THERMAL ARC® 95 S Operating Manual

THERMAL ARC® 95 S Operating Manual
95 S
®
THERMAL ARC
INVERTER ARC WELDER
Art # A-08597_AB
Operating Manual
Revision: AB
Issue Date: March 26, 2009
Operating Features:
Manual No.: 0-5086
50Hz
60
WE APPRECIATE YOUR BUSINESS!
Congratulations on your new Thermal Arc product. We are proud
to have you as our customer and will strive to provide you with
the best service and reliability in the industry. This product
is backed by our extensive warranty and world-wide service
network. To locate your nearest distributor or service agency call
1-800-752-7621, or visit us on the web at www.Thermalarc.com.
This Operating Manual has been designed to instruct you on the
correct use and operation of your Thermal Arc product. Your
satisfaction with this product and its safe operation is our ultimate
concern. Therefore please take the time to read the entire manual,
especially the Safety Precautions. They will help you to avoid potential
hazards that may exist when working with this product.
YOU ARE IN GOOD COMPANY!
The Brand of Choice for Contractors and Fabricators Worldwide.
Thermal Arc is a Global Brand of Arc Welding Products for Thermadyne
Industries Inc. We manufacture and supply to major welding industry
sectors worldwide including; Manufacturing, Construction, Mining,
Automotive, Aerospace, Engineering, Rural and DIY/Hobbyist.
We distinguish ourselves from our competition through marketleading, dependable products that have stood the test of time. We
pride ourselves on technical innovation, competitive prices, excellent
delivery, superior customer service and technical support, together
with excellence in sales and marketing expertise.
Above all, we are committed to develop technologically advanced
products to achieve a safer working environment within the welding
industry.
!
WARNINGS
Read and understand this entire Manual and your employer’s safety practices before installing,
operating, or servicing the equipment.
While the information contained in this Manual represents the Manufacturer’s best judgement, the Manufacturer assumes no liability for its use.
Operating Manual Number 0-5086 for:
Thermal Arc 95 S Power Source Arc Welder
Thermal Arc 95 S System with Stick Kit & Case
Thermal Arc 95 S System with Stick/TIG Kit & Case
Part No. W1003200
Part No. W1003202
Part No. W1003203
Published by:
Thermadyne Industries Inc.
82 Benning Street
West Lebanon, New Hampshire, USA 03784
(603) 298-5711
www.thermalarc.com
Copyright © 2009 by
Thermadyne Industries Inc.
® All rights reserved.
Reproduction of this work, in whole or in part, without written permission of the publisher is prohibited.
The publisher does not assume and hereby disclaims any liability to any party for any loss or damage
caused by any error or omission in this Manual, whether such error results from negligence, accident, or
any other cause.
Publication Date: March 26, 2009
Record the following information for Warranty purposes:
Where Purchased:
_____________________________________
Purchase Date:
_____________________________________
Equipment Serial #:
_____________________________________
i
TABLE OF CONTENTS
SECTION 1:SAFETY INSTRUCTIONS AND WARNINGS................................................. 1-1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
Arc Welding Hazards........................................................................................ 1-1
Principal Safety Standards............................................................................... 1-4
Symbol Chart................................................................................................... 1-5
Precautions De Securite En Soudage A L’arc................................................... 1-6
Dangers relatifs au soudage à l’arc.................................................................. 1-6
Principales Normes De Securite...................................................................... 1-9
Graphique de Symbole................................................................................... 1-10
SECTION 2:INTRODUCTION................................................................................ 2-1
2.01
2.02
2.03
2.04
2.05
2.06
2.07
How to Use This Manual.................................................................................. 2-1
Equipment Identification.................................................................................. 2-1
Receipt of Equipment....................................................................................... 2-1
Description...................................................................................................... 2-1
Transportation Methods................................................................................... 2-1
Duty Cycle........................................................................................................ 2-1
Specifications.................................................................................................. 2-2
SECTION 3:INSTALLATION................................................................................. 3-1
3.01
3.02
3.03
3.04
3.05
3.06
3.07
Environment.................................................................................................... 3-1
Location........................................................................................................... 3-1
Electrical Input Connections............................................................................ 3-1
Electromagnetic Compatibility......................................................................... 3-4
Setup for Welding............................................................................................ 3-5
STICK (SMAW) Setup...................................................................................... 3-6
Lift TIG (GTAW) Setup..................................................................................... 3-7
SECTION 4:OPERATION..................................................................................... 4-1
4.01
4.02
4.03
4.04
4.05
4.06
4.07
4.08
4.09
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
Front Panel...................................................................................................... 4-1
SMAW Electrode Polarity................................................................................. 4-2
Effects of Stick Welding Various Materials....................................................... 4-2
GTAW Electrode Polarity.................................................................................. 4-3
Guide for Selecting Filler Wire......................................................................... 4-3
Tungsten Electrode Current Ranges................................................................. 4-3
Shielding Gas Selection................................................................................... 4-3
Tungsten Electrode Types................................................................................ 4-3
TIG Welding Parameters for Steel.................................................................... 4-3
Arc Welding Practice........................................................................................ 4-4
Welding Position.............................................................................................. 4-4
Joint Preparations............................................................................................ 4-5
Arc Welding Technique.................................................................................... 4-6
The Welder....................................................................................................... 4-6
Striking the Arc................................................................................................ 4-6
Arc Length....................................................................................................... 4-6
Rate of Travel................................................................................................... 4-6
Making Welded Joints...................................................................................... 4-6
Distortion......................................................................................................... 4-8
The Cause of Distortion................................................................................... 4-9
Overcoming Distortion Effects......................................................................... 4-9
TABLE OF CONTENTS
SECTION 5:SERVICE........................................................................................ 5-1
5.01
5.02
5.03
5.04
Maintenance and Inspection............................................................................ 5-1
STICK Welding Problems ............................................................................... 5-2
TIG Welding Problems . .................................................................................. 5-3
Power Source Problems ................................................................................. 5-4
APPENDIX 1: REPLACEMENT PARTS..................................................................... A-1
APPENDIX 2: OPTIONS AND ACCESSORIES............................................................. A-2
APPENDIX 3: system schematic.......................................................................... A-3
LIMITED WARRANTY
WARRANTY SCHEDULE
GLOBAL CUSTOMER SERVICE CONTACT INFORMATION.................................... Inside Rear
SAFETY INSTRUCTIONS
THERMAL ARC 95 S
SECTION 1:
SAFETY INSTRUCTIONS AND WARNINGS
!
WARNING
PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS KEEP
AWAY UNTIL CONSULTING YOUR DOCTOR. DO NOT LOSE THESE INSTRUCTIONS. READ OPERATING/INSTRUCTION MANUAL BEFORE
INSTALLING, OPERATING OR SERVICING THIS EQUIPMENT.
Welding products and welding processes can cause serious injury or death, or damage to other equipment or property, if the operator does not
strictly observe all safety rules and take precautionary actions.
Safe practices have developed from past experience in the use of welding and cutting. These practices must be learned through study and
training before using this equipment. Some of these practices apply to equipment connected to power lines; other practices apply to engine
driven equipment. Anyone not having extensive training in welding and cutting practices should not attempt to weld.
Safe practices are outlined in the American National Standard Z49.1 entitled: SAFETY IN WELDING AND CUTTING. This publication and other
guides to what you should learn before operating this equipment are listed at the end of these safety precautions. HAVE ALL INSTALLATION,
OPERATION, MAINTENANCE, AND REPAIR WORK PERFORMED ONLY BY QUALIFIED PEOPLE.
1.01 Arc Welding Hazards
8. Do not use worn, damaged, undersized, or poorly spliced
cables.
9. Do not wrap cables around your body.
WARNING
ELECTRIC SHOCK can kill.
Touching live electrical parts can cause fatal shocks or
severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power
circuit and machine internal circuits are also live when
power is on. In semi-automatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal
parts touching the welding wire are electrically live.
Incorrectly installed or improperly grounded equipment
is a hazard.
10. Ground the workpiece to a good electrical (earth) ground.
11. Do not touch electrode while in contact with the work (ground)
circuit.
12. Use only well-maintained equipment. Repair or replace damaged
parts at once.
13. In confined spaces or damp locations, do not use a welder with AC
output unless it is equipped with a voltage reducer. Use equipment
with DC output.
14. Wear a safety harness to prevent falling if working above floor
level.
15. Keep all panels and covers securely in place.
1. Do not touch live electrical parts.
2. Wear dry, hole-free insulating gloves and body protection.
3. Insulate yourself from work and ground using dry insulating mats
or covers.
WARNING
ARC RAYS can burn eyes and skin; NOISE can damage
hearing. Arc rays from the welding process produce
intense heat and strong ultraviolet rays that can burn
eyes and skin. Noise from some processes can damage
hearing.
4. Disconnect input power or stop engine before installing or
servicing this equipment. Lock input power disconnect switch
open, or remove line fuses so power cannot be turned on
accidentally.
5. Properly install and ground this equipment according to its Owner’s
Manual and national, state, and local codes.
6. Turn off all equipment when not in use. Disconnect power to
equipment if it will be left unattended or out of service.
7. Use fully insulated electrode holders. Never dip holder in water to
cool it or lay it down on the ground or the work surface. Do not
touch holders connected to two welding machines at the same
time or touch other people with the holder or electrode.
1. Wear a welding helmet fitted with a proper shade of filter (see
ANSI Z49.1 listed in Safety Standards) to protect your face and
eyes when welding or watching.
2. Wear approved safety glasses. Side shields recommended.
3. Use protective screens or barriers to protect others from flash and
glare; warn others not to watch the arc.
4. Wear protective clothing made from durable, flame-resistant
material (wool and leather) and foot protection.
5. Use approved ear plugs or ear muffs if noise level is high.
Safety Instructions
1-1
Manual 0-5086
THERMAL ARC 95 S
SAFETY INSTRUCTIONS
WARNING
WARNING
FUMES AND GASES can be hazardous to your health.
WELDING can cause fire or explosion.
Welding produces fumes and gases. Breathing these
fumes and gases can be hazardous to your health.
Sparks and spatter fly off from the welding arc. The flying
sparks and hot metal, weld spatter, hot workpiece, and
hot equipment can cause fires and burns. Accidental
contact of electrode or welding wire to metal objects
can cause sparks, overheating, or fire.
1. Keep your head out of the fumes. Do not breathe the fumes.
2. If inside, ventilate the area and/or use exhaust at the arc to remove
welding fumes and gases.
1. Protect yourself and others from flying sparks and hot metal.
3. If ventilation is poor, use an approved air-supplied respirator.
2. Do not weld where flying sparks can strike flammable material.
4. Read the Material Safety Data Sheets (MSDSs) and the
manufacturer’s instruction for metals, consumables, coatings,
and cleaners.
3. Remove all flammables within 35 ft (10.7 m) of the welding arc.
If this is not possible, tightly cover them with approved covers.
5. Work in a confined space only if it is well ventilated, or while
wearing an air-supplied respirator. Shielding gases used for
welding can displace air causing injury or death. Be sure the
breathing air is safe.
6. Do not weld in locations near degreasing, cleaning, or spraying
operations. The heat and rays of the arc can react with vapors to
form highly toxic and irritating gases.
7. Do not weld on coated metals, such as galvanized, lead, or
cadmium plated steel, unless the coating is removed from the weld
area, the area is well ventilated, and if necessary, while wearing
an air-supplied respirator. The coatings and any metals containing
these elements can give off toxic fumes if welded.
4. Be alert that welding sparks and hot materials from welding can
easily go through small cracks and openings to adjacent areas.
5. Watch for fire, and keep a fire extinguisher nearby.
6. Be aware that welding on a ceiling, floor, bulkhead, or partition
can cause fire on the hidden side.
7. Do not weld on closed containers such as tanks or drums.
8. Connect work cable to the work as close to the welding area as
practical to prevent welding current from traveling long, possibly
unknown paths and causing electric shock and fire hazards.
9. Do not use welder to thaw frozen pipes.
10. Remove stick electrode from holder or cut off welding wire at
contact tip when not in use.
Eye protection filter shade selector for welding or cutting
(goggles or helmet), from AWS A6.2-73.
Welding or Cutting
Operation
Electrode Size
Metal Thickness
or Welding Current
Torch soldering
Torch brazing
Oxygen Cutting
Light
Under 1 in., 25 mm
Medium 1 to 6 in., 25-150 mm
Heavy
Over 6 in., 150 mm
Gas welding
Light
Under 1/8 in., 3 mm
Medium 1/8 to 1/2 in., 3-12 mm
Heavy
Over 1/2 in., 12 mm
Shielded metal-arc
welding
Under 5/32 in., 4 mm
(stick) electrodes
5/32 to 1/4 in.,
4 to 6.4 mm
Over 1/4 in., 6.4 mm
Manual 0-5086
Filter
Shade
No.
2
3 or 4
3 or 4
4 or 5
5 or 6
4 or 5
5 or 6
6 or 8
Welding or Cutting
Operation
Gas metal-arc
welding (MIG)
Non-ferrous base metal
Non-ferrous base metal
Gas tungsten arc welding
(TIG)
Atomic hydrogen welding
Carbon arc welding
Plasma arc welding
Carbon arc air gouging
Light
10
Electrode Size Filter
Metal Thickness Shade
No.
or Welding
All
All
All
All
All
All
11
12
12
12
12
12
12
Heavy
14
Plasma arc cutting
12
14
Light Under 300 Amp
Medium 300 to 400 Amp
Heavy Over 400 Amp
1-2
9
12
14
Safety Instructinos
SAFETY INSTRUCTIONS
THERMAL ARC 95 S
WARNING
WARNING
FLYING SPARKS AND HOT METAL can cause injury.
ENGINE FUEL can cause fire or explosion.
Chipping and grinding cause flying metal. As welds cool,
they can throw off slag.
Engine fuel is highly flammable.
1. Wear approved face shield or safety goggles. Side shields
recommended.
2. Wear proper body protection to protect skin.
WARNING
CYLINDERS can explode if damaged.
Shielding gas cylinders contain gas under high pressure.
If damaged, a cylinder can explode. Since gas cylinders
are normally part of the welding process, be sure to
treat them carefully.
1. Protect compressed gas cylinders from excessive heat, mechanical
shocks, and arcs.
2. Install and secure cylinders in an upright position by chaining
them to a stationary support or equipment cylinder rack to prevent
falling or tipping.
1. Stop engine before checking or adding fuel.
2. Do not add fuel while smoking or if unit is near any sparks or open
flames.
3. Allow engine to cool before fueling. If possible, check and add fuel
to cold engine before beginning job.
4. Do not overfill tank — allow room for fuel to expand.
5. Do not spill fuel. If fuel is spilled, clean up before starting
engine.
WARNING
MOVING PARTS can cause injury.
Moving parts, such as fans, rotors, and belts can cut fingers and hands
and catch loose clothing.
1. Keep all doors, panels, covers, and guards closed and
securely in place.
3. Keep cylinders away from any welding or other electrical
circuits.
2. Stop engine before installing or connecting unit.
4. Never allow a welding electrode to touch any cylinder.
3. Have only qualified people remove guards or covers for
maintenance and troubleshooting as necessary.
5. Use only correct shielding gas cylinders, regulators, hoses, and
fittings designed for the specific application; maintain them and
associated parts in good condition.
4. To prevent accidental starting during servicing, disconnect
negative (-) battery cable from battery.
6. Turn face away from valve outlet when opening cylinder valve.
5. Keep hands, hair, loose clothing, and tools away from moving
parts.
7. Keep protective cap in place over valve except when cylinder is in
use or connected for use.
6. Reinstall panels or guards and close doors when servicing
is finished and before starting engine.
8. Read and follow instructions on compressed gas cylinders,
associated equipment, and CGA publication P-1 listed in Safety
Standards.
!
WARNING
SPARKS can cause BATTERY GASES TO EXPLODE;
BATTERY ACID can burn eyes and skin.
WARNING
Engines can be dangerous.
Batteries contain acid and generate explosive gases.
1. Always wear a face shield when working on a battery.
2. Stop engine before disconnecting or connecting battery cables.
WARNING
ENGINE EXHAUST GASES can kill.
Engines produce harmful exhaust gases.
3. Do not allow tools to cause sparks when working on a battery.
4. Do not use welder to charge batteries or jump start vehicles.
5. Observe correct polarity (+ and –) on batteries.
1. Use equipment outside in open, well-ventilated areas.
2. If used in a closed area, vent engine exhaust outside and away
from any building air intakes.
Safety Instructions
1-3
Manual 0-5086
THERMAL ARC 95 S
SAFETY INSTRUCTIONS
!
WARNING
The above procedures are among those also normally
recommended for pacemaker wearers. Consult your
doctor for complete information.
STEAM AND PRESSURIZED HOT COOLANT can burn
face, eyes, and skin.
The coolant in the radiator can be very hot and under
pressure.
ABOUT PACEMAKERS:
1.02 Principal Safety Standards
1. Do not remove radiator cap when engine is hot. Allow engine to
cool.
Safety in Welding and Cutting, ANSI Standard Z49.1, from American
Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.
2. Wear gloves and put a rag over cap area when removing cap.
Safety and Health Standards, OSHA 29 CFR 1910, from Superintendent
of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
3. Allow pressure to escape before completely removing cap.
LEAD WARNING
This product contains chemicals, including lead, or
otherwise produces chemicals known to the State of
California to cause cancer, birth defects and other reproductive harm. Wash hands after handling. (California
Health & Safety Code § 25249.5 et seq.)
NOTE
Considerations About Welding And The Effects of Low
Frequency Electric and Magnetic Fields
The following is a quotation from the General Conclusions Section of
the U.S. Congress, Office of Technology Assessment, Biological Effects
of Power Frequency Electric & Magnetic Fields - Background Paper,
OTA-BP-E-63 (Washington, DC: U.S. Government Printing Office, May
1989): “...there is now a very large volume of scientific findings based
on experiments at the cellular level and from studies with animals
and people which clearly establish that low frequency magnetic fields
interact with, and produce changes in, biological systems. While most
of this work is of very high quality, the results are complex. Current
scientific understanding does not yet allow us to interpret the evidence
in a single coherent framework. Even more frustrating, it does not
yet allow us to draw definite conclusions about questions of possible
risk or to offer clear science-based advice on strategies to minimize
or avoid potential risks.”
Recommended Safe Practices for the Preparation for Welding and
Cutting of Containers That Have Held Hazardous Substances, American
Welding Society Standard AWS F4.1, from American Welding Society,
550 N.W. LeJeune Rd., Miami, FL 33126.
National Electrical Code, NFPA Standard 70, from National Fire
Protection Association, Batterymarch Park, Quincy, MA 02269.
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,
from Compressed Gas Association, 1235 Jefferson Davis Highway,
Suite 501, Arlington, VA 22202.
Code for Safety in Welding and Cutting, CSA Standard W117.2, from
Canadian Standards Association, Standards Sales, 178 Rexdale
Boulevard, Rexdale, Ontario, Canada M9W 1R3.
Safe Practices for Occupation and Educational Eye and Face Protection,
ANSI Standard Z87.1, from American National Standards Institute,
1430 Broadway, New York, NY 10018.
Cutting and Welding Processes, NFPA Standard 51B, from National Fire
Protection Association, Batterymarch Park, Quincy, MA 02269.
To reduce magnetic fields in the workplace, use the following
procedures.
1. Keep cables close together by twisting or taping them.
2. Arrange cables to one side and away from the operator.
3. Do not coil or drape cable around the body.
4. Keep welding power source and cables as far away from body
as practical.
Manual 0-5086
1-4
Safety Instructinos
SAFETY INSTRUCTIONS
THERMAL ARC 95 S
1.03 Symbol Chart
Note that only some of these symbols will appear on your model.
On
Single Phase
Wire Feed Function
Off
Three Phase
Wire Feed Towards
Workpiece With
Output Voltage Off.
Dangerous Voltage
Three Phase Static
Frequency ConverterTransformer-Rectifier
Welding Gun
Increase/Decrease
Remote
Purging Of Gas
Duty Cycle
Continuous Weld
Mode
Percentage
Spot Weld Mode
Circuit Breaker
AC Auxiliary Power
115V 15A
X
%
Fuse
Panel/Local
Amperage
Shielded Metal
Arc Welding (SMAW)
Voltage
Gas Metal Arc
Welding (GMAW)
Hertz (cycles/sec)
Gas Tungsten Arc
Welding (GTAW)
Frequency
Air Carbon Arc
Cutting (CAC-A)
Negative
Constant Current
Positive
Constant Voltage
Or Constant Potential
Direct Current (DC)
High Temperature
Protective Earth
(Ground)
Fault Indication
Line
Arc Force
Line Connection
Touch Start (GTAW)
Auxiliary Power
Variable Inductance
Receptacle RatingAuxiliary Power
Safety Instructions
V
t
Spot Time
Preflow Time
t1
t2
Postflow Time
2 Step Trigger
Operation
Press to initiate wirefeed and
welding, release to stop.
4 Step Trigger
Operation
Press and hold for preflow, release
to start arc. Press to stop arc, and
hold for preflow.
t
Burnback Time
IPM
Inches Per Minute
MPM
Meters Per Minute
Voltage Input
Art # A-04130
1-5
Manual 0-5086
THERMAL ARC 95 S
SAFETY INSTRUCTIONS
1.04 Precautions De Securite En Soudage A L’arc
!
MISE EN GARDE
LE SOUDAGE A L’ARC EST DANGEREUX
PROTEGEZ-VOUS, AINSI QUE LES AUTRES, CONTRE LES BLESSURES GRAVES POSSIBLES OU LA MORT. NE LAISSEZ PAS LES ENFANTS
S’APPROCHER, NI LES PORTEURS DE STIMULATEUR CARDIAQUE (A MOINS QU’ILS N’AIENT CONSULTE UN MEDECIN). CONSERVEZ CES
INSTRUCTIONS. LISEZ LE MANUEL D’OPERATION OU LES INSTRUCTIONS AVANT D’INSTALLER, UTILISER OU ENTRETENIR CET EQUIPEMENT.
Les produits et procédés de soudage peuvent sauser des blessures graves ou la mort, de même que des dommages au reste du matériel et à la
propriété, si l’utilisateur n’adhère pas strictement à toutes les règles de sécurité et ne prend pas les précautions nécessaires.
En soudage et coupage, des pratiques sécuritaires se sont développées suite à l’expérience passée. Ces pratiques doivent être apprises par
étude ou entraînement avant d’utiliser l’equipement. Toute personne n’ayant pas suivi un entraînement intensif en soudage et coupage ne devrait
pas tenter de souder. Certaines pratiques concernent les équipements raccordés aux lignes d’alimentation alors que d’autres s’adressent aux
groupes électrogènes.
La norme Z49.1 de l’American National Standard, intitulée “SAFETY IN WELDING AND CUTTING” présente les pratiques sécuritaires à suivre.
Ce document ainsi que d’autres guides que vous devriez connaître avant d’utiliser cet équipement sont présentés à la fin de ces instructions
de sécurité.
SEULES DES PERSONNES QUALIFIEES DOIVENT FAIRE DES TRAVAUX D’INSTALLATION, DE REPARATION, D’ENTRETIEN ET D’ESSAI.
1.05 Dangers relatifs au soudage à l’arc
AVERTISSEMENT
L’ELECTROCUTION PEUT ETRE MORTELLE.
Une décharge électrique peut tuer ou brûler gravement.
L’électrode et le circuit de soudage sont sous tension dès
la mise en circuit. Le circuit d’alimentation et les circuits
internes de l’équipement sont aussi sous tension dès la
mise en marche. En soudage automatique ou semi-automatique avec fil, ce dernier, le rouleau ou la bobine de
fil, le logement des galets d’entrainement et toutes les
pièces métalliques en contact avec le fil de soudage sont
sous tension. Un équipement inadéquatement installé ou
inadéquatement mis à la terre est dangereux.
1. Ne touchez pas à des pièces sous tension.
2. Portez des gants et des vêtements isolants, secs et non troués.
3 Isolez-vous de la pièce à souder et de la mise à la terre au moyen
de tapis isolants ou autres.
7. N’utilisez que des porte-électrodes bien isolés. Ne jamais plonger
les porte-électrodes dans l’eau pour les refroidir. Ne jamais les
laisser traîner par terre ou sur les pièces à souder. Ne touchez
pas aux porte-électrodes raccordés à deux sources de courant en
même temps. Ne jamais toucher quelqu’un d’autre avec l’électrode
ou le porte-électrode.
8. N’utilisez pas de câbles électriques usés, endommagés, mal épissés ou de section trop petite.
9. N’enroulez pas de câbles électriques autour de votre corps.
10. N’utilisez qu’une bonne prise de masse pour la mise à la terre de
la pièce à souder.
11. Ne touchez pas à l’électrode lorsqu’en contact avec le circuit de
soudage (terre).
12. N’utilisez que des équipements en bon état. Réparez ou remplacez
aussitôt les pièces endommagées.
13. Dans des espaces confinés ou mouillés, n’utilisez pas de source
de courant alternatif, à moins qu’il soit muni d’un réducteur de
tension. Utilisez plutôt une source de courant continu.
14. Portez un harnais de sécurité si vous travaillez en hauteur.
15. Fermez solidement tous les panneaux et les capots.
4. Déconnectez la prise d’alimentation de l’équipement ou arrêtez le
moteur avant de l’installer ou d’en faire l’entretien. Bloquez le commutateur en circuit ouvert ou enlevez les fusibles de l’alimentation
afin d’éviter une mise en marche accidentelle.
AVERTISSEMENT
5. Veuillez à installer cet équipement et à le mettre à la terre selon le
manuel d’utilisation et les codes nationaux, provinciaux et locaux
applicables.
LE RAYONNEMENT DE L’ARC PEUT BRÛLER LES YEUX
ET LA PEAU; LE BRUIT PEUT ENDOMMAGER L’OUIE.
L’arc de soudage produit une chaleur et des rayons
ultraviolets intenses, susceptibles de brûler les yeux
et la peau. Le bruit causé par certains procédés peut
endommager l’ouïe.
6. Arrêtez tout équipement après usage. Coupez l’alimentation de
l’équipement s’il est hors d’usage ou inutilisé.
Manual 0-5086
1-6
Safety Instructinos
SAFETY INSTRUCTIONS
THERMAL ARC 95 S
1. Portez une casque de soudeur avec filtre oculaire de nuance appropriée (consultez la norme ANSI Z49 indiquée ci-après) pour
vous protéger le visage et les yeux lorsque vous soudez ou que
vous observez l’exécution d’une soudure.
1. Eloignez la tête des fumées pour éviter de les respirer.
2. Portez des lunettes de sécurité approuvées. Des écrans latéraux
sont recommandés.
3. Si la ventilation est inadequate, portez un respirateur à adduction
d’air approuvé.
3. Entourez l’aire de soudage de rideaux ou de cloisons pour protéger
les autres des coups d’arc ou de l’éblouissement; avertissez les
observateurs de ne pas regarder l’arc.
4. Lisez les fiches signalétiques et les consignes du fabricant relatives
aux métaux, aux produits consummables, aux revêtements et aux
produits nettoyants.
4. Portez des vêtements en matériaux ignifuges et durables (laine et
cuir) et des chaussures de sécurité.
5. Ne travaillez dans un espace confiné que s’il est bien ventilé;
sinon, portez un respirateur à adduction d’air. Les gaz protecteurs
de soudage peuvent déplacer l’oxygène de l’air et ainsi causer
des malaises ou la mort. Assurez-vous que l’air est propre à la
respiration.
5. Portez un casque antibruit ou des bouchons d’oreille approuvés
lorsque le niveau de bruit est élevé.
2. A l’intérieur, assurez-vous que l’aire de soudage est bien ventilée
ou que les fumées et les vapeurs sont aspirées à l’arc.
6. Ne soudez pas à proximité d’opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l’arc peuvent
réagir avec des vapeurs et former des gaz hautement toxiques et
irritants.
AVERTISSEMENT
LES VAPEURS ET LES FUMEES SONT DANGEREUSES
POUR LA SANTE.
7. Ne soudez des tôles galvanisées ou plaquées au plomb ou au
cadmium que si les zones à souder ont été grattées à fond, que
si l’espace est bien ventilé; si nécessaire portez un respirateur à
adduction d’air. Car ces revêtements et tout métal qui contient
ces éléments peuvent dégager des fumées toxiques au moment
du soudage.
Le soudage dégage des vapeurs et des fumées dangereuses à respirer.
SELECTION DES NUANCES DE FILTRES OCULAIRS POUR LA PROTECTION
DES YEUX EN COUPAGE ET SOUDAGE (selon AWS á 8.2-73)
Dimension d'électrode ou
Epiasseur de métal ou
Intensité de courant
Nuance de
filtre oculaire
Brassage tendre
au chalumeau
toutes conditions
2
Brassage fort
au chalumeau
toutes conditions
3 ou 4
Opération de coupage
ou soudage
Nuance de
filtre
oculaire
métaux non-ferreux
toutes conditions
11
métaux ferreux
toutes conditions
12
Soudage á l'arc sous gaz
avec fil plein (GMAW)
Oxycoupage
mince
moins de 1 po. (25 mm)
2 ou 3
Soudage á l'arc sous gaz avec
électrode de tungstène
(GTAW)
toutes conditions
12
moyen
de 1 á 6 po. (25 á 150 mm)
4 ou 5
Soudage á l'hydrogène
atomique (AHW)
toutes conditions
12
plus de 6 po. (150 mm)
5 ou 6
Soudage á l'arc avec
électrode de carbone (CAW)
toutes conditions
12
Soudage á l'arc Plasma (PAW)
toutes dimensions
12
épais
Soudage aux gaz
Gougeage Air-Arc avec
électrode de carbone
mince
moins de 1/8 po. (3 mm)
4 ou 5
moyen
de 1/8 á 1/2 po. (3 á 12 mm)
5 ou 6
mince
12
plus de 1/2 po. (12 mm)
6 ou 8
épais
14
moins de 5/32 po. (4 mm)
10
5/32 á 1/4 po. (4 á 6.4 mm)
12
mince
moins de 300 amperès
9
plus de 1/4 po. (6.4 mm)
14
moyen
de 300 á 400 amperès
12
épais
plus de 400 amperès
14
épais
Soudage á l'arc avec
électrode enrobees
(SMAW)
Safety Instructions
Dimension d'électrode ou
Epiasseur de métal ou
Intensité de courant
Opération de coupage
ou soudage
Coupage á l'arc Plasma (PAC)
1-7
Manual 0-5086
THERMAL ARC 95 S
SAFETY INSTRUCTIONS
AVERTISSEMENT
AVERTISSEMENT
LE SOUDAGE PEUT CAUSER UN INCENDIE OU UNE
EXPLOSION
LES BOUTEILLES ENDOMMAGEES PEUVENT EXPLOSER
L’arc produit des étincellies et des projections. Les particules volantes, le métal chaud, les projections de soudure
et l’équipement surchauffé peuvent causer un incendie
et des brûlures. Le contact accidentel de l’électrode ou
du fil-électrode avec un objet métallique peut provoquer
des étincelles, un échauffement ou un incendie.
Les bouteilles contiennent des gaz protecteurs sous
haute pression. Des bouteilles endommagées peuvent
exploser. Comme les bouteilles font normalement partie
du procédé de soudage, traitez-les avec soin.
1. Protégez-vous, ainsi que les autres, contre les étincelles et du
métal chaud.
2. Ne soudez pas dans un endroit où des particules volantes ou des
projections peuvent atteindre des matériaux inflammables.
3. Enlevez toutes matières inflammables dans un rayon de 10, 7
mètres autour de l’arc, ou couvrez-les soigneusement avec des
bâches approuvées.
4. Méfiez-vous des projections brulantes de soudage susceptibles
de pénétrer dans des aires adjacentes par de petites ouvertures
ou fissures.
5. Méfiez-vous des incendies et gardez un extincteur à portée de la
main.
6. N’oubliez pas qu’une soudure réalisée sur un plafond, un plancher,
une cloison ou une paroi peut enflammer l’autre côté.
7. Ne soudez pas un récipient fermé, tel un réservoir ou un baril.
8. Connectez le câble de soudage le plus près possible de la zone
de soudage pour empêcher le courant de suivre un long parcours inconnu, et prévenir ainsi les risques d’électrocution et
d’incendie.
1. Protégez les bouteilles de gaz comprimé contre les sources de
chaleur intense, les chocs et les arcs de soudage.
2. Enchainez verticalement les bouteilles à un support ou à un cadre
fixe pour les empêcher de tomber ou d’être renversées.
3. Eloignez les bouteilles de tout circuit électrique ou de tout soudage.
4. Empêchez tout contact entre une bouteille et une électrode de
soudage.
5. N’utilisez que des bouteilles de gaz protecteur, des détendeurs,
des boyauxs et des raccords conçus pour chaque application
spécifique; ces équipements et les pièces connexes doivent être
maintenus en bon état.
6. Ne placez pas le visage face à l’ouverture du robinet de la bouteille
lors de son ouverture.
7. Laissez en place le chapeau de bouteille sauf si en utilisation ou
lorsque raccordé pour utilisation.
8. Lisez et respectez les consignes relatives aux bouteilles de gaz
comprimé et aux équipements connexes, ainsi que la publication
P-1 de la CGA, identifiée dans la liste de documents ci-dessous.
9. Ne dégelez pas les tuyaux avec un source de courant.
AVERTISSEMENT
10. Otez l’électrode du porte-électrode ou coupez le fil au tube-contact
lorsqu’inutilisé après le soudage.
LES MOTEURS PEUVENT ETRE DANGEREUX
11. Portez des vêtements protecteurs non huileux, tels des gants en
cuir, une chemise épaisse, un pantalon revers, des bottines de
sécurité et un casque.
LES GAZ D’ECHAPPEMENT DES MOTEURS PEUVENT
ETRE MORTELS.
Les moteurs produisent des gaz d’échappement nocifs.
AVERTISSEMENT
LES ETINCELLES ET LES PROJECTIONS BRULANTES
PEUVENT CAUSER DES BLESSURES.
Le piquage et le meulage produisent des particules
métalliques volantes. En refroidissant, la soudure peut
projeter du éclats de laitier.
1. Utilisez l’équipement à l’extérieur dans des aires ouvertes et bien
ventilées.
2. Si vous utilisez ces équipements dans un endroit confiné, les
fumées d’échappement doivent être envoyées à l’extérieur, loin
des prises d’air du bâtiment.
AVERTISSEMENT
1. Portez un écran facial ou des lunettes protectrices approuvées. Des écrans latéraux sont recommandés.
LE CARBURANT PEUR CAUSER UN INCENDIE OU UNE
EXPLOSION.
2. Portez des vêtements appropriés pour protéger la peau.
Le carburant est hautement inflammable.
1. Arrêtez le moteur avant de vérifier le niveau e carburant ou de
faire le plein.
Manual 0-5086
1-8
Safety Instructinos
SAFETY INSTRUCTIONS
THERMAL ARC 95 S
2. Ne faites pas le plein en fumant ou proche d’une source d’étincelles
ou d’une flamme nue.
3. Si c’est possible, laissez le moteur refroidir avant de faire le plein
de carburant ou d’en vérifier le niveau au début du soudage.
AVERTISSEMENT
LA VAPEUR ET LE LIQUIDE DE REFROIDISSEMENT
BRULANT SOUS PRESSION PEUVENT BRULER LA
PEAU ET LES YEUX.
4. Ne faites pas le plein de carburant à ras bord: prévoyez de l’espace
pour son expansion.
5. Faites attention de ne pas renverser de carburant. Nettoyez tout
carburant renversé avant de faire démarrer le moteur.
AVERTISSEMENT
Le liquide de refroidissement d’un radiateur peut être
brûlant et sous pression.
1. N’ôtez pas le bouchon de radiateur tant que le moteur n’est pas
refroidi.
DES PIECES EN MOUVEMENT PEUVENT CAUSER DES
BLESSURES.
2. Mettez des gants et posez un torchon sur le bouchon pour
l’ôter.
Des pièces en mouvement, tels des ventilateurs, des
rotors et des courroies peuvent couper doigts et mains,
ou accrocher des vêtements amples.
3. Laissez la pression s’échapper avant d’ôter complètement le
bouchon.
1. Assurez-vous que les portes, les panneaux, les capots et les
protecteurs soient bien fermés.
PLOMB AVERTISSEMENT
2. Avant d’installer ou de connecter un système, arrêtez le moteur.
Ce produit contient des produits chimiques, comme
le plomb, ou engendre des produits chimiques,
reconnus par l’état de Californie comme pouvant être à l’origine de cancer, de malformations
fœtales ou d’autres problèmes de reproduction.
Il faut se laver les mains après toute manipulation.
(Code de Californie de la sécurité et santé, paragraphe
25249.5 et suivants)
3. Seules des personnes qualifiées doivent démonter des protecteurs
ou des capots pour faire l’entretien ou le dépannage nécessaire.
4. Pour empêcher un démarrage accidentel pendant l’entretien,
débranchez le câble d’accumulateur à la borne négative.
5. N’approchez pas les mains ou les cheveux de pièces en mouvement; elles peuvent aussi accrocher des vêtements amples et des
outils.
6. Réinstallez les capots ou les protecteurs et fermez les portes après
des travaux d’entretien et avant de faire démarrer le moteur.
AVERTISSEMENT
1.06 Principales Normes De Securite
Safety in Welding and Cutting, norme ANSI Z49.1, American Welding
Society, 550 N.W. LeJeune Rd., Miami, FL 33128.
Safety and Health Standards, OSHA 29 CFR 1910, Superintendent
of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
DES ETINCELLES PEUVENT FAIRE EXPLOSER UN ACCUMULATEUR; L’ELECTROLYTE D’UN ACCUMU-LATEUR
PEUT BRULER LA PEAU ET LES YEUX.
Recommended Safe Practices for the Preparation for Welding and
Cutting of Containers That Have Held Hazardous Substances, norme
AWS F4.1, American Welding Society, 550 N.W. LeJeune Rd., Miami,
FL 33128.
Les accumulateurs contiennent de l’électrolyte acide et
dégagent des vapeurs explosives.
National Electrical Code, norme 70 NFPA, National Fire Protection
Association, Batterymarch Park, Quincy, MA 02269.
1. Portez toujours un écran facial en travaillant sur un accumu-lateur.
Safe Handling of Compressed Gases in Cylinders, document P-1,
Compressed Gas Association, 1235 Jefferson Davis Highway, Suite
501, Arlington, VA 22202.
2. Arrêtez le moteur avant de connecter ou de déconnecter des câbles
d’accumulateur.
3. N’utilisez que des outils anti-étincelles pour travailler sur un accumulateur.
4. N’utilisez pas une source de courant de soudage pour charger un
accumulateur ou survolter momentanément un véhicule.
5. Utilisez la polarité correcte (+ et –) de l’accumulateur.
Safety Instructions
Code for Safety in Welding and Cutting, norme CSA W117.2 Association
canadienne de normalisation, Standards Sales, 276 Rexdale Boulevard,
Rexdale, Ontario, Canada M9W 1R3.
Safe Practices for Occupation and Educational Eye and Face Protection, norme ANSI Z87.1, American National Standards Institute, 1430
Broadway, New York, NY 10018.
Cutting and Welding Processes, norme 51B NFPA, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
1-9
Manual 0-5086
THERMAL ARC 95 S
SAFETY INSTRUCTIONS
1.07 Graphique de Symbole
Seulement certains de ces symboles apparaîtront sur votre modèle.
Sous Tension
Mono Phasé
Déroulement du Fil
Hors Tension
Trois Phasé
Alimentation du Fil Vers
la Pièce de Fabrication
Hors Tension
Tri-Phase Statique
Torch de Soudage
Tension dangereuse
Fréquence Convertisseur
Transformateur-Redresseur
Augmentez/Diminuer
Distant
Purge Du Gaz
Facteur de Marche
Mode Continu de
Soudure
Pourcentage
Soudure Par Point
Disjoncteur
Source AC Auxiliaire
X
%
Fusible
Panneau/Local
Intensité de Courant
Soudage Arc Electrique
Avec Electrode Enrobé
(SMAW)
Tension
Soudage á L’arc Avec
Fil Electrodes Fusible
(GMAW)
Hertz (cycles/sec)
Soudage á L’arc Avec
Electrode Non Fusible
(GTAW)
Fréquence
Decoupe Arc Carbone
(CAC-A)
t
Duréc du Pulse
Durée de Pré-Dèbit
t1
t2
Durée de Post-Dèbit
Détente à 2-Temps
Appuyez pour dèruarer
l’alimentation du fils et la soudure,
le relâcher pour arrêter.
Détente à 4-Temps
Négatif
Positif
Tension Constante
Ou Potentiel Constant
Courant Continue (DC)
Haute Température
Terre de Protection
Force d'Arc
Ligne
Amorçage de L’arc au
Contact (GTAW)
Connexion de la Ligne
Inductance Variable
Source Auxiliaire
115V 15A
Manual 0-5086
Courant Constant
V
Maintenez appuyez pour pré-dèbit,
relailez pour initier l'arc. Appuyez
pour arrêter l'arc, et mainteuir pour
pré-dèbit.
t
Probléme de Terre
IPM
Pouces Par Minute
MPM
Mètres Par Minute
Tension
Classement de PriseSource Auxiliaire
Art # A-07639
1-10
Safety Instructinos
INTRODUCTIONtHERMAL ARC 95 S
SECTION 2:
INTRODUCTION
2.01 How to Use This Manual
2.04 Description
This Operating Manual usually applies to the part numbers
listed on page i. If none are underlined, they are all covered
by this manual. To ensure safe operation, read the entire
manual, including the chapter on safety instructions and
warnings. Throughout this manual, the word WARNING,
CAUTION and NOTE may appear. Pay particular attention
to the information provided under these headings. These
special annotations are easily recognized as follows:
This compact inverter welding machine has infinitely
adjustable welding current from 5 to 95 amps. It uses
standard general purpose SMAW 3/32” (2.5mm)
electrodes for light gauge work, generally less than 1/8”
(3.2mm) thick. The unit also has a Lift TIG (GTAW) welding
mode that offers stable TIG welding characteristics when
used with a suitable TIG torch and shielding gas.
!
2.05 Transportation Methods
WARNING
CAUTION
Gives information regarding possible personal
injury. Warnings will be enclosed in a box
such as this.
ELECTRIC SHOCK can kill. DO NOT TOUCH
live electric parts. Disconnect input power
conductors from de-energized supply line
before moving the welding power source.
CAUTION
!
Refers to possible equipment damage. Cautions will be shown in bold type.
FALLING EQUIPMENT can cause serious personal injury and equipment damage.
NOTE
Offers helpful information concerning certain
operating procedures. Notes will be shown
in italics
2.02 Equipment Identification
The unit’s identification number (specification or part
number), model, and serial number usually appear on
a nameplate attached to the machine. Equipment which
does not have a nameplate attached to the machine is
identified only by the specification or part number printed
on the shipping container. Record these numbers for
future reference.
2.03 Receipt of Equipment
When you receive the equipment, check it against the
invoice to make sure it is complete and inspect the
equipment for possible damage due to shipping. If there is
any damage, notify the carrier immediately to file a claim.
Furnish complete information concerning damage claims
or shipping errors to the location in your area listed in the
inside back cover of this manual. Include all equipment
identification numbers as described above along with a
full description of the parts in error.
Introduction
WARNING
Lift unit with handle on top of case. Use handcart or similar
device of adequate capacity. If using a fork lift vehicle,
place secure unit on a proper skid before transporting.
2.06 Duty Cycle
The rated duty cycle of a Welding Power Source, is a
statement of the time it may be operated at its rated
welding current output without exceeding the temperature
limits of the insulation of the component parts. To explain
the 10 minute duty cycle period the following example is
used. Suppose a Welding Power Source is designed to
operate at a 30% duty cycle, 80 amperes at 23.2 volts.
This means that it has been designed and built to provide
the rated amperage (80A) for 3 minutes, i.e. arc welding
time, out of every 10 minute period (30% of 10 minutes is
3 minutes). During the other 7 minutes of the 10 minute
period the Welding Power Source must idle and allowed
to cool.
2-1
Manual 0-5086
THERMAL ARC 95 S
INTRODUCTION
2.07 Specifications
Power Source Part Number
W1003200
Welding Output
Welding Current Range
5 - 95 Amps
Nominal DC Open Circuit Voltage (OCV)
60V
Welding Output, 104º F (40º C), 10 min.
(quoted figures refer to SMAW output)
50A / 22V @ 100%
80A / 23.2V @ 30%
90A / 23.6V @ 20%
Rated Input Current (A) for STICK Welding
33.5A
[email protected]
Iο = 90A @ 23.6V
Rated Input Current (A) for TIG Welding
21.0A
Rated Output for STICK Welding
Io = [email protected]
90A / 23.6V @ 20%
Rated Output for TIG Welding
95A / 13.8V @ 20%
Duty Cycle (%)
20% @ 90A / 23.6V
Welder Type
Inverter Power Source
Output Terminal Type
Dinse 25
Mains Power
Number of Phases
Single Phase
Nominal Supply Voltage
115V
Nominal Supply Frequency
50/60 Hz
Effective Input Current (l1eff)
15.0 Amps
Maximum Input Current (l1 max)
Δ 33.5 Amps
Single Phase Generator Requirements
6 KVA
Classification
Protection Class
IP23S
Standards
IEC 60974-1
Cooling Method
Fan Cooled
Dimensions and Weight
Welding Power Source Mass
9.7 lb. (4.4 kg)
Welding Power Source Dimensions (Height x Width x Depth)
H 13.0" x W 5.1" x D 9.0"
(H 330mm x W 130mm x D 230mm)
Δ The recommended time delay fuse or circuit breaker size is 30 amp. An individual branch circuit capable of
carrying 30 amperes and protected by fuses or circuit breaker is recommended for this application. Fuse size is
based on not more than 200 percent of the rated input amperage of the welding power source (Based on Article
630, National Electrical Code).
Thermal Arc continuously strives to produce the best product possible and therefore reserves the right to change, improve or
revise the specifications or design of this or any product without prior notice. Such updates or changes do not entitle the buyer of
equipment previously sold or shipped to the corresponding changes, updates, improvements or replacement of such items.
The values specified in the table above are optimal values, your values may differ. Individual equipment may differ from the above
specifications due to in part, but not exclusively, to any one or more of the following; variations or changes in manufactured
components, installation location and conditions and local power grid supply conditions.
Manual 0-5086
2-2
Introduction
INSTALLATION
THERMAL ARC 95 s
SECTION 3:
INSTALLATION
3.01 Environment
3.03 Electrical Input Connections
These units are designed for use in environments
with increased hazard of electric shock. Examples of
environments with increased hazard of electric shock
are:
A. In locations in which freedom of movement is
restricted, so that the operator is forced to perform the
work in a cramped (kneeling, sitting or lying) position
with physical contact with conductive parts.
B. In locations which are fully or partially limited by
conductive elements, and in which there is a high risk
of unavoidable or accidental contact by the operator.
C. In wet or damp hot locations where humidity or
perspiration considerably reduces the skin resistance
of the human body and the insulation properties of
accessories.
Environments with increased hazard of electric shock do
not include places where electrically conductive parts in
the near vicinity of the operator, which can cause increased
hazard, have been insulated.
3.02 Location
Be sure to locate the welder according to the following
guidelines:
• In areas, free from moisture and dust.
• Ambient temperature between 32°F (0°C) to 104° F
(40° C).
!
WARNING
ELECTRIC SHOCK can kill; SIGNIFICANT DC
VOLTAGE is present after removal of input
power.
DO NOT TOUCH live electrical parts.
SHUT DOWN welding power source, disconnect input
power employing lockout/tagging procedures. Lock-out/
tagging procedures consist of padlocking line disconnect
switch in open position, removing fuses from fuse box,
or shutting off and red-tagging circuit breaker or other
disconnecting device.
• Electrical Input Requirements
Operate the welding power source from a single-phase
50/60 Hz, AC power supply. The input voltage must match
one of the electrical input voltages shown on the input
data label on the unit nameplate. Contact the local electric
utility for information about the type of electrical service
available, how proper connections should be made, and
inspection required. The line disconnect switch provides
a safe and convenient means to completely remove all
electrical power from the welding power supply whenever
necessary to inspect or service the unit.
Do not connect an input (WHITE or BLACK) conductor to
the ground terminal.
• In areas, free from oil, steam and corrosive gases.
• In areas, not subjected to abnormal vibration or
shock.
• In areas, not exposed to direct sunlight or rain.
• Place at a distance of 12” (300mm) or more from
walls or similar that could restrict natural air flow
for cooling
!
WARNING
Thermal Arc advises that this equipment
be electrically connected by a qualified
electrician.
Installation
3-1
Manual 0-5086
THERMAL ARC 95 S
INSTALLATION
Refer to Figure 3-1:
1. Connect end of ground (GREEN or GREEN/YELLOW) conductor to a suitable ground. Use a grounding method
that complies with all applicable electrical codes.
2. Connect ends of line 1 (BLACK) and line 2 (WHITE) input conductors to a de-energized line disconnect switch.
3. Use Table 3-1 as a guide to select line fuses for the disconnect switch.
Input Voltage
115V
Fuse Size
30 Amps
CAUTION
The time-delay fuses or circuit breaker of an individual branch circuit may have nuisance tripping when
welding with this product due to the amperage rating of the time-delay fuses or circuit breaker.
The recommended time-delay fuses or circuit breaker size is 30 amperes. Fuse/circuit breaker size is based
on not more than 200 percent of the rated input amperage of the welding power source (Based on Article
630, National Electrical Code).
An individual branch circuit capable of carrying 30 amperes and time-delay fuses or circuit breaker protection is recommended for this application.
Welding Power Supply
120 V, 20A, 1Ø
Primary Power Cable
Art #: A-08473_AB
Figure 3-1: Electrical Input Connections
Manual 0-5086
3-2
Installation
INSTALLATION
THERMAL ARC 95 s
Input Power
Each unit incorporates an INRUSH circuit. When the MAIN CIRCUIT SWITCH is turned on, the inrush circuit provides
pre-charging for the input capacitors. A relay in the Power Control Assembly (PCA) will turn on after the input capacitors
have charged to operating voltage (after approximately 5 seconds)
NOTE
Damage to the PCA could occur if 133 VAC or higher is applied to the Primary Power Cable.
Model
Primary Supply Lead Size
(Factory Fitted)
Thermal Arc 95 S
12 AWG (3.3mm²)
Current & Duty Cycle
Minimum Primary
Current Circuit Size
(Vin/Amps)
TIG
STICK
115V/30A
-
90A / 23.6V @ 20%
115V/21A
95A / 13.8V @ 20%
-
Table 3-2: Primary Circuit Sizes to Achieve Maximum Current
Installation
3-3
Manual 0-5086
THERMAL ARC 95 S
3.04 Electromagnetic Compatibility
!
WARNING
Extra precautions for Electromagnetic
Compatibility may be required when this
Welding Power Source is used in a domestic
situation.
A. Installation and Use - Users Responsibility
The user is responsible for installing and using the welding
equipment according to the manufacturer’s instructions.
If electromagnetic disturbances are detected then it shall
be the responsibility of the user of the welding equipment
to resolve the situation with the technical assistance of
the manufacturer. In some cases this remedial action
may be as simple as earthing the welding circuit, see
NOTE below. In other cases it could involve constructing
an electromagnetic screen enclosing the Welding Power
Source and the work, complete with associated input
filters. In all cases, electromagnetic disturbances shall be
reduced to the point where they are no longer Troublesome.
INSTALLATION
8. The immunity of other equipment in the environment:
the user shall ensure that other equipment being used
in the environment is compatible: this may require
additional protection measures.
The size of the surrounding area to be considered will
depend on the structure of the building and other activities
that are taking place. The surrounding area may extend
beyond the boundaries of the premises.
C. Methods of Reducing Electromagnetic Emissions
1. Mains Supply
Welding equipment should be connected to the
mains supply according to the manufacturer’s
recommendations. If interference occurs, it may be
necessary to take additional precautions such as
filtering of the mains supply. Consideration should
be given to shielding the supply cable of permanently
installed welding equipment in metallic conduit or
equivalent. Shielding should be electrically continuous
throughout its length. The shielding should be
connected to the Welding Power Source so that good
electrical contact is maintained between the conduit
and the Welding Power Source enclosure.
B. Assessment of Area
2. Maintenance of Welding Equipment
Before installing welding equipment, the user shall make
an assessment of potential electromagnetic problems in
the surrounding area. The following shall be taken into
account.
1. Other supply cables, control cables, signaling and
telephone cables; above, below and adjacent to the
welding equipment.
2. Radio and television transmitters and receivers.
3. Computer and other control equipment.
4. Safety critical equipment, e.g. guarding of industrial
equipment.
5. The health of people around, e.g. the use of pacemakers and hearing aids.
The welding equipment should be routinely maintained
according to the manufacturer’s recommendations. All
access and service doors and covers should be closed
and properly fastened when the welding equipment
is in operation. The welding equipment should not
be modified in any way except for those changes
and adjustments covered in the manufacturer’s
instructions. In particular, the spark gaps of arc
striking and stabilizing devices should be adjusted
and maintained according to the manufacturer’s
recommendation
3. Welding Cables
The welding cables should be kept as short as possible
and should be positioned close together, running at or
close to the floor level.
6. Equipment used for calibration and measurement.
4. Equipotential Bonding
7. The time of day that welding or other activities are to
be carried out.
Bonding of all metallic components in the welding
installation and adjacent to it should be considered.
However, metallic components bonded to the work
piece will increase the risk that the operator could
receive a shock by touching the metallic components
and the electrode at the same time. The operator
should be insulated from all such bonded metallic
components.
3-4
Installation
Manual 0-5086
INSTALLATION
5. Earthing of the Work Piece
THERMAL ARC 95 s
3.05 Setup for Welding
Where the work piece is not bonded to earth for electrical safety, nor connected to earth because of its size
and position, e.g. ship’s hull or building steelwork,
a connection bonding the work piece to earth may
reduce emissions in some, but not all instances. Care
should be taken to prevent the earthing of the work
piece increasing the risk of injury to users, or damage
to other electrical equipment. Where necessary, the
connection of the work piece to earth should be made
by direct connection to the work piece, but in some
countries where direct connection is not permitted, the
bonding should be achieved by suitable capacitance,
selected according to national regulations.
NOTE
Conventional operating procedures apply
when using the Welding Power Source, i.e.
connect work lead directly to work piece and
electrode lead is used to hold electrode. Wide
safety margins provided by the design ensure
that the Welding Power Source will withstand
short-term overload without adverse effects.
The welding current range values should be
used as a guide only. Current delivered to the
arc is dependent on the welding arc voltage,
and as welding arc voltage varies between
different classes of electrodes, welding current at any one setting would vary according
to the type of electrode in use. The operator
should use the welding current range values
as a guide then fine tune the welding current
to suit the application.
6. Screening and Shielding
Selective screening and shielding of other cables
and equipment in the surrounding area may alleviate
problems of interference. Screening the entire
welding installation may be considered for special
applications.
!
WARNING
Before connecting the work clamp to the work
and inserting the electrode in the electrode
holder make sure the Primary power supply
is switched off.
Installation
3-5
Manual 0-5086
THERMAL ARC 95 S
INSTALLATION
3.06 STICK (SMAW) Setup
Set Welding Current
as specified by the
Electrode Manufacturer.
Set Process Selection
Switch to Stick.
Negative Output
Terminal
(Dinse™ 25)
Positive Output
Terminal
(Dinse™ 25)
200A
Art #: A-08602
Figure 3-2: Setup for STICK Welding
Stick Mode Sequence of Operation
CAUTION
Before any welding is to begin, be sure to wear all appropriate and recommended safety equipment.
3. Connect the ground clamp to your workpiece.
4. Plug the power cable into the appropriate outlet, and
turn the switch to the “ON” position. The power L.E.D
light should illuminate.
5. Set the “Process Selection Switch” to Stick
1. Switch the ON/OFF Switch (located on the rear panel)
to OFF.
6. Set the weld current control knob to the desired
amperage.
2. Connect the ground clamp cable to the negative output
terminal, and the electrode holder cable to the positive
output terminal.
7. Install a stick electrode in the electrode holder.
8. You are now ready to begin Stick Welding
NOTE
NOTE
Gently strike the electrode on the work piece to generate a welding arc, and slowly move along the work
piece while holding a consistent arc length above base
metal.
This set up is known as DC Electrode Positive or reverse
polarity. Please consult with the stick electrode manufacturer for specific polarity recommendations.
Manual 0-5086
3-6
Installation
INSTALLATION
THERMAL ARC 95 s
3.07 Lift TIG (GTAW) Setup
Set Process Selection
Switch to LIFT TIG.
Secure the gas cylinder in an
upright position by chaining it
to a stationary support to prevent
falling or tipping.
Set Welding Current
as specified by the
Electrode Manufacturer.
Negative
Output
Terminal
(Dinse™ 25)
Positive Output
Terminal
(Dinse™ 25)
Art #: A-08603
Figure 3-3: Setup for Lift TIG (GTAW) Welding
Lift TIG Sequence of Operation
CAUTION
Before any welding is to begin, be sure to wear all appropriate and recommended safety equipment.
1. Switch the ON/OFF Switch (located on the rear panel)
to OFF.
2. Connect the ground clamp cable to positive output
terminal, and the TIG torch cable to the negative output
terminal.
NOTE
This set up is known as Straight Polarity or DC Electrode
Negative. This is commonly used for DC TIG welding on
most materials such as steel and stainless steel.
Installation
3. Using a secured Argon cylinder, slowly crack open then
close the cylinder valve while standing off to the side
of the valve. This will remove any debris that may be
around the valve & regulator seat area.
4. Install the regulator and tighten with a wrench.
5. Connect the gas hose to the outlet of the Argon
regulator, and tighten with a wrench.
6. Be sure the gas valve on the torch is closed, and
slowly open the Argon Cylinder Valve to the fully open
position.
7. Connect the ground clamp to your work piece.
8. Plug the power cable into the appropriate outlet, and
turn the switch to the “ON” position. The power L.E.D.
light should illuminate.
3-7
Manual 0-5086
THERMAL ARC 95 S
INSTALLATION
9. Set the “Process Selection Switch” to LIFT TIG
10.Set the weld current control knob to the desired
amperage.
11.The tungsten must be ground to a blunt point in order
to achieve optimum welding results. It is critical
to grind the tungsten electrode in the direction the
grinding wheel is turning.
12.Install the tungsten with approximately 1/8” to ¼”
sticking out from the gas cup, ensuring you have
correct sized collet.
13.Tighten the back cap.
14.You are now ready to begin TIG Welding
NOTE
Open the gas valve on TIG torch handle, and adjust
the pressure of regulator to 15-25 cubic feet per hour.
This gas flow should be sufficient for most TIG welding
applications.
ii. Touch the tungsten to the work piece. This closes the
welding circuit, and the arc starts by slowly LIFTING the
torch off the base metal. Keep a consistent arc length
of about 1/8-1/4”.
iii. If necessary re-adjust the amperage setting to an
appropriate level.
.
Manual 0-5086
3-8
Installation
OPERATION
THERMAL ARC 95 s
SECTION 4:
OPERATION
Conventional operating procedures apply when using
the Welding Power Source, i.e. connect work lead
directly to work piece and electrode lead is used to hold
the electrode. The welding current range values should
be used as a guide only. Current delivered to the arc is
dependent on the welding arc voltage, and as welding
arc voltage varies between different classes of electrode,
welding current at any one setting would vary according
to the type of electrode in use. The operator should use
the welding current range values as a guide then fine
tune the welding current to suit the specific application.
Refer to the electrode manufacture's literature for further
information.
4.01 Front Panel
(C) Over Heat Indicator
The welding power source is protected by a self resetting
thermostat. The indicator will illuminate if the duty cycle
of the power source has been exceeded. If the Over Heat
light illuminates wait for the Over Heat light to extinguish
before resuming welding.
(D) Welding Current Control
The welding current is increased by turning the Weld
Current control knob clockwise or decreased by turning
the Weld Current control knob counterclockwise. The
welding current should be set according to the specific
application. Refer to the electrode manufacture's literature
for further information.
(E) ON/OFF Switch (located on rear panel - not
shown)
(A) Process Selection Switch
Switches between Lift TIG and STICK Welding modes.
(B) Power On Indicator
This switch controls the Mains Supply Voltage to the
Power Source.
The Power ON Indicator illuminates when the ON/OFF
switch is in the ON position and the nominal mains voltage
is present.
(B) Power On
Indicator
15A
OUTLET
MAX STICK
(C) Over Heat
Indicator
(D) Welding
Current
Control
15A
OUTLET
MAX TIG
(A) Process
Selection
Switch
Art # A-08707_AB
Figure 4-1: 95 S Controls
Operation
4-1
Manual 0-5086
THERMAL ARC 95 S
OPERATION
4.02 SMAW Electrode Polarity
Cast Iron
Stick electrodes are generally connected to the "+" Positive
Output Terminal and the work lead to the "−" Negative
Output Terminal but if in doubt consult the electrode
manufacturers literature for further information.
Most types of cast iron, except white iron, are weldable.
White iron, because of its extreme brittleness, generally
cracks when attempts are made to weld it. Trouble may
also be experienced when welding white-heart malleable,
due to the porosity caused by gas held in this type of
iron.
4.03 Effects of Stick Welding Various
Materials
High Tensile and Alloy Steels
The two most prominent effects of welding these steels
are the formation of a hardened zone in the weld area,
and, if suitable precautions are not taken, the occurrence
in this zone of under-bead cracks. Hardened zone and
under-bead cracks in the weld area may be reduced by
using the correct electrodes, preheating, using higher
current settings, using larger electrodes sizes, short runs
for larger electrode deposits or tempering in a furnace.
Manganese Steels
The effect on manganese steel of slow cooling from
high temperatures is to embrittle it. For this reason it is
absolutely essential to keep manganese steel cool during
welding by quenching after each weld or skip welding to
distribute the heat.
Copper and Alloys
The most important factor is the high rate of heat
conductivity of copper, making pre-heating of heavy
sections necessary to give proper fusion of weld and
base metal.
Types of Electrodes
Arc Welding electrodes are classified into a number of
groups depending on their applications. There are a
great number of electrodes used for specialized industrial
purposes which are not of particular interest for everyday
general work. These include some low hydrogen types
for high tensile steel, cellulose types for welding large
diameter pipes, etc The range of electrodes dealt with in
this publication will cover the vast majority of applications
likely to be encountered; are all easy to use.
Metal Being Joined
Electrode
Comments
Mild Steel
6013
Ideal electrodes for all general purpose work, features
include outstanding operator appeal, easy arc starting,
and low spatter.
Mild Steel
7014
All positional eletrode for use on mild and galvanized
steel furniture, plates, fences, gates, piples and tanks,
etc. Especially suitable for vertical-down welding.
Cast Iron
99% Nickel
Suitable for joining all cast irons except white cast iron.
Stainless Steel
318L-16
High corrosion resistances. Ideal for dairy work etc.
Copper, Bronze, Etc.
Bronze
5.7 ERCUSI-A
Easy to use electrode for marine fittings, water taps and
valves, water through floats arms, etc. Also for joining
copper to steel and for bronze overlays on steel shafts.
Copper, Bronze, Dissimilar Metals,
Crack Resistance, All Hard-to
Weld Jobs
312-16
It will weld most problematic jobs such as springs,
shafts, broken joins, mild steel to stainless and alloy
steels. Not suitable for aluminum.
Manual 0-5086
4-2
Operation
OPERATION
THERMAL ARC 95 s
4.04 GTAW Electrode Polarity
4.06 Tungsten Electrode Current Ranges
Connect the TIG torch to the "-" Negative Output Terminal
and the work lead to the "+" Positive Output Terminal for
direct current straight polarity. Direct current straight
polarity is the most widely used polarity for DC TIG
welding. It allows limited wear of the electrode since 70%
of the heat is concentrated at the work piece.
Electrode Diameter
DC Current (Amps)
1/16" (1.6mm)
20 - 90
3/32" (2.4mm)
60 - 115
.040" (1.0mm)
20 - 90
1/16" (1.6mm)
60 - 115
4.07 Shielding Gas Selection
Alloy
Carbon Steel
Stainless Steel
Nickel Alloy
Copper
Titanium
4.05 Guide for Selecting Filler Wire
Filler Wire Diameter
DC Current
Shielding Gas
Welding Argon
Welding Argon
Welding Argon
Welding Argon
Welding Argon
4.08 Tungsten Electrode Types
Electrode Type
(Ground Finish)
Welding Application
Features
Color Code
Thoriated 2%
DC welding of mild steel, stainless steel Excellent arc starting, long life, high
and copper.
current carrying capacity.
Red
Ceriated 2%
AC & DC welding of mild steel, stainless Longer life, more stable arc, easier
steel, copper, aluminum, magnesium and
starting, wider current range,
their alloys.
narrower & more concentrated arc.
Grey
4.09 TIG Welding Parameters for Steel
DC Current
Stainless
Steel
Electrode
Diameter
Filler Rod
Diameter
Argon Gas Flow
Rate
35-45
20-30
25-35
1/16"
(1.6mm)
10 CFH
(5 LPM)
Butt/Corner
40-50
0.040"
(1.0mm)
45-55
30-45
35-50
1/16"
(1.6mm)
13 CFH
(6 LPM)
Butt/Corner
50-60
0.040"
(1.0mm)
60-70
40-60
50-70
1/16"
(1.6mm)
15 CFH
(7 LPM)
Butt/Corner
70-90
1/16"
(1.6mm)
80-100
65-85
Butt/Corner
90-115
90-110
15CFH
(7 LPM)
Base Metal Mild Steel
Thickness
0.040"
(1.0mm)
0.045"
(1.22mm)
1/16"
(1.6mm)
1/8"
(3.2mm)
Operation
1/16" (1.16mm) 3/32" (2.4mm)
4-3
Joint / Type
Lap/Filler
Lap/Filler
Lap/Filler
Lap/Filler
Manual 0-5086
THERMAL ARC 95 S
OPERATION
4.10 Arc Welding Practice
The techniques used for arc welding are almost identical regardless of what types of metals are being joined. Naturally
enough, different types of electrodes would be used for different metals as described in the preceding section.
4.11 Welding Position
The electrodes dealt with in this publication can be used in most positions, i.e. they are suitable for welding in flat,
horizontal, vertical and overhead positions. Numerous applications call for welds to be made in positions intermediate
between these. Some of the common types of welds are shown in Figures 4-2 through 4-9.
Art # A-07687
Figure 4-2: Flat position, down hand butt weld
Art A-07691
Figure 4-6: Vertical position, butt weld
Art # A-07688
Figure 4-3: Flat position, gravity fillet weld
Art # A-07692
Figure 4-7: Vertical position, fillet weld
Art # A-07689
Figure 4-4: Horizontal position, butt weld
Art# A-07693
Figure 4-8: Overhead position, butt weld
Art # A-07690
Figure 4-5: Horizontal - Vertical (HV) position
Art # A-07694
Figure 4-9: Overhead position, fillet weld
Manual 0-5086
4-4
Operation
OPERATION
THERMAL ARC 95 s
4.12 Joint Preparations
In many cases, it will be possible to weld steel sections without any special preparation. For heavier sections and for
repair work on castings, etc., it will be necessary to cut or grind an angle between the pieces being joined to ensure
proper penetration of the weld metal and to produce sound joints.
In general, surfaces being welded should be clean and free of rust, scale, dirt, grease, etc. Slag should be removed
from oxy-cut surfaces. Typical joint designs are shown in Figure 4-10.
Single Vee Butt Joint
Open Square Butt
Joint
Not less than
70°
1/16” (1.6mm) max
Gap varies from
1/16” (1.6mm) to 3/16” (4.8mm)
depending on plate thickness
1.6mm (1/16”)
Single Vee Butt Joint
Not less than
45°
Double Vee Butt Joint
Lap Joint
Fillet Joint
Not less than
70°
1/16” (1.6mm) max
1/16” (1.6mm)
Tee Joints
(Fillet both sides of the
joint)
Corner Weld
Edge Joint
Plug Weld
Plug Weld
Art # A-07695_AB
Figure 4-10: Typical joint designs for arc welding
Operation
4-5
Manual 0-5086
THERMAL ARC 95 S
4.13 Arc Welding Technique
A Word to Beginners
For those who have not yet done any welding, the simplest
way to commence is to run beads on a piece of scrap
plate. Use mild steel plate about 6.0mm thick and a 3.2mm
electrode. Clean any paint, loose scale or grease off the
plate and set it firmly on the work bench so that welding
can be carried out in the downhand position. Make sure
that the work clamp is making good electrical contact with
the work, either directly or through the work table. For light
gauge material, always clamp the work lead directly to the
job, otherwise a poor circuit will probably result.
4.14 The Welder
Place yourself in a comfortable position before beginning
to weld. Get a seat of suitable height and do as much work
as possible sitting down. Don’t hold your body tense. A
taut attitude of mind and a tensed body will soon make
you feel tired. Relax and you will find that the job becomes
much easier. You can add much to your peace of mind
by wearing a leather apron and gauntlets. You won’t be
worrying then about being burnt or sparks setting alight
to your clothes.
Place the work so that the direction of welding is across,
rather than to or from, your body. The electrode holder
lead should be clear of any obstruction so that you can
move your arm freely along as the electrode burns down.
If the lead is slung over your shoulder, it allows greater
freedom of movement and takes a lot of weight off your
hand. Be sure the insulation on your cable and electrode
holder is not faulty, otherwise you are risking an electric
shock.
4.15 Striking the Arc
Practice this on a piece of scrap plate before going on to
more exacting work. You may at first experience difficulty
due to the tip of the electrode “sticking” to the work piece.
This is caused by making too heavy a contact with the
work and failing to withdraw the electrode quickly enough.
A low amperage will accentuate it. This freezing-on of the
tip may be overcome by scratching the electrode along
the plate surface in the same way as a match is struck. As
soon as the arc is established, maintain a 1/16" (1.6mm)
to 1/8" (3.2mm) gap between the burning electrode end
and the parent metal. Draw the electrode slowly along as
it melts down.
Another difficulty you may meet is the tendency, after the
arc is struck, to withdraw the electrode so far that the arc
Manual 0-5086
OPERATION
is broken again. A little practice will soon remedy both
of these faults.
Art # A-07696
Figure 4-11: Striking an arc
4.16 Arc Length
The securing of an arc length necessary to produce a
neat weld soon becomes almost automatic. You will find
that arc produces a crackling or spluttering noise and
the weld metal comes across in large, irregular blobs.
The weld bead is flattened and spatter increases. A short
arc is essential if a high quality weld is to be obtained
although if it is too short there is the danger of it being
blanketed by slag and the electrode tip being solidified
in. If this should happen, give the electrode a quick twist
back over the weld to detach it. Contact or “touch-weld”
electrodes such as E7014 electrode do not stick in this
way, and make welding much easier.
4.17 Rate of Travel
After the arc is struck, your next concern is to maintain
it, and this requires moving the electrode tip towards the
molten pool at the same rate as it is melting away. At the
same time, the electrode has to move along the plate to
form a bead. The electrode is directed at the weld pool at
about 20° from the vertical. The rate of travel has to be
adjusted so that a well-formed bead is produced.
If the travel is too fast, the bead will be narrow and strung
out and may even be broken up into individual globules.
If the travel is too slow, the weld metal piles up and the
bead will be too large.
4.18 Making Welded Joints
Having attained some skill in the handling of an electrode,
you will be ready to go on to make up welded joints.
A. Butt Welds
Set up two plates with their edges parallel, as shown in
Figure 4-12, allowing 1/15" (1.6mm) to 3/32" (2.4mm)
gap between them and tack weld at both ends. This is to
prevent contraction stresses from the cooling weld metal
pulling the plates out of alignment. Plates thicker than 1/4"
(6.0mm) should have their mating edges beveled to form
4-6
Operation
OPERATION
THERMAL ARC 95 s
a 70° to 90° included angle. This allows full penetration of
the weld metal to the root. Using a 1/8" (3.2mm) E7014
electrode at 120 amps, deposit a run of weld metal on the
bottom of the joint.
Do not weave the electrode, but maintain a steady rate of
travel along the joint sufficient to produce a well-formed
bead. At first you may notice a tendency for undercut to
form, but keeping the arc length short, the angle of the
electrode at about 20° from vertical, and the rate of travel
not too fast, will help eliminate this. The electrode needs
to be moved along fast enough to prevent the slag pool
from getting ahead of the arc. To complete the joint in thin
plate, turn the job over, clean the slag out of the back and
deposit a similar weld.
Art # A-07697
B. Fillet Welds
These are welds of approximately triangular cross-section
made by depositing metal in the corner of two faces
meeting at right angles. Refer to Figure 4-5.
A piece of angle iron is a suitable specimen with which to
begin, or two lengths of strip steel may be tacked together
at right angles. Using a 1/8" (3.2mm) E7014 electrode at
120 amps, position angle iron with one leg horizontal and
the other vertical. This is known as a horizontal-vertical
(HV) fillet. Strike the arc and immediately bring the
electrode to a position perpendicular to the line of the fillet
and about 45° from the vertical. Some electrodes require
to be sloped about 20° away from the perpendicular
position to prevent slag from running ahead of the weld.
Refer to Figure 4-14. Do not attempt to build up much
larger than 1/4" (6.4mm) width with a 1/8" (3.2mm)
electrode, otherwise the weld metal tends to sag towards
the base, and undercut forms on the vertical leg. Multiruns can be made as shown in Figure 4-15. Weaving in
HV fillet welds is undesirable.
Figure 4-12: Butt weld
Art # A-07699
Art # A-07698
Figure 4-14: Electrode position for HV fillet weld
Figure 4-13: Weld build up sequence
Heavy plate will require several runs to complete the joint.
After completing the first run, chip the slag out and clean
the weld with a wire brush. It is important to do this to
prevent slag being trapped by the second run. Subsequent
runs are then deposited using either a weave technique or
single beads laid down in the sequence shown in Figure
4-13. The width of weave should not be more than three
times the core wire diameter of the electrode. When the
joint is completely filled, the back is either machined,
ground or gouged out to remove slag which may be
trapped in the root, and to prepare a suitable joint for
depositing the backing run. If a backing bar is used, it
is not usually necessary to remove this, since it serves
a similar purpose to the backing run in securing proper
fusion at the root of the weld.
Operation
Art # A-07700
Figure 4-15: Multi-runs in HV fillet weld
C. Vertical Welds
1. Vertical Up
4-7
Tack weld a three feet length of angle iron to your
work bench in an upright position. Use a 1/8"
(3.2mm) E7014 electrode and set the current at
120 amps. Make yourself comfortable on a seat
in front of the job and strike the arc in the corner
Manual 0-5086
THERMAL ARC 95 S
OPERATION
of the fillet. The electrode needs to be about 10°
from the horizontal to enable a good bead to be
deposited. Refer Figure 4-16. Use a short arc, and
do not attempt to weave on the first run. When
the first run has been completed de-slag the weld
deposit and begin the second run at the bottom.
This time a slight weaving motion is necessary
to cover the first run and obtain good fusion at
the edges. At the completion of each side motion,
pause for a moment to allow weld metal to build
up at the edges, otherwise undercut will form and
too much metal will accumulate in the centre of the
weld. Figure 4-17 illustrates multi-run technique
and Figure 4-18 shows the effects of pausing at
the edge of weave and of weaving too rapidly.
2. Vertical Down
TheE7014 electrode makes welding in this position
particularly easy. Use a 1/8" (3.2mm) electrode at
120 amps. The tip of the electrode is held in light
contact with the work and the speed of downward
travel is regulated so that the tip of the electrode
just keeps ahead of the slag. The electrode should
point upwards at an angle of about 45°.
3. Overhead Welds
Art # A-07701
Figure 4-16: Single run vertical fillet weld
Art # A-07702
Apart from the rather awkward position necessary,
overhead welding is not much more difficult
that downhand welding. Set up a specimen for
overhead welding by first tacking a length of angle
iron at right angles to another piece of angle iron
or a length of waste pipe. Then tack this to the
work bench or hold in a vice so that the specimen
is positioned in the overhead position as shown
in the sketch. The electrode is held at 45° to
the horizontal and tilted 10° in the line of travel
(Figure 4-19). The tip of the electrode may be
touched lightly on the metal, which helps to give a
steady run. A weave technique is not advisable for
overhead fillet welds. Use a 1/8" (3.2mm) E6012
electrode at 120 amps, and deposit the first run
by simply drawing the electrode along at a steady
rate. You will notice that the weld deposit is rather
convex, due to the effect of gravity before the
metal freezes.
Art # A-07704
Figure 4-17: Multi run vertical fillet weld
Figure 4-19: Overhead fillet weld
4.19 Distortion
Distortion in some degree is present in all forms of
welding. In many cases it is so small that it is barely
perceptible, but in other cases allowance has to be made
before welding commences for the distortion that will
subsequently occur. The study of distortion is so complex
that only a brief outline can be attempted hear.
Art # A-07703
Figure 4-18: Examples of vertical fillet welds
Manual 0-5086
4-8
Operation
OPERATION
THERMAL ARC 95 s
4.20 The Cause of Distortion
Art # A-07706
Distortion is cause by:
A. Contraction of Weld Metal:
Molten steel shrinks approximately 11 per cent in volume
on cooling to room temperature. This means that a cube
of molten metal would contract approximately 2.2 per
cent in each of its three dimensions. In a welded joint, the
metal becomes attached to the side of the joint and cannot
contract freely. Therefore, cooling causes the weld metal
to flow plastically, that is, the weld itself has to stretch if
it is to overcome the effect of shrinking volume and still
be attached to the edge of the joint. If the restraint is very
great, as, for example, in a heavy section of plate, the weld
metal may crack. Even in cases where the weld metal does
not crack, there will still remain stresses “locked-up” in
the structure. If the joint material is relatively weak, for
example, a butt joint in 2.0mm sheet, the contracting weld
metal may cause the sheet to become distorted.
B. Expansion and Contraction of Parent Metal in the
Fusion Zone:
While welding is proceeding, a relatively small volume
of the adjacent plate material is heated to a very high
temperature and attempts to expand in all directions. It
is able to do his freely at right angles to the surface of
the plate (i.e., “through the weld”), but when it attempts
to expand “across the weld” or “along the weld”, it
meets considerable resistance, and to fulfil the desire for
continued expansion, it has to deform plastically, that is,
the metal adjacent to the weld is at a high temperature
and hence rather soft, and, by expanding, pushes against
the cooler, harder metal further away, and tends to bulge
(or is “upset”). When the weld area begins to cool,
the “upset” metal attempts to contract as much as it
expanded, but, because it has been “upset”, it does not
resume its former shape, and the contraction of the new
shape exerts a strong pull on adjacent metal. Several
things can then happen.
The metal in the weld area is stretched (plastic deformation),
the job may be pulled out of shape by the powerful
contraction stresses (distortion), or the weld may crack,
in any case, there will remain “locked-up” stresses in
the job. Figures 4-20 and 4- 21 illustrate how distortion
is created.
Figure 4-21: Parent metal contraction
4.21 Overcoming Distortion Effects
There are several methods of minimizing distortion
effects.
A. Peening
This is done by hammering the weld while it is still hot.
The weld metal is flattened slightly and because of this the
tensile stresses are reduced a little. The effect of peening is
relatively shallow, and is not advisable on the last layer.
B. Distribution of Stresses
Distortion may be reduced by selecting a welding
sequence which will distribute the stresses suitably so
that they tend to cancel each other out. See Figures 4-25
through 4-28 for various weld sequences. Choice of a
suitable weld sequence is probably the most effective
method of overcoming distortion, although an unsuitable
sequence may exaggerate it. Simultaneous welding of
both sides of a joint by two welders is often successful
in eliminating distortion.
C. Restraint of Parts
Forcible restraint of the components being welded is often
used to prevent distortion. Jigs, positions, and tack welds
are methods employed with this in view.
D. Presetting
It is possible in some cases to tell from past experience or
to find by trial and error (or less frequently, to calculate)
how much distortion will take place in a given welded
structure. By correct pre-setting of the components to be
welded, constructional stresses can be made to pull the
parts into correct alignment. A simple example is shown
in Figure 4-22.
Art # A-07705
Figure 4-20: Parent metal expansion
Operation
4-9
Manual 0-5086
THERMAL ARC 95 S
OPERATION
E. Preheating
Suitable preheating of parts of the structure other than
the area to be welded can be sometimes used to reduce
distortion. Figure 4-23 shows a simple application. By
removing the heating source from b and c as soon as
welding is completed, the sections b and c will contract
at a similar rate, thus reducing distortion.
Art # A-07711
Figure 4-26: Step back sequence
Art # A-07712
Art # A-07707
Figure 4-22: Principle of presetting
Art # A-07708
B
Preheat
C
Weld
Preheat
Figure 4-27: Chain intermittent welding
Art # A-07713
Dotted lines show effect if no preheat is used
Figure 4-23: Reduction of distortion by preheating
Art # A-07709
Figure 4-28: Staggered intermittent welding
Figure 4-24: Examples of distortion
Art # A-07710
Figure 4-25: Welding sequence
Manual 0-5086
4-10
Operation
SERVICE
THERMAL ARC 95 s
SECTION 5:
SERVICE
5.01 Maintenance and Inspection
The only routine maintenance required for the power
supply is a thorough cleaning and inspection, with the
frequency depending on the usage and the operating
environment.
!
To clean the unit, open the enclosure and use a vacuum
cleaner to remove any accumulated dirt and dust. The unit
should also be wiped clean, if necessary; with solvents
that are recommended for cleaning electrical apparatus.
CAUTION
Do not blow air into the power supply during
cleaning. Blowing air into the unit can cause
metal particles to interfere with sensitive
electrical components and cause damage to
the unit.
WARNING
There are extremely dangerous voltages and
power levels present inside this product.
Disconnect primary power at the source before opening the enclosure. Wait at least two
minutes before opening the enclosure to allow
the primary capacitors to discharge.
Warning!
Disconnect input power before maintaining.
Maintain more often
if used under severe
conditions
Each Use
Visual check of torch
Consumable parts
Visual check of
regulator and pressure
Weekly
Visually inspect
the torch body
and consumables
Visually inspect the
cables and leads.
Replace as needed
3 Months
Replace all
broken parts
Clean
exterior
of power supply
6 Months
Art # A-08549_AB
Service
Bring the unit to an authorized
Thermal Arc Service Center
to remove any accumulated dirt
and dust from the interior.
This may need to be done more
frequently under exceptionally
dirty conditions.
5-1
Manual 0-5086
THERMAL ARC 95 S
SERVICE
5.02 STICK Welding Problems
Description
Possible Cause
1. Gas pockets or voids in weld metal A. Electrodes are damp.
(Porosity).
B. Welding current is too high.
Remedy
A. Dry electrodes before use.
B. Reduce welding current.
C. Surface impurities such as oil, C. Clean joint before welding
grease, paint, etc.
2. Crack occurring in weld metal soon A. Rigidity of joint.
A. Redesign to relieve weld joint of severe
after solidification commences.
stresses or use crack resistance
electrodes.
B. Insufficient throat thickness. B. Travel slightly slower to allow greater
build up in throat.
C. Cooling rate is too high.
3. A gap is left by failure of the weld A. Welding current is too low.
metal to fill the root of the weld.
B. Electrode too large for joint.
Art # A-05866_AC
Incorrect Sequence
C. Preheat plate and cool slowly.
A. Increase welding current
B. Use smaller diameter electrode.
C. Insufficient gap.
C. Allow wider gap.
D. Incorrect sequence.
D. Use correct build-up sequence.
Insufficient Gap
4. Portions of the weld run do not fuse A. Small electrodes used on
to the surface of the metal or edge
heavy cold plate.
of the joint
B. Welding current is too low.
C. Wrong electrode angle.
Lack of fusion caused by dirt,
electrode angle incorrect,
rate of travel too high
Art # A-05867_AC
Lack of side fusion,
scale dirt, small electrode,
amperage too low
Lack of
inter-run fusion
Lack of root fusion
A. Use larger electrodes and preheat
the plate.
B. Increase welding current
C. Adjust angle so the welding arc is
directed more into the base metal
D. Travel speed of electrode is too D. Reduce travel speed of electrode
high.
E. Clean surface before welding.
E. Scale or dirt on joint surface.
5. Non-metallic particles are trapped A. Non-metallic particles may
in the weld metal (slag inclusion).
be trapped in undercut from
previous run.
A. If bad undercut is present, clean slag
out and cover with a run from a smaller
diameter electrode.
B. Joint preparation too restricted. B. Allow for adequate penetration and
room for cleaning out the slag.
Not cleaned,
or incorrect
electrode
Slag
trapped in
undercut
D. Lack of penetration with slag D. Use smaller electrode with sufficient
trapped beneath weld bead.
current to give adequate penetration.
Use suitable tools to remove all slag
from corners.
Art # A-05868_AB
Slag trapped in root
Manual 0-5086
C. Irregular deposits allow slag to C. If ver y bad, chip or grind out
be trapped.
irregularities.
E. Rust or mill scale is preventing E. Clean joint before welding.
full fusion.
F. Wrong electrode for position in F. Use electrodes designed for position
which welding is done.
in which welding is done, otherwise
proper control of slag is difficult.
5-2
Service
SERVICE
THERMAL ARC 95 s
5.03 TIG Welding Problems
Weld quality is dependent on the selection of the correct consumables, maintenance of equipment and proper welding
technique.
Description
1. Excessive beard build-up or poor
penetration or poor fusion at
edges of weld.
2. Weld bead too wide and flat or
undercut at edges of weld or
excessive burn through.
3. Weld bead too small or insufficient
penetration or ripples in bead are
widely spaced apart.
4. Weld bead too wide or excessive
bead build up or excessive
penetration in butt joint.
5. Uneven leg length in fillet joint.
6. Electrode melts when arc is
struck.
7. Dirty weld pool.
Possible Cause
Welding current is too low
Remedy
Increase weld current and/or
change joint preparation.
Welding current is too high.
Decrease welding current.
Travel speed too fast.
Reduce travel speed.
Travel speed is too slow.
Increase travel speed.
Wrong placement of filler rod.
Electrode is connected to the "+"
Positive Output Terminal.
A. Electrode contaminated through
contact with work piece or filler
rod material.
B. Gas contaminated with air.
8. Poor weld finish.
Inadequate shielding gas.
9. Arc flutters during TIG welding.
Tungsten electrode is too large
for the welding current.
10. W e l d i n g a r c c a n n o t b e
established.
A. Work clamp is not connected to
the work piece or the work/torch
leads are not connected to the
correct welding terminals.
B. Torch lead is disconnected.
11. Electrode melts or oxidizes when
an arc is struck.
C. Gas flow incorrectly set, cylinder
empty or the torch valve is off.
A. No gas is flowing to welding
region.
B. Torch is clogged with dust.
C. Gas hose is cut.
D. Gas passage contains impurities.
E. Gas regulator turned off.
F. Torch valve is turned off.
G. The electrode is too small for the
welding current.
