TLC5921 LED DRIVER D


Add to my manuals
18 Pages

advertisement

TLC5921  LED DRIVER D | Manualzz

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

D

Drive Capability and Output Counts

– 80 mA (Current Sink) x 16 Bits

D

Constant Current Output Range

– 1 to 80 mA (Current Value Setting for All

Output Terminals Using External Resistor)

D

Constant Current Accuracy

±

1% (Typ)

±

4% (Max) (Maximum Error Between

Bits, All Bits On)

D

Voltage Applied to Constant Current Output

Terminal

– Minimum 0.6 V (Output Current 40 mA)

– Minimum 1 V (Output Current 80 mA)

D

Data Input

– Clock Synchronized 1 Bit Serial Input

D

Data Output

– Clock Synchronized 1 bit Serial Output

(With Timing Selection)

D

Input/Output Signal Level . . . CMOS Level

D

Power Supply Voltage . . . 4.5 V to 5.5V

D

Maximum Output Voltage . . . 17 V (Max)

D

Data Transfer Rate . . . 20 MHz (Max)

D

Operating Free-Air Temperature Range

–20

°

C to 85

°

C

D

Available in 32 Pin HTSSOP DAP Package

(P

D

T

A

=3.9 W,

= 25

°

C)

D

LOD Function . . . LED Open Detection

(Error Signal Output at LED Disconnection)

D

TSD Function . . . Thermal Shutdown (Turn

Output Off When Junction Temperature

Exceeds Limit) description

DAP PACKAGE

(TOP VIEW)

9

10

11

12

6

7

8

1

2

3

4

5

13

14

15

16

GND

BLANK

XLAT

SCLK

SIN

PGND

OUT0

OUT1

PGND

OUT2

OUT3

OUT4

OUT5

PGND

OUT6

OUT7

24

23

22

21

27

26

25

32

31

30

29

28

20

19

18

17

VCC

IREF

SOMODE

XDOWN

SOUT

PGND

OUT15

OUT14

PGND

OUT13

OUT12

OUT11

OUT10

PGND

OUT9

OUT8

The TLC5921 is a current-sink constant current driver incorporating shift register and data latch. The current value at constant current output can be set by one external register. The device also incorporates thermal shutdown (TSD) circuitry which turns constant current output off when the junction temperature exceeds the limit, and LED open detection (LOD) circuitry to report the LED was disconnected.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright

1999, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

1

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

functional block diagram

VCC

SOMODE

SCLK

SIN

XLAT

BLANK

IREF

GND

PGND

16 bits

Shift Register

16 bits

Data Latch

100 k

100 k

16 bits Constant Current Driver and

LED Disconnection detection

TSD

Timing Selector

OUT0 OUT15

SOUT

XDOWN

2

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

equivalent input and output schematic diagrams

Input (except SCLK)

VCC

Input (SCLK)

VCC

INPUT INPUT

GND

SOUT

XDOWN

OUTn

GND

VCC

OUTPUT

GND

XDOWN

GND

OUTn

GND

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

3

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

Terminal Functions

TERMINAL

NAME NO.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

SIN 5 I 1 bit serial data input

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

SOUT 28 O 1 bit serial data output

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

Clock input for data transfer. All the data in the shift register is shifted to MSB by 1 bit

SCLK 4 I synchronizing to the rising edge of SCLK, and data at SIN is shifted to LSB at the same time.

Á Á Á ÁÁÁÁ Á Á ÁÁÁÁ Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

(Schmitt buffer input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

Latch. When XLAT is high, data on shift register goes through latch. When XLAT is low, data

Á

XLAT

Á Á

3

Á

I

Á Á is latched. Accordingly, if data on shift register is changed during XLAT high, this new value

Á is latched (level latch). This terminal is internally pulled down with 100k

.

Á Á Á Á Á Á ÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Timing select for serial data output. When SOMODE is low, output data on SOUT is changed

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ SOMODE 30 I synchronizing to the rising edge of SCLK. When SOMODE is high, output data on SOUT is changed synchronizing to the falling edge of SCLK.

Á Á Á ÁÁÁÁ Á Á ÁÁÁÁ Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

7,8,10,11,12,13,

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

OUT0 – OUT15 15,16,17,18,20, O Constant current output.

Á Á Á ÁÁÁÁ Á Á ÁÁÁÁ Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

21,22,23,25,26

ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

Blank(Light off). When BLANK is high, all the output of constant current driver is turned off.

BLANK 2 I When BLANK is low and data written to latch is 1, the corresponding constant current output

Á Á Á ÁÁÁÁ Á Á ÁÁÁÁ Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ turns on (LED on). This terminal is internally pulled up with 100k

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

Constant current value setting. LED current is set to desired value by connecting external

IREF 31 I resistor between IREF and GND. The 38 times current compared to current across external

Á Á Á ÁÁÁÁ Á Á ÁÁÁÁ Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ resistor sink on output terminal.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

Error output. XDOWN is configured as open collector. It goes low when TSD or LOD

Á

XDOWN

Á

29 O

Á ÁÁÁÁ ÁÁÁÁ Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Á Á functions.

VCC 32

ÁÁÁ

Power supply voltage

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

GND 1 Ground

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

PGND 6,9,14,19,24,27 Ground for LED driver. (Internally connected to GND)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

THERMAL PAD package bottom Heat sink pad. This pad is connected to the lowest potential to IC or thermal layer.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

absolute maximum ratings (see Note 1)

Supply voltage, V

CC

Output current (dc), I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O(LC)

– 0.3 V to 7 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 mA

Input voltage range, V

I

Output voltage range, V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O(SOUT)

, V

O(XDOWN)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 0.3 V to V

– 0.3 V to V

CC

CC

+ 0.3 V

+ 0.3 V

Output voltage range, V

O(OUTn)

Storage temperature range, T stg

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– 0.3 V to 18 V

– 40

°

C to 150

°

C

Continuous total power dissipation at (or below) T

A

Power dissipation rating at (or above) T

A

= 25

°

C

= 25

°

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9 W

31.4 mW/

°

C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND terminal.

4

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

recommended operating conditions dc characteristics

PARAMETER CONDITIONS MIN NOM MAX UNIT

ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

Supply voltage, VCC

4.5

5 5.5

V

ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

Voltage applied to constant current output, VO OUT0 to OUT15 off 17 V

ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ High-level input voltage, VIH 0.8 VCC VCC V

ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

Low-level input voltage, VIL GND 0.2 VCC V

High-level output current, IOH VCC = 4.5 V, SOUT

ÁÁÁ ÁÁÁÁ

– 1

Low-level output current, IOL VCC = 4.5 V, SOUT, XDOWN

ÁÁÁÁ

1

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

Constant output current, IO(LC) OUT0 to OUT15 80 mA

ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

Operating free-air temperature range, TA – 20 85

°

C

ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

ac characteristics, MIN/MAX: V

CC

TYP: V

CC

= 4.5 V to

= 5 V

,

T

A

5.5 V, T

A

= –20 to 85

°

C

= 25

°

C

(

unless otherwise noted)

ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

PARAMETER CONDITIONS MIN TYP MAX UNIT

ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ At single operation 20

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

At cascade operation (SOMODE = L) 15 twh/twl SCLK pulse duration

ÁÁÁÁÁÁÁÁÁÁÁ

20

ÁÁÁ ns twh XLAT pulse duration

ÁÁÁÁÁÁÁÁÁÁÁÁÁ

10 ns

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ tr/tf Rise/fall time 100 ns

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ t tsu

SIN – SCLK

5

Setup time

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

XLAT – SCLK 5

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

SIN – SCLK 20

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

XLAT – SCLK

20

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

5

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

electrical characteristics, MIN/MAX: V

CC

= 4.5 V to 5.5 V, T

A

TYP: V

CC

= 5 V

,

T

A

= – 20 to 85

°

C

= 25

°

C

(

unless otherwise noted)

ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

VOH High-level output voltage IOH = – 1 mA

VCC

–0.5V

V

Á Á Á Á Á Á Á Á Á ÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á Á Á Á Á Á

VOL Low-level output voltage IOL = 1 mA 0.5

V

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

II Input current VI = VCC or GND (except BLANK, XLAT)

±

1

µ

A

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

Input signal is static, VO = 1 V,

R(IREF) = 10 k

, All output bits turn off

3 4.5

Á Á Á Á Á Á Á Á Á ÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á Á Á Á Á Á

ÁÁÁÁÁ

Input signal is static, VO = 1 V

RIREF = 1300

, All output bits turn off

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

7 9

Á Á Á Á Á Á Á Á Á ÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á Á Á Á Á Á

ICC Supply current

Input signal is static, VO = 1 V,

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ R(IREF) = 640

, All output bits turn off

11

ÁÁÁ

15

ÁÁÁ ÁÁÁ ÁÁÁ mA

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

Data transfer,

R(IREF) = 1300

,

VO = 1 V,

All output bits turn on

15 20

Á Á Á Á Á Á Á Á Á ÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á Á Á Á Á Á

Data transfer,

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ

R(IREF) = 640

,

VO = 1 V,

All output bits turn on

35

ÁÁÁ

50

ÁÁÁ

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

IOL(C1) Constant output current VO = 1 V, R(IREF) = 1300

35 40 45 mA

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

IOL(C2) Constant output current VO = 1 V R(IREF) = 640

70 80 90 mA

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ

OUT0 to OUT15 (V(OUTn) = 15 V) 0.1

ÁÁÁ

A

XDOWN (5V pullup) 1 A

ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ

IO(LC) Constant output current error between bit

VO = 1 V,

ÁÁÁÁÁÁÁÁÁÁÁ

All output bits turn on

R(IREF) = 640

,

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ

±

1

±

4

ÁÁÁ

%

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ

Á

I

O(LC1)

Changes in constant output current

Vref = 1.3 V

Á Á Á

±

1

ÁÁÁ Á ÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁ Á Á Á Á Á Á

Á

±

4

Á

%/V

Á Á

I

O(LC2)

Changes in constant output current VO = 1 V to 3 V, R(IREF) = 1300

,

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ depend on output voltage Vref = 1.3 V, 1 bit output turn on

±

2

±

6 %/V

Á Á Á Á Á Á Á Á Á ÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á Á Á Á

T(tsd) TSD detection temperature Junction temperature 150 160 170

°

C

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

Vref Reference voltage R(IREF) = 640

1.3

V

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

V(LEDDET) LED disconnection detection voltage 0.3

V

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ

switching characteristics, C

L

= 15 pF

ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

PARAMETER TEST CONDITIONS MIN

ÁÁÁ

TYP

ÁÁÁ

MAX

ÁÁÁ

UNIT

SOUT 15 2

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ t tr

OUTn (see Figure 1) 300

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

SOUT 5 15

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

OUTn 300

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

BLANK

– OUTn 400 650

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ

BLANK

– OUTn 300 400

ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ tpd Propagation delay time BLANK

– XDOWN (see Note 2) 600 1000 ns

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

BLANK

XDOWN (see Note 2) 500

ÁÁÁ

1000

ÁÁÁ

SCLK – SOUT 10 20

ÁÁÁ ÁÁÁ

35

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

NOTE 2: At external resistor 5 k

ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ

6

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

100%

90%

10%

0%

100%

50%

0%

1300

PARAMETER MEASUREMENT INFORMATION

VCC

51

IREF

VCC

OUTn

GND

15 pF tr

Figure 1. Rise Time and Fall Time Test Circuit for OUTn

VIH or VOH

VIL or VOL

100%

50%

0% tf twh

VIH 100%

VIL twl

Figure 2. Timing Requirements

50%

0%

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

VIH or VOH

VIL or VOL

td1

VIH or VOH

VIL or VOL

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

7

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

PRINCIPLES OF OPERATION setting for constant output current value

The constant current value is determined by external resistor, R

(IREF)

between IREF and GND. Refer constant output current characteristics shown on Figure 5 for this external resistor value.

Note that more current flows if connect IREF to GND directly.

constant output current operation

When BLANK is low, the corresponding output is turned on if data latch value is 1, and turned off if data latch value is 0. When BLANK is high, all outputs are forced to turn off. If there is constant current output terminal left unconnected (includes LED disconnection), it should be lighted on after writing zero to corresponding data latch to its output. If this operation is not done, supply current through constant current driver will increase.

shift register latch

The shift register latch is configured with 16

×

1 bits. The 1 bit for constant current output data represents ON for constant current output if data is 1, or OFF if data is 0. The configuration of shift register latch is shown in below.

Data Latch

XLATCH

OUT15

Data

(1 bits)

OUT14

Data

(1 bits)

OUT1

Data

(1 bits)

OUT0

Data

(1 bits)

Shift Register

SOUT

16 15 2 1

SCLK

SIN

Figure 3. Relationship Between Shift Register and Latch

SOUT output timing selection

By setting level of SOMODE, the SOUT output timing can be changed. When SOMODE is set to low, data is clocked out to SOUT synchronized on the rising edge of SCLK, and when SOMODE is set to high, data is clocked out to SOUT synchronized on the falling edge of SCLK. When SOMODE is set to high and shift operation is done, the data shift error can be prevented even though SCLK signal is externally buffered in serial.

Note that the maximum data transfer rate in cascade operation is slower than that when SMODE is set to low.

TSD (thermal shutdown)

When the junction temperature exceeds the limit, TSD starts to function and turn constant current output off and

XDOWN goes low. Since XDOWN is configured with open-collector output, the outputs of multiple ICs can be concatenated. To recover from constant current output off-state to normal operation, power supply should be turned off and then turned on after several seconds.

8

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

PRINCIPLES OF OPERATION

LOD function (LED open detection)

If any terminal voltage of constant current output (OUT0 TO 15) to be turned on is approximately below 0.3 V,

XDOWN output goes low during output on by knowing LED disconnection. This function is operational for sixteen OUTn individually. To know which constant current output is disconnected, the level of XDOWN is repeatedly checked 16 times from OUT0 to OUT15 turning one constant current output on. The power supply voltage for LED should be set to that the constant current output is applied to above 0.4 V to prevent from

XDOWN low when LED is lighting on normally. Note that on-time should be minimum1

µ s after the constant current output is turned on since XDOWN output is required approximately 1

µ s.

As discussed earlier, XDOWN is used for both TSD and LOD function. Therefore, BLANK is used to know which one of TSD or LOD worked when XDOWN went low at LED disconnection, that is, in this condition, when set

BLANK to high, all the constant current outputs are turned off and LOD disconnection detection is disabled, then, if XDOWN was changed to high, LED disconnection must be occurred.

Table 1 is an example for XDOWN output status using four LEDs.

Table 1. XDOWN Output Example

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

LED NUMBER

1 2 3 4

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

LED STATUS

GOOD NG GOOD NG

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

OUTn

ON ON ON ON

DETECTION RESULT

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ

NG GOOD NG

XDOWN

LOW (by case 2, 4)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

LED NUMBER

1 2 3 4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

LED STATUS

GOOD NG GOOD NG

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

OUTn

ON ON OFF OFF

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ

DETECTION RESULT

GOOD NG GOOD GOOD

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

XDOWN

LOW (by case 2)

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

LED NUMBER

1 2 3 4

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ

LED STATUS

GOOD

ÁÁÁÁÁ

NG GOOD NG

OUTn

OFF OFF OFF OFF

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

DETECTION RESULT

GOOD GOOD GOOD GOOD

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

XDOWN2

HIGH–IMPEDANCE

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ

noise reduction : output slope

When output current is 80 mA, the time to change constant current output to turn-on and turn-off is approximately

150 ns and 250 ns respectively. This allows to reduce concurrent switching noise occurred when multiple outputs turn or off at the same time.

thermal pad

The thermal pad should be connected to GND to eliminate the noise influence since it is connected to the bottom side of IC chip. Also, desired thermal effect will be obtained by connecting this pad to the PCB pattern with better thermal conductivity.

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

9

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

PRINCIPLES OF OPERATION power rating – free-air temperature

3.9

2.0

3.2

1.48

0

–20 0 25 85

TA – Free–Air Temperature –

°

C

0

NOTES: A. The data is based on simulation result. When TI recommended print circuit board is used, derate linearly at the rate of 31.4 mW/

°

C for operation above 25

°

C free-air temperature. VCC=5 V, IO(LC) = 80 mA, ICC is typical value.

B. The thermal impedance will be varied depend on mounting conditions. Since PZP package established low thermal impedance by radiating heat from thermal pad, the thermal pad should be soldered to pattern with low thermal impedance.

C. The material for PCB should be selected considering the thermal characteristics since the temperature will rise around the thermal pad.

Figure 4. Power Rating

10

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

constant output current

100000

66000

PRINCIPLES OF OPERATION

10000

1000

13200

6000

2750

1800

1300

1040

860

730

640

TLC5921

LED DRIVER

SLLS390 – SEPTEMBER 1999

100

0 10 20 30 40 50 60

Ilkg – Input Leakage Current – (mA)

70 80

Conditions : VO = 1 V, Vref = 1.3 V

NOTE: The resistor, R(IREF), should be located as close to IREF terminal as possible to avoid the noise influence.

Figure 5. Current on Constant Current Output vs External Resistor

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

11

SIN

SD15_A tsu (SIN–SCLK)

SCLK

SD00_B SD01_B SD02_B SD14_B SD15_B th (SIN–SCLK)

SD00_C th (XLAT–SCLK)

XLAT

SD14_C twl (SCLK) tsu (XLAT–SCLK)

SD15_C SD00_D

1/fSCLK twh (SCLK)

BLANK

SOMODE td (SCLK–SOUT)

SOUT

ÎÎÎÎ

SD00_A

ÎÎÎÎ

SD01_A SD02_A SD14_A td (SCLK–SOUT)

SD15_A SD00_B td (SCLK–SOUT)

SD01_B SD14_B SD15_B SD00_C td (BLANK–OUTn) td (BLANK–OUTn)

OUTn td (BLANK–XDOWN)

XDOWN td (BLANK–XDOWN)

HI–Z (Note)

NOTE : LED disconnected

Figure 6. Timing Diagram

PACKAGE OPTION ADDENDUM

www.ti.com

9-Sep-2014

PACKAGING INFORMATION

Orderable Device

TLC5921DAP

TLC5921DAPG4

Status

(1)

ACTIVE

ACTIVE

Package Type Package

Drawing

Pins Package

Qty

HTSSOP

HTSSOP

DAP

DAP

32

32

46

46

Eco Plan

(2)

Green (RoHS

& no Sb/Br)

Green (RoHS

& no Sb/Br)

Lead/Ball Finish

(6)

CU NIPDAU

CU NIPDAU

MSL Peak Temp

(3)

Level-3-260C-168 HR

Op Temp (°C)

-20 to 85

Level-3-260C-168 HR -20 to 85

Device Marking

(4/5)

TLC5921

TLC5921

TLC5921DAPR ACTIVE HTSSOP DAP 32 2000 Green (RoHS

& no Sb/Br)

CU NIPDAU Level-3-260C-168 HR -20 to 85 TLC5921

TLC5921DAPRG4 ACTIVE HTSSOP DAP 32 2000 Green (RoHS

& no Sb/Br)

(1)

The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

CU NIPDAU Level-3-260C-168 HR

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

-20 to 85 TLC5921

(2)

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3)

MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4)

There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5)

Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6)

Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Addendum-Page 1

Samples

PACKAGE OPTION ADDENDUM

www.ti.com

9-Sep-2014

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.

TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Addendum-Page 2

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.

TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio

Amplifiers

Data Converters

DLP® Products

DSP

Clocks and Timers

Interface

Logic

Power Mgmt

Microcontrollers

RFID

OMAP Applications Processors

Wireless Connectivity www.ti.com/audio amplifier.ti.com

dataconverter.ti.com

www.dlp.com

dsp.ti.com

www.ti.com/clocks interface.ti.com

logic.ti.com

power.ti.com

microcontroller.ti.com

Applications

Automotive and Transportation

Communications and Telecom

Computers and Peripherals

Consumer Electronics

Energy and Lighting

Industrial

Medical

Security

Space, Avionics and Defense

Video and Imaging www.ti-rfid.com

www.ti.com/omap

TI E2E Community

www.ti.com/wirelessconnectivity www.ti.com/automotive www.ti.com/communications www.ti.com/computers www.ti.com/consumer-apps www.ti.com/energy www.ti.com/industrial www.ti.com/medical www.ti.com/security www.ti.com/space-avionics-defense www.ti.com/video e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2015, Texas Instruments Incorporated

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement