Controller Optimisation, AG 0100

EN
AG 0100
Controller Optimisation
Guideline for AC motors - CFC Closed-Loop
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Pos : 3 /Appli kationen/[AG 0100] R egler optimi erung ASM - CFC Clos ed-Loop/0. Pr olog/D okumentation - Versionsliste [AG 0100] @ 5\mod_1400484697119_388.doc x @ 132290 @ @ 1
Documentation
Title:
AG 0100
Order – No.:
6047502
Series:
SK 200E, SK 500E
FI series:
SK 200E, SK 210E, SK 220E, SK 230E,
SK 205E, SK 215E, SK 225E, SK 235E,
SK 520E, SK 530E, SK 535E,SK 540E,
SK 545E
FI types:
SK 2xxE-250-112-O ... SK 2xxE-750-112-O
(0.25 - 0.75 kW, 1 ~ 100 - 120 V, output 3 ~ 230 V)
SK 2xxE-250-123-A ... SK 2xxE-111-123-A
(0.25 - 1.1 kW, 1 ~ 220 - 240 V)
SK 2xxE-250-323-A ... SK 2xxE-112-323-A
(0.25 - 11.0 kW, 3 ~ 220 - 240 V) 1
SK 2xxE-550-340-A ... SK 2xxE-222-340-A
(0.55 - 22.0 kW, 3 ~ 380 - 500 V) 2
SK 5xxE-250-112-O ... SK 5xxE-750-112-O
(0.25 - 0.75 kW, 1~ 115 V, output 3~ 230 V)
SK 5xxE-250-323-
... SK 5xxE-221-323-
(0.25 - 2.2 kW, 1/3 ~ 230 V)
SK 5xxE-301-323-
... SK 5xxE-182-323-
(3.0 - 18.0 kW, 3 ~ 230 V)
SK 5xxE-550-340-
... SK 5xxE-163-340-
(0.55 - 160.0 kW, 3 ~ 400 V)
1)
2)
Size IV (5.5 – 11.0 kW) only in the versions SK 2x0E
Size IV (11.0 – 22.0 kW) only in the versions SK 2x0E
Version list
Title,
Order number
Version
Remarks
Date
AG 0100,
Nov. 2014
6047502 / 4714
1.0
First edition, based on the manuals BU 0200 GB / 2314,
BU 0210 GB / 2509, BU 0500 GB / 1013, BU 0505 GB / 1013,
BU 0510 GB / 3911
AG 0100,
April 2015
6047502 / 1615
1.0
Revised edition, based on the manuals BU 0500 GB / 0715,
BU 0505 GB / 0715
• General corrections
• Adaptation of various parameters
AG 0100,
August 2016
6047502 / 3216
1.1
Revised edition, based on the revised manual BU 0200 GB /
1216
• General corrections and structure modifications
• Further sections implemented
Table 1: Version list AG 0100
Pos : 6 /Allgemei n/Allgemei ngültige Modul e/H erausgeber @ 0\mod_1325779078002_388.doc x @ 5270 @ @ 1
Publisher
Getriebebau NORD GmbH & Co. KG
Getriebebau-Nord-Straße 1 • 22941 Bargteheide, Germany • http://www.nord.com/
Fon +49 (0) 45 32 / 289-0 • Fax +49 (0) 45 32 / 289-2253
Pos : 7 /Appli kationen/0 Pr olog/0.2 Allgemeine Hi nweise @ 3\mod_1376473126903_388.doc x @ 85905 @ 555 @ 1
2
AG 0100 EN-3216
General information
General information
Copyright
 Getriebebau NORD GmbH & Co. KG, all rights reserved
Copying, editing or communication of the content of this documents either as a whole or in part is
prohibited without the explicit permission of Getriebebau NORD GmbH & Co. KG.
Right of modification
NORD GmbH & Co. KG reserves the right to amend the contents of the application descriptions at any
time without prior notice.
Completeness and correctness
This application description is not binding and does not claim to be complete with regard to the
structure and parameterisation of components.
Every care has been taken to ensure that the contents of this application description are correct.
However, in case of deviations between the application description and other documentation (e.g.
Manuals) the content of the other documentation has priority.
NOTICE
Application
This application example is only valid in combination with the operating instructions of the respective
frequency inverters and technology options. This is an essential prerequisite for the availability of all
the relevant information required for the safe commissioning of the frequency inverter.
Pos : 8 /Appli kationen/0 Pr olog/0.1 H aftungs aussc hluss @ 3\mod_1376467602238_388.doc x @ 85881 @ @ 1
Exclusion of liability
This application document is an aid for the installation and parameterisation of an application with
NORD products. The description is based on an example for a specific application and can be used as
orientation for comparable applications.
As this is an example, Getriebebau NORD GmbH & Co. KG does not accept any liability for injury or
material damages and does not grant any warranty, either explicitly or implicitly with regard to the
information contained in this application description.
Pos : 9 /Appli kationen/[AG 0100 - AG 0101] allgemeing ültige M odul e/Allgemei n gültige Dokumente und Ü bersc hriften/Hinweis z um Leitfaden [Ü 1 ohne Nr.] @ 7\mod_1433917662424_388.doc x @ 223620 @ @ 1
AG 0100 EN-3216
3
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Information about this guide
Pos : 10 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/Allgemein g ültige D okumente und Übersc hriften/Hi nweis z um Leitfaden @ 7\mod_1433917701116_388.doc x @ 223651 @ 555555 @ 1
This application guide is primarily intended for planners as well as commissioning and service
personnel, who are familiar with the use and function of electronic drive technology (motors and
frequency inverters) from Getriebebau NORD. The guide is a recommendation for the step-by-step
commissioning and parameterisation of the individual controller and function settings as well as the
procedure for optimisation of the drive unit or controller.
The information and recommendations relate to currently available drive units and control components
or controller settings, preferably standard products from Getriebebau NORD. The guide refers to
current drive technology software and hardware versions, which were valid at the time of publication of
this guide. Optimisation procedures must be carried out in observance of the current manuals and
drive technology data sheets. The versions of the manuals and technical data sheets may differ.
Information and explanations for the use of this application guide are given below.
Structure symbols
Individual section areas and application steps are provided with the following structure symbols in
order to provide "familiar" users with graphical or quicker orientation:
Identification
Meaning
Step 1
The Step (1, 2, etc.) serves to provide "familiar" users with a quicker
overview for the use of the guide.
In places, the steps can also be used as cross-references, or as hyperlinks,
see  1.3 "Overview (schematic procedure)".
Information
The Information indicates that the following is only stated as information
for the corresponding area of the section and provides the user with
detailed or helpful additional information.
Instructions
The Instructions indicate that in the following, the user is required to take
action, e.g. for parameterisation, testing or optimisation.
Information & instructions
Information & Instructions indicate that in the following, helpful additional
information as well as the requirement for action by the user is described.
Fig. 1: List of structure symbols
Cross-references and hyperlinks
For quicker and easier use of the guide, cross-references are prefixed with a symbol . With a
mouse click on the cross-reference - see  10.1 "Manuals" the user can directly access the
appropriate section, information or the relevant document.
In addition, hyperlinks (e.g.M7000 Electric Motors) are used, with which the user can directly access
the relevant manual, data sheet, contact partner, etc. on the Getriebebau NORD homepage..
4
AG 0100 EN-3216
Information about this guide
User symbols
By means of certain hand symbols, etc. the user is presented with important indications of additional
information, curves and the objective of the optimisation of the controller.




Observance and indication of important additional information
Definition and objective of the optimisation to be made
Partial success for an optimised curve for optimisation of controllers
Objective of an optimum curve for the optimisation of the controller
Fig. 2: List of user symbols
Symbols





*
[V]
[-01]
{1}
{1 = Off}
Indication of further information
Automatic parameter change
Change to
manual parameterisation
Check the display
Footnotes / deviations, e.g. device types
Unit of the parameter value
Array No.
Function No. / Value
Description of function, the function number corresponds to the name of the function
Fig. 3: List of symbols
Parameters
The indication of individual parameters has been selected so that parameters which are shown in
"bold" type, e.g. Motor list P200 indicate their relevance within a section. If the parameter is not
written in "bold" type, e.g. Weak field limit P320, this is only subordinate information, or is not
explained further.
Due to certain configurations, the parameters are subject to certain conditions. The relevant / used
explanation symbols are listed below:
Parameter No.
[-Array]
Name [Unit]
Factory
setting
MOTOR DATA/ CHARACTERISTIC CURVE PARAMETERS
Setting
related to parameter set (P1, ... , P4)
NORD motor
Third party motor
P240
(P)
EMF voltage PMSM [V]
0
 0  341
 0  296
P241
[-01]
Inductance PMSM (d axis) [mH]
20
 20  22.6
 20  24.3
P241
[-02]
Inductance PMSM (q axis) [mH]
20
 20  45.9
 20  24.3
AG 0100 EN-3216
5
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Parameter number
Parameters (P) depend on parameter sets, see  Parameter P100, Supervisor parameters (S)
depend on the setting, see  Parameter P003
Array value and description of the array parameter
Parameter text: Name / meaning of NORD CON display text
Parameter unit
Default value (factory setting) of parameter
Parameter setting for NORD motors
Parameter setting for third party motors
Usage symbols, see  Symbols
Fig. 4: List of parameter indications
Names of parameters and functions
In the following, for example, a parameter is described with its name, number and with the
corresponding selected function (number and name):
Motor list P200 with selection of the function {109 = 3.0 kW 400 V 100T2/4}
Parameter name
Parameter number
Function number
Description of function / Name of function or NORD CON display text
Fig. 5: Overview of names of parameters and functions
=== Ende der Liste für T extmar ke Copyright ===
6
AG 0100 EN-3216
Overview for experienced user
Overview for experienced user
=== Ende der Liste für T extmar ke Inhalts verz eichnis ===
1
Introduction ............................................................................................................................................... 14
1.3
Overview (schematic procedure) ..................................................................................................... 19
2
Hardware .................................................................................................................................................... 22
2.2
Asynchronous motors (ASM) ........................................................................................................... 23
2.3
Frequency inverter - motor assignment............................................................................................ 23
3
Basic Commissioning ............................................................................................................................... 28
3.1
Operating display settings ................................................................................................................ 28
3.2
Motor data ........................................................................................................................................ 29
3.2.1
NORD – Motor type plates / Data sheet ............................................................................. 32
3.2.2
Motor identification ............................................................................................................. 33
3.3
Adjusting the slip compensation ....................................................................................................... 35
3.4
Optimisation of motor data ............................................................................................................... 35
3.4.1
NORD motors ..................................................................................................................... 35
3.5
Incremental encoder (IG) ................................................................................................................. 36
3.5.1
Parameterisation of encoders (IG)...................................................................................... 36
3.5.5
Activating the speed control................................................................................................ 40
3.6
Absolute encoder (AG)..................................................................................................................... 41
3.6.1
Parameterisation of CANopen encoders (absolute encoders) ............................................ 41
3.6.2
Parameterisation of the CANopen interface ....................................................................... 42
4
Current control .......................................................................................................................................... 46
4.1
Further settings ................................................................................................................................ 47
4.2
NORD CON ..................................................................................................................................... 48
4.2.1
Remote control ................................................................................................................... 48
4.2.2
Oscilloscope ....................................................................................................................... 49
4.3
Torque and field current controller ................................................................................................... 52
4.3.3
Criteria ................................................................................................................................ 54
4.4
Optimisation procedure .................................................................................................................... 55
5
Speed control ............................................................................................................................................ 58
5.1
Further settings ................................................................................................................................ 58
5.2
NORD CON ..................................................................................................................................... 60
5.2.1
Remote control ................................................................................................................... 60
5.2.2
Oscilloscope ....................................................................................................................... 61
5.3
Speed controller ............................................................................................................................... 63
5.3.3
Criteria ................................................................................................................................ 66
5.4
Optimisation procedure .................................................................................................................... 66
6
Position control ......................................................................................................................................... 69
6.1
Further settings ................................................................................................................................ 72
6.2
NORD CON ..................................................................................................................................... 74
6.2.1
Control ................................................................................................................................ 74
6.2.2
Oscilloscope ....................................................................................................................... 76
6.2.3
Device overview ................................................................................................................. 77
6.4
Position controller............................................................................................................................. 78
6.4.1
Parameterisation of the travel measurement system.......................................................... 79
6.4.2
Activating the position control ............................................................................................. 79
6.4.3
Positioning .......................................................................................................................... 79
6.4.5
Criteria ................................................................................................................................ 82
6.5
Optimisation procedure .................................................................................................................... 83
AG 0100 EN-3216
7
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
7
Slip compensation .................................................................................................................................... 85
7.1
Further settings ................................................................................................................................ 86
7.2
NORD CON ..................................................................................................................................... 87
7.2.1
Remote control ................................................................................................................... 87
7.2.2
Oscilloscope ....................................................................................................................... 88
7.2.3
Device overview ................................................................................................................. 89
7.3
Slip compensation ............................................................................................................................ 90
7.3.2
Criteria ................................................................................................................................ 92
7.4
Optimisation procedure .................................................................................................................... 92
8
Weak field controller ................................................................................................................................. 94
8.1
Further settings ................................................................................................................................ 97
8.2
NORD CON ..................................................................................................................................... 99
8.2.1
Remote control ................................................................................................................... 99
8.2.2
Oscilloscope ....................................................................................................................... 99
8.3
Weak field controller....................................................................................................................... 101
8.3.3
Criteria .............................................................................................................................. 103
8.4
Optimisation procedure .................................................................................................................. 103
9
Parameter lists......................................................................................................................................... 106
9.1
Basic Commissioning ..................................................................................................................... 106
9.2
Current control ............................................................................................................................... 107
9.3
Speed control ................................................................................................................................. 108
9.4
Position control .............................................................................................................................. 109
9.5
Slip compensation .......................................................................................................................... 110
9.6
Weak field control........................................................................................................................... 111
8
AG 0100 EN-3216
Table of Contents
Pos : 12 /Allgemein/Steuermodul e/Inhalts verz eic hnis @ 0\mod_1317978518480_388.doc x @ 4078 @ @ 1
Table of Contents
=== Ende der Liste für T extmar ke Inhalts verz eichnis ===
1
Introduction ............................................................................................................................................... 14
1.1
Introduction to controller optimisation............................................................................................... 16
1.2
Field-orientated control .................................................................................................................... 17
1.2.1
No load current calculation ................................................................................................. 18
1.3
Overview (schematic procedure) ..................................................................................................... 19
2
Hardware .................................................................................................................................................... 22
2.1
System components......................................................................................................................... 22
2.2
Asynchronous motors (ASM) ........................................................................................................... 23
2.3
Frequency inverter - motor assignment............................................................................................ 23
2.4
Encoder resolution selection ............................................................................................................ 24
2.5
Selection of the incremental encoder (IG) ........................................................................................ 24
2.6
Selection of absolute encoders ........................................................................................................ 26
3
Basic Commissioning ............................................................................................................................... 28
3.1
Operating display settings ................................................................................................................ 28
3.2
Motor data ........................................................................................................................................ 29
3.2.1
NORD – Motor type plates / Data sheet ............................................................................. 32
3.2.2
Motor identification ............................................................................................................. 33
3.2.3
Schematic circuit diagram .................................................................................................. 34
3.3
Adjusting the slip compensation ....................................................................................................... 35
3.4
Optimisation of motor data ............................................................................................................... 35
3.4.1
NORD motors ..................................................................................................................... 35
3.5
Incremental encoder (IG) ................................................................................................................. 36
3.5.1
Parameterisation of encoders (IG)...................................................................................... 36
3.5.2
Encoder connection (IG)..................................................................................................... 38
3.5.3
Function test of rotary encoders (IG) .................................................................................. 39
3.5.4
Incremental encoder (IG) with zero track ............................................................................ 39
3.5.5
Activating the speed control................................................................................................ 40
3.6
Absolute encoder (AG)..................................................................................................................... 41
3.6.1
Parameterisation of CANopen encoders (absolute encoders) ............................................ 41
3.6.2
Parameterisation of the CANopen interface ....................................................................... 42
3.6.3
Connection of CANopen encoders (absolute encoder) ...................................................... 43
3.6.4
Function test of CANopen encoders (absolute encoders) .................................................. 44
4
Current control .......................................................................................................................................... 46
4.1
Further settings ................................................................................................................................ 47
4.2
NORD CON ..................................................................................................................................... 48
4.2.1
Remote control ................................................................................................................... 48
4.2.2
Oscilloscope ....................................................................................................................... 49
4.3
Torque and field current controller ................................................................................................... 52
4.3.1
Current control P components ............................................................................................ 53
4.3.2
Current control I components ............................................................................................. 53
4.3.3
Criteria ................................................................................................................................ 54
4.4
Optimisation procedure .................................................................................................................... 55
5
Speed control ............................................................................................................................................ 58
5.1
Further settings ................................................................................................................................ 58
5.2
NORD CON ..................................................................................................................................... 60
5.2.1
Remote control ................................................................................................................... 60
5.2.2
Oscilloscope ....................................................................................................................... 61
5.3
Speed controller ............................................................................................................................... 63
5.3.1
Speed control P component ............................................................................................... 65
5.3.2
Speed controller I component ............................................................................................. 65
5.3.3
Criteria ................................................................................................................................ 66
5.4
Optimisation procedure .................................................................................................................... 66
AG 0100 EN-3216
9
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
6
Position control ......................................................................................................................................... 69
6.1
Further settings ................................................................................................................................ 72
6.2
NORD CON ..................................................................................................................................... 74
6.2.1
Control ................................................................................................................................ 74
6.2.2
Oscilloscope ....................................................................................................................... 76
6.2.3
Device overview ................................................................................................................. 77
6.3
Function test of rotary encoders (IG)................................................................................................ 78
6.4
Position controller............................................................................................................................. 78
6.4.1
Parameterisation of the travel measurement system.......................................................... 79
6.4.2
Activating the position control ............................................................................................. 79
6.4.3
Positioning .......................................................................................................................... 79
6.4.4
Position control P component ............................................................................................. 81
6.4.5
Criteria ................................................................................................................................ 82
6.5
Optimisation procedure .................................................................................................................... 83
7
Slip compensation .................................................................................................................................... 85
7.1
Further settings ................................................................................................................................ 86
7.2
NORD CON ..................................................................................................................................... 87
7.2.1
Remote control ................................................................................................................... 87
7.2.2
Oscilloscope ....................................................................................................................... 88
7.2.3
Device overview ................................................................................................................. 89
7.3
Slip compensation ............................................................................................................................ 90
7.3.1
Slip compensation value ..................................................................................................... 92
7.3.2
Criteria ................................................................................................................................ 92
7.4
Optimisation procedure .................................................................................................................... 92
8
Weak field controller ................................................................................................................................. 94
8.1
Further settings ................................................................................................................................ 97
8.2
NORD CON ..................................................................................................................................... 99
8.2.1
Remote control ................................................................................................................... 99
8.2.2
Oscilloscope ....................................................................................................................... 99
8.3
Weak field controller....................................................................................................................... 101
8.3.1
P component of the weak field controller .......................................................................... 102
8.3.2
I component of the weak field control ............................................................................... 103
8.3.3
Criteria .............................................................................................................................. 103
8.4
Optimisation procedure .................................................................................................................. 103
9
Parameter lists......................................................................................................................................... 106
9.1
Basic Commissioning ..................................................................................................................... 106
9.2
Current control ............................................................................................................................... 107
9.3
Speed control ................................................................................................................................. 108
9.4
Position control .............................................................................................................................. 109
9.5
Slip compensation .......................................................................................................................... 110
9.6
Weak field control........................................................................................................................... 111
10
Further documentation ........................................................................................................................... 112
10.1 Manuals ......................................................................................................................................... 112
10.2 Technical Information / Data Sheets .............................................................................................. 112
10.2.1 TIs – Incremental encoder (IG) ......................................................................................... 112
10.2.2 TIs - CANopen absolute encoder (AG) ............................................................................. 113
10.2.3 TIs - Options / Accessory components ............................................................................. 113
11
Appendix .................................................................................................................................................. 114
11.1 Abbreviations ................................................................................................................................. 114
10
AG 0100 EN-3216
List of illustrations
Pos : 14 /Allgemein/Steuermodul e/Abbildungs verz eichnis @ 0\mod_1317978515699_388.doc x @ 3917 @ @ 1
List of illustrations
=== Ende der Liste für T extmar ke Abbildungs verzeic hnis ===
Fig. 1: List of structure symbols ............................................................................................................................... 4
Fig. 2: List of user symbols ...................................................................................................................................... 5
Fig. 3: List of symbols .............................................................................................................................................. 5
Fig. 4: List of parameter indications ......................................................................................................................... 6
Fig. 5: Overview of names of parameters and functions.......................................................................................... 6
Fig. 6: Current controller ........................................................................................................................................ 14
Fig. 7: Speed controller ......................................................................................................................................... 14
Fig. 8: Position control ........................................................................................................................................... 15
Fig. 9: Field weakening control .............................................................................................................................. 15
Fig. 10: Control loop .............................................................................................................................................. 16
Fig. 11: Current vector diagram ............................................................................................................................. 17
Fig. 12: Standard incremental encoders ................................................................................................................ 24
Fig. 13: Standard CANopen encoders ................................................................................................................... 26
Fig. 14: Example of motor type plate ..................................................................................................................... 29
Fig. 15: Example of a data sheet ........................................................................................................................... 30
Fig. 16: NORD motor (IE2) Data Sheet SK 112MH/4 ............................................................................................ 32
Fig. 17: RJ45 WAGO connection module .............................................................................................................. 43
Fig. 18: Control value curves ................................................................................................................................. 46
Fig. 19: NORD CON .............................................................................................................................................. 48
Fig. 20: Remote control of the current controller, setpoint and enabling................................................................ 48
Fig. 21: Remote control of the current controller, setpoint and enabling................................................................ 49
Fig. 22: Oscilloscope settings for trigger and scan rate / scan duration................................................................. 49
Fig. 23: Resolution settings for the time axis, comment examples ........................................................................ 49
Fig. 24: Legend / Meaning of measurement functions ........................................................................................... 50
Fig. 25: Oscilloscope channel settings for the three measurement values ............................................................ 50
Fig. 26: Start the scope recording.......................................................................................................................... 50
Fig. 27: Initialisation phase of scope recording ...................................................................................................... 51
Fig. 28: Short circuit measurement of SK 200E frequency inverter ....................................................................... 55
Fig. 29: Curve for the P component of the current control ..................................................................................... 56
Fig. 30: Curve for the I component of the current controller .................................................................................. 57
Fig. 31: Remote control of the speed controller, setpoint and enabling ................................................................. 60
Fig. 32: Oscilloscope settings for trigger and scan rate / scan duration................................................................. 61
Fig. 33: Resolution settings for the time axis, comment examples ........................................................................ 61
Fig. 34: Oscilloscope channel settings for the four measurement values .............................................................. 61
Fig. 35: Start the scope recording.......................................................................................................................... 62
Fig. 36: Example of an optimised speed controller curve ...................................................................................... 63
Fig. 37: Example with an excessive P component of the speed controller ............................................................ 64
Fig. 38: Curve for the P component of the speed control ...................................................................................... 67
Fig. 39: Curve for the I component of the speed control ........................................................................................ 68
Fig. 40: Position control movement profile............................................................................................................. 71
Fig. 41: Standard control view ............................................................................................................................... 74
Fig. 42: Control of the speed controller, setpoint and enabling .............................................................................. 74
Fig. 43: Control of position control, control bits left setpoint position 0, right setpoint position 1 ........................... 75
Fig. 44: Oscilloscope settings for trigger and scan rate / scan duration................................................................. 76
Fig. 45: Resolution settings for the time axis, comment examples ........................................................................ 76
Fig. 46: Oscilloscope channel settings for the four measurement values .............................................................. 76
Fig. 47: Start the scope recording.......................................................................................................................... 77
Fig. 48: Position control device overview, display settings .................................................................................... 77
Fig. 49: Overview of position control devices, display selection ............................................................................ 77
Fig. 50: Example of an optimised position controller curve .................................................................................... 80
Fig. 51: Example with P component of the position control too small (left) and too high (right) ............................. 81
Fig. 52: Curve for the P component of the position control .................................................................................... 83
Fig. 53: Remote control of slip compensation, setpoint and enabling .................................................................... 87
Fig. 54: Oscilloscope settings for trigger and scan rate / scan duration................................................................. 88
Fig. 55: Resolution settings for the time axis, comment examples ........................................................................ 88
Fig. 56: Oscilloscope channel settings for the four measurement values .............................................................. 88
Fig. 57: Start the scope recording.......................................................................................................................... 89
Fig. 58: Slip compensation device overview, display settings ............................................................................... 89
Fig. 59: Slip compensation device overview, display selection .............................................................................. 89
AG 0100 EN-3216
11
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Fig. 60: Diagram for optimum current / slip compensation .................................................................................... 90
Fig. 61: Example of optimised slip compensation .................................................................................................. 91
Fig. 62: Example with the slip compensation set too high (right) and too low (left)................................................ 91
Fig. 63: Slip compensation curve........................................................................................................................... 93
Fig. 64: Control value curves ................................................................................................................................. 95
Fig. 65: Control value curves with long acceleration ramp .................................................................................... 95
Fig. 66: Remote control of the weak field control, setpoint and enabling ............................................................... 99
Fig. 67: Oscilloscope settings for trigger and scan rate / scan duration............................................................... 100
Fig. 68: Resolution settings for the time axis, comment examples ...................................................................... 100
Fig. 69: Oscilloscope channel settings for the four measurement values ............................................................ 100
Fig. 70: Start the scope recording........................................................................................................................ 100
Fig. 71: Example of an optimised weak field controller curve .............................................................................. 101
Fig. 72: Example with an excessive I component of the weak field controller ..................................................... 102
Fig. 75: Parameter list for basic commissioning .................................................................................................. 106
Fig. 76: Parameter list for optimised current control ............................................................................................ 107
Fig. 77: Parameter list for optimised current and speed control........................................................................... 108
Fig. 78: Parameter list for optimised current, speed and position control ............................................................ 109
Fig. 79: Parameter list for optimised current, speed, position control and slip compensation .............................. 110
Fig. 80: Parameter list for all optimised controllers, plus weak field controller ..................................................... 111
12
AG 0100 EN-3216
List of tables
Pos : 16 /Allgemein/Steuermodul e/T abellenverzeic hnis @ 0\mod_1317978519199_388.doc x @ 4124 @ @ 1
List of tables
=== Ende der Liste für T extmar ke Tabellenverz eic hnis ===
Table 1: Version list AG 0100 .................................................................................................................................. 2
Table 2: Flow chart for procedure .......................................................................................................................... 21
Table 3: System components ................................................................................................................................ 22
Table 4: Standard incremental encoders ............................................................................................................... 25
Table 5: Standard absolute encoders .................................................................................................................... 26
Table 6: SK 2xxE interface connection to the system bus ..................................................................................... 43
Table 7: Manuals ................................................................................................................................................. 112
Table 8: TIs – Incremental encoder (IG) .............................................................................................................. 112
Table 9: TIs - CANopen absolute encoder (AG) .................................................................................................. 113
Table 10: Options and accessory components .................................................................................................... 113
Pos : 19 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/1. Ei nlei tung/Ei nleitung [Ü 1] @ 7\mod_1431930768335_388.doc x @ 219789 @ 1 @ 1
AG 0100 EN-3216
13
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
1 Introduction
Pos : 20 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/1. Einl eitung/Einl eitung @ 5\mod_1400491203953_388.doc x @ 132318 @ @ 1
This guide explains the step-by-step procedure for optimisation of the individual control functions, as
well as the parameterisation which is to be carried out in the particular frequency inverters.
Only CFC closed-loop mode is considered, which has the following advantages compared with
operation in VFC open-loop mode:
•
•
•
•
High torques – Rigidity
Full torque at speed "zero"
High speed precision
Short control times possible
CFC closed-loop mode, also known as servo mode in older software versions, is an operating mode
with encoder feedback.
Several different control functions are implemented as standard in SK 2xxE frequency inverters and in
the control cabinet versions of type SK 5xxE.
This provides the possibility of individually optimising the functional and application-specific
requirements of the application which is to be implemented by means of the 4 available controllers.
Torque current control
PI controller
Parameters: P312, P313, P314
Flux and field current control
PI controller
Parameters: P315, P316, P317
Fig. 6: Current controller
Speed controller
PI controller
Parameters: P310, P311, P112
Fig. 7: Speed controller
14
AG 0100 EN-3216
1 Introduction
Position control
P controller
Parameter: P611
Fig. 8: Position control
Weak field controller
PI controller
Parameters: P318, P319, P320
Fig. 9: Field weakening control
This guide for the optimisation of controllers uses the description for a decentralised SK 200E-401340-A frequency inverter in combination with a 4.0 kW NORD asynchronous motor (ASM) using
NORD CON oscilloscope recordings.
The correct connection of the components to the control and power terminals, as well as further
information about the functions used can be obtained from the relevant manuals, see  10.1
"Manuals".
If the different names (e.g. connection terminals, parameter structure) are taken into account, this
guide can also be used analogously for other performance levels of the decentralised SK 2xxE and
≥ SK 520E control cabinet frequency inverter types.
Pos : 25 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/1. Ei nlei tung/Vor wort z ur Regler opti mier ung [Ü 2] @ 7\mod_1431934227827_388.doc x @ 220138 @ 2 @ 1
AG 0100 EN-3216
15
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
1.1
Introduction to controller optimisation
Pos : 26 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/1. Einl eitung/Vor wort z ur R egleropti mi erung @ 5\mod_1400586860785_388.doc x @ 133508 @ @ 1
A controller uses the principle of continuous:
Measuring – Comparison –
Provide
Fig. 10: Control loop
The value to be controlled is measured with sensors (e.g. incremental encoders). The value to be
controlled is compared with the setpoint. The difference is the deviation. From the deviation, the
value for the adjustment is determined with consideration of the dynamic characteristics of the control
route.
A control loop is used to bring a specified physical value, the so-called control value, to a required
value (setpoint) and to maintain this value, regardless of any disturbances which may occur. To carry
out the control task, the momentary value of the control value - the actual value - is measured and
continuously compared with the setpoint. In case of deviation, adjustment must be made in a suitable
manner and a response made as soon as possible. Control technology is used to technically perform
this task. This is essentially based on the mathematical description and modelling of the control loop
system. Stated simply, the main components of the control loop are the controller and the control
route.
From the deviation, the controller determines the corrective measures required in consideration of the
dynamic characteristics of the control route and makes the adjustment accordingly. The control route
is the part of the control loop which is controlled by the controller.
(Source: see www.rn-wissen.de)
Information
Optimisation information
For optimal optimisation of the individual controllers, the following operating conditions should be taken into
account in the optimisation procedure.
•
•
•
Current control in static operation without load
Speed, field weakening and position control in dynamic operation under load
Slip compensation at the design point under load
Application-specific conditions must also be taken into account for the optimisation.
Pos : 32 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/1. Ei nlei tung/Fel dorientierte R egel ung [Ü2] @ 7\mod_1431934327112_388.doc x @ 220169 @ 2 @ 1
16
AG 0100 EN-3216
1 Introduction
1.2
Field-orientated control
Pos : 33 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/1. Einl eitung/F eldorienti erte Reg elung @ 5\mod_1401974004349_388.doc x @ 136092 @ @ 1
To begin with, some information about the motor model or field oriented control, also known as
current vector control, in the frequency inverter.
In a rotor flux-oriented ASM model the 3-phase currents and voltages are converted to vectors which
are comprised of the components "d" and "q".
The following diagram shows the orientation of the current vector to the magnetisation current Isd
(rotor flux orientation) in the vector diagram.
Fig. 11: Current vector diagram
Is:
Isd
Isq:
Line motor current (≈ Nominal current)
Flux-forming current (magnetisation current (≈ no load current))
Torque-forming current (torque current (≈ rotor current)
[A]
[A]
[A]
The current components Isd (flux-forming current, magnetisation current / ≈ Actual field current
P721) and Isq (torque-forming current, ≈ Actual torque current P720) are normal to each other. Is is
the total line current (≈ Actual current P719).
The following simplified relationships result in association with this:
 = �( ² +  ²)
In the basic speed range, up to the rated frequency ISD = I0 = No load current.
Is:
Isq:
Isd:
Line motor current (P203 / ≈ P719)
Torque-forming current or rotor current (≈ P720)
Flux-forming current or no load current (P209 / ≈ P721)
[A]
[A]
[A]
If the flux-forming current / no load current is not known, it is automatically calculated by the frequency
inverter and entered in the parameter No Load Current P209
Pos : 35 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/1. Einl eitung/Leerlaufs trom Berec hnung @ 5\mod_1402388883257_388.doc x @ 136382 @ 3 @ 1
AG 0100 EN-3216
17
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
1.2.1
No load current calculation
The No Load Current P209 is calculated with the following formula:
 =  =  ∙  
Isd:
I0:
Inom:
cos φ:
Flux-forming current (Display ~P721)
No load current (≈ P209)
Nominal motor current or line motor current (≈ P203)
Motor cos phi (≈ P206) / Efficiency
[A]
[A]
[A]
[-]
Therefore also:
 ≈  ∙  ≈  ∙  ∙  
M:
Φ:
Is:
Isq:
cos φ:
Torque
Magnetic flux
Line motor current (Display ~P719)
Torque-forming current or rotor current (≈ P720)
Motor cos phi (P206) / Efficiency
[Nm]
[Wb]
[A]
[A]
[-]
In other words, if Isq increases, the torque M must also increase.
Information
The torque M increases (theoretically) in the ratio of
Torque M