Service
5-3
Re-position filler rod.
Connect the electrode to the
"-" Negative Output Terminal.
A. Clean the electrode by grinding
contaminates off.
B. Check gas lines for cuts and loose
fitting or change gas cylinder.
Increase gas flow or check gas line
for problems
Select the right size electrode.
Refer to section Tungsten Electrode
Current Ranges.
A. Connect the work clamp to the
work piece or connect the work/
torch leads to the correct welding
terminals.
B. Connect it to the "-" Negative
Output Terminal.
C. Select the right flow rate, change
cylinder or turn torch valve on.
A. Check the gas lines for kinks or
breaks or cylinder contains gas.
B. Clean torch.
C. Replace gas hose.
D. Disconnect gas hose from torch
then raise gas pressure and blow
out impurities.
E. Turn on.
F. Turn on.
G. Increase electrode diameter or
reduce the welding current.
Manual 0-5086
THERMAL ARC 95 S
SERVICE
TIG Welding Problems (Continued)
Description
12. Arc start is not smooth.
Possible Cause
Remedy
A. Tungsten electrode is too large
for the welding current.
B. The wrong electrode is being
used for the welding job.
C. Gas flow rate is too high.
A. Refer to section Tungsten Electrode
Current Ranges for the correct size.
B. Refer to section Tungsten Electrode
Types for the correct electrode type.
C. Select the correct flow rate for the
welding job.
D. Use 100% argon for TIG welding.
D. Incorrect shield gas is being
used.
E. Poor work clamp connection
to work piece.
!
E. Improve connection to work piece.
WARNING
There are extremely dangerous voltages and power levels present inside this product. Do not attempt to repair
unless you are an Accredited Thermal Arc Service Agent and you have had training in power measurements
and troubleshooting techniques. If major complex subassemblies are faulty, then the Welding Power Source
must be returned to an Accredited Thermal Arc Service Agent for repair.
5.04 Power Source Problems
Manual 0-5086
5-4
Service
APPENDIX
THERMAL ARC 95 s
APPENDIX 1: REPLACEMENT PARTS
Description
Fan, 24V DC, 95S
Rectifier Bridge, 700V, 50A, 95S
Current Sensor, 95S
Thermistor, 95S
Terminal, Output, 95S
Handle, 95S
Knob, Control, Red, 20 OD x 6 ID
Panel, Base, 95S
Panel, Cover, 95S
Panel, Front, 95S
Panel, Rear, 95S
PCB, Control, 95S
PCB, Front Control, 95S
PCB, Power, 95S
Strap, Shoulder, 95S
Switch, On/Off, 95S
Appendix
A-1
Part No.
W7003004
W7003010
W7003013
W7003016
W7003019
W7003040
W7003041
W7003042
W7003043
W7003044
W7003045
W7003046
W7003047
W7003048
W7003049
W7003050
Manual 0-5086
THERMAL ARC 95 S
APPENDIX 2: OPTIONS AND ACCESSORIES
Description
APPENDIX
Part Number
17V style TIG Torch with 3m lead, gas valve, 25mm dinse connection and accessory kit
Argon Shielding Gas Regulator with 5/8"-18 UNF Hose Connection
W4012500
600300
Power Adapter-115V,20A Socket to 15A Plug
W4013300
USA Graphics Auto-Darkening welding helmet, spare cover lens and operating manual
W4011700
Canadian Graphics Auto-Darkening welding helmet, spare cover lens and operating manual
W4011800
Claret Color Auto-Darkening welding helmet, spare cover lens and operating manual
W4011900
Black Graphics Auto-Darkening welding helmet, spare cover lens and operating manual
W4012000
Manual 0-5086
A-2
Appendix
Appendix
FAN
K1 AC115V/60HZ
A-3
3
1
AC
AC
-
+
4
2
-24V
PTC
LED1
OC1 OC2
FJ
LED2 VR1
Pr2
Pr1
DR1
DR2
DR3
DR4
DR5
DR6
DR7
DR8
DR6
DR5
DR2
DR1
IGBT
IGBT
DR8
DR7
DR4
DR3
IGBT
IGBT
OC
OC1
OC2
TRANS2
L?
OUT
OUT
APPENDIX
APPENDIX 3: system schematic
THERMAL ARC 95 s
Art # A-09016
Manual 0-5086
THERMAL ARC 95 S
APPENDIX
This Page Intentionally Blank
Manual 0-5086
A-4
Appendix
LIMITED WARRANTY
This information applies to Thermal Arc products that were purchased in the USA and Canada.
November 2007
LIMITED WARRANTY: Thermal Arc®, Inc., A Thermadyne Company (“Thermal Arc”), warrants
to customers of authorized distributors (“Purchaser”) that its products will be free of defects
in workmanship or material. Should any failure to conform to this warranty appear within the
warranty period stated below, Thermal Arc shall, upon notification thereof and substantiation that
the product has been stored, installed, operated, and maintained in accordance with Thermal
Arc’s specifications, instructions, recommendations and recognized standard industry practice,
and not subject to misuse, repair, neglect, alteration, or damage, correct such defects by suitable
repair or replacement, at Thermal Arc’s sole option, of any components or parts of the product
determined by Thermal Arc to be defective.
This warranty is exclusive and in lieu of any warranty of merchantability,
fitness for any particular purpose, or other warranty of quality, whether
express, implied, or statutory.
Limitation of liability: Thermal Arc shall not under any circumstances be liable for special, indirect,
incidental, or consequential damages, including but not limited to lost profits and business
interruption. The remedies of the purchaser set forth herein are exclusive, and the liability of
Thermal Arc with respect to any contract, or anything done in connection therewith such as the
performance or breach thereof, or from the manufacture, sale, delivery, resale, or use of any
goods covered by or furnished by Thermal Arc, whether arising out of contract, tort, including
negligence or strict liability, or under any warranty, or otherwise, shall not exceed the price of the
goods upon which such liability is based.
No employee, agent, or representative of Thermal Arc is authorized to change this warranty in
any way or grant any other warranty, and Thermal Arc shall not be bound by any such attempt.
Correction of non-conformities, in the manner and time provided herein, constitutes fulfillment
of thermal’s obligations to purchaser with respect to the product.
This warranty is void, and seller bears no liability hereunder, if purchaser used replacement
parts or accessories which, in Thermal Arc’s sole judgment, impaired the safety or performance
of any Thermal Arc product. Purchaser’s rights under this warranty are void if the product is sold
to purchaser by unauthorized persons.
The warranty is effective for the time stated below beginning on the date that the authorized
distributor delivers the products to the Purchaser. Notwithstanding the foregoing, in no event
shall the warranty period extend more than the time stated plus one year from the date Thermal
Arc delivered the product to the authorized distributor.
Warranty repairs or replacement claims under this limited warranty must be submitted to
Thermal Arc via an authorized Thermal Arc repair facility within thirty (30) days of purchaser’s
discovery of any defect. Thermal Arc shall pay no transportation costs of any kind under this
warranty. Transportation charges to send products to an authorized warranty repair facility
shall be the responsibility of the Purchaser. All returned goods shall be at the Purchaser’s
risk and expense. This warranty dated July 1st 2007 supersedes all previous Thermal Arc
warranties. Thermal Arc® is a Registered Trademark of Thermal Arc, Inc.
WARRANTY SCHEDULE
This information applies to Thermal Arc products that were purchased in the USA and Canada.
January 2009
SAFETY EQUIPMENT
Auto-Darkening Welding Helmet (Electronic Lens)
Harness Assembly
ENGINE DRIVEN WELDERS
Scout, Raider, Explorer
Original Main Power Stators and Inductors
Original Main Power Rectifiers, Control P.C. Boards
All other original circuits and components including, but not limited to, relays,
switches, contactors, solenoids, fans, power switch semi-conductors
Engines and associated components are NOT warranted by Thermal Arc, although
most are warranted by the engine
WARRANTY PERIOD
2 years
1 month
LABOR
2 years
1 month
WARRANTY PERIOD
LABOR
3 years
3 years
3 years
3 years
GMAW/FCAW (MIG) WELDING EQUIPMENT
Firepower FP-95, FP-125, FP-135, FP-165
Fabricator 140, 180, 190, 210, 251, 281; Fabstar 4030;
PowerMaster 350, 350P, 500, 500P, 320SP; 400SP; 500SP; Excelarc 6045.
Wire Feeders; Ultrafeed, Portafeed
Original Main Power Transformer and Inductor
Original Main Power Rectifiers, Control P.C. Boards, power switch semi-conductors
All other original circuits and components including, but not limited to, relays,
switches, contactors, solenoids, fans, electric motors.
GTAW (TIG) & MULTI-PROCESS INVERTER WELDING EQUIPMENT
160TS, 300TS, 400TS, 185AC/DC, 200AC/DC, 300AC/DC, 400MST, 300MST,
400MSTP
Original Main Power Magnetics
Original Main Power Rectifiers, Control P.C. Boards, power switch semi-conductors
All other original circuits and components including, but not limited to, relays,
switches, contactors, solenoids, fans, electric motors.
PLASMA WELDING EQUIPMENT
Ultima 150
Original Main Power Magnetics
Original Main Power Rectifiers, Control P.C. Boards, power switch semi-conductors
Welding Console, Weld Controller, Weld Timer
All other original circuits and components including, but not limited to, relays,
switches, contactors, solenoids, fans, electric motors, Coolant Recirculator.
SMAW (Stick) WELDING EQUIPMENT
Thermal Arc 95 S
Original Main Power Magnetics
Original Main Power Rectifiers, Control P.C. Boards
All other original circuits and components including, but not limited to, relays,
switches, contactors, solenoids, fans
160S, 300S, 400S
Original Main Power Magnetics
Original Main Power Rectifiers, Control P.C. Boards
All other original circuits and components including, but not limited to, relays,
switches, contactors, solenoids, fans, power switch semi-conductors
GENERAL ARC EQUIPMENT
Water Recirculators
Plasma Welding Torches
Gas Regulators (Supplied with power sources)
WARRANTY PERIOD
LABOR
5 years
3 years
3 years
3 years
1 year
WARRANTY PERIOD
1 year
LABOR
5 years
3 years
3 years
3 years
1 year
WARRANTY PERIOD
1 year
LABOR
5 years
3 years
3 years
3 years
3 years
3 years
1 year
WARRANTY PERIOD
1 year
LABOR
1 year
1 year
1 year
1 year
1 year
1 year
5 years
3 years
3 years
3 years
1 year
WARRANTY PERIOD
1 year
180 days
180 days
1 year
LABOR
1 year
180 days
Nil
90 days
90 days
Nil
Nil
Nil
Nil
MIG and TIG Torches (Supplied with power sources)
Replacement repair parts
MIG, TIG and Plasma welding torch consumable items
1 year
1 year
See the Engine Manufactures’
Warranty for Details
GLOBAL CUSTOMER SERVICE CONTACT INFORMATION
Thermadyne USA
2800 Airport Road
Denton, Tx 76207 USA
Telephone: (940) 566-2000
800-426-1888
Fax: 800-535-0557
Email: [email protected]
Thermadyne Asia Sdn Bhd
Lot 151, Jalan Industri 3/5A
Rawang Integrated Industrial Park - Jln Batu Arang
48000 Rawang Selangor Darul Ehsan
West Malaysia
Telephone: 603+ 6092 2988
Fax : 603+ 6092 1085
Thermadyne Canada
2070 Wyecroft Road
Oakville, Ontario
Canada, L6L5V6
Telephone: (905)-827-1111
Fax: 905-827-3648
Cigweld, Australia
71 Gower Street
Preston, Victoria
Australia, 3072
Telephone: 61-3-9474-7400
Fax: 61-3-9474-7510
Thermadyne Europe
Europe Building
Chorley North Industrial Park
Chorley, Lancashire
England, PR6 7Bx
Telephone: 44-1257-261755
Fax: 44-1257-224800
Thermadyne Italy
OCIM, S.r.L.
Via Benaco, 3
20098 S. Giuliano
Milan, Italy
Tel: (39) 02-36546801
Fax: (39) 02-36546840
Thermadyne, China
RM 102A
685 Ding Xi Rd
Chang Ning District
Shanghai, PR, 200052
Telephone: 86-21-69171135
Fax: 86-21-69171139
Thermadyne International
2070 Wyecroft Road
Oakville, Ontario
Canada, L6L5V6
Telephone: (905)-827-9777
Fax: 905-827-9797
World Headquarters
Thermadyne Holdings Corporation
Suite 300, 16052 Swingley Ridge Road
St. Louis, MO 63017
Telephone: (636) 728-3000
FAX:
(636) 728-3010
Email: [email protected]
www.thermalarc.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement