STM8AF6213 STM8AF6223 STM8AF6223A STM8AF6226

STM8AF6213 STM8AF6223 STM8AF6223A STM8AF6226
STM8AF6213 STM8AF6223
STM8AF6223A STM8AF6226
Automotive 8-bit MCU, with up to 8 Kbyte Flash, data EEPROM,
10-bit ADC, timers, LIN, SPI, I²C, 3 to 5.5 V
Datasheet - production data
Features
 Core
– Max fCPU: 16 MHz
– Advanced STM8A core with Harvard
architecture and 3-stage pipeline
– Extended instruction set
LQFP32 7x7 mm
TSSOP20 (6.4x4.4 mm)
 Memories
– Program memory: 4 to 8 Kbyte Flash
program; data retention 20 years at 55 °C
after 1 kcycle
– Data memory: 640 byte true data
EEPROM; endurance 300 kcycle
– RAM: 1 Kbyte
 Clock management
– Low-power crystal resonator oscillator with
external clock input
– Internal, user-trimmable 16 MHz RC and
low-power 128 kHz RC oscillators
– Clock security system with clock monitor
 Reset and supply management
– Wait/auto-wakeup/Halt low-power modes
with user definable clock gating
– Low-consumption power-on and powerdown reset
 I/Os
– Up to 28 I/Os on a 32-pin package
including 21 high sink outputs
– Highly robust I/O design, immune against
current injection
 Communication interfaces
– LINUART LIN 2.2 compliant, master/slave
modes with automatic resynchronization
– SPI interface up to 8 Mbit/s or fMASTER/2
– I2C interface up to 400 Kbit/s
 Analog to digital converter (ADC)
– 10-bit, ± 1 LSB ADC with up to 7 muxed
channels + 1 internal channel, scan mode
and analog watchdog
– Internal reference voltage measurement
 Operating temperature up to 150 °C
 Qualification conforms to AEC-Q100 rev G
 Interrupt management
– Nested interrupt controller with 32
interrupts
– Up to 28 external interrupts on 7 vectors
 Timers
– Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, deadtime insertion and flexible synchronization
– 16-bit general purpose timer with 3
CAPCOM channels each (IC, OC, PWM)
– 8-bit AR basic timer with 8-bit prescaler
– Auto-wakeup timer
– Window and independent watchdog timers
June 2015
This is information on a product in full production.
DocID025118 Rev 5
1/106
www.st.com
Contents
STM8AF6213/23/23A/26
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1
4.2
Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.1
Architecture and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 14
4.2.1
SWIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2
Debug module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
4.4.1
Write protection (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.2
Read-out protection (ROP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5.1
2/106
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8
Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10
TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.11
TIM5 - 16-bit general purpose timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.12
TIM6 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13
Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14.1
LINUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.14.2
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.14.3
Inter integrated circuit (I2C) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DocID025118 Rev 5
STM8AF6213/23/23A/26
5
6
Contents
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1
TSSOP20 pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2
LQFP32 pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.1
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.2
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 43
7
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9
8.1
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2
STM8AF6213/23/23A/26 alternate function remapping bits . . . . . . . . . . . 49
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.3.1
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.3.2
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.3.3
External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 67
9.3.4
Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 69
9.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.3.6
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3.7
Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.8
SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.3.9
I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3.10
10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DocID025118 Rev 5
3/106
4
Contents
STM8AF6213/23/23A/26
9.3.11
10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.1
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.2
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.3
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.3.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.3.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 98
11
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.1
Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . 101
12.1.1
12.2
12.3
13
4/106
STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.2.1
STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.2.2
C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
DocID025118 Rev 5
STM8AF6213/23/23A/26
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
STM8AF6213/23/23A/26 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers . . . . . . . . . . . . . . . 16
TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Communication peripheral naming correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Legend/abbreviations for pinout tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
STM8AF6213/STM8AF6223 TSSOP20 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM8AF6223A TSSOP20 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM8AF6226 LQFP32 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Memory model for the devices covered in this datasheet. . . . . . . . . . . . . . . . . . . . . . . . . . 35
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
STM8AF6226 alternate function remapping bits [7:2] for 32-pin packages . . . . . . . . . . . . 49
STM8AF6213 and STM8AF6223 alternate function remapping bits [7:2]
for 20-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STM8AF6223A alternate function remapping bits [7:2] for 20-pin packages . . . . . . . . . . . 50
STM8AF6226 alternate function remapping bits [1:0] for 32-pin packages . . . . . . . . . . . . 51
STM8AF6213/STM8AF6223 alternate function remapping bits [1:0]
for 20-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM8AF6223A alternate function remapping bits [1:0] for 20-pin packages . . . . . . . . . . . 52
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Operating lifetime (OLF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Total current consumption with code execution in run mode at VDD = 5 V. . . . . . . . . . . . . 58
Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 59
Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Total current consumption in wait mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Total current consumption in active halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . 61
Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . 61
Total current consumption in halt mode at VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 63
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DocID025118 Rev 5
5/106
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
6/106
STM8AF6213/23/23A/26
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Output driving current (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ADC accuracy with RAIN < 10 kΩ, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ADC accuracy with RAIN < 10 kΩ, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package 
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, 
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
DocID025118 Rev 5
STM8AF6213/23/23A/26
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
STM8AF6213/23/23A/26 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
STM8AF6213/STM8AF6223 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
STM8AF6223A TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM8AF6226 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . 64
Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 64
Typ IDD(RUN) vs. VDD HSEI RC osc., fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Typ IDD(WFI) vs. VDD HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . 65
Typ IDD(WFI) vs. fCPU HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . 66
Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical pull-up resistance RPU vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical pull-up current Ipu vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typ. VOL @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typ. VOL @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typ. VOL @ VDD = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD- VOH @ VDD = 5 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD- VOH @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD- VOH @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typ. VDD- VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical NRST VIL and VIH vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typical NRST pull-up resistance vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 80
Typical NRST pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 92
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package 
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, 
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, 
DocID025118 Rev 5
7/106
8
List of figures
Figure 47.
Figure 48.
8/106
STM8AF6213/23/23A/26
package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
STM8AF6213/23/23A/26 ordering information scheme(1) (2) . . . . . . . . . . . . . . . . . . . . . . 100
DocID025118 Rev 5
STM8AF6213/23/23A/26
1
Introduction
Introduction
The datasheet contains the description of STM8AF6213, STM8AF6223, STM8AF6223A
and STM8AF6226 features, pinout, electrical characteristics, mechanical data and ordering
information.

For complete information on the STM8A microcontroller memory, registers and
peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers
reference manual (RM0016).

For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8 Flash programming manual (PM0051).

For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).

For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
DocID025118 Rev 5
9/106
103
Description
2
STM8AF6213/23/23A/26
Description
The STM8AF6213, STM8AF6223, STM8AF6223A and STM8AF6226 automotive 8-bit
microcontrollers offer 4 to 8 Kbyte of Flash program memory, plus integrated true data
EEPROM. The STM8S series and STM8AF series 8-bit microcontrollers reference manual
(RM0016) refers to devices in this family as low-density. They provide the following benefits:
performance, robustness and reduced system cost.
Device performance and robustness are ensured by advanced core and peripherals made
in a state-of-the-art technology, a 16 MHz clock frequency, robust I/Os, independent
watchdogs with separate clock source, and a clock security system.
The system cost is reduced thanks to an integrated true data EEPROM for up to 
300 kwrite/erase cycles and a high system integration level with internal clock oscillators,
watchdog, and brown-out reset.
Full documentation is offered as well as a wide choice of development tools.
²
Table 1. STM8AF6213/23/23A/26 features
Device
STM8AF6226
STM8AF6223
Pin count
32
20
Max. number of GPIOs
28 including 21
high-sink I/Os
16 including 12 high-sink I/Os
Ext. interrupt pins
28
16
Timer CAPCOM channels
6
7
6
7
Timer complementary
outputs
3
1
2
1
A/D converter channels
7
5
7
5
Low-density Flash program
memory (byte)
8K
STM8AF6213
4K
Data EEPROM (byte)
640(1)
RAM (byte)
1K
Peripheral set
Multipurpose timer (TIM1), SPI, I2C, LINUART, window WDG,
independent WDG, ADC, PWM timer (TIM5), 8-bit timer (TIM6)
1. No read-while-write (RWW) capability
10/106
STM8AF6223A
DocID025118 Rev 5
STM8AF6213/23/23A/26
3
Block diagram
Block diagram
Figure 1. STM8AF6213/23/23A/26 block diagram
5HVHWEORFN
;7$/0+]
&ORFNFRQWUROOHU
5HVHW
5HVHW
5&LQW0+]
'HWHFWRU
325
%25
5&LQWN+]
&ORFNWRSHULSKHUDOVDQGFRUH
:LQGRZ:'*
670FRUH
,QGHSHQGHQW:'*
'HEXJ6:,0
.ELWV
,&
0ELWV
63,
/,1
63,HPXO
8SWRFKDQQHOV
8SWR.E\WH
SURJUDP)ODVK
$GGUHVVDQGGDWDEXV
6LQJOHZLUH
GHEXJLQWHUIDFH
/,18$57
$'&
E\WH
GDWD((3520
.E\WH5$0
ELWDGYDQFHGFRQWURO
WLPHU7,0
8SWR
&$3&20
FKDQQHOV
FRPSOHPHQWDU\
RXWSXWV
ELWJHQHUDOSXUSRVH
WLPHUV7,0
8SWR
&$3&20
FKDQQHOV
ELWEDVLFWLPHU
7,0
N+]EHHS
%HHSHU
$:8WLPHU
069
DocID025118 Rev 5
11/106
103
Block diagram
STM8AF6213/23/23A/26
1. Legend:
ADC: Analog-to-digital converter
beCAN: Controller area network
BOR: Brownout reset
I²C: Inter-integrated circuit multimaster interface
IWDG: Independent window watchdog
LINUART: Local interconnect network universal asynchronous receiver transmitter
POR: Power on reset
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
Window WDG: Window watchdog
12/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
4
Product overview
Product overview
The following section intends to give an overview of the basic features of the products
covered by this datasheet.
For more detailed information on each feature please refer to STM8S series and STM8AF
series 8-bit microcontrollers reference manual (RM0016).
4.1
Central processing unit (CPU)
The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing and 80 instructions.
4.1.1
4.1.2
4.1.3
Architecture and registers

Harvard architecture

3-stage pipeline

32-bit wide program memory bus - single cycle fetching for most instructions

X and Y 16-bit index registers, enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations

8-bit accumulator

24-bit program counter - 16-Mbyte linear memory space

16-bit stack pointer - access to a 64 Kbyte level stack

8-bit condition code register - 7 condition flags for the result of the last instruction.
Addressing

20 addressing modes

Indexed indirect addressing mode for look-up tables located anywhere in the address
space

Stack pointer relative addressing mode for local variables and parameter passing
Instruction set

80 instructions with 2-byte average instruction size

Standard data movement and logic/arithmetic functions

8-bit by 8-bit multiplication

16-bit by 8-bit and 16-bit by 16-bit division

Bit manipulation

Data transfer between stack and accumulator (push/pop) with direct stack access

Data transfer using the X and Y registers or direct memory-to-memory transfers
DocID025118 Rev 5
13/106
103
Product overview
4.2
STM8AF6213/23/23A/26
Single wire interface module (SWIM) and debug module (DM)
The single wire interface module together with an integrated debug module permit nonintrusive, real-time in-circuit debugging and fast memory programming.
4.2.1
SWIM
Single wire interface module for direct access to the debug mode and memory
programming. The interface can be activated in all device operation modes.The maximum
data transmission speed is 145 byte/ms.
4.2.2
Debug module
The non-intrusive debugging module features a performance close to a full-featured
emulator. Besides memory and peripheral operation, CPU operation can also be monitored
in real-time by means of shadow registers.
4.3
4.4
4.4.1

R/W to RAM and peripheral registers in real-time

R/W access to all resources by stalling the CPU

Breakpoints on all program-memory instructions (software breakpoints)

Two advanced breakpoints, 23 predefined breakpoint configurations
Interrupt controller

Nested interrupts with three software priority levels

32 interrupt vectors with hardware priority

Up to 28 external interrupts on 7 vectors including TLI

Trap and reset interrupts
Flash program and data EEPROM memory

Up to 8 Kbyte of Flash program single voltage Flash memory

640 byte true data EEPROM

User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid
unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option byte.
To perform in-application programming (IAP), this write protection can be removed by
writing a MASS key sequence in a control register. This allows the application to write to
data EEPROM, modify the contents of main program memory or the device option byte.
A second level of write protection, can be enabled to further protect a specific area of
memory known as UBC (user boot code). Refer to the figure below.
14/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Product overview
The size of the UBC is programmable through the UBC option byte, in increments of 1 page
(64-byte block) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:

Main program memory: up to 8 Kbyte minus UBC

User-specific boot code (UBC): configurable up to 8 Kbyte
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually
the IAP and communication routines.
Figure 2. Flash memory organization
'DWD
((3520
PHPRU\
'DWDPHPRU\DUHDE\WH
2SWLRQE\WHV
8%&DUHD
5HPDLQVZULWHSURWHFWHGGXULQJ,$3
/RZGHQVLW\
)ODVKSURJUDP
PHPRU\
XSWR.E\WH
3URJUDPPDEOHDUHD
IURPE\WHSDJH
WRXSWR.E\WH
LQSDJHVWHSV
)ODVKSURJUDPPHPRU\DUHD
:ULWHDFFHVVSRVVLEOHIRU,$3
069
4.4.2
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is
activated, any attempt to toggle its status triggers a global erase of the program and data
memory. Even if no protection can be considered as totally unbreakable, the feature
provides a very high level of protection for a general purpose microcontroller.
DocID025118 Rev 5
15/106
103
Product overview
4.5
STM8AF6213/23/23A/26
Clock controller
The clock controller distributes the system clock (fMASTER) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness.
4.5.1
Features

Clock prescaler: to get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.

Safe clock switching: Clock sources can be changed safely on the fly in Run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.

Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.

Master clock sources: four different clock sources can be used to drive the master
clock:
–
1-16 MHz high-speed external crystal (HSE)
–
Up to 16 MHz high-speed user-external clock (HSE user-ext)
–
16 MHz high-speed internal RC oscillator (HSI)
–
128 kHz low-speed internal RC (LSI)

Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz
clock (HSI/8). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.

Clock security system (CSS): this feature can be enabled by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS
and an interrupt can optionally be generated.

Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit
Periphera
l clock
Bit
Peripheral
clock
Bit
Peripheral
clock
Bit
Peripheral
clock
PCKEN17
TIM1
PCKEN13
LINUART
PCKEN27
Reserved
PCKEN23
ADC
PCKEN16
TIM5
PCKEN12
Reserved
PCKEN26
Reserved
PCKEN22
AWU
PCKEN15
Reserved
PCKEN11
SPI
PCKEN25
Reserved
PCKEN21
Reserved
PCKEN10
I2C
PCKEN24
Reserved
PCKEN20
Reserved
PCKEN14
16/106
TIM6
DocID025118 Rev 5
STM8AF6213/23/23A/26
4.6
Product overview
Power management
For efficient power management, the application can be put in one of four different lowpower modes. Users can configure each mode to obtain the best compromise between
lowest power consumption, fastest start-up time and available wakeup sources.
4.7

Wait mode: in this mode, the CPU is stopped but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.

Active-halt mode with regulator on: in this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake
up unit (AWU). The main voltage regulator is kept powered on, so current consumption
is higher than in Active-halt mode with regulator off, but the wakeup time is faster.
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.

Active-halt mode with regulator off: this mode is the same as Active-halt with
regulator on, except that the main voltage regulator is powered off, so the wake up time
is slower.

Halt mode: in this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is
triggered by external event or reset.
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once
activated, the watchdogs cannot be disabled by the user program without performing a
reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
timing perfectly. The application software must refresh the counter before time-out and
during a limited time window.
A reset is generated in two situations:
1.
Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2.
Refresh out of window: the downcounter is refreshed before its value is lower than the
one stored in the window register.
DocID025118 Rev 5
17/106
103
Product overview
STM8AF6213/23/23A/26
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure.
The IWDG time base spans from 60 µs to 1 s
4.8
4.9
Auto wakeup counter

Used for auto wakeup from active halt mode

Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock

LSI clock can be internally connected to TIM1 input capture channel 1 for calibration
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit
AFR7.
4.10
TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver.
18/106

16-bit up, down and up/down auto-reload counter with 16-bit fractional prescaler.

Four independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single
pulse mode output.

Synchronization module to control the timer with external signals or to synchronise with
TIM5 or TIM6

Break input to force the timer outputs into a defined state

Three complementary outputs with adjustable dead time

Encoder mode

Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
DocID025118 Rev 5
STM8AF6213/23/23A/26
4.11
4.12
Product overview
TIM5 - 16-bit general purpose timer

16-bit autoreload (AR) up-counter

15-bit prescaler adjustable to fixed power of 2 ratios 1…32768

3 individually configurable capture/compare channels

PWM mode

Interrupt sources: 3 x input capture/output compare, 1 x overflow/update

Synchronization module to control the timer with external signals or to synchronize with
TIM1 or TIM6
TIM6 - 8-bit basic timer

8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128

Clock source: CPU clock

Interrupt source: 1 x overflow/update

Synchronization module to control the timer with external signals or to synchronize with
TIM1 or TIM5.
Table 3. TIM timer features
Timer
Counter
size (bits)
Prescaler
Counting
mode
CAPCOM
channels
TIM1
16
Any integer
from 1 to
65536
Up/down
4
3
Yes
TIM5
16
Any power
of 2 from 1
to 32768
Up
3
0
No
TIM6
8
Any power
of 2 from 1
to 128
Up
0
0
No
DocID025118 Rev 5
Complemen
Ext. trigger
tary outputs
Timer
synchroniz
ation/
chaining
Yes
19/106
103
Product overview
4.13
STM8AF6213/23/23A/26
Analog-to-digital converter (ADC1)
The STM8AF6213, STM8AF6223, STM8AF6223A and STM8AF6226 products contain a
10-bit successive approximation A/D converter (ADC1) with up to 7 external and 1 internal
multiplexed input channels and the following main features:
Note:

Input voltage range: 0 to VDD

Input voltage range: 0 to VDDA

Conversion time: 14 clock cycles

Single and continuous and buffered continuous conversion modes

Buffer size (n x 10 bits) where n = number of input channels

Scan mode for single and continuous conversion of a sequence of channels

Analog watchdog capability with programmable upper and lower thresholds

Internal reference voltage on channel AIN7

Analog watchdog interrupt

External trigger input

Trigger from TIM1 TRGO

End of conversion (EOC) interrupt
Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog.
Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.
Internal bandgap reference voltage
Channel AIN7 is internally connected to the internal bandgap reference voltage. The internal
bandgap reference is constant and can be used, for example, to monitor VDD. It is
independent of variations in VDD and ambient temperature TA.
4.14
Communication interfaces
The following communication interfaces are implemented:

LINUART: Full feature UART, synchronous mode, SPI master mode, Smartcard mode,
IrDA mode, single wire mode, LIN2.2 capability

SPI: full and half-duplex, 8 Mbit/s

I²C: up to 400 Kbit/s
Some peripheral names differ between the datasheet and STM8S series and STM8AF
series 8-bit microcontrollers reference manual, RM0016 (see Table 4).
Table 4. Communication peripheral naming correspondence
20/106
Peripheral name in datasheet
Peripheral name in reference manual
(RM0016)
LINUART
UART4
DocID025118 Rev 5
STM8AF6213/23/23A/26
4.14.1
Product overview
LINUART
Main features

1 Mbit/s full duplex SCI

SPI emulation

High precision baud rate generator

Smartcard emulation

IrDA SIR encoder decoder

LIN mode

Single wire half duplex mode
LIN mode
Master mode:

LIN break and delimiter generation

LIN break and delimiter detection with separate flag and interrupt source for read back
checking.
Slave mode:

Autonomous header handling – one single interrupt per valid header

Mute mode to filter responses

Identifier parity error checking

LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI)
clock source

Break detection at any time, even during a byte reception

Header errors detection:
–
Delimiter too short
–
Synch field error
–
Deviation error (if automatic resynchronization is enabled)
–
Framing error in synch field or identifier field
–
Header time-out
DocID025118 Rev 5
21/106
103
Product overview
STM8AF6213/23/23A/26
Asynchronous communication (UART mode)

Full duplex communication - NRZ standard format (mark/space)

Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable of
following any standard baud rate regardless of the input frequency

Separate enable bits for transmitter and receiver

Two receiver wakeup modes:
–
Address bit (MSB)
–
Idle line (interrupt)

Transmission error detection with interrupt generation

Parity control
Synchronous communication
4.14.2
4.14.3

Full duplex synchronous transfers

SPI master operation

8-bit data communication

Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)
Serial peripheral interface (SPI)

Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave

Full duplex synchronous transfers

Simplex synchronous transfers on two lines with a possible bidirectional data line

Master or slave operation - selectable by hardware or software

CRC calculation

1 byte Tx and Rx buffer

Slave /master selection input pin
Inter integrated circuit (I2C) interface


22/106
I2C master features:
–
Clock generation
–
Start and stop generation
I2C slave features:
–
Programmable I2C address detection
–
Stop bit detection

Generation and detection of 7-bit/10-bit addressing and general call

Supports different communication speeds:
–
Standard speed (up to 100 kHz),
–
Fast speed (up to 400 kHz)
DocID025118 Rev 5
STM8AF6213/23/23A/26
5
Pinout and pin description
Pinout and pin description
The following table presents the meaning of the abbreviations in use in the pin description
tables in this section.
Table 5. Legend/abbreviations for pinout tables
Type
I= input, O = output, S = power supply
Level
Input
CM = CMOS (standard for all I/Os)
Output
HS = High sink
Output speed
O1 = Slow (up to 2 MHz) 
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset 
O4 = Fast/slow programmability with fast as default state after reset
Port and control
configuration
Input
float = floating, wpu = weak pull-up
Output
T = true open drain, OD = open drain, PP = push pull
Reset state
5.1
Bold X (pin state after internal reset release).
Unless otherwise specified, the pin state is the same during the reset phase and
after the internal reset release.
TSSOP20 pinouts and pin descriptions
Figure 3. STM8AF6213/STM8AF6223 TSSOP20 pinout
>/,18$57B&[email protected],0B&+%((3+63'
3'+6$,17,0B&+$'&B(75
$,1/,18$57B7;+63'
3'+6$,1>7,0B&[email protected]
$,1/,18$57B5;+63'
3'+66:,0
1567
3&+663,B0,62>7,0B&[email protected]
26&,13$
3&+663,B026,>7,0B&[email protected]
26&2873$
3&+663,B6&.>7,0B&[email protected]
966
3&+67,0B&+&/.B&&2$,1>7,0B&[email protected]
9&$3
9''
3&+67,0B&+>7/,@>7,0B&[email protected]
3%7,&B6&/>$'&B([email protected]
3%7,&B6'$>7,0B%.,[email protected]
>63,[email protected],0B&++63$
069
1. (HS) high sink capability.
2. (T) true open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
DocID025118 Rev 5
23/106
103
Pinout and pin description
STM8AF6213/23/23A/26
Figure 4. STM8AF6223A TSSOP20 pinout
>/,18$57B&[email protected],0B&+%((3+63'
3'+6$,17,0B&+$'&B(75
$,1/,18$57B7;+63'
3'+6$,1>7,0B&[email protected]
$,1/,18$57B5;+63'
3'+66:,0
1567
3&+663,B0,62>7,0B&[email protected]
26&,13$
3&+663,B026,>7,0B&[email protected]
26&2873$
3&+663,B6&.>7,0B&[email protected]
966
3&+67,0B&+&/.B&&2$,1>7,0B&[email protected]
9&$3
9''
3%+67,0B&+1$,1
3%+67,0B&+1$,1
3%7,&B6&/>$'&B([email protected]
>7,0B%.,[email protected],&B6'$73%
069
1. (HS) high sink capability.
2. (T) true open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description
I/O
X
X
X
HS
O3
X
PP
OD
Speed
High sink(1)
Output
Ext. interrupt
1
PD4/ TIM5_CH1/
BEEP
[LINUART_CK]
Type
wpu
Pin name
floating
TSSOP
Input
X
Main
function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
Port D4
Timer 5 channel
1/BEEP
output
LINUART
clock
[AFR2]
Port D5
Analog
input 5/
LINUART
data
transmit
-
Port D6
Analog
input 6/
LINUART
data receive
-
2
PD5/ AIN5/
LINUART_TX
3
PD6/ AIN6/
LINUART_RX
I/O
X
X
X
HS
O3
X
X
4
NRST
I/O
-
X
-
-
-
-
-
5
PA1/ OSCIN(2)
I/O
X
X
X
-
O1
X
X
6
PA2/ OSCOUT
I/O
X
X
X
O1
X
X
7
VSS
S
-
-
-
-
-
-
-
Digital ground
8
VCAP
S
-
-
-
-
-
-
-
1.8 V regulator capacitor
9
VDD
S
-
-
-
-
-
-
-
Digital power supply
24/106
I/O
X
X
X
HS
O3
X
DocID025118 Rev 5
X
Reset
Port A1
Resonator/
crystal in
-
Port A2
Resonator/
crystal out
-
STM8AF6213/23/23A/26
Pinout and pin description
Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description (continued)
Output
Timer 1 break input
[AFR4]
I2C clock
ADC
external
trigger
[AFR4]
Timer 1 channel 3
Top level
interrupt
[AFR3]
Timer 1
inverted
channel 1
[AFR7]
PP
I2C data
OD
Port B5
Speed
-
High sink(1)
SPI master/
slave select
[AFR1]
Type
Ext. interrupt
Timer 5
channel 3
Pin name
wpu
Alternate
function
after remap
[option bit]
floating
Default
alternate
function
TSSOP
Input
Main
function
(after reset)
10
PA3/ TIM5_CH3
[SPI_NSS]
I/O
X
X
X
HS
O3
X
X
Port A3
11
PB5/ I2C_SDA
[TIM1_BKIN]
I/O
X
-
X
-
O1 T(3)
12
PB4/ I2C_SCL
[ADC_ETR]
-
T(3)
13
PC3/
TIM1_CH3/[TLI]/[
TIM1_CH1N]
I/O
I/O
X
X
-
X
X
X
HS
O1
O3
X
-
X
Port B4
Port C3
Analog
Timer 1 input 2
channel 4
[AFR2]Time
/configurabl
r 1 inverted
e clock
channel 2
output
[AFR7]
14
PC4/ TIM1_CH4/
CLK_CCO/AIN2/[
TIM1_CH2N]
I/O
X
X
X
HS
O3
X
X
Port C4
15
PC5/SPI_SCK
[TIM5_CH1]
I/O
X
X
X
HS
O3
X
X
Port C5
SPI clock
Timer 5
channel 1
[AFR0]
16
PC6/ SPI_MOSI
[TIM1_CH1]
I/O
X
X
X
HS
O3
X
X
Port C6
PI master
out/slave in
Timer 1
channel 1
[AFR0]
17
PC7/ SPI_MISO
[TIM1_CH2]
I/O
X
X
X
HS
O3
X
X
Port C7
SPI master
in/ slave out
Timer 1
channel
2[AFR0]
18
PD1/ SWIM(4)
I/O
X
X
X
HS
O4
X
X
Port D1
SWIM data
interface
-
DocID025118 Rev 5
25/106
103
Pinout and pin description
STM8AF6213/23/23A/26
Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description (continued)
19
20
PD2/AIN3
[TIM5_CH3]
PD3/ AIN4/
TIM5_CH2/
ADC_ETR
I/O
I/O
X
X
X
X
X
X
HS
HS
O3
O3
X
X
PP
OD
Speed
High sink(1)
Output
Ext. interrupt
Type
wpu
Pin name
floating
TSSOP
Input
X
X
Default
alternate
function
Alternate
function
after remap
[option bit]
Port D2
-
Analog
input 3
[AFR2]
Timer 52 channel 3
[AFR1]
Port D3
Analog
input 4
Timer 52 channel
2/ADC
external
trigger
-
Main
function
(after reset)
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the
total driven current must respect the absolute maximum ratings ( see Section: Absolute maximum ratings).
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode
if Halt/Active-halt is used in the application.
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are
not implemented)
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.
Table 7. STM8AF6223A TSSOP20 pin description
2
26/106
PD5/ AIN5/
LINUART_TX
I/O
I/O
X
X
X
X
X
X
HS
HS
O3
O3
X
X
DocID025118 Rev 5
PP
OD
Speed
High sink(1)
Output
Ext. interrupt
1
PD4/ TIM5_CH1/
BEEP/SPI_NSS
[LINUART_CK]
Type
wpu
Pin name
floating
TSSOP
Input
X
X
Main
function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
Port D4
Timer 5 channel
1/BEEP
output
LINUART
clock
[AFR2]
Port D5
Analog
input 5/
LINUART
data
transmit
-
STM8AF6213/23/23A/26
Pinout and pin description
Table 7. STM8AF6223A TSSOP20 pin description (continued)
Main
function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
Port D6
Analog
input 6/
LINUART
data receive
-
X
X
HS
O3
X
X
4
NRST
I/O
-
X
-
-
-
-
-
5
PA1/ OSCIN(2)
I/O
X
X
X
-
O1
X
X
Port A1
Resonator/
crystal in
-
6
PA2/ OSCOUT
I/O
X
X
X
-
O1
X
X
Port A2
Resonator/
crystal out
-
7
VSS
S
-
-
-
-
-
-
-
Digital ground
-
8
VCAP
S
-
-
-
-
-
-
-
1.8 V regulator capacitor
-
9
VDD
S
-
-
-
-
-
-
-
Digital power supply
-
10
PB5/ I2C_SDA
[TIM1_BKIN]
I/O
X
X
X
-
X
Port A5
11
PB4/ I2C_SCL
[ADC_ETR]
12
PB1/
TIM1_CH2N/
AIN1
I/O
I/O
X
X
-
X
X
X
-
HS
O1 T(3)
O1
O3
T(3)
X
PP
X
OD
I/O
Speed
3
PD6/ AIN6/
LINUART_RX
Type
wpu
Pin name
floating
TSSOP
High sink(1)
Output
Ext. interrupt
Input
-
X
Reset
I2C data
Timer 1 break input
[AFR4]
Port B4
I2C clock
ADC
external
trigger
[AFR4]
Port B1
Timer 1 inverted
channel
2/Analog
input 1
-
Port B0
Timer 1 inverted
channel
1/Analog
input 0
-
13
PB0/
TIM1_CH1N/AIN0
14
PC4/ TIM1_CH4/
CLK_CCO/AIN2/[
TIM1_CH2]
I/O
X
X
X
HS
O3
X
X
Port C4
15
PC5/SPI_SCK
[TIM5_CH1]
I/O
X
X
X
HS
O3
X
X
Port C5
I/O
X
X
X
HS
O3
X
DocID025118 Rev 5
X
-
Timer 1 Analog
channel 4
input 2
/configurabl [AFR2]Time
e clock
r 1 channel
output
2 [AFR7]
SPI clock
Timer 5
channel 1
[AFR0]
27/106
103
Pinout and pin description
STM8AF6213/23/23A/26
Table 7. STM8AF6223A TSSOP20 pin description (continued)
Output
Pin name
Type
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
Alternate
function
after remap
[option bit]
floating
Default
alternate
function
TSSOP
Input
Main
function
(after reset)
16
PC6/ SPI_MOSI
[TIM1_CH1]
I/O
X
X
X
HS
O3
X
X
Port C6
PI master
out/slave in
Timer 1
channel 1
[AFR0]
17
PC7/ SPI_MISO
[TIM1_CH2]
I/O
X
X
X
HS
O3
X
X
Port C7
SPI master
in/ slave out
Timer 1
channel
2[AFR0]
18
PD1/ SWIM(4)
I/O
X
X
X
HS
O4
X
X
Port D1
SWIM data
interface
-
Port D2
-
Analog
input 3
[AFR2]
Timer 5 channel 3
[AFR1]
Port D3
Analog
input 4
Timer 52 channel
2/ADC
external
trigger
-
19
20
PD2/AIN3/
TLI[TIM5_CH3]
PD3/ AIN4/
TIM5_CH2/
ADC_ETR
I/O
I/O
X
X
X
X
X
X
HS
HS
O3
O3
X
X
X
X
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the
total driven current must respect the absolute maximum ratings ( see Section: Absolute maximum ratings).
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if
Halt/Active-halt is used in the application.
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are
not implemented).
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.
28/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
5.2
Pinout and pin description
LQFP32 pinout and pin description
3'+67/,>7,0B&[email protected]
3'+6$,1/,18$57B5;
3'+6$,1/,18$57B7;
3'+6%((37,0B&+>/,18$57B&[email protected]
3'+6$,17,0B&+$'&B(75
3'+6>$,[email protected]>7,0B&[email protected]
3'+66:,0
3'+67,0B%.,1>&/.B&&[email protected]
Figure 5. STM8AF6226 LQFP32 pinout
3&+663,B0,62>7,0B&[email protected]
3&+663,B026,>7,0B&[email protected]
3&+663,B6&.>7,0B&[email protected]
3&+67,0B&+&/.B&&2>$,[email protected]>7,0B&[email protected]
3&+67,0B&+>7/,@>7,0B&[email protected]
3&+67,0B&+>7,0B&[email protected]
3&+67,0B&+/,18$57B&.>7,0B&[email protected]
3(63,B166>7,0B&[email protected]
3%
3%
>7,0B%.,[email protected],&B6'$73%
>$'&B([email protected],&B6&/73%
7,0B(75$,1+63%
7,0B&+1$,1+63%
7,0B&+1$,1+63%
7,0B&+1$,1+63%
1567
26&,13$
26&2873$
966
9&$3
9''
>/,18$57B7;@>63,[email protected],0B&++63$
>/,18$57B5;@3)
069
1. (HS) high sink capability.
2. (T) true open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
Table 8. STM8AF6226 LQFP32 pin description
Output
Pin name
Type
floating
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
Alternate
function
after remap
[option bit]
LQFP32
Input
1
NRST
I/O
-
X
-
-
-
-
-
2
PA1/ OSCIN(2)
I/O
X
X
X
-
O1
X
X
Port A1
Resonator/
crystal in
-
3
PA2/ OSCOUT
I/O
X
X
X
-
O1
X
X
Port A2
Resonator/
crystal out
-
DocID025118 Rev 5
Main
function
(after reset)
Default
alternate
function
Reset
-
29/106
103
Pinout and pin description
STM8AF6213/23/23A/26
Table 8. STM8AF6226 LQFP32 pin description (continued)
Output
Pin name
Type
floating
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
Alternate
function
after remap
[option bit]
LQFP32
Input
4
VSS
S
-
-
-
-
-
-
-
Digital ground
-
5
VCAP
S
-
-
-
-
-
-
-
1.8 V regulator capacitor
-
6
VDD
S
-
-
-
-
-
-
-
Digital power supply
-
7
PA3/
TIM5_CH3
[SPI_NSS]
[LINUART_TX]
I/O
X
X
X
8
PF4
[LINUART_RX]
I/O
X
X
-
-
9
PB7
I/O
X
X
X
-
10
PB6
I/O
X
X
X
-
11
PB5/ I2C_SDA
[TIM1_BKIN]
I/O
X
-
X
-
12
PB4/ I2C_SCL
[ADC_ETR]
13
PB3/
AIN3/TIM1_ET
R
14
PB2/ AIN2/
TIM1_CH3N
15
PB1/ AIN1/
TIM1_CH2N
16
PB0/ AIN0/
TIM1_CH1N
30/106
I/O
I/O
I/O
I/O
I/O
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
Default
alternate
function
X
X
Port A3
Timer 52
channel 3
SPI master/
slave select
[AFR1]/
LINUART
data transmit
[AFR1:0]
O1
X
X
Port F4
LINUART
data receive
[AFR1:0]
-
O1
X
X
Port B7
-
-
X
X
Port B6
-
-
O1
T(3)
-
Port B5
I2C data
Timer 1 break input
[AFR4]
O1
T(3)
Port B4
I2C clock
ADC
external
trigger
[AFR4]
Port B3
Analog input
3/ Timer 1
external
trigger
-
Port B2
Analog input
2/ Timer 1 inverted
channel 3
-
Port B1
Analog input
1/ Timer 1 inverted
channel 2
-
Port B0
Analog input
0/ Timer 1 inverted
channel 1
-
HS O3
-
Main
function
(after reset)
O1
HS O3
HS O3
HS O3
HS O3
X
X
X
X
-
X
X
X
X
DocID025118 Rev 5
STM8AF6213/23/23A/26
Pinout and pin description
Table 8. STM8AF6226 LQFP32 pin description (continued)
I/O
X
X
X
X
X
X
X
X
HS O3
HS O3
HS O3
X
X
X
PP
OD
Speed
19
PC2/
TIM1_CH2
[TIM1_CH3N]
I/O
X
High sink(1)
18
PC1/
TIM1_CH1/
LINUART_CK
[TIM1_CH2N]
I/O
Output
Ext. interrupt
17
PE5/ SPI_NSS
[TIM1_CH1N]
Type
wpu
Pin name
floating
LQFP32
Input
X
X
X
Main
function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
Port E5
SPI master/
slave select
Timer 1 inverted
channel 1
[AFR1:0]
Port C1
Timer 1 channel 1
LINUART
clock
Timer 1 inverted
channel 2
[AFR1:0]
Port C2
Timer 1 channel 2
Timer 1 inverted
channel 3
[AFR1:0]
Timer 1 channel 3
Top level
interrupt
[AFR3] Timer
1 inverted
channel 1
[AFR7]
20
PC3/
TIM1_CH3/[TLI]
[TIM1_CH1N]
21
PC4/
TIM1_CH4/
CLK_CCO/[AIN
2][TIM1_CH2N]
I/O
X
X
X
HS O3
X
X
Port C4
22
PC5/SPI_SCK
[TIM5_CH1]
I/O
X
X
X
HS O3
X
X
Port C5
SPI clock
Timer 5
channel 1
[AFR0]
23
PC6/
SPI_MOSI
[TIM1_CH1]
I/O
X
X
X
HS O3
X
X
Port C6
PI master
out/slave in
Timer 1
channel 1
[AFR0]
24
PC7/
SPI_MISO
[TIM1_CH2]
I/O
X
X
X
HS O3
X
X
Port C7
SPI master
in/ slave out
Timer 1
channel
2[AFR0]
25
PD0/
TIM1_BKIN
[CLK_CCO]
I/O
X
X
X
HS O3
X
X
Port D0
Timer 1 break input
Configurable
clock output
[AFR5]
26
PD1/ SWIM(4)
I/O
X
X
X
HS O4
X
X
Port D1
SWIM data
interface
-
I/O
X
X
X
HS O3
X
X
DocID025118 Rev 5
Port C3
Analog input
Timer 1 2
channel 4
[AFR2]Timer
/configurable
1 inverted
clock output
channel 2
[AFR7]
31/106
103
Pinout and pin description
STM8AF6213/23/23A/26
Table 8. STM8AF6226 LQFP32 pin description (continued)
27
PD2/[AIN3]
[TIM5_CH3]
I/O
X
X
X
HS O3
X
PP
OD
Speed
High sink(1)
Output
Ext. interrupt
Type
wpu
Pin name
floating
LQFP32
Input
X
Default
alternate
function
Alternate
function
after remap
[option bit]
Port D2
-
Analog input
3 [AFR2]
Timer 52 channel 3
[AFR1]
Port D3
Analog input
4 Timer 52 channel
2/ADC
external
trigger
-
LINUART
clock [AFR2]
Main
function
(after reset)
28
PD3/ AIN4/
TIM5_CH2/
ADC_ETR
29
PD4/
TIM5_CH1/
BEEP
[LINUART_CK]
I/O
X
X
X
HS O3
X
X
Port D4
Timer 5 channel
1/BEEP
output
30
PD5/ AIN5/
LINUART_TX
I/O
X
X
X
HS O3
X
X
Port D5
Analog input
5/ LINUART
data transmit
-
31
PD6/ AIN6/
LINUART_RX
I/O
X
X
X
HS O3
X
X
Port D6
Analog input
6/ LINUART
data receive
-
32
PD7/ TLI
[TIM1_CH4]
I/O
X
X
X
HS O3
X
X
Port D7
Top level
interrupt
Timer 1 channel 4
[AFR6]
I/O
X
X
X
HS O3
X
X
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the
total driven current must respect the absolute maximum ratings (see Section: Absolute maximum ratings).
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode
if Halt/Active-halt is used in the application.
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are
not implemented).
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.
32/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
5.3
Pinout and pin description
Alternate function remapping
As shown in the rightmost column of Table 6, Table 7 and Table 8 some alternate functions
can be remapped at different I/O ports by programming one of eight AFR (alternate function
remap) option bits. Refer to Section 8: Option bytes on page 47. When the remapping
option is active, the default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual,
RM0016).
DocID025118 Rev 5
33/106
103
Memory and register map
STM8AF6213/23/23A/26
6
Memory and register map
6.1
Memory map
Figure 6. Memory map
[
5$0
.E\WH
E\WHVWDFN
[))
[
5HVHUYHG
[)))
[
[)
[
E\WHGDWD((3520
5HVHUYHG
[))
[
2SWLRQE\WHV
[$
[%
5HVHUYHG
[
[
8QLTXH,'
[
[
5HVHUYHG
[)))
[
*3,2DQGSHULSKHUDOUHJLVWHUV
[))
[
5HVHUYHG
[())
[)
[)))
[
[)
[
[)))
[$
&386:,0GHEXJ,7&
UHJLVWHUV
LQWHUUXSWYHFWRUV
)ODVKSURJUDPPHPRU\
.E\WH
5HVHUYHG
[)))
34/106
DocID025118 Rev 5
069
STM8AF6213/23/23A/26
Memory and register map
Table 9. Memory model for the devices covered in this datasheet
Flash program
memory size
Flash program
memory end
address
8K
0x00 9FFF
4K
0x00 8FFF
6.2
Register map
6.2.1
I/O port hardware register map
RAM size
RAM end
address
Stack roll-over
address
1K
0x00 03FF
0x00 0200
Table 10. I/O port hardware register map
Register label
Register name
Reset
status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX(1)
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x00
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX(1)
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PB_IDR
Port C input pin value register
0xXX(1)
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX(1)
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x02
0x00 5013
PD_CR2
Port D control register 2
0x00
Address
0x00 5002
0x00 5007
0x00 500C
0x00 5011
Block
Port A
Port B
Port C
Port D
DocID025118 Rev 5
35/106
103
Memory and register map
STM8AF6213/23/23A/26
Table 10. I/O port hardware register map (continued)
Register label
Register name
Reset
status
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX(1)
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX(1)
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
Address
0x00 5016
0x00 501B
Block
Port E
Port F
1. Depends on the external circuitry.
Table 11. General hardware register map
Address
Block
Register label
0x00 501E to
0x00 5069
Reset
status
Reserved area (60 byte)
0x00 505A
FLASH_CR1
Flash control register 1
0x00
0x00 505B
FLASH_CR2
Flash control register 2
0x00
0x00 505C
FLASH_NCR2
Flash complementary control register 2
0xFF
FLASH_FPR
Flash protection register
0x00
0x00 505E
FLASH_NFPR
Flash complementary protection register
0xFF
0x00 505F
FLASH_IAPSR
Flash in-application programming status
register
0x40
0x00 505D
Flash
0x00 5060 to
0x00 5061
0x00 5062
Reserved area (2 byte)
Flash
FLASH_PUKR
0x00 5063
0x00 5064
0x00 50A0
0x00 50A1
0x00 50A2 to
0x00 50B2
Flash Program memory unprotection
register
0x00
Reserved area (1 byte)
Flash
FLASH_DUKR
0x00 5065 to
0x00 509F
36/106
Register name
Data EEPROM unprotection register
0x00
Reserved area (59 byte)
ITC
EXTI_CR1
External interrupt control register 1
0x00
EXTI_CR2
External interrupt control register 2
0x00
Reserved area (17 byte)
DocID025118 Rev 5
STM8AF6213/23/23A/26
Memory and register map
Table 11. General hardware register map (continued)
Address
Block
Register label
Register name
Reset
status
0x00 50B3
RST
RST_SR
Reset status register
0xXX(1)
0x00 50B4 to
0x00 50BF
0x00 50C0
0x00 50C1
Reserved area (12 byte)
CLK
CLK_ICKR
Internal clock control register
0x01
CLK_ECKR
External clock control register
0x00
0x00 50C2
Reserved area (1 byte)
0x00 50C3
CLK_CMSR
Clock master status register
0xE1
0x00 50C4
CLK_SWR
Clock master switch register
0xE1
0x00 50C5
CLK_SWCR
Clock switch control register
0xXX
CLK_CKDIVR
Clock divider register
0x18
CLK_PCKENR1
Peripheral clock gating register 1
0xFF
0x00 50C8
CLK_CSSR
Clock security system register
0x00
0x00 50C9
CLK_CCOR
Configurable clock control register
0x00
0x00 50CA
CLK_PCKENR2
Peripheral clock gating register 2
0xFF
0x00 50C6
0x00 50C7
CLK
0x00 50CB
Reserved area (1 byte)
0x00 50CC
0x00 50CD
CLK
CLK_HSITRIMR
HSI clock calibration trimming register
0x00
CLK_SWIMCCR
SWIM clock control register
0bXXXX
XXX0
0x00 50CE
to 0x00 50D0
0x00 50D1
0x00 50D2
Reserved area (3 byte)
WWDG
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
0x00 50D3 to
0x00 50DF
Reserved area (13 byte)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
IWDG_KR
IWDG key register
0xXX(2)
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
0x00 50E3 to
0x00 50EF
Reserved area (13 byte)
0x00 50F0
0x00 50F1
AWU
0x00 50F2
0x00 50F3
0x00 50F4 to
0x00 50FF
BEEP
AWU_CSR1
AWU control/status register 1
0x00
AWU_APR
AWU asynchronous prescaler buffer
register
0x3F
AWU_TBR
AWU timebase selection register
0x00
BEEP_CSR
BEEP control/status register
0x1F
Reserved area (12 byte)
DocID025118 Rev 5
37/106
103
Memory and register map
STM8AF6213/23/23A/26
Table 11. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5200
SPI_CR1
SPI control register 1
0x00
0x00 5201
SPI_CR2
SPI control register 2
0x00
0x00 5202
SPI_ICR
SPI interrupt control register
0x00
SPI_SR
SPI status register
0x02
SPI_DR
SPI data register
0x00
0x00 5205
SPI_CRCPR
SPI CRC polynomial register
0x07
0x00 5206
SPI_RXCRCR
SPI Rx CRC register
0xFF
0x00 5207
SPI_TXCRCR
SPI Tx CRC register
0xFF
Address
0x00 5203
0x00 5204
Block
SPI
0x00 5208 to
0x00 520F
Reserved area (8 byte)
0x00 5210
I2C_CR1
I2C control register 1
0x00
0x00 5211
I2C_CR2
I2C control register 2
0x00
0x00 5212
I2C_FREQR
I2C frequency register
0x00
0x00 5213
I2C_OARL
I2C own address register low
0x00
0x00 5214
I2C_OARH
I2C own address register high
0x00
0x00 5215
Reserved area (1 byte)
0x00 5216
I2C_DR
I2C data register
0x00
I2C_SR1
I2C status register 1
0x00
0x00 5218
I2C_SR2
I2C status register 2
0x00
0x00 5219
I2C_SR3
I2C status register 3
0x00
0x00 521A
I2C_ITR
I2C interrupt control register
0x00
0x00 521B
I2C_CCRL
I2C clock control register low
0x00
0x00 521C
I2C_CCRH
I2C clock control register high
0x00
0x00 521D
I2C_TRISER
I2C TRISE register
0x02
0x00 521E
I2C_PECR
I2C packet error checking register
0x00
0x00 5217
0x00 521F to
0x00 522F
38/106
I2C
Reserved area (17 byte)
DocID025118 Rev 5
STM8AF6213/23/23A/26
Memory and register map
Table 11. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5230
UART4_SR
LINUART status register
0xC0
0x00 5231
UART4_DR
LINUART data register
0xXX
0x00 5232
UART4_BRR1
LINUART baud rate register 1
0x00
0x00 5233
UART4_BRR2
LINUART baud rate register 2
0x00
0x00 5234
UART4_CR1
LINUART control register 1
0x00
UART4_CR2
LINUART control register 2
0x00
UART4_CR3
LINUART control register 3
0x00
UART4_CR4
LINUART control register 4
0x00
Address
0x00 5235
0x00 5236
0x00 5237
Block
LINUART
0x00 5238
Reserved
0x00 5239
UART4_CR6
LINUART control register 6
0x00
0x00 523A
UART4_GTR
LINUART guard time register
0x00
0x00 523B
UART4_PSCR
LINUART prescaler
0x00
0x00 523C to
0x00 523F
Reserved area (20 byte)
DocID025118 Rev 5
39/106
103
Memory and register map
STM8AF6213/23/23A/26
Table 11. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5250
TIM1_CR1
TIM1 control register 1
0x00
0x00 5251
TIM1_CR2
TIM1 control register 2
0x00
0x00 5252
TIM1_SMCR
TIM1 slave mode control register
0x00
0x00 5253
TIM1_ETR
TIM1 external trigger register
0x00
0x00 5254
TIM1_IER
TIM1 Interrupt enable register
0x00
0x00 5255
TIM1_SR1
TIM1 status register 1
0x00
0x00 5256
TIM1_SR2
TIM1 status register 2
0x00
0x00 5257
TIM1_EGR
TIM1 event generation register
0x00
0x00 5258
TIM1_CCMR1
TIM1 capture/compare mode register 1
0x00
0x00 5259
TIM1_CCMR2
TIM1 capture/compare mode register 2
0x00
0x00 525A
TIM1_CCMR3
TIM1 capture/compare mode register 3
0x00
0x00 525B
TIM1_CCMR4
TIM1 capture/compare mode register 4
0x00
0x00 525C
TIM1_CCER1
TIM1 capture/compare enable register 1
0x00
0x00 525D
TIM1_CCER2
TIM1 capture/compare enable register 2
0x00
0x00 525E
TIM1_CNTRH
TIM1 counter high
0x00
TIM1_CNTRL
TIM1 counter low
0x00
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 5261
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 5262
TIM1_ARRH
TIM1 auto-reload register high
0xFF
0x00 5263
TIM1_ARRL
TIM1 auto-reload register low
0xFF
0x00 5264
TIM1_RCR
TIM1 repetition counter register
0x00
0x00 5265
TIM1_CCR1H
TIM1 capture/compare register 1 high
0x00
0x00 5266
TIM1_CCR1L
TIM1 capture/compare register 1 low
0x00
0x00 5267
TIM1_CCR2H
TIM1 capture/compare register 2 high
0x00
0x00 5268
TIM1_CCR2L
TIM1 capture/compare register 2 low
0x00
0x00 5269
TIM1_CCR3H
TIM1 capture/compare register 3 high
0x00
0x00 526A
TIM1_CCR3L
TIM1 capture/compare register 3 low
0x00
0x00 526B
TIM1_CCR4H
TIM1 capture/compare register 4 high
0x00
0x00 526C
TIM1_CCR4L
TIM1 capture/compare register 4 low
0x00
0x00 526D
TIM1_BKR
TIM1 break register
0x00
0x00 526E
TIM1_DTR
TIM1 dead-time register
0x00
0x00 526F
TIM1_OISR
TIM1 output idle state register
0x00
Address
0x00 525F
0x00 5260
0x00 5270 to
0x00 52FF
40/106
Block
TIM1
Reserved area (147 byte)
DocID025118 Rev 5
STM8AF6213/23/23A/26
Memory and register map
Table 11. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5300
TIM5_CR1
TIM5 control register 1
0x00
0x00 5301
TIM5_CR2
TIM5 control register 2
0x00
0x00 5302
TIM5_SMCR
TIM5 slave mode control register
0x00
0x00 5303
TIM5_IER
TIM5 interrupt enable register
0x00
0x00 5304
TIM5_SR1
TIM5 status register 1
0x00
0x00 5305
TIM5_SR2
TIM5 status register 2
0x00
0x00 5306
TIM5_EGR
TIM5 event generation register
0x00
0x00 5307
TIM5_CCMR1
TIM5 capture/compare mode register 1
0x00
0x00 5308
TIM5_CCMR2
TIM5 capture/compare mode register 2
0x00
0x00 5309
TIM5_CCMR3
TIM5 capture/compare mode register 3
0x00
0x00 530A
TIM5_CCER1
TIM5 capture/compare enable register 1
0x00
TIM5_CCER2
TIM5 capture/compare enable register 2
0x00
00 530C0x
TIM5_CNTRH
TIM5 counter high
0x00
0x00 530D
TIM5_CNTRL
TIM5 counter low
0x00
0x00 530E
TIM5_PSCR
TIM5 prescaler register
0x00
0x00 530F
TIM5_ARRH
TIM5 auto-reload register high
0xFF
0x00 5310
TIM5_ARRL
TIM5 auto-reload register low
0xFF
0x00 5311
TIM5_CCR1H
TIM5 capture/compare register 1 high
0x00
0x00 5312
TIM5_CCR1L
TIM5 capture/compare register 1 low
0x00
0x00 5313
TIM5_CCR2H
TIM5 capture/compare reg. 2 high
0x00
0x00 5314
TIM5_CCR2L
TIM5 capture/compare register 2 low
0x00
0x00 5315
TIM5_CCR3H
TIM5 capture/compare register 3 high
0x00
0x00 5316
TIM5_CCR3L
TIM5 capture/compare register 3 low
0x00
Address
0x00 530B
Block
TIM5
0x00 5317 to
0x00 533F
Reserved area (43 byte)
0x00 5340
TIM6_CR1
TIM6 control register 1
0x00
0x00 5341
TIM6_CR2
TIM6 control register 2
0x00
0x00 5342
TIM6_SMCR
TIM6 slave mode control register
0x00
0x00 5343
TIM6_IER
TIM6 interrupt enable register
0x00
TIM6_SR
TIM6 status register
0x00
0x00 5345
TIM6_EGR
TIM6 event generation register
0x00
0x00 5346
TIM6_CNTR
TIM6 counter
0x00
0x00 5347
TIM6_PSCR
TIM6 prescaler register
0x00
0x00 5348
TIM6_ARR
TIM6 auto-reload register
0xFF
0x00 5344
TIM6
DocID025118 Rev 5
41/106
103
Memory and register map
STM8AF6213/23/23A/26
Table 11. General hardware register map (continued)
Address
Block
Register label
0x00 5349 to
0x00 53DF
0x00 53E0 to
0x00 53F3
Register name
Reserved area (153 byte)
ADC1
ADC _DBxR
0x00 53F4 to
0x00 53FF
ADC data buffer registers
0x00
Reserved area (12 byte)
0x00 5400
ADC _CSR
ADC control/status register
0x00
0x00 5401
ADC_CR1
ADC configuration register 1
0x00
0x00 5402
ADC_CR2
ADC configuration register 2
0x00
0x00 5403
ADC_CR3
ADC configuration register 3
0x00
0x00 5404
ADC_DRH
ADC data register high
0xXX
0x00 5405
ADC_DRL
ADC data register low
0xXX
0x00 5406
ADC_TDRH
ADC Schmitt trigger disable register high
0x00
ADC_TDRL
ADC Schmitt trigger disable register low
0x00
ADC _HTRH
ADC high threshold register high
0xFF
0x00 5409
ADC_HTRL
ADC high threshold register low
0x03
0x00 540A
ADC _LTRH
ADC low threshold register high
0x00
0x00 540B
ADC_LTRL
ADC low threshold register low
0x00
0x00 540C
ADC _AWSRH
ADC watchdog status register high
0x00
0x00 540D
ADC_AWSRL
ADC watchdog status register low
0x00
0x00 540E
ADC _AWCRH
ADC watchdog control register high
0x00
0x00 540F
ADC _AWCRL
ADC watchdog control register low
0x00
0x00 5407
0x00 5408
ADC1
0x00 5410 to
0x00 57FF
Reserved area (1008 byte)
1. Depends on the previous reset source.
2. Write only register.
42/106
Reset
status
DocID025118 Rev 5
STM8AF6213/23/23A/26
6.2.2
Memory and register map
CPU/SWIM/debug module/interrupt controller registers
Table 12. CPU/SWIM/debug module/interrupt controller registers
Register label
Register name
Reset
status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
Address
Block
0x00 7F04
0x00 7F05
(1)
CPU
0x00 7F0B to
0x00 7F5F
0x00 7F60
Reserved area (85 byte)
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC_SPR1
Interrupt software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt software priority register 3
0xFF
ITC_SPR4
Interrupt software priority register 4
0xFF
ITC_SPR5
Interrupt software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt software priority register 8
0xFF
0x00 7F73
0x00 7F74
CPU
ITC
0x00 7F78 to
0x00 7F79
0x00 7F80
0x00 7F81 to
0x00 7F8F
Reserved area (2 byte)
SWIM
SWIM_CSR
SWIM control status register
0x00
Reserved area (15 byte)
DocID025118 Rev 5
43/106
103
Memory and register map
STM8AF6213/23/23A/26
Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)
Register label
Register name
Reset
status
0x00 7F90
DM_BK1RE
DM breakpoint 1 register extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM debug module control register 1
0x00
0x00 7F97
DM_CR2
DM debug module control register 2
0x00
0x00 7F98
DM_CSR1
DM debug module control/status register 1
0x10
0x00 7F99
DM_CSR2
DM debug module control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register
0xFF
Address
0x00 7F95
Block
DM
0x00 7F9B to
0x00 7F9F
Reserved area (5 byte)
1. Accessible by debug module only
44/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
7
Interrupt vector mapping
Interrupt vector mapping
Table 13. Interrupt mapping
Priority
Source
block
Description
—
Reset
Reset
—
TRAP
0
Wakeup from
halt mode
Wakeup from
Interrupt vector
active-halt
address
mode
Yes
Yes
0x00 8000
Software interrupt
-
-
0x00 8004
TLI
External top level interrupt
-
-
0x00 8008
1
AWU
Auto-wakeup from Halt
-
Yes
0x00 800C
2
Clock
controller
Clock controller
-
-
0x00 8010
3
EXTI0
Port A external interrupts
Yes(1)
Yes(1)
0x00 8014
4
EXTI1
Port B external interrupts
Yes
Yes
0x00 8018
5
EXTI2
Port C external interrupts
Yes
Yes
0x00 801C
6
EXTI3
Port D external interrupts
Yes
Yes
0x00 8020
7
EXTI4
Port E external interrupts
Yes
Yes
0x00 8024
8
EXTI5
Port F
-
-
0x00 8028
9
Reserved
-
-
0x00 802C
10
SPI
End of transfer
Yes
Yes
0x00 8030
11
TIM1
TIM1 update/overflow/
underflow/trigger/break
-
-
0x00 8034
12
TIM1
TIM1 capture/compare
-
-
0x00 8038
13
TIM5
TIM5
update/overflow/trigger
-
-
0x00 803C
14
TIM5
TIM5 capture/compare
-
-
0x00 8040
15
Reserved
-
-
-
0x00 8044
16
Reserved
-
-
-
0x00 8048
17
LINUART
Tx complete
-
-
0x00 804C
18
LINUART
Receive register DATA
FULL
-
-
0x00 8050
19
I2C
I2C interrupts
Yes
Yes
0x00 8054
20
Reserved
-
-
-
0x00 8058
21
Reserved
-
-
-
0x00 805C
22
ADC1
-
-
0x00 8060
-
ADC1 end of
conversion/analog
watchdog interrupt
DocID025118 Rev 5
45/106
103
Interrupt vector mapping
STM8AF6213/23/23A/26
Table 13. Interrupt mapping (continued)
Priority
Source
block
Description
Wakeup from
halt mode
23
TIM6
TIM6
update/overflow/trigger
-
-
0x00 8064
24
Flash
EOP/WR_PG_DIS
-
-
0x00 8068
1. Except PA1.
46/106
Wakeup from
Interrupt vector
active-halt
address
mode
DocID025118 Rev 5
STM8AF6213/23/23A/26
8
Option bytes
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. Except for the ROP (read-out protection) byte, each option byte has
to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for
redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in Table 14: Option bytes below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the
ROP and UBC options that can only be modified in ICP mode (via SWIM).
Refer to the STM8 Flash programming manual (PM0051) and STM8 SWIM communication
protocol and debug module user manual (UM0470) for information on SWIM programming
procedures.
Table 14. Option bytes
Addr.
0x00
4800
0x00
4801
0x00
4802
0x00
4803
0x00
4804
0x00
4805
0x00
4806
0x00
4807
0x00
4808
0x00
4809
0x00
480A
Option bits
Factory
default
setting
Option
name
Option
byte no.
Read-out
protection
(ROP)
OPT0
ROP[7:0]
0x00
OPT1
UBC[7:0]
0x00
NOPT1
NUBC[7:0]
0xFF
User boot
code (UBC)
Alternate
function
remapping
(AFR)
Miscell.
option
7
6
5
4
3
1
0
OPT2
AFR7
AFR6
AFR5
AFR4
AFR3
AFR2
AFR1
AFR0
0x00
NOPT2
NAFR7
NAFR6
NAFR 5
NAFR 4
NAFR 3
NAFR 2
NAFR 1
NAFR 0
0xFF
OPT3
Reserved
HSI
TRIM
LSI
_EN
IWDG
_HW
WWDG
_HW
WWDG
_HALT
0x00
NOPT3
Reserved
NHSI
TRIM
NLSI
_EN
NIWDG
_HW
NWWDG
_HW
NWWG
_HALT
0xFF
OPT4
Reserved
EXT
CLK
CKAWU
SEL
PRS
C1
PRS
C0
0x00
NOPT4
Reserved
NEXT
CLK
NCKAWU
SEL
NPRS
C1
NPRS
C0
0xFF
Clock option
HSE clock
startup
2
OPT5
HSECNT[7:0]
0x00
NOPT5
NHSECNT[7:0]
0xFF
DocID025118 Rev 5
47/106
103
Option bytes
8.1
STM8AF6213/23/23A/26
Option byte description
Table 15. Option byte description
Option byte no.
Description
OPT0
ROP[7:0]: Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol) 
Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers
reference manual (RM0016) section on Flash/EEPROM memory
readout protection for details.
OPT1
UBC[7:0]: User boot code area
0x00: No UBC, no write-protection
0x01: Page 0 defined as UBC, memory write-protected
0x02: Page 0 to 1 defined as UBC, memory write-protected
Pages 0 and 1 contain the interrupt vectors.
...
0x7F: Pages 0 to 126 defined as UBC, memory write-protected
Other values: Page 0 to 127 defined as UBC, memory write-protected.
Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers
reference manual (RM0016) section on Flash/EEPROM write protection
for more details.
OPT2
AFR[7:0]
Refer to the following sections for the alternate function remapping
descriptions of bits [7:2] and [1:0] respectively.
HSITRIM: high-speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN: low-speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
OPT3
IWDG_HW: Independent watchdog
0: IWDG independent watchdog activated by software
1: IWDG independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on Halt
0: No reset generated on Halt if WWDG active
1: Reset generated on Halt if WWDG active
48/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Option bytes
Table 15. Option byte description (continued)
Option byte no.
Description
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
OPT4
CKAWUSEL: Auto-wakeup unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0]: AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
8.2
HSECNT[7:0]: HSE crystal oscillator stabilization time
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
STM8AF6213/23/23A/26 alternate function remapping bits
Table 16. STM8AF6226 alternate function remapping bits [7:2] for 32-pin packages
Description(1)
Option byte number
OPT2
AFR7: Alternate function remapping option 7
0: AFR7 remapping option inactive: default alternate function (2)
1: Port C3 alternate function = = TIM1_CH1N; 
port C4 alternate function = TIM1_CH2N
AFR6: Alternate function remapping option 6
0: AFR6 remapping option inactive: default alternate function (2)
1: Port D7 alternate function = TIM1_CH4.
AFR5: Alternate function remapping option 5
0: AFR5 remapping option inactive: default alternate function (2).
1: Port D0 alternate function = CLK_CCO.
AFR4: Alternate function remapping option 4
0: AFR4 remapping option inactive: default alternate function (2).
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =
TIM1_BKIN.
AFR3: Alternate function remapping option 3
0: AFR3 remapping option inactive: default alternate function (2)
1: Port C3 alternate function = TLI
AFR2: Alternate function remapping option 2
0: AFR2 remapping option inactive: default alternate function (2)
1: Port C4 alternate function = AIN2; port D2 alternate function = AIN3;
port D4 alternate function = LINUART_CK
1. Do not use more than one remapping option in the same port.
2. Refer to the pin description.
DocID025118 Rev 5
49/106
103
Option bytes
STM8AF6213/23/23A/26
Table 17. STM8AF6213 and STM8AF6223 alternate function remapping bits [7:2]
for 20-pin packages
Description(1)
Option byte number
OPT2
AFR7: Alternate function remapping option 7
0: AFR7 remapping option inactive: default alternate function (2)
1: Port C3 alternate function = = TIM1_CH1N; 
port C4 alternate function = TIM1_CH2N
AFR6: Alternate function remapping option 6
Reserved
AFR5: Alternate function remapping option 5
Reserved
AFR4: Alternate function remapping option 4
0: AFR4 remapping option inactive: default alternate function (2).
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =
TIM1_BKIN.
AFR3: Alternate function remapping option 3
0: AFR3 remapping option inactive: default alternate function (2)
1: Port C3 alternate function = TLI
AFR2: Alternate function remapping option 2
0: AFR2 remapping option inactive: default alternate function (2)
1: Port D4 alternate function = LINUART_CK
1. Do not use more than one remapping option in the same port.
2. Refer to the pin description.
Table 18. STM8AF6223A alternate function remapping bits [7:2] for 20-pin packages
Description(1)
Option byte number
OPT2
AFR7: Alternate function remapping option 7
0: AFR7 remapping option inactive: default alternate function (2)
1: Port C4 alternate function = TIM1_CH2N
AFR6: Alternate function remapping option 6
Reserved
AFR5: Alternate function remapping option 5
Reserved
AFR4: Alternate function remapping option 4
0: AFR4 remapping option inactive: default alternate function (2).
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =
TIM1_BKIN.
AFR3: Alternate function remapping option 3
Reserved.
AFR2: Alternate function remapping option 2
0: AFR2 remapping option inactive: default alternate function (2)
1: Port D4 alternate function = LINUART_CK
1. Do not use more than one remapping option in the same port.
2. Refer to the pin description.
50/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Option bytes
Table 19. STM8AF6226 alternate function remapping bits [1:0] for 32-pin packages
AFR1 option bit value
AFR0 option bit value
0
0
0
1
1
1
0
(2)
1(2)
I/O port
Alternate function
mapping
AFR1 and AFR0 remapping options inactive:
Default alternate functions(1)
PC5
TIM5_CH1
PC6
TIM1_CH1
PC7
TIM1_CH2
PA3
SPI_NSS
PD2
TIM5_CH3
PD2
TIM5_CH3
PC5
TIM5_CH1
PC6
TIM1_CH1
PC7
TIM1_CH2
PC2
TIM1_CH3N
PC1
TIM1_CH2N
PE5
TIM1_CH1N
PA3
LINUART_TX
PF4
LINUART_RX
1. Refer to the pin descriptions.
2. If both AFR1 and AFR0 option bits are set, the SPI hardware NSS management feature is no more
available. If this remapping option is selected and the SPI is enabled, the SSM bit must be configured in the
SPI_CR2 register to select software NSS management.
Table 20. STM8AF6213/STM8AF6223 alternate function remapping bits [1:0]
for 20-pin packages
AFR1 option bit value
AFR0 option bit value
0
0
0
1
1
0
DocID025118 Rev 5
I/O port
Alternate function
mapping
AFR1 and AFR0 remapping options inactive:
Default alternate functions(1)
PC5
TIM5_CH1
PC6
TIM1_CH1
PC7
TIM1_CH2
PA3
SPI_NSS
PD2
TIM5_CH3
51/106
103
Option bytes
STM8AF6213/23/23A/26
Table 20. STM8AF6213/STM8AF6223 alternate function remapping bits [1:0]
for 20-pin packages (continued)
AFR1 option bit value
AFR0 option bit value
1
1
I/O port
Alternate function
mapping
PD2
TIM5_CH3
PC5
TIM5_CH1
PC6
TIM1_CH1
PC7
TIM1_CH2
PC2
Not available
PC1
Not available
PE5
Not available
PA3
SPI_NSS
PF4
Not available
1. Refer to the pin descriptions.
Table 21. STM8AF6223A alternate function remapping bits [1:0] for 20-pin packages
AFR1 option bit value
AFR0 option bit value
0
0
0
1
1
1(2)
0
(2)
1
I/O port
Alternate function
mapping
AFR1 and AFR0 remapping options inactive:
Default alternate functions(1)
PC5
TIM5_CH1
PC6
TIM1_CH1
PC7
TIM1_CH2
PA3
Not available
PD2
TIM5_CH3
PD2
TIM5_CH3
PC5
TIM5_CH1
PC6
TIM1_CH1
PC7
TIM1_CH2
PC2
Not available
PC1
Not available
PE5
Not available
PA3
Not available
PF4
Not available
1. Refer to the pin descriptions.
2. If both AFR1 and AFR0 option bits are set, the SPI hardware NSS management feature is no more
available. If this remapping option is selected and the SPI is enabled, the SSM bit must be configured in the
SPI_CR2 register to select software NSS management.
52/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
9
Electrical characteristics
9.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = -40 °C, TA = 25 °C, and 
TA = TAmax (given by the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production.
9.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5.0 V. They are
given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range.
9.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
Figure 7. Pin loading conditions
670$3,1
S)
06Y9
DocID025118 Rev 5
53/106
103
Electrical characteristics
9.1.5
STM8AF6213/23/23A/26
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
Figure 8. Pin input voltage
670$3,1
9,1
06Y9
9.2
Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 22. Voltage characteristics
Symbol
Min
Max
Unit
-0.3
6.5
V
VSS - 0.3
6.5
VSS - 0.3
VDD + 0.3
|VDDx - VDD| Variations between different power pins
-
50
|VSSx - VSS|
Variations between all the different ground pins
-
50
VESD
Electrostatic discharge voltage
VDDx - VSS
VIN
Ratings
Supply voltage (including VDDA and VDDIO)(1)
Input voltage on true open drain pins
(2)
Input voltage on any other pin(2)
V
mV
see Absolute maximum ratings
(electrical sensitivity) on
page 90
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
54/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
Table 23. Current characteristics
Symbol
Max.(1)
Ratings
IVDD
Total current into VDD power lines (source)(2)
100
IVSS
Total current out of VSS ground lines (sink)(2)
80
Output current sunk by any I/O and control pin
20
Output current source by any I/Os and control pin
-20
Injected current on RST pin
±4
IIO
IINJ(PIN)(3) (4)
Injected current on OSCIN pin
mA
±4
(5)
Injected current on any other pin
∑IINJ(TOT)(3)
Unit
Total injected current (sum of all I/O and control
±4
pins)(5)
±20
1. Data based on characterization results, not tested in production.
2. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external supply.
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected.
4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
∑IINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy
5. When several inputs are submitted to a current injection, the maximum ∑IINJ(PIN) is the absolute sum of
the positive and negative injected currents (instantaneous values). These results are based on
characterization with ∑IINJ(PIN) maximum current injection on four I/O port pins of the device.
Table 24. Thermal characteristics
Symbol
Ratings
TSTG
Storage temperature range
TJ
Maximum junction temperature
Value
-65 to 150
150
Unit
°C
Table 25. Operating lifetime (OLF)
Symbol
OLF
Ratings
Conforming to AEC-Q100
DocID025118 Rev 5
Value
Unit
-40 to 150
°C
55/106
103
Electrical characteristics
9.3
STM8AF6213/23/23A/26
Operating conditions
Table 26. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fCPU
Internal CPU clock frequency
-
0
16
MHz
VDD
Standard operating voltage
-
3.0
5.5
V
CEXT: capacitance of external
capacitor
-
470
3300
nF
-
0.3
Ω
-
15
nH
TSSOP20
-
45
LQFP32
-
83
-40
85
-40
125
-40
150
Suffix A
-40
90
Suffix C
-40
130
Suffix D
-40
155
VCAP(1)
ESR of external capacitor
at 1 MHz(2)
ESL of external capacitor
PD (3)
Power dissipation at 
TA = 85 °C for suffix A version,
TA = 125 °C for suffix C version,
TA = 150 °C for suffix D version
Ambient temperature for suffix A
version
TA
Ambient temperature for suffix C
version
Maximum power
dissipation
Ambient temperature for suffix D
version
TJ
Junction temperature range
mW
°C
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
3. See Section 10.3: Thermal characteristics.
56/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
Figure 9. fCPUmax versus VDD
I&380+]
)XQFWLRQDOLW\
QRW
JXDUDQWHHGLQ
ϭϲ
WKLVDUHD
ϭϮ
)XQFWLRQDOLW\JXDUDQWHHG
#7$WRƒ&
ϴ
ϰ
Ϭ
6XSSO\YROWDJH9
06Y9
Table 27. Operating conditions at power-up/power-down
Symbol
tVDD
tTEMP
Parameter
Conditions
Min
Typ
Max
VDD rise time rate
-
2(1)
-

VDD fall time rate(2)
-
2(1)
-

Reset release delay
VDD rising
-
-
1.7
-
2.6(1)
2.7
2.85
VIT+
Power-on reset
threshold(3)
VIT-
Brown-out reset
threshold
-
2.5
2.65
2.8(1)
VHYS(BOR)
Brown-out reset
hysteresis
-
-
70(1)
-
Unit
µs/V
ms
V
mV
1. Guaranteed by design, not tested in production
2. Reset is always generated after a tTEMP delay. The application must ensure that VDD is still above the
minimum operating voltage (VDD min) when the tTEMP delay has elapsed.
3. There is inrush current into VDD present after device power on to charge CEXT capacitor. This inrush energy
depends from CEXT capacitor value. For example, a CEXT of 1μF requires Q=1 μF x 1.8V = 1.8 μC.
DocID025118 Rev 5
57/106
103
Electrical characteristics
9.3.1
STM8AF6213/23/23A/26
VCAP external capacitor
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the
VCAP pin. CEXT is specified in Table 26. Care should be taken to limit the series inductance
to less than 15 nH.
Figure 10. External capacitor CEXT
&
(6/
(65
5/HDN
06Y9
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
9.3.2
Supply current characteristics
The current consumption is measured as described in Section 4.3: Interrupt controller.
Total current consumption in run mode
The MCU is placed under the following conditions:

All I/O pins in input mode with a static value at VDD or VSS (no load)

All peripherals are disabled (clock stopped by peripheral clock gating registers) except
if explicitly mentioned.
Subject to general operating conditions for VDD and TA.
Unless otherwise specified, data are based on characterization results, and not tested in
production.
Table 28. Total current consumption with code execution in run mode at VDD = 5 V
Symbol
Parameter
Conditions
Typ
Max
2.3
-
2
2.35
HSI RC osc. (16 MHz)
1.7
2(1)
HSE user ext. clock (16 MHz)
0.86
-
HSI RC osc. (16 MHz)
0.7
0.87
HSI RC osc. (16 MHz/8)
0.46
0.58
LSI RC osc. (128 kHz)
0.41
0.55
HSE crystal osc. (16 MHz)
fCPU = fMASTER = 16 MHz
Supply current
in run mode,
IDD(RUN)
code executed fCPU = fMASTER/128= 125 kHz
from RAM
fCPU = fMASTER/128=
15.625 kHz
fCPU = fMASTER = 28 kHz
58/106
HSE user ext. clock (16 MHz)
DocID025118 Rev 5
Unit
mA
STM8AF6213/23/23A/26
Electrical characteristics
Table 28. Total current consumption with code execution in run mode at VDD = 5 V (continued)
Symbol
Parameter
Conditions
Supply current
in run mode,
=f
= 16 MHz
f
code executed CPU MASTER
from Flash
IDD(RUN)
fCPU = fMASTER = 2 MHz
Typ
Max
HSE crystal osc. (16 MHz)
4.5
-
HSE user ext. clock (16 MHz)
4.3
4.75
HSI RC osc. (16 MHz)
3.7
4.5(1)
HSI RC osc. (16 MHz/8)(2)
0.84
2(1)
0.72
0.9
0.46
0.58
0.42
0.57
Supply current f
CPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz)
in run mode,
code executed fCPU = fMASTER/128 =
HSI RC osc. (16 MHz/8)
15.625 kHz
from Flash
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
Unit
mA
1. Tested in production.
2. Default clock configuration measured with all peripherals off.
Table 29. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol
Parameter
Typ
Max(1)
1.8
-
2
2.3
HSI RC osc. (16 MHz)
1.5
2
HSE user ext. clock (16 MHz)
0.81
-
HSI RC osc. (16 MHz)
0.7
0.87
HSI RC osc. (16 MHz/8)
0.46
0.58
LSI RC osc. (128 kHz)
0.41
0.55
4
-
3.9
4.7
3.7
4.5
0.84
1.05
0.72
0.9
0.46
0.58
0.42
0.57
Conditions
HSE crystal osc. (16 MHz)
fCPU = fMASTER =16 MHz
Supply current
in run mode,
code executed fCPU = fMASTER/128 = 125 kHz
from RAM
fCPU = fMASTER/ 128 =
15.625 kHz
IDD(RUN)
fCPU = fMASTER =128 kHz
HSE user ext. clock (16 MHz)
HSE crystal osc. (16 MHz)
fCPU = fMASTER = 16 MHz
HSE user ext. clock (16 MHz)
HSI RC osc. (16 MHz)
Supply current
in run mode,
HSI RC osc. (16 MHz/8)(2)
fCPU = fMASTER =2 MHz
code executed
fCPU = fMASTER/ 128 = 125 kHz HSI RC osc. (16 MHz)
from Flash
fCPU = fMASTER/128 =
HSI RC osc. (16 MHz/8)
15.625 kHz
fCPU = fMASTER =128 kHz
LSI RC osc. (128 kHz)
Unit
mA
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID025118 Rev 5
59/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Total current consumption in wait mode
Unless otherwise specified, data based are on characterization results, and not tested in
production.
Table 30. Total current consumption in wait mode at VDD = 5 V
Symbol
Parameter
Conditions
Typ
Max
HSE crystal osc. (16 MHz)
1.6
-
HSE user ext. clock (16 MHz)
1.1
1.3
HSI RC osc. (16 MHz)
0.89
1.5(1)
HSI RC osc. (16 MHz)
0.7
0.88
fCPU = fMASTER/128 =
15.625 kHz
HSI RC osc. (16 MHz/8)(2)
0.45
0.57
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.4
0.54
fCPU = fMASTER = 16 MHz
Supply current
IDD(WFI)
fCPU = fMASTER/128 = 125 kHz
in wait mode
Unit
mA
1. Tested in production.
2. Default clock configuration measured with all peripherals off.
Table 31. Total current consumption in wait mode at VDD = 3.3 V
Symbol
Typ
Max(1)
HSE crystal osc. (16 MHz)
1.1
-
HSE user ext. clock (16 MHz)
1.1
1.3
HSI RC osc. (16 MHz)
0.89
1.1
HSI RC osc. (16 MHz)
0.7
0.88
fCPU = fMASTER/128 =
15.625 kHz
HSI RC osc. (16 MHz/8)(2)
0.45
0.57
fCPU = fMASTER = 128 kHz
LSI RC osc. (128 kHz)
0.4
0.54
Parameter
Conditions
fCPU = fMASTER = 16 MHz
Supply current
IDD(WFI)
fCPU = fMASTER/128 = 125 kHz
in wait mode
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
60/106
DocID025118 Rev 5
Unit
mA
STM8AF6213/23/23A/26
Electrical characteristics
Total current consumption in active halt mode
Table 32. Total current consumption in active halt mode at VDD = 5 V
Conditions
Symbol
Parameter
Main
voltage
regulator
(MVR)(1)
Typ
Max
at
85°C
HSE crystal
osc. (16 MHz)
1030
-
-
-
LSI RC osc.
(128 kHz)
200
260
300
-
970
-
-
-
150
200
230
-
LSI RC osc.
(128 kHz)
66
85
140
200
Power-down LSI RC osc.
mode
(128 kHz)
10
20
40
-
Flash
mode(2)
Clock source
Operating
mode
On
IDD(AH)
Supply current in
active halt mode
HSE crystal
Power-down osc. (16 MHz)
mode
LSI RC osc.
(128 kHz)
Off
Operating
mode
Max
Max at
at
150°C
125°C
Unit
µA
1. Configured by the REGAH bit in the CLK_ICKR register.
2. Configured by the AHALT bit in the FLASH_CR1 register.
Table 33. Total current consumption in active halt mode at VDD = 3.3 V
Conditions
Symbol
Parameter
Main
voltage
regulato
r
(MVR)(2)
Typ
Max at
85°C(1)
Max at
125°C
HSE crystal
osc. (16 MHz)
550
-
-
LSI RC osc.
(128 kHz)
200
260
290
970
-
-
150
200
230
LSI RC osc.
(128 kHz)
66
80
105
PowerLSI RC osc.
down mode (128 kHz)
10
18
35
Flash
mode(3)
Operating
mode
On
IDD(AH)
Supply current in
active halt mode
Off
Clock source
HSE crystal
osc. (16 MHz)
Powerdown mode LSI RC osc.
(128 kHz)
Operating
mode
Unit
µA
1. Data based on characterization results, not tested in production
2. Configured by the REGAH bit in the CLK_ICKR register.
DocID025118 Rev 5
61/106
103
Electrical characteristics
STM8AF6213/23/23A/26
3. Configured by the AHALT bit in the FLASH_CR1 register.
Total current consumption in halt mode
Table 34. Total current consumption in halt mode at VDD = 5 V
Symbol
IDD(H)
Typ
Max at
85°C
Max at
125°C
Max at
150°C
Flash in operating mode,
HSI clock after wakeup
63
75
105
-
Flash in power-down mode,
HSI clock after wakeup
6.0
20(1)
55(1)
80(1)
Parameter
Conditions
Supply current in halt
mode
Unit
µA
1. Tested in production.
Table 35. Total current consumption in halt mode at VDD = 3.3 V
Symbol
IDD(H)
Typ
Max at
85°C(1)
Max at
125°C(1)
Flash in operating mode,
HSI clock after wakeup
60
75
100
Flash in power-down mode,
HSI clock after wakeup
4.5
Parameter
Conditions
Supply current in halt
mode
Unit
µA
17
30
1. Data based on characterization results, not tested in production.
Low-power mode wakeup times
Table 36. Wakeup times
Symbol
Parameter
Wakeup time
tWU(WFI) from wait mode
to run mode(2)
tWU(AH)
Wakeup time
active halt mode
to run mode(2)
Conditions
0 to 16 MHz
fCPU= fMASTER= 16 MHz
MVR voltage
regulator on(4)
MVR voltage
regulator off
Flash in
operating
mode(5)
HSI (after
wakeup)
(5)
tWU(H)
Wakeup time
Flash in operating mode
from halt mode to
Flash in power-down mode(5)
run mode(2)
1. Data guaranteed by design, not tested in production.
2. Measured from interrupt event to interrupt vector fetch.
3. tWU(WFI) = 2 x 1/fMASTER+ 67 x 1/fCPU.
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
62/106
DocID025118 Rev 5
Typ
Max(1)
-
See (3)
0.56
-
1(6)
2(6)
3(6)
-
(6)
-
50(6)
-
52
-
54
-
48
Unit
µs
STM8AF6213/23/23A/26
Electrical characteristics
Total current consumption and timing in forced reset state
Table 37. Total current consumption and timing in forced reset state
Symbol
Parameter
IDD(R)
Supply current in reset state(2)
tRESETBL
Conditions
Typ
Max(1)
VDD= 5 V
400
-
VDD= 3.3 V
300
-
-
-
150
µs
Typ
Unit
Reset pin release to vector
fetch
Unit
µA
1. Data guaranteed by design, not tested in production.
2.
Characterized with all I/Os tied to VSS.
Current consumption for on-chip peripherals
Subject to general operating conditions for VDD and TA.
HSI internal RC/fCPU = fMASTER = 16 MHz, VDD = 5 V
Table 38. Peripheral current consumption
Symbol
Parameter
IDD(TIM1)
TIM1 supply current(1)
210
IDD(TIM5)
TIM5 supply current(1)
130
IDD(TIM6)
TIM6 supply current(1)
50
IDD(UART1) LINUART supply current(2)
120
IDD(SPI)
SPI supply current(2)
45
IDD(I2C)
I2C supply current(2)
65
IDD(ADC1)
ADC1 supply current(3)
µA
1000
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not
tested in production.
3.
Data based on a differential IDD measurement between reset configuration and continuous A/D
conversions. Not tested in production.
DocID025118 Rev 5
63/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Current consumption curves
The following figures show typical current consumption measured with code executing in
RAM.
Figure 11. Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz
Figure 12. Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V
64/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
Figure 13. Typ IDD(RUN) vs. VDD HSEI RC osc., fCPU = 16 MHz
Figure 14. Typ IDD(WFI) vs. VDD HSE user external clock, fCPU = 16 MHz
DocID025118 Rev 5
65/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Figure 15. Typ IDD(WFI) vs. fCPU HSE user external clock, VDD = 5 V
Figure 16. Typ IDD(WFI) vs. VDD HSI RC osc., fCPU = 16 MHz
66/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
9.3.3
Electrical characteristics
External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Table 39. HSE user external clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fHSE_ext
User external clock source
frequency
-
0
-
16
MHz
VHSEH(1)
OSCIN input pin high level
voltage
-
0.7 x VDD
-
VDD + 0.3 V
OSCIN input pin low level
voltage
-
VSS
-
0.3 x VDD
VSS < VIN < VDD
-1
-
+1
VHSEL
(1)
ILEAK_HSE
OSCIN input leakage
current
V
µA
1. Data based on characterization results, not tested in production.
Figure 17. HSE external clock source
9
+6(+
9 +6(/
([WHUQDOFORFN
VRXUFH
I+6(
26&,1
670
069
DocID025118 Rev 5
67/106
103
Electrical characteristics
STM8AF6213/23/23A/26
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 40. HSE oscillator characteristics
Symbol
Conditions
Min
Typ
Max
Unit
External high-speed oscillator
frequency
-
1
-
16
MHz
RF
Feedback resistor
-
-
220
-
k
C(1)
Recommended load
capacitance(2)
-
-
-
20
pF
C = 20 pF,
fOSC = 16 MHz
-
-
6 (startup)
1.6 (stabilized)(3)
fHSE
IDD(HSE)
gm
Parameter
HSE oscillator power
consumption
Oscillator transconductance
tSU(HSE)(4) Startup time
mA
C = 10 pF,
fOSC = 16 MHz
-
-
6 (startup)
1.2 (stabilized)(3)
-
5
-
-
mA/V
VDD is
stabilized
-
1
-
ms
1. C is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to the crystal manufacturer for more details.
3. Data based on characterization results, not tested in production.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) until a stabilized 16 MHz oscillation is
reached. The value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 18. HSE oscillator circuit diagram
5P
/P
I+6(WRFRUH
&2
&P
5)
&/
26&,1
JP
5HVRQDWRU
&XUUHQWFRQWURO
5HVRQDWRU
&/
26&287
670
06Y9
68/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
HSE oscillator critical gm formula
The crystal characteristics have to be checked with the following formula:
g m » g mcrit
where gmcrit can be calculated with the crystal parameters as follows:
f
2
g mcrit =  2    HSE   R m  2Co + C 
2
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1 = CL2 = C: Grounded external capacitance
9.3.4
Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
Table 41. HSI oscillator characteristics
Symbol
fHSI
Parameter
Conditions
Min
Typ
Max
Unit
-
-
Trimmed by the application
for any VDD and TA
conditions
-1(1)
16
-
MHz
-
1(1)
-0.5(1)
-
0.5(1)
3.0 V  VDD  5.5 V,
-40 °C TA  150 °C
-5
-
5
3.0 V  VDD  5.5 V,
-40 °C TA  125 °C
-3(2)
-
3(2)
Frequency
HSI oscillator user
trimming accuracy
ACCHS
HSI oscillator accuracy
(factory calibrated)
%
tsu(HSI)
HSI oscillator wakeup
time
-
-
-
2(3)
µs
IDD(HSI)
HSI oscillator power
consumption
-
-
170
250(4)
µA
1. Depending on option byte setting (OPT3 and NOPT3)
2. These values are guaranteed for STM8AF62xxIxx order codes only.
3. Guaranteed by characterization, not tested in production
4. Data based on characterization results, not tested in production.
DocID025118 Rev 5
69/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Table 42. LSI oscillator characteristics
Symbol
fLSI
Parameter
Conditions
Min
Typ
(1)
Max
(1)
128
150
Unit
Frequency
-
110
kHz
tsu(LSI)
LSI oscillator wakeup time
-
-
-
7
µs
IDD(LSI)
LSI oscillator power consumption
-
-
5
-
µA
1. Tested in production.
9.3.5
Memory characteristics
RAM and hardware registers
Table 43. RAM and hardware registers
Symbol
VRM
Parameter
Data retention mode(1)
Conditions
Min
Unit
Halt mode (or reset)
VIT-max(2)
V
1. Minimum supply voltage without losing the data stored in RAM (in halt mode or under reset) or in hardware
registers (only in halt mode). Guaranteed by design, not tested in production.
2. Refer to the operating conditions for the value of VIT-max
Flash program memory/data EEPROM memory
General conditions: TA = -40 to 150 °C.
Table 44. Flash program memory/data EEPROM memory
Symbol
VDD
tprog
Parameter
Operating voltage 
(all modes, execution/write/erase)
Operating voltage 
(code execution)
Conditions
fCPU is 0 to 16 MHz
with 0 ws
Typ
Max
3.0
-
5.5
2.6
-
5.5
-
-
6.0
6.6
Fast programming time for 1 block
(64 byte)
-
-
3.0
3.3
-
-
3.0
3.3
DocID025118 Rev 5
Unit
V
Standard programming time (including
erase) for byte/word/block 
(1 byte/4 byte/64 byte)
tERASE Erase time for 1 block (64 byte)
70/106
Min
ms
STM8AF6213/23/23A/26
Electrical characteristics
Table 45. Flash program memory
Symbol
Parameter
Condition
Min
Max
Unit
TWE
Temperature for writing and erasing
-
-40
150
°C
NWE
Flash program memory endurance
(erase/write cycles)(1)
TA = 25 °C
1000
-
cycles
tRET
Data retention time
TA = 25 °C
40
-
TA = 55 °C
20
-
years
1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a
write/erase operation addresses a single byte.
Table 46. Data memory
Symbol
Parameter
Condition
Min
Max
Unit
TWE
Temperature for writing and erasing
-
-40
150
°C
NWE
Data memory endurance(1) 
(erase/write cycles)
TA = 25 °C
300 k
-
tRET
Data retention time
TA = -40°C to 125 °C
100
k(2)
-
TA = 25 °C
40(3)
-
TA = 55 °C
20(2)(3)
-
cycles
years
1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a
write/erase operation addresses a single byte.
2. More information on the relationship between data retention time and number of write/erase cycles is
available in a separate technical document.
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.
DocID025118 Rev 5
71/106
103
Electrical characteristics
9.3.6
STM8AF6213/23/23A/26
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 47. I/O static characteristics
Symbol
Parameter
VIL
Input low level voltage
VIH
Input high level voltage
Vhys
Hysteresis(1)
Rpu
Pull-up resistor
tR, tF
Rise and fall time
(10% - 90%)
Conditions
Min
Typ
Max
-0.3 V
-
0.3 x VDD
0.7 x VDD
-
VDD + 0.3 V
-
700
-
mV
VDD = 5 V, VIN = VSS
35
55
80
k
Fast I/Os
Load = 50 pF
-
-
35(2)
Standard and high sink I/Os
Load = 50 pF
-
-
125(2)
-
Ilkg ana
Ilkg(inj)
Digital input pad leakage
current
Analog input pad leakage
current
Leakage current in
adjacent I/O(2)
20
(2)
50(2)
VSS VIN VDD
-
-
±1(3)
VSS VIN VDD
-40 °C < TA < 125 °C
-
-
±250(3)
(3)
-
-
Injection current ±4 mA
-
-
±500
±1(3)
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
3. Guaranteed by design.
72/106
DocID025118 Rev 5
µA
nA
VSS VIN VDD
-40 °C < TA < 150 °C
2. Data based on characterization results, not tested in production.
V
ns
Fast I/Os
Load = 20 pF
Standard and high sink I/Os
Load = 20 pF
Ilkg
Unit
µA
STM8AF6213/23/23A/26
Electrical characteristics
Figure 19. Typical VIL and VIH vs VDD @ 4 temperatures
Figure 20. Typical pull-up resistance RPU vs VDD @ 4 temperatures
DocID025118 Rev 5
73/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Figure 21. Typical pull-up current Ipu vs VDD @ 4 temperatures
Table 48. Output driving current (standard ports)
Symbol
VOL
VOH
Parameter
Conditions
Min
Max
Output low level with 8
pins sunk
IIO= 10 mA, 
VDD = 5 V
-
2.0
Output low level with 4
pins sunk
IIO = 4 mA,
VDD = 3.3 V
-
1.0(1)
V
Output high level with 8 IIO = 10 mA,
pins sourced
VDD = 5 V
Output high level with 4
pins sourced
Unit
IIO = 4 mA, 
VDD = 3.3 V
2.8
-
2.1(1)
-
1. Data based on characterization results, not tested in production.
Table 49. Output driving current (true open drain ports)
Symbol
Parameter
Conditions
IIO= 10 mA, VDD = 5 V
VOL
Output low level with 2 pins sunk
1.5(1)
IIO = 20 mA, VDD = 5 V
2.0(1)
DocID025118 Rev 5
Unit
1.0
IIO = 10 mA, VDD = 3.3 V
1. Data based on characterization results, not tested in production.
74/106
Max
V
STM8AF6213/23/23A/26
Electrical characteristics
Table 50. Output driving current (high sink ports)
Symbol
Parameter
Conditions
Output low level with 8
IIO= 10 mA, VDD = 5 V
pins sunk
VOL
Output low level with 4 IIO = 10 mA, VDD = 3.3 V
pins sunk
IIO = 20 mA, VDD = 5 V
Output high level with
8 pins sourced
VOH
Output high level with
4 pins sourced
IIO = 10 mA, VDD = 5 V
Min
Max
-
0.8
-
1.0(1)
1.5(1)
4.0
-
IIO = 10 mA, VDD = 3.3 V
2.1(1)
-
IIO = 20 mA, VDD = 5 V
3.3(1)
-
Unit
V
1. Data based on characterization results, not tested in production.
Figure 22. Typ. VOL @ VDD = 5 V (standard ports)
Figure 23. Typ. VOL @ VDD = 3.3 V (standard ports)
DocID025118 Rev 5
75/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Figure 24. Typ. VOL @ VDD = 5 V (true open drain ports)
Figure 25. Typ. VOL @ VDD = 3.3 V (true open drain ports)
Figure 26. Typ. VOL @ VDD = 5 V (high sink ports)
76/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
Figure 27. Typ. VOL @ VDD = 3.3 V (high sink ports)
Figure 28. Typ. VDD- VOH @ VDD = 5 V (standard ports)
Figure 29. Typ. VDD- VOH @ VDD = 3.3 V (standard ports)
DocID025118 Rev 5
77/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Figure 30. Typ. VDD- VOH @ VDD = 5 V (high sink ports)
Figure 31. Typ. VDD- VOH @ VDD = 3.3 V (high sink ports)
78/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
9.3.7
Electrical characteristics
Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 51. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input low level voltage(1)
-
-0.3
-
0.3 x VDD
VIH(NRST)
NRST input high level voltage(1)
IOL= 2 mA
0.7 x VDD
-
VDD + 0.3
VOL(NRST)
NRST output low level voltage(1)
-
-
-
0.5
-
30
55
80
resistor(2)
RPU(NRST)
NRST pull-up
tIFP(NRST)
NRST input filtered pulse(3)
-
-
-
75
tINFP(NRST)
NRST Input not filtered pulse
duration(3)
-
500
-
-
NRST output pulse(3)
-
20
-
-
tOP(NRST)
Unit
V
k
ns
µs
1. Data based on characterization results, not tested in production.
2. The RPU pull-up equivalent resistor is based on a resistive transistor.
3. Data guaranteed by design, not tested in production.
Figure 32. Typical NRST VIL and VIH vs VDD @ 4 temperatures
DocID025118 Rev 5
79/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Figure 33. Typical NRST pull-up resistance vs VDD @ 4 temperatures
Figure 34. Typical NRST pull-up current vs VDD @ 4 temperatures
The reset network shown in Figure 35 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Table 51:
NRST pin characteristics), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external
circuitry, attention must be taken to the charge/discharge time of the external capacitor to
fulfill the external devices reset timing conditions. Minimum recommended capacity is
100 nF.
80/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
Figure 35. Recommended reset pin protection
670$
9''
538
([WHUQDO
UHVHWFLUFXLW
RSWLRQDO
1567
)LOWHU
,QWHUQDOUHVHW
ȝ)
06Y9
9.3.8
SPI serial peripheral interface
Unless otherwise specified, the parameters given in Table 52 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Table 52. SPI characteristics
Symbol
Conditions(1)
Min
Max
Master mode
0
8
Slave mode
0
6
SPI clock rise and fall time
Capacitive load: 
C = 30 pF
-
25
tsu(NSS)(2)
NSS setup time
Slave mode
4 * tMASTER
-
th(NSS)(2)
NSS hold time
Slave mode
70
-
SCK high and low time
Master mode
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
tw(SCKH)(2)
tw(SCKL)(2)
Parameter
SPI clock frequency
5
-
Slave mode
5
-
Master mode
7
-
Slave mode
10
-
Data output access time
Slave mode
-
3* tMASTER
Data output disable time
Slave mode
25
-
tv(SO)(2)
Data output valid time
Slave mode
(after enable edge)
-
65
tv(MO)(2)
Data output valid time
Master mode 
(after enable edge)
-
36
th(MI)(2)
th(SI)(2)
ta(SO)(2)(3)
tdis(SO)
(2)(4)
Data input setup time
Data input hold time
DocID025118 Rev 5
MHz
tSCK/2 - 15 tSCK/2 + 15
Master mode
tsu(MI)(2)
tsu(SI)(2)
Unit
ns
81/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Table 52. SPI characteristics (continued)
Symbol
Parameter
th(SO)(2)
Data output hold time
th(MO)
(2)
Conditions(1)
Min
Max
Slave mode 
(after enable edge)
27
-
Master mode 
(after enable edge)
11
Unit
ns
-
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z.
Figure 36. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
W962
WD62
0,62
287387
WK62
06%287
%,7287
06%,1
%,7,1
WU6&.
WI6&.
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.
82/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
Figure 37. SPI timing diagram - slave mode and CPHA = 1
166LQSXW
6&.LQSXW
W68166
&3+$
&32/
&3+$
&32/
WK166
WF6&.
WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
%,7287
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
WU6&.
WI6&.
06%,1
/6%,1
%,7,1
DLE
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 38. SPI timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
&3+$ &32/ 6&.2XWSXW
WF6&.
&3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
WU6&.
WI6&.
%,7,1
06%,1
/6%,1
WK0,
026,
287387
% , 7287
06%287
WY02
/6%287
WK02
DLF
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID025118 Rev 5
83/106
103
Electrical characteristics
9.3.9
STM8AF6213/23/23A/26
I2C interface characteristics
Table 53. I2C characteristics
Standard mode I2C Fast mode I2C(1)
Symbol
Parameter
Unit
Min(2)
Max(2)
Min(2)
Max(2)
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0(3)
3450
0(4)
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
START condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated START condition setup time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
STOP to START condition time 
(bus free)
4.7
-
1.3
-
0
50(5)
0
50
ns
-
400
-
400
pF
tw(STO:STA)
tSP
Pulse width of spikes suppressed by
the input filter
Cb
Capacitive load for each bus line
1. fMASTER, must be at least 8 MHz to achieve max fast
I2C
speed (400 kHz)
2. Data based on standard I2C protocol requirement, not tested in production
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
5. The minimum width of the spikes filtered by the analog filter is above tSP(max)
84/106
DocID025118 Rev 5
µs
ns
µs
STM8AF6213/23/23A/26
Electrical characteristics
Figure 39. Typical application with I2C bus and timing diagram
9''
9''
NŸ
NŸ
670
Ÿ
6'$
,ð&EXV
6&/
Ÿ
6 7$575(3($7('
6 7$57
6 7$57
WVX67$
6'$
WI6'$
WU6'$
WK67$
6&/
WZ6&/+
WVX6'$
WZ6&//
WU6&/
WK6'$
WI6&/
6 723
WVX67$672
WVX672
DL9
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD.
DocID025118 Rev 5
85/106
103
Electrical characteristics
9.3.10
STM8AF6213/23/23A/26
10-bit ADC characteristics
Subject to general operating conditions for VDD, fMASTER, and TA unless otherwise
specified.
Table 54. ADC characteristics
Symbol
Parameter
fADC
ADC clock frequency
VAIN
Conversion voltage
range(1)
VBGREF
Internal bandgap
reference voltage
CADC
Internal sample and hold
capacitor
tS(1)
Minimum sampling time
tSTAB
Wakeup time from standby
tCONV
Minimum total conversion
time including sampling
time, 10-bit resolution
Conditions
Min
Typ
Max
Unit
VDD = 3 to 5.5 V
1
-
4
VDD = 4.5 to 5.5 V
1
-
6
-
VSS
-
VDD
V
VDD = 3 to 5.5 V
1.19(2)
1.22
1.25(2)
V
-
-
3
-
pF
fADC = 4MHz
-
0.75
-
fADC = 6 MHz
-
0.5
-
-
-
7
-
MHz
fADC = 4 Hz
3.5
fADC = 6 MHz
2.33
-
14
µs
µs
1/fADC
1. During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on
the conversion result. Values for the sample clock tS depend on programming.
2. Tested in production.
86/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Electrical characteristics
Table 55. ADC accuracy with RAIN < 10 kΩ, VDD = 5 V
Symbol
|ET|
|EO|
|EG|
|ED|
|EL|
Parameter
Total unadjusted
Offset
Gain
error(2)
error(2)
error(2)
Differential linearity
Integral linearity
error(2)
error(2)
Conditions
Typ
Max(1)
fADC = 2 MHz
1.6
3.5
fADC = 4 MHz
2.2
4
fADC = 6 MHz
2.4
4.5
fADC = 2 MHz
1.1
2.5
fADC = 4 MHz
1.5
3
fADC = 6 MHz
1.8
3
fADC = 2 MHz
1.5
3
fADC = 4 MHz
2.1
3
fADC = 6 MHz
2.2
4
fADC = 2 MHz
0.7
1.5
fADC = 4 MHz
0.7
1.5
fADC = 6 MHz
0.7
1.5
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.8
2
fADC = 6 MHz
0.8
2
Unit
LSB
1. Max value is based on characterization, not tested in production.
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy.
Table 56. ADC accuracy with RAIN < 10 kΩ, VDD = 3.3 V
Symbol
Parameter
|ET|
Total unadjusted error
|EO|
Offset error
|EG|
Gain error
|ED|
Differential linearity error
|EL|
Integral linearity error
Conditions
Typ
Max(1)
fADC = 2 MHz
1.6
3.5
fADC = 4 MHz
1.9
4
fADC = 2 MHz
1
2.5
fADC = 4 MHz
1.5
2.5
fADC = 2 MHz
1.3
3
fADC = 4 MHz
2
3
fADC = 2 MHz
0.7
1
fADC = 4 MHz
0.7
1.5
fADC = 2 MHz
0.6
1.5
fADC = 4 MHz
0.8
2
Unit
LSB
1. Max value is based on characterization, not tested in production.
DocID025118 Rev 5
87/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Figure 40. ADC accuracy characteristics
EG
1023
1022
1021
1LSB
IDEAL
V
–V
DDA
SSA
= ----------------------------------------1024
(2)
ET
7
(3)
(1)
6
5
4
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
1021102210231024
VDDA
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: Deviation between the first actual transition and the first ideal one.
EG = Gain error: Deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: Maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: Maximum deviation between any actual transition and the end point correlation
line.
Figure 41. Typical application with ADC
9''
9$,1
5$,1
&$,1
/Edž
^dDϴ
97
9
97
9
ELW$'
FRQYHUVLRQ
,/“—$
&$'&
06Y9
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.
88/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
9.3.11
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

FESD: Functional electrostatic discharge (positive and negative) is applied on all pins
of the device until a functional disturbance occurs. This test conforms with the IEC
61000-4-2 standard.

FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see the application note reference AN1015).
Table 57. EMS data
Symbol
Parameter
Conditions
Level/class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD 3.3 V, TA25 °C, 
fMASTER 16 MHz (HSI clock),
Conforms to IEC 61000-4-2
2/B(1)
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD3.3 V, TA25 °C, 
fMASTER 16 MHz (HSI clock),
Conforms to IEC 61000-4-4
4/A
1. Data obtained with HSI clock configuration, after applying hardware recommendations described in
AN2860 (EMC guidelines for STM8S microcontrollers).
DocID025118 Rev 5
89/106
103
Electrical characteristics
STM8AF6213/23/23A/26
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC 61967-2 which specifies the board and the loading of each pin.
Table 58. EMI data
Conditions
Symbol
Parameter
General conditions
SEMI
Peak level
EMI level
VDD 5 V, 
TA 25 °C, 
LQFP32 package
conforming to 
IEC 61967-2
Monitored
frequency band
Max fHSE/fCPU(1)
Unit
16 MHz/ 16 MHz/
8 MHz 16 MHz
0.1 MHz to 30 MHz
5
5
30 MHz to 130 MHz
4
5
130 MHz to 1 GHz
5
5
—
2.5
2.5
dBµV
level
1. Data based on characterization results, not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, DLU and LU) using specific measurement methods,
the product is stressed to determine its performance in terms of electrical sensitivity. For
more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (one positive then one negative pulses separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model
can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A
standard. For more details, refer to the application note AN1181.
Table 59. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
VESD(HBM)
Electrostatic discharge voltage
(Human body model)
TA 25°C, conforming to
JESD22-A114
3A
4000
VESD(CDM)
Electrostatic discharge voltage
(Charge device model)
TA 25°C, conforming to
JESD22-C101
3
500
VESD(MM)
Electrostatic discharge voltage
(Machine model)
TA 25°C, conforming to
JESD22-A115
B
200
1. Data based on characterization results, not tested in production
90/106
Maximum
Unit
value(1)
DocID025118 Rev 5
V
STM8AF6213/23/23A/26
Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:

A supply overvoltage (applied to each power supply pin),

A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 60. Electrical sensitivities
Symbol
Parameter
Conditions
Class(1)
TA 25 °C
LU
TA 85 °C
Static latch-up class
TA 125 °C
A
TA 150 °C
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
DocID025118 Rev 5
91/106
103
Package information
10
STM8AF6213/23/23A/26
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
10.1
LQFP32 package information
Figure 42. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
CCC
'!5'%0,!.%
#
+
$
!
,
$
,
$
0).
)$%.4)&)#!4)/.
%
E
1. Drawing is not to scale.
92/106
%
%
B
DocID025118 Rev 5
[email protected]&@7
STM8AF6213/23/23A/26
Package information
Table 61. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID025118 Rev 5
93/106
103
Package information
STM8AF6213/23/23A/26
Figure 43. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
6?&0?6
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 44. LQFP32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
999999
999999
'DWHFRGH
6WDQGDUG67ORJR
:
88
5HYLVLRQFRGH
3LQLGHQWLILHU
069
94/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
10.2
Package information
TSSOP20 package information
Figure 45.TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package outline
$
C
% %
3%!4).'
0,!.%
#
MM
'!'%0,!.%
0).
)$%.4)&)#!4)/.
K
AAA #
!
!
!
B
,
,
E
9!?-%?6
1. Drawing is not to scale.
Table 62. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
(2)
6.400
6.500
6.600
0.2520
0.2559
0.2598
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1(3)
4.300
4.400
4.500
0.1693
0.1732
0.1772
e
-
0.650
-
-
0.0256
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
D
DocID025118 Rev 5
95/106
103
Package information
STM8AF6213/23/23A/26
Table 62. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15mm per side.
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not
exceed 0.25mm per side.
Figure 46. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package footprint
1. Dimensions are expressed in millimeters.
96/106
DocID025118 Rev 5
9!?&0?6
STM8AF6213/23/23A/26
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 47. TSSOP20 marking example (package top view)
6WDQGDUG67ORJR
3URGXFW
LGHQWLILFDWLRQ
999999999
'DWHFRGH
3LQLGHQWLILHU
:
5HYLVLRQFRGH
88
069
DocID025118 Rev 5
97/106
103
Package information
10.3
STM8AF6213/23/23A/26
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 26: General operating conditions.
TJmax, in degrees Celsius, may be calculated using the following equation:
TJmax = TAmax + (PDmax x JA)
Where:
–
TAmax is the maximum ambient temperature in C
–
JA is the package junction-to-ambient thermal resistance in C/W
–
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
–
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum
chip internal power.
–
PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = (VOL*IOL) + ((VDD-VOH)*IOH), 
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level
in the application.
Table 63. Thermal characteristics(1)
Symbol
JA
Parameter
Value
Unit
Thermal resistance junction-ambient
TSSOP20 - 4 x 4 mm
110
°C/W
Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm
60
°C/W
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
10.3.1
Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
10.3.2
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Section 11: Ordering information).
The following example shows how to calculate the temperature range needed for a given
application.
98/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
Package information
Assuming the following application conditions:
Maximum ambient temperature TAmax= 75 °C (measured according to JESD51-2),
IDDmax = 8 mA, VDD = 5 V
Maximum 20 I/Os used at the same time in output at low level with: 
IOL = 8 mA, VOL= 0.4 V
PINTmax = 8 mA x 5 V= 400 mW
PIOmax = 20 x 8 mA x 0.4 V = 64 mW
This gives: PINTmax = 400 mW and PIOmax 64 mW:
PDmax = 400 mW + 64 mW
Thus: PDmax = 464 mW.
Using the values obtained in Table 63: Thermal characteristics on page 98 TJmax is
calculated as follows:
For LQFP32 60 °C/W
TJmax = 75 °C + (60 °C/W x464 mW) = 75 °C + 27.8 °C = 102.8 °C
This is within the range of the suffix C version parts (-40 < TJ < 125 °C).
Parts must be ordered at least with the temperature range suffix C.
DocID025118 Rev 5
99/106
103
Ordering information
11
STM8AF6213/23/23A/26
Ordering information
Figure 48. STM8AF6213/23/23A/26 ordering information scheme(1) (2)
Example:
STM8A
F
62
2
3
I
P
C
A
U
Product class
8-bit automotive microcontroller
Program memory type
F = Flash + EEPROM
Device family
62 = LIN only
Program memory size
1 = 4 Kbyte
2 = 8 Kbyte
Pin count
3 = 20 pins
6 = 32 pins
HSI accuracy
Blank = ± 5%
I = ± 3%
Package type
T = LQFP
P = TSSOP
Temperature range
A = -40 to 85 °C
C = -40 to 125 °C
D = -40 to 150 °C
Number of ADC analog inputs
Blank = 5 analog inputs
A = 7 analog inputs
Packing
Y = Tray
U = Tube
X = Tape and reel compliant with EIA 481-C
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the nearest ST Sales Office.
2. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
100/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
12
STM8 development tools
STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
12.1
Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition, the
STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full-featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including coverage to help detect and eliminate
bottlenecks in application execution and dead code when fine tuning an application.
In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers
via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of
an application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to
order exactly what you need to meet your development requirements and to adapt your
emulation system to support existing and future ST microcontrollers.
12.1.1
STice key features

Occurrence and time profiling and code coverage analysis (new features)

Advanced breakpoints with up to 4 levels of conditions

Data breakpoints

Program and data trace recording up to 128 KB records

Read/write on-the-fly of memory during emulation

In-circuit debugging/programming via SWIM protocol

8-bit probe analyzer

1 input and 2 output triggers

Power supply follower managing application voltages between 1.62 to 5.5 V

Modularity that allows you to specify the components you need to meet your
development requirements and adapt to future requirements.

Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
DocID025118 Rev 5
101/106
103
STM8 development tools
12.2
STM8AF6213/23/23A/26
Software tools
STM8 development tools are supported by a complete, free software package from 
STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual 
programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8.
12.2.1
STM8 toolset
The STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:

Seamless integration of C and ASM toolsets

Full-featured debugger

Project management

Syntax highlighting editor

Integrated programming interface

Support of advanced emulation features for STice such as code profiling and coverage
ST visual programmer (STVP)
Easy-to-use, unlimited graphical interface allowing read, write and verify of your STM8
microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers
project mode for saving programming configurations and automating programming
sequences.
12.2.2
C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of the
application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8
All compilers are available in free version with a limited code size depending on the
compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com,
and www.iar.com.
STM8 assembler linker
Free assembly toolchain included in the STM8 toolset, which allows the users to assemble
and link your application source code.
102/106
DocID025118 Rev 5
STM8AF6213/23/23A/26
12.3
STM8 development tools
Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on the user application board via the SWIM protocol. Additional tools include
a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated
programming platforms with sockets for programming the STM8.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
DocID025118 Rev 5
103/106
103
Revision history
13
STM8AF6213/23/23A/26
Revision history
Table 64. Document revision history
Date
Revision
11-Oct-2013
1
Initial release.
2
Changed the document status to Production data.
Updated Figure: STM8AF6223PxAx TSSOP20 pinout to
add SPI_NSS to PD4, TLI to PD2, and change remap
function on PB5 from TIM5_BKIn to TIM1_BKIN.
Updated Table: STM8AF6223PxAx TSSOP20 pin
description to add SPI_NSS to PD4 and TLI to PD2.
Updated Table: STM8AF6223 TSSOP20 pin description
and Table: LQFP32 pin description.
Updated AFR2 definition in Table: STM8AF6223PxAx
alternate function remapping bits [7:2] for 20-pin
packages.
Removed the remapping option on PA3 for AFR[1:0]=10
in Table: STM8AF6223PxAx alternate function
remapping bits [1:0] for 20-pin packages.
Added note and removed remapping option on PA3 for
AFR[1:0]=11 in Table: STM8AF6223 alternate function
remapping bits [1:0] for 20-pin packages. Updated AFR2
definition in STM8AF6223 alternate function remapping
bits [7:2] for 20-pin packages.
Added the note below Table: STM8AF6226T alternate
function remapping bits [1:0] for 32-pin packages.
Updated Table: I2C characteristics to modify th(SDA) and
add tSP.
Updated Section: C assembly toolchains.
3
Replaced STM8AF6226T by STM8AF6226 part number.
Added STM8AF6223A part number to cover
STM8AF6223PxAx order codes.
Removed LINUART alternate function for PA3 in Table:
STM8AF6223PxAx TSSOP20 pin description.
Removed note 3 for IDD(AH) in Table: Total current
consumption in active halt mode at VDD = 5 V.
Updated the remapping option on PA3 for AFR[1:0]=11
in Table: STM8AF6223 alternate function remapping bits
[1:0] for 20-pin packages.
Updated notes related to tRET minimum value in Table:
Data memory.
Updated Table: ESD absolute maximum ratings.
Added notes related to protrusions and gate burrs for D
and E1 dimensions in Table: 20-pin, 4.40 mm body, 0.65
mm pitch mechanical data.
16-Dec-2013
03-Apr-2014
104/106
Changes
DocID025118 Rev 5
STM8AF6213/23/23A/26
Revision history
Table 64. Document revision history (continued)
Date
10-Jul-2014
26-Jun-2015
Revision
Changes
4
Extended the applicability to STM8AF6213 devices.
Updated the program memory feature, the power
management, and the clock management features on
the cover page.
Added the table in Section: Memory map.
Updated the Figure: fCPUmax versus VDD in Section:
Operating conditions.
Updated Section: Ordering information.
5
Added:
– the footnote about the inrush current below Table 27:
Operating conditions at power-up/power-down,
– Figure 44: LQFP32 marking example (package top
view),
– Figure 47: TSSOP20 marking example (package top
view).
Updated
– LIN standard version,
– the register label for LINUART block in Table 11:
General hardware register map,
– the power dissipation in Table 26: General operating
conditions,
– Table 41: HSI oscillator characteristics for HSI
oscillator accuracy,
– the standard for EMI in Electromagnetic interference
(EMI),
– Figure 48: STM8AF6213/23/23A/26 ordering
information scheme(1) (2) to add HSI accuracy.
Moved Section 10.3: Thermal characteristics to
Section 10: Package information.
DocID025118 Rev 5
105/106
105
STM8AF6213/23/23A/26
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
106/106
DocID025118 Rev 5
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement