STM32F405xx STM32F407xx

Add to my manuals
185 Pages

advertisement

STM32F405xx STM32F407xx | Manualzz

STM32F405xx

STM32F407xx

ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB

OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera

Datasheet

-

production data

LQFP64 (10 × 10 mm)

LQFP100 (14 × 14 mm)

LQFP144 (20 × 20 mm)

LQFP176 (24 × 24 mm)

WLCSP90

FBGA

UFBGA176

(10 × 10 mm)

Features

• Core: ARM 32-bit Cortex™-M4 CPU with FPU,

Adaptive real-time accelerator (ART

Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 168 MHz, memory protection unit, 210 DMIPS/

1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions

• Memories

– Up to 1 Mbyte of Flash memory

– Up to 192+4 Kbytes of SRAM including 64-

Kbyte of CCM (core coupled memory) data

RAM

– Flexible static memory controller supporting Compact Flash, SRAM,

PSRAM, NOR and NAND memories

• LCD parallel interface, 8080/6800 modes

• Clock, reset and supply management

– 1.8 V to 3.6 V application supply and I/Os

– POR, PDR, PVD and BOR

– 4-to-26 MHz crystal oscillator

– Internal 16 MHz factory-trimmed RC (1% accuracy)

– 32 kHz oscillator for RTC with calibration

– Internal 32 kHz RC with calibration

• Low power

– Sleep, Stop and Standby modes

– V

BAT

supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM

• 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple interleaved mode

• 2×12-bit D/A converters

• General-purpose DMA: 16-stream DMA controller with FIFOs and burst support

• Up to 17 timers: up to twelve 16-bit and two 32bit timers up to 168 MHz, each with up to 4

IC/OC/PWM or pulse counter and quadrature

(incremental) encoder input

• Debug mode

– Serial wire debug (SWD) & JTAG interfaces

– Cortex-M4 Embedded Trace Macrocell™

• Up to 140 I/O ports with interrupt capability

– Up to 136 fast I/Os up to 84 MHz

– Up to 138 5 V-tolerant I/Os

• Up to 15 communication interfaces

– Up to 3 × I

2

C interfaces (SMBus/PMBus)

– Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO

7816 interface, LIN, IrDA, modem control)

– Up to 3 SPIs (42 Mbits/s), 2 with muxed full-duplex I

2

S to achieve audio class accuracy via internal audio PLL or external clock

– 2 × CAN interfaces (2.0B Active)

– SDIO interface

• Advanced connectivity

– USB 2.0 full-speed device/host/OTG controller with on-chip PHY

– USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated

DMA, on-chip full-speed PHY and ULPI

– 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII

• 8- to 14-bit parallel camera interface up to

54 Mbytes/s

• True random number generator

• CRC calculation unit

• 96-bit unique ID

• RTC: subsecond accuracy, hardware calendar

Reference

Table 1. Device summary

Part number

STM32F405xx

STM32F407xx

STM32F405RG, STM32F405VG, STM32F405ZG,

STM32F405OG, STM32F405OE

STM32F407VG, STM32F407IG, STM32F407ZG,

STM32F407VE, STM32F407ZE, STM32F407IE

June 2013

This is information on a product in full production.

DocID022152 Rev 4 1/185

www.st.com

1

1

2

Contents

Contents

STM32F405xx, STM32F407xx

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1

Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2

Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1

ARM

®

Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 19

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 19

Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 20

Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.10

Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22

2.2.11

External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.12

Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.13

Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.14

Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.15

Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.16

Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.17

Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 28

2.2.18

Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 28

2.2.19

Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.20

V

BAT

operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.21

Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.22

Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.23

Universal synchronous/asynchronous receiver transmitters (USART) . 33

2.2.24

Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.25

Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.26

Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.27

Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 35

2.2.28

Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 35

2.2.29

Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2/185 DocID022152 Rev 4

3

4

5

STM32F405xx, STM32F407xx Contents

2.2.30

Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 36

2.2.31

Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 36

2.2.32

Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.33

Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.34

General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.35

Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.36

Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.37

Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.38

Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.39

Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1

Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

5.1.7

Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3

Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Operating conditions at power-up / power-down (regulator ON) . . . . . . 80

Operating conditions at power-up / power-down (regulator OFF) . . . . . 80

Embedded reset and power control block characteristics . . . . . . . . . . . 80

Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.8

5.3.9

External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.10

PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.11

PLL spread spectrum clock generation (SSCG) characteristics . . . . . 102

DocID022152 Rev 4 3/185

Contents STM32F405xx, STM32F407xx

6

5.3.12

Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.13

EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.14

Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 108

5.3.15

I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.16

I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.17

NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.18

TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.19

Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.20

12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.21

Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.22

V

BAT

monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.23

Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.24

DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.25

FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.26

Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 155

5.3.27

SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 156

5.3.28

RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2

Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.1

USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 171

A.2

USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 173

A.3

Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

List of tables

List of tables

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 13

Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 28

Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 9.

Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 10.

STM32F40x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 11.

Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 12.

Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 13.

Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 14.

General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 15.

Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 79

Table 16.

VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 17.

Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 80

Table 18.

Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 80

Table 19.

Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 20.

Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 83

Table 21.

Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 22.

Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 23.

Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 24.

Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 88

Table 25.

Typical and maximum current consumptions in V

BAT

mode. . . . . . . . . . . . . . . . . . . . . . . . 89

Table 26.

Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 27.

Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 28.

Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 29.

High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 30.

Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 31.

HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 32.

LSE oscillator characteristics (f

LSE

= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 33.

HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 34.

LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 35.

Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 36.

PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 37.

SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 38.

Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 39.

Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 40.

Flash memory programming with V

PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 41.

Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 42.

EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Table 43.

EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Table 44.

ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Table 45.

Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 46.

I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

DocID022152 Rev 4 5/185

List of tables STM32F405xx, STM32F407xx

Table 47.

I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 48.

Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table 49.

I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 50.

NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Table 51.

Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table 52.

Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 53.

I

2

C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 54.

SCL frequency (f

PCLK1

= 42 MHz.,V

DD

= 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table 55.

SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table 56.

I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Table 57.

USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table 58.

USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table 59.

USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table 60.

USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table 61.

USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table 62.

ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Table 63.

Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 64.

Dynamic characteristics: Ehternet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 65.

Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 128

Table 66.

Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Table 67.

ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Table 68.

ADC accuracy at f

ADC

= 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Table 69.

Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 70.

Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 71.

V

BAT

monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 72.

Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 73.

Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 74.

DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 75.

Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 138

Table 76.

Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 139

Table 77.

Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Table 78.

Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Table 79.

Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Table 80.

Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Table 81.

Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145

Table 82.

Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Table 83.

Switching characteristics for PC Card/CF read and write cycles

in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Table 84.

Switching characteristics for PC Card/CF read and write cycles

in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Table 85.

Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Table 86.

Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Table 87.

DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Table 88.

Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Table 89.

RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Table 90.

WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . 159

Table 91.

LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 160

Table 92.

LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 162

Table 93.

LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 164

Table 94.

UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Table 95.

LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . 167

6/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx List of tables

Table 96.

Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Table 97.

Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Table 98.

Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

DocID022152 Rev 4 7/185

List of figures

List of figures

STM32F405xx, STM32F407xx

Figure 1.

Compatible board design between STM32F10xx/STM32F4xx for LQFP64 . . . . . . . . . . . . 15

Figure 2.

Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.

Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 4.

Compatible board design between STM32F2xx and STM32F4xx

for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 5.

STM32F40x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 6.

Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 7.

Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24

Figure 8.

PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 9.

Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 10.

Startup in regulator OFF mode: slow V

DD

slope

- power-down reset risen after V

CAP_1

/V

CAP_2

Figure 11.

Startup in regulator OFF mode: fast V

DD

- power-down reset risen before V

CAP_1

slope

/V stabilization . . . . . . . . . . . . . . . . . . . . . . . . 27

CAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 28

Figure 12.

STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 13.

STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 14.

STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 15.

STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 16.

STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 17.

STM32F40x WLCSP90 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 18.

STM32F40x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 19.

Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 20.

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 21.

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 22.

Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 23.

External capacitor C

EXT

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 24.

Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 85

Figure 25.

Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 85

Figure 26.

Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 86

Figure 27.

Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 86

Figure 28.

Typical V

BAT

Figure 29.

Typical V

BAT

current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 89

current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 90

Figure 30.

High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 31.

Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 32.

Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 33.

Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 34.

ACC

LSI

versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 35.

PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 36.

PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 37.

I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 38.

Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 39.

I

2

C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx List of figures

Figure 40.

SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 41.

SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 42.

SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 43.

I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 44.

I2S master timing diagram (Philips protocol)

(1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 45.

USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 124

Figure 46.

ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 47.

Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 48.

Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 49.

Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 50.

ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 51.

Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 52.

Power supply and reference decoupling (V

REF+

Figure 53.

Power supply and reference decoupling (V

REF+ not connected to V

DDA connected to V

DDA

). . . . . . . . . . . . . 133

). . . . . . . . . . . . . . . . 133

Figure 54.

12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 55.

Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 138

Figure 56.

Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 139

Figure 57.

Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 58.

Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 59.

Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 60.

Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure 61.

Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 62.

Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 63.

PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 148

Figure 64.

PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 148

Figure 65.

PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure 66.

PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 67.

PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 150

Figure 68.

PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 151

Figure 69.

NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 70.

NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 71.

NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 154

Figure 72.

NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 154

Figure 73.

DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 74.

SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 75.

SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 76.

WLCSP90 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . 159

Figure 77.

LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 160

Figure 78.

LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Figure 79.

LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 162

Figure 80.

LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 81.

LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 164

Figure 82.

LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Figure 83.

UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 84.

LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 167

Figure 85.

LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Figure 86.

USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 87.

USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 171

DocID022152 Rev 4 9/185

List of figures STM32F405xx, STM32F407xx

Figure 88.

USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 172

Figure 89.

USB controller configured as peripheral, host, or dual-mode and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Figure 90.

MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure 91.

RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure 92.

RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

1 Introduction

Introduction

This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please refer to

Section 2.1: Full compatibility throughout the family

.

The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the

STM32F4xx reference manual.

The reference and Flash programming manuals are both available from the

STMicroelectronics website www.st.com.

For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming manual (PM0214) available from www.st.com.

DocID022152 Rev 4 11/185

Description

2 Description

STM32F405xx, STM32F407xx

The STM32F405xx and STM32F407xx family is based on the high-performance ARM

®

Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The

Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document.

The STM32F405xx and STM32F407xx family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two

APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose

16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true random number generator (RNG). They also feature standard and advanced communication interfaces.

Up to three I

2

Cs

• Three SPIs, two I

2

Ss full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.

Four USARTs plus two UARTs

• An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the

ULPI),

Two CANs

• An SDIO/MMC interface

Ethernet and the camera interface available on STM32F407xx devices only.

New advanced peripherals include an SDIO, an enhanced flexible static memory control

(FSMC) interface (for devices offered in packages of 100 pins and more), a camera interface for CMOS sensors. Refer to

Table 2: STM32F405xx and STM32F407xx: features and peripheral counts

for the list of peripherals available on each part number.

The STM32F405xx and STM32F407xx family operates in the –40 to +105 °C temperature range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor: refer to

Section : Internal reset OFF

. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F405xx and STM32F407xx family offers devices in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.

These features make the STM32F405xx and STM32F407xx microcontroller family suitable for a wide range of applications:

• Motor drive and application control

Medical equipment

• Industrial applications: PLC, inverters, circuit breakers

Printers, and scanners

• Alarm systems, video intercom, and HVAC

Home audio appliances

12/185 DocID022152 Rev 4

Figure 5

shows the general block diagram of the device family.

Peripherals

Flash memory in

Kbytes

SRAM in

Kbytes

System

Backup

FSMC memory controller

Ethernet

Generalpurpose

Advanced

-control

Timers

Basic

IWDG

WWDG

RTC

Random number generator

Table 2. STM32F405xx and STM32F407xx: features and peripheral counts

STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix

No

1024

No

192(112+16+64)

4

10

2

2

Yes

Yes

Yes

Yes

512

Yes

(1)

512 1024 512 1024 512 1024

Yes

Peripherals

Communi cation interfaces

SPI / I2S

I

2

C

USART/

UART

USB

OTG FS

USB

OTG HS

CAN

SDIO

Camera interface

GPIOs

Table 2. STM32F405xx and STM32F407xx: features and peripheral counts

STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix

3/2 (full duplex)

(2)

3

51 72

No

82 114

4/2

Yes

Yes

2

Yes

72 82

Yes

114 140

12-bit ADC

Number of channels

16 13 16 24

3

13 16 24 24

12-bit DAC

Number of channels

Maximum CPU frequency

Operating voltage

Yes

2

168 MHz

Operating temperatures

1.8 to 3.6 V

(3)

Ambient temperatures: –40 to +85 °C /–40 to +105 °C

Junction temperature: –40 to + 125 °C

Package LQFP64 WLCSP90 LQFP100 LQFP144 WLCSP90 LQFP100 LQFP144

UFBGA176

LQFP176

1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip

Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I

2

S audio mode.

3. V

DD

/V

DDA

minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to

Section : Internal reset OFF

).

STM32F405xx, STM32F407xx Description

The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F405xx and STM32F407xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The

STM32F405xx and STM32F407xx, however, are not drop-in replacements for the

STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x family remains simple as only a few pins are impacted.

Figure 4

,

Figure 3

,

Figure 2

, and

Figure 1

give compatible board designs between the

STM32F40x, STM32F2xxx, and STM32F10xxx families.

Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64

49

48

47

64

1

VSS

VSS

33

32

31

16

17

VSS

VSS

0

Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the

STM32F4xx configuration ai18489

DocID022152 Rev 4 15/185

Description STM32F405xx, STM32F407xx

Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package

76

75

73

VSS

51

50

49

100

99 (VSS)

1

19 20

25

26

VSS

0

Ω resistor or soldering bridge present for the STM32F10xxx

VDD

VSS

Two 0

Ω resistors connected to:

- VSS for the STM32F10xx

- VSS for the STM32F4xx

VDD

- VSS, VDD or NC for the STM32F2xx

VSS

VSS

VSS for STM32F10xx

VDD for STM32F4xx

VSS configuration, not present in the

STM32F4xx configuration ai18488c

Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package

109

108

106

V

SS

73

72

71

V

SS

Signal from external power supply supervisor

144

143 (PDR_ON)

30 31

37

V

SS

0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the

STM32F4xx configuration

1 36

V

SS

V

DD

V

SS

Two 0 Ω resistors connected to:

- V

SS

for the STM32F10xx

V

DD

V

SS

V

SS

for STM32F10xx

V

DD

for STM32F4xx

- V

SS

, V

DD

or NC for the STM32F2xx

- V

DD

or signal from external power supply supervisor for the STM32F4xx ai18487d

16/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

Figure 4. Compatible board design between STM32F2xx and STM32F4xx

for LQFP176 and BGA176 packages

133

132 89

88

Signal from external power supply supervisor

176

171 (PDR_ON)

1 44

45

V

DD

V

SS

Two 0 Ω resistors connected to:

- V

SS

, V

DD

or NC for the STM32F2xx

- V

DD

or signal from external power supply supervisor for the STM32F4xx

MS19919V3

DocID022152 Rev 4 17/185

Description STM32F405xx, STM32F407xx

NJTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

TRACECLK

TRACED[3:0]

MII or RMII as AF

MDIO as AF

DP, DM

ULPI:CK, D[7:0], DIR, STP, NXT

ID, VBUS, SOF

140 AF

D[7:0]

CMD, CK as AF

4 compl. channels (TIM1_CH1[1:4]N,

4 channels (TIM1_CH1[1:4]ETR,

BKIN as AF

4 compl. channels (TIM1_CH1[1:4]N,

4 channels (TIM1_CH1[1:4]ETR,

BKIN as AF

2 channels as AF

1 channel as AF

1 channel as AF

RX, TX, CK,

CTS, RTS as AF

RX, TX, CK,

CTS, RTS as AF

MOSI, MISO,

SCK, NSS as AF

VDDREF_ADC

8 analog inputs common to the 3 ADCs

8 analog inputs common to the ADC1 & 2

8 analog inputs for ADC3

PA[15:0]

PB[15:0]

PC[15:0]

PD[15:0]

PE[15:0]

PF[15:0]

PG[15:0]

PH[15:0]

PI[11:0]

CCM data RAM 64 KB

JTAG & SW

ETM

MPU

NVIC

D-BUS

ARM Cortex-M4

168 MHz

FPU

I-BUS

S-BUS

Ethernet MAC

10/100

USB

OTG HS

DMA/

FIFO

DMA/

FIFO

DMA2

DMA1

8 Streams

FIFO

8 Streams

FIFO

GPIO PORT A

GPIO PORT B

GPIO PORT C

GPIO PORT D

GPIO PORT E

GPIO PORT F

GPIO PORT G

GPIO PORT H

GPIO PORT I

EXT IT. WKUP

SDIO / MMC

Figure 5. STM32F40x block diagram

TIM1 / PWM

16b

TIM8 / PWM

16b

TIM9

TIM10

16b

16b

TIM11 smcard irDA smcard irDA

USART1

USART6

SPI1

@V

DDA

Temperature sensor

ADC1

ADC2

ADC3

IF

16b

AHB3

External memory controller (FSMC)

SRAM, PSRAM, NOR Flash,

PC Card (ATA), NAND Flash

DMA2

Flash up to

1 MB

SRAM 112 KB

SRAM 16 KB

AHB2 168 MHz

AHB1 168 MHz

Reset & control

AHB/APB2 AHB/APB1

WWDG

TIM6

TIM7

@V

DDA

DAC1

DAC2

DMA1

16b

16b

ITF

@V

DDA

RC HS

RC L S

P L L1&2

RNG

Camera interface

USB

OTG FS

VDD

POR reset

Int

Power managmt

Voltage regulator

3.3 to 1.2 V

@V

DD

Supply supervision

POR/PDR

BOR

PVD

@V

DD

@V

DDA

XTAL OSC

4- 16MHz

IWDG

PWR interface

@V

BAT

XTAL 32 kHz

RTC

AWU

Backup register

4 KB BKPSRAM

TIM2

TIM3

TIM4

TIM5

32b

16b

16b

32b

TIM12

TIM13

16b

16b

TIM14

16b

USART2

USART3 smcard irDA smcard irDA

UART4

UART5

SP2/I2S2

SP3/I2S3

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS bxCAN1 bxCAN2

CLK, NE [3:0], A[23:0],

D[31:0], OEN, WEN,

NBL[3:0], NL, NREG,

NWAIT/IORDY, CD

NIORD, IOWR, INT[2:3]

INTN, NIIS16 as AF

HSYNC, VSYNC

PUIXCLK, D[13:0]

DP

DM

ID, VBUS, SOF

VDD = 1.8 to 3.6 V

VSS

VCAP1, VCPA2

VDDA, VSSA

NRST

OSC_IN

OSC_OUT

VBAT = 1.65 to 3.6 V

OSC32_IN

OSC32_OUT

RTC_AF1

RTC_AF1

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

4 channels

2 channels as AF

1 channel as AF

1 channel as AF

RX, TX as AF

CTS, RTS as AF

RX, TX as AF

CTS, RTS as AF

RX, TX as AF

RX, TX as AF

MOSI/SD, MISO/SD_ext, SCK/CK

NSS/WS, MCK as AF

MOSI/SD, MISO/SD_ext, SCK/CK

NSS/WS, MCK as AF

SCL, SDA, SMBA as AF

SCL, SDA, SMBA as AF

SCL, SDA, SMBA as AF

TX, RX

TX, RX

DAC1_OUT as AF

DAC2_OUT as AF

MS19920V3

1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to

APB1 are clocked from TIMxCLK either up to 84 MHz or 168 MHz, depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2. The camera interface and ethernet are available only on STM32F407xx devices.

18/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

2.2.1 ARM

®

Cortex™-M4F core with embedded Flash and SRAM

Note:

The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software.

Figure 5

shows the general block diagram of the STM32F40x family.

Cortex-M4F is binary compatible with Cortex-M3.

2.2.3

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM

®

Cortex™-M4F processors. It balances the inherent performance advantage of the ARM Cortex-M4F over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 210 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 168 MHz.

Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the

MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

The STM32F40x devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for storing programs and data.

DocID022152 Rev 4 19/185

Description

2.2.5

STM32F405xx, STM32F407xx

CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.7

All STM32F40x products embed:

Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM

RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.

4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or V

BAT mode.

Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB

HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

20/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

64-Kbyte

CCM data RAM

ARM

Cortex-M4

Figure 6. Multi-AHB matrix

GP

DMA1

GP

DMA2

MAC

Ethernet

USB OTG

HS

Description

2.2.8

S0 S1 S2 S3 S4 S5 S6 S7

M0

ICODE

M1

DCODE

M2

M3

M4

M5

M6

Flash memory

SRAM1

112 Kbyte

SRAM2

16 Kbyte

AHB1 peripherals

AHB2 peripherals

FSMC

Static MemCtl

Bus matrix-S

APB1

APB2 ai18490c

DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth

(AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

SPI and I

2

S

I

2

C

USART

General-purpose, basic and advanced-control timers TIMx

DAC

SDIO

Camera interface (DCMI)

ADC.

DocID022152 Rev 4 21/185

Description STM32F405xx, STM32F407xx

2.2.9 Flexible static memory controller (FSMC)

The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip

Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,

NOR Flash and NAND Flash.

Functionality overview:

Write FIFO

Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.2.10 Nested vectored interrupt controller (NVIC)

The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16 interrupt lines of the Cortex™-M4F.

Closely coupled NVIC gives low-latency interrupt processing

Interrupt entry vector table address passed directly to the core

Allows early processing of interrupts

Processing of late arriving, higher-priority interrupts

Support tail chaining

Processor state automatically saved

Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

2.2.12 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The

16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL

22/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the three AHB buses, the high-speed APB

(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 168 MHz while the maximum frequency of the high-speed APB domains is

84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz.

The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I

2

S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

At startup, boot pins are used to select one out of three boot options:

Boot from user Flash

Boot from system memory

Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB

OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).

2.2.14 Power supply schemes

Note:

V

DD

= 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V

DD

pins.

• V

SSA

, V

DDA

= 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V

DDA

and V

SSA

must be connected to V

DD

and V

SS

, respectively.

V

BAT

= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V

DD

is not present.

Refer to

Figure 21: Power supply scheme

for more details.

V

DD

/V

DDA

minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to

Section : Internal reset OFF ).

Refer to Table 2

in order to identify the packages supporting this option.

2.2.15 Power supply supervisor

Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On all other packages, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V

DD threshold, V

POR/PDR

or V

BOR

is below a specified

, without the need for an external reset circuit.

DocID022152 Rev 4 23/185

Description STM32F405xx, STM32F407xx

The device also features an embedded programmable voltage detector (PVD) that monitors the V

DD

/V

DDA

power supply and compares it to the V

PVD

threshold. An interrupt can be generated when V higher than the V

DD

PVD

/V

DDA

drops below the V

PVD

threshold and/or when V

DD

/V

DDA

threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

is

Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin.

An external power supply supervisor should monitor V

DD reset mode as long as V

DD

and should maintain the device in

is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to

Figure 7: Power supply supervisor interconnection with internal reset OFF

.

Figure 7. Power supply supervisor interconnection with internal reset OFF

V

DD

External V

DD

power supply supervisor

Ext. reset controller active when

V

DD

< 1.7 V or 1.8 V

(1)

PDR_ON

NRST

Application reset signal (optional)

V

DD

MS31383V3

1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.

The V

DD

specified threshold, below which the device must be maintained under reset, is

1.8 V (see

Figure 7

). This supply voltage can drop to 1.7 V when the device operates in the

0 to 70 °C temperature range.

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

• The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled

The brownout reset (BOR) circuitry is disabled

• The embedded programmable voltage detector (PVD) is disabled

V

BAT

functionality is no more available and V

BAT

pin should be connected to V

DD

All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset through the PDR_ON signal.

24/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Figure 8. PDR_ON and NRST control with internal reset OFF

V DD

Description

PDR = 1.7 V or 1.8 V

(1) time

Reset by other source than power supply supervisor

NRST

PDR_ON PDR_ON time

MS19009V6

1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.

The regulator has four operating modes:

Regulator ON

– Main regulator mode (MR)

– Low power regulator (LPR)

– Power-down

Regulator OFF

Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding

BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when regulator is ON:

MR is used in the nominal regulation mode (With different voltage scaling in Run)

In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.

Refer to

Table 14: General operating conditions

.

LPR is used in the Stop modes

The LP regulator mode is configured by software when entering Stop mode.

Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost)

DocID022152 Rev 4 25/185

Description STM32F405xx, STM32F407xx

Two external ceramic capacitors should be connected on V

CAP_1

& V

CAP_2

pin. Refer to

Figure 21: Power supply scheme

and

Figure 16: VCAP_1/VCAP_2 operating conditions

.

All packages have regulator ON feature.

Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V

12

voltage source through V

CAP_1

and V

CAP_2

pins.

Since the internal voltage scaling is not manage internally, the external voltage value must be aligned with the targetted maximum frequency. Refer to

Table 14: General operating conditions

.

The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

Refer to

Figure 21: Power supply scheme

When the regulator is OFF, there is no more internal monitoring on V

12 supply supervisor should be used to monitor the V

12

. An external power

of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V

12 power domain.

In regulator OFF mode the following features are no more supported:

PA0 cannot be used as a GPIO pin since it allows to reset a part of the V

12 domain which is not reset by the NRST pin.

logic power

As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.

Figure 9. Regulator OFF

V

12

External V

CAP_1/2

power supply supervisor

Ext. reset controller active when V

CAP_1/2

< Min V

12

Application reset signal (optional)

V

DD

V

12

PA0

V

DD

NRST

BYPASS_REG

V

CAP_1

V

CAP_2 ai18498V4

26/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Note:

Description

The following conditions must be respected:

V

DD

should always be higher than V between power domains.

CAP_1

and V

CAP_2 to avoid current injection

If the time for V

CAP_1

and V and V

CAP_2 reach V

12

CAP_2 to reach V

12 minimum value is faster than the time for

V

DD

to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V

CAP_1

minimum value and until V

DD reaches 1.8 V (see

Figure 10

).

Otherwise, if the time for V

CAP_1 than the time for V

DD

Figure 11

).

and V

CAP_2 to reach V

12

minimum value is slower

to reach 1.8 V, then PA0 could be asserted low externally (see

If V

CAP_1

and V

CAP_2

go below V

12

minimum value and V a reset must be asserted on PA0 pin.

DD

is higher than 1.8 V, then

The minimum value of V

12

depends on the maximum frequency targeted in the application

(see Table 14: General operating conditions

).

Figure 10. Startup in regulator OFF mode: slow V

- power-down reset risen after V

CAP_1

/V

CAP_2

DD

slope stabilization

V

DD

PDR = 1.7 V or 1.8 V

(2)

V

12

Min V

12

V

CAP_1

/V

CAP_2 time

NRST

1. This figure is valid both whatever the internal reset mode (onON or OFFoff).

2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges.

time ai18491e

DocID022152 Rev 4 27/185

Description STM32F405xx, STM32F407xx

Figure 11. Startup in regulator OFF mode: fast V

DD

- power-down reset risen before V

CAP_1

/V

CAP_2

slope stabilization

V

DD

PDR = 1.7 V or 1.8 V

(2)

V

12

Min V

12

V

CAP_1

/V

CAP_2 time

NRST

PA0 asserted externally time ai18492d

1. This figure is valid both whatever the internal reset mode (onON or offOFF).

2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges.

2.2.17 Regulator ON/OFF and internal reset ON/OFF availability

LQFP64

LQFP100

LQFP144

LQFP176

Table 3. Regulator ON/OFF and internal reset ON/OFF availability

Regulator ON Regulator OFF Internal reset ON

Internal reset

OFF

Yes No

Yes No

WLCSP90

UFBGA176

Yes

BYPASS_REG set to V

SS

Yes

BYPASS_REG set to V

DD

Yes

PDR_ON set to

V

DD

Yes

PDR_ON connected to an external power supply supervisor

28/185

The backup domain of the STM32F405xx and STM32F407xx includes:

The real-time clock (RTC)

• 4 Kbytes of backup SRAM

20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power

RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC

DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in V

BAT

and standby mode. This memory area is disabled by default to minimize power consumption (see

Section 2.2.19: Low-power modes

). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V

DD

power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see

Section 2.2.19: Low-power modes

).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V

DD

supply when present or from the V

BAT

pin.

The STM32F405xx and STM32F407xx support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of

SRAM and registers. All clocks in the V

12

domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V

12

domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering

DocID022152 Rev 4 29/185

Description STM32F405xx, STM32F407xx

Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the V

12

domain is controlled by an external power.

2.2.20 V

BAT

operation

Note:

The V

BAT

pin allows to power the device V supercapacitor, or from V present.

DD

BAT

domain from an external battery, an external when no external battery and an external supercapacitor are

V

BAT

operation is activated when V

DD

is not present.

The V

BAT

pin supplies the RTC, the backup registers and the backup SRAM.

When the microcontroller is supplied from V

BAT do not exit it from V

BAT

operation.

, external interrupts and RTC alarm/events

When PDR_ON pin is not connected to V

DD more available and V

BAT

(internal reset OFF), the V

pin should be connected to V

DD

.

BAT

functionality is no

2.2.21 Timers and watchdogs

The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 4

compares the features of the advanced-control, general-purpose and basic timers.

Timer type

Timer

Table 4. Timer feature comparison

Counter resolutio n

Counter type

Prescaler factor

DMA request generatio n

Capture/ compare channels

Complementar y output

Max interface clock

(MHz)

Max timer clock

(MHz)

Advanced

-control

TIM1,

TIM8

16-bit

Up,

Down,

Up/dow n

Any integer between 1 and 65536

Yes 4 Yes 84 168

30/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

Timer type

General purpose

Basic

Timer

TIM2,

TIM5

TIM3,

TIM4

TIM9

TIM10

,

TIM11

TIM12

TIM13

,

TIM14

TIM6,

TIM7

Counter resolutio n

Table 4. Timer feature comparison (continued)

Counter type

Prescaler factor

DMA request generatio n

Capture/ compare channels

Complementar y output

Max interface clock

(MHz)

Max timer clock

(MHz)

32-bit

16-bit

16-bit

16-bit

16-bit

16-bit

16-bit

Up,

Down,

Up/dow n

Up,

Down,

Up/dow n

Any integer between 1 and 65536

Any integer between 1 and 65536

Up

Up

Up

Up

Up

Any integer between 1 and 65536

Any integer between 1 and 65536

Any integer between 1 and 65536

Any integer between 1 and 65536

Any integer between 1 and 65536

Yes

Yes

No

No

No

No

Yes

4

4

2

1

2

1

0

No

No

No

No

No

No

No

42

42

84

84

42

42

42

84

84

168

168

84

84

84

Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers.

Their 4 independent channels can be used for:

Input capture

• Output compare

PWM generation (edge- or center-aligned modes)

• One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose

TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-

100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

DocID022152 Rev 4 31/185

Description STM32F405xx, STM32F407xx

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F40x devices

(see

Table 4

for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the

Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

32/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

A 24-bit downcounter

Autoreload capability

Maskable system interrupt generation when the counter reaches 0

Programmable clock source.

2.2.22 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz) . They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware

CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at up to 5.25 Mbit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

DocID022152 Rev 4 33/185

Description STM32F405xx, STM32F407xx

USART name

Standard features

Modem

(RTS/

CTS)

LIN

Table 5. USART feature comparison

SPI master irDA

Smartcard

(ISO 7816)

Max. baud rate in Mbit/s

(oversampling by 16)

Max. baud rate in Mbit/s

(oversampling by 8)

APB mapping

USART1

USART2

USART3

UART4

UART5

USART6

X

X

X

X

X

X

X

X

X

-

-

X

X

X

X

X

X

X

X

X

X

-

-

X

X

X

X

X

X

X

X

X

X

-

-

X

5.25

2.62

2.62

2.62

2.62

5.25

10.5

5.25

5.25

5.25

5.25

10.5

APB2

(max.

84 MHz)

APB1

(max.

42 MHz)

APB1

(max.

42 MHz)

APB1

(max.

42 MHz)

APB1

(max.

42 MHz)

APB2

(max.

84 MHz)

2.2.24 Serial peripheral interface (SPI)

The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

Two standard I

2

S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel.

Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I

2

S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I

2

Sx can be served by the DMA controller.

2.2.26 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I

2

S application. It allows to achieve error-free I

2

S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

34/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

The PLLI2S configuration can be modified to manage an I

2

S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I

2

S flow with an external PLL (or Codec output).

2.2.27 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System

Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory

Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

Peripheral available only on the STM32F407xx devices.

The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller

(MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The

STM32F407xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz

(MII) from the STM32F407xx.

The STM32F407xx includes the following features:

Supports 10 and 100 Mbit/s rates

• Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F40x reference manual for details)

Tagged MAC frame support (VLAN support)

• Half-duplex (CSMA/CD) and full-duplex operation

MAC control sublayer (control frames) support

• 32-bit CRC generation and removal

Several address filtering modes for physical and multicast address (multicast and group addresses)

• 32-bit status code for each transmitted or received frame

Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.

• Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008

(PTP V2) with the time stamp comparator connected to the TIM2 input

Triggers interrupt when system time becomes greater than target time

DocID022152 Rev 4 35/185

Description STM32F405xx, STM32F407xx

2.2.29 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1

Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one

CAN is used). 256 bytes of SRAM are allocated for each CAN.

The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the

USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing

Supports the session request protocol (SRP) and host negotiation protocol (HNP)

4 bidirectional endpoints

8 host channels with periodic OUT support

HNP/SNP/IP inside (no need for any external resistor)

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

36/185

The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to

480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG

1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

• Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing

Supports the session request protocol (SRP) and host negotiation protocol (HNP)

• 6 bidirectional endpoints

12 host channels with periodic OUT support

• Internal FS OTG PHY support

External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.

• Internal USB DMA

HNP/SNP/IP inside (no need for any external resistor)

• for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

DocID022152 Rev 4

STM32F405xx, STM32F407xx Description

The camera interface is not available in STM32F405xx devices.

STM32F407xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

Programmable polarity for the input pixel clock and synchronization signals

Parallel data communication can be 8-, 10-, 12- or 14-bit

Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)

Supports continuous mode or snapshot (a single frame) mode

Capability to automatically crop the image

2.2.33 Random number generator (RNG)

All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 84 MHz.

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

Simultaneous sample and hold

Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,

TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally

DocID022152 Rev 4 37/185

Description STM32F405xx, STM32F407xx

connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

• two DAC converters: one for each output channel

8-bit or 12-bit monotonic output

• left or right data alignment in 12-bit mode

• synchronized update capability

• noise-wave generation

• triangular-wave generation

• dual DAC channel independent or simultaneous conversions

DMA capability for each channel

• external triggers for conversion

• input voltage reference V

REF+

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with

SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the

STM32F40x through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

38/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

3 Pinouts and pin description

Pinouts and pin description

Figure 12. STM32F40x LQFP64 pinout

VBAT

PC13

PC14

PC15

PH0

PH1

NRST

PC0

PC1

PC2

PC3

VSSA

VDDA

PA0_WKUP

PA1

PA2

1

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

48

2

47

3 46

4

45

5

44

6

43

7

42

8

41

9

LQFP64

40

10

39

11

38

12

37

13

36

14

35

15

34

16

17 18 19 20 21 22 23 24 25 26 27 28

33

29 30 31 32

VDD

VCAP_2

PA13

PA12

PA11

PA10

PA9

PA8

PC9

PC8

PC7

PC6

PB15

PB14

PB13

PB12 ai18493b

DocID022152 Rev 4 39/185

Pinouts and pin description STM32F405xx, STM32F407xx

Figure 13. STM32F40x LQFP100 pinout

VDD

PH0

PH1

NRST

PC0

PC1

PC2

PC3

VDD

VSSA

VREF+

VDDA

PA0

PA1

PA2

PE2

PE3

PE4

PE5

PE6

VBAT

PC13

PC14

PC15

VSS

15

16

17

18

19

20

21

22

23

24

25

9

10

11

12

13

14

6

7

4

5

8

1

2

3

LQFP100

PC9

PC8

PC7

PC6

PD15

PD14

PD13

PD12

PD11

PD10

PD9

PD8

PB15

PB14

PB13

PB12

VDD

VSS

VCAP_2

PA13

PA12

PA 11

PA10

PA9

PA8

61

60

59

58

57

56

55

54

53

52

51

67

66

65

64

63

62

75

74

73

72

71

70

69

68 ai18495c

40/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Figure 14. STM32F40x LQFP144 pinout

Pinouts and pin description

18

19

20

21

22

12

13

14

15

16

17

6

7

8

9

10

11

3

4

5

1

2

32

33

34

35

36

23

24

25

26

27

28

29

30

31

V

SS

V

DD

PF6

PF7

PF8

PF9

PF10

PF0

PF1

PF2

PF3

PF4

PF5

PE2

PE3

PE4

PE5

PE6

VBAT

PC13

PC14

PC15

PH0

PH1

NRST

PC0

PC1

PC2

PC3

V

DD

V

SSA

V

REF+

V

DDA

PA0

PA1

PA2

LQFP144

91

90

89

88

87

97

96

95

94

93

92

86

85

84

108

107

106

105

104

103

102

101

100

99

98

77

76

75

74

73

83

82

81

80

79

78

PD12

PD11

PD10

PD9

PD8

PB15

PB14

PB13

PB12

PG4

PG3

PG2

PD15

PD14

V

DD

V

SS

PD13

V

DD

V

SS

V

CAP_2

PA13

PA12

PA11

PA10

PA9

PA8

PC9

PC8

PC7

PC6

V

DD

V

SS

PG8

PG7

PG6

PG5 ai18496b

DocID022152 Rev 4 41/185

Pinouts and pin description

Figure 15. STM32F40x LQFP176 pinout

STM32F405xx, STM32F407xx

14

15

16

17

18

19

9

10

11

12

13

20

21

22

23

24

6

7

4

5

8

1

2

3

36

37

38

39

40

31

32

33

34

35

41

42

43

44

25

26

27

28

29

30

V

SS

V

DD

PF0

PF1

PF2

PF3

PF4

PF5

V

SS

V

DD

PF6

PE2

PE3

PE4

PE5

PE6

V

BAT

PI8

PC13

PC14

PC15

PI9

PI10

PI11

PF7

PF8

PF9

PF10

PH0

PH1

NRST

PC0

PC1

PC2

PC3

V

DDA

V

SSA

V

REF+

V

DDA

PA0

PA1

PA2

PH2

PH3

LQFP176

101

100

99

98

97

96

95

94

93

92

91

90

89

PG3

PG2

PD15

PD14

V

DD

V

SS

PD13

PD12

PD11

PD10

PD9

PC9

PC8

PC7

PC6

V

DD

V

SS

PG8

PG7

PG6

PG5

PG4

PI1

PI0

PH15

PH14

PH13

V

DD

V

SS

V

CAP_2

PA13

PA12

PA11

PA10

PA9

PA8

PD8

PB15

PB14

PB13

PB12

V

DD

V

SS

PH12

117

116

115

114

113

112

123

122

121

120

119

118

111

110

109

108

132

131

130

129

128

127

126

125

124

107

106

105

104

MS19916V3

42/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Pinouts and pin description

1

K

L

M

G

H

J

N

P

R

C

D

E

F

A

B

PC15

PH0

PH1

NRST

PF7

PF10

VSSA

VREF-

VREF+

VDDA

PE3

PE4

VBAT

PC13

PC14

4

Figure 16. STM32F40x UFBGA176 ballout

5 6 7 8 9 10 11 2

PA1

PA2

PA3

PF6

PF9

PC0

PE2

PE5

PI7

PI8

PF0

VSS

PE1

PE6

PI6

PI9

PI10

VDD

VSS

PF2

VDD

PF1

PH3

PH4

PF3 PF4 PH5

PE0

PB9

PI5

PI4

PI11

PH2

PF5

PF8

PC1

VDD

BYPASS_

REG

PC2 PC3

PA0

PA6

PA4

PA5

PC4

PC5

PA7 PB1 PB0

PB8 PB5 PG14

PB7 PB6 PG15

VDD

PDR_ON

VDD

VSS

BOOT0 VSS

VSS

VSS

VSS

VSS

VSS

PB2

PF13

PF12

PF11

PG1

PG0

PF15

PF14

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

PG13

PG12

VDD

VSS

VSS

VDD

PE8

PE7

VSS

VSS

VSS

VSS

VSS

PB4

PG11

VDD

VSS

VSS

VSS

VSS

VSS

VSS

PB3

PG10

PG9

PD4

VSS

VDD

PE9

PE10

VCAP_1 PH6

VDD

PE11

PE12

PE13

PE14

PE15

PD7

PD6

PD5

PD3

12 13 14 15

PH12

PH11

PH8

VSS

VSS

VDD

PC12

PD0

PD1

PD2

PH13

PA15

PC11

PI3

PH15

PH14

PA14

PC10

VSS VCAP_2 PC9

PI2

PI1

PI0

PH7

PB12

PB10

VDD

VDD

VDD

PG5

PH10

PH9

PD12

PB13

PB11

PC8

PG8

PG7

PG4

PD15

PD14

PD11

PD9

PA13

PA12

PA11

PA10

PA9

PA8

PD10

PD8

PB14 PB15

PC7

PC6

PG6

PG3

PG2

PD13 ai18497b

1. This figure shows the package top view.

DocID022152 Rev 4 43/185

Pinouts and pin description STM32F405xx, STM32F407xx

A

B

C

10

Figure 17. STM32F40x WLCSP90 ballout

9 8 7 6 5 4 3 2

VBAT PC13 PDR_ON BOOT0 PB4

1

PD7 PD4 PC12

PA14

VDD

PC14

PC15 VDD PB7 PB3 PD6 PD2 PA15

PI1

VCAP_2

PA0 VSS PB9 PB6 PD5 PD1 PC11 PI0 PA12 PA11

D PC2

BYPASS_

REG

PB8

PB5 PD0 PC10

PA13

PA10 PA9

E

PA8

PC0

PC3

VSS

VSS VDD VSS VDD PC9 PC8 PC7

F

G

PH0

PH1

PA1

NRST VDDA PA5

VDD PE10 PE14 VCAP_1 PC6 PD14 PD15

PB0 PE7 PE13 PE15 PD10 PD12 PD11

H VSSA PA3 PA6 PB1 PE8 PE12 PB10 PD9 PD8 PB15

J PA2 PA4

PA7

PB2

PE9 PE11 PB11 PB12 PB14

PB13

MS30402V1

Name

Pin name

Pin type

1. This figure shows the package bump view.

I/O structure

Table 6. Legend/abbreviations used in the pinout table

Abbreviation Definition

Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name

S

I

Supply pin

Input only pin

I/O

FT

TTa

B

RST

Input / output pin

5 V tolerant I/O

3.3 V tolerant I/O directly connected to ADC

Dedicated BOOT0 pin

Bidirectional reset pin with embedded weak pull-up resistor

Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Notes

Alternate functions

Functions selected through GPIOx_AFR registers

Additional functions

Functions directly selected/enabled through peripheral registers

44/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Pin number

Pinouts and pin description

Table 7. STM32F40x pin and ball definitions

Pin name

(function after reset)

(1)

Alternate functions Additional functions

-

-

-

-

-

-

-

-

-

-

-

1 1 A2 1

2 2 A1 2

3 3 B1 3

4 4 B2 4

5 5 B3 5

1 A10 6

-

6

-

C1

D2

6

7

PE2

PE3

PE4

PE5

PE6

V

BAT

PI8

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

S

I/O FT

(2)(

3)

TRACECLK/ FSMC_A23 /

ETH_MII_TXD3 /

EVENTOUT

TRACED0/FSMC_A19 /

EVENTOUT

TRACED1/FSMC_A20 /

DCMI_D4/ EVENTOUT

TRACED2 / FSMC_A21 /

TIM9_CH1 / DCMI_D6 /

EVENTOUT

TRACED3 / FSMC_A22 /

TIM9_CH2 / DCMI_D7 /

EVENTOUT

EVENTOUT

2 A9 7 7 D1 8 PC13 I/O FT

(2)

(3)

EVENTOUT

-

-

3 B10 8

-

8 E1 9

4 B9 9 9 F1 10

D3 11

PC14/OSC32_IN

(PC14)

I/O FT

PC15/

OSC32_OUT

(PC15)

PI9

I/O FT

I/O FT

(2)(

3)

(2)(

3)

-

-

-

-

-

-

-

E3

E4

12

13

PI10

PI11

I/O FT

I/O FT

EVENTOUT

EVENTOUT

CAN1_RX / EVENTOUT

ETH_MII_RX_ER /

EVENTOUT

OTG_HS_ULPI_DIR /

EVENTOUT

-

-

-

-

-

F2 14

F3 15

10 E2 16

V

SS

V

DD

PF0

S

S

I/O FT

FSMC_A0 / I2C2_SDA /

EVENTOUT

RTC_TAMP1,

RTC_TAMP2,

RTC_TS

RTC_OUT,

RTC_TAMP1,

RTC_TS

OSC32_IN

(4)

OSC32_OUT

(4)

DocID022152 Rev 4 45/185

Pinouts and pin description STM32F405xx, STM32F407xx

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

-

-

-

-

-

-

-

-

-

-

12 H2 18

13 J2 19

-

-

-

14

15

J3

K3

20

21

C9 10 16 G2 22

B8 11 17 G3 23

-

-

-

-

-

-

-

-

11 H3 17

18 K2 24

19 K1 25

20 L3 26

21

22

5 F10 12 23 G1 29

6 F9 13 24 H1 30

7 G10 14 25 J1 31

8 E10 15 26

9 16 27

L2

L1

M2

M3

27

28

32

33

10 D10 17 28 M4 34

PF1

PF2

PF3

PF4

PF5

V

SS

V

DD

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

S

S

(4)

(4)

(4)

FSMC_A1 / I2C2_SCL /

EVENTOUT

FSMC_A2 / I2C2_SMBA /

EVENTOUT

FSMC_A3/EVENTOUT

FSMC_A4/EVENTOUT

FSMC_A5/EVENTOUT

PF6

PF7

PF8

PF9

I/O FT

I/O FT

I/O FT

I/O FT

PF10

PH0/OSC_IN

(PH0)

PH1/OSC_OUT

(PH1)

I/O FT

I/O FT

I/O FT

NRST I/O

RS

T

(4)

(4)

(4)

(4)

(4)

TIM10_CH1 /

FSMC_NIORD/

EVENTOUT

TIM11_CH1/FSMC_NREG

/ EVENTOUT

TIM13_CH1 /

FSMC_NIOWR/

EVENTOUT

TIM14_CH1 / FSMC_CD/

EVENTOUT

FSMC_INTR/ EVENTOUT

EVENTOUT

EVENTOUT

PC0

PC1

PC2

I/O FT

I/O FT

I/O FT

(4)

(4)

(4)

OTG_HS_ULPI_STP/

EVENTOUT

ETH_MDC/ EVENTOUT

SPI2_MISO /

OTG_HS_ULPI_DIR /

ETH_MII_TXD2

/I2S2ext_SD/ EVENTOUT

ADC3_IN9

ADC3_IN14

ADC3_IN15

ADC3_IN4

ADC3_IN5

ADC3_IN6

ADC3_IN7

ADC3_IN8

OSC_IN

OSC_OUT

(4)

(4)

ADC123_IN10

ADC123_IN11

ADC123_IN12

46/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Pinouts and pin description

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

11

-

E9 18 29

19 30

M5

G3

35

36

12 H10 20 31 M1 37

N1 -

13 G9 22 33

14 C10 23 34

R1

N3

39

40

15 F8 24 35 N2 41

16 J10 25 36 P2 42

-

-

-

-

-

-

-

-

-

21 32 P1 38

-

-

-

-

-

-

-

-

F4

G4

H4

J4

43

44

45

46

PC3

V

V

V

REF

V

REF+

V

DD

SSA

DDA

PA0/WKUP

(PA0)

PA1

PA2

PH2

PH3

PH4

PH5

I/O FT

(4)

SPI2_MOSI / I2S2_SD /

OTG_HS_ULPI_NXT /

ETH_MII_TX_CLK/

EVENTOUT

ADC123_IN13

S

S

S

S

S

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

(5)

(4)

(4)

USART2_CTS/

UART4_TX/

ETH_MII_CRS /

TIM2_CH1_ETR/

TIM5_CH1 / TIM8_ETR/

EVENTOUT

USART2_RTS /

UART4_RX/

ETH_RMII_REF_CLK /

ETH_MII_RX_CLK /

TIM5_CH2 / TIM2_CH2/

EVENTOUT

USART2_TX/TIM5_CH3 /

TIM9_CH1 / TIM2_CH3 /

ETH_MDIO/ EVENTOUT

ETH_MII_CRS/EVENTOU

T

ADC123_IN0/WKUP

(4

)

ADC123_IN1

ADC123_IN2

ETH_MII_COL/EVENTOU

T

I2C2_SCL /

OTG_HS_ULPI_NXT/

EVENTOUT

I2C2_SDA/ EVENTOUT

DocID022152 Rev 4 47/185

Pinouts and pin description STM32F405xx, STM32F407xx

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

17 H9 26 37 R2 47 PA3 I/O FT

(4)

USART2_RX/TIM5_CH4 /

TIM9_CH2 / TIM2_CH4 /

OTG_HS_ULPI_D0 /

ETH_MII_COL/

EVENTOUT

ADC123_IN3

18 E5 27 38

D9

V

SS

S

L4 48 BYPASS_REG I FT

19 E4 28 39 K4 49 V

DD

S

20 J9 29 40

21 G8 30 41

22 H8 31 42

23

24

25

J8

-

-

32 43

33 44

34 45

26 G7 35 46

N4

P4

P3

R3

N5

P5

R5

50

51

52

53

54

55

56

PA4

PA5

PA6

PA7 I/O FT

PC4

PC5

PB0

I/O TTa

I/O TTa

I/O FT

I/O FT

I/O FT

I/O FT

(4)

(4)

(4)

(4)

(4)

(4)

(4)

SPI1_NSS / SPI3_NSS /

USART2_CK /

DCMI_HSYNC /

OTG_HS_SOF/ I2S3_WS/

EVENTOUT

SPI1_SCK/

OTG_HS_ULPI_CK /

TIM2_CH1_ETR/

TIM8_CH1N/ EVENTOUT

ADC12_IN4

/DAC_OUT1

ADC12_IN5/DAC_OU

T2

SPI1_MISO /

TIM8_BKIN/TIM13_CH1 /

DCMI_PIXCLK /

TIM3_CH1 / TIM1_BKIN/

EVENTOUT

SPI1_MOSI/ TIM8_CH1N

/ TIM14_CH1/TIM3_CH2/

ETH_MII_RX_DV /

TIM1_CH1N /

ETH_RMII_CRS_DV/

EVENTOUT

ADC12_IN6

ADC12_IN7

ETH_RMII_RX_D0 /

ETH_MII_RX_D0/

EVENTOUT

ETH_RMII_RX_D1 /

ETH_MII_RX_D1/

EVENTOUT

TIM3_CH3 / TIM8_CH2N/

OTG_HS_ULPI_D1/

ETH_MII_RXD2 /

TIM1_CH2N/ EVENTOUT

ADC12_IN14

ADC12_IN15

ADC12_IN8

48/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Pinouts and pin description

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

28 J7 37 48 M6 58

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

49 R6 59

50 P6 60

51 M8 61

52 N8 62

53 N6 63

54 R7 64

55 P7 65

56 N7 66

57 M7 67

G6 38 58 R8 68

H6 39 59 P8 69

-

-

J6 40 60 P9 70

-

-

61

62

M9

N9

71

72

F6 41 63 R9 73

J5 42 64 P10 74

H5 43 65 R10 75

G5 44 66 N11 76

27 H7 36 47 R4 57 PB1

PB2/BOOT1

(PB2)

PF11

PF12

V

SS

V

DD

PF13

PF14

PF15

PG0

PG1

PE7

PE8

PE9

V

SS

V

DD

PE10

PE11

PE12

PE13

I/O FT

(4)

TIM3_CH4 / TIM8_CH3N/

OTG_HS_ULPI_D2/

ETH_MII_RXD3 /

TIM1_CH3N/ EVENTOUT

I/O FT

I/O FT

I/O FT

S

S

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

EVENTOUT

DCMI_D12/ EVENTOUT

FSMC_A6/ EVENTOUT

FSMC_A7/ EVENTOUT

FSMC_A8/ EVENTOUT

FSMC_A9/ EVENTOUT

FSMC_A10/ EVENTOUT

FSMC_A11/ EVENTOUT

FSMC_D4/TIM1_ETR/

EVENTOUT

FSMC_D5/ TIM1_CH1N/

EVENTOUT

FSMC_D6/TIM1_CH1/

EVENTOUT

I/O FT

S

S

I/O FT

I/O FT

I/O FT

I/O FT

FSMC_D7/TIM1_CH2N/

EVENTOUT

FSMC_D8/TIM1_CH2/

EVENTOUT

FSMC_D9/TIM1_CH3N/

EVENTOUT

FSMC_D10/TIM1_CH3/

EVENTOUT

ADC12_IN9

DocID022152 Rev 4 49/185

Pinouts and pin description STM32F405xx, STM32F407xx

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

F5 45 67

G4 46 68 R11

29 H4 47 69 R12 79

30

-

-

-

J4

-

M12 85

M13 86

-

-

L13 87

L12 88

-

-

-

-

-

-

-

-

K12 89

H12 90

J12 91

50/185

P11

48 70 R13

77

78

80

31 F4 49 71 M10 81

32 50 72 N10 82

M11 83

N12 84

PH9

PH10

PH11

PH12

V

SS

V

DD

PE14

PE15

PB10

PB11

V

CAP_1

V

DD

PH6

PH7

PH8

I/O FT

I/O FT

I/O FT

I/O FT

FSMC_D11/TIM1_CH4/

EVENTOUT

FSMC_D12/TIM1_BKIN/

EVENTOUT

SPI2_SCK / I2S2_CK /

I2C2_SCL/ USART3_TX /

OTG_HS_ULPI_D3 /

ETH_MII_RX_ER /

TIM2_CH3/ EVENTOUT

I2C2_SDA/USART3_RX/

OTG_HS_ULPI_D4 /

ETH_RMII_TX_EN/

ETH_MII_TX_EN /

TIM2_CH4/ EVENTOUT

S

S

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

S

S

DocID022152 Rev 4

I2C2_SMBA / TIM12_CH1

/ ETH_MII_RXD2/

EVENTOUT

I2C3_SCL /

ETH_MII_RXD3/

EVENTOUT

I2C3_SDA /

DCMI_HSYNC/

EVENTOUT

I2C3_SMBA /

TIM12_CH2/ DCMI_D0/

EVENTOUT

TIM5_CH1 / DCMI_D1/

EVENTOUT

TIM5_CH2 / DCMI_D2/

EVENTOUT

TIM5_CH3 / DCMI_D3/

EVENTOUT

STM32F405xx, STM32F407xx Pinouts and pin description

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

33

34

35

36 H1 54 76 R15

-

-

J3

J1

J2

51 73 P12

52 74 P13

53 75 R14

92

93

94

95

H2 55 77 P15 96

H3 56 78 P14 97

G3 57 79 N15

G1 58 80 N14

98

99

G2 59 81 N13 100

PB12

PB13

PB14

PB15

PD8

PD9

PD10

PD11

PD12

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

SPI2_NSS / I2S2_WS /

I2C2_SMBA/

USART3_CK/ TIM1_BKIN

/ CAN2_RX /

OTG_HS_ULPI_D5/

ETH_RMII_TXD0 /

ETH_MII_TXD0/

OTG_HS_ID/ EVENTOUT

SPI2_SCK / I2S2_CK /

USART3_CTS/

TIM1_CH1N /CAN2_TX /

OTG_HS_ULPI_D6 /

ETH_RMII_TXD1 /

ETH_MII_TXD1/

EVENTOUT

SPI2_MISO/ TIM1_CH2N

/ TIM12_CH1 /

OTG_HS_DM/

USART3_RTS /

TIM8_CH2N/I2S2ext_SD/

EVENTOUT

SPI2_MOSI / I2S2_SD/

TIM1_CH3N / TIM8_CH3N

/ TIM12_CH2 /

OTG_HS_DP/

EVENTOUT

FSMC_D13 /

USART3_TX/ EVENTOUT

FSMC_D14 /

USART3_RX/ EVENTOUT

FSMC_D15 /

USART3_CK/ EVENTOUT

FSMC_CLE /

FSMC_A16/USART3_CT

S/ EVENTOUT

FSMC_ALE/

FSMC_A17/TIM4_CH1 /

USART3_RTS/

EVENTOUT

OTG_HS_VBUS

RTC_REFIN

DocID022152 Rev 4 51/185

Pinouts and pin description STM32F405xx, STM32F407xx

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

-

-

-

-

-

-

60 82 M15 101

-

83

84

102

J13 103

F2 61 85 M14 104

F1 62 86 L14 105

-

-

-

-

-

-

-

-

-

-

-

-

-

-

87 L15 106

88 K15 107

89 K14 108

90 K13 109

91 J15 110

92 J14 111

-

-

-

-

-

93 H14 112

94 G12 113

95 H13 114

37 F3 63 96 H15 115

PG8

V

SS

V

DD

PC6

PD13

V

SS

V

DD

PD14

PD15

PG2

PG3

PG4

PG5

PG6

PG7

I/O FT

S

S

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

S

S

I/O FT

38 E1 64 97 G15 116

39 E2 65 98 G14 117

PC7

PC8

FSMC_A18/TIM4_CH2/

EVENTOUT

FSMC_D0/TIM4_CH3/

EVENTOUT/ EVENTOUT

FSMC_D1/TIM4_CH4/

EVENTOUT

FSMC_A12/ EVENTOUT

FSMC_A13/ EVENTOUT

FSMC_A14/ EVENTOUT

FSMC_A15/ EVENTOUT

FSMC_INT2/ EVENTOUT

FSMC_INT3

/USART6_CK/

EVENTOUT

USART6_RTS /

ETH_PPS_OUT/

EVENTOUT

I/O FT

I/O FT

I2S2_MCK /

TIM8_CH1/SDIO_D6 /

USART6_TX /

DCMI_D0/TIM3_CH1/

EVENTOUT

I2S3_MCK /

TIM8_CH2/SDIO_D7 /

USART6_RX /

DCMI_D1/TIM3_CH2/

EVENTOUT

TIM8_CH3/SDIO_D0

/TIM3_CH3/ USART6_CK

/ DCMI_D2/ EVENTOUT

52/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Pinouts and pin description

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

40 E3 66 99 F14 118

41 D1 67 100 F15 119

42 D2 68 101 E15 120

43 D3 69 102 D15 121

44 C1 70 103 C15 122

PC9

PA8

PA9

PA10

PA11

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

45 C2 71 104 B15 123

C3 E14 131

PA12 I/O FT

46 D4 72 105 A15 124

47 B1 73 106 F13 125

E7 74 107 F12 126

48 E6 75 108 G13 127

PA13

(JTMS-SWDIO)

V

CAP_2

V

SS

V

DD

I/O FT

S

S

S

E12 128 PH13 I/O FT

E13 129

D13 130

PH14

PH15

I/O FT

I/O FT

PI0 I/O FT

I2S_CKIN/ MCO2 /

TIM8_CH4/SDIO_D1 /

/I2C3_SDA / DCMI_D3 /

TIM3_CH4/ EVENTOUT

MCO1 / USART1_CK/

TIM1_CH1/ I2C3_SCL/

OTG_FS_SOF/

EVENTOUT

USART1_TX/ TIM1_CH2 /

I2C3_SMBA / DCMI_D0/

EVENTOUT

USART1_RX/ TIM1_CH3/

OTG_FS_ID/DCMI_D1/

EVENTOUT

USART1_CTS / CAN1_RX

/ TIM1_CH4 /

OTG_FS_DM/

EVENTOUT

USART1_RTS /

CAN1_TX/ TIM1_ETR/

OTG_FS_DP/

EVENTOUT

JTMS-SWDIO/

EVENTOUT

OTG_FS_VBUS

TIM8_CH1N / CAN1_TX/

EVENTOUT

TIM8_CH2N / DCMI_D4/

EVENTOUT

TIM8_CH3N / DCMI_D11/

EVENTOUT

TIM5_CH4 / SPI2_NSS /

I2S2_WS / DCMI_D13/

EVENTOUT

DocID022152 Rev 4 53/185

Pinouts and pin description STM32F405xx, STM32F407xx

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

-

B2

-

-

-

D14 132

C14 133

PI1

PI2

I/O FT

I/O FT

C13 134 PI3 I/O FT

-

-

-

-

-

D9 135

C9 136

49 A2 76 109 A14 137

V

SS

V

DD

PA14

(JTCK/SWCLK)

S

S

I/O FT

50 B3 77 110 A13 138

PA15

(JTDI)

I/O FT

51 D5 78 111 B14 139

52 C4 79 112 B13 140

53 A3 80 113 A12 141

D6 81 114 B12 142

C5 82 115 C12 143

54 B4 83 116 D12 144

PC10

PC11

PC12

PD0

PD1

PD2

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

SPI2_SCK / I2S2_CK /

DCMI_D8/ EVENTOUT

TIM8_CH4 /SPI2_MISO /

DCMI_D9 / I2S2ext_SD/

EVENTOUT

TIM8_ETR / SPI2_MOSI /

I2S2_SD / DCMI_D10/

EVENTOUT

JTCK-SWCLK/

EVENTOUT

JTDI/ SPI3_NSS/

I2S3_WS/TIM2_CH1_ET

R / SPI1_NSS /

EVENTOUT

SPI3_SCK / I2S3_CK/

UART4_TX/SDIO_D2 /

DCMI_D8 / USART3_TX/

EVENTOUT

UART4_RX/ SPI3_MISO /

SDIO_D3 /

DCMI_D4/USART3_RX /

I2S3ext_SD/ EVENTOUT

UART5_TX/SDIO_CK /

DCMI_D9 / SPI3_MOSI

/I2S3_SD / USART3_CK/

EVENTOUT

FSMC_D2/CAN1_RX/

EVENTOUT

FSMC_D3 / CAN1_TX/

EVENTOUT

TIM3_ETR/UART5_RX/

SDIO_CMD / DCMI_D11/

EVENTOUT

54/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Pinouts and pin description

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

-

-

-

-

-

-

-

-

84 117 D11 145

A4 85 118 D10 146

C6 86 119 C11 147

-

-

-

-

120 D8 148

121 C8 149

B5 87 122 B11 150

A5 88 123 A11 151

124 C10 152

125 B10 153

126 B9 154

127 B8 155

128 A8 156

129 A7 157

PD3

PD4

PD5

V

SS

V

DD

PD6

PD7

PG9

PG10

PG11

PG12

PG13

PG14

I/O FT

I/O FT

I/O FT

S

S

I/O FT

I/O FT

FSMC_CLK/

USART2_CTS/

EVENTOUT

FSMC_NOE/

USART2_RTS/

EVENTOUT

FSMC_NWE/USART2_TX

/ EVENTOUT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

I/O FT

FSMC_NWAIT/

USART2_RX/ EVENTOUT

USART2_CK/FSMC_NE1/

FSMC_NCE2/

EVENTOUT

USART6_RX /

FSMC_NE2/FSMC_NCE3

/ EVENTOUT

FSMC_NCE4_1/

FSMC_NE3/ EVENTOUT

FSMC_NCE4_2 /

ETH_MII_TX_EN/

ETH _RMII_TX_EN/

EVENTOUT

FSMC_NE4 /

USART6_RTS/

EVENTOUT

FSMC_A24 /

USART6_CTS

/ETH_MII_TXD0/

ETH_RMII_TXD0/

EVENTOUT

FSMC_A25 / USART6_TX

/ETH_MII_TXD1/

ETH_RMII_TXD1/

EVENTOUT

DocID022152 Rev 4 55/185

Pinouts and pin description STM32F405xx, STM32F407xx

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

-

E8 130 D7 158

F7 131 C7 159

132 B7 160

V

SS

V

DD

PG15

S

S

I/O FT

55 B6 89 133 A10 161

PB3

(JTDO/

TRACESWO)

I/O FT

56 A6 90 134 A9 162

PB4

(NJTRST)

I/O FT

57 D7 91 135 A6

58 C7 92 136 B6

59 B7 93 137 B5

61 D8 95 139 A5

62 C8 96 140 B4

163

164

165

60 A7 94 138 D6 166

167

168

PB5

PB6

PB7

BOOT0

PB8

PB9

I/O FT

I/O FT

I/O FT

I B

I/O FT

I/O FT

USART6_CTS /

DCMI_D13/ EVENTOUT

JTDO/ TRACESWO/

SPI3_SCK / I2S3_CK /

TIM2_CH2 / SPI1_SCK/

EVENTOUT

NJTRST/ SPI3_MISO /

TIM3_CH1 / SPI1_MISO /

I2S3ext_SD/ EVENTOUT

I2C1_SMBA/ CAN2_RX /

OTG_HS_ULPI_D7 /

ETH_PPS_OUT/TIM3_CH

2 / SPI1_MOSI/

SPI3_MOSI / DCMI_D10 /

I2S3_SD/ EVENTOUT

I2C1_SCL/ TIM4_CH1 /

CAN2_TX /

DCMI_D5/USART1_TX/

EVENTOUT

I2C1_SDA / FSMC_NL /

DCMI_VSYNC /

USART1_RX/ TIM4_CH2/

EVENTOUT

TIM4_CH3/SDIO_D4/

TIM10_CH1 / DCMI_D6 /

ETH_MII_TXD3 /

I2C1_SCL/ CAN1_RX/

EVENTOUT

SPI2_NSS/ I2S2_WS /

TIM4_CH4/ TIM11_CH1/

SDIO_D5 / DCMI_D7 /

I2C1_SDA / CAN1_TX/

EVENTOUT

V

PP

56/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Pinouts and pin description

Table 7. STM32F40x pin and ball definitions (continued)

Pin number

Pin name

(function after reset)

(1)

Alternate functions Additional functions

-

-

-

97 141 A4

98 142 A3

169

170

PE0

PE1

I/O FT

I/O FT

TIM4_ETR / FSMC_NBL0

/ DCMI_D2/ EVENTOUT

FSMC_NBL1 / DCMI_D3/

EVENTOUT

63 99 D5 -

A8 143 C6 171

64 A1

10

0

144 C5 172

V

V

SS

PDR_ON

DD

S

I

S

FT

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D4 173

C4 174

C3 175

C2 176

PI4

PI5

PI6

PI7

I/O FT

I/O FT

I/O FT

I/O FT

TIM8_BKIN / DCMI_D5/

EVENTOUT

TIM8_CH1 /

DCMI_VSYNC/

EVENTOUT

TIM8_CH2 / DCMI_D6/

EVENTOUT

TIM8_CH3 / DCMI_D7/

EVENTOUT

1. Function availability depends on the chosen device.

2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current

(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:

- The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These I/Os must not be used as a current source (e.g. to drive an LED).

3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset

ON mode), then PA0 is used as an internal Reset (active low).

Pins

(1)

PE2

PE3

CF

Table 8. FSMC pin definition

FSMC

NOR/PSRAM/

SRAM

NOR/PSRAM Mux NAND 16 bit

LQFP100

(2)

A23

A19

A23

A19

Yes

Yes

WLCSP90

(2)

DocID022152 Rev 4 57/185

Pinouts and pin description STM32F405xx, STM32F407xx

PE7

PE8

PE9

PE10

PE11

PE12

PF12

PF13

PF14

PF15

PG0

PG1

PE13

PE14

PE15

PD8

PD9

PD10

PD11

PF5

PF6

PF7

PF8

PF9

PF10

PF1

PF2

PF3

PF4

PE4

PE5

PE6

PF0

Pins

(1)

D10

D11

D12

D13

D14

D15

D4

D5

D6

D7

D8

D9

CF

A6

A7

A8

A9

A10

A0

A1

A2

A3

A4

A5

NIORD

NREG

NIOWR

CD

INTR

D4

D5

D6

D7

D8

D9

A6

A7

A8

A9

A10

A11

D10

D11

D12

D13

D14

D15

A16

Table 8. FSMC pin definition (continued)

FSMC

LQFP100

(2)

NOR/PSRAM/

SRAM

NOR/PSRAM Mux NAND 16 bit

A1

A2

A3

A4

A5

A20

A21

A22

A0

A20

A21

A22

DA10

DA11

DA12

DA13

DA14

DA15

A16

DA4

DA5

DA6

DA7

DA8

DA9

D10

D11

D12

D13

D14

D15

CLE

D4

D5

D6

D7

D8

D9

Yes

Yes

Yes

Yes

Yes

Yes

-

-

-

-

-

-

Yes

Yes

Yes

Yes

Yes

Yes

Yes

-

-

-

-

-

-

-

-

-

-

Yes

Yes

Yes

-

WLCSP90

(2)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

58/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Pinouts and pin description

Pins

(1)

CF

Table 8. FSMC pin definition (continued)

FSMC

LQFP100

(2)

NOR/PSRAM/

SRAM

NOR/PSRAM Mux NAND 16 bit

WLCSP90

(2)

PD12

PD13

PD14

PD15

PG2

PG3

PG4

PG5

D0

D1

PG6

PG7

PD0

PD1

PD3

PD4

D2

D3

PD5

PD6

PD7

NOE

NWE

NWAIT

PG9

PG10 NCE4_1

PG11 NCE4_2

PG12

PG13

PG14

PB7

PE0

PE1

A17

A18

D0

D1

A12

A13

A14

A15

D2

D3

CLK

NOE

NWE

NWAIT

NE1

NE2

NE3

NE4

A24

A25

NADV

NBL0

NBL1

A17

A18

DA0

DA1

DA2

DA3

CLK

NOE

NWE

NWAIT

NE1

NE2

NE3

NE4

A24

A25

NADV

NBL0

NBL1

ALE

D0

D1

INT2

INT3

D2

D3

NOE

NWE

NWAIT

NCE2

NCE3

Yes

1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on smaller packages are given in the dedicated package column.

2. Ports F and G are not available in devices delivered in 100-pin packages.

-

-

-

-

Yes

Yes

-

-

Yes

Yes

-

-

-

-

-

Yes

Yes

Yes

Yes

-

Yes

-

-

-

Yes

Yes

Yes

Yes

Yes

Yes

-

-

-

-

-

Yes

Yes

Yes

Yes

-

-

-

-

Yes

Yes

Yes

Yes

DocID022152 Rev 4 59/185

AF0 AF1 AF2 AF3 AF4 AF5

Table 9. Alternate function mapping

AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13

Port

SYS TIM1/2 TIM3/4/5

TIM8/9/10/1

1

I2C1/2/3

SPI1/SPI2/

I2S2/I2S2ext

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

OTG_FS/

OTG_HS

ETH

FSMC/SDIO/

OTG_FS

DCMI

AF14 AF15

PA5

PA6

Port A

PA7

PA0

PA1

PA2

PA3

PA4

PA8

PA9

MCO1

PA10

PA11

PA12

PA13

PA14

PA15

JTMS-

SWDIO

JTCK-

SWCLK

JTDI

TIM2_CH1_E

TR

TIM2_CH2 TIM5_CH2

TIM2_CH3 TIM5_CH3 TIM9_CH1

TIM2_CH4 TIM5_CH4 TIM9_CH2

SPI1_NSS

SPI3_NSS

I2S3_WS

TIM2_CH1_E

TR

TIM8_CH1N SPI1_SCK

TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO

TIM1_CH1N TIM3_CH2 TIM8_CH1N

TIM1_CH2

TIM 5_CH1 TIM8_ETR

I2C3_SMB

A

SPI1_MOSI

USART2_CTS UART4_TX

USART2_TX

USART2_RX

USART2_CK

ETH_MII_CRS

ETH_MII

_RX_CLK

ETH_RMII__REF

_CLK

ETH_MDIO

OTG_HS_ULPI_

D0

ETH _MII_COL

OTG_HS_ULPI_

TIM13_CH1

CK

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

OTG_HS_SO

F

DCMI_HSYN

C

EVENTOUT

EVENTOUT

DCMI_PIXCK EVENTOUT

TIM14_CH1

ETH_MII _RX_DV

ETH_RMII

_CRS_DV

EVENTOUT

USART1_TX

EVENTOUT

DCMI_D0 EVENTOUT

TIM1_CH3

TIM1_CH4

TIM1_ETR

USART1_RX OTG_FS_ID

USART1_CTS CAN1_RX OTG_FS_DM

USART1_RTS CAN1_TX OTG_FS_DP

EVENTOUT

EVENTOUT

EVENTOUT

TIM 2_CH1

TIM 2_ETR

SPI1_NSS

SPI3_NSS/

I2S3_WS

EVENTOUT

EVENTOUT

AF0 AF1 AF2 AF3 AF4 AF5

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13

Port

SYS TIM1/2 TIM3/4/5

TIM8/9/10/1

1

I2C1/2/3

SPI1/SPI2/

I2S2/I2S2ext

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

OTG_FS/

OTG_HS

ETH

FSMC/SDIO/

OTG_FS

DCMI

AF14 AF15

PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N

OTG_HS_ULPI_

D1

OTG_HS_ULPI_

D2

ETH _MII_RXD2

ETH _MII_RXD3 PB1

PB2

PB9

TIM1_CH3N TIM3_CH4 TIM8_CH3N

PB3

PB4

PB5

PB6

PB7

Port B

PB8

JTDO/

TRACES

WO

NJTRST TIM3_CH1

TIM3_CH2

I2C1_SMB

A

SPI1_MISO

SPI1_MOSI

TIM4_CH1 I2C1_SCL

SPI3_MOSI

I2S3_SD

I2S3ext_SD

CAN2_RX

OTG_HS_ULPI_

D7

USART1_TX CAN2_TX

ETH _PPS_OUT

TIM4_CH2 I2C1_SDA USART1_RX

SPI2_NSS

I2S2_WS

PB10

PB11

PB12

PB13

TIM1_BKIN

TIM1_CH1N

I2C2_SMB

A

SPI2_NSS

I2S2_WS

SPI2_SCK

I2S2_CK

I2S2ext_SD

DCMI_D10

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

OTG_HS_ULPI_

D3

ETH_ MII_RX_ER

D4

ETH _MII_TX_EN

ETH

_RMII_TX_EN

ETH _MII_TXD0

ETH _RMII_TXD0

ETH _MII_TXD1

ETH _RMII_TXD1

OTG_HS_ID

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

OTG_HS_DM EVENTOUT PB14

PB15

RTC_

REFIN

FSMC_NL

DCMI_VSYN

C

Port

AF0

SYS

PC0

PC1

PC2

PC3

PC4

PC5

Port C

PC6

PC7

PC8

PC9

PC10

PC11

PC12

PC13

PC14

PC15

MCO2

AF1

TIM1/2

AF2

TIM3/4/5

AF3 AF4

TIM8/9/10/1

1

I2C1/2/3

AF5

SPI1/SPI2/

I2S2/I2S2ext

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

AF9

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

SPI2_MISO

SPI2_MOSI

I2S2_SD

I2S2ext_SD

AF10 AF11

OTG_FS/

OTG_HS

ETH

OTG_HS_ULPI_

STP

ETH_MDC

OTG_HS_ULPI_

DIR

OTG_HS_ULPI_

NXT

ETH _MII_TXD2

ETH

_MII_TX_CLK

ETH_MII_RXD0

ETH_RMII_RXD0

ETH _MII_RXD1

ETH _RMII_RXD1

TIM3_CH1 TIM8_CH1

TIM3_CH2 TIM8_CH2

TIM3_CH3 TIM8_CH3

I2S2_MCK

I2S3ext_SD

I2S3_MCK

USART6_TX

USART6_RX

USART6_CK

SPI3_SCK/

I2S3_CK

SPI3_MISO/

SPI3_MOSI

I2S3_SD

USART3_TX/

USART3_RX UART4_RX

USART3_CK UART5_TX

AF12

FSMC/SDIO/

OTG_FS

AF13

DCMI

SDIO_D3 DCMI_D4

SDIO_CK DCMI_D9

AF14

SDIO_D6 DCMI_D0

SDIO_D7 DCMI_D1

SDIO_D0 DCMI_D2

SDIO_D1 DCMI_D3

AF15

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

Port

Port D

PD7

PD12

PD13

PD14

PD15

PD8

PD9

PD10

PD11

PD0

PD1

PD2

PD3

PD4

PD5

PD6

AF0

SYS

AF1

TIM1/2

AF2

TIM3/4/5

AF3 AF4

TIM8/9/10/1

1

I2C1/2/3

AF5

SPI1/SPI2/

I2S2/I2S2ext

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

AF9

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

AF10

OTG_FS/

OTG_HS

AF11

ETH

AF12

FSMC/SDIO/

OTG_FS

AF13

DCMI

AF14 AF15

TIM3_ETR

USART2_CTS

USART2_RTS

USART2_TX

USART2_RX

USART2_CK

USART3_TX

USART3_RX

USART3_CK

USART3_CTS

TIM4_CH1 USART3_RTS

TIM4_CH2

TIM4_CH3

TIM4_CH4

FSMC_CLK EVENTOUT

FSMC_NOE EVENTOUT

FSMC_NWE EVENTOUT

FSMC_NWAIT EVENTOUT

FSMC_NE1/

FSMC_NCE2

EVENTOUT

FSMC_D13 EVENTOUT

FSMC_D14 EVENTOUT

FSMC_D15 EVENTOUT

FSMC_A16 EVENTOUT

FSMC_A17 EVENTOUT

FSMC_A18 EVENTOUT

FSMC_D0 EVENTOUT

FSMC_D1 EVENTOUT

Port

AF0

SYS

AF1

TIM1/2

AF2

TIM3/4/5

AF3 AF4

TIM8/9/10/1

1

I2C1/2/3

AF5

SPI1/SPI2/

I2S2/I2S2ext

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

AF9

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

PE0

PE1

TIM4_ETR

PE2

Port E

PE7

PE8

PE9

PE10

PE11

PE3

PE4

PE5

PE6

PE12

PE13

PE14

PE15

TRACECL

K

TRACED0

TRACED1

TRACED2 TIM9_CH1

TRACED3 TIM9_CH2

TIM1_ETR

TIM1_CH1N

TIM1_CH1

TIM1_CH2N

TIM1_CH2

TIM1_CH3N

TIM1_CH3

TIM1_CH4

TIM1_BKIN

AF10

OTG_FS/

OTG_HS

AF11 AF12 AF13

AF14 AF15

ETH

FSMC/SDIO/

OTG_FS

DCMI

ETH _MII_TXD3

FSMC_NBL0 DCMI_D2

FSMC_NBL1 DCMI_D3

FSMC_A23

EVENTOUT

EVENTOUT

EVENTOUT

FSMC_A19 EVENTOUT

FSMC_A20 DCMI_D4 EVENTOUT

FSMC_A21 DCMI_D6

FSMC_A22 DCMI_D7

EVENTOUT

EVENTOUT

FSMC_D4 EVENTOUT

FSMC_D5 EVENTOUT

FSMC_D6 EVENTOUT

FSMC_D7 EVENTOUT

FSMC_D8 EVENTOUT

FSMC_D9 EVENTOUT

FSMC_D10 EVENTOUT

FSMC_D11 EVENTOUT

FSMC_D12 EVENTOUT

Port

Port F

PF3

PF4

PF5

PF6

PF7

PF8

PF0

PF1

PF2

PF9

PF10

PF11

PF12

PF13

PF14

PF15

AF0

SYS

AF1

TIM1/2

AF2

TIM3/4/5

AF3 AF4

TIM8/9/10/1

1

I2C1/2/3

AF5

SPI1/SPI2/

I2S2/I2S2ext

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

AF9

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

I2C2_SDA

I2C2_SCL

I2C2_

SMBA

AF10

OTG_FS/

OTG_HS

TIM10_CH1

TIM11_CH1

TIM13_CH1

AF11

ETH

AF12 AF13

AF14 AF15

FSMC/SDIO/

OTG_FS

DCMI

FSMC_A0 EVENTOUT

FSMC_A1 EVENTOUT

FSMC_A2 EVENTOUT

FSMC_A3 EVENTOUT

FSMC_A4 EVENTOUT

FSMC_A5 EVENTOUT

FSMC_NIORD EVENTOUT

FSMC_NREG EVENTOUT

FSMC_

NIOWR

EVENTOUT

FSMC_INTR EVENTOUT

DCMI_D12 EVENTOUT

FSMC_A6 EVENTOUT

FSMC_A7 EVENTOUT

FSMC_A8 EVENTOUT

FSMC_A9 EVENTOUT

Port

PG4

PG5

PG6

PG7

PG0

PG1

PG2

PG3

PG8

Port G

PG9

PG10

PG11

PG12

PG13

PG14

PG15

AF0

SYS

AF1

TIM1/2

AF2

TIM3/4/5

AF3 AF4

TIM8/9/10/1

1

I2C1/2/3

AF5

SPI1/SPI2/

I2S2/I2S2ext

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

AF9

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

AF10

OTG_FS/

OTG_HS

USART6_

RTS

USART6_RX

USART6_

RTS

UART6_CTS

USART6_TX

USART6_

CTS

AF11

ETH

AF12 AF13

AF14 AF15

FSMC/SDIO/

OTG_FS

DCMI

FSMC_A10 EVENTOUT

FSMC_A11 EVENTOUT

FSMC_A12 EVENTOUT

FSMC_A13 EVENTOUT

FSMC_A14 EVENTOUT

FSMC_A15 EVENTOUT

FSMC_INT2 EVENTOUT

ETH _PPS_OUT

FSMC_NE2/

FSMC_NCE3

FSMC_

NCE4_1/

FSMC_NE3

ETH _MII_TX_EN

ETH _RMII_

TX_EN

FSMC_NCE4_

2

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

FSMC_NE4 EVENTOUT

ETH _MII_TXD0

ETH _RMII_TXD0

ETH _MII_TXD1

ETH _RMII_TXD1

FSMC_A24 EVENTOUT

FSMC_A25 EVENTOUT

DCMI_D13 EVENTOUT

Port

PH6

Port H

PH7

PH8

PH0

PH1

PH2

PH3

PH4

PH5

PH9

PH10

PH11

PH12

PH13

PH14

PH15

AF0

SYS

AF1

TIM1/2

AF2

TIM3/4/5

AF3 AF4

TIM8/9/10/1

1

I2C1/2/3

AF5

SPI1/SPI2/

I2S2/I2S2ext

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

AF9

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

I2C2_SCL

I2C2_SDA

I2C2_SMB

A

I2C3_SCL

I2C3_SDA

I2C3_SMB

A

AF10

OTG_FS/

OTG_HS

OTG_HS_ULPI_

NXT

AF11

ETH

ETH _MII_CRS

ETH _MII_COL

ETH _MII_RXD3

AF12

FSMC/SDIO/

OTG_FS

AF13

DCMI

AF14 AF15

DCMI_HSYN

C

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

TIM5_CH1

TIM5_CH2

TIM5_CH3

TIM8_CH1N

TIM8_CH2N

TIM8_CH3N

CAN1_TX

DCMI_D1 EVENTOUT

DCMI_D2 EVENTOUT

DCMI_D3 EVENTOUT

EVENTOUT

DCMI_D4 EVENTOUT

DCMI_D11 EVENTOUT

Port

PI0

Port I

PI5

PI6

PI7

PI8

PI9

PI10

PI11

PI1

PI2

PI3

PI4

AF0

SYS

AF1

TIM1/2

AF2

TIM3/4/5

TIM5_CH4

AF3 AF4

TIM8/9/10/1

1

I2C1/2/3

AF5

SPI1/SPI2/

I2S2/I2S2ext

Table 9. Alternate function mapping (continued)

AF6 AF7 AF8

SPI3/I2Sext/

I2S3

USART1/2/3/

I2S3ext

AF9

UART4/5/

USART6

CAN1/

CAN2/

TIM12/13/14

TIM8_CH4 SPI2_MISO

TIM8_ETR

SPI2_MOSI

I2S2_SD

TIM8_BKIN

SPI2_NSS

I2S2_WS

SPI2_SCK

I2S2_CK

I2S2ext_SD

TIM8_CH1

TIM8_CH2

TIM8_CH3

AF10

OTG_FS/

OTG_HS

AF11

ETH

CAN1_RX

OTG_HS_ULPI_

DIR

ETH _MII_RX_ER

AF12

FSMC/SDIO/

OTG_FS

AF13

DCMI

AF14 AF15

DCMI_D13 EVENTOUT

DCMI_D8 EVENTOUT

DCMI_D9 EVENTOUT

DCMI_D10 EVENTOUT

DCMI_D5 EVENTOUT

DCMI_

VSYNC

EVENTOUT

DCMI_D6 EVENTOUT

DCMI_D7 EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

EVENTOUT

STM32F405xx, STM32F407xx Memory mapping

The memory map is shown in

Figure 18

.

Figure 18. STM32F40x memory map

Reserved

CORTEX-M4 internal peripherals

Reserved

AHB3

Reserved

0xE010 0000 - 0xFFFF FFFF

0xE000 0000 - 0xE00F FFFF

0xA000 1000 - 0xDFFF FFFF

0xA000 0FFF

0x6000 0000

0x5006 0C00 - 0x5FFF FFFF

0x5006 0BFF

AHB2

0xFFFF FFFF

512-Mbyte

block 7

Cortex-M4's internal peripherals

0xE000 0000

0xDFFF FFFF

512-Mbyte

block 6

Not used

0xC000 0000

0xBFFF FFFF

512-Mbyte

block 5

FSMC registers

0xA000 0000

0x9FFF FFFF

512-Mbyte

block 4

FSMC bank 3

& bank4

0x8000 0000

0x7FFF FFFF

512-Mbyte

block 3

FSMC bank1

& bank2

0x6000 0000

0x5FFF FFFF

512-Mbyte

block 2

Peripherals

0x4000 0000

0x3FFF FFFF

512-Mbyte

block 1

SRAM

0x2000 0000

0x1FFF FFFF

512-Mbyte

block 0

Code

0x0000 0000

Reserved

SRAM (16 KB aliased by bit-banding)

SRAM (112 KB aliased by bit-banding)

0x2002 0000 - 0x3FFF FFFF

0x2001 C000 - 0x2001 FFFF

0x2000 0000 - 0x2001 BFFF

Reserved

Option Bytes

Reserved

System memory + OTP

Reserved

0x1FFF C008 - 0x1FFF FFFF

0x1FFF C000 - 0x1FFF C007

0x1FFF 7A10 - 0x1FFF 7FFF

0x1FFF 0000 - 0x1FFF 7A0F

0x1001 0000 - 0x1FFE FFFF

CCM data RAM

(64 KB data SRAM)

0x1000 0000 - 0x1000 FFFF

Reserved

0x0810 0000 - 0x0FFF FFFF

Flash

Reserved

Aliased to Flash, system memory or SRAM depending on the BOOT pins

0x0800 0000

-

0x080F FFFF

0x0010 0000 - 0x07FF FFFF

0x0000 0000 - 0x000F FFFF

Reserved

AHB1

Reserved

APB2

Reserved

APB1

0x5000 0000

0x4008 0000 - 0x4FFF FFFF

0x4007 FFFF

0x4002 000

0x4001 5800 - 0x4001 FFFF

0x4001 57FF

0x4001 0000

0x4000 7800 - 0x4000 FFFF

0x4000 7FFF

DocID022152 Rev 4

0x4000 0000 ai18513f

69/185

Memory mapping STM32F405xx, STM32F407xx

Bus

Cortex-M4

AHB3

AHB2

Table 10. STM32F40x register boundary addresses

Boundary address Peripheral

0xE00F FFFF - 0xFFFF FFFF

0xE000 0000 - 0xE00F FFFF

0xA000 1000 - 0xDFFF FFFF

0xA000 0000 - 0xA000 0FFF

0x9000 0000 - 0x9FFF FFFF

0x8000 0000 - 0x8FFF FFFF

0x7000 0000 - 0x7FFF FFFF

0x6000 0000 - 0x6FFF FFFF

0x5006 0C00- 0x5FFF FFFF

0x5006 0800 - 0x5006 0BFF

0x5005 0400 - 0x5006 07FF

0x5005 0000 - 0x5005 03FF

0x5004 0000- 0x5004 FFFF

0x5000 0000 - 0x5003 FFFF

0x4008 0000- 0x4FFF FFFF

Reserved

Cortex-M4 internal peripherals

Reserved

FSMC control register

FSMC bank 4

FSMC bank 3

FSMC bank 2

FSMC bank 1

Reserved

RNG

Reserved

DCMI

Reserved

USB OTG FS

Reserved

70/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Memory mapping

Table 10. STM32F40x register boundary addresses (continued)

Bus Boundary address Peripheral

AHB1

0x4004 0000 - 0x4007 FFFF

0x4002 9400 - 0x4003 FFFF

0x4002 9000 - 0x4002 93FF

0x4002 8C00 - 0x4002 8FFF

0x4002 8800 - 0x4002 8BFF

0x4002 8400 - 0x4002 87FF

0x4002 8000 - 0x4002 83FF

0x4002 6800 - 0x4002 7FFF

0x4002 6400 - 0x4002 67FF

0x4002 6000 - 0x4002 63FF

0x4002 5000 - 0x4002 5FFF

0x4002 4000 - 0x4002 4FFF

0x4002 3C00 - 0x4002 3FFF

0x4002 3800 - 0x4002 3BFF

0x4002 3400 - 0x4002 37FF

0x4002 3000 - 0x4002 33FF

0x4002 2400 - 0x4002 2FFF

0x4002 2000 - 0x4002 23FF

0x4002 1C00 - 0x4002 1FFF

0x4002 1800 - 0x4002 1BFF

0x4002 1400 - 0x4002 17FF

0x4002 1000 - 0x4002 13FF

0x4002 0C00 - 0x4002 0FFF

0x4002 0800 - 0x4002 0BFF

0x4002 0400 - 0x4002 07FF

0x4002 0000 - 0x4002 03FF

0x4001 5800- 0x4001 FFFF

USB OTG HS

Reserved

ETHERNET MAC

Reserved

DMA2

DMA1

Reserved

BKPSRAM

Flash interface register

RCC

Reserved

CRC

Reserved

GPIOI

GPIOH

GPIOG

GPIOF

GPIOE

GPIOD

GPIOC

GPIOB

GPIOA

Reserved

DocID022152 Rev 4 71/185

Memory mapping STM32F405xx, STM32F407xx

Table 10. STM32F40x register boundary addresses (continued)

Bus Boundary address Peripheral

APB2

0x4001 4C00 - 0x4001 57FF

0x4001 4800 - 0x4001 4BFF

0x4001 4400 - 0x4001 47FF

0x4001 4000 - 0x4001 43FF

0x4001 3C00 - 0x4001 3FFF

0x4001 3800 - 0x4001 3BFF

0x4001 3400 - 0x4001 37FF

0x4001 3000 - 0x4001 33FF

0x4001 2C00 - 0x4001 2FFF

0x4001 2400 - 0x4001 2BFF

0x4001 2000 - 0x4001 23FF

0x4001 1800 - 0x4001 1FFF

0x4001 1400 - 0x4001 17FF

0x4001 1000 - 0x4001 13FF

0x4001 0800 - 0x4001 0FFF

0x4001 0400 - 0x4001 07FF

0x4001 0000 - 0x4001 03FF

0x4000 7800- 0x4000 FFFF

Reserved

TIM11

TIM10

TIM9

EXTI

SYSCFG

Reserved

SPI1

SDIO

Reserved

ADC1 - ADC2 - ADC3

Reserved

USART6

USART1

Reserved

TIM8

TIM1

Reserved

72/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Memory mapping

Table 10. STM32F40x register boundary addresses (continued)

Bus Boundary address Peripheral

APB1

0x4000 7800 - 0x4000 7FFF

0x4000 7400 - 0x4000 77FF

0x4000 7000 - 0x4000 73FF

0x4000 6C00 - 0x4000 6FFF

0x4000 6800 - 0x4000 6BFF

0x4000 6400 - 0x4000 67FF

0x4000 6000 - 0x4000 63FF

0x4000 5C00 - 0x4000 5FFF

0x4000 5800 - 0x4000 5BFF

0x4000 5400 - 0x4000 57FF

0x4000 5000 - 0x4000 53FF

0x4000 4C00 - 0x4000 4FFF

0x4000 4800 - 0x4000 4BFF

0x4000 4400 - 0x4000 47FF

0x4000 4000 - 0x4000 43FF

0x4000 3C00 - 0x4000 3FFF

0x4000 3800 - 0x4000 3BFF

0x4000 3400 - 0x4000 37FF

0x4000 3000 - 0x4000 33FF

0x4000 2C00 - 0x4000 2FFF

0x4000 2800 - 0x4000 2BFF

0x4000 2400 - 0x4000 27FF

0x4000 2000 - 0x4000 23FF

0x4000 1C00 - 0x4000 1FFF

0x4000 1800 - 0x4000 1BFF

0x4000 1400 - 0x4000 17FF

0x4000 1000 - 0x4000 13FF

0x4000 0C00 - 0x4000 0FFF

0x4000 0800 - 0x4000 0BFF

0x4000 0400 - 0x4000 07FF

0x4000 0000 - 0x4000 03FF

Reserved

DAC

PWR

Reserved

CAN2

CAN1

Reserved

I2C3

I2C2

I2C1

UART5

UART4

USART3

USART2

I2S3ext

SPI3 / I2S3

SPI2 / I2S2

I2S2ext

TIM12

TIM7

TIM6

TIM5

TIM4

TIM3

TIM2

IWDG

WWDG

RTC & BKP Registers

Reserved

TIM14

TIM13

DocID022152 Rev 4 73/185

Electrical characteristics STM32F405xx, STM32F407xx

5.1.1

Unless otherwise specified, all voltages are referenced to V

SS

.

Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on

100% of the devices with an ambient temperature at T

A the selected temperature range).

= 25 °C and T

A

= T

A max (given by

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

Unless otherwise specified, typical data are based on T

A

= 25 °C, V

DD

1.8 V

≤ V tested.

DD

= 3.3 V (for the

≤ 3.6 V voltage range). They are given only as design guidelines and are not

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ)

.

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.5

The loading conditions used for pin parameter measurement are shown in

Figure 19

.

Pin input voltage

The input voltage measurement on a pin of the device is described in

Figure 20

.

Figure 19. Pin loading conditions Figure 20. Pin input voltage

74/185

C = 50 pF

STM32F pin

OSC_OUT (Hi-Z when

using HSE or LSE)

MS19011V1

VIN

STM32F pin

OSC_OUT (Hi-Z when

using HSE or LSE)

MS19010V1

DocID022152 Rev 4

STM32F405xx, STM32F407xx

5.1.6 Power supply scheme

VBAT =

1.65 to 3.6V

Figure 21. Power supply scheme

VBAT

Power switch

Electrical characteristics

Backup circuitry

(OSC32K,RTC,

Wakeup logic

Backup registers, backup RAM)

OUT

IN

IO

Logic

GPIOs

15 × 100 nF

+ 1 × 4.7 μF

2 × 2.2 μF

VDD

VCAP_1

VCAP_2

VDD

1/2/...14/15

VSS

1/2/...14/15

BYPASS_REG

PDR_ON

VDD

100 nF

+ 1 μF

100 nF

+ 1 μF

VDDA

VREF

VREF+

VREF-

VSSA

Voltage regulator

Reset controller

ADC

Analog:

RCs,

PLL,..

Kernel logic

(CPU, digital

& RAM)

Flash memory

MS19911V2

1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the

PCB to ensure the good functionality of the device.

2. To connect BYPASS_REG and PDR_ON pins, refer to

Section 2.2.16: Voltage regulator

and

Table 2.2.15:

Power supply supervisor

.

3. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.

4. The 4.7 µF ceramic capacitor must be connected to one of the V

DD

pin.

5. V

DDA

=V

DD

and V

SSA

=V

SS

.

DocID022152 Rev 4 75/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 22. Current consumption measurement scheme

IDD_VBAT

VBAT

IDD

VDD

5.2

VDDA

ai14126

Absolute maximum ratings

Stresses above the absolute maximum ratings listed in

Table 11: Voltage characteristics

,

Table 12: Current characteristics

, and

Table 13: Thermal characteristics

may cause

permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

V

Symbol

V

DD

V

–V

IN

SS

|

ΔV

DDx

|

|V

SSX

− V

SS

ESD(HBM)

Table 11. Voltage characteristics

Ratings

External main supply voltage (including V

DDA

,

Input voltage on five-volt tolerant pin

Input voltage on any other pin

Variations between different V

DD

(2)

power pins

V

DD

)

(1)

| Variations between all the different ground pins

Electrostatic discharge voltage (human body model)

Min Max

–0.3

4.0

V

SS

–0.3

V

DD

+4

V

SS

–0.3

4.0

50

50

see

Section 5.3.14:

Absolute maximum ratings (electrical sensitivity)

Unit

V mV

1. All main power (V , V

DDA

) and ground (V supply, in the permitted range.

SS

, V

SSA

) pins must always be connected to the external power

2. V

IN

maximum value must always be respected. Refer to

Table 12

for the values of the maximum allowed

injected current.

76/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol

Table 12. Current characteristics

Ratings Max.

Unit

I

I

VDD

VSS

I

INJ(PIN)

(2)

Total current into V

DD power lines (source)

(1)

Total current out of V

SS ground lines (sink)

(1)

Output current sunk by any I/O and control pin

150

150

25

I

IO

Output current source by any I/Os and control pin

Injected current on five-volt tolerant I/O

(3)

Injected current on any other pin

(4)

Total injected current (sum of all I/O and control pins)

(5)

25

–5/+0

±5 mA

ΣI

INJ(PIN)

(4)

±25

1. All main power (V , V

DDA

) and ground (V supply, in the permitted range.

SS

, V

SSA

) pins must always be connected to the external power

2. Negative injection disturbs the analog performance of the device. See note in

Section 5.3.20: 12-bit ADC characteristics

.

3. Positive injection is not possible on these I/Os. A negative injection is induced by V

never be exceeded. Refer to

Table 11

<V

SS

. I

for the values of the maximum allowed input voltage.

INJ(PIN)

must

4. A positive injection is induced by V

never be exceeded. Refer to

IN

>V

DD

while a negative injection is induced by V

IN

<V

SS

. I

INJ(PIN)

must

5. When several inputs are submitted to a current injection, the maximum

ΣI positive and negative injected currents (instantaneous values).

INJ(PIN)

is the absolute sum of the

Symbol

T

STG

T

J

Table 13. Thermal characteristics

Ratings

Storage temperature range

Maximum junction temperature

Value

–65 to +150

125

Unit

°C

°C

5.3.1 General operating conditions

Symbol

f

HCLK

Parameter

Table 14. General operating conditions

Internal AHB clock frequency

Conditions

VOS bit in PWR_CR register = 0

(1)

VOS bit in PWR_CR register= 1 f

PCLK1 f

PCLK2

V

DD

Internal APB1 clock frequency

Internal APB2 clock frequency

Standard operating voltage

Analog operating voltage

(ADC limited to 1.2 M samples)

V

DDA

(3)(4)

Analog operating voltage

(ADC limited to 1.4 M samples)

V

BAT

Backup operating voltage

Must be the same potential as

V

DD

(5)

1.8

(2)

2.4

1.65

Min Typ Max Unit

0 144

0

0

0

1.8

(2)

168

42

84

3.6

MHz

V

2.4

3.6

3.6

V

V

DocID022152 Rev 4 77/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

V

12

V

IN

P

D

T

A

T

J

Table 14. General operating conditions (continued)

Parameter Conditions Min

Regulator ON:

1.2 V internal voltage on

V

CAP_1

/V

CAP_2 pins

Regulator OFF:

1.2 V external voltage must be supplied from external regulator on V

CAP_1

/V

CAP_2 pins

VOS bit in PWR_CR register = 0

(1)

Max frequency 144MHz

VOS bit in PWR_CR register= 1

Max frequency 168MHz

Max frequency 144MHz

Max frequency 168MHz

Typ

1.08

1.14

1.20

1.26

1.10

1.14

1.20

1.26

Input voltage on RST and FT pins

(6)

Input voltage on TTa pins

Input voltage on B pin

Power dissipation at T

A for suffix 6 or T

A suffix 7

(7)

= 85 °C

= 105 °C for

Ambient temperature for 6 suffix version

Ambient temperature for 7 suffix version

Junction temperature range

2 V ≤ V

DD

≤ 3.6 V

V

DD

≤ 2 V

LQFP64

LQFP100

LQFP144

LQFP176

UFBGA176

WLCSP90

Maximum power dissipation

Low power dissipation

(8)

Maximum power dissipation

Low power dissipation

(8)

6 suffix version

7 suffix version

Max Unit

1.20

1.32

1.20

1.30

–0.3

–0.3

–0.3

-

-

-

-

-

-

-

-

-

-

–40

543

85

–40 105

–40 105

–40 125

–40 105

–40 125

5.5

5.2

V

DDA

0.3

+

5.5

435

465

500

526

513

V

V

V

V

V mW

°C

°C

°C

1. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for the whole temperature range, when the system clock frequency is between 30 and 144 MHz.

2. V

DD

/V

DDA

minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to

Section : Internal reset OFF

).

3. When the ADC is used, refer to

Table 67: ADC characteristics

.

4. If V

REF+

pin is present, it must respect the following condition: V

DDA

-V

REF+

< 1.2 V.

5. It is recommended to power V

V

DDA and V

DDA from the same source. A maximum difference of 300 mV between V can be tolerated during power-up and power-down operation.

DD and

6. To sustain a voltage higher than V

DD

+0.3, the internal pull-up and pull-down resistors must be disabled.

7. If T

A

is lower, higher P

D

values are allowed as long as T

J

does not exceed T

Jmax

.

8. In low power dissipation state, T

A

can be extended to this range as long as T

J

does not exceed T

Jmax

.

78/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Operating power supply range

Table 15. Limitations depending on the operating power supply range

ADC operation

Maximum

Flash memory access frequency with no wait state

(f

Flashmax

)

Maximum Flash memory access frequency with wait states

(1) (2)

I/O operation

Clock output

Frequency on

I/O pins

V

DD

=1.8 to

2.1 V

(3)

Conversion time up to

1.2 Msps

20 MHz

(4)

160 MHz with 7 wait states

– Degraded speed performance

– No I/O compensation up to 30 MHz

Possible

Flash memory operations

8-bit erase and program operations only

V

2.4 V

V

DD

DD

= 2.1 to

= 2.4 to

2.7 V

Conversion time up to

1.2 Msps

Conversion time up to

2.4 Msps

22 MHz

24 MHz

168 MHz with 7 wait states

168 MHz with 6 wait states

– Degraded speed performance

– No I/O compensation up to 30 MHz

– Degraded speed performance

– I/O compensation works up to 48 MHz

16-bit erase and program operations

16-bit erase and program operations

V

DD

= 2.7 to

3.6 V

(5)

Conversion time up to

2.4 Msps

30 MHz

168 MHz with 5 wait states

– Full-speed operation

– I/O compensation works

– up to

60 MHz when V

DD

=

3.0 to 3.6 V

– up to

48 MHz when V

DD

=

2.7 to 3.0 V

32-bit erase and program operations

1. It applies only when code executed from Flash memory access, when code executed from RAM, no wait state is required.

2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

3. V

DD

/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to

Section : Internal reset OFF

).

4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.

5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

5.3.2 V

CAP_1

/V

CAP_2

external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C

EXT the V

CAP_1

/V

CAP_2

pins. C

EXT

is specified in

Table 16

.

to

DocID022152 Rev 4 79/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 23. External capacitor C

EXT

C

ESR

R

Leak

MS19044V2

1. Legend: ESR is the equivalent series resistance.

Symbol

Table 16. V

CAP_1

/V

CAP_2

operating conditions

(1)

Parameter Conditions

CEXT

ESR

Capacitance of external capacitor

ESR of external capacitor

2.2 µF

< 2

Ω

1. When bypassing the voltage regulator, the two 2.2 µF V replaced by two 100 nF decoupling capacitors.

CAP

capacitors are not required and should be

Subject to general operating conditions for T

A

.

Table 17. Operating conditions at power-up / power-down (regulator ON)

Symbol Parameter Min Max Unit

t

VDD

V

DD

rise time rate

V

DD

fall time rate

20

20

µs/V

5.3.5

Subject to general operating conditions for T

A

.

Table 18. Operating conditions at power-up / power-down (regulator OFF)

(1)

Symbol Parameter Conditions Min Max Unit

t t

VDD

VCAP

V

DD

rise time rate

V

DD

fall time rate

V

CAP_1 rate

and V

CAP_2 rise time

Power-up

Power-down

Power-up

V

CAP_1 rate

and V

CAP_2

fall time

Power-down

20

20

20

20

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V minimum value of V

12

.

DD

reach below

µs/V

Embedded reset and power control block characteristics

The parameters given in

Table 19

are derived from tests performed under ambient

temperature and V

DD

supply voltage conditions summarized in

Table 14

.

80/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 19. Embedded reset and power control block characteristics

Symbol Parameter Conditions Min Typ Max Unit

V

PVD

V

PVDhyst

(1)

V

POR/PDR

V

PDRhyst

(1)

V

BOR1

V

BOR2

V

BOR3

PLS[2:0]=000 (rising edge)

PLS[2:0]=000 (falling edge)

PLS[2:0]=001 (rising edge)

PLS[2:0]=001 (falling edge)

2.09

1.98

2.23

2.13

2.14

2.04

2.30

2.19

2.19

2.08

2.37

2.25

PLS[2:0]=010 (rising edge)

PLS[2:0]=010 (falling edge)

2.39

2.29

2.45

2.35

2.51

2.39

Programmable voltage detector level selection

PLS[2:0]=011 (rising edge) 2.54

2.60

2.65

PLS[2:0]=011 (falling edge)

2.44

2.51

2.56

PLS[2:0]=100 (rising edge)

2.70

2.76

2.82

PLS[2:0]=100 (falling edge)

PLS[2:0]=101 (rising edge)

PLS[2:0]=101 (falling edge)

2.59

2.86

2.65

2.66

2.93

2.84

2.71

2.99

3.02

PLS[2:0]=110 (rising edge) 2.96

3.03

3.10

PLS[2:0]=110 (falling edge)

2.85

2.93

2.99

PLS[2:0]=111 (rising edge) 3.07

3.14

3.21

PLS[2:0]=111 (falling edge)

2.95

3.03

3.09

PVD hysteresis

Power-on/power-down reset threshold

Falling edge

Rising edge

PDR hysteresis

Brownout level 1 threshold

Falling edge

Rising edge

Brownout level 2 threshold

Brownout level 3 threshold

Falling edge

Rising edge

Falling edge

Rising edge

100 -

1.60

1.68

1.76

1.64

1.72

1.80

40 -

2.13

2.19

2.24

2.23

2.29

2.33

2.44

2.50

2.56

2.53

2.59

2.63

2.75

2.83

2.88

2.85

2.92

2.97

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V mV

V

V mV

V

V

V

V

V

V

DocID022152 Rev 4 81/185

Electrical characteristics

5.3.6

STM32F405xx, STM32F407xx

Table 19. Embedded reset and power control block characteristics (continued)

Symbol Parameter Conditions Min Typ Max Unit

V

BORhyst

(1)

T

RSTTEMPO

(1)(2)

BOR hysteresis

Reset temporization

I

RUSH

(1)

InRush current on voltage regulator power-on (POR or wakeup from Standby)

E

RUSH

(1)

InRush energy on voltage regulator power-on (POR or wakeup from Standby)

I

V

DD

= 1.8 V, T

A

RUSH

= 105 °C,

= 171 mA for 31 µs

-

0.5

-

-

100 -

1.5

3.0

mV ms

160 200 mA

5.4

µC

1. Guaranteed by design, not tested in production.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V when first instruction is read by the user application code.

BAT

) to the instant

Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in

Figure 22: Current consumption measurement scheme

.

All Run mode current consumption measurements given in this section are performed using a CoreMark-compliant code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

At startup, all I/O pins are configured as analog inputs by firmware.

All peripherals are disabled except if it is explicitly mentioned.

The Flash memory access time is adjusted to f

HCLK

frequency (0 wait state from 0 to

30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to

168 MHz).

When the peripherals are enabled HCLK is the system clock, f

PCLK1 f

PCLK2

= f

HCLK

/2, except is explicitly mentioned.

= f

HCLK

/4, and

The maximum values are obtained for V

DD

= 3.6 V and maximum ambient temperature

(T

A

), and the typical values for T

A

= 25 °C and V

DD

= 3.3 V unless otherwise specified.

82/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 20. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator enabled) or RAM

(1)

Typ Max

(2)

Symbol Parameter Conditions f

HCLK

T

A

=

25 °C

T

A

=

85 °C

T

A

=

105 °C

Unit

I

DD

Supply current in

Run mode

External clock peripherals enabled

External clock

(3)

(3)

, all

, all peripherals disabled

(4)(5)

(4)(5)

168 MHz

144 MHz

120 MHz

90 MHz

60 MHz

30 MHz

25 MHz

16 MHz

(6)

8 MHz

4 MHz

2 MHz

168 MHz

144 MHz

120 MHz

90 MHz

60 MHz

30 MHz

25 MHz

16 MHz

(6)

8 MHz

4 MHz

2 MHz

87

67

56

44

30

16

12

9

5

3

2

40

31

26

20

14

8

6

5

3

2

2 mA

1. Code and data processing running from SRAM1 using boot pins.

2. Based on characterization, tested in production at V

DD max and f

HCLK

max with peripherals enabled.

3. External clock is 4 MHz and PLL is on when f

HCLK

> 25 MHz.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

6. In this case HCLK = system clock/2.

17

15

14

54

43

38

32

26

42

28

24

20

102

80

69

56

20

18

16

15

14

14

24

22

21

61

50

45

39

33

49

35

31

28

109

86

75

62

27

25

24

22

21

21

DocID022152 Rev 4 83/185

Electrical characteristics STM32F405xx, STM32F407xx

Table 21. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator disabled)

Typ Max

(1)

Symbol Parameter Conditions f

HCLK

Unit

T

A

= 25 °C T

A

= 85 °C T

A

= 105 °C

168 MHz 93 109 117

I

DD

Supply current in Run mode

External clock

(2)

, all peripherals enabled

(3)(4)

External clock

(2)

, all peripherals disabled

(3)(4)

16

15

61

52

48

42

32

27

23

18

89

79

65

49

19

16

15

14

33

24

21

4

3

46

40

37

30

20

16

11

6

76

67

53

37

7

4

3

2

22

12

10

144 MHz

120 MHz

90 MHz

60 MHz

30 MHz

25 MHz

16 MHz

8 MHz

4 MHz

2 MHz

168 MHz

144 MHz

120 MHz

90 MHz

60 MHz

30 MHz

25 MHz

16 MHz

8 MHz

4 MHz

2 MHz mA

23

22

69

60

56

50

39

35

30

25

96

86

73

56

26

23

22

21

41

31

29

1. Based on characterization, tested in production at V

DD max and f

HCLK

max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f

HCLK

> 25 MHz.

3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption should be considered.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

84/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Figure 24. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF

30

25

20

15

50

45

40

35

10

5

0

0

-45 °C

0 °C

25 °C

55 °C

85 °C

105 °C

20 40 60 80 100

CPU Frequency (MHz

120 140 160 180

MS19974V1

Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON

70

60

50

40

30

100

90

80

20

10

0

0 20 40 60 80 100

CPU Frequency (MHz

120 140 160 180

-45°C

0°C

25°C

55°C

85°C

105°C

MS19975V1

DocID022152 Rev 4 85/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF

60

50

40

30

20

10

-45°C

0°C

25°C

55°C

85°C

105°C

0

0 20 40 60 80 100

CPU Frequency (MHz

120 140 160 180

MS19976V1

Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON

120

100

80

60

40

20

0

0 20 40 60 80 100

CPU Frequency (MHz

120 140 160 180

-45°C

0°C

25°C

55°C

85°C

105°C

MS19977V1

86/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol

Table 22. Typical and maximum current consumption in Sleep mode

Typ Max

(1)

Parameter Conditions f

HCLK

T

A

=

25 °C

T

A

=

85 °C

T

A

=

105 °C

Unit

I

DD

Supply current in

Sleep mode

External clock

(2)

, all peripherals enabled

External clock

(2)

, all peripherals disabled

(3)

8 MHz

4 MHz

2 MHz

168 MHz

144 MHz

120 MHz

90 MHz

60 MHz

168 MHz

144 MHz

120 MHz

90 MHz

60 MHz

30 MHz

25 MHz

16 MHz

30 MHz

25 MHz

16 MHz

8 MHz

4 MHz

2 MHz

59

46

38

30

20

11

8

6

3

2

2

12

9

8

7

5

3

2

2

1

1

1 mA

1. Based on characterization, tested in production at V

DD max and f

HCLK

max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f

HCLK

> 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

16

15

14

27

22

20

19

17

34

24

21

18

77

61

53

44

16

15

14

14

13

13

23

22

21

35

29

28

26

24

41

31

28

25

84

67

60

51

23

22

21

21

21

21

DocID022152 Rev 4 87/185

Electrical characteristics STM32F405xx, STM32F407xx

Table 23. Typical and maximum current consumptions in Stop mode

Typ Max

Symbol Parameter Conditions

T

A

=

25 °C

T

A

=

25 °C

T

A

=

85 °C

T

A

=

105 °C

Supply current in

Stop mode with main regulator in

Run mode

I

DD_STOP

Supply current in

Stop mode with main regulator in

Low Power mode

Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

0.45

0.40

0.31

0.28

1.5

11.00

20.00

1.5

11.00

20.00

1.1

1.1

8.00

15.00

8.00

15.00

Unit

mA

Table 24. Typical and maximum current consumptions in Standby mode

Typ Max

(1)

Symbol Parameter Conditions

T

A

= 25 °C

T

A

=

85 °C

T

A

=

105 °C

V

DD

=

1.8 V

V

DD

=

2.4 V

V

DD

=

3.3 V

V

DD

= 3.6 V

Backup SRAM ON, lowspeed oscillator and RTC ON

I

DD_STBY

Supply current in Standby mode

Backup SRAM OFF, lowspeed oscillator and RTC ON

Backup SRAM ON, RTC

OFF

Backup SRAM OFF, RTC

OFF

1. Based on characterization, not tested in production.

3.0

2.4

2.4

1.7

3.4

2.7

2.6

1.9

4.0

3.3

3.0

2.2

20

16

12.5

9.8

36

32

24.8

19.2

Unit

µA

88/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 25. Typical and maximum current consumptions in V

BAT

mode

Typ Max

(1)

Symbol Parameter Conditions

T

A

= 25 °C

T

A

=

85 °C

T

A

=

105 °C

V

BAT

=

1.8 V

V

BAT

=

2.4 V

V

BAT

=

3.3 V

V

BAT

= 3.6 V

I

DD_VBA

T

Backup domain supply current

Backup SRAM ON, low-speed oscillator and RTC ON

Backup SRAM OFF, low-speed oscillator and RTC ON

Backup SRAM ON, RTC OFF

Backup SRAM OFF, RTC OFF

1. Based on characterization, not tested in production.

1.29

1.42

1.68

0.62

0.73

0.96

0.79

0.81

0.10

0.10

0.86

0.10

6

3

5

2

11

5

10

4

Unit

µA

Figure 28. Typical V

BAT

current consumption (LSE and RTC ON/backup RAM OFF)

2.5

2

1.5

1

3.5

3

0.5

0

0

1.65V

1.8V

2V

2.4V

2.7V

3V

3.3V

3.6V

10 20 30 40 50 60 70 80 90 100

Temperature in (°C)

MS19990V1

DocID022152 Rev 4 89/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 29. Typical V

BAT

current consumption (LSE and RTC ON/backup RAM ON)

6

5

4

3

2

1

1.65V

1.8V

2V

2.4V

2.7V

3V

3.3V

3.6V

0

0 10 20 30 40 50 60 70 80 90 100

Temperature in (°C)

MS19991V1

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in

Table 47: I/O static characteristics

.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see

Table 27: Peripheral current consumption

), the I/Os used by an application also contribute

to the current consumption. When an I/O pin switches, it uses the current from the MCU

90/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load

(internal or external) connected to the pin:

I

SW

=

V

DD

× f

SW

×

C where

I

SW

is the current sunk by a switching I/O to charge/discharge the capacitive load

V

DD

is the MCU supply voltage f

SW

is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C

INT

+ C

EXT

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

DocID022152 Rev 4 91/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 26. Switching output I/O current consumption

Parameter Conditions

(1)

I/O toggling frequency (f

SW

)

Typ

2 MHz

I

DDIO

I/O switching current

V

V

C

EXT

C = C

INT

V

C

DD

C = C

V

C

EXT

C = C

INT

V

C

C = C

= 3.3 V

C = C

DD

DD

EXT

INT

DD

DD

EXT

INT

INT

+ C

(2)

= 3.3 V

= 0 pF

+ C

= 3.3 V

EXT

+ C

= 10 pF

+ C

EXT

EXT

= 3.3 V

= 22 pF

= 3.3 V

+ C

+ C

= 33 pF

+ C

EXT

+ C

S

S

S

S

60 MHz

2 MHz

8 MHz

25 MHz

50 MHz

60 MHz

2 MHz

8 MHz

8 MHz

25 MHz

50 MHz

60 MHz

2 MHz

8 MHz

25 MHz

50 MHz

25 MHz

50 MHz

60 MHz

2 MHz

8 MHz

25 MHz

50 MHz

60 MHz

1. C

S

is the PCB board capacitance including the pad pin. C

S

= 7 pF (estimated value).

2. This test is performed by cutting the LQFP package pin (pad removal).

3. At 60 MHz, C maximum load is specified 30 pF.

0.02

2.65

3.48

0.23

0.95

2.86

0.17

0.66

1.70

0.10

0.38

1.18

2.47

0.14

0.51

0.86

1.30

1.22

3.90

8.82

-

(3)

3.20

4.69

8.06

0.30

Unit

mA

92/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in

Table 27

. The MCU is placed

under the following conditions:

At startup, all I/O pins are configured as analog pins by firmware.

All peripherals are disabled unless otherwise mentioned

The code is running from Flash memory and the Flash memory access time is equal to

5 wait states at 168 MHz.

The code is running from Flash memory and the Flash memory access time is equal to

4 wait states at 144 MHz, and the power scale mode is set to 2.

ART accelerator and Cache off.

The given value is calculated by measuring the difference of current consumption

– with all peripherals clocked off

– with one peripheral clocked on (with only the clock applied)

When the peripherals are enabled: HCLK is the system clock, f

PCLK1 f

PCLK2

= f

HCLK

/2.

= f

HCLK

/4, and

The typical values are obtained for V

DD specified.

= 3.3 V and T

A

= 25 °C, unless otherwise

AHB1

AHB2

Table 27. Peripheral current consumption

Peripheral

(1)

168 MHz 144 MHz

GPIO A

GPIO B

GPIO C

GPIO D

GPIO E

GPIO F

GPIO G

GPIO H

GPIO I

OTG_HS + ULPI

CRC

BKPSRAM

DMA1

DMA2

ETH_MAC +

ETH_MAC_TX

ETH_MAC_RX

ETH_MAC_PTP

OTG_FS

DCMI

0.44

4.57

0.07

0.11

6.15

6.24

0.49

0.45

0.45

0.45

0.47

0.45

0.44

0.45

3.28

4.59

1.04

0.33

3.55

0.06

0.08

4.75

4.8

0.36

0.33

0.34

0.34

0.35

0.33

0.33

0.34

2.54

3.69

0.80

Unit

mA mA

DocID022152 Rev 4 93/185

Electrical characteristics

AHB3

APB1

STM32F405xx, STM32F407xx

Table 27. Peripheral current consumption (continued)

Peripheral

(1)

168 MHz 144 MHz

FSMC

TIM2

TIM3

TIM4

TIM5

TIM6

TIM7

TIM12

TIM13

TIM14

PWR

USART2

USART3

UART4

UART5

I2C1

I2C2

I2C3

SPI2/I2S2

(2)

SPI3/I2S3

(2)

CAN1

CAN2

DAC

DAC channel 1

(3)

DAC channel 2

(4)

DAC channel 1 and

2

(3)(4)

WWDG

1.69

0.04

1.68

0.04

0.27

0.27

0.04

0.17

0.17

0.17

0.17

0.17

0.18

0.18

0.79

0.15

0.16

0.33

2.18

0.80

0.58

0.62

0.17/0.16

0.16/0.14

0.27

0.26

0.14

0.91

0.91

0.21

0.21

0.03

0.13

0.13

0.13

0.13

0.13

0.13

0.13

0.61

0.11

0.12

0.26

1.67

0.61

0.44

0.48

0.13/0.12

0.12/0.12

0.21

0.20

0.10

0.89

0.89

Unit

mA

94/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 27. Peripheral current consumption (continued)

Peripheral

(1)

168 MHz 144 MHz

APB2

SDIO

TIM1

TIM8

TIM9

TIM10

TIM11

ADC1

(5)

ADC2

(5)

ADC3

(5)

SPI1

USART1

USART6

0.64

1.47

1.58

0.68

0.45

0.47

2.20

2.04

2.10

0.14

0.34

0.34

1. HSE oscillator with 4 MHz crystal and PLL are ON.

2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I

2

S peripheral.

3. EN1 bit is set in DAC_CR register.

4. EN2 bit is set in DAC_CR register.

5. ADON bit set in ADC_CR2 register.

0.36

0.38

2.10

1.93

0.54

1.14

1.22

0.54

2.00

0.12

0.27

0.28

Unit

mA

5.3.7 Wakeup time from low-power mode

The wakeup times given in

Table 28

is measured on a wakeup phase with a 16 MHz HSI

RC oscillator. The clock source used to wake up the device depends from the current operating mode:

Stop or Standby mode: the clock source is the RC oscillator

• Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V

DD voltage conditions summarized in

Table 14

.

supply

Symbol

t

WUSLEEP

(2)

Table 28. Low-power mode wakeup timings

Parameter

Wakeup from Sleep mode

Min

(1)

-

Typ

1

(1)

Max

-

(1)

Unit

µs

Wakeup from Stop mode (regulator in Run mode) 13 t

WUSTOP

(2)

Wakeup from Stop mode (regulator in low power mode) 17 40

µs

Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode)

110 t

WUSTDBY

(2)(3)

Wakeup from Standby mode 260 375 480 µs

1. Based on characterization, not tested in production.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. t

WUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.

DocID022152 Rev 4 95/185

Electrical characteristics STM32F405xx, STM32F407xx

High-speed external user clock generated from an external source

The characteristics given in

Table 29

result from tests performed using an high-speed

external clock source, and under ambient temperature and supply voltage conditions summarized in

Table 14

.

Symbol

Table 29. High-speed external user clock characteristics

Parameter Conditions Min

f

HSE_ext

External user clock source frequency

(1)

V

HSEH

V

HSEL t w(HSE) t w(HSE) t r(HSE) t f(HSE)

C in(HSE)

DuCy

(HSE)

I

L

OSC_IN input pin high level voltage

OSC_IN input pin low level voltage

OSC_IN high or low time

OSC_IN rise or fall time

(1)

(1)

OSC_IN input capacitance

Duty cycle

(1)

OSC_IN Input leakage current

1. Guaranteed by design, not tested in production.

V

SS

≤ V

IN

≤ V

DD

1

0.7V

DD

V

SS

5

-

45

-

-

Typ

5

-

-

-

-

-

-

-

Max Unit

50

V

DD

0.3V

DD

-

10

-

55

±1

MHz

V ns pF

%

µA

Low-speed external user clock generated from an external source

The characteristics given in

Table 30

result from tests performed using an low-speed

external clock source, and under ambient temperature and supply voltage conditions summarized in

Table 14

.

Symbol

Table 30. Low-speed external user clock characteristics

Parameter

f

LSE_ext

V

LSEH

User External clock source frequency

(1)

OSC32_IN input pin high level voltage

V

LSEL t w(LSE) t f(LSE) t r(LSE) t f(LSE)

C in(LSE)

DuCy

(LSE)

I

L

OSC32_IN input pin low level voltage

OSC32_IN high or low time

OSC32_IN rise or fall time

(1)

(1)

OSC32_IN input capacitance

Duty cycle

(1)

OSC32_IN Input leakage current

1. Guaranteed by design, not tested in production.

Conditions

V

SS

≤ V

IN

≤ V

DD

Min

-

0.7V

DD

V

SS

450

-

-

30

-

Typ

32.768

-

-

-

-

5

-

-

Max

1000

V

DD

0.3V

DD

-

50

-

70

±1

Unit

kHz

V ns pF

%

µA

96/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Figure 30. High-speed external clock source AC timing diagram

VHSEH

90%

VHSEL

10% tr(HSE)

THSE tf(HSE)

External clock source fHSE_ext

OSC_IN tW(HSE)

IL

STM32F tW(HSE) t ai17528

Figure 31. Low-speed external clock source AC timing diagram

VLSEH

VLSEL

90%

10% tr(LSE)

TLSE tf(LSE) tW(LSE) tW(LSE) t

External clock source fLSE_ext

OSC32_IN

IL

STM32F ai17529

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on

characterization results obtained with typical external components specified in

Table 31

. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

DocID022152 Rev 4 97/185

Electrical characteristics

Note:

STM32F405xx, STM32F407xx

Symbol

Table 31. HSE 4-26 MHz oscillator characteristics

(1) (2)

Parameter Conditions Min Typ Max Unit

f

OSC_IN

R

F

Oscillator frequency

Feedback resistor

4

-

-

200

26

-

MHz k Ω

I

DD

HSE current consumption

V

DD

=3.3 V,

ESR= 30 Ω,

C

L

=5 pF@25 MHz

V

DD

=3.3 V,

ESR= 30 Ω,

C

L

=10 pF@25 MHz

Startup

-

449

532 -

-

µA g m t

SU(HSE

(3)

Oscillator transconductance

Startup time V

DD

is stabilized

5

-

-

2 -

mA/V ms

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Based on characterization, not tested in production.

3. t

SU(HSE)

is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C

L1

and C

L2

, it is recommended to use high-quality external ceramic capacitors in the

5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see

Figure 32

). C

L1

and C

L2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C

L1

and C

L2

. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing

C

L1

and C

L2

.

For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

Figure 32. Typical application with an 8 MHz crystal

Resonator with integrated capacitors

CL1

OSC_IN fHSE

8 MH z resonator

RF

Bias controlled gain

REXT(1)

OSC_OU T

STM32F

CL2 ai17530

1. R

EXT

value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on

characterization results obtained with typical external components specified in

Table 32

. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

98/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Note:

5.3.9

Electrical characteristics

Symbol

Table 32. LSE oscillator characteristics (f

LSE

= 32.768 kHz)

(1)

Parameter Conditions Min Typ Max Unit

R

F

I

DD g m t

SU(LSE)

(2)

Feedback resistor

LSE current consumption

Oscillator Transconductance

-

-

2.8

18.4

-

-

-

1

-

M

Ω

µA

µA/V startup time V

DD

is stabilized 2 -

1. Guaranteed by design, not tested in production.

2. t

SU(LSE)

is the startup time measured from the moment it is enabled (by software) to a stabilized

32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer s

For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

Figure 33. Typical application with a 32.768 kHz crystal

Resonator with integrated capacitors

CL1

32.768 kH z resonator

OSC32_IN

RF

Bias controlled gain

OSC32_OU T

CL2 fLSE

STM32F ai17531

Internal clock source characteristics

The parameters given in

Table 33

and

Table 34

are derived from tests performed under

ambient temperature and V

DD

supply voltage conditions summarized in

Table 14

.

High-speed internal (HSI) RC oscillator

Symbol

f

HSI

ACC

HSI t su(HSI)

(3)

I

DD(HSI)

Table 33. HSI oscillator characteristics

(1)

Parameter Conditions Min Typ Max Unit

Frequency -

User-trimmed with the RCC_CR register

-

Accuracy of the HSI oscillator

Factorycalibrated

T

A

= –40 to

105 °C

(2)

T

A

= –10 to 85 °C

(2)

T

A

= 25 °C

–8

–4

–1

HSI oscillator startup time

HSI oscillator power consumption

-

-

16

-

-

-

-

2.2

60

-

1

4.5

4

1

4

80

MHz

%

%

%

%

µs

µA

DocID022152 Rev 4 99/185

Electrical characteristics STM32F405xx, STM32F407xx

1. V

DD

= 3.3 V, T

A

= –40 to 105 °C unless otherwise specified.

2. Based on characterization, not tested in production.

3. Guaranteed by design, not tested in production.

Low-speed internal (LSI) RC oscillator

Symbol

Table 34. LSI oscillator characteristics

(1)

Parameter

f

LSI

(2) t su(LSI)

(3)

I

DD(LSI)

(3)

Frequency

LSI oscillator startup time

LSI oscillator power consumption

1. V

DD

= 3 V, T

A

= –40 to 105 °C unless otherwise specified.

2. Based on characterization, not tested in production.

3. Guaranteed by design, not tested in production.

Min

17

-

-

Typ

32

15

0.4

Figure 34. ACC

LSI

versus temperature

Max

47

40

0.6

Unit

kHz

µs

µA

50

40

30

20

10

0

-10

-20

-30

-40

-45 -35 -25 -15 -5 5 15 25 35

Temperat ure (°C)

45 55 65 75 85 95 105 max avg min

MS19013V1

The parameters given in

Table 35

and

Table 36

are derived from tests performed under

temperature and V

DD

supply voltage conditions summarized in

Table 14

.

100/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol

f

PLL_IN f

PLL_OUT f

PLL48_OUT f

VCO_OUT t

LOCK

Jitter

(3)

I

DD(PLL)

(4)

I

DDA(PLL)

(4)

Table 35. Main PLL characteristics

Parameter Conditions Min

PLL input clock

(1)

PLL multiplier output clock

48 MHz PLL multiplier output clock

PLL VCO output

PLL lock time

VCO freq = 192 MHz

VCO freq = 432 MHz

RMS

Cycle-to-cycle jitter

Period Jitter

System clock

120 MHz peak to peak

RMS peak to peak

Cycle to cycle at 50 MHz on 1000 samples

Main clock output (MCO) for

RMII Ethernet

Main clock output (MCO) for MII

Ethernet

Bit Time CAN jitter

PLL power consumption on VDD

PLL power consumption on

VDDA

Cycle to cycle at 25 MHz on 1000 samples

Cycle to cycle at 1 MHz on 1000 samples

VCO freq = 192 MHz

VCO freq = 432 MHz

VCO freq = 192 MHz

VCO freq = 432 MHz

0.95

(2)

24

192

75

100

-

-

-

-

-

-

-

-

0.15

0.45

0.30

0.55

Typ

48

-

25

-

-

1

-

±150

15

±200

32

40

330

-

-

Max

2.10

168

75

432

200

300

-

-

-

-

-

-

-

0.40

0.75

0.40

0.85

Unit

MHz

MHz

MHz

MHz

µs ps mA mA

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design, not tested in production.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Based on characterization, not tested in production.

Symbol

f

PLLI2S_IN f

PLLI2S_OUT f

VCO_OUT t

LOCK

Table 36. PLLI2S (audio PLL) characteristics

Parameter Conditions Min

PLLI2S input clock

(1)

PLLI2S multiplier output clock

PLLI2S VCO output

PLLI2S lock time

VCO freq = 192 MHz

VCO freq = 432 MHz

0.95

(2)

-

192

75

100

Typ

1

-

-

-

-

Max

2.10

216

432

200

300

Unit

MHz

MHz

MHz

µs

DocID022152 Rev 4 101/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 36. PLLI2S (audio PLL) characteristics (continued)

Parameter Conditions Min Typ

Jitter

(3)

Master I

WS I

2

2

S clock jitter

S clock jitter

Cycle to cycle at

12.288 MHz on

48KHz period,

N=432, R=5

Average frequency of

12.288 MHz

N = 432, R = 5 on 1000 samples

Cycle to cycle at 48 KHz on 1000 samples

RMS

peak to peak

-

-

-

-

I

I

DD(PLLI2S)

(4)

DDA(PLLI2S)

(4)

PLLI2S power consumption on

V

DD

PLLI2S power consumption on

V

DDA

VCO freq = 192 MHz

VCO freq = 432 MHz

VCO freq = 192 MHz

VCO freq = 432 MHz

0.15

0.45

0.30

0.55

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Based on characterization, not tested in production.

90

±280

90

400

-

-

Max

-

-

-

-

0.40

0.75

0.40

0.85

Unit

ps ps ps mA mA

5.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic

interferences (see

Table 43: EMI characteristics

). It is available only on the main PLL.

Symbol

Table 37. SSCG parameters constraint

Parameter

f

Mod md

Modulation frequency

Peak modulation depth

MODEPER * INCSTEP

1. Guaranteed by design, not tested in production.

Min

-

0.25

-

Typ

-

-

-

Max

(1)

10

2

2

15

−1

Unit

KHz

%

-

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

MODEPER

= round f

PLL_IN

⁄ (

Mod

) ] f

PLL_IN and f

Mod must be expressed in Hz.

As an example:

If f

PLL_IN

= 1 MHz, and f

MOD

= 1 kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER

=

[

6

⁄ ( ×

3

) ]

=

250

102/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP

= round

[ ( (

2

15

1

×

MODEPER

) ] f

VCO_OUT must be expressed in MHz.

With a modulation depth (md) =

±2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP

= round

[ ( (

2

15

1

) 2 240 ⁄ ( × ×

250

) ]

=

126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and

INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula: md quantized

%

=

( ×

100

×

5

) ⁄ ( (

2

15

1

) PLLN )

As a result: md quantized

%

=

( × 100 × 5 ) ⁄ ( ( 2

15

1 )

=

2.002%(peak)

Figure 35

and

Figure 36

show the main PLL output clock waveforms in center spread and

down spread modes, where:

F0 is f

PLL_OUT

nominal.

T mode

is the modulation period.

md is the modulation depth.

Figure 35. PLL output clock waveforms in center spread mode

Frequency (PLL_OUT) md

F0 md tmode

2 x tmode

Time ai17291

DocID022152 Rev 4 103/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 36. PLL output clock waveforms in down spread mode

Frequency (PLL_OUT)

F0

2 x md tmode

2 x tmode

Time ai17292

Symbol

I

DD

Flash memory

The characteristics are given at T

A

=

40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Parameter

Supply current

Table 38. Flash memory characteristics

Conditions Min

Write / Erase 8-bit mode, V

DD

= 1.8 V

Write / Erase 16-bit mode, V

DD

= 2.1 V

Write / Erase 32-bit mode, V

DD

= 3.3 V

-

-

-

Typ

5

8

12

Max

-

-

-

Unit

mA

Symbol

t prog

Table 39. Flash memory programming

Parameter Conditions Min

(1)

Word programming time t

ERASE16KB

Sector (16 KB) erase time

Program/erase parallelism

(PSIZE) = x 8/16/32

Program/erase parallelism

(PSIZE) = x 8

Program/erase parallelism

(PSIZE) = x 16

Program/erase parallelism

(PSIZE) = x 32

-

-

-

-

Typ Max

(1)

Unit

16 100

(2)

400

300

250

800

600

500

µs ms

104/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol

Table 39. Flash memory programming (continued)

Parameter Conditions

t

ERASE64KB

Sector (64 KB) erase time

Program/erase parallelism

(PSIZE) = x 8

Program/erase parallelism

(PSIZE) = x 16

Program/erase parallelism

(PSIZE) = x 32

Program/erase parallelism

(PSIZE) = x 8 t

ERASE128KB

Sector (128 KB) erase time

Program/erase parallelism

(PSIZE) = x 16

V t

ME prog

Mass erase time

Programming voltage

Program/erase parallelism

(PSIZE) = x 32

Program/erase parallelism

(PSIZE) = x 8

Program/erase parallelism

(PSIZE) = x 16

Program/erase parallelism

(PSIZE) = x 32

32-bit program operation

16-bit program operation

8-bit program operation

1. Based on characterization, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

Min

(1)

-

-

-

-

-

-

-

-

-

2.7

2.1

1.8

Typ Max

(1)

1200 2400

700 1400

550 1100

2

1.3

1

16

11

8

-

-

-

4

2.6

2

32

22

16

3.6

3.6

3.6

Unit

ms s s

V

V

V

DocID022152 Rev 4 105/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 40. Flash memory programming with V

PP

Parameter Conditions Min

(1)

Typ Max

(1)

t prog t

ERASE16KB t

ERASE64KB t

ERASE128KB t

ME

V prog

V

PP

Double word programming

Sector (16 KB) erase time

Sector (64 KB) erase time

Sector (128 KB) erase time

Mass erase time

Programming voltage

T

A

= 0 to +40 °C

V

DD

V

PP

= 3.3 V

= 8.5 V t

I

PP

VPP

(3)

V

PP

voltage range

Minimum current sunk on the V

PP

pin

Cumulative time during which V

PP is applied

1. Guaranteed by design, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

3. V

PP

should only be connected during programming/erasing.

-

-

-

-

-

-

2.7

7

10

16

230

490

875

6.9

-

-

-

-

100

(2)

-

-

3.6

-

-

9

-

1

Unit

µs ms s

V

V mA hour

Symbol

Table 41. Flash memory endurance and data retention

Value

Parameter Conditions

Min

(1)

N t

END

RET

Endurance

Data retention

T

A

= –40 to +85 °C (6 suffix versions)

T

A

= –40 to +105 °C (7 suffix versions)

1 kcycle

(2)

at T

A

= 85 °C

1 kcycle

(2)

at T

A

= 105 °C

10 kcycles

(2)

at T

A

= 55 °C

1. Based on characterization, not tested in production.

2. Cycling performed over the whole temperature range.

10

30

10

20

Unit

kcycles

Years

106/185

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.

FTB: A burst of fast transient voltage (positive and negative) is applied to V

DD

and V

SS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

A device reset allows normal operations to be resumed.

The test results are given in

Table 42

. They are based on the EMS levels and classes defined in application note AN1709.

Symbol

Table 42. EMS characteristics

Parameter Conditions

Level/

Class

V

FESD

V

EFTB

Voltage limits to be applied on any I/O pin to induce a functional disturbance

Fast transient voltage burst limits to be applied through 100 pF on V

DD

and V pins to induce a functional disturbance

SS

V

DD

= 3.3 V, LQFP176, T

A f

HCLK

IEC 61000-4-2

= +25 °C,

= 168 MHz, conforms to

V

DD

= 3.3 V, LQFP176, T

A

+25 °C, f

HCLK to IEC 61000-4-2

=

= 168 MHz, conforms

2B

4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

Corrupted program counter

Unexpected reset

Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC

?

code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

DocID022152 Rev 4 107/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

S

EMI

Parameter

Table 43. EMI characteristics

Conditions

Monitored frequency band

V

DD

= 3.3 V, T

A

= 25 °C, LQFP176 package, conforming to SAE J1752/3

EEMBC, code running from Flash with

ART accelerator enabled

Peak level

V

DD

= 3.3 V, T

A

= 25 °C, LQFP176 package, conforming to SAE J1752/3

EEMBC, code running from Flash with

ART accelerator and PLL spread spectrum enabled

0.1 to 30 MHz

30 to 130 MHz

130 MHz to 1GHz

SAE EMI Level

0.1 to 30 MHz

30 to 130 MHz

130 MHz to 1GHz

SAE EMI level

Max vs.

[f

HSE

/f

CPU

]

25/168 MHz

19

16

18

3.5

32

25

29

4

Unit

dBµV

-

dBµV

5.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol Ratings

Table 44. ESD absolute maximum ratings

Conditions Class

Maximum value

(1)

Unit

V

V

ESD(HBM)

ESD(CDM)

Electrostatic discharge voltage (human body model)

Electrostatic discharge voltage (charge device model)

T

T

A

A

= +25 °C conforming to JESD22-A114

= +25 °C conforming to JESD22-C101

1. Based on characterization results, not tested in production.

2. On V

BAT

pin, V

ESD(HBM) is limited to 1000 V.

2

II

2000

(2)

500

V

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

A supply overvoltage is applied to each power supply pin

A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

108/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Symbol

LU

Parameter

Static latch-up class

Table 45. Electrical sensitivities

Conditions

T

A

= +105 °C conforming to JESD78A

Electrical characteristics

Class

II level A

As a general rule, current injection to the I/O pins, due to external voltage below V

SS above V

DD

or

(for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5

LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of

5 uA/+0 uA range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in

Table 46

.

Symbol

Table 46. I/O current injection susceptibility

Functional susceptibility

Description

Negative injection

Positive injection

Unit

I

INJ

(1)

Injected current on all FT pins

Injected current on any other pin

–5

–5

+0

+5

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

mA

General input/output characteristics

Unless otherwise specified, the parameters given in

Table 47

are derived from tests

performed under the conditions summarized in

Table 14

. All I/Os are CMOS and TTL compliant.

DocID022152 Rev 4 109/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol Parameter

Table 47. I/O static characteristics

Conditions Min Typ Max

V

IL

V

IH

(1)

V

IL

V

IH

(1)

Input low level voltage

Input high level voltage

Input low level voltage

Input high level voltage

TTL ports

2.7 V

V

DD

3.6 V

CMOS ports

1.8 V

V

DD

3.6 V

-

2.0

-

0.7V

DD

-

-

-

-

-

200

V hys

I lkg

R

PU

I/O Schmitt trigger voltage hysteresis

(2)

IO FT Schmitt trigger voltage hysteresis

(2)

I/O input leakage current

(4)

I/O FT input leakage current

(4)

Weak pull-up equivalent resistor

(5)

All pins except for

PA10 and

PB12

PA10 and

PB12

V

SS

V

IN

V

DD

V

IN

=

5 V

V

IN

=

V

SS

5% V

DD

(3)

-

-

-

30

8

-

-

-

40

11

-

±1

3

50

15

R

PD

All pins except for

PA10 and

PB12

V

IN

=

V

DD

30 40 50

Weak pull-down equivalent resistor

PA10 and

PB12

8 11 15

C

IO

(6)

I/O pin capacitance 5

1. Tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

3. With a minimum of 100 mV.

4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.

5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This

MOS/NMOS contribution to the series resistance is minimum

(~10% order)

.

6. Guaranteed by design, not tested in production.

0.8

-

0.3V

DD

-

-

-

Unit

V mV

µA k Ω pF

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to

±8 mA, and sink or source up to

±20 mA (with a relaxed V

OL

/V

OH

) except PC13, PC14 and PC15 which can sink or source up to

±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

110/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in

Section 5.2

. In particular:

The sum of the currents sourced by all the I/Os on V

DD,

I consumption of the MCU sourced on V

DD,

VDD

(see

Table 12

).

plus the maximum Run cannot exceed the absolute maximum rating

The sum of the currents sunk by all the I/Os on V

SS

I consumption of the MCU sunk on V

SS

VSS

(see

Table 12

).

plus the maximum Run

cannot exceed the absolute maximum rating

Output voltage levels

Unless otherwise specified, the parameters given in

Table 48

are derived from tests performed under ambient temperature and V

DD

supply voltage conditions summarized in

Table 14

. All I/Os are CMOS and TTL compliant.

Symbol

Table 48. Output voltage characteristics

(1)

Parameter Conditions Min Max Unit

V

V

V

V

OL

(2)

OH

(3)

OL

OH

(2)

(3)

Output low level voltage for an I/O pin when 8 pins are sunk at same time

Output high level voltage for an I/O pin when 8 pins are sourced at same time

Output low level voltage for an I/O pin when 8 pins are sunk at same time

Output high level voltage for an I/O pin when 8 pins are sourced at same time

V

OL

(2)(4)

Output low level voltage for an I/O pin when 8 pins are sunk at same time

V

OH

(3)(4)

Output high level voltage for an I/O pin when 8 pins are sourced at same time

CMOS port

I

IO

= +8 mA

2.7 V < V

DD

< 3.6 V

TTL port

I

IO

=+ 8mA

2.7 V < V

DD

< 3.6 V

I

IO

= +20 mA

2.7 V < V

DD

< 3.6 V

V

V

DD

2.4

DD

-

-

-

–0.4

–1.3

0.4

-

-

0.4

-

1.3

V

V

V

V

OL

(2)(4)

Output low level voltage for an I/O pin when 8 pins are sunk at same time

0.4

I

IO

= +6 mA

2 V < V

DD

< 2.7 V

V

DD

–0.4

-

V

V

OH

(3)(4)

Output high level voltage for an I/O pin when 8 pins are sourced at same time

1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

2. The I

IO

current sunk by the device must always respect the absolute maximum rating specified in

Table 12

and the sum of I

IO

(I/O ports and control pins) must not exceed I

VSS

.

3. The I

IO

current sourced by the device must always respect the absolute maximum rating specified in

Table 12

and the sum of I

IO

(I/O ports and control pins) must not exceed I

VDD

.

4. Based on characterization data, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in

Figure 37

and

Table 49

, respectively.

DocID022152 Rev 4 111/185

Electrical characteristics STM32F405xx, STM32F407xx

Unless otherwise specified, the parameters given in

Table 49

are derived from tests performed under the ambient temperature and V

DD in

Table 14

.

supply voltage conditions summarized

Table 49. I/O AC characteristics

(1)(2)(3)

OSPEEDRy

[1:0] bit value

(1)

Symbol Parameter Conditions Min Typ Max Unit

00 f max(IO)out

Maximum frequency

(4)

C

L

= 50 pF, V

DD >

2.70 V

C

L

= 50 pF, V

DD >

1.8 V

C

L

= 10 pF, V

DD >

2.70 V

C

L

= 10 pF, V

DD >

1.8 V -

-

-

-

-

-

-

2

2

TBD

TBD

MHz t f(IO)out t r(IO)out

Output high to low level fall time

Output low to high level rise time

C

L

= 50 pF, V

DD

= 1.8 V to

3.6 V

-

-

-

TBD

TBD ns

01

10 f max(IO)out

Maximum frequency

(4) t f(IO)out t r(IO)out f max(IO)out

Maximum frequency

(4) t f(IO)out t r(IO)out

Output high to low level fall time

Output low to high level rise time

Output high to low level fall time

Output low to high level rise time

C

L

= 50 pF, V

DD >

2.70 V

C

L

= 50 pF, V

DD >

1.8 V

C

L

= 10 pF, V

DD >

2.70 V

C

L

= 10 pF, V

DD >

1.8 V

C

L

= 50 pF, V

DD

< 2.7 V

C

L

= 10 pF, V

DD

> 2.7 V

C

L

= 50 pF, V

DD

< 2.7 V

C

L

= 10 pF, V

DD

> 2.7 V

C

L

= 40 pF, V

DD >

2.70 V

C

L

= 40 pF, V

DD >

1.8 V

C

L

= 10 pF, V

DD >

2.70 V

C

L

= 10 pF, V

DD >

1.8 V

C

L

= 50 pF,

2.4 < V

DD

< 2.7 V

C

L

= 10 pF, V

DD

> 2.7 V

C

L

= 50 pF,

2.4 < V

DD

< 2.7 V

C

L

= 10 pF, V

DD

> 2.7 V -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

25

12.5

(5)

50

(5)

TBD

TBD

TBD

TBD

TBD

50

(5)

25

100

(5)

TBD

MHz ns

MHz

TBD

TBD

TBD

TBD ns

112/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 49. I/O AC characteristics

(1)(2)(3)

(continued)

OSPEEDRy

[1:0] bit value

(1)

Symbol Parameter Conditions Min Typ Max

11

F max(IO)ou t t t f(IO)out r(IO)out

Maximum frequency

(4)

Output high to low level fall time

Output low to high level rise time

C

L

= 30 pF, V

DD >

2.70 V

C

L

= 30 pF, V

DD >

1.8 V

C

L

= 10 pF, V

DD >

2.70 V

C

L

= 10 pF, V

DD >

1.8 V

C

L

= 20 pF,

2.4 < V

DD

< 2.7 V

C

L

= 10 pF, V

DD

> 2.7 V

C

L

= 20 pF,

2.4 < V

DD

< 2.7 V

C

L

= 10 pF, V

DD

> 2.7 V

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100

(5)

50

(5)

200

(5)

TBD

TBD

TBD

TBD

TBD

t

EXTIpw

Pulse width of external signals detected by the EXTI controller

10 -

1. Based on characterization data, not tested in production.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. TBD stands for “to be defined”.

4. The maximum frequency is defined in

Figure 37

.

5. For maximum frequencies above 50 MHz, the compensation cell should be used.

-

Unit

MHz ns ns

Figure 37. I/O AC characteristics definition

10%

50%

90% 10%

50%

90%

EXTERNAL

OUTPUT

ON 50pF tr(IO)out

T tr(IO)out

Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF

ai14131

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R

PU

(see

Table 47

).

Unless otherwise specified, the parameters given in

Table 50

are derived from tests performed under the ambient temperature and V

DD in

Table 14

.

supply voltage conditions summarized

DocID022152 Rev 4 113/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

V

IL(NRST)

(1)

V

IH(NRST)

(1)

V

IL(NRST)

(1)

V

IH(NRST)

(1)

Table 50. NRST pin characteristics

Parameter

NRST Input low level voltage

NRST Input high level voltage

NRST Input low level voltage

NRST Input high level voltage

V hys(NRST)

R

PU

V

F(NRST)

(1)

V

NF(NRST)

(1)

NRST Schmitt trigger voltage hysteresis

Weak pull-up equivalent resistor

(2)

NRST Input filtered pulse

NRST Input not filtered pulse

T

NRST_OUT

Generated reset pulse duration

Conditions

TTL ports

2.7 V ≤ V

DD

≤ 3.6 V

CMOS ports

1.8 V

≤ V

DD

≤ 3.6 V

-

-

2

0.7V

DD

V

IN

=

V

SS

V

DD

> 2.7 V

Internal

Reset source

Min

-

30

-

300

20

Typ

-

-

200

40

-

-

-

Max

0.8

0.3V

DD

-

50

100

-

-

-

-

Unit

mV k

Ω ns ns

µs

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution the series resistance must be minimum

(~10% order)

.

to

V

Figure 38. Recommended NRST pin protection

External reset circuit

(1)

NRST

(2)

VDD

RPU

0.1 μF

Filter

Internal Reset

STM32Fxxx ai14132c

1. The reset network protects the device against parasitic resets.

2. The user must ensure that the level on the NRST pin can go below the V

Table 50

. Otherwise the reset is not taken into account by the device.

IL(NRST)

max level specified in

The parameters given in

Table 51

and

Table 52

are guaranteed by design.

Refer to

Section 5.3.16: I/O port characteristics

for details on the input/output alternate

function characteristics (output compare, input capture, external clock, PWM output).

114/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol

Table 51. Characteristics of TIMx connected to the APB1 domain

(1)

Parameter Conditions Min Max Unit

t t res(TIM) f

EXT

Res

TIM

COUNTER

Timer resolution time

AHB/APB1 prescaler distinct from 1, f

TIMxCLK

84 MHz

=

AHB/APB1 prescaler = 1, f

TIMxCLK

= 42 MHz

1

11.9

1

23.8

Timer external clock frequency on CH1 to CH4

Timer resolution

16-bit counter clock period when internal clock is selected

f

TIMxCLK

= 84 MHz

APB1= 42 MHz

32-bit counter clock period when internal clock is selected

0

0

-

1

0.0119

1

0.0119

-

-

-

f

TIMxCLK

/2

42

16/32

65536

780

-

51130563 t t t t

TIMxCLK ns

TIMxCLK ns

MHz

MHz bit

TIMxCLK

µs

TIMxCLK

µs t

MAX_COUNT

Maximum possible count

-

65536 × 65536

51.1

t

TIMxCLK

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

s

DocID022152 Rev 4 115/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 52. Characteristics of TIMx connected to the APB2 domain

(1)

Parameter Conditions Min Max Unit

t

TIMxCLK t res(TIM)

Timer resolution time

AHB/APB2 prescaler distinct from 1, f

168 MHz

TIMxCLK

=

AHB/APB2 prescaler = 1, f

TIMxCLK

= 84 MHz

1

5.95

1

11.9

-

-

-

t f

EXT

Res

TIM

COUNTER

Timer external clock frequency on CH1 to

CH4

Timer resolution

16-bit counter clock period when internal clock is selected

f

TIMxCLK

=

168 MHz

APB2 = 84 MHz

0

0

-

1 f

TIMxCLK

84

16

65536 t

MAX_COUNT

Maximum possible count 32768

1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

/2 ns t

TIMxCLK ns

MHz

MHz bit t

TIMxCLK t

TIMxCLK

I

2

C interface characteristics

The STM32F405xx and STM32F407xx I

2

C interface meets the requirements of the standard I

2

C communication protocol with the following restrictions: the I/O pins SDA and

SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V

DD is disabled, but is still present.

The I

2

C characteristics are described in

Table 53

. Refer also to

Section 5.3.16: I/O port characteristics

for more details on the input/output alternate function characteristics (SDA

and SCL).

Symbol

t w(SCLL) t w(SCLH) t su(SDA) t h(SDA) t r(SDA) t r(SCL) t f(SDA) t f(SCL)

Parameter

Table 53. I

2

C characteristics

Standard mode I

2

C

(1)

Min Max

Fast mode I

2

C

(1)(2)

SCL clock low time

SCL clock high time

SDA setup time

SDA data hold time

4.7

4.0

250

0

(3)

-

-

-

-

Min

1.3

0.6

100

0

Max

-

-

-

900

(4)

SDA and SCL rise time

SDA and SCL fall time -

1000

300

20 + 0.1C

b

-

300

300

Unit

µs ns

116/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol

Table 53. I

2

C characteristics (continued)

Standard mode I

2

C

(1)

Fast mode I

2

C

(1)(2)

Parameter

Min Max Min Max

Unit

t t t h(STA) su(STA) su(STO) t w(STO:STA)

C b

Start condition hold time

Repeated Start condition setup time

Stop condition setup time

Stop to Start condition time

(bus free)

Capacitive load for each bus line

4.0

4.7

4.0

4.7

-

-

-

-

-

400

0.6

0.6 -

0.6

1.3

-

-

-

-

400

µs

μs

μs pF

1. Guaranteed by design, not tested in production.

2. f

PCLK1

must be at least 2 MHz to achieve standard mode I

2 achieve fast mode I clock.

2

C frequencies. It must be at least 4 MHz to

C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I

2

C fast mode

3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.

Figure 39. I

2

C bus AC waveforms and measurement circuit

V DD_I2C V DD_I2C

I²C bus

R

P

R

P

R

S

R

S

SDA

SCL

STM32Fxx

S T AR T REPEATED

S T AR T

S D A tf(SDA)

SCL tw(SCLH) th(STA) tr(SDA) tw(SCLL) tsu(SDA) th(SDA) tr(SCL) tf(SCL)

1. Rs= series protection resistor.

2. Rp = external pull-up resistor.

3. VDD_I2C is the I2C bus power supply.

tsu(STA)

S TOP tsu(STO)

S T AR T tw(STO:STA) ai14979c

DocID022152 Rev 4 117/185

Electrical characteristics STM32F405xx, STM32F407xx

Table 54. SCL frequency (f

PCLK1

= 42 MHz.,V

DD

= 3.3 V)

(1)(2)

I2C_CCR value f

SCL

(kHz)

R

P

= 4.7 k

Ω

400 0x8019

300

200

100

50

0x8021

0x8032

0x0096

0x012C

20 0x02EE

1. R

P

= External pull-up resistance, f

SCL

= I

2

C speed,

2. For speeds around 200 kHz, the tolerance on the achieved speed is of tolerance on the achieved speed components used to design the application.

±5%. For other speed ranges, the

SPI interface characteristics

Unless otherwise specified, the parameters given in

Table 55

for SPI are derived from tests performed under the ambient temperature, f

PCLKx frequency and V

conditions summarized in

Table 14

with the following configuration:

DD

supply voltage

Output speed is set to OSPEEDRy[1:0] = 10

Capacitive load C = 30 pF

Measurement points are done at CMOS levels: 0.5 V

DD

Refer to

Section 5.3.16: I/O port characteristics

for more details on the input/output alternate

function characteristics (NSS, SCK, MOSI, MISO).

Symbol

f

SCK

1/t c(SCK)

Parameter

Table 55. SPI dynamic characteristics

(1)

Conditions Min

SPI clock frequency

Master mode, SPI1,

2.7V < V

DD

< 3.6V

Slave mode, SPI1,

2.7V < V

DD

< 3.6V

Master mode, SPI1/2/3,

1.7V < V

DD

< 3.6V

Slave mode, SPI1/2/3,

1.7V < V

DD

< 3.6V

-

-

Duty(SCK)

Duty cycle of SPI clock frequency

Slave mode 30

Typ

-

-

50

Max

42

42

21

21

70

Unit

MHz

%

118/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

t su(NSS) t h(NSS) t su(MI) t su(SI) t h(MI) t h(SI) t a(SO)

(2)

Symbol

t w(SCKH) t w(SCKL) t dis(SO)

(3) t v(SO) t h(SO) t v(MO) t h(MO)

Table 55. SPI dynamic characteristics

(1)

(continued)

Parameter

SCK high and low time

NSS setup time

NSS hold time

Data input setup time

Data input hold time

Data output access time

Data output disable time

Data output valid/hold time

Data output valid time

Data output hold time

Conditions Min Typ Max

Master mode, SPI presc = 2,

2.7V < V

DD

< 3.6V

Master mode, SPI presc = 2,

1.7V < V

DD

< 3.6V

Slave mode, SPI presc = 2

Slave mode, SPI presc = 2

Master mode

Slave mode

Master mode

Slave mode

Slave mode, SPI presc = 2

Slave mode, SPI1,

2.7V < V

DD

< 3.6V

Slave mode, SPI1/2/3

1.7V < V

DD

< 3.6V

Slave mode (after enable edge),

SPI1, 2.7V < V

DD

< 3.6V

Slave mode (after enable edge),

SPI2/3, 2.7V < V

DD

< 3.6V

Slave mode (after enable edge),

SPI1, 1.7V < V

DD

< 3.6V

Slave mode (after enable edge),

SPI2/3, 1.7V < V

DD

< 3.6V

Master mode (after enable edge),

SPI1 , 2.7V < V

DD

< 3.6V

Master mode (after enable edge),

SPI1/2/3 , 1.7V < V

DD

< 3.6V

T

PCLK

-0.5 T

PCLK

T

PCLK

2.5

4

0

0

0

-

-

-

-

-

-

-2 T

4 x T

PCLK

2 x T

PCLK

6.5

2.5

PCLK

-

-

-

-

-

11

12

15.5

18

-

-

-

-

-

T

PCLK

+0.5

T

PCLK

4 x T

-

-

-

-

-

PCLK

7.5

16.5

13

16.5

19

20.5

2.5

4.5

+2

Master mode (after enable edge) 0 -

Unit

ns

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

DocID022152 Rev 4 119/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 40. SPI timing diagram - slave mode and CPHA = 0

NSS input tc(SCK) tSU(NSS)

CPHA= 0

CPOL=0

CPHA= 0

CPOL=1 tw(SCKH) tw(SCKL) ta(SO)

MISO

OUT P UT tsu(SI)

MOSI

I NPUT tv(SO)

MS B O UT

M SB IN th(SI) th(SO)

BI T6 OUT

B I T1 IN tr(SCK) tf(SCK)

LSB OUT tdis(SO)

LSB IN th(NSS)

Figure 41. SPI timing diagram - slave mode and CPHA = 1

ai14134c

NSS input tSU(NSS)

CPHA=1

CPOL=0

CPHA=1

CPOL=1 tw(SCKH) tw(SCKL)

MISO

OUT P UT ta(SO) tsu(SI)

MOSI

I NPUT tc(SCK) tv(SO)

MS B O UT th(SI)

M SB IN B I T1 IN th(SO)

BI T6 OUT th(NSS) tr(SCK) tf(SCK) tdis(SO)

LSB OUT

LSB IN ai14135

120/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Figure 42. SPI timing diagram - master mode

Electrical characteristics

NSS input

High tc(SCK)

CPHA= 0

CPOL=0

CPHA= 0

CPOL=1

CPHA=1

CPOL=0

CPHA=1

CPOL=1

MISO

INP UT

MOSI

OUTUT tsu(MI) tw(SCKH) tw(SCKL)

MS BIN th(MI)

M SB OUT tv(MO)

BI T6 IN

B I T1 OUT th(MO) tr(SCK) tf(SCK)

LSB IN

LSB OUT ai14136

DocID022152 Rev 4 121/185

Electrical characteristics STM32F405xx, STM32F407xx

I

2

S interface characteristics

Unless otherwise specified, the parameters given in

Table 56

for the i

2

S interface are derived from tests performed under the ambient temperature, f

PCLKx

frequency and V

supply voltage conditions summarized in

Table 14

, with the following configuration:

DD

Output speed is set to OSPEEDRy[1:0] = 10

Capacitive load C = 30 pF

Measurement points are done at CMOS levels: 0.5 V

DD

Refer to

Section 5.3.16: I/O port characteristics

for more details on the input/output alternate

function characteristics (CK, SD, WS).

Table 56. I

2

S dynamic characteristics

(1)

Symbol Parameter Conditions

f

MCK

I

2

S main clock output f

CK

D

CK t v(WS) t h(WS) t su(WS) t h(WS) t su(SD_MR) t su(SD_SR) t h(SD_MR) t h(SD_SR) t v(SD_ST) t h(SD_ST) t v(SD_MT) t h(SD_MT)

I

2

S clock frequency

Master data: 32 bits

Slave data: 32 bits

I

2

S clock frequency duty cycle Slave receiver

WS valid time

WS hold time

WS setup time

WS hold time

Data input setup time

Data input hold time

Data output valid time

Data output hold time

Master mode

Master mode

Slave mode

Slave mode

Master receiver

Slave receiver

Master receiver

Slave receiver

Slave transmitter (after enable edge)

Master transmitter (after enable edge)

Master transmitter (after enable edge)

1. Data based on characterization results, not tested in production.

2. The maximum value of 256 x F

S

is 42 MHz (APB1 maximum frequency).

256 x

8K

-

0

0

-

30

1

0

7.5

2

0

0

256 x F

S

(2)

-

-

-

-

-

64 x F

S

64 x F

S

70

6

-

-

-

-

2.5

27

20

-

MHz

MHz

% ns

Note: Refer to the I

2

S section of RM0090 reference manual for more details on the sampling frequency (F

S

). f

MCK

, f

CK

, and D

CK

values reflect only the digital peripheral behavior. The value of these parameters might be slightly impacted by the source clock accuracy. D

CK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV +

ODD). F

S

maximum value is supported for each mode/condition.

122/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Figure 43. I

2

S slave timing diagram (Philips protocol)

tc(CK)

CPOL = 0

CPOL = 1 tw(CKH) tw(CKL) th(WS)

WS input

SDtransmit tsu(WS)

LSB transmit

(2) tsu(SD_SR)

LSB receive

(2)

MSB transmit

MSB receive tv(SD_ST)

Bitn transmit th(SD_SR)

Bitn receive th(SD_ST)

LSB transmit

LSB receive

SDreceive ai14881b

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 44. I

2

S master timing diagram (Philips protocol)

(1)

tf(CK) tr(CK) tc(CK)

CPOL = 0 tw(CKH)

CPOL = 1 tv(WS) tw(CKL) th(WS)

WS output

SDtransmit

LSB transmit

(2) tsu(SD_MR)

LSB receive

(2)

MSB transmit

MSB receive tv(SD_MT)

Bitn transmit th(SD_MR)

Bitn receive th(SD_MT)

LSB transmit

LSB receive

SDreceive ai14884b

1. Based on characterization, not tested in production.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

USB OTG FS characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

DocID022152 Rev 4 123/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 57. USB OTG FS startup time

Parameter

t

STARTUP

(1)

USB OTG FS transceiver startup time

1. Guaranteed by design, not tested in production.

Max

1

Unit

µs

Symbol

Table 58. USB OTG FS DC electrical characteristics

Parameter Conditions Min.

(1)

Typ. Max.

(1)

Unit

V

DD

USB OTG FS operating voltage

V

DI

(3)

Differential input sensitivity

Input levels

Output levels

R

PD

V

CM

(3)

Differential common mode range

V

SE

(3)

Single ended receiver threshold

V

OL

V

OH

Static output level low

Static output level high

PA11, PA12, PB14, PB15

(USB_FS_DP/DM,

USB_HS_DP/DM)

PA9, PB13

(OTG_FS_VBUS,

OTG_HS_VBUS)

R

PU

PA12, PB15 (USB_FS_DP,

USB_HS_DP)

PA9, PB13

(OTG_FS_VBUS,

OTG_HS_VBUS)

I(USB_FS_DP/DM,

USB_HS_DP/DM)

Includes V

DI range

R

L

of 1.5 k

Ω

to 3.6 V

(4)

R

L

of 15 k

Ω

to V

SS

(4)

V

IN

= V

DD

V

IN

= V

SS

V

IN

= V

SS

3.0

(2)

0.2

0.8

1.3

-

2.8

17

0.65

1.1

1.5

-

-

-

-

-

-

21

1.8

3.6

-

2.5

2.0

0.3

3.6

24

2.0

2.1

0.25

0.37

0.55

k

Ω

1. All the voltages are measured from the local ground potential.

2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full

USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V

DD

voltage range.

3. Guaranteed by design, not tested in production.

4. R

L

is the load connected on the USB OTG FS drivers

V

V

V

Figure 45. USB OTG FS timings: definition of data signal rise and fall time

Crossover points

Differen tial

Data L ines

VCRS

VS S tf tr ai14137

124/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 59. USB OTG FS electrical characteristics

(1)

Driver characteristics

Symbol Parameter Conditions Min Max

t r t f t rfm

V

CRS

Rise time

Fall time

(2)

(2)

Rise/ fall time matching

Output signal crossover voltage

C

L

C

L

= 50 pF

= 50 pF t r

/t f

4

4

90

1.3

20

20

110

2.0

1. Guaranteed by design, not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB

Specification - Chapter 7 (version 2.0).

Unit

ns ns

%

V

USB HS characteristics

Unless otherwise specified, the parameters given in

Table 62

for ULPI are derived from tests performed under the ambient temperature, f

HCLK and V

DD

frequency summarized in

Table 61

supply voltage conditions summarized in

Table 60

, with the following configuration:

Output speed is set to OSPEEDRy[1:0] = 10

Capacitive load C = 30 pF

Measurement points are done at CMOS levels: 0.5V

DD

.

Refer to Section

Section 5.3.16: I/O port characteristics

for more details on the

input/outputcharacteristics.

Symbol

Table 60. USB HS DC electrical characteristics

Parameter

Input level V

DD

USB OTG HS operating voltage

1. All the voltages are measured from the local ground potential.

Min.

(1)

2.7

Max.

(1)

3.6

Unit

V

Table 61. USB HS clock timing parameters

(1)

Parameter Symbol Min Nominal Max

f

HCLK

value to guarantee proper operation of

USB HS interface

Frequency (first transition) 8-bit ±10%

Frequency (steady state) ±500 ppm

Duty cycle (first transition) 8-bit ±10%

Duty cycle (steady state) ±500 ppm

F

START_8BIT

F

STEADY

D

START_8BIT

D

STEADY

Time to reach the steady state frequency and duty cycle after the first transition

T

STEADY

Clock startup time after the de-assertion of SuspendM

Peripheral

Host

T

START_DEV

T

START_HOST

PHY preparation time after the first transition of the input clock

T

PREP

30

54

59.97

40

49.975

-

-

-

-

60

60

50

50

-

-

-

-

Unit

MHz

66 MHz

60.03

MHz

60 %

50.025

%

1.4

5.6

-

ms ms

µs

DocID022152 Rev 4 125/185

Electrical characteristics STM32F405xx, STM32F407xx

1. Guaranteed by design, not tested in production.

Table 62. ULPI timing

Parameter Symbol

Control in (ULPI_DIR) setup time

Control in (ULPI_NXT) setup time

Control in (ULPI_DIR, ULPI_NXT) hold time

Data in setup time

Data in hold time

Control out (ULPI_STP) setup time and hold time

Data out available from clock rising edge

1. V

DD

= 2.7 V to 3.6 V and T

A

= –40 to 85 °C.

t

SC

t

HC t

SD t

HD t

DC t

DD

Figure 46. ULPI timing diagram

Min.

0

-

-

0

-

-

-

Value

(1)

Max.

2.0

1.5

-

2.0

-

9.2

10.7

Unit

ns

Clock tSC tSD tHC

Control In

(ULPI_DIR,

ULPI_NXT) data In

(8-bit) tHD tDC tDC

Control out

(ULPI_STP) data out

(8-bit) tDD ai17361c

Ethernet characteristics

Unless otherwise specified, the parameters given in

Table 64

,

Table 65

and

Table 66

for

SMI, RMII and MII are derived from tests performed under the ambient temperature, f

HCLK frequency summarized in

Table 14

and VDD supply voltage conditions summarized in

Table 63

, with the following configuration:

Output speed is set to OSPEEDRy[1:0] = 10

• Capacitive load C = 30 pF

Measurement points are done at CMOS levels: 0.5V

DD

.

Refer to

Section 5.3.16: I/O port characteristics

for more details on the input/output

characteristics.

126/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol

Table 63. Ethernet DC electrical characteristics

Parameter

Input level V

DD

Ethernet operating voltage

1. All the voltages are measured from the local ground potential.

Min.

(1)

2.7

Max.

(1)

3.6

Unit

V

Table 64

gives the list of Ethernet MAC signals for the SMI (station management interface) and

Figure 47

shows the corresponding timing diagram.

Figure 47. Ethernet SMI timing diagram

tMDC

ETH_MDC td(MDIO)

ETH_MDIO(O) tsu(MDIO) th(MDIO)

ETH_MDIO(I)

MS31384V1

Symbol

Table 64. Dynamic characteristics: Ehternet MAC signals for SMI

(1)

Parameter Min Typ Max

t

MDC

T d(MDIO) t su(MDIO) t h(MDIO)

MDC cycle time( 2.38 MHz)

Write data valid time

Read data setup time

Read data hold time

411

6

12

0

1. Data based on characterization results, not tested in production.

420

10

-

-

425

13

-

-

Table 65

gives the list of Ethernet MAC signals for the RMII and

Figure 48

shows the

corresponding timing diagram.

Figure 48. Ethernet RMII timing diagram

Unit

ns

RMII_REF_CLK t d(TXEN) t d(TXD)

RMII_TX_EN

RMII_TXD[1:0] t su(RXD) t su(CRS)

RMII_RXD[1:0]

RMII_CRS_DV t ih(RXD) t ih(CRS) ai15667

DocID022152 Rev 4 127/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 65. Dynamic characteristics: Ethernet MAC signals for RMII

Rating Min Typ Max

t su(RXD) t ih(RXD) t su(CRS) t ih(CRS) t d(TXEN) t d(TXD)

Receive data setup time

Receive data hold time

Carrier sense set-up time

Carrier sense hold time

Transmit enable valid delay time

Transmit data valid delay time

2

1

0.5

2

8

8.5

-

-

-

-

9.5

10

-

-

-

-

11

11.5

Table 66

gives the list of Ethernet MAC signals for MII and

Figure 48

shows the

corresponding timing diagram.

Figure 49. Ethernet MII timing diagram

Unit

ns ns ns ns ns ns

MII_RX_CLK

MII_RXD[3:0]

MII_RX_DV

MII_RX_ER t su(RXD) t su(ER) t su(DV)

MII_TX_CLK t ih(RXD) t ih(ER) t ih(DV) t d(TXEN) t d(TXD)

MII_TX_EN

MII_TXD[3:0] ai15668

Symbol

Table 66. Dynamic characteristics: Ethernet MAC signals for MII

(1)

Parameter Min Typ Max

t su(RXD) t ih(RXD) t su(DV) t ih(DV) t su(ER) t ih(ER) t d(TXEN) t d(TXD)

Receive data setup time

Receive data hold time

Data valid setup time

Data valid hold time

Error setup time

Error hold time

Transmit enable valid delay time

Transmit data valid delay time

9

10

9

8

6

8

0

0

1. Data based on characterization results, not tested in production.

10

10

14

15

-

-

-

-

-

-

Unit

ns

128/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

CAN (controller area network) interface

Refer to

Section 5.3.16: I/O port characteristics

for more details on the input/output alternate

function characteristics (CANTX and CANRX).

Unless otherwise specified, the parameters given in

Table 67

are derived from tests performed under the ambient temperature, f

conditions summarized in

Table 14

.

PCLK2 frequency and V

DDA

supply voltage

Symbol

V

DDA

V

REF+ f

ADC f

TRIG

(4)

V

AIN

R

AIN

(4)

Parameter

Power supply

Positive reference voltage

ADC clock frequency

External trigger frequency

Conversion voltage range

(5)

Table 67. ADC characteristics

Conditions Min

1.8

(1)

1.8

(1)(2)(3)

V

DDA

= 1.8

(1)(3)

to

2.4 V

V

DDA

= 2.4 to 3.6 V

(3) f

ADC

= 30 MHz,

12-bit resolution

0.6

0.6

-

-

0 (V

SSA or V

REFtied to ground)

External input impedance

See

Equation 1

for details

-

R

ADC

(4)(6)

Sampling switch resistance

C

ADC

(4)

Internal sample and hold capacitor

-

t lat

(4) t latr

(4) t

S

(4) t

STAB

(4)

Injection trigger conversion latency

Regular trigger conversion latency

Sampling time

Power-up time f

ADC

= 30 MHz f

ADC

= 30 MHz f

ADC

= 30 MHz

-

-

-

-

0.100

3

-

15

-

-

Typ

-

-

30

-

-

-

4

-

-

-

-

-

-

2

Max

3.6

V

DDA

18

36

1764

17

V

REF+

50

6

-

0.100

3

(7)

0.067

2

(7)

16

480

3

Unit

V

V

MHz

MHz kHz

1/f

ADC

V

κΩ

κΩ pF

µs

1/f

ADC

µs

1/f

ADC

µs

1/f

ADC

µs

DocID022152 Rev 4 129/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol Parameter

Table 67. ADC characteristics (continued)

Conditions Min Typ Max Unit

t

CONV

(4) f

ADC

= 30 MHz

12-bit resolution f

ADC

= 30 MHz

10-bit resolution

0.50

0.43

-

16.40

16.34

Total conversion time (including sampling time) f

ADC

= 30 MHz

8-bit resolution f

ADC

= 30 MHz

6-bit resolution

0.37

0.30

-

16.27

16.20

9 to 492 (t

S

for sampling +n-bit resolution for successive approximation)

1/f

µs

µs

µs

µs

ADC f

S

(4)

Sampling rate t

(f

ADC

S

= 30 MHz, and

= 3 ADC cycles)

12-bit resolution

Single ADC

12-bit resolution

Interleave Dual ADC mode

-

-

-

-

2

3.75

Msps

Msps

12-bit resolution

Interleave Triple ADC mode

6 Msps

I

I

VREF+

(4)

VDDA

(4)

ADC V

REF

DC current consumption in conversion mode

ADC V

DDA

DC current consumption in conversion mode

-

300

1.6

500

1.8

µA mA

1. V

DD

/V

DDA

minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to

Section : Internal reset OFF

).

2. It is recommended to maintain the voltage difference between V

REF+

and V

DDA below 1.8 V.

3. V

DDA

-V

REF+

< 1.2 V.

4. Based on characterization, not tested in production.

5. V

REF+

is internally connected to V

DDA

and V

REF-

is internally connected to V

SSA

.

6. R

ADC

maximum value is given for V

DD

=1.8 V, and minimum value for V

DD

=3.3 V.

7. For external triggers, a delay of 1/f

PCLK2

must be added to the latency specified in

Table 67

.

Equation 1: R

AIN

max formula

R

AIN

= f

ADC

×

(

C k 0.5

ADC

× ln

)

( 2

N +

)

R

ADC

The formula above (

Equation 1

) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

130/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Note:

Electrical characteristics

a

Symbol

Table 68. ADC accuracy at f

ADC

= 30 MHz

(1)

Parameter Test conditions Typ Max

(2)

Unit

ET

EO

EG

ED

EL

Total unadjusted error

Offset error

Gain error

Differential linearity error

Integral linearity error f

PCLK2 f

ADC

= 60 MHz,

= 30 MHz, R

AIN

V

DDA

= 1.8

(3)

< 10 k

to 3.6 V

Ω,

±2

±1.5

±1.5

±1

±1.5

±5

±2.5

±3

±2

±3

LSB

1. Better performance could be achieved in restricted V

DD

, frequency and temperature ranges.

2. Based on characterization, not tested in production.

3. V

DD

/V

DDA

minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to

Section : Internal reset OFF

).

ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for I

Section 5.3.16

does not affect the ADC accuracy.

INJ(PIN)

and

ΣI

INJ(PIN)

in

Figure 50. ADC accuracy characteristics

[1LSB IDEAL =

V REF+

4096

V DDA

(or depending on package)]

4096

EG

4095

4094

4093

(2)

ET

(3)

7

4

3

6

5

2

1

EO

EL

1L SBIDEAL

ED

(1)

0

VSSA

1 2 3 456 7

4093 4094 4095 4096

VDDA ai14395c

1. See also

Table 68

.

2. Example of an actual transfer curve.

3. Ideal transfer curve.

4. End point correlation line.

5. E

T

= Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.

EO = Offset Error: deviation between the first actual transition and the first ideal one.

DocID022152 Rev 4 131/185

Electrical characteristics STM32F405xx, STM32F407xx

EG = Gain Error: deviation between the last ideal transition and the last actual one.

ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Figure 51. Typical connection diagram using the ADC

VAIN

RAIN(1)

AINx

Cparasitic

VDD

VT

0.6 V

VT

0.6 V

IL±1 µA

STM32F

Sample and hold ADC converter

RADC(1)

12-bit converter

CADC(1) ai17534

1. Refer to

Table 67

for the values of R

AIN

, R

ADC

and C

ADC

.

2. C f pad capacitance (roughly 5 pF). A high C

ADC

represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the

should be reduced.

parasitic

value downgrades conversion accuracy. To remedy this,

132/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

General PCB design guidelines

Power supply decoupling should be performed as shown in

Figure 52

or

Figure 53

, depending on whether V

REF+

is connected to V

DDA

or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 52. Power supply and reference decoupling (V

REF+ not connected to

V

DDA

)

STM32F

V REF+

(See note 1)

1 µF // 10 nF

V DDA

1 µF // 10 nF

V SSA/V REF-

(See note 1) ai17535

1. V

REF+

and V

REF– inputs are both available on UFBGA176. V

REF+

and V

REF–

REF+ is also available on LQFP100, LQFP144, are not available, they are internally connected to V

DDA and V

SSA

.

Figure 53. Power supply and reference decoupling (V

REF+ connected to

V

DDA

)

STM32F

V

REF+

/V

DDA

(See note 1)

1 µF // 10 nF

V

REF–

/V

SSA

(See note 1) ai17536

1. V

REF+

and V

REF– inputs are both available on UFBGA176. V

REF+

and V

REF–

REF+ is also available on LQFP100, LQFP144, are not available, they are internally connected to V

DDA and V

SSA

.

DocID022152 Rev 4 133/185

Electrical characteristics STM32F405xx, STM32F407xx

5.3.21 Temperature sensor characteristics

Symbol

Table 69. Temperature sensor characteristics

Parameter Min Typ Max

T

L

(1)

Avg_Slope

(1)

V

25

(1) t

START

(2)

T

S_temp

(3)(2)

V

SENSE

linearity with temperature

Average slope

Voltage at 25 °C

Startup time

ADC sampling time when reading the temperature (1 °C accuracy)

1. Based on characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

-

-

-

-

10

±1

2.5

0.76

6

-

±2

10

-

Unit

°C mV/°C

V

µs

µs

Symbol

Table 70. Temperature sensor calibration values

Parameter Memory address

TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, V

DDA

=3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D

TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, V

DDA

=3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F

5.3.22 V

BAT

monitoring characteristics

Symbol

Table 71. V

BAT

monitoring characteristics

Parameter Min

T

R

Q

Er

(1)

S_vbat

(2)(2)

Resistor bridge for V

BAT

Ratio on V

BAT

measurement

Error on Q

ADC sampling time when reading the V

BAT

1 mV accuracy

1. Guaranteed by design, not tested in production.

2. Shortest sampling time can be determined in the application by multiple iterations.

-

-

–1

5

Typ

50

2

-

-

Max

-

-

+1

-

Unit

K Ω

%

µs

134/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

The parameters given in

Table 72

are derived from tests performed under ambient

temperature and V

DD

supply voltage conditions summarized in

Table 14

.

Symbol

Table 72. Embedded internal reference voltage

Parameter Conditions Min Typ Max

T

V

REFINT

S_vrefint

(1)

Internal reference voltage

ADC sampling time when reading the internal reference voltage

–40 °C < T

A

< +105 °C 1.18 1.21

V

RERINT_s

(2)

Internal reference voltage spread over the temperature range

V

DD

= 3 V

T

Coeff

(2) t

START

(2)

Temperature coefficient

Startup time

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

10

-

-

-

-

3

30

6

-

1.24

5

50

10

Unit

V

µs mV ppm/°C

µs

Symbol

V

REFIN_CAL

Table 73. Internal reference voltage calibration values

Parameter Memory address

Raw data acquired at temperature of 30 °C, V

DDA

=3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B

Symbol

V

DDA

V

REF+

V

SSA

R

LOAD

(2)

R

O

(2)

C

LOAD

(2)

Parameter

Analog supply voltage

Reference supply voltage

Ground

Resistive load with buffer

ON

Table 74. DAC characteristics

Min Typ Max Unit

1.8

(1)

1.8

(1)

0 -

-

3.6

3.6

0

Comments

V

V V

REF+

≤ V

DDA

V

5 k

Ω

Impedance output with buffer OFF

Capacitive load

DAC_OUT min

(2)

Lower DAC_OUT voltage with buffer ON

DAC_OUT max

(2)

Higher DAC_OUT voltage with buffer ON

-

-

-

-

0.2 -

-

15

50

-

V

DDA

– 0.2 k Ω pF

V

V

When the buffer is OFF, the

Minimum resistive load between

DAC_OUT and V

SS accuracy is 1.5 M

Ω

to have a 1%

Maximum capacitive load at

DAC_OUT pin (when the buffer is

ON).

It gives the maximum output excursion of the DAC.

It corresponds to 12-bit input code

(0x0E0) to (0xF1C) at V

REF+

=

3.6 V and (0x1C7) to (0xE38) at

V

REF+

= 1.8 V

DocID022152 Rev 4 135/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol Parameter

Table 74. DAC characteristics (continued)

DAC_OUT min

(2)

Lower DAC_OUT voltage with buffer OFF

DAC_OUT max

(2)

Higher DAC_OUT voltage with buffer OFF

Min Typ

-

0.5

Max

-

Unit

mV

V

REF+

– 1LSB V

Comments

It gives the maximum output excursion of the DAC.

I

VREF+

(4)

I

DDA

(4)

DAC DC V

REF

current consumption in quiescent mode (Standby mode)

DAC DC VDDA current consumption in quiescent mode

(3)

-

-

-

170

50

280

475

240

75

380

625

µA

µA

µA

With no load, worst code (0x800) at V

REF+

= 3.6 V in terms of DC consumption on the inputs

With no load, worst code (0xF1C) at V

REF+

= 3.6 V in terms of DC consumption on the inputs

With no load, middle code (0x800) on the inputs

With no load, worst code (0xF1C) at V

REF+

= 3.6 V in terms of DC consumption on the inputs

DNL

(4)

INL

(4)

Differential non linearity

Difference between two consecutive code-1LSB)

Integral non linearity

(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)

-

-

-

-

-

-

-

±0.5

±2

±1

±4

LSB

Given for the DAC in 10-bit configuration.

LSB

LSB

Given for the DAC in 12-bit configuration.

Given for the DAC in 10-bit configuration.

LSB

Given for the DAC in 12-bit configuration.

Offset

(4)

Offset error

(difference between measured value at Code

(0x800) and the ideal value

= V

REF+

/2)

-

-

-

-

-

-

-

±10

±3

±12

±0.5

mV

LSB

LSB

%

Given for the DAC in 12-bit configuration

Given for the DAC in 10-bit at

V

REF+

= 3.6 V

Given for the DAC in 12-bit at

V

REF+

= 3.6 V

Given for the DAC in 12-bit configuration

Gain error

(4)

THD

(4)

Gain error t

SETTLING

(4)

Settling time (full scale: for a

10-bit input code transition between the lowest and the highest input codes when

DAC_OUT reaches final value ±4LSB

Total Harmonic Distortion

Buffer ON

-

3

-

6

-

µs dB

C

LOAD

R

LOAD

≤ 50 pF,

≥ 5 kΩ

C

LOAD

R

LOAD

≤ 50 pF,

≥ 5 kΩ

136/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Symbol Parameter

Table 74. DAC characteristics (continued)

Min Typ Max Unit Comments

Update rate

(2) t

WAKEUP

(4)

PSRR+

(2)

Max frequency for a correct

DAC_OUT change when small variation in the input code (from code i to i+1LSB)

Wakeup time from off state

(Setting the ENx bit in the

DAC Control register)

Power supply rejection ratio

(to V

DDA

) (static DC measurement)

-

-

-

6.5

1

10

–67 –40

MS/s

µs dB

C

LOAD

R

LOAD

C

LOAD

≤ 50 pF,

≥ 5 kΩ

≤ 50 pF, R

LOAD

≥ 5 kΩ input code between lowest and highest possible ones.

No , C

LOAD

= 50 pF

1. V

DD

/V

DDA

minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to

Section : Internal reset OFF

).

2. Guaranteed by design, not tested in production.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization, not tested in production.

Figure 54. 12-bit buffered /non-buffered DAC

Buffered/Non-buffered DAC

Buffer(1)

R

LOAD

12-bit digital to analog converter

DACx_OUT

C

LOAD ai17157

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Unless otherwise specified, the parameters given in

Table 75

to

Table 86

for the FSMC interface are derived from tests performed under the ambient temperature, f

HCLK and V

DD

frequency

supply voltage conditions summarized in

Table 14

, with the following configuration:

Output speed is set to OSPEEDRy[1:0] = 10

• Capacitive load C = 30 pF

Measurement points are done at CMOS levels: 0.5V

DD

Refer to Section

Section 5.3.16: I/O port characteristics

for more details on the input/output

characteristics.

DocID022152 Rev 4 137/185

Electrical characteristics STM32F405xx, STM32F407xx

Asynchronous waveforms and timings

Figure 55

through

Figure 58

represent asynchronous waveforms and

Table 75

through

Table 78

provide the corresponding timings. The results shown in these tables are obtained

with the following FSMC configuration:

AddressSetupTime = 1

AddressHoldTime = 0x1

DataSetupTime = 0x1

BusTurnAroundDuration = 0x0

In all timing tables, the

T

HCLK

is the HCLK clock period.

Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

t w(NE)

FSMC_NE t v(NOE_NE) t w(NOE) t h(NE_NOE)

FSMC_NOE

138/185

FSMC_NWE t v(A_NE) t h(A_NOE)

FSMC_A[25:0]

Address t v(BL_NE) t h(BL_NOE)

FSMC_NBL[1:0] t su(Data_NOE) t su(Data_NE)

Data t h(Data_NE) t h(Data_NOE)

FSMC_D[15:0] t v(NADV_NE) t w(NADV)

FSMC_NADV

(1) ai14991c

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings

(1)(2)

Symbol Parameter Min Max Unit

t w(NE) t v(NOE_NE) t w(NOE) t h(NE_NOE) t v(A_NE) t h(A_NOE)

FSMC_NE low time

FSMC_NEx low to FSMC_NOE low

FSMC_NOE low time

FSMC_NOE high to FSMC_NE high hold time

FSMC_NEx low to FSMC_A valid

Address hold time after FSMC_NOE high

2T

HCLK

–0.5 2 T

HCLK

+1 ns

0.5

3 ns

2T

HCLK

–2 2T

HCLK

+ 2 ns

0 ns

4.5

ns

4 ns

DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings

(1)(2)

t v(BL_NE)

FSMC_NEx low to FSMC_BL valid 1.5

ns

FSMC_BL hold time after FSMC_NOE high 0 ns t h(BL_NOE) t su(Data_NE) t su(Data_NOE) t h(Data_NOE) t h(Data_NE) t v(NADV_NE) t w(NADV)

Data to FSMC_NEx high setup time

Data to FSMC_NOEx high setup time

Data hold time after FSMC_NOE high

Data hold time after FSMC_NEx high

FSMC_NEx low to FSMC_NADV low

FSMC_NADV low time

T

HCLK

+4 -

T

HCLK

0

+4 -

-

-

-

0 -

2

T

HCLK ns ns ns ns ns ns

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

t w(NE)

FSMC_NEx

FSMC_NOE t v(NWE_NE) t w(NWE) t h(NE_NWE)

FSMC_NWE

FSMC_A[25:0]

FSMC_NBL[1:0] t v(A_NE) t v(BL_NE) t v(Data_NE) t h(A_NWE)

Address t h(BL_NWE)

NBL t h(Data_NWE)

Data

FSMC_D[15:0] t v(NADV_NE) t w(NADV)

FSMC_NADV

(1) ai14990

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings

(1)(2)

Symbol Parameter Min Max Unit

t w(NE) t v(NWE_NE) t w(NWE) t h(NE_NWE) t v(A_NE)

FSMC_NE low time

FSMC_NEx low to FSMC_NWE low

FSMC_NWE low time

FSMC_NWE high to FSMC_NE high hold time

FSMC_NEx low to FSMC_A valid

3T

HCLK

3T

HCLK

+ 4 ns

T

HCLK

–0.5

T

HCLK

+0.5

ns

T

T

HCLK

–1

HCLK

–1

-

T

HCLK

+2 ns

ns

0 ns

DocID022152 Rev 4 139/185

Electrical characteristics STM32F405xx, STM32F407xx

Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings

(1)(2)

t h(A_NWE)

Address hold time after FSMC_NWE high T

HCLK

– 2 ns

FSMC_NEx low to FSMC_BL valid 1.5

ns t v(BL_NE) t h(BL_NWE) t v(Data_NE) t h(Data_NWE) t v(NADV_NE) t w(NADV)

FSMC_BL hold time after FSMC_NWE high

Data to FSMC_NEx low to Data valid

Data hold time after FSMC_NWE high

FSMC_NEx low to FSMC_NADV low

FSMC_NADV low time

T

HCLK

– 1

-

T

HCLK

–1

-

-

-

T

HCLK

+3 ns

ns

2 ns ns

T

HCLK

+0.5

ns

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms

t w(NE)

FSMC_NE t v(NOE_NE) t h(NE_NOE)

FSMC_NOE t w(NOE)

FSMC_NWE t v(A_NE) t h(A_NOE)

FSMC_A[25:16]

Address t v(BL_NE) t h(BL_NOE)

FSMC_NBL[1:0]

NBL t h(Data_NE)

FSMC_AD[15:0] t v(A_NE)

Address t v(NADV_NE) t w(NADV) t h(AD_NADV) t su(Data_NE) t su(Data_NOE)

Data t h(Data_NOE)

FSMC_NADV ai14892b

Table 77. Asynchronous multiplexed PSRAM/NOR read timings

(1)(2)

Symbol Parameter Min Max

t w(NE) t v(NOE_NE) t w(NOE) t h(NE_NOE) t v(A_NE)

FSMC_NE low time

FSMC_NEx low to FSMC_NOE low

FSMC_NOE low time

FSMC_NOE high to FSMC_NE high hold time

FSMC_NEx low to FSMC_A valid

3T

HCLK

–1 3T

HCLK

+1

2T

HCLK

–0.5

2T

HCLK

+0.5

T

HCLK

–1

0

T

HCLK

-

+1

3

Unit

ns ns ns ns ns

140/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 77. Asynchronous multiplexed PSRAM/NOR read timings

(1)(2)

(continued)

t v(NADV_NE)

FSMC_NEx low to FSMC_NADV low 1 2 ns t w(NADV)

FSMC_NADV low time T

HCLK

– 2 T

HCLK

+1 ns t h(AD_NADV)

FSMC_AD(adress) valid hold time after

FSMC_NADV high)

T

HCLK

ns

ns t h(A_NOE) t h(BL_NOE) t v(BL_NE) t su(Data_NE) t su(Data_NOE) t h(Data_NE) t h(Data_NOE)

Address hold time after FSMC_NOE high

FSMC_BL time after FSMC_NOE high

FSMC_NEx low to FSMC_BL valid

Data to FSMC_NEx high setup time

Data to FSMC_NOE high setup time

Data hold time after FSMC_NEx high

Data hold time after FSMC_NOE high

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

T

HCLK

–1

0

-

T

HCLK

+4

T

HCLK

+4

0

0

-

-

-

-

-

2 ns ns ns ns ns ns

Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms

t w(NE)

FSMC_NEx

FSMC_NOE t v(NWE_NE) t w(NWE) t h(NE_NWE)

FSMC_NWE

FSMC_A[25:16]

FSMC_NBL[1:0]

FSMC_AD[15:0] t v(A_NE) t v(BL_NE) t v(A_NE)

Address t v(NADV_NE) t w(NADV) t h(A_NWE)

Address t h(BL_NWE)

NBL t v(Data_NADV)

Data t h(AD_NADV) t h(Data_NWE)

FSMC_NADV ai14891B

Table 78. Asynchronous multiplexed PSRAM/NOR write timings

(1)(2)

Symbol

t w(NE) t v(NWE_NE) t w(NWE)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NWE low

FSMC_NWE low tim e

Min Max Unit

4T

HCLK

–0.5

4T

HCLK

+3 ns

T

HCLK

–0.5

T

HCLK

-0.5

ns

2T

HCLK

–0.5

2T

HCLK

+3 ns

DocID022152 Rev 4 141/185

Electrical characteristics STM32F405xx, STM32F407xx

Table 78. Asynchronous multiplexed PSRAM/NOR write timings

(1)(2)

t h(NE_NWE)

FSMC_NWE high to FSMC_NE high hold time T

HCLK

-

FSMC_NEx low to FSMC_A valid 0 t v(A_NE) t v(NADV_NE) t w(NADV)

FSMC_NEx low to FSMC_NADV low

FSMC_NADV low time

1

T

HCLK

– 2

2

T

HCLK

+ 1 t h(AD_NADV)

FSMC_AD(address) valid hold time after

FSMC_NADV high)

T

HCLK

–2 t h(A_NWE) t h(BL_NWE) t v(BL_NE) t v(Data_NADV) t h(Data_NWE)

Address hold time after FSMC_NWE high

FSMC_BL hold time after FSMC_NWE high

FSMC_NEx low to FSMC_BL valid

FSMC_NADV high to Data valid

Data hold time after FSMC_NWE high

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

T

HCLK

T

HCLK

–2

-

-

T

HCLK

-

-

1.5

T

HCLK

–0.5

ns ns ns ns ns ns ns ns ns ns

Synchronous waveforms and timings

Figure 59

through

Figure 62

represent synchronous waveforms and

Table 80

through

Table 82

provide the corresponding timings. The results shown in these tables are obtained

with the following FSMC configuration:

BurstAccessMode = FSMC_BurstAccessMode_Enable;

MemoryType = FSMC_MemoryType_CRAM;

WriteBurst = FSMC_WriteBurst_Enable;

CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)

DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the

T

HCLK

FSMC_CLK = 60 MHz).

is the HCLK clock period (with maximum

142/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Figure 59. Synchronous multiplexed NOR/PSRAM read timings

tw(CLK) tw(CLK)

BUSTURN = 0

FSMC_CLK

Data latency = 0 td(CLKL-NExL) td(CLKL-NExH)

FSMC_NEx td(CLKL-NADVL)

FSMC_NADV td(CLKL-NADVH) td(CLKL-AV) td(CLKL-AIV)

FSMC_A[25:16] td(CLKL-NOEL) td(CLKL-NOEH)

FSMC_NOE td(CLKL-ADV)

FSMC_AD[15:0] td(CLKL-ADIV) tsu(ADV-CLKH)

AD[15:0] tsu(NWAITV-CLKH)

FSMC_NWAIT

(WAITCFG = 1b, WAITPOL + 0b)

D1 tsu(ADV-CLKH) tsu(NWAITV-CLKH) th(CLKH-ADV)

D2 th(CLKH-NWAITV) th(CLKH-ADV) th(CLKH-NWAITV)

FSMC_NWAIT

(WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14893g

Table 79. Synchronous multiplexed NOR/PSRAM read timings

(1)(2)

Symbol Parameter Min Max

t w(CLK) t d(CLKL-NExL) t d(CLKL-NExH) t d(CLKL-NADVL) t d(CLKL-NADVH) t d(CLKL-AV) t d(CLKL-AIV) t d(CLKL-NOEL) t d(CLKL-NOEH) t d(CLKL-ADV) t d(CLKL-ADIV) t su(ADV-CLKH)

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x=0..2)

FSMC_CLK low to FSMC_NEx high (x= 0…2)

FSMC_CLK low to FSMC_NADV low

FSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x=16…25)

FSMC_CLK low to FSMC_Ax invalid (x=16…25)

FSMC_CLK low to FSMC_NOE low

FSMC_CLK low to FSMC_NOE high

FSMC_CLK low to FSMC_AD[15:0] valid

FSMC_CLK low to FSMC_AD[15:0] invalid

FSMC_A/D[15:0] valid data before FSMC_CLK high

0

-

2

-

2T

HCLK

-

2

-

0

6

2

-

-

0

-

0

-

2

0

-

-

4.5

-

-

Unit

ns ns ns ns ns ns ns ns ns ns ns ns

DocID022152 Rev 4 143/185

Electrical characteristics STM32F405xx, STM32F407xx

Table 79. Synchronous multiplexed NOR/PSRAM read timings

(1)(2)

(continued)

t h(CLKH-ADV)

FSMC_A/D[15:0] valid data after FSMC_CLK high 0 ns t su(NWAIT-CLKH) t h(CLKH-NWAIT)

FSMC_NWAIT valid before FSMC_CLK high

FSMC_NWAIT valid after FSMC_CLK high

4

0 -

ns ns

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

FSMC_CLK

Figure 60. Synchronous multiplexed PSRAM write timings

tw(CLK) tw(CLK)

BUSTURN = 0

Data latency = 0 td(CLKL-NExL) td(CLKL-NExH)

FSMC_NEx td(CLKL-NADVL)

FSMC_NADV td(CLKL-NADVH) td(CLKL-AV) td(CLKL-AIV)

FSMC_A[25:16] td(CLKL-NWEL) td(CLKL-NWEH)

FSMC_NWE td(CLKL-ADV)

FSMC_AD[15:0] td(CLKL-ADIV) td(CLKL-Data)

AD[15:0] td(CLKL-Data)

D1 D2

FSMC_NWAIT

(WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV) td(CLKL-NBLH)

FSMC_NBL ai14992g

Symbol

Table 80. Synchronous multiplexed PSRAM write timings

(1)(2)

Parameter Min Max Unit

t w(CLK) t d(CLKL-NExL) t d(CLKL-NExH) t d(CLKL-NADVL) t d(CLKL-NADVH) t d(CLKL-AV)

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x=0..2)

FSMC_CLK low to FSMC_NEx high (x= 0…2)

FSMC_CLK low to FSMC_NADV low

FSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x=16…25)

2T

HCLK

-

1

-

0

-

-

0

-

1

-

0 ns ns ns ns ns ns

144/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

t d(CLKL-AIV)

Table 80. Synchronous multiplexed PSRAM write timings

(1)(2)

FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8

FSMC_CLK low to FSMC_NWE low -

-

0.5

t d(CLKL-NWEL) t d(CLKL-NWEH) t d(CLKL-ADIV) t d(CLKL-DATA) t d(CLKL-NBLH) t su(NWAIT-CLKH) t h(CLKH-NWAIT)

FSMC_CLK low to FSMC_NWE high

FSMC_CLK low to FSMC_AD[15:0] invalid

FSMC_A/D[15:0] valid data after FSMC_CLK low

FSMC_CLK low to FSMC_NBL high

FSMC_NWAIT valid before FSMC_CLK high

FSMC_NWAIT valid after FSMC_CLK high

0

0

-

0

4

0

-

-

3

-

-

-

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

ns ns ns ns ns ns ns ns

Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings

FSMC_CLK tw(CLK) tw(CLK)

BUSTURN = 0 td(CLKL-NExL)

FSMC_NEx

Data latency = 0 td(CLKL-NExH) td(CLKL-NADVL)

FSMC_NADV td(CLKL-NADVH) td(CLKL-AV) td(CLKL-AIV)

FSMC_A[25:0] td(CLKL-NOEL) td(CLKL-NOEH)

FSMC_NOE tsu(DV-CLKH)

FSMC_D[15:0] tsu(NWAITV-CLKH)

D1 th(CLKH-DV) tsu(DV-CLKH)

D2 th(CLKH-NWAITV) th(CLKH-DV)

FSMC_NWAIT

(WAITCFG = 1b, WAITPOL + 0b) tsu(NWAITV-CLKH) t h(CLKH-NWAITV)

FSMC_NWAIT

(WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14894f

Table 81. Synchronous non-multiplexed NOR/PSRAM read timings

(1)(2)

Symbol Parameter Min Max

t w(CLK) t d(CLKL-NExL)

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x=0..2)

2T

HCLK

–0.5

-

-

0.5

Unit

ns ns

DocID022152 Rev 4 145/185

Electrical characteristics STM32F405xx, STM32F407xx

Table 81. Synchronous non-multiplexed NOR/PSRAM read timings

(1)(2)

(continued)

t d(CLKL-NExH)

FSMC_CLK low to FSMC_NEx high (x= 0…2) 0 ns

FSMC_CLK low to FSMC_NADV low 2 ns t d(CLKL-NADVL) t d(CLKL-NADVH) t d(CLKL-AV) t d(CLKL-AIV) t d(CLKL-NOEL) t d(CLKL-NOEH) t su(DV-CLKH) t h(CLKH-DV) t su(NWAIT-CLKH) t h(CLKH-NWAIT)

FSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x=16…25)

FSMC_CLK low to FSMC_Ax invalid (x=16…25)

FSMC_CLK low to FSMC_NOE low

FSMC_CLK low to FSMC_NOE high

FSMC_D[15:0] valid data before FSMC_CLK high

FSMC_D[15:0] valid data after FSMC_CLK high

FSMC_NWAIT valid before FSMC_CLK high

FSMC_NWAIT valid after FSMC_CLK high

3

-

2

-

1.5

6

3

4

0

-

0

-

0.5

-

-

-

-

ns ns ns ns ns ns ns ns ns

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

Figure 62. Synchronous non-multiplexed PSRAM write timings

FSMC_CLK tw(CLK) tw(CLK)

BUSTURN = 0 td(CLKL-NExL)

FSMC_NEx td(CLKL-NADVL)

FSMC_NADV

Data latency = 0 td(CLKL-NADVH) td(CLKL-NExH) td(CLKL-AV) td(CLKL-AIV)

FSMC_A[25:0] td(CLKL-NWEL) td(CLKL-NWEH)

FSMC_NWE

FSMC_D[15:0] td(CLKL-Data)

D1 td(CLKL-Data)

D2

FSMC_NWAIT

(WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH)

FSMC_NBL td(CLKL-NBLH) th(CLKH-NWAITV) ai14993g

146/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 82. Synchronous non-multiplexed PSRAM write timings

(1)(2)

Symbol

t w(CLK) t d(CLKL-NExL)

Parameter

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x=0..2) t d(CLKL-NExH) t d(CLKL-NADVL) t d(CLKL-NADVH) t d(CLKL-AV) t d(CLKL-AIV) t d(CLKL-NWEL) t d(CLKL-NWEH) t d(CLKL-Data) t d(CLKL-NBLH) t su(NWAIT-CLKH) t h(CLKH-NWAIT)

FSMC_CLK low to FSMC_NEx high (x= 0…2)

FSMC_CLK low to FSMC_NADV low

FSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x=16…25)

FSMC_CLK low to FSMC_Ax invalid (x=16…25)

FSMC_CLK low to FSMC_NWE low

FSMC_CLK low to FSMC_NWE high

FSMC_D[15:0] valid data after FSMC_CLK low

FSMC_CLK low to FSMC_NBL high

FSMC_NWAIT valid before FSMC_CLK high

FSMC_NWAIT valid after FSMC_CLK high

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

Min

2T

HCLK

-

2

-

6

-

6

-

1

-

3

4

0

Max Unit

-

1 ns ns

-

3

-

1

-

0

-

7

-

-

ns ns ns ns ns ns ns ns ns ns ns

PC Card/CompactFlash controller waveforms and timings

Figure 63

through

Figure 68

represent synchronous waveforms, and

Table 83

and

Table 84

provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

COM.FSMC_SetupTime = 0x04;

• COM.FSMC_WaitSetupTime = 0x07;

COM.FSMC_HoldSetupTime = 0x04;

• COM.FSMC_HiZSetupTime = 0x00;

ATT.FSMC_SetupTime = 0x04;

• ATT.FSMC_WaitSetupTime = 0x07;

ATT.FSMC_HoldSetupTime = 0x04;

• ATT.FSMC_HiZSetupTime = 0x00;

IO.FSMC_SetupTime = 0x04;

• IO.FSMC_WaitSetupTime = 0x07;

IO.FSMC_HoldSetupTime = 0x04;

• IO.FSMC_HiZSetupTime = 0x00;

TCLRSetupTime = 0;

• TARSetupTime = 0.

In all timing tables, the

T

HCLK

is the HCLK clock period.

DocID022152 Rev 4 147/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 63. PC Card/CompactFlash controller waveforms for common memory read access

FSMC_NCE4_2

(1)

FSMC_NCE4_1 tv(NCEx-A) th(NCEx-AI)

FSMC_A[10:0] td(NREG-NCEx) td(NIORD-NCEx) th(NCEx-NREG) th(NCEx-NIORD) th(NCEx-NIOWR)

FSMC_NREG

FSMC_NIOWR

FSMC_NIORD

FSMC_NWE td(NCE4_1-NOE)

FSMC_NOE tw(NOE) tsu(D-NOE) th(NOE-D)

FSMC_D[15:0] ai14895b

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

Figure 64. PC Card/CompactFlash controller waveforms for common memory write access

FSMC_NCE4_1

FSMC_NCE4_2

High

FSMC_A[10:0] tv(NCE4_1-A)

FSMC_NREG

FSMC_NIOWR

FSMC_NIORD td(NCE4_1-NWE)

FSMC_NWE td(NREG-NCE4_1) td(NIORD-NCE4_1) tw(NWE)

FSMC_NOE

MEMxHIZ =1 td(D-NWE) tv(NWE-D) th(NCE4_1-AI) th(NCE4_1-NREG) th(NCE4_1-NIORD) th(NCE4_1-NIOWR) td(NWE-NCE4_1) th(NWE-D)

FSMC_D[15:0] ai14896b

148/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read access

FSMC_NCE4_1 tv(NCE4_1-A) th(NCE4_1-AI)

FSMC_NCE4_2

High

FSMC_A[10:0]

FSMC_NIOWR

FSMC_NIORD

FSMC_NREG

FSMC_NWE td(NCE4_1-NOE)

FSMC_NOE td(NREG-NCE4_1) tw(NOE) tsu(D-NOE)

FSMC_D[15:0]

(1) th(NCE4_1-NREG) th(NOE-D) td(NOE-NCE4_1) ai14897b

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

DocID022152 Rev 4 149/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write access

FSMC_NCE4_1

FSMC_NCE4_2

High tv(NCE4_1-A) th(NCE4_1-AI)

FSMC_A[10:0]

FSMC_NIOWR

FSMC_NIORD

FSMC_NREG td(NCE4_1-NWE)

FSMC_NWE td(NREG-NCE4_1) tw(NWE) td(NWE-NCE4_1) th(NCE4_1-NREG)

FSMC_NOE tv(NWE-D)

FSMC_D[7:0](1) ai14898b

1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access

FSMC_NCE4_1

FSMC_NCE4_2 tv(NCEx-A) th(NCE4_1-AI)

FSMC_A[10:0]

FSMC_NREG

FSMC_NWE

FSMC_NOE

FSMC_NIOWR td(NIORD-NCE4_1)

FSMC_NIORD tw(NIORD) tsu(D-NIORD) td(NIORD-D)

FSMC_D[15:0] ai14899B

150/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access

FSMC_NCE4_1

FSMC_NCE4_2 tv(NCEx-A) th(NCE4_1-AI)

FSMC_A[10:0]

FSMC_NREG

FSMC_NWE

FSMC_NOE

FSMC_NIORD td(NCE4_1-NIOWR)

FSMC_NIOWR tw(NIOWR)

ATTxHIZ =1 th(NIOWR-D) tv(NIOWR-D)

FSMC_D[15:0] ai14900c

Symbol

Table 83. Switching characteristics for PC Card/CF read and write cycles

in attribute/common space

(1)(2)

Parameter Min Max

t t v(NCEx-A)

FSMC_Ncex low to FSMC_Ay valid t h(NCEx_AI)

FSMC_NCEx high to FSMC_Ax invalid d(NREG-NCEx) t h(NCEx-NREG)

FSMC_NCEx low to FSMC_NREG valid

FSMC_NCEx high to FSMC_NREG invalid t d(NCEx-NWE)

FSMC_NCEx low to FSMC_NWE low t d(NCEx-NOE)

FSMC_NCEx low to FSMC_NOE low t w(NOE)

FSMC_NOE low width t d(NOE_NCEx)

FSMC_NOE high to FSMC_NCEx high t su (D-NOE) t h(N0E-D)

FSMC_D[15:0] valid data before FSMC_NOE high

FSMC_N0E high to FSMC_D[15:0] invalid t w(NWE)

FSMC_NWE low width t d(NWE_NCEx)

FSMC_NWE high to FSMC_NCEx high t d(NCEx-NWE)

FSMC_NCEx low to FSMC_NWE low t v(NWE-D)

FSMC_NWE low to FSMC_D[15:0] valid t h

(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid t d

(D-NWE) FSMC_D[15:0] valid before FSMC_NWE high

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

-

4

-

T

HCLK

+4

-

-

8T

HCLK

–1

5T

HCLK

+2.5

4.5

3

8T

HCLK

–0.5

5T

HCLK

–1

-

-

8T

HCLK

–1

13T

HCLK

–1

0

-

3.5

-

5T

HCLK

+0.5

5T

HCLK

+0.5

8T

HCLK

+1

-

-

-

8T

HCLK

+ 3

-

5T

HCLK

+ 1

0

-

-

Unit

ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

DocID022152 Rev 4 151/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 84. Switching characteristics for PC Card/CF read and write cycles

in I/O space

(1)(2)

Parameter Min Max

t w(NIOWR) t v(NIOWR-D) t h(NIOWR-D) t d(NCE4_1-NIOWR) t h(NCEx-NIOWR) t d(NIORD-NCEx) t h(NCEx-NIORD) t w(NIORD) t su(D-NIORD) t d(NIORD-D)

FSMC_NIOWR low width

FSMC_NIOWR low to FSMC_D[15:0] valid

FSMC_NIOWR high to FSMC_D[15:0] invalid

FSMC_NCE4_1 low to FSMC_NIOWR valid

FSMC_NCEx high to FSMC_NIOWR invalid

FSMC_NCEx low to FSMC_NIORD valid

FSMC_NCEx high to FSMC_NIORD) valid

FSMC_NIORD low width

FSMC_D[15:0] valid before FSMC_NIORD high

FSMC_D[15:0] valid after FSMC_NIORD high

1. C

L

= 30 pF.

2. Based on characterization, not tested in production.

8T

HCLK

–1

-

8T

HCLK

– 2

-

5T

HCLK

–1.5

-

5T

HCLK

– 1.5

8T

HCLK

–0.5

9

0

-

5T

HCLK

– 1

-

5T

HCLK

+ 2.5

-

5T

HCLK

+ 2

-

-

-

-

NAND controller waveforms and timings

Figure 69

through

Figure 72

represent synchronous waveforms, and

Table 85

and

Table 86

provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

COM.FSMC_SetupTime = 0x01;

COM.FSMC_WaitSetupTime = 0x03;

COM.FSMC_HoldSetupTime = 0x02;

COM.FSMC_HiZSetupTime = 0x01;

ATT.FSMC_SetupTime = 0x01;

ATT.FSMC_WaitSetupTime = 0x03;

ATT.FSMC_HoldSetupTime = 0x02;

ATT.FSMC_HiZSetupTime = 0x01;

Bank = FSMC_Bank_NAND;

MemoryDataWidth = FSMC_MemoryDataWidth_16b;

ECC = FSMC_ECC_Enable;

ECCPageSize = FSMC_ECCPageSize_512Bytes;

TCLRSetupTime = 0;

TARSetupTime = 0.

In all timing tables, the

T

HCLK

is the HCLK clock period.

Unit

ns ns ns ns ns ns ns ns ns ns

152/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Figure 69. NAND controller waveforms for read access

FSMC_NCEx

ALE (FSMC_A17)

CLE (FSMC_A16)

FSMC_NWE t d(ALE-NOE) t h(NOE-ALE)

FSMC_NOE (NRE) tsu(D-NOE) th(NOE-D)

FSMC_D[15:0] ai14901c

Figure 70. NAND controller waveforms for write access

FSMC_NCEx

ALE (FSMC_A17)

CLE (FSMC_A16) t d(ALE-NWE) t h(NWE-ALE)

FSMC_NWE

FSMC_NOE (NRE)

FSMC_D[15:0] t v(NWE-D) t h(NWE-D) ai14902c

DocID022152 Rev 4 153/185

Electrical characteristics STM32F405xx, STM32F407xx

Figure 71. NAND controller waveforms for common memory read access

FSMC_NCEx

ALE (FSMC_A17)

CLE (FSMC_A16)

FSMC_NWE t d(ALE-NOE) t h(NOE-ALE) t w(NOE)

FSMC_NOE t su(D-NOE) t h(NOE-D)

FSMC_D[15:0] ai14912c

Figure 72. NAND controller waveforms for common memory write access

FSMC_NCEx

ALE (FSMC_A17)

CLE (FSMC_A16) t d(ALE-NOE)

FSMC_NWE

FSMC_NOE t w(NWE) t h(NOE-ALE) t d(D-NWE) t v(NWE-D) t h(NWE-D)

FSMC_D[15:0] ai14913c

Symbol

Table 85. Switching characteristics for NAND Flash read cycles

(1)

Parameter Min Max

t w(N0E)

FSMC_NOE low width t su(D-NOE) t h(NOE-D) t d(ALE-NOE) t h(NOE-ALE)

1. C

L

= 30 pF.

FSMC_D[15-0] valid data before FSMC_NOE high

FSMC_D[15-0] valid data after FSMC_NOE high

FSMC_ALE valid before FSMC_NOE low

FSMC_NWE high to FSMC_ALE invalid

4T

HCLK

0.5

10

0

-

3T

HCLK

– 2

4T

HCLK

+ 3

-

-

3T

HCLK

-

Unit

ns ns ns ns ns

154/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Electrical characteristics

Table 86. Switching characteristics for NAND Flash write cycles

(1)

Symbol

t w(NWE) t v(NWE-D) t h(NWE-D) t d(D-NWE) t d(ALE-NWE) t h(NWE-ALE)

1. C

L

= 30 pF.

Parameter

FSMC_NWE low width

FSMC_NWE low to FSMC_D[15-0] valid

FSMC_NWE high to FSMC_D[15-0] invalid

FSMC_D[15-0] valid before FSMC_NWE high

FSMC_ALE valid before FSMC_NWE low

FSMC_NWE high to FSMC_ALE invalid

Min Max Unit

4T

HCLK

–1 4T

HCLK

+ 3 ns

0 ns

3T

HCLK

5T

HCLK

3T

-

HCLK

–2

–3

–2

-

-

3T

HCLK

ns ns ns ns

Unless otherwise specified, the parameters given in

Table 87

for DCMI are derived from tests performed under the ambient temperature, f

HCLK

frequency and V summarized in

Table 13

, with the following configuration:

DD

supply voltage

PCK polarity: falling

• VSYNC and HSYNC polarity: high

Data format: 14 bits

Figure 73. DCMI timing diagram

1/DCMI_PIXCLK

Pixel clock t su(HSYNC) t h(HSYNC)

HSYNC t su(VSYNC) t h(HSYNC)

VSYNC t su(DATA) t h(DATA)

DATA[0:13]

MS32414V1

Symbol

DCMI_PIXCLK

D pixel

Table 87. DCMI characteristics

(1)

Parameter Min

Frequency ratio DCMI_PIXCLK/f

HCLK

-

Pixel clock input

Pixel clock input duty cycle

-

30

Max

0.4

54

70

Unit

MHz

%

DocID022152 Rev 4 155/185

Electrical characteristics STM32F405xx, STM32F407xx

Symbol

Table 87. DCMI characteristics

(1)

(continued)

Parameter

t su(DATA) t h(DATA)

Data input setup time

Data hold time t su(HSYNC)

, t su(VSYNC)

HSYNC/VSYNC input setup time t h(HSYNC)

, t h(VSYNC)

HSYNC/VSYNC input hold time

1. Data based on characterization results, not tested in production.

Min

2.5

1

2

0.5

Max

-

-

-

-

Unit

ns

5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in

Table 88

are derived from tests performed under ambient temperature, f

PCLKx frequency and V

DD

supply voltage conditions summarized in

Table 14

with the following configuration:

Output speed is set to OSPEEDRy[1:0] = 10

Capacitive load C = 30 pF

Measurement points are done at CMOS levels: 0.5V

DD

Refer to

Section 5.3.16: I/O port characteristics

for more details on the input/output

characteristics.

Figure 74. SDIO high-speed mode

tf tr

CK

D, CMD

(output) tW(CKH)

D, CMD

(input) tOV tC tISU tW(CKL) tOH tIH ai14887

156/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Figure 75. SD default mode

Electrical characteristics

CK

D, CMD

(output) tOVD tOHD ai14888

Symbol

Table 88. Dynamic characteristics: SD / MMC characteristics

(1)

Parameter Conditions

f

PP

Clock frequency in data transfer mode t

W(CKL) t

W(CKH)

SDIO_CK/f

PCLK2

frequency ratio

Clock low time

Clock high time

CMD, D inputs (referenced to CK) in MMC and SD HS mode fpp = 48 MHz fpp = 48 MHz t

ISU

Input setup time HS fpp = 48 MHz t

IH

Input hold time HS

CMD, D outputs (referenced to CK) in MMC and SD HS mode fpp = 48 MHz fpp = 48 MHz fpp = 48 MHz t

OV t

OH

Output valid time HS

Output hold time HS

CMD, D inputs (referenced to CK) in SD default mode t

ISUD

Input setup time SD t

IHD

Input hold time SD

CMD, D outputs (referenced to CK) in SD default mode t

OVD t

OHD

Output valid default time SD

Output hold default time SD

1. Data based on characterization results, not tested in production.

fpp = 24 MHz fpp = 24 MHz fpp = 24 MHz fpp = 24 MHz

Min

0

-

8.5

8.3

3

0

-

1

1.5

0.5

-

0.5

Typ

-

-

-

-

4.5

-

4.5

-

-

9

10

Max

-

-

48

8/3

Unit

MHz

ns

-

-

-

-

7

-

6

ns ns ns ns

Symbol

-

Table 89. RTC characteristics

Parameter Conditions

f

PCLK1

/RTCCLK frequency ratio

Any read/write operation from/to an RTC register

Min

4

Max

-

DocID022152 Rev 4 157/185

Package characteristics STM32F405xx, STM32F407xx

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of

ECOPACK

®

packages, depending on their level of environmental compliance. ECOPACK

® specifications, grade definitions and product status are available at:

www.st.com

.

ECOPACK

®

is an ST trademark.

158/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Package characteristics

Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline

A1 ball location

D e1 e

E

Detail A e e2

G

Wafer back side

Detail A rotated by 90 °C

A2

A

Side view eee

Bump side

F

A1 b

Seating plane

A0JW_ME

Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data millimeters inches

(1)

Symbol

Min Typ Max Min Typ Max

E e b

D

A

A1

A2

0.520

0.165

0.350

0.240

4.178

3.964

0.570

0.190

0.380

0.270

4.218

3.969

0.400

0.620

0.215

0.410

0.300

4.258

4.004

e1 e2

F

G

3.600

3.200

0.312

0.385

eee 0.050

1. Values in inches are converted from mm and rounded to 4 decimal digits.

0.0205

0.0065

0.0138

0.0094

0.1645

0.1561

0.0224

0.0075

0.015

0.0106

0.1661

0.1563

0.0157

0.1417

0.126

0.0123

0.0152

0.0244

0.0085

0.0161

0.0118

0.1676

0.1576

0.0020

DocID022152 Rev 4 159/185

Package characteristics STM32F405xx, STM32F407xx

Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

A

A2

A1 b

E E1 e

D1

D

L1 c

L ai14398b

1. Drawing is not to scale.

Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data millimeters inches

(1)

Symbol

Min Typ Max Min Typ Max

D

D1 b c

A

A1

A2

E

E1 e

θ

L

L1

0.050

1.350

0.170

0.090

1.600

0.150

1.450

1.400

0.220

0.270

0.200

12.000

10.000

12.000

10.000

0.0020

0.0531

0.0067

0.0035

0.500

3.5°

0.450

0.600

1.000

0.750

0.0177

0.0551

0.0087

0.4724

0.3937

0.4724

0.3937

0.0197

3.5°

0.0236

0.0394

0.0630

0.0059

0.0571

0.0106

0.0079

0.0295

Number of pins

N

64

1. Values in inches are converted from mm and rounded to 4 decimal digits.

160/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Package characteristics

Figure 78. LQFP64 recommended footprint

48 33

0.3

49

0.5

32

12.7

10.3

10.3

64 17

1.2

1 16

7.8

12.7

ai14909

1. Drawing is not to scale.

2. Dimensions are in millimeters.

DocID022152 Rev 4 161/185

Package characteristics STM32F405xx, STM32F407xx

Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

SEATING

PLANE

C ccc C

76

75

D

D1

D3

51

50

0.25 mm

GAUGE PLANE

L1

L

K

100

PIN 1

IDENTIFICATION

1 25

26 e

1L_ME_V4

1. Drawing is not to scale.

Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data

(1) millimeters inches

Symbol

Min Typ Max Min Typ Max

L

L1 k ccc

E

E1

E3 e c

D

D1

D3

A

A1

A2 b

0.050

1.350

0.170

0.090

15.800

13.800

15.80v

13.800

0.450

1.400

0.220

16.000

14.000

12.000

16.000

14.000

12.000

0.500

0.600

1.000

3.5°

1.600

0.150

1.450

0.270

0.200

16.200

14.200

16.200

14.200

0.750

0° 7°

0.080

1. Values in inches are converted from mm and rounded to 4 decimal digits.

0.0020

0.0531

0.0067

0.0035

0.6220

0.5433

0.6220

0.5433

0.0177

0.0551

0.0087

0.6299

0.5512

0.4724

0.6299

0.5512

0.4724

0.0197

0.0236

0.0394

3.5°

0.0630

0.0059

0.0571

0.0106

0.0079

0.6378

0.5591

0.6378

0.5591

0.0295

0.0031

162/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Package characteristics

Figure 80. LQFP100 recommended footprint

75 51

76 50

0.5

0.3

16.7

14.3

100

1 25

26

1.2

12.3

16.7

ai14906

1. Drawing is not to scale.

2. Dimensions are in millimeters.

DocID022152 Rev 4 163/185

Package characteristics STM32F405xx, STM32F407xx

Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline

Seating plane

C

A A2 A1 b c ccc C

0.25 mm gage plane k

D

D1

D3

A1

L1

L

109

108 73

72

E3 E1 E

Pin 1 identification

144

1 36

37 e

ME_1A

1. Drawing is not to scale.

E

E1

E3 e

L

L1 c

D

D1

D3

A

A1

A2 b

Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data millimeters inches

(1)

Symbol

Min Typ Max Min Typ Max

0.050

1.350

0.170

0.090

21.800

19.800

1.400

0.220

1.600

0.150

1.450

0.270

0.200

22.200

20.200

0.0020

0.0531

0.0067

0.0035

0.8583

0.7795

0.0551

0.0087

21.800

19.800

0.450

22.000

20.000

17.500

22.000

20.000

17.500

0.500

0.600

1.000

22.200

20.200

0.750

0.8583

0.7795

0.0177

0.8661

0.7874

0.689

0.8661

0.7874

0.6890

0.0197

0.0236

0.0394

0.0630

0.0059

0.0571

0.0106

0.0079

0.874

0.7953

0.8740

0.7953

0.0295

164/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Package characteristics

Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data millimeters inches

(1)

Symbol

Min Typ Max Min Typ Max

k ccc

0° 3.5° 7°

0.080

1. Values in inches are converted from mm and rounded to 4 decimal digits.

0° 3.5° 7°

0.0031

Figure 82. LQFP144 recommended footprint

109

108

0.35

73

1.35

72

0.5

19.9

17.85

22.6

144

1

1. Drawing is not to scale.

2. Dimensions are in millimeters.

19.9

22.6

37

36 ai14905c

DocID022152 Rev 4 165/185

Package characteristics STM32F405xx, STM32F407xx

Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline

C

Seating plane

A2

A e

F ddd C

A1

A

A1 ball identifier

A1 ball index area

A

F

E

D

R

15

BOTTOM VIEW e

B

1

Ø

Ø

Øb (176 + 25 balls) eee fff

M

M

C

C

A B

TOP VIEW

A0E7_ME_V4

1. Drawing is not to scale.

Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data millimeters inches

(1)

Symbol

Min Typ Max Min Typ Max

A

A1

A2

0.460

0.050

0.400

0.530

0.080

0.450

0.600

0.110

0.500

0.0181

0.002

0.0157

0.0209

0.0031

0.0177

0.0236

0.0043

0.0197

F ddd eee fff

E e b

D

0.230

9.900

9.900

0.280

10.000

10.000

0.650

0.450

0.330

10.100

10.100

0.0091

0.3898

0.3898

0.425

0.475

0.080

0.150

0.080

0.0167

1. Values in inches are converted from mm and rounded to 4 decimal digits.

0.0110

0.3937

0.3937

0.0256

0.0177

0.0130

0.3976

0.3976

0.0187

0.0031

0.0059

0.0031

166/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Package characteristics

Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline

C Seating plane

A A2

0.25 mm gauge plane k

A1 ccc C c

A1

HD

D

L

L1

ZD

ZE b

133

132

89

88

E

HE

176

Pin 1 identification

1 44

45 e

1T_ME

1. Drawing is not to scale.

Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data inches

(1)

Symbol millimeters

Min Typ Max Min Typ Max

0.0630

HD

HE

L

L1

ZD

ZE

E e

C

D

A

A1

A2 b

0.050

1.350

0.170

0.090

23.900

23.900

25.900

25.900

0.450

0.500

1.000

1.250

1.250

1.600

0.150

1.450

0.270

0.200

24.100

24.100

26.100

26.100

0.750

0.0020

0.0531

0.0067

0.0035

0.9409

0.9409

1.0200

1.0200

0.0177

0.0197

0.0394

0.0492

0.0492

0.0060

0.0106

0.0079

0.9488

0.9488

1.0276

1.0276

0.0295

DocID022152 Rev 4 167/185

Package characteristics STM32F405xx, STM32F407xx

Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data millimeters inches

(1)

Symbol

Min Typ Max Min Typ Max

ccc k 0 °

0.080

7 °

1. Values in inches are converted from mm and rounded to 4 decimal digits.

0 °

0.0031

7 °

Figure 85. LQFP176 recommended footprint

1.2

1

176

0.5

133

132

0.3

168/185

44

45

1. Dimensions are expressed in millimeters.

21.8

26.7

88

89

1.2

1T_FP_V1

DocID022152 Rev 4

STM32F405xx, STM32F407xx Package characteristics

The maximum chip-junction temperature, T

J using the following equation:

max, in degrees Celsius, may be calculated

T

J

max = T

A

max + (P

D

max x

Θ

JA

)

Where:

T

A

max is the maximum ambient temperature in

°C,

• Θ

JA

is the package junction-to-ambient thermal resistance, in

°C/W,

P

D

max is the sum of P

INT

max and P

I/O max (P

D

max = P

INT

max + P

I/O max),

P

INT

max is the product of I

DD and internal power.

V

DD

, expressed in Watts. This is the maximum chip

P

I/O

max represents the maximum power dissipation on output pins where:

P

I/O

max =

Σ (V

OL

× I

OL

) +

Σ((V

DD

– V

OH

) × I

OH

), taking into account the actual V

OL application.

/ I

OL

and V

OH

/ I

OH of the I/Os at low and high level in the

Symbol

Θ

JA

Table 96. Package thermal characteristics

Parameter Value

Thermal resistance junction-ambient

LQFP64 - 10 × 10 mm / 0.5 mm pitch

Thermal resistance junction-ambient

LQFP100 - 14 × 14 mm / 0.5 mm pitch

Thermal resistance junction-ambient

LQFP144 - 20 × 20 mm / 0.5 mm pitch

Thermal resistance junction-ambient

LQFP176 - 24 × 24 mm / 0.5 mm pitch

Thermal resistance junction-ambient

UFBGA176 - 10× 10 mm / 0.65 mm pitch

Thermal resistance junction-ambient

WLCSP90 - 0.400 mm pitch

46

43

40

38

39

38.1

Unit

°C/W

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural

Convection (Still Air). Available from www.jedec.org.

DocID022152 Rev 4 169/185

Part numbering STM32F405xx, STM32F407xx

Table 97. Ordering information scheme

STM32 F 405 R E Example:

Device family

STM32 = ARM-based 32-bit microcontroller

Product type

F = general-purpose

Device subfamily

405 = STM32F40x, connectivity

407= STM32F40x, connectivity, camera interface, Ethernet

T 6 xxx

Pin count

R = 64 pins

O = 90 pins

V = 100 pins

Z = 144 pins

I = 176 pins

Flash memory size

E = 512 Kbytes of Flash memory

G = 1024 Kbytes of Flash memory

Package

T = LQFP

H = UFBGA

Y = WLCSP

Temperature range

6 = Industrial temperature range, –40 to 85 °C.

7 = Industrial temperature range, –40 to 105 °C.

Options

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

170/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Appendix A Application block diagrams

Application block diagrams

A.1 USB OTG full speed (FS) interface solutions

Figure 86. USB controller configured as peripheral-only and used in Full speed mode

V

DD

5V to V

DD

Volatge regulator

(1)

STM32F4xx

OSC_IN

PA11//PB14

PA12/PB15

OSC_OUT

VBUS

DM

DP

V

SS

MS19000V5

1. External voltage regulator only needed when building a V

BUS

powered device.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Figure 87. USB controller configured as host-only and used in full speed mode

V

DD

EN

GPIO

Current limiter power switch

(1)

5 V Pwr

Overcurrent

STM32F4xx

GPIO+IRQ

OSC_IN

VBUS

DM

DP

V

SS

OSC_OUT

PA11//PB14

PA12/PB15

MS19001V4

1. The current limiter is required only if the application has to support a V switch can be used if 5 V are available on the application board.

BUS

powered device. A basic power

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

DocID022152 Rev 4 171/185

Application block diagrams STM32F405xx, STM32F407xx

Figure 88. USB controller configured in dual mode and used in full speed mode

V

DD

5 V to V

DD voltage regulator (1)

V

DD

EN

GPIO

GPIO+IRQ

Overcurrent

Current limiter power switch

(2)

5 V Pwr

STM32F4xx

OSC_IN

OSC_OUT

PA9/PB13

PA11/PB14

PA12/PB15

PA10/PB12

VBUS

DM

DP

ID

(3)

V

SS

MS19002V3

1. External voltage regulator only needed when building a V

BUS

powered device.

2. The current limiter is required only if the application has to support a V switch can be used if 5 V are available on the application board.

BUS

powered device. A basic power

3. The ID pin is required in dual role only.

4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

172/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

A.2

Application block diagrams

USB OTG high speed (HS) interface solutions

Figure 89. USB controller configured as peripheral, host, or dual-mode and used in high speed mode

USB HS

OTG Ctrl

STM32F4xx

FS PHY

DP

DM not connected

ULPI

ULPI_CLK

ULPI_D[7:0]

ULPI_DIR

ULPI_STP

ULPI_NXT

DP

DM

ID(2)

V

BUS

V

SS

USB connector

High speed

OTG PHY

PLL

XT1

24 or 26 MHz XT

(1)

MCO1 or MCO2

XI

MS19005V2

1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F40x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

2. The ID pin is required in dual role only.

DocID022152 Rev 4 173/185

Application block diagrams STM32F405xx, STM32F407xx

XTAL

25 MHz

Figure 90. MII mode using a 25 MHz crystal

STM32

MCU

HCLK(1)

OSC

Ethernet

MAC 10/100

TIM2

IEEE1588 PTP

Timer input trigger

Timestamp comparator

PLL

MII_TX_CLK

MII_TX_EN

MII_TXD[3:0]

MII_CRS

MII_COL

MII_RX_CLK

MII_RXD[3:0]

MII_RX_DV

MII_RX_ER

MDIO

MDC

PPS_OUT(2)

HCLK

MCO1/MCO2

PHY_CLK 25 MHz

Ethernet

PHY 10/100

MII

= 15 pins

MII + MDC

= 17 pins

XT1

MS19968V1

1. f

HCLK

must be greater than 25 MHz.

2. Pulse per second when using IEEE1588 PTP optional signal.

Figure 91. RMII with a 50 MHz oscillator

STM32

MCU

HCLK(1)

Ethernet

MAC 10/100

TIM2

IEEE1588 PTP

Timer input trigger

Timestamp comparator

RMII_TX_EN

RMII_TXD[1:0]

RMII_RXD[1:0]

RMII_CRX_DV

RMII_REF_CLK

MDIO

MDC

Ethernet

PHY 10/100

RMII

= 7 pins

RMII + MDC

= 9 pins

OSC

50 MHz

2.5 or 25 MHz

/2 or /20 synchronous

50 MHz

PLL

HCLK

PHY_CLK 50 MHz XT1 50 MHz

MS19969V1

1. f

HCLK

must be greater than 25 MHz.

174/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Application block diagrams

Figure 92. RMII with a 25 MHz crystal and PHY with PLL

STM32F

Ethernet

PHY 10/100

MCU

HCLK(1)

Ethernet

MAC 10/100

TIM2

IEEE1588 PTP

Timer input trigger

Timestamp comparator

RMII_TX_EN

RMII_TXD[1:0]

RMII_RXD[1:0]

RMII_CRX_DV

RMII_REF_CLK

MDIO

MDC

RMII

= 7 pins

REF_CLK

RMII + MDC

= 9 pins

XTAL

25 MHz

2.5 or 25 MHz

/2 or /20 synchronous

50 MHz

OSC

PLL

HCLK

MCO1/MCO2

PHY_CLK 25 MHz

XT1

PLL

1. f

HCLK

must be greater than 25 MHz.

2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.

MS19970V1

DocID022152 Rev 4 175/185

Revision history STM32F405xx, STM32F407xx

176/185

Date

15-Sep-2011

24-Jan-2012

Revision

Table 98. Document revision history

Changes

1

2

Initial release.

Added WLCSP90 package on cover page.

Renamed USART4 and USART5 into UART4 and UART5, respectively.

Updated number of USB OTG HS and FS in

Table 2: STM32F405xx and STM32F407xx: features and peripheral counts

.

Updated

Figure 3: Compatible board design between

STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package

and

Figure 4: Compatible board design between STM32F2xx and

STM32F4xx for LQFP176 and BGA176 packages

, and removed note

1 and 2.

Updated

Section 2.2.9: Flexible static memory controller (FSMC)

.

Modified I/Os used to reprogram the Flash memory for

CAN2 and

USB OTG FS in

Section 2.2.13: Boot modes

.

Updated note in

Section 2.2.14: Power supply schemes

.

PDR_ON no more available on LQFP100 package. Updated

Section 2.2.16: Voltage regulator

. Updated condition to obtain a

minimum supply voltage of 1.7 V in the whole document.

Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for

UART4 and UART5 in

Table 5: USART feature comparison

.

Removed support of I2C for OTG PHY in

Section 2.2.30: Universal serial bus on-the-go full-speed (OTG_FS)

.

Added

Table 6: Legend/abbreviations used in the pinout table

.

Table 7: STM32F40x pin and ball definitions

: replaced V

and V

SS

_8 by V

SS

SS

_3, V

SS

_4,

; reformatted

Table 7: STM32F40x pin and ball definitions

to better highlight I/O structure, and alternate functions

versus additional functions; signal corresponding to LQFP100 pin 99 changed from PDR_ON to V

SS

; EVENTOUT added in the list of alternate functions for all I/Os; ADC3_IN8 added as alternate function for PF10; FSMC_CLE and FSMC_ALE added as alternate functions for PD11 and PD12, respectively; PH10 alternate function

TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O structure to TTa.

Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in

Table 7:

STM32F40x pin and ball definitions

and

Table 9: Alternate function mapping

.

Changed TCM data RAM to CCM data RAM in

Figure 18: STM32F40x memory map

.

Added I

VDD and I

VSS maximum values in

Table 12: Current characteristics

.

Added

Note 1

related to f

HCLK

, updated

Note 2

in

Table 14: General operating conditions

, and added maximum power dissipation values.

Updated

Table 15: Limitations depending on the operating power supply range

.

DocID022152 Rev 4

STM32F405xx, STM32F407xx Revision history

Date

24-Jan-2012

Table 98. Document revision history (continued)

Revision Changes

2

(continued)

Added

V

12

in

Table 19: Embedded reset and power control block characteristics

.

Updated

Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

and

Table 20: Typical and maximum current consumption in Run mode, code with data processing running from

Flash memory (ART accelerator enabled) or RAM

. Added

Figure

,

Figure 25

,

Figure 26

, and

Figure 27

.

Updated

Table 22: Typical and maximum current consumption in Sleep mode

and removed Note 1.

Updated

Table 23: Typical and maximum current consumptions in Stop mode

and

Table 24: Typical and maximum current consumptions in

Standby mode

,

Table 25: Typical and maximum current consumptions in VBAT mode

, and

Table 26: Switching output I/O current consumption

.

Section : On-chip peripheral current consumption

: modified conditions, and updated

Table 27: Peripheral current consumption

and

Note 2

.

Changed f

HSE_ext to 50 MHz and t r(HSE)

/t f(HSE) maximum value in

Table 29: High-speed external user clock characteristics

.

Added C in(LSE)

characteristics

.

in

Table 30: Low-speed external user clock

Updated maximum PLL input clock frequency, removed related note, and deleted jitter for MCO for RMII Ethernet typical value in

Table 35:

Main PLL characteristics

. Updated maximum PLLI2S input clock

frequency and removed related note in

Table 36: PLLI2S (audio PLL) characteristics

.

Updated

Section : Flash memory

to specify that the devices are shipped to customers with the Flash memory erased. Updated

Table 38: Flash memory characteristics

, and added t

ME

Flash memory programming

.

in

Table 39:

Updated

Table 42: EMS characteristics

, and

Table 43: EMI characteristics

.

Updated

Table 56: I2S dynamic characteristics

Updated

Figure 46: ULPI timing diagram

and

Table 62: ULPI timing

.

Added t

COUNTER

and t

MAX_COUNT in

Table 51: Characteristics of TIMx connected to the APB1 domain

and

Table 52: Characteristics of TIMx connected to the APB2 domain

. Updated

Table 65: Dynamic characteristics: Ethernet MAC signals for RMII

.

Removed USB-IF certification in

Section : USB OTG FS characteristics

.

DocID022152 Rev 4 177/185

Revision history STM32F405xx, STM32F407xx

Date

24-Jan-2012

Table 98. Document revision history (continued)

Revision Changes

2

(continued)

Updated

Table 61: USB HS clock timing parameters

Updated

Table 67: ADC characteristics

.

Updated

Table 68: ADC accuracy at fADC = 30 MHz

.

Updated

Note 1

in

Table 74: DAC characteristics

.

Section 5.3.25: FSMC characteristics

: updated

Table 75

to

Table 86

, changed C

L

value to 30 pF, and modified FSMC configuration for asynchronous timings and waveforms. Updated

Figure 60:

Synchronous multiplexed PSRAM write timings

.

Updated

Table 96: Package thermal characteristics

.

Appendix

A.1: USB OTG full speed (FS) interface solutions

: modified

Figure 86: USB controller configured as peripheral-only and used in

Full speed mode

added

Note 2

, updated

Figure 87: USB controller configured as host-only and used in full speed mode

and added

Note 2

, changed

Figure 88: USB controller configured in dual mode and used in full speed mode

and added

Note 3

.

Appendix

A.2: USB OTG high speed (HS) interface solutions

: removed

figures USB OTG HS device-only connection in FS mode and USB

OTG HS host-only connection in FS mode, and updated Figure 89:

USB controller configured as peripheral, host, or dual-mode and used in high speed mode

and added

Note 2

.

Added Appendix

A.3: Ethernet interface solutions

.

178/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Revision history

Date

31-May-2012

Table 98. Document revision history (continued)

Revision Changes

3

Updated

Figure 5: STM32F40x block diagram

and

Figure 7: Power supply supervisor interconnection with internal reset OFF

Added SDIO, added notes related to FSMC and SPI/I2S in

Table 2:

STM32F405xx and STM32F407xx: features and peripheral counts

.

Starting from Silicon revision Z, USB OTG full-speed interface is now available for all STM32F405xx devices.

Added full information on WLCSP90 package together with corresponding part numbers.

Changed number of AHB buses to 3.

Modified available Flash memory sizes in

Section 2.2.4: Embedded

Flash memory

.

Modified number of maskable interrupt channels in

Section 2.2.10:

Nested vectored interrupt controller (NVIC)

.

Updated case of Regulator ON/internal reset ON, Regulator

ON/internal reset OFF, and Regulator OFF/internal reset ON in

Section 2.2.16: Voltage regulator

.

Updated standby mode description in

Section 2.2.19: Low-power modes

.

Added

Note 1

below

Figure 16: STM32F40x UFBGA176 ballout

.

Added

Note 1

below

Figure 17: STM32F40x WLCSP90 ballout

.

Updated

Table 7: STM32F40x pin and ball definitions

.

Added

Table 8: FSMC pin definition

.

Removed OTG_HS_INTN alternate function in

Table 7: STM32F40x pin and ball definitions

and

Table 9: Alternate function mapping

.

Removed I2S2_WS on PB6/AF5 in

Table 9: Alternate function mapping

.

Replaced JTRST by NJTRST, removed ETH_RMII _TX_CLK, and modified I2S3ext_SD on PC11 in

Table 9: Alternate function mapping

.

Added

Table 10: STM32F40x register boundary addresses

.

Updated

Figure 18: STM32F40x memory map

.

Updated V

DDA

and V

REF+

decoupling capacitor in

Figure 21: Power supply scheme

.

Added power dissipation maximum value for WLCSP90 in

Table 14:

General operating conditions

.

Updated V

POR/PDR

in

Table 19: Embedded reset and power control block characteristics

.

Updated notes in

Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory

(ART accelerator disabled)

,

Table 20: Typical and maximum current consumption in Run mode, code with data processing running from

Flash memory (ART accelerator enabled) or RAM

, and

Table 22:

Typical and maximum current consumption in Sleep mode

.

Updated maximum current consumption at T

A

= 25 °n

Table 23:

Typical and maximum current consumptions in Stop mode

.

DocID022152 Rev 4 179/185

Revision history STM32F405xx, STM32F407xx

Date

31-May-2012

Table 98. Document revision history (continued)

Revision Changes

3

(continued)

Removed f

HSE_ext

typical value in

Table 29: High-speed external user clock characteristics

. Updated

Table 31: HSE 4-26 MHz oscillator characteristics

and

Table 32: LSE oscillator characteristics (fLSE =

32.768 kHz)

.

Added f

PLL48_OUT

characteristics

.

maximum value in

Table 35: Main PLL

Modified equation 1 and 2 in

Section 5.3.11: PLL spread spectrum clock generation (SSCG) characteristics

.

Updated

Table 38: Flash memory characteristics

,

Table 39: Flash memory programming

, and

Table 40: Flash memory programming with

VPP

.

Updated

Section : Output driving current

.

Table 53: I2C characteristics

:

Note 4

updated and applied to t h(SDA)

Fast mode, and removed note 4 related to t h(SDA) minimum value.

in

Updated

Table 67: ADC characteristics

. Updated note concerning ADC

accuracy vs. negative injection current below

Table 68: ADC accuracy at fADC = 30 MHz

.

Added WLCSP90 thermal resistance in

Table 96: Package thermal characteristics

.

Updated

Table 90: WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data

.

Updated

Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array

10 × 10 × 0.6 mm, package outline

and

Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data

.

Added

Figure 85: LQFP176 recommended footprint

.

Removed 256 and 768 Kbyte Flash memory density from

Table 97:

Ordering information scheme

.

180/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Revision history

Date

04-Jun-2013

Table 98. Document revision history (continued)

Revision Changes

4

Modified

Note 1

below

Table 2: STM32F405xx and STM32F407xx: features and peripheral counts

.

Updated

Figure 4

title.

Updated

Note 3

below

Figure 21: Power supply scheme

.

Changed simplex mode into half-duplex mode in

Section 2.2.25: Interintegrated sound (I2S)

.

Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and

DAC_OUT2, respectively.

Updated pin 36 signal in

Figure 15: STM32F40x LQFP176 pinout

.

Changed pin number from F8 to D4 for PA13 pin in

Table 7:

STM32F40x pin and ball definitions

.

Replaced TIM2_CH1/TIM2_ETR by TIM2_CH1_ETR for PA0 and PA5 pins in

Table 9: Alternate function mapping

.

Changed system memory into System memory + OTP in

Figure 18:

STM32F40x memory map

.

Added

Note 1

below

Table 16: VCAP_1/VCAP_2 operating conditions

.

Updated I

DDA description in

Table 74: DAC characteristics

.

Removed PA9/PB13 connection to VBUS in

Figure 86: USB controller configured as peripheral-only and used in Full speed mode

and

Figure 87: USB controller configured as host-only and used in full speed mode

.

Updated SPI throughput on front page and

Section 2.2.24: Serial peripheral interface (SPI)

Updated operating voltages in

Table 2: STM32F405xx and

STM32F407xx: features and peripheral counts

Updated note in

Section 2.2.14: Power supply schemes

Updated

Section 2.2.15: Power supply supervisor

Updated “Regulator ON” paragraph in

Section 2.2.16: Voltage regulator

Removed note in

Section 2.2.19: Low-power modes

Corrected wrong reference manual in

Section 2.2.28: Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Updated

Table 15: Limitations depending on the operating power supply range

Updated

Table 24: Typical and maximum current consumptions in

Standby mode

Updated

Table 25: Typical and maximum current consumptions in

VBAT mode

Updated

Table 36: PLLI2S (audio PLL) characteristics

Updated

Table 43: EMI characteristics

Updated

Table 48: Output voltage characteristics

Updated

Table 50: NRST pin characteristics

Updated

Table 55: SPI dynamic characteristics

Updated

Table 56: I2S dynamic characteristics

Deleted Table 59

Updated

Table 62: ULPI timing

Updated

Figure 47: Ethernet SMI timing diagram

DocID022152 Rev 4 181/185

Revision history STM32F405xx, STM32F407xx

Date

04-Jun-2013

Table 98. Document revision history (continued)

Revision Changes

4

(continued)

Updated

Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array

10 × 10 × 0.6 mm, package outline

Updated

Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array

10 × 10 × 0.6 mm mechanical data

Updated

Figure 5: STM32F40x block diagram

Updated

Section 2: Description

Updated footnote

(3)

in

Table 2: STM32F405xx and STM32F407xx: features and peripheral counts

Updated

Figure 3: Compatible board design between

STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package

Updated

Figure 4: Compatible board design between STM32F2xx and

STM32F4xx for LQFP176 and BGA176 packages

Updated

Section 2.2.14: Power supply schemes

Updated

Section 2.2.15: Power supply supervisor

Updated

Section 2.2.16: Voltage regulator

, including figures.

Updated

Table 14: General operating conditions

, including footnote

(2)

.

Updated

Table 15: Limitations depending on the operating power supply range

, including footnote

(3)

.

Updated footnote

(1)

in

Table 67: ADC characteristics

.

Updated footnote

(3)

in

Table 68: ADC accuracy at fADC = 30 MHz

.

Updated footnote

(1)

in

Table 74: DAC characteristics

.

Updated

Figure 9: Regulator OFF

.

Updated

Figure 7: Power supply supervisor interconnection with internal reset OFF

.

Added

Section 2.2.17: Regulator ON/OFF and internal reset ON/OFF availability

.

Updated footnote

(2)

of

Figure 21: Power supply scheme

.

Replaced respectively “I2S3S_WS" by "I2S3_WS”, “I2S3S_CK” by

“I2S3_CK” and “FSMC_BLN1” by “FSMC_NBL1” in

Table 9: Alternate function mapping

.

Added “EVENTOUT” as alternate function “AF15” for pin PC13, PC14,

PC15, PH0, PH1, PI8 in

Table 9: Alternate function mapping

Replaced “DCMI_12” by “DCMI_D12” in

Table 7: STM32F40x pin and ball definitions

.

Removed the following sentence from

Section : I2C interface characteristics

: ”Unless otherwise specified, the parameters given in

Table 53

are derived from tests performed under the

ambient temperature, f

PCLK1 frequency and V

conditions summarized in

Table 14

.”.

DD

supply voltage

In

Table 7: STM32F40x pin and ball definitions on page 45

:

– For pin PC13, replaced “RTC_AF1” by “RTC_OUT, RTC_TAMP1,

RTC_TS”

– for pin PI8, replaced “RTC_AF2” by “RTC_TAMP1, RTC_TAMP2,

RTC_TS”.

– for pin PB15, added RTC_REFIN in Alternate functions column.

In

Table 9: Alternate function mapping on page 60

, for port

PB15, replaced “RTC_50Hz” by “RTC_REFIN”.

182/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx Revision history

Date

04-Jun-2013

Table 98. Document revision history (continued)

Revision Changes

4

(continued)

Updated

Figure 6: Multi-AHB matrix

.

Updated

Figure 7: Power supply supervisor interconnection with internal reset OFF

Changed 1.2 V to

V

12

in

Section : Regulator OFF

Updated LQFP176 pin 48.

Updated

Section 1: Introduction

.

Updated

Section 2: Description

.

Updated operating voltage in

Table 2: STM32F405xx and

STM32F407xx: features and peripheral counts

.

Updated

Note 1

.

Updated

Section 2.2.15: Power supply supervisor

.

Updated

Section 2.2.16: Voltage regulator

.

Updated

Figure 9: Regulator OFF

.

Updated

Table 3: Regulator ON/OFF and internal reset ON/OFF availability

.

Updated

Section 2.2.19: Low-power modes

.

Updated

Section 2.2.20: VBAT operation

.

Updated

Section 2.2.22: Inter-integrated circuit interface (I²C)

.

Updated pin 48 in

Figure 15: STM32F40x LQFP176 pinout

.

Updated

Table 6: Legend/abbreviations used in the pinout table

.

Updated

Table 7: STM32F40x pin and ball definitions

.

Updated

Table 14: General operating conditions

.

Updated

Table 15: Limitations depending on the operating power supply range

.

Updated

Section 5.3.7: Wakeup time from low-power mode

.

Updated

Table 33: HSI oscillator characteristics

.

Updated

Section 5.3.15: I/O current injection characteristics

.

Updated

Table 47: I/O static characteristics

.

Updated

Table 50: NRST pin characteristics

.

Updated

Table 53: I2C characteristics

.

Updated

Figure 39: I2C bus AC waveforms and measurement circuit

.

Updated

Section 5.3.19: Communications interfaces

.

Updated

Table 67: ADC characteristics

.

Added

Table 70: Temperature sensor calibration values

.

Added

Table 73: Internal reference voltage calibration values

.

Updated

Section 5.3.25: FSMC characteristics

.

Updated

Section 5.3.27: SD/SDIO MMC card host interface (SDIO) characteristics

.

Updated

Table 23: Typical and maximum current consumptions in Stop mode

.

Updated

Section : SPI interface characteristics

included

Table 55

.

Updated

Section : I2S interface characteristics

included

Table 56

.

Updated

Table 64: Dynamic characteristics: Ehternet MAC signals for

SMI

.

Updated

Table 66: Dynamic characteristics: Ethernet MAC signals for

MII

.

DocID022152 Rev 4 183/185

Revision history STM32F405xx, STM32F407xx

Date

04-Jun-2013

Table 98. Document revision history (continued)

Revision Changes

4

(continued)

Updated

Table 64: Dynamic characteristics: Ehternet MAC signals for

SMI

.

Updated

Table 66: Dynamic characteristics: Ethernet MAC signals for

MII

.

Updated

Table 79: Synchronous multiplexed NOR/PSRAM read timings

.

Updated

Table 80: Synchronous multiplexed PSRAM write timings

.

Updated

Table 81: Synchronous non-multiplexed NOR/PSRAM read timings

.

Updated

Table 82: Synchronous non-multiplexed PSRAM write timings

.

Updated

Section 5.3.26: Camera interface (DCMI) timing specifications

including

Table 87: DCMI characteristics

and addition of

Figure 73:

DCMI timing diagram

.

Updated

Section 5.3.27: SD/SDIO MMC card host interface (SDIO) characteristics

including

Table 88

.

Updated

Chapter Figure 9.

184/185 DocID022152 Rev 4

STM32F405xx, STM32F407xx

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS

OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE

IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH

PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR

ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED

FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN

WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,

AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.

PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE

CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID022152 Rev 4 185/185

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement

Table of contents