sqNom
if, as agreed, the magnetic flux is constant.
Isq:
Torque-forming current or rotor current
 : Torque-forming current under nominal conditions
[A]
[A]
Pos : 41 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/1. Ei nlei tung/Überblic k (sc hematisc he Vorgehens weise) [Ü 2] @ 7\mod_1432017345551_388.doc x @ 220670 @ 2 @ 1
18
AG 0100 EN-3216
1 Introduction
1.3
Overview (schematic procedure)
Pos : 42 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/1. Einl eitung/Ü ber blic k (sc hemati sche Vorg ehens weis e) @ 5\mod_1400504090154_388.doc x @ 132496 @ @ 1
Step
Description of procedure / Optimisation procedure
 Documentation / Section
Further information
Hardware
Setup and connection
"Step 1"
–
–
–
Installation and connection work
Power and control terminals
DIP switches
–
–
Motor connection ( check Y /▲)
Frequency inverter ↔ Assignment of asynchronous
motor
Encoder resolution selection
Selection of encoder system (IG / AG)
Selection of encoder type: Data for incremental and /
or absolute encoders, universal encoders
–
–
–
 Manual BU 0200
 Manual BU 0500
 Manual BU 0505

2 "Hardware"
Basic commissioning / Motor data
Parameterisation according to motor list, type plate and data
sheet
"Step 2"
–
–
–
–
–
–
–
–
NORD CON parameterisation
Modification of operating displays
Selection of motor manufacturer or motor data
Motor list, motor type plate or data sheet
(contact the motor manufacturer if necessary)
 Motor data / Characteristic curve parameter
(P2xx)
NORD- motor or third party motor parameter
identification (P220)
(identification RS or identification motor)
Stator resistance (P208), check display
Adjust slip compensation (P212)
 NORD CON –
Manual BU 0000
 Manual BU 0200
 Manual BU 0500
 Manual BU 0505

3.2 "Motor data"
Incremental encoder (IG)
Parameterisation, connection and commissioning
"Step 3"
–
–
–
–
–
–
–
–
–
AG 0100 EN-3216
Incremental encoder data
 Control parameter (P3xx)
Incremental encoder (P301)
Encoder with zero track
Sync. 0-pulse (P335)
Control terminals (P420 [-01] ... [-03])
Connection, see  Technical Data Sheet
Function test of IG rotary encoder
Speed feedback / Servo mode (P300)
 Manual BU 0200
 Manual BU 0500
 Manual BU 0505

3.5 "Incremental encoder
(IG)"
19
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Absolute encoder (AG)
Parameterisation, connection and commissioning
–
–
–
–
–
–
–
CANopen combined absolute encoder with
incremental encoder
Absolute encoder data
 Additional parameter (P5xx) and positioning
parameter (P6xx)
Encoder resolutions (P605)
Set CANopen parameters (P514 & P515)
Connection, see  Technical Data Sheet
Function test for CANopen AG encoders
 Manual BU 0210
 Manual BU 0510

3.6 "Absolute encoder (AG)"
Current control
Torque current controller (P312, P313, P314)
Field current controller (P315, P316, P317)
"Step 4"
–
–
–
–
–
–
–
–
Adjust Absolute mini. Freq. (P505)
Adjust Flux delay (P558)
NORD CON Remote control
NORD CON Oscilloscope trigger, scan time, channel
settings, etc.
Torque current controller P (P312)
Torque current controller I (P313)
Field current controller P (P315)
Field current controller I (P316)

4 "Current control"
Speed control
Speed controller (P310, P311)
"Step 5"
–
–
–
–
–
–
–
Acceleration time (P102)
Jog frequency (P113)
Flux delay (P558) standard value
NORD CON Remote control
NORD CON Oscilloscope trigger, scan time, channel
settings, etc.
Speed Ctrl P (P310)
Speed Ctrl I (P311)

5 "Speed control"
Position control / Positioning
Position controller (P611)
"Step 6"
–
–
–
–
–
–
–
–
20
Activate position controller (P600)
Travel sensor system (P604 [01] & [02] & [03])
Setpoint specification & setpoint mode (P610)
Positioning parameters (P607 to P609 & P612)
Positions (P613 [01] to [63])
NORD CON Control
NORD CON device overview
trigger, scan time, channel settings, etc.
Position controller P (P611)
 Manual BU 0210
 Manual BU 0510

6 "Position control"
AG 0100 EN-3216
1 Introduction
Slip compensation
Slip compensation (P212)
"Step 7"
–
–
–
–
–
–
Jog frequency (P113)
NORD CON Remote control
NORD CON device overview as necessary
NORD CON Oscilloscope trigger, scan time, channel
settings, etc.
Operate the motor under normal operating conditions
/ at the operating point under the nominal load
Optimise Slip compensation (P212) by minimising
current
Information

7 "Slip compensation"
Operation in the weak field range
For applications with operation in the weak field range the weak field controller should always be optimised as
the last optimisation step of the weak field controller!
Field weakening control
Weak field controller (P318, P319, P320)
"Step 8"
–
–
–
–
–
–
–
Acceleration time (P102)
Maximum frequency (P105)
Jog frequency (P113)
NORD CON Remote control
NORD CON Oscilloscope trigger, scan time, channel
settings, etc.
P-Weak (P318)
I-Weak (P319)

8 "Weak field controller"
Table 2: Flow chart for procedure
DANGER!
Danger to life
The correctness of each individual commissioning step must be checked with a function test. Suitable
precautions must be taken to prevent damage to the system or danger to persons if the system behaves
incorrectly (e.g. brake control for lifting equipment, mechanical coupling of parallel drives, etc.)
Pos : 46 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardware/H ardware [Ü 2] @ 7\mod_1431930821993_388.doc x @ 219820 @ 1 @ 1
AG 0100 EN-3216
21
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
2 Hardware
Pos : 47 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/Str uktur module/Sc hritt 1 @ 7\mod_1434978549333_388.doc x @ 227629 @ @ 1
Step 1
Pos : 48 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/Str uktur module/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 49 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/2. H ardware/Har dwar e @ 5\mod_1401198154896_388.doc x @ 134528 @ @ 1
The factory settings of frequency inverters supplied by Getriebebau NORD are pre-programmed with
the default setting for standard applications with 4 pole asynchronous motors (ASM) with the same
voltage and power. For use with motors with other powers or number of poles, the data from the type
plate or data sheet of the motor must be entered.
In principle, the frequency inverters are operable in this configuration and can be further configured
according to the requirements of the application,. This includes settings such as the encoder system,
ramp times and interfaces and possibly the bus system configuration.
Configuration can be carried out to a limited extent with the integrated DIP switches (see  10.1
"Manuals").
Information
Configuration via DIP switch
Mixing of DIP switch configuration and (software) parametrisation should be avoided. DIP switch settings for the
frequency inverter have priority over parameter settings.
Pos : 51 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardware/Sys temkomponenten [Ü 2] @ 7\mod_1431931354744_388.doc x @ 220099 @ 2 @ 1
2.1
System components
Pos : 52 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/2. H ardware/Systemkomponenten @ 5\mod_1400504056734_388.doc x @ 132472 @ @ 1
For this guide, a 4 kW frequency inverter / motor combination was used for the test setup.
Number
Designation
Nominal ratings
1
Frequency inverter SK200E
SK 200E-401-340-A
1
SK 200E connection unit
SK TI4-2-200-3
1
4.0 kW, IE2 motor (ASM), 4 pole
SK 112MH/4 TF IG22
1
Incremental encoder IG KU 10-30 V HTL
IG22 / Resolution 2048 pulses
1
External brake resistor, 400 Ω, 100 W
SK BRE4-1-400-100
Table 3: System components
With these system components, examples of the individual optimisations of the controllers are
illustrated in the following sections on the basis of NORD CON oscilloscope images.
Information
Version status
Due to software updates, the parameters described in this guide may differ from those in the firmware version for
the frequency inverter which is used. Because of this, care should be taken that both the current NORD CON
version and the firmware version (see  Software version parameter P707) correspond to that of the
frequency inverter.
Pos : 57 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/2. H ardware/As ync hronmotoren (ASM) [Ü 2] @ 11\mod_1460368823842_388.doc x @ 316964 @ 2 @ 1
22
AG 0100 EN-3216
2 Hardware
2.2
Asynchronous motors (ASM)
Pos : 58 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/2. H ardware/As ync hronmotoren (ASM) @ 11\mod_1460368803595_388.doc x @ 316929 @ @ 1
Asynchronous motors (ASM) from Getriebebau NORD are specified according to the standard IEC
60034-30:2008 and can be operated both from the mains as well as by frequency inverters.
At present, Getriebebau NORD supplies asynchronous motors with the efficiency classes IE1, IE2 and
IE3 in a power range from 0.12 kW to 160 kW.

All asynchronous motors from Getriebebau NORD are approved for operation with
frequency inverters.
However, at present on the motor data for efficiency class IE1 synchronous motors are stored
in the frequency inverters.
I.e. only IE1 asynchronous motors may be parameterised with Motor list P200! Third party
motors and Getriebebau NORD
IE2 and IE3 asynchronous motors, must be
parameterised manually  by the user.
Information
Third party motors
Asynchronous motors or brands from other manufacturers (i.e. so-called third party motors) can be operated
by frequency inverters manufactured by Getriebebau NORD.
If necessary all frequency inverter – asynchronous motor combinations for third party motor operation
should be technically checked in advance by Getriebebau NORD!
Pos : 61 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardware/Fr equenzumric hter - Motor Z uordnung [Ü 2] @ 7\mod_1431944081340_388.doc x @ 220240 @ 2 @ 1
2.3
Frequency inverter - motor assignment
Pos : 62 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/2. H ardware/Frequenz umric hter - As ynchr onmotor Z uor dnung @ 7\mod_1431944154898_388.doc x @ 220341 @ @ 1
Asynchronous motors can be operated with both decentralised frequency inverters from the SK 2xxE
series, as well as by the control cabinet version SK 5xxE with all performance levels.
The selected allocation of the frequency inverter to the asynchronous motor is primarily made
according to the power and the current.
Frequency inverter power
Nominal frequency inverter current
NOTICE
≥
≥
Nominal motor power
Nominal motor current
Drive unit load
The assignment of asynchronous motors to the particular frequency inverters applies for operation up to the
nominal speed.
Higher speeds and overloads require special planning or consultation with Getriebebau NORD.
Failure to comply with this may cause damage to the motor or the gear unit due to impermissible loads on the
components.
Information
Third party motors
In principle, asynchronous motors from Getriebebau NORD can be operated with frequency inverters from other
manufacturers. However, the customer is responsible for the success of commissioning. Also, the performance of
the motor, or the achievement of efficiencies which correspond to the efficiency classifications IE1, IE2, etc.
depends on the frequency inverter and its function and settings.
Pos : 64 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardware/Auslegung Drehgeber Aufl ösung [Ü 2] @ 7\mod_1433427213057_388.doc x @ 222310 @ 2 @ 1
AG 0100 EN-3216
23
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
2.4
Encoder resolution selection
Pos : 65 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardware/Auslegung Drehgeber Aüfl ösung @ 7\mod_1433426836884_388.doc x @ 222278 @ @ 1
For the correct selection of the rotary encoder with regard to the maximum resolution, the maximum
limiting frequency should be taken into account using the following rule-of-thumb:
max × 
=  
max
205000 [] × 60 []
≥ Encoder resolution "[Pulse numbermax]"
nmax [rpm]
205000 [] × 60 []
= 8200
1500 [rpm]
205000 [] × 60 []
= 4100
3000 [rpm]
fmax:
nmax:
8200 ≥ 8192 Pulses
Encoder resolution (nmax = 1500 rpm)
4100 ≥ 4096 Pulses
Encoder resolution (nmax = 3000 rpm)
maximum limiting frequency for digital inputs
maximum speed of motor

[Hz]
[rpm]
All standard encoders defined by Getriebebau NORD, i.e. the recommended encoder systems
and types enable "safe" operation within a very wide adjustment range (e.g. 0 to 100 Hz). I.e.
the minimum Pulse numbermin has already been taken into account with regard to encoder
resolution.
Pos : 66 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardware/Aus wahl Inkr ementaldr ehg eber (IG) [Ü 2] @ 7\mod_1435051508120_388.doc x @ 228438 @ 2 @ 1
2.5
Selection of the incremental encoder (IG)
Pos : 67 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardwareAus wahl Inkremental drehgeber (IG) @ 5\mod_1407742539679_388.doc x @ 146754 @ @ 1
The correct selection, parameterisation and connection of an HTL- incremental encoder (IG) to a
decentralised SK 2xxE frequency inverter as well as a TTL incremental encoder or sine wave
encoder (e.g. SIN/COS encoder) to an SK 53xE or SK 54xE control cabinet frequency inverter are
described in greater detail in previous or further sections.
Various encoders with a cable length of 1.5 m are defined as standard
incremental encoders by Getriebebau NORD:
Fig. 12: Standard incremental encoders
24
AG 0100 EN-3216
2 Hardware
NORD data
Part no.
Supplier
FI type
SK 2xxE
SK 53xE
SK 54xE
19551021
Fritz Kübler GmbH
19551022
Fritz Kübler GmbH
Power supply
Incremental encoder resolution
Designation
Voltage / DC
Type
Increments
IG 42
10-30 V HTL 4096
D12 5820 1,5 m
10 … 30 V
HTL / Push-pull
4096 pulses
IG 41
10-30 V TTL 4096
D12 5820 1,5 m
10 … 30 V
TTL / RS422
4096 pulses
Table 4: Standard incremental encoders

Taking into account the maximum limiting frequency for the selection of the encoder, the
highest possible resolution should be selected and if possible, an encoder system with a
power supply of 10 … 30 V should be used.
Technical data for the incremental encoder, e.g. the relevant resolution, interface, etc. can be obtained
from catalogue  M7000 Electric Motors and Section  10.2.1 "TIs – Incremental encoder (IG)".
Detailed information for the connection of:
•
•
•
HTL incremental encoder to SK 2xxE
TTL incremental encoder to ≥ SK 53xE
SIN/COS encoder to SK 54xE
can be obtained from the relevant manuals  BU 0200, BU 0500 und BU 0505.
Information regarding the POSICON function is provided in the supplementary manuals BU 0210 and
BU 0510, see Section  10.1 "Manuals".
Information
Testing the encoder function
After completion of connection and basic commissioning the correct function of the incremental encoder should
always be checked. Detailed information and warnings for the testing and activation of the encoder are
provided in Section  3.5.3 "Function test of rotary encoders (IG)".
For activation of the speed feedback (CFC closed loop mode) under the tab "Control parameters" the
parameter Servo mode P300 must be set to Function {1 = On (CFC closed-loop)}.
Pos : 68 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardware/Aus wahl Abs ol utwertdr ehg eber (AG) [Ü 2] @ 7\mod_1435051589005_388.doc x @ 228469 @ 2 @ 1
AG 0100 EN-3216
25
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
2.6
Selection of absolute encoders
Pos : 69 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/2. H ardwareAus wahl Abs olutwertdrehgeber (AG) @ 5\mod_1407413591878_388.doc x @ 146662 @ @ 1
The correct selection, parameterisation and connection of a CANopen absolute encoder to a
decentralised SK 2xxE or ≥ SK 53xE control cabinet frequency inverter are different. In addition, for
position control, further types of absolute encoder can be connected to SK 54xE control cabinet
frequency inverters. Other encoder systems such as SSI, BISS, Endat and Hiperface encoders can be
connected to its universal interface or terminal bar X14.
Several multiturn CANopen encoders are defined as standard combined
absolute encoders by Getriebebau NORD:
Fig. 13: Standard CANopen encoders
NORD data
Part no.
Supplier
FI type
19551886
Fritz Kübler GmbH
SK 2xxE
19556994
Baumer IVO
GmbH & Co. KG
19551881
SK 53xE
SK 54xE
Fritz Kübler GmbH
19556995
Baumer IVO
GmbH & Co. KG
Type
Designation
AG4
AG&IG CANOPEN
8192-4096/2048 HTL
D12BUSH
AG6
AG&IG IVO
CANOPEN 819265K/2048 HTL D=12
AG1
AG&IG CANOPEN
8192-4096/2048 TTL
D12BUSH
AG3
AG&IG IVO
CANOPEN 819265K/2048 TTL D=12
Absolute encoder
resolution
Incremental encoder
resolution
Single turn
Multiturn
Type
Increments
13 Bit /
8192 pulses
12 Bit /
4096 pulses
HTL
2048 pulses
13 Bit /
8192 pulses
16 Bit /
65536 pulses
HTL / Push-pull 2048 pulses
13 Bit /
8192 pulses
12 Bit /
4096 pulses
TTL / RS422
2048 pulses
13 Bit /
8192 pulses
16 Bit /
65536 pulses
TTL / RS422
2048 pulses
Table 5: Standard absolute encoders

Taking into account the maximum limiting frequency for the selection of the encoder, the
highest possible resolution should be selected and if possible, an encoder system with a
power supply of 10 … 30 V should be used.
Technical data for the incremental encoder, e.g. the relevant type, interface, etc. can be obtained from
catalogue  M7000 Electric Motors and Section  10.2.2 "TIs - CANopen absolute encoder (AG)".
Detailed information for the connection and parameterisation of standard combination absolute
encoders with a CANopen interface can be obtained from the supplementary manuals BU 0210 und
BU 0510, see Section  10.1 "Manuals".
26
AG 0100 EN-3216
2 Hardware
NOTICE
Installation of rotary encoders
It is essential that the combination absolute encoder (single and multiturn with integral incremental track) is
mounted on the end of the motor shaft.
Other types of absolute encoder (e.g. Type AG1 / Part no. 19551881 / Kübler Type 8.5888.0421.2102.
S010.K014) must not necessarily be mounted on the end of the motor shaft.
In this case, the speed ratio in the frequency inverter must be parameterised with the aid of the Ratio P607 and
the Reduction Ratio P608. Otherwise, inaccuracy of the speed (incremental track) and / or the position control
may result.
For an absolute encoder, the encoder system must be parameterised in the Parameter Travel
measurement system P604, and the corresponding resolutions / pulse numbers and the encoder
type (Single or Multiturn) must be parameterised in the parameter Absolute encoder P605.
For detailed information, please refer to the relevant manual for the frequency inverter, see  10.1
"Manuals" or Section  3.6.1 "Parameterisation of CANopen encoders (absolute encoders)".
Information
Activating the position control
For positioning / position control (CFC Closed Loop mode) the position control must be activated with the
parameter Position control P600 or the required function (selection of ramp type) must be parameterised in the
tab "Positioning parameters". For further details of activation of the position control, see  6.4.2 "Activating
the position control".
Pos : 75 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/3. Gr undi nbetriebnahme/Gr undinbetriebnahme [Ü 1] @ 7\mod_1431930880787_388.doc x @ 219851 @ 1 @ 1
AG 0100 EN-3216
27
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
3 Basic Commissioning
Pos : 76 /Appli kationen/[AG 0100 - AG 0102] allgemeingül tige M odule/Str uktur moduleSchritt 2 @ 7\mod_1434978697929_388.doc x @ 227692 @ @ 1
Step 2
Pos : 77 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/Str uktur module/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 78 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/3. Grundi nbetri ebnahme/Grundi nbetri ebnahme @ 5\mod_1400509373683_388.doc x @ 133040 @ @ 1
If the frequency inverter is not in the state as delivered, a reset of all parameters should generally be
carried out via the parameter Factory Setting P523 before basic commissioning is carried out. This
parameter can be found under the tab "Additional Parameters".
All parameters which are not explicitly mentioned in this guide should therefore be left in the factory or
default setting. For more detailed information, please refer to the relevant manual for the frequency
inverter, see  10.1 "Manuals".
Information
Parameterisation
Other application-specific settings, e.g. Deceleration time P103 (Brake reaction time P107 and
Brake delay off P114) are not described in this guide and must be adjusted independently by the user! For
optimisation of the controller only the Acceleration time P102, for the speed control, and the
Deceleration time P103, need to be adjusted.
Some other parameters, e.g. Absolute mini. freq. P505 and the Flux delay P558, must be changed for the
particular controller optimisation in order to obtain meaningful scope images.

After completion of the individual controller optimisations these parameters must be readjusted according to the particular requirements of the application.
Pos : 81 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/3. Gr undi nbetriebnahme/Betri ebs anzeig e Ei nstellungen [Ü2] @ 7\mod_1432016400233_388.doc x @ 220639 @ 2 @ 1
3.1
Operating display settings
Pos : 82 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/Str uktur module/H andl ungs anweis ung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 83 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/3. Gr undi nbetriebnahmeBetriebs anz eige Ei nstellungen @ 8\mod_1436185628917_388.doc x @ 230906 @ @ 1
For optimisation of the relevant controller, the following two parameters must be checked or set in
advance.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
OPERATING DISPLAYS
P001
Select of disp.value
P003
Supervisor-Code
0*
1 **
 0  2 (Setpoint frequency [Hz])
 1  3 (all parameters visible) only for SK 2xxE
* 0 corresponds to the actual frequency [Hz]
** 1 corresponds to all parameters visible except P3xx / P6xx
In general, optimisation of the speed and position controllers should be made in dynamic operation
under load conditions with specification of a setpoint. Because of this, the
Select of disp.value P001 should be changed from the function {0 = Actual frequency} to {2 =
Setpoint frequency}. The setpoint frequency is displayed in [Hz].
28
AG 0100 EN-3216
3 Basic Commissioning
In contrast, optimisation of the current controller should be made in static operation without load and
without specification of a setpoint.
Information
Supervisor-Code
The tabs Control Parameters P3xx and Positioning P6xx are only enabled and therefore made visible for
decentralised SK 2xxE frequency inverters by means of Supervisor-code P003 {3 = all parameters visible}. In
the NORD CON display, all tabs are always visible.
For control cabinet SK 5xxE frequency inverters all tabs are enabled or displayed in the factory setting
{1 = all parameters visible}.
Pos : 87 /Appli kationen/[AG 0100 - AG 0101] allgemeingül tige M odule/3. Gr undi nbetriebnahme/Motor daten [Ü2] @ 7\mod_1431951290559_388.doc x @ 220373 @ 2 @ 1
3.2
Motor data
Pos : 89 /Appli kationen/[AG 0100 - AG 0102] allgemeingül tige M odule/Str uktur module/Infor mation & H andl ungs anweis ung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 90 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/3. Grundi nbetri ebnahme/M otordaten @ 5\mod_1400586645909_388.doc x @ 133439 @ @ 1
The windings of an asynchronous motor (ASM) can be connected in 2 ways (Y / ▲) depending on
the mains voltage. Depending on the circuit, the asynchronous motor can be operated with or without
a frequency inverter on different mains connections (including 230 V, 50 Hz and 400 V, 50 Hz) and
therefore usually has several different V/f characteristic curves.
Fig. 14: Example of motor type plate
AG 0100 EN-3216
29
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Fig. 15: Example of a data sheet
The motor data are parameterised in the frequency inverter in the tab "Motor data / Characteristic
curve parameters" in parameters P201 - P209.
If this is an IE1 asynchronous motor from Getriebebau NORD it can be selected with the parameter
Motor list P200 from a list of the available 4 pole IE1 asynchronous motors. With the selection of the
motor type, the corresponding parameters P201 - P209 are set automatically .
30
AG 0100 EN-3216
3 Basic Commissioning
Information
NORD motor data
The motor data which are saved in the frequency inverter are only for IE1 asynchronous motors and IE4
synchronous motors manufactured by Getriebebau NORD. The values have been calculated from the specific
data sheets for the motor or the details on the type plate.
If the motor is e.g. an IE2 asynchronous motor or an asynchronous motor from a different manufacturer, the
motor data obtained from the type plate on the motor or from the manufacturer's data sheet can be used.
After entry of the motor data the No load current P209 is always calculated automatically  (from the values
Nominal current P203 and Motor cos phi P206).
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
MOTOR DATA/ CHARACTERISTIC CURVE PARAMETERS
NORD IE2 motor
P200
(P)
Motor list
0 (leave as set), as IE2 motor
P201
(P)
Nominal frequency [Hz]
50.0*
50.0
P202
(P)
Nominal speed [rpm]
1445*
 1445  1440
P203
(P)
Nominal current [A]
8.3*
 8.3  8.02
P204
(P)
Nominal voltage [V]
400*
 400 (leave as set)
P205
(P)
Nominal power [kW]
4*
P206
(P)
Cos phi
P207
(P)
Star Delta con.
P208
(P)
Stator resistance [Ω]
3.44*
 3.44  3.25 (measured)
P209
(P)
No load current [A]
4.4*
 4.4 (calculated)
P220
(P)
Par.-identification
0
 4 (leave as set)
 0.8  0.83
0.8*
1*
0
 1 (leave as set)1 (1 = delta)
 0  1 (Identification RS)
*) dependent on FI power or P200 / P220
The Stator resistance P208 should always be measured and set with the automatic stator resistance
measurement and should then be checked, see Par.-identification P220 and the function {1 =
Identification RS}.
Information
Stator resistance
The measured value or the value to be entered for the Stator resistance P208 of a line (if this is available)
should always be relative to an ambient temperature of approx. 20 °C.
Pos : 96 /Appli kationen/[AG 0100] R egleropti mi erung ASM - CFC Cl os ed- Loop/3. Grundi nbetri ebnahme/N ORD - M otoren M otortypensc hild / D atenblatt @ 11\mod_1460377028402_388.doc x @ 317149 @ 35 @ 1
In den Parametern P201 bis P0
AG 0100 EN-3216
31
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
7
3.2.1
NORD – Motor type plates / Data sheet
The motor data can be obtained from the motor type plate, see  3.2 "Motor data" and / or the
manufacturer's data sheet. The manufacturer's motor data should be parameterised accordingly in the
tab "Motor data / Characteristic curve parameters".
NORD motors
In general only the motor data for IE1 asynchronous motors should be selected by means of the
motor type via the parameter Motor list P200, e.g. function {34 = 4.0 kW 400 V}.
Fig. 16: NORD motor (IE2) Data Sheet SK 112MH/4
32
AG 0100 EN-3216
3 Basic Commissioning

If a NORD motor is not selected with the aid of the parameter Motor list P200, the motor
data must be parameterised according to the type plate or from the data sheet.
Getriebebau NORD IE2 and IE3 asynchronous motors and third party motors must always
be parameterised manually  by the user.
Pos : 100 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/3. Gr undi nbetriebnahme/Motor en-Identifi kation @ 7\mod_1431954275725_388.doc x @ 220476 @ 35 @ 1
3.2.2
Motor identification
If the motor data is not known, or no type plate is available, there is the possibility of automatically
determining the necessary motor data using a motor identification.
However, to do this, the motor data for the parameters:
•
•
•
•
•
Nominal frequency P201
Nominal speed P202
Nominal voltage P204
Nominal power P205
Star Delta con. P207
approx. values, as this depends on the number of pole pairs (2 / 4)
must be known to the user and parameterised in the frequency inverter under the tab "Motor data /
Characteristic curve parameters".
NOTICE
IE2 Motor data
As a 4-pole IE2 asynchronous motor has been used in this guide, selection or the pre-setting of the motor data
(P2xx) must not be made with function {34 = 4.0 kW, 400 V} via the parameter Motor list P200!
Otherwise the calculation of the ASM model will be based on "incorrect" motor data values.
Par.-identification P220
With the parameter Par.-identification P220 there is the possibility of obtaining some of the motor
data automatically  from the frequency inverter. With many ASMs better drive characteristics
are enabled or obtained with the measured motor values.
Information
Parameter identification SK 5xxE
With SK 5xxE frequency inverters, for the Par.-identification P220 the function {2 = Identification motor} is
only possible for frequency inverter / motor combinations ≤ 7.5 kW (for 400 V) or. ≤ 4.0 kW (for 230 V).
For SK 5xxE applications ≥ 11.0 kW the function {2 = identification motor} is not approved.
For decentralised SK 2xxE frequency inverters thefunction {2 = identification motor} is possible for the entire
power range.
The Par.-identification P220 must be carried out when the motor is cold (15 °C ≥ TMotor ≤ 25 °C) .
The following two functions can be selected:
•
Function {1} Identification RS :
For the Identification RS only the Stator resistance P208 is determined by multiple
measurements.
•
Function {2} identification motor:
With identification motor all of the other parameters (P202, P203, P206, P208, P209) for
asynchronous motors are only determined when the motor is at a standstill.
AG 0100 EN-3216
33
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Information
Stator resistance value
After the measurement is complete, the determined stator resistance value is entered or displayed automatically
in the parameter Stator resistance P208 .
In case of "incorrect" resistance values, the setting for the “Star Delta con. P207” and the motor connection in the
connection terminal box should be checked.
Pos : 102 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 103 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/3. Gr undi nbetriebnahme/Ers atz schaltbild @ 5\mod_1401791541294_388.doc x @ 134751 @ 3 @ 1
3.2.3
Schematic circuit diagram
In general, all of the data which are necessary for control are calculated from the details on the type
plate ( 3.2 "Motor data"). The required data refer to the data in the schematic circuit diagram (SCD)
for the ASM.
For the Par.-identification P220 calculation of the motor data is based on measurement signals for
the SCD data.

To some extent, the data from the schematic circuit diagram (SCD) which are required for
control depend on the temperature (motor and ambient temperature). A correction of the
values at higher motor temperatures is made automatically by the controller. If the stator
resistance is measured at higher ambient temperatures or only after longer operation of the
motor "incorrect"starting values for the automatic temperature correction result.
Information
Displayed measurement values
If the motor data are determined with the Par.-identification P220 and Function {2 = identification motor} it is
then possible to display these values in NORD CON or with a ParameterBox.
In the "Operating Displays" tab the corresponding values form the schematic circuit diagram which are to be
displayed after the frequency inverter is enabled can be selected under the parameter Select of disp.value P001.
On the other hand, values calculated from the type plate data and data from the schematic circuit diagram can not
be displayed via selection from the Motor list P200.
Pos : 105 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/3. Gr undi nbetriebnahme/Schl upfkompens ati on anpassen [Ü2] @ 7\mod_1431955233551_388.doc x @ 220508 @ 2 @ 1
34
AG 0100 EN-3216
3 Basic Commissioning
3.3
Adjusting the slip compensation
Pos : 106 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 107 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/3. Gr undi nbetriebnahme/Schl upfkompens ati on anpassen @ 5\mod_1400586799521_388.doc x @ 133485 @ @ 1
In the ASM model which is used for pre-control. The stator frequency which is required for a particular
speed is determined with an equation. The precision of this depends on the rotor time constant tR.
The rotor time constant tR greatly depends on the temperature. If this is inaccurately tracked in the
ASM model due to temperature drift, errors in the "pre-controlled" stator frequency result.
This effect can be compensated for with the Slip compensation P212. The slip compensation
therefore improves the pre-control of the motor model.
Information
Slip compensation P212
The 100 % factor setting should initially be reduced in advance to a guide value of 80 % for asynchronous
motors.
After completion of the controller optimisation the motor can be operated at the operating point or in nominal load
operation and the Slip compensation P212 can then be optimised
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
MOTOR DATA/ CHARACTERISTIC CURVE PARAMETERS
P212
(P)
Slip compensation [%]
100
 100 → 80
The optimisation or correct setting of the slip compensation P212 is described in detail in Section
 7.3 "Slip compensation".
Pos : 109 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. Grundinbetriebnahme/Opti mier ung M otordaten [Ü 2] @ 7\mod_1431955832864_388.doc x @ 220539 @ 2 @ 1
3.4
Optimisation of motor data
Pos : 110 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 112 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/3. Gr undi nbetriebnahme/NORD - Motor en @ 11\mod_1460367594281_388.doc x @ 316894 @ 3 @ 1
In den Parametern P201 bis P07
3.4.1
NORD motors
The motor data are only implemented in the motor list of the system software of the two frequency
inverter series SK 2xxE and SK 5xxE for Getriebebau NORD IE1 asynchronous motors, see
 Parameter Motor list P200.

Optimisation of the specific motor data for Getriebebau NORD IE1, IE2 and IE3
asynchronous motors is only necessary, or must be carried out by the user in exceptional
cases.
In general, this applies for all NORD motors (e.g. field test drive units, special versions, etc.),
which are not included in the Motor list P200.
For special applications, special motors and in case of application problems, we recommend that you
contact the Service department of Getriebebau NORD.
Pos : 117 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. Grundinbetriebnahme/Inkr emental drehgeber (IG) [Ü 2] @ 7\mod_1432014870412_388.doc x @ 220608 @ 2 @ 1
AG 0100 EN-3216
35
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
3.5
Incremental encoder (IG)
Pos : 118 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Schritt 3 @ 7\mod_1434978694045_388.doc x @ 227660 @ @ 1
Step 3
Pos : 119 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 120 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmeInkr ementaldr ehg eber (IG) @ 5\mod_1401801238324_388.doc x @ 134871 @ @ 1
For the speed feedback, incremental encoders (IG) are usually used, which convert the rotary
movement into electrical signals (TTL or HTL). Incremental encoders both with and without zero tracks
can be used.
Three different encoder resolutions (1024, 2048 and 4096) are available as standard Getriebebau
NORD encoders. As the default rotary encoder, a resolution of 4096 pulses (pulses/rotation) is pre-set
at the factory in the frequency inverter. Technical data for the incremental encoder, e.g. the relevant
connections can be obtained from catalogue  M7000 Electric Motors.
NOTICE
Installation of rotary encoders
The incremental encoder must be mounted on the end of the motor shaft. Otherwise, inaccuracy of the speed
and / or the position control may result.
Pos : 121 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 122 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmePar ametrierung Drehgeber (IG) @ 5\mod_1400586722895_388.doc x @ 133462 @ 35 @ 1
3.5.1
Parameterisation of encoders (IG)
For connection of the incremental encoder to the control terminals of decentralised SK 2xxE
frequency inverters, adjustment of the parameterisation of the digital inputs DIN2 and DIN3 is
required via the parameters digit inputs P420 [-02] and [-03]. The connection of an IG with a zero
track via DIN1 must be parameterised via the parameter Digital inputs P420 [-01], for further details
see 3.5.2 "Encoder connection (IG)".
For control in CFC Closed-Loop mode (servo mode) it is essential that speed control with speed
measurement is enabled via an incremental encoder (IG). In the "Control parameters" tab, the
parameter Servo mode P300 with the function {1 = On (CFC Closed-Loop)} is available for this.
Information
Enabling of control parameters
For decentralised SK 2xxE frequency inverters, the Control parameters P3xx tab is enabled with the
parameter P003 Supervisor-Code {3 = all parameters visible}
For the control cabinet frequency inverters SK 53xE and SK 54xE the tab is enabled as the default in the
factory settings.
The corresponding pulse number / resolution for the encoder system must be parameterised in the
parameter Incremental encoder P301, taking the appropriate prefix (note the installation position)
into account.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
Speed control
P300
P301
(P)
Servo mode
Incremental encoder
0 (Off = VFC Open- Refer to  3.5.5 "Activating the speed
Loop)
control"
6*
 6  5 (2048 pulses)
* 6 corresponds to 4096 pulses
36
AG 0100 EN-3216
3 Basic Commissioning
Incremental encoder (IG) with zero track
For applications with an incremental encoder with a zero track, the offset between the zero pulse and
the actual rotor position "0" must be set manually  in the parameter Encoder offset PMSM P334.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
Speed control
P334
(S)
P335 **
Encoder offset PMSM [rev]
Sync. 0-pulse **
0.000
0
 0  0.491 *
See  3.5.4 "Incremental encoder (IG)
with zero track"
*For the value, see  on the label in the motor terminal box
* Parameter P335 Sync. 0-pulse encoders are only available for
SK 54xE
Details of the parameters Encoder offset PMSM P334 and Sync. 0-pulse P335 can be obtained from
Section  10.1 "Manuals".
Pos : 124 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmeAns chl uss Dr ehg eber (IG) @ 5\mod_1401101666318_388.doc x @ 134054 @ 355 @ 1
AG 0100 EN-3216
37
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
3.5.2
Encoder connection (IG)
Connection of the incremental encoder to the control terminals of the frequency inverter is different for
the two frequency inverter series SK 2xxE and SK 5xxE and requires appropriately modified
parameterisation. The connection of an incremental encoder with a zero track is also different for the
two frequency inverters.
SK 2xxE
For decentralised SK 2xxE frequency inverters, connection of the incremental encoder (HTL) is made
exclusively via the two digital inputs DIN2 (Terminal 22) and DIN3 (Terminal 23). In the "Control
terminals" tab in parameter Digital inputs P420 [-02] and [-03] these must be switched to the
function {0 = No function}.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
CONTROL TERMINALS
P420
[-01]
Digital inputs (DIN1)
1
 1 → 43 (only for IG with zero track)
P420
[-02]
Digital inputs (DIN2)
2
2→0
P420
[-03]
Digital inputs (DIN3)
4
4→0

If the incremental encoder is connected and the Digital inputs DIN2 and DIN3 are not
parameterised to the function {0 = No function} there will be a "clicking" noise when the
drive unit is enabled!
Connection of incremental encoders with a zero trackmay only be made to Digital input 1 (DIN1).
Only the signal + zero track is connected to Terminal 21 (DIN1).
In the parameter Digital inputs P420 [-01], by selecting the function {43 = 0-track HTL encoder DI1},
the starting behaviour of the synchronisation of the rotor position is specified.
SK 520E to SK 535E
Connection of the incremental encoder (TTL) for control cabinet frequency inverters of performance
levels ≥ SK 520E is made via the terminal bar X6 (Terminals 51 … 54).

Connection of incremental encoders with a zero track is only made to the Universal encoder
interface, terminal bar X14, terminals 63 (Signal CLK-) and 64 (Signal CLK+) in the case of
SK 540E and SK 545E control cabinet frequency inverters.
Information
Power supply
Encoder systems with a suitable power supply (10 V to 30 V) should be planned and used.
The technical data can be obtained from catalogue  M7000 Electric Motors or from the data sheets  10.2.1
"TIs – Incremental encoder (IG)".
Pos : 126 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmeF unktions prüfung Drehgeber (IG) @ 5\mod_1401101670698_388.doc x @ 134078 @ 3 @ 1
38
AG 0100 EN-3216
3 Basic Commissioning
3.5.3
Function test of rotary encoders (IG)
After completion of connection and basic commissioning the correct function of the incremental
encoder (IG) should always be checked.

The prefix (+ or - pulse numbers) depends
encoder on the motor shaft. For example,
correspond to the direction of rotation
specification: positive values = clockwise
in the Incremental encoder P301.
Information
on the installation position of the incremental
if the direction of rotation of the IG does not
of the frequency inverter (recommended
rotation) a negative pulse number must be set
Checking the encoder speed
To check the correct selection of the Incremental encoder P301 the parameter Speed encoder P735 is
available in the "Information Parameters" tab.
For the function test of the parameterised encoder function, the motor can be enabled e.g. with a setpoint of
10 Hz depending on the Nominal frequency P201, e.g. 50 Hz or 70 Hz in clockwise rotation. With this, for a 4pole motor the parameter Speed encoder P735 should have a value of approx. 300 rpm.
However, the value for the Speed encoder P735 may vary according to the application, as the setting for the
Maximum frequency P105 parameter and the selected setpoint source must also be taken into account.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
INFORMATION, read only
P735
Speed encoder
 approx. 300 rpm
Pos : 127 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmeInkr ementaldr ehg eber (IG) mit N ullspur @ 6\mod_1430815306720_388.doc x @ 215070 @ 35 @ 1
In den Parametern P201 bis P07
3.5.4
Incremental encoder (IG) with zero track
With the SK 54xE, the zero track of an incremental encoder is only evaluated if no universal encoder
is connected to the universal encoder interface, terminal bar X14. Refer to  3.5.2 "Encoder
connection (IG)" for further details.
The zero track of an incremental encoder can be used to determine either the
•
Zero rotor position of the synchronous motor or the PMSM

The parameter Regulation PMSM P330 must be set to either the function
•
{0 = Voltage-controlled} or
•
{1 = Test signal method}
if an incremental encoder is used..
For IE4 synchronous motors manufactured by Getriebebau NORD, the encoder offset
between the d-axis of the rotor and the zero pulse is measured and documented with a
"rpm" and "°" label in the terminal box.
For further details, refer to P334 Encoder offset PMSM  3.5.1 "Parameterisation of
encoders (IG)".
or for the synchronisation of the
•
Zero point (reference point) of the incremental encoder.
The following parameters are available for synchronisation of the zero pulse of the incremental
encoder.
AG 0100 EN-3216
39
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Sync. 0-pulse P335
Various functions can be selected for synchronisation:
•
Function {0 = Sync. off}
Synchronisation is disabled or switched off and corresponds to the factory setting.
•
Function {1 = Sync rotor pos. PMSM}
Synchronisation of the rotor position of a PMSM, i.e. a synchronous motor is enabled or
switched on.
•
Function {2 = Sync. reference pos.}
Synchronisation of the reference point for positioning applications (POSICON) is enabled or
switched on.
•
Function {3 = Sync. PMSM + pos.}
Both the synchronisation of the rotor position of a PMSM / synchronous motor as well as the
reference point for positioning applications (POSICON) is enabled or switched on.
Pos : 128 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmeDr ehz ahlregel ung akti vi eren @ 5\mod_1401801846691_388.doc x @ 134894 @ 3 @ 1
3.5.5
Activating the speed control
For activation of the speed feedback (CFC Closed-Loop mode), under the tab "Control parameters"
the parameter Servo mode P300 must be set to Function {1 = On (CFC Closed-Loop)}.
CAUTION
Servo mode activation
This setting should only be made after the check of the direction of rotation of the incremental encoder has been
successfully completed.
Otherwise, unexpected movements (wrong direction of rotation) may result. This may cause both material
damage as well as injuries to persons
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
Speed control
P300
(P)
Servo mode
0 (Off = VFC Open-  0 → 1 (On = CFC Closed-Loop)
Loop)
Pos : 129 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. Grundinbetriebnahme/Absol utwertdrehgeber ( AG) [Ü2] @ 7\mod_1432019892090_388.doc x @ 220841 @ 2 @ 1
40
AG 0100 EN-3216
3 Basic Commissioning
3.6
Absolute encoder (AG)
Pos : 130 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 131 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. Grundinbetriebnahme/Absol utwertdrehgeber ( AG) @ 7\mod_1435066504466_388.doc x @ 228500 @ @ 1
For the speed feedback a combined absolute encoder (AG) with a separate incremental track
(IG track) which as a measurement sensor converts the rotary movement into electrical signals (TTL
or HTL) can also be used. Both CANopen absolute encoders, as well as various universal
encoders can be used.
Four different encoder types with 13 Bit single turn resolution (8192) as well as 12 Bit (4096) or 16 Bit
(65536) multiturn resolution are available as standard Getriebebau NORD encoders. A pulse number
of 2048 (pulses/rotation) is used as the standard resolution of the incremental track and is pre-set at
the factory in the frequency encoder. Technical data CANopen absolute encoders, e.g. the relevant
connections can be obtained from catalogue  M7000 Electric Motors.
NOTICE
Installation of rotary encoders
It is essential that the combination absolute encoder (single and multiturn with integral incremental track) is
mounted on the end of the motor shaft.
Other types of absolute encoder (e.g. Type AG1 / Part no. 19551881 / Kübler Type 8.5888.0421.2102.
S010.K014) must not necessarily be mounted on the end of the motor shaft.
In this case, the speed ratio in the frequency inverter must be parameterised with the aid of the Ratio P607 and
the Reduction Ratio P608. Otherwise, inaccuracy of the speed (incremental track) and / or the position control
may result.
Pos : 132 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 133 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmePar ameterier ung CAN open Drehgeber (AG) @ 5\mod_1407847143029_388.doc x @ 146952 @ 3 @ 1
3.6.1
Parameterisation of CANopen encoders (absolute encoders)
For control in CFC closed loop mode (servo mode), for a CANopen standard combined absolute
encoder (AG) with an additional incremental track (IG) it is essential that the speed control with
speed measurement is enabled. In the "Control parameters" tab, the parameter Servo mode P300
with the function {1 = On (CFC Closed-Loop)} is available for this.
For an encoder system with incremental signals, the corresponding pulse number / resolution must be
parameterised in the parameter Incremental encoder P301, taking the appropriate prefix (note the
installation position) into account.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
Speed control
P300
(P)
P301
Servo mode
Incremental encoder
0 (Off = VFC
Open-Loop)
6*
 0 → 1 (On = CFC Closed-Loop)
 6 → 5 (2048 pulses)
* 6 corresponds to 4096 pulses
For the position detection of the position controller with a standard combination encoder with a
CANopen interface (see Section  2.6 "Selection of absolute encoders"), several parameters must
be set under the "Positioning" tab for position detection by the position controller.
AG 0100 EN-3216
41
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
POSITIONING / CONTROL PARAMETERS
P604
Encoder type
0
 0 → 1 (CANopen absolute)
P605
[-01]
Absolute encoder (Multi)
10
 10 → 12 (4096 pulses)
P605
[-02]
Absolute encoder (Single)
10
 10 → 13 (8192 pulses)
Pos : 134 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmePar ameterier ung CAN open Schnittstelle ( AG) @ 5\mod_1409566412946_388.doc x @ 148784 @ 3 @ 1
3.6.2
Parameterisation of the CANopen interface
For the communication interface of a CANopen standard combination absolute encoder (see
Section  2.6 "Selection of absolute encoders") further parameters must be set in the "Extra
parameters tab.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
ADDITIONAL PARAMETERS
CAN bus baud rate *
[kBaud]
P514
5 **
 5 (250 kBaud) ** (leave as set)
P515
[-01]
CAN bus address *
Slave address
32(dec)
 32 (leave as set)
P515
[-02]
CAN bus address *
Broadcast slave adr.
32(dec)
 32 (leave as set)
P515
[-03]
CAN bus address *
Master address
32(dec)
 32 (leave as set)
* System bus
** Depending on the frequency inverter, ≥ SK 530E factory setting = 4
*** Depending on the frequency inverter, ≥ SK 530E factory setting = 50
The default settings for the parameters CAN Baud rate P514 as well as the CAN address P515 Array
[-01 … -03] vary between the SK 2xxE and the ≥ SK 530E control cabinet frequency inverters. These
two parameters must be parameterised differently for application-specific requirements or deviations.
Information
CANopen parameterisation
For connection of a standard combined absolute encoder to the particular frequency inverter, the standard
address setting on the CAN open absolute encoder is pre-set at the factory to the value / address {33} or {51}.
For control cabinet frequency inverters ≥ SK 530E the standard Baud rate setting / function {4 = 125 kBaud}
deviates from that of decentralised frequency inverters with {5 = 250 kBaud} and is pre-set at the factory for
CANopen absolute encoders from Getriebebau NORD.
Pos : 135 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmeAns chl uss C AN open Drehgeber (AG) @ 5\mod_1407846646103_388.doc x @ 146898 @ 355 @ 1
42
AG 0100 EN-3216
3 Basic Commissioning
3.6.3
Connection of CANopen encoders (absolute encoder)
The connection and the necessary 24 V power supply of the CANopen absolute encoders is
different for the frequency inverter series SK 2xxE and SK 5xxE.
SK 2xxE
Direct connection to the relevant bus option with system bus interface to the terminals:
Terminal
Designation
Function
Information
44
VO / 24 V
24 V supply
40
GND / 0 V
0 V supply
77
SYS H
System bus +
78
SYS L
SYS H / (CAN High)
System bus -
SYS l / (CAN Low)
Shield
via large-area earthing using the EMC cable connector
Table 6: SK 2xxE interface connection to the system bus
For detailed information regarding the connection of a CANopen absolute encoder to an SK 2xxE
please refer to the supplementary manual  BU 0210 and the manual  BU 0200, see Section 
10.1 "Manuals".
SK 53xE and SK 54xE
An optional RJ45 WAGO connection module (Part No. 278910300) is available for connection of the
external power supply of the CANopen absolute encoder of SK 53xE and SK 54xE for frequency
encoder applications.
Detailed information for the connection of a CANopen absolute
encoder to a frequency inverter ≥ SK 530E and to the RJ45
WAGO connection manual can be obtained from the
supplementary manual  BU 0510 and the manuals
 BU 0500 or BU 0505, see Section  10.1 "Manuals".
Fig. 17: RJ45 WAGO connection module
Pos : 136 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. GrundinbetriebnahmeF unktions prüfung CAN open Dr ehg eber (AG) @ 5\mod_1407847234061_388.doc x @ 146976 @ 35 @ 1
AG 0100 EN-3216
43
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
3.6.4
Function test of CANopen encoders (absolute encoders)
After completion of connection and basic commissioning the correct function of the CANopen
absolute encoder (AG) should always be checked.
Information
CANopen status
The CANopen status of the absolute encoder interface and the frequency inverter can be evaluated or checked
with the parameter CANopen status P748 under the tab "Information Parameters".
Further CANopen participants (nodes / addresses) may possibly be connected to the CANopen field bus, so that
the assignment of double addresses or different Baud rates etc. may have been parameterised.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
INFORMATION, read only
P748 [-01]
 Check display of CANopen status
CANopen status * [hex]
* System bus
The parameter CANopen state P748 shows the status of the CANbus /CANopen in bit-coded form,
i.e. therefore the state of CANopen MNT For detailed information, please refer to the relevant manual
for the frequency inverter, see  10.1 "Manuals".
Procedure
For both the function test of the CANopen encoder as well as for commissioning of the position
control, it is recommended that a set procedure is followed.
CAUTION
Servo mode activation
Ensure that the Emergency Stop and safety circuits are functional! For lifting gear applications, prior to switching
on for the first time measures must be taken to prevent the load from falling. In addition, for the load take-up, the
parameters Brake reaction time P107 and Brake delay off P114 should be optimised after the optimisation
of the speed controller.
Otherwise, unexpected movements (wrong direction of rotation) may result. This may cause both material
damage as well as injuries to persons
1 Commission the axis without position control
After the input of all parameters the drive unit should first be commissioned without control of
the position or speed.
For this the speed control must be switched off in the parameter Servo mode P300 with the
function {0 = Off (VFC Open-Loop)} and the parameter Position control P600 and the function
{0 = Off}.
2 Commissioning the speed controller
This step may be omitted if no speed control is required or if an incremental encoder is used.
Otherwise the Servo mode P300 should be switched to {1 = On (CFC Closed-Loop)}
44
AG 0100 EN-3216
3 Basic Commissioning
Information
Servo mode
If the motor only runs at a slow speed with a high current consumption after activation of the Servo mode P300
with the function {1 = On (CFC Closed-Loop)}, there is usually an error in the wiring or the parameterisation of
the incremental encoder connection. The most frequent cause is an incorrect assignment of the direction of
rotation of the motor to the counting direction of the encoder.
The optimisation of the speed control is optimised after commissioning of the position control, as the behaviour of
the position control circuit can be influenced by changes to the speed control parameters.
3 Commissioning the position controller
After setting parameter Encoder type P604 and Absolute encoder P605 it must be checked
whether the actual position is correctly detected. The actual position is displayed in the
parameter actual position P601.
The value must be stable and become larger if the motor is switched on with rotation to the right
enabled. If the value does not change when the axis is moved, the parameterisation and the
encoder connection must be checked. The same applies if the displayed value for the actual
position jumps although the axis has not moved.
4 Specify and move to the setpoint position
After this a setpoint position in the vicinity of the actual position should be specified and moved
to by enabling the drive unit.
Information
Testing the absolute encoder function
The encoder position of the absolute encoder can be checked with the parameter Actual position P601 using
NORD CON. If the direction of action of the absolute encoder is not correct, i.e. after being enabled, the axis
moves away from the setpoint position instead of towards it, this indicates an incorrect assignment between the
direction of rotation of the motor and the direction of rotation of the encoder. In this case, there is the possibility of
changing this by a negative input of the speed ratio value in the parameter Ratio P607.
Under the "Positioning Parameters" tab, using the parameter Encoder type P604, the corresponding encoder
system is parameterised for detection of the actual position value.

Parameter No.
[-Array]
The direction of effect of the absolute encoder, i.e. the prefix (+ or - pulse numbers) depends
on the installation position of the incremental encoder on the motor shaft. For example, if
the direction of rotation of the incremental encoder does not correspond to the direction of
rotation of the frequency inverter (recommended specification: positive values = clockwise
rotation) a negative pulse number must be set in the Incremental encoder P301.
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
POSITIONING / CONTROL PARAMETERS
P601
actual position [rev]
---
 Check display
P602
Actual Ref. Pos. [rev]
---
 Check display
P603
Curr. position diff. [rev]
---
 Check display
P604
Encoder type
0
 0  1 (CANopen absolute)
P607
[-02]
Ratio (absolute encoder)
1
P608
[-02]
Reduction Ratio (absolute encoder)
1
If the function test is complete and the detection of the actual position operates correctly, the position
controller can be optimised according to the following procedure, see  6 "Position control".
Pos : 142 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/4. Str omregel ung/Str omregel ung [Ü1] @ 7\mod_1431930921610_388.doc x @ 219882 @ 1 @ 1
AG 0100 EN-3216
45
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
4 Current control
Pos : 144 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Schritt 4 @ 7\mod_1434978702419_388.doc x @ 227724 @ @ 1
Step 4
Pos : 145 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 146 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/4. Str omregel ungStromr egel ung @ 5\mod_1400587108784_388.doc x @ 133577 @ 5 @ 1
The current control is comprised of two different PI controllers:
•
•
Torque current controller (P312, P313, P314)
Field current controller (P315, P316, P317)
These are divided into parameters P312 / P315 for the P component and parameters P313 / P316 for
an I component. In addition, two further "limit parameters" P314 or P317 complete the particular
controller. These are used to limit the maximum voltage range ( 10.1 "Manuals").
Information
Controller values
The settings for the P component and the I component of the particular controller should always have the
same setting, i.e. P312 = P315 and P313 = P316. The limit parameters P314 or P317 are not considered in
further detail in this guide!
The following diagrams show several control curves / transient responses which occur after a sudden
change of the setpoint for various PI controllers.
Diagram 2
Diagram 1
Selected P component too small
P component optimised and I component selected
too small

Diagram 4
Diagram 3
P and I component optimal
P component optimised and I component selected
too large

Fig. 18: Control value curves
46
AG 0100 EN-3216
4 Current control
The various control curves, where the setpoint is shown in RED and the actual value is shown in
GREEN, describe the dynamic curve for the transient response, which is set via the individual control
parameters (P and I component) of the controller.
It is recommended that the following optimisation steps are performed to systematically adjust a
current controller.
Overview of the optimisation procedure
•
Set the I component to a low value
•
Increase the P component from the standard value in e.g. 50 % increments until no further
rapid increase of the actual value (Flux current ~P721) can be achieved. A curve as shown in
Diagram 2 results.
•
This is followed by an increase of the I component in e.g. 20 % / ms increments until an
overshoot of approx. 3 to 5 % is achieved.
Diagram 3 shows the optimised curve, whereby in this diagram, the overshoot is slightly
exaggerated for clarity.
Diagram 1 shows the curve if the P components is selected too small. In contrast Diagram 4 shows
the curve for the actual value when the I component is set too large. In this case, the I component
should be gradually reduced to set a curve as shown in Diagram 3.

The aim is to optimise the curve for the Flux current ~P721 with
the "correct" settings of the P and I components.
The practical implementation for optimisation of a current controller is described in
Section  4.4 "Optimisation procedure".
Pos : 151 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/Wei ter e Ei nstellungen [Ü2] @ 7\mod_1432029630965_388.doc x @ 220873 @ 2 @ 1
4.1
Further settings
Pos : 153 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 154 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/4. Stromr egelung/Wei ter e Ei nstellungen @ 5\mod_1401720469456_388.doc x @ 134695 @ @ 1
For optimisation of the current controller, it is essential that the following parameters are set in
advance.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
ADDITIONAL PARAMETERS
P505
(P)
Absolute mini. freq. [Hz]
P558
(P)
Flux delay [ms]

2.0
1
 2.0 → 0.0
1→0
Before starting the scope recording and enabling the drive unit, the setpoint must always
be set to 0 % (0 Hz).
Pos : 157 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/NORD CON [Ü 2] @ 7\mod_1432029689942_388.doc x @ 220904 @ 2 @ 1
AG 0100 EN-3216
47
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
4.2
NORD CON
Pos : 158 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 159 /Appli kati onen/[AG 0100] Regl eropti mier ung/4. Str omregel ung/N ORD C ON @ 5\mod_1403614271863_388.doc x @ 137968 @ @ 1
NORD CON should be used for programming, operation
and optimisation of the controllers.
Optimisation of the controllers for NORD frequency
inverters can be performed with this parameterisation and
control software. The oscilloscope function provides e.g
the possibility to assess the particular optimisation steps
on the basis of several scope recordings.
Further information about the latest version can be found
under the following link: NORD CON
The functions Remote Control and Control as well as
the Device Overview are available for control of the
frequency inverter.
Fig. 19: NORD CON
Detailed information about the various functions, e.g. interface configuration, operation, oscilloscope
settings, etc. can be found in the NORD CON Manual BU 0000, see  10.1 "Manuals".
Pos : 160 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/4. Str omregel ungFernbedi enen @ 5\mod_1403610553540_388.doc x @ 137894 @ 3 @ 1
4.2.1
Remote control
The following setting must be made in the Remote Control screen to optimise the current controller
before starting the scope recordings.
Leave the setpoint at 0 %, i.e. leave the
setpoint frequency at 0 Hz
Alternative display possibility
Press the Enable button
Fig. 20: Remote control of the current controller, setpoint and enabling
48
AG 0100 EN-3216
4 Current control
New display in NORD CON
Fig. 21: Remote control of the current controller, setpoint and enabling
Information
Remote Control display
The display in the Remote Control screen may vary for different NORD CON settings and versions. E.g. the
Remote Control screen is displayed differently for SK 5xxE frequency inverters.
Pos : 162 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/4. Str omregel ungOszillos kop @ 5\mod_1401721458835_388.doc x @ 134719 @ 3 @ 1
4.2.2
Oscilloscope
The following settings should be made under the two tabs Recording or Channel Settings of the
NORD CON Oscilloscope Function before starting the oscilloscope recordings. The settings and
graphic displays in the illustrations may differ according to the frequency inverter types, versions and
software status.
Set Trigger to Enable
Set the scan rate to 0.25 ms
→ Scan duration 50 ms
Note
The scan rate should be selected so that it corresponds to the
scope recordings in the illustrations in Section 
<dg_ref_source_inline>Optimierungsablauf</dg_ref_source_inlin
e>!
Fig. 22: Oscilloscope settings for trigger and scan rate / scan duration
Fig. 23: Resolution settings for the time axis, comment examples
AG 0100 EN-3216
49
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Various types are available for selection of the measuring values which are to be recorded. Depending
on the controller, the "unfiltered" (~P7xx / with approx. 250 µs) and the "filtered" (≈P7xx / with
approx. 50 ms) values should be set for the oscilloscope recordings.
Fig. 24: Legend / Meaning of measurement functions
Information
Oscilloscope recordings
To obtain a better depiction of the measurement values, in this guideline the colours in the channel settings for
the particular measurement values have been modified for the oscilloscope settings.
For the use of the application guide it would be generally advantageous if during the optimisations /
oscilloscope- recordings which are carried out (e.g. for the current, speed, position controllers, etc.) the
identical settings are selected for the colour and resolution of the measurement values which are to be
displayed.
Fig. 25: Oscilloscope channel settings for the three measurement values
Press the Start button
Fig. 26: Start the scope recording
Information
Initialisation
After pressing the start button, the initialisation phase of the oscilloscope recording begins. This is indicated with
the
indicator light. Because of this, enabling must only be carried out after completion of the initialisation
phase for the oscilloscope recording.
Completion of the initialisation phase is indicated with a
50
colour change.
AG 0100 EN-3216
4 Current control
Fig. 27: Initialisation phase of scope recording
Pos : 167 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/4. Str omregel ung/Momenten- und F eldstromr egler [Ü 2] @ 7\mod_1432029738130_388.doc x @ 220935 @ 2 @ 1
AG 0100 EN-3216
51
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
4.3
Torque and field current controller
Pos : 169 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 173 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/4. Stromr egelung/Momenten- und Fel dstr omregler @ 5\mod_1400586993304_388.doc x @ 133531 @ @ 1
For current controllers, in general both the P and the I component of the torque current control and
the field current control should always be changed simultaneously for the particular optimisation
step.
As the pre-setting for optimising the current controller, the P component (P313 / P316) for the
1st optimisation step should be set to 50 % and the I component (P313 / P316) should be set to
10 % / ms.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
Speed control
P312
(P)
Torque curr. Ctrl. P [%]
400
 50  vary
P313
(P)
Torque curr. ctrl. I [%/ms]
50
 50  10
P314
(P)
Torq. curr. ctrl. limit [V]
400
 400 (leave as set)
P315
(P)
Field curr. ctrl. P [%]
400
 50  vary
P316
(P)
Field curr. ctrl. I [%/ms]
50
 50  10
P317
(P)
Field curr ctrl lim [V]
400
 400 (leave as set)
The changes to the control parameters must be checked with the NORD CON Oscilloscope Function
( Fehler! Verweisquelle konnte nicht gefunden werden. "Fehler! Verweisquelle konnte nicht gefunden
werden.").

For optimisation of the current controller it is essential that the parameters described in
Section  4.1 "Further settings" Absolute mini. freq. P505 and Flux delay P558 are
adjusted in advance. After optimisation the Flux delay P558 should be re-adjusted
The next optimisation steps and the corresponding scope recordings should be carried out as follows:
Information
Oscilloscope recording
If a range is reached in which the changes in the curve cannot be viewed directly, it is advisable to save the
oscilloscope recordings. With the facility for displaying several recordings simultaneously a direct
comparison with the previous settings is possible.
Pos : 175 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/4. Stromr egelung/P- Anteil e Stromr egler @ 5\mod_1401807371901_388.doc x @ 134918 @ 3 @ 1
52
AG 0100 EN-3216
4 Current control
4.3.1
Current control P components
Starting from the standard value [50 %], increase the parameter for the P component of the Torque
current control P P312 and the Field current control P P315 in 50 % increments until a rapid
increase of the actual value, i.e. of the Flux current ~P721 is no longer achieved.
The curve is as illustrated in Diagram 2 (see  4 "Current control").

The Voltage component Usd ~P723 or the parameter Voltage -d P723 must not exceed the
maximum value of 20 % of the Nominal motor voltage P204, i.e. for 400 V this corresponds to
UN ≈ 80 V).
Information
Standard values of P components
For some motor sizes it may be the case that with the standard setting for the P components of the current
controller (P312 and P315) the maximum permissible value for the Voltage component Usd ~P723 is already
exceeded.
In this case a starting value < 50 % (standard value) must be selected for the P components.
Pos : 177 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/4. Stromr egelung/I- Anteile Stromregl er @ 5\mod_1401807465709_388.doc x @ 134941 @ 3 @ 1
4.3.2
Current control I components
Increase the parameter for the I component of the Torque curr. ctrl. I P313 and the Field curr.
ctrl. I P316 from the set starting value [10 % / ms] in 20 % increments until a slight overshoot of
approx. 3 % to 5 % of the actual value, i.e. of the Flux current ~P721 occurs.
The curve is as illustrated in Diagram 3 (see  4 "Current control").

The Voltage component Usd ~P723 or the parameter Voltage -d P723 must not exceed the
maximum value of 25 % of the Nominal voltage P204, i.e. for 400 V this corresponds to UN ≈
100 V.
Information
Voltage component Usd
Depending on the motor data a more rapid or slower reduction of the Voltage component Usd ~P723 may occur
after reaching the maximum value (≈ 25 % of the nominal voltage P204).
Pos : 179 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/4. Str omregel ungKriteri en @ 5\mod_1404208366058_388.doc x @ 139559 @ 3 @ 1
AG 0100 EN-3216
53
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
4.3.3
Criteria
The following criteria should be noted for optimisation of the field weakening control:

The aim is to optimise the curve for the Flux current ~P721 with
the "correct" settings of the P and I components.
•
•
•
Keep the rise time of the Flux current ~P721 to a minimum
Aim for a maximum overshoot of 3 – 5 % of the Magnetisation current ~P721
Only allow an amplitude of the Voltage component Usd ~P723 which does not
exceed 20 % or 25 % of the Nominal voltage P204
Information
Optimisation steps
The step widths stated for control optimisation may differ depending on the application. Furthermore, the step
widths can be selected even finer for the final optimisation steps.
Pos : 182 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/Opti mi erungsablauf [Ü2] @ 7\mod_1432029832970_388.doc x @ 220967 @ 2 @ 1
54
AG 0100 EN-3216
4 Current control
4.4
Optimisation procedure
Pos : 183 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 184 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/4. Stromr egelung/Opti mi erungsablauf @ 5\mod_1401197988384_388.doc x @ 134504 @ @ 1
Information
Short circuit detection
It is possible that an oscillation may occur at the start of the curve. This oscillation occurs with frequency inverters
with an integrated "automatic short circuit detection".
This has no effect on the optimisation of the current controller.
Automatic short circuit measurement for SK 200E
frequency inverter, 4.0 kW asynchronous motor
(IE2)
Legend
Field setpoint vs. Weak field
Flux current
~P721
Voltage component
~P723
Fig. 28: Short circuit measurement of SK 200E frequency inverter
The following illustrations show the optimisation process for the current controller using the example of
a 4.0 kW asynchronous motor with efficiency class IE2 on the basis of individual oscilloscope
recordings.
AG 0100 EN-3216
55
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Legend
Field setpoint vs. Weak field
Flux current
~P721
Voltage component
Step
1. "P" scope recording
2. "P" scope recording
Parameter
settings
P312 / P315 = 50 %
P313 / P316 = 10 % / ms
P312 / P315 = 100 %
P313 / P316 = 10 % / ms
Starting point
Step
6. "P" scope recording
Parameter
settings
P312 / P315 = 300 %
P313 / P316 = 10 % / ms
P component 
P component
P iti "

7. "P" scope recording
P312 / P315 = 350 %
P313 / P316 = 10 % / ms
P component 
Step
8. "P" scope recording
11. "P" scope recording
Parameter
settings
P312 / P315 = 400 %
P313 / P316 = 10 % / ms
P312 / P315 = 600 %
P313 / P316 = 10 % / ms
P component too high
~P723
P component far
too high
Fig. 29: Curve for the P component of the current control
56
AG 0100 EN-3216
4 Current control
Legend
Field setpoint vs. Weak field
Flux current
Step
1. "I" scope recording
Parameter
settings
P312 / P315 = 350 %
P313 / P316 = 10 % / ms
~P721

Voltage component
~P723
2. "I" scope recording
P312 / P315 = 350 %
P313 / P316 = 30 % / ms
P component 
3 - 5 % overshoot 
I component 
Step
3. "I" scope recording
9. "I" scope recording
Parameter
settings
P312 / P315 = 350 %
P313 / P316 = 50 % / ms
P312 / P315 = 350 %
P313 / P316 = 150 % / ms
I component too high
I component far
too high
Fig. 30: Curve for the I component of the current controller
Pos : 194 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/5. Drehzahlreg elung/Drehzahlreg elung [Ü 1] @ 7\mod_1431930963044_388.doc x @ 219913 @ 1 @ 1
AG 0100 EN-3216
57
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
5 Speed control
Pos : 196 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Schritt 5 @ 7\mod_1434978705685_388.doc x @ 227756 @ @ 1
Step 5
Pos : 197 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 198 /Appli kati onen/[AG 0100] Regl eropti mier ung/5. Dr ehzahlregel ung/Drehzahlreg elung @ 5\mod_1401969536339_388.doc x @ 135900 @ 5 @ 1
The speed controller is a PI controller and comprises the two following parameters.
•
Speed controller (P310, P311)
The parameter Speed Ctrl P P310 influences the P component of the controller. For the
I component the parameter Speed Ctrl I P311 is available.
It is recommended that the following optimisation steps are performed to systematically adjust the
speed controller for constant loads.
Overview of optimisation procedure
•
Set the I component to a low value
•
Set the P component to a low value and e.g. increase in 50 % increments until the Torque
current ~P720 has a curve which is as rectangular as possible.
The Speed encoder ~P735 should have a linearly increasing curve.
•
This is followed by the increase of the I component in e.g. 5 % / ms increments, in order to
further optimise the rectangular curve of the Torque current ~P720. This optimisation
causes a slight overshoot of the speed.

The aim is to optimise the curve for the Torque current ~P720
with the "correct" settings of the P and I components.
The practical implementation for optimisation of a speed controller is described in
Section  5.4 "Optimisation procedure".
Pos : 200 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/Wei ter e Ei nstellungen [Ü2] @ 7\mod_1432029630965_388.doc x @ 220873 @ 2 @ 1
5.1
Further settings
Pos : 201 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 202 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/5. Drehz ahlr egelung/Wei ter e Eins tell ungen @ 5\mod_1401969537297_388.doc x @ 135924 @ 5 @ 1
For optimisation of the speed controller, it is essential that the following two parameters are set in
advance.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
ADDITIONAL PARAMETERS
P558
(P)
Flux delay [ms]
1
 0  1 (back to standard)
The ramp time must be set under the "Basic Parameters" tab in the parameter Acceleration
time P102.
58
AG 0100 EN-3216
5 Speed control
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
BASIC PARAMETERS
P102
(P)
Acceleration time [s]
2.0
 2.0  0.08 *
P113
(P)
Jog frequency [Hz]
0.0
 0.0  35
* Notice: this is set without load in the example
Information
Brake applications
For applications with a brake, the parameter Brake reaction time P107 as well as the Brake delay off P114
must be parameterised for the optimisation of the controller.
Otherwise a fault message will occur, as the drive goes into fault status due to the applied brake.
Information
Setpoint / Weak field range
Optimisation of the speed controller must be performed below the weak field range ( 8 "Weak field
controller")!
Because of this, the setpoint specification must be matched to the design range (50 Hz / 87 Hz / 100 Hz –
curves). For a standard design according to the 50 Hz characteristic curve the setpoint (frequency) should be
approx. 70 % ≈ 35 Hz.
For applications with an extended operating point (87 Hz or 100 Hz characteristic curve) a setpoint
(frequency) in the range of approx. 70 - 80 % (i.e. 61 - 70 Hz or 70 - 80 Hz) must be specified.
The weak field range for this application therefore begins above approx. 45 Hz.

The setting for the Acceleration time P102 must be selected so that
if possible, the Torque current ~P720 achieves 50 % - 100 % of the
nominal current P203 (see type plate / nominal motor current) with
the optimisation.
Setting of the Torque current ~P720 (Isq) sollte mit Hilfe der NORD CON Oszilloskop Funktion
vorgenommen werden.

Before starting the oscilloscope recording and enabling the drive unit, the setpoint must be
set to a value of approx. 70 - 80 % of the Nominal frequency P201 (50 Hz). I.e. in this
example (4.0 kW frequency inverter / motor combination) a setpoint frequency of approx. 35
- 40 Hz must be specified.
Calculation of the torque current
The Torque current ~P720 (Isq) which is to be achieved is calculated according to the formula:
 = �( ² −  ²)
Is:
Isq:
Isd:
In the basic speed range, up to the rated frequency Isd = I0 = no load current.
Line motor current (Display ~P203)
Torque-forming current or rotor current (≈ P720)
Flux-forming current or no load current (P209 / ≈ P721)
[A]
[A]
[A]
For further information regarding the calculation please refer to Section  1.2 "Field-orientated
control"
AG 0100 EN-3216
59
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Pos : 204 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/NORD CON [Ü 2] @ 7\mod_1432029689942_388.doc x @ 220904 @ 2 @ 1
5.2
NORD CON
Pos : 205 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 206 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriftenNORD C ON [Kurzfass ung] @ 5\mod_1403614918300_388.doc x @ 137991 @ @ 1
Further information about the settings can be obtained from Section  4.2 "NORD CON" and the
following.
Pos : 207 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/5. Drehz ahlr egelung/F ernbedi enen @ 5\mod_1403614155380_388.doc x @ 137944 @ 3 @ 1
5.2.1
Remote control
The following setting must be made in the Remote Control screen to optimise the speed controller
before starting the scope recordings.
Set the setpoint to 70 %, i.e.set the
setpoint frequency to 35 Hz
Use the + value or the - value button
Press the OK button to save the
frequency as the jog frequency in P113
Press the Enable button
Steps
and
are not required if a jog
frequency has been parameterised.
Fig. 31: Remote control of the speed controller, setpoint and enabling
Pos : 209 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/5. Drehz ahlr egelung/Oszillos kop @ 10\mod_1455023754476_388.doc x @ 289502 @ 3 @ 1
60
AG 0100 EN-3216
5 Speed control
5.2.2
Oscilloscope
The following settings should be made under the two tabs Recording or Channel Settings of the
NORD CON Oscilloscope Function before starting the oscilloscope recordings. The settings and
graphic displays in the illustrations may differ according to the frequency inverter types, versions and
software status.
Set Trigger to Enable
Set the scan rate to 5 ms
→ Scan duration 1 s
→ Scan rate depending on the run up time which is set
Note
The scan rate should be selected so that it corresponds to the
scope recordings in the illustrations in Section  5.4
"Optimisation procedure"!
Fig. 32: Oscilloscope settings for trigger and scan rate / scan duration
Fig. 33: Resolution settings for the time axis, comment examples
Fig. 34: Oscilloscope channel settings for the four measurement values
AG 0100 EN-3216
61
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Press the Start button
Note
Note the initialisation phase, see the illustrations in Section  Fehler!
Verweisquelle konnte nicht gefunden werden. "Fehler! Verweisquelle konnte
nicht gefunden werden."
Fig. 35: Start the scope recording
Pos : 211 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/5. Drehzahlreg elung/Drehzahlregler @ 7\mod_1432040250905_388.doc x @ 221030 @ 2 @ 1
62
AG 0100 EN-3216
5 Speed control
5.3
Speed controller
Pos : 212 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 213 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/5. Drehz ahlr egelung/Drehz ahlr egler @ 5\mod_1401969538622_388.doc x @ 135972 @ @ 1
For the speed controller, the P and I component must be changed for the relevant optimisation steps.
As the initial for optimisation of the speed controller, for the 1st optimisation step the P component
(P310) should be set to 50 % and the I component (P311) should be set to 5 % / ms.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
Speed control
P310
(P)
Speed Ctrl P [%]
100
 100  50
P311
(P)
Speed Ctrl I [%/ms]
20
 20  5
The changes to the control parameters must be checked with the NORD CON Oscilloscope
Function ( see  4.2 "NORD CON").
In the following illustration, the curve for an optimally adjusted speed controller for a 4.0 kW
asynchronous motor with efficiency class IE2 is shown as the target.
Fig. 36: Example of an optimised speed controller curve
The left-hand detailed illustration shows the almost rectangular curve for the Torque current ~P720,
while the acceleration ramp in the right-hand illustration shows a linear increase of the
Speed encoder ~P735.
As well as this, in the previous left-hand illustration a slight overshoot can be seen when the setpoint,
i.e. the Setp. freq after freq. ramp ~P718/2 is reached.
In addition, the influence of the Flux delay P558 on the curve for the Flux current ~P721 can be
seen. This is clearly visible from the time difference between the increase in the Flux current ~P721
and the increase of the frequency ramp.
This setting ensures that the motor is fully magnetised when the acceleration ramp is applied.
AG 0100 EN-3216
63
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop

The display of the required rectangular form of the Torque current ~P720 curve during the
acceleration ramp may differ, as the curve results from the requirements specific to the
application.
The following illustration shows the form of the curve of the P component of the speed encoder is set
too high. The value of the Speed control P P310 which is too high results in oscillation of the
Torque current ~P720.
Fig. 37: Example with an excessive P component of the speed controller
The next optimisation steps and scope recordings should be carried out as follows:
Information
Oscilloscope recording
If a range is reached in which the changes in the curve cannot be viewed directly, it is advisable to save the
oscilloscope recordings. With the facility for displaying several recordings simultaneously a direct
comparison with the previous settings is possible.
Pos : 215 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/5. Drehz ahlr egelung/P-Anteil Drehzahlregler @ 5\mod_1402565516619_388.doc x @ 136450 @ 3 @ 1
64
AG 0100 EN-3216
5 Speed control
5.3.1
Speed control P component
Increase the parameter for the P component in 50 % increments until the curve for the Torque
current ~P720 is as rectangular as possible. The Speed encoder ~P735 should have a linearly
increasing curve.
The curve is as illustrated in the second illustration (see  5.3 "Speed controller").
The upper adjustment limit of the Speed Ctrl P P310 is reached, when a further increase of the
P component does not result in a better shape of the curve in the sense of a rectangular shape. A
setting of the P component which is too high can cause oscillations of the Torque current ~P720 as
well as in the Speed encoder ~P735.

Once the P component has been determined, in operation, the controller must be slowly run
down from the setpoint frequency (e.g. 35 Hz) to 0 - 3 Hz. It must be checked that during the
brake ramp the torque current ~P720 remains free from oscillations.
Among other things, this is used to test whether the P component is set correctly for all
speeds.
If the P component is set too high for a selected speed (setpoint specification), this is
apparent from oscillations in the Torque current ~P720 and an associated production of
noise "scratching noise" during operation or during the movement profile.
Pos : 217 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/5. Drehz ahlr egelung/I- Anteil Dr ehz ahlregler @ 5\mod_1402577369506_388.doc x @ 136650 @ 3 @ 1
5.3.2
Speed controller I component
Beginning from the set starting value [5 % / ms] increase the I component in small increments (e.g.
5 %) until an approximately rectangular curve results for the act. torque current ~P720.
Information
I component increment
If the application has a high inertial mass (relative to the inertia of the motor), the increment should not exceed
> 5 % / ms.
If the ratio Janw / JMotor is small, the increase of the I- component can be performed in larger increments.
The selected increment for the increase of the I component should be in the range from 5 to 20.
As a result of the increase of the I component there is a slight overshoot of the Speed
encoder ~P735. If the I component is set too high the rectangular form of the Torque
current ~P720 will be distorted upward to the left.
The curve is according to that in the scope recording for Step 6: "I" scope recording 5.4 "Optimisation
procedure".

Once the I component has been determined, in operation, the controller must be slowly run
down from the setpoint frequency (e.g. 35 Hz) to 0 - 3 Hz. It must be checked that during the
brake ramp the Torque current ~P720 remains free from oscillations.
Among other things, this is used to test whether the I component is set correctly for all
speeds.
If the PI component is set too high for a selected speed (setpoint specification), this is
apparent from oscillations in the Torque current ~P720 and an associated production of
noise "scratching noise" during operation or during the movement profile.
Pos : 219 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/5. Drehzahlreg elungKriteri en @ 5\mod_1404208496122_388.doc x @ 139582 @ 3 @ 1
AG 0100 EN-3216
65
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
5.3.3
Criteria
The following criteria should be noted for optimisation of the field speed controller:
The aim is to optimise the curve for the Torque current ~P720
taking the criteria into account, with the "correct" settings of the
P and I components.

•
•
•
•
•

The curve for the Speed encoder ~P735 should be linear and free from
oscillations
No, or slight oscillation (approx.. 3 – 5 %) when the setpoint of the Speed
encoder ~P735 is reached during optimisation of the I component
Rectangular form of the Torque current ~P720 in the acceleration phase
No oscillations in the curve for the Torque current ~P720 after completion of
the acceleration phase
No "scratching noises" when the drive unit is in operation
During operation there may be a "scratching noise", which is primarily apparent in applications
with drive units ≥ 3 kW If noises are produced, the P or also the I component should be
reduced.
Information
Optimisation steps
The step widths stated for control optimisation may differ depending on the application. Furthermore, the step
widths can be selected even finer for the final optimisation steps.
Pos : 234 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/Opti mi erungsablauf [Ü2] @ 7\mod_1432029832970_388.doc x @ 220967 @ 2 @ 1
5.4
Optimisation procedure
Pos : 235 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 236 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/5. Drehz ahlr egelung/Opti mi erungsablauf @ 5\mod_1401969540933_388.doc x @ 136068 @ @ 1
The following illustrations show the optimisation process for the speed controller using the example of
a 4.0 kW asynchronous motor with efficiency class IE2 on the basis of individual scope recordings.
66
AG 0100 EN-3216
5 Speed control
Legend
Set. freq after freq. ramp ~P718[02]
Speed encoder
~P735
Flux current
Torque current
~P720
~P721
Step
1. "P" scope recording
2. "P" scope recording
Parameter
settings
P310 = 50 %
P311 = 5 % / ms
P310 = 100 %
P311 = 5 % / ms
Starting point
Step
7. "P" scope recording
Parameter
settings
P310 = 350 %
P311 = 5 % / ms
P component 

8. "P" scope recording
P310 = 400 %
P311 = 5 % / ms
P component 
P component 
Step
9. "P" scope recording
16. "P" scope recording
Parameter
settings
P310 = 450 %
P311 = 5 % / ms
P310 = 800 %
P311 = 5 % / ms
P component too high
P compo
nent
far too high
Fig. 38: Curve for the P component of the speed control
AG 0100 EN-3216
67
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Legend
Set. freq after freq. ramp ~P718[02]
Speed encoder
~P735
Flux current
Torque current
~P720
~P721
Step
1. "I" scope recording
2. "I" scope recording
Parameter
settings
P310 = 400 %
P311 = 5 % / ms
P310 = 400 %
P311 = 10 % / ms
I component 
Starting point
Step
5. "I" scope recording
Parameter
settings
P310 = 400 %
P311 = 25 % / ms

6. "I" scope recording
P310 = 400 %
P311 = 30 % / ms
I component 
I component 
Step
7. "I" scope recording
30. "I" scope recording
Parameter
settings
P310 = 400 %
P311 = 35 % / ms
P310 = 400 %
P311 = 150 % / ms
I component
too high
I component
far too high
Fig. 39: Curve for the I component of the speed control
Pos : 239 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elung/Lager egelung [Ü 1] @ 7\mod_1431931000798_388.doc x @ 219944 @ 1 @ 1
68
AG 0100 EN-3216
6 Position control
6 Position control
Pos : 241 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Schritt 6 @ 7\mod_1434978709941_388.doc x @ 227788 @ @ 1
Step 6
Pos : 242 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 243 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elungLagereg elung @ 5\mod_1402039391529_388.doc x @ 136294 @ 55 @ 1
The position control can be used in combination with an encoder to provide a high precision
positioning drive. Usually, various encoder systems e.g. incremental encoders or absolute
encoders are used to provide speed feedback. These are used as measurement transducers, which
convert the rotary movements and positioning data (position) into electrical signals.
The choice of the encoder system depends on the requirements of the application. This includes the
following characteristics, such as:
•
•
•
•
•
•
•
Encoder type: Absolute or incremental encoder
Encoder type (TTL, HTL, combination, single-, multiturn) / resolution
Application type (angle measurement, linear travel measurement)
Connection method, interface drivers, filed bus system, with cable or plug-in
Construction and mounting type (flange, shaft, hollow shaft, torque support, etc.)
Electronic features (power supply, output drivers, etc.)
Ambient conditions (protection type, temperature, ATEX, etc.)
Information
Encoder selection
HTL incremental encoders (IG) as well as CANopen absolute encoders (AG) can be used for decentralised
SK 2xxE frequency encoders. TTL incremental encoders and CANopen absolute encoders can be used for
control cabinet frequency inverters ≥ SK 530E.
In addition, for performance level SK 540E, SIN/COS encoders and other absolute encoder types such as
Hiperface, Endat, SSI and BiSS encoders can be connected to its universal encoder interface.
For detailed information regarding the particular encoder types, please refer to the relevant supplementary
manual POSICON Positioning Control, see  BU 0210 or BU 0510 10.1 "Manuals".
The following features and integrated frequency inverter functions are available for positioning control:
•
Programmable position memory
-
•
•
•
•
•
For SK 2x5E there are 63 absolute positions
For SK 53xE there are 63 absolute positions
For SK 54xE there are 252 absolute positions
Positions are also maintained with "severe" load fluctuations
Time-optimised and safe travel up to the target position by means of path calculation function
In addition to travelling to absolute positions, up to 4 step lengths (so-called position
increments) can be stored in the frequency inverter.
Positions can also be saved in a control unit and specified via an appropriate field bus
interface (e.g. CANopen)
The positions can be transferred to the frequency inverter via a field bus interface
AG 0100 EN-3216
69
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
NOTICE
Power supply
Only encoder types with a 10 - 30 V supply may be used for frequency inverter applications.
For the POSICON positioning function, additional parameters (P6xx) which are required for the
position control are available under the Positioning tab as a separate menu group.
Information
Enabling POSICON
For decentralised SK 2xxE frequency inverters the Positioning tab is enabled with the parameter SupervisorCode P003 {3 = All parameters visible}.
For SK 530E control cabinet frequency inverters the Positioning tab P6xx is enabled as the default in the
factory settings.
Application information
•
The positioning function / configuration and control of the frequency inverter as well as the
specification of the position setpoint can be made via the
-
•
•
•
•
Digital inputs
Bus IO In Bits
USS protocol or a field bus system (e.g. PROFIBUS DP, CANopen etc.)
Position detection can be performed with incremental or absolute encoders
Switch-over from speed control and position control (positioning) using parameter switchover
Synchronisation functionality between master and slave drives (one or more) using the
integrated system bus interface
Endless axis function (Modulo axes) for turntables and similar applications (this controls an
endless axis) with optimised path. The drive unit turns clockwise or anticlockwise according
to the required position.
For example, the frequency inverter is controlled using a specified position described by positions
which are saved in the frequency inverter. In this example, the specification of the position and
enabling of the drive unit is implemented via the BUS IO In bits. An incremental encoder (IG) or a
standard CANopen combination absolute encoder as well as other types of rotary encoder
(only ≥ SK 540E) can be used for the encoder system.
It is recommended that the following optimisation steps are performed to systematically adjust a
position controller:
Information
Application notes for brake resistor
An external brake resistor was used for the optimisation of the position control described in this guide, see
 2.1 "System components". The selection of an internal or external brake resistor for the SK 2xxE results from
the application requirements.
70
AG 0100 EN-3216
6 Position control
Overview of optimisation procedure
•
•
•
•
•
Select the encoder system and parameterise it accordingly
Connect the encoder system and test the function
Select and parameterise the interface for the setpoint or position specification
Set the acceleration and braking ramps, i.e. Acceleration time P102 and Deceleration
time P103
Selection / Specification of the setpoint or target position
•
Set the P component to a small value and e.g. increase this in 10% increments until the
speed curve is as linear as possible for the Speed encoder =P735. In this case, a limit due
to the brake ramp / Deceleration time (P103) should be apparent and effective.
•
If the P component is set too high, this is apparent from oscillations of the
Speed encoder =P735 in the actual position when braking. In addition there is an
overshoot of the Torque current ~P720 in this range. In this case, the P component must
be reduced again.
Fig. 40: Position control movement profile
For detailed information regarding the movement profile or the parameters which have to be set,
please refer to the relevant supplementary manual POSICON Positioning Control (BU 0210 or
BU 0510 see  10.1 "Manuals"). In addition, the relevant parameters are described in Sections
 6.4 "Position controller" and 6.4.3 "Positioning".

The aim is to obtain the optimum curve of the movement profile
with the "correct" setting of the P component. The Speed
encoder ~P735 should follow the braking ramp and should not
pass over the setpoint position.
The practical implementation for optimisation of a position controller is described in
Section  6.5 "Optimisation procedure".
Pos : 245 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/Wei ter e Ei nstellungen [Ü2] @ 7\mod_1432029630965_388.doc x @ 220873 @ 2 @ 1
AG 0100 EN-3216
71
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
6.1
Further settings
Pos : 246 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 247 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/6. Lager egel ung/Weiter e Eins tell ung en @ 5\mod_1404986150741_388.doc x @ 140044 @ @ 1
For optimisation of the position controller, the following two parameters must be set in advance. Some
of the setting are listed here in order to illustrate the control, position specification and position
selection with BUS IO In Bits or the USS interface. However, this may differ according to the
application.
Information
Application information
The ramp times for the Acceleration time P102, the Deceleration time P103 and the setpoint specification
(required speed) result from the requirements of the application. For use of the slow movement function at
the end of a positioning procedure, the minimum frequency P104 must be taken into account. This is used during
slow movement.
The ramp time must be set under the "Basic Parameters" tab in the parameter Acceleration
time P102 and Deceleration time P103.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
BASIC PARAMETERS
P102
(P)
Acceleration time [s]
2.0
 2.0  0.3 *
P103
(P)
Deceleration time [s]
2.0
 2.0  0.3 *
P104
(P)
Minimum frequency [Hz]
0.0
 0.0  … **
CONTROL TERMINALS
P480
[-11]
Funct. Bus I/O In Bits
Bit 8 Bus control word
0
 0  55 (Bit 0 position (increment) array)
Source Control Word
0
 0  2 (USS)
ADDITIONAL PARAMETERS
P509
P510
[-01]
Source Setpoints
Source main setvalue
0 (Auto)
 0 (leave as set) ***
P510
[-02]
Source Setpoints
Source 2nd setpoint
0 (Auto)
 0 (leave as set) ***
* To be set according to the specific application
(Notice: in this example without load)
** To be set according to the specific application
(Note: only relevant for slow running / Pos. Window P612)
*** Leave P510 Source main setvalue at the factory setting (0 = Auto)
Information
Setpoint and position specification
The setpoint specification and the setting of the Position Control P600 should correspond to the design
range (50 Hz / 87 Hz / 100 Hz characteristic curves).
For optimisation of the position control, the setpoint should be selected according to the application
requirements!
For the SK 200E frequency inverter / motor combination (4.0 kW) and the supply voltage of 400 V (50 Hz)
described in this guide, the function {2 = Lin. ramp (setpoint frequency)} is set and a specified setpoint of
e.g. 45 % is selected.
72
AG 0100 EN-3216
6 Position control
Optimisation of the position control should be made with the aid of the NORD CON oscilloscope
function.

Before starting the scope recording and enabling the drive unit, the setpoint is set to 45 %
I.e. in this example (frequency inverter 4.0 kW / motor combination 4.0 kW) a setpoint
frequency of 22.5 Hz is specified.
It should be noted that the setpoint position "0" is used as the first specified position. From
this, it follows that as the second setpoint position "10", in parameter Position P613, only
the array [-01] is to be parameterised!
Pos : 249 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/NORD CON [Ü 2] @ 7\mod_1432029689942_388.doc x @ 220904 @ 2 @ 1
AG 0100 EN-3216
73
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
6.2
NORD CON
Pos : 250 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 251 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/NORD CON [Kurzfass ung] @ 5\mod_1403614918300_388.doc x @ 137991 @ @ 1
Further information about the settings can be obtained from Section  4.2 "NORD CON" and the
following.
Pos : 252 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/6. Lager egel ung/Steuern @ 5\mod_1404986153559_388.doc x @ 140092 @ 3 @ 1
6.2.1
Control
The following setting must be made in the Control screen to optimise the position controller before
starting the scope recordings.
By pressing the button
in the "Standard" view, the control
screen changes to the "Detail" view.
Fig. 41: Standard control view
Fig. 42: Control of the speed controller, setpoint and enabling
74
AG 0100 EN-3216
6 Position control
Set the setpoint to e.g. 45 %, i.e. the setpoint frequency to 22.5 Hz, using the Value +
or Value – button or enter 45 % directly
in the control word, enter the value 047F for Position 0 or press the Start button
or enter the value 057F for Position 1
Alternatively, a further
control bits directly.
“Detailed Control“ view can be opened and used to enter the individual
Set Bit 3  = Enable operation
Set Bit 8  = Specify Position 1 and then set Bit 3  = Enable operation
Fig. 43: Control of position control, control bits left setpoint position 0, right setpoint position 1
Pos : 254 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elungOszillos kop @ 5\mod_1404986154645_388.doc x @ 140116 @ 3 @ 1
AG 0100 EN-3216
75
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
6.2.2
Oscilloscope
The following settings should be made under the two tabs Recording or Channel Settings of the
NORD CON Oscilloscope Function before starting the oscilloscope recordings. The settings and
graphic displays in the illustrations may differ according to the frequency inverter types, versions and
software status.
Set Trigger to Enable
Set the scan rate to 10 ms
→ Scan duration 2 s
→ Scan rate depending on the run up time which is set
Note
The scan rate should be selected so that it corresponds to the
scope recordings in the illustrations in Section  6.5
"Optimisation procedure"!
Fig. 44: Oscilloscope settings for trigger and scan rate / scan duration
Fig. 45: Resolution settings for the time axis, comment examples
Fig. 46: Oscilloscope channel settings for the four measurement values
76
AG 0100 EN-3216
6 Position control
Press the Start button
Note
Note the initialisation phase, see the illustrations in Section  Fehler!
Verweisquelle konnte nicht gefunden werden. "Fehler! Verweisquelle konnte
nicht gefunden werden."
Fig. 47: Start the scope recording
Pos : 255 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elungGeräteübersicht @ 6\mod_1413473004059_388.doc x @ 160463 @ 3 @ 1
6.2.3
Device overview
The course of positioning can be observed with the following settings of the three display possibilities
in the NORD CON Device Overview function.
Setpoint position 1 reached
Setpoint position 0 is being approached
Fig. 48: Position control device overview, display settings
Set Display 1 to actual position,
set Display 2 to Act. Ref. Pos.
Set Display 3 to Curr. position diff.
Fig. 49: Overview of position control devices, display selection
Pos : 256 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/F unktions prüfung Drehgeber ( IG/AG) [Ü2] @ 9\mod_1444037103123_388.doc x @ 248293 @ 2 @ 1
AG 0100 EN-3216
77
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
6.3
Function test of rotary encoders (IG)
Pos : 257 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 258 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriftenFunkti onspr üfung Dr ehg eber (IG/AG) @ 5\mod_1409237445205_388.doc x @ 148733 @ @ 1
For incremental and absolute encoders, e.g. a CANopen standard combined absolute encoder
(AG) with integrated incremental signal track (IG) the function or the detection of the direction of
rotation should be checked.
Further information for the function test of the incremental encoder on the relevant frequency encoder
is provided in Section  3.5.3 "Function test of rotary encoders (IG)".
In addition, it is advisable to maintain a certain sequence for the commissioning of the CANopen
encoder or the function test of the position control. Refer to  3.6.4 "Function test of CANopen
encoders (absolute encoders)" for further details.
Pos : 259 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elung/Lager egler [Ü 2] @ 7\mod_1432044110039_388.doc x @ 221061 @ 2 @ 1
6.4
Position controller
Pos : 260 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 261 /Appli kati onen/[AG 0100] Regl eropti mier ung/7. Lagereg elung/Lager egler @ 5\mod_1404986156597_388.doc x @ 140140 @ @ 1
For the position controller, the P component must be changed for the relevant optimisation steps.
The 1st optimisation step step for optimising the position controller can be started with the standard
setting for the P component (P611).
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
POSITIONING
P611
P Pos. Control [%]
5
 5 (leave at standard)
The changes to the positioning parameters must be checked with the NORD CON Oscilloscope
Function ( see  4.2 "NORD CON").
In addition, depending on the application, further positioning parameters, e.g. position, ramp criteria,
travel measurement system, etc. must also be set.
NOTICE
Position control
In case of a different setting of the position control P600 from the function {0 = Off}, it is essential that under the
"Basic Parameters" tab, the factory setting {0 =Voltage disable} is parameterised in the parameters
Ramp smoothing P106 and that in the Disconnection mode P108, the function {1 = Ramp down} is
parameterised.
This should always be taken into account before setting or parameterising the position control. For positioning,
four different variants (functions) are available for the Position Control P600.
For position detection by the position control with a standard combination absolute encoder with a
CANopen interface (see Section  2.6 "Selection of absolute encoders"), several parameters must
be set under the "Positioning" tab for position detection by the position controller.
Pos : 262 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elung/Parametri erung Weg meß s ystem @ 8\mod_1436173557644_388.doc x @ 230782 @ 3 @ 1
78
AG 0100 EN-3216
6 Position control
6.4.1
Parameterisation of the travel measurement system
For the selection of the travel measurement system or position detection with encoder feedback
(CFC Closed-Loop mode), several parameters must be set in the "Positioning tab according to the
encoder system which is used.
For detailed information, please refer to the relevant manual for the frequency inverter, see  10.1
"Manuals" or  3.6.1 "Parameterisation of CANopen encoders (absolute encoders)".
Pos : 263 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elung/Lager egelung akti vi eren @ 8\mod_1436172382249_388.doc x @ 230718 @ 3 @ 1
6.4.2
Activating the position control
For activation of the position control or position detection with encoder feedback (CFC Closed-Loop
mode) in the "Positioning" tab, the parameter Position control P600 must be set to the function
{2 = lin. Ramp (setfreq.)}.
CAUTION
Enabling of position control
This setting should only be made after the check of the direction of rotation of the encoder has been
successfully completed.
Otherwise, unexpected movements (wrong direction of rotation) may result. This may cause both material
damage as well as injuries to persons
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
0 (Off)
 0  2 (lin. Ramp (max.freq.)) *
related to parameter set (P1, ... , P4)
POSITIONING
P600
(P)
Position Control
* To be set according to the specific application. Note : refer to
the information for position control 6.4 "Position controller"
Pos : 264 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elungPositioni erung @ 9\mod_1444044294342_388.doc x @ 248356 @ 3 @ 1
6.4.3
Positioning
For positioning or position control, further parameters are available under the "Positioning" tab, which
must be set by the user according to the specific application.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Position Control
0 (Off)
Setting
related to parameter set (P1, ... , P4)
POSITIONING
P600
(P)
  see  6.4.2 "Activating the position
control"
P601
actual position [rev]
---

P602
Actual Ref. Pos. [rev]
---

P603
Curr. position diff. [rev]
---

P604
Encoder type
0
  see  3.6.1 "Parameterisation of
CANopen encoders (absolute encoders)"
P605
[-01]
Absolute encoder (Multi)
10
  see  3.6.1 "Parameterisation of
CANopen encoders (absolute encoders)"
P605
[-02]
Absolute encoder (Single)
10
  see  3.6.1 "Parameterisation of
CANopen encoders (absolute encoders)"
P607
[-01]
Ratio (Incremental Enc)
1
P607
[-02]
Ratio (Absolute encoder)
1
AG 0100 EN-3216
79
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Parameter No.
[-Array]
Factory
setting
Name [Unit]
Setting
related to parameter set (P1, ... , P4)
P607
[-03]
Ratio (Multiplic set/actual)
1
P608
[-01]
Reduction (Incremental Enc)
1
P608
[-02]
Reduction (Absolute encoder)
1
P608
[-03]
Reduction (Multiplic
set/actual)
1
P609
[-01]
Offset Position (Incr.) [rev]
0
P609
[-02]
Offset Position (Abs.) [rev]
0
P610
Setpoint Mode
0
P611
P Pos. Control [%]
5
P612
Pos. Window [rev]
0
*
 0 → 10 **
P613
[-01]
Position 1 [rev]
0
P613
[-02]
Position 2 [rev]
0
P613
[-03] - [-62]
Position 3 to 62 [rev]
0
P613
[-63]
Position 63 [rev]
0
P625
Hysteresis relais [rev]
1
P626
Relais Position [rev]
0
P630
Position slip error [rev]
0
P631
Abs/Inc slip error [rev]
0
P640
unit of pos. Value
0 (Position Array)
0
* To be set according to the specific application, also known as slow
movement
Notice: This should be used for large moments of inertia and "backlash" in
the gear unit.
** To be set according to the specific application. Note : refer to the
information for position control 6.4 "Position controller"
In the following illustration, the curve for an optimally adjusted position controller for a 4 kW IE2 motor
is shown as the target.
Fig. 50: Example of an optimised position controller curve
An almost oscillation-free curve for the Torque current ~P720 can be seen when the setpoint
position is reached, as well as a linear form of the Speed encoder ~P735 without rounding of the
ramp when braking.
80
AG 0100 EN-3216
6 Position control
The following illustrations show the shape of the curve if the P component of the position control is
set "too high" and "too low". Setting the value of the Position Control P P611 too low causes ramp
rounding of the Speed encoder ~P735 when the setpoint position is reached. A value which is set
too high causes an overshoot of the Speed encoder ~P735 and a visible oscillation of the Torque
current ~P720 when the setpoint position is reached.
Fig. 51: Example with P component of the position control too small (left) and too high (right)
The next optimisation steps and scope recordings should be carried out as follows:
Information
Oscilloscope recording
If a range is reached in which the changes in the curve cannot be viewed directly, it is advisable to save the
oscilloscope recordings. With the facility for displaying several recordings simultaneously a direct
comparison with the previous settings is possible.
Pos : 265 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elungP-Anteil Lag eregler @ 5\mod_1407413320580_388.doc x @ 146614 @ 3 @ 1
6.4.4
Position control P component
Increase the parameter for the P component in 10 % increments until the Speed encoder ~P735
has a curve which linear as possible and which follows the braking ramp. In addition, ramp rounding
for the brake process of the Speed encoder ~P735 should no longer be visible.

The correct setting of the P component of the position controller depends on the dynamic
characteristics of the system as a whole.
Rule of thumb: the greater the masses and the smaller the friction if the system, the greater is
the tendency of the system to oscillate and the smaller is the maximum possible P amplification.
The curve is as illustrated in the first illustration (see  6.4 "Position controller").
The upper adjustment limit of the P Pos. Control 611 is reached, when a further increase of the
P component does not result in a better shape of the curve. If the P component is set too high, this
causes an overshoot of the Speed encoder ~P735 when the setpoint position is reached.
To determine the critical value, the P component is increased until the drive unit oscillates about the
position (leave the position and then approach it again).
Recommended guide value: Then set the P component from 0.5 to 0.7 times this value.
AG 0100 EN-3216
81
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop

For POSICON applications with a subordinate speed control (Servo Mode P300 {1 = ON (
CFC closed-loop)} use of a setting which deviates from the standard setting of the speed control
is usually to be recommended for applications with large masses.
For the P component of the speed control a value of 100 to 150% should be set in the
parameter Speed Ctrl P P310. As the I component in the parameter Speed Ctrl I P311, a value
of between 3 % / ms and 5 % / ms has proved to be effective.
Pos : 266 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elungKriterien @ 5\mod_1404986163580_388.doc x @ 140236 @ 3 @ 1
6.4.5
Criteria
The following criteria should be noted for optimisation of the field position controller:

The aim is to optimise the curve for the Torque current ~P720
taking the criteria into account, with the "correct" setting of the
P component.
•
•
•
•
The curve for the Speed encoder ~P735 should be linear and follow the braking ramp
No overshoot of the Speed encoder ~P735 when the setpoint position is reached
No ramp rounding of the Speed encoder ~P735 during braking or in the braking ramp
No oscillation of the Torque current ~P720 should be evident when the setpoint position is
reached
Information
Optimisation steps
The step widths stated for control optimisation may differ depending on the application. Furthermore, the step
widths can be selected even finer for the final optimisation steps.
Pos : 267 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige Ü bersc hriften/Opti mi erungsablauf [Ü2] @ 7\mod_1432029832970_388.doc x @ 220967 @ 2 @ 1
82
AG 0100 EN-3216
6 Position control
6.5
Optimisation procedure
Pos : 268 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 269 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/6. Lager egel ung/Optimi erungsablauf @ 5\mod_1404986160680_388.doc x @ 140212 @ @ 1
The following illustrations show the optimisation process for the position controller using the example
of a 4.0 kW asynchronous motor with efficiency class IE2 on the basis of individual scope
recordings.
Legend
Actual position 32bit Low
=P601
Speed encoder
~P735
Act. ref. pos. 32bit Low
=P602
Torque current
~P720
Step
1. "P" scope recording
2. "P" scope recording
Parameter
settings
P611 = 5 %
P611 = 15 %
Starting point
Step
3. "P" scope recording
Parameter
settings
P611 = 25 %
P component 
P component 

4. "P" scope recording
P611 = 35 %
P component 
Step
5. "P" scope recording
9. "P" scope recording
Parameter
settings
P611 = 45 %
P611 = 85 %
P component too high 
P component far too high 
Fig. 52: Curve for the P component of the position control
AG 0100 EN-3216
83
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Pos : 283 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Schl upfkompensierung [Ü 1] @ 7\mod_1431931030484_388.doc x @ 219975 @ 1 @ 1
84
AG 0100 EN-3216
7 Slip compensation
7 Slip compensation
Pos : 284 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Schritt 7 @ 7\mod_1434978715730_388.doc x @ 227820 @ @ 1
Step 7
Pos : 285 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 286 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Schl upfkompensierung @ 5\mod_1401797741633_388.doc x @ 134776 @ 5 @ 1
Depending on the load, the Slip compensation P212 changes the output frequency of the frequency
inverter and therefore improves the pre-control of the ASM model.
For advance information for the adjustment of the slip compensation please refer to Section  3.3
"Adjusting the slip compensation".
The slip compensation depends on the external temperature and the load on the drive unit. Because
of this, setting of the Slip compensation P212 should always be made at the operating point at the
operating temperature and under the rated load conditions.

Note
Optimisation of the slip compensation must not be carried out in the weak field range. For
applications with operation in the weak field range (e.g. ≥ 45 Hz) the weak field should only be
optimised after this.
The slip compensation should then only be optimised according to the following procedure after
optimisation of the controller has been carried out (see  Section 4 "Current control", 5 "Speed
control" and 6 "Position control").
Overview of optimisation procedure
•
Set the slip compensation to an initial value (e.g. 80 %) and e.g. increase in 5 % - 20 %
increments until the Torque Current ~P720 reaches a minimum under the operating and
load conditions.
•
Optimum adjustment of the slip compensation is achieved if no improvement of the shape of
the curve can be obtained by increasing the value.
A curve as shown in  Figure 2 or Figure 37.3 "Slip compensation".
•
If increasing the value of the slip compensation does not produce a minimisation of the
Torque current ~P720, the optimisation should be continued with smaller setting values (e.g.
< 75 %) until no improvement of the shape of the curve is achieved by reducing the value.
Refer to  Figure 2 or 37.3 "Slip compensation" for further details.
•
For the optimisation, care must be taken that the setpoint which is selected corresponds to the
design point or the load conditions!
AG 0100 EN-3216
85
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop

The objective is to achieve a minimum Torque current ~P720
under nominal load conditions with the "correct" setting of the
slip compensation.
The practical implementation for optimisation of the slip compensation is
described in Section  7.4 "Optimisation procedure".
Pos : 291 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/Weiter e Eins tell ungen [Ü2] @ 7\mod_1432029630965_388.doc x @ 220873 @ 2 @ 1
7.1
Further settings
Pos : 292 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 293 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Wei ter e Eins tell ungen @ 5\mod_1412068715206_388.doc x @ 152094 @ @ 1
For optimisation of the slip compensation, all of the parameters for
•
the relevant optimisation of the controller (see  previous Section ) must be optimised
•
all other parameters must be set according to the specific requirements for the application.
Information
Application information
All parameters which are to be set in advance, as well as the setpoint specification (required speed) result from
the application requirements. When setting the Acceleration time P102, care must be taken that the frequency
inverter does not enter the current limit (Warning C004 = Overcurrent measured).
For applications with operation in the weak field range the weak field controller should always be optimised as
the last optimisation step of the weak field controller after optimisation of the slip compensation.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
BASIC PARAMETERS
P113
(P)
Jog frequency [Hz]
0.0
 0.0  40.0
Adjustment of the slip compensation should be carried out using observation of the Torque
current =P720) e.g. with the aid of the NORD CON oscilloscope function.

Before starting the scope recording and enabling the drive unit, the setpoint must be set to a
value which corresponds to the requirements of the application or the designed operating
point. I.e. in this example (frequency inverter 4.0 kW / motor combination 4.0 kW) a setpoint
frequency of approx. 40 HZ must be specified.
Pos : 295 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/N ORD CON [Ü 2] @ 7\mod_1432029689942_388.doc x @ 220904 @ 2 @ 1
86
AG 0100 EN-3216
7 Slip compensation
7.2
NORD CON
Pos : 296 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 297 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/N ORD CON [Kurzfass ung] @ 5\mod_1403614918300_388.doc x @ 137991 @ @ 1
Further information about the settings can be obtained from Section  4.2 "NORD CON" and the
following.
Pos : 298 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/F ernbedi enen @ 5\mod_1412068803899_388.doc x @ 152238 @ 3 @ 1
7.2.1
Remote control
The following setting must be made in the Remote Control screen to optimise the slip compensation
before starting the scope recordings.
Set the setpoint to 80 %, i.e.set the
setpoint frequency to 40 Hz
Use the + value or the - value button
Press the OK button to save the
frequency as the jog frequency in P113
Press the Enable button
Steps
and
are not required if a jog
frequency has been parameterised.
Fig. 53: Remote control of slip compensation, setpoint and enabling
Pos : 300 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/NORD CON Oszill os kop @ 5\mod_1412068718081_388.doc x @ 152166 @ 3 @ 1
AG 0100 EN-3216
87
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
7.2.2
Oscilloscope
The following settings should be made under the two tabs Recording or Channel Settings of the
NORD CON Oscilloscope Function before starting the oscilloscope recordings. The settings and
graphic displays in the illustrations may differ according to the frequency inverter types, versions and
software status.
Set Trigger to Enable
Set the scan rate to 20 ms
→ Scan duration 4 s
→ Scan rate depending on the application type which is set
Note
The scan rate should be selected so that it corresponds to the
scope recordings in the illustrations in Section  7.4
"Optimisation procedure"!
Set the start of recording e.g. to 4 sec after the trigger,
i.e. for lifting equipment after the acceleration phase and
for movement applications during the acceleration phase.
Fig. 54: Oscilloscope settings for trigger and scan rate / scan duration
Fig. 55: Resolution settings for the time axis, comment examples
Fig. 56: Oscilloscope channel settings for the four measurement values
88
AG 0100 EN-3216
7 Slip compensation
Press the Start button
For certain applications it is advisable to only make one or more
rolling recordings instead of individual recordings.
Fig. 57: Start the scope recording
Pos : 301 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Ger äteübersic ht @ 6\mod_1413455233174_388.doc x @ 155442 @ 3 @ 1
7.2.3
Device overview
Optimisation can be carried out with the following settings of the three display possibilities in the
NORD CON Device Overview function.
Set Display
to Current frequency
Set Display
to act. torque current
Set Display
to actual current
Fig. 58: Slip compensation device overview, display settings
Fig. 59: Slip compensation device overview, display selection
Pos : 303 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Schl upfkompensation [Ü 2] @ 7\mod_1432046820271_388.doc x @ 221092 @ 2 @ 1
AG 0100 EN-3216
89
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
7.3
Slip compensation
Pos : 305 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 306 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Schl upfkompensation @ 5\mod_1412068953450_388.doc x @ 152314 @ @ 1
For slip compensation, the slip compensation is changed for the particular optimisation steps.
As the initial for optimisation of the slip compensation, for the 1st optimisation step the slip
compensation is set to 80 % in the parameter Slip compensation P212.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
MOTOR DATA/ CHARACTERISTIC CURVE PARAMETERS
P212
(P)
Slip compensation [%]
100
 80  optimal
With constant load, the Slip compensation P212 must be optimised until the Torque current ~P720
is at a minimum.

If the slip compensation is not optimised, this results in a higher current consumption by
the drive unit for the same load conditions. Optimisation should always be carried out under
nominal load operation and at the designed operating conditions (operating mode, operating
temperature, load conditions etc.)!
The following diagram / illustration shows the optimum setting for the Slip compensation P212:
Fig. 60: Diagram for optimum current / slip compensation
The changes to the slip compensation must be checked with the NORD CON Oscilloscope Function
( 4.2 "NORD CON").
90
AG 0100 EN-3216
7 Slip compensation
In the following illustration, the curve for an optimally adjusted slip compensation for a 4.0 kW
asynchronous motor with efficiency class IE2 is shown as the target.
Fig. 61: Example of optimised slip compensation
The optimum curve for the Torque current ~P720 at the operating point for a lifting equipment
application under nominal load conditions is illustrated.
The following illustrations show the shape of the curve if the slip compensation is set "too high" and
"too low". In the case of a lifting equipment application (lifting a load), a value for the Slip
compensation P212 which is set too high or too low causes and increased Torque current ~P720 or
an increase in the current consumption of the motor.
Fig. 62: Example with the slip compensation set too high (right) and too low (left)
The next optimisation steps and scope recordings should be carried out as follows:
AG 0100 EN-3216
91
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Information
Oscilloscope recording
If a range is reached in which the changes in the curve cannot be viewed directly, it is advisable to save the
oscilloscope recordings. With the facility for displaying several recordings simultaneously a direct
comparison with the previous settings is possible.
Pos : 308 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Wer t Schl upfkompensati on @ 5\mod_1412077973773_388.doc x @ 152338 @ 3 @ 1
7.3.1
Slip compensation value
Increase or decrease the parameter for Slip compensation in e.g. 5 %, 10 % or 20 % increments
until the Torque current =P720 during movement applications, or in the case of lifting equipment
applications, after the acceleration ramp reaches a minimum.
The curve is as illustrated in the first Illustration ( 7 "Slip compensation").
The optimum setting of the Slip compensation P212 is achieved, when a further increase or
decrease of the value does not result in a better shape of the curve (in the sense of the minimum
current). A value which is set "too low" or "too high” always causes an increase of the
Torque current =P720.
Pos : 310 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Kriterien @ 5\mod_1412068743081_388.doc x @ 152190 @ 3 @ 1
7.3.2
Criteria
The following criteria should be noted for optimisation of the slip compensation:

The objective is to achieve a minimum Torque current ~P720
under nominal load conditions with the "correct" setting of the
slip compensation.
•
•
For movement applications, the curve for the Torque current ~P720 during, or
in the case of lifting equipment application, after the acceleration ramp under
nominal load should always reach a minimum
The curve for the Flux current ≈P721 should also be analysed and should not
show any abnormalities
Information
Optimisation steps
The increments stated for slip optimisation may differ depending on the application. Furthermore, the increments
can be selected even finer for the final optimisation steps.
Pos : 312 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/Opti mi erungsablauf [Ü 2] @ 7\mod_1432029832970_388.doc x @ 220967 @ 2 @ 1
7.4
Optimisation procedure
Pos : 313 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 314 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Opti mi erungsablauf @ 5\mod_1412068743695_388.doc x @ 152214 @ @ 1
The following illustrations show the optimisation process for the slip compensation using the example
of a 4.0 kW asynchronous motor with efficiency class IE2 on the basis of individual scope
recordings.
92
AG 0100 EN-3216
7 Slip compensation
Legend
Set. freq after freq. ramp ~P718[02]
Speed encoder
~P735
Torque current
Actual current
=P719
~P720
Step
1. Scope recording
2. Scope recording
Parameter
settings
P212 = 80 %
P212 = 100 %
Starting point
Value
Step
3. Scope recording
4. Scope recording
Parameter
settings
P212 = 120 %
P212 = 60 %
Value far too high 
Step
5. Scope recording
Parameter
settings
P212 = 90 %
Value
Value far too small 

6. Scope recording
P212 = 95 %
Value
Fig. 63: Slip compensation curve
Pos : 317 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/8. Fel dsc hwäc heregel ung/Fel dsc hwächeregel ung [Ü 1] @ 7\mod_1431931064441_388.doc x @ 220006 @ 1 @ 1
AG 0100 EN-3216
93
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
8 Weak field controller
Pos : 319 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Schritt 8 @ 7\mod_1434978719982_388.doc x @ 227852 @ @ 1
Step 8
Pos : 320 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 321 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/F eldsc hwäc her egelung @ 5\mod_1402039383531_388.doc x @ 136270 @ 5 @ 1
The weak field controller is a PI controller and comprises the following three parameters.
•
Weak field controller (P318, P319, P320)
The parameter P-Weak P318 is for the P component. The parameter I-Weak P319 must be used for
the I component. In addition the "limiting parameter” Weak Border P320 completes the weak field
controller. This parameter is used to specify the speed / voltage range in which the controller weakens
the field.
Information
Weak field range
The weak field range depends on several factors. These include the:
•
•
•
•
Mains voltage
Motor (type and power)
Frequency inverter (type and size)
Load
For the SK 200E frequency inverter / motor combination (4.0 kW) and the supply voltage of 400 V (50 Hz)
described in this guide, the weak field range begins at about ≥ 45 Hz.
IE4 motors should not be operated in the weak field range!
Field weakening is performed if the voltage can no longer increase proportionally to the speed. In this
case the maximum output voltage is reached and the Voltage components Ud and Uq are limited.
Due to the limitation of the Voltage component Usd ~P723 or the parameter Voltage -d P723 the field
is weakened. The weak field control is only effective in the weak field range.

The behaviour of the system in the transition to the weak field range is less favourable
than vice versa, because of which the optimisation must be made when the speed is
increased.
The following diagrams show several control curves / transient responses which occur after a sudden
change of the setpoint for various weak field controllers. Only the various aspects for optimisation of
the Flux current ≈P721 are illustrated.
94
AG 0100 EN-3216
8 Weak field controller
Diagram 2
Diagram 1
P component optimised and I component selected
too small
Selected P component too small

Diagram 4
Diagram 3
P component optimised and I component selected
too large
P and I component optimal

Fig. 64: Control value curves
The various control curves, where the setpoint is shown in RED and the actual value is shown in
GREEN, describe the dynamic curve for the transient response, which is set via the individual control
parameters (P and I component) of the controller.

In the diagrams above, the curves for the control values are shown with short acceleration
ramps (short acceleration times). For longer acceleration times, the curves for the
magnetisation current deviate as shown in Diagram 5. No curves with severely reducing
and then increasing amplitude of the magnetisation current occur.
Diagram 5
Optimum selection of the P and I component for long
acceleration time

Fig. 65: Control value curves with long acceleration ramp
AG 0100 EN-3216
95
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
It is recommended that the following optimisation steps are performed to systematically adjust the
weak field controller (PI controller):
Overview of optimisation procedure
•
Set the I component to a low value
•
Set the P component to a small value and increase it e.g. in 50% increments until both the
Flux current ≈P721 and the curve for the Torque current ≈P720 in the weak field range
have a curve which is as free from oscillations as possible.
•
Optimum adjustment of the P component is achieved if no improvement of the shape of the
curve can be obtained by increasing the value. A curve as shown in Diagram 2 results.
•
This is followed by an increase in the I component in order to further improve the curve
according to the stated criteria.
Diagram 3 shows the optimised curve, whereby in this diagram, the brief overshoot is slightly
exaggerated for clarity. The permissible slight overshoot is caused by the acceleration time
which is selected and set.
•
If the I component is set too large, this can be seen from the oscillations in the
Flux current ≈P721 in Diagram 4. In this case, the I component must be reduced again.
•
For the optimisation, the setpoint which is selected for the weak field range must also be taken
into account!
Diagram 1 shows the curve if the P components is selected too small. In contrast, Diagram 5 shows
the curve for the actual value with an optimally adjusted P and I component with a long acceleration
phase.
For shorter acceleration phases, the curve shown in Diagram 3 deviates from the curve in Diagram 5
(no overshoot) for the Flux current ≈P721.

The aim is to obtain a curve which as optimal as possible, or
which corresponds to the curves for the Flux current ≈P721 as
shown in Diagrams 3 and 5, with the "correct" setting for the I
and P components.
A slight overshoot of the Flux current ≈P721 after the setpoint
is reached, with a subsequent linear and oscillation-free curve
is permissible for short acceleration phases.
The practical implementation for optimisation of a weak field controller is
described in Section  8.4 "Optimisation procedure".
Pos : 322 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/Weiter e Eins tell ungen [Ü2] @ 7\mod_1432029630965_388.doc x @ 220873 @ 2 @ 1
96
AG 0100 EN-3216
8 Weak field controller
8.1
Further settings
Pos : 323 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 324 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/Wei ter e Ei nstellungen @ 5\mod_1403694560040_388.doc x @ 138267 @ @ 1
For optimisation of the weak field controller, it is essential that the following two parameters are set in
advance.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
BASIC PARAMETERS
P102
(P)
Acceleration time [s]
P105
(P)
Maximum frequency [Hz]
P113
(P)
Jog frequency [Hz]
2.0
50.0 / (60.0)
0.0
 2.0 → 0.3 *
 50.0 → 100.0 **
 0.0 → 75.0
* To be set according to the specific application (Notice: in this example
without load)
** Note: For testing double the nominal frequency of the motor (see
 P201)
The ramp time and the maximum frequency must be set under the "Basic Parameters" tab in the
parameter Acceleration time P102 and Maximum frequency P105.
Information
Application information
The ramp times for the Acceleration time P102, the Maximum frequency P105 and the setpoint specification
(required speed) result from the requirements of the application. When setting the Acceleration time P102,
care must be taken that the frequency inverter does not enter the current limit (Warning C004 = Overcurrent
measured).
Information
Setpoint / Weak field range
The specified setpoint and the specified Maximum frequency P105 should correspond to the design range
(50 Hz / 87 Hz / 100 Hz – characteristic curves).
A setting value which corresponds to the requirements of the application should be selected for the Maximum
frequency P105 for optimisation of the weak field controller
The weak field range for this application therefore begins above approx 45 Hz and ends at approx. 100 Hz.

The setting for the Acceleration time P102 must be selected so that if
possible, 50 % - 100 % of the nominal motor current (see  type
plate / Nominal current P203) is achieved with the optimisation.
Setting of the Torque current ≈P720 (Isq) and the Flux current ≈P721 (Isd) should be made with the
aid of the NORD CON oscilloscope function.

AG 0100 EN-3216
Before starting the scope recording and enabling the drive unit, the setpoint must be set to
a value of e.g. 75 % (with a Maximum frequency P105 of 100 Hz). I.e. in this example
(4.0 kW frequency inverter / motor combination) a setpoint frequency of 75 Hz must be
specified.
97
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Information
Optimisation information
To optimise the weak field controller, the Maximum frequency P105 should be set according to the specific
application or the requirements of the application. If this is not defined, for a "pre optimisation"* the maximum
frequency should be set to 2x the Nominal frequency P201!
I.e. for applications with an extended operating point (e.g. 100 Hz characteristic curve) a Maximum
frequency P105 of 200 Hz should be set. The setpoint (frequency) which is to be set should then be e.g. 75 %
≈ 150 Hz.
The weak field range for this application therefore begins above approx. 45 Hz and ends at approx. 200 Hz.
Pos : 325 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/N ORD CON [Ü 2] @ 7\mod_1432029689942_388.doc x @ 220904 @ 2 @ 1
98
AG 0100 EN-3216
8 Weak field controller
8.2
NORD CON
Pos : 326 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 327 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/N ORD CON [Kurzfass ung] @ 5\mod_1403614918300_388.doc x @ 137991 @ @ 1
Further information about the settings can be obtained from Section  5.2 "NORD CON" and the
following.
Pos : 328 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/F ernbedienen @ 5\mod_1403694561693_388.doc x @ 138315 @ 3 @ 1
8.2.1
Remote control
The following setting must be made in the Remote Control screen to optimise the weak field
controller before starting the scope recordings.
Set the setpoint to 75 %, i.e.set the
setpoint frequency to 75 Hz
Use the + value or the - value button
Press the OK button to save the
frequency as the jog frequency in P113
Press the Enable button
Steps
and
are not required if a jog
frequency has been parameterised.
Fig. 66: Remote control of the weak field control, setpoint and enabling
Pos : 329 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/Oszillos kop @ 5\mod_1403694562832_388.doc x @ 138339 @ 3 @ 1
8.2.2
Oscilloscope
The following settings should be made under the two tabs Recording or Channel Settings of the
NORD CON Oscilloscope Function before starting the oscilloscope recordings. The settings and
graphic displays in the illustrations may differ according to the frequency inverter types, versions and
software status.
AG 0100 EN-3216
99
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Set Trigger to Enable
Set the scan rate to 10 ms
→ Scan duration 2 s
→ Scan rate depending on the run up time which is set
Note
The scan rate should be selected so that it corresponds to the
scope recordings in the illustrations in Section  8.4
"Optimisation procedure"!
Fig. 67: Oscilloscope settings for trigger and scan rate / scan duration
Fig. 68: Resolution settings for the time axis, comment examples
Fig. 69: Oscilloscope channel settings for the four measurement values
Press the Start button
Fig. 70: Start the scope recording
Pos : 330 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/8. Fel dsc hwäc heregel ung/Fel dsc hwächeregler [Ü2] @ 7\mod_1432196931474_388.doc x @ 221168 @ 2 @ 1
100
AG 0100 EN-3216
8 Weak field controller
8.3
Weak field controller
Pos : 331 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation & H andlungsanweisung @ 7\mod_1434981091960_388.doc x @ 228011 @ @ 1
Information & instructions
Pos : 332 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/F eldsc hwäc her egler @ 5\mod_1403694564065_388.doc x @ 138363 @ @ 1
For the weak field controller, the P and I component must be changed for the relevant optimisation
steps.
As the initial for optimisation of the weak field controller, for the 1st optimisation step the
P component (P318) should be set to 50 % and the I component (P319) should be set to 5 % / ms.
Parameter No.
[-Array]
Name [Unit]
Factory
setting
Setting
related to parameter set (P1, ... , P4)
Speed control
P318
(P)
P-Weak [%]
150
 150 → 50
P319
(P)
I-Weak [%/ms]
20
 20 → 5
The changes to the control parameters must be checked with the NORD CON Oscilloscope
Function ( 8.2.2 "Oscilloscope").
Information
Acceleration time
With large acceleration times, a linearisation of the two currents in the weak field range due to the setting of the
weak field controller is clearly apparent. For small run up times, true linearisation of the curves is not possible.
Because of this, in this case the oscillations of the current curves recorded with the oscilloscope should be
reduced by optimisation of the weak field control parameters.
In the following illustration, the curve for an optimally adjusted position controller for a 4 kW IE2
asynchronous motor is shown as the target.
Fig. 71: Example of an optimised weak field controller curve
An almost oscillation-free curve for the Flux current ≈P721 in the weak field range (> 45 Hz) can be
seen, with an overshoot after the setpoint has been reached as well as a linear increase of the Speed
encoder ~P735.
AG 0100 EN-3216
101
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
In addition, the influence of the Flux delay P558 at the start of the scope recording.
The following illustration shows the form of the curve of the I component of the weak field control is
set too high. After the setpoint has been reached, the value of the I-Weak P319 which is set too high
causes oscillation of the Flux current ≈P721 and the Torque current ≈P720.
Fig. 72: Example with an excessive I component of the weak field controller
The next optimisation steps and oscilloscope recordings should be carried out as follows:
Information
Oscilloscope recording
If a range is reached in which the changes in the curve cannot be viewed directly, it is advisable to save the
oscilloscope recordings. With the facility for displaying several recordings simultaneously a direct
comparison with the previous settings is possible.
Pos : 333 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/P- Anteil F el dsc hwäc heregler @ 5\mod_1403694565109_388.doc x @ 138387 @ 3 @ 1
8.3.1
P component of the weak field controller
Increase the parameter for the P component in 50 % increments until, if possible, from the start of
the weak field range (> 45 Hz) the Flux current ≈P721 initially has a steeply reducing curve which
rises steeply again shortly before the setpoint is reached.
The curve is as illustrated in Diagram 2 (see  8 "Weak field controller").
The upper adjustment limit of the P-Weak P318 is reached, when a further increase of the
P component does not result in a better shape of the curve (in the sense of a "low oscillation" current
curve). A value of the P component which is set "too high does not have any further effect on the
Flux current ≈P721.

If the P component for a selected speed (setpoint specification) is set too high, this is not
visible in the curve for the Flux current ≈P721 in the transition to the weak field range and
after the setpoint has been reached. However, it may be apparent due to an associated
noise.
As a guide value the optimised P component of the weak field control should be in the range from
200 % to 250 %.
Pos : 334 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/I- Anteil F eldschwäc her egler @ 5\mod_1403694565988_388.doc x @ 138411 @ 3 @ 1
102
AG 0100 EN-3216
8 Weak field controller
8.3.2
I component of the weak field control
Beginning from the set starting value [5 % / ms] increase the I component in small increments (e.g.
5 % / ms) until an approximately oscillation-free curve for the Flux current ≈P721 no longer
results. After the setpoint has been reached, there should only be a single overshoot of the
Flux current ≈P721 after which there should be a linear and oscillation-free curve.
The curve is as illustrated in Diagram 3 or Diagram 5 see  8 "Weak field controller".
The upper adjustment limit of the I-Weak P319 is reached, when a further increase of the
I component results in further oscillations in the Flux current ≈P721 curve. In this case, the
I component must be reduced again.
An I component which is set "too high" may cause oscillations of the Torque current ≈P720 after
the setpoint has been reached.

If the I component for a selected speed (setpoint specification) is set too high, this is
apparent from the oscillation of the Flux current ≈P721 in the transition to the weak field
range and after the setpoint has been reached and possible by the associated production of
noise.
Pos : 335 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/Kriterien @ 5\mod_1404208517992_388.doc x @ 139606 @ 3 @ 1
8.3.3
Criteria
The following criteria should be noted for optimisation of the weak field control:
The aim is to optimise the curve for the Flux current ≈P721 with
the "correct" settings of the P and I components:
•

•
•
•
In the weak field range, a clear increase in thes Torque current ≈P720 and a
corresponding reduction of the Flux current ≈P721 should be evident
The curve for the Flux current ≈P721 during the acceleration phase should
correspond to Diagram 3 or Diagram 5 ( 8 "Weak field controller"),
depending on the acceleration time
Oscillation-free curve for the Torque current ≈P720 and Flux current ≈P721 in
the weak field range after reaching the setpoint value, i.e. only slight oscillations
in the two current curves after the acceleration phase; undesirable oscillations
are shown in Diagram 4
No "noise production" in the transition to the weak field range when the drive
unit is in operation (if necessary, reduce the P component).
Information
Optimisation steps
The step widths stated for control optimisation may differ depending on the application. Furthermore, the step
widths can be selected even finer for the final optimisation steps.
Pos : 336 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/Opti mi erungsablauf [Ü 2] @ 7\mod_1432029832970_388.doc x @ 220967 @ 2 @ 1
8.4
Optimisation procedure
Pos : 337 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/H andlungs anweisung @ 7\mod_1434979210308_388.doc x @ 227979 @ @ 1
Instructions
Pos : 364 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/9. Parameterlisten/Par ameterlisten [Ü 1] @ 7\mod_1431931140490_388.doc x @ 220037 @ 1 @ 1
The following illustrations show the optimisation process for the weak field controller using the
example of a 4.0 kW asynchronous motor with efficiency class IE2 on the basis of individual scope
recordings.
AG 0100 EN-3216
103
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
Legend
Setpoint
~P718[02]
Speed encoder
~P735
Magnetisation current
≈P721
Torque current
≈P720
Step
1. "P" scope recording
2. "P" scope recording
Parameter
settings
P318 = 50 %
P319 = 5 % / ms
P318 = 100 %
P319 = 5 % / ms
Starting point
Step
4. "P" scope recording
Parameter
settings
P318 = 200 %
P319 = 5 % / ms
P component 

5. "P" scope recording
P318 = 250 %
P319 = 5 % / ms
P component 
P component 
Step
6. "P" scope recording
12. "P" scope recording
Parameter
settings
P318 = 300 %
P319 = 5 % / ms
P318 = 600 %
P319 = 5 % / ms
P component too high
P component
far too high
Fig. 73: Curve for the P component of the field weakening control
104
AG 0100 EN-3216
8 Weak field controller
Legend
Setpoint
~P718[02]
Speed encoder
~P735
Magnetisation current
≈P721
Torque current
≈P720
Step
1. "I" scope recording
Parameter
settings
P318 = 250 %
P319 = 5 % / ms

2. "I" scope recording
P318 = 250 %
P319 = 10 % / ms
I component 
Starting point
Step
3. "I" scope recording
6. "I" scope recording
Parameter
settings
P318 = 250 %
P319 = 15 % / ms
P318 = 250 %
P319 = 30 % / ms
I component
too high
I component
far too high
The following "I" scope recordings are made with a larger acceleration time (1.2 sec).
Step
Parameter
settings

1. "I" scope recording
2. "I" scope recording
P318 = 350 %
P319 = 10 % / ms
P318 = 350 %
P319 = 20 % / ms
I component 
I component
too high
Fig. 74: Curve for the I component of the weak field control
AG 0100 EN-3216
105
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
9 Parameter lists
Pos : 365 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 366 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/3. Grundinbetriebnahme/Grundinbetriebnahme [Ü1] @ 7\mod_1431930880787_388.doc x @ 219851 @ 2 @ 1
9.1
Basic Commissioning
Pos : 367 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/9. Parameterlisten/Parametrier ung Grundi nbetriebnahme @ 9\mod_1446541954605_388.doc x @ 260619 @ @ 1
Fig. 75: Parameter list for basic commissioning
106
AG 0100 EN-3216
9 Parameter lists
Pos : 370 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/4. Str omregel ung/Str omregel ung [Ü1] @ 7\mod_1431930921610_388.doc x @ 219882 @ 2 @ 1
9.2
Current control
Pos : 371 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/9. Parameterlisten/Parametrier ung Str omregel ung @ 9\mod_1446541752188_388.doc x @ 260355 @ @ 1
Fig. 76: Parameter list for optimised current control
Pos : 374 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/5. Drehzahlreg elung/Drehzahlreg elung [Ü 1] @ 7\mod_1431930963044_388.doc x @ 219913 @ 2 @ 1
AG 0100 EN-3216
107
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
9.3
Speed control
Pos : 375 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/9. Parameterlisten/Parametrier ung Dr ehzahlregel ung @ 9\mod_1446541936587_388.doc x @ 260487 @ @ 1
Fig. 77: Parameter list for optimised current and speed control
Pos : 378 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/6. Lagereg elung/Lager egelung [Ü 1] @ 7\mod_1431931000798_388.doc x @ 219944 @ 2 @ 1
108
AG 0100 EN-3216
9 Parameter lists
9.4
Position control
Pos : 379 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/9. Parameterlisten/Parametrier ung Lagereg elung @ 9\mod_1446541942393_388.doc x @ 260520 @ @ 1
Fig. 78: Parameter list for optimised current, speed and position control
Pos : 382 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/7. Schl upfkompensi erung/Schl upfkompensierung [Ü 1] @ 7\mod_1431931030484_388.doc x @ 219975 @ 2 @ 1
AG 0100 EN-3216
109
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
9.5
Slip compensation
Pos : 383 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/9. Parameterlisten/Parametrier ung Sc hlupfkompensier ung @ 9\mod_1446541949904_388.doc x @ 260586 @ @ 1
Fig. 79: Parameter list for optimised current, speed, position control and slip compensation
Pos : 384 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/8. F eldsc hwäc her egelung/F eldsc hwäc her egelung [Ü 1] @ 9\mod_1446537205079_388.doc x @ 260259 @ 2 @ 1
110
AG 0100 EN-3216
9 Parameter lists
9.6
Weak field control
Pos : 385 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/9. Parameterlisten/Parametrier ung F el dschwäc heregel ung @ 9\mod_1446541945152_388.doc x @ 260553 @ @ 1
Fig. 80: Parameter list for all optimised controllers, plus weak field controller
Pos : 394 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/10. Weiter führende D okumentati onen/Weiterführende D okumentati onen [Ü 1] @ 7\mod_1431931215056_388.doc x @ 220068 @ 1 @ 1
AG 0100 EN-3216
111
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
10 Further documentation
Pos : 395 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/Infor mation @ 7\mod_1434979005376_388.doc x @ 227948 @ @ 1
Information
Pos : 396 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/10. Weiter führende D okumentati onenWeiterführ ende D okumentationen @ 5\mod_1409831513379_388.doc x @ 148844 @ @ 1
In case of queries and for further information regarding this document, please contact Electronics
Support at Getriebebau NORD GmbH & Co. KG.
On request, further information which is required, e.g. technical data sheets which are not available
under www.nord.com - Documentation can be made available to users after technical consultation.
Pos : 397 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/H andbüc her [Ü 2] @ 7\mod_1432802110860_388.doc x @ 221588 @ 2 @ 1
10.1 Manuals
Pos : 398 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/10. Weiter führende D okumentati onenHandbüc her @ 5\mod_1400504649959_388.doc x @ 132890 @ @ 1
Document
Name
BU 0000
NORD CON Software Manual (the Help function of the software should preferably be used)
BU 0200
SK 200E – Manual
BU 0210
POSICON for SK 200E - Manual
BU 0500
SK 5xxE – Manual (SK 500E ... SK 535E)
BU 0505
SK 54xE – Manual (SK 540E ... SK 545E)
BU 0510
POSICON for SK 500E – Position Control Manual ≥ SK 530E
Table 7: Manuals
Pos : 401 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/10. Weiter führende D okumentati onen/T ec hnisc he Infor mationen / D atenblätter [Ü 2] @ 7\mod_1432198181354_388.doc x @ 221199 @ 2 @ 1
10.2 Technical Information / Data Sheets
Pos : 404 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/TIs - Inkr ementaldr ehg eber (IG) [Ü 2] @ 7\mod_1433921190380_388.doc x @ 223713 @ 3 @ 1
10.2.1 TIs – Incremental encoder (IG)
Pos : 405 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/10. Weiter führende D okumentati onenTIs - Inkr ementaldr ehg eber (IG) @ 5\mod_1400504651216_388.doc x @ 132914 @ @ 1
Document
Name
Supplier / Type
Part No.
Enquiries to Incremental encoder IG4
Service
4096, TTL, 5 V, 1.5 m
Fritz Kübler GmbH
8.5820.0H10.xxxx.5093.xxxx
19551020
Enquiries to Incremental encoder IG41
Service
4096, TTL, 10 - 30 V, 1.5 m
Fritz Kübler GmbH
8.5820.0H30.xxxx.5093.xxxx
19551021
Enquiries to Incremental encoder IG42
Service
4096, HTL, 10 - 30 V, 1.5 m
Fritz Kübler GmbH
8.5820.0H40.xxxx.5093.xxxx
19551022
Data sheet
A0828_5_8.5820.0H1
0.XXXX.5093.XXXX.pd
A1495_1_8.5820.0H3
0.XXXX.5093.XXXX.pd
A1451_0_8.5820.0H4
0.XXXX.5093.XXXX.pd
Table 8: TIs – Incremental encoder (IG)
Pos : 406 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/TIs - C ANopen Absol utwertdrehgeber ( AG) [Ü2] @ 7\mod_1433921203002_388.doc x @ 223745 @ 3 @ 1
112
AG 0100 EN-3216
10 Further documentation
10.2.2 TIs - CANopen absolute encoder (AG)
Pos : 407 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/10. Weiter führende D okumentati onen/TIs - C ANopen Absol utwertdrehgeber ( AG) @ 7\mod_1432198710739_388.doc x @ 221230 @ @ 1
Document
Name
Supplier / Type
Part No.
Data sheet
Absolute encoder with
Enquiries to incremental track AG1
Service
CANopen, Single / Multiturn
8192-4096/2048 TTL
Fritz Kübler GmbH
8.5888.0452.2102.S010.K014
19551881
Absolute encoder with
Enquiries to incremental track AG4
Service
CANopen, Single / Multiturn
8192-4096/2048 HTL
Fritz Kübler GmbH
8.5888.0400.2102.S014.K029
19551886
Absolute encoder with
Enquiries to incremental track AG6
Service
CANopen, Single / Multiturn
8192-65K/2048 HTL
Baumer IVO GmbH & Co. KG
GXMMS.Z18
19556994
AZ4654-1.PDF
Absolute encoder with
Enquiries to incremental track AG3
Service
CANopen, Single / Multiturn
8192-65K/2048 TTL
Baumer IVO GmbH & Co. KG
GXMMS.Z10
19556995
AZ3903-1.PDF
A1259_11_8.5888.0
452.2102.S010.K014_
A1731_4_8.5888.04
00.2102.S014.K029_d
Table 9: TIs - CANopen absolute encoder (AG)
Pos : 408 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/TIs - Opti onen / Z ubehör komponenten [Ü 2] @ 7\mod_1433921126973_388.doc x @ 223682 @ 3 @ 1
10.2.3 TIs - Options / Accessory components
Pos : 409 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/10. Weiter führende D okumentati onen/TIs - Opti onen und Z ubehör komponenten @ 7\mod_1432198719371_388.doc x @ 221262 @ @ 1
Document
Name
Enquiries to RJ 45 WAGO connection
Service
module
Supplier / Type
Part No.
WAGO Kontakttechnik GmbH
RJ45 connection 24 V +
CANopen
278910300
Data sheet
in preparation
Table 10: Options and accessory components
Pos : 412 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/Anhang @ 7\mod_1433917553864_388.doc x @ 223558 @ 1 @ 1
AG 0100 EN-3216
113
Controller Optimisation – Guideline for AC motors - CFC Closed-Loop
11 Appendix
Pos : 413 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Allgemei n gül tige D okumente und Ü bers chriften/Abkürz ung en [Ü2] @ 7\mod_1433917622820_388.doc x @ 223589 @ 2 @ 1
11.1 Abbreviations
Pos : 414 /Appli kati onen/[AG 0100] Regl eropti mier ung ASM - CFC Cl osed-Loop/11. Abkürzungen/Abkürz ungen @ 5\mod_1402645824557_388.doc x @ 136730 @ @ 1
AG
Absolute encoder
IG
Incremental encoder
ASM
Asynchronous machine / motors
IO
Input / Output
BG
Size
PI controller
Proportional-integral controller
CFC
Current Flux Control
POSICON
Positioning control
DIN
Digital input
P
Parameter
ENC
Special encoder extension
SK
Schlicht & Küchenmeister
SCD
Schematic circuit diagram
SSI
Synchronous Serial Interface
FI
Frequency inverter
HTL
High Transistor Logic
TI
Technical Information / Data Sheet
(Data sheet for NORD accessories)
IE1
Efficiency class of standard motors
TTL
Transistor-Transistor Logic
IE2
Efficiency class of motors with higher
efficiency
VFC
Voltage Flux Control
IE3
Efficiency class of motors with even higher
efficiency, Premium
IE4
Efficiency class of motors with even higher
efficiency, e.g. synchronous motors
Pos : 418 /Appli kati onen/[AG 0100 - AG 0101] allgemei ngültige Modul e/Str ukturmodul e/D ummy für dTD @ 9\mod_1446567337647_388.doc x @ 260971 @ @ 1
=== Ende der Liste für T extmar ke Inhalt ===
114
AG 0100 EN-3216
Notes
Pos : 421 /Allgemein/Steuer module/Stichwortverzeic hnis @ 0\mod_1317978518730_388.doc x @ 4101 @ @ 1
Notes
=== Ende der Liste für T extmar ke Stichwortverzeic hnis ===
AG 0100 EN-3216
115
6047502 / 3216
Download PDF

advertising