.7
DocID026284 Rev 2
mA
μA
STM32F091xB STM32F091xC
Electrical characteristics
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 53: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 35: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
I SW = V DDIOx  f SW  C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DocID026284 Rev 2
65/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Table 34. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDDIOx = 3.3 V
C =CINT
VDDIOx = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
VDDIOx = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
ISW
I/O current
consumption
VDDIOx = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
VDDIOx = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
VDDIOx = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
VDDIOx = 2.4 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
1. CS = 7 pF (estimated value).
66/130
DocID026284 Rev 2
I/O toggling
frequency (fSW)
Typ
4 MHz
0.07
8 MHz
0.15
16 MHz
0.31
24 MHz
0.53
48 MHz
0.92
4 MHz
0.18
8 MHz
0.37
16 MHz
0.76
24 MHz
1.39
48 MHz
2.188
4 MHz
0.32
8 MHz
0.64
16 MHz
1.25
24 MHz
2.23
48 MHz
4.442
4 MHz
0.49
8 MHz
0.94
16 MHz
2.38
24 MHz
3.99
4 MHz
0.64
8 MHz
1.25
16 MHz
3.24
24 MHz
5.02
4 MHz
0.81
8 MHz
1.7
16 MHz
3.67
4 MHz
0.66
8 MHz
1.43
16 MHz
2.45
24 MHz
4.97
Unit
mA
STM32F091xB STM32F091xC
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 35. The MCU is placed
under the following conditions:

All I/O pins are in analog mode

All peripherals are disabled unless otherwise mentioned

The given value is calculated by measuring the current consumption

–
with all peripherals clocked off
–
with only one peripheral clocked on
Ambient operating temperature and supply voltage conditions summarized in Table 21:
Voltage characteristics
Table 35. Peripheral current consumption
Peripheral
AHB
Typical consumption at 25 °C
BusMatrix(1)
3.1
CRC
2.0
DMA1
5.5
DMA2
5.1
Flash interface
15.4
GPIOA
5.5
GPIOB
5.4
GPIOC
3.2
GPIOD
3.1
GPIOE
4.0
GPIOF
2.5
SRAM
0.8
TSC
5.5
All AHB peripherals
61.0
DocID026284 Rev 2
Unit
µA/MHz
67/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Table 35. Peripheral current consumption (continued)
Peripheral
APB-Bridge
APB
Typical consumption at 25 °C
(2)
Unit
3.6
ADC(3)
4.3
CAN
12.4
CEC
0.4
CRS
0.0
DAC(3)
4.2
DBG (MCU Debug Support)
0.2
I2C1
2.9
I2C2
2.4
PWR
0.6
SPI1
8.8
SPI2
7.8
SYSCFG and COMP
1.9
TIM1
15.2
TIM14
2.6
TIM15
8.7
TIM16
5.8
TIM17
7.0
TIM2
16.2
TIM3
11.9
TIM6
11.8
TIM7
2.5
USART1
17.6
USART2
16.3
USART3
16.2
USART4
4.7
USART5
4.4
USART6
5.5
USART7
5.2
USART8
5.1
WWDG
1.1
All APB peripherals
µA/MHz
207.2
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.
3. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, comparators, is not
included. Refer to the tables of characteristics in the subsequent sections.
68/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
6.3.6
Electrical characteristics
Wakeup time from low-power mode
The wakeup times given in Table 36 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 24: General operating conditions
Table 36. Low-power mode wakeup timings
Typ @VDD = VDDA
Symbol
Parameter
Conditions
Max Unit
= 2.0 V = 2.4 V = 2.7 V
tWUSTOP
tWUSTANDBY
tWUSLEEP
Wakeup from Stop
mode
=3V
= 3.3 V
Regulator in run
mode
3.2
3.1
2.9
2.9
2.8
5
Regulator in low
power mode
7.0
5.8
5.2
4.9
4.6
9
60.4
55.6
53.5
52
51
-
Wakeup from
Standby mode
-
Wakeup from Sleep
mode
-
µs
4 SYSCLK cycles
DocID026284 Rev 2
-
69/130
104
Electrical characteristics
6.3.7
STM32F091xB STM32F091xC
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 15: High-speed external clock
source AC timing diagram.
Table 37. High-speed external user clock characteristics
Parameter(1)
Symbol
Min
Typ
Max
Unit
-
8
32
MHz
fHSE_ext
User external clock source frequency
VHSEH
OSC_IN input pin high level voltage
0.7 VDDIOx
-
VDDIOx
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3 VDDIOx
15
-
-
tw(HSEH)
tw(HSEL)
OSC_IN high or low time
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
V
ns
-
-
20
1. Guaranteed by design, not tested in production.
Figure 15. High-speed external clock source AC timing diagram
WZ+6(+
9+6(+
9+6(/
WU+6(
WI+6(
WZ+6(/
W
7+6(
069
70/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 16.
Table 38. Low-speed external user clock characteristics
Parameter(1)
Symbol
fLSE_ext User external clock source frequency
Min
Typ
Max
Unit
-
32.768
1000
kHz
VLSEH
OSC32_IN input pin high level voltage
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3 VDDIOx
450
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
tr(LSE)
tf(LSE)
V
ns
OSC32_IN rise or fall time
-
-
50
1. Guaranteed by design, not tested in production.
Figure 16. Low-speed external clock source AC timing diagram
WZ/6(+
9/6(+
9/6(/
WU/6(
WI/6(
WZ/6(/
W
7/6(
069
DocID026284 Rev 2
71/130
104
Electrical characteristics
STM32F091xB STM32F091xC
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 39. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 39. HSE oscillator characteristics
Symbol
fOSC_IN
RF
Parameter
Conditions(1)
Min(2)
Typ
Max(2)
Unit
4
8
32
MHz
-
200
-
k
Oscillator frequency
Feedback resistor
(3)
During startup
IDD
gm
tSU(HSE)(4)
HSE current consumption
Oscillator transconductance
Startup time
-
8.5
VDD = 3.3 V,
Rm = 30 ,
CL = 10 [email protected] MHz
-
0.4
-
VDD = 3.3 V,
Rm = 45 ,
CL = 10 [email protected] MHz
-
0.5
-
VDD = 3.3 V,
Rm = 30 ,
CL = 5 [email protected] MHz
-
0.8
-
VDD = 3.3 V,
Rm = 30 ,
CL = 10 [email protected] MHz
-
1
-
VDD = 3.3 V,
Rm = 30 ,
CL = 20 [email protected] MHz
-
1.5
-
Startup
10
-
-
mA/V
VDD is stabilized
-
2
-
ms
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
72/130
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Figure 17. Typical application with an 8 MHz crystal
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
26&B,1
0+]
UHVRQDWRU
&/
5(;7 I+6(
5)
%LDV
FRQWUROOHG
JDLQ
26&B287
069
1. REXT value depends on the crystal characteristics.
DocID026284 Rev 2
73/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 40. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol
IDD
gm
Parameter
LSE current consumption
Oscillator
transconductance
tSU(LSE)(3) Startup time
Conditions(1)
Min(2)
Typ
Max(2) Unit
LSEDRV[1:0]=00
lower driving capability
-
0.5
0.9
LSEDRV[1:0]= 01
medium low driving capability
-
-
1
LSEDRV[1:0] = 10
medium high driving capability
-
-
1.3
LSEDRV[1:0]=11
higher driving capability
-
-
1.6
LSEDRV[1:0]=00
lower driving capability
5
-
-
LSEDRV[1:0]= 01
medium low driving capability
8
-
-
LSEDRV[1:0] = 10
medium high driving capability
15
-
-
LSEDRV[1:0]=11
higher driving capability
25
-
-
VDDIOx is stabilized
-
2
-
µA
µA/V
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
74/130
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID026284 Rev 2
s
STM32F091xB STM32F091xC
Electrical characteristics
Figure 18. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
26&B,1
I+6(
'ULYH
SURJUDPPDEOH
DPSOLILHU
N+]
UHVRQDWRU
26&B287
&/
069
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DocID026284 Rev 2
75/130
104
Electrical characteristics
6.3.8
STM32F091xB STM32F091xC
Internal clock source characteristics
The parameters given in Table 41 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI) RC oscillator
Table 41. HSI oscillator characteristics(1)
Symbol
Parameter
fHSI
TRIM
DuCy(HSI)
Conditions
Min
Typ
Max
Unit
Frequency
-
-
8
-
MHz
HSI user trimming step
-
-
-
1(2)
%
-
45(2)
%
TA = -40 to 105°C
-2.8(3)
-
3.8(3)
TA = -10 to 85°C
-1.9(3)
-
2.3(3)
TA = 0 to 85°C
-1.9(3)
-
2(3)
TA = 0 to 70°C
-1.3(3)
-
2(3)
TA = 0 to 55°C
-1(3)
-
2(3)
-1
-
1
Duty cycle
Accuracy of the HSI
oscillator
ACCHSI
-
55(2)
TA = 25°C(4)
tsu(HSI)
IDDA(HSI)
%
HSI oscillator startup time
-
1(2)
-
2(2)
µs
HSI oscillator power
consumption
-
-
80
100(2)
µA
1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
4. Factory calibrated, parts not soldered.
Figure 19. HSI oscillator accuracy characterization results for soldered parts
."9
.*/
5<$>
"
069
76/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Table 42. HSI14 oscillator characteristics(1)
Symbol
fHSI14
TRIM
Parameter
Conditions
Frequency
HSI14 user-trimming step
Min
Typ
-
14
-
DuCy(HSI14) Duty cycle
45
Accuracy of the HSI14
oscillator (factory calibrated)
TA = –10 to 85 °C
TA = 25 °C
tsu(HSI14)
IDDA(HSI14)
HSI14 oscillator startup time
HSI14 oscillator power
consumption
-
MHz
(2)
-
%
1
55
(2)
%
(3)
%
(3)
-
5.1
–3.2(3)
-
3.1(3)
%
–2.5
-
2.3
(3)
%
–1
(3)
TA = 0 to 70 °C
Unit
-
(2)
TA = –40 to 105 °C –4.2
ACCHSI14
Max
-
1
%
1(2)
-
2(2)
µs
-
100
150(2)
µA
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Figure 20. HSI14 oscillator accuracy characterization results
-!8
-).
4; #=
!
-36
DocID026284 Rev 2
77/130
104
Electrical characteristics
STM32F091xB STM32F091xC
High-speed internal 48 MHz (HSI48) RC oscillator
Table 43. HSI48 oscillator characteristics(1)
Symbol
fHSI48
TRIM
Parameter
Conditions
Frequency
HSI48 user-trimming step
Unit
-
48
-
MHz
45
TA = –10 to 85 °C
Accuracy of the HSI48
oscillator (factory calibrated) T = 0 to 70 °C
A
(2)
0.14
-
(2)
%
(2)
%
(3)
0.2
55
(3)
-
4.7
%
-4.1(3)
-
3.7(3)
%
-
(3)
%
-4.9
(3)
-3.8
TA = 25 °C
IDDA(HSI48)
Max
0.09
TA = –40 to 105 °C
tsu(HSI48)
Typ
(2)
DuCy(HSI48) Duty cycle
ACCHSI48
Min
-2.8
3.4
-
2.9
%
µs
µA
HSI48 oscillator startup time
-
-
6(2)
HSI48 oscillator power
consumption
-
312
350(2)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Figure 21. HSI48 oscillator accuracy characterization results
-!8
-).
4; #=
!
-36
78/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Low-speed internal (LSI) RC oscillator
Table 44. LSI oscillator characteristics(1)
Symbol
fLSI
tsu(LSI)
Parameter
Min
Typ
Max
Unit
30
40
50
kHz
LSI oscillator startup time
-
-
85
µs
LSI oscillator power consumption
-
0.75
1.2
µA
Frequency
(2)
IDDA(LSI)(2)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
6.3.9
PLL characteristics
The parameters given in Table 45 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Table 45. PLL characteristics
Value
Symbol
fPLL_IN
fPLL_OUT
tLOCK
JitterPLL
Parameter
Unit
Min
Typ
Max
1(2)
8.0
24(2)
MHz
PLL input clock duty cycle
(2)
40
-
60(2)
%
PLL multiplier output clock
16(2)
-
48
MHz
PLL lock time
-
-
200(2)
µs
Cycle-to-cycle jitter
-
-
300(2)
ps
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.
DocID026284 Rev 2
79/130
104
Electrical characteristics
6.3.10
STM32F091xB STM32F091xC
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 46. Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA–40 to +105 °C
40
53.5
60
µs
Page (2 KB) erase time
TA –40 to +105 °C
20
-
40
ms
tME
Mass erase time
TA –40 to +105 °C
20
-
40
ms
IDD
Supply current
Write mode
-
-
10
mA
Erase mode
-
-
12
mA
Symbol
tprog
tERASE
Parameter
Conditions
1. Guaranteed by design, not tested in production.
Table 47. Flash memory endurance and data retention
Symbol
NEND
Parameter
Endurance
Conditions
TA = –40 to +105 °C
1 kcycle
tRET
Data retention
(2)
at TA = 85 °C
1 kcycle(2) at TA = 105 °C
10 kcycles
(2)
at TA = 55 °C
Min(1)
Unit
10
kcycles
30
10
Years
20
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
6.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.

FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
80/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Table 48. EMS characteristics
Symbol
Parameter
Level/
Class
Conditions
VFESD
VDD 3.3 V, LQFP100, TA +25 °C, 
Voltage limits to be applied on any I/O pin
fHCLK 48 MHz,
to induce a functional disturbance
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD3.3 V, LQFP100, TA +25°C, 
fHCLK 48 MHz,
conforming to IEC 61000-4-4
4B
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:

Corrupted program counter

Unexpected reset

Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 49. EMI characteristics
Symbol Parameter
SEMI
Conditions
Monitored
frequency band
0.1 to 30 MHz
VDD 3.6 V, TA 25 °C,
30 to 130 MHz
LQFP100 package
Peak level
compliant with 
130 MHz to 1 GHz
IEC 61967-2
EMI Level
DocID026284 Rev 2
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
3
23
dBµV
15
4
-
81/130
104
Electrical characteristics
6.3.12
STM32F091xB STM32F091xC
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 50. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Packages
Class
Maximum
value(1)
Unit
VESD(HBM)
Electrostatic discharge voltage TA +25 °C, conforming
(human body model)
to JESD22-A114
All
2
2000
V
VESD(CDM)
Electrostatic discharge voltage TA +25 °C, conforming
(charge device model)
to ANSI/ESD STM5.3.1
All
C4
500
V
1. Data based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:

A supply overvoltage is applied to each power supply pin.

A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 51. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
TA +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
82/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 52.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 52. I/O current injection susceptibility
Functional
susceptibility
Symbol
Description
Unit
Negative Positive
injection injection
IINJ
6.3.14
Injected current on BOOT0
-0
NA
Injected current on PF1 pin (FTf pin)
-0
NA
Injected current on PC0 pin (TTA pin)
-0
+5
Injected current on PA4, PA5 pins with induced leakage
current on adjacent pins less than -20 μA
-5
NA
Injected current on other FT and FTf pins
-5
NA
Injected current on all other TC, TTa and RST pins
-5
+5
mA
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under the conditions summarized in Table 24: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 53. I/O static characteristics
Symbol
VIL
Parameter
Low level input
voltage
Conditions
Min
Typ
Max
TC and TTa I/O
-
-
0.3 VDDIOx+0.07(1)
FT and FTf I/O
-
-
0.475 VDDIOx–0.2(1)
All I/Os
-
TC and TTa I/O
VIH
High level input
voltage
FT and FTf I/O
All I/Os
0.445 VDDIOx
0.5 VDDIOx
-
0.3 VDDIOx
+0.398(1)
-
-
+0.2(1)
-
-
-
-
0.7 VDDIOx
DocID026284 Rev 2
Unit
V
V
83/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Table 53. I/O static characteristics (continued)
Symbol
Vhys
Ilkg
RPU
Parameter
Schmitt trigger
hysteresis
Input leakage
current(2)
Weak pull-up
equivalent resistor
(4)
RPD
Weak pull-down
equivalent
resistor(4)
CIO
I/O pin capacitance
Conditions
Min
Typ
(1)
Max
TC and TTa I/O
-
200
-
FT and FTf I/O
-
100(1)
-
TC, FT and FTf I/O
TTa in digital mode
VSS  VIN VDDIOx
-
-
0.1
TTa in digital mode
VDDIOx  VIN VDDA
-
-
1
TTa in analog mode
VSS  VIN VDDA
-
-
0.2
FT and FTf I/O (3)
VDDIOx VIN 5 V
-
-
10
VIN VSS
25
40
55
k
VIN VDDIOx
25
40
55
k
-
5
-
pF
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 52:
I/O current injection susceptibility.
3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
84/130
Unit
DocID026284 Rev 2
mV
µA
STM32F091xB STM32F091xC
Electrical characteristics
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 22 for standard I/Os, and in Figure 23 for
5 V tolerant I/Os. The following curves are design simulation results, not tested in
production.
Figure 22. TC and TTa I/O input characteristics
3
VIN (V)
2.5
TESTED RANGE
TTL standard requirement
2
1.5
UNDEFINED INPUT RANGE
1
TTL standard requirement
0.5
TESTED RANGE
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDDIOx
(V)
MS32130V3
DocID026284 Rev 2
85/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics
3
VIN (V)
2.5
TESTED RANGE
TTL standard requirement
2
1.5
1
TTL standard requirement
0.5
TESTED RANGE
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDDIOx (V)
MS32131V3
86/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:

The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 21: Voltage characteristics).

The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see
Table 21: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 54. Output voltage characteristics(1)
Symbol
Parameter
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(4)
Output low level voltage for an I/O pin
VOH(4)
Output high level voltage for an I/O pin
VOLFm+(3)
Output low level voltage for an FTf I/O pin in
Fm+ mode
Conditions
Min
Max
CMOS port(2)
|IIO| = 8 mA
VDDIOx  2.7 V
-
0.4
VDDIOx–0.4
-
-
0.4
2.4
-
-
1.3
VDDIOx–1.3
-
-
0.4
VDDIOx–0.4
-
-
0.4
V
VDDIOx–0.4
-
V
|IIO| = 20 mA
VDDIOx  2.7 V
-
0.4
V
|IIO| = 10 mA
-
0.4
V
TTL port(2)
|IIO| = 8 mA
VDDIOx  2.7 V
|IIO| = 20 mA
VDDIOx  2.7 V
|IIO| = 6 mA
VDDIOx  2 V
|IIO| = 4 mA
Unit
V
V
V
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings IIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Data based on characterization results. Not tested in production.
4. Data based on characterization results. Not tested in production.
DocID026284 Rev 2
87/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 24 and
Table 55, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 24: General
operating conditions.
Table 55. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
Conditions
Min
Max
Unit
-
2
MHz
-
125
-
125
-
1
-
125
-
125
-
10
-
25
-
25
-
4
-
62.5
-
62.5
CL = 30 pF, VDDIOx  2.7 V
-
50
CL = 50 pF, VDDIOx  2.7 V
-
30
CL = 50 pF, 2 V VDDIOx  2.7 V
-
20
CL = 50 pF, VDDIOx  2 V
-
10
CL = 30 pF, VDDIOx  2.7 V
-
5
CL = 50 pF, VDDIOx  2.7 V
-
8
CL = 50 pF, 2 V VDDIOx  2.7 V
-
12
CL = 50 pF, VDDIOx  2 V
-
25
CL = 30 pF, VDDIOx  2.7 V
-
5
CL = 50 pF, VDDIOx  2.7 V
-
8
CL = 50 pF, 2 V VDDIOx  2.7 V
-
12
CL = 50 pF, VDDIOx  2 V
-
25
fmax(IO)out Maximum frequency(3)
x0
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx  2 V
fmax(IO)out Maximum frequency(3)
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx  2 V
fmax(IO)out Maximum frequency(3)
01
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx  2 V
fmax(IO)out Maximum frequency(3)
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx  2 V
fmax(IO)out Maximum frequency(3)
11
tf(IO)out
tr(IO)out
88/130
Output fall time
Output rise time
DocID026284 Rev 2
ns
MHz
ns
MHz
ns
MHz
ns
MHz
ns
STM32F091xB STM32F091xC
Electrical characteristics
Table 55. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
Fm+
configuration
(4)
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx  2 V
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx  2 V
tf(IO)out
Output fall time
tr(IO)out
Output rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
Min
Max
Unit
-
2
MHz
-
12
-
34
-
0.5
-
16
-
44
10
-
ns
MHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a
description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 24.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091
for a detailed description of Fm+ I/O configuration.
Figure 24. I/O AC characteristics definition
W I,2RXW
W U,2RXW
7
7DQGLIWKHGXW\F\FOHLV
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW”
U I
ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ
069
6.3.15
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions.
Table 56. NRST pin characteristics
Symbol
Parameter
VIL(NRST)
VIH(NRST)
Conditions
Min
Typ
Max
NRST input low level voltage
-
-
0.3 VDD+0.07(1)
NRST input high level voltage
0.445 VDD+0.398(1)
-
-
DocID026284 Rev 2
Unit
V
89/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Table 56. NRST pin characteristics (continued)
Symbol
Parameter
Conditions
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
RPU
Weak pull-up equivalent
resistor(2)
VF(NRST)
NRST input filtered pulse
VIN VSS
VNF(NRST) NRST input not filtered pulse
Min
Typ
Max
Unit
-
200
-
mV
25
40
55
k
-
-
100(1)
ns
2.7 < VDD < 3.6
300(3)
-
-
2.0 < VDD < 3.6
(3)
-
-
500
ns
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
Figure 25. Recommended NRST pin protection
([WHUQDO
UHVHWFLUFXLW 9 ''
5 38
1567 ,QWHUQDOUHVHW
)LOWHU
—)
069
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
6.3.16
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 57 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 24: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 57. ADC characteristics
Symbol
Parameter
VDDA
Analog supply voltage for
ADC ON
IDDA (ADC)
Current consumption of
the ADC(1)
Conditions
VDD = VDDA = 3.3 V
Min
Typ
Max
Unit
2.4
-
3.6
V
-
0.9
-
mA
fADC
ADC clock frequency
0.6
-
14
MHz
fS(2)
Sampling rate
0.05
-
1
MHz
90/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Table 57. ADC characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fTRIG(2)
External trigger frequency
fADC = 14 MHz
-
-
823
kHz
-
-
17
1/fADC
VAIN
Conversion voltage range
0
-
VDDA
V
RAIN(2)
External input impedance
-
-
50
k
RADC(2)
Sampling switch
resistance
-
-
1
k
CADC(2)
Internal sample and hold
capacitor
-
-
8
pF
tCAL(2)
Calibration time
See Equation 1 and
Table 58 for details
fADC = 14 MHz
tlatr(2)
ADC_DR register write
latency
ADC clock = PCLK/2
-
4.5
-
fPCLK
cycle
ADC clock = PCLK/4
-
8.5
-
fPCLK
cycle
fADC = fPCLK/2 = 14 MHz
0.196
µs
fADC = fPCLK/2
5.5
1/fPCLK
0.219
µs
10.5
1/fPCLK
fADC = fHSI14 = 14 MHz
0.188
-
0.259
µs
fADC = fHSI14
-
1
-
1/fHSI14
fADC = 14 MHz
0.107
-
17.1
µs
1.5
-
239.5
1/fADC
0
0
1
µs
1
-
18
µs
ADC jitter on trigger
conversion
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time
(including sampling time)
1/fADC
1.5 ADC
cycles + 3
fPCLK cycles
Trigger conversion latency fADC = fPCLK/4 = 12 MHz
tS(2)
83
-
fADC = fPCLK/4
JitterADC
µs
1.5 ADC
cycles + 2
fPCLK cycles
ADC clock = HSI14
WLATENCY(2)
5.9
fADC = 14 MHz
14 to 252 (tS for sampling +12.5 for
successive approximation)
1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
Equation 1: RAIN max formula
TS
- – R ADC
R AIN  ------------------------------------------------------------N+2
f ADC  C ADC  ln  2

DocID026284 Rev 2
91/130
104
Electrical characteristics
STM32F091xB STM32F091xC
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 58. RAIN max for fADC = 14 MHz
Ts (cycles)
tS (µs)
RAIN max (k)(1)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design, not tested in production.
Table 59. ADC accuracy(1)(2)(3)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
ET
Total unadjusted error
Test conditions
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 3 V to 3.6 V
TA = 25 °C
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.7 V to 3.6 V
TA = 40 to 105 °C
Typ
Max(4)
±1.3
±2
±1
±1.5
±0.5
±1.5
±0.7
±1
±0.8
±1.5
±3.3
±4
±1.9
±2.8
±2.8
±3
±0.7
±1.3
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
±1.2
±1.7
ET
Total unadjusted error
±3.3
±4
EO
Offset error
±1.9
±2.8
EG
Gain error
±2.8
±3
ED
Differential linearity error
±0.7
±1.3
EL
Integral linearity error
±1.2
±1.7
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.4 V to 3.6 V
TA = 25 °C
Unit
LSB
LSB
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current. 
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
92/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Figure 26. ADC accuracy characteristics
(*
([DPSOHRIDQDFWXDO WUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QG SRLQWFRUUHODWLRQOLQH
(7
(7 7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ
EHWZHHQ WKHDFWXDODQGWKHLGHDOWUDQVIHU FXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKH ILUVWLGHDORQH
(* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO
WUDQVLWLRQDQGWKH ODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURU PD[LPXPGHYLDWLRQ
EHWZHHQ DFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ
EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW
FRUUHODWLRQOLQH
(2
(/
('
/6%,'($/
966$
9''$
-36
Figure 27. Typical connection diagram using the ADC
9 ''$
6DPSOHDQGKROG$'&
FRQ YHU WHU
97
5 $,1 9$,1
5 $'&
$,1[
& SDU DVLWLF
97
,/ “ —$
ELW
FRQ YHU WHU
&$'&
069
1. Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
DocID026284 Rev 2
93/130
104
Electrical characteristics
6.3.17
STM32F091xB STM32F091xC
DAC electrical specifications
Table 60. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
VDDA
Analog supply voltage for
DAC ON
2.4
-
3.6
V
RLOAD(1)
Resistive load with buffer
ON
5
-
-
k
Load is referred to ground
RO(1)
CLOAD(1)
Impedance output with
buffer OFF
-
-
15
k
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a
1% accuracy is 1.5 M
Capacitive load
-
-
50
pF
Maximum capacitive load at
DAC_OUT pin (when the buffer
is ON).
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VDDA = 3.6 V and (0x155) and
(0xEAB) at VDDA = 2.4 V
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer ON
0.2
-
-
V
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer ON
-
-
VDDA – 0.2
V
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer OFF
-
0.5
-
mV
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer OFF
-
-
VDDA – 1LSB
V
-
-
380
µA
IDDA(1)
DAC DC current
consumption in quiescent
mode(2)
With no load, middle code
(0x800) on the input
-
-
480
µA
With no load, worst code
(0xF1C) on the input
Differential non linearity
Difference between two
consecutive code-1LSB)
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration
-
-
±2
LSB
Given for the DAC in 12-bit
configuration
-
-
±1
LSB
Given for the DAC in 10-bit
configuration
-
-
±4
LSB
Given for the DAC in 12-bit
configuration
-
-
±10
mV
-
-
±3
LSB
Given for the DAC in 10-bit at
VDDA = 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at
VDDA = 3.6 V
-
-
±0.5
%
DNL(3)
INL(3)
Offset(3)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VDDA/2)
Gain error(3) Gain error
94/130
DocID026284 Rev 2
It gives the maximum output
excursion of the DAC.
Given for the DAC in 12-bit
configuration
STM32F091xB STM32F091xC
Electrical characteristics
Table 60. DAC characteristics (continued)
Symbol
Min
Typ
Max
Unit
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
(3)
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±1LSB
-
3
4
µs
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
tWAKEUP(3)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD  50 pF, RLOAD  5 k
input code between lowest and
highest possible ones.
PSRR+ (1)
Power supply rejection ratio
(to VDDA) (static DC
measurement
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
Update
rate(3)
Parameter
Comments
CLOAD  50 pF, RLOAD  5 k
MS/s CLOAD  50 pF, RLOAD  5 k
1. Guaranteed by design, not tested in production.
2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved.
3. Data based on characterization results, not tested in production.
DocID026284 Rev 2
95/130
104
Electrical characteristics
6.3.18
STM32F091xB STM32F091xC
Comparator characteristics
Table 61. Comparator characteristics
Symbol
VDDA
Parameter
Conditions
Min(1) Typ Max(1)
Analog supply voltage
-
3.6
Unit
V
VIN
Comparator input
voltage range
0
-
VDDA
VSC
VREFINT scaler offset
voltage
-
±5
±10
mV
tS_SC
VREFINT scaler startup
time from power down
-
-
0.2
ms
tSTART
Comparator startup
time
Startup time to reach propagation delay
specification
-
-
60
µs
Ultra-low power mode
-
2
4.5
Low power mode
-
0.7
1.5
Medium power mode
-
0.3
0.6
VDDA  2.7 V
-
50
100
VDDA  2.7 V
-
100
240
Ultra-low power mode
-
2
7
Low power mode
-
0.7
2.1
Medium power mode
-
0.3
1.2
VDDA  2.7 V
-
90
180
VDDA  2.7 V
-
110
300
Propagation delay for 
200 mV step with
100 mV overdrive
High speed mode
tD
Propagation delay for
full range step with
100 mV overdrive
High speed mode
µs
ns
µs
ns
Voffset
Comparator offset error
-
4
10
mV
dVoffset/dT
Offset error
temperature coefficient
-
18
-
µV/°C
Ultra-low power mode
-
1.2
1.5
Low power mode
-
3
5
Medium power mode
-
10
15
High speed mode
-
75
100
IDD(COMP)
96/130
COMP current
consumption
DocID026284 Rev 2
µA
STM32F091xB STM32F091xC
Electrical characteristics
Table 61. Comparator characteristics (continued)
Symbol
Parameter
Min(1) Typ Max(1)
Conditions
No hysteresis 
(COMPxHYST[1:0]=00)
Vhys
Comparator hysteresis
-
0
High speed mode
Low hysteresis 
(COMPxHYST[1:0]=01) All other power
modes
3
High speed mode
Medium hysteresis
(COMPxHYST[1:0]=10) All other power
modes
7
High speed mode
High hysteresis
(COMPxHYST[1:0]=11) All other power
modes
18
Unit
13
8
5
10
mV
26
15
9
19
19
49
31
40
1. Data based on characterization results, not tested in production.
6.3.19
Temperature sensor characteristics
Table 62. TS characteristics
Symbol
Parameter
TL(1)
Typ
Max
Unit
-
1
2
°C
Average slope
4.0
4.3
4.6
mV/°C
Voltage at 30 °C (5 °C)(2)
1.34
1.43
1.52
V
Startup time
4
-
10
µs
ADC sampling time when reading the
temperature
4
-
-
µs
VSENSE linearity with temperature
Avg_Slope
(1)
V30
tSTART
Min
(1)
tS_temp(1)
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byteRefer to Table 3:
Temperature sensor calibration values.
6.3.20
VBAT monitoring characteristics
Table 63. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
k
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
2
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
4
-
-
µs
Er(1)
tS_vbat
(1)
1. Guaranteed by design, not tested in production.
DocID026284 Rev 2
97/130
104
Electrical characteristics
6.3.21
STM32F091xB STM32F091xC
Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 64. TIMx characteristics
Symbol
Parameter
Conditions
tres(TIM)
Timer resolution time
fEXT
Timer external clock
frequency on CH1 to
CH4
ResTIM
tCOUNTER
tMAX_COUNT
Min
Max
Unit
1
-
tTIMxCLK
20.8
-
ns
0
fTIMxCLK/2
MHz
fTIMxCLK = 48 MHz
0
24
MHz
TIMx (except TIM2)
-
16
TIM2
-
32
1
65536
tTIMxCLK
0.0208
1365
µs
-
65536 × 65536
tTIMxCLK
-
89.48
s
fTIMxCLK = 48 MHz
Timer resolution
16-bit counter clock
period
fTIMxCLK = 48 MHz
Maximum possible count
with 32-bit counter
fTIMxCLK = 48 MHz
bit
Table 65. IWDG min/max timeout period at 40 kHz (LSI)(1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
6 or 7
6.4
26214.4
Unit
ms
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Table 66. WWDG min/max timeout value at 48 MHz (PCLK)
98/130
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.0853
5.4613
2
1
0.1706
10.9226
4
2
0.3413
21.8453
8
3
0.6826
43.6906
DocID026284 Rev 2
Unit
ms
STM32F091xB STM32F091xC
6.3.22
Electrical characteristics
Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:

Standard-mode (Sm): with a bit rate up to 100 kbit/s

Fast-mode (Fm): with a bit rate up to 400 kbit/s

Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 67. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter
50(2)
260(3)
ns
1. Guaranteed by design, not tested in production.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
DocID026284 Rev 2
99/130
104
Electrical characteristics
STM32F091xB STM32F091xC
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 68 for SPI or in Table 69 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and
supply voltage conditions summarized in Table 24: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 68. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Max
Master mode
-
18
Slave mode
-
18
-
6
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 15 pF
tsu(NSS)
NSS setup time
Slave mode
4Tpclk
-
th(NSS)
NSS hold time
Slave mode
2Tpclk + 10
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
Tpclk/2 -2
Tpclk/2 + 1
Master mode
4
-
Slave mode
5
-
Master mode
4
-
Slave mode
5
-
Data output access time
Slave mode, fPCLK = 20 MHz
0
3Tpclk
Data output disable time
Slave mode
0
18
tv(SO)
Data output valid time
Slave mode (after enable edge)
-
22.5
tv(MO)
Data output valid time
Master mode (after enable edge)
-
6
Slave mode (after enable edge)
11.5
-
Master mode (after enable edge)
2
-
Slave mode
25
75
tw(SCKH)
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
ta(SO)(2)
tdis(SO)
(3)
th(SO)
th(MO)
DuCy(SCK)
Data input setup time
Data input hold time
Data output hold time
SPI slave input clock
duty cycle
Unit
MHz
ns
ns
%
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
100/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Electrical characteristics
Figure 28. SPI timing diagram - slave mode and CPHA = 0
E^^ŝŶƉƵƚ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
^</ŶƉƵƚ
ƚ^h;E^^Ϳ
W,с Ϭ
WK>сϬ
ƚǁ;^<,Ϳƚǁ;^<>Ϳ
W,с Ϭ
WK>сϭ
ƚǀ;^KͿ
ƚĂ;^KͿ
D/^K
Khd W hd
ƚƌ;^<ͿƚĨ;^<Ϳ
ƚĚŝƐ;^KͿ
ƚŚ;^KͿ
D^ K hd
/ dϲ Khd
D ^ /E
/ dϭ /E
>^ Khd
ƚƐƵ;^/Ϳ
DK^/
/ EWhd
>^ /E
ƚŚ;^/Ϳ
DLF
Figure 29. SPI timing diagram - slave mode and CPHA = 1
E^^ŝŶƉƵƚ
^</ŶƉƵƚ
ƚ^h;E^^Ϳ
W ,сϭ
W K>сϬ
W ,сϭ
W K>сϭ
ƚĐ;^<Ϳ
ƚǁ;^>,Ϳ
ƚǁ;^>>Ϳ
ƚǀ;^KͿ
ƚĂ;^KͿ
D/^ K
Khd W hd
ƚŚ;^KͿ
D^ K hd
ƚƐƵ;^/Ϳ
DK^ /
/ EWhd
ƚŚ;E^^Ϳ
/ dϲ Khd
ƚƌ;^>Ϳ
ƚĨ;^>Ϳ
ƚĚŝƐ;^KͿ
> ^ Khd
ƚŚ;^/Ϳ
D^ /E
/ dϭ /E
> ^ /E
DL
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID026284 Rev 2
101/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Figure 30. SPI timing diagram - master mode
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TW3#+(
TW3#+,
TSU-)
-)3/
).0 54
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
" ) 4/54
- 3"/54
TV-/
,3"/54
TH-/
AI6
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
Table 69. I2S characteristics(1)
Symbol
fCK
1/tc(CK)
Parameter
I2S
clock frequency
tr(CK)
I2S clock rise time
tf(CK)
I2S clock fall time
Conditions
Min
Max
1.597
1.601
Slave mode
0
6.5
Capacitive load CL = 15 pF
-
10
-
12
306
-
312
-
Master mode (data: 16 bits, Audio
frequency = 48 kHz)
Master fPCLK= 16 MHz, audio
frequency = 48 kHz
tw(CKH)
I2S clock high time
tw(CKL)
I2S clock low time
tv(WS)
WS valid time
Master mode
2
-
th(WS)
WS hold time
Master mode
2
-
tsu(WS)
WS setup time
Slave mode
7
-
th(WS)
WS hold time
Slave mode
0
-
I2S slave input clock duty
cycle
Slave mode
25
75
DuCy(SCK)
102/130
DocID026284 Rev 2
Unit
MHz
ns
%
STM32F091xB STM32F091xC
Electrical characteristics
Table 69. I2S characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Max
tsu(SD_MR)
Data input setup time
Master receiver
6
-
tsu(SD_SR)
Data input setup time
Slave receiver
2
-
Master receiver
4
-
Slave receiver
0.5
-
th(SD_MR)
th(SD_SR)
tv(SD_ST)
(2)
(2)
(2)
Data input hold time
Data output valid time
th(SD_ST)
Data output hold time
tv(SD_MT)(2)
Data output valid time
th(SD_MT)
Data output hold time
Slave transmitter (after enable edge)
Slave transmitter (after enable edge)
Master transmitter (after enable edge)
Master transmitter (after enable edge)
Unit
ns
13
-
-
4
0
-
1. Data based on design simulation and/or characterization results, not tested in production.
2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns.
Figure 31. I2S slave timing diagram (Philips protocol)
&.,QSXW
WF&.
&32/ &32/ WZ&.+
WK:6
WZ&./
:6LQSXW
WY6'B67
WVX:6
6'WUDQVPLW
/6%WUDQVPLW
06%WUDQVPLW
WVX6'B65
6'UHFHLYH
/6%UHFHLYH
%LWQWUDQVPLW
WK6'B67
/6%WUDQVPLW
WK6'B65
06%UHFHLYH
%LWQUHFHLYH
/6%UHFHLYH
DLE
1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DocID026284 Rev 2
103/130
104
Electrical characteristics
STM32F091xB STM32F091xC
Figure 32. I2S master timing diagram (Philips protocol)
TF#+
TR#+
#+OUTPUT
TC#+
#0/,
TW#+(
#0/,
TV73
TH73
TW#+,
73OUTPUT
TV3$?-4
3$TRANSMIT
,3"TRANSMIT
-3"TRANSMIT
3$RECEIVE
,3"TRANSMIT
TH3$?-2
TSU3$?-2
,3"RECEIVE
"ITNTRANSMIT
TH3$?-4
-3"RECEIVE
"ITNRECEIVE
,3"RECEIVE
AIB
1. Data based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
104/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID026284 Rev 2
105/130
128
Package characteristics
STM32F091xB STM32F091xC
Figure 33. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch,
package outline
= 6HDWLQJSODQH
GGG =
$ $ $
$ $
(
H
$EDOO
LGHQWLILHU
)
$EDOO
LQGH[DUHD
;
(
$
)
'
'
H
<
0
%277209,(:
‘EEDOOV
‘ HHH 0 = < ;
‘ III 0 =
7239,(:
$& 0( 9
1. Drawing is not to scale.
Table 70. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.060
0.080
0.100
0.0024
0.0031
0.0039
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
-
7.000
-
-
0.2756
-
D1
-
5.500
-
-
0.2165
-
E
-
7.000
-
-
0.2756
-
E1
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
FD
-
0.750
-
-
0.0295
-
FE
-
0.750
-
-
0.0295
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
106/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Figure 34. UFBGA100 recommended footprint
'SDG
'VP
069
Table 71. UFBGA100 recommended PCB design rules
Dimension
Recommended values
Pitch
0.50 mm
Dpad
0.27 mm
Dsm
0.35 mm typ (depending on the soldermask registration tolerance)
Solder paste
0.27 mm aperture diameter
Device marking for UFBGA100
The following figure shows the device marking for the UFBGA100 package.
Figure 35. UFBGA100 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ 45.'
7$)
'DWHFRGH
3LQLGHQWLILHU
: 88
5HYLVLRQFRGH
3
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID026284 Rev 2
107/130
128
Package characteristics
STM32F091xB STM32F091xC
Figure 36. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline
MM
C
!
!
!
3%!4).'0,!.%
#
'!5'%0,!.%
$
!
+
CCC #
,
$
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
,?-%?6
1. Drawing is not to scale.
Table 72. LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
108/130
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Table 72. LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data
(continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
K
0°
3.5°
7°
0°
3.5°
7°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 37. LQFP100 recommended footprint
AIC
1. Dimensions are in millimeters.
DocID026284 Rev 2
109/130
128
Package characteristics
STM32F091xB STM32F091xC
Device marking for LQFP100
The following figure shows the device marking for the LQFP100 package.
Figure 38. LQFP100 marking example (package top view)
2SWLRQDOJDWHPDUN
3URGXFWLGHQWLILFDWLRQ 45.'
7$5
5HYLVLRQFRGH
3
'DWHFRGH
: 88
3LQLGHQWLILHU
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
110/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Figure 39. UFBGA64 – ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch,
package outline
= 6HDWLQJSODQH
GGG =
$
$ $
$ $
(
H
$EDOO
$EDOO
LGHQWLILHU LQGH[DUHD
)
;
(
$
)
'
'
H
<
+
%277209,(:
‘EEDOOV
‘ HHH 0 = < ;
‘ III 0 =
7239,(:
$B0(B9
1. Drawing is not to scale.
Table 73. UFBGA64 –ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch,
package mechanical data
Dimensions
Ref.
Inches (1)
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A3
0.080
0.130
0.180
0.0031
0.0051
0.0071
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.170
0.280
0.330
0.0067
0.0110
0.0130
D
4.850
5.000
5.150
0.1909
0.1969
0.2028
D1
3.450
3.500
3.550
0.1358
0.1378
0.1398
E
4.850
5.000
5.150
0.1909
0.1969
0.2028
E1
3.450
3.500
3.550
0.1358
0.1378
0.1398
e
-
0.500
-
-
0.0197
-
F
0.700
0.750
0.800
0.0276
0.0295
0.0315
ddd
-
-
0.080
-
-
0.0031
DocID026284 Rev 2
111/130
128
Package characteristics
STM32F091xB STM32F091xC
Table 73. UFBGA64 –ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch,
package mechanical data (continued)
Dimensions
Ref.
Inches (1)
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 40. UFBGA64 recommended footprint
%RDUG6ROGHU0DVN2SHQLQJ
—
%RDUG3DG'LDPHWHU
—
$B0(B)3B9
112/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Figure 41. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not to scale.
Table 74. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data,
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
0.200
0.0035
-
0.0079
D
11.800
12.000
12.200
0.4646
0.4724
0.4803
D1
9.800
10.000
10.200
0.3858
0.3937
0.4016
D3
-
7.500
-
-
0.2953
-
E
11.800
12.000
12.200
0.4646
0.4724
0.4803
E1
9.800
10.000
10.200
0.3858
0.3937
0.4016
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
DocID026284 Rev 2
113/130
128
Package characteristics
STM32F091xB STM32F091xC
Table 74. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data,
(continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
K
0°
3.5°
7°
0°
3.5°
7°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 42. LQFP64 recommended footprint
AIC
1. Dimensions are in millimeters.
114/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Device marking for LQFP64
The following figure shows the device marking for the LQFP64 package.
Figure 43. LQFP64 marking example (package top view)
5HYLVLRQFRGH
3
3URGXFWLGHQWLILFDWLRQ 45.'
3$56
: 88
3LQLGHQWLILHU
'DWHFRGH
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID026284 Rev 2
115/130
128
Package characteristics
STM32F091xB STM32F091xC
Figure 44. WLCSP64 wafer level chip size package mechanical drawing
H
EEE =
)
*
$
'HWDLO$
H
H
+
*
H
$
$
$
)
%XPSVLGH
6LGHYLHZ
'
%XPS
$
HHH =
(
$ 2ULHQWDWLRQ
UHIHUHQFH
E
6HDWLQJSODQH
[
:DIHUEDFNVLGH
'HWDLO$
URWDWHGƒ
$B0(B9
Table 75. WLCSP64 - 64-pin, 3.347 x 3.585 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
inches(1)
millimeters
Symbol
116/130
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
-
0.175
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
A3
-
0.025
-
-
0.0010
-
b(2)
0.220
0.250
0.280
0.0087
0.0098
0.0110
D
3.312
3.347
3.382
0.1304
0.1318
0.1331
E
3.550
3.585
3.620
0.1398
0.1411
0.1425
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Table 75. WLCSP64 - 64-pin, 3.347 x 3.585 mm, 0.4 mm pitch wafer level chip scale
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
e
-
0.400
-
-
0.0157
-
e1
-
2.800
-
-
0.1102
-
e2
-
2.800
-
-
0.1102
-
F
-
0.2735
-
-
0.0108
-
G
-
0.3925
-
-
0.0155
-
aaa
-
-
0.100
-
-
0.0039
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 45. WLCSP64 - 64-pin, 3.347 x 3.585 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
'SDG
'VP
DocID026284 Rev 2
069
117/130
128
Package characteristics
STM32F091xB STM32F091xC
Device marking for WLCSP64
The following figure shows the device marking for the WLCSP64 package.
Figure 46. WLCSP64 marking example (package top view)
'RW
45.'
3URGXFW
LGHQWLILFDWLRQ
3$:
'DWHFRGH
3FWJTJPODPEF
:
88
3
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
118/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Figure 47. LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
CCC #
+
!
$
$
,
,
$
%
%
%
B
0).
)$%.4)&)#!4)/.
E
"?-%?6
1. Drawing is not to scale.
Table 76. LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
DocID026284 Rev 2
119/130
128
Package characteristics
STM32F091xB STM32F091xC
Table 76. LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
K
0°
3.5°
7°
0°
3.5°
7°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 48. LQFP48 recommended footprint
AID
1. Dimensions are in millimeters.
120/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Device marking for LQFP48
The following figure shows the device marking for the LQFP48 package.
Figure 49. LQFP48 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ 45.'
$$5
3LQLGHQWLILHU
:
'DWHFRGH
88
3
5HYLVLRQFRGH
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID026284 Rev 2
121/130
128
Package characteristics
STM32F091xB STM32F091xC
Figure 50. UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
'
$
(
(
7
GGG
$
6HDWLQJ
SODQH
E
H
'HWDLO<
'
([SRVHGSDG
DUHD
<
'
/
&[ƒ
SLQFRUQHU
(
5W\S
'HWDLO=
=
$%B0(B9
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
122/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Table 77. UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 51. UFQFPN48 recommended footprint
!"?-%?&0
1. Dimensions are in millimeters.
DocID026284 Rev 2
123/130
128
Package characteristics
STM32F091xB STM32F091xC
Device marking for UFQFPN48
The following figure shows the device marking for the UFQFPN48 package.
Figure 52. UFQFPN48 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ 45.'
$$6
3LQLGHQWLILHU
'DWHFRGH
: 88
3
5HYLVLRQFRGH
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
124/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
7.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 24: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x JA)
Where:

TA max is the maximum temperature in °C,

JA is the package junction-to- thermal resistance, in C/W,

PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),

PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 78. Package thermal characteristics
Symbol
JA
7.2.1
Parameter
Value
Thermal resistance junction-
UFBGA100 - 7 × 7 mm
55
Thermal resistance junction-
LQFP100 - 14 × 14 mm
42
Thermal resistance junction-
UFBGA64 - 5 × 5 mm / 0.5 mm pitch
65
Thermal resistance junction-
LQFP64 - 10 × 10 mm / 0.5 mm pitch
44
Thermal resistance junction-
WLCSP64 - 0.4 mm pitch
53
Thermal resistance junction-
LQFP48 - 7 × 7 mm
54
Thermal resistance junction-
UFQFPN48 - 7 × 7 mm
32
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
7.2.2
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Part numbering.
DocID026284 Rev 2
125/130
128
Package characteristics
STM32F091xB STM32F091xC
Each temperature range suffix corresponds to a specific guaranteed temperature at
maximum dissipation and to a specific maximum junction temperature.
As applications do not commonly use the STM32F0xx at maximum dissipation, it is useful to
calculate the exact power consumption and junction temperature to determine which
temperature range is best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50
mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL
= 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level
with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Using the values obtained in Table 78 TJmax is calculated as follows:
–
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Part numbering).
Note:
With this given PDmax we can find the TAmax allowed for a given device temperature range
(order code suffix 6 or 7).
Suffix 6: TAmax = TJmax - (45°C/W × 447 mW) = 105-20.115 = 84.885 °C
Suffix 7: TAmax = TJmax - (45°C/W × 447 mW) = 125-20.115 = 104.885 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high temperatures
with a low dissipation, as long as junction temperature TJ remains within the specified
range.
Assuming the following application conditions:
Maximum temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax =
20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with
IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
126/130
DocID026284 Rev 2
STM32F091xB STM32F091xC
Package characteristics
Using the values obtained in Table 78 TJmax is calculated as follows:
–
For LQFP64, 45 °C/W
TJmax = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Part numbering) unless we reduce the power dissipation in order to be able to
use suffix 6 parts.
Refer to Figure 53 to select the required temperature range (suffix 6 or 7) according to your
temperature or power requirements.
Figure 53. LQFP64 PD max vs. TA
3'P:
6XIIL[
6XIIL[
7$ƒ&
DocID026284 Rev 2
06Y9
127/130
128
Part numbering
8
STM32F091xB STM32F091xC
Part numbering
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Table 79. Ordering information scheme
STM32
Example:
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
091= STM32F091xx
Pin count
C = 48 pins
R = 64 pins
V = 100 pins
Code size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
H = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = –40 to 85 °C
7 = –40 to 105 °C
Options
xxx = programmed parts
TR = tape and reel
128/130
DocID026284 Rev 2
F
091
R
C
T
6
x
STM32F091xB STM32F091xC
9
Revision history
Revision history
Table 80. Document revision history
Date
Revision
30-Oct-2014
1
Initial release.
2
Updated:
– Table 41: HSI oscillator characteristics,
– Figure 19: HSI oscillator accuracy characterization
results for soldered parts,
– Figure 44: WLCSP64 wafer level chip size package
mechanical drawing,
– Table 75: WLCSP64 - 64-pin, 3.347 x 3.585 mm,
0.4 mm pitch wafer level chip scale package
mechanical data.
Added Figure 45: WLCSP64 - 64-pin, 3.347 x
3.585 mm, 0.4 mm pitch wafer level chip scale
recommended footprint.
09-Feb-2015
Changes
DocID026284 Rev 2
129/130
129
STM32F091xB STM32F091xC
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
130/130
DocID026284 Rev 2
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement