S5-115F System Manual

S5-115F System Manual
SIMATIC S5
S5-115F
Programmable Controller
Manual
Volume 1/2
EWA 4NEB 811 6148-02
STEP ® and SIMATIC ® are registered trademarks of Siemens AG.
Copyright © Siemens AG 1991
Subject to change without prior notice.
The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or
design, are reserved.
EWA 4NEB 811 6148-02
Rules Governing the Use of the S5-115F
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Appendices
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
System Overview
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
Technical Description
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Installation Guidelines
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
System Startup
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Addressing
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Analog Value Processing
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Communications Capabilities
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Technical Specifications
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Reliability, Availability and Safety of Electronic Control Systems
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Preface
Introduction
Index
EWA 4NEB 811 6148-02
1
2
3
4
5
6
7
8
9
10
A/B
/
C/D
Contents
Page
Preface
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii
...
Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
...
1
2
System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- . .1
1.1
Areas of Application
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- . 1
1.2
Regulations for Applications Requiring Official Approval
1.3
1.3.1
1.3.2
1.3.3
1.3.4
System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- . 2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.-. . 2
Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.-. 3
Input and Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. 3
Intelligent Input/Output Modules and
Communications Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. 4
1.4
1.4.1
1.4.2
Expansion Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- . 4
Centralized Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. 4
Distributed Configuration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. 4
1.5
Communications Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.-. 5
1.6
Operator-Process Communication, Process Visualization,
and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. -. . 6
1.7
Software
1.8
1.8.1
1.8.2
1.8.3
1.8.4
Redundancy Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. .-. 7
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- . .7
Operating System - Additional Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. - 8
Control Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. . 8
Programmer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. .-. 8
. . . . . . . . . . . . . 1-
1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- . .6
Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.-. . 1
2.1
Modular Design
2.2
2.2.1
2.2.2
2.2.3
Principle of Operation of the Programmable Controller
. . . . . . . . . . . . . . 2Functional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. .
Program Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. -. .
Central Processing Unit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -
EWA 4NEB 811 6148-02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. . 1
3
3
5
9
v
Page
2.3
2.3.1
2.3.2
2.3.3
2.3.4
3
4
Installation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. . 1
3.1
3.1.1
3.1.2
Mounting Rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. . 1
Central Controller (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. .-. 1
Expansion Units (EU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- . 4
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
Mechanical Installation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.-. 12
Installing the Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. .-. 12
Dimension Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- . 15
Cabinet Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .18
Interconnecting the Two Subunits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.- 19
Centralized Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 21
Distributed Configurations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 22
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. .27
.
Connecting the PS 951F Power Supply Module . . . . . . . . . . . . . . . . . . . . . . .3 - 27
Connecting Digital Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 28
Connecting Analog Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. -. 28
Front Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. .29
Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .31
.
3.4
3.4.1
3.4.2
3.4.3
General Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. .-. 31
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.-. 31
.
Electrical Installation with Field Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. - 34
Connecting Nonfloating and Floating Modules
. . . . . . . . . . . . . . . . . . . . . .3 - 39
3.5
Installing Programmable Controllers in Conformity with EMC
3.6
3.6.1
3.6.2
Wiring Arrangement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- . 42
Wiring Cables Inside and Outside a Cabinet . . . . . . . . . . . . . . . . . . . . . . . . 3
. - 42
Running Cables Outside Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.- 43
3.7
Equipotential Bonding
3.8
Shielding Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. .45
3.9
Special Measures for Interference-Free Operation
3.10
Checklist for the Installation of Programmable Controllers
in Conformity with EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.-. 49
. . . . . . . . . 3 - 41
.........................................3
. .- . 44
. . . . . . . . . . . . . . . . . . .3 - 46
System Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. . .1
4.1
4.1.1
4.1.2
4.1.3
vi
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. .- . 12
.
Backup Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. .12
Memory Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. .- . 12
Programmers (PG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. -. .13
Printers (PT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. .- . 13
.
Operating Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
. .-. 1
Controls on the Power Supply Module and Central Processing Unit
. . . . 4- 1
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. . 4
CPU Operation in ”RUN” and ”STOP” Modes
. . . . . . . . . . . . . . . . . . . . . . .4 - 6
EWA 4NEB 811 6148-02
Page
5
4.1.4
4.1.5
4.1.6
4.1.7
Cold Restart and Warm Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. .- 8
Battery Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. .13
Overall Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.-. 13
.
Steps for System Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.-. 14
4.2
Working with Input/Output Modules
4.3
4.3.1
4.3.2
System Startup Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. 18
Safety Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. .18
Checking a Plant or Controlled System before Startup . . . . . . . . . . . . . . . . 4 - 19
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. . .1
5.1
5.1.1
5.1.2
Address Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. -. . 1
Digital Module Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 1
Analog Module Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 1
5.2
Slot Addressing
5.3
5.3.1
5.3.2
5.3.3
Handling Process Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.-. 5
Accessing the PII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. . 6
Accessing the PIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. . 7
Direct Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.-. . 8
5.4
CPU Address Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.-. 10
5.5
Process Interrupt Generation with the
6ES5 434-7LA12 Digital Input Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. - 12
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. .-. 12
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.-. 12
.
Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. .13
.
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. .-. 15
5.5.1
5.5.2
5.5.3
5.5.4
6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. - 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. . 2
Analog Value Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. . 1
6.1
Analog Input Modules
6.2
6.2.1
6.2.2
460-7LA12 Analog Input Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. .Connecting Sensors to the 460 Analog Input Module . . . . . . . . . . . . . . . . . 6 Startup of the 460 Analog Input Module
. . . . . . . . . . . . . . . . . . . . . . . . . . . 6. -
6.3
6.3.1
6.3.2
463-4U... Analog Input Module
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. .- 11
Connecting Sensors to the 463 Analog Input Module . . . . . . . . . . . . . . . . . 6 - 11
463 Analog Input Module
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 14
6.4
6.4.1
Representation of the Digital Input Value
. . . . . . . . . . . . . . . . . . . . . . . . . . 6. - 16
Digital Representation of a Measured Value
(460 Analog Input Module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 16
Digital Representation of a Measured Value
(463 Analog Input Module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 22
6.4.2
6.5
.........................................6
. .-. 1
Wire-break Signalling and Scanning
EWA 4NEB 811 6148-02
2
2
8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 26
vii
Page
7
8
viii
6.6
6.6.1
6.6.2
Analog Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.-. 28
Method of Operation of the Analog Output Modules
. . . . . . . . . . . . . . . . 6 - 28
Analog Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.-. 29
6.7
Digital Representation of an Analog Value
6.8
I/O Module Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. .33
6.9
Analog Value Matching Blocks FB 250 and FB 251 . . . . . . . . . . . . . . . . . . . .6 - 37
. . . . . . . . . . . . . . . . . . . . . . . . . 6. - 31
Communications Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- . 1
7.1
Overview of Communications Capabilities
. . . . . . . . . . . . . . . . . . . . . . . . . 7. -
1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
SINEC L1 Local Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. -. 1
Nonsafety-Related Connection between an S5-115F Slave and a
Master Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. -. . 3
Safety-Related Connection of Several S5-115Fs . . . . . . . . . . . . . . . . . . . . . .7 - 13
Connecting Several S5-115Fs with S5 PLCs of the U Range . . . . . . . . . . . . 7 - 22
Safety-Related and Fault-Tolerant Networking
. . . . . . . . . . . . . . . . . . . . . .7 - 30
The Mailbox Transfer Block FB 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.- 32
7.3
7.3.1
7.3.2
Programmers for the S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. -. 32
Programmer Connected to the Serial Interface of the CPU . . . . . . . . . . . . 7 - 32
Programmer Connected to SINEC L1 Master . . . . . . . . . . . . . . . . . . . . . . . . 7
. - 33
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
CP 523 Serial I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.-. 34
Settings on the CP 523 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- 35
Use of the CP 523 in Print Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- 37
Use of the CP 523 in Communications Mode . . . . . . . . . . . . . . . . . . . . . . . . 7
. - 44
Failsafe Characteristics of the CP 523 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. - 47
FB 252 Integral Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- 48
Technical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. -. . 1
8.1
General Technical Specifications
.................................8
. .-
1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
Description of the Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. -. 3
Mounting Racks (CRs, ERs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. -. 3
Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. .- . 6
Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.-. 9
Digital Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. .- . 10
Digital Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.-. 14
Digital Input/Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. .- 20
Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
. .-. 26
Analog Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.-. 31
Communications Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. -. 37
Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. -. .38
8.3
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
. .- . 42
.
EWA 4NEB 811 6148-02
Page
9
Reliability, Availability and Safety of Electronic Control Systems. . . . . . . . . . . . . 9 9.1
9.1.1
9.1.2
10
1
9.1.3
Reliability of Electronic Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. - 1
Failure Characteristics of Electronic Devices . . . . . . . . . . . . . . . . . . . . . . . . 9
. - 2
Reliability of SIMATIC S5 Programmable Controllers and
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9.-. . 2
Failure Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- . 3
9.2
9.2.1
9.2.2
Availability of Electronic Control Systems
. . . . . . . . . . . . . . . . . . . . . . . . . . 9. - 3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- . .3
Availability of the S5-115F Programmable Controller
. . . . . . . . . . . . . . . . .9 - 4
9.3
9.3.1
9.3.2
Safety of Electronic Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9. - 5
Safe Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- . . 5
Safe Binary Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- . 6
Rules Governing the Use of the S5-115F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
.. -
1
10.1
The User Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 1
10.2
The Logical Program Counter
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
..-
1
10.3
Response Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -.
10.3.1 Response Time in the Case of Cyclical Reading In and Output via
the Process I/O Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .10.3.2 Response Time in the Case of Direct Access in the Cyclic Program . . . . . 10 10.3.3 Response Time in the Case of Direct Access in the Time
Interrupt OB (OB 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .10.3.4 Response Time in the Case of Direct Access in the Process
Interrupt OB (OB 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .10.3.5 Response Times With the SINEC L1 LAN . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. -
2
4
5
10.4
Defining the PLC Cycle Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .-
7
10.5
Monitoring Times for Synchronization FB Calls (FB 254 SYNC) . . . . . . . . 10 -
9
10.6
Discrepancy Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . -. 10
10.7
10.7.1
10.7.2
10.7.3
10.7.4
10.7.5
10.7.6
Limitations of STEP 5 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. Access to I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .Illegal Memory Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .Illegal STEP 5 Operations and Statements . . . . . . . . . . . . . . . . . . . . . . . . . 10
. Data Blocks Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -.
Jump Operations to Unloaded Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. Loadable Function Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .-
10.8
I/O Module Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 15
10.9
10.9.1
10.9.2
10.9.3
10.9.4
10.9.5
10.9.6
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .-. 17
Implementation of Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 17
Requirements to be Met by the Sensor Signals . . . . . . . . . . . . . . . . . . . . . .10 - 17
Type 1 Digital Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 18
Type 2 Digital Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 19
Type 3 Digital Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 21
Checking Digital Input Modules in the Case of Non-Intermittent
Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .-. 24
EWA 4NEB 811 6148-02
3
3
4
11
11
12
12
13
13
14
ix
Page
10.9.7
10.9.8
Direct Read Access to DI Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 24
Digital Input Module with Interrupt Capability (Interrupt DI)
. . . . . . . 10 - 25
10.10
10.10.1
10.10.2
10.10.3
Digital Output Modules (DQs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 27
Type 8 Digital Output Modules (DQs) . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 28
Type 9 and Type 10 Digital Output Modules . . . . . . . . . . . . . . . . . . . . . . .10 - 29
Connecting Actuators to Digital Output Modules (DQs)
(Types 9 and 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 29
10.10.4 Checking Digital Output Modules Using Readback Digital Input
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- .37
10.11
10.11.1
10.11.2
10.11.3
10.11.4
Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .- 37
Type 13 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 39
Type 14 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 40
Type 15 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 43
Checking Analog Input Modules Using Check Analog Output
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- .46
10.11.5 Type 16 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 46
10.12
Analog Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 50
10.12.1 Type 18 Analog Output Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 50
10.13
I/O Type Assignment of Unused Digital Words
. . . . . . . . . . . . . . . . . . . .10 - 51
10.14
I/O Type Assignment of Unused Analog Channels
10.15
I/O Type Mixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 52
. . . . . . . . . . . . . . . . .10 - 51
10.16
Module Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 52
10.16.1 Relationship Between Byte and Word Addressing
. . . . . . . . . . . . . . . . .10 - 52
10.16.2 Address Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .-. 53
10.17
10.17.1
10.17.2
10.17.3
Responding to I/O Module Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. Passivation of I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .Revoking Passivation of I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. Operating System and User Program Response in the Case of
I/O ETV 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -.
10.17.4 Repair Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . -.
57
59
60
63
66
10.18
Handling the Programmer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 66
10.18.1 Connecting the Programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 66
10.18.2 Operator Entry in the Programmer in Safety Mode
. . . . . . . . . . . . . . . . 10 - 67
x
10.19
10.19.1
10.19.2
10.19.3
10.19.4
SINEC L1 LAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 68
Polling List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- . 69
SINEC L1 Safety Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 69
Synchronization FB 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .- 70
Two-Channel SINEC L1 LAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 70
10.20
10.20.1
10.20.2
10.20.3
Individual Acceptance Test of the Safety-Related System . . . . . . . . . . . 10 - 70
Planning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 70
Pre-Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 72
System Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .-. 73
EWA 4NEB 811 6148-02
Page
Appendices
A
Evaluation of Error DBs DB2 and DB3 without COM 115F. . . . . . . . . . . . . . . . . . . A -
1
B
Slot Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. .- . .1
B.1
Power Supply Connector Pin Assignment
B.2
Connector Pin Assignments of the CPU
B.3
Connector Pin Assignments of Analog Input/Output Modules
. . . . . . . . B-
3
B.4
B.4.1
Connector Pin Assignments of the Interface Modules
. . . . . . . . . . . . . . . .BConnector Pin Assignments of the Symmetrical and
Serial EU Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. -.
Connector Pin Assignments of the Symmetrical and
Serial CC Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. -.
Connector Pin Assigments of the Asymmetrical
IM 305/IM 306 Interface Modules
................................B
. .-
4
6
B.5
Connector Pin Assignments of the ER 701-3 Subrack . . . . . . . . . . . . . . . . . .B -
7
B.6
Legend for Connector Pin Assignment
B.4.2
B.4.3
. . . . . . . . . . . . . . . . . . . . . . . . . . B. -
1
. . . . . . . . . . . . . . . . . . . . . . . . . . . .B. -
2
4
5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. - 10
C
Prototype Test Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C... 1
D
SIEMENS Addresses Worldwide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D
. .-
1
Abbreviations
Index
EWA 4NEB 811 6148-02
xi
S5-115F Manual
Preface
Preface
The S5-115F is a failsafe programmable controller for the mid performance range. It is for use
wherever safety is the first priority and where potential dangers must be avoided.
Hardwired solutions have dominated failsafe technology until now. With the S5-115F, you can
now apply all the advantages of our programmable controllers (PLCs) to your safety-related
controls. You write your process-oriented program as before and then enter all safety-related data
with the COM 115F programming software.
You require detailed information in order to use the controller to its best advantage.
This manual aims to provide the necessary information in condensed form without overloading
the user with superfluous knowledge, which means:
•
•
•
•
•
Standardization of terminology
More detailed breakdown of subjects
Illustration of individual problems
User-friendly arrangement of the contents
Particular observance of the rules of safety technology
In this way, you will gain all the information required to operate your S5-115F. This manual is
aimed at:
•
•
•
Users with little previous experience
SIMATIC S5 experts
Officials conducting Licensing Authority acceptance tests.
However, the applications are so numerous that not all the problems that might occur can be dealt
with in one manual. You will find a list of Siemens representatives in the Appendix who will help
you in those cases where the manual cannot answer your questions.
EWA 4NEB 811 6148-02
xiii
S5-115F Manual
Introduction
Introduction
Please read the introduction carefully. You will then find it easier to use the manual and this will
save time.
This manual contains a detailed description of the S5-115F PLC with the CPU 942-7UF15.
For the description of the S5-115F PLC with the CPU 942-7UF11 or CPU 942-7UF12, see the manual
with the order no. 6ES5 998-1UF21. For the description of the CPU 942-7UF13 or CPU 942-7UF14
(incl. product information), see the manual with the order no. 6ES5 998-1UF23.
Description of Contents
This manual consists of two volumes and contains a detailed description of our SIMATIC S5-115F
failsafe programmable controller.
Volume 1 contains the description of the hardware components. The contents of this volume can
be divided into blocks according to topic:
•
•
•
•
•
Reference manual
(System Overview, Technical Description)
Installation and operation
(Installation Guidelines, Startup, Addressing)
Special capabilities
(Analog Value Processing, Communications Capabilities)
Overview of technical specifications
Safety-related rules and regulations
Volume 2 contains the description of the software components. The contents of this volume can
be divided into blocks according to the following topics:
•
•
•
•
•
Working with COM 115F programming software
In the chapter ”Configuring with COM 115F” you will find all the steps you require for configuring your S5-115F with the CPU 942-7UF15. Of course, you can also configure programmable controllers with the CPU 942-7UF11 to CPU 942-7UF14 using COM 115F system
software, Version 3.2.
Programming Guide
(Introduction to STEP 5, STEP 5 Operations)
Testing
(Program Test, Error Diagnostics)
Blocks
(Description of integral blocks and the use of loadable function blocks)
Simple installation example with configuration of an S5-115F
You will find additional information in tabular form in the Appendices.
At the end of the book you will find correction forms. Please enter in these forms any suggestions
you may have for improvements and corrections and send them to us. Your comments will help us
to improve the next edition.
EWA 4NEB 811 6148-02
xv
Introduction
S5-115F Manual
Conventions
In order to improve the readability of the manual, a menu-style breakdown was used, i.e.:
•
•
•
•
The individual chapters can be quickly located by means of a thumb register.
At the front of the manual is an overview containing the headings of the individual chapters.
Each chapter has its own detailed table of contents.
The individual chapters are subdivided into sections and subsections. Bold-face type is used for
further subdivisions.
Figures and tables are numbered separately in each chapter. The page following the chapter
table of contents contains a list of the figures and tables appearing in that chapter.
Certain conventions were observed when writing the manual. These are explained below.
•
•
•
•
•
•
A number of abbreviations have been used.
Example: CPU (central processing unit)
Footnotes are identified by superscripts consisting of a small digit (e.g. ”1”) or ”*”. The actual
footnote is generally at the bottom left of the page.
Cross-references are shown as follows:
”( 7.3.2)” refers to subsection 7.3.2.
No references are made to individual pages.
Dimensions in drawings are given in ”mm” with the value in inches given in brackets.
Example: 187 (7.29).
Values may be given in binary, decimal or hexadecimal numbers. The number system used is
indicated in each case with a subscript, e.g. F000H.
Information of special importance is printed black-framed ”windows”.
!
Warning
See the Safety-Related Guidelines for the user for definitions of the terms ”Note”,
”Important”, ”Warning” and ”Danger”.
”Caution”,
Manuals can only describe the current version of the programmable controller. Should
modifications or supplements become necessary in the course of time, a supplement will be
prepared and included in the manual the next time it is revised. The relevant version or edition of
the manual appears on the cover. The present manual is edition ”1”. In the event of a revision, the
edition number will be incremented by ”1”.
xvi
EWA 4NEB 811 6148-02
S5-115F Manual
Introduction
Courses
Siemens provides SIMATIC S5 users with extensive opportunities for training.
For more information, please contact your Siemens representatives.
Reference Literature
This manual is a comprehensive description of the S5-115F programmable controller. Topics not
specific to the S5-115F, however, are only briefly dealt with. You will find more detailed information in the following literature:
•
Automating with the S5-115U
SIMATIC S5 Programmable Controllers
Hans Berger
Siemens AG, Berlin and Munich 1987
Contents:
- STEP 5 programming language
- Program scanning
- Integral program blocks
- Interfaces to the I/Os
Order No.: ISBN 3-8009-1484-0
You will find information on the range of controllers and programmers in the following catalogs:
•
•
ST 52.3
ST 57
•
•
•
ST 59
ET 1.1
MP 11
”S5-115U, S5115H and S5115F Programmable Controller”
”Standard Functions Blocks and Driver Software for Programmable Controllers of
the U Range”
”Programmers”
”ES 902 C 19 in. Packaging System”
Thermocouples, Compensation Boxes
Further components and modules (e.g. CPs and SINEC L1) have their own manuals. We will refer
you to these sources at the appropriate points in the text.
EWA 4NEB 811 6148-02
xvii
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
1
System Overview
1.1
Areas of Application
1.2
Regulations for Applications Requiring Official Approval
1.3
1.3.1
1.3.2
1.3.3
1.3.4
System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- 2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. 2
Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. .- 3
Input and Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. - 3
Intelligent Input/Output Modules and
Communications Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. - 4
1.4
1.4.1
1.4.2
Expansion Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- 4
Centralized Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. - 4
Distributed Configuration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. - 4
1.5
Communications Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. - 5
1.6
Operator-Process Communication, Process Visualization,
and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. .- 6
1.7
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- .6
1.8
1.8.1
1.8.2
1.8.3
1.8.4
Redundancy Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- 7
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- .7
Operating System - Additional Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 8
Control Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. 8
Programmer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. .- 8
EWA 4NEB 811 6148-02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .- 1
........ 1-1
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Figures
1-1.
1-2.
S5-115F Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. -. 2.
Hardware Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. .-.7
EWA 4NEB 811 6148-02
S5-115F Manual
1
System Overview
1.1
Areas of Application
System Overview
The S5-115F programmable controller is used in the most varied industrial fields. The following are
the main areas of application:
• Safety-oriented applications requiring official authorization
(e.g. burner controls, cable-car controls, fairground carousels)
• Applications not requiring official approval but constituting a high degree of danger for personnel and environment (e.g. controls for chemical processes)
• Applications with high capital risk (e.g. controls for processing expensive materials).
1.2
Regulations for Applications Requiring Official Approval
The failsafe S5-115F has been prototype-tested by the Bavarian Technical Inspectorate (TÜV). The
prototype test covers a range of different regulations laid down by the various supervisory bodies
and professional associations.
The S5-115F meets the requirements for safety-related applications
• with TÜV safety class 2
• with quality level 6 to DIN V 19250
TÜV safety classes
The Technical Inspectorate (TÜV) has arranged the requirements laid down in the regulations into
five safety classes with the strictest requirements in safety class 1. It should be noted that the
safety class is not necessarily an indication of the risk involved in the areas of application in
question.
The S5-115F PLC meets the requirements of all regulations belonging to safety class 2 of the
Technical Inspectorate. This means that the regulations of safety classes 3 to 5 are also met:
Class 2:
Class 3:
Class 4:
Class 5:
-
Elevator controls to TRA 200/101
Escalator controls (not to EN 115)
Road traffic signal systems to DIN 57832/VDE 0832
Electrical equipment of furnaces to DIN 57116/VDE 0116
Telecontrol installations for gas and oil pipelines to TRGL 181
Fairground carousels (present plants)
Cable-car controls
Electromedical equipment to DIN IEC 601/VDE 0750
Remote radio control for cranes to ZH1/547
Manufacturing and processing machines to DIN 57113/VDE 0113
Flame monitoring equipment
Lifting platforms to VBG 14
Powered gates (controls)
Quality levels to DIN V 19250
The classification to DIN 19250 is not based on existing regulations but rather uses risk parameters
to define the risk inherent in a process. Risk parameters are the degree of damage, duration of
stay in danger areas, the possibility of avoiding danger and the probability of undesired states
arising. The risk graph gives information on the quality level in the case of protection facilities for
measurement, open-loop control and closed-loop control.
EWA 4NEB 811 6148-02
1-1
System Overview
1.3
S5-115F Manual
System Components
The S5-115F system is made up of various modular components, as pictured in Figure 1-1. These
components include the following:
• Power supply modules (PS)
• Central processing units (CPU)
• Input and output modules (I/O)
• Interface modules
• CP 523 communications processor
Figure 1-1. S5-115F Components
1.3.1
Power Supply
The power supply module (PS) converts the external power supply to the internal operating
voltage. Supply voltage for the S5-115F is 24 V DC. The 24 V DC system voltage must be reliably
isolated from the line voltage (e.g. 220 V).
Screw-type terminals connect the power supply lines to the bottom of the PS.
Lithium batteries ensure that the CPU RAM is backed up in the event of a power failure. Battery
failure is indicated by an LED. Backup voltage can be supplied externally via sockets so that the
batteries can be changed also when the PLC is in RUN.
1-2
EWA 4NEB 811 6148-02
S5-115F Manual
1.3.2
System Overview
Central Processing Unit
The central processing unit (CPU) is the ”brain” of the programmable controller. It executes the
control program.
The CPU 942F is used in the S5-115F. This is a slightly modified version of the CPU 942 in the
S5-115U.
•
•
•
PG/SINEC L1 interface optocoupler, for reliable electrical isolation
No 5.2 V supply for the SINEC L1 terminal on the interface connector (so that the SINEC L1 LAN
does not bypass the reliable isolation, even in the event of a fault)
Operating system with all the safety functions of the S5-115F
You can use the CPU 942F in combination with analog modules and closed-loop control software
to control nonsafety-related processes. A PID algorithm is integrated in the operating system of
this CPU. Time constants starting at approximately one second are possible. You can implement a
maximum of eight control loops.
1.3.3
Input and Output Modules
Input and output modules are the interfaces to the sensors and actuators of a machine or
controlled system.
The following features make S5-115F modules easy to handle:
• Fast installation
• Mechanical coding
• Large labeling areas
Digital Modules
Digital modules conform to the voltage and current levels of your machine.
Digital modules have the following convenient features:
• Connection of signal lines via front connectors
• A choice of screw-type or crimp snap-in connections
Analog Modules
As a programmable controller's degree of performance increases, so does the significance of its
analog value processing. The significance of the analog input and output modules increases
accordingly.
The S5-115F offers the AE 460 and 463 nonfloating analog input modules. The desired level for the
AE 460 is set via range cards and for the AE 463 via jumpers in the front connector. A range card is
required for each of the four channels on the AE 460. This feature allows you to do the following:
• Have up to two different measuring ranges on one module.
• Change the measuring ranges simply by exchanging range cards.
In the case of the AE 463, the measuring range is jumpered separately for each of the four
channels.
One analog output module covers the various voltage or current ranges of analog actuators.
EWA 4NEB 811 6148-02
1-3
System Overview
1.3.4
S5-115F Manual
Intelligent Input/Output Modules and Communications Processors
You can connect the CP 523 to the S5-115F direct in the central controller or in expansion units of
one of the subunits. All further CPs and IPs of the SIMATIC family are used via an S5 controller of
the U range (S5-115U, -135U, -150U, -155U) connected via a SINEC L1 LAN.
Intelligent input/output modules (IPs) preprocess input signals and data.
Communications modules (CPs) control communications using:
• Operator panels
• Process visualization panels
• Other programmable controllers
Intelligent I/Os and communications processors the offload the CPU considerably.
1.4
Expansion Capability
If the connection capability of one central controller (CC) is no longer sufficient for your machine
or system, increase the capacity with expansion units (EUs).
Interface modules connect a CC to EUs and connect EUs to each other. Choose an interface module
to suit the controller configuration you need.
1.4.1
Centralized Configuration
The interface modules for centralized configurations connect bus lines and supply voltage to the
EUs. The expansion units in such configurations therefore need no power supplies of their own.
A centralized configuration allows you to connect up to three EUs to one CC. The cables between
the individual controllers or expansion units have a total maximum length of 2.5 m (8.2 ft.).
1.4.2
Distributed Configuration
A distributed configuration allows you to relocate expansion units nearer to the sensors and
actuators of your machine.
Distributed configurations reduce cabling costs for these devices.
The flexibility of a controller is of decisive importance for the productivity of a manufacturing
plant. Complex control tasks can be shared out among distributed controllers in order to achieve
the highest possible flexibility.
This means you have:
• Smaller, more manageable units. This makes configuring, startup, diagnostics, modification
and operation easier, and facilitates monitoring of the overall process.
• More availability in the system since the remaining system can continue to operate despite the
failure of one unit.
Information flow between the individual controllers must be guaranteed in the case of distributed
systems so that
• Data can be exchanged between the individual programmable controllers
• Manufacturing plants can be monitored, operated and controlled centrally
• Management information can be gathered (e.g. production data and stock levels).
1-4
EWA 4NEB 811 6148-02
S5-115F Manual
1.5
System Overview
Communications Systems
We offer the following communications facilities for the S5-115F programmable controller via the
SINEC L1 LAN:
• Reliable communications among several S5-115F controllers (max. 30) (single-channel SINEC L1
LAN)
• Reliable and fault-tolerant communications among several S5-115F controllers (max. 15)
(double-channel SINEC L1 LAN)
• Communications with an S5 controller of the U range for operator-process communication
and visualization (single-channel SINEC L1 LAN) (Reaction-free, i.e. no adverse effects possible
on the safety-oriented parts of the system.)
• Communications with two S5 controllers of the U range for operator-process communication
and visualization (double-channel SINEC L1 LAN) (Reaction-free, i.e. no adverse effects
possible on the safety-oriented parts of the system.)
A failsafe point-to-point connection between two S5-115F PLCs can also be established using the
CP 523 ( Catalog ST57).
Note
Since the SINEC L1 link has been proven to be reaction-free, the area in which
acceptance tests are required ends at the CPU 942F.
The user program must constitute a safety filter for incoming data. Higher-level
systems then have no influence on the reliable functioning of the S5-115F. This
considerably simplifies individual system acceptance tests.
EWA 4NEB 811 6148-02
1-5
System Overview
1.6
S5-115F Manual
Operator-Process Communication, Process Visualization, and
Programming
Today, users expect good process visualization with the capability to intervene where necessary.
Previously, they had to hard-wire indicating lights, switches, potentiometers, and pushbuttons,
even for simple requirements. For more complex processes, they had to use expensive video
display terminals.
The S5-115F enables you to react optimally to the most varied automation requirements, even
where programming is concerned.
To help you with this, the following performance-graded and compatible spectrum of programmers is available:
• The PG 635 in briefcase design with swing-up liquid crystal display,
• The PG 685 CRT-based programmers,
• The PG 695 with Siemens PC 16-11/PC 16-20 hardware as programming and documentation
workstation,
• PG 710, PG 720, PG 730 and PG 740 as portable programming unit
• PG 750 and PG 770 with colour monitor.
All the programmers feature high performance, simple handling,
prompting, and the standard, easily learned STEP 5 programming language.
1.7
user-friendly
operator
Software
Until now, prices for hardware components tended to drop constantly and prices for software
tended to increase. The reasons were as follows:
• The processes to be automated became more and more complex
• Safety requirements increased
• Personnel costs increased
• Ergonomic demands increased
Siemens has put an end to this trend. SIMATIC provides the following four solutions to keep
software costs down:
• The user-friendly STEP 5 programming language with its four methods of representation and
convenient structuring capabilities
• An extensive software catalog
• User-friendly programmers
• Menu-driven configuration of safety and system features
1-6
EWA 4NEB 811 6148-02
S5-115F Manual
System Overview
1.8
Redundancy Structure
1.8.1
Hardware
The CPU 942F and the input/output modules are designed with two-channel redundancy. Both
channels, referred to below as subunits, are connected via the parallel interface. The operating
system and the user program are identical in both subunits.
The parallel interface has the task of implementing event-driven synchronization of both subunits
and also data exchange. Synchronization is triggered by external interrupts (process interrupts) or
internal interrupts (time interrupts, time updates, input module accesses).
Both subunits work with the same programs in such a way that user programs are run on the same
program paths. In contrast, the operating system in both subunits does not run path-identically.
This allows an assymetrical hardware structure of the subunits, such as:
• A programmer to a subunit
• A SINEC L1 LAN to a subunit
• Single-channel, nonsafety-related input/output modules
• Single-channel test outputs for safety inputs.
Parallel interface
P C
S P
U
9
5 9
1 4
2
F
I I
M M
CC
115F
3 3
2 0
4 6
P C
S P
U
9
5 9
1 4
2
F
I I
M M
CC
115F
I
M
I/O
3
0
6
3 3
0 0
4 6
I
M
I/O
3
0
6
Features:
• Two-channel redundancy structure (2-out-of-2 system)
• Event-driven synchronous processing of the user program
• Data exchange via high-speed parallel interface
• Expanded operating system: self-test, time-driven synchronization, image comparison
Figure 1-2. Hardware Structure Overview
EWA 4NEB 811 6148-02
1-7
System Overview
1.8.2
S5-115F Manual
Operating System - Additional Tasks
The operating system of the S5-115F has the following additional tasks compared to those of the
S5-115U:
• Subunit synchronization
- Program synchronization
- Standardization of input data (necessary for path-identical processing of control programs)
- Standardization of user times (necessary for path-identical processing of control programs)
- Transfer of data from components connected at one end (e.g. PG 685, single-channel
SINEC L1 LAN, single-channel I/O modules) to the other subunit
• Component test
- Cyclical I/O module test with input signal discrepancy analysis
- SINEC L1 LAN test for every message
- Supplementary test of all function units such as processors, memory, parallel interface and
I/O modules
• Error analysis and error response for
- Subunit synchronization
- Component test
- CPU defects
- Erroneous programming, configuration and handling by the user
- System interrupts
1.8.3
Control Programs
The control program is fundamentally the same as a single-channel S5-115U program. A single
logic operation (e.g. AND input) referenced to an I/O address is all that is required to scan a
double-channel input. Similarly, an output operation referenced to an I/O address is used to
output a control command via a double-channel output. This is the basic facility. Beyond this, the
user must program the following:
• Standard synchronization function block FB 254 SYNC calls at intervals freely selectable by the
user, in order to enable
- Synchronous updating of user data
- Synchronization of time calls, process interrupts and SINEC L1 LAN traffic;
• Command sequence to increment the logical program counter after every 127 words
(maximum) of program code.
1.8.4
Programmer Functions
In addition to the programming functions of STEP 5 and startup support (e.g. with ”Status
display”) familiar from the S5-115U, the programmer can also be used for the following in the case
of the S5-115F:
• Safety parameter configuration for the operating system (monitoring times, structure of the
feedback module required for the I/O) including check display of the configuration data
• Error display in plaintext.
These additional functions are implemented using the COM 115F programming package, which
offers a modern forms-oriented operator interface.
1-8
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
2
Technical Description
2.1
Modular Design
2.2
2.2.1
2.2.2
2.2.3
Principle of Operation of the Programmable Controller
......... 2-3
Functional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. 3
Program Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. .- 5
Central Processing Unit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 9
2.3
2.3.1
2.3.2
2.3.3
2.3.4
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. .- .12
Backup Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. 12
Memory Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. .- 12
Programmers (PG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. .- 13
Printers (PT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. .-.13
EWA 4NEB 811 6148-02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. 1
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Figures
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-1.
2-2.
2-3.
2-4.
The S5-115F (Central Controller) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. 1
Schematic Representation of the S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. .- 3
Schematic Representation of Cyclic Program Scanning . . . . . . . . . . . . . . . . . . . .2 - 5
Definition of the System ResponseTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. .- 6
Definition of the Short Discrepancy Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. .- 7
Definition of the Long Discrepancy Time
..............................2
. .- 8
Schematic Representation of CPU 942F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. .- 11
Tables
Execution Times of the CPU 942F in µs (rounded off) . . . . . . . . . . . . . . . . . . . . . 2
. -9
CPU Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. .- .10
.
Memory Submodules for Safety Mode
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. .- 12
Memory Submodules forTest Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. -. 13
EWA 4NEB 811 6148-02
S5-115F Manual
2
Technical Description
Technical Description
This chapter describes the design and principle of operation of an S5-115F with accessories.
2.1
Modular Design
The S5-115F consists of various functional units that can be combined to suit the particular
problem. Figure 2-1 shows an S5-115F system.
Figure 2-1. The S5-115F (Central Controller)
The numbered information below briefly describes the most important components of the
S5-115F. The circled numbers refer to Figure 2-1:
Power Supply Module (PS 951)
The PS 951 power supply module generates the operating voltage for the programmable
controller from the 24 V DC power system voltage. This module use batteries or an external
power supply to back up the RAM.
The PS 951 power supply module also performs monitoring and signalling functions.
Central Processing Unit (CPU)
The central processing unit reads in input signal states, processes the control program, and
controls outputs. In addition to program scanning functions, the CPU provides internal
flags, timers, and counters.
You can diagnose errors using the LEDs of the CPU. Use the Overall Reset switch on the CPU
to delete the RAM contents.
The control program can be transferred to the CPU using a programmer or a memory
submodule.
EWA 4NEB 811 6148-02
2-1
Technical Description
S5-115F Manual
Input and Output Modules (I/Os)
• Digital input modules adapt digital signals, e.g. from pressure switches or BERO®
proximity switches, to the internal signal level of the S5-115F.
• Digital output modules convert the internal signal level of the S5-115F into digital
process signals, e.g. for relays or solenoid valves.
• Analog input modules convert analog process signals, e.g. from transducers or resistance
thermometers, to the S5-115F, which functions digitally.
• Analog output modules convert internal digital values of the S5-115F to analog process
signals, e.g. for speed controllers.
Interface Module (IM)
The S5-115F is installed on one or more mounting racks with a specific number of mounting
locations (slots). An installation with power supply, CPU, and input/output modules is called
a central controller. If the slots on the central controller's mounting rack are insufficient,
you can install expansion units (systems without CPUs) on additional mounting racks.
Interface modules connect an expansion unit to a central controller.
Mounting Rack (CR, ER)
A mounting rack consists of an aluminum mounting rail to which all the modules are
fastened mechanically. It has one or two backplanes that connect the modules to each other
electrically.
TTY Interface
Connect a programmer or an operator panel at the TTY interface. You can also set up a
SINEC L1 interface here.
Memory Submodule
Battery Compartment
Parallel link
The parallel interface is used to synchronize data exchange between the two subunits.
2-2
EWA 4NEB 811 6148-02
S5-115F Manual
2.2
Technical Description
Principle of Operation of the Programmable Controller
This section describes how the PC processes your program.
Functional Units
Internal
program
memory
(RAM)
CPU
Memory
submodule
(EPROM/
EEPROM/
RAM)
Memory
submodule
(EPROM/
EEPROM)
Internal
program
memory
(RAM)
ACCUM
Timers,
counters,
flags
ACCUM
Serial
interface
Serial
interface
Processor
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
PIQ
PIQ
PII
Subunit A
Function
modules
Timers,
counters,
flags
Processor
PII
Input modules
(digital / analog)
CPU
Parallel interface
I/O bus
Output modules
(digital / analog)
I/O modules
I/O bus
Output modules
(digital / analog)
Function
modules
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2.2.1
Subunit B
Input modules
(digital / analog)
I/O modules
Figure 2-2. Schematic Representation of the S5-115F
Program Memory
The control program is stored in the memory submodule ( 2.3.2) or in the internal RAM.
To safeguard against losing the program, dump it in an external EEPROM/EPROM memory submodule. In contrast to these memory submodules, the internal RAM or a RAM memory submodule
has the following characteristics:
•
•
•
The memory contents can be changed quickly.
User data can be stored and changed.
When the power fails and there is no battery, the memory contents are lost.
In safety mode, the control program must be stored in the EEPROM/EPROM submodule. If no
memory submodule or another memory submodule is connected, the S5-115F switches automatically into test mode.
EWA 4NEB 811 6148-02
2-3
Technical Description
S5-115F Manual
Process images (PII, PIQ)
The signal states of input and output modules are stored in the CPU in ”process images”. Process
images are reserved areas in the RAM of the CPU. Input and output modules have separate images
as follows:
• Process image of the inputs (PII)
• Process image of the outputs (PIQ)
Serial interface
You can connect programmers and also the SINEC L1 local area network.
Flags, timers, and counters
The CPU provides internal flags (memory locations for storing signal states), timers, and counters
that the control program can call.
The following are available
• 2048 flags*
• 128 timers
• 128 counters
Accumulator (ACCUM)
The accumulator is an arithmetic register for loading internal timer and counter values.
Comparison, arithmetic, and conversion operations are also executed in the accumulator.
Processor
The processor calls statements in the program memory in sequence and executes them according
to the control program. It processes the information from the PII and takes into consideration the
values of internal timers and counters as well as signal states of internal flags.
Input/output bus
The input/output bus establishes the electrical connection for all signals that are exchanged
between the CPU and the other modules in a central controller or an expansion unit.
Parallel interface
The parallel interface is the electrical connection between both subunits for synchronization and
data exchange.
*
FW 0 is reserved for the logical program counter.
FW 2 to FWS 198 (F 2.0 to F 199.7) are permitted for the control program.
FW 200 to FW 254 (F 200.0 to F 255.7) can only be used if you are not using standard FBs.
2-4
EWA 4NEB 811 6148-02
S5-115F Manual
2.2.2
Technical Description
Program Scanning
The input signals to the input modules are scanned cyclically before program scanning and
mapped in the PII. The control program processes this information along with the current flag,
timer, and counter data. The control program consists of a sequence of individual statements. The
processor fetches the control program from the program memory and processes it statement by
statement.
The results are written to the PIQ. After the processor scans the program, it transfers the PIQ data
to the output modules.
The operating system of the
double-channel I/O modules:
• Digital inputs
•
Digital outputs
•
Analog inputs
-
S5-115F executes the following additional functions when addressing
Read in
Exchange and comparison
Discrepancy analysis (differentiation between long-term and shortterm signal discrepancies with uniform input signal generation)
Exchange and comparison of I/O images
Output
Read in
Exchange and comparison
Discrepancy analysis (differentiation between permissible and impermissible discrepancies between both analog values and between
short-term and long-term impermissible discrepancies)
Even during cyclic program scanning, quick response to signal changes is possible using the
following methods:
• Using operations with direct I/O acces (e.g. L PB, T PB).
• Programming multiple direct I/O scans in the control program.
• Programming organization blocks to handle interrupts.
The processor starts a monitoring time every time program scanning starts (scan trigger). If the
scan trigger is not restarted within the configured scan time, e.g. because the control program
contains an infinite loop or there is a malfunction in the CPU, the PC goes into the ”STOP” mode
and disables all output modules. Figure 2-3 shows a schematic representation of cyclic program
scanning.
RESTART
Start the
monitoring time
Update the PII
Scan the
control
program
Transfer the PIQ
Figure 2-3. Schematic Representation of Cyclic Program Scanning
EWA 4NEB 811 6148-02
2-5
Technical Description
S5-115F Manual
System response time:
Response time is the period between the input signal change on the process side and the output
signal change on the process side.
Input signal on
the process side
Input signal on
the CPU side
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
This time is typically the sum of the following elements ( Figure 2-4):
• The inherent delay of the input module
• The program scan time
• The inherent delay of the output modules
Uniform value
in PII
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
Result in PIQ
Output signal
on the CPU side
Ouptut signal on
the process side
User
program n-1
Operating
system
PLC cycle n-1
User
program n
Operating
system
PLC cycle n
User program
n+1
PLC cycle n+1
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
System response time
2 x PLC scan time
Module delays
Figure 2-4. Definition of the System Response Time
Under worst case conditions, the system response time is double the PLC scan time.
2-6
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Description
Discrepancy times
The operating system tests the logical signal levels of the digital inputs in both subunits. If the
level of a DI bit differs between the two subunits, this is referred to as a discrepancy.
Discrepancy can be caused by
•
•
Fleeting errors (e.g. edge change)
Permanent errors (e.g. hardware errors)
The duration of the discrepancy is monitored by the 115F operating system. The discrepancy time
begins when the discrepancy is first detected, and ends only when the operating system detects
that both DI bits match or when the discrepancy time has elapsed.
You can choose between two different discrepancy times when configuring the I/Os with the
COM 115F programming software:
•
Short discrepancy time
This is configured for inputs with a typical discrepancy time of less than 50 ms. When a
discrepancy occurs, the 115F operating system scans the relevant input continuously until the
discrepancy has disappeared or until the discrepancy time has elapsed. After the maximum
discrepancy time has run, the 115F operating system initiates an error response.
You configure the short discrepancy time
- Uniformly between 10 and 2550 msec. for all noninterrupt DIs.
- Uniformly between 1 and 255 msec. for all interrupt DIs.
Operating system detects discrepancy
Discrepancy persists
Digital input
in subunit A
Digital input
in subunit B
PII
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Discrepancy no longer exists
Discrepancy time
PLC cycle n
Figure 2-5. Definition of the Short Discrepancy Time
EWA 4NEB 811 6148-02
2-7
•
Discrepancy no longer exists
Digital input in
subunit A
Digital input in
subunit B
PII
Discrepancy time
2-8
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Technical Description
S5-115F Manual
Long discrepancy time
Long discrepancy times are defined if discrepancies at the inputs
- last longer than 2550 msec. in error-free operation as a result of the particular process
- are greater than the defined short discrepancy time
- are to be differently defined bitwise.
Configure the long discrepancy time individually for each digital input. The 115F operating system
checks the DI bits for discrepancy only once per PLC cycle.
Operating system detects discrepancy
Discrepancy persists
PLC cycle n
PLC cycle n+1
PLC cycle n+2
Figure 2-6. Definition of the Long Discrepancy Time
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
S5-115F Manual
*
**
Technical Description
2.2.3 Central Processing Unit Description
The following table shows the most important features of the CPU 942F.
Table 2-1. Execution Times of the CPU 942F in µs (rounded off)
Operation
Substitution operations (formal operands)*
EWA 4NEB 811 6148-02
Execution Time in µs
Boolean logic operations
1.6
Load/Transfer operations
(I, Q, F, T, C)
1.6
Comparison/ Arithmetic operations
1.6
Jump/Conversion operations
1.6
Timer/Counter operations
81 to 124
Block call operations
66 to 161
Load/Transfer operations (DW)
64 to 72
129
Load/Transfer operations
(LIR, TIR, TNB)**
92 to 155
Bit test operations
152 to 154
Load/Transfer operations
I/O modules
1330
Plus execution time of the substituted operation!
Plus transmission time!
2-9
Technical Description
S5-115F Manual
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Table 2-2. CPU Description
Features of the CPU 942F
Typical run time of operating
system
(dependent on
60 ms
-
configuration
- programming)
Execution time per
- 1000 statements
approx. 15 ms
Internal program memory
(RAM)
5 Kbytes
Total program memory (max.)
32 Kbytes
Scan monitoring time
Program scanning
configurable
cyclical, time-driven, interrupt-driven
Address range
(Digital inputs)
max.
1024
I 0.0 to I 127.7
Address range
(Digital outputs)
max.
1008
Q 0.0 to Q 125.7
Address range
(Analog inputs)
max.
64
PW 128 to PW 254
Address range
(Analog outputs)
max.
64
PW 128 to PW 254
Flags (nonretentive)
2048
FW 0 to 254*
Timers (nonretentive)
T0 to T127
Counters (nonretentive)
C0 to C127
Time range
0.01 to 9990 s
Counting range
Operation set
0 to 999
approx. 170 operations
Integral PID control FB
*
yes
FW 0 is reserved for the logical program counter.
FW 2 to FW 198 (F 2.0 to F 199.7) are permitted for the control program.
FW 200 to FW 254 (F 200.0 to F 255.7) can only be used if you are not using standard FBs.
2-10
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Description
CPU 942F
The CPU 942F has a microprocessor and an application-specific integrated circuit (ASIC1). The
microprocessor handles all programmer interface module functions, processes integral timers,
processes word operations, and controls the S5 bus. The microprocessor also controls the ASIC that
monitors scan time, processes bit operations quickly, and processes some word operations. Besides
the operating system memory, the CPU 942F contains an internal RAM that can be used to store up
to 5 Kbytes of user data. External memory submodules with a capacity of 8 to 32 Kbytes can also be
plugged into the CPU.
Memory submodule for
8 to 32 Kbytes
User data
Operating
system memory
Internal RAM
5 Kbytes
User data
64 Kbytes
ConControl
troller
panel
for
I/O
modules
S5 bus
Microprocessor
- processes word
operations
- processes timers
- controls bus
- handles programmer interface
ASIC
- processes bit
and some
word operations
- monitors scan
time
PG
Figure 2-7. Schematic Representation of CPU 942F
Note
Two CPU 942Fs of the same version are always required to construct an S5-115F. You
can read and check the system software version using the ”SYSPAR” (system
parameter) programmer function.
1 application specific intergrated circuit
EWA 4NEB 811 6148-02
2-11
Technical Description
2.3
S5-115F Manual
Accessories
You can optimize the degree of expansion of your programmable controllers with the accessories
listed in 2.3.1 through 2.3.4.
2.3.1
Backup Battery
For each S5-115F submodule there is minimum one backup battery indispensable. They maintain
the program and data when the S5-115U is switched off. The backup battery has a service life of
approximately two years but, for safety reasons, it must be replaced every year.
Note
The existing regulations on dangerous materials must be observed when transporting
lithium batteries!
2.3.2
Memory Submodules
The following three memory submodule types are available for the S5-115F to store the control
program or to transfer the program to the PLC:
• The EPROM submodule is a read-only memory. Program an EPROM module on a PG 635,
PG 675, PG 685, PG 695 or PG 750 programmer. Use an ultraviolet erasing device to erase the
submodule's contents ( 2.1.1).
• The EEPROM submodule is a read-only memory. Program and erase an EEPROM submodule on
a PG 635, PG 675, PG 685, PG 695 or PG 750 programmer.
• The RAM submodule is used, in addition to program storage, to test a control program during
system startup. It should be used as a program memory only when backup is guaranteed.
Safety mode in the S5-115F requires EEPROM/EPROM submodules as code memories for the control program. The system automatically switches to Test mode in the case of other submodules
(RAM).
The individual memory submodules are available with different memory capacities as shown in
Table 2-3 and 2-4.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Table 2-3. Memory Submodules for Safety Mode
Order Number
/
Type
Capacity *
Programming Number
6ES5 375-0LA15
/
EPROM
8x210 Byte
11
6ES5 375 -0LA21
/
EPROM
16x210 Byte
12
6ES5 375 -0LA41
/
EPROM
32x210 Byte
17
6ES5 375-1LA15
/
EPROM
8x210 Byte
411
6ES5 375-1LA21
/
EPROM
16x210 Byte
412
6ES5 375-1LA41
/
EPROM
32x210 Byte
417
6ES5 375-0LC31
/
EEPROM
8x210 Byte
211
6ES5 375-0LC41
/
EEPROM
16x210 Byte
212
* 2 Kbytes (=2 x 210 Byte) correspond approximately to 1000 STEP 5 statements.
2-12
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Description
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Table 2-4. Memory Submodules for Test Mode
Order Number
/
Type
Capacity
Programming Number
6ES5 375-0LD11
/
RAM
8x210 Byte
-
6ES5 375 -0LD21
/
RAM
16x210 Byte
-
6ES5 375 -0LD31
/
RAM
32x210 Byte
-
2.3.3
Programmers (PG)
The programmer has the following applications:
• Entering programs
• Testing programs
• Monitoring programs
and with the COM 115F programming package:
• Configuring of safety-related systems
• Error messages in plaintext
• Extension of signature and subunit identifier
You can use the following programmers:
• With COM 115F:
•
Without COM 115F:
PG 635, PG 685, PG 695, PG 710, PG 720, PG 730,
PG 740, PG 750, PG 770
PG 605, PG 615, both with adapter for separate
power supply.
You can work in on-line or off-line mode with the programmers.
2.3.4 Printers (PT)
Use a printer to output the following items:
• Inputs
• Outputs
• Programs
• Configuration data
The following printers can be used:
confer Catalog ST59
The printers can be connected to programmers from PG 615 upwards.
EWA 4NEB 811 6148-02
2-13
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
3
Installation Guidelines
3.1
3.1.1
3.1.2
Mounting Rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 1
Central Controller (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. .- 1
Expansion Units (EU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- 4
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
Mechanical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. .- 12
Installing the Modules
.....................................3
. .- 12
Dimension Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- 15
Cabinet Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- 18
Interconnecting the Two Subunits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. - 19
Centralized Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. - 21
Distributed Configurations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. - 22
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 27
.
Connecting the PS 951F Power Supply Module . . . . . . . . . . . . . . . . . . 3 - 27
Connecting Digital Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. - 28
Connecting Analog Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. - 28
Front Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 29
Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .31
3.4
3.4.1
3.4.2
3.4.3
General Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. .- 31
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 31
Electrical Installation with Field Devices . . . . . . . . . . . . . . . . . . . . . . . .3 - 34
Connecting Nonfloating and Floating Modules
. . . . . . . . . . . . . . . . . 3 - 39
3.5
Installing Programmable Controllers in Conformity
with EMC Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- 41
3.6
3.6.1
3.6.2
Wiring Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- 42
Wiring Cables Inside and Outside a Cabinet . . . . . . . . . . . . . . . . . . . . 3 - 42
Running Cables Outside Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. - 43
3.7
Equipotential Bonding
3.8
Shielding Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 45
3.9
Special Measures for Interference-Free Operation
3.10
Checklist for the Installation of Programmable Controllers
in Conformity with EMC Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 49
EWA 4NEB 811 6148-02
.....................................3
. .- 44
. . . . . . . . . . . . . . . 3 - 46
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Figures
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.
3-23.
3-24.
3-25.
3-26.
3-27.
3-28.
3-29.
3-30.
3-31.
3-32.
3-33.
3-34.
3-35.
3-36.
3-37.
3-38.
3-39.
Programmable Controller without Expansion Units
. . . . . . . . . . . . . . . . . . . . .3 - 1
Possible Configurations on Mounting Rack CR 700-2F . . . . . . . . . . . . . . . . . . .3 - 2
Possible Configurations on Mounting Rack CR 700-0 . . . . . . . . . . . . . . . . . . . .3 - 3
Maximum Configuration of an S5-115F Subunit . . . . . . . . . . . . . . . . . . . . . . . . 3. - 4
Possible Configurations on Expansion Unit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .3. - 5
Possible Configurations on Mounting Rack ER 701-1 . . . . . . . . . . . . . . . . . . . . .3 - 6
EU 1 in Maximum Configuration of an S5-115F Subunit . . . . . . . . . . . . . . . . . .3 - 7
Possible Configurations on Mounting Rack ER 701-2 . . . . . . . . . . . . . . . . . . . . .3 - 8
EU 2 in Maximum Configuration of an S5-115F Subunit . . . . . . . . . . . . . . . . . .3 - 9
Possible Configurations on Mounting Rack ER 701-3 . . . . . . . . . . . . . . . . . . . . .3 - 10
EU 3 in Maximum Configuration of an S5-115F Subunit . . . . . . . . . . . . . . . . . .3 - 11
Installing the Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 12
.
Slot Coding Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 13
.
Installing a Printed Circuit Board in an Adapter Casing (6ES5 491-0LB11) . . 3 - 14
Dimension Drawing of Mounting Racks
..............................3
. .- 15
Dimension Drawing of Module without Adapter Casing
. . . . . . . . . . . . . . . . .3 - 16
Dimension Drawing of Module with Adapter Casing
. . . . . . . . . . . . . . . . . . . .3 - 17
Dimensions for Installation in a 19-in. Cabinet
. . . . . . . . . . . . . . . . . . . . . . . . . 3. - 18
Switch and Jumper Settings on the IM 304-3UB11 for the Parallel Link
. . . . 3 - 19
Switch and Jumper Settings on the IM 324-3UA12 for the Parallel Link
. . . . 3 - 20
Centralized Configuration with the IM 306 Interface Module
. . . . . . . . . . . . 3 - 21
Distributed Configuration with IM 304/314
. . . . . . . . . . . . . . . . . . . . . . . . . . . .3. - 23
Switch and Jumper Settings on the IM 304-3UB11 for Distributed
Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .24
.
Switch and Jumper Settings on the IM 314 for Distributed Configurations
. 3 - 26
PS 951 Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.-. 27
Connection to Floating Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 28
Front Connectors - Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 29
Installing Front Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .30
Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 31
..
Operating a Programmable Controller with Field Devices
on Grounded Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 36
.
Operating a Programmable Controller with Field Devices
on Centrally Grounded Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 37
Operating a Programmable Controller with Field Devices
on Nongrounded Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .38
Simplified Representation of an Installation with Nonfloating Modules
. . . 3 - 39
Simplified Representation of an Installation with Floating Modules
. . . . . . . 3 - 40
Laying Equipotential Bonding Conductor and Signal Cable
. . . . . . . . . . . . . . 3 - 44
Fixing Shielded Cables with Various Types of Cable Clamps . . . . . . . . . . . . . . . 3 - 46
Connecting Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .46
.
Measurements for Suppressing Noise from Fluorescent Lamps
in the Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .47
.
Arrangement of Suppression Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.- 48
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Tables
3-1.
3-2.
3-3.
3-4.
3-5.
Technical Specifications for Distributed Configuration Interface Modules
. . 3 - 22
Front Connector Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. .- .29
Overview of Power Supply Modules for S5-115F . . . . . . . . . . . . . . . . . . . . . . . . .3. - 32
Rules for Common Running of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. .- 42
Checklist for the Installation of Programmable Controllers
in Conformity with EMC Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. -. 49
EWA 4NEB 811 6148-02
S5-115F Manual
3
Installation Guidelines
Installation Guidelines
Programmable controllers of the S5-115F system consist of two central controllers to which one or
more expansion units can be connected if necessary. The modules that make up the S5-115F are
mounted on racks which are located in cabinets to reduce the effects of interference.
3.1
Mounting Rack
Various mounting racks are available to suit the performance or the degree of expansion the
control system is to have.
Each mounting rack consists of an aluminum mounting rail for fastening all modules mechanically
and one or two backplanes for connecting the modules to each other electrically. The module
locations (slots) are numbered in ascending order from left to right.
3.1.1
Central Controller (CC)
A central controller has a power supply module (PS), a central processing unit (CPU), and various
input/output modules (I/Os). Depending on requirements, digital or analog modules can be used.
Interface modules (IMs) are required when expansion units are used.
Figure 3-1. Programmable Controller without Expansion Units
A CR 700-2F or a CR 700-0 mounting rack is required for installing a central controller.
EWA 4NEB 811 6148-02
3-1
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
a
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Mounting rack
CR 700-2F
Slots
*
3-2
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Installation Guidelines
S5-115F Manual
Possible configurations on mounting rack CR 700-2F (6ES5 700-2LA22)
The CR 700-2F mounting rack allows you to install safety-related controls in 19 in. cabinets. It has
slots for a power supply module, a central processing unit and up to six input/output modules. An
interface module can be used to:
• Link both subunits (IM 304 to subunit A, IM 324 to subunit B or vice versa)
• Connect expansion units in distributed configurations (IM 304 and IM 314).
PS
CPU
0
1
2
3
4
5
6
IM*
Power Supply Module
Central Processing Unit
Digital Module
Analog Module
CP 523
IM 306, centralized config.
IM 304, distributed config.
IM 304 / 324, parallel link
The central rack is supplied with a termination connector in this slot. It can stay in this slot if you use the central rack
without expansion racks. This assigns fixed initial module addresses to the slots in the central rack ( 5.2).
Figure 3-2. Possible Configurations on Mounting Rack CR 700-2F
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
Mounting rack
CR 700-0LB
Steckplätze
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Installation Guidelines
Possible configurations on mounting rack CR 700-0 (6ES5 700-0LB11)
The CR 700-0 mounting rack is suitable for installing smaller controls.
You can also use adapter casings with two printed circuit boards in the case of the CR 700-0
(6ES5 700-0LB11) mounting rack. There are also slots available for a power supply module (PS), a
central processing unit (CPU), digital and analog block-type modules, the CP 523 communications
processor and interface modules for expansion units.
PS
CPU
0*
1
2
3*
IM1
Power Supply Module
Central Processing Unit
Digital Module
Analog Module AE 460, AA 470
Analog Module AE 463
CP 523
IM 306, centralized config
IM 304, distributed config
IM 304 / 324,parallel link
Only with the 6ES5 491-0LB11 adapter casing
* Only the 6ES5 491-0LB11 adapter casing can be used in these slots.
1 The central rack is supplied with a termination connector in this slot. It can stay in this slot if you use the central rack
without expansion racks. This assigns fixed initial module addresses to the slots in the central rack ( 5.2).
Figure 3-3. Possible Configurations on Mounting Rack CR 700-0
3-3
Installation Guidelines
3.1.2
S5-115F Manual
Expansion Units (EU)
If the slots of a central controller are not sufficient for the installation of a control system, one or
more expansion units can be connected to the central controller.
A distinction is made between centralized and distributed configurations:
• Centralized configuration
Up to three expansion units can be connected to one central controller (CC) or to one special
expansion unit (EU). These are without power supply. The cable must not exceed 2.5 m (8.2 ft.).
• Distributed configuration
Up to eight EUs can be connected to one CC. Each of the EUs has a power supply module. The
cable must not exceed 600 m/2000 ft.
This allows a maximum configuration of five groups of four racks each, one rack being the central
controller rack.
EU1
or
EU3
EU1
or
U
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
Centralized config.
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
max 4 EU 2/3
CC
EU2
or
EU3
Distributed configuration
EU2
or
EU3
EU2
or
EU3
EU2
or
EGU
max 4 EU 2/3
Figure 3-4. Maximum Configuration of an S5-115F Subunit
3-4
EWA 4NEB 811 6148-02
S5-115F Manual
Installation Guidelines
Three mounting racks are available for expansion units. The type used depends on the configuration. The three types of expansion racks are as follows:
aaaaaa
aaa
7
8
aaaaaa
aaaaaa
aaa
6
aaaaaa
aaa
5
aaaaaa
aaa
4
aaaaaa
aaa
ER 701-1 for expansion unit ”1” (EU1)
ER 701-2 for expansion unit ”2” (EU2)
ER 701-3 for expansion unit ”3” (EU3)
aaaaaa
aaa
•
•
•
aaaaaaaaaaaa
aaaaaaaaaaaa
OUT
aaaaaa
aaa
IM
306
IN
Figure 3-5. Possible Configurations on Expansion Unit 1
The IM 306 expansion unit interface module connects expansion units to a central controller in
centralized configurations ( 3.2.5).
A combination of the IM 304 and IM 314 interface modules connects expansion units to a central
controller in distributed configurations ( 3.2.6).
EWA 4NEB 811 6148-02
3-5
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
Mounting rack
ER 701-1
Slots
3-6
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Installation Guidelines
S5-115F Manual
Possible configurations on mounting rack ER 701-1
Use expansion mounting rack ER 701-1 to install expansion unit EU 1. EU 1 is suitable for centralized connection to a CC or distributed EUs.
The ER 701-1 has nine slots for digital and analog input or output modules and one slot for an
IM 306 expansion unit interface module. The expansion unit is powered via the EU interface
module.
0
1
2
3
4
5
6
7
8
IM
Digital Module 1
Analog Module 2
IM 306
1 Interrupt input module 6ES5 434-7LA12 cannot be plugged into these slots.
2 Safety-related analog input module 6ES5 463-4UA11 cannot be plugged into these slots.
Figure 3-6. Possible Configurations on Mounting Rack ER 701-1
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
EU1
EU1
EU1
EU1
EU1
EU1
CC
EU2
or
EU3
Distributed configuration
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Installation Guidelines
Figure 3-7 shows the possible location of an EU 1 in the maximum configuration of a subunit:
EU1
EU1
EU1
EU2
or
EU3
EU1
EU1
EU1
EU2
or
EU3
EU1
Centralized config.
EU1
EU1
max. 4 EU 2/3
EU2
or
EU3
max. 4 EU 2/3
Figure 3-7. EU 1 in Maximum Configuration of an S5-115F Subunit
3-7
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaa
aaaaaa
Mounting rack
ER 701-2
Slots
3-8
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Installation Guidelines
S5-115F Manual
Possible configurations on mounting rack ER 701-2
Use expansion mounting rack ER 701-2 for expansion unit EU 2. EU 2 is suitable for distributed
connection to a central controller or to an EU 2 expansion unit.
The ER 701-2 has slots for a power supply module, digital and analog input or output modules and
the IM 306 and IM 314 central controller interface modules.
PS
0
1
2
3
4
5
6
7
IM
Power Supply Module
Digital Module 1
Analog Module 2
IM 306
IM 314
1 Interrupt input module 6ES5 434-7LA12 cannot be plugged into these slots.
2 Safety-related input module 6ES5 463-4UA11 cannot be plugged into these slots.
Figure 3-8. Possible Configurations on Mounting Rack ER 701-2
EWA 4NEB 811 6148-02
CC
EU2
Distributed configuration
EWA 4NEB 811 6148-02
EU1
or
EU3
EU2
EU2
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
EU1
or
EU3
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
EU1
or
EU3
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Installation Guidelines
Figure 3-9 shows the possible location of an EU 2 in the maximum configuration of a subunit:
EU1
or
EU3
EU1
or
EU3
Centralized config.
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
EU1
or
EU3
max. 4 EU 2/3
EU2
max. 4 EU 2/3
Figure 3-9. EU 2 in Maximum Configuration of an S5-115F Subunit
3-9
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaa
Mounting Rack
ER 701-3
Slots
1
2
3
4
3-10
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaaaaaa
aaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Installation Guidelines
S5-115F Manual
Possible configurations on mountning rack ER 701-3
The modules on an ER 701-3 mounting rack form an EU 3. The EU 3 is suitable for
• Connection to a central controller (CC) in centralized configurations
or
• Connection to a distributed EU 2 or EU 3 in centralized configurations
or
• Connection to a CC, EU 1 or EU 2 in distributed configurations.
Note
You must always use an EU 3 if you want to operate several safety-related 463 AI
modules or CP 523 communications processors in one expansion unit.
When the AE 463 is used in a central configurated ER 701-3 with IM 306 please notice:
• the 705 connecting cable must not longer than 0.5 m
• it is not allowed to use the AE 463 in the third expansion unit (EU)
The ER 701-3 has slots for a power supply module, digital and analog input or output modules, the
CP 523 as well as the IM 306 and IM 314 EU interface modules.
PS
0
1
2
3
4
5
6
7
IM
Power Supply Module 1
Digital Module 2
Analog Module 3
CP 523 4
IM 306
IM 314
Only required in the case of distributed configurations
Except the 6ES5 434-7LA12 interrupt input module
Also for the 6ES5 463-4UA11 safety-related AI module
Only in the case of distributed configurations
Figure 3-10. Possible Configurations on Mounting Rack ER 701-3
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
EU3
EU3
EU3
EU3
EU3
EU3
EU3
Distributed configuration
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
CC
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Installation Guidelines
Figure 3-11 shows the possible location of an EU 3 in the maximum configuration of a subunit:
EU3
EU3
EU3
EU3
EU3
EU3
EU3
EU3
EU3
Centralized config.
EU3
EU3
max. 4 EU 2/3
EU3
max. 4 EU 2/3
Figure 3-11. EU 3 in Maximum Configuration of an S5-115F Subunit
3-11
Installation Guidelines
3.2
S5-115F Manual
Mechanical Installation
Fasten all modules on the appropriate mounting racks. You can install the mounting racks in
cabinets with dimensions in inches or millimeters. You can also fasten the racks to surfaces that are
at an angle of up to 15° to the vertical. Block-type modules are mounted directly on the rack. Place
printed circuit boards in double-height Eurocard format in adapter casings.
3.2.1
Installing the Modules
aaaaaaaa
aaaaaaaa
Install block-type modules according to the following procedure:
• Remove the protective caps from the socket connectors on the backplane
• Hook the top of the module into place between the two guides on the top of the mounting
rack
• Swing the module down until it engages with the socket connectors on the backplane
• Fasten the screws at the top and bottom of the module.
Figure 3-12. Installing the Modules
If the modules are subjected to mechanical vibration, they should be installed as close together as
possible, i.e. do not leave slot empty between the modules.
!
Important
Turn off the power supply for the central controller and the sensors before plugging in
or removing input/output modules.
3-12
EWA 4NEB 811 6148-02
S5-115F Manual
Installation Guidelines
Mechanical slot coding
On the back of each module, with the exception of the power supply and central processing unit,
is a slot coding element in the form of a two-part plastic cube. This coding element ensures that,
when a module is replaced, only another module of the same type will be plugged in in its place.
The coding element consists of two parts, one like a lock and one like a key. The two parts fit
together in a defined position. This position is specific to each type of module. When you install
the module, the coding element is inserted into the mounting rack. When you swing the module
out, the key-shaped part of the element stays in the mounting rack and the lock-shaped part stays
on the module.
Now you can install only this particular module or an identical one in this slot.
If you want to install a different module, you have to remove the coding element from the
mounting rack.
You can also work without slot coding. To do this, you must pull the coding element off the
module before you swing the module into place for the first time.
Figure 3-13. Slot Coding Element
EWA 4NEB 811 6148-02
3-13
Installation Guidelines
S5-115F Manual
Adapter casing
Use an adapter casing to fasten printed circuit boards in double-height Eurocard format to a
mounting rack as you would fasten block-type modules. The adapter casing is required for the
following modules in the S5-115F:
• IM 304
• IM 314
• IM 324
• AE 463
• CP 523
Figure 3-14. Installing a Printed Circuit Board in an Adapter Casing (6ES5 491-0LB11)
Push the printed circuit board into the casing along the guide tracks. Lock the module into place
with the eccentric locking collars at the top and bottom of the casing.
If an opening remains on the front after the module has been inserted, cover it with a blanking
plate.
Hang the completed unit on the mounting rack and fasten the screws at the top and bottom of
the adapter casing.
3-14
EWA 4NEB 811 6148-02
S5-115F Manual
3.2.2
Installation Guidelines
Dimension Drawings
SIEMENS
SIMATIC S5
140
(5.46)
190.5
(7.43)
465* (18.14)
CR 700-2F; ER 701-1 ... 3
*
The width of the CR 700-0 (6ES5 700-0LB11) is 353 mm (13.9 in.)
Figure 3-15. Dimension Drawing of Mounting Racks
EWA 4NEB 811 6148-02
3-15
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
Installation Guidelines
Interface Module
3-16
S5-115F Manual
302.6
(11.80)
1
6
(0.23)
a
b
201 (7.84)
1 Controls and front connectors extend beyond the front
Figure 3-16. Dimension Drawing of Module without Adapter Casing
a
mm (in.)
b
mm (in.)
Mechanical Slot Coding
Power Supply Module
65 (2.54)
187 (7.29)
---
Central Processing Unit
43 (1.68)
187 (7.29)
---
Digital and Analog Modules
built in
25 (0.98)
133 (5.19)
---
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
S5-115F Manual
1
Analog Input Module
Interface Module
EWA 4NEB 811 6148-02
Installation Guidelines
1
302.6
(11.80)
6 (0.23)
b
203.6 (7.94)
Controls and front connectors extend beyond the front
Figure 3-17. Dimension Drawing of Module with Adapter Casing
Adapter Casing
Width
mm (in.)
b
mm (in.)
43 (1.68)
187 (7.29)
built in
25 (0.98)
133 (5.19)
---
Mechanical Coding
3-17
Installation Guidelines
Cabinet Installation
aaaaaaaaaa
aaaaaaaaaa
aaaaa
3.2.3
S5-115F Manual
aaaa aaaa
482,6 (18.82)
100
(3.90)
140
(5.46)
190,5
(7.43)
533,4
(20.80)
114,8
(4.48)
aaaaaaaa
aaaaaaaa
aaaaaaaa
80,0
(3.12)
14,8
(0.58)
465 (18.14)
533,3
(20.80)
533,4
(20.80)
a aa
302,6
(11.80)
533,4
(20.80)
9
(0.35)
110
(4.29)
Figure 3-18. Dimensions for Installation in a 19-in. Cabinet
3-18
EWA 4NEB 811 6148-02
S5-115F Manual
3.2.4
Installation Guidelines
Interconnecting the Two Subunits
The two subunits are interconnected via an IM 304 / IM 324 parallel link. The IM 304 interface
module can be plugged into either subunit A or subunit B.
The IM 304 and IM 324 modules are connected to each other with the 721 connecting cable over a
maximum distance of 10 m (33 ft.). The cable is connected to the lower of the two interface ports.
Please use the switch and jumper settings shown in Figures 3-19 and 3-20 for establishing the
parallel link between the two subunits.
aaaaaaaa
aaaaaaaa
aaaaaaaa
IM 304
X3
X1
X22
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa aaaaaaaaaaaa
aaaaaaaa aaaa
LED2
OFF
X13
S3
ON
aaaaaaaaaaaaaaaa
OFF ON
ON
1
2
3
X4
97531
10 8 6 4 2
X12
3
2 1
aaaaaaaa
aaaaaaaa
aaaaaaaa
X14
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
X21
aaaaaaaa
aaaaaaaa
aaaa
LED1
1
2
3
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
OFF
X2
X15
X11
Figure 3-19. Switch and Jumper Settings on the IM 304-3UB11 for the Parallel Link
EWA 4NEB 811 6148-02
3-19
Installation Guidelines
S5-115F Manual
IM 324
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
BR4
BR5
X1
BR7 BR6
BR3
BR1
aaaaaaaa
aaaaaaaa
aaaaaaaa
BR2
X2
aaaaaa
aaaaaaaaaaa
aaaaaa
X4
J2
J21
J31
J30
Figure 3-20. Switch and Jumper Settings on the IM 324-3UA12 for the Parallel Link
3-20
EWA 4NEB 811 6148-02
S5-115F Manual
3.2.5
Installation Guidelines
Centralized Configurations
ER 701-1 or
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
ER 701-3
CR 700-2For
ER 701-2 or
ER 701-3
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
ER 701-1 or
ER 701-3
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
ER 701-3
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
ER 701-1 or
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
A central controller connected to as many as three expansion units makes up a centralized configuration. Use only the IM 306 interface module to connect an ER 701-1 mounting rack. If a 463
analog input module is to be plugged into the expansion unit, an ER 701-3 without power supply
module must be used. Please note the following when installing the IM 306:
• Number of EUs:
max. 3
• Total cable length:
max. 2.5 m (8.2 ft.)
• Slot addressing:
variable (in the case of the CC and the EU)
• Power supply to the EUs:
max. 2 A*
7051 Connecting cable
IM 306 Interface Module
Central Processing Unit2
Power Supply Module
1 You can also order a 1.25m (4.1 ft.) 705 connecting cable (Order No.: 6ES5 705-0BB20), and use it to mount two EUs
next to each other.
2 Only in the CR 700-2F central controller rack
Figure 3-21. Centralized Configuration with the IM 306 Interface Module
* The EU with the highest current should be located as closely as possible to the CC.
EWA 4NEB 811 6148-02
3-21
Installation Guidelines
3.2.6
S5-115F Manual
Distributed Configurations
A central controller connected to expansion units installed over a maximum distance of 600 m
(approx. 2000 ft.) makes up a distributed configuration. A distributed configuration is described
on the pages that follow.
Please note the following:
•
•
•
Each ER 701-2 expansion rack, or ER 701-3 in a distributed configuration, requires a PS 951
power supply module and an IM 306 interface module for addressing input/output modules.
Please note Section 3.4.4!
If you use digital input modules on the ER 701-2 or ER 701-3, it is recommended that these be
modules with revision level ”2” (or higher).
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Table 3-1. Technical Specifications for Distributed
Configuration Interface Modules
IM 304
Maximum number of EUs that
can be connected
Max. total cable length
Current consumptionat 5 V
3-22
IM 314
8
600 m
1.2 A
0.85 A
EWA 4NEB 811 6148-02
S5-115F Manual
Installation Guidelines
Connection with IM 304/IM 314 interface modules
Plug the IM 304 interface module into a CR 700-2F central rack to connect as many as four EUs per
interface to the CC. In this way, you can connect up to eight distributed EUs to the CC via the
IM 304. Plug an IM 314 into each ER 701-2 or ER 701-3 expansion rack. Connect the interface
modules with the 6ES5 721-.... connecting cable as shown in Figure 3-22.
Please note the following special features:
Connecting cable 721
Connecting cable 721
P
S
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
CR 700-2F
P C
S P
U
IM 304
ER 701-2/-3
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
ER 701-2/-3
P
S
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
•
Switches S1 and S2 on the frontplate can be set to determine whether only one interface
(X3 or X4) or both interfaces (X3 and X4) should be in operation.
Switch in RUN position: relevant interface in operation
Switch in OFF position: relevant interface not in operation; LED off.
The lower front socket (X4) on the last IM 314 must always have a termination connector
plugged into it.
max. 4 distributed EUs
Connecting cable 721
Connecting cable 721
P
S
ER 701-2/-3
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
ER 701-2/-3
P
S
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
•
IM 314 interface module
IM 306 interface module
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
max. 4 distributed EUs
Termination connector 6ES5 760-1AA11
You can connect up to three ER 701-1 expansion racks here
Figure 3-22. Distributed Configuration with IM 304/314
EWA 4NEB 811 6148-02
3-23
Installation Guidelines
S5-115F Manual
Switch and jumper settings on the IM 304 interface module in the case of distributed
configurations
Figure 3-23 shows switch and jumper positions on the IM 304 module. If you use the IM 304
interface module for distributed configurations, please adopt the jumper settings shown on
jumper block X11.
All toggles must be in the ON position on the S3 switch.
aaaaaaaa
aaaaaaaa
aaaaaaaa
IM 304
X3
X1
X22
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa aaaaaaaa
aaaaaaaa aaaa
LED2
OFF
X13
S3
ON
aaaaaaaaaaaaaa
OFF ON
ON
1
2
3
97531
10 8 6 4 2
X12
3
2 1
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
X14
X4
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
X21
aaaaaaaa
aaaaaaaa
aaaa
LED1
1
2
3
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaa
aaaaaa
aaa
aaaaaaaaa
OFF
X2
X15
X11
Figure 3-23.
Switch and Jumper Settings on the IM 304-3UB11 for Distributed Configurations
In Figure 3-23, the IM 304 has been set for distributed configuration.
• Permissible cable length up to 100 m (328 ft.) (X11)
• The PLC evaluates the PEU CPU signal if one interface signals ”not ready” (X14)
• The PLC evaluates the PEU (I/O module not ready) CPU signal (X15)
• Both interfaces are switched on (X21 and X22)
You can change the settings of jumpers X21, X22 and X11, X14 and X15.
• You can switch the interfaces on or off with jumpers X21 and X22.
X21
or
X22
ON
Interface switched on
OFF
ON
Interface switched off
(no EU connected via this interface).
OFF
3-24
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
Position of the
9 7 5 3 1
10 8 6 4 2
Cable length
up to 10 m
(32 ft)*
X14
2
1
2
3
3
EWA 4NEB 811 6148-02
2
X15
2
1
9 7 5 3 1
10 8 6 4 2
10 to 100 m
(32 to 328 ft.)
9 7 5 3 1
10 8 6 4 2
100 to 250 m
(328 to
820 ft.)
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
•
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
S5-115F Manual
Installation Guidelines
Use jumper X11 to set the total cable length to the last EU of the 721 connecting cables of one
interface. The interface with the longest connection is decisive for the setting of jumper X11.
Jumper plug X11
9 7 5 3 1
250 to 450 m
(820 to
1476 ft.)
9 7 5 3 1
jumper
10 8 6 4 2 10 8 6 4 2
450 to 600 m
(1476 to
1968 ft.)
*
Setting only permissible for parallel configuration of central controllers.
•
The X14 and X15 jumpers can be set as follows in the case of IM 304 / 314 distributed
configuration:
1
The PLC outputs the PEU fault signal if one interface signals
”not ready”.
3
The PLC outputs the PEU fault signal if both interfaces signal
”not ready”.
3
1
The PLC does not evaluate the PEU fault signal.
The PLC evaluates the PEU fault signal.
Note: In the case of power ON, an additional cold restart
(RN-ST-RN) is required.
Note
If the PEU signal is not evaluated, you must make sure at restart that the EU is ready for
operation before the CC or that the necessary adjustments to the process I/O images
will be made in OB1.
3-25
Installation Guidelines
S5-115F Manual
Switch and jumper settings on the IM 314 interface module in the case of distributed
configurations
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaa
Figure 3-24 shows the switch and jumper positions on the IM 304 module. If you use the IM 314
interface module for distributed configurations, please adopt the settings shown in the figure.
All toggles must be in the OFF position on the S1 switch.
OFF
2
1
BR2
ON
3
2
1
aaaaaaaa
aaaaaaaa
BR1
3
X1
aaaaaaaa
aaaaaaaa
aaaa
X3
1
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaa
aaaaaaaa
2
aaaaaaaa
aaaaaaaa
aaaa
IM 314
X4
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
BR3
X2
Figure 3-24. Switch and Jumper Settings on the IM 314 for Distributed Configurations
Note
For distributed configurations, you must not change the IM 314 setting shown above.
3-26
EWA 4NEB 811 6148-02
S5-115F Manual
3.3
Installation Guidelines
Wiring
The backplane on the mounting rack establishes the electrical connection between all modules.
Make the following additional wiring connections:
• The PS 951 power supply module to the power line
• The sensors and actuators to the digital or analog modules.
Connect the sensors and actuators to a front connector that plugs into the contact pins on the
front of each module. You can connect the signal lines to the front connector before or after
you plug it into the module. The connection diagram of each module is on the inside of the
front door.
Perforated label strips are included with each input and output module. Use these strips to
note the addresses of the individual channels on the module.
Slip the strips along with their protective transparent covers into the guides on the front door.
• A number of check modules are required to ensure the safety of the I/O modules:
- Check digital output modules for digital input modules
- Readback digital input modules for digital output modules
- Check relay output modules and check analog output modules for analog input modules.
Subsections 3.3.1 through 3.3.6 explain how to connect individual modules.
3.3.1
Connecting the PS 951 Power Supply Module
Connect the power cable of the 24 DC supply to terminals L+, M and
PS 951.
in order to connect the
L+
M
24 V DC
Figure 3-25. PS 951 Power Supply Module
EWA 4NEB 811 6148-02
3-27
Installation Guidelines
3.3.2
S5-115F Manual
Connecting Digital Modules
Floating digital modules are available for the S5-115F. An optocoupler isolates the external
voltages from the internal voltages.
Floating
Sensor
L+
Module
M
Figure 3-26. Connection to Floating Modules
Feedback modules are required for digital modules used in safety-related systems ( 10.9).
3.3.3
Connecting Analog Modules
See Section 6 and 10.11 to 10.14 for a description of connecting and starting up analog modules.
3-28
EWA 4NEB 811 6148-02
S5-115F Manual
3.3.4
Installation Guidelines
Front Connectors
Various front connectors are available for wiring:
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
Table 3-2. Front Connector Overview
Order No.
Terminals per
Front Connector
Connection Method
6ES5 490-7LB11
24
Screw connection
(SIGUT)
6ES5 490-7LC11
46
Spring-loaded connection
6ES5 490-7LB21
46
Screw connection***
(box terminal)
6ES5 497-4UB11
42
Wire Cross Section
per Terminal 1
1 x (1.0 ... 2.5) mm2
or
2 x (0.5 ... 1.5) mm2 *
1 x (0.25 ... 1.5) mm2 **
or
max. 1.5 mm2 in the case of
combinations of conductors
in one end sleeve
6ES5 490-7LA11
(with crimp snap-in contacts)
46
6ES5 490-7LA12 (without
crimp snap-in contacts)2
1
2
*
**
***
1 x (0.5 ... 2.5) mm2
or
2 x (0.5 ... 0.75) mm2
Crimp snap-in
(mini-spring contact)
When plug-in jumpers are used, the conductor cross sections are reduced.
Use crimp snap-in contacts with the order no. 6XX5 070 (Qty: 250)
Flexible cable with end sleeves: 0.75 to 1.5 mm2
With end sleeves: 0.5 to 1.5 mm2
1.5 mm2 with jumer comb
In general, we recommend use of end sleeves, especially where corrosion is to be expected.
Screw-type connections
24-pin
46-pin
Crimp snap-in connections
Spring-loaded connection
46-pin
46-pin
Figure 3-27. Front Connector - Front View
The connectors have openings at the bottom for standard strain-relief clamps.
EWA 4NEB 811 6148-02
3-29
Installation Guidelines
S5-115F Manual
Installing the front connector (on all I/Os except the 463 analog input module)
aaaaaaaa
aaaaaaaa
Install the front connector as follows :
1. Open the front door of the module.
2. Hook the front connector into the pivot at the bottom of the module.
3. Swing the front connector up and in until it engages with the module.
4. Tighten the screw at the top of the front connector to secure it.
5. Close the front door of the module
aaaaaaaa
aaaa
Module
Front door is open
Screw
Pivot
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
Front connector is swung
up and in
Figure 3-28. Installing Front Connector
Installing the front connector of the 463 analog input module
Proceed as follows:
1. Unscrew the connector cover.
2. Hook the front connector into the pivot at the bottom of the module.
3. Swing the front connector up and in until it engages with the module.
4. Tighten the screw at the top of the front connector to secure it.
5. Screw on the connector cover.
3-30
EWA 4NEB 811 6148-02
S5-115F Manual
3.3.5
Installation Guidelines
Simulator
aaaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
aaaaaaa aaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
You can use an appropriate simulator instead of a front connector. Use the toggle switches on the
front of this device to simulate input signals ( Figure 3-29). A simulator needs an external power
supply.
Simulators can not be used for mixed digital input/output modules or for output modules.
0
1
2
3
4
5
6
7
Fastening screw
Screw-type terminals
for supply voltage
24 V DC
4
5
6
7
aaaaaaaaaa
aaaaaaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
0
1
2
3
Figure 3-29. Simulators
3.4
General Configuration
The following sections explain the electrical installation of the S5-115F.
3.4.1
Power Supply
A completely assembled controller consists of the following separate electrical circuits:
• The control circuit for the central controllers and expansion units
• The load circuit for the sensors and actuator.
EWA 4NEB 811 6148-02
3-31
Installation Guidelines
S5-115F Manual
PS 951 power supply module
The PS 951 power supply module supplies the following:
• CPU
• I/O bus
• Control circuits of the input/output modules.
The following table gives you an overview of the power supply modules which can be used in the
S5-115F.
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Table 3-3. Overview of Power Supply Modules for S5-115F
Power Supply
Module
Input
Voltage
Output
Current
Galvanic
Isolation
6ES5 951-7ND21
24 V DC
Max. 7 A
No
High-level external voltage monitor
required
6ES5 951-7ND31
24 V DC
Max. 7 A
Yes
To be replaced by 6ES5 951-7ND41
6ES5 951-7ND41
24 V DC
Max. 7 A
Yes
Remarks
--------------------
Please note the following points when using the PS 951 power supply module:
• S5-115F central controllers and expansion units may only be operated with the power supply
modules listed in Table 3-3.
These power supply modules have been prototype-tested and approved for use in safetyrelated systems.
• The PS 951-7ND31 and PS 951-7ND41 power supply modules have safe electrical isolation to
DIN VDE 0160. The 24 V DC input voltage must be a functional extra-low voltage in accordance
with DIN VDE 0100 or a comparable standard. If not, the PE terminal must be connected to the
protective ground wire.
• The PS 951-7ND21 power supply module has no galvanic isolation between the primary and
secondary sides. If you want to use this module, you will require high-level monitoring
facilities for the 5 V DC operating voltage on the secondary side. The 24 V DC input voltage
must be switched off automatically in the event of overvoltage.
Note
Since the S5-115F is operated without fans for safety reasons, the power supply
module must not be loaded with more than the rated value of 7 A/5 V. This means that
the current consumption of all the modules used must not exceed 7 A.
•
Magnetic voltage stabilizers must not be connected direct on the input side of the power
supply module!
If you use magnetic voltage stabilizers in parallel circuit branches, there is a likelihood of
overvoltages, which could destroy the power supply module! Please consult your local
SIEMENS regional office in such cases.
3-32
EWA 4NEB 811 6148-02
S5-115F Manual
Installation Guidelines
Load power supply
The load power supply supplies the following:
• Input and output circuits (load circuits)
• Sensors and actuators.
For monitoring reasons, both control and load circuits should be connected to the same power
supply.
We recommend that you use our load power supply units from the 6EV1 series. If you decide to use
load power supply units of a different type, please note that you must monitor the output
voltage. The output voltage of a 24 V DC load voltage supply unit must not exceed 30 V DC.
Modules may be destroyed at higher voltages.
!
Warning
For SIMATIC modules supplied with functional extra-low voltages
(V 60 V DC, V 25 V AC), you require load power supply units with safe (electrical)
isolation to DIN VDE 0160.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Load power supply for non-floating modules
If you use non-floating modules, you must create a common reference potential for the internal
control circuits of the PLC and for the load circuits. For this reason, connect the reference potential
of the load power supply unit with the ground connection of the PLC (PE terminal or
). The
ground connection is permanently connected to the internal reference potential of the controller.
Load power supply for floating modules
Note
If you use switched-mode power supply units to supply floating analog modules and
BEROs, you must first run this supply over a mains filter.
Dimensioning the load power supplies
The electronic short-circuit protection of DO modules activates only when triple the rated current
is exceeded. For this reason, dimension the load power supply units in such a way that the power
supply can deliver the current required for switching off in the case of a short-circuit at an output.
If the load power supply unit has not been sufficiently dimensioned, this can result in a current
higher than the rated current flowing for an extended period in the case of a short-circuit at
digital outputs, without the short-circuit protection of the DO module activating. Overrange
operation can destroy the module.
EWA 4NEB 811 6148-02
3-33
Installation Guidelines
3.4.2
S5-115F Manual
Electrical Installation with Field Devices
The following figures each show an example circuit for connecting control power supply and load
power supply. They also show the grounding concept for operation from the following:
• Grounded supplies
• Centrally grounded supplies
• Nongrounded supplies.
Please note the following when installing your controller. The text contains reference numbers
which you can find in Figures 3-30 to 3-32.
Master switch and short-circuit protection
•
•
•
You must provide a master switch to DIN VDE 0113, Part 1, or a disonnecting device to DIN
VDE 0100, Part 460, for the programmable controller, sensors and actuators.
These devices are not required in the case of subsystems where the relevant device has been
provided at a higher level.
You can provide the circuits for sensors and actuators with short-circuit protection and/or
overload protection
in groups. According to DIN VDE 0100, Part 725, single-pole shortcircuit protection is required in the case of grounded secondary side and all-pole protection is
required in all other cases.
For nonfloating input and output modules, connect terminal M of the load power supply unit
with the PE ground conductor of the control circuit's PS 951 power supply module.
Load power supply
•
•
•
•
For 24 V DC load circuits, you require a load power supply unit with safe electrical isolation.
You require a back-up capacitor (rating: 200µF per 1 A load current) for nonstabilized load
power supply units.
For controllers with more than five electromagnetic operating coils, galvanic isolation by a
transformer is required by DIN VDE 0113, Part 1; it is recommended by DIN VDE 0100, Part 725
.
For nonfloating input and output modules, connect terminal M of the load power supply unit
with the PE ground conductor of the control circuit's PS 951 power supply module.
3-34
EWA 4NEB 811 6148-02
S5-115F Manual
Installation Guidelines
Grounding
•
•
You should ground load circuits where possible . Provide a removable connection to the
protective conductor on the load power supply unit (terminal L- or M) or at the isolating
transformer in secondary circuit.
To protect against stray noise, use copper conductors of at least 10 mm2 cross section to
ground the mounting racks by the shortest possible route.
!
Warning
You must provide insulation monitoring devices for nongrounded power supply
modules
• If hazardous plant conditions could arise from double-line-to-ground faults or
double fault to frame faults
• If no safe (electrical) isolation is provided
• If circuits are operated with voltages > 60 V DC
• If circuits are operated with voltages > 25 V AC.
•
The mounting racks of the S5-115F must be connected to the protective conductor. This
grounds the reference potential of the controller.
Nongrounded operation of S5-115F controllers is only permissible if all the circuits are
operated with functional extra-low voltage. In this case, connect the mounting rack or DIN rail
over an RC network with the protective conductor.
(rating: C = 1µF, R = 100 k ).
EWA 4NEB 811 6148-02
3-35
DC
AC
3-36
aaaaaaaa
aaaaaaaa
AC
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
AC
aaaaaaaa
aaaaaaaa
L+
PS
Vint
µP
aaaaaaaa
aaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
Mint
Protective conductor
bar in cabinet
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
L-
PE
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaa
DC
aaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
AC
aaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
L1
L2
L3
N
PE
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
Installation Guidelines
S5-115F Manual
Operating a programmable controller with field devices on grounded supply
Operation from grounded power supplies offers the best protection against interference.
Low voltage distribution
e.g. TN-S system
Cabinet
Programmable controller
Control power supply
CPU
Nonfloating
input
Nonfloating
output
Floating
input
Floating
output
AC
Field devices
24 to 230 V AC load power supply unit for
AC modules
5 to 60 V AC load power supply unit for
nonfloating DC modules
DC
5 to 60 V AC load power supply unit for
floating DC modules
Figure 3-30. Operating a Programmable Controller with Field Devices on Grounded Supply
EWA 4NEB 811 6148-02
aaaaaa
aaa
AC
AC
AC
EWA 4NEB 811 6148-02
aaaaaaaa
aaaaaaaa
L-
PE
L+
PS
Vint
Mint
Protective conductor bar in
cabinet, insulated
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
Cabinet
µP
aaaaaa
aaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
Removable connection
for measuring purposes
aaaaaa
aaa
aaaaaa aaaaaa aaaaaa
aaaaaa aaa aaaaaa
aaaaaaaaaaaa
aaaaaaaa
DC
aaaaaaaa
aaaaaaaa
aaa
aaa
aaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaa aaaaa
aaa aaaaa
aaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
AC
aaaaaaaaaa
aaaaaaaaaa
aaa
aaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaa aaaa
aaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
S5-115F Manual
Installation Guidelines
Operating a programmable controller with field devices on a centrally grounded supply
In plants with their own transformers or generators, the PLC is connected to the central grounding
point. A removable connection must be provided for measuring ground faults.
Installation of the PLC must be such that there is insulation between the cabinet potential and the
protective conductor potential. In order to maintain the insulation, all connected devices must be
grounded capacitively or they must be nongrounded. For this reason, programmers must be
supplied only over an isolating transformer.
L1
L2
L3
Low voltage distribution
Programmable controller with insulated installation
Central operating
ground or
fundamental ground
Control power supply
CPU
Nonfloating
input
Nonfloating
output
Floating
input
Floating
output
Field devices
AC
24 to 230 V AC load power supply unit for
AC modules
DC
5 to 60 V AC load power supply unit for
nonfloating DC modules
DC
5 to 60 V AC load power supply unit for
floating DC modules
N
Figure 3-31. Operating a Programmable Controller with Field Devices
on Centrally Grounded Supply
3-37
Installation Guidelines
S5-115F Manual
Operating a Programmable Controller with Field Devices on Ungrounded Supply
Neither the outer conductor nor the neutral are connected to the protective conductor in the case
of nongrounded supplies. Operation of the PLC with nonfloating power supply modules is not
permissible.
Please note the following when connecting power supply modules:
In networks with 3 x 230 V, you can connect the power supply module direct to two outer
conductors (see Figure 3-32).
In networks with 3 x 400 V, connection between the outer conductor and the neutral conductor is
not permissible (unacceptably high voltage in the case of ground fault). Use intermediate
transformers in these networks.
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
Low voltage distribution
e.g. IT system
L1
L2
L3
PE
Cabinet
Programmable controller
L+
DC
L-
PS
Vint
µP
aaaaaa
aaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
AC
aaaaaaaa
aaaa
aaa
aaaaaaaaaaaaaaa
aaaaaa
Control power supply
CPU
Mint
Nonfloating
input
Nonfloating
output
Floating
input
Floating
output
Protective conductor bar
in cabinet
AC
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaa aaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaaaaaaa
Operating
ground
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
PE
Field devices
AC
aaaaaaaa
aaaaaaaa
AC
24 to 230 V AC load power supply unit for
AC modules
AC
5 to 60 V AC load power supply unit for
nonfloating DC modules
aaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
DC
DC
5 to 60 V AC load power supply unit for
floating DC modules
Figure 3-32. Operating a Programmable Controller with Field Devices on Nongrounded Supply
3-38
EWA 4NEB 811 6148-02
S5-115F Manual
3.4.3
Installation Guidelines
Connecting Nonfloating and Floating Modules
The following sections show the special features involved in installations with nonfloating and
floating modules.
Installation with nonfloating modules
In installations with nonfloating modules, the reference potential of the control circuit (Minternal)
and the load circuits (Mexternal) are not galvanically isolated.
and
The reference potential of the control circuit (Minternal) is at the PE terminal or
connected to the reference potential of the load circuit via a line to be run externally.
must
be
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
Figure 3-33 shows a simplified representation of an installation with nonfloating modules. The
installation is independent of the grounding concept. The connections for the grounding
measures are therefore not shown:
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaa
1L+
1LPE
Control power
supply
DI
aaaaaaaaaa
aaaaaaaaaa
CPU
DQ
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
PS
aaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaa
Vint
Data
Mint
External connection for
uniform reference potential
2L24 V DCload power
supply
aaaaaaaa
aaaaaaaa
2L+
Figure 3-33. Simplified Representation of an Installation with Nonfloating Modules
Voltage drop on line
must not exceed 1 V, otherwise the reference potentials will shift and
result in failures of the module.
EWA 4NEB 811 6148-02
3-39
Installation Guidelines
S5-115F Manual
Note
It is imperative that you connect the reference potential of the load power supply unit
with the L- terminal of the module in the case of 24 V DC DQ modules. If this
connection is missing (e.g. wirebreak), a current of typically 15 mA can flow at the
outputs. This output current can be sufficient to ensure that
• Energized contactors do not drop out
and
• High-resistance loads (e.g. miniature relays) can be driven.
Installation with floating modules
Control circuit and load circuit are galvanically isolated in the case of floating modules.
Installation with floating modules is necessary in the following cases:
•
•
All AC load circuits
and
Non-connectable DC load circuits.
The reasons for this are, e.g. different reference potentials of the sensors or the grounding of
the plus poles of a battery, ...
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaa
Figure 3-34 shows the simplified representation of an installation with floating modules. The
installation is independent of the grounding concept. The connections for grounding measures
are therefore not shown.
DI
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
CPU
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
PS
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaa
Vint
Data
Mint
DQ
2L+
2L24 V DCload power
supply
aaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaa
1L+
1LPE
24 V DCcontrol power
supply
L1
N
230 V AC load power
supply
Figure 3-34. Simplified Representation for Installation with Floating Modules
3-40
EWA 4NEB 811 6148-02
S5-115F Manual
3.5
Installation Guidelines
Installing Programmable Controllers in Conformity with EMC Guidelines
Measures to suppress interference are frequently only taken when the controller is already in
operation and reception of a signal has already been affected. In most cases, such interference is
attributable to inadequate reference potentials caused by faulty installation of the programmable
controller.
When installing the programmable controller, you must ensure that all inactive metal parts have
surface contact grounding. Correct grounding creates a uniform reference potential for the
controller and reduces the effects of strays.
Grounding means the conductive connection of all inactive metal parts. The total of all
interconnected inactive parts is called the ground.
Inactive metal parts are all conductive parts that have at least basic electrical isolation from active
parts and that are energized only in case of a fault.
Even in case of a fault, the ground must not carry a dangerous touch voltage. The ground must
therefore be connected with the protective conductor. To avoid ground loops, you must always
connect locally separated ground configurations (cubicles, structural parts and machine parts) to
the protective conductor system in a star configuration.
Note the following when grounding:
• Connect the inactive metal parts as carefully as the active parts.
• Make sure that the metal-to-metal connections are of low impedance, e.g. through largesurface contacting with good conductivity.
• If you include enamelled or anodized metal parts in the grounding, these insulating protective
layers must be penetrated. For this purpose, use special contact washers or remove the
insulation layers.
• Protect joints against corrosion, for example, by means of grease.
• Movable ground parts (e.g. cubicle doors) must be connected via flexible grounding strips. The
grounding strips should be short and have a large surface, since the surface is decisive for the
discharge of high-frequency interference.
EWA 4NEB 811 6148-02
3-41
Installation Guidelines
3.6
S5-115F Manual
Wiring Arrangement
This section describes the wiring arrangements for bus cables, signal cables, and power supply
cables that guarantee the electromagnetic compatibility (EMC) of your installation.
3.6.1
Running Cables Inside and Outside a Cabinet
Dividing the lines into the following groups and running the groups separately will help you to
achieve electromagnetic compatibility (EMC).
Group A:
Shielded bus and data lines (for programmer, OP, SINEC L1, SINEC L2, printer, etc.)
Shielded analog lines
Unshielded lines for DC voltage 60 V
Unshielded lines for AC voltage 25 V
Coaxial lines for monitors
Group B:
Unshielded lines for DC voltage > 60 V and 400 V
Unshielded lines for AC voltage > 25 V and 400 V
Group C:
Unshielded lines for AC voltage > 400 V
Group D:
Lines for SINEC H1
You can use the following table to see the conditions which apply to the running of the various
combinations of line groups.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Table 3-4. Rules for Common Running of Lines
Group A
Group B
Group C
Group D
Group A
Group B
Group C
Group D
Legend for table:
Lines can be run in common bundles or cable ducts
Lines must be run in separate bundles or cable ducts (without minimum distance)
Inside cabinets, lines must be run in separate bundles or cable ducts and outside cabinets but
inside buildings, lines must be run on separate cable trays with a gap of a least of 10 cm
between lines.
Lines must be run in separate bundles or cable ducts with at least 50 cm between lines.
3-42
EWA 4NEB 811 6148-02
S5-115F Manual
3.6.2
Installation Guidelines
Running Cables Outside Buildings
Run lines outside buildings where possible in metal cable supports. Connect the abutting surfaces
of the cable supports galvanically with each other and ground the cable supports.
When you run cables outdoors, you must observe the regulations governing lightning protection
and grounding. Note the general guidelines:
Lightning Protection
If cables and lines for SIMATIC S5 devices are to be run outside buildings, you must take measures
to ensure internal and external lightning protection.
Outside buildings run your cables
either
- In metal conduits grounded at both ends
or
- In steel-reinforced concrete cable channels
Protect signal lines from overvoltage by using:
• Varistors
or
• Lightning arresters filled with inert gas
Install these protective elements at the point where the cable enters the building.
Note
Lightning protection measures always require an individual assessment of the entire
system. If you have any questions, please consult your local Siemens office or any
company specializing in lightning protection.
Grounding
Make certain that you have sufficient equipotential bonding between the devices ( 3.7).
EWA 4NEB 811 6148-02
3-43
Installation Guidelines
3.7
S5-115F Manual
Equipotential Bonding
Potential differences may occur between separate sections of the system if
• Programmable controllers and I/Os are connected via non-floating interface modules or
• Cables are shielded at both ends but grounded via different sections of the system.
Potential differences may be caused, for instance, by differences in the system input voltage.
These differences must be reduced by means of equipotential bonding conductors to ensure
proper functioning of the electronic components installed.
Note the following for equipotential bonding:
A low impedance of the equipotential bonding conductor makes equipotential bonding more
efficient.
•
If any shielded signal cables connected to earth/protective earth at both ends are laid between
the system sections concerned, the impedance of the additional equipotential bonding
conductor must not exceed 10 % of the shield impedance.
•
The cross-section of the equipotential bonding conductor must be matched to the maximum
compensating currents. The following cross-sections are recommendable:
- 16 mm2 copper wire for equipotential bonding line up to 200 m (656.2 ft).
- 25 mm2 copper wire for equipotential bonding line over 200 m (656.2 ft).
•
Use equipotential bonding conductors made of copper or zinc-plated steel. Equipotential
bonding conductors are to be connected to earth/protective earth via a large contact area and
to be protected against corrosion.
•
The equipotential bonding conductor should be laid in such a way as to achieve a relatively
small contact area between equipotential bonding conductor and signal cables
(see Figure 3-35).
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
•
Signal cable
Equipotential bonding conductor
Figure 3-35. Laying Equipotential Bonding Conductor and Signal Cable
3-44
EWA 4NEB 811 6148-02
S5-115F Manual
Installation Guidelines
Protection in the case of Indirect Contact
For distributed configurations, differentiate between the following cases:
•
•
3.8
Separate arrangement (up to 200 m/656.2 ft.) of central controllers and expansion units when
connected by the IM 304/314 interface modules.
The IM 304/314 interface modules are nonfloating. In this case, provide a potential
equalization line (see VDE 0100. Section 547).
Signal transfer between separate systems via input and output modules.
Use floating input and output modules for signal transfer.
Shielding Cables
Shielding is a measure to weaken (attenuate) magnetic, electric or electromagnetic interference
fields.
Interference currents on cable shields are discharged to ground over the shield bar which has a
conductive connection to the housing. So that these interference currents do not become a source
of noise in themselves, a low-resistance connection to the protective conductor is of special
importance.
Use only cables with shield braiding if possible. The effectiveness of the shield should be more
than 80%. Avoid cables with foil shielding since the foil can easily be damaged by tension and
pressure; this leads to a reduction in the shielding effect.
As a rule, you should always shield cables at both ends. Only shielding at both ends provides good
suppression in the high frequency range.
As an exception only, you can connect the shielding at one end. However, this attenuates only the
lower frequencies. Shielding at one end can be of advantage in the following cases:
• If you cannot run an equipotential bonding conductor
• If you are transmitting analog signals (e.g. a few microvolts or microamps)
• If you are using foil shields (static shields).
Always use metallic or metalized connectors for data lines for serial connections. Secure the shield
of the data line at the connector housing. Do not connect the shield to the PIN1 of the connector
strip!
In the case of stationary operation, you are recommended to insulate the shielded cable without
interrupt and to connect it to the shield/protective ground bar.
Note
If there are potential differences between the earthing points, a compensating current
can flow over the shielding that is connected at both ends. For this reason, connect an
additional equipotential bonding conductor ( 3.7).
EWA 4NEB 811 6148-02
3-45
Installation Guidelines
S5-115F Manual
aaaa
aaaa
aaaa
aaaa
aaaaa
a
a
a
aaaaaaaaa
aaaa
aa
a
aaaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
Note the following when connecting the cable shield:
• Use metal cable clamps for fixing the braided shield. The clamps have to enclose the shield
over a large area and make good contact (see Figure 3-36).
• Connect the shield to a shield bar immediately at the point where the cable enters the cabinet.
Route the shield to the module; do not connect it to the module.
Figure 3-36. Fixing Shielded Cables with Various Types of Cable Clamps
3.9
Special Measures for Interference-Free Operation
Arc Suppression Elements For Inductive Circuits
Normally, inductive circuits (e.g. contactor or relay coils) energized by SIMATIC S5 do not require
to be provided with external arc suppressing elements since the necessary suppressing elements
are already integrated on the modules.
It only becomes necessary to provide arc supressing elements for inductive circuits in the following
cases:
• If SIMATIC S5 output circuits can be switched off by additionaly inserted contactors (e.g. relay
contactors for EMERGENCY OFF). In such a case, the integral suppressing elements on the
modules become ineffective.
• If the inductive circuits are not energized by SIMATIC S5.
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
You can use free-wheeling diodes, varistors or RC elements for wiring inductive circuits.
aaaaaaaaaa
-
with varistor
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaa
aaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
with zener diode
with RC element
+
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
with diode
+
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
Connecting AC-controlled coils
Connecting DC-controlled coils
-
Figure 3-37. Connecting Coils
3-46
EWA 4NEB 811 6148-02
S5-115F Manual
Installation Guidelines
Mains connection for programmers
In each cabinet group, provide a grounding-type receptacle to supply power for a programmer.
The receptacle should be supplied from the distribution board to which the protective ground for
the cabinet is connected.
Cabinet lighting
Take normal lamps for cabinet lighting, e. g. LINESTRA® lamps are more suitable. For reasons of
noise immunity, do not use flourescent lamps inside the cabinet. If you must use fluorescent lamps,
take the measures shown in Figure 3-34.
Shielding grid over lamp
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
Completely shielded cable
Metal-encased switch
Mains filter or shielded mains cable
Figure 3-38. Measures for Suppressing Noise from Fluorescent Lamps in the Cabinet
Separating inductors
Sheet-metal barriers are recommended for the part of the cabinet containing strong inductances
such as transformers or contactors.
Protection against electrostatic discharge
Metal housings or cabinets closed on all sides and with good metallic contact to the grounding
point at the installation location should be used to protect decivers and modules from electrostatic discharge.
If you install your controller in a terminal box, use cast or sheet-metal where possible. Plastic housings should always have a metallic surface.
Housing doors and covers must be connected to the housing ground with grounding strips or contact springs.
If you are working on the controller with the cabinet open, please observe the guidelines on protective measures for ESD-(electrostatic discharge) endangered components and modules.
EWA 4NEB 811 6148-02
3-47
Installation Guidelines
S5-115F Manual
Filters for power cables and signal cables
Filtering of power and signal cables is a measure for suppressing conducted interference. Overvoltages must not occur on power cables within the cabinet.
Suppress overvoltages with the following measures:
Suppressing interference in power cables
A mains filter (e.g. B84299-K64, 250 V AC/10 A) should be installed in the supply cable in the
case of a mains supply of 230 V. The mains filter must be located at the entrance to the
cabinet. Please note that the filter must have a large surface contact and low-impedance
connection with the cabinet ground (contact surfaces must be uninsulated).
•
Noise suppression capacitors for DC supply voltage
If a cabinet is connected to a central 24 V supply, noise can reach the controller via this supply
cable.
You are therefore recommended to install 24 V noise suppression capacitors. These should be
installed at the cabinet ground or on the shielding bar.
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
•
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
Block diagram
0.2 µF
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
+24 V
0.6 µF
aaaaaaaa
aaaaaaaa
aaaa
0V
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
+24 V
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
0.6 µF
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
e.g. 0.2 µF
B81111-A-B42
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
Cabinet ground
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
e.g. 0.6 µF
B81551-A-B16
0V
Figure 3-39. Arrangement of Suppression Capacitors
3-48
EWA 4NEB 811 6148-02
S5-115F Manual
3.10
Installation Guidelines
Checklist for the Installation of Programmable Controllers in Conformity
with EMC Guidelines
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Table 3-5. Checklist for the Installation of Programmable Controllers
in Conformity with EMC Guidelines
EMC Measures
Connection of inactive metal parts
Specially check the connections on:
• Racks
• Supporting bars
• Shielding buses and protective conductor bars
Notes
(Section 3.5)
Have all inactive metal parts been connected and grounded with
large surface contact and a low impedance?
Is there a sufficient connection to the ground
electrode/protective conductor system?
Have insulating layers on enamelled and anodized surfaces been
removed or have the connections been implemented with special
contact washers?
Have the joints been protected against corrosion, e.g. by means of
grease?
Have the cubicle doors been connected to the cubicle body via
grounding strips?
Wiring arrangement
(Section 3.6)
Cabling divided into cable groups?
Supply lines (230 to 400 V) and signal cables run in separate ducts
or bundles?
Equipotential bonding
(Section 3.7)
In the case of a distributed configuration, check the installation of
the equipotential bonding conductor
Cable shielding
(Section 3.8)
Have metal connector sockets been used everywhere?
Have all analog and data lines been shielded?
Have cable shields been applied to the shield bus or protective
conductor bar?
Have cable shields been fixed with a large surface contact and a
low impedance by means of cable clamps?
Have cable shields been connected at both ends where this is
possible?
Inductive circuits
(Section 3.9)
Have contactor coils that are not energized via SIMATIC contacts
been provided with arc suppression elements?
EWA 4NEB 811 6148-02
3-49
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
4
System Startup
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
Operating Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.- 1
Controls on the Power Supply Module and Central Processing Unit
4-1
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. .- 4
CPU Operation in ”RUN” and ”STOP” Modes
................. 4-6
Cold Restart and Warm Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. - 8
Battery Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. 13
Overall Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. 13
Steps for System Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. - 14
4.2
Working with Input/Output Modules
4.3
4.3.1
4.3.2
System Startup Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. - 18
Safety Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. 18
Checking a Plant or Controlled System before Startup . . . . . . . . . . 4 - 19
EWA 4NEB 811 6148-02
. . . . . . . . . . . . . . . . . . . . . . . . .4 - 18
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Figures
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
Front View of the Power Supply Module
..............................4
. .- 2
Front View of the CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. 3.
CPU Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. .-.4.
Conditions for Changing the Operating Mode
. . . . . . . . . . . . . . . . . . . . . . . . . .4. - 8
Restart after POWER ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. 9
.
STOP Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. .10
.
Restart from PLC STOP Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. -. 11
Flowchart for Startup: Overview (Main Tree)
. . . . . . . . . . . . . . . . . . . . . . . . . . .4. - 14
Flowchart for Startup: Entering the Subunit IDs
. . . . . . . . . . . . . . . . . . . . . . . . .4. - 15
Flowchart for Startup: Configuring the Operating System and
the I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. .- .16
.
4-11. Startup of an S5-115F in Safety Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. .- 17
Tables
4-1.
4-2.
Coordination of Operating Mode Settings and LEDs
.....................4
. -7
Operator Procedure Prior to Switching On the Power Supply
. . . . . . . . . . . . . . 4 - 19
EWA 4NEB 811 6148-02
S5-115F Manual
4
System Startup
System Startup
This chapter tells how to operate the S5-115F programmable controller, including its input and
output modules.
4.1
Operating Instructions
Subsections 4.1.1 through 4.1.6 provide important information on operating an S5-115F.
4.1.1
Controls on the Power Supply Module and Central Processing Unit
Use the switches on the power supply module and CPU to control PC operation. LEDs indicate
current statuses.
EWA 4NEB 811 6148-02
4-1
System Startup
S5-115F Manual
Power supply module
You can set the following switches on the PS 951 power supply module ( Figure 4-1):
•
•
The ON/OFF switch turns the 5V power on or off.
The RESET switch acknowledges a battery failure indication.
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Battery compartment
SIEMENS
Sockets for external DC voltages 3.4 to 9 V for memory
backup during battery change. The battery can be
changed in PLC RUN.
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
SIMATIC S5
PS
7A/15A
BATT1-BATT2
3.4V/2Ah
aaaaaa
aaaaaa
aaaaaa
Replace by
trained
personnel
only!
+
-
EXT BATT
3.4...9V
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaa
RESET
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaa
aaaaaa
aaaaaa
BATT LOW
Battery failure indicator
The LED lights up under the following conditions:
• there is no battery
• the battery has been installed incorrectly
• the battery voltage has gone below 2.8 V
If the LED lights up, the ”BAU” signal is sent to the CPU
and the PLC goes to STOP.
RESET switch
Use this switch to acknowledge a battery failure signal
after you have installed a new battery. If you are operating the PS 951 power supply module without a
battery, activate this switch to suppress the ”BAU” signal.
5V DC
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
5.2V DC
aaaaaa
aaaaaa
INT DC
POWER
aaaaaaaaaa
aaaaaaaaaa
aaaaa
24V DC
Operating voltage display of 5 V for the central controller and expansion units in centralized configurations.
ON/OFF switch (I=ON, O= OFF)
When the switch is in the ”OFF” position, the operating
voltage is disabled without interrupting the connected
line voltage.
Screw-type terminals for connecting the line voltage
aaaaaa
aaa
L+
aaaaaa
aaaaaa
aaaaaa
aaa
M
24 V DC
Figure 4-1. Front View of the Power Supply Module
4-2
EWA 4NEB 811 6148-02
S5-115F Manual
System Startup
Central Processing Unit
The following operator functions are possible on the front panel of the CPU:
•
•
•
•
•
Plug in a memory submodule
Connect a programmer (PG)
Connect SINEC L1
Select the operating mode
Perform an Overall Reset
LEDs indicate the current CPU operating mode. A slot in the CPU front panel contains a plastic card
with the most important operating instructions for the PS and CPU. Figure 4-2 shows the front of
the CPU.
115F
CPU
942
Receptacle for memory submodule
Control panel
Instruction card
Connectors for PG or SINEC L1 LAN
RN
ST
RN
ST
Fault LEDs
QVZ: Time-out
ZYK: Scan time exceeded
BASP: Command output disable
OR
QVZ
ZYK
BASP
Figure 4-2. Front View of the CPU
EWA 4NEB 811 6148-02
4-3
System Startup
S5-115F Manual
The CPU controls are arranged in a panel on the front of the CPU and are shown in Figure 4-3
below.
RUN / STOP mode selector
Mode LEDs
RN
ST
Switch for Overall Reset (OR)
For safety reasons, there is no ”retentive /
nonretentive” setting.
RN
ST
OR
CPU 942F
Figure 4-3. CPU Control Panel
4.1.2
Operating Modes
Use the mode selector to set the ”STOP” (ST) or ”RUN” (RN) mode. The CPU executes the initialization program automatically on power up and the ”RESTART from STOP” program when the
RUN mode is selected.
”RESTART from POWER ON” program and ”RESTART from STOP” program
•
•
•
•
•
•
Restart block OB 22 (RESTART from POWER ON) or OB 21 (RESTART from STOP) is processed.
All input and output modules are disabled. Outputs have signal state ”0”.
All inputs and outputs in the process image have signal state ”0”.
Scan time monitoring is inactive.
No restart test is run in test mode ( 4.1.3).
The restart test (approx. 2 min.) is run in safety mode ( 4.1.3) .
!
Important
When the CPU goes from ”STOP” to ”RUN”, the process images and the nonretentive
flags, timers and counters are set to zero.
4-4
EWA 4NEB 811 6148-02
S5-115F Manual
System Startup
”RUN” Mode
•
•
•
•
•
•
•
All input and output modules are enabled before the start of cyclical program scanning.
The program is scanned cyclically.
The two subunits are synchronized.
Timers that were started in the program run down.
Input module signal states are read in, exchanged and compared.
Output modules are addressed.
S5-115F self-test runs (organized in time slices).
”STOP” mode, large Stop loop
•
•
•
•
•
•
•
The program is not scanned.
The two subunits are synchronized.
The values of the timers, counters, flags, and process images that were current when the CPU
went into the ”STOP” state are maintained.
Digital output modules are disabled (signal state ”0”). The “BASP” LED lights up.
An S5-115F self-test runs (organized in time slices).
Use of the programmer and SINEC L1 transfers are possible.
Mode change possible.
STOP mode, lesser Stop loop
(activated if serious errors are detected)
•
•
•
•
•
•
•
The program is not scanned.
The subunits are not synchronized.
The values of timers, counters, flags and process images are maintained.
Digital output modules are disabled. The ”BASP” LED lights up.
The self-test no longer runs.
SINEC L1 transfers are no longer processed. Programmer operation is restricted to reading out
error DBs.
Mode changes are no longer possible.
EWA 4NEB 811 6148-02
4-5
System Startup
4.1.3
S5-115F Manual
CPU Operation in ”RUN” and ”STOP” Modes
In these modes the CPU can operate in two ways:
•
Safety mode
The CPU is automatically in safety mode as soon as an EPROM submodule is plugged in.
•
Test mode
In all other cases, the CPU is automatically in test mode.
Safety mode and test mode differ from each other in the following points:
•
Programmer operation ( Volume 2, Chapter 4 of the manual):
In safety mode and in ”RUN” mode at present, the operator cannot use the programmer input
functions; in ”STOP” mode, he is restricted mainly to enquiry functions only, but cannot make
entries that will change the contents of the RAM (exception: inputs using the parameter entry
DB). In test mode and in ”RUN” mode, the programmer can be used for enquiry and test
functions and, in ”STOP”mode, the whole range of programmer functions is available.
•
Supplementary self-test with test slice organization ( Volume 2, Section 5.4.1 of the manual)
In test mode, the RAMs of the two subunits are not compared and no restart test takes place.
•
Transmission of the RAM contents of subunit A to subunit B (on restart, to
gram changes to subunit B):
In safety mode, the parameter entry DB can only be changed when the PC is
for this reason, it is transferred to subunit B on restart. In test mode, the
(5 Kbytes of internal RAM plus the contents of any RAM submodules)
subunit B to cope with any blocks loaded later.
transfer any proin ”STOP” mode;
entire user RAM
is transferred to
•
Error response:
In safety mode, there are the following error responses:
- ”Passivate” (deactivation of I/O modules)
- ”Large STOP loop” and
- ”Lesser STOP loop”.
•
Passivation entries
Passivated I/O modules can be re-activated during operation using the FB 255.
The passivation entries in the error DB are deleted.
Passivation is also revoked in the following cases:
- In safety mode with Overall Reset
- In test mode by performing the following: Power OFF, Power ON, RUN.
•
Deleting entries for RAM comparison errors
In safety mode, entries for RAM comparison errors can only be removed with an Overall Reset.
Other error entries are deleted on restart.
4-6
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
S5-115F Manual
Red LED
System Startup
Meaning of the LEDs
Two LEDs on the control panel of the CPU indicate the status of the CPU ( and
Table 4-1 lists the possible displays.
First Subunit
Green LED
EWA 4NEB 811 6148-02
Second Subunit
Red LED
in Figure 4-3).
Table 4-1. Coordination of Operating Mode Settings and LEDs
Status of the LEDs on the CPU
Note
Green LED
System is in large STOP loop
Section 4.1.2
System is in lesser STOP loop
Section 4.1.2
First subunit is switched to RUN and is
waiting for the second subunit to be
switched to RUN also
System is processing the restart selftest or
the restart OBs. The test lasts between 30 to
120 secs approximately, depending on
number of I/O modules.
System is in PLC RUN
LED off
LED on
LED flashes
4-7
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
4-8
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa aaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
STOP
STOP
lesser STOP loop
large STOP loop
- Serious error e.g.
PS error
STOP LED flashes
After power restore
if PLC statuses
were previously
RUN or RESTART
- Serious error e.g.
PS error
STOP LED flashes
- Serious error e.g.
PS error
STOP LED flashes
4.1.4
+
restart selftest in
safety mode
+
restart
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
System Startup
S5-115F Manual
Changing the operating mode
Figure 4-4 shows the conditions for changing the operating mode.
Turn the power supplies in both
Overall Reset
subunits off and on again
with mode selector
Selftest in large
STOP loop
- Mode selector is set
from STOP to RUN
- Select RUN with
- Mode selector is set
from STOP to RUN
programmer
( Vol. 2, Section 5 of
manual)
- Control program
destroyed
- Mode selector is set
from STOP to RUN
- Causes of interrupt
- Causes of interrupt
( Vol. 2, Section 5 of
- Select STOP with
manual)
programmer
Cold restart routine
- Negligible error e.g.
I/O error
Restart OBs processed
- OB21 if STOP-RUN
- OB22 if power ON
RUN
- Negligible error e.g.
I/O error
Figure 4-4. Conditions for Changing the Operating Mode
Cold Restart and Warm Restart
The S5-115F undergoes a cold restart after POWER ON which takes it into RUN mode via the STOP
program, provided all RUN conditions are met. It can also be restarted from the STOP mode (loop
in the STOP program).
EWA 4NEB 811 6148-02
S5-115F Manual
System Startup
Cold restart after POWER ON
Lesser STOP loop
Generate user memory
submodule identifiers
Initialize S5-115F
Enable output of both
error DBs
no
User memory
type valid?
Lesser STOP loop
yes
Determine safety/test mode
according to user memory
type
Has
user memory
submodule been
changed?
Safety operation if EPROM, EEPROM
Test operation if RAM
yes
Overall reset and
initialize RAM
(red and green LEDs off)
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
no
Was power
off; has NAU routione been
run?
no
Lesser STOP loop
yes
Has
there been a RAM
error?
yes
Inhibit restart
(NINEU bit)
no=
EPROM,
Subunit
identifier already
entered?
no
Delete both error DBs; do
not delete any passivation
information
OS initialization:
Defaults
User memory
type= RAM?
Lesser STOP loop
no
EEPROM
yes=RAM
yes
Subunit
ID not
identical
no
Lesser STOP loop
yes
STOP program
Figure 4-5. Restart after POWER ON
EWA 4NEB 811 6148-02
4-9
System Startup
S5-115F Manual
STOP program
Lesser STOP loop
Disable I/O via BASP
Enable output of both
error DBs
Delete I/O
User memory
types of both
subunits identical?
no
Lesser STOP loop
yes
OS-EPROM
sign. of both subunits
identical?
no
Lesser STOP loop
yes
large
STOP
loop
no, test mode
Safety mode?
yes
Error
with ”Lesser STOP
loop”
response?
yes
Lesser STOP loop
no
Self-test in slices, without STEP 5 standard processor test,
user EPROM test, RAM comparison, SAC test
Compress PLC, if necessary
Generate common operating mode for both subunits
yes
Restart?
Restart program
no
no, STOP
OR (overall reset)?
yes
Overall reset
Figure 4-6. STOP Program
4-10
EWA 4NEB 811 6148-02
S5-115F Manual
System Startup
Restart (ANL)
yes
Has there been
a RAM comparison
error?
Lesser STOP loop
no
Generate user memory
submodule identifiers
no
User memory
type of both subunits valid?
STOP program
yes
Determine safety/test
oper. according to user
memory type
User memory
types of both
subunits
identical?
no
STOP program
yes
User
EPROM/EEPROM
signatures
identical?
no
STOP program
yes
no
Battery ok?
STOP program
yes
Cold restart
permissible
(NINEU=0)?
no
STOP program
yes
Generate block address
lists
yes
Block address
lists
ok?
no
STOP program
yes
A
(Continued on next page)
Figure 4-7. Restart from PLC STOP Program
EWA 4NEB 811 6148-02
4-11
System Startup
S5-115F Manual
A
(Continued from previous page)
List I/O configuration
no
I/O configuration
ok?
STOP program
yes
Transfer RAM contents from subunit A to subunit B (only parameter entry DB in safety mode)
Reset
flags
timers,
counters
yes
Safety mode?
Short S5-115F test
(green and red LEDs on,
1 to 2 min.)
no, test
mode
RUN
Figure 4-7. Restart from PLC STOP Program (continued)
4-12
EWA 4NEB 811 6148-02
S5-115F Manual
4.1.5
System Startup
Battery Backup
A battery is absolutely necessary for program and data backup on RESTART after POWER OFF.
Flags, timers, and counters are always set to zero in the ”RESTART” mode.
Note
If a battery failure is detected in the ”RESTART” mode after POWER ON, the PLC goes
into the ”STOP” mode.
4.1.6
Overall Reset
It is recommended that you perform the ”Overall Reset” function before entering a new program.
Overall Reset clears the following items:
• The PLC program memory,
• All data (flags, timers, and counters),
• All error DBs.
Note
Without Overall Reset, information is maintained even if the program is overwritten.
You can perform Overall Reset on the CPU in the following ways:
• in online mode via the ”Overall Reset” programmer function
• by replacing the memory submodules
• via the switches on the CPU.
Overall Reset via the switches on the CPU:
1. Hold the switch in the OR position
2. Switch the mode selector twice from RUN to STOP.
The red and green LEDs go out briefly during Overall Reset.
!
Important
Overall Reset is of great significance in safety mode because it leads to the loss of error
information.
An Overall Reset should only be carried out after repair of all defective components
and is done at the user's own risk!
EWA 4NEB 811 6148-02
4-13
System Startup
4.1.7
S5-115F Manual
Steps for System Startup
The following pages contain flowcharts, which will help you in starting up your S5-115F.
STARTUP
Insert and wire modules
Are the jumper settings on
the parallel link modules
correct?
no
Check the jumper settings on the
parallel link modules
( 3.2.6)
no
Enter subunit IDs
( Figure 4-9)
yes
Power up PLC
Are the subunit IDs available?
Label 1 yes
Have the
operating system
configurations (DB 1) and
the I/O configurations
been loaded into
the PLC?
Label 2
no
Load the operating system
configuration and the I/O
configuration ( Figure 4-10)
no
Transfer the user program
to the PLC
yes
Is the user program in
the PLC?
yes
PLC in RUN mode
Figure 4-8. Flowchart for Startup: Overview (Main Tree)
4-14
EWA 4NEB 811 6148-02
S5-115F Manual
System Startup
Enter subunit IDs
Connect programmer to
subunit that is to be ”subunit A”
Does a programmer
error message
appear on the screen?
aaaaaaaaaa
aaaaaaaaaa
aaaaa
Enter subunit ID ”A”
yes
aaaaaaaa
aaaaaaaa
aaaa
no
yes
Switch PS 951 power supply
in both subunits OFF and ON again
aaaaaaaaaa
aaaaaaaaaa
Is the red LED on the
no
CPU flashing
(lesser STOP loop)?
Switch mode selector from
STOP to RUN
no
Correct error with the help of
Appendix B in Volume 2 of the
manual
aaaaaaaa
aaaaaaaa
Does the
”DB1 not in PLC”
error message appear?
aaaaaaaa
aaaaaaaa
Read error message via COM 115F
yes
Return to label 1 in Figure 4-8
Figure 4-9. Flowchart for Startup: Entering the Subunit IDs
EWA 4NEB 811 6148-02
4-15
System Startup
S5-115F Manual
Configuration of the operating
system and the I/O modules
Configure the operating system
and I/O modules with COM 115F
Switch the mode selector to STOP
Transfer the entire configuration
to subunit A
Check configuration
Configure the second word also in
the case of 32-bit modules
Configure all channels in the case
of analog modules
Switch the mode selector from
STOP to RUN
yes
Is the green LED on
both CPUs lit?
yes
no
Read error with
COM 115F
Does the error message
refer to configuration
errors?
no
Correct the error with the help of
Appendix B in Volume 2 of the
manual
Return to label 2 in Figure 4-8.
Perform cold restart
Figure 4-10. Flowchart for Startup: Configuring the Operating System and the I/O Modules
4-16
EWA 4NEB 811 6148-02
S5-115F Manual
System Startup
Start
Plug in memory
submodules
Switch on the supply
voltages of both subunits
within 60 sec.
Are
the green LEDs
on the PS 951
lit?
no
Replace power supply
module
yes
CPU overall reset
possible (Caution, 4.1.6)
Are
the STOP LED
and the BASP
LED lit?
no
Replace CPU
yes
Switch mode selector of
subunit A from STOP to
RUN
no
Green LED flashes?
Use COM 115F to
display error
yes
Switch mode selector of
subunit B from STOP to
RUN
Are
the green and red
LEDs lit (approx.
2 min.)?
no
Use COM 115F to error
yes
Are
the red LEDs off
and the green
LEDs on?
no
Use COM 115F to error
yes
PLC operating
faultlessly
Figure 4-11. Startup of an S5-115F in Safety Mode
EWA 4NEB 811 6148-02
4-17
System Startup
4.2
S5-115F Manual
Working with Input/Output Modules
A distinction is made between the following two module types according to the type of process
signals they handle:
• Digital modules
• Analog modules.
Please observe the rules laid down in Chapter 10 for feedback modules and their configuration.
!
Important
Turn off the power supply for the central controller and the sensors before plugging in
or removing input/output modules.
Suitable digital modules are available for various signal levels. The wiring of the power supply,
sensors, and actuators is printed on the front doors of the modules.
LEDs on the frontplate indicate the signal states of inputs and outputs. The LEDs are assigned to
the front connector terminals.
4.3
System Startup Procedure
This section contains information on how to configure a system incorporating programmable controllers and how to put such a system into operation.
4.3.1
Safety Measures
When configuring systems incorporating programmable controllers, follow the relevant VDE regulations (e.g. VDE 0100 or VDE 0160). Pay special attention to the following points:
•
The 24 V DC supply must be safely isolated from the power system voltage (e.g. 220 V AC).
•
Prevent conditions that might endanger persons or property.
•
When switching the S5-115F on for the first time, the user must make sure that the disconnection facilities are in order.
•
When power is restored after a power failure or after EMERGENCY OFF devices have been
tripped, machines must not be able to restart automatically.
•
When EMERGENCY OFF devices are activated, safety must be guaranteed for persons and
equipment as follows:
- Actuators and drives that could cause dangerous situations (e.g. main spindle drives for
machine tools) must be shut off.
- On the other hand, actuators and drives that could endanger persons by being shut off
(e.g. clamping devices), must not be shut off by EMERGENCY OFF devices.
•
The programmable controller must be able to record the activation of EMERGENCY OFF
equipment and the control program must be able to evaluate this information.
4-18
EWA 4NEB 811 6148-02
S5-115F Manual
4.3.2
System Startup
Checking a Plant or Controlled System before Startup
Perform each step in the operator procedure shown in Table 4-2 before switching on the power
supply.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Table 4-2. Operator Procedure Prior to Switching On the Power Supply
Prerequisite
Check List
Remarks
The plant and S5-115F are not
live, i.e. the main switch is turned
off.
- Check the line voltage connections.
Protective ground conductorss must be
connected.
- Make sure that all modules plugged in
are screwed tightly to the mounting
rack.
- Compare the configuration of the I/O
modules to the location diagram. (Pay
particular attention to fixed and
variable addressing).
- For I/O modules, make sure that no
high-voltage lines (e.g. 220 V AC)
terminate at low-voltage connectors
(e.g. 24 V DC).
Visual check of the installation,
observing VDE 0100 and
VDE 0113.
Disconnect fuses for sensors and
actuators. Switch off the power
circuits of the actuators. Turn on
the main switch.
- Plug RAM user submodules required
into subunit A and B
- Enter subunit identifier in subunit A
using the programmer
( Vol. 2, chap. 1)
- Perform Overall Reset on S5-115
After the power switch is turned
on, the green LEDs light up on the
power supply and the red ”ST”
LED lights up on the CPU.
Test mode* / Stop
Insert the fuses for the sensors.
Leave the fuses for the actuators
and power circuits disconnected.
- Activate all sensors in sequence.
- You can interrogate each input using
the ”STATUS VAR” programmer
function.
If the sensors function properly
and their signals are received, the
appropriate input LEDs must light
up on the I/O module.
Test mode* / Stop
Insert the fuses for the actuators.
Leave the power circuits of the
actuators disconnected.
- You can force each output using the
”FORCE VAR” programmer function.
The LEDs of the forced outputs
must light up and the circuit
states of the corresponding
actuators must change.
Test mode*
Leave the power circuits for the
actuators disconnected.
- Switch PC to Stop. Transfer all
configuration DBs to subunit A using
COM 115F
- Switch both subunits to RUN thus
triggering comparison of configured
I/Os with actual I/Os
Remarks: The green LED will light up if
there is no discrepancy
Block input via subunit A only
possible in PLC Stop mode
Test mode* / STOP
- Test the program, block by block
Test mode*
Switch on power circuits of the
actuators
- Switch the PLC to ”RUN” mode.
The PLC scans the program.
Safety mode**;
Individual system acceptance test
required
- Switch the PLC to ”RUN” mode.
The PLC scans the program.
Individual system acceptance test by relevant authority, where applicable
* Control program and configuration data in RAM
** Control program and configuration data in EPROM/EEPROM
EWA 4NEB 811 6148-02
4-19
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
5
Addressing
5.1
5.1.1
5.1.2
Address Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 1
Digital Module Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. - 1
Analog Module Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. - 1
5.2
Slot Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 2
5.3
5.3.1
5.3.2
5.3.3
Handling Process Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. - 5
Accessing the PII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 6
Accessing the PIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 7
Direct Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.-. 8
5.4
CPU Address Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. - 10
5.5
Process Interrupt Generation with the
6ES5 434-7LA12 Digital Input Module . . . . . . . . . . . . . . . . . . . . . . . . . .5 - 12
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. .- 12
Initialization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.-. 12
Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 13
.
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. .- 15
5.5.1
5.5.2
5.5.3
5.5.4
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Figures
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-1.
Digital Address Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. .1
Setting Addresses on the Addressing Panel of the IM 306 Interface Module
. 5-3
Setting a DIP Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. .-. 4.
Addressing Input and Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. .- 5
Location of the Process Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.-. 5
Accessing the PII in the Case of Digital Input Modules . . . . . . . . . . . . . . . . . . . . .5 - 6
Accessing the PIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. .- .7.
Loading Input and Output Values
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 8
CPU Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. .- .10
.
Address Assignment in the I/O Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. -. 11
Chronological Sequence of Interrupt Processing
. . . . . . . . . . . . . . . . . . . . . . . . 5. - 14
Tables
Order of Suboperations for Direct Access to Digital Modules
. . . . . . . . . . . . . .5 - 9
EWA 4NEB 811 6148-02
S5-115F Manual
5
Addressing
Addressing
Assign specific addresses to input and output modules so that you can reference them.
Please note the following when assigning addresses:
• In the case of two-channel I/Os, the modules in both subunits must be assigned the same
addresses.
• In the case of single-channel I/Os, an assigned address must not be used in the other subunit.
5.1
Address Structure
Digital modules generally have bit addresses. Analog modules generally have byte or word
addresses. Consequently, their addresses have different structures.
5.1.1
Digital Module Addresses
One bit represents a channel of a digital module. You must therefore assign a separate number to
each bit. When numbering, note the following:
•
•
•
The CPU program memory is divided into different address areas ( 5.4).
Number individual bytes consecutively in relation to the starting address of each address area.
Number the eight bits of each byte consecutively (0 to 7).
Figure 5-1 shows the format of a digital address:
0
. 5
Bit No. (channel number)
Byte No.
Figure 5-1. Digital Address Structure
5.1.2
Analog Module Addresses
Each channel of an analog module is represented by two bytes (two bytes are equal to one word).
An analog channel address is represented by the high-byte number.
EWA 4NEB 811 6148-02
5-1
Addressing
5.2
S5-115F Manual
Slot Addressing
Variable addressing is possible since an IM 306 interface module is plugged into each central controller and each expansion unit. For addressing purposes, it does not matter whether the module
in question is plugged into a central controller or an expansion unit. Under a hinged cover on the
right side of the interface module is an addressing panel. It has a DIP switch for each slot. Use the
DIP switch to set the least significant byte number for a particular slot ( Figure 5-2).
Note
Input and output modules in different slots can have the same address.
Note
In the case of the 463 analog input module and the CP 523, the initial address is set on
the module and not on the IM 306 interface module. The address set for this slot on
the IM 306 is not significant.
We recommend that the address set on the module be repeated on the IM 306 for
reasons of clarity.
I/O modules that are not safety-related are not duplicated. Each module is assigned to one of the
subunits. The address in question may not then be set in the other subunit.
The control program is identical in both subunits. The operating system assigns the ”correct” subunit.
If you are operating the central controller without expansion units, you can do without the IM 306
for variable slot addressing. You must then use the terminating connector supplied instead of the
IM 306 interface module. This assigns fixed addresses to slots 0 to 5.
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
Fixed slot addressing
Slot
0
1
2
3
4
5
5-2
Initial module address
Digital module
Analog module
0
4
8
12
16
20
128
160
192
224
-
EWA 4NEB 811 6148-02
S5-115F Manual
Addressing
SLOT
ADDRESS BIT
7 6 5 4 3 2
ON
16
0
32
1
1
32
32
32
32
32
32
32
32
1
5
4
3
2
6
5
4
3
6
5
4
3
2
6
5
4
3
6
5
4
3
1
2
6
5
4
3
1
2
ON
1
6
5
4
3
2
1
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Addresses for
analog
ON
7
6
5
4
3
2
ON
2
7
ON
7
1
1
2
ON
1
1
ON
7
1
1
2
ON
16
8
6
ON
7
1
1
ON
7
1
16
7
2
ON
16
6
3
ON
7
1
16
5
4
ON
16
4
5
ON
7
1
16
3
6
ON
16
2
7
1
1
Address switches (1= ON; 0 = OFF)
digital
modules
ON
ON
16
Addresses for
1
ON
7
6
5
4
3
2
3
1
Address switches
modules
7
6
5
4
3
2
1
128
144
160
176
192
208
224
240
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
: Slot number
: Address switches
: Switch for setting the number of inputs or
outputs per slot
: DIP switch
Figure 5-2. Setting Addresses on the Addressing Panel of the IM 306 Interface Module
EWA 4NEB 811 6148-02
5-3
Addressing
S5-115F Manual
Setting addresses
Use the left-hand switch ( in Figure 5-3) on the addressing panel of the IM 306 to indicate what
type of module* you have plugged into the slot. Proceed as follows:
Set the switch to OFF for a 32-bit digital module.
Set the switch to ON for a 16-bit digital module or an 8-channel analog module (16 bytes).
Use the seven address switches ( in Figure 5-3) on the addressing panel of the IM 306 to indicate
the least significant address (the address for channel ”0”) for the module in question. This setting
establishes the addresses of the other channels in ascending order.
When setting starting addresses, note the following:
•
•
•
•
•
•
32-bit digital modules can only have starting addresses whose byte number is divisible by 4
(e.g. 0, 4, 8 etc.).
16-bit digital modules can only have starting addresses whose byte number is divisible by 2
(e.g. 0, 2, 4 etc.).
16-bit addressing is used for 8-bit digital modules. The even-numbered byte is used and the
remaining eight bits are unused.
The interrupt input module also has eight bits. The following assignment applies:
- Read even byte (e.g. byte 0): Status byte
- Read odd byte (e.g. byte 1): Interrupt register byte
- Write even byte (e.g. byte 0): Interrupt enable byte (”1” =enable)
- Write odd byte (e.g. byte 1): Interrupt edge byte (”1” = falling)
16-channel analog modules can only have the starting addresses 128, 144, 160 to 240.
The four-channel 463 analog module is addressed without gaps using a switch on the front
cover of the module.
Example
Plug a 16-bit digital input module into slot 2.
Assign it starting address 46.0 by performing the following steps:
•
•
•
Check to see if the byte number of the starting address can be divided by 2 since you are
dealing with a 16-bit digital module.
46 : 2 = 23 Remainder 0
Set the number of input bits (switch in ON position).
Set the address switches on the DIP switch for slot number 2 as shown in Figure 5-2.
Switch for setting the number of input bits
16
Slot No.
2
32
ON
1
5
7
6
3
2
1
4
Address switch
Figure 5-3. Setting a DIP Switch
*
The digital input/output modules 482-7LA 11, 482-7LF11, 482-7LF21 and 482-7LF31 are handled like 16-channel
modules.
5-4
EWA 4NEB 811 6148-02
S5-115F Manual
Addressing
The module is then addressed as follows:
Bit No.
Address
5.3
0
1
2...
7
46.0 46.1
8
9
10 . . .
46.7 47.0 47.1
15
47.7
Handling Process Signals
Input/output module signal states can be read from, or written to, the addresses shown in
Figure 5-4.
F000H
0
Digital modules
F07FH
127
F080H
128
Analog modules
F0FFH
255
Absolute addresses
Relative byte addresses
Figure 5-4. Addressing Input and Output Modules
Digital module signal states are also stored in a special memory area called the process image. The
process image has two sections, namely the process image of the inputs (PII) and the process image
of the outputs (PIQ). Figure 5-5 shows where the process images are in the program memory:
EF00H
0
PII
EF7FH
127
EF80H
0
PIQ
EFFFH
127
Absolute addresses
Relative byte addresses
Figure 5-5. Location of the Process Images
Process signals can be read or output either via the process image or directly.
EWA 4NEB 811 6148-02
5-5
Addressing
5.3.1
S5-115F Manual
Accessing the PII
In the ”RESTART” mode and at the beginning of program scanning, the digital and analog input
module signal states are written into the PII. The input images of subunit A and subunit B are then
exchanged and compared. Any differences in input information are subjected to discrepancy
analysis to establish whether there is a hardware error in the relevant input module or whether
the deviation is tolerable. A standard value is generated from tolerable input value differences.
This uniform value allows both subunits to execute identically.
The statements in the control program use a particular address to indicate what information is
currently needed. The processor then reads the data that was current at the beginning of program
scanning and works with it.
PII
Reading bit by bit
for binary operations:
aaaaaa
aaa
7 6 5 4 3 2 1 0
Bit No.
Byte 2
A I 2.2
Reading byte by byte
for loading into ACCUM 1:
L IB 12
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
15
Byte 12
0
ACCUM 1
High byte
Low byte
Reading word by word
for loading into ACCUM 1:
L IW 40
15
0
Byte 40
Byte 41
ACCUM 1
High byte
Low byte
Figure 5-6. Accessing the PII in the Case of Digital Input Modules
5-6
EWA 4NEB 811 6148-02
S5-115F Manual
5.3.2
Addressing
Accessing the PIQ
New signal states are entered in the PIQ during program scanning. At the end of each program
scan, the PIQs are exchanged between the two subunits, compared, and transferred to the output
modules only if they are identical.
=Q 4.6
7 6 5 4 3 2 1 0
Bit No.
aaaaaaaa
aaaa
PIQ
Writing bit by bit
for binary operations:
Byte 4
Writing byte by byte
for transfer from ACCUM 1:
T QB 36
Byte 36
0
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
15
ACCUM 1
High byte
Low byte
Writing word by word
for transfer from ACCUM 1:
T QW 52
15
0
Byte 52
Byte 53
ACCUM 1
High byte
Low byte
Figure 5-7.
EWA 4NEB 811 6148-02
Accessing the PIQ
5-7
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Addressing
5.3.3
5-8
S5-115F Manual
Direct Access
Analog values are read in direct or transferred to the output module by calling the ANEI or ANAU
function blocks. AII safety functions are performed in these FBs.
You can also exchange information with digital modules direct. This is necessary when signal
states have to be processed in the control program immediately. Figure 5-8 shows the differences
when loading signal states.
Byte Addresses of Input Modules
0 to 127
T IB x
T IW x
L QB x
L QW x
0 to 125
128 to 255
PII
A I x.x
L IB x
L IW x
L PY x
L PW x
= Q x.x
T QB x
T QW x
FB
250
ANEI
Control Program
T PY x
T PW x
FB
251
ANAU
PIQ
128 to 255
Byte Addresses of Output Modules
Figure 5-8. Loading Input and Output Values
Note
The PII is not updated in the case of direct read access with the ”L PY x”, ”L PW x”
statements.
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
S5-115F Manual
First
Then
EWA 4NEB 811 6148-02
Addressing
Table 5-1. Order of Suboperations for Direct Access to Digital Modules
Read
The accumulator is loaded
Write
The I/O byte/word is output
The PIQ byte/word is overwritten with
the new I/O byte/word.
Note
If you use direct access to call an address whose slot is unoccupied, the CPU goes into
the ”STOP” mode with the ”QVZ” (time-out) error message.
5-9
Addressing
5.4
S5-115F Manual
CPU Address Assignment
Figure 5-9 shows the CPU RAM map.
Kbytes
Address
0000H
0
1000H
4
.
.
3000H
12
.
16 K ST
7000H
28
.
Memory
9000H
B000H
.
.
.
C400H
8 K ST
submodule
4 K ST
Internal user memory
(5 Kbytes)
49
.
.
.
Block address list
55
.
.
.
.
.
.
E600H
(Internal data)
57.50
.
.
.
System data RS
58.50
.
.
.
.
.
.
EA00H
.
.
.
EC00H
59
.
.
.
Timers T
.
.
.
ED00H
Counters C
59.25
.
.
.
Flags F
59.50
.
.
.
Process I/O image
59.75
.
.
.
.
.
.
EE00H
.
.
.
EF00H
.
.
.
F000H
.
.
.
44
.
.
.
(Internal data)
.
.
.
DC00H
36
.
I/O area and
internal registers
60
.
.
.
64
FFFFH
CPU 942 F
*
ST = Statements = Code words (2 bytes each)
Figure 5-9. CPU Memory Map
5-10
EWA 4NEB 811 6148-02
S5-115F Manual
Addressing
The input/output area is divided as shown in Figure 5-10:
Address
Kbytes
F000H I/O modules P
60
F100H
60.25
F200H
60.50
F300H
60.75
F400H Page frames (parallel interface)
61
F800H
62
FF00H
FFFFH
(Internal registers)
63.75
64
Figure 5-10. Address Assignment in the I/O Area
EWA 4NEB 811 6148-02
5-11
Addressing
5.5
S5-115F Manual
Process Interrupt Generation with the 6ES5 434-7LA12 Digital Input
Module
Interrupt generation can be programmed on the 6ES5 434-7LA12 input module. In the S5-115F
there are only two-channel, i.e. safety-related, interrupt inputs. There is a limit of one module per
subunit. This module must be plugged into the central controller.
5.5.1
Functional Description
Process interrupts trigger two different responses in the interrupt module:
• They change register contents
- The interrupt register stores configured edge changes with a ”1” (LPY with module address
+ 1)
- The status register flags the current signal status (LPB with module address).
Register contents are not transferred cyclically to the PII. They can only be read in by direct
access. The interrupt register is automatically deleted when read.
• An LED lights up on the module and a relay picks up. This indication is also retained even after
power failure, and can only be reset by pressing the 24 V Reset input.
5.5.2
Initialization
The CPU 942-7UF12 operating system automatically programs the interrupt DI bits used in the
screen form for negative-going edge.
However, the user can change the parameters in the restart OBs (OB 21, OB 22). The operating
system monitors that none of the enabled interrupt DI bits is assigned a positive-going edge
during edge initialization. This ensures that a sensor in the process of losing voltage can initiate
the safety function.
The following must be programmed in the OB 21 and OB 22 restart blocks
• Those inputs which are to trigger an interrupt
• Whether the interrupt is to be triggered by a rising or falling edge (in the case of the safetyrelated S5-115F, interrupts can only be triggered by a falling edge).
This information is defined in two bytes, which are transferred to the module by the program in
OB 21 or OB 22.
5-12
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
S5-115F Manual
•
•
•
5.5.3
Addressing
Programming the restart blocks
STL
EWA 4NEB 811 6148-02
Meaning
L
KM
ab
Load a two-byte bit pattern into ACCUM 1.
T
PW
x
Transfer the information from ACCUM 1 to the module
(x=initial module address)
The bits in the high-order byte1 (byte a in this example), which have been loaded into ACCUM 1
with the ”L KM a b” statement, correspond to the bit addresses of the eight input channels. If a bit
is set to ”1”, the interrupt is enabled for this channel.
The bits in the low-order byte1 indicate whether the interrupt on this channel is triggered by a
rising edge (”0”) or by a falling edge (”1”) .
Note
In the case of the S5-115F, interrupts may only be configured with falling edge.
All interrupts used must be enabled.
Initialization may only be implemented in OBs 21 and 22.
The interrupt register must be scanned in OB 2.
Access
Status processing
Unlike the interrupt register, a status scan may also be programmed in OB 1.
The signal states should be loaded into the PII before further processing as the status byte is not
written cyclically to the PII.
OB 1:
STL
Meaning
L
PY
x
Load I/O byte ”x”.
T
IB
x
Transfer loaded I/O byte to the PII
(x=Initial module address)
A
I
x.y
Evaluate inputs (y=Bit address).
1 The high-order byte is the even byte (e.g. 2) and the low-order byte the odd byte (e.g. 3)
5-13
Addressing
S5-115F Manual
Interrupt processing
There must be a precise response to an interrupt in OB 2 once the interrupt has been enabled.
This block is called by the module with the PRAL-N1 signal (process interrupt). This signal is produced as follows:
The interrupt flag is ”1” if an interrupt is present, irrespective of the type of pulse edge generating
the interrupt.
Every interrupt request is stored until the interrupt is serviced. The module reports the request via
the internal bus system of the CPU (PRAL-N signal).
This produces the following chronological sequence:
Subunit A
Subunit B
Interrupt request
Interrupt request
PRAL-N
Response time of the
6ES5 434-7LA12
interrupt module
(typ. 1 ms)
PRAL-N
Response time
Synchronization of
interrupt processing
Synchronization of
interrupt processing
of the
Call OB 2
with LPY, LPW
Call OB 2
with LPY, LPW
Evaluation of the inputs
CPU
Evaluation of the inputs
Figure 5-11. Chronological Sequence of Interrupt Processing
Every input enabled for the interrupt must be scanned in OB 2. The address of the inputs is
obtained by incrementing the initial module address by one.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Example: Scanning inputs 0 and 1 of the module with the initial address 8 for an interrupt.
STL
L
T
A
JC
A
JC
BE
PY
IB
I
PY
I
PY
Meaning
9
9
9.0
1
9.1
2
Interrupt register is read.
The information is transferred to the PII.
Scan input 0.
Process interrupt 0 in PB 1.
Scan input 1.
Process interrupt 1 in PB 2.
1 Negation of the PRAL signal
5-14
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
S5-115F Manual
5.5.4
L
T
A
JC
A
JC
BE
Name:
Name:
*
**
Addressing
Programming Example
The digital module with process interrupt generation has the initial module address ”8”.
Input 0 is an interrupt input that responds to a falling* pulse edge. FB 12, in which output byte 13
is overwritten with FFH , is called by an interrupt request at this input.
Input 1 is an interrupt input that responds to a falling* pulse edge. FB 13, in which output byte 13
is overwritten with FFH , is called by an interrupt request.
OB 21 and 22:
STL
PY
IB
I
FB
I
FB
Case A
L
KH
T
QB
BE
Case B
L
KH
T
QB
BE
EWA 4NEB 811 6148-02
Meaning
L
KH**
0303
T
BE
PW
8
9
9
9.0
12
9.1
13
Initializing interrupt input enable and edge
generation
OB 2:
STL
Meaning
Evaluating the interrupt request
Reading the interrupt byte
Updating the PII
FB 12:
STL
Meaning
00FF
13
Loading QB 13
FB 13:
STL
Meaning
00FF
14
Loading QB 14
In safety-related programs, interrupt inputs must be initialized with a falling edge only.
This value can be entered as bit pattern KM 00000011 00000010 in the case of larger programmers.
5-15
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
6
Analog Value Processing
6.1
Analog Input Modules
6.2
6.2.1
6.2.2
460-7LA12 Analog Input Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. - 2
Connecting Sensors to the 460 Analog Input Module
............ 6-2
Startup of the 460 Analog Input Module
. . . . . . . . . . . . . . . . . . . . . . .6 - 8
6.3
6.3.1
6.3.2
463-4U... Analog Input Module
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. - 11
Connecting Sensors to the 463 Analog Input Module
. . . . . . . . . . . . 6 - 11
463 Analog Input Module
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 14
6.4
6.4.1
Representation of the Digital Input Value
. . . . . . . . . . . . . . . . . . . . . . 6 - 16
Digital Representation of a Measured Value
(460 Analog Input Module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 16
Digital Representation of a Measured Value
(463 Analog Input Module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 22
6.4.2
.....................................6
. .- 1
6.5
Wire-break Signalling and Scanning
6.6
6.6.1
6.6.2
Analog Output Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.- 28
Method of Operation of the Analog Output Modules
. . . . . . . . . . . 6 - 28
Analog Output Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.- 29
6.7
Digital Representation of an Analog Value
6.8
I/O Module Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 33
6.9
Analog Value Matching Blocks FB 250 and FB 251 . . . . . . . . . . . . . . . 6 - 37
EWA 4NEB 811 6148-02
. . . . . . . . . . . . . . . . . . . . . . . . . . .6 - 26
. . . . . . . . . . . . . . . . . . . . . 6 - 31
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Figures
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
6-16.
6-17.
Pin Assignments of the 460 Analog Input Module
. . . . . . . . . . . . . . . . . . . . . . . 6. - 2
Connecting Sensors to the 460 Analog Input Module
. . . . . . . . . . . . . . . . . . . . .6 - 4
Connecting Thermocouples to the 460 Analog Input Module
. . . . . . . . . . . . . .6 - 5
Connecting Resistance Thermometers to the 460 Analog Input Module
.... 6-6
Analog Input Module Terminal Assignment in the Case of the
460 Analog Input Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. .7
Connecting Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 8
.
Position of the Function Selector Switches of the
460-7LA12 Analog Input Module (Back of the Module)
. . . . . . . . . . . . . . . . . . .6 - 10
Front Connector Terminal Assignment for the 463 Analog Input Module
. . . 6 - 12
Labelling of the Switches on the 463 Module
. . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 14
Position of the Switches on the 463 Analog Input Module
. . . . . . . . . . . . . . . . .6 - 15
Representation of the Digitized Measured Value in the Case of the
460 Analog Input Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. .16
PT 100 Connected to SIMATIC Analog Input Modules . . . . . . . . . . . . . . . . . . . . .6 - 19
Representation of an Analog Measured Value in Digital Form in
the Case of the 463 AI Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. .-.22
Connecting Loads to Analog Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . .6. - 29
Connection of Loads to Current and Voltage Outputs of
Analog Output Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 30
.
Representation of an Analog Signal in Digital Form
.....................6
. - 31
Schematic Representation of the Conversion
. . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 40
Tables
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
Range Card Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 9.
Function Settings on the 6ES5 460-7LA11 Module . . . . . . . . . . . . . . . . . . . . . . . 6. - 10
Memory Addresses on the 463 Analog Input Module
. . . . . . . . . . . . . . . . . . . . .6 - 15
Meaning of Bits 0 to 2 in the Case of the 460 Analog Input Module
. . . . . . . . 6 - 16
460 AI Module: Digital Representation of Analog Values as a Positive
Binary Number (4 to 20 mA), Channel Type 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 17
460 AI Module: Digital Representation of Analog Values for
Resistance-Type Sensors, Channel Type 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. .- 18
460 AI Module: Digital Representation of Analog Values as
Signed Absolute Value (±50 mV), Channel Type 5 . . . . . . . . . . . . . . . . . . . . . . . 6. - 20
460 AI Module: Digital Representation of Analog Values as
Two's Complement in the Range ±50 mV, Channel Type 6 . . . . . . . . . . . . . . . .6 - 21
Meaning of the 0 Bit in the 463 Analog Input Module
. . . . . . . . . . . . . . . . . . . .6 - 22
463 AI Module: Digital Representation of Analog Values as
Two's Complement (4 to 20 mA, Channel Type 3) . . . . . . . . . . . . . . . . . . . . . . . . 6. - 23
463 AI Module: Digital Representation in the Case of
Current Range 4 to 20 mA, Channel Type 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. - 24
463 AI Module: Digital Representation of the Analog Values as
Two's Complement in the Voltage Range 0 to 1 V . . . . . . . . . . . . . . . . . . . . . . . 6. - 25
Wire-Break Message for Resistance Thermometers . . . . . . . . . . . . . . . . . . . . . . 6. - 27
Analog Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. -. 32
.
Types of Analog I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. .- .33
Channel Types for Analog Input Modules (I/O Type 13)
. . . . . . . . . . . . . . . . . . .6 - 34
Channel Types for Analog Input Modules (I/O types 14 and 15)
. . . . . . . . . . . . 6 - 36
Channel Types for Analog Input Modules (I/O type 16) . . . . . . . . . . . . . . . . . . . .6 - 36
EWA 4NEB 811 6148-02
S5-115F Manual
6
Analog Value Processing
Analog Value Processing
Analog input modules convert analog process signals to digital values that the CPU can process.
Analog output modules perform the opposite function.
This chapter explains the relationship between the two conversion types.
6.1
Analog Input Modules
The analog measured value is digitized and stored in a data memory in the module. You can
transfer it to the CPU where it can be processed further.
Signal exchange between module and CPU
The CPU reads the digitized value from the module memory with the FB 250 ANEI. The total
measured value (2 bytes) is stored in the CPU. The measured value contains additional condition
code bits as well as the coded analog value.
460 and 463 analog input modules
There are two analog input modules available with the following characteristics:
6ES5 460-7LA12
- Floating
- Eight channels
- 2 range cards
- 60 V AC / 75 V DC maximum permissible isolation voltage between each channel and M as well
as between the channels
- Not permissible for safety-related use
6ES5 463-4U...
- Floating
- Four channels
- Measuring range set via plug-in jumpers
- 30 V AC / 75 V DC maximum permissible isolation voltage between each channel and M as well
as between the channels
- Permissible for safety-related use.
EWA 4NEB 811 6148-02
6-1
Analog Value Processing
S5-115F Manual
6.2
460-7LA12 Analog Input Module
6.2.1
Connecting Sensors to the 460 Analog Input Module
Pin assignment on the front connector
a
b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
L+=24V
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
KOMP -
M0+
M0 M1+
M1 S+
M2+
M2 M3+
M3 KOMP+
M4+
M4 M5+
M5 S-
M6+
M6 M7+
M7 L-
460-7LA12
a = Pin No.
b = Assignment
Figure 6-1. Pin Assignments of the 460 Analog Input Module
6-2
EWA 4NEB 811 6148-02
S5-115F Manual
Analog Value Processing
Depending on the design of the current or voltage sensor, you must observe different conditions
when connecting analog input modules.
!
Important
Unused inputs must be terminated with a voltage divider or shunt ( Table 6-1).
In the case of the 498-1AA11 module, the unused inputs must be short-circuited (M+
and M- in each case).
Other modules require no additional circuits.
The galvanic isolation between analog inputs and L+ or L- is revoked when using the
498-7LA51 module for a 2-wire transducer!
Connecting sensors
Certain precautions must be taken so that the permissible potential difference VCM is not
exceeded. These precautions differ for floating and nonfloating sensors.
For floating sensors, the measuring circuit can accept a potential to ground that exceeds the
permissible potential difference VCM (see maximum values of the individual modules).
Prevent this by connecting the negative potential of the sensor to the reference voltage of the
module (reference bus).
Example: Temperature is measured on a busbar with an isolated thermocouple.
Under worst case conditions, the measuring circuit can accept a potential that would
destroy the module. Prevent this with an equipotential bonding conductor
( Figure 6-2).
Possible causes:
• Static charge
• Transfer resistances through which the measuring circuit assumes the potential of
the busbar (e.g. 230 V AC)
For nonfloating sensors, the permissible potential difference VCM between the inputs and the
reference bus must not be exceeded.
EWA 4NEB 811 6148-02
6-3
Analog Value Processing
S5-115F Manual
Example: Measuring the temperature of the busbar of a galvanic bath with a nonisolated
thermocouple. The potential of the busbar compared with the reference potential of
the module is 24 V DC (max.). A 460 analog module with floating input is used
(permissible VCM 60 V AC / 75 V DC).
M+
VI
+
M-
-
Equipotential
bonding
conductor
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Module
Sensor
floating
Module
M+
VI
VCM
+
M-
+
-
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Sensor
floating
VCM
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
Reference bus
Range card for four inputs
(For adapting to different input
voltages/currents
Reference bus
VI = Input voltage
M+ = Measuring input+
M- = Measuring input-
Figure 6-2. Connecting Sensors to the 460 Analog Input Module
Connecting thermocouples with compensating box
The influence of temperature on a reference junction (e.g. in a terminal box) can be offset with a
compensating box. To do this, bring the compensating box into thermal contact with the terminals. For the analog input modules, a group signal line is brought out to pins 23 and 25 as input
for the compensation voltage. Use the function selection switch to set the module for compensating box operation. When connecting the compensating box, please note the following:
• The box must have a floating supply.
• The power supply for the compensating box must have a grounded shielding winding.
Each module must have its own compensating box with its own power supply unit.
Note
If you connect a measuring point with compensating box to a reference junction, you
can use the measured input voltage to correct other measuring points through
software.
6-4
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
Thermocouple
Terminal box
Compensating
box
EWA 4NEB 811 6148-02
M+
M-
-
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Analog Value Processing
Module
+
23
25
Power
supply
unit
Reference bus
Range card 6ES5 498-1AA11
Figure 6-3. Connecting Thermocouples to the 460 Analog Input Module
Consult Catalog MP 11 for information on thermocouples and compensating boxes.
6-5
Analog Value Processing
S5-115F Manual
Connecting resistance thermometers (e.g. PT 100)
In the case of 6ES5 460-7LA11and 6ES5 460 -7LA12:
A constant-current generator supplies series-connected resistance thermometers (maximum
8 x PT 100) with a current of 2.5 mA via pins ”S+” and ”S-”.
If no PT 100 is connected to input channels 4 to 7, other voltages and currents can be measured at
these channels with the range cards 498 1AA21, -1AA31, -1AA41, -1AA51, -1AA61 or -1AA71
( Figure 6-4, card 2).
You need not connect short-circuit jumpers to the unused channels if you are using range cards
498-1AA41, -1AA51 or -1AA71. If you are using other range cards, you must connect short-circuit
jumpers to the unused input channels ( Figure 6-4, channels 5 and 6).
+
460 AI module
PT 100
Channel 0
M+
M–
Range card
for 4 inputs
6ES5 4981AA11
PT 100
Channel 1
Channel 2
PT 100
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Module 1
¯¯¯
Channel 3
0 to 500 mV
VCM
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Module 2
Chann. 4
0 to 500 mV
Range card
for 4 inputs
6ES5 4981AA11
VCM
Channel 7
PT 100
S–
S+
I–
I+
Iconst
2.5 mA
Reference bus
Figure 6-4. Connecting Resistance Thermometers to the 460 Analog Input Module
6-6
EWA 4NEB 811 6148-02
S5-115F Manual
Analog Value Processing
Front connector terminal assignment
Figure 6-5 shows the input module terminal assignment for resistance thermometers in the case of
the 460 analog input module.
a
b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
L+=24V
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
KOMP -
M0+
M0 M1+
M1 S+
M2+
M2 M3+
M3 KOMP+
M4+
M4 M5+
M5 S-
M6+
M6 M7+
M7 L-
460-7LA12
a=Pin No.
b=Assignment
Figure 6-5. Analog Input Module Terminal Assignment in the Case
of the 460 Analog Input Module
EWA 4NEB 811 6148-02
6-7
Analog Value Processing
S5-115F Manual
Connecting transducers
In the case of two-wire transducers, the supply voltage is fed via the range card of the analog
input module and is inherently short-circuit-proof.
Four-wire transducers have a separate supply voltage.
Figure 6-6 shows how to connect transducers.
Four-wire transducers
+
Transducer
I
M+
M-
I=4 to 20 mA
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Module
Module
VC (220V)
+
Transducer
Range card
6ES5 4981AA51
I
M+
M-
I=4 to 20 mA
Reference bus
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Two-wire transducers
Range card
6ES5 4981AA71
Reference bus
Figure 6-6. Connecting Transducers
6.2.2
Startup of the 460 Analog Input Module
You can set different measuring ranges on the module. For this purpose, voltage dividers or shunts
must be plugged into the input module in the form of cards ( Table 6-1). They adapt the process
signals to the input level of the module.
Plugging in range cards
Two range cards can be plugged into the 460 analog input module. One card defines the
measuring range of four inputs.
We offer voltage dividers, shunts and through connection cards for different measuring ranges
( Table 6-1).
6-8
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Range Card
6ES5 498-
- 1AA51
- 1AA71
EWA 4NEB 811 6148-02
Analog Value Processing
Table 6-1. Range Card Description
Module Circuit Diagram (4 inputs each)
(enables detection of
hardware wire break)
- 1AA11
- 1AA21
L+
L-
Function
500 mV/mA/PT100
± 500mV;
±5V
Function
50 mV
PT 100
± 50 mV
- 1AA31
- 1AA41
±1V
± 100 mV *
± 10 V
±1V*
± 20 mA
± 2 mA *
+ 4 to + 20 mA
2-wire transducer
- 1AA61
± 500 mV *
+ 4 to + 20 mA
4-wire transducer
* Possible combination in the case of the ”50 mV” setting but with greater error.
Note
Unused inputs must be terminated with a voltage divider or shunt card. For throughconnection cards 6ES5 498-1AA11, insert jumpers in the front connector.
6-9
No wire break indication
6-10
50 Hz
aaaaaa
aaa
Cyclic
aaaaaa
aaaaaa
Wire break indication
Setting
compensation
Measuring range*
Analog value
representation
aaaaaaaa
aaaa
PCB plug connector
Switch
Switch
50 mV
Two's
complement
aaaaaa
aaaaaa
aaaaaa
aaa
Reference junction
aaaaaaaa
aaaa
Connector
aaaaaa
aaaaaa
aaaaaa
aaa
(nominal value)
aaaaaa
aaaaaa
aaaaaa
aaa
Switch
aaaaaa
aaaaaa
Function
aaaaaa
aaaaaa
aaaaaa
aaa
Line frequency
aaaaaa
aaaaaa
Sampling
aaaaaa
aaaaaa
T
o
p
aaaaaa
aaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Analog Value Processing
S5-115F Manual
Various measuring ranges can be set for the 460 analog input module using range cards. You can
set various functions for analog input modules by putting the function selector on the back of the
module to the position desired ( Table 6-2).
Connector
Switch
Figure 6-7. Position of the Function Selector Switches of the 460-7LA12 Analog Input Module
(Back of the Module)
Note
When selecting functions, set all switches.
Table 6-2. Function Settings on the 6ES5 460-7LA11 Module
Setting
yes
no
500 mV
Value and
sign
Selective
60 Hz
Channels 1 to 3 Channels 4 to 7
Channels 0 to 3 Channels 4 to 7
* Setting for PT 100: measuring range 500 mV
EWA 4NEB 811 6148-02
S5-115F Manual
6.3
Analog Value Processing
463-4U... Analog Input Module
When the AE 463 is used in a central configurated ER 701-3 with IM 306 please notice:
• the 705 connecting cable must not longer than 0.5 m
• it is not allowedto use the AE 463 in the third expansion unit (EU)
6.3.1
Connecting Sensors to the 463 Analog Input Module
Connecting sensors
Sensors are connected to the analog input module by shielded cables with a max. length of 200 m
(650 ft.). If the cables are run separately from power cables, distances of up to 500 m (1650 ft.) are
possible.
Voltage sensors, current sensors, two-wire and four-wire transducers can be connected in any
combination. There are four short-circuit proof terminals on the front connector for two-wire
transducers.
!
Important
When two-wire transducers are used, the common input of these channels must be
connected to L-. This cancels the galvanic isolation between the channels and the
supply voltage L+/L-. ( 10.11.2 )
It must be noted that the module is enabled via the enable lines F+ and F- on the front connector
with a 24 V DC signal.
Installing the front connector
You must execute the following steps to install the front connector on the analog input module:
1.
2.
3.
4.
5.
Unscrew the connector cover.
Hook the front connector into the pivot at the bottom of the module.
Swing the front connector up and in until it engages with the module.
Tighten the screw at the top of the front connector to secure it.
Screw on the connector cover.
EWA 4NEB 811 6148-02
6-11
Analog Value Processing
S5-115F Manual
Front connector terminal assignment
Figure 6-8 shows the terminal assignment for the 463 analog input module.
Front connector terminal assignment
Enable
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
Input range 0 to 1 V
F+
FL+
24 V
Power supply
24 V
+
+
L-
1
2
3
4
5
+
Front strip
Front strip
Pin
Pin
F+
FL+
1
2
+
3
4
5
6
7
8
6
7
8
9
10
11
9
10
11
12
13
14
12
13
14
+
15
16
17
15
16
17
18
19
20
18
19
20
21
22
23
+
Input range 0 to 10 V
24
25
26
27
L-
21
22
23
+
24
25
26
27
28
29
30
28
29
30
31
32
33
31
32
33
34
35
36
+
34
35
36
37
38
39
37
38
39
40
41
42
40
41
42
Figure 6-8. Front Connector Terminal Assignment for the 463 Analog Input Module
6-12
EWA 4NEB 811 6148-02
S5-115F Manual
Analog Value Processing
Front connector terminal assignment
Input range 4 to 20 mA
Front strip
Pin
F+
1
FL+
2
3
4
+
+
(only in the case of
single-channel
I/Os with two-wire
transducers)
F+
FL+
5
6
7
+
Tr
Pin
Front strip
Pin
1
F+
1
2
3
4
FL+
2
3
4
5
6
7
+
5
6
7
8
9
10
11
12
13
11
12
13
11
12
13
+
14
15
16
23
24
25
Tr
26
27
28
29
33
34
35
14
15
16
+
17
18
19
20
21
22
L-
+
Tr
30
31
32
+
(4-wire transducers)
8
9
10
20
21
22
+
Front
8
9
10
17
18
19
L-
Input range 4 to 20 mA
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Input range 0 to 20 mA
+
Tr
17
18
19
20
21
22
L-
23
24
25
26
27
28
29
14
15
16
23
24
25
+
26
27
28
29
30
31
32
30
31
32
33
34
35
33
34
35
+
36
37
38
36
37
38
36
37
38
39
40
41
39
40
41
39
40
41
42
42
42
Figure 6-8. Front Connector Terminal Assignment for the 463 Analog Input Module (cont.)
EWA 4NEB 811 6148-02
6-13
Analog Value Processing
6.3.2
S5-115F Manual
463 Analog Input Module
The various measuring ranges of the 463 analog input module are defined with jumpers.
Setting the data format for the 4 to 20 mA range
When using the 4 to 20 mA inputs, press the relevant switch to select between a resolution of 0 to
1023 units or 256 to 1279 units. Different data formats can be selected for all four input channels.
The relevant switches remain at the off position when using the following inputs
• 0 to 1 V
• 0 to 10 V
• 0 to 20 mA.
Channel 0
Range 4 to 20 mA
0 to 1023
Channel 1
Channel 2
Channel 3
1)
Range 4 to 20 mA
256 to 1279
other ranges
0 to 1023
On
Channel 3
Channel 2
Channel 1
Channel 0
1)
It is advisable to mark the selected
switch positions in these fields.
Figure 6-9. Labelling of the Switches on the 463 Module
Address setting
The 463 analog input module has four galvanically isolated input channels. The analog input
signals are coded using voltage/frequency converters (V/F) with an integration time of 20 msec.
The sequencer control coordinates the setting of the counters, the duration of the integration
time and the transfer of the counter results of the four input channels to the four measured value
memories.
The measuring range of each channel is adapted by the relevant sensor connection and by jumpers
in the front connector of the module.
The four 16 bit (2 bytes) wide measured value memories can be scanned one after the other by the
STEP 5 program using word operations. The 463 analog input module requires eight bytes of
address space.
The results of the measurements made on the various channels are stored under the addresses
ADB 0 to 2 ( Table 6-3).
The module address is set on a switch in the module cover.
The setting on the IM 306 is not significant for this slot.
However, for the sake of clarity, set the same address here.
6-14
EWA 4NEB 811 6148-02
ON
7 6 5 4 3 2
7 6 5 4 3 2
7 6 5 4 3 2
160
7 6 5 4 3 2
168
176
184
Figure 6-10.
EWA 4NEB 811 6148-02
216
224
aaaaaaaa aaaaaa
aaaaaaaa aaaaaa
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaa
7 6 5 4 3 2
232
aaaaaaaa aaaaaa
aaaaaaaa aaaaaa
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaa
152
240
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaa
ON
208
248
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaa
7 6 5 4 3 2
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaa
144
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaa
ON
200
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaa
7 6 5 4 3 2
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaa
136
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaa
7 6 5 4 3 2
7
OFF
OFF
OFF
OFF
OFF
ON
OFF
ON
OFF
ON
OFF
ON
7 6 5 4 3 2
ON
aaaaaaaa aaaaaa
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaa
128
Module Address
7 6 5 4 3 2
ON
aaaaaaaa aaaaaa
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaa
Switch Position
7 6 5 4 3 2
ON
aaaaaaaa aaaaaa
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaa
Module Address
aaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaa
Table 6-3.
aaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa aaaaaa
aaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaa aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
S5-115F Manual
Analog Value Processing
Memory Addresses on the 463 Analog Input Module
Switch Position
192
7 6 5 4 3 2
ON
ON
7 6 5 4 3 2
7 6 5 4 3 2
7 6 5 4 3 2
7 6 5 4 3 2
OFF
OFF
OFF
OFF
OFF
ON
OFF
ON
OFF
ON
OFF
ON
2
Plug connector
Switch addressing
Setting the data format
Position of the Switches on the 463 Analog Input Module
6-15
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Analog Value Processing
Bit No.
*
6-16
S5-115F Manual
6.4
Representation of the Digital Input Value
6.4.1
Digital Representation of a Measured Value (460 Analog Input Module)
Note
The 460 analog module cannot be used in safety-related systems.
High Byte
Byte No.
212 211 210 29
28
1
Low Byte
n
n+ 1
15 14 13 12 11 10
27
9
8
7
6
5
4
3
2
1
0
26
25
24
23
22
21
20
T
F
Ü
binary measured value
Activity bit;
Error bit; is set in the event of an internal error;
the measured value read in is then invalid
Overflow bit (is set when the
measuring range limit is reached)
Figure 6-11. Representation of the Digitized Measured Value in the Case of the
460 Analog Input Module
Bits 0 to 2 are insignificant for the measured value. They provide information on the measured
value representation. Table 6-4 describes these bits.
Table 6-4. Meaning of Bits 0 to 2 in the Case of the 460 Analog Input Module
Bit
Meaning
Signal
State
Meaning of the Signal State
OV
Overflow bit
1
Range exceeded*
F
Error bit
1
Wire break
A
Activity bit
0
Cyclic scan or ”Not active”
(for selective sampling)
Coding procedure not yet terminated in
selective sampling operation
In the case of overflow at one measuring point, the overflow bits of the other channels remain unaffected; i.e. the
values of the other channels are correct and can be evaluated.
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
S5-115F Manual
Input
Current
in mA
32.796
0.0
•
•
•
•
•
•
•
Units
4096+OV
EWA 4NEB 811 6148-02
Analog Value Processing
The measured value is represented in different number formats. You can define the number
format via selector switches.
Table 6-5. 460 AI Module: Digital Representation of Analog Values as a Positive Binary Number
(4 to 20 mA), Channel Type 3
Input
Voltage
in mV
Digitized Measured Value
15 14 13 12 11 10
A
F
OV
9
8
7
6
5
4
3
2
1
0
Range
1024
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
1
Overflow
31.992
4095
1023.76
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
0
Over-
24.0
23.992
3072
3071
750.0
749.76
0
0
1
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1
0/1
0
0
0
0
range*
20.008
2561
625.24
0
1
0
1
0
0
0
0
0
0
0
0
1
0/1
0
0
20.0
2560
625.0
0
1
0
1
0
0
0
0
0
0
0
0
0
0/1
0
0
Nominal
16.0
4.0
2048
512
500.0
125.0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0/1
0/1
0
0
0
0
range
3.992
511
124.76
0
0
0
0
1
1
1
1
1
1
1
1
1
0/1
0
0
3.0
384
93.75
0
0
0
0
1
1
0
0
0
0
0
0
0
0/1
0
0
Below
nominal
range limit
2.992
383
93.5
0
0
0
0
1
0
1
1
1
1
1
1
1
0/1
0
0
Wire-break
0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0/1
0
0
* Short circuit of the two-wire transducer
Explanation of Table 6-5
Representation: Positive binary number
Overrange condition at values above the upper nominal value but under double the nominal
span (16 mA); no overflow bit set!
Lower range limit exceeded at values >0 and below the lower nominal value; no overflow bit
set!
Overflow in the case of values exceeding double the nominal span (from 16 mA upwards);
overflow bit (OV) set
Configuration aids
Set the measuring range of the module to 500 mV and plug in the 6ES5 498-1AA71 card.
The measuring range 4 to 20 mA is divided into 2048 units in the interval 512 to 2560 units. For
representation in the range 0 to 2048, 512 units must be subtracted per software
- configure channel type 3 with COM 115F
FB 250 detects wirebreak ( 6.5 ).
When the lower limit of 384 units is exceeded, FB 250 ANEI sets error bit F ( 6.9).
The 460 AI module can only be used with I/O type 13 (nonsafety-related).
Note
The 31.25-ohm shunt resistor integrated on the 498-1AA71 card prevents the
wirebreak signal (F bit is not set). You can therefore only detect a wirebreak by
scanning the measured value in the user program for a lower limit. You would then
interpret a measured value of less than e.g. 1 mA (=128 units) as a wirebreak.
6-17
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
Analog Value Processing
Input
Resistance
in Ohms
•
•
•
•
•
•
•
6-18
S5-115F Manual
Table 6-6. 460 AI Module: Digital Representation of Analog Values for
Resistance-Type Sensors, Channel Type 4
Units
Digitized Measured Value
15 14 13 12 11 10
OV
F
A
9
8
7
6
5
4
3
2
1
0
Range
400.0
4095
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
1
Overflow
399.90
4095
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
0
Over-
200.098
2049
0
1
0
0
0
0
0
0
0
0
0
0
1
0/1
0
0
range
200.00
2048
0
1
0
0
0
0
0
0
0
0
0
0
0
0/1
0
0
199.90
100.0
99.90
2047
1024
1023
0
0
0
0
0
0
1
1
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0/1
0/1
0/1
0
0
0
0
0
0
0.098
0.0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0/1
0/1
0
0
0
0
Nominal
range
Explanation of Table 6-6
Representation: Positive binary number (unipolar)
Resolution of the PT 100 is approximately 1/3° C. 10 units correspond approx. to 1 ohm.
Overrange condition at values exceeding the nominal range; no overflow bit set
Overflow at values exceeding the overrange; overflow bit (OV) set
Configuration aids
- Plug in the 6ES5 498-1AA11 range card (for 4 channels)
- Set the jumper switch on the 460 module ( 6.2.2)
- Configure channel type 4 with COM 115F
Wire break is recognized by the hardware (method , 6.5) and causes error bit F to be set. This
bit is read by FB 250, which then sets error bit F. This sets the FB error bit of FB 250 ( 6.9).
The 460 AI module can only be used with I/O type 13 (nonsafety-related).
EWA 4NEB 811 6148-02
S5-115F Manual
Analog Value Processing
Resolution of the PT 100 is approximately 1/3 °C. 10 units correspond approx. to 1 ohm.
You can use the assignments in Figure 6-12 for PT 100 resistance-type sensor.
The input values are not linearized by the modules. You can only linearize the input values via a
relevant software solution.
- 270
- 220
0
270
100
200
750
ca. 890
°C
0
10
360
400
Non-linear range
U = R · I = R · 2.5 mA (constant current)
0
25
250
500
900
0
102
1024
2048
3680
1000
mV
4096
Units
Overrange
Resolution: 10 units = 1
270 °C : 1024 units = 0.3 °C / unit
Figure 6-12. PT 100 Connected to SIMATIC Analog Input Modules
EWA 4NEB 811 6148-02
6-19
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
Analog Value Processing
•
•
•
•
•
Meas.
Value
in mV
(±50)
Units
100.0
4095+OV
50.000
-50.024
:
-99.976
-100.0
2048
0
1
0
0
0
0
0
0
0
0
0
0
0
0/1
0
0
49.976
2047
0
0
1
1
1
1
1
1
1
1
1
1
1
0/1
0
0
:
25.000
24.976
:
1024
1023
0
0
0
0
1
0
0
1
0
1
0
1
0
1
:
0
1
0
1
0
1
0
1
0
1
0
1
0/1
0/1
0
0
0
0
:
0.024
+0.000
:
1
+0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
0
0
0
0
1
0
0/1
0/1
0
0
0
0
-0.000
-0.024
:
-0
-1
:
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
0
0
0
1
0/1
0/1
0
0
0
0
-24.976
-25.000
:
-1023
-1024
:
1
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
:
1
0
1
0
1
0
1
0
1
0
0/1
0/1
0
0
0
0
-49.976
-50.000
-2047
-2048
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0/1
0/1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0/1
0
0
1
1
1
1
1
0/1
0
0
1
1
1
1
1
0/1
0
1
6-20
-2049
:
-4095
-4095+OV
S5-115F Manual
Table 6-7. 460 AI Module: Digital Representation of Analog Values as Signed
Absolute Value (±50 mV), Channel Type 5
Digitized Measured Value
15 14 13 12 11 10
99.976
4095
:
50.024
:
2049
0
1
0
0
0
0
0
:
0
1
1
1
1
1
1
1
:
1
1
1
1
1
1
1
1
1
OV
F
A
9
8
7
6
5
4
3
2
1
0
Range
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
1
Overflow
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
0
Overrange
0
0
0
0
1
0/1
0
0
Nominal range
Overrange
Overflow
Explanation of Table 6-7
Representation: Absolute value as positive binary number with sign
The sign is indicated in bit 7 in the high byte.
The following applies: V=0 positive value; V=1 negative value.
Overflow at absolute values exceeding the overrange; overflow bit (OV) is set
Configuration aids
- Plug in the 498-1AA11 range card (for 4 channels) (also 1AA21 for ±1 V, 1AA31 for ±10 V,
1AA41 for ±20 mA and 1AA61 for ±5 V).
- Set the jumper switch on the 460 module to increase the measuring range by a factor of 10
(e.g. to ± 500 mV).
- Configure channel type 5 with COM 115F
Wire break is detected by the hardware in the case of the 498-1AA11 range card (method ,
6.5). In the case of all other range cards, wire break is recognized by FB 250 with the ”DRAK”
parameter (method , 6.5). FB 250 sets error bit F ( 6.9).
The 460 AI module can only be used with with I/O type 13 (nonsafety-related).
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Input
Voltage
in mV
(±50)
50.000
-50.024
:
-99.976
-100.0
•
•
•
•
•
•
Analog Value Processing
Table 6-8. 460 AI Module: Digital Representation of Analog Values as Two's
Complement in the Range ±50 mV, Channel Type 6
Units
EWA 4NEB 811 6148-02
Digitized Measured Value
15 14 13 12 11 10
-0.024
:
-24.976
-1
:
-1023
1
1
1
1
1
1
1
1
1
0
0
0
0
0
-25.000
:
-49.976
-1024
:
-2047
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
:
0
0
0
0
0
1
0/1
0
0
-50.000
-2048
1
1
0
0
0
0
0
0
0
0
0
0
0
0/1
0
0
1
0
1
1
1
1
1
1
1
1
1
1
1
0/1
0
0
0
0
0
0
1
0/1
0
0
0
0
0
0
1
0/1
0
1
-2049
:
-4095
-4095+OV
1
0
0
0
0
0
0
:
0
1
0
0
0
0
0
0
0
OV
F
A
9
8
7
6
5
4
3
2
1
0
Range
100.0
4095+OV
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
1
99.976
4095
0
1
1
1
1
1
1
1
1
1
1
1
1
0/1
0
0
:
50.024
:
2049
0
1
0
0
0
0
0
:
0
0
0
0
0
1
0/1
0
0
2048
0
1
0
0
0
0
0
0
0
0
0
0
0
0/1
0
0
49.976
2047
0
0
1
1
1
1
1
1
1
1
1
1
1
0/1
0
0
:
25.000
24.976
:
1024
1023
0
0
0
0
1
0
0
1
0
1
0
1
0
1
:
0
1
0
1
0
1
0
1
0
1
0
1
0/1
0/1
0
0
0
0
:
0.024
0.000
:
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
0
0
0
0
1
0
0/1
0/1
0
0
0
0
1
:
0
1
1
1
1
1
0/1
0
0
0
0
0
0
1
0/1
0
0
0
0
0
0
0
0/1
0
0
Overflow
Overrange
Nominal value
Overrange
Overflow
Explanation of Table 6-8
Representation: Two's complement
Overrange condition at absolute values above the nominal value but under double the
nominal value; no overflow bit set!
Overflow at absolute values above the overrange; overflow bit (OV) set!
Configuration aids
- 498-1AA11 range card (for 4 channels)
(also 1AA21 for ±1 V, 1AA31 for ±10 V, 1AA41 for ±20mA, 1AA61 for ±5V)
- Set the jumper switch on the 460 module to increase the measuring range by a factor of 10
(e.g. to ± 500 mV)
- Configure channel type 6 with COM 115F
Wire-break recognition
- Via hardware in the case of the 498-1AA11 range card (method , 6.5)
- Via FB 250 using the ”DRAK” parameter in the case of all other range cards (method ,
6.5)
FB 250 sets error bit F ( 6.9)
The 460 AI module can only be used with I/O type 13 (nonsafety-related).
6-21
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Analog Value Processing
6.4.2
Bit No.
6-22
S5-115F Manual
Digital Representation of a Measured Value (463 Analog Input Module)
The 463 AI module has four input ranges
• 4 to 20 mA with wire break monitoring using live zero
• 0 to 20 mA
• 0 to 1 V
• 0 to 10 V
The different measuring ranges are defined with jumpers on the front connector in the case of the
463 analog input module.
Note
Safety-related use of the 463 analog input module is unrestricted in the case of the
following:
• Channel type 4 and measuring range 4 to 20 mA
• Channel type 5 and measuring range 0 to 20 mA, 0 to 10 V
• Channel type 6 and measuring range 0 to 20 mA, 0 to 10 V.
Channel type 3 can only be used in safety-related applications in type 16 I/O modules
since these do not feedback modules.
After the digital result is converted, it is stored in the RAM of the module. The individual bits of
both bytes have the following meaning:
High Byte
Byte No.
211 210
29 28
27
Low Byte
n
n+ 1
15 14 13 12 11 10
26
9
8
7
6
5
4
25
24
23
22
21
20
3
2
1
Bit
Meaning
State
Meaning of the Signal State
OV
Overflow bit
1
Overrange
0
OV
Binary measured value
Figure 6-13. Representation of an Analog Measured Value in Digital Form in the Case
of the 463 AI Module
The 463 AI module uses only the least significant OV bit as condition code. The following table
gives its meaning. Bits 1 to 3 have no significance for the measured value.
Table 6-9. Meaning of the 0 Bit in the 463 Analog Input Module
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Table 6-10.
•
•
•
EWA 4NEB 811 6148-02
Analog Value Processing
463 AI Module: Digital Representation of Analog Values as
Two's Complement (4 to 20 mA, Channel Type 3)
Meas.
Value
in mA
Units
31.984
2047
0
1
1
1
1
28
27.984
24
1792
1791
1536
0
0
0
1
1
1
1
1
1
1
0
0
0
1
0
23.984
1535
0
1
0
1
20.016
1281
0
1
0
1
Digitized Measured Value
15 14 13 12 11 10
OV
9
8
7
6
5
4
0
Range
1
1
1
1
1
1
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
1
Overflow
1
1
1
1
1
1
1
1
0
Overrange
0
0
0
0
0
0
0
1
0
20
1280
0
1
0
1
0
0
0
0
0
0
0
0
0
16
12
1024
768
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
4
512
256
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3.984
255
0
0
0
0
1
1
1
1
1
1
1
1
0
3
192
0
0
0
0
1
0
0
0
0
0
0
0
0
2.984
191
0
0
0
0
1
0
1
1
1
1
1
1
0
2
128
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0.816
0 016
64
51
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
-0.016
-0.816
0
-1
-51
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
1
1
0
0
0
Nominal range
Overrange
Wire break
recognition
Explanation of Table 6-10
Representation: Two's complement with offset
Configuration aids
- Set the jumpers on the 463 module for the measuring range (4 to 20 mA) and the nominal
range (256 to 1280 units) ( 6.3.2)
- Configure channel type 3 with COM 115F
FB 250 ANEI recognizes wire break if the current is less than 3 mA (method , 6.5).
FB 250 responds to errors depending on the I/O type:
- I/O type 13 (nonsafety-related):
Error bit F of FB 250 ANEI is set. The program is continued.
- I/O type 16 (safety-related):
Error bit F and the OV bit of the FB 250 ANEI are set.
The operating system responds according to safety
criteria.
6-23
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
Analog Value Processing
•
•
•
•
•
•
6-24
S5-115F Manual
Table 6-11. 463 AI Module: Digital Representation in the Case of
Current Range 4 to 20 mA, Channel Type 4
Meas.
Value
in mA
Units
35.982
32
28
2047
1792
1536
0
0
0
1
1
1
1
1
1
1
1
0
1
0
0
27.982
1535
0
1
0
1
24
20.018
1280
1025
0
0
1
1
0
0
1
0
Digitized Measured Value
15 14 13 12 11 10
OV
9
8
7
6
5
4
0
Range
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
Overflow
1
1
1
1
1
1
1
1
0
Overrange
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
20
1024
0
1
0
0
0
0
0
0
0
0
0
0
0
16
768
0
0
1
1
0
0
0
0
0
0
0
0
0
12
8
4
512
256
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3.982
-1
1
1
1
1
1
1
1
1
1
1
1
1
0
3.018
3
-63
-64
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
2.982
-65
1
1
1
1
1
0
1
1
1
1
1
1
0
2
1
-128
-192
1
1
1
1
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-256
1
1
1
1
0
0
0
0
0
0
0
0
0
Nominal range
Overrange
Wire break
recognition
Explanation of Table 6-11
Representation: Two's complement (beginning of nominal range: 0 units)
Overrange condition in the case of values exceeding the nominal range 4 to 20 mA and values
up to roughly 40 % above the upper limit of the nominal value; no overflow bit set
No error bits are set for values below the nominal range!
Overflow at values starting at 40 % above the upper limit of the nominal value (28 mA); overflow bit (OV) set
Configuration aids
- Set the jumpers on the 463 module for the measuring range (4 to 20 mA) and the nominal
range (0 to 1024 units)
- Configure channel type 4 with COM 115F
FB 250 ANEI detects wire break if the current is less than 3 mA (method , 6.5).
FB 250 ANEI responds to errors according to I/O type:
- I/O type 13 (nonsafety-related):
Error bit F of FB 250 ANEI is set. The program is continued.
- I/O types 14/15/16 (safety-rel.):
The error bit F and the OV bit of FB 250 ANEI are set.
The operating system responds acc. to safety criteria.
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
S5-115F Manual
•
•
•
•
•
•
EWA 4NEB 811 6148-02
Analog Value Processing
Table 6-12. 463 AI Module: Digital Representation of the Analog Values as
Two's Complement in the Voltage Range 0 to 1 V
Meas.
Value
in mA
Units
1999
2047
0
1
1
1
1
1750
1500
1792
1536
0
0
1
1
1
1
1
0
0
0
1499
1535
0
1
0
1
1250
1280
0
1
0
1001
1025
0
1
1000
1024
0
750
500
768
512
0
0
250
0
256
0
-1
-50
Digitized Measured Value
15 14 13 12 11 10
OV
9
8
7
6
5
4
0
Range
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-1
1
1
1
1
1
1
1
1
1
1
1
1
0
-51
1
1
1
1
1
1
0
0
1
1
0
1
0
Overflow
Overrange
Nominal range
Overrange
Explanation of Table 6-12
Representation: Two's complement
Overrange condition for values outside the nominal range
Overflow for values from 500 mV above the nominal range
Configuration aids
- Set the jumpers on the module for the measuring range (0 to 1 V, 0 to 10 V, 0 to 20 mA)
- Configure channel type 5 or 6 with COM 115F
This type of measured value representation can also be set for measuring ranges 0 to 10 V and
0 to 20 mA
FB 250 recognizes wire break with the ”DRAK” parameter (method , 6.5)
FB 250 ANEI responds to errors according to I/O type:
- I/O type 13 (nonsafety-related):
Error bit F of FB 250 ANEI is set. The program is continued.
- I/O types 14/15/16 (safety-related):
The error bit F and the OV bit are set.
The operating system responds according to safety
criteria.
6-25
Analog Value Processing
6.5
S5-115F Manual
Wire-break Signalling and Scanning
Wire-break signalling in the 460 analog input module
There are three methods of detecting wire-break:
Wire-break detection per hardware:
This is implemented with the 498-1AA11 range card. A constant current is briefly switched
(1.6 ms) through the input terminals before each coding of the input value and the resulting
voltage is checked for a limit. The voltage exceeds the limit value if there is a sensor or line
interrupt and wire-break is signalled by setting the condition code bit ”F” in data byte 1. This is
evaluated by FB 250 ANEI ( 6.9).
Wire-break monitoring with FB 250 ANEI
The 460 AI module with the range cards 498-1AA51 or 498-1AA71 and the 463 AI module with
jumpers set for the range 4 to 20 mA use the live-zero method for detecting wire-breaks:
If the sensors, signal path and input module are all intact, 4 mA is the lowest permissible value.
All values lower than 3 mA are interpreted by FB 250 ANEI as wire-breaks.
Wire-break detection per user program and FB 250 ANEI
All measuring ranges of the two AI modules which do not permit wire-break detection as in
and above must use the following procedure supported by the user program.
For this purpose, a wire-break range in the standardized value range must be defined with the
ODGR and UDGR parameters.
The error bit ”FB” is set in FB 250 in the following cases:
• If the analog value lies within the limits ODGR and UDGR
• If the DRAK bit is set in the control program ( 6.9).
Using this procedure to test the line for wire-break only makes sense if the analog value lies
outside the wire-break limits.
Note
The L PB and L PW operations are not permitted for analog value processing.
6-26
EWA 4NEB 811 6148-02
S5-115F Manual
Analog Value Processing
Wire-break message for resistance thermometers
A break in the instrument leads to a resistance thermometer is indicated as shown in Table 6-13.
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
Table 6-13. Wire-Break Message for Resistance Thermometers
*
Wire-Break at
M+
M-
Digital analog
value
0
0
Status of the
error bit*
1
1
PT 100
S+
S-
0
0
0
1
0
1
(Resist. Sensor)
The 460 analog input module encodes the value 0 for unbroken PT 100 resistors and sets error bit F = 0.
If you have chosen the ”No wire-break message” function on the module, an interruption in the
leads to the resistance thermometer is flagged by overflow. The overflow bit remains set about
1.5 sec. (OV = 1). In cyclic operation, all other measuring points also flag overflow (OV = 1). The
situation is the same for single sampling if the interval between two codings 1.5 sec.
Wire-break signalling in the case of the 463 analog input module
The 463 analog input module has no hardware wire-break monitoring facility. Use the life zero
measuring range 4 to 20 mA or the software wire-break monitor in FB 250 ANEI:
For this purpose, a wire-break range in the standardized value range must be defined with the
ODGR and UDGR parameters.
The error bit ”FB” is set in FB 250 in the following cases:
• If the analog value lies within the limits ODGR and UDGR
• If the DRAK bit is set in the control program ( 6.9).
Note
If you use a 4-wire transducer at analog inputs with measuring range 4 to 20 mA, the
sensors must already be supplied when the PLC starts up. Otherwise the system
responds with a wire-break signal.
EWA 4NEB 811 6148-02
6-27
Analog Value Processing
S5-115F Manual
Scanning in the case of the 460 module
The 460 module has two different methods of coding analog values using a toggle switch.
Cyclic scanning:
With this function, the module itself handles the coding of all inputs. Coding time in the case of
the 460 analog input module is 480 ms.
The digitized measured values are stored in the circulating buffer under the channel-specific
address (the high byte under address n, the low byte under address n+1). The measured values
can then be read out of the circulating buffer at any time.
Selective scanning:
Coding of the desired analog variable is initiated by the user program. Coding time begins when
the module is referenced. FB 250 sets the TBIT to ”1” during coding and no further access may
occur while coding is in progress.
6.6
Analog Output Modules
6.6.1
Method of Operation of the Analog Output Modules
The CPU processes the digital values which the analog output modules will convert to the required
currents and voltages. Different floating modules cover the individual voltage and current ranges.
The CPU transfers the digital value to the module memory. The last coded value is retained in the
analog output module even after PLC STOP.
Transfer of the coded value is started by FB 251 ANAU.
6-28
EWA 4NEB 811 6148-02
S5-115F Manual
6.6.2
Analog Value Processing
Analog Output Modules
When loads are connected, high-resistance sense lines (S+/S-) measure the voltage direct at the
load. Then the output voltage is adjusted such that voltage drops on the lines do not invalidate
the load voltage.
In this way, voltage drops of up to 3 V per line can be compensated.
Figure 6-14 shows such a circuit.
QV (x)
S+ (x)
+
Load
voltage
S - (x)
QI (x)
I
QV
QI
S+
S-
(x)
(x)
(x)
(x)
MANA
=
=
=
=
Analog output voltage
Analog output current
Sense line+
Sense line -
=
Ground connection of the
analog section
Channel No. (0 to 7)
+
Load
current
x
=
MANA
Figure 6-14. Connecting Loads to Analog Output Modules
Equipotential bonding during test switching with the 470 analog output module
If you are using the 470 analog output module as a test analog output module, make the
following connection:
The L-terminal (pin 21) of the 463 analog input module to
the L-terminal (pin 47) of the 470 analog output module.
This creates a common reference potential.
EWA 4NEB 811 6148-02
6-29
Analog Value Processing
S5-115F Manual
Connecting loads to current and voltage outputs
Figure 6-15 shows how to connect an analog output module.
QV (0)
QV (1)
QV (2)
S+ (0)
+
S+ (1)
+
S - (0)
-
S - (1)
-
QI (0)
QI (1)
+
S+ (2)
+
-
S - (2)
QI (2)
+
+
-
-
MANA
6ES5 470-7LA12
6ES5 470-7LC12
QV (0)
QV (1)
QV (2)
S+ (0)
+
S+ (1)
+
S - (0)
-
S - (1)
-
S+ (2)
S - (2)
+
-
MANA
6ES5 470-7LB12
Figure 6-15. Connection of Loads to Current and Voltage Outputs of Analog Output Modules
Note
If voltage outputs are not used or if only current outputs are connected, insert jumpers
in the front connector at the voltage outputs that are not connected. Connect QV (x)
with S+ (x) and S- (x) with MANA.
6-30
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
S5-115F Manual
6.7
x
Analog Value Processing
Digital Representation of an Analog Value
The CPU uses two bytes to represent the value of an output channel. Figure 6-16 explains the
individual bits.
High Byte
Byte No.
Bit No.
EWA 4NEB 811 6148-02
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
211 210 29
25
24
23
22
21
20
x
x
x
x
28
27
Low Byte
n
n+ 1
26
Binary signal
represents an insignificant bit
Figure 6-16. Representation of an Analog Signal in Digital Form
6-31
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Analog Value Processing
Resolution
Units
0
*
6-32
-7LA/B12
in V
+1280 +12.5
-7LA12
in mA
25. 0
S5-115F Manual
Table 6-14 lists the output voltages or currents of the individual modules.
Table 6-14. Analog Output Signals
Output Voltages and Currents of the
Digitized Output Value*
Modules
-7LC12
in V
6.0
-7LC12
in mA
21121029 28 27 26 25 24 23 22 21 20
24.0
0
1
0
1
0
0
0
0
0
0
0
0
+1025 +10.0098
20.0195
5.004
20.016
0
1
0
0
0
0
0
0
0
0
0
1
+1024 +10.0
20.0
5.0
20.0
0
1
0
0
0
0
0
0
0
0
0
0
+1023
+9.99
19.98
4.995
19.98
0
0
1
1
1
1
1
1
1
1
1
1
+512
+5.0
10.0
3.0
12.0
0
0
1
0
0
0
0
0
0
0
0
0
+256
+2.5
5.0
2.0
8.0
0
0
0
1
0
0
0
0
0
0
0
0
+128
+1.25
2.5
1.5
6.0
0
0
0
0
1
0
0
0
0
0
0
0
+64
+0.625
1.25
1.25
5.0
0
0
0
0
0
1
0
0
0
0
0
0
+1
+0.0098
0.0195
1.004
4.016
0
0
0
0
0
0
0
0
0
0
0
0
+0.0
0.0
1.0
4.0
0
0
0
0
0
0
0
0
0
0
0
0
-1
-0.0098
0.0
0.996
3.984
1
1
1
1
1
1
1
1
1
1
1
1
-64
-0.625
0.0
0.75
3.0
1
1
1
1
1
1
0
0
0
0
0
0
-128
-1.25
0.0
0.5
2.0
1
1
1
1
1
0
0
0
0
0
0
0
-256
-2.5
0.0
0.0
0.0
1
1
1
1
0
0
0
0
0
0
0
0
-512
-5.0
0.0
-1.0
0.0
1
1
1
0
0
0
0
0
0
0
0
0
-1024
-10.0
0.0
-3.0
0.0
1
1
0
0
0
0
0
0
0
0
0
0
-1025
-10.0098
0.0
-3.004
0.0
1
0
1
1
1
1
1
1
1
1
1
1
-1280
-12.5
0.0
-5.0
0.0
1
0
1
1
0
0
0
0
0
0
0
0
Overrange
Nominal
range
Overrange
Insignificant bits 0 to 3 are not included.
Note
In the case of the two's complement, bit 211 indicates the sign (”0” for a positive value,
”1” for a negative value).
EWA 4NEB 811 6148-02
Analog Value Processing
6.8
S5-115F Manual
I/O Module Types
There are different types of analog I/Os. These types are suited to the type of sensors and
actuators and to the time characteristics of the input/output signals ( 10.11).
A distinction is made between safety-related and nonsafety-related types.
In the case of nonsafety-related types, a further distinction is made between types for intermittent
signals and types for non-intermittent signals.
An analog signal is intermittent if the whole value range relevant to evaluation within the second
error occurrence time is run through, read in and coded at least once. In doing so, it is of special
importance that those values that lead to a safety response be reached.
For example, an analog input for measuring temperature cannot generally be configured as an
intermittent type since the critical temperatures leading to emergency shutdown are never
reached in normal operation.
Note
If an intermittent type is selected for a safety-related signal, this signal characteristic
must be proved to the licensing authority.
This characteristic is often impossible or difficult to prove. If this is the case, a nonintermittent type should be selected for which no special proof is required.
When configuring I/O modules, define an I/O type for each AI word according to the
characteristics of the process signals. There are four different I/O types for analog input modules.
( Table 6.15)
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
Table 6-15. Types of Analog I/O Modules
I/O Type
No.
I/O
Safetyrelated
AI
Module
No. of I/O
Channels
13
14
15
16
16
AI
AI
AI
AI
AI
no
yes
yes
yes
yes
460/463
463
463
463
463
1
2
2
2
2
18
AQ
no
470
1
No. of
Sensor/
Actuator
Channels
1
1
2
1
2
1
Intermittent
non-interm.
non-interm.
interm.
interm.
-
AI=Analog input
AQ=Analog output
I/O types differ according to
• Safety-related aspects
• Number of I/O channels
• Type of connection
• ”Intermittent” characteristic
• Feedback type
• Number of feedback channels.
EWA 4NEB 811 6148-02
6-33
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Module
Channel
type 3
Channel
type 4
6-34
460-...
463-...
Analog Value Processing
You must configure analog I/O modules with the COM 115F software package.
When configuring I/O modules, an I/O type is assigned to each I/O word.
See Vol. 2/2, Section 1.2 of the manual for a detailed description of configuring analog I/O modules depending on I/O types.
Table 6-16 gives an overview of the assignment of channel types to the relevant I/O types
(I/O type 13 to I/O type 16).
Table 6-16. Channel Types for Analog Input Modules (I/O Type 13)
Switch
Position
460-...
500
mV/mA
463-...
OFF
Range Card
(only for
Measuring Range
500
mV/mA
1AA41
1AA11
1AA21
1AA31
1AA61
0 to 20 mA
0 to 500 mV
0 to 1 V
0 to 10 V
0 to 5 V
50 mV
1AA41
1AA11
1AA21
1AA31
1AA61
0 to 2 mA
0 to 50 mV
0 to 100 mV
0 to 1 V
0 to 500 mV
ON
Measuring
range programmable
on the
module
4 to 20 mA
Nominal Range
(decimal units)
1AA51
1AA71
4 to 20 mA
+512 to +2560
Measuring
range programmable
on the
module
4 to 20 mA
+256 to +1280
CH AQ Module
(463 only)
460 AI)
---
0 to +2048
0 to +1024
---
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
Analog Value Processing
Channel
type 5
463-...
Channel
type 6
460-...
463-...
EWA 4NEB 811 6148-02
S5-115F Manual
Table 6-16. Channel Types for Analog Input Modules (I/O Type 13) (Continued)
Module
Switch
Position
Range Card
(460 only )
460-...
500 mV
1AA11
1AA21
1AA31
1AA61
-500 to+500 mV
- 1 to + 1 V
- 10 to +10 V
- 5 to +5 V
50 mV
1AA11
1AA21
1AA31
1AA61
- 50 to +50 mV
-100 to +100 mV
- 1 to + 1 V
-500 to +500 mV
OFF
Measuring
range programmable
on the
module
Measuring Range
0 to 20 mA
0 to 1 V
0 to 10 V
500 mV
1AA11
1AA21
1AA31
1AA61
- 500 to +500 mV
- 1 to + 1 V
- 10 to +10 V
- 5 to +5 V
50 mV
1AA11
1AA21
1AA31
1AA61
- 50 to +50 mV
-100 to +100 mV
- 1 to + 1 V
-500 to +500 mV
OFF
Measuring
range programmable
on the
module
0 to 20 mA
0 to 1 V
0 to 10 V
Nominal Range
(decimal units)
CH AQ Module
(463 only)
0 to +2048
0 to +1024
---
- 2048 to
+2048
0 to +1024
---
6-35
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
S5-115F Manual
6-36
Analog Value Processing
Table 6-17. Channel Types for Analog Input Modules (I/O types 14 and 15)
Module
Switch
Position
Channel
type 4
463-...
ON
Measuring
range programmable
on the
module
4 to 20 mA
0 to+1024
470-7LC12
Channel
type 5
463-...
OFF
Measuring
range programmable
on the
module
0 to 20 mA
0 to 10 V
0 to+1024
470-7LA12
4707LA/B12
Channel
type 6
463-...
OFF
Measuring
range programmable
on the
module
0 to 20 mA
0 to 10 V
0 to+1024
470-7LA12
4707LA/B12
Module
Switch
Position
Channel
type 3
463-...
OFF
Channel
type 4
463-...
Channel
type 5
463-...
Channel
type 6
463-...
ON
OFF
OFF
Range Card Measuring Range
(460 only)
Range Card Measuring Range
(460 only)
Nominal Range
(decimal units)
Nominal Range
(decimal units)
Measuring
range programmable
on the
module
4 to 20 mA
Measuring
range programmable
on the
module
4 to 20 mA
Measuring
range programmable
on the
module
0 to 20 mA
0 to 1 V
0 to 10 V
0 to +1024
Measuring
range programmable
on the
module
0 to 20 mA
0 to 1 V
0 to 10 V
0 to +1024
CH AQ Module
(463 only)
Table 6-18. Channel Types for Analog Input Modules (I/O type 16)
CH AQ Module
(463 only)
+256 to +1280
---
0 to +1024
---
---
---
EWA 4NEB 811 6148-02
S5-115F Manual
6.9
Analog Value Processing
Analog Value Matching Blocks FB 250 and FB 251
These blocks match the nominal range of an analog module to a standard range that you can
specify.
Reading in and scaling an analog value
- FB 250 -
Analog input modules convert analog process signals into digital values and store them in the
module. From there they are transferred cyclically to the CPU memory and also transferred to the
other subunit.
The FB 250 ANEI function block enables two types of access to the analog value:
• Access to the cyclically updated CPU memory
or
• Direct access to the memory of the analog input module.
EWA 4NEB 811 6148-02
6-37
Analog Value Processing
S5-115F Manual
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
Call and parameter assignment:
Parameter
Meaning
Type
Data
type
BG
Module address
D
KF
AI 460: 128 to 240 (16-byte grid)
AI 463: 128 to 248 (8-byte grid)
KN
Channel number
D
KF
OGR
Upper limit of the
output value
D
KF
-32768 to+32767
UGR
Lower limit of the
output value
D
KF
-32768 to+32767
DRAK
User-controlled
wire break
monitor
active
E
BI
ODGR1
1
2
Assignment / Explanation
Wire break upper
limit
D
KF
KY = 0 to 7 in AI 460
0 to 3 in AI 463
Set DRAK = ”1”
• if you want to implement wire
break monitoring according to
method in 6.5 and
• if the current analog value lies
outside the wire break limits.
Only relevant if DRAK = 1
Enter the following here:
• The limits of the range within
which values are interpreted as
wire breaks
• - 32768 if you have configured a
global limit value for wire break in
DB1.
UDGR1
Wire break lower
limit
D
KF
PASS
Passivation value
D
KF
When passivating of the module, the
safety-related passivation value is
written into the result word instead of
the AI value read in.
EINZ
Selective sampling
E
BI
A ”1” initiates selective sampling
(only in the case of the AI 460)
DIR
Direct access
E
BI
Set DIR=”1” if direct access is desired
XA
Output value
A
W
The scaled analog value is ”0” in the
event of a wire break
FB2
Error bit
A
BI
Becomes ”1” in the event of a wire
break
BU2
Overrange
A
BI
Becomes ”1” if the analog input of one
or both subunits exceeds the nominal
range
TBIT
Activity bit of the
accessed module
A
BI
Becomes ”1” if the accessed module is
currently executing selective sampling
TKON
Time conflict
A
BI
Becomes ”1”
•
if FB 250 accesses an analog input
which is currently being tested or
•
if a discrepancy has resulted in the
case of direct access with
parameter DIR =1 and the output
value XA is assigned the last valid
value instead of the current value
XA, FB and BU are not updated. Only
the old values are available.
STL
NAME
:IU FB 250
:AGF: ANEI
BG
KN
OGR
:
:
:
UGR
:
DRAK :
ODGR :
UGDR
PASS
EINZ
:
:
:
DIR
XA
FB
:
:
:
BU
TBIT
TKON
:
:
:
Values of the scaled range (UGR to OGR)
If bits F and BU are both=”1”, passivation of the relevant module has taken place. The passivation value is in the
value XA.
6-38
EWA 4NEB 811 6148-02
S5-115F Manual
Analog Value Processing
Standardization schematic:
The FB 250 function block converts the read in value linearly to the upper and lower limits (OGR
and UGR). The conversion is depending of the used module.
Analog input module AE 460
The analog output value XA is channel type dependend. It is used
for channel type 3 (4 to 20 mA):
XA =
UGR ·(2560-xe)+OGR ·(xe-512)
2048
for channel type 4 (unipolar representation):
UGR ·(2048-xe)+OGR ·xe
XA =
2048
for channel type 5 and 6:
XA =
where:
UGR ·(2048-xe)+OGR ·(xe+2048)
4096
XA is the value output by the FB
xe is analog value read by the module
Analog input module AE 463
The analog output value XA is channel type dependend. It is used
for channel type 3 (4 to 20 mA):
XA =
UGR ·(1280-xe)+OGR ·(xe-256)
1024
for channel type 4 (unipolar representation):
UGR ·(1024-xe)+OGR ·xe
XA =
1024
for channel type 5 and 6:
XA =
where:
UGR ·(1024-xe)+OGR ·(xe+1024)
2048
XA is the value output by the FB
xe is analog value read by the module
EWA 4NEB 811 6148-02
6-39
Analog Value Processing
S5-115F Manual
OGR
Standardized
area
XA
Nominal area
of the module
aaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
OGDR
0
UGDR
Analog value
UGR
Figure 6-17. Schematic Representation of the Conversion
COM 115F is used to configure the analog value representation of the module (channel type):
( Vol. 2/2 of the Manual).
6-40
EWA 4NEB 811 6148-02
S5-115F Manual
Analog Value Processing
Selective sampling
The 460 analog input module permits sampling of analog values
• Cyclically
• Selectively
In the case of cyclic sampling, the analog variables on the module are coded and buffered one
after another. The user program has no influence on coding.
In the case of selective sampling, the user program initiates coding of the desired analog variables.
Coding begins when the module is referenced.
If you want selective sampling, proceed as follows:
Set the DIP switch on the 460 AI module to selective sampling
Call FB 250 ANEI with Parameter EINZ=”1”.
During coding, FB 250 ANEI will set the output parameter T BIT=”1”. The result is available
when T BIT=”0”.
If you want to scan the T BIT parameter, call FB 250 ANEI with EINZ=”1”.
In the case of programmable controllers with the CPU 942-7UF11:
As long as T BIT=”1”, you must not active any further selective scanning, even on other AI 460
modules.
Note
Assign different bits to the activity bit when different channels are called. You will
then be able to recognize which channel has been activated for coding.
FB 250 produces a value XA within a (scaled) range defined by the user. The user defines the
desired range with the ”Upper limit (OGR)” and ”Lower limit (UGR)” parameters.
EWA 4NEB 811 6148-02
6-41
Analog Value Processing
Outputting an analog value
S5-115F Manual
-FB 251-
Use function block FB 251 to output analog values to analog output modules. Specify the type of
analog representation of the module (channel type) in the KNKT parameter. Values from the
range between the “lower limit (UGR)” and the “upper limit (OGR)” parameters are converted to
the nominal range of the module in question:
for channel type 0 (unipolar representation):
1024 ·(XE-UGR)
xa =
OGR-UGR
for channel type 1 (bipolar representation):
1024 · (2 · XE-OGR-UGR)
xa =
OGR -UGR
where:
XE is the digital value specified in the FB
xa is value written to the module
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
Call and parameter assignment:
Parameter
Meaning
Type
XE
Analog value to be
output
E
BG
Module address
D
KNKT
Channel number
Channel type
W
Assignment
Input value (fixed-point) in
the UGR to OGR range
KF
128 to 240
KF
KY =
x,y
x =
0 to 7
y =
0;1
0: unipolar representation
1: bipolar fixed-point
number
OGR
Upper limit of the
output value
D
KF
-32768 to +32767
UGR
Lower limit of the
output value
D
KF
-32768 to +32767
FEH
Error when
setting
the limit value
A
BI
”1” if UGR = OGR,
for illegal channel or slot
number, or illegal channel
type
A
BI
If ”1”, XE is outside the
range (UGR;OGR).
XE assumes the limit value
BU
6-42
D
Data
Type
Input value
exceeds
UGR or OGR
STL
NAME
XE
:IU FB 251
:AGF:ANAU
:
BG
KNKT
OGR
:
:
:
UGR
FEH
BU
:
:
:
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
7
Communications Capabilities
7.1
Overview of Communications Capabilities
7.2
7.2.1
7.2.5
SINEC L1 Local Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. - 1
Nonsafety-Related Connection between an S5-115F Slave and a
Master Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 3
Safety-Related Connection of Several S5-115Fs . . . . . . . . . . . . . . . . . 7 - 13
Connecting Several S5-115Fs with S5 PLCs of the U Range . . . . . . . 7 - 22
Safety-Related and Fault-Tolerant Networking
of Several S5-115Fs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. .- 30
The Mailbox Transfer Block FB 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
. - 32
7.3
7.3.1
7.3.2
Programmers for the S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. - 32
Programmer Connected to the Serial Interface of the CPU
. . . . . . . 7 - 32
Programmer Connected to SINEC L1 Master . . . . . . . . . . . . . . . . . . . . 7 - 33
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
CP 523 Serial I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. - 34
Settings on the CP 523 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. - 35
Use of the CP 523 in Print Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. - 37
Use of the CP 523 in Communications Mode . . . . . . . . . . . . . . . . . . . . 7 - 44
Failsafe Characteristics of the CP 523 . . . . . . . . . . . . . . . . . . . . . . . . . . .7 - 47
FB 252 Integral Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. - 48
7.2.2
7.2.3
7.2.4
EWA 4NEB 811 6148-02
. . . . . . . . . . . . . . . . . . . . . .7 - 1
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Figures
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
7-10.
7-11.
7-12.
7-13.
7-14.
7-15.
7-16.
7-17.
7-18.
7-19.
7-20.
7-21.
PLCs Connected to the SINEC L1 Local Area Network . . . . . . . . . . . . . . . . . . . . . 7
. -2
Schematic of Master-Slave Data Traffic via SINEC L1 LAN . . . . . . . . . . . . . . . . . .7 - 4
Master-Slave Data Transfer Sequence via SINEC L1 LAN . . . . . . . . . . . . . . . . . . .7 - 5
Structure of the ”Receive” and ”Send” Coordination Bytes
. . . . . . . . . . . . . . . .7 - 6
Connector Pin Assignment for Direct Point-to-Point Connection
...........7-9
Operator-Process Communication and Visualization . . . . . . . . . . . . . . . . . . . . . 7
. - 10
SINEC L1 Message Frame with Error Message in the
Case of Point-to-Point Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 11
SINEC L1 Message Frame with Error Message in the Case of Multiple
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 12
..
Safety-Related Networking of Several S5-115Fs: Single-Channel
SINEC L1 LAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 14
..
Mailbox Structure in the Case of a Single-Channel SINEC L1 LAN . . . . . . . . . . . 7 - 18
Safety-Related and Fault-Tolerant Networking of Several S5-115Fs
. . . . . . . . 7 - 30
Location of Address Switch and Jumper Header on the CP 523 Module . . . . . 7 - 35
Pin Assignments for CP 523 (Passive TTY) to PT 88 (Active TTY)
without BUSY Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 41
.
Pin Assignments for CP 523 (Passive TTY) to PT 88 (Active TTY)
with BUSY Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .41
.
Pin Assignment of the RS-232-C (V.24) Interface (Print Mode) . . . . . . . . . . . . . . 7 - 42
Pin Assignments of the 25-Way Subminiature D Connector . . . . . . . . . . . . . . . .7 - 43
Using the Transfer Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .45
Pin Assignments for CP 523 to CP 523 (TTY Interface) . . . . . . . . . . . . . . . . . . . . .7 - 46
Pin Assignments for CPU 944 (TTY Active) to CP 523 (TTY Passive). . . . . . . . . . 7 - 46
Pin Assignments for CP 523 to Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- 47
Flowchart for Sending a Message to the CP 523 . . . . . . . . . . . . . . . . . . . . . . . . .7. - 50
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Tables
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
7-10.
7-11.
7-12.
7-13.
7-14.
7-15.
7-16.
7-17.
7-18.
7-19.
7-20.
7-21.
7-22.
7-23.
7-24.
7-25.
7-26.
Mailbox Contents, Master PLC with CP 530 Sending to Slave S5-115F . . . . . . . 7 - 7
Mailbox Contents, Master PLC without CP 530 Sending to Slave S5-115F . . . . 7 - 7
Mailbox Contents, Slave S5-115F Sending to Master PLC with CP 530 . . . . . . . 7 - 8
Mailbox Contents, Slave S5-115F Sending to a Master PLC without CP 530 . . 7 - 8
Communications Partners in Point-to-Point Connection
. . . . . . . . . . . . . . . . . . .7 - 9
Overview of the Three Message Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- 13
Mailbox Contents, S5-115F Slave PLC Sending to S5-115F Slave PLC
in 115F-13 Message Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .15
Mailbox Contents, S5-115F Slave PLC Sending to S5-115F Slave PLC
in 115F-14 Message Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .15
Mailbox Contents, S5-115F Slave PLC Sending to S5-115F Slave PLC
in 115F-15 Message Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .15
Configuration of a SINEC L1 Structure with COM 115F (Example) . . . . . . . . . . 7 - 19
Mailbox Contents, Slave PLC of the S5-U Range with CP 530 Sending to
Slave S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 23
..
Mailbox Contents, Slave PLC of the S5-U Range without CP 530 Sending to
Slave S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 23
..
Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range with
CP 530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .24
..
Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range without
CP 530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .24
..
Mailbox Contents, Slave PLC of the S5-U Range with CP 530 Sending to
Slave S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 25
..
Mailbox Contents, Slave PLC of the S5-U Range without CP 530 Sending to
Slave S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 25
..
Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range with
CP 530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .26
..
Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range without
CP 530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .26
..
Mailbox Contents, Slave PLC of the S5-U Range with CP 530 Sending to
Slave S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 27
..
Mailbox Contents, Slave PLC of the S5-U Range without CP 530 Sending to
Slave S5-115F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. -. 27
..
Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range with
CP 530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .28
..
Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range without
CP 530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .- .28
..
Switch Settings on Switch Bank S1 for Defining the Initial Address
. . . . . . . . . 7 - 36
Standard Error Message Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
. .-.38
Assignment of Message Text Number to Error Group . . . . . . . . . . . . . . . . . . . . .7 - 39
Jumper Settings for Safe Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. - 45
EWA 4NEB 811 6148-02
S5-115F Manual
7
Communications Capabilities
7.1
Overview of Communications Capabilities
Communications Capabilities
The S5-115F offers communications capabilities using the SINEC L1 local area network and a
programmer. All the communications capabilities of the SIMATIC family are available by interposing a programmable controller of the U range. The CP 523 communications processor is still
available for use direct in the S5-115F.
7.2
SINEC L1 Local Area Network
SINEC L1 is a communications system that networks SIMATIC S5 programmable controllers. It operates on the Master-Slave principle. You can connect one master and up to 30 slaves to the
SINEC L1 LAN.
Each node, master or slave, needs a BT 777 bus terminal (transceiver) for signal level conversion.
Connect the terminal to the programmer port of the slaves or to the SINEC L1 interface of the
CP 530. The transceiver is powered by a separate 5 V power supply unit.
Note
Contrary to the information in the SINEC L1 LAN Manual, the BT 777 transceiver must
remain as supplied, i.e.
• You must not remove jumper Q8
• You must not insert the jumper between pins 6 and 7.
Data is transmitted via a 4-wire shielded cable, which connects the individual transceivers to each
other.
EWA 4NEB 811 6148-02
7-1
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
S5-115F Manual
Slave CP 530
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaa
aaaa
aaaa
aaaaaa
aaa
Communications Capabilities
e.g. S5-155U
aaaaaa
aaaaaa
aaaaaaa
aaaaaaaa
S5-115U to 155U
Slave CP 530
e.g. S5-115U
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaa
aaaa
aaaa
aaaaaaaa
aaaa
aaaa
aaaa
aaaa
aaaaaa
Master CP 530
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaaa
aaaa
aaaa
aaaaaa
S5-115F
Bus Terminal
BT 777
Figure 7-1.
PLCs Connected to the SINEC L1 Local Area Network
You can transmit data on the SINEC L1 LAN between any nodes:
• Master
Slave (master traffic)
• Slave
Master (master traffic)
• Slave
Slave (interslave traffic)
• Master
all slaves (broadcasting)
• Slave
all slaves and master (broadcasting)
The following data can be transmitted:
• Signal states of inputs, outputs and flags
• Contents of data words.
Besides data, you can also transmit programmer functions on SINEC L1. A programmer connected
to the master's CP 530 can address individual slaves ( SINEC L1 Manual 6ES5 998-7LA21).
Applications of the SINEC L1 LAN for the S5-115F
SINEC L1 LAN applications for the S5-115F can be broken down as follows:
• Nonsafety-related connection between master PLC and slave S5-115F PLC (nonsafety-related
traffic with master and nonsafety-related broadcasting from master)
• Safety-related connection between slave S5-115F and S5-95F PLCs via a single or fault-tolerant,
double SINEC L1 LAN (safety-related interslave traffic and safety-related broadcasting).
7-2
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Important for all connections with the S5-115F
Note
Incoming messages cannot be accepted by the S5-115F until the subunits have been
synchronized. You should therefore organize data transmission to the S5-115F so that
there is an interval of at least 100 ms between receipt of each message.
7.2.1
Nonsafety-Related Connection between S5-115F Slaves and the Master
Controller
Nonsafety-related connection between a master controller of the S5 family and one or more
S5-115F slaves is used, for instance, to transmit
•
•
Nonsafety-related input data in connection with operator-process communication
Nonsafety-related output data in connection with process visualization.
Note
A connection between a number of S5-115F slave PLCs is always safety-related.
Nonsafety-related interslave traffic is not possible.
Data traffic
A slave needs the following items to exchange data
•
•
•
•
A slave number (1 to 30)
A Send mailbox
A Receive mailbox
Coordination bytes
Send and Receive mailboxes
The Send and Receive mailboxes contain send and receive data and can hold up to 64 bytes for
master-slave traffic.
You must configure the following with COM 115F for nonsafety-related connections:
• Length of the mailboxes
• Location of the mailboxes
- in a data block
or
- in a flag area.
Note
The length of the messages sent by the master must be identical to the mailbox length
configured for the slaves. If your master messages are shorter, you must pad them to
the configured mailbox length.
EWA 4NEB 811 6148-02
7-3
Communications Capabilities
S5-115F Manual
The following two figures show the schematic sequence of data traffic between the master and
the slave.
Inputs
Outputs
Flags
Data blocks
User program
of the source PLC
27
”Send” coordination
20
Send mailbox
byte
Flags
Data blocks
Operating system of the source PLC
Send buffer
Operating system of the destination PLC
Receive buffer
27
”Receive”
20
coordination byte
User program
of the destination PLC
Receive mailbox
Flags
Data blocks
Inputs
Outputs
Flags
Data blocks
Figure 7-2. Schematic of Master-Slave Data Traffic via SINEC L1 LAN
7-4
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Start
User program of the source PLC: has
permission to send been given?
CBS.7* = 0
no
yes
User program of the source PLC fills the
Send mailbox
User program of the source PLC finishes filling
and sets CBS.7* = 1
Operating system of the source
PLC: has permission to send been
given? CBS.7* = 1
no
yes
Operating system of the source PLC reads Send
mailbox in the send buffer
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
Operating system of the source PLC finishes
reading and sets CBS.́7* = 0
Data is transferred from the send buffer of the source PLC to the receive
buffer of the destination PLC via the SINEC L1 LAN
Operating system of
the destination PLC: has permission
to write been given?
CBR.7** = 1
no
yes
Operating system of the destination PLC writes
data into the Receive mailbox
Operating system of the destination PLC
finishes writing and sets CBR.7** = 0
User program of the destination PLC: has permission to
send been given? CBR.7** = 0
no
yes
User program of the destination PLC reads the
Receive mailbox
User program of the destination PLC finishes
reading and sets CBR.7** = 1
End
** CBS.7 = bit 27 of the ”Send” coordination byte
** CBR.7 = bit 27 of the ”Receive” coordination byte
Figure 7-3. Master-Slave Data Transfer Sequence via SINEC L1 LAN
EWA 4NEB 811 6148-02
7-5
Communications Capabilities
S5-115F Manual
Coordination bytes
Coordination bytes form the interface to the PLC operating system. The programs of the slaves use
these bytes to track and influence the flow of LAN traffic. The positions of the coordination bytes
are configured using COM 115F.
Figure 7-4 explains the individual bits.
”Receive” Coordination Byte (CBR)
27
24
22
21
20
Information from the bus master
Error
0: No error
1: Error during last data transfer
Slave OFF
0: No slave off
1: At least one slave off
LAN RUN
0: LAN is in STOP mode
1: LAN is in RUN mode
REC-PERM
0: The program can fetch data from the Receive mailbox. The operating system has no access.
1: The operating system can accept data in the Receive mailbox from the LAN. The program has no access.
If REC-PERM = ”1”, the operating system fills the Receive mailbox with data. The operating system then
resets REC-PERM to ”0” (=0).
”Send” Coordination Byte (CBS)
27
24
20
Information for the bus master
Error during last data transfer
0: No error
1: Error detected
SEND-PERM
0: The program can process the Send mailbox. The operating system has no access.
1: The Send mailbox is enabled to transmit on the LAN. The program has no access.
SEND-PERM =”1” causes the operating system to transmit the contents of the Send mailbox. The operating
system then resets the SEND-PERM bit to ”0”.
Figure 7-4. Structure of the ”Receive” and ”Send” Coordination Bytes
7-6
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
S5-115F Manual
•
•
•
•
Byte
Byte
EWA 4NEB 811 6148-02
Communications Capabilities
Note the different contents of the master and slave mailboxes in the S5-115F.
The following four tables show the mailbox contents for master traffic.
Master-PLC with CP 530 sends to slave S5-115F
Master-PLC without CP 530 sends to slave S5-115F
Slave S5-115F sends to master PC with CP 530
Slave S5-115F sends to master PC without CP 530
Table 7-1. Mailbox Contents, Master PLC with CP 530 Sending to Slave S5-115F
Master PLC with CP 530 Sends to Slave S5-115F
Contents of master PLC Send
mailbox
Contents of master PLC Send
mailbox
Byte
(shared)
Byte
(shared)
Contents of slave PLC Receive
mailbox
(source-specific)
0
Status Byte Send
1
not used
2
Net data1
0
Net data 1
3
Net data 2
1
Net data 2
:
:
:
:
:
:
:
:
64
Net data 63
62
Net data 63
65
Net data 64
63
Net data 64
Note
If you are using a master PLC with CP 530, you must allow for the entire contents of the
mailbox (net data plus 2 bytes) when assigning parameters to "FB SEND".
Table 7-2. Mailbox Contents, Master PLC without CP 530 Sending to Slave S5-115F
Master PLC without CP 530 Sends to Slave S5-115F
Contents of master PLC Receive
mailbox
(source-specific)
0
Length
1
Destination
2
Net data 1
0
Net data 1
3
Net data 2
1
Net data 2
:
:
:
:
:
:
:
:
64
Net data 63
62
Net data 63
65
Net data 64
63
Net data 64
7-7
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Communications Capabilities
Byte
Byte
7-8
Contents of slave S5-115F Send
mailbox
Contents of slave S5-115F Send
mailbox
S5-115F Manual
Table 7-3. Mailbox Contents, Slave S5-115F Sending to Master PLC with CP 530
Slave S5-115F Sending to Master PLC with CP 530
Byte
(destination-specific)
Byte
(destination-specific)
Contents of master PLC Receive
mailbox
(shared)
0
Status Byte Receive
1
Length
2
Source
3
Reserved
0
Net data 1
4
Net data 1
1
Net data 2
5
Net data 2
:
:
:
:
:
:
:
:
62
Net data 63
66
Net data 63
63
Net data 64
67
Net data 64
Table 7-4. Mailbox Contents, Slave S5-115F Sending to a Master PLC without CP 530
Slave S5-115F Sending to Master PLC without CP 530
Contents of master PLC Receive
mailbox
(shared)
0
Length
1
Source
0
Net data 1
2
Net data 1
1
Net data 2
3
Net data 2
:
:
:
:
:
:
:
:
62
Net data 63
64
Net data 63
63
Net data 64
65
Net data 64
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Point-to-point connection
You can connect an S5-115F direct to other controllers using a point-to-point connection. This
saves you additional transceivers or interface modules.
The following table lists possible partners.
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Table 7-5. Communications Partners in Point-to-Point Connection
Partners
Connection
S5-95U
Direct via 2nd serial interface
S5-115U
with CPU 943/944
Direct via 2nd serial CPU interface
S5-115U/H, S5-135U, S5-155U/H
Via CP 530
There are two ways of establishing the connection:
•
•
Via a bus cable (LAN) with transceivers (BT 777) or
Via a direct line if both controllers are less than 100 m / 328 ft. apart. Use a four-wire shielded
cable with a cross-section of at least 0.14 mm2 (26 AWG). SIMATIC cable 6ES5 707-1AA00 is
recommended.
Connect a 15-pin Cannon subminiature D connector with metal shell to each end of the cable.
Figure 7-5 shows the connector pin assignment.
Communications partner
(active side)
S5-115F
(passive side)
13
9
2
T×D+
12
T×D -
6
7
R×D+
11
9
R×D -
7
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
2
15
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
6
1
8
*
1
Shield* / Mext
8
Connect shield also to the connector shell
Figure 7-5. Connector Pin Assignment for Direct Point-to-Point Connection
EWA 4NEB 811 6148-02
7-9
Communications Capabilities
S5-115F Manual
Operator-process communication and visualization
SIMATIC S5
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaaaa aaaaaa
aaaaaaa
For operator-process communication and visualization, a communication and visualization PLC
must be connected to the S5-115F via the SINEC L1 LAN. The connection is established to subunit B
so that the interface of subunit A is free for a programmer. In Figure 7-6 the communication and
visualization PLC is the SINEC L1 master with the CP 530 module and the S5-115F with its subunit B
is a SINEC L1 slave.
Operator-process
communication and
visualization
S5 - 115F
Subunit A
DI DQ RB - DI
Subunit B
RB - DI DQ DI
DI
=
DQ
=
RB - DI=
Digital input
module
Digital output
module
Readback digital
input module
SINEC L1 LAN
Figure 7-6. Operator-Process Communication and Visualization
Visualization tasks do not influence the program executing in the S5-115F.
Operator inputs from the programmer or PLC are only safety-related if they are subjected to a
safety test by a user filter program.
During this safety test you must check the validity of the data and transfer it to a data area to
which the user program has only read access. You must check the programmer input data in the
restart OBs (OB21/OB22).
7-10
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Transfer of error DBs
Please note the following when programming your SINEC L1 messages:
If a subunit detects a 115F error, the subunit sends the body its error DB (56 bytes) to the SINEC L1
master. In such a case, subunit A sends DB 2 and subunit B sends DB 3. The frame received by the
master contains a frame header as well as the actual body of the error DB. The structure of the
frame header depends on the type of networking. A distinction is made between:
•
•
Point-to-point connection between an S5-115F as slave and an S5-95U with two interfaces or
S5-115U with the CPU 943 or CPU 944 as master. The link is possible via the programmer
interface with or without SINEC L1 BT 777 transceivers.
Connection between several S5-115Fs as slaves and an S5 of the U range with CP 530 as master.
The user program differentiates between error message frames from the operating system and all
other frames in the following way in the case of both types of connection:
•
•
Error message frames always have a 56-byte long body. The length of the body is given in the
frame header.
The second byte of the frame body contains the subunit ID of the source
- in the case of one-channel SINEC L1 LAN:
second byte = ”B”
- in the case of two-channel SINEC L1 LAN in the master of LAN A: second byte = ”A”
- in the case of two-channel SINEC L1 LAN in the master of LAN B: second byte = ”B”
So that your user programs are not mistaken for error message frames by the operating system, all
user message frames which
•
•
have a frame body length of 56 bytes
and also
have ID ”A” or ”B” in the second byte of the frame body
are prohibited:
The following two figures show the different structure of both Receive message frames in the
master PLC.
In the case of point-to-point connection, the Receive mailbox of the master contains the following
frame:
Message header
Byte
0
1
(error DB body)
2
3
4
:
:
:
56
57
Unassigned
58
:
:
:
:
:
65
Message frame body of
the error message
Length of message body (bytes) = 56
Slave No. of source S5-115F
'C' = B (or A or B in the case of a two-channel SINEC L1 LAN)
Figure 7-7. SINEC L1 Message Frame with Error Message in the Case of Point-to-Point Connection
EWA 4NEB 811 6148-02
7-11
Communications Capabilities
S5-115F Manual
In the case of multiple connections with a CP 530 in the master, the Receive mailbox contains the
following message frame:
Message header
Frame body of the error
message
(error DB body)
Unassigned
Byte
0
1
2
3
4
5
6
:
:
:
58
59
Status byte
Length of message body (bytes) = 56
Slave No. source S5-115F
Reserved
'C' = B (or A or B in the case of a two-channel SINEC L1 LAN)
60
:
:
:
:
:
67
Figure 7-8. SINEC L1 Message Frame with Error Message in the Case of Multiple Connections
7-12
EWA 4NEB 811 6148-02
S5-115F Manual
7.2.2
Communications Capabilities
Safety-Related Connection of Several S5-115Fs
Process automation systems consist of several PLCs if
• The I/O capacity of one PLC is not sufficient
• The user program is too long for one PLC
• A distributed configuration is required (e.g. for availability reasons).
Message structure variants
The message protection mechanism has been extended in the CPU 942-7UF15. Safety-related
broadcast messages from the slave and nonsafety-related broadcast messages from the master are
now also possible.
You can, of course, still use the CPU with the "old" protection mechanism, because it also supports
the message modes of CPU 942-7UF11 ...14. You assign the parameters for the applicable message
mode with COM 115F. Please note the differences in the message and mailbox structures.
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
The following table gives an overview of the three message modes.
Table 7-6. Overview of the Three Message Modes
Message mode
Supported by
Features
Application
115F-13 mode
CPU 942-7UF11 ...15
Data transmission
without protective
specification of the
destination slave
number
Only allowed if the
mailboxes of the
destination slaves are
all of different length
115F-14 mode
CPU 942-7UF14 ...15
Data transmission with
protective
specification of the
destination slave
number
Communication with
S5-115F with CPU
942-7UF14 and S595F
115F-15 mode
CPU 942-7UF15
Data transmission with
protective
specification of the
destination slave
number and message
change monitoring
Standard application,
for communication
with CPU 942-7UF15
and S5-95F
Important for configuring mailboxes:
Note
When configuring with COM 115F, remember that the length of the Send mailbox
must be the same as that of the relevant Receive mailbox.
EWA 4NEB 811 6148-02
7-13
Communications Capabilities
S5-115F Manual
Safety-related connection of several S5-115F PLCs
Safety-related data exchange is based on the multi-mailbox system. In addition to the two
mailboxes described in Section 7.2.1 for master traffic, there is one mailbox per data path in the
transmitting slave and one per data path in the receiving slave for interslave communication.
The master PLC can be any SIMATIC S5 PLC in which a CP 530 can be used. The master can also
process other, nonsafety-related tasks (e.g. operator-process communication and visualization).
Note
Safety-related data transmission is handled entirely by the operating system. There is
no manipulation of coordination bytes.
You can coordinate data transfer by evaluating reply messages at user level.
SINEC
L1 LAN
SIMATIC S5
S5 - 115F
Subunit A
DI DQ R - DI
S5 - 115F
Subunit B
R - DI DQ DI
Subunit A
DI DQ R - DI
Subunit B
R - DI DQ DI
Figure 7-9. Safety-Related Networking of Several S5-115Fs: Single-Channel SINEC L1 LAN
!
Warning
The sending of a message must not take longer than one SINEC L1 safety time. For this
reason, you must not make any changes to the Send mailbox for this length of time.
Premature alteration of the contents of the mailbox could lead to the undetected loss
of a message. Try to leave as long an interval as possible between two messages.
7-14
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
S5-115F Manual
Byte
Byte
0
1
2
3
:
:
60
61
Byte
0
1
2
3
:
:
60
61
EWA 4NEB 811 6148-02
Communications Capabilities
The following figures show the contents of the mailboxes for safety-related interslave communication in the different message modes.
Table 7-7. Mailbox Contents, S5-115F Slave PLC Sending to S5-115F Slave PLC
in 115F-13 Message Mode
Slave S5-115F Sending to Slave S5-115F in 115F-13 Message Mode
Contents of the Send mailbox
(destination-specific)
Contents of the Send mailbox
Destination slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Contents of the Send mailbox
Destination slave number
Change byte
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Byte
(destination-specific)
Byte
0
1
2
2
:
:
60
61
(destination-specific)
Byte
0
1
2
2
:
:
60
61
Contents of the Receive mailbox
(source-specific)
0
Net data 1
0
Net data 1
1
Net data 2
1
Net data 2
:
:
:
:
:
:
:
:
60
Net data 61
60
Net data 61
61
Net data 62
61
Net data 62
Table 7-8. Mailbox Contents, S5-115F Slave PLC Sending to S5-115F Slave PLC
in 115F-14 Message Mode
Slave S5-115F Sending to Slave S5-115F in 115F-14 Message Mode
Contents of the Receive mailbox
(source-specific)
Own slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Table 7-9. Mailbox Contents, S5-115F Slave PLC Sending to S5-115F Slave PLC in 115F-15
Message Mode
Slave S5-115F Sending to Slave S5-115F in 115F-15 Message Mode
Contents of the Receive mailbox
(source-specific)
Own slave number
Change byte
Net data 1
Net data 2
:
:
Net data 59
Net data 60
7-15
Communications Capabilities
S5-115F Manual
Processing Send and Receive mailboxes
The Send and Receive mailboxes can only be processed with SINEC L1 synchronization.
Synchronization is performed:
• Automatically by the operating system
• By calling FB 254 with the "SINEC L1 processing" parameter in the user program.
Synchronization of SINEC L1 processing takes place automatically every 30 to 40 ms in the
operating system. We therefore recommend that you also carry out synchronization every 30 to
40 ms in the user program by calling FB 254 with the "SINEC L1 processing" parameter.
To maintain data consistency, you should always process the Receive and Send mailbox in a
continuous program sequence. Processing must be completed before the next SINEC L1
synchronization takes place.
To ensure that the program sequence is not interrupted, you should inhibit interrupt processing
(IA statement).
Example:
There are six possible data paths for interslave communications when using three slaves. Only the
following four data paths should be implemented, however:
Partner
Data paths
Slave 1
Slave 2
Slave 3
Slave 1 provides slaves 2 and 3 with information via central control. In addition, data is exchanged
between slaves 2 and 3 in both directions. These four data paths correspond to the following
mailboxes:
Slave 1 :
Send mailbox for data
Send mailbox for data
No Receive mailbox
to Slave 2
to Slave 3
Slave 2 :
Send mailbox for data
Receive mailbox for data
Receive mailbox for data
to Slave 3
from Slave 1
from Slave 3
Slave 3 :
Send mailbox for data
Receive mailbox for data
Receive mailbox for data
to Slave 2
from Slave 1
from Slave 2
For the user program in Slave 2 in the example this means:
Slave 2 writes data for slave 3 to receive into the Receive mailbox of slave 3. Note here that writing
is completed before the user calls the next FB 254 SYNC. If the SINEC L1 data path is free and if
FB 254 ”SYNC processing” has been possible in the receiving slave 3, the contents of the mailbox
are transferred by calling FB 254 SYNC and arrive in the Receive mailbox of slave 3.
The Send mailbox in slave 2 can be processed with the next FB 254 ”SYNC processing”, but this is
not mandatory.
7-16
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Example for one-channel SINEC L1 LAN:
In this SINEC L1 LAN programming example, four S5-115Fs are:
• connected together in a safety-related configuration with 115F-14 message mode
• connected to the master S5-115U in a nonsafety-related configuration
The following transfers are implemented:
Partner
Connections
Master 0
Slave 1
Slave 2
Slave 3
Slave 4
When an error occurs, Slave 1 sends the body of the error DB (with the error message code) to the
master in addition to the normal messages. The master only sends to Slave 1, which exchanges
data in both directions with the other three slaves.
The following figure shows the mailbox structure for a one-channel SINEC L1 LAN.
The uppercase letters in the figure refer to the subunits. In the case of Send mailboxes, the digits
indicate the destination PLC. In the case of Receive mailboxes, the digits indicate the source PLC.
”0” indicates the master and the digits 1 to 4 indicate the slaves.
EWA 4NEB 811 6148-02
7-17
Communications Capabilities
User
program
Master
Send
mailbox
S5-115F Manual
Operating
system
1
20 bytes
SINEC L1 LAN
Operating
system
Receive
mailbox
User
program
1
2
3
4
40 bytes
A 0
B 0
0 A
0 B
30 bytes
A 2
B 2
Slave 1
2 A
2 B
30 bytes
A 3
B 3
3 A
3 B
30 bytes
A 4
B 4
4 A
4 B
10 bytes
A 0
B 0
Slave 2
1 A
1 B
50 bytes
A 1
B 1
10 bytes
A 0
B 0
Slave 3
1 A
1 B
50 bytes
A 1
B 1
10 bytes
A 0
B 0
Slave 4
1 A
1 B
50 bytes
A 1
B 1
Send mailboxes
Receive mailboxes
Figure 7-10. Mailbox Structure in the Case of a Single-Channel SINEC L1 LAN
7-18
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Mailboxes A and B in the slave PLCs indicate identical mailboxes in both subunits. The master PLC,
on the other hand, has only one Send mailbox and one Receive mailbox.
Configuring
The mailbox system for the SINEC L1 LAN is configured for the slave ( Vol. 2, 1.1.2 of the manual).
For this purpose, COM 115F installs a table of Send mailboxes and a table of Receive mailboxes in
configuration DB1. Five bytes are reserved for each mailbox. You must also install coordination
bytes for the master.
Table 7-10 shows the configuring procedure of the SINEC-L1 structure tailored to the above
example:
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Table 7-10. Configuration of a SINEC L1 Structure with COM 115F (Example)
COM 115F
interrogates/calculates
Example
1
Configuration in Slave
2
3
4
SINEC L1 LAN available?
Y
Y
Y
Y
How many SINEC L1 LANs?
1
1
1
1
Own slave No.?
1
2
3
4
10
10
10
10
150
150
150
150
346
346
346
346
114*10
114*10
114*10
114*10
'M'
2
'M'
3
-
'M'
2
'M'
3
-
'M'
2
'M'
3
-
'M'
2
'M'
3
-
Number of elements in the
master polling list
(=total number of send
data paths)?
Slave data paths
1-2, 1-3, 1-4, 2-1, 3-1, 4-1,
1-0, 2-0, 3-0, 4-0
SINEC L1 safety time
(*10 ms)?
Number of data bytes with
master traffic Send
mailboxes used more than
once count each time.
SINEC L1 polling time=
Number of send data
paths of all slaves times
44 ms+
number of data bytes with
master traffic times 2 ms
< SINEC L1 safety time in
ms
0-1:
20 bytes
1-0:
56 bytes*
1-2, 1-3, 1-4: 30 bytes each
2-0, 3-0, 4-0: 10 bytes each
2-1, 3-1, 4-1: 50 bytes each
330 bytes
SINEC L1 polling time
= 10*44 ms
+ 346*2 ms
= 1132 ms
Table for coordination
bytes for master traffic?
Coordination bytes in
FY 2 and FY 3
* Length of error message
EWA 4NEB 811 6148-02
7-19
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
Communications Capabilities
Receive mailbox table
7-20
S5-115F Manual
Table 7-10. Configuration of a SINEC L1 Structure with COM 115F (Continued)
3
30
'D'
100
35
4
30
'D'
100
50
COM 115F
interrogates/calculates
Example
Configuration in Slave
1
2
3
4
Send mailbox table
Send mailboxes are in DB 100
from DW0 onward
0
40
'D'
100
0
0
10
'D'
100
0
0
10
'D'
100
0
0
10
'D'
100
0
2
30
'D'
100
20
1
50
'D'
100
5
1
50
'D'
100
5
1
50
'D'
100
5
0
30
'D'
101
0
0
30
'D'
101
0
0
30
'D'
101
0
Receive mailboxes are in DB 101
from DW0 onward
0
20
'D'
101
0
2
50
'D'
101
10
3
50
'D'
101
35
4
50
'D'
101
60
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Explanation of Table 7-10
The SINEC L1 LAN is operated with a single channel.
The slave No. is 1 to 4 in the S5-115F programmable controllers.
Our example contains 10 different send data paths from slave to slave and from slave to
master. One element must be entered in the SINEC L1 polling list for each send data path.
The polling list could, for example, be: 1-2-3-1-4-2-1-2-1-4.
The process demands that an error in the signals transmitted over the SINEC L1 LAN must
be detected within 1.5 seconds (the maximum SINEC L1 safety time is 1.5 s).
The total volume of information transmitted in our example is 346 bytes, which gives a
maximum polling time of 1140 ms for slave-to-slave data paths.
The 1.5 s safety time allowed for by the process for the relevant data is viable: the safety
time is greater than the SINEC L1 polling time.
In our example, the coordination bytes should be situated in the flag area, flags 2 and 3.
There are six slave-to-slave and four slave-to-master data paths. This means that 10 Send
mailboxes must be defined. For example, the following applies to slave 1:
• 1 to 0
• 1 to 2
• 1 to 3
• 1 to 4.
The following must be specified:
• Mailbox length in bytes (40,30,30,30),
• Mailbox location (DB for all four Send mailboxes),
• DB No. (100 for all four Send mailboxes).
• Initial data word No. (0,20,35,50).
In our example there are six slave-to-slave data paths and one master-to-slave data path.
This means that seven Receive mailboxes must be defined. For example, four of the
mailboxes are allocated to Slave 1:
• 0 to 1
• 2 to 1
• 3 to 1
• 4 to 1
The following must be specified:
• Mailbox length in bytes (20,50,50,50)
• Mailbox location (DB for all four Receive mailboxes)
• DB No. (101 for all four Receive mailboxes)
• Initial data word No. (0,10,35,60).
Note
If you use the function for sending error messages to the SINEC L1 master, you must
allow for this send data path and the amount of data required (56 bytes) when
calculating the SINEC L1 polling time.
EWA 4NEB 811 6148-02
7-21
Communications Capabilities
7.2.3
S5-115F Manual
Connecting Several S5-115Fs with S5 PLCs of the U Range
You can also add S5 PLCs of the U range to safety-related networks of several S5-115Fs as SINEC L1
slaves ( 7.2.2).
The following PLCs can be used as slaves with the CP 530:
• S5-115U/H
• S5-135U
• S5-150U
• S5-155U/H
The following PLCs can be used as slaves without the CP 530:
• S5-90U
• S5-95U
• S5-100U with CPU 102 or CPU 103
• S5-101U (Order No. 6ES5 101-8UA13)
• S5-115U
Data transfers with an S5 of the U range as source or destination are not safety-related.
Please note the following points:
• Interrupt messages are prohibited
• Safety-related broadcast messages are only possible in systems with the CPU 942-7UF15.
• Messages from the S5-115F have a special structure. The receiving user program in the S5-U
controller must take this structure into account when reading the message.
• Messages from S5-U controllers to an S5-115F must have the S5-115F-specific message structure. There must also be a guarantee that at least one message reaches an S5-115F within the
SINEC L1 safety time. Data traffic must be organized by the user program.
• Messages between S5s of the U range are possible. It is not necessary here to observe either
the signature extension or the time condition with regard to the SINEC L1 safety time.
The S5-115F has the following for interslave communications:
• A Send mailbox for each destination PLC
• A Receive mailbox for each source PLC
The Send and Receive mailboxes are configured with COM 115F.
Coordination bytes are not manipulated.
The mailboxes can be read or overwritten at any time.
Data exchange in the U system has been retained unchanged for slave S5-115Us:
• Common Send mailbox for all destination PLCs
• Common Receive mailbox for all source PLCs
• Coordination bytes (CBR and CBS).
The mailboxes are enabled each time FB 254 SYNC is called with the ”SINEC L1 processing”
parameter
• for sending a message and
• for receiving a message
7-22
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Byte
0
1
2
3
4
5
:
:
64
65
Byte
0
1
2
3
4
5
:
64
65
Contents of the Send mailbox
of the slave S5-U PLC
0
0
Signature (high byte)
Signature (low byte)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
Contents of the Send mailbox
of the slave S5-U PLC
Length
Destination
Signature (high byte)
Signature (low byte)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
EWA 4NEB 811 6148-02
Communications Capabilities
Mailbox contents in 115F-13 message mode
Note the different contents of the mailboxes in the slave S5 of the U range and in the slave
S5-115F.
The following four figures show mailbox contents for interslave communications in 115F-13
message mode:
• Slave PLC of the S5-U range with CP 530 sending to slave S5-115F
• Slave PLC of the S5-U range without CP 530 sending to slave S5-115F
• Slave S5-115F sending to slave PLC of the S5-U range with CP 530
• Slave S5-115F sending to slave PLC of the S5-U range without CP 530
Table 7-11. Mailbox Contents, Slave PLC of the S5-U Range with CP 530 Sending
to Slave S5-115F
Slave PLC of the S5-U Range with CP 530 Sending to Slave S5-115F
Byte
(shared)
0
1
:
:
60
61
Byte
(shared)
0
1
:
:
60
61
Contents of the Receive mailbox
of the slave S5-115F
(source-specific)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
Table 7-12. Mailbox Contents, Slave PLC of the S5-U Range without CP 530 Sending
to Slave S5-115F
Slave PLC of the S5-U Range without CP 530 Sending to Slave S5-115F
Contents of the Receive mailbox
of the slave S5-115F
(source-specific)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
7-23
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Communications Capabilities
Byte
0
1
:
:
66
67
Byte
0
1
:
:
60
61
7-24
Contents of the Send mailbox
of the slave S5-115F
Net data 1
Net data 2
:
:
Net data 61
Net data 62
Contents of the Send mailbox
of the slave S5-115F
Net data 1
Net data 2
:
:
Net data 61
Net data 62
S5-115F Manual
Table 7-13. Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range with CP 530
Slave S5-115F Sending to PLC of the S5-U Range with CP 530
Byte
(destination-specific)
0
1
2
3
4
5
6
7
:
:
66
67
Byte
(destination-specific)
0
1
2
3
4
5
:
:
64
65
Contents of the Receive mailbox
of the slave S5-U PLC
(shared)
CBR
Length
Source
Reserved
Signature (high byte)
Signature (low byte)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
Table 7-14. Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range without CP 530
Slave S5-115F Sending to PLC of the S5-U Range without CP 530
Contents of the Receive mailbox
of the slave S5-U PLC
(shared)
Length
Source
Signature (high byte)
Signature (low byte)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
S5-115F Manual
Byte
0
1
2
3
4
5
6
7
:
:
64
65
Byte
0
1
2
3
4
5
6
7
:
:
64
65
Contents of the Send mailbox
of the slave S5-U PLC
0
0
Signature (high byte)
Signature (low byte)
Destination slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Contents of the Send mailbox
of the slave S5-U PLC
Length
Destination
Signature (high byte)
Signature (low byte)
Destination slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
EWA 4NEB 811 6148-02
Communications Capabilities
Mailbox contents in 115F-14 message mode
Note the different contents of the mailboxes in the slave S5 of the U range and in the slave S5-115F.
The following four figures show the mailbox contents for interslave communications using
115F-14 message mode:
• Slave PLC of the S5-U range with CP 530 sending to slave S5-115F
• Slave PLC of the S5-U range without CP 530 sending to slave S5-115F
• Slave S5-115F sending to slave PLC of the S5-U range with CP 530
• Slave S5-115F sending to slave PLC of the S5-U range without CP 530
Table 7-15. Mailbox Contents, Slave PLC of the S5-U Range with CP 530 Sending
to Slave S5-115F
Slave PLC of the S5-U Range with CP 530 Sending to Slave S5-115F
Byte
(shared)
0
1
2
3
:
:
60
61
Byte
(shared)
0
1
2
3
:
:
60
61
Contents of the Receive mailbox
of the slave S5-115F
(source-specific)
Own slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Table 7-16. Mailbox Contents, Slave PLC of the S5-U Range without CP 530 Sending
to Slave S5-115F
Slave PLC of the S5-U Range without CP 530 Sending to Slave S5-115F
Contents of the Receive mailbox
of the slave S5-115F
(source-specific)
Own slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 61
Net data 62
7-25
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Communications Capabilities
Byte
0
1
2
3
:
:
66
67
Byte
0
1
2
3
:
:
60
61
7-26
Contents of the Send mailbox
of the slave S5-115F
Destination slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Contents of the Send mailbox
of the slave S5-115F
Destination slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 59
Net data 60
S5-115F Manual
Table 7-17. Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range with CP 530
Slave S5-115F Sending to PLC of the S5-U Range with CP 530
Byte
(destination-specific)
0
1
2
3
4
5
6
7
8
9
:
:
66
67
Byte
(destination-specific)
0
1
2
3
4
5
6
7
:
:
64
65
Contents of the Receive mailbox
of the slave S5-U PLC
(shared)
CBR
Length
Source
Reserved
Signature (high byte)
Signature (low byte)
Own slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Table 7-18. Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range without CP 530
Slave S5-115F Sending to PLC of the S5-U Range without CP 530
Contents of the Receive mailbox
of the slave S5-U PLC
(shared)
Length
Source
Signature (high byte)
Signature (low byte)
Own slave number
Not assigned (00H)
Net data 1
Net data 2
:
:
Net data 61
Net data 60
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Byte
0
1
2
3
4
5
6
7
:
:
64
65
Byte
0
1
2
3
4
5
6
7
:
:
64
65
Contents of the Send mailbox
of the slave S5-U PLC
0
0
Signature (high byte)
Signature (low byte)
Destination slave number
Change byte
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Contents of the Send mailbox
of the slave S5-U PLC
Length
Destination
Signature (high byte)
Signature (low byte)
Destination slave number
Change byte
Net data 1
Net data 2
:
:
Net data 61
Net data 62
EWA 4NEB 811 6148-02
Communications Capabilities
Mailbox contents in 115F-15 message mode
Note the different contents of the mailboxes in the slave S5 of the U range and in the slave S5-115F.
The following four figures show the mailbox contents for interslave communications using
115F-15 message mode:
• Slave PLC of the S5-U range with CP 530 sending to slave S5-115F
• Slave PLC of the S5-U range without CP 530 sending to slave S5-115F
• Slave S5-115F sending to slave PLC of the S5-U range with CP 530
• Slave S5-115F sending to slave PLC of the S5-U range without CP 530
Table 7-19. Mailbox Contents, Slave PLC of the S5-U Range with CP 530 Sending
to Slave S5-115F
Slave PLC of the S5-U Range with CP 530 Sending to Slave S5-115F
Byte
(shared)
0
1
2
3
:
:
60
61
Byte
(shared)
0
1
2
3
:
:
60
61
Contents of the Receive mailbox
of the slave S5-115F
(source-specific)
Own slave number
Change byte
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Table 7-20. Mailbox Contents, Slave PLC of the S5-U Range without CP 530 Sending
to Slave S5-115F
Slave PLC of the S5-U Range without CP 530 Sending to Slave S5-115F
Contents of the Receive mailbox
of the slave S5-115F
(source-specific)
Own slave number
Change byte
Net data 1
Net data 2
:
:
Net data 61
Net data 62
7-27
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Communications Capabilities
Byte
0
1
2
3
:
:
66
67
Byte
0
1
2
3
:
:
60
61
7-28
Contents of the Send mailbox
of the slave S5-115F
Destination slave number
Change byte
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Contents of the Send mailbox
of the slave S5-115F
Destination slave number
Change byte
Net data 1
Net data 2
:
:
Net data 59
Net data 60
S5-115F Manual
Table 7-21. Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range with CP 530
Slave S5-115F Sending to PLC of the S5-U Range with CP 530
Byte
(destination-specific)
0
1
2
3
4
5
6
7
8
9
:
:
66
67
Byte
(destination-specific)
0
1
2
3
4
5
6
7
:
:
64
65
Contents of the Receive mailbox
of the slave S5-U PLC
(shared)
CBR
Length
Source
Reserved
Signature (high byte)
Signature (low byte)
Own slave number
Change byte
Net data 1
Net data 2
:
:
Net data 59
Net data 60
Table 7-22. Mailbox Contents, Slave S5-115F Sending to PLC of the S5-U Range without CP 530
Slave S5-115F Sending to PLC of the S5-U Range without CP 530
Contents of the Receive mailbox
of the slave S5-U PLC
(shared)
Length
Source
Signature (high byte)
Signature (low byte)
Own slave number
Change byte
Net data 1
Net data 2
:
:
Net data 61
Net data 60
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Special features of the message structure
The messages of a slave S5-115F PLC must have a special header. The message header is necessary
for protecting the message data and consists of a 16-bit signature, a destination slave protection
byte and a message change byte. The message header is always transmitted automatically by the
S5-115F before the net data.
The messages of a PLC of the S5-U range do not have the S5-115F message header. For this reason,
you must take note of the following when exchanging data between a slave S5-115F PLC and a
slave PLC of the S5-U range:
Sending a message from a slave PLC of the S5-U range to a slave S5-115F PLC
Messages are only accepted by the slave S5-115F PLC if the complete message header is written to
the Receive mailbox. The message header contains information to protect the message, such as
the length of the message sent, the destination slave number, signature and message change byte
( Tables 7-11 and 7-12).
To calculate the signature you would require special information which is beyond the scope of this
manual. If you want to send messages from a slave PLC of the S5-U range to a slave S5-115F PLC,
please consult your local Siemens regional office.
Safety note
•
Inclusion of the security information ensures the correct transmission path. The net
data sent is nonsafety-related data, since it comes from a nonsafety-related
programmable controller. If you want to use the net data transmitted for safetyrelated processing, you must subject the data received to a validity check.
•
To ensure that a message received from a PLC of the S5-U range is not delivered to
the mailbox of a different partner if the destination address is corrupted, you must
choose a message length which is not used by any other node.
Sending a message from a slave S5-115F to a slave of the S5-U range
The PLC of the S5-U range receives the message header and the actual net data.
Evaluation of the message header is not necessary and is left to the user's discretion.
EWA 4NEB 811 6148-02
7-29
Communications Capabilities
S5-115F Manual
7.2.4 Safety-Related and Fault-Tolerant Networking
A safety-related network consisting of several S5-95Fs and S5-115Fs is fault-tolerant if two SINEC
L1 LANs are installed with two SIMATIC S5 PLCs.
SIMATIC S5
SIMATIC S5
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
SINEC L1 LAN A
R - DI DQ DI
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
DI DQ R - DI
Subunit B
Subunit A
DI DQ R - DI
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
Subunit A
S5 - 115F : Slave 2
Subunit B
R - DI DQ DI
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
S5 - 115F : Slave 1
SINEC L1 LAN B
Figure 7-11. Safety-Related and Fault-Tolerant Networking of Several S5-115Fs
The multimailbox system of the single-channel SINEC L1 LAN is the basis of this configuration. This
system has a separate mailbox for every data path, which is updated by synchronizing FB 254 SYNC
with the ”SINEC L1 processing” identifier once during the SINEC L1 safety time.
In contrast to the single-channel SINEC L1 LAN in the S5-115F, the two-channel SINEC L1 LAN has
two Receive mailbox systems, one for LAN A, and one for LAN B. It has, however, only one Send
mailbox system.
The two SINEC L1 LANs are not synchronized with one another, so that the nonsafety-related data
in the two SINEC L1 masters are independent of one another from the point of view of both time
and content.
If you have configured the function for sending an error message to the SINEC L1 master, the body
of the error DB with the error message code will be sent to both SINEC L1 masters in the event of a
fault.
7-30
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Method of operation:
Both subunits always have the same contents in all Send mailboxes common to SINEC L1 LAN A
and SINEC L1 LAN B. Since the SINEC L1 LANs are not synchronized with each other, they send the
individual messages from one Send mailbox at different times. However, the time difference is, at
the most, equal to the SINEC L1 safety time. Since the Receive mailbox is available in both subunits,
it follows that both subunits have the same data in their Receive mailboxes.
If you wish to make use of the high availability or fault tolerance of the two-channel SINEC L1 LAN,
call FB 253 MBXT before you access the mailbox of LAN B. FB 253 copies the contents of the
mailbox into the mailbox of the other LAN if an error has been reported in connection with its
data traffic. If both LANs have faults, an error message results followed by STOP.
Your program must additionally evaluate the error information via the SINEC L1 LANs in Block 1 of
error DBs 2 or 3 ( Vol. 2, 5.4.2 of the manual) and issue an operator message.
Please note the following differences in initializing and configuring single and two-channel
SINEC L1 LANs compared with the ”normal” operating mode of the LAN system ( 7.2.1):
•
•
•
•
•
•
•
You must set up a Send mailbox in the source slave and a Receive mailbox in the destination
slave for both the send and receive end of every data path. There are two Receive mailboxes
and one Send mailbox per data path in each subunit for a two-channel SINEC L1 LAN and two
Send mailboxes per subunit for the master traffic.
Send mailboxes can also be used repeatedly if identical data is sent to different destination
slaves.
Data is written to, and read from, the mailboxes by the operating system or by FB 254 SYNC
with the ”SINEC L1 processing” identifier ( Vol. 2, 5.1.5 of the manual). For this reason, no
coordination is required in the user program.
The mailboxes need not be cleared in order to receive the next transfer. Data is written into
them regularly for safety reasons even when no change has taken place.
The mailboxes for interslave data traffic can accommodate messages with a maximum of 62
bytes of useful data when using message mode 115F-13 and 60 bytes when using message
modes 115F-14 or 115F-15.
The mailboxes for master-slave data traffic can accommodate messages with a maximum of
64 bytes.
Depending on the message mode configured, safety-related messages are provided with highlevel protection for the destination slave number and a change byte for message protection.
EWA 4NEB 811 6148-02
7-31
Communications Capabilities
7.2.5
S5-115F Manual
The Mailbox Transfer Block FB 253
When you have installed a SINEC L1 LAN, it is connected to subunit B of the relevant S5-115F. The
user program accesses the Receive mailbox direct without interposing the FB 253.
If you have installed a two-channel SINEC L1 LAN, you have two Receive mailboxes (LAN A, LAN B).
If you want to use the high availability of the two-channel SINEC L1 LAN, call the mailbox transfer
block 253 MBXT. FB 253 copies the contents of the Receive mailbox of LAN A into the Receive
mailbox of LAN B if an error has been signalled for the data traffic of LAN B. Your program must
then access the Receive mailbox of LAN B. An error message results if there is also a fault in the
other LAN and the system stops.
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
Call and parameter setting
Parameter
Meaning
Type
Data
Type
QSLN
Source
slave No.
D
KF
7.3
Assignment
KF = 1 to 30
Any number between 1 and
30 can be given as the
source slave no. except the
slave's own number. A
Receive mailbox for both
SINEC L1 LANs must be
defined for each source
slave.
STL
: JU FB 253
Name : AGF:MBXT
QSLN :
Programmers for the S5-115F
Use of a programmer for the program test has been described in Chapter 4 of the COM 115F
manual and the role of the programmer in error diagnostics can be found in Chapter 5 of the
COM 115F manual. The procedure for entering data during safety operation is explained in
10.18.2.
The following chapter describes how the programmer can be connected to the S5-115F.
7.3.1
Programmer Connected to the Serial Interface of the CPU
A programmer can be connected to the serial port of each subunit A and B. Please note the
following priorities:
•
Restart after STOP
Programmer input data to A are copied to B
•
RUN in test mode
FORCE.VAR commands are copied to B by the operating system or the synchronization calls of
the program.
•
The programmer can be used to read data from both subunits.
7-32
EWA 4NEB 811 6148-02
S5-115F Manual
7.3.2
Communications Capabilities
Programmer Connected to SINEC L1 Master
You can service the programmer from the master via
• a single-channel SINEC L1 LAN
or
• a two-channel SINEC L1 LAN
You need a SINEC L1 LAN connected to all subunits to enable the operator to perform both read
and write functions.
Proceed as follows if you want to operate the subunits with a programmer via the SINEC L1 master
in the case of a single-channel SINEC L1 LAN:
• Configure a two-channel SINEC L1 LAN because the configuration of a single-channel SINEC L1
LAN is reserved for direct programmer operation of subunit A.
• Implement only a single-channel SINEC L1 LAN with subunit A.
Proceed as follows in the case of two-channel SINEC L1 LANs:
• Configure a two-channel SINEC L1 LAN
• Implement SINEC L1 LAN A and B.
SINEC L1 LAN A is disabled during programmer operation.
However, data traffic continues uninterrupted on SINEC L1 LAN B since the two-channel
SINEC L1 LAN is fault-tolerant.
EWA 4NEB 811 6148-02
7-33
Communications Capabilities
7.4
S5-115F Manual
CP 523 Serial I/O Module
In the following section you will find some special features required for using the CP 523 in safetyrelated S5-115Fs. See the CP 523 Manual for further information on the design and principle of
operation of the CP 523.
The following additional functions are available to you if you use the CP 523 serial I/O module:
• Printout of error messages
• Input and output of data via the terminal
• Point-to-point connection using the serial interface
The CP 523 can be used in ”Print mode” and ”Communications mode”. It has its own hardware
clock backed up by the battery of the power supply module. The clock data can be read by the CPU
and used in the user program for date-dependent and time-dependent tasks.
Print mode
Message texts can be printed out in this mode. This allows you to list process states and process
faults.
•
•
•
•
•
Printers with TTY or RS-232-C (V.24) interfaces can be connected
The printer interface can be configured (baud rate, BUSY signal, etc.)
The format of the page to be printed can be configured (headers, footers, margins, etc.)
Configuration of up to 4095 different message texts in data blocks on a memory submodule
You can provide for the following when configuring message texts:
- Insertion of the date or time of day in the printout
- Insertion of current variables in the printout (pressure, temperature, etc.)
- Transfer of printer control parameters (double-width type on/off, boldface type, etc.)
Communications mode
The module can exchange data with peripheral devices in this mode. The CP 523 offers the following communications features in Communications mode:
•
•
Communication with a terminal device (data terminal, barcode reader, keyboard, etc.)
Point-to-point connection to another CP 523, or an S5-115U with a CPU 944.
In communication mode the following drivers are possible:
•
•
open ASCII driver (transparent mode)
Procedure 3964 (R) (interpreter mode, without RK512
The CP 523 must be configured with COM 115F like all other modules. In doing so, the CP 523 is
treated as a Type 13 analog input module.
7-34
EWA 4NEB 811 6148-02
S5-115F Manual
7.4.1
Communications Capabilities
Settings on the CP 523 Module
The CP 523 module has a jumper header and a DIP switch. The following figure shows the position
of these components.
Jumper X7: closed
aaaaaaaa
aaaa
Jumper header X10
Jumper X9: open
1
Jumper X8: open
Jumper X6: closed (from
Version 2 onward)
9
1
8
OFF ON
Switch bank S1
for address
setting
Figure 7-12. Location of Address Switch and Jumper Header on the CP 523 Module
Jumper settings
There are nine jumpers in jumper header X10. The signal cables from the printed circuit board are
connected to the interface connector via these jumpers.
The 20 mA current supply of the active TTY interface is switched on with jumpers 1 and 2.
Jumpers 3 to 8 connect the signal cables of the RS-232-C (V.24) interface to the interface
connector. Jumper 9 connects the ground with the interface connector.
Note
Note the different safety characteristics of the TTY and RS-232-C (V.24) interfaces.
The current-driven TTY interface contains an optocoupler which guarantees reliable
galvanic isolation between the 220 V supply of the operator panel and the CP 523.
The voltage-driven RS-232-C (V.24) interface contains no such galvanic isolation.
EWA 4NEB 811 6148-02
7-35
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
Communications Capabilities
=on
7-36
S5-115F Manual
DIP switches for addressing
The CP 523 uses an address area of eight bytes and is addressed from initial address 128 like an
analog module. You must set the desired initial address via DIP switches on switch bank S1.
See the following table for the switch settings for defining the initial address:
Table 7-23. Switch Settings on Switch Bank S1 for Defining the Initial Address
Initial Address
1
2
Switch Setting
Switch Bank S1
3 4 5 6 7 8
128
136
144
152
160
168
176
184
192
200
208
216
224
232
240
248
=off
The CP 523 is only used in single-channel mode in the S5-115F.
The addresses used must also be kept free in the other subunit. These assigned addresses must also
not be used by single-channel analog input modules or analog output modules in the subunit.
Note
The modules are supplied with initial addresses 128 set in the works.
Make sure before startup that there are not several modules occupying the same
address space. Check the address settings on the IM 306, CP 523 and 463 AI module for
this reason.
EWA 4NEB 811 6148-02
S5-115F Manual
7.4.2
Communications Capabilities
Use of the CP 523 in Print Mode
You can print out all texts stored on the memory submodule of the CP 523 in print mode.
You can use the CP 523 in the S5-115F for the following:
•
•
Plaintext printout of operating system error messages (message module)
Printout of messages from the user program.
Printout of messages from the user program is described in detail in the CP 523 Manual. For this
reason, we concentrate here on the use of the CP 523 for printing out operating system error
messages in plaintext.
Printing out operating system error messages in plaintext
If you configure the CP 523 as a message module, you can print out the operating system error
messages in plaintext.
The CP 523 interprets the error message frames of the operating system and then outputs the
error message texts to the printer in plaintext.
The information required for interpretation is contained in data blocks on the memory submodule
of the CP 523. If you want to print standard error texts, you need only transfer both data blocks
from the COM 115F S5CQ59ST.S5D file to an EPROM or EEPROM memory submodule.
Proceed as follows if you are using the CP 523 as a message module:
• Insert the CP 523 module into the subrack
• Configure the CP 523 module as a message module (I/O type 13)
• Transfer DB 1 (interface parameters) and DB 255 (data for error texts) from the COM 115F
S5CQ59ST.S5D file to an EPROM or EEPROM memory submodule.
• Plug the memory submodule into the CP 523
• Connect the printer with the interface initialized in DB 1
The printer must have a TTY interface with the following parameters:
• Baud rate 9600 bps
• Carriage return = 0AH
• Line feed = 0DH
• Even parity
• 7 data bits
• No XON/XOFF character
• BUSY signal not evaluated
If you want to operate a printer with a different interface or different parameters, you must adapt
the parameters of the CP 523 interface according to the CP 523 Manual. (DB 1 on the memory
submodule of the CP 523 must be modified for this purpose).
Note
Note that the data blocks in the S5CQ59ST.S5D file are for the memory submodule of
the CP 523 only. Do not confuse these data blocks (DB 1 and DB 255) with the
COM 115F configuration blocks
EWA 4NEB 811 6148-02
7-37
Communications Capabilities
S5-115F Manual
The following table shows examples of standard error texts that have been stored in DB 255 of the
COM 115F S5CQ59ST.S5D file.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Table 7-24. Standard Error Message Texts
Typical Standard Error Message Texts
23.07.89
11:26:42
CPU ERROR
– 030,003
23.07.89
11:26:42
CPU/IM304/IM324 ERROR
– 051,005
23.07.89
11:26:42
USER SUBMODULE ERROR
– 050,001
23.07.89
11:26:42
OPERATING SYSTEM EPROM ERROR
– 049,001
23.07.89
11:26:42
BATTERY FAULT
– 102,004
23.07.89
11:26:42
SINEC L1 ERROR SLAVE 011, LAN B
23.07.89
11:26:42
WARM RESTART ERROR
– 100,005
23.07.89
11:26:42
POWER OFF
– 102,018
23.07.89
11:26:42
STOP SWITCHED
– 109,012
23.07.89
11:26:42
CONFIGURING/PROGRAMMING ERROR
– 252,010
23.07.89
11:26:42
I/O ERROR
DI BIT
002,001
SIGNAL GR. 16– 016,001
23.07.89
11:26:42
I/O ERROR
DQ BIT
089,007
SIGNAL GR. 02– 028,002
23.07.89
11:26:42
I/O ERROR
AI WORD
160,000
SIGNAL GR. 10– 250,009
23.07.89
11:26:42
TIMEOUT
???????
000
– 103,004
23.07.89
11:26:42
TIMEOUT
DI WORD 060
– 016,005
23.07.89
11:26:42
TIMEOUT
DQ WORD 012
– 028,008
23.07.89
11:26:42
TIMEOUT
AI WORD
190
– 017,001
23.07.89
11:26:42
TIMEOUT
AQ WORD 240
– 033,003
23.07.89
11:26:42
ERROR CAN NOT BE EVALUATED
7-38
– 054,008
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Generating nonstandard error message texts
If you want to evaluate the operating system error messages yourself and store your own error
message texts on the memory submodule of the CP 523, please read the following information on
the structure of error message frames.
You can change error texts as you wish. Generation of message texts is described in detail in the
CP 523 Manual.
Error message frames from the operating system to the CP 523 are always four words long.
The job number and message text number of all error message frames is output in the first word.
The job number has the value ”4D”, i.e. the CP 523 message texts output by the CP 523 are printed
without line feed.
The subsequent three words contain additional information, which you can insert in the message
text as variables.
The message text number output by the operating system always applies to the relevant error
group. See the following table for the assignment of message text numbers to relevant error
groups.
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
Table 7-25. Assignment of Message Text Number to Error Group
Message Text Number
Error
Error Group
3851
3852
3853
I/O error: DI, CH-DQ
I/O error: DQ, R-DI
I/O error: AI, CH-AQ, CH-DQ
8, 9, 10
8, 9, 10
8, 9, 10
3854
I/O error: QVZ (time-out)
19
3846
SINEC L1 error
3841
3842
3843
3844
3845
3847
3848
3849
3850
3855
CPU error
IM 304/324 or CPU error
USER MEMORY submodule error
Operating system EPROM error
Battery fault
Error: warm restart required
Error: power off in restart
STOP switched by user program
Handling error
Unassigned
2, 3, 7, 13, 15
1, 4, 20, 23
6, 24, 30
5
25
17
18
26
12, 14, 16, 21, 31
0, 22, 27, 28, >31
The subsequent information in words 2 to 4 varies according to the message text number.
The message text numbers and the relevant IDs are given in the following overviews.
EWA 4NEB 811 6148-02
7-39
Communications Capabilities
S5-115F Manual
I/O error without QVZ (message text Nos. 3851, 3852, 3853)
1st word
Bits 12 - 15:
Bits 0 - 11:
4D (Job number)
Message text number
2nd word
In the high byte:
In the low byte:
Number of the I/O word
Number of the bit
3rd word
Number of the signal group plus 3888D
4th word
In the high byte:
In the low byte:
Error-detecting program
Current error number
I/O error with QVZ (message text No. 3854)
1st word
Bits 12 - 15:
Bits 0 - 11:
4D (Job number)
Message text number
2nd word
Where the QVZ is unspecifiable:
In the case of QVZ on the DI module:
In the case of QVZ on the DQ module:
In the case of QVZ on the AI module:
In the case of QVZ on the AQ module:
3872D
3873D
3874D
3875D
3876D
3rd word
Where the QVZ is unspecifiable:
For all other QVZs:
255D
Number of the I/O word
4th word
In the high byte:
In the low byte:
Error-detecting program
Current error number
SINEC L1 error (message text No. 3846)
1st word
Bits 12 - 15:
Bits 0 - 11:
4D (Job number)
Message text number
2nd word
Slave number
3rd word
In the case of errors on the SINEC L1 LAN A:
In the case of errors on the SINEC L1 LAN B:
4th word
No information
All bits reset
1st word
Bits 12 - 15:
Bits 0 - 11:
4D (Job number)
Message text number
2nd word
In the high byte:
In the low byte:
Number of the I/O word
Number of the bit
3rd word
No information:
All bits reset
4th word
In the high byte:
In the low byte:
Error-detecting program
Current error number
65D = 41H
66D = 42H
All other errors
7-40
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Terminal diagrams for print mode
The CP 523 assumes a printer with a TTY interface or an RS-232-C (V.24) interface as the peripheral
device.
CP 523 (passive TTY) to PT 88 (active TTY) without BUSY signal
CP 523
PT 88
TTY OUT+ (10)
(10) TTY IN –
20 mA
TTY OUT - (12)
(9) TTY IN+
Shield
Shield
(1) Shield
(24)
(25)
Figure 7-13. Pin Assignments for CP 523 (Passive TTY) to PT 88 (Active TTY) without BUSY Signal
CP 523 (passive TTY) to PT 88 (active TTY) with BUSY signal
Printer setting: Printer not ready to receive = no current
CP 523
PT 88
TTY OUT+ (10)
(10) TTY IN 20 mA
TTY OUT - (12)
(9)
TTY IN+
Shield
(24)
(1)
Shield
Shield
(25)
TTY IN+
(6)
(21) TTY OUT -
TTY IN -
(8)
(18) TTY OUT+
20 mA
Figure 7-14. Pin Assignments for CP 523 (Passive TTY) to PT 88 (Active TTY) with BUSY Signal
Note
If you are using the CP 523 with an active TTY interface, please note the voltage drop
over the cable lengths as well as the Send and Receive elements of the module.
EWA 4NEB 811 6148-02
7-41
Communications Capabilities
S5-115F Manual
RS-232-C (V.24) interface
Printer setting: Printer not ready to receive = no current
CP 523
PT 88
V.24 - TXD (11)
(3) RXD
V.24 - RXD
(2) TXD
Shield
CTS
(5)
(24/25)
(1) Shield
(9)
RTS (13)
DTR (15)
GND
(2/21/23)
DSR
(7)
(7) GND
(25) BUSY
Figure 7-15. Pin Assignment of the RS-232-C (V.24) Interface (Print Mode)
7-42
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Pin Assignments of the 25-way subminiature D connector
-
1
Ground
2
-
3
V.24 -RXD
TTY IN+
DSR
TTY IN -
-
15
DTR
16
-
17
-
18
-
19
-
20
20 mA receive
21
Ground
22
20 mA send
23
Ground
24
Shield
25
Shield
4
5
6
7
8
CTS
9
TTY OUT+
10
V.24 -TXD
11
TTY OUT -
12
RTS
14
13
Figure 7-16. Pin Assignments of the 25-Way Subminiature D Connector
Note
If you are using the CP 523 with an active TTY interface, please note the voltage drop
over the cable lengths as well as the Send and Receive elements of the module.
EWA 4NEB 811 6148-02
7-43
Communications Capabilities
7.4.3
S5-115F Manual
Use of the CP 523 in Communications Mode
Message frames of up to 256 bytes in length can be transferred between the CPU and a peripheral
device connected to the CP 523 module. The CP 523 offers you the following:
•
•
Communications with a terminal device (terminal, operator-process communication and visualization units)
Point-to-point connection with another CP 523 or a CPU 944
You can choose between:
• Transparent Communications mode
The CP 523 does not interpret any characters in Transparent Communications mode.
- No XON/XOFF protocol is possible.
- Messages can only be sent or received with a fixed length.
• Interpretive Communications mode
The CP 523 evaluates the following characters in Interpretive Communications mode:
- RUB OUT (7FH)
- BACKSPACE (08H)
- XON/XOFF character (if programmed)
- Character end code (if programmed)
In Communications mode, the CPU initiates data exchange between the CPU and the CP by
sending a job request.
The CP 523 handles data transfer with the peripheral devices autonomously.
See the CP 523 Manual for a detailed description of the data exchange procedure.
The FB 252 BLUE function block integrated in the CPU 942-7UF12 allows user-friendly handling
and control of data exchange. See 7.4.5 for a description of FB 252 BLUE.
The time of day can be read from the integral clock by the CPU also in Communications mode and
used in the application program for date-dependent and time-dependent tasks.
Message text printout and editing as in Print mode is not possible in Communications mode. For
this reason, no memory submodule is required in Communications mode.
7-44
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
S5 bus and transfer memory
The data between the CPU and the CP 523 is transferred via the S5 bus. The data is stored on the
CP 523 in a transfer memory of eight bytes. The addresses for the transfer memory are derived
from the initial address of the module and an offset of 0 to 7.
The CP 523 only reads the data in the transfer memory and updates the transfer memory with
current data after the entire data block (four words) has been written into the transfer memory by
the user program. The current data can then be read by the user program.
CPU transfers job to
transfer memory
CP reads bytes 0 to
7 of transfer
memory
CP overwrites
bytes 0 to 7 of the
transfer memory
CPU can read
current data from
transfer memory
Figure 7-17. Using the Transfer Memory
Rules for galvanic isolation
In order to guarantee safe galvanic isolation between the S5-115F and the CP 523, you must
• Select a suitable interface
• Make settings on jumper X10.
The following table gives an overview of the permissible interfaces.
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
Table 7-26. Jumper Settings for Safe Galvanic Isolation
On the Device
Connected to
the CP 523
Galvanic Isolation
to the 5 V Supply
to VDE 160
Permissible
Interface
Jumper Setting on
Jumper Block X10 of the
CP 523 ( Figure 7-17)
Printers and
operator
panels
no
TTY passive
Remove all jumpers
Printers and
operator
panels
V.24
(RS-232-C)
Plug in jumpers 1 to 9
yes
TTY active
Plug in jumpers 1, 2, 9
Remove jumpers 3 to 8
TTY passive
Remove all jumpers
no
TTY passive
Remove all jumpers
V.24
(RS-232-C)
Plug in jumpers 1 to 9
yes
TTY active
Plug in jumpers 1, 2, 9
Plug in jumpers 3 to 8
TTY passive
Remove all jumpers
CP 523 in a PLC
of the S5-U
range
CP 523 in an
S5-115F
EWA 4NEB 811 6148-02
Remarks
Galvanic
isolation via
optocoupler
Galvanic
isolation via
optocoupler
s
7-45
Communications Capabilities
S5-115F Manual
Terminal diagrams for communications mode
The CP 523 assumes the following as peripheral device:
• Data terminal equipment, e.g. CP 521, CP 523, CPU 944
• Data communications equipment, e.g. a MODEM
CP 523 - CP 523 (TTY interface)
CP 523 (TTY passive)
CP 523 (TTY active)
TTY IN+
(6)
(22) 20 mA
TTY IN -
(8)
(10) TTY OUT+
+
(12) TTY OUT (2)
TTY OUT+ (10)
TTY OUT - (12)
Ground
(20) 20 mA
+
(6) TTY IN+
(8) TTY IN (2)
Ground
Figure 7-18. Pin Assignments for CP 523 to CP 523 (TTY Interface)
CPU 944 (TTY active) - CP 523 (TTY passive)
CPU 944 (TTY active)
CP 523 (TTY passive)
20 mA
+
(11)
(6) TTY IN+
TTY OUT+
(6)
(8) TTY IN -
TTY OUT -
(7)
(5)
Ground
20 mA
+
(13)
(10) TTY OUT+
TTY IN+
(9)
(12) TTY OUT -
TTY IN -
(2)
(12)
Ground
Figure 7-19. Pin Assignments for CPU 944 (TTY Active) to CP 523 (TTY Passive)
7-46
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Connecting a data terminal to a communications terminal
An example using CP 523 to Modem (SIEMENS 2425 B DX)
CP 523
Modem
RS-232-C
(5)
(3)
Modem RXD
(V.24) -TXD
(11)
(2)
Modem TXD
RTS
(13)
(4)
Modem RTS
CTS
(9)
(5)
Modem CTS
DTR
(15)
(20)
Modem DTR
DSR
(7)
(6)
Modem DSR
GND
(2)
(7)
GND
(V.24) -RXD
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
RS-232-C
Shield (1)
(1)Shield
Shield (8)
Figure 7-20. Pin Assignments for CP 523 to Modem
Note
If you use the 3964(R) procedure in communications mode, the control cables for the
DSR, DTR, CTS and RTS signals need not be connected.
7.4.4
Failsafe Characteristics of the CP 523
The CP 523 is only used in single-channel configuration in the S5-115F. Operation of the CP 523
with FB 252 BLUE is not failsafe a standard. The operating system does not check the received or
sent data for validity or for error-free reception.
The control program must contain safety functions for failsafe data transfer. For this reason, use a
point-to-point connection over the CP 523 in such cases and the prototype-tested standard
function blocks ( Catalog ST57).
Note
Make sure that no addresses have been duplicated before starting up the S5-115F.
Check the address settings on the IM 306, CP 523 and AI 463 modules.
EWA 4NEB 811 6148-02
7-47
Communications Capabilities
7.4.5
S5-115F Manual
FB 252 Integral Function Block
The FB 252 is integrated in the operating system of the S5-115F. It handles control of data transfer
between the CPU and the CP 523 serial I/O module. The FB 252 transfers fixed-length data. Up to
32 data blocks of eight bytes each are read from or written to a memory area per call. Memory
areas are data blocks or flag areas.
The CPU always initiates each data transfer by calling the FB 252. The user can specify whether he
wants to send or receive data with the FB.
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
You must specify the following when calling FB 252:
• Initial address of the CP 523
• FB 252 function
You specify here whether you want to send or receive
• Memory type
In the case of a send job, specify here whether the data is in a flag area or a data block.
In the case of a receive job, specify here whether the data is to be stored in a flag area or a
data block.
• Number of the data block
• Number of the source data word, or number of the destination data word
• Number of eight-byte data blocks to be transferred
Parameter
BADR
Meaning
Type
Initial module
address
D
FUNK
Function
D
TYP
Source / destin.
memory type in
D
Data
type
KF
Block number
STL
128 to 248
(in 8-byte-steps)
NAME
: JU FB 252
: AGF: BLUE
KC
S:
E:
BADR
FUNK
TYP
:
:
:
KC
D
F
DBNR
ANFA
BLCK
:
:
:
the case of S/R
DBNR
Assignment
= Send data
= Receive data
: = Data block
: = Flag area
XX : = Indirect block initialization
(the block parameters are
stored in a data block)
D
KF
In the case of data block: 4 to 255
In the case of flag area: 0
In the case of indirect block
initialization: 0; 4 to 255
ANFA
Initial address of
D
KF
the block
BLCK
Number of blocks
0 to 252 data word number
2 to 248 flag byte number
D
KF
1 to 32
Number of 8-byte data blocks to be
transferred
7-48
EWA 4NEB 811 6148-02
S5-115F Manual
Communications Capabilities
Indirect assignment of FB 252 parameters
If you want to assign the FB 252 parameters indirectly, you must store the data for assigning the
block parameters in a DB. For this purpose, write the parameter assignments in six consecutive
data words. You must note the order of the parameters!
You must specify the following when calling FB 252:
• The value ”XX” for the TYP parameter
• The number of the DB (DB 4 to 255) with the block parameter assignments for the DBNR
parameter
or
the value ”C” for the DBNR parameter if the last opened DB contains the block parameter
assignments
• The number of the data word containing the first block parameter (BADR parameter) for the
ANFA parameter.
The BADR, FUNK and BLCK parameters must be assigned permissible values but the values themselves are insignificant in this case.
Sending and receiving data in communications mode
Data transfer must be coordinated before you can send a message frame to the CP 523. For this
reason, message frame transfer can be divided into three steps.
1st step
The CPU transfers the ”Send message” or ”Receive message” job request to the CP 523. The CP
reads the job request from its transfer memory and writes transfer information autonomously into
the transfer memory.
2nd step
The CPU reads the coordination information from the transfer memory and evaluates it. The
actual message can be sent or received when the CP 523 has accepted the job.
3rd step
The CPU sends or receives the message of up 32 eight-byte data blocks.
To make the user program as clear as possible, FB 252 BLUE should be called with the relevant
function for each of the above steps.
Note
Function blocks FB 200 and FB 201 described in the CP 523 Manual cannot be used in
the S5-115F.
The following flowchart shows data transfer with three FB 252 BLU calls for the ”Send message”
job.
EWA 4NEB 811 6148-02
7-49
Communications Capabilities
S5-115F Manual
START
FB 252: Send function
CPU transfers the ”Send message” job request
from a memory area of the CPU (flag area or
data block) to the I/O address of the CP 523
CP 523 reads the job and writes the
coordination information into the transfer
memory
FB 252: Receive function*
CPU reads the coordination information from
the I/O address specified by the CP 523 in the
transfer memory
CPU evaluates the received coordination
information
Has the CP 523
accepted the job?
no
yes
FB 252: Send function
CPU sends the message from the memory area
to the I/O address specified
CP 523 transfers the data received
autonomously from the Send mailbox to the
peripheral device
END
* You can also read the coordination information with the L PW operation
Figure 7-21. Flowchart for Sending a Message to the CP 523
7-50
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
8
Technical Specifications
8.1
General Technical Specifications
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
Description of the Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. - 3
Mounting Racks (CRs, ERs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. - 3
Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
. .- 6
Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. - 9
Digital Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
. .- 10
Digital Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. - 14
Digital Input/Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. - 20
Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.- 26
Analog Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. - 31
Communications Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8. - 37
Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. .- 38
8.3
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
. .-.42
EWA 4NEB 811 6148-02
............................8
. -1
S5-115F Manual
Technical Specifications
8
Technical Specifications
8.1
General Technical Specifications
Climatic
Environmental Conditions
Mechanical
Environmental Conditions
Temperature
Vibration
- tested with
to IEC 68-2-6
10 to 57 Hz,
(const. amplitude 0.15 mm)
57 to 150 Hz,
(const. acceleration 2 g)
Shock
- tested with
to IEC 68-2-27
12 shocks
(half sine 15 g / 11 msec.)
Free fall
- tested with
to IEC 68-2-32
height of fall 1 m (3.3 ft.)
Operating
- open design
Air intake temperature
(measured at the bottom
of the modules)
0 to+55° C
- cabinet design
(Where cabinet design is concerned, the dissipatible heat
loss depends on the type of construction, the ambient
temperature, and the arrangement of the devices.)
Air intake temperature
(measured at the bottom
of the modules)
0 to+55° C
Nonoperating
- 40 to+85° C
Temperature change
- operating
- nonoperating
max. 10 K / h
max. 20 K / h
Relative humidity
- operating
- nonoperating
95% (acc. to DIN 40040)
95% (noncondensing)
Atmospheric pressure
- operating
- nonoperating
860 to 1060 hPa 1
660 to 1060 hPa 1
Pollutants
- SO2
- H2S
0.5 ppm,
(rel. humidity 60%,
noncondensing)
0.1 ppm,
(rel. humidity 60%,
noncondensing)
1 For use under 900 hPa (=1000 m above sea-level), check with the manufacturer on the cooling requirements.
EWA 4NEB 811 6148-02
8-1
Technical Specifications
S5-115F Manual
Electromagnetic Compatibility (EMC)
Noise Immunity
IEC / VDE
Safety Information
Damped oscillatory wave test
- AC power supply modules
- DC power supply modules
- output 24 V DC
- input 115 V AC / 230 V AC
- digital input/output modules
- analog input/output modules
- communications interfaces
to IEC 255-4
2.5 kV
1 kV
1 kV
2.5 kV
2.5 kV
1 kV
1 kV
Fast transient burst test
to IEC 65
(Sec) 87
2 kV
2 kV
1 kV
1 kV
-
power supply modules
digital input/output modules
analog input/output modules
communications interfaces
Electrostatic discharge test
-
power supply modules
digital input/output modules
analog input/output modules
communications interfaces
to IEC 801-2
(Discharge to all
parts accessible to
the operator in
normal operation)
5 kV
5 kV
5 kV
5 kV
Radiated electromagnetic field test
- test field strength
to IEC 801-3
3 V/m
Fast transient burst
- power supply modules
- digital input/output modules
- analog input/output modules
- communications interfaces
to IEC 801-4
Degree of protection
- type
- class
to IEC 536
Insulation rating
- between electrically
independent circuits
and
with circuits connected
by a central grounding
point
to VDE 0160
- between all
circuits
and
central grounding point
(standard mounting rail)
to VDE 0160
Test voltage
for a rated
voltage Ve of the
circuits (AC / DC)
Ve= 0 to 50 V
Ve= 50 to 125 V
Ve= 125 to 250 V
Impulse voltage
for a rated
voltage Ve of the
circuits (AC / DC)
Ve= 0 to 50 V
Ve= 50 to 125 V
Ve= 125 to 250 V
RI specification
- limit class
Note:
AC output modules
are not interference suppressed!
8-2
to IEC 529
IP 20
sine, 50 Hz
500 V
1250 V
1500 V
to IEC 255-4
1 kV, 1.2 / 50 µs
1 kV, 1.2 / 50 µs
3 kV, 1.2 / 50 µs
to VDE 0871
A
EWA 4NEB 811 6148-02
P
S
EWA 4NEB 811 6148-02
C
P 0
U
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
0
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
C
P
U
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
P
S
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
P
S
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaa
P
S
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaa
S5-115F Manual
Technical Specifications
8.2
Description of the Modules
8.2.1
Mounting Racks (CRs, ERs)
Mounting Rack CR 700-0 for Central Controller
3
I
M
6
I
M
(6ES5 700-0LB11)
Technical Specifications
Number of input/output modules
that can be plugged in
max.
6
Number of expansion units
that can be connected
- central
- distributed up to 600 m (1969 ft.)
- distributed up to 1000 m (3281 ft.)
max.
max.
max.
3
2x4
3
Dimensions w x h x d (mm (in.))
353 x 303 x 47
(13.8 x 11.9 x
1.8)
Weight
4 kg (8.8 lbs.)
Mounting Rack CR 700-2F for Central Controller
(6ES5 702-2LA22)
Technical Specifications
Number of input/output modules
that can be plugged in
max.
6
Number of expansion units
that can be connected
- central
- distributed up to 600 m
max.
max.
3
2x4
Dimensions w x h x d (mm (in.))
483 x 303 x 47
(19 x 11.9 x 1.8)
Weight
5 kg (11 lbs.)
8-3
Technical Specifications
S5-115F Manual
Mounting Rack ER 701-1 for Expansion Unit 1
(6ES5 701-1LA12)
1
2
3
aaaaaa
aaa
aaaaaa
aaa
aaaaaa
aaa
aaaaaa
aaa
aaaaaa
aaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaa
0
aaaaaaaa
aaaa
aaaaaa
aaa
aaaaaa
aaa
aaaaaaaa
Technical Specifications
4
5
6
7
8
I
M
Number of input/output modules
that can be plugged in
max.
Interface module
- central connection
IM 306
Interrupt evaluation
not possible
Dimensions w x h x d (mm (in.))
483 x 303 x 47
(19 x 11.9 x 1.8)
Weight
5 kg (11 lbs.)
Mounting Rack ER 701-2 for Expansion Unit 2
9
(6ES5 701-2LA12)
P
S
8-4
0
7
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaa
aaaaa
P
S
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaa
aaaaaa
aaa
Technical Specifications
I
M
Number of input/output modules
that can be plugged in
max.
Interface module
- distributed connection
IM 306
IM 304 / IM 314
Interrupt evaluation
not possible
Dimensions w x h x d (mm (in.))
483 x 303 x 47
(19 x 11.9 x 1.8)
Weight
5 kg (11 lbs.)
7
EWA 4NEB 811 6148-02
P
S
max.
Interface module
- central connection
- distributed connection
IM 306
IM 304 / IM 314
Interrupt evaluation
not possible
Dimensions w x h x d (mm (in.))
483 x 303 x 47
(19 x 11.9 x 1.8)
Weight
5 kg (11 lbs.)
0
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaa
P
S
Number of input/output modules
that can be plugged in
aaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
S5-115F Manual
Technical Specifications
Mounting Rack ER 701-3 for Expansion Unit 3
7
I
M
(6ES5 701-3LA12)
Technical Specifications
7
8-5
Technical Specifications
8.2.2
S5-115F Manual
Power Supply Module
PS 951 Power Supply Module 24 V DC; 5 V, 7 A
(6ES5 951-7ND21)
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
Technical Specifications
SIEMENS
Input voltage L+
- rated value
- permissible range
SIMATIC S5
PS
7A/15A
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Input current at 24 V
- rated value
- inrush current
- I2t
Batt.
3.4V/5Ah
max.
Power consumption
Replace by
trained
personnel
only!
-
EXT BATT
3.4...9V
5.4 A
132 A
16 A2s
130 W
Output voltage
- rated value
- tolerance
Output current
- rated value
- permissible range
aaaaaa
aaaaaa
aaa
+
24 V DC
19.2 to 30 V
5V
±2%
7A
0.3 to 7 A
Backup battery
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaa aaa
BATT LOW
RESET
5V DC
- Backup time
5.2V DC
min.
aaaaaaaa
aaaaaaaa
aaaa
24V DC
aaaaaaaaaa
aaaaaaaa
INT DC
POWER
L+
Li battery,
size C
(3.6 V/5 Ah)
1 year (at 0.3 mA,
25 °C and
uninterrupted
backup supply)
Short-circuit protection
electronic
Fault indicator
no
Fuse (primary circuit)
integral
Class of protection
class 1
Floating
no
Insulation rating
- tested with
electrical separation
to VDE 0160
500 V DC
RI specification
A+14 dB to VDE 0871
aaaaaa
aaaaaa
aaaaaa
aaa
M
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa aaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa aaaaaaa aaaaaaaaaa
aaaaaaaaaaaa
aaa
aaaaaaaaaaaa
aaaaaa aaaaaaaaa
aaaaaaaaaaaa
aaaaaa
aaa aaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaa
aaaaaaaaaaaa aaaaaa aaaaaa
aaaaaaaaaaaa aaaaaa
aaaaaaaaaaaa aaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaa
aaaaaaaa
aaaaaa
aaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaaaaaa aaa
aaaaaaaaaaaaaaaaaa
aaaaa
24 V DC
Battery
Signals
RESET
5V
5.2 V
24 V
EXT.BATT
6
1
2
3
L+
M
5
Power loss of the
module
typ.
Weight
approx. 1.9 kg (4.2 lbs.)
34 W
5V
5.2 V
24 V
M
4
POWER
PE
4
Chopper controller
Chopper controller
Linear controller
4
5
6
Control electronics
RI filter
Monitoring electronics
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
1
2
3
Block diagram
8-6
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
PS 951 Power Supply Module 24 V DC; 5 V, 7 A
(6ES5 951-7ND31)
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Technical Specifications
SIEMENS
SIMATIC S5
PS
7A/15A
Input voltage L+
- rated value
- permissible range
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Input current at 24 V
- rated value
- inrush current
- I2t
Batt.
3.4V/5Ah
-
5.4 A
132 A
16 A2s
130 W
Output voltage
- rated value
- tolerance
Output current
- rated value without fans
- permissible range
aaaaaa
aaaaaa
aaa
+
max.
Power consumption
Replace by
trained
personnel
only!
EXT BATT
3.4...9V
24 V DC
19.2 to 30 V
5V
±2%
7A
0.3 to 7 A
aaaaaaaa
aaaaaaaa
aaaaaa
aaaaaa
aaaaaa
BATT LOW
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaa
RESET
Backup battery
5V DC
- Backup time
5.2V DC
min.
aaaaaaaa
aaaaaaaa
24V DC
aaaaaaaaaaaa
aaaaaaaaa
INT DC
POWER
L+
aaaaaa
aaaaaa
aaaaaa
aaa
M
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaa
a
a
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaa
aaa
aaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaa
aaaaaaaaaaaaaaaa aaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaa
aaaaaa
aaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
aaaaaa
24 V DC
Battery
Li battery,
size C
(3.6 V/5 Ah)
1 year (at 0.3 mA,
25 °C and
uninterrupted
backup supply)
Short-circuit protection
electronic
Fault indicator
no
Fuse (primary circuit)
integral
Class of protection
class 1
Floating
yes
Insulation rating
- tested with
electrical separation
to VDE 0160
500 V DC
RI specification
A+14 dB to VDE 0871
Power loss of the
module
typ.
Weight
approx. 1.9 kg (4.2 lbs.)
34 W
Signals
BATT LOW
RESET
5V
5,2 V
24 V
7
1
2
EXT. BATT
3
L
M
PE
5V
5,2 V
24 V
M
6
5
4
INT. DC POWER
4
Chopper controller
Linear controller
Linear controller
4
5
6
7
Control electronics
Rectifier
RI filter
Monitoring electronics
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
1
2
3
Block diagram
EWA 4NEB 811 6148-02
8-7
Technical Specifications
S5-115F Manual
PS 951 Power Supply Module 24 V DC; 5 V, 7 A
(6ES5 951-7ND41)
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
Technical Specifications
Input voltage L+
- rated value
- permissible range
SIEMENS
SIMATIC S5
PS
7A/15A
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Input current at 24 V
- rated value
- inrush current
- I2t
BATT1-BATT2
3.4V/2Ah
max.
Power consumption
Replace by
trained
personnel
only!
-
EXT BATT
3.4...9V
5.6 A
15×IN
4.5 A2s
134.4 W
Output voltage
- rated value
- tolerance
Output current
- rated value without fans
- rated value with fans
- permissible range
aaaaaa
aaaaaa
aaa
+
24 V DC
19.2 to 30 V
5V
±1.5%
7A
15 A
0.3 to 15 A
aaaaaaaa
aaaaaaaa
aaaa
RESET
Output voltage (programmer/OP)
- rated value
- tolerance
Output current
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaa aaa
BATT LOW
Backup battery
5V DC
5.2V DC
5.2 V
±1.5%
max. 2.5 A
24V DC
aaaaaaaaaa
aaaaaaaa
INT DC
POWER
L+
aaaaaa
aaaaaa
aaaaaa
aaa
M
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaa
aaaaaaaaaaaaaaaa
a
a
aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
a
a
a
aaaaaaaaaaaaaaaa aaaaaaaaaaaa
aaa
aaaaaa
aaaaaaaaaaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaaaaaa aaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaa
24 V DC
Battery
Signals
BATT LOW
RESET
5V
5,2 V
24 V
7
EXT. BATT
1
5V
2
5,2 V
3
L
M
PE
5
INT. DC POWER
4
5
6
7
min.
20 ms
Output voltage (auxiliary supply)
- rated value
- tolerance
Output current
24 V
±5%
max. 0.35 A
Short-circuit protection
electronic
Fault indicator
no
Fuse (primary circuit)
integral
Class of protection
class 1
Floating
yes
Insulation rating
- tested with
electrical separation
to VDE 0160
2700 V DC
RI specification
A to VDE 0871
Control electronics
Rectifier
RI filter
Monitoring electronics
Power loss of the
module
typ.
Weight
approx. 1.7 kg (3.7 lbs.)
38 W
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
Chopper controller
Linear controller
Linear controller
Mains buffering
(at L+min)
4
4
1
2
3
min.
24 V
M
6
- Backup time
2 Li batteries,
size AA
(3.6 V/2 x 1.75 Ah)
1 year (at 0.3 mA,
25 °C and
uninterrupted
backup supply)
Block diagram
8-8
EWA 4NEB 811 6148-02
S5-115F Manual
8.2.3
Technical Specifications
Central Processing Unit
Central Processing Unit CPU 942F
(6ES5 942-7UF15)
Technical Specifications
115F
CPU
942
Memory capacity (total)
- internal memory
- memory submodule (RAM)*
- memory submodule (EPROM)*
- memory submodule (EEPROM)*
max.
max.
max.
max.
max.
Execution time
- per binary operation
- per word operation
approx.
approx.
RN
ST
OR
1.6 µs
1.6 µs to 1.4 ms
configurable
Flags
2048**
Timers
- number
- range
128
0.01 to 9990 s
128
0 to 999 (count up,
count down)
Digital inputs
Digital outputs
max.
max.
1024
1008
Analog inputs
Analog outputs - total
max.
128
Organization blocks
Program blocks
Function blocks
max.
max.
max.
Sequence blocks
Data blocks
max.
max.
256
256
256 (can be assigned
parameters)
256
252
Operations set
approx.
170 operations
Current consumption
- from 5 V (internal)
QVZ
statements
statements
statements
statements
statements
Scan time monitoring
Counters
- number
- range
RN
ST
18944
2560
16384
16384
8192
0.8 A
Power losses of
the module
typ.
4W
Weight
approx.
1.5 kg (3.3 lbs.)
ZYK
BASP
* Permissible memory submodules ( Section 2.3.2)
** FW 0 is reserved for the logical program counter.
FW 2 to FW 198 (F 2.0 to F 199.7) permissible for user program.
FW 200 to FW 254 (F 200.0 to F 255.7) are only permissible in blocks as
scratch flags. Scratch flags must be defined, set or reset at the start of
block execution and also after conditional or unconditional block
calls. This avoids data exchange with other blocks.
EWA 4NEB 811 6148-02
8-9
Technical Specifications
8.2.4
S5-115F Manual
Digital Input Modules
Digital Input Module 8 x 24 V DC (with P Interrupt), Floating, Safety-Related
(6ES5 430-7LA12)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
+
M
+
M
+
M
+
M
6ES5 430-7LA12
DIGITAL
INPUT
32x24VDC
Terminal assignment
B
U
S
Number of inputs
Floating
- isolated in groups of
32
yes (optocoupler)
8
Input voltage L+
- rated value
- for ”0” signal
- for ”1” signal
24 V DC
-30 to +2,5 V
13 to 30 V
Input current
at ”1” signal
typ.
8.5 mA
Response time
- from ”0” to ”1”
- from ”1” to ”0”
typ.
typ.
2.2ms; max. 4.6 ms
4.5ms; max. 12 ms
Cable length
- shielded
- unshielded
max.
max.
1000 m (3281 ft.)
600 m (1969 ft.)
Insulation rating
to VDE 0160
Rated insulation voltage
(between groups)
- insulation group
- tested with
30 V
C
500 V
Rated insulation voltage
(L+ to
)
- insulation group
- tested with
30 V
C
500 V
Connection of 2-wire
BERO proximity switches
- quiescent current
possible
1.5 mA
Current consumption
- from 5 V (internal)
5 mA
Power losses of
the module
typ.
6,5 W
Weight
approx.
0.7 kg (1.54 lb.)
+
M ext.
Simplified schematic
8-10
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Digital Input Module 8 x 24 V DC (with P Interrupt), Floating, Safety-Related
(6ES5 434-7LA12)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
+
M
+
8
yes (optocoupler)
1
Input voltage L+
- rated value
- for ”0” signal
- for ”1” signal
24 V DC
-30 to + 2.5 V
13 to 30 V
Input current at ”1” signal
- for 24 V DC
typ.
8.5 mA
Response time
- from ”0” to ”1”
- from ”1” to ”0”
0.5 to 1.5 msec.
0.5 to 1.5 msec.
M
- MELD
- MELD
+
Interrupt signal (external)
M
+
- permissible load
- switching capacity
M
+
max.
max.
latching relay
contact
0.2 A; 100 V DC
20 W or 35 VA
Interrupt signal (internal)
via bus line
PRAL-N
Acknowledgement
external via input
reset 24 V DC
M
+
Cable length
- shielded
- unshielded
M
- RESET
max.
max.
1000 m (3281 ft.)
200 m (656 ft.)
- RESET M
Insulation rating
to VDE 0160
Rated insulation voltage
(between groups)
- insulation group
- tested with
30 V
C
500 V
Rated insulation voltage
(L+ to
)
- insulation group
- tested with
30 V
C
500 V
Connection of 2-wire
BERO proximity switches
- quiescent current
max.
possible
1.5 mA
Current consumption
- from 5 V (internal)
< 70 mA
+
M
+
M
6ES5 434-7LA12
DIGITAL
INPUT
8x24VDC
Terminal assignment
Interrupt
logic
B
U
S
Number of inputs
Floating
- isolated in groups of
Power losses of
the module
typ.
2W
Weight
approx.
0.7 kg (1.54 lb.)
+
24 V
M ext.
Simplified schematic
EWA 4NEB 811 6148-02
8-11
Technical Specifications
S5-115F Manual
Digital Input Module 16 x 115 V DC, Floating, Safety-Related
(6ES5 435-7LB11)
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
N
L1
N
L1
Number of inputs
Floating
- in groups of
16
yes (optocoupler)
2
Input voltage L1
- rated value
- frequency
- for ”0” signal
- for ”1” signal
115 V UC
47 to 63 Hz
0 to 40 V
85 to 135 V
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
Input current at ”1” signal
- at AC, 50 Hz
- at DC
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
N
L1
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
L1
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
N
L1
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
N
L1
N
L1
N
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaa
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
L1
aaaaaaaa
aaaaaaaa
aaaaaaaa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
Technical Specifications
6ES5 435-7LB11
DIGITAL
INPUT
8x115VAC
Terminal assignment
typ.
typ.
10 mA
6 mA
Response time
- from ”0” to ”1”
- from ”1” to ”0”
2 to 13 msec.
10 to 25 msec.
Cable length
- shielded
- unshielded
1000 m (3281 ft.)
600 m (1969 ft.)
Insulation rating
to VDE 0160
Rated insulation voltage 1)
(between groups)
- insulation group
- tested with
250 V
C
1500 V
Rated insulation voltage
(L1 to
)
- insulation group
- tested with
250 V
C
1500 V
Connection of 2-wire
BERO proximity switches
- quiescent current
possible
5 mA
Current consumption
- from 5 V (internal)
5mA
simultaneity factor
(each group, L1=135 V)
- at 25°C
- at 55°C
100%
75%
Power losses of
the module
typ.
Weight
approx. 0.7 kg (1.54 lb.)
5,5 W
L1 (L+)
B
U
S
Simplified schematic
8-12
~
N (M)
1
Connection of different phases ist permissible
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Digital Input Module 8 x 230 V AC, Floating, Safety-Related
(6ES5 436-7LC11)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
L1
~
N
L1
N
~
~
N
L1
~
L1
~
N
L1
N
~
L1
~
N
L1
N
8
yes (optocoupler)
1
Input voltage L1
- rated value
- frequency
- for ”0” signal
- for ”1” signal
230 V AC
47 to 63 Hz
0 to 100 V
177 to 242 V
Input current at
”1” signal
L1
N
Number of inputs
Floating
- isolated in groups of
~
typ.
Response time
- from ”0” to ”1”
- from ”1” to ”0”
2 to 13 msec.
10 to 25 msec.
Cable length
- shielded
- unshielded
1000 m (3281 ft.)
600 m (1969 ft.)
Insulation rating
to VDE 0160
Rated insulation voltage 1)
(between groups)
- insulation group
- tested with
250 V
C
2700 V
Rated insulation voltage
(L1 to
)
- insulation group
- tested with
250 V
C
2700 V
Connection of 2-wire
BERO proximity switches
- quiescent current
possible
5 mA
Current consumption
- from 5 V (internal)
6ES5 436-7LC11
16 mA
Power losses of
the module
Weight
5 mA
typ.
5W
approx. 0.7 kg (1.54 lb.)
DIGITAL
INPUT
8x220VAC
Terminal assignment
L1 (L+)
B
U
S
~
N (M)
Simplified schematic
1 Connection of different phases is not permissible
EWA 4NEB 811 6148-02
8-13
Technical Specifications
8.2.5
S5-115F Manual
Digital Output Modules
Digital Output Module 32 x 24 V DC; 0.5 A Floating, Reaction-Free
(6ES5 451-7LA11)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
+
M
+
M
Number of outputs
Floating
- isolated in groups of
32
yes (optocoupler)
8
Load voltage L+
- rated value
- permissible range
- surge voltage at t 0.5 sec.
24 V DC
20 to 30 V
35 V
Output voltage
- at ”1” signal
min. L + - 2.5 V
Output current
at ”1” signal
- rated value
- lamp load
max.
0.5 A
5W
Leakage current
at ”0” signal
max.
1 mA
Parallel connection of
outputs
not possible
Permissible total current
of outputs
100% at 25°C and
50% at 55°C
(referred to the
sum of the currents
of a group)
+
M
+
M
6ES5 451-7LA11
DIGITAL
OUTPUT
32x24VDC
Terminal assignment
L+
B
U
S
Short-circuit protection
electronic
Limitation of the voltage induced
on circuit interruption
- 15 V
Switching frequency
- inductive load
- resistive load
max.
max.
0.5 Hz
100 Hz
Cable length
- shielded
- unshielded
max.
max.
1000 m (3281 ft.)
600 m (1969 ft.)
Insulation rating
to VDE 0160
Rated insulation voltage
(between groups)
- isolation group
- tested with
30 V DC
C
500 V AC
Rated insulation voltage
(L+ to
)
- insulation group
- tested with
30 V DC
C
500 V AC
Current consumption
- from 5 V (internal)
- from L + (without load)
100 mA
17 mA / per group
Power losses of
the module
M ext.
Weight
typ.
approx.
20 W
0.7 kg
(1.54 lb.)
Simplified schematic
8-14
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Digital Output Module 16 x 24 V DC; 2A, Floating, Reaction-Free
(6ES5 454-7LA11)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
+
M
Number of outputs
Floating
- isolated in groups of
16
yes (optocoupler)
4
Load voltage L+
- rated value
- permissible range
- surge voltage at t 0.5 sec.
24 V DC
20 to 30 V
35 V
Output voltage
- at ”1” signal
min .
L+-3V
Output current
at ”1” signal
- rated value
- lamp load
max.
2A
10 W
Leakage current
at ”0” signal
max.
1 mA
+
Parallel connection of
outputs
M
not possible
Permissible total current
of outputs, per group
50% (referred to
the sum of the
currents of a group)
+
M
+
M
6ES5 454-7LA11
DIGITAL
OUTPUT
16x24V DC
Terminal assignment
L+
Short-circuit protection
electronic
Limitation of the voltage
induced on circuit interruption
- 15 V
Switching frequency
- inductive load
- resistive load
max.
max.
0.27 Hz
100 Hz
Cable length
- shielded
- unshielded
max.
max.
1000 m (3281 ft.)
600 m (1969 ft.)
Insulation rating
to VDE 0160
Rated insulation voltage
(between groups)
- insulation group
- tested with
30 V DC
C
500 V AC
Rated insulation voltage
(L+ to
)
- insulation group
- tested with
30 V DC
C
500 V AC
Current consumption
- from 5 V (internal)
- from L + (without load)
50 mA
8.5 mA / per group
Power losses of
the module
B
U
S
Weight
typ.
approx.
20 W
1.1 kg
(2.43 lb.)
M ext.
Simplified schematic
EWA 4NEB 811 6148-02
8-15
Technical Specifications
S5-115F Manual
Digital Output Module 8 x 24 V DC; 2 A, Floating, Reaction-Free
(6ES5 454-7LB11)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
+
+
+
8
yes (optocoupler)
1
Load voltage L+
- rated value
- permissible range
- surge voltage at t 0.5 sec.
24 V DC
20 to 30 V
35 V
Output voltage
- at ”1” signal
min. L + - 3 V
Output current
- rated value
- lamp load
2 mA
max. 10 W
Leakage current
at ”0” signal
max. 1 mA
+
Parallel connection of
outputs
- maximum current
+
possible
1 x rated
Permissible total current
of outputs, per group
+
100% at 25°C and
50% at 55°C (referred
to the sum of the
currents of a group)
Short-circuit protection
(for each group)
+
+
6ES5 454-7LB11
DIGITAL
OUTPUT
8x24V DC
Terminal assignment
L+
B
U
S
Number of outputs
Floating
- isolated in groups of
with FF 2.5 A fuse
(e.g., Wickmann 19231)
Limitation of the
voltage incluced on
circuit interruption
typ.
Switching frequency
- inductive load
- resistive load
max.
0.27 Hz
max. 100.00 Hz
Cable length
- shielded
- unshielded
max. 1000 m (3281 ft.)
max. 600 m (1969 ft.)
-21 V
Insulation rating
to VDE 0160
Rated insulation voltage
(between groups)
- insulation group
- tested with
30 V DC
C
500 V AC
Rated insulation voltage
(L+ to
)
- insulation group
- tested with
30 V DC
C
500 V AC
Current consumption
- from 5 V (internal)
Power losses of
the module
Weight
max. 50 mA
typ.
approx.
20 W
0.8 kg (1.76 lb.)
Simplified schematic
8-16
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Digital Output Module 8 x 115 to 230 V AC; 2 A, Floating, Safety-Related
(6ES5 456-7LB11)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Number of outputs
Floating
- in groups of
8
yes (optocoupler)
1
~
Load voltage L1
- rated value
- frequency
- permissible range
115 to 230 V AC
47 to 63 Hz
89 to 264 V
~
Output voltage
- at ”1” signal
N
L1
N
L1
~
Output current
at ”1” signal
- rated value
- permissible range
- lamp load
~
Leakage current
at ”0” signal
N
L1
N
L1
N
~
L1
N
~
L1
N
min.
L1 - 7 V
2A
40 mA to 2 A
50 W
typ.
3 to 5 mA1
Parallel connection of
outputs
not possible
Making capacity
depends on the fuse
Permissible total current
of outputs
100%
Short-circuit protection
(for each group)
4 A FF fuse
(e.g., Wickmann 19231)
Fault indication
(red LED for each group)
defective fuse
~
Switching frequency
max.
10 Hz
~
Cable length
- shielded
- unshielded
max.
max.
1000 m
300 m
L1
N
L1
6ES5 456-7LB11
DIGITAL
OUTPUT
8x115/230V DC
(3281 ft.)
(984 ft.)
Insulation rating
to VDE 0160
Rated insulation voltage
(between groups)
- insulation group
- tested with
250 V AC
C
2700 V AC
Rated insulation voltage
(L1 to
)
- insulation group
- tested with
250 V AC
C
2700 V AC
Current consumption
- from 5 V (internal)
max.
35 mA
Terminal assignment
Power losses of
the module
Weight
typ.
approx.
16 W
1.1 kg
(2.43 lb.)
L1
B
U
S
~
N
Simplified schematic
EWA 4NEB 811 6148-02
1 Please note the drop-out current of the connected loads
(relays of the range 3TJ1 to 3TJ5 and relays of the
SIMICOMT range cannot be driven)!
8-17
Technical Specifications
S5-115F Manual
Relay Output Module for Measuring Currents 16 x 24 V DC, Reaction-Free
(6ES5 458-7LA11)
Technical Specifications
Number of outputs
- contact bridge
- floating
- isolated in groups of
- relay type
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
+
+
M
6ES5 458-7LA11
16
no
yes
1
3700-2501-011
(Günther)
Limiting continuous current
per contact
0.5 A
Parallel connection of
outputs
possible
Permissible total current
of outputs
100%
Switching frequency
- inductive load
- resistive load
max.
100 Hz
not permissible
Switching voltage
max.
30 V DC
Switching capacity of
the contacts
- resistive load
- inductive load
10 W at 0.5 A
not permissible
Number of contact
operating cycles
according to VDE 0660,
Part 200
- DC 11
1 x 109
Supply voltage L +
(for relay)
- rated value
- permissible range
- surge voltage at t < 0.5 sec.
- ripple
max.
24 V DC
20 to 30 V
35 V
3.6 V
Cable length
- shielded
- unshielded
DIGITAL
OUTPUT
16x24VDC Relay
Terminal assignment
L+ Aux.
B
U
S
M ext.
Insulation rating
to VDE 0160
Rated insulation voltage
(between contacts)
- insulation group
- tested with
30 V DC
C
500 V AC
Rated insulation voltage
(contacts to L +)
- insulation group
- tested with
30 V DC
C
500 V AC
Rated insulation voltage
(contacts to
)
- insulation group
- tested with
30 V DC
C
500 V AC
Current consumption
- from 5 V (internal)
- from L + (for relay)
Simplified schematic
8-18
1000 m (3281 ft.)
300 m (984 ft.)
max.
50 mA
240 mA
Power losses of
the module
typ.
5W
Weight
approx. 0.8 kg
(1.76 lb.)
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Relay Output Module 8 x 30 V DC / 60 V AC, Safety-Related
(6ES5 458-7LB11)
Technical Specifications
Number of outputs
- contact bridge
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
- floating
- isolated in groups of
- relay type
+
Limiting continuous current
per contact
5A
Parallel connection of
outputs
possible
Permissible total current
of outputs
100%
Switching capacity of
the contacts
- resistive load
M
5 A at 250 V AC
2.5 A at 30 V DC
1.5 A at 250 V AC
0.5 A at 30 V DC
- inductive load
Switching voltage is limited to 60 V AC in the S5-115F
Switching frequency
max. 10 Hz
+
Number of contact
operating cycles
according to VDE 0660,
Part 200
- AC 11
- DC 11
M
Supply voltage L+
(for relay)
- rated value
- permissible range
- surge voltage at t 0.5 s
- ripple
6ES5 458-7LB11
DIGITAL
OUTPUT
8x60VUC Relay
Terminal assignment
L+(Aux.)
B
U
S
8
varistor
SIOV-S07-K275
yes
1
V23157-006-A402
(Siemens)
Switching
voltage
M ext.
1.5 x 106
0.5 x 106
24 V DC
20 to 30 V
35 V
max. 3.6 V
Insulation rating
to VDE 0160
Rated insulation voltage
(between contacts)
- insulation group
- tested with
250 V AC
C
1500 V AC
Rated insulation voltage
(contacts to L+)
- insulation group
- tested with
250 V AC
C
1500 V AC
Rated insulation voltage
(contacts to
)
- insulation group
- tested with
250 V AC
C
1500 V AC
Current consumption
- from 5 V (internal)
- from L+ (for relay)
Power losses of
the module
Weight
max.
50 mA
200 mA
typ.
4W
approx. 0,8 kg (1.76 lb.)
Simplified schematic
EWA 4NEB 811 6148-02
8-19
Technical Specifications
8.2.6
S5-115F Manual
Digital Input/Output Modules
Digital Input/Output Module 32 x 24 V DC; 0.5 A, Reaction-Free
(6ES5 482-7LA11)
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
+
16
yes (optocoupler)
8
Input voltage
- rated value
24 V DC
The technical specifications for the inputs correspond to
those of the 6ES5 430-7LA11 digital input module.
M
+
M
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Number of inputs
Floating
- isolated in groups of
Number of outputs
Floating
- isolated in groups of
16
yes (optocoupler)
8
Output current
at ”1” signal
- rated value
0.5 A
The technical specifications for the outputs correspond
to those of the 6ES5 451-7LA11 digital output module.
Output
+
0...3 and 4...7
8...11 and 12...15
can be switched in
parallel
Parallel current
M
0.8 x I rated
Permissible current
of outputs
100 % at 35 °C
50 % at 55 °C
(referred to the sum
of the currents of a
group)
+
M
6ES5 482-7LA11
Current consumption
- from 5 V (internal)
max. 50 mA
Power loss
typ.
Weight
18 W
approx. 0.7 kg
Setting for IM 306
(1.54 lb.)
16-channel
The inputs and outputs are referenced under the same
address (e.g. I 0.0 to I 1.7 and Q 0.0 to Q 1.7).
DIGITAL
INPUT/OUTPUT
32x24VDC
Terminal assignment
Exemple: For module start address ”0”, you must
address as follows:
L+
IB 0
B
U
S
M ext.
QB 0
L+
IB 1
QB 1
M ext.
Simplified schematic
8-20
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Digital Input/Output Module 32 x 24 V DC; 0.5 A, Safety-Related
(6ES5 482-7LF11)
Technical Specifications
Number of inputs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Floating
- isolated in groups of
Input voltage
- rated value
- permissible range
- value at t 0.5 sec.
+
M
Input current
- at ”1” signal
typ.
0.8 mA
1.4 to 5 msec
1.4 to 5 msec
Note:
Inputs can only be used as read-back inputs by 24 V
safety-oriented outputs in the other subunit!
M
Number of outputs
+
M
Floating
- isolated in groups of
16, for output:
P potential
yes (optocoupler)
8
Output current
at ”1” signal
- rated value
0.5 A
The technical specifications for the outputs correspond to
those of the 6ES5 451-7LA11 digital output module.
+
Output
0 to 3 and 4 to 7
8 to 11 and 12 to 15
Parallel current
M
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
DIGITAL
INPUT/OUTPUT
32x24VDC
Cable length
- shielded
- unshielded
M ext.
L+
can be switched in
parallel
0.8 x I rated
Permissible current
of outputs
L+
B
U
S
24 V DC
20 to 30 V
35 V
Response time
- from ”0” to ”1”
- from ”1” to ”0”
+
6ES5 482-7LF11
Terminal assignment
16, for reading:
M potential
yes (optocoupler)
8, connected to
common P potential
100% at 35°C and
50% at 55°C (referred
to the sum of the
currents of a group)
max. 100 m (328 ft.)
max. 60 m (197 ft.)
Insulation rating
to VDE 0160
Rated insulation voltage
(between groups)
- insulation group
- tested with
30 V
C
500 V
Rated insulation voltage
(L+ to
)
- insulation group
- tested with
C
500 V
Current consumption
- from 5 V (internal)
max. 50 mA
Power loss
typ.
Weight
18 W
approx. 0.7 kg (1.54 lb.)
M ext.
Simplified schematic
EWA 4NEB 811 6148-02
The inputs and outputs are referenced under the same
address (e.g. I 0.0 to I 1.7 and Q 0.0 and Q 1.7).
8-21
Technical Specifications
S5-115F Manual
Digital Input/Output Module 32 x 24 V DC; 0.5 A, Safety-Related
(6ES5 482-7LF21)
Technical Specifications
Number of inputs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
16, for reading:
P potential
yes (optocoupler)
8, connected to
common M potential
Floating
- isolated in groups of
+
Input voltage
- rated value
- permissible range
- value at t 0.5 sec.
M
Input current
- at ”1” signal
+
24 V DC
20 to 30 V
35 V
typ.
Response time
- from ”0” to ”1”
- from ”1” to ”0”
1.4 to 5 ms
1.4 to 5 ms
Note:
Inputs can only be used as read-back inputs by 24 V
safety-related outputs in the other subunit!
M
Number of outputs
Floating
- isolated in groups of
16, for output:
M potential
yes (optocoupler)
8
Output current
at ”1” signal
- rated value
0.5 A
+
M
The technical specifications for the outputs correspond to
those of the 6ES5 451-7LA11 digital output module.
+
Output
0 to 3 and 4 to 7
8 to 11 and 12 to 15
Parallel current
0.8 x I rated
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Permissible current
of outputs
DIGITAL
INPUT/OUTPUT
32x24VDC
L+
B
U
S
can be switched in
parallel
M
6ES5 482-7LF21
Terminal assignment
0.8 mA
Cable length
- shielded
- unshielded
100% at 35°C and
50% at 55°C (referred
to the sum of the
currents of a group)
max. 100 m (328 ft.)
max. 60 m (197 ft.)
Insulation rating
to VDE 0160
M ext.
Rated insulation voltage
(between groups)
- insulation group
- tested with
30 V
C
500 V
L+
Current consumption
- from 5 V (internal)
max. 50 mA
Power loss
typ.
Weight
M ext.
18 W
approx. 0.7 kg (1.54 lbs.)
The inputs and outputs are referenced under the same
address (e.g. I 0.0 to I 1.7 and Q 0.0 and Q 1.7).
Simplified schematic
8-22
EWA 4NEB 811 6148-02
36
38
39
40
41
42
43
44
45
46
DQ (x+1).7
Source output
Source input
EWA 4NEB 811 6148-02
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
DQ x.7
DQ (x+1).0
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
+
aaaaaaaaaa
aaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
DI (x+1).0
11
12
13
14
aaaaaaaa
aaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
26
27
28
29
30
31
32
33
34
35
36
37
38
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
DI (x+1).7
aaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
14
15
16
17
18
19
20
21
22
1
2
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
12
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
2
3
4
5
6
7
8
9
10
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
0 V 24 V
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
6ES5 482-7LF11
DI x.0
DI x.0
DI x.7
DI x.7
DI (x+1).0
DI (x+1).7
DQ x.0
DQ x.0
-
47
DQ x.7
DQ (x+1).0
DQ (x+1).7
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa aaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
S5-115F Manual
Technical Specifications
Example: Connection of an actuator via the modules 482-7LF11 and 482-7LF21
The following figure shows how an actuator is triggered via the modules 482-7LF11 and
482-7LF21. The byte address of the inputs and outputs is marked with an x; it corresponds to the
start address of the module.
6ES5 482-7LF21
0 V 24 V
23
25
26
27
Sink output
Sink input
8-23
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaa
aaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Technical Specifications
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
B
U
S
8-24
S5-115F Manual
Digital Input/Output Module 16 x 24 V DC; 2.5 A, safety-related
P
L+
M
L+
L+
L-
L-
L+
L-
L-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Permissible cable length
- shielded
- unshielded
+
6ES5 482-7LF31
DIGITAL
INPUT/OUTPUT
16x24VDC
Terminal assignment
If L+ at pin 11 and L- at pin 13 then inputs P potential and
outputs M potential
If L- at pin 11 and L+ at pin 13 then inputs M potential and
outputs P potential
L+
Pin11
Pin13
Ix
L-
Qx.1
G
Qx.2
Delay
- in
- out
Permissible cable length
- shielded
- unshielded
Weight
(6ES5 482-7LF31)
Technical Specifications
Current consumption
- internal (5 V)
- external (24 V, without load)
Supply voltage for
inputs and outputs
- rated direct voltage
- reference potential
Max. permissible supply voltage
Rated voltage 24 V– (L+/L–)
max. 150 mA
max. 95 mA
L+
L–
20 to 30 V
35 V for 500 ms
Inputs:
Number of inputs
- in groups of
Galvanic isolation
8, M or P potential
8
yes (optocoupler)
Input voltage
- Nominal value
- Signal ”1” P switch (> 19 V)
- Signal ”1” M switch (< 5 V)
24 V DC
corresponding to the
signal to be read back
Nominal input current
Delay
Input resistance
typ. 0.8 mA
1,4 to 5 ms
typ. 30 k
max. 100 m (328 ft.)
max. 60 m (197 ft.)
Insulating rating
to VDE 0160
Outputs:
Number of outputs
Galvanic isolation
Supply voltage VP (load)
- rated value
- ripple Vpp max.
- range (including ripple)
- value at t < 0.5 s
Fuse
8, P or M potential
24 V DC
3.6 V
20 to 30 V
max. 35 V
electronic
Output voltage
- signal ”1” P switch
- signal ”1” M switch
Vp < -1.0 V
M < +1.0 V
yes (transformer)
Switching current (ohmic
inductive load)
5 mA to 2.5 A
Output leakage current
Summed switching current
Lamp load
max. 0.5 mA
20 A
max. 40 W
Power loss
Switching frequency
- with ohmic load
- with lamps
- with inductive load
11 W
max. 100 Hz (10 ms)
max. 8 Hz (125 ms)
0.5 Hz at 2 A (2 s)
30 µs
150 µs
max. 1000 m (3280 ft.)
max. 600 m (1968 ft.)
approx. 0.7 kg
(1.54 lb)
The inputs and outputs are referenced under the same
address (e.g. I 0.0 to E 1.7 and Q 0.0 to Q 1.7).
Simplified schematic
EWA 4NEB 811 6148-02
46
47
Source output
Source input
EWA 4NEB 811 6148-02
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
40
DQ x.3
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
34
35
36
37
38
30
+
DQ x.4
DQ x.7
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaa
aaaa
aaaaaaaa
aaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
DI x.4
DI x.3
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
DI x.0
DQ x.0
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
28
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
25
26
DI x.7
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
14
15
16
17
18
19
20
21
22
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
12
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
2
3
4
5
6
7
8
9
10
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
0 V 24 V
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
482-7LF31
DI x.0
DI x.3
DI x.4
DI x.7
DQ x.0
-
32
DQ x.3
DQ x.4
DQ x.7
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
S5-115F Manual
Technical Specifications
Example: Connection of an actuator via two modules 482-7LF31
The following figure shows how an actuator is triggered via two modules 482-7LF31. The byte
address of the inputs and outputs is marked with an x; it corresponds to the start address of the
module.
482-7LF31
0 V 24 V
1
2
4
6
10
11
12
13
14
8
16
18
20
22
23
25
26
28
30
32
34
35
36
37
38
42
40
42
44
44
46
47
Sink output
Sink input
8-25
Technical Specifications
8.2.7
S5-115F Manual
Analog Input Modules
Analog Input Module 8 x I/O/PT, Floating, Reaction-Free
(6ES5 460-7LA12)
Terminal assignment of the front connector
a
b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
L+=24V
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
KOMP -
M0+
M0 M1+
M1 -
M2+
M2 M3+
M3 KOMP+
M4+
M4 M5+
M5 -
M6+
M6 M7+
M7 L-
a = Contact pin no.
b = Assignment
(Connection possibilities 3.3.3)
8-26
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Analog Input Module 8 x I/O/PT, Floating, Reaction-Free
(6ES5 460-7LA12)
Technical Specifications
Number of inputs
Floating
Input ranges
(rated values)
Input resistance
8 voltage/current
inputs or
8 inputs for Pt 100
yes (not for Pt 100)
±50 mV; ±500 mV;
Pt 100; ±1 V; ±5 V;
±10 V; ±20 mA;
+4 to 20 mA (can be
selected for four
channels at a time
using range cards)
± 12.5 mV; 10 M
± 50 mV: 10 M
± 500 mV: 10 M
Pt 100: 10 M
± 1 V: 90 k ; 0.2 %
± 5 V: 50 k ; 0.2 %
± 10 V: 50 k ; 0.2 %
± 20 mA: 25 ; 0.1 %
± 4 to 20 mA:
31.25 ; 0.1 %
Type of connection
for sensors
two-wire connection;
four-wire connection
for Pt 100
Digital representation of
the input signal
12 bits plus sign
or 13 bits two's
complement
(2048 units = rated
value)
Measuring principle
integrating
Conversion principle
voltage-time conversion (dual-slope)
Integration time
(adjustable for
optimum noise
suppression)
20 msec. at 50 Hz
16.6 msec. at 60 Hz
Coding time
(single coding
for 2048 units)
Cycle time for
- 8 inputs
max. 60 msec. at 50 Hz
50 msec. at 60 Hz
0.48 sec. at 50 Hz
Permissible voltage
between inputs and
central grounding point
(destruction limit)
max. 30 V or 60 V for
max. 1 msec. and a duty
cycle of 1 : 20
Permissible voltage
between the reference
potential of a nonfloating
sensor and the central
grounding point
max. 60 V DC/24 V AC
Error indication for
- overranging
- wire break in the
sensor line
Noise suppression
for f=n x
(50/60 Hz±1%)
n=1, 2, ...
- common mode noise
(Vp<1 V)
- series mode noise
(peak noise value
< rated value of
the range)
min. 100 dB
min. 40 dB
Basic error limits
± 50 mV
± 500 mV
Pt 100
±1V
±5V
± 10 V
± 20 mA
+ 4 to 20 mA
:
:
:
:
:
:
:
:
± 0.2%
± 0.15%
± 0.2%
± 0.35%
± 0.35%
± 0.35%
± 0.25%
± 0.25%
Operational error limits
(0 to 55°C)
± 50 mV
± 500 mV
Pt 100
±1V
±5V
± 10 V
± 20 mA
+ 4 to 20 mA
:
:
:
:
:
:
:
:
± 0.5%
± 0.45%
± 0.5%
± 0.77%
± 0.77%
± 0.77%
± 0.67%
± 0.67%
Cable length
- shielded
max. 200 m (656 ft.);
50 m (164 ft.) for
± 50 mV
Front connector
46 pin
Insulation rating
to VDE 0160
Rated insulation voltage
(channel to channel)
- tested with
500 V
Rated insulation voltage
(channel to
)
- tested with
500 V
Power supply
- rated value
- ripple Vpp
- permissible range
(including ripple)
24 V DC
3.6 V
20 to 30 V
Current consumption
- from 5 V (internal)
- from 24 V (external)
typ. 0.15 A
typ. 0.1 A
Power losses of
the module
typ. 3 W
Weight
EWA 4NEB 811 6148-02
yes (exceeding
4095 units)
can be designed for
the ranges 50 mV,
500 mV and Pt 100 (only
measuring leads)
approx. 0.4 kg (0.88 lb.)
8-27
Technical Specifications
S5-115F Manual
Analog Input Module 4 x I/O, Floating, Safety-Related
(6ES5 463-4UA12, 6ES5 463-4UB12)
Terminal assignment of the front connector
Input range 0 to 1 V
F+
1
2
3
FL+
+
+
L-
+
8-28
Front
connector
Front
connector
Pins
Pins
F+
1
2
3
FL+
4
5
6
+
4
5
6
7
8
9
7
8
9
10
11
12
10
11
12
13
14
15
+
13
14
15
16
17
18
16
17
18
19
20
21
19
20
21
22
23
24
25
+
Input range 0 to 10 V
26
27
28
L-
+
22
23
24
25
26
27
28
29
30
31
29
30
31
32
33
34
32
33
34
35
36
37
+
35
36
37
38
39
40
38
39
40
41
42
41
42
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Analog Input Module 4 x I/O, Floating, Safety-Related
(6ES5 463-4UA11, 6ES5 463-4UA12, 6ES5 463-4UB11, 6ES5 463-4UB12)
Terminal assignment of the front connector
Input range 0 to 20 mA
Front
connector
Input range 4 to 20 mA
(2-wire
transducer)
Pins
F+
1
2
FL+
+
3
4
5
F+
FL+
+
Tr
6
7
8
12
13
14
L-
22
23
24
+
+
Tr
15
16
17
18
19
20
21
25
26
27
+
34
35
36
37
38
39
40
41
42
EWA 4NEB 811 6148-02
Front
connector
Pins
Pins
F+
1
FL+
2
3
4
4
5
6
+
10
11
12
11
12
13
13
14
15
19
20
21
L-
+
Tr
+
20
21
22
L-
23
24
25
+
Tr
32
33
34
35
36
37
38
39
40
41
42
26
27
28
29
30
31
32
29
30
31
+
14
15
16
17
18
19
22
23
24
25
26
27
28
5
6
7
8
9
10
16
17
18
28
29
30
31
32
33
Front
connector
7
8
9
9
10
11
+
1
2
3
Input range 4 to 20 mA
+
33
34
35
36
37
38
39
40
41
42
8-29
Technical Specifications
S5-115F Manual
Analog Input Module 4 x I/O, Floating, Safety-Related
(6ES5 463-4UA11, 6ES5 463-4UA12, 6ES5 463-4UB11, 6ES5 463-4UB12)
Technical Specifications
Number of inputs
4 voltage/current
inputs
yes
Floating
Input ranges
(rated values)
0 to 1 V; 0 to 10 V;
0 to 20 mA
+4 to 20 mA for 2-wire
and for 4-wire transducers
Input resistance
in the individual ranges
1 V: 10 M ;
10 V: 90 k
20 mA: 50
4 to 20 mA: 62.5
Type of connection
sensors
Two-wire connection
Digital representation of
the input signal
11 bits two's complement
(2024 units =ˆ rated
value)
Measuring principle
integrating
Conversion principle
voltage-frequency
conversion
Integration time
(adjustable for optimum
noise suppression)
20 msec. at 50 Hz
16.6 msec. at 60 Hz
Coding time
(single coding possible)
max. 20 msec. at 50 Hz
16.6 msec. at 60 Hz
Cycle time for 4 inputs
max. 30 V or 75 V for
max. 1 msec. and a
duty cycle of 1 : 10
Permissible voltage
between the reference
potential of a nonfloating
sensor and the central
grounding point
max. 60 V DC/60 V AC
Error indication for
- overranging
- wire break of the
sensor line
8-30
0.11 ‰
Operational error limits
(0° to 55°C)
0.37 ‰
Enable input
+24 V
Power supply
+24 V
Current consumption
- internal (from 5 V)
- external (from 24 V)
Space requirements
Weight
typ.
typ.
0.2 A
0.15 A
1 slot
approx. 0.4 kg (0.88 lb.)
20 msec. at 50 Hz,
16.6 msec. at 60 Hz
Permissible voltage
between inputs and
between inputs and
central grounding point
(destruction limit)
Noise suppression
for f = n . (50/60 Hz±1%)
n =1, 2, ...
- common mode noise
(Vp<1 V)
- series mode noise
(peak noise value
< rated value of
the range)
Basic error limits
at 150 % of rated value
no
min.
80 dB
min.
40 dB
EWA 4NEB 811 6148-02
S5-115F Manual
8.2.8
Technical Specifications
Analog Output Modules
Analog Output Modules 8 x± 10 V; 0 to 20 mA; Floating, Reaction-Free
(6ES5 470-7LA12)
Terminal assignment of the front connector
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
EWA 4NEB 811 6148-02
MANA
=
QV x
QI x
S+x
S-x
=
=
=
=
L+ 24V
QV 0
S+0
S-0
QI 0
QV 1
S+1
S-1
QI 1
Channel 0
Channel 1
MANA
QV 2
S+2
S-2
QI 2
QV 3
S+3
S-3
QI 3
QV 4
S+4
S-4
QI 4
QV 5
S+5
S-5
QI 5
Channel 2
Channel 3
Channel 4
Channel 5
MANA
QV 6
S+6
S-6
QI 6
QV 7
S+7
S-7
QI 7
L - 0V
Channel 6
Channel 7
common reference point of all current and
voltage channels
voltage output channel x
current output channel x
sensor line + channel x
sensor line - channel x
8-31
Technical Specifications
S5-115F Manual
Analog Output Module 8 x±10 V; 0 to 20 mA; Floating, Reaction-Free
(6ES5 470-7LA12)
Technical Specifications
Number of outputs
8 voltage and current
outputs
yes (not between
the inputs)
Floating
Output ranges
(rated values)
± 10 V; 0 to 20 mA
Load resistance
- for voltage outputs
- for current outputs
min. 3.3 k
max. 300
Load connection
load to MANA
terminal
Digital representation of
the output signal
11 bits plus sign
(1024 units = rated
value)
Conversion time
1 msec.
Permissible overload
capability
Open-circuit
voltage
typ.
typ.
0.25 A
0.30 A
Power losses of
the module
typ.
8.5 W
Weight
approx. 0.4 kg (0.88 lb.)
approx. 25 mA (for a voltage
output)
approx. 18 V (for current
output)
min. 60 V AC/75 V DC
Linearity in the rated range
± 0.25 % ± 3 units
Operational error limits
(0 to 55°C)
± 0.6 %
max. 200 m (656 ft.)
Front connector
46 pin
Insulation rating
to VDE 0160
Rated insulation voltage
(outputs to
)
- tested with
500 V
8-32
Current consumption
- from 5 V (internal)
- from 24 V (external)
yes
Voltage between
the reference
potential of the load
(MANA terminal)
and the housing
Cable length
- shielded
24 V DC
3.6 V
20 to 30 V
approx. 25 % (up to 1280
units)
Short-circuit protection
Short-circuit
current
Power supply
- rated value
- ripple Vpp
- permissible range
(including ripple)
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Analog Output Module 8 x ± 10 V; Floating, Reaction-Free
(6S5 470-7LB12)
Terminal assignment of the front connector
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
EWA 4NEB 811 6148-02
MANA
=
QV x
S+x
S-x
=
=
=
L+ 24V
QV 0
S+0
S-0
Channel 0
QV 1
S+1
S-1
Channel 1
MANA
QV 2
S+2
S-2
Channel 2
QV 3
S+3
S-3
Channel 3
QV 4
S+4
S-4
Channel 4
QV 5
S+5
S-5
Channel 5
MANA
QV 6
S+6
S-6
Channel 6
QV 7
S+7
S-7
Channel 7
L - 0V
common reference point of all current and
voltage channels
voltage output channel x
sensor line+ channel x
sensor line - channel x
8-33
Technical Specifications
S5-115F Manual
Analog Output Module 8 x ± 10 V; Floating, Reaction-Free
(6ES5 470-7LB12)
Technical Specifications
Number of outputs
Floating
8 voltage outputs
yes (not between
the inputs)
Output ranges
(rated values)
± 10 V
Load resistance
min. 3.3 k
Load connection
load to MANA
terminal
Digital representation of
the output signal
11 bits plus sign
(1024 units = rated
value)
Conversion time
1 msec.
Permissible overload
capability
typ.
typ.
0.25 A
0.30 A
Power losses of
the module
typ.
8.5 W
Weight
approx. 0.4 kg (0.88 lb.)
approx. 25 mA
max. 60 V AC/75 V DC
Linearity in the rated range
± 0.25 % ± 3 units
Operational error limits
(0 to 55°C)
± 0.6 %
max. 200 m (656 ft.)
Front connector
46 pin
Insulation rating
to VDE 0160
Rated insulation voltage
(outputs to
)
- tested with
500 V
8-34
Current consumption
- from 5 V (internal)
- from 24 V (external)
yes
Voltage between
the reference
potential of the load
(MANA terminal) and
the housing
Cable length
- shielded
24 V DC
3.6 V
20 to 30 V
approx. 25 % (up to 1280
units)
Short-circuit protection
Short-circuit
current
Power supply
- rated value
- ripple Vpp
- permissible range
(including ripple)
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Analog Output Module 8 x +1 to 5 V; +4 to 20 mA; Floating, Reaction-Free
(6ES5 470-7LC12)
Terminal assignment of the front connector
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
EWA 4NEB 811 6148-02
MANA
=
QV x
QI x
S+x
S-x
=
=
=
=
L+ 24V
QV 0
S+0
S-0
QI 0
QV 1
S+1
S-1
QI 1
Channel 0
Channel 1
MANA
QV 2
S+2
S-2
QI 2
QV 3
S+3
S-3
QI 3
QV 4
S+4
S-4
QI 4
QV 5
S+5
S-5
QI 5
Channel 2
Channel 3
Channel 4
Channel 5
MANA
QV 6
S+6
S-6
QI 6
QV 7
S+7
S-7
QI 7
L - 0V
Channel 6
Channel 7
common reference point of all current and
voltage channels
voltage output channel x
current output channel x
sensor line + channel x
sensor line - channel x
8-35
Technical Specifications
S5-115F Manual
Analog Output Module 8 x +1 to 5 V; +4 to 20 mA; Floating, Reaction-Free
(6ES5 470-7LC12)
Technical Specifications
Number of outputs
8 voltage and current
outputs
yes (not between
the inputs)
Floating
Output ranges
(rated values)
+1 to 5 V;
+4 to 20 mA
Load resistance
- for voltage outputs
- for current outputs
min. 3.3 k
max. 300
Load connection
load to MANA
terminal
Digital representation of
the output signal
11 bits plus sign
(1024 units = rated
value)
Conversion time
1 msec.
Power supply
- rated value
- ripple Vpp
- permissible range
(ripple included)
Current consumption
- from 5 V (internal)
- from 24 V (external)
typ.
typ.
0.25 A
0.30 A
Power losses of
the module
typ.
8.5 W
Weight
Permissible overload
capability
Open-circuit
voltage
yes
approx. 25 mA (for a voltage
output)
approx. 18 V (for current
output)
Voltage between
the reference
potential of the load
(MANA terminal)
and the housing
max. 60 V AC/75 V DC
Linearity in the rated range
± 0.25 % ± 3 units
Operational error limits
(0 to 55°C)
± 0.6 %
Cable length
- shielded
max. 200 m (656 ft.)
Front connector
46 pin
Insulation rating
to VDE 0160
Rated insulation voltage
(outputs to
)
- tested with
500 V
8-36
approx. 0.4 kg (0.88 lb.)
approx. 25 % (up to 1280
units)
Short-circuit protection
Short-circuit
current
24 V DC
3.6 V
20 to 30 V
EWA 4NEB 811 6148-02
S5-115F Manual
8.2.9
Technical Specifications
Communications Modules
CP 523 Serial I/O Module, Reaction-Free
(6ES5 523-3UA11)
Technical Specifications
Galvanic isolation
TTY signals are floating
Memory submodule
Serial interface
EPROM/EEPROM
V.24 (RS-232-C)/TTY passive
Transmission mode
asynchronous
7-bit mode=char. frame of 11 bits
(1 start bit, 7 data bits, 1 parity bit,
2 stop bits)
8-bit mode=char. frame of 11 bits
(1 start bit, 8 data bits, 1 parity bit,
1 stop bit)
Transmission rate
110 to 9600 baud
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaa
Permissible cable length
- TTY
SND RCV
- RS-232-C (V.24)
voltage drop
receiver typ. 1.5 V
sender typ. 0.9 V
at 20 mA
15 m/49 ft.
Battery backup
Lithium AA
3.6 V / 850 mAh
Battery backup time
at least 1 year
Degree of protection
IP 20
Permissible ambient
temperature
- vertical
- horizontal
0 to 60°C
0 to 40°C
Relative humidity
15% to 95%
Current consumption
from +9 V (CPU)
typ.
130 mA
Power losses of
the module
1.2 W
Weight
LEDs
2 green LED
EWA 4NEB 811 6148-02
typ.
approx.
RCV
SEN
300 g (0.7 lb.)
CP 523 receiving data
CP 523 sending data
8-37
Technical Specifications
S5-115F Manual
8.2.10 Interface Modules
IM 304 Interface Module
(6ES5 304-3UB11)
Technical Specifications
Current consumption (at 5 V)
max.
1.5 A
Weight
approx. 0.3 kg
(0.7 lb.)
FAULT
FAULT
SIEMENS
SIMATIC
6ES5 304-3UA11
I1I2I3I4I5I6I7I8I9I10I
The IM 304 interface module is used in combination with the IM 314 interface module for
distributed connection (up to 600 m, or 1969 ft.) of expansion units (EUs) to a central
controller (CC). ( also Chapter 3).
8-38
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
IM 306 Interface Module
(6ES5 306-7LA11)
Technical Specifications
Current supplied to the EU
max.
Current consumption
(5 V; own consumption)
Weight
2A
50 mA
approx.
0.6 kg
(1.3 lb.)
Accessories
OUT
705 connecting cable
0.50 m (1.5 ft.)
1.25 m (3.9 ft.)
1.50 m (4.7 ft.)
2.50 m (7.8 ft.)
( Catalog ST 52.3)
6ES5 705-0AF00
6ES5 705-0BB20
6ES5 705-0BB50
6ES5 705-0BC50
IM 306
IN
The IM 306 interface module is used for central connection of up to three expansion units (EUs)
to a central controller (CC). ( also Chapter 3).
EWA 4NEB 811 6148-02
8-39
Technical Specifications
S5-115F Manual
IM 314 Interface Module
(6ES5 314-3UA11)
Technical Specifications
Current consumption (at 5 V)
Weight
max.
approx.
1.0 A
0.3 kg
(0.7 lb.)
Accessories
Adapter casing
6ES5 491-0LB11
Termination connector
for IM 314
6ES5 760-1AA11
721 connecting cable
( Catalog ST 52.3)
OUT
IM 314
IN
SIEMENS
SIMATIC
6ES5 314-3UA11
I1I2I3I4I5I6I7I8I9I10I
The IM 314 interface module is used in combination with the IM 304 interface module for
distributed connection (up to 600 m, or 1969 ft.) of expansion units (EUs) to a central controller (CC). ( also Chapter 3).
8-40
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
IM 324 Parallel Interface
(6ES5 324-3UA12)
Technical Specifications
Current consumption (at 5 V)
Weight
max.
approx.
1.0 A
0.3 kg
(0.7 lb.)
Accessories
Adapter casing
6ES5 491-0LB11
721 connecting cable
( Catalog ST 52.3)
NP
SIEMENS
SIMATIC
6ES5 324-3UA11
I1I2I3I4I5I6I7I8I9I10I
The IM 324 parallel interface is used in conjunction with the IM 304 for linking both subunits of
the S5-115F system.
The IM 324 may only be connected to the IM 304.
EWA 4NEB 811 6148-02
8-41
Technical Specifications
8.3
S5-115F Manual
Accessories
Adapter Casing for Printed Circuit Boards
(6ES5 491-0LB12)
Technical Specification
Dimensions w x h x d (mm (in.))
0,9 kg (2 lbs.)
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Weight
43 x 303 x 187
Use adapter casing to fasten printed circuit bords which are not build as block-type modules in
the S5-115F.
Front Connector
Screw-Type
24 polig
Crimpp
Snap-In
46 polig 46 polig
SpringTechnical Specifications
loaded
connection Front connector 490
-for screw-type terminals
46 polig
- 24 pin
- 46 pin
763 jumper comb
(for use with screw-terminal
front connectors)
for crimp snap-in connections
46 pin
- without crimp contacts
- with 50 crimp contacts
for spring-loaded connection
- 46polig
Front connector 497
42 pin
- for screwtype terminals
- for crimp snap-in
(ohne Crimpkontakte)
6ES5 490-7LB11
6ES5 490-7LB21
6ES5 763-7LA11
6ES5 490-7LA21
6ES5 490-7LA11
6ES5 490-7LC11
6ES5 497-4UB11
6ES5 497-4UA22
Crimp contacts (250 per package)
6XX3 070
Crimping tool for crimping
the crimp contacts
6XX3 071
Extraction tool
for crimp contacts
6ES5 497-4UC11
8-42
EWA 4NEB 811 6148-02
S5-115F Manual
Technical Specifications
Simulator
aaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaa
Technical Specifications
0
1
2
3
4
5
6
7
aaaaaa
aaaaaa
aaaaaa
aaa
0
1
2
3
24 V DC
Simulator
- 32 switches/buttons
DC 24 V
can be plugged into
- 16 switches/buttons
AC/DC 24/48/60/115/230 V
can be plugged into
4
5
6
7
Back-Up Battery for PS 951-7ND21...31 Power Supply Module
6ES5 490-7SA11
6ES5 420-7LA11
6ES5 430-7LA11
6ES5 490-7SA21
6ES5 431-7LA11
6ES5 432-7LA11
6ES5 435-7LA11
6ES5 435-7LB12
6ES5 436-7LA11
6ES5 436-7LB12
(6EW1 000-7AA)
Technical Specifications
Lithium battery (3.6 V/5.2 Ah)
- backup time (at 25 °C and
constant backup of
the CPU with memory
submodule)
- service life (at 25°C)
- external battery backup
approx.
approx.
2 years
5 years
3.4 to 9 V
Back-Up Battery for PS 951-7ND41 Power Supply Module
(6EW1 000-7AA)
Technical Specifications
Lithium battery (3.6 V/1.75 Ah)
- backup time (at 25 °C and
constant backup of
the CPU with memory
submodule)
approx.
1 years
- service life (at 25°C)
approx.
5 years
- external battery backup
3.4 to 9 V
EWA 4NEB 811 6148-02
8-43
Technical Specifications
S5-115F Manual
Types of Fuses
Wickmann 19231
2.5 A FF
4 A FF
10 A FF
6ES5 980-3BC21
6ES5 980-3BC51
6ES5 980-3BC41
Gould GAB4
Bussmann ABC4
Types of Relays
Siemens V23042 B201 B101
Günther 3700-2501-011
Siemens V23157-006-A402
8-44
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
9
Reliability, Availability and Safety of Electronic Control Systems
9.1
9.1.1
9.1.2
9.1.3
Reliability of Electronic Control Systems . . . . . . . . . . . . . . . . . . . . . . . .9 - 1
Failure Characteristics of Electronic Devices . . . . . . . . . . . . . . . . . . . . . 9 - 2
Reliability of SIMATIC S5 Programmable Controllers and
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9.-. 2
Failure Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- 3
9.2
9.2.1
9.2.2
Availability of Electronic Control Systems
. . . . . . . . . . . . . . . . . . . . . .9 - 3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- .3
Availability of the S5-115F Programmable Controller
............ 9-4
9.3
9.3.1
9.3.2
Safety of Electronic Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . .9 - 5
Safe Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- .5
Safe Binary Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- 6
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Figures
9-1.
9-2.
Failure Characteristics of Electronic Devices (”Bathtub” Curve)
............9-2
Distribution of Failure Occurrences in Installations Incorporating
Programmable Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. .- .3
EWA 4NEB 811 6148-02
S5-115F Manual
9
Reliability, Availability and Safety of Electronic Control Systems
Reliability, Availability and Safety of Electronic
Control Systems
The terms reliability, availability and safety of electronic control systems are not always clear and
sometimes even misinterpreted. This can be explained on the one hand by the different failure
characteristics of electronic control systems compared with conventional systems. On the other
hand, some of the safety regulations have been made considerably more stringent in a number of
application areas in the course of the last few years.
The following chapter is intended to familiarize you with the basics of this problem complex and
to show how optimal reliability is achieved in the S5-115F.
9.1
Reliability of Electronic Control Systems
Reliability is the capability of an electronic control system to satisfy, over a specified period and
within the specified limits, the requirements placed upon it by its application.
Despite all the measures taken to prevent failures, there is no such thing as 100 % reliability.
The failure rate
=
is a measure of the reliability.
n
No x t
EWA 4NEB 811 6148-02
and
n = Number of failures during time t
No = Remaining components
9-1
Reliability, Availability and Safety of Electronic Control Systems
9.1.1
S5-115F Manual
Failure Characteristics of Electronic Devices
The failure-rate-versus-time curve can be broken down roughly into three periods of time.
Early
Failures
Random
Failures
(1)
Wear-out
Failures
(2)
(3)
0
104
106
t in h
Figure 9-1. Failure Characteristics of Electronic Devices (”Bathtub” Curve)
(1) Early failures are caused by material and manufacturing defects and the failure rate falls
steeply during the initial period of operation.
(2) The random failure phase is characterized by a constant failure rate. Provided the systems are
used in accordance with the specifications, only random failures occur during this period.
This period covers the normal behaviour of system components and is the basis for the
calculation of all reliability parameters.
(3) The failure rate increases with time. Wear-out failures become more frequent, indicating that
the end of the useful life is approaching. The transition to this phase is gradual. There is no
sudden increase in the failure rate.
9.1.2
Reliability of SIMATIC S5 Programmable Controllers and Components
A very high degree of reliability can be achieved by taking the following extensive and costintensive measures during the development and manufacture of SIMATIC S5 systems.
•
•
•
•
•
•
•
•
•
•
9-2
The use of high-quality components;
Worst-case design of all circuits;
Systematic and computer-controlled testing of all components supplied by subcontractors;
Burn-in of all LSI circuits (e.g. processors, memories etc.);
Measures to prevent static charge building up when handling MOS ICs;
Visual checks at different stages of manufacture;
In-circuit testing of all components, i.e. computer-aided testing of all components and their
interaction with other components in the circuit;
Continuous heat-run test at elevated ambient temperature over a period of several days;
Careful computer-controlled final testing;
Statistical evaluation of all failures during testing to enable the immediate initiation of
suitable corrective measures.
EWA 4NEB 811 6148-02
S5-115F Manual
9.1.3
Reliability, Availability and Safety of Electronic Control Systems
Failure Distribution
Despite the extensive measures described above, one must still reckon with the occurrence of
failures. Experience has shown that, in installations with programmable controllers, failures can be
distributed approximately as follows:
Enhancement of
availability by programmed diagnostic
functions
Processor
Memory
Central
functions
10%
Internal
failures
25%
each
Bus
system
90%
5%
Power
supply
Input/output modules
Failures
95%
External
failures
Plant
Control
system
Central
unit
Figure 9-2. Distribution of Failure Occurrences in Installations Incorporating Programmable
Controllers
Significance of failure distribution:
•
Only a small number (approx. 5 %) of failures occur inside the electronic control system. These
can be broken down as follows:
- CPU failures (about 10 %, i.e. only 0.5 % of all failures);
these failures are evenly divided among the processor, memory, bus system and power
supply.
- I/O module failures (about 90 %, i.e. only 4.5 % of all failures)
•
The highest number of all failures (about 95 %) occur in the sensors, actuators, drives, cabling
etc.
9.2
Availability of Electronic Control Systems
9.2.1
Overview
Availability ”V” is the probability of findig a system in a functional state at a specified point in
time.
V=
MTBF
MTBF+MTTR
MTBF=
Mean time between failures;
MTTR=
Mean time to repair;
Ideal availability, i.e. V=1, can never be attained owing to the residual failure probability that
always exists.
EWA 4NEB 811 6148-02
9-3
Reliability, Availability and Safety of Electronic Control Systems
S5-115F Manual
Availability can also be enhanced by reducing the mean time to repair. Such measures include, for
instance:
• The stocking of spare parts
• The training of operating personnel
• Fault indicators on the devices
• Higher memory and software overhead for implementing programmed diagnostic functions
9.2.2
Availability of the S5-115F Programmable Controller
The priority of the S5-115F is safety: it cuts out in the event of a fault. The hardware and the
operating system are designed accordingly. The following have been included in the design of the
S5-115F in order to increase availability:
• Passivation of I/O modules
• SINEC L1 LAN redundancy
You can improve the availability of your system by networking several S5-115Fs with the same
function via the SINEC L1 LAN.
Passivation of I/O modules ( Vol 1, 10.16)
You have the choice of four variations on I/O module error tolerance:
• Variation 1: All I/O module errors cause the PLC to stop, just like central errors.
• Variation 2: An I/O module error causes passivation (shutdown) of all I/O modules belonging
to the same signal group as the defective module. Your program recognizes the passivation
and can respond to it by activating a reserve signal group.
• Variation 3 and 4: An I/O module error causes an error message. This variation is only
permissible during supervised operation and if two message paths are assured.
Example:
Burner control with passivation of the I/O module (variation 2 to 4)
A boiler has several groups of burners with four burners to a group. If four burner controls are
contained in an S5-115F controller, each burner is assigned a different signal group number and
program block number. All burners can be active in normal mode. In the event of an I/O module
error, the defective burner is switched off, or a reserve burner can be activated if available. Even if
the inputs and outputs of a given signal group are not only distributed among different modules
but also accomodated in different racks and assigned different load power supplies, each burner
can still be shut down both physically and in software terms. Your program queries all signal
groups and skips processing when it finds a passivated status.
To simplify the example, it should be possible to set all outputs immediately to zero when a burner
is passivated. If not, a signal group number must be defined for both the operation program and
the shutdown program.
SINEC L1 LAN redundancy
If you are operating several S5-115F controllers linked together, shutdown of the PLCs due to a
failure of the SINEC L1 LAN would be a disadvantage.
The redundant arrangement of the SINEC L1 LAN solves this problem. In the event of a LAN fault B,
the mailbox transfer FB 253 MBXT transfers the relevant Receive mailbox of the SINEC L1 LAN A to
Receive mailbox B.
9-4
EWA 4NEB 811 6148-02
S5-115F Manual
Reliability, Availability and Safety of Electronic Control Systems
PLC redundancy
There are hierarchical systems in which a higher-level S5-115F generates centralized enable
functions for all lower-level S5-115Fs. Failure of this higher-level PLC would lead to a shutdown of
the whole system. Redundancy of the SINEC L1 LAN and of the higher-level S5-115F with enable
functions solves this problem.
For this purpose, the Enable signals of both Enable PLCs are sent on the SINEC L1 LAN and ORed in
the destination S5-115Fs.
9.3
Safety of Electronic Control Systems
The S5-115F is designed so that a hardware failure will not constitute a danger.
There must be two paths, connected in series, for switching off safety-related actuators.The failure
of one is tolerable, provided the defect is detected within the second error occurrence time so that
any further defects will not affect the cutout ability.
Special attention must be given to hidden errors not detected within the safety time. They do not
constitute any danger provided they occur singly. However, they must be detected within the
second error occurrence time in order to prevent error bursts leading to dangerous states. All error
responses lead to the safe quiescent state.
9.3.1
Safe Inputs
Safe inputs are implemented with ”safe” two-channel input modules.
If permanently failsafe sensors are available for the relevant process signals, one sensor branched
to two input modules will be sufficient. Otherwise, two valid sensors are used which are each
connected to one input module of a subunit.
A comparison check is made on the dual-channel inputs once per cycle or, in the case of direct
access, during access. Nonidentical inputs are subjected to a discrepancy analysis. In the case of
binary inputs, the discrepancy must disappear at the latest then the individual discrepancy time
has elapsed. In the case of analog inputs, the system must return to within a tolerable deviation at
the latest after the unified discrepancy time has elapsed.
This measure is sufficient for input variables which change frequently during operation
(intermittent). These are binary variables, which change status several times during the second
error occurrence time, and analog variables, which cover the relevant range several times during
the second error occurrence time.
Input variable comparison is not sufficient in the case of input variables which change
infrequently. These variables must be changed artificially by the supplementary PLC test. Checkback modules are required for this purpose ( 10.9.5).
The active sensor signal is interrupted in the case of binary inputs, and two programmable check
values are injected in the case of analog input. This procedure results in analog inputs which are
safeguarded at two values and can be used for safety-related limit value processing.
The sensors must be designed so that
• a zero signal will occur in the event of a wire break or power failure
• 0 is the status for the safe quiescent state.
(Example: the emergency switch requires the emergency ”0” position and the ”ON” operation
switch requires an active signal with ”1” level).
EWA 4NEB 811 6148-02
9-5
Reliability, Availability and Safety of Electronic Control Systems
9.3.2
S5-115F Manual
Safe Binary Outputs
Safe outputs are dual-channel in one of the following ways:
• Both poles (e.g. +-) of the signal to the load are switched
• Two interface relays are controlled, which in turn also switch both poles of the signal to the
load. Errors are recognized by reading back separate inputs and by comparing the inputs.
Comparison of readback inputs is sufficient for outputs which change their status frequently. In
the case of output statuses which change infrequently, a check pulse is output and read back
additionally in the supplementary test.
The 0 signal, which occurs in the event of wire break or power failure, must shut down all the
command actuators of the process (examples: ON command for a motor must be active with ”1”,
ON command for a brake must be active with ”0”).
9-6
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
10
Rules Governing the Use of the S5-115F
10.1
The User Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
..-1
10.2
The Logical Program Counter
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. -1
10.3
Response Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .- 2
10.3.1 Response Time in the Case of Cyclical Reading In and Output via
the Process I/O Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
.. -3
10.3.2 Response Time in the Case of Direct Access in the Cyclic Program . 10 - 3
10.3.3 Response Time in the Case of Direct Access in the Time
Interrupt OB (OB 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
.. -4
10.3.4 Response Time in the Case of Direct Access in the Process
Interrupt OB (OB 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
..-4
10.3.5 Response Times With the SINEC L1 LAN . . . . . . . . . . . . . . . . . . . . . . . .10 - 5
10.4
Defining the PLC Cycle Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. -7
10.5
Monitoring Times for Synchronization FB Calls (FB 254 SYNC) . . . .
10.6
Discrepancy Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 10
10.7
10.7.1
10.7.2
10.7.3
10.7.4
10.7.5
10.7.6
Limitations of STEP 5 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 - 11
Access to I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 11
Illegal Memory Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 12
Illegal STEP 5 Operations and Statements . . . . . . . . . . . . . . . . . . . . . . 10 - 12
Data Blocks Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 13
Jump Operations to Unloaded Blocks . . . . . . . . . . . . . . . . . . . . . . . . . .10 - 13
Loadable Function Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 14
10.8
I/O Module Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 15
10 - 9
10.9
10.9.1
10.9.2
10.9.3
10.9.4
10.9.5
10.9.6
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .- 17
Implementation of Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 17
Requirements to be Met by the Sensor Signals . . . . . . . . . . . . . . . . . . 10 - 17
Type 1 Digital Input Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 18
Type 2 Digital Input Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 19
Type 3 Digital Input Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 21
Checking Digital Input Modules in the Case of Non-Intermittent
Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .- 24
10.9.7 Direct Read Access to DI Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 24
10.9.8 Digital Input Module with Interrupt Capability (Interrupt DI)
. . . . . 10 - 25
10.10
10.10.1
10.10.2
10.10.3
Digital Output Modules (DQs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 27
Type 8 Digital Output Modules (DQs) . . . . . . . . . . . . . . . . . . . . . . . . .10 - 28
Type 9 and Type 10 Digital Output Modules . . . . . . . . . . . . . . . . . . . 10 - 29
Connecting Actuators to Digital Output Modules (DQs)
(Types 9 and 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 29
10.10.4 Checking Digital Output Modules Using Readback Digital Input
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 37
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
10
Rules Governing the Use of the S5-115F (Cont.)
10.11
10.11.1
10.11.2
10.11.3
10.11.4
Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 37
Type 13 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 39
Type 14 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 40
Type 15 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 43
Checking Analog Input Modules Using Check Analog Output
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 46
10.11.5 Type 16 Analog Input Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 46
10.12
Analog Output Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 50
10.12.1 Type 18 Analog Output Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 50
10.13
I/O Type Assignment of Unused Digital Words
. . . . . . . . . . . . . . . . . 10 - 51
10.14
I/O Type Assignment of Unused Analog Channels
10.15
I/O Type Mixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 52
. . . . . . . . . . . . . . 10 - 51
10.16
Module Addressing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 52
10.16.1 Relationship Between Byte and Word Addressing . . . . . . . . . . . . . . 10 - 52
10.16.2 Address Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 53
10.17
10.17.1
10.17.2
10.17.3
Responding to I/O Module Errors
. . . . . . . . . . . . . . . . . . . . . . . . . . . .10 - 57
Passivation of I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 59
Revoking Passivation of I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . .10 - 60
Operating System and User Program Response in the Case of
I/O ETV 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 63
10.17.4 Repair Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 66
10.18
Handling the Programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 66
10.18.1 Connecting the Programmer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 66
10.18.2 Operator Entry in the Programmer in Safety Mode
. . . . . . . . . . . . . 10 - 67
10.19
10.19.1
10.19.2
10.19.3
10.19.4
SINEC L1 LAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 68
Polling List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 69
SINEC L1 Safety Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 69
Synchronization FB 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 70
Two-Channel SINEC L1 LAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 70
10.20
10.20.1
10.20.2
10.20.3
Individual Acceptance Test of the Safety-Related System . . . . . . . 10 - 70
Planning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 70
Pre-Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 72
System Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. .- 73
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Figures
10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.
10-10.
10-11.
10-12.
10-13.
10-14.
10-15.
10-16.
10-17.
10-18.
10-19.
10-20.
10-21.
10-22.
10-23.
10-24.
10-25.
10-26.
10-27.
10-28.
10-29.
Response Time in the Case of Cyclic Read-In of Process Signals. . . . . . . . . . . . 10 - 3
Response Time in the Case of Direct Access without OB 2/OB 13 . . . . . . . . . . 10 - 3
Response Time in the Case of Direct Access in Time Interrupt OB 13 . . . . . . . 10 - 4
Response Time in the Case of Direct Access in the Interrupt OB 2 . . . . . . . . . . 10 - 5
SINEC L1 Response Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . .- 6
Type 1 DI, Nonsafety-Related, Single-Channel . . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 18
Type 2 DI, Safety-Related, Intermittent: Single-Channel Sensor
. . . . . . . . . . 10 - 19
Type 2 DI, Safety-Related, Intermittent: Two-Channel Sensors . . . . . . . . . . . 10 - 20
Type 3 DI, Safety-Related, Non-Intermittent: Single-Channel,
Deactivatable Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 21
Type 3 DI, Safety-Related, Non-Intermittent: Two-Channel,
Deactivatable Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 22
Type 3 DI, Safety-Related, Non-Intermittent: Single-Channel,
Non-Deactivatable Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 23
Type 3 DI, Safety-Related, Non-Intermittent: Two-Channel,
Non-Deactivatable Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 23
Type 8 DQ, Nonsafety-Related, Single-Channel . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 28
Type 9/10 DQ, Safety-Related, Intermittent/Non-Intermittent:
Direct Control, 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 31
Type 9/10 DQ, Safety-Related, Intermittent/Non-Intermittent:
Direct Control, 115/230 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 32
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback direct at DI, 24 V / 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 33
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback direct at DI, 24 V / 230 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 33
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback at load circuit, 24 V / 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 34
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback at load circuit 24 V/115 V or 24 V/230 V . . . . . . . . . . . . . . . . . . . . . . 1. 0 - 35
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback at load circuit 115 V/115 V or 230 V/230 V . . . . . . . . . . . . . . . . . . . . .10 - 35
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback at load circuit 24 V/115 V or 24 V/230 V . . . . . . . . . . . . . . . . . . . . . . 1. 0 - 36
Type 13 AI, Nonsafety-Related, Single-Channel . . . . . . . . . . . . . . . . . . . . . . . . 10
. - 39
Type 14 AI, Safety-Related, Non-Intermittent: Single-Channel Sensor
with Voltage Output
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 40
Type 14 AI, Safety-Related, Non-Intermittent: Single-Channel Sensor
with Current Output;Two-Wire Transducer
. . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 41
Suggested Wiring of the 463 AI Module When Using Two-Wire Transducers
(without Test Wiring)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 41
Type 14 AI, Safety-Related, Non-Intermittent: Single-Channel Sensor
with Current Output, Four-Wire Transducers
. . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 42
Type 15 AI, Safety-Related, Non-Intermittent: Two-Channel Sensor
with Voltage Output
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 43
Type 15 AI, Safety-Related, Non-Intermittent: Two-Channel Sensor
with Current Output; Two-Wire Transducers
. . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 44
Type 15 AI, Safety-Related, Non-Intermittent: Two-Channel Sensor
with Current Output; Four-Wire Transducers
. . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 45
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Figures (Cont.)
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
10-30. Type 16 AI, Safety-Related, Intermittent: Single-Channel Sensor
with Voltage Output
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 47
10-31. Type 16 AI, Safety-Related, Intermittent: Single-Channel
with Current Output, Two-Wire Transducers
. . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 47
10-32. Type 16 AI, Safety-Related, Intermittent: Single-Channel Sensor
with Current Output, Four-Wire Transducers
. . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 48
10-33. Type 16 AI module, Safety-Related, Intermittent: Two-Channel Sensors
. . . 10 - 49
10-34. Type 18 Analog Output Module, Nonsafety-Related, Single-Channel
. . . . . 10 - 50
10-35. Byte-Oriented Addressing (Inputs, Outputs)
. . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 52
10-36. Word-Oriented Addressing (Inputs, Outputs, Flags)
. . . . . . . . . . . . . . . . . . . . .10 - 53
10-37. Setting a DIP Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . -. 55
10-38. Setting the Addresses in the Address Field of the IM 306
Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .-.56
10-39. Dividing the I/O Modules into Signal Groups
. . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 61
10.40. Schematic of a Structured Program Sequence . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 62
10.41. Flowchart for I/O Error Tolerance Variant 3 (I/O ETV 3) and 4 (I/O ETV 4)
with Signal Group Nos. 27 and 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 65
Tables
10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.
10-10.
10-11.
10-12.
10-13.
Programmable Discrepancy Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 10
Permissible Accesses to the I/O Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . - 11
I/O Module Types (Type Matrix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 16
Choice of the reaction times for interposing relays and actuator
. . . . . . . . . . 10 - 30
Advantages of the Various Readback Methods
. . . . . . . . . . . . . . . . . . . . . . . . 10
. - 32
Typical I/O Type Assignments of Unused I/O Words
of 32-Channel DI/DQ Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . - 51
Typical I/O Type Assignments of Unused Channels of AI/AQs . . . . . . . . . . . . . 10 - 51
I/O Type Mixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- .52
Meaning of the Signal Group Numbers in the Case of Error Tolerance
Variants 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- .57
Meaning of the Signal Group Numbers in the Case of Error Tolerance
Variants 1 to 4 (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . .- 58
Passivating I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. . .- 59
Connecting the Programmer and SINEC L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
. - 66
Overview of the Programmer Operator Functions
. . . . . . . . . . . . . . . . . . . . . . 1. 0 - 67
EWA 4NEB 811 6148-02
S5-115F Manual
10
Rules Governing the Use of the S5-115F
Rules Governing the Use of the S5-115F in
Safety-Related Applications
In Chapter 9 you will have learnt the principles of the safety-related structure of the S5-115F. In
Chapter 10 you will find all those rules that must be observed when using that part of the S5-115F
requiring official approval.
These rules must be observed in order to avoid
•
•
Danger to life and limb and
Controller malfunctions.
10.1
•
•
•
•
The User Memory
Both subunits, A and B, require the same memory configuration.
If you use memory submodules, they must both have the same order number.
The S5-115F automatically operates in safety mode when EPROM or EEPROM submodules are
plugged in. You can, however, only use EEPROM submodules with the express consent of the
inspector at the individual acceptance test. If you operate the S5-115F without memory
submodules or with a RAM submodule, it automatically switches to test mode.
The backup batteries are essential. Error information can be lost without battery backup for
the RAM.
Replace the backup batteries every year.
Nonsafety-related programs must be reaction-free:
- Operations which change the memory must have no effect on safety-related data.
- The degree to which the system is reaction-free can be demonstrated using data flowcharts
or cross-reference lists.
10.2
The Logical Program Counter
Using the logical program counter (LPLZ), the operating system can check that the same number
of program sections have been processed in both subunits.
The following sequence of operations increments the LPLZ
L
L
+
T
FW 0
KF
F
FW 0
+1
EWA 4NEB 811 6148-02
10-1
Rules Governing the Use of the S5-115F
S5-115F Manual
Insert this sequence of operations at the following points in your program:
• At the beginning of every program block (OB, PB, SB and loadable FBs)
• After a BLD 255 segmentation operation.
You must insert these segmentation operations in your program at intervals of not more than
approximately 128 operations. If you have programmed several BLD 255 operations within
128 operations, the sequence of operations for incrementing the LPLZ will be executed only after
the last BLD 255 (execution time!).
Note
Flag word FW 0 is reserved for the LPLZ, and must not be used for any other purpose.
10.3
Response Times
The user must be able to demonstrate specific response times when planning the automation of a
process requiring an authorization permit. Response time is defined here as the time that elapses
between a change in an input signal on the CPU side and the output response on the CPU side.
The response time is dependent on the procedure used:
•
•
•
•
•
Cyclic reading in and output
Direct access in the user program
Direct access in OB 13 (time interrupt OB)
Direct access in OB 2 (process interrupt OB)
Networking via the SINEC L1 LAN
In addition, the response times of the I/O modules, sensors and actuators must be taken into
account (inherent module delay).
The following is a demonstration of the calculation of worst-case response times, which the user
can regard as safety times. The following abbreviations are used.
•
•
•
•
•
•
•
•
TPC cycle
= PLC cycle time (execution time for user program and operating system program)
Tproc.
= Processing time between two operations
TOB 13
= Time interrupt interval
= Interval between two FB 254 SYNC calls
Tsynchr.
TOS
= Response time of the OS to process interrupts
TSINEC poll = SINEC L1 polling time
TSINEC safety= SINEC L1 safety time
Additional footnotes:
R = Receiver S = Sender
10-2
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.3.1 Response Time in the Case of Cyclical Reading In and Output via the
Process I/O Image
If input signals are read in via the process input image (PII) (e.g. using the A I 1.0 operation), and
the response is output via the process output image (PIQ) (e.g. using the S Q 4.0 operation), this
results in the following response time:
TR 2 * TPLC cycle
Input
Read input signal in
signal
OS
after
user
prog.
OS
before
user
prog.
User program
A I 1.0
OS
after
user
prog.
OS
before
user
prog
Output response
OS
after
user
prog.
S Q 4.0
OS
before
user
prog.
t
TPLC cycle
Figure 10-1. Response Time in the Case of Cyclic Read-In of Process Signals
Explanation of Figure 10-1
If input signal changes during the user program, the change is recognized in the next PLC cycle
when this signal is read in . The user program processes the input signal and triggers the output
response in the operating system .
10.3.2 Response Time in the Case of Direct Access in the Cyclic Program
If the input signal is read from the input module by direct access (e.g. using the L PW operation)
and the response is output by direct access to the output module (e.g. using the T PW operation),
the following response time results:
TR TPLC cycle+Tproc.
Read input
signal in
Input signal
OS
after
user
prog.
OS
before
user
prog.
User program
L PW
T PW
Tproc.
OS
after
user
prog.
OS
before
user
prog.
Output
response
User program
L PW
T PW
OS
after
user
prog.
OS
before
user
prog.
t
Tproc.
Figure 10-2. Response Time in the Case of Direct Access without OB 2/OB 13
Explanation of Figure 10-2
If input signal changes after the relevant direct access , the change will be recognized in the
next PLC cycle after reading in the signal with direct access . The user program scans the input
signal and responds by directly accessing the output module .
EWA 4NEB 811 6148-02
10-3
Rules Governing the Use of the S5-115F
S5-115F Manual
10.3.3 Response Time in the Case of Direct Access in the Time Interrupt OB
(OB 13)
If the inputs are read in and the outputs are activated by direct access in the time interrupt OB, the
following applies for the response time:
TR TOB 13+Tsynchr.+Tproc.
Input signal
Read-in with LPW
Output response
Time interrupt, e.g. every
250 msec.
Synchr.
time
interrupt
OS
after
user
e.g.
every
100
msec.
OS
bef.
user
LPW
OB 13
OB 13
OB 13
OB 13
TPW
prog. prog.
.
Tproc.
Figure 10-3. Response Time in the Case of Direct Access in Time Interrupt OB 13
Explanation of Figure 10-3
If input signal
changes after the relevant direct access
in OB 13, the change will be
recognized in the next possible OB 13 call. It is possible in the following cases:
• When the interval time for OB 13 has elapsed (250 msec. in the example)
• When the next synchronization point
has been reached (100 msec. in the example or
20 msec. in general).
10.3.4 Response Time in the Case of Direct Access in the Process Interrupt OB
(OB 2)
If the inputs are connected to a module with interrupt capability and the outputs are directly
accessed in the process interrupt OB, the following applies for the response time to a falling edge
at the input:
TR Tsynchr.+Tproc.+ TOS
10-4
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Read-in with LPW
Output response
Input signal
Synchr. process interrupts
e.g. every 100 msec.
OS
OS
after bef.
user user
prog. prog.
OS
LPW
OB 2
TPW
OS
OS
after bef.
user user
prog. prog.
OS
after bef.
user user
prog. prog.
Tproc.
Figure 10-4. Response Time in the Case of Direct Access in the Interrupt OB 2
Explanation of Figure 10-4
OB 2 is started and the signal change is recognized if
• input signal has changed
and
• a synchronization point for process interrupts
100 msec. in the example) .
has been reached (at the latest after
10.3.5 Response Times With the SINEC L1 LAN
The SINEC L1 LAN has a polling time which is a function of the number of data paths and the sum
of all transfer bytes. In addition, the SINEC L1 LAN has a safety time which must be greater than
the polling time. The safety time depends on the following criteria:
• Desired error tolerance (the longer the safety time, the greater the error tolerance)
• Desired response time in the event of an error (the shorter the safety time, the less error
tolerance).
The SINEC L1 response time consists of the following:
• The intervals between the synchronization calls for SINEC L1
•
- SINEC L1 polling time (bus intact)
or
•
- SINEC L1 safety time (bus defective).
The Receive mailbox is read out
•
at long intervals in the PLC cycle
•
at short intervals in OB 13.
EWA 4NEB 811 6148-02
10-5
Rules Governing the Use of the S5-115F
Fill Send
mailbox
S5-115F Manual
Activate operating
system for Send
Synchr.
e.g.
interval
100 msec.
Send S5-115F
Send
Polling time
e.g. 250 msec.
Receive
Fill Receive mailbox
via operating system
SINEC L1 LAN
Read Receive mailbox
via user program
Synchr.
int. e.g.
100 msec.
T
Receive S5-115F
SINEC response
Figure 10-5. SINEC L1 Response Time
Explanation of Figure 10-5
Figure 10-5 describes a typical data exchange via SINEC L1.
The Send S5-115F enters the data in the Send mailbox of the desired data path.
The operating system attempts to buffer the message.
The message is sent from the buffer before the SINEC L1 polling time has elapsed (at the
latest).
Please make sure the polling list is properly organzied.
The Receive mailbox is filled in the receiving PLC at the next synchronization call.
The user program reads the data out of the Receive mailbox.
This results in the following in error-free operation:
T SINEC L1 response time Tsynchr. S + TSINEC poll + Tsynchr. R + TPLC cycle time R
10-6
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
In the case of an error, the SINEC L1 response time increases to:
SINEC L1 response time=SINEC L1 response time in error-free operation+(TSINEC safety - T SINEC poll)
The following applies if you use OB 13 to evaluate the Receive mailbox:
SINEC L1 response time Tsynchr. S + TSINEC poll + Tsynchr. SINEC R + T OB13 + Tsynchr. OB 13
This response time only includes the time between sending a message and its arrival at the receiver.
If an input signal is transferred from an S5-115F via the SINEC L1 LAN to another S5-115F, the time
required for detecting the signal change at the input and for responding at the output must be
taken into account.
10.4
Defining the PLC Cycle Time
The PLC cycle time is a safety variable. It is instrumental in defining the response time of the PLC,
which, in turn, is an essential component of the safety time.
The following applies:
• PLC response time
2·maximum PLC cycle time
• Safety time
= PLC response time
+ Response time of electromechanical components (relays, sensors)
+ Response time of mechanical parts (press rams, etc.)
For this reason, you must be able to define the worst-case cycle time.
The worst case cycle time consists of
• The program execution time
• The operating system execution time.
You can determine your program execution time by summating the execution times of the STEP 5
statements constituting the program.
The maximum operating system execution time can be estimated with the help of the following
guidance values:
•
60 to 80 msec. Basic execution time depending on configuration with user timers in conjunction with the IA (Interrupt Inhibit) operation.
•
70 to 90 msec. Basic execution time without IA operation
•
0 to 30 msec. (30 msec. for short discrepancy time) for the configured short discrepancy
time for cyclic updating of digital input modules without interrupt capability
•
5 to 10 msec. For supplementary PLC self-test in the case of normal test slice size
or
15 to 140 msec. In the case of larger-than-normal test slices. This test consists of several
components that depend on the I/Os. The test runs serially and executes
normal and larger-than-normal test slices.
Larger-than-normal slices are:
25 to 70 msec. for the DI module test (type 3)
15 to 140 msec. for the DQ module test depending on the type of control
(direct or indirect) and the inertia of the 24 V/220 V
module
50 to 120 msec. for the AI module test (type 14, 15)
The PLC cycle time can be extended by
• Process interrupt servicing with OB 2
• Time interrupt servicing with OB 13
• Synchronization of the SINEC L1 LAN.
EWA 4NEB 811 6148-02
10-7
Rules Governing the Use of the S5-115F
S5-115F Manual
It can be calculated as follows:
TPLC cycle (OB 2, OB 13, SINEC) = TPLC cycle . 100
100 - Q
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
where: Q=Q2+Q13+QSINEC
Q2= OB 2 execution time component of the total S5-115F execution time
Q13= OB 13 execution time component of the total S5-115F execution time
QSINEC= SINEC L1 LAN execution time component of the total S5-115F execution time
e.g.
Call interval
Excecution time
Execution time Qi
OB 2
40 msec.
4 msec.
10 %
OB 13
100 msec.
8 msec.
8%
Number of SINEC L1 LAN slaves
Max. message length
Execution time component QSINEC,
1 LAN
2 LANs
Total execution time component Q2+Q13+QSINEC (2 LANs)
=2
= 62 bytes
= 20%
= 30%
= 48 %
Note
•
•
Avoid Q>50%
Under worst-case conditions, please note:
Direct access commands to the interrupt DI in OB 2 may be extended by the
relevant short discrepancy time.
Example
The operating system execution time is
•
60 to 100 msec. for
- Limited configuration with 24 V I/O modules
- Directly driven actuators
- 30 msec. short discrepancy time
•
80 to 250 msec. for
- Extended configuration with 220 V I/O modules
- Indirectly driven actuators
- 30 msec. short discrepancy time
You can determine the PC cycle time in a relatively easy way in Test mode. Add a flag word to your
cyclic program and count, for example, 1000 cycles with it. If you measure the time required for
this, the mean cycle time can be determined exactly.
10-8
EWA 4NEB 811 6148-02
S5-115F Manual
10.5
Rules Governing the Use of the S5-115F
Monitoring Times for Synchronization FB Calls (FB 254 SYNC)
The subunits must be synchronized for the following purposes:
• Updating of user times
• Servicing of process interrupts (OB 2)
• Servicing of time interrupts (OB 13)
• SINEC L1 processing
• Programmer operation
The program for the operating system is organized so that it synchronizes the two subunits
automatically at intervals of
• 20 ms, if no SINEC L1 LAN is installed
• 40 ms, if a single or double, redundant, SINEC L1 LAN is installed.
In the user program you must make your own arrangements for synchronizing the two subunits.
You do this by calling FB 254 SYNC in the user program.
The S5-115F monitors the interval between the synchronization calls because they are of crucial
importance for the accuracy of user timers, the accuracy of the response to interrupts and for the
transmission times of the SINEC L1 LAN.
Synchronization of times in the user program
The accuracy of times in the user program depends on the intervals between synchronization calls.
The absolute error is:
• maximum
20 ms+synchronization call interval
• mean
5 ms+half the synchronization call interval
If the interval for updating user timers configured by COM 115F is exceeded as a result of too few
synchronization calls in the user program, the S5-115F will enter the STOP mode.
Synchronization for time and process interrupts
The response time for time and process interrupts also depends on the intervals between
synchronization calls. The response time to a process interrupt (OB 2) is:
• maximum 10 ms+synchronization call intervall
• minimum 30 ms
The interval between time interrups is programmable from 100 msec. upward. The deviation from
the programmed interval is:
• maximum
20 ms+synchronization call interval
• mean
5 ms+half the synchronization call interval
Synchronization call intervals for interrupt processing are monitored by the S5-115F operating
system with a configurable time interval. If the monitoring time is exceeded, the S5-115F stops.
Synchronization for SINEC L1 LAN
Data traffic via the SINEC L1 LAN is also monitored with a configurable safety time. Data traffic
with all configurable communications partners (except the master PC) must be completed within
this safety time, otherwise the Receive mailbox is deleted for safety reasons. If you use the SINEC
L1 LAN, we recommend that you call FB 254 every 30 to 40 ms, if possible.
EWA 4NEB 811 6148-02
10-9
Rules Governing the Use of the S5-115F
S5-115F Manual
Note
•
•
10.6
Interval monitoring for user timer updating calls is deactivated if the value 16383 is
entered for ”User timer updating: Max. interval” when the operating system
parameters are set via COM 115F.
Interval monitoring for interrupt processing calls is deactivated if the value 255 is
entered for ”Interrupt processing: Max. interval” when the operating system
parameters are set via COM 115F.
Discrepancy Times
I/O accesses are monitored for discrepancy times. I/O read accesses are monitored for signal
discrepancies in both subunits in order to detect hardware faults.
The discrepancies must reach permissible values within the programmed discrepancy times: Binary
signals must be identical in both subunits. The analog values of both subunits must lie within a
programmable tolerance range.
•
Short discrepancy times ( Vol. 2, 1.1.1 of the Manual) are configured uniformly for certain
modules. They lie between 10 msec. and 255 * 10 msec. An input is scanned either until the
time has elapsed or the values match.
•
Long discrepancy times ( Vol. 2, 1.2.3 of the Manual) are configured separately for each
input. They lie between 100 msec. and 27 min 19 sec. The value of the last scan is transferred to
the process input image until either the time has elapsed or the values match. During this time,
the program continues to be scanned.
You will find an overview of discrepancy times in Table 10-1.
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
Table 10-1. Programmable Discrepancy Times
Module
Type of access
Discrepancy time
Digital input with interrupt
capability
Direct
Short discrepancy time for DI with
interrupt capability
Digital input without interrupt
capability
Cyclic
Short discrepancy time for DI without
interrupt capability or long discrepancy
times
Direct
No discrepancy analysis.
The uniform value is not derived from the
current values, but the last valid value is
used. The user is not informed of the use
of this substitute value.
Digital input without interrupt
capability
Analog input
Readback digital input
10-10
FB 250 ANEI
PLC cycle time
Short discrepancy time for DI without
interrupt capability
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Note
You must note the following when configuring the short discrepancy time for without
interrupt capability DIs
• Time discrepancies of the sensors
• Time discrepancies of the readback digital inputs, conditioned by
- output modules
- coupling relays and
- readback input modules.
Note
If the response time of the "slowest" DQ modules (output module, coupling relay,
readback DI) 30 msec., the discrepancy time for DIs must be calculated as follows:
Short discrepancy time Response time of the DQ modules - 30 msec.
This value must be configured as an operating system parameter ( Vol. 2, 1.1.1 of the
Manual).
10.7
Limitations of STEP 5 Programming
In order to guarantee the safety of plants requiring official approval, certain STEP 5 operations
must be limited in their application or completely forbidden.
10.7.1 Access to I/O Modules
The following table gives you an overview of the permissible accesses to the I/O area.
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
Table 10-2. Permissible Accesses to the I/O Area
Permissible Access
To the process I/O
image
Direct access
EWA 4NEB 811 6148-02
Modules
DI
DQ
AI
AQ
L IB, L IW
binary
operations
T QB, T QW
binary
operations
FB 250
(FB ANEI)
T QB, T QW
FB 251
(FB ANAU)
L PY, L PW
T PY, T PW
FB 250
(FB ANEI)
T PY, T PW
FB 251
(FB ANAU)
10-11
Rules Governing the Use of the S5-115F
!
S5-115F Manual
Important
The following are not permissible
• LIR and TNB operations with their source addresses to the I/O area (<1000H,
>EFFFH) and to the system area (EA0A...EA0E).
(LIR and TIR are word operations. The highest accessible address is therefore EFFEH
and not EFFFH).
• TIR and TNB operations with destination addresses to the I/O area (<1000H,
>EFFFH) and to the system area (EA0A...EA0E).
(LIR and TIR are word operations. The highest accessible address is therefore EFFEH
and not EFFFH).
• L PY and L PW for reading AI modules.
10.7.2 Illegal Memory Area
Direct access to the memory area C400H to EFFFH with T IR and T NB is illegal.
This memory area is used by the operating system.
10.7.3 Illegal STEP 5 Operations and Statements
In order to guarantee the safety of plants requiring official approval, the possibility of systematic
errors by the user must be eliminated. Systematic errors have the same effect on both subunits.
Note
Organize your programs as clearly as possible!
The following are not permitted
•
•
•
•
•
Trick programming
T DL, T DR and T DW operations in DB 1, DB 2, DB 3, configuration DBs and DBs stored on the
EPROM/EEPROM submodule.
DO FW; DO DW, DI and JU R operations in safety-related programs.
Programming of RLO-dependent operations and jump operations within parentheses.
Accessing system data SD5 to SD7.
10-12
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.7.4 Data Blocks Used
The following DBs are reserved in the S5-115F:
• DB 1
• DB 2, DB 3 as error DBs
• Configuration DBs, listed in the directory of DB 1.
You may not assign these DB numbers in your program.
Note
The error DBs (DB 2 and DB 3) are generated and updated by the operating system and
cannot be transferred to the PLC, not even in Test mode.
The G DB operation for opening a DB must be checked closely by the acceptance official since its
effects cannot usually be detected by the function test.
10.7.5 Jump Operations to Unloaded Blocks
The operating system responds differently to jump operations to nonexistent blocks depending on
the operating mode:
• If a jump to a nonexistent block is called in safety mode, the S5-115F enters the STOP mode.
• If a jump to a nonexistent block is called in Test mode, it is not executed and the program
processes the next operation. The S5-115F remains in RUN mode. For this reason, it is possible
to construct the complete user program in steps in Test mode by loading successive blocks
without having to continually rewrite OB 1. This enables you to program OB 1 with all planned
block calls.
EWA 4NEB 811 6148-02
10-13
Rules Governing the Use of the S5-115F
S5-115F Manual
10.7.6 Loadable Function Blocks
Frequently recurring or particularly complex program sections (e.g. signalling or arithmetic
functions) are programmed in function blocks. These can be assigned parameters and have an
extended operation set (e.g. jump operations within a block).
The loadable function blocks are subdivided into
•
•
User-written function blocks
Standard function blocks
User-Written Function Blocks
Function blocks generated by the user - like any other block - must be tested by the inspector.
The minimum requirements of the test are a discussion of the function, functional tests with an
examination of possible error states and a code analysis.
Standard Function Blocks
In the S5-115F, standard function blocks may be used only when they have been prototype-tested.
The standard FBs for the S5-115F implement the same functions as the standard FBs for the
SIMATIC S5 U-range controllers, but have been adapted to the safety requirements. You will find
an overview of the standard function blocks which can be used in the S5-115F in Catalog ST 57.
There are reaction-free and failsafe standard FBs. Only failsafe standard FBs may be used to form
signals relevant to the system's failsafety. When assigning parameters to the blocks, note that
output parameters can only be failsafe if all the input parameters are failsafe.
All standard FBs are identified by a library number which, in conjunction with other measures,
protect the blocks against falsifications caused by transfer errors or disk errors.
Note the following when using loadable standard FBs:
•
•
•
In the safety mode, the operating system checks all standard FBs for integrity
Standard FBs for the SIMATIC S5 U-range controllers are not allowed, and are rejected in the
safety mode
The authorized inspector's examination of the standard FBs limits itself to
- a comparison of the library number with the one specified in the report
- checking for proper use of the standard FBs
- checking the FB calls for correctness and checking the parameter initialization routine for
the FBs as per the block description
- making sure that the provisions laid down in the report or the requirements of the
prototype test have been upheld
Note
If you use standard FBs, you may only use flag words FW 200 to FW 254 in your user
program if you save the flag area used before calling the standard FB and retrieve it
when the block has been processed.
10-14
EWA 4NEB 811 6148-02
S5-115F Manual
10.8
Rules Governing the Use of the S5-115F
I/O Module Types
There are different types of digital and analog I/Os which are suited to the type of sensors and
actuators and to the time characteristics of the input/output signals.
A distinction is made between safety-related and nonsafety-related types.
In the case of safety-related types, a further distinction is made between types for intermittent
signals and types for non-intermittent signals.
An intermittent digital signal must be subjected to sufficently frequent changes of state and these
must be detected by the CPU. For this purpose, the signal must assume the states ”0” and ”1” at
least once within the second error occurrence time and for a period in each case greater than the
PLC cycle time.
Thus, the EMERGENCY OFF input is not intermittent since it is activated extremely infrequently.
An analog signal is intermittent if the whole value range relevant to evaluation within the second
error occurrence time is run through, read in and coded at least once. In doing so, it is of special
importance that those values that lead to a safety response be reached.
For example, an analog input for measuring temperature cannot generally be configured as an
intermittent type since the critical temperatures leading to emergency shutdown are never
reached in normal operation.
Note
If an intermittent type is selected for a safety-related signal, this signal characteristic
must be proved to the licensing authority.
This characteristic is often impossible or difficult to prove. If this is the case, a nonintermittent type should be selected for which no special proof is required.
I/O types differ according to
•
•
•
•
•
•
Safety-related aspects
Number of I/O channels
Features and type of connection
”Intermittent” characteristic
Feedback type
Number of feedback channels.
EWA 4NEB 811 6148-02
10-15
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Rules Governing the Use of the S5-115F
I/O I/O Safety No. of No. of SelecTyp.
reI/O sensor tion
No.
16 AI
yes
2
2
DI = Digital input module
DQ
18 = AQDigital
no output1 module1
AI = Analog input module
AQ = Analog output module
10-16
S5-115F Manual
Table 10-3 gives an overview of the possible I/O types and their characteristics.
Table 10-3. I/O Module Types (Type-Matrix)
Read Back
1
DI
no
1
1
10-6
2
2
DI
DI
yes
yes
2
2
1
2
yes
yes
10-7
10-8
3
3
3
3
DI
DI
DI
DI
yes
yes
yes
yes
2
2
2
2
1
2
1
2
Sensor can be deact.
Sensor can be deact.
Sensor cannot be deact.
Sensor cannot be deact.
no
no
no
no
CH-DQ
CH-DQ
CH-Rel-DQ
CH-Rel-DQ
1
1
1
2
10-9
10-10
10-11
10-12
8
DQ
no
1
1
10-13
9
9
9
DQ
DQ
DQ
yes
yes
yes
2
2
2
1
1
2
direct
direct
indirect
at DQ
24 V
115 V, 230 V
24 V
yes
yes
yes
RB-DI
RB-DI
RB-DI
2
2
2
10-14
10-15
10-18
9
DQ
yes
2
2
indirect
at DQ
115 V, 230 V
yes
RB-DI
2
10-20
10
10
10
DQ
DQ
DQ
yes
yes
yes
2
2
2
1
1
2
direct
direct
indirect
at DQ
24 V
115 V, 230 V
24 V
no
no
no
RB-DI
RB-DI
RB-DI
2
2
2
10-14
10-15
10-18
10
DQ
yes
2
2
indirect
at DQ
115 V, 230 V
no
RB-DI
2
10-20
9
9
9
9
9
9
10
10
10
10
10
10
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
1
2
2
2
2
direct
direct
indirect
indirect
indirect
indirect
direct
direct
indirect
indirect
indirect
indirect
at load circ
at load circ
at load circ
at load circ
at load circ
at load circ
at load circ
at load circ
24 V
115 V, 230 V
24 V / 24 V
24 V / 115 V, 230 V
115 V, 230 V / 115 V, 230
V
24 V / 115 V, 230 V
24 V
115 V, 230 V
24 V / 24 V
24 V / 115 V, 230 V
115 V, 230 V / 115 V, 230
V
24 V / 115 V, 230 V
yes
yes
yes
yes
yes
yes
no
no
no
no
no
no
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
RB-DI
2
2
2
2
2
2
2
2
2
2
2
2
10-14
10-15
10-18
10-19
10-20
10-21
10-14
10-15
10-18
10-19
10-20
10-21
13
AI
no
1
1
-
-
-
-
-
-
10-22
14
AI
yes
2
1
-
-
-
no
15
AI
yes
2
2
-
-
-
no
16
AI
yes
2
1
-
-
-
yes
CH-Rel-DQ,
CH-AQ
CH-Rel-DQ,
CHR-AQ
-
1*4
1
2*4
1
-
-
-
10-23
10.24
10-25
10-26
10-27
10-28
10-29
-
-
10-30
RB-DI
=
CH-Rel-DQ
-=
CH-AQ
=
Sensor/actuator
characteristic
lated chan/
nel actuat.
chan-
Intermit-
yes
Readback digital input module
Check (relay) digital
output module
Check analog output module
Feedback
Type
tent
No. of
Figure
feedback
No.
channel
nel
EWA 4NEB 811 6148-02
S5-115F Manual
10.9
Rules Governing the Use of the S5-115F
Digital Inputs
When configuring the I/Os ( Vol. 2 of the Manual), you define an I/O type according to the
characteristics of the process input signals for every DI.
There are three different DI types.
10.9.1 Implementation of Sensors
Permanently failsafe sensors may have a single-channel connection to a safety-related digital
input (requires permit). Other approved sensors must be of the two-channel type.
10.9.2 Requirements to be Met by the Sensor Signals
If the digital inputs are read in cyclically, the sensor signals must maintain a given state for longer
than one PLC cycle.
Note
Special conditions and restrictions apply to interrupt DIs ( 10.9.8).
EWA 4NEB 811 6148-02
10-17
Rules Governing the Use of the S5-115F
S5-115F Manual
10.9.3 Type 1 Digital Input Modules
Type 1 DIs have the following characteristics:
•
•
•
•
Nonsafety-related
Can be operated in either subunit A or B (single-channel configuration).
Can be operated in both subunits in any mix.
The module address may be set only in the subunit with the DI module. This address must not
be used in the other subunit.
Subunit A
Subunit B
DI
430 - 7LA
435 - 7LC
436 - 7LC
482 - 7LA
1) Sensor with single contact; can be
activated and deactivated via the
power supply
2) Sensor with contacts connected to a
common potential; individual
contacts cannot be activated and
deactivated via the power supply.
...
3) Sensor with electronically
generated signal; cannot be
activated and deactivated via the
power supply
P
1)
2)
Sensor
Sensor
or
=
3)
Sensor
P
P
4)
Sensor
M
4) Sensor, cannot be activated and
deactivated
= 2) or 3)
Figure 10-6. Type 1 DI, Nonsafety-Related, Single-Channel
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaa
Permissible modules
Module
Characteristics
430-7LA DI
reaction-free 1
435-7LC DI
reaction-free 1
436-7LC DI
reaction-free 1
482-7LA11 DI/DQ
reaction-free
32 *
24 V, connected to common 0 V potential
in groups of 8, P input
8 * 115 V, not connected to common 0 V
potential
8 * 230 V, not connected to common 0 V
potential
16 * 24 V, 0.5 A, P output + 8 P inputs
connected to common 0 V potential
1 The failsafe module is only implemented in single-channel connection and is therefore only to be regarded as a
reaction-free module
10-18
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.9.4 Type 2 Digital Input Modules
Type 2 DIs have the following characteristics:
•
•
•
Safety-related
Intermittent input signal
They are operated in subunit A and B (two-channel configuration) and must have the same
module address in both subunits.
Figure 10-7 shows the connection of single-channel sensors
Subunit A
Subunit B
DI
DI
430 - 7LA
435 - 7LC
436 - 7LC
as in
subunit A
...
...
...
Sensor
Sensor
P
Figure 10-7. Type 2 DI, Safety-Related, Intermittent: Single-Channel Sensor
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Permissible modules
Module
Characteristics
430-7LA DI
failsafe
435-7LC DI
failsafe
436-7LC DI
failsafe
EWA 4NEB 811 6148-02
32 *
24 V, connected to common 0 V
potential in groups of 8, P input
8 * 115 V, not connected to common 0 V
potential
8 * 230 V, not connected to common 0 V
potential
10-19
Rules Governing the Use of the S5-115F
S5-115F Manual
Figure 10-8 shows the connection of two-channel sensors. (two-channel configuration throughout).
Corresponding sensors of subunit A and B are connected to DIs with identical addresses and report
the same process state.
Subunit A
Subunit B
DI
DI
430 - 7LA
435 - 7LC
436 - 7LC
as in
subunit A
...
...
...
Sensor
...
Sensor
Sensor
P
Sensor
P
Figure 10-8. Type 2 DI, Safety-Related, Intermittent: Two-Channel Sensors
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Permissible modules
Module
Characteristics
430-7LA DI
failsafe
435-7LC DI
failsafe
436-7LC DI
failsafe
32 *
24 V, connected to common 0 V
potential in groups of 8, P input
8 * 115 V, not connected to common 0 V
potential
8 * 230 V, not connected to common 0 V
potential
Note
After intervals greater than the second error occurrence time, you must check to see
whether the Type 2 DI modules can still recognize a low signal.
You can save yourself these checks if you configure the module as Type 3.
10-20
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.9.5 Type 3 Digital Input Modules
Type 3 DIs have the following characteristics:
•
•
•
•
•
Safety-related
The input signal can be intermittent or non-intermittent
They are operated in both subunits A and B (in two-channel configuration) and must have the
same module address in both subunits.
The operating system checks the DI inputs once per test cycle to see if the DI modules can read
in a ”0” signal. To make the test, the sensor supply to deactivatable sensors is switched off and
non-deactivatable sensors are switched back on. Additional check digital output modules
(CH DQs) are required for this.
Read loops with L PY and L PW are illegal in OB 2 and OB 13.
Connecting deactivatable sensors
451 - 7LA
458 - 7LA
458 - 7LB
456 - 7LB
CH DQ
DI
430 - 7LA
434 - 7LA
435 - 7LC
436 - 7LC
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
DI
430 - 7LA
434 - 7LA
435 - 7LC
436 - 7LC
Subunit B
aaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
Subunit A
...
...
Sensor
Figure 10-9. Type 3 DI, Safety-Related, Non-Intermittent: Single-Channel,
Deactivatable Sensors
EWA 4NEB 811 6148-02
10-21
Rules Governing the Use of the S5-115F
S5-115F Manual
Subunit B
451 - 7LA
458 - 7LA
458 - 7LB
456 - 7LB
CH DQ
DI
430 - 7LA
434 - 7LA
435 - 7LC
436 - 7LC
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
DI
430 - 7LA
434 - 7LA
435 - 7LC
436 - 7LC
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
Subunit A
...
...
...
Sensor
Sensor
Figure 10-10. Type 3 DI, Safety-Related, Non-Intermittent: Two-Channel, Deactivatable Sensors
Since the active sensor signal is non-intermittent, it must be interrupted in order to check the DIs.
For this purpose, a check DQ is used as the sensor supply. This check DQ can be plugged into
subunit A or B.
10-22
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Connecting non-deactivatable sensors
DI
aaaaaaaaaa
aaaaaaaaaa
aaaaa
430 - 7LA
434 - 7LA
CH Rel DQ
...
...
DI
430 - 7LA
434 - 7LA
aaaaaaaaaa
aaaaaaaaaa
458 - 7LA
458 - 7LB
Subunit B
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
Subunit A
...
Sensor
Type 3 DI, Safety-Related, Non-Intermittent: Single-Channel,
Non-Deactivatable Sensor
458 - 7LA
458 - 7LB
CH Rel DQ
aaaaaaaa
aaaaaaaa
aaaa
430 - 7LA
434 - 7LA
...
Sensor
Figure 10-12.
458 - 7LA
458 - 7LB
DI
430 - 7LA
434 - 7LA
CH Rel DQ
aaaaaaaa
aaaaaaaa
DI
Subunit B
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Subunit A
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Figure 10-11.
...
...
...
Sensor
Type 3 DI, Safety-Related, Non-Intermittent: Two-Channel,
Non-Deactivatable Sensors
These sensors cannot be deactivated for testing. For this reason, the signal must be interrupted:
• In the case of single-channel sensors with one relay, either in subunit A or B.
• In the case of two-channel sensors with two relays, one in subunit A and one in subunit B.
EWA 4NEB 811 6148-02
10-23
Rules Governing the Use of the S5-115F
S5-115F Manual
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Permissible modules
Module
Characteristics
430-7LA DI
failsafe
434-7LA Interrupt DI
failsafe
32 *
435-7LC DI
failsafe
24 V, Connected to comm. 0 V pot. in
groups of 8, P input
8 * 24 V, Not connected to comm. pot.,
interrupt generating
8 * 115 V, Not connected to comm. pot.
436-7LC DI
failsafe
8 * 230 V, Not connected to comm. pot.
451-7LA DQ
reaction-free
454-7LA DQ
reaction-free
454-7LB DQ
reaction-free
458-7LA Rel DQ
reaction-free
458-7LB Rel DQ
failsafe
456-7LB DQ
failsafe
32 *
24 V /
16 *
24 V /
8 *
24 V /
16 *
24 V /
8 *
60 V /
0.5 A, Connected to comm.
0 V pot. in groups of
8, P output
2.0 A, Connected to comm.
0 V pot. in groups of
4, P output
2.0 A, Not connected to
comm. pot., P/M
output
0.5 A, Not connected to
comm. pot., relay
output
5.0 A, Not connected to
10.9.6 Checking Digital Input Modules in the Case of Non-Intermittent Input
Signals
The operating system checks digital input modules. It requires check digital output signals for this
purpose in order to simulate intermittence of safety-related, non-intermittent digital and analog
input signals.
A digital output module (check DQ) generates the check signals. The check signal switches the
sensor supply. The circuit is the same for both the 1- and 2-sensor versions.
A check digital output value is assigned to a 2-channel digital input value for both channels. The
bit numbers of the digital input value and the check digital output value are identical.
If you use sensors that cannot be deactivated, you must also use a relay digital output module to
generate the check signals.
10.9.7 Direct Read Access to DI Modules
If you want to read the value of a DI word/byte, use the L PW, L PY operations. If any input signal
discrepancies are discovered (with reference to subunits A and B), the operating system responds
differently depending on the CPU used.
The operating system distinguishes between accessing interrupt DIs and non-interrupt DIs.
- In the case of input signal discrepancies on interrupt DIs, the execution time is increased by the
discrepancy analysis. If no errors are detected, the current standard value is output.
- In the case of non-interrupt DI discrepancies, the last valid standard value is output. The system
does not wait for the discrepancy to disappear.
10-24
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.9.8 Digital Input Module with Interrupt Capability (Interrupt DI)
The 434 interrupt DI is always a Type 3 I/O module
• Safety-related
• Two-Channel
• Non-intermittent.
This saves you the difficulty of having to verify the intermittent nature of the interrupt DI signals.
In addition, the frequency at which the signals change is monitored by the operating system.
Frequently changing signals are not tested.
Signal characteristics
The sensor signal must maintain a given state for at least 7 msec. for both signal levels. The interval
between two interrupts must be at least 30 msec.
Discrepancy time
You must configure the interrupt DI with a uniformly short discrepancy time.
Access
At the start of OB 2, you must read the 434 interrupt DI with a direct access so that the interrupt
register can be reset. Access to the interrupt registers in OB 1 and OB 13 is not permissible since the
OB 2 functions can be blocked by a random access before a pending OB 2 execution.
The status register can be read at any time and, like the interrupt register, it is not updated
cyclically.
The 115F operating system detects false interrupts. These result in the usual error response with
PLC STOP or in passivation of the relevant signal group.
Enable/disable initialization
Initialization is enabled/disabled automatically on restart according to the parameters assigned in
the configuration form. (Interrupts can only be triggered by negative edges.)
However, the user can still change the initialization enable/disable in the restart OBs (OB 21,
OB 22). You can either enable all or some interrupt DI bits assigned with COM 115F. Make sure
that you enable only those interrupt DI bits which you have configured with COM 115F.
In the case of write access to the interrupt DIs, the operating system checks that this rule is obeyed.
Edge initialization
The operating system initializes the interrupt DI bits used in the screen form for negative edge.
(Interrupts can only be triggered by negative edges.)
However, the user can still change the parameters in the restart OBs (OB 21, OB 22). In doing so,
the operating system checks that none of the enabled interrupt DI bits has been assigned a
positive edge. This ensures that, if the power supply to a sensor is cut off, it can still initiate the
safety function.
EWA 4NEB 811 6148-02
10-25
Rules Governing the Use of the S5-115F
S5-115F Manual
Number and location
Only one interrupt DI can be used in each subunit.
The interrupt DIs must be plugged into the central controller.
Their addresses cannot be used for any other modules, including DQ modules.
Process interrupt OB 2
Make sure that OB 2 is correctly executed in the case of process interrupts.
Synchronization FB 254
To service process and time interrupts with the required speed, you must synchronize the control
program sufficiently often. For this purpose, you must call synchronization FB 254 with the
appropriate parameters ( Vol. 2, 6.1.6 of the Manual).
The 115F operating system monitors the maximum intercall interval you have configured with
COM 115F ( Vol. 2, 1.1.1 of the Manual).
Process interrupt response time
The time taken to respond to a process interrupt depends on the intervals between the FB 254 calls
in the user program. The response time corresponds to the interval between the calls plus a
maximum of 10 msec. operating system processing time. The minimum response time is 30 msec.
User program without process or time interrupt
Note
If you do not handle any process or time interrupts in the user program, you can
shorten the PLC scan time by using the IA ”inhibit alarm (interrupt)” operation.
10-26
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Variants of the interrupt DI test
•
Short test on restart
The short test on restart checks all interrupt DI bits with signal level ”1” and leaves all bits with
signal level "0" untested.
•
Supplementary test
All interrupt DI bits which did not report an interrupt in the last cycle are subjected to the
supplementary test. The test cannot be carried out if the interrupt DI signal is not ”1”.
The operating system allows the user to set a ”1” in system data word SD 98 for all interrupt
bits for which the error response to a non-executable supplementary test did not result in PLC
STOP.
Example:
If you do not want the PLC to respond by stopping in the case of an error at the interrupt
inputs x.0 and x.3, program the following operations in an FB:
L KM 00001001 00000000
T RS 98
The user and the inspector check the relevant interrupt DI bits according to the following
conditions:
- A user test must ensure after system startup that all interrupt DI bits are capable of
functioning.
- It must be proved that more than one interrupt occurs for each interrupt DI bit within the
second error occurrence time (process-dependent).
The basic state of SD 98 is the ”0” word so that the interrupt DI test responds with the usual vigour
to interrupt DI bit status ”0”.
10.10 Digital Output Modules (DQs)
When configuring the I/O modules ( Vol. 2 of the Manual), define the I/O type for each DQ
according to the process output signal characteristics of each DQ module. There are three
different DQ types.
Outputting commands to protective devices
Commands which initiate protection functions, such as emergency off commands, require special
care in programming. For this reason, make sure that these commands are not mistakenly
rescinded in the program.
Make your program structure as simple and clear as possible. This also simplifies the inspector's
work.
Relay DQ 458-7LB11 (8 bits, 60V/5A)
This module can be used at rated voltages up to 60 V.
DQ address 126
Note
The 115F operating system uses DQ address 126 to detect a permanent enable
resulting from a defective DQ. DQ address 126 must not be used in the user program.
EWA 4NEB 811 6148-02
10-27
Rules Governing the Use of the S5-115F
S5-115F Manual
10.10.1 Type 8 Digital Output Modules (DQs)
Type 8 digital output modules have the following characteristics:
•
•
•
•
Non-intermittent
They are operated either in subunit A or B (single-channel configuration).
They can be plugged into both subunits in any mix.
The module address can only be assigned in the subunit containing the DQ module.
This address must not be used in the other subunit.
Subunit A
Subunit B
451 - 7LA
454 - 7LA
454 - 7LB
456 - 7LB
458 - 7LA
458 - 7LB
DQ
...
M
Figure 10-13. Type 8 DQ, Nonsafety-Related, Single-Channel
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Permissible modules
Module
Characteristics
451-7LA DQ
reaction-free
32 *
454-7LA DQ
reaction-free
16 *
454-7LB DQ
reaction-free
8 *
458-7LA Rel DQ
reaction-free
16 *
458-7LB Rel DQ
reaction-free1
8 *
456-7LB DQ
reaction-free1
8 *
24 V/0.5 A, Connected to comm. 0 V
pot. in groups of 8, P output
24 V/2.0 A, Connected to comm. 0 V
pot. in groups of 4, P output
24 V/2.0 A, Not connected to comm.
pot., P/M output
24 V/0.5 A, Not connected to comm.
pot., relay output
60 V/5.0 A, Not connected to comm.
pot., relay output
115/230 V/1.5 A, Not connected to comm.
pot., P/M output
1 The failsafe module is used only in a single-channel configuration here and should therefore be treated only
as a reaction-free module.
10-28
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.10.2 Type 9 and Type 10 Digital Output Modules
Type 9 digital output modules have the following characteristics:
•
•
•
•
•
Safety-related
Intermittent output signal
They are operated both in subunit A and subunit B (two-channel configuration) and must
have the same module address in both subunits.
They are combined with readback inputs (R DIs) which monitor the outputs for discrepancy
times.
Type 9 DQs are automatically tested with simulated intermittence during restart. Special
checking after extended shutdown periods is therefore not necessary.
Type 10 digital output modules have the following characteristics:
•
•
•
•
Safety-related
Intermittent or non-intermittent output signal
They are implemented in subunits A and B in two-channel configuration and must have the
same module address in both subunits.
They are combined with readback inputs (R DIs), which monitor the outputs for discrepancy
times.
Simulated intermittence of ”0” or ”1” signals takes place once every test cycle.
Requirements to be met by digital output modules
In the case of safety-related DQ signals, the interval between two edge changes must be greater
than the short discrepancy time for DIs without interrupt capability.
10.10.3 Connecting Actuators to Digital Output Modules (DQs) (Types 9 and 10)
You can choose either of the following methods for connecting actuators to digital output
modules:
• Direct control, if the module switches the load without an interposing relay
• Indirect control with readback direct at DQ, load is switched by an interposing relay
• Indirect control with readback at load cicuit, load is switched by an interposing relay
EWA 4NEB 811 6148-02
10-29
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
Rules Governing the Use of the S5-115F
10
indirect control
Readback
10
indirect control
Readback at load circuit
10-30
Dead time:
S5-115F Manual
Choose interposing relays/actuator according to the following criteria:
Table 10.4 Choise of the reaction times for interposing relays and actuator
I/O type
Drop-out delay of the
interposing relays
Drop-out delay of
the actuator
9
any time
any time
10
direct control
-
24 V:
>10 ms
115/230 V >30 ms
as fast as possible
Dead time:
24 V:
>10 ms
115/230 V: >30 ms
any time
24 V:>10 ms +TDT interposing relay
115/230 V:TDT interposing relay
Note
The drop-out delay of the DC interposing relays and DC actuators can be increased by
connecting a free-wheeling diode in parallel.
Testing DQs of I/O type 10 results in a dead time. This is
• 7 ms in the case of direct controlled 24 V output modules
• 24 ms in the case of direct controlled 230 V output modules
In the case of indirect controlled output modules, the specified times increase by the pickup delay
of the relays used.
Output and readback must not exceed 70 ms otherwise the operating system responds with an
error. For this reason, use relays with low pickup delays.
Note
You can use both direct and indirect controlled actuators in one output byte, the dead
time of the indirect controlled outputs applies for the entire byte.
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Note
In the case of safety-related 24 V digital outputs with readback function, please note
that the holding current of the load must be greater than 1 mA.
Note
In the case of safety-related 230 V digital outputs with readback function, please note
that the holding power of the load must be greater than 5 W; for 115 V digital outputs
with readback function, the holding power must be greater than 2.5 W.
If this is not possible because the internal resistance of the load is too high, four diodes
must be connected in series in the readback lines. The diodes must be switched so that
they conduct from the load to the readback DI. At least two different diode types must
be used per branch. The recommended nominal crest working off-state voltage must
not be less than 1000 V and the nominal conducting-state current must not be less
than 1 A ( Figures 10-15, 10-17, 10-19, 10-20). You can also interrupt the readback
line with the positive-action contact of an interposing relay as an alternative to diodes
( Figure 10-21).
The following figures illustrate the difference between direct and indirect control.
Direct control
Subunit A
482 - 7LF21(M - DQ)
*
458 - 7LB
482 - 7LF31 *
DQ, M output
*
Not connected to
common pot.
Subunit B
R DI, P Read
482 - 7LF21
(Connected to
common pot.)
482-7LF31
(connected to
common pot.)
482 - 7LF11(P DQ)
458 - 7LB *
482-7LF31 *
DQ, P output
*
Not connected to
common pot.
R DI, M Read
482 - 7LF11
(Connected to
common P pot.)
482-7LF31
(connected to
common pot.
24 V
M
Figure 10-14.
EWA 4NEB 811 6148-02
+
Type 9/10 DQ, Safety-Related, Intermittent/Non-Intermittent:
Direct Control, 24 V
10-31
Rules Governing the Use of the S5-115F
S5-115F Manual
Subunit A
456 - 7LB
(Not connected to
common pot.)
Subunit B
to MP
456 - 7LB
(Not connected to
common pot.)
R DI, L Read
435 - 7LC
436 - 7LC
(Not connected
to common pot.)
DQ, MP output
115
V/ 230
4 diodes
MP
Figure 10-15.
DQ, L output
to L
R DI, MP Read
435 - 7LC
436 - 7LC
(Not connected to
common pot.)
4 diodes
L (Phase)
A diode network is necessary if the
holding power of the load is less than
2.5 Watts at 115 V or less than 5 Watt
at 230 V.
Type 9/10 DQ, Safety-Related, Intermittent/Non-Intermittent:
Direct Control, 115 V / 230 V
Indirect control
There are two methods of reading back output signals in the case of indirect control:
•
•
Direct at the digital output module
In the load circuit of the relay
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
Table 10-5. Advantages of the Various Readback Methods
Connection direct at the
output module
Connection to the load circuit of the
interposing relay
Only permitted in plants to VDE 0116
if the interposing relays of the main circuits
are of redundant and different design
Interporing relay will be tested by S5-115F.
The test period and duration of the
disconnection of non-intermittent digital
outputs for testing purposes are shortened
The test period and duration of disconnection
of non-intermittent digital outputs for
testing purposes are increased
10-32
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Indirect control readback direct at DQ module
Subunit A
482 - 7LF21
482 - 7LF31
Subunit B
R - DI, M - Read
482 - 7LF11
482 - 7LF31
482 - 7LF21
482 - 7LF31
R - DI, P - Read
482 - 7LF11
482 - 7LF31
P
M
Figure 10-16. Type 9/10 DQ, Safety relevant: Indirect Control, Readback direct at DQ, 24 V
Subunit A
Subunit B
456 - 7LB
456 - 7LB
4 Dioden
MP
Figure 10-17.
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
4 Dioden
R - DE
435 - 7LC
436 - 7LC
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
R - DE
435 - 7LC
436 - 7LC
A diode network is
necessary if the
holding power of
the load is less than
2.5 Watts at 115 V or
less than 5 Watt at
230 V.
MP
Typ 9/10 DQ, Safety relevant: Indirect Control, Readback direct
at DQ, Readback direct at DI, 115 V/230 V
10-33
Rules Governing the Use of the S5-115F
S5-115F Manual
Indirect control readback at load circuit
Note
You must use sufficiently fast interposing relays in the case of indirect control of
actuators via interposing relays and readback after the interposing relays. The delay
between control pulse and the result of the readback function must not exceed
70 msec.
Connection direct at the load circuit of the relay is shown in the following figures.
Subunit A
482 - 7LF21(M DQ)
482-7LF31
458 - 7LB *
Not connected to
common pot.
482 - 7LF21
(Connected to
common 0 V pot.)
M
Figure 10-18.
10-34
DQ, P output
*
Not connected
R DI, M Read
482 - 7LF11
(Connected to
common P pot.)
to common pot.
M
P
482 - 7LF11(P DQ)
482 - 7LF31
458 - 7LB *
R DI, P Read
DQ, M output
*
Subunit B
P (= 24 V)
P
M
Type 9/10 DQ, Safety-Related: Indirect Control, 24 V / 24 V
with Readback at load circuit
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Subunit A
482 - 7LF11
482 - 7LF31
458 - 7LB *
482 - 7LF11
482 - 7LF31
458 - 7LB *
to MP
R DI, L Read
DQ, P output
*
Subunit B
Not connected to
common pot.
435 - 7LC
436 - 7LC
(Not connected to
common pot.)
4 diodes
DQ, P output
*
L
Subunit B
435 - 7LC
436 - 7LC
(Not connected
to common pot.)
4 diodes
MP
Figure 10-20.
EWA 4NEB 811 6148-02
DQ, L output
to L
R DI, MP Read
435 - 7LC
436 - 7LC
(Not connected to
common pot.)
A diode network is
necessary if the
holding power of
the load is less than
2.5 Watts at 115 V
or less than 5 Watts
at 230 V.
4 diodes
MP
MP
456 - 7LB
(Not connected to
common pot.)
to MP
R DI, MP Read
DQ, P output
M
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback at laod circuit, 24V/115 V or 24 V/230 V
Subunit A
456 - 7LB
(Not connected to
common pot.)
435 - 7LC
436 - 7LC
(Not connected to
common pot.)
A diode network is
necessary if the
holding power of
the load is less than
2.5 Watts at 115 V
or less than 5 Watts
at 230 V.
L (Phase)
MP
Figure 10-19.
Not connected to
common pot.
4 diodes
MP
M
to L
R DI, MP Read
L (Phase)
L
MP
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback at laod circuit, 115 V/115 V or 230 V / 230 V
10-35
Rules Governing the Use of the S5-115F
S5-115F Manual
Subunit A
482 - 7LC11
482 - 7LC31
458 - 7LB *
482 - 7LC11
482 - 7LC31
458 - 7LB *
to MP
R DI, L Read
DQ, P output
*
Subunit B
Not connected
to common pot.
435 - 7LC
436 - 7LC
(Not connected to
common pot.)
MP
DQ, P output
*
Not connected
to common pot.
to L
R DI, MP Read
435 - 7LC
436 - 7LC
(Not connected to
common pot.)
The positive-action
contact of the interposing relay is required if the holding
power of the load is
less than 2.5 Watts at
115 V or less than
5 Watts at 230 V.
L (Phase)
K1
K2
M
MP
Figure 10-21.
L
M
Type 9/10 DQ, Safety-Related: Indirect Control,
Readback at load circuit, 24 V/115 V or 24 V/230 V
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Permissible modules
Modules
Characteristics
435-7LC DI
failsafe
8 * 115 V
not connected to common pot.
436-7LC DI
failsafe
8 * 230 V
not connected to common pot.
482-7LF11 DI/DQ
failsafe
482-7LF21 DI/DQ
failsafe
482-7LF31 DI/DQ
failsafe
458-7LB Rel DQ
failsafe
456-7LB DQ
failsafe
10-36
16 * 24 V, 0.5 A, P outputs + 8 D inputs connected
to common P potential
16 * 24 V, 0.5 A, M outputs + 8 M inputs connected
to common M (0 V) potential
8 * 24 V/2.0 A, M outputs + 4 M inputs connected
to common pot., P/M output
8 * 60 V/5.0 A, not connected to common pot.,
relay output
8 * 230 V/1.0 A, not connected to common pot., P/M
output
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.10.4 Checking Digital Output Modules Using Readback Digital Input Modules
A safety-related digital output module must be checked by a two-channel readback digital input
module. The 115F operating system compares both input signals and reports an error when they
are not identical. Error handling is described in Chapter 10 ( 10.6). This type of checking does not
depend on whether the output signal is intermittent or not.
The readback input channels are assigned diagonally to the two subunits.
The bit numbers of the output channel and the readback input channel must be identical.
10.11
Analog Input Modules
When configuring the I/O modules ( Vol. 2 of the Manual), you must define the I/O type for
each AI according to the characteristics of the process signals. There are four different analog
input types. Only I/O types 14 to 16 are permissible for safety-related use.
Requirements to be met by sensors with current outputs
It must be possible to interrupt sensors that have current outputs for I/O types 14 and 15. This is
because of the supplementary test carried out by the operating system of the 115F as follows:
• Disconnection of the sensors from the AI module
• Connection of the test AQ to the AI module
• Test
• Disconnection of the test AQ from the AI module
• Connection of the sensors to the AI module
Note
Please ensure that the ”short discrepancy time for analog inputs” configured by you
with COM 115F is greater than the settling time of your current signal sensors.
460 AI module
The 460 AI module is only permissible for nonsafety-related analog inputs.
463 AI module
The 463 AI module has four input ranges
• 4 to 20 mA with wire-break monitoring by live zero
• 0 to 20 mA
• 0 to 1 V
• 0 to 10 V
Non-intermittent analog input signal (I/O types 14 and 15)
You can only use those input ranges that have an output range identical to that of the test
AQ 470. These are as follows:
• 4 to 20 mA with wire-break monitoring by live zero
For this purpose, only channel Type 4 (4 mA=0 units), and not channel Type 3
(4 mA=256 units), may be configured.
• 0 to 20 mA
• 0 to 10 V
EWA 4NEB 811 6148-02
10-37
Rules Governing the Use of the S5-115F
S5-115F Manual
Intermittent analog input signal (I/O type 16)
You can use all input ranges.
All Type 16 I/O modules must be subjected to a function test after any extended downtime. You
can dispense with the test if you configure Type 14 or 15.
Input ranges without wire-break monitoring by live zero
The following input ranges have no wire-break monitoring by live zero:
• 0 to 20 mA
• 0 to 1 V
• 0 to 10 V
If you use these input ranges, your program must contain a wire-break monitor.
Signal group number of the AI module and the relevant check AQ module
The signal group numbers of the AI module and the relevant check AQ channel must be identical.
You may use a check AQ channel for all AI modules of the same type (14 or 15) and the same signal
group number. If the AI channels have different signal group numbers, you must use different
check AQ channels.
Use of the FB 250 ANEI
You can use the FB ANEI in cyclic and time-driven programs. If you call the FB ANEI from a timeinterrupt service routine (OB 13), there are two possibilities available to you. These differ as to the
analog value used.
•
DIR bit = 0 (FB ANEI)
The FB 250 ANEI accesses the cyclically updated analog value in the PII.
• DIR bit = 1 (FB ANEI)
The FB 250 ANEI reads the analog value direct from the module.
You will find more information on this in Vol. 2, Chapter 6 of the Manual ( Vol. 2, 6.1.3).
10-38
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.11.1 Type 13 Analog Input Modules
Type 13 analog input modules have the following characteristics:
•
•
•
•
Nonsafety-related
They can be plugged into either subunit A or subunit B.
They can be connected in any mix in both subunits.
The module address can only be configured in the subunit containing the AI module. This
address cannot be used in the other subunit.
Subunit A
Subunit B
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
AI
Analog
value
sensor
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
460 - 7LA
463 - 4U.
±50 mV / 500 mV
±100 mV / 100 mV
±1 V / 10 V
±2 mA / 20 mA
4 to 20 mA
±500 mV / 5 V
4
- 0.05
- 0.5
-1
to
to
to
to
20
1
10
20
mA
V
V
mA
Range card
”
”
”
”
”
498 - 1AA11*
498 - 1AA21
498 - 1AA31
498 - 1AA41
498 - 1AA51 or 71**
498 - 1AA61
All channels can be set by jumpers.
* With hardware wire-break detection (according to procedure , 6.1.1)
** With wire-break detection using FB 250 ANEI (according to procedure , 6.1.1)
Figure 10-22. Type 13 AI, Nonsafety-Related, Single-Channel
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Permissible modules
Module
*
Characteristics
460-7LA AI
reaction-free
8 channels, 4 channels per 498 range card,
possible with all 7 range cards
463-4U.AI
reaction-free*
4 channels, each can be set by jumpers
4 to 20 mA (load impedance = 62.5 ,
V = 250 to 1250 mV)
0V
to + 1 V
0V
to + 10 V
0 mA to + 20 mA
The failsafe module is only used as a single channel-module and should therefore be regarded only as a reaction-free
module.
EWA 4NEB 811 6148-02
10-39
Rules Governing the Use of the S5-115F
S5-115F Manual
10.11.2 Type 14 Analog Input Modules
Type 14 analog input modules have the following characteristics:
•
•
•
•
Safety-related.
Non-intermittent input signal.
They are plugged into subunits A and B (two-channel configuration) and must have the same
module address in both subunits.
Check relay digital outputs and check analog outputs can be assigned to either subunit A or B.
However, both check modules must be plugged into the same subunit.
0 to 10
Analog
value
sensor: V
V
458 - 7LA
aaaaaaaaaa
aaaaaaaaaa
aaaaa
463-4U.AI
CH Rel DQ
with tetrad bits
3 2 1 0
Subunit B
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
Subunit A
- 7LA, + - 10 V
- 7LB, + - 10 V
AI
470 CH AQ
As in
subunit A
Single-channel sensors must
be p e r m a n e n t l y f a i l s a f e
Figure 10-23. Type 14 AI, Safety-Related, Non-Intermittent: Single-Channel Sensor with
Voltage Output
Explanation of Figure 10-23
A tetrad of the CH Rel DQ is used for connection. Bits 0 and 1 are used for connecting the sensor
and bits 2 and 3 for connecting the 470 check AQ module.
The tetrad (controlled by the operating system) has the value 0011 in normal sensor operation.
10-40
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
4 to 20 mA
0 to 20 mA
24 V
- 7LA, 0 to 20 mA
458 - 7LA
aaaaaaaa
aaaaaaaa
aaaa
463-4U.AI
Subunit B
aaaaaaaa
aaaaaaaa
Subunit A
CH Rel DQ
with tetrad bits
3 2 1 0
463-4U.AI
- 7LC, 4 to 20 mA
As in
subunit A
470 CH AQ
M
Analog
value
sensor: I
Single-channel sensors must be
p e r m a n e n t l y f a i l s a f e and it must be
possible to interrupt current sensors
Constellation 4 to 20 mA may
only be configured as channel
Type 4
Figure 10-24. Type 14 AI, Safety-Related, Non-Intermittent: Single-Channel Sensor with
Current Output; Two-Wire Transducer
The use of two-wire transducers requires a dedicated power supply.
The following figure shows the wiring principle for redundant analog input modules with
two-wire transducers (channel 0). The necessary test wiring is not shown in the figure.
463-4U Analog
input module
463-4U Analog
input module
62.5 ohms
4 to 20 mA
(6)
(11)
62.5 ohms
(8)
(7)
(6)
(11)
(8)
(7)
24 V
M
The number in brackets indicate terminal designations on the front connector of the 463-4U AI.
Figure 10-25. Suggested Wiring of the 463 AI Module When Using Two-Wire Transducers
(without Test Wiring)
EWA 4NEB 811 6148-02
10-41
Rules Governing the Use of the S5-115F
S5-115F Manual
463-4U AI
458 - 7LA
Subunit B
aaaaaaaa
aaaaaaaa
Subunit A
- 7LA, 0 to 20 mA
4 to 20 mA
0 to 20 mA
aaaaaaaa
aaaaaaaa
aaaa
463 4U. AI
Analog
value
sensor: I
CH Rel DQ
with tetrad bits
3 2 1 0
- 7LC, 4 to 20 mA
Single-channel sensors must be
p e r m a n e n t l y f a i l s a f e and
it must be possible to interrupt
current sensors
Figure 10-26.
As in
subunit A
470 CH AQ
Constellation 4 to 20 mA may
only be configured as channel
Type 4.
Type 14 AI, Safety-Related, Non-Intermittent: Single-Channel Sensor with
Current Output; Four-Wire Transducers
Explanation of Figures 10-25 and 10-26
A tetrad of the CH Rel DQ is used for connection. Bits 0 and 1 are used for connecting the sensor
and bits 2 and 3 for the 470 check AQ module.
In normal sensor operation, the tetrad (controlled by the operating system) has the value 0011.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Permissible modules
Module
463-4U.AI
Characteristics
failsafe
4 channels, each can be set by jumpers
4
to 20 mA (load impedance = 62.5 ,
V = 250 to 1250 mV)
0 V to +10 V
0 mA to +20 mA
470-7LA AQ
reaction-free
8 channels, ±10 V or 0 to 20 mA
470-7LB AQ
reaction-free
8 channels, ±10 V
470-7LC AQ
reaction-free
8 channels, 4 to 20 mA
458-7LA Rel DQ
reaction-free
16 * 24 V/0.5 A, not connected to common
potential, relay output
10-42
EWA 4NEB 811 6148-02
S5-115F Manual
10.11.3
Rules Governing the Use of the S5-115F
Type 15 Analog Input Modules
Type 15 analog input modules have the following characteristics:
•
•
•
Safety-related
The AI signal needs not be intermittent.
They are plugged into subunits A and B (two-channel configuration) and must have the same
address in both subunits.
• Check relay digital output modules and check analog output modules can be assigned to
either subunit A or B.
However, both check modules must be plugged into the same subunit.
0 to 10 V
aaaaaaaa
aaaaaaaa
463-4U.AI
458 - 7LA
CH Rel DQ
with tetrad bits
3 2 1 0
Analog
value
sensor: V
Subunit B
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
Subunit A
- 7LA, + - 10 V
- 7LB, + - 10 V
458 - 7LA
AI
470 CH AQ
As in
subunit A
CH Rel DQ
with tetrad bits
3 2 1 0
Analog
value
sensor: V
Figure 10-27. Type 15 AI, Safety-Related, Non-Intermittent: Two-Channel Sensor with
Voltage Output
Explanation of Figure 10-27
A tetrad of the CH Rel DQ is used for connection. Bits 0 and 1 are used for connecting the sensor
and bits 2 and 3 for the 470 check AQ.
In normal sensor operation, the tetrad (controlled by the operating system) has the value 0011.
EWA 4NEB 811 6148-02
10-43
Rules Governing the Use of the S5-115F
S5-115F Manual
463-4U.AI
aaaaaaaaaa
aaaaaaaaaa
aaaaa
4 to 20 mA
0 to 20 mA
24 V
458 - 7LA
CH Rel DQ with
tetrad bits
3 2 1 0
Subunit B
aaaaaaaa
aaaaaaaa
Subunit A
- 7LA, 0 to 20 mA
458 - 7LA
AI
- 7LC, 4 to 20 mA
470 CH AQ
M
As in
subunit A
M
Analog
value
sensor: I
CH Rel DQ
with tetrad bits
3 2 1 0
24 V
Analog
value
sensor: I
Constellation 4 to 20 mA may only be
configured as channel type 4
Figure 10-28.
Type 15 AI, Safety-Related, Non-Intermittent: Two-Channel Sensor with
Current Output; Two-Wire Transducers
The user of two-wire transducers requires a dedicated power supply ( Figure 10-25 for suggested
wiring).
Note
Please note that the ”short discrepancy time for analog input modules” configured by
you with COM 115F is greater than the settling time of your current sensor.
10-44
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
463-4U.AI
aaaaaaaaaa
aaaaaaaaaa
aaaaa
4 to 20 mA
0 to 20 mA
458 - 7LA
Subunit B
aaaaaaaa
aaaaaaaa
Subunit A
CH Rel DQ
with tetrad bits
3 2 1 0
- 7LA, 0 to 20mA
458 - 7LA
AI
- 7LC, 4 to 20 mA
470 CH AQ
Analog
value
sensor: I
As in
subunit A
CH Rel DQ
with tetrad bits
3 2 1 0
Analog
value
sensor: I
Constellation 4 to 20 mA may only be
configured as channel type 4
Figure 10-29.
Type 15 AI, Safety-Related, Non-Intermittent: Two-Channel Sensor with
Current Output; Four-Wire Transducers
Explanation of Figures 10-28 and 10-29
The 470 CH AQ can be connected either to subunit A or B.
Control of the interposing relay DQ is explained in Figure 10-27.
Bold type indicates normal sensor operation.
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Permissible modules
Module
463-4U.AI
Characteristics
470-7LA AQ
reaction-free
4 channels, each can be set by jumpers
4 to 20 mA
(load impedance = 62.5 ,
V = 250 to 1250 mV)
0 V to+10 V
0 mA to +20 mA
8 channels,±10 V or 0 to 20 mA
470-7LB AQ
reaction-free
8 channels, ±10 V
470-7LC AQ
reaction-free
8 channels, 4 to 20 mA
458-7LA Rel DQ
reaction-free
16 * 24 V/0,5 A, not connected to comm. pot.,
relay output
EWA 4NEB 811 6148-02
failsafe
10-45
Rules Governing the Use of the S5-115F
S5-115F Manual
10.11.4 Checking Analog Input Modules Using Check Analog Output Modules
The operating system must check non-intermittent analog input modules to establish whether or
not they are capable of reading in two configured check values properly. A check AQ module
generates these check signals. The AI and check AQ modules must have the same measuring
range.
The check AQ module can be connected to either subunit A or B. If you connect several AI modules
to one check AQ module, the AI modules must have the same signal group number.
The process limit values from which a safety-related action is to be derived must be defined and
configured as check values ( Vol. 2, 1.2.3 of the Manual). In the test, the check values are
switched to the relevant analog inputs. The values read in must agree with the check values.
Note
You can derive safety-related actions only from these check values.
You require four interposing relays per analog input channel. The relays of a relay DQ module can
be used for this purpose.
If you use single-channel sensors, you can connect the check relay DQ module either to subunit A
or B.
If you use two-channel sensors, you must connect the interposing relays diagonally to the two subunits.
Note
Analog sensors can be either single-channel or two-channel, but only require one
check analog output module.
10.11.5 Type 16 Analog Input Modules
Type 16 analog input modules have the following characteristics:
•
•
•
Safety-related
Intermittent input signal
They are plugged into subunits A and B (two-channel configuration) and must have the same
address in both subunits.
10-46
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Connecting sensors to analog input modules
S i n g l e -channel sensors must be permanently failsafe.
Subunit A
Subunit B
AI
AI
463 - 4U.
463 - 4U.
Analog
value
sensor: V
0
0
Figure 10-30.
to 1 V
to 10 V
All channels can be set by
jumpers
Type 16 AI, Safety-Related, Intermittent: Single-Channel Sensor with
Voltage Output
Subunit A
Subunit B
AI
AI
463 - 4U.
463 - 4U.
M
24 V
Analog value
sensor: I
Figure 10-31.
Please note that the sensor must supply the current
for two loads!
4 to 20
0 to 20
mA
mA
All channels can be set by
jumpers
Type 16 AI, Safety-Related, Intermittent: Single-Channel with Current
Output, Two-Wire Transducers
The use of two-wire transducers requires a dedicated power supply (wiring suggestion
gure 10-25).
EWA 4NEB 811 6148-02
Fi-
10-47
Rules Governing the Use of the S5-115F
S5-115F Manual
Subunit A
Subunit B
AI
AI
463 - 4U.
463 - 4U.
Please note that the sensor must supply the current
for two loads!
Analog value
sensor: I
Figure 10-32.
10-48
4 to 20 mA
0 to 20 mA
All channels can be set by
jumpers
Type 16 AI, Safety-Related, Intermittent: Single-Channel Sensor with
Current Output; Four-Wire Transducers
EWA 4NEB 811 6148-02
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
S5-115F Manual
Rules Governing the Use of the S5-115F
Sensors must be t w o -channel if they are not permanently failsafe.
Subunit A
4
0
0
0
463-4U.AI
EWA 4NEB 811 6148-02
Subunit B
AI
AI
463 - 4U.
463 - 4U.
to 20 mA
to
1 V
to 10 V
to 20 mA
Module
failsafe
All channels can be set by
jumpers
Analog
value
sensor
Analog
value
sensor
Figure 10-33. Type 16 AI module, Safety-Related, Intermittent: Two-Channel Sensors
Permissible modules
Characteristics
4 channels, can be set by jumpers on the front
connector:
4 to 20 mA
(load impedance = 62.5 ,
V=250 to 1250 mV)
0 V to +1 V
0 V to +10 V
0 mA to +20 mA
10-49
Rules Governing the Use of the S5-115F
10.12
S5-115F Manual
Analog Output Modules
When configuring the I/O modules ( Vol. 2 of the Manual), define I/O type 18 for each AQ word.
10.12.1 Type 18 Analog Output Modules
Type 18 analog output modules have the following characteristics:
•
•
•
•
Nonsafety-related
They are plugged into either in subunit A or B (single-channel configuration).
They can be plugged into both subunits in any mix.
The module address must only be set in the subunit containing the AQ module. This address
cannot be used in the other subunit.
Subunit B
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Subunit A
470 - 7LA
470 - 7LB
470 - 7LC
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
470 AQ
- 10 to + 10 V
- 20 to + 20 mA
- 10 to + 10 V
1 to 5 V
4 to 20 mA
Analog value
actuator /
analog
setpoint for
control loop
Figure 10-34. Type 18 Analog Output Module, Nonsafety-Related, S i n g l e -Channel
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Permissible modules
Module
Characteristics
470-7LA AQ
reaction-free
8 channels, ± 10 V or 0 to 20 mA
470-7LB AQ
reaction-free
8 channels, ±10 V
470-7LC AQ
reaction-free
8 channels, 1 to 5 V or 4 to 20 mA
10-50
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
S5-115F Manual
EWA 4NEB 811 6148-02
Rules Governing the Use of the S5-115F
10.13 I/O Type Assignment of Unused Digital Words
32-bit DI/DQ modules require two I/O words. You must define the I/O type for each I/O word. This
must also be done for an I/O word even if you do not use the relevant bits. Assign the unused I/O
words to the simplest I/O type.
Table 10-6. Typical I/O Type Assignments of Unused I/O Words of 32-Channel DI/DQ Modules
Module
Used as
I/O type of the free word
DI 430
Type 1 I/O
Type 1 I/O
DI 430
Type 2 I/O
Type 2 I/O
DI 430
Type 3 I/O
Type 3 I/O
DQ 451
Type 8 I/O
Type 8 I/O
DQ 451
CH DQ for type 3 I/O
Type 8 I/O
10.14 I/O Type Assignment of Unused Analog Channels
You must assign an I/O type to each channel of an AI/AQ module. Assign the simplest I/O type to
the unused channels.
Table 10-7. Typical I/O Type Assignments of Unused Channels of AI/AQs
Module
Used as
I/O type of the free channel
AI 460
Type 13 I/O
Type 13 I/O
AI 463
Type 13 I/O
Type 13 I/O
AI 463
Type 14 I/O
Type 16 I/O
AI 463
Type 15 I/O
Type 16 I/O
AI 463
Type 16 I/O
Type 16 I/O
AQ 470
Type 18 I/O
Type 18 I/O
Note
The current or voltage inputs of unused AI channels must be short-circuited.
10-51
Rules Governing the Use of the S5-115F
S5-115F Manual
10.15 I/O Type Mixes
Do not mix safety-related and nonsafety-related I/O types within one I/O module.
The following table shows permissible I/O type mixes.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Table 10-8. I/O Type Mixes
The following modules can be mixed1
CH Rel DQ for Type 14
CH Rel DQ for Type 15
DQ Type 8
2
AI Type 14
AI Type 15
AI Type 16
3
CH AQs for AI Type 14
CH AQs for AI Type 15
AQ Type 18
3
1 All I/O types in one line can be mixed.
2 DI/DQ type mixes are permissible on a 32-bit module if the different DI/DQ types belong to different DI/DQ words.
DI/DQ type mixes within one DI/DQ word are usually illegal with the exception of the cases described here.
3 You can allocate several I/O types to one analog module.
10.16
Module Addressing
10.16.1 Relationship Between Byte and Word Addressing
A byte is eight bits long, the bits being identified from right to left by bit addresses 0 to 7.
You can assign byte addresses to the following:
• Digital inputs from 0 to 127
• Digital outputs from 0 to 125
• Flags* from 0 to 255
1 byte = 8 bits
7 .
.
. .
Addressing input bytes (IB)
.
. 0
IBO
IB1
IB2
IB3
IB4
. . . . IB 126
IB127
Figure 10-35. Byte-Oriented Addressing (Inputs, Outputs)
*
FW 0 is reserved for the logical program counter.
FW 2 to FW 198 (F 2.0 to F 199.7) are permissible in the user program.
FW 200 to FW 254 (F 200.0 to F 255.7) can only be used if you are not using any standard FBs.
10-52
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa
S5-115F Manual
0
1
2
3
4
5
EWA 4NEB 811 6148-02
Rules Governing the Use of the S5-115F
The word is the next largest unit after the byte. It is 16 bits long. Two bytes constitute one word.
Inputs (I), outputs (Q) and flags (F).
1 word= 2 bytes = 16 bits
Addressing output words
QW 0
QBO
QW 2
QB1
QB2
QW 1
QW 124
QB3
QB4
. . . . QB 124
Digital module
Analog module
0
4
8
12
16
20
128
160
192
224
Q125
QW 3
Figure 10-36. Word-Oriented Addressing (Inputs, Outputs, Flags)
Note
Use only even numbers in word-oriented addressing. This avoids overlaps (e.g. QW 2
and QW 3 both contain QB 3).
10.16.2 Address Grid
I/O module addressing is geared to word addresses. The odd byte address corresponds to the right
half of the word (low-order byte). The even byte address corresponds to the left half of the word
(high-order byte).
Fixed Slot Addressing
If you operate the central controller without expansion racks, you can do without the IM 306
interface for variable slot addressing. You must then use the termination connector supplied
instead of the IM 306. This assigns fixed addresses to slots 0 to 5.
Slot
Initial module address
Note
If you are using single-channel I/Os, the assigned address must not be used in the
second subunit.
10-53
Rules Governing the Use of the S5-115F
S5-115F Manual
Variable Addressing
The S5-115F allows you to assign an address to every slot. This is possible if an IM 306 interface
module is plugged into the central controller and each expansion unit. Whether the module is
plugged into the CC or an EU is irrelevant as far as addressing is concerned. There is a flap covering
the address field on the right-hand side of the interface module. On the address field, there is a
DIP switch for each slot for setting the lowest byte number of a given slot.
Note
Input modules and output modules can be assigned the same address.
Address setting on the IM 306
Use switch
(
into this slot. 1
Figure 10-38) to set the number of inputs and outputs of the module plugged
Switch in OFF position: 32-bit digital or 16-channel analog module.
Switch in ON position: 16-bit digital or 8-channel analog module.
Use the seven address switches to set the lowest address (the address for channel ”0”) on a
particular module. This sets the addresses of the other channels of this module in ascending order.
Please note the following when setting the initial addresses:
•
•
•
•
•
32-bit digital modules can only be assigned initial addresses whose byte number can be divided by 4 (e.g. 0, 4, 8, etc.).
16-bit digital modules may only be assigned initial addresses whose byte number can be divided by 2 (e.g. 0, 2, 4, etc.).
8-bit DI/DQs are addressed with the even byte address.
16-channel analog modules may only be assigned the initial addresses 128, 160, 192 and 224.
8-channel analog modules may only be assigned the initial addresses 128, 144, 160 to 240.
Example
A 16-bit digital input module is plugged into slot 2. To assign it the initial address 46.0, proceed as
follows:
•
•
•
Check whether the byte number of the desired initial address can be divided exactly by 2, since
you are dealing with a 16-channel digital module.
46 : 2 = 23 Remainder 0
Set the number of input channels (switch at ON).
Take the address switch setting from Figure 10.38 and set it on the DIP switch with slot
number 2.
1 The digital input/output module (6ES5 482-7LA11) is handled like the 16-channel modules.
10-54
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Binary weights of the address bits
128 64
16
2
32
16
8
4
2
3
2
1
The address is equal to the sum of the
weights set by the individual code
switches, e.g.
ON
1
5
32
7
6
4
2+4+8+32=46
Figure 10-37. Setting a DIP Switch
The module is then addressed as follows:
Channel No.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Address
46.0
46.1
46.2
46.3
46.4
46.5
46.6
46.7
47.0
47.1
47.2
47.3
47.4
47.5
47.6
47.7
Note
COM 115F CONFIGURE checks the inputs for duplication of addresses, but it does not
check for module address overlap or initial addresses. It can therefore happen that the
address named in the user program does not agree with the address actually accessed.
The user must therefore make sure that the address grid and the initial addresses are
set correctly for all modules.
For this reason, check the settings on the IM 306, AI 463 and CP 523 modules.
EWA 4NEB 811 6148-02
10-55
Rules Governing the Use of the S5-115F
Addresses for
ADDRESS BIT
SLOT
7
32
1
32
32
32
32
32
32
32
32
3
2
6
5
4
3
6
5
4
3
2
6
5
4
3
2
6
5
4
3
6
5
4
3
1
2
6
5
4
3
1
2
ON
1
6
5
4
3
2
1
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Addresses for
analog
ON
7
6
5
4
3
2
ON
2
7
ON
7
1
1
2
ON
1
1
ON
7
1
1
ON
7
1
1
2
ON
16
8
4
ON
16
7
5
ON
7
1
1
ON
7
1
16
6
6
ON
16
5
2
ON
7
1
16
4
3
ON
16
3
4
Address switches (1= ON; 0 = OFF)
digital
modules
ON
7
1
16
2
5
ON
16
1
6
ON
16
0
1
S5-115F Manual
1
ON
7
6
5
4
3
2
3
1
Address switches
modules
7
6
5
4
3
2
1
128
144
160
176
192
208
224
240
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
: Slot number
: Address switch
: Switches for setting the number of inputs
or outputs per slot
: DIP switch
Figure 10-38. Setting the Addresses in the Address Field of the IM 306 Interface Module
10-56
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.17 Responding to I/O Module Errors
To increase the availability of the S5-115F, the operating system does not necessarily respond to
I/O module errors with PLC STOP. The user can define system response to I/O errors himself. There
are four I/O error tolerance variants (I/O ETVs) available for this purpose:
I/O ETV 1
I/O ETV 2
All I/O module errors result in PLC STOP
Possibility of shutting down technologically-related modules via the operating system
I/O ETV 3 and I/O ETV 4 Possibility of initiating responses to I/O errors via the user program.
Signal group numbers are used to further differentiate between I/O errors. You can assign
technologically-related modules to a signal group with a programmable signal group number.
You adapt the system response of the S5-115F to your process as follows:
• Define an I/O error tolerance variant for the overall system
and
• Assign different signal groups when configuring the safety-related I/O modules. The signal
numbers must lie within the range 0 to 28.
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Table 10-9. Meaning of the Signal Group Numbers in the Case of Error Tolerance Variants 1 to 4
I/O Error Tolerance
Variant
Signal Group
Number
Response to I/O Error
1
Not required
PLC STOP
2
0
PLC STOP
1
Individual passivation
8-bit, 16-bit DI /DQ
32-bit DI
AI/AQ
2 to 28
Passivation of the module
Passivation of a word (16 bit)
Passivation of a channel
(Group) passivation
All modules of a given signal group are passivated.
3
0
PLC STOP
1
Individual passivation
(see I/O ETV 2 signal group 1)
2 to 27
28
EWA 4NEB 811 6148-02
(Group) passivation
(see I/O ETV 2 signal group 2 to 28)
Error message from the operating system
and
safety response from the user program
and
organizational measures
(e.g. supervised operation)
Standard values in the case of discrepant two-channel
digital signals are generated by ORing the two signals.
In the case of a discrepancy of two analog input modules,
the passivation value specified in FB 250 is taken.
10-57
Rules Governing the Use of the S5-115F
S5-115F Manual
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Table 10-9. Meaning of the Signal Group Numbers in the Case of Error Tolerance Variants 1 to 4
(Continued)
I/O Error Tolerance
Variant
4
Signal Group
Number
0
Response to I/O Error
PLC STOP
1
Individual passivation
2 to 26
(Group) passivation
27
Error message from the operating system
and
safety response from the user program
and
organizational measures
(e.g. supervised operation)
Standard values in the case of discrepant two-channel
digital signals are generated by ANDing the two signals.
In the case of a discrepancy of two analog input modules,
the passivation value specified in FB 250 is taken.
28
Error message from the operating system
and
safety response from the user program
and
organizational measures
(e.g. supervised operation)
Standard values in the case of discrepant two-channel
digital signals are generated by ORing the two signals.
In the case of a discrepancy of two analog input modules,
the passivation value specified in FB 250 is taken.
You adapt the S5-115F system response to your process by taking the following measures
• Define an I/O error tolerance variant for the whole system
• Assign different signal groups when configuring safety-related I/O modules.
Note
The operating system does not monitor the intervals between I/O errors and the
second error occurrence time.
• Please note the following in the case of I/O ETV 2 with signal group no. 2 to 28, I/O
ETV 3 with signal group no. 2 to 27 and I/O ETV 4 with signal group no. 2 to 26:
All I/O modules of the relevant signal group are passivated in the relevant signal
group when an I/O error is detected. The first erroneous bit of the I/O word is
entered in the error stack of the error DB.
• Please note the following in the case of I/O ETV 3 with signal group no. 28 and I/O
ETV 4 with signal group no. 27 and 28:
The I/O modules are not passivated when an I/O error is detected. The first
erroneous bit of the I/O word is simply entered in the error stack of the error DB.
The error response must be initiated by the user control program.
• If more than sixteen I/O errors with different addresses are entered in the error
stack when using I/O ETV 3 and 4, the system responds with a PLC STOP due to
accumulated errors.
10-58
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.17.1 Passivation of I/O Modules
The system response to an I/O error must not necessarily result in PLC STOP.
If your automated process consists of several independent subprocesses, the following is possible
over the operating system:
•
Passivation of the relevant I/O word (individual passivation via signal group 1)
•
Passivation of the I/O modules belonging to one signal group (group passivation)
Passivation of I/O modules means software shutdown and power shutdown of I/O modules. Only
I/O modules in autonomous and in self-contained subprocesses can be passivated.
Every signal group passivated by the operating system is entered in block 0 of the error DB. You
can evaluate this entry in your control program and respond accordingly.
Passivation results in the following:
•
•
•
•
In the case of DI modules
without interrupt capability:
In the case of DI modules with
interrupt capability:
In the case of DQ modules:
In the case of AI modules:
Deletion of the PII section of the relevant DI module
Deletion of the status and interrupt registers. OB 2 ceases
to be processed.
Deletion of the DQ and the PIQ section of the relevant DQ.
When 250 ANEI is called, the programmed passivation
value is output as a result ( Vol. 2, 6.1 of the Manual)
When an I/O module is passivated, the relevant R (readback) or CH (check) module is simultaneously passivated. You must note this in the case of an I/O mix on an I/O module.
Analog output modules are not passivated since they are not safety-related.
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaa
Table 10-10. Passivating I/O Modules
Passivated module
Relevant passivated module
!
DI
DQ
AI
CH DQ
R DI
CH AQ
Important
The following are not permissible:
• Analog input modules of different signal groups on one CH AQ channel.
• Several analog input modules with signal group 1 (individual passivation) on one
CH AQ channel.
Please note in the case of individual passivation
• Individual passivation without loss of module bit capacity is only possible with 8-bit and 16-bit
digital I/O modules.
• You can use only one channel in the case of a CH AQ module.
EWA 4NEB 811 6148-02
10-59
Rules Governing the Use of the S5-115F
10.17.2
S5-115F Manual
Revoking Passivation of I/O Modules
Sensors and actuators are frequently the cause of passivation of I/O modules. IF you can remove
the fault in PLC RUN, FB 255 allows you to revoke passivation; the depassivated I/O module is then
referenced anew by the CPU.
You may call the FB 255 only in the cyclic program part (OB1). Calling the FB 255 in time-driven or
interrupt-controlled program parts is prohibited.
You must specify the following when initializing FB 255:
• A bit wich initiates depassivation in the case of an edge change from 0 to 1.
• Data in KF format with the signal group for the I/O module to be depassivated
• A byte for FB 255 messages
Depassivation should alwas be initiated for one signal group only. For this reason, assign a
separate depassivation bit to each signal group.
Note
Before you reactivate the I/O modules of a signal group with FB 255, your control
program must branch to a routine in which you can check, evaluate and, if necessary,
update all the variables required for switching, or re-initialize the process variables.
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
Calling and initializing
Parameter
Meaning
Assignment
STL
SIGR
Signal group
D
KF
2 to 28
: JU FB 255
Name : AGF:DEPA
: SIGR
DEPA
Depassivation bit
(positive edge)
I
BI
I0.0 to 127.7
F2.0 to 199.7
Q0.0 to 125.7
: DEPA
: PAFE
PAFE
Signal byte
Q
BI
00H = Depassivation successful
11H = Signal group has not been
configured or passivated
21H = Signal group can no longer be
passivated (error no longer in
errror DB)
31H = Depassivation has not been
tested
41H = Erroneous passivation of
FB 255
51H = No signal group has been
passivated
D0H = Depassivation currently being
executed
If you call FB 255 conditionally (e.g JC FB 255), the enable for the conditional jump must not be the
bit that you want to assign to the DEPA parameter.
10-60
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Increases in PLC scan time
If you call FB 255 DEPA, the PLC scan time increases as follows:
• 110 ms, if a digital input of I/O type 3 was the cause of passivation,
• 140 ms, if a digital input of I/O type 10 was the cause of passivation
• 30 ms, if an analog input of I/O type 14 or 15 was the cause of passivation.
Interrupt processing
If you have configured an interrupt response time of less than 30 ms when initializing the
operating system with COM 115F, the interrupt response will increase to 30 ms during processing
of FB 255 DEPA.
For safety reasons, you must switch off the load voltage of the I/O modules before expiry of the
second error occurrence time. You can avoid having to switch off here if you depassivate the I/O
modules before expiry of the second error occurrence time.
Example: Depassivation of I/O modules
A boiler is heated by four burners. The burners work independently of each other so that each
burner control constitutes an autonomous subprocess. Signal groups 11 to 14 are assigned for the
I/O modules of these subprocesses.
The entire control is monitored by a pre-interlock. Since the pre-interlock applies to all four
burners and is of primary safety significance, signal group 0 is assigned to the I/O modules.
Pre-Interlock of Burner Control
I/O modules for pre-interlock with signal group 0
Burner 1
I/O modules with
signal group 11
Burner 2
I/O modules with
signal group 12
Burner 3
I/O modules with
signal group 13
Burner 4
I/O modules with
signal group 14
Figure 10-39. Dividing the I/O Modules into Signal Groups
EWA 4NEB 811 6148-02
10-61
Rules Governing the Use of the S5-115F
S5-115F Manual
Example:
Structure of the control program
The control program is structured so that when a signal group is passivated, the relevant program
section is no longer processed ( Figure 10-40).
Please note that the I/O modules of one signal group can only be depassivated after safe switch on
of the control program has been confirmed.
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaa
aaaaaa
aaaaaa
Program for preinterlock of the
entire control
yes
aaaaaa
aaaaaa
Has signal
group 11 been
passivated?
no
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaa
aaaaaa
aaa
Process program section
e.g. PB 11 for control
of burner 1
yes
aaaaaa
aaaaaa
Has signal
group 12 been
passivated?
no
Depassivation of
signal group with
FB 255
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
Process program section
e.g. PB 12 for control
of burner 2
Has signal
group 13 been
passivated?
yes
no
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
aaaaaaaa
aaaa
Process program section
e.g. PB 13 for control of
burner 3
Program section with
check of process
variables, to determine whether I/Os can
be switched back on
safely
Has signal
group 14 been
passivated?
yes
no
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaa
aaaaaa
aaaaaa
aaa
Process program section
e.g. PB 14 for control of
burner 4
yes
aaaaaaaa
aaaaaaaa
Are I/O
modules to be
passivated with
FB 255?
no
Figure 10-40. Schematic of a Structured Program Sequence
10-62
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.17.3 Operating System and User Program Response in the Case of I/O ETV*3
and 4
While I/O ETVs 1 and 2 end the error response with PLC STOP or passivation of I/Os, you receive
only the relevant error message when you select
• I/O ETV 3 with signal group 28 and
• I/O ETV 4 with signal group 27 or 28.
The error response is left to the user program. It evaluates the error messages and initiates all
safety responses, such as safe shutdown.
•
Error analysis
Error analysis is carried out in the same way as for I/O ETVs 1 and 2. Analysis is continued after
an I/O error is discovered until the error is corrected. This results in the PLC cycle being loaded
with the discrepancy time because of cyclic comparison.
•
Error message
Every error detected with a different address is entered in the error stack of the error DB.
If a SINEC L1 LAN is available, the error DB body is transferred to the SINEC L1 master.
The error is sent to the CP 523, provided one has been configured as a message module for
printing COM 115F error messages.
Up to 16 errors are entered in the error stack. The 17th error message results in PLC STOP due
to the central safety significance in the case of I/O ETV 3 and 4.
•
Standard value generation
The standard value is generated
- After error detection in cyclic image comparison
In the case of I/O ETV 4 with signal group 27, the standard value is generated by
- ANDing the nomatching DI or R DI signals
In the case of I/O ETV 3 or 4 with signal group 28 the standard value is generaterated by
- ORing the nonmatching DI or RB DI signals
- In the case of discrepancy when accessing a non-interrupt DI direct, it can be the case that
the value cannot be read since a test is taking place. In such a case, the nonmatching DI bits
are read from the DI byte stored before the test.
- No standard value is generated in the case of an AI comparison error. The passivation value
configured in FB 250 is used here (as in the case of I/O ETV 2).
* I/O ETV = I/O Error Tolerance Variant
EWA 4NEB 811 6148-02
10-63
Rules Governing the Use of the S5-115F
•
S5-115F Manual
Safety requirements to be met by the user program
If you want to prevent processes being shut down immediately after the occurrence of the first
I/O error, always use
I/O ETV 3 with signal group 28
I/O ETV 4 with signal group 27 or 28
The responses to these I/O errors are usually individual in nature and must be adapted to the
process. For this reason, error response cannot be implemented from the operating system.
Error response must be initiated and monitored from the user program.
Note
When using I/O ETV 3 with signal group 28 or I/O ETV 4 with signal group 27 or 28,
responsibility for the response rests solely with the operator.
The user program can make two different safety responses to I/O errors:
The process is switched off for a short time when the first I/O error occurs. Operating
personnel are informed (e.g. by a bleeper) and the system waits for acknowledgement.
After acknowledgement, the process is resumed by qualified personnel in the ”Supervised
operation” mode.
Proof is required here that the process can be resumed by qualified personnel under these
conditions until it reaches a point at which it can be meaningfully shut down.
The user program is responsible for switching off the process no later than the end of the
second error occurrence time.
The process is not yet switched off on occurrence of the first I/O error. The user program
ensures that the process is shut down in a safe state (failsafe), i.e. a second I/O error must
not be allowed to give rise to a dangerous situation.
10-64
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
The following flowchart for the control program is an additional aid when using
• I/O ETV 3 with signal group 28
• I/O ETV 4 with signal group 27 or 28.
The term ”subprocess” is used in the flowchart. Subprocess is here taken to mean part of the automated system distinguished by its function and including the relevant S5-115F hardware and
software.
OB 1 call
”I/O error”1 bit = ”1”?
no
yes
2nd error occurrence time elapsed?
yes
STOP or switch
off relevant load
voltage 2
no
Error dealt with?
yes
no
Error in I/O ETV 4
with signal group 27?
yes
Signal error optically or
acoustically and start second
error occurrence time
no
Passivate subprocess 3
Bypassing of defective part
permissible 4 ?
no
yes
Relevant subproc. failsafe
with operat. intervention5?
yes
Bypassing of defective part
and operation
without supervision
yes
Bypassing of defective part
and operation
with supervision
no
Acknowledgement within
programmed time 6 ?
no
OB 1 program
End of OB 1
1
2
3
4
”I/O error” bit = bit 4 of the error detection byte (1st byte in the error DB)
The S5-115F stops or the user makes sure that the relevant part of signal group 27 or 28 is shut down.
Set all outputs and inputs of the subprocess to 0 and start the monitoring time with the second error occurrence time.
Error in an I/O word which can also be operated in single-channel configuration as a safety-related word (requires
permit)
Examples:
Safety-related, single-channel operation permissible in the case of DQ for cable car main motor in the ”Slow” position and under ”Operation with supervision”
Safety-related, single-channel operation not permissible in the case of DI for emergency STOP
5 Failsafe with operator intervention means: safe operator response is guaranteed even if the 2nd channel becomes
defective (proof required)
6 Time less than second error occurrence time (if no STOP response)
Figure 10-41. Flowchart for I/O Error Tolerance Variant 3 (I/O ETV 3) and 4 (I/O ETV 4)
with Signal Group Nos. 27 and 28
EWA 4NEB 811 6148-02
10-65
Rules Governing the Use of the S5-115F
S5-115F Manual
10.17.4 Repair Procedure
All passivated output modules must be switched off within the second error occurrence time. The
I/O errors can then be corrected in the off state. You can switch the repaired modules on again at
any time. To do so, you must delete the passivation information:
• Test mode:
POWER OFF - POWER ON
• Safety mode: OVERALL PLC RESET
!
Important
Overall Reset is a safety-related action because it also deletes the error information in
the error DBs.
For this reason, an Overall Reset may only be executed after all defective components
have been repaired and is the sole responsibility of the operator!
10.18
Handling the Programmer
The S5-115F has special requirements regarding the connection and operation of the programmer.
10.18.1 Connecting the Programmer
How to connect the programmer depends on whether you are operating a SINEC L1 LAN. The programmer must be connected to subunit A.
If you implement a two-channel SINEC L1 LAN, the SINEC L1 LAN A must be used as the programmer bus. In this case, the programmer must be connected to the CP 530. LAN channel
redundancy does not apply as long as channel A is used as the programmer bus. This has no
negative effect on the system as long as channel B is intact.
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
Table 10-11. Connecting the Programmer and SINEC L1
SINEC L1 Operation
10-66
PG Connection
SINEC L1 Connection
No
Subunit A
-
Single-channel
Subunit A
CP 530 for subunit B
Two-channel
CP 530 which supplies
subunit A
Subunit A and CP 530
for subunit B
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.18.2 Operator Entry in the Programmer in Safety Mode
The table below gives an overview of the programmer functions for the CPU 942-7UF15.
Note that it is not possible to key data into the programmer in safety mode when the PLC is set to
RUN. When the PLC is set to STOP, data can be keyed in using the Parameter Entry DB.
If you need to key in data on the programmer in safety mode when the PLC is set to STOP, to
change a recipe, for example, you must:
• Configure the parameter entry DB for receiving input data from the programmer with COM
115F
• Write a filter program
The filter program must be capable of checking the validity of the data entered. For example,
binary data is not acceptable.
The filter program must be processed by the S5-115F in OB 21 and/or OB 22.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Table 10-12. Overview of the Programmer Operator Functions
PG --- PLC Operator functions
Bold type: Operator entry
function in the S5-115F
1
2
Test mode
Large
STOP
loop
Lesser
STOP
Safety mode
RUN
loop
1.
Input
DB, FB, PB, OB, SB
X
-
-
2.
Display (with correction)
DB, FB, PB, OB, SB
X
-
Without
correction
3.
Compare
DB, FB, PB, OB, SB
X
-
X
4.
Transfer to PLC
DB, FB, PB, OB, SB
X
-
5.
Transfer from PLC
DB, FB, PB, OB, SB
X
6.
Removal of blocks
7.
Large
STOP
Lesser
STOP
loop
loop
RUN
Only Param.
entry DB
-
-
Without
correction
-
Without
correction
X
-
X
-
Only Param.
entry DB
-
-
-
X
X
-
X
X
-
-
-
-
-
Start PLC
X
-
-
-
-
-
8.
Stop PLC
-
-
X
-
-
-
9.
Directory Display
X
-
X
X
-
X
10. Memory Configuration Display
X
X
X
X
X
X
11. Display ISTACK/BSTACK
X
-
-
X
-
-
12. Display SYSPAR
X
X
X
X
X
-
13. Display ADR (memory
location) with input1
X
14. FORCE (outputs only)
X
-
-
-
-
-
15. FORCE VAR (I,Q, F, T, C, D)
X
-
X
Without
correction2
-
Without
correction
16. STATUS (FY,PB,OB,SB)
with correction
X
-
Without
correction
-
-
Without
correction
17. STATUS VAR (I, Q, F, T, C, D)
X
-
X
-
-
X
Without
correction
X2
Without
correction
Without
correction
-
The entry under address EA0CH with a length of two bytes only affects bit 27 of byte EA0CH.
The display ”ADR” can last up to 200 ms. This can result in OB 13 not being able to properly service time interrupts of
less than 200 ms.
EWA 4NEB 811 6148-02
10-67
Rules Governing the Use of the S5-115F
S5-115F Manual
Note
If the validity of your input data cannot be checked, you cannot make operator entries
with the programmer.
Filter program for parameter entry DB
Note
The filter program for the parameter entry DB must be approved by the inspector.
10.19
SINEC L1 LAN
Note the following points when operating a SINEC L1 LAN:
• The SINEC L1 master may be any PLC of the U range.
• The SINEC L1 master must have no interrupt list.
• The SINEC L1 master may not initiate safety-related actions (e.g. START/STOP of a slave).
• A description of the data flow via the SINEC L1 LAN must be provided for the individual
acceptance test. The test is made easier if I/O signals, for example, are not transmitted along
several consecutive SINEC paths.
• When transmitting analog values, the accompanying ”Error” and ”Overrange” bits must also
be transmitted.
• The BT 777 transceiver must be supplied via separate power supply units.
• If you want to generate a mailbox in a data block, you must create the data block either
- in the restart OBs (OB 21 and OB 22) or
- using the programmer.
• COM 530 may not be used in safety mode.
The keylock switch on the relevant programmer must be locked.
• You can find additional information in section 7.2.3.
• If an S5-115F slave is to be shut down in a SINEC L1 network, the power supply of the relevant
transceiver must be switched off.
• Program the SINEC L1 master (CP 530 in the higher-level S5-115U, S5-135U, S5-150U or
S5-155U) in such a way that the length of messages to a slave S5-115F matches the configured
length of the Receive mailbox.
You must extend shorter messages to the length of the Receive mailbox.
• High-level protection of the destination slave number is always necessary if you configure
more than two slaves with the same mailbox length. The S5-115F enters the information for
error detection and correction in the first byte of the mailbox. You must not alter the error
detection and correction information.
• High-level protection of the destination slave number and a message change byte are always
necessary if you want to send broadcast messages. The S5-115F enters the information for
error detection and correction in the first two bytes of the mailbox. You must not alter the
error detection and correction information.
10-68
EWA 4NEB 811 6148-02
S5-115F Manual
10.19.1
Rules Governing the Use of the S5-115F
Polling List
The polling list must be such that every connection (source - destination) can be implemented at
least once.
Hinweis
You should make the appropriate number of entries in the polling list for source PLCs
transmitting to several nodes. You can increase the priority of the relevant data
transfers with multiple entries of the source PLC in the polling list. You must not,
however, enter the same source PLC in the polling list several times in immediate
succession.
10.19.2 SINEC L1 Safety Time
The SINEC L1 safety time depends on your automated process and on the control programs of the
communications partners involved. At the individual acceptance test, you must agree with the
inspector on a uniform SINEC L1 safety time for all configured data paths.
The SINEC L1 safety time is configured by you when assigning communication parameters with
COM 115F. At the same time, COM 115F specifies the automatically calculated SINEC L1 polling
time. Ensure that the calculated SINEC L1 polling time is less than the agreed SINEC L1 safety time.
You can decrease the SINEC L1 safety time by reducing the volume of data to be transferred or by
reducing the number of configured data paths.
At least one valid message must be received over each configured data path within the SINEC L1
safety time. If any data path does not receive a valid message within the SINEC L1 safety time, the
operating system interprets this as a permanent error on the data transmission circuit and deletes
the relevant receive mailbox. The operating system also sets the source slave bit in block 1 of the
error DB.
If messages are received with errors as a result of brief fault causes (e.g. RF noise), repetition of the
messages is permissible before expiry of the SINEC L1 safety time. Message received with errors are
detected by the operating system and do not change the contents of the receive mailbox
compared to the old status.
Repetition of messages is possible thanks to:
• Multiple entry of the source PLC in the polling list
• Reduction of the SINEC L1 polling time
Under error-free conditions, the response time is determined to a great extent by the SINEC L1
polling time. In the case of permanent faults, the safety response (deletion of the receive mailbox)
only takes place after an interval determined essentially by the SINEC L1 safety time.
EWA 4NEB 811 6148-02
10-69
Rules Governing the Use of the S5-115F
S5-115F Manual
10.19.3 FB 254 Synchronization for SINEC L1 LAN
Data traffic on the SINEC L1
safety time, a data transfer
configured (except the master
reasons. If you use the SINEC
possible.
LAN is also monitored for a configurable safety time. Within this
must have taken place with all the communications partners
PLC), otherwise the Receive mailbox will be erased for security
L1 LAN, we recommend that you call FB 254 every 30 to 40 ms, if
10.19.4 Two-Channel SINEC L1 LAN
You must note the following if you operate the SINEC L1 LAN with two channels:
Before you access the Receive mailbox of the SINEC L1 channel B, you must call MBXT FB 253. This
FB checks whether the relevant data path is defective ( Vol. 2, 6.1.5 of the Manual). If the data
path is defective, the FB 253 transfers the Receive mailbox of the intact SINEC L1 channel A to the
defective SINEC L1 channel B.
10.20
Individual Acceptance Test of the Safety-Related System
The S5-115F is a component of your safety-related system and is inspected during the acceptance
test of the overall system.
A significant aspect for the test of the S5-115F is failsafe interaction with all safety-related
components, such as sensors and actuators.
This section contains information which will help you in preparing for the acceptance test of the
safety-related system.
It has been found useful in practice to divide the licensing procedure into three sections.
We therefore recommend division as follows:
• Planning phase
• Pre-inspection
• System acceptance test
10.20.1 Planning Phase
You should clarify the following points with the licensing authority while you are planning your
system:
Definition of safety requirements
Specify the standard (e.g. DIN VDE 0116) which describes the safety requirements for your system,
and determine the quality level to DIN V 19250.
Perform risk analysis
In the risk analysis, you define which subprocesses of your system are safety-related. If safetyrelated and non-safety-related subprocesses are juxtaposed you must also perform a risk analysis
for the non-safety-related subprocesses.
10-70
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
Define protection targets
Define the protection targets for your process and the criteria for transfer of the system to a safe
state.
Answer the following questions on this subject:
• Under what circumstances must the entire system be shut down?
• Under what circumstances would it suffice to shut down only subprocesses?
• Is passivation of I/O modules permitted?
• Under what conditions can subprocesses of the system remain switched on under supervision?
Define safety-related counters and timers
Define all safety-related timers and counters together with the inspector. This includes variables
which you need to specify when setting the operating system parameters with COM 115F, such as:
• Maximum test scan time
• Maximum discrepancy times
• Second error occurrence time
Also define system-specific variables such as
• Maximum total response time of the system (response time of the PLC + response time of the
sensors and actuators)
• Maximum number of permissible firing attempts (in the case of burners)
Hardware requirements
All modules and module racks suitable for the S5-115F have been prototype-tested by the
Bavarian Technical Inspectorate and require no further testing.
However, please ensure adherence to the required ambient conditions such as temperature and
humidity as specified in the Technical Specifications. Check the characteristics and requirements of
your sensors and actuators.
Communications with further devices
Please ensure that no safety-related functions or subprocesses are impaired as a result of data
interchange with communications partners. For this reason, check the connection of the S5-115F
to the folllowing:
• Local area networks (e.g. SINEC L1 LAN)
• Point-to-point connection partners (e.g. connection over the CP 523)
• Data terminal devices (e.g. printer, modem or terminal)
If you want to further process safety-related data in a safety-related manner, you require a failsafe
connection, e.g. a point-to-point connection over CP 523 with failsafe standard FBs.
At least one reaction-free connection is required for transferring non-safety-related data.
Answer the following questions if you are planning communications with other devices:
• Who are the communications partners?
• Is the data to be transferred unidirectionally or bidirectionally?
• Is safety-related data to be transferred?
• Could the data transfer lead to falsification of safety-related data in the S5-115F?
Documentation for the pre-inspection
Discuss with the inspector what documentation is required for the pre-inspection.
EWA 4NEB 811 6148-02
10-71
Rules Governing the Use of the S5-115F
S5-115F Manual
10.20.2 Pre-Inspection
The following documents specifying system, version and date are usually required for the preinspection:
• Component mounting diagrams of the hardware
• Configuration printout with COM 115F DOCUMENT on a data medium and as a listing
• Logic and signal flow diagrams
• Control program, program sequence diagrams, program overview with data blocks on data
media and as listings
• Cross-reference list for inputs, outputs, flags, timers, counters, blocks and I/O modules
• Certification conditions
As well as confirming that the conditions of inspection have been met, the pre-inspection also
deals with the following points:
Checking of operating system parameters
Use a printout with COM 115F to demonstrate that all safety-related parameters are set in such a
way as to meet the safety requirements.
Which parameters are taken into account here will depend on the special requirements of the
system.
The monitored maximum scan time must meet the requirements of the process.
Checking of the configured hardware
The inspector uses the component mounting diagrams and the configuration printout to check
that all safety-related inputs and outputs have been switched in a failsafe manner. This affects
both input modules and output modules as well as sensors and actuators.
Checking the control program
The inspector checks the control program using the program listing, the sequence diagrams and
the logic plans.
Among the points checked are the following:
• Correct conversion of logic diagrams
• Initialization of the integral blocks
• Initialization of standard function blocks
• Failsafe feature of outputs, timers and counters
Outputs, timers and counters are regarded as failsafe if the input parameters used are failsafe
or if a fault prognosis has been performed. The purpose of a fault prognosis is to establish that
the failure of a non-failsafe input parameter could under no circumstances result in a
hazardous state.
Checklist for system check
Generate a checklist for the system check. The following are among the points to be included:
• Function tests for safety-related functions
• The conditions of inspection to be observed
• Protection targets
• The verifiable regulations for the automated process
10-72
EWA 4NEB 811 6148-02
S5-115F Manual
Rules Governing the Use of the S5-115F
10.20.3 System Test
Before you perform the system test with the inspector, you should have tested your failsafe system
at least once in safety mode with the EPROM submodule.
You require the following equipment for the onsite test:
• Programmer
• Printer
• At least three EPROM submodules passed for safety mode
• UV eraser
• Labels for the EPROMs
Comparison of pre-inspected hardware and implemented hardware
For comparison of the hardware the inspector requires the configuration list and a printout of the
configuration data generated with COM 115F DOCUMENT.
Among the points the inspector takes into account when checking the hardware are:
• Suitability of the modules for use in the S5-115F
• Use of failsafe modules for safety-related signals
• Wiring of the I/O modules
• Connections from further devices
Should changes manifest themselves during the comparison of hardware, it is possible that the
inspector might demand a new pre-inspection.
Comparison of pre-inspected and implemented software
For comparison of the software the inspector requires the current control program as a listing on a
data medium.
The inspector compares the software handed over by you at the pre-inspection with the installed
software. To check this, comparison with the STEP 5 basic package "QL, VGL, UMV" is
recommended.
Should changes manifest themselves during the comparison of software, it is possible that the
inspector might demand a new pre-inspection.
Error simulations
Error simulations are to be performed onsite on the implemented system using the checklist
generated at the pre-inspection.
Confirmation of adherence to the conditions of inspection
At this point a check is made to confirm that all conditions of inspection and all safety regulations
listed in the manual are adhered to.
This applies, for example, to the requirement that the quiescent current principle is adhered to in
the case of all safety circuits connected externally to the system. Other points are power supply
electrical configuration and the memory media used in safety operation.
A check must also be made here that the ambient conditions specified in the Technical
Specifications are adhered to.
Documentation
The current software in the form of a listing and additionally on diskette or EPROM is to be
retained as documentation. The EPROM labels should specify the following:
• System
• Date
• Subunit ID
• Signature of the EPROM submodule
EWA 4NEB 811 6148-02
10-73
Rules Governing the Use of the S5-115F
S5-115F Manual
Warning
After the acceptance test, any modification to the hardware or software must be
agreed with the inspector. An unauthorized change can lead to critical system
states and to immediate loss of permit.
10-74
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Appendices
Appendix A . .
Appendix B . . .
Appendix C . . .
Appendix D . .
EWA 4NEB 811 6148-02
Evaluation of Error DBs DB2 and DB3 without COM 115F
Slot Assignments
Prototype Test Certification
SIEMENS Addresses Worldwide
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
A
Evaluation of Error DBs DB2 and DB3 without COM 115F
EWA 4NEB 811 6148-02
S5-115F Manual
A
Evaluation of Error DBs DB2 and DB3 without COM 115F
Evaluation of Error DBs DB2 and DB3 without
COM 115F
You will normally use COM 115F to display user-friendly error messages on your programmer
screen.
You can evaluate the error DBs
•
•
if you have no CRT-based programmer
if you want to write your own error messages
These DBs contain all the information you require.
You will find notes on the structure of the error DBs in Vol. 2, 5.4.2 of the Manual.
Consult the following pages for the precise meaning of the eight bytes of an error message.
EWA 4NEB 811 6148-02
A-1
Evaluation of Error DBs DB2 and DB3 without COM 115F
S5-115F Manual
Meaning of the eight bytes of an error message
Byte
0
1
2
3 to 7
=
Gr
=
Error group ( Vol. 2, 5.5.2 of the Manual)
=
Error No. =
=
Additional information
(Progr. No.; Consec. No. Vol. 2, 5.4.1)
The following assignments apply in the case of
error messages with ”I/O identifier” in byte 3
Byte 3 =
Byte 4 =
Byte 5 =
Byte 6 =
Byte 7 =
I/O identifier:
Word No. (0 to 63) of DI module, DQ module or AI module;
Word No. (0 to 63) of CH DQ,
R DI
or CH AQ module
but not the CH relay DQ module for connecting sensors or the CH
AQ module in the case of AI modules;
Bit No.;
Word No. (0 to 62) of the CH relay DQ in AI modules
I/O identifier in DI error messages:
Bit 3 to 0 =
Bit 4
=
=
Bit 5
=
Bit 6
=
=
Bit 7
=
=
0001
0
1
0
0
1
0
1
DI without
DI with
not used
CH DQ
CH DQ
CH DQ
CH DQ
CH DQ
CH DQ
not in subunit A
in subunit A
not in subunit B
in subunit B
I/O identifier in DI error messages:
Bit 3 to 0 =
Bit 4
=
=
Bit 5
=
Bit 6
=
=
Bit 7
=
=
0010
0
1
0
0
1
0
1
DQ without
DA with
not used
RB DI
RB DI
RB DI
RB DI
RB DI
RB DI
not in subunit A
in subunit A
not in subunit B
in subunit B
I/O identifier in DI error messages:
Bit 3 to 0 =
Bit 4
=
=
Bit 5
=
Bit 6
Bit 7
A-2
=
=
=
=
0100
0
AI without
CH AQ and CH Rel DQ
1
AI with
CH AQ and CH Rel DQ
0
AI with 1 sensor,
CH Rel DQ in the same subunit as CH AQ
1
AI with 2 sensors
CH Rel DQs in both subunits
0
CH AQ
not in subunit A
1
CH AQ
in subunit A
0
CH AQ
not in subunit B
1
CH AQ
in subunit B
EWA 4NEB 811 6148-02
Evaluation of Error DBs DB2 and DB3 without COM 115F
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Error
No.
Gr. Byte
No.
Additional information
Remarks
Byte
No.
Additional information
2.1
20
3, 4 User time decr. in A /10 msec.
5, 6
User time decr. in B /10msec.
2.2
14
3, 4 Unit time difference /10 msec.
5, 6
Configured limit val. /10 msec.
7
FB 254 location parameter
Remarks
2.3
20
3, 4 Quartz monitor counter A
5, 6
Quartz monitor counter B
2.4
20
3, 4 Sum in A
/10 msec.
5, 6
Sum in B
/10 msec.
4.1
1
3, 4 OB 13 timer val. A
/10 msec.
5, 6
B 13 timer value B
/10 msec.
4.2
14
3
Actual time interval /10 msec.
4
5
Config. max. time int. /10 msec.
FB 254 location parameter
4.3
20
3
Time difference in A /10 msec.
4
Time difference in B /10 msec.
14.1
13
3
Desired mode A and B
16.1
8*
3
I/O identifier
DI without CH DQ
=01H
4
DI word No. or
Q word No.
0, 1 to 63 **
0, 1 to 62 **
5
Word No. of CH DQ (if
present) or RB DI word No.
0, 1 to 62
0, 1 to 63 **
6
Bit No.
0, 1 to 15
4
DI bit No.
0, 1 to 7
16.1
=51H
=91H
=D1H
=D2H
9
DI with CH DQ in subunit A
DI with CH DQ in subunit B
DI with CH DQ in both subunits
Input is RB DI
16.4
13
3
DI byte No.
0, 1 to 127
16.5
19
3
DI word No.
0, 2 to 126
17.1
19
3
AI word No.
128, 130 to 254
17.2
8*
3
4
AI word No.
0, 1 to 63 **
17.2
9
5
8*
CH AQ word No., if
CH AQ present
0, 1 to 63 **
17.4
I/O identifier
AI without CH AQ and CH Rel DQ,
=04H
with one sensor
=24H
AI without CH AQ and CH Rel DQ,
with two sensors
17.4
9
=54H
6
---
17.6
8*
7
CH Rel DQ word No
0, 1 to 62 **
if CH Rel DQ present
(CH Rel DQ for
connecting
sensors or CH
17.6
=74H
AI with CH AQ and CH Rel DQ in
subunit A, with one sensor
AI with CH AQ in subunit A, with
=94H
CH Rel DQ in both subunits, with
two sensors
AI with CH AQ and CH Rel DQ in
9
=B4H
subunit B, with one sensor
AI with CH AQ in subunit B, with
CH Rel DQ in both subunits, with
DQ)
two sensors
18.1
20
3
6, 7
18.2
20
3
6, 7
DQ word No.
0, 2 to 124
4, 5
DQ word in A
0, 2 to 127
4, 5
Counter word in A
DQ word in B
Counter No.
Counter word in B
EWA 4NEB 811 6148-02
A-3
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa
Evaluation of Error DBs DB2 and DB3 without COM 115F
Error
No.
27.2
A-4
Gr. Byte
No.
6
26.2
13
26.3
7
26.4
13
27.1
4
4
6
27.3
13
28.1
16
3
I/O type
28.2
8*
3
I/O identifier:
28.2
10
28.3
8*
28.3
10
28.4
8*
28.4
10
28.5
8*
28.5
10
28.6
8*
28.6
10
28.7
8*
28.7
10
3
Additional information
6
Contents of inverse location
3
Page No.
6
Current test background
3, 4 Page No.
Remarks
23.1
1
3
Message source No.
0, 1 to 30
23.2
1
3
Message destination No.
0, 1 to 30
23.3
1
25.1
13
25.2
16
3
No. of DB serviced
4, 5
DB address
25.3
16
3
DB No.
4, 5
DB address
26.1
15
3, 4 RAM address
3, 4 RAM addr. inverse location
Current test background
S5-115F Manual
No.
Byte
Additional information
Ram byte in B
3, 4 Initial address test area
5
RAM byte in A
5
Contents of original location
0, 1
4, 5 Memory address
0, 1
4, 5 Memory address
Remarks
3, 4 SD 36
3, 4 Initial address
DI, DQ, AI, AQ
7
Current check pattern
4
DI word No.
0, 1 to 63 **
=51H
=91H
DI with CH DQ in subunit A
DI with CH DQ in subunit B
5
CH DQ word No.
0, 1 to 62 **
=D1H
DI with CH DQ in both subunits
6
Bit No.
0, 1 to 15
I/O identifier:
DQ with RB DI in both subunits
=D2H
4
DQ word No.
0, 1 to 62 **
5
RB DI word No.
0, 1 to 63 **
6
Bit No.
0, 1 to 15
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Error
No.
29.2
Gr. Byte
28.11
10
28.12
8*
28.12
10
28.13
8*
28.13
10
28.14
8*
28.14
10
28.15
8*
28.15
10
28.16
8*
28.16
10
28.17
8*
28.17
10
28.18
8*
28.18
10
29.1
12
3
Evaluation of Error DBs DB2 and DB3 without COM 115F
No.
Additional information
3, 4 Block type
3, 4 Block type
EWA 4NEB 811 6148-02
Remarks
No.
28.8
19
3
DI word No.
0, 2 to126
28.9
19
3
DQ word No.
0, 2 to124
28.10
8*
3
I/O identifier:
28.10
10
28.11
8*
=51H
=91H
DI with CH DQ in subunit A
DI with CH DQ in subunit B
=D1H
DI with CH DQ in both subunits
6, 7 User memory initial address
Additional information
Remarks
4
DI word No.
0, 1 to 63 **
5
CH DQ word No.
0, 1 to 62 **
6
Bit No.
0, 1 to 15
FB, OB, PB, SB
5
Block No.
FB, OB, PB, SB
5
Block No.
Byte
6, 7 User memory initial address
30.1
13
3
FXTEKO
in A
4
FXTEKO
30.2
13
3
FXTE ZEI0 Hin A
4
FXTE ZEI0 Hin B
30.3
13
3
FXTE ZEI0 L in A
4
FXTE ZEI0 L in B
30.4
13
3
FXTE ZEI1 Hin A
4
FXTE ZEI1 Hin B
30.5
13
3
FXTE ZEI1 L in A
4
FXTE ZEI1 L in B
in B
A-5
S5-115F Manual
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Evaluation of Error DBs DB2 and DB3 without COM 115F
Error
Gr Byte
No.
Additional information
Remarks
No.
Byte
Additional information
Remarks
No.
30.6
13
3
FXTE ZEI2 Hin A
4
FXTE ZEI2 Hin B
30.7
13
3
FXTE ZEI2 L in A
4
FXTE ZEI2 L in B
30.8
13
3
FXTEKO OK in A
4
FXTEKO OK in B
30.9
13
3
FXEA BLOCK ADR H in A
4
FXEA BLOCK ADR H in B
30.10
13
3
FXEA BLOCK ADR L in A
4
FXEA BLOCK ADR L in B
30.11
13
3
FXEA DB END ADR H in A
4
FXEA DB END ADR H in B
30.12
13
3
FXEA DB END ADR L in A
4
FXEA DB END ADR L in B
30.13
13
3
FXEA TEST ANZ
4
FXEA TEST ANZ
31.1
23
3
Subunit of original message
31.2
29
3
5
Contents of err. DB byte in A
Byte No. in err. DB incl. header
4
Contents of err. DB byte in B
31.3
29
3
Signal group No.
0, 1 to 128
31.4
29
3
Current stack
> 230
4
Maximum permissible stack
230
4
DI word No.
0, 1 to 63 **
5
CH DQ word No.
0, 1 to 62 **
6
Bit No.
0, 1 to 15
4
AI word No.
0, 1 to 63 **
5
CH AQ word No.
0, 1 to 63 **
6
-
7
CH relay DQ word No.
31.5
in A
A, B
32.1
19
3
CH DQ word No.
0, 2 to 124
32.2
19
3
DI word No.
0, 2 to 126
32.3
13
3
DI word No.
0, 2 to 126
32.4
8*
3
32.4
10
I/O identifier:
DI with CH DQ in subunit A
=51H
DI with CH DQ in subunit B
=91H
32.5
8*
32.5
10
32.6
8*
32.6
10
33.1
19
3
AI word No.
128, 130 to 254
33.2
19
3
CH relay DQ word No.
0, 2 to 124
33.3
19
3
CH AQ word No.
128, 130 to 254
33.4
8*
3
33.4
10
I/O identifier:
AI with CH AQ and CH DQ in subunit
=54H
A , with one sensor for both subunits
=74H
AI with CH AQ in subunit A,
with CH DQ in both subunits,
with two sensors
=94H
AI with CH AQ and CH DQ in subunit
B, with one sensor for both subunits
=B4H
AI with CH AQ in subunit B,
with CH DQ in both subunits,
with two sensors
A-6
=D1H
in B
DI with CH DQ in both subunits
0, 1 to 62
(CH relay DQ
for connecting sensors or
CH AQ)
EWA 4NEB 811 6148-02
Evaluation of Error DBs DB2 and DB3 without COM 115F
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Error
No.
44.1
Gr. Byte
No.
Additional information
14
Configured safety time
3
Remarks
10 to 16383
Byte
No.
Additional information
4
Calculated SINEC polling time
5
Desired test background
5
Test background
7
Actual check pattern
4
Desired contents check byte
Remarks
/10 msec.
*10 msec.
45.1
7
3, 4 RAM address
6
45.2
7
Actual test background
3, 4 RAM address
6
Desired check pattern
46.1
2
3
Operation group No.
47.1
2
3
Check byte address
5
Actual contents check byte
3
Adjacent byte address
4
Check byte address
5
Desired contents adjac. byte
6
Actual contents adjac. byte
7
Contents check byte
3
Operation group No.
47.2
2
48.1
3
48.2
3
49.1
5
3, 4 Actual signature
5, 6 Desired signature
50.1
6
3, 4 Actual signature
5, 6 Desired signature
51.1
13
3
Page No.
0, 1
4
Page access mode (from R 7)
Bit 1=1
Bit 2=1
Bit 6=1
Byte 4 =42H Read own page
=44H Write to own page
Read access requested
Write access requested
Reserve own page
Bit 7=1
Reserve other page
Bits 0, 3 to 5 are irrelevant
51.2
23
3
Page No.
0, 1
4
No. of program causing error
51.3
1
3
Page No.
0, 1
4
Semaphore register
5
No. of program causing error
3
Page No.
0, 1
4
Page access mode
5
No. of program causing error
3
Page No.
0, 1
4
Page access mode
5
Semaphore register
6
No. of program causing error
51.4
51.5
13
23
EWA 4NEB 811 6148-02
A-7
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Evaluation of Error DBs DB2 and DB3 without COM 115F
Error
No.
54.1
54.2
54.3
54.4
54.5
54.6
54.7
A-8
Gr. Byte
No.
53.1
1
53.2
13
29
29
29
29
29
29
29
3
6
Additional information
Job No.
3, 4 Log. OS progr. counter A
Remarks
S5-115F Manual
Byte
No.
Additional information
4
Call localization parameter
5
Call localization parameter
53.3
23
3, 4 Log. user progr. counter A
5, 6 Log. user progr. counter B
53.4
23
3, 4 Log. OS progr. counter A
5, 6 Log. OS progr. counter B
53.5
23
3
Job No. of A
4
Job No. of B
5
Localization parameter of A
6
Localization parameter of B
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
7
(FXFE URS+4)
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
7
(FXFE URS+4)
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
7
(FXFE URS+4)
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
7
(FXFE URS+4)
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
7
(FXFE URS+4)
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
7
(FXFE URS+4)
Remarks
Job No.
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Error
No.
54.8
74.2
Gr. Byte
29
55.1
19
3
I/O word No.
0, 2 to 254
55.2
1
3
Subunit
A, B
56.1
19
3
I/O word No.
0, 2 to 254
58.1
1
3
No. of prev. processed progr.
4, 5 Data pointer
59.1
1
3
No. of prev. processed progr.
4, 5 Data pointer
60.1
1
3
No. of prev. processed progr.
4, 5 Data pointer
61.1
1
3
No. of prev. processed progr.
4, 5 Data pointer
62.1
1
3
No. of prev. processed progr.
4, 5 Data pointer
63.1
1
3
No. of prev. processed progr.
4, 5 Data pointer
74.1
16
3
Subunit
A, B
5
Smallest I/O word No.
0, 2 to 254
3
Subunit
A, B
5
Smallest I/O word No.
0, 2 to 254
3
I/O type
1, 2 to 18,
gaps
16
74.3
16
74.4
16
90.1
12
90.2
16
99.1
1
99.2
1
99.3
1
99.4
1
100.1
30
100.2
1
100.3
Evaluation of Error DBs DB2 and DB3 without COM 115F
No.
Additional information
3
Module address
3
EPROM identifier
31
3
Subunit identifier found
100.4
30
3
Subunit identifier found
100.5
17
EWA 4NEB 811 6148-02
Remarks
Byte
No.
Additional information
3
(FXFE URS+0)
4
(FXFE URS+1)
5
(FXFE URS+2)
6
(FXFE URS+3)
7
(FXFE URS+4)
4
Source slave No.
Remarks
I/O type
DI, DQ, AI, AQ
4
I/O type
DI, DQ, AI, AQ
4
DB No.
4 to 255
5, 6 DB address
3, 4 Address 1st undefined char.
A-9
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Evaluation of Error DBs DB2 and DB3 without COM 115F
Error
No.
102.12
A-10
Gr. Byte
No.
100.6
13
3
Code No.
101.1
24
3
EPROM identifier in A
101.2
5
102.1
30
3
EPROM identifier
102.2
24
3
EPROM identifier in A
102.3
24
102.4
25
102.5
18
102.6
18
102.7
19
102.8
19
102.9
17
102.10
19
102.11
6
16
103.1
1
103.2
25
103.3
13
103.4
19
103.5
19
103.6
1
103.7
19
104.1
3
104.2
13
3
3
Additional information
3, 4 User EPROM signature in A
3, 4 User EPROM signature in A
Block type:
=DEH
=DCH
=E0H
=E2H
=DCH
=E0H
=E2H
Function block
Organization block
Program block
Sequence block
Block type:
=DEH
Function block
Organization block
Program block
Sequence block
Remarks
S5-115F Manual
Byte
No.
4
4
4
4
Additional information
Remarks
EPROM identifier in B
5, 6 User EPROM signature in B
EPROM identifier in B
5, 6 User EPROM signature in B
3, 4 Address 1st undefined char.
Block No.
5, 6 Initial address
Block No.
5, 6 Actual signature
3, 4 Interrupt condition code word
3, 4 Interrupt condition code word
EWA 4NEB 811 6148-02
Evaluation of Error DBs DB2 and DB3 without COM 115F
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
S5-115F Manual
Error
No.
Gr. Byte
No.
105.1
21
105.2
1
105.3
1
106.1
16
3
DB No.
4, 5 DB length
106.2
16
3
DB No.
4, 5 DB length
106.3
1
3
R2 (register bank 3)
4
R3 (register bank 3)
5
R4 (register bank 3)
6
R6 (register bank 3)
7
R6 (register bank 3)
3
DB No.
106.4
12
107.1
11
108.1
1
108.2
18
108.3
21
Additional information
Remarks
3, 4 Configured scan time
/10 msec.
3, 4 Configured scan time
/10 msec.
4, 5 to 255
4, 5 DB length
10 to 16383
*10 msec.
5, 6 Actual scan time
16
3
Current stack pointer
80H to FFH
109.1
12
3
Input byte/word No.
0, (1) to 254, (255)
109.2
14
3
Input byte/word No.
0, (1) to 254, (255)
109.4
8*
3
9
4
DI word No.
0, 1 to 63 **
=01H
=51H
=91H
DI without CH DQ
DI with CH DQ in subunit A
DI with CH DQ in subunit B
5
CH DQ word No. if CH DQ
present
0, 1 to 62**
=D1H
DI with CH DQ in both subunits
6
Bit No.
0, 1 to 15
Input byte No. or
input word No.
0, 1 to 255
0, 1 to 254
109.6
12
3
Source address or
with LIR oper.
destination address
with TIR oper.
DQ byte No. or
with TPY oper.
DQ word No.
with TPW oper.
109.8
12
3, 4 Current source address
7
109.9
/10 msec.
I/O identifier:
3
3
/10 msec.
Highest stack pointer
19
12
Remarks
4
109.5
109.7
Additional information
5, 6 Actual scan time
108.4
109.4
Byte
No.
Current residual length
Decrementing
5, 6 Current destination address
Init. value 0
12
EWA 4NEB 811 6148-02
A-11
S5-115F Manual
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Evaluation of Error DBs DB2 and DB3 without COM 115F
Gr. Byte
No.
109.10
12
109.11
12
109.12
26
109.13
12
109.14
8*
109.14
9
3
Additional information
Remarks
Additional information
Remarks
I/O identifier:
Interrupt DI with CH DQ
=51H
4
Interrupt DI word No.
0, 1 to 63 **
in subunit A
Interrupt DI with CH DQ
in subunit B
5
CH DQ word No. (CH DQ
with interrupt DI always
present in this version)
0, 1 to 62 **
6
Bit No.
0, 1 to 15
4
Address within the block address list
The low byte indicates the block No.
The following applies:
=91H
=D1H
Interrupt DI with CH DQ
in both subunits
109.15
1
109.16
12
109.17
12
3
Word No.
1, 3 to 255
109.18
12
3
Word No.
1, 3 to 253
109.21
12
3
Address within the block address list
The high byte indicates the block type:
Organization block
DCH
250.1
Byte
No.
Organization block
Function block
Function block
E0H
E1H
E2H
Program block
Program block
Sequence block
E3H
Sequence block
Block No. =
Value of the low byte
2
if the high byte DCH, DEH, E0H, E2H
Value of the low byte
Block No. =
2
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
DDH
DEH
DFH
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaa
Error
No.
+127
if the high byte DDH, DFH, E1H, E3H
12
3
AI word No.
128, 130 to 254
250.2
12
3
Module address (”BG”)
128, 130 to 248
4
Channel No. (”KN”)
0, 1 to 7
250.3
12
3
Module address (”BG”)
128, 130 to 248
4
Channel No. (”KN”)
0, 1 to 7
250.4
14
3
Module address (”BG”)
128, 130 to 248
4
Channel No. (”KN”)
0, 1 to 7
5
Channel type from config. DB
3, 4, 5, 6
250.5
12
3
Module address (”BG”)
128, 130 to 248
4
Channel No. (”KN”)
0, 1 to 7
250.6
19
3
Module address (”BG”)
128, 130 to 248
4
Channel No. (”KN”)
0, 1 to 7
A-12
EWA 4NEB 811 6148-02
Evaluation of Error DBs DB2 and DB3 without COM 115F
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
S5-115F Manual
Error
Gr. Byte
No.
250.7
Additional information
8*
3
I/O identifier:
9
=24H
250.9
8*
=54H
250.9
9
250.11
8*
250.11
9
Byte
Additional information
Remarks
No.
=04H
250.7
Remarks
No.
4
AI word No.
0, 1 to 63 **
AI without CH AQ and CH Rel DQ,
with one sensor
AI without CH AQ and CH Rel DQ,
5
CH AQ word No. if
CH AQ present
0, 1 to 63 **
with two sensors
AI with CH AQ and CH Rel DQ in
subunit A, with one sensor
6
---
7
CH Rel DQ word No. if
CH Rel DQ present
=74H
AI with CH AQ in subunit A,
with CH Rel DQ in both subunits,
with two sensors
=94H
AI with CH AQ and CH Rel DQ in
subunit B, with one sensor
AI with CH AQ in subunit B, with
=B4H
0, 1 to 62 **
CH Rel DQ for
connecting
sensors or CH
DQ)
CH Rel DQ in both subunits,
with two sensors
250.12
12
3, 4 Lower wire-break limit
250.13
19
3
CH relay DQ word No.
0, 2 to 124
250.14
19
3
CH AQ word No.
128, 130 to 254
250.15
12
250.16
12
250.17
12
3
AI address
251.1
20
3
AQ word No.
3, 4 Lower wire-break limit
5, 6 Upper wire-break limit
5, 6 Upper wire-break limit
4, 5 AQ value in A
6, 7 AQ value in B
251.2
12
252.1
12
252.2
12
252.3
12
252.4
12
252.5
12
DB No.
252.6
12
Wrong character
252.7
12
252.8
12
252.9
12
3
Module address
3
Wrong character
3
DB No.
EWA 4NEB 811 6148-02
A-13
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
Evaluation of Error DBs DB2 and DB3 without COM 115F
Error
No.
255.2
A-14
Gr. Byte
No.
252.10
12
252.11
19
253.1
12
253.2
Additional information
3
Modules address
12
3
Source slave No.
253.3
12
3
Source slave No.
253.4
12
3
Source slave No.
253.5
12
3
Source slave No.
253.6
19
254.1
12
3
Parameter
254.2
12
255.1
13
1
Signal group
Remarks
S5-115F Manual
Byte
No.
Additional information
2
Remarks
I/O type
Current error block No. 9
12
* Only in the case of I/O ETV 3 and 4
** Internal word count; multiply the specified value by the factor 2 to get the STEP 5 I/O address.
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
B
Slot Assignments
B.1
Power Supply Connector Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . B - 1
B.2
Connector Pin Assignments of the CPU . . . . . . . . . . . . . . . . . . . . . . . . .B - 2
B.3
Connector Pin Assignments of Analog Input/Output Modules
B.4
B.4.1
Connector Pin Assignments of the Interface Modules . . . . . . . . . . . . B - 4
Connector Pin Assignments of the Symmetrical and
Serial EU Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. - 4
Connector Pin Assignments of the Symmetrical and
Serial CC Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. - 5
Connector Pin Assigments of the Asymmetrical
IM 305 / IM 306 Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . B
. -6
B.4.2
B.4.3
....
B-3
B.5
Connector Pin Assignments of the ER 701-3 Subrack . . . . . . . . . . . . . B - 7
B.6
Legend for Connector Pin Assignment
EWA 4NEB 811 6148-02
. . . . . . . . . . . . . . . . . . . . . . . . .B - 10
S5-115F Manual
Slot Assignments
B
Slot Assignments
B.1
Power Supply Connector Pin Assignment
Top connector
a
Bottom connector
(only for CC 2F and
EU 2/3)
b
a
1
M
1
M
2
+5V
2
+5V
3
+5V
3
+5V
4
+5V
4
+5V
5
+5V
5
+5V
6
+5V
6
M
7
+5V
7
M
8
M
8
b
9
M
9
M
10
M
10
NAU
11
UBATT
11
M
12
M
12
BAU
13
HOLD
13
M
14
M
14
RESETA
15
RESETA
15
M
16
M
16
PEU
17
RESET
17
M
18
M
18
HOLDA3
19
BAU
19
HOLDA2
20
M
20
HOLDA1
21
HOLD
21
22
HOLDA1
22
23
NAU
23
24
HOLDA2
24
25
PEU
25
26
HOLDA3
26
27
DS1
27
28
M
28
29
29
30
30
31
31
32
M
EWA 4NEB 811 6148-02
32
M
B-1
Slot Assignments
B.2
S5-115F Manual
Connector Pin Assignments of the CPU
CPU slot
Top connector
z
b
2
+5V
M
4
TAKT
PESP
UBATT
F0
6
RESET
ADB0
ADB12
F1
8
MRD
ADB1
ADB13
F2
10
MWR
ADB2
ADB14
F3
12
RDY
ADB3
ADB15
F4
14
DB0
ADB4
IRA
F5
16
DB1
ADB5
IRB
F6
18
DB2
ADB6
ASF
20
DB3
ADB7
HOLD
22
DB4
ADB8
BAU
HOLDA1
24
DB5
ADB9
NAU
HOLDA2
26
DB6
ADB10
PEU
HOLDA3
28
DB7
ADB11
30
BASP
32
M
d
f
+5V
PRAL
BASPA
ASG
Interface assignment of the serial interface
1
2
Interior wiring
TTY IN-
3
4
5
6
TTY OUT+
7
TTY OUT-
8
9
TTY IN+
10
11
12
13
14
15
B-2
EWA 4NEB 811 6148-02
S5-115F Manual
B.3
Slot Assignments
Connector Pin Assignments of Analog Input/Output Modules
Slots 0 to 8 (right)*
a
b
1
M
2
+5V
3
PESP
4
ADB0
5
RESET
6
ADB1
7
MRD
8
ADB2
9
MWR
10
ADB3
11
RDY
12
ADB4
13
DB0
14
ADB5
15
DB1
16
ADB6
17
DB2
18
ADB7
19
DB3
20
ADB8
21
DB4
22
ADB9
23
DB5
24
ADB10
25
DB6
26
ADB11
27
DB7
28
BASP
29
PRAL
30
M
31
ASG
32
FX**
*
In CC2F
In EU1
In EU2
In EU3
**
Enable lines of the individual slots (X=0 to 8)
EWA 4NEB 811 6148-02
slots 0a to 6a
slots 0 to 8
slots 0b to 7b
slots 0b to 7b
B-3
Slot Assignments
S5-115F Manual
B.4
Connector Pin Assignments of the Interface Modules
B.4.1
Connector Pin Assignments of the Symmetrical and Serial EU Interface
Modules
Slots 5 and 6 (left) in CC2F
Top connector
z
b
d
2
+5V
M
4
TAKT
PESP
+5V
4
6
RESET
ADB0
ADB12
6
8
MRD
ADB1
ADB13
8
10
MWR
ADB2
ADB14
10
12
RDY
ADB3
ADB15
14
DB0
ADB4
16
DB1
18
z
b
+5V
M
12
+5V
+5V
+5V
14
+5V
+5V
ADB5
+5V
16
+5V
+5V
DB2
ADB6
M
18
RESETA
PEU
20
DB3
ADB7
M
20
22
DB4
ADB8
M
22
M
M
24
DB5
ADB9
M
24
M
M
26
DB6
ADB10
M
26
M
M
28
DB7
ADB11
M
28
M
M
BASP
M
30
M
M
M
BASPA
32
M
M
30
32
B-4
Bottom connector
M
2
d
EWA 4NEB 811 6148-02
S5-115F Manual
B.4.2
Slot Assignments
Connector Pin Assignments of the Symmetrical and Serial CC Interface
Modules
Slot 7 (left) in EU2/3
Top connector
2
Bottom connector
z
b
+5V
M
4
PESP
d
2
+5V
z
b
d
+5V
M
M
4
6
RESET
ADB0
6
8
MRD
ADB1
8
10
MWR
ADB2
10
12
RDY
ADB3
12
+5V
+5V
14
DB0
ADB4
+5V
14
+5V
+5V
16
DB1
ADB5
+5V
16
+5V
+5V
18
DB2
ADB6
M
18
RESETA
NAU
20
DB3
ADB7
M
20
22
DB4
ADB8
M
22
M
M
24
DB5
ADB9
M
24
M
M
26
DB6
ADB10
M
26
M
M
28
DB7
ADB11
M
28
M
M
30
BASP
M
30
M
M
32
M
BASPA
32
M
M
EWA 4NEB 811 6148-02
B-5
Slot Assignments
B.4.3
S5-115F Manual
Connector Pin Assignments of the Asymmetrical IM 305 / IM 306
Interface Modules
Top connector
2
z
b
d
+5V
M
+5V
PESP
+5V
4
6
RESET
ADB0
RESETA
8
MRD
ADB1
F0
10
MWR
ADB2
F1
12
RDY
ADB3
F2
14
DB0
ADB4
F3
16
DB1
ADB5
F4
18
DB2
ADB6
F5
20
DB3
ADB7
F6
22
DB4
ADB8
F7*
24
DB5
ADB9
F8**
26
DB6
ADB10
28
DB7
ADB11
PEU
30
M
BASP
ASF
32
M
M
ASG
*
**
B-6
Only in EU1, EU2 and EU3
Only in EU1
EWA 4NEB 811 6148-02
S5-115F Manual
B.5
Slot Assignments
Connector Pin Assignments of the ER 701-3 Subrack
Power supply
Top connector
a
Bottom connector
b
a
1
M
1
M
2
+5V
2
+5V
3
+5V
3
+5V
4
+5V
4
+5V
5
+5V
5
+5V
6
+5V
6
M
7
+5V
7
M
8
M
8
9
M
9
M
10
M
10
NAU
11
UBATT
11
M
12
M
12
BAU
13
M
13
b
14
M
14
RESETA
15
RESETA
15
M
16
M
16
17
RESET
17
18
M
18
19
BAU
19
20
M
20
21
21
22
22
23
NAU
24
23
24
25
PEU
25
26
M
26
27
DSI
27
28
28
29
29
30
30
31
31
32
M
M
EWA 4NEB 811 6148-02
32
M
B-7
Slot Assignments
S5-115F Manual
Slots 0a to 6a
Top connector
Bottom connector
z
b
2
+5V
M
4
TAKT
PESP
UBATT
4
6
RESET
ADB0
ADB12
6
8
MRD
ADB1
ADB13
8
10
MWR
ADB2
ADB14
10
12
RDY
ADB3
ADB15
12
14
DB0
ADB4
IRA
14
NAU
16
DB1
ADB5
IRB
16
BAU
18
DB2
ADB6
IRC
18
20
DB3
ADB7
IRD
20
22
DB4
ADB8
BAU
22
24
DB5
ADB9
NAU
24
26
DB6
ADB10
PEU
26
28
DB7
ADB11
DSI
28
30
BASP
32
M
d
2
B-8
+5V
M
d
BASPA
32
M
Bottom connector
z
b
+5V
M
4
b
30
Slot 7a
Top connector
2
z
d
2
PESP
+5V
4
z
b
+5V
M
d
M
6
RESET
ADB0
ADB12
6
8
MRD
ADB1
ADB13
8
10
MWR
ADB2
ADB14
10
12
RDY
ADB3
ADB15
12
+5V
+5V
14
DB0
ADB4
+5V
14
+5V
+5V
16
DB1
ADB5
+5V
16
+5V
+5V
18
DB2
ADB6
M
18
RESETA
NAU
20
DB3
ADB7
M
20
22
DB4
ADB8
M
22
M
M
24
DB5
ADB9
M
24
M
M
26
DB6
ADB10
M
26
M
M
28
DB7
ADB11
M
28
M
M
30
BASP
M
30
M
M
32
M
BASPA
32
M
M
EWA 4NEB 811 6148-02
S5-115F Manual
Slot Assignments
Slots 0b to 7b
Top connector
a
b
1
M
2
+5V
3
PESP
4
ADB0
5
RESET
6
ADB1
7
MRD
8
ADB2
9
MWR
10
ADB3
11
RDY
12
ADB4
13
DB0
14
ADB5
15
DB1
16
ADB6
17
DB2
18
ADB7
19
DB3
20
ADB8
21
DB4
22
ADB9
23
DB5
24
ADB10
25
DB6
26
ADB11
27
DB7
28
BASP
29
30
M
31
ASG
32
F0 ... F7
EWA 4NEB 811 6148-02
B-9
Slot Assignments
B.6
Legend for Connector Pin Assignment
+5V
M
UBATT
Supply voltage for all modules
GND (0 V reference potential) for +5 V
3.4 V battery voltage for RAM backup
RESET
RESETA
BAU
Reset pulse for all modules
Reset pulse request (triggers a reset pulse or extends it)
Battery failure; the signal is generated if the battery is not
plugged in or if it is flat.
Power failure; the signal is generated shortly before the supply
voltage fails.
I/Os not ready; the signal is generated if the power supply in the
expansion unit fails.
Data security; the signal is generated with a delay after NAU and,
in the case of some modules, switches the battery-backed RAM to
standby hardware.
Command output disable; the signal is generated when the CPU
stops. The signal disables digital outputs.
NAU
PEU
DSI
BASP
MRD
MWR
Memory Read; the signal is generated at every Read access.
Memory Write; the signal is generated at every Write access.
RDY
PESP
Ready; acknowledgement signal for MRD or MWR access
Memory I/O select; the signal is generated at every I/O access.
ASF
Interface free; the central controller is operated without an
interface module; a terminating resistor must be plugged into the
IM slot.
Interface module plugged in
ASG
IRA, IRB
PRAL
B-10
S5-115F Manual
Interrupt A, B; hardware interrupt signals from intelligent I/O
modules
Process interrupt; hardware interrupt signal from a digital I/O
module
HOLDA1, 2, 3
S5 bus enable for the intelligent closed-loop control module
HOLD
F0 to 8
ADB0 to 15
DB0 to 7
S5 bus access by the intelligent closed-loop control module
Enabling lines for the I/O modules
Address bus
Data bus
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
C
Prototype Test Certification
EWA 4NEB 811 6148-02
S5-115F Manual
C
Prototype Test Certification
Prototype Test Certification
All the modules of the S5-115F have been subjected to prototype tests by the Technical
Inspectorate of Bavaria (TÜV Bayern).
All the certificates issued in connection with the prototype tests are in German, and can be
obtained from us on request. Please direct inquiries to:
Siemens AG
Abt. AUT 125
c/o Mrs. Bleicher
Postfach 1963
D-92209 Amberg
Fed. Rep. of Germany
Fax: 09621/803146
EWA 4NEB 811 6148-02
C-1
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
D
SIEMENS Addresses Worldwide
EWA 4NEB 811 6148-02
S5-115F Manual
D
Siemens Addresses Worldwide
SIEMENS Addresses Worldwide
European Companies and Representatives
Austria
Siemens AG Österreich
Vienna
Bregenz
Graz
Innsbruck
Klagenfurt
Linz
Salzburg
Federal Republic
of Germany (continued)
Hanover
Leipsic
Mannheim
Munich
Nuremberg
Saarbrücken
Stuttgart
Belgium
Siemens S.A.
Brussels
Liège
Siemens N.V.
Brussels
Antwerp
Gent
Finland
Siemens Osakeyhtiö
Helsinki
Bulgaria
RUEN office of the
INTERPRED corporation,
agency of
Siemens AG Sofia
Sofia
Czechoslovakia
EFEKTIM
Engineering Consultants,
Siemens AG
Prague
Denmark
Siemens A/S
Copenhagen, Ballerup
Hojbjerg
Federal Republic
of Germany
Branch offices of
Siemens AG
Berlin
Bremen
Cologne
Dortmund
Düsseldorf
Essen
Frankfurt/Main
Hamburg
EWA 4NEB 811 6148-02
France
Siemens S.A.
Paris, Saint-Denis
Lyon, Caluire-et-Cuire
Marseilles
Metz
Seclin (Lille)
Strasbourg
Great Britain
Siemens Ltd.
London, Sunbury-onThames
Birmingham
Bristol, Clevedon
Congleton
Edinburgh
Glasgow
Leeds
Liverpool
Newcastle
Greece
Siemens A.E.
Athens
Thessaloniki
Hungary
SICONTACT GmbH
Budapest
Iceland
Smith & Norland H/F
Reykjavik
Ireland
Siemens Ltd.
Dublin
Italy
Siemens S. p. A.
Milan
Bari
Bologna
Brescia
Casoria
Florence
Genoa
Macomer
Padua
Rome
Turin
Luxemburg
Siemens S.A.
Luxembourg
Malta
J.R. Darmanin & Co., Ltd.
Valletta
Netherlands
Siemens Nederland N.V.
The Hague
Norway
Siemens A/S
Oslo
Bergen
Stavanger
Trondheim
Poland
PHZ Transactor S.A.
Warsaw
Gda sk-Letnica
Katowice
Portugal
Siemens S.R.A.L.
Lisbon
Faro
Leiria
Porto
D-1
Siemens Addresses Worldwide
Romania
Siemens birou de
consultaţii tehnice
Bukarest
Spain
Siemens S.A.
Madrid
Sweden
Siemens AB
Stockholm
Eskilstuna
Gothenborg
Jönköping
Luleå
Malmö
Sundsvall
S5-115F Manual
Switzerland
Siemens-Albis AG
Zürich
Bern
Siemens-Albis S.A.
Lausanne, Renens
Turkey
ETMAŞ
Istanbul
Adana
Ankara
Bursa
Izmir
Samsun
USSR
Siemens AG Agency
Moscow
Yugoslavia
General Export
OOUR Zastupstvo
Belgrade
Ljubljana
Rijeka
Sarajewo
Skopje
Zagreb
Non-European Companies and Representatives
Africa
Algeria
Siemens Bureau
Alger
Algier
Angola
Tecnidata
Luanda
Burundi
SOGECOM
Bujumbara
Egypt
Siemens Resident
Engineers
Cairo-Mohandessin
Alexandria
Centech
Zamalek-Cairo
Ethiopia
Addis Electrical
Engineering Ltd.
Addis Abeba
D-2
Ivory Coast
Siemens AG
Succursale Côte d'Ivoire
Abidjan
Namibia
Siemens Resident
Engineer
Windhoek
Kenya
Achelis (Kenya) Ltd.
Nairobi
Nigeria
Electro Technologies
Nigeria Ltd. (Eltec)
Lagos
Libya
Siemens AG
Branch Office Libya
Tripoli
Mauritius
Rey & Lenferna Ltd.
Port Louis
Morocco
SETEL
Société Electrotechnique
et de Télécommunications S.A.
Casablanca
Mozambique
Siemens Resident
Engineer
Maputo
Rwanda
Etablissement Rwandais
Kigali
Simbabwe
Electro Technologies
Corporation (Pvt.) Ltd.
Harare
South Africa
Siemens Ltd.
Johannesburg
Cape Town
Durban
Middleburg
Newcastle
Port Elizabeth
Pretoria
EWA 4NEB 811 6148-02
S5-115F Manual
Sudan
National Electrical &
Commercial Company
(NECC)
Khartoum
Swaziland
Siemens (Pty.) Ltd.
Mbabane
Tanzania
Tanzania Electrical
Services Ltd.
Dar-es-Salaam
Tunesia
Sitelec S.A.
Tunis
Zaire
SOFAMATEL S.P.R.L.
Kinshasa
Zambia
Electrical Maintenance
Lusaka Ltd.
Lusaka
Mining Projects:
General Mining
Industries Ltd.
Kitwe
Siemens Addresses Worldwide
Brazil
Siemens S.A.
São Paulo
Belém
Belo Horizonte
Brasília
Campinas
Curitiba
Florianópolis
Fortaleza
Porto Alegre
Recife
Rio de Janeiro
Salvador de Bahía
Vitoria
Canada
Siemens Electric Ltd.
Montreal, Quebec
Toronto, Ontario
Chile
INGELSAC
Santiago de Chile
Colombia
Siemens S.A.
Bogotá
Baranquilla
Cali
Medellín
Costa Rica
Siemens S.A.
San José
America
Argentina
Siemens S.A.
Buenos Aires
Bahía Blanca
Córdoba
Mendoza
Rosario
Bolivia
Sociedad Comercial e
Industrial Hansa Ltd.
La Paz
EWA 4NEB 811 6148-02
Ecuador
Siemens S.A.
Quito
OTESA
Guayaquil
Quito
Honduras
Representaciones Electroindustriales S. de R.L.
Tegucigalpa
Mexico
Siemens S.A.
Mexico City, D.F.
Culiacán
Gómez Palacio
Guadalajara
León
Monterrey
Puebla
Nicaragua
Siemens S.A.
Managua
Paraguay
Rieder & Cia., S.A.C.I.
Asunción
Peru
Siemsa
Lima
Uruguay
Conatel S.A.
Montevideo
Venezuela
Siemens S.A.
Caracas
Valencia
United States
of America
Siemens Energy &
Automation Inc.
Alpharetta, Georgia
El Salvador
Siemens S.A.
San Salvador
Guatemala
Siemens S.A.
Ciudad de Guatemala
D-3
Siemens Addresses Worldwide
Asia
Bahrain
Transitec Gulf
Manama
or
Siemens Resident Engineer
Abu Dhabi
Bangladesh
Siemens Bangladesh Ltd.
Dhaka
Hong Kong
Jebsen & Co., Ltd.
Hong Kong
India
Siemens India Ltd.
Bombay
Ahmedabad
Bangalore
Calcutta
Madras
New Dehli
Secundarabad
Indonesia
P.T.Siemens Indonesia
Jakarta
P.T. Dian-Graha Elektrika
Jakarta
Bandung
Medan
Surabaya
Iran
Siemens Sherkate
Sahami Khass
Teheran
Iraq
Samhiry Bros. Co. (W.L.L.)
Baghdad
or
Siemens AG (Iraq Branch)
Baghdad
Japan
Siemens K.K.
Tokyo
D-4
S5-115F Manual
Jordan
Siemens AG (Jordan
Branch)
Amman
or
A.R. Kevorkian Co.
Amman
Korea (Republic)
Siemens Electrical
Engineering Co., Ltd.
Seoul
Pusan
Kuwait
National & German
Electrical and Electronic
Service Co. (INGEECO)
Kuwait, Arabia
Lebanon
Ets. F.A. Kettaneh S.A.
Beirut
Malaysia
Siemens AG
Malaysian Branch
Kuala Lumpur
Oman
Waleed Associates
Muscat
or
Siemens Resident Engineers
Dubai
Pakistan
Siemens Pakistan
Engineering Co., Ltd.
Karachi
Islamabad
Lahore
Peshawer
Quetta
Rawalpindi
People's Republic of China
Siemens Representative Office
Beijing
Guangzhou
Shanghai
Philippine Islands
Maschinen & Technik Inc.
(MATEC)
Manila
Qatar
Trags Electrical Engineering
and
Air Conditioning Co.
Doha
or
Siemens Resident Engineer
Abu Dhabi
Saudi Arabia
Arabia Electric Ltd.
(Equipment)
Jeddah
Damman
Riyadh
Sri Lanka
Dimo Limited
Colombo
Syria
Siemens AG
(Damascus Branch)
Damascus
Taiwan
Siemens Liaison Office
Taipei
TAI Engineering Co., Ltd.
Taipei
Thailand
B. Grimm & Co., R.O.P.
Bangkok
United Arab Emirates
Electro Mechanical Co.
Abu Dhabi
or
Siemens Resident Engineer
Abu Dhabi
Scientechnic
Dubai
or
Siemens Resident Engineer
Dubai
EWA 4NEB 811 6148-02
S5-115F Manual
Siemens Addresses Worldwide
Asia (continued)
Yemen (Arab Republic)
Tihama Tractors &
Engineering Co.o., Ltd.
Sanaa
or
Siemens Resident Engineer
Sanaa
Australasia
Australia
Siemens Ltd.
Melbourne
Brisbane
Perth
Sydney
New Zealand
Siemens Liaison Office
Auckland
EWA 4NEB 811 6148-02
D-5
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
Abbreviations
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
S5-115F Manual
EWA 4NEB 811 6148-02
Abbreviations
Abbreviations
Abbreviation
Term
AI
Analog input module
AQ
Analog output module
BASP
Command output disable
BAU
Battery failure
BCD
Binary coded decimal
BE
Block end
BEC
Conditional block end
BSTACK
Block stack
CC
Central controller
CH AQ
Check analog output module
CH DQ
Check digital output module
CP
Communications processor
CPU
Central processing unit
CSF
Control system flowchart
DB
Data block
DI
Digital input module
DL
Lefthand byte of a data word
DQ
Digital output module
DR
Righthand byte of a data word
DW
Data word
EEPROM
Electrically erasable and programmable read-only memory
EPROM
Erasable (with UV light) programmable read-only memory
ET
Electronic terminator
EU
Expansion unit
FB
Function block
FW
Flag word
FY
Flag byte
IB
Input byte
IM
Interface module
I/O
Input/output (module)
1
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Abbreviations
2
S5-115F Manual
Abbreviation
Term
I/O ETV
Input/output error tolerance variant
IP
Intelligent input/output module
ISR
Interrupt service routine
ISTACK
Interrupt stack
IW
Input word
JC
Conditional jump
JU
Unconditional jump
KS
Character
KF
Fixed-point number
KG
Floating-point number
KH
Hexadecimal number
KM
Bit pattern
KN/KT
Channel number/channel type
KT
Time
KY
Byte; 2 binary absolute numbers 0 to 255
KC
Count
LAD
Ladder diagram
LPLZ
Logical program counter
NOP
No operation
OB
Organization block
OR
Overall reset
OS
Operating system
PB
Program block
PLC
Programmable logic controller
PEU
I/Os not ready
PII
Process output image
PIQ
Process output image
PL
Parallel link
PROM
Programmable read-only memory
PS
Power supply
PT
Printer
EWA 4NEB 811 6148-02
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaa
S5-115F Manual
EWA 4NEB 811 6148-02
Abbreviations
Abbreviation
Term
PW
Peripheral word
PY
Peripheral byte
QB
Output byte
QVZ
Timeout
QW
Output word
RB DI
Readback digital input module
RAM
Read/write memory
RLO
Result of logic operation
RN
RUN
ROM
Read-only memory
SAC
Step address counter (memory address)
SB
Sequence block
SINEC
Siemens Network Communication
ST
STOP
STL
Statement list
TRAF
Transfer error
UAW
Interrupt condition code word
ZYK
Scan (cycle) time exceeded
3
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
Index
EWA 4NEB 811 6148-02
S5-115F Manual
Index
Index
A
Acceptance test
10-68
Access
- in the AI address area
- operation
10-25
3-12
3-75
- permissible
- to I/O modules
- type
10-11
10-11
10-10, 1-38
Address (cont.)
- setting
- on the IM 306
- structure
- switches
Addressing
- communications module CP 523
4-22, 5-1
7-36, 7-47,
10-54
5-1
5-3, 5-4
4-19, 5-1
7-36
Accessories
ACCUM 1
2-12, 8-42
3-10, 3-12,
3-31, 3-49
ACCUM 2
Accumulator
3-10, 3-12,
3-31, 3-49
2-4
- structure
Accuracy of user times
Acknowledgement delay
3-10
10-9
4-3
Activity bit
Actual operand
6-2, 6-5,
6-7
2-16, 2-17,
- module 460
- module 463
Algorithm
1-43
1-43
6-15
Actual parameter
3-59 to 3-62,
3-64
5-4
Analog channels, unused
- I/O type assignment
Analog input
10-51
2-5, 2-10,
Actuators
- fixed slot addressing
- panel
- slot
5-2
5-2, 5-3
10-53
- variable
5-2, 10-54
- absolute deviation
1-11
- access to address area
- comparison error
- intermittent signal
3-12
10-63
1-50
AI
1-3, 1-4,
3-27, 3-31,
3-34, 9-3,
10-2, 10-8,
10-15, 10-29,
10-32
- connecting
- fuses
Adapter casing
- for printed circuit boards
Addition
Additional information
Address
- analog modules
- assignment in the I/O area
- counter
3-27, 9-5,
10-37, 1-11,
6-5
Analog input module
6-1, 10-39,
10-40, 10-43,
10-46, 10-47
10-29
4-19
3-14, 8-40
- 460-7LA12
- 463-4UA11
- AI 460
8-26
8-28
1-3, 10-37
3-3, 8-41,
8-42
3-30
- function selector switch
- startup
- AI 463
6-10
6-8
1-3, 10-37
5-10
5-1
5-11
- address setting
- front connector terminal
assignment
- switches
6-14
6-11
6-15
- grid
3-39, 5-5,
5-6
10-53, 10-55
- channel type
- checking
- safety-related use
6-34, 1-47
10-46
6-1, 6-33
- meaning
- range
- analog inputs
5-10
2-10
2-10
- type 13
- type 14
- type 15
10-39
10-40
10-43
- digital inputs
- digital outputs
2-10
2-10
- type 16
Analog input /output
10-46
3-75
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
1
Index
Analog input signal
- intermittent
S5-115F Manual
Assignment form
- non-intermittent
Analog I/O modules
- configuring
Analog module Initialization form
10-37
Analog module
1-3, 10-52,
10-54, 1-30
5-1
- addresses
Analog output
Analog output module
5-12, 10-25,
10-26
10-38
6-34
Assigning parameters to the
PID algorithm
Automatic mode
Auxiliary function
6-18
6-16
1-23, 1-53,
Auxiliary programs
Availability
1-56
5-12
10-57
2-10, 3-27
3-27, 6-28,
10-40, 10-43
- 470-7LA12
- 470-7LB12
- 470-7LC12
8-31
8-33
8-35
- connecting loads
- to current and voltage
outputs
6-29
- of electronic control systems
- of the S5-115F programmable
controller
10-50
6-32
- intermittent
Analog test value
Analog value
6-33
1-11
5-8, 10-10,
9-4
B
Backup
- battery
3-38
- type 18
Analog output signal
Analog signal
9-3
2-12, 8-9,
8-37, 8-43,
10-1
- changing battery
- data
Basic menu
4-2
4-13
1-7, 1-13,
Basic operation
1-16
2-2, 2-3,
3-1, 3-38,
10-38, 10-47,
10-50, 10-68,
1-11, 6-1,
Basic setting Default
Basic setting
1-7
- matching blocks
6-4, 6-6, 6-7
6-37, 6-4,
6-5
Battery
- change
- compartment
4-13
1-2
2-2
- outputting
- reading in
- representation
6-42, 6-8
6-37, 6-4
6-5, 6-8
- scaled
- scaling
- sensor
6-5
6-37
10-43, 10-44
- fault
- indicator
BERO
5-18
4-2
2-2,
Analysis
- ”BSTACK”
- ”ISTACK”
- ISTACK display
5-1
5-1
5-3
5-1
Binary inputs
Binary measured value
Binary number
8-9 to 8-13
9-5
6-16, 6-22
2-20
AND-before-OR operation
AND operation
Application
3-4
3-3
7-1
Binary outputs
- safe
Binary scaler
9-6
9-6
3-73
- requiring official approval
- regulations
Areas of application
1-1
1-1
1-1
Binary signal
Bit
- test operations
6-31
Arithmetic blocks
Arithmetic operations
- overview
6-3
2-9
3-30
- transfer
BLD 255 operation
1-34
2-8, 3-1,
3-39
3-42, 3-62
- failure
1-2, 4-2,
4-8, 4-13,
5-3
2-9, 3-44
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
2
EWA 4NEB 811 6148-02
S5-115F Manual
Block
- address
- address list
- body
- calls
- conditional
Index
6-1
5-12
C
Cabinet installation
3-18
5-10, 2-6,
2-18, 3-32,
3-36
2-7
Cable
- adaptation of the length
- duct
- shielding
3-25
3-42
3-46
10-13, 5-3,
5-4
3-34
Call
- disable
- interval
2-11
10-8, 2-10,
- operation, overview
- unconditional
- code
3-32
3-33
2-14
Call statement
2-11, 6-11,
6-15
2-17
- description
- directory
- end
10-14, 6-25
1-24
3-32, 3-37
Cause of F error
Causes of interruption
CC 0
1-22
4-8
3-69
- conditional
- unconditional
- header
3-32, 3-38
3-32, 3-37
2-4, 2-6,
CC 1
Central controller
- rack
3-69
3-1, 10-53
3-4
Central functions
Central processing unit (CPU)
- integral
2-7, 2-14,
5-3, 5-9
6-1
5-13
1-2, 1-3,
2-1, 2-9,
- method of representation
- overview
- structure
2-3
6-1
2-7
- description
- length
- name
- operation
2-7
3-40
3-1
Central rack
Certificate
Changing battery
- parameter
- stack
- overflow
2-15, 3-64
2-5, 5-8
5-3, 5-4
Channel
- number
- pointer
- transfer
- transfer block
5-3
5-13
6-9
- types
- comparison
Boolean logic operations
2-5, 2-6
2-6
2-9, 3-1,
Box terminal
Break key
3-2, 3-19,
3-26
3-29
1-7
Broadcasts
BSTACK
Burner control
Bus line
Bus terminal BT 777
Byte
- high
- low
7-22
10-68, 4-5,
5-1, 5-7,
5-8
9-4
8-11
- type
- for analog input modules
Characteristics field
CH DQ channel number
Check
- analog outputs
- pulse
- value
Check DQ Checking digital output
Checking
- analog output modules
7-1, 7-11
- digital output modules
3-10
- output module
2-10, 4-3,
8-9
2-9
3-2
1-1
4-2
6-7, 6-8,
6-22, 6-23
10-37, 10-41,
10-44,
1-44, 1-47,
1-49, 1-51,
6-5, 6-8
6-34
1-29, 1-32,
1-36
1-40
10-40
9-6
9-5, 1-49
10-38
10-43
10-22, 10-24
10-37
1-47
3-10
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
3
Index
S5-115F Manual
Checking (cont.)
- relay digital output
10-40
Condition code generation (cont.)
- for conversion operation
- modules
Circuit diagram
- conversion
Circuit interruption voltage
10-35, 10-43
2-2
2-4
8-14, 8-15
- for digital logic operation
- for shift operation
Conditions of inspection
Configuration I/O modules
Clock
Clock-pulse generator
Code converter
3-74
3-74
6-2
Configuration
- block
- centralized
Code switch
Coding
- element
10-55
- time
Cold RESTART
- after power failure
8-27, 8-30
4-8
2-12
- after power on
COM 115F
- configuration of error message
4-9
- configure
- document
- files
3-71
3-70
3-71
10-73
1-27
1-4, 3-4,
3-21
10-67, 1-9,
1-19, 1-27,
- data
3-13
1-33, 1-37
1-9
- transferring to the PLC
- data block
1-56, 1-57
- delete
- display the directory
- load
1-23
1-23
1-23
1-1, 1-2
1-2
1-1
- print out
- transfer
- DB
1-23
1-23
1-8, 1-27
- main menu
Command
- interpreter
1-7, 1-8
7-32
1-6
- directory
- print
- distributed
1-24
1-52
1-4, 3-4,
- window
Communications
- mode
1-32
7-1, 7-10
7-34, 7-44
3-22
3-24
3-26
- settings on the IM 304
- settings on the IM 314
- interpretive
- transparent
- module
7-44
7-44
1-45
- with IM 304/IM 314
- field
3-23
1-29, 1-30,
1-33
- CP 523
- setting
- parameter setting
8-37
7-35
1-13
- I/O type
- menu
1-29, 1-30
1-4, 1-5,
1-30
- processor
1-1, 3-75,
6-10
1-4, 3-10,
- hierarchy
- printout
- rules
1-3
1-54
1-57
3-75, 6-9
7-1, 10-69
1-5
- screen for I/O type 1
Configured data
- printout
Configuring
1-37
1-2
1-52
7-19
10-63, 5-10
2-3, 3-29,
3-69
- analog I/O modules
- I/O modules
Connecting
6-34
1-29
- CP 523
- CP 530
- systems
Comparison
- error
- operation
- overview
- processing
Compensating box
3-29
3-29
6-4
- cable
3-19, 3-21,
3-23
6-6
Component test
Condition code generation
- for arithmetic operation
1-8, 5-12
3-69
3-70
- sensor
- several S5-115Fs with S5 PLCs
of the U range
6-3, 6-11
- transducer
6-8
- resistance thermometers
7-22
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
4
EWA 4NEB 811 6148-02
S5-115F Manual
Connection
- fault-tolerant
Index
7-2
Coordination
- byte
- line voltage
- nonsafety-related
- safety-related
- to power supply for
4-2
7-2, 7-3
7-2
programmers
- types
- with IM 304/314 interface
3-47
7-11
- command
- softkey commands
Correction
modules
Connector for PG or SINEC L1-LAN
Connector pin assignment
3-23
4-3
- algorithm
- increment
- rate algorithm
- of analog input/output modules
- of the CPU
- of the ER 701-3 subrack
- structure
7-4, 7-5,
7-6, 7-19,
7-21, 1-3
7-6
Copy
B-3
B-2
B-7
Count
- loading
Counter
1-35
1-32
6-17
6-16, 6-17
6-17
2-16, 3-27
3-25
2-4, 2-10
- of interface modules
- power supply
Construction of address lists
B-4
B-1
5-3
- count down
- count up
- operation
3-25
3-25
2-9, 3-25,
Contact
- positive-action
Control
10-36
- overview
- resetting
3-62
3-62
3-28
- algorithm
- bits
- circuit
6-18, 6-20
5-2
3-31
- direct
- indirect
- loop
10-29 to 10-31
10-29, 10-32
10-50, 6-19
- panel
- parameters
- processing unit
3-16, 3-17
6-15
CP 523
7-34, 1-43,
1-45, 3-12,
6-10
- LEDs on the control panel
- program
- structured
4-7
CP 530
CPU Central processing unit
CPU
7-12
2-9
- scanning
- setting
Coupling relay
3-26
3-27
10-11, 10-31,
10-33, 10-34,
10-36
CP 523 Communications processor
- address assignment
- connector pin assignment
- operator functions
1-6, 5-5
5-10
B-2
4-3, 4-4
- pulse
- System Flowchart (CSF)
Controlled system
10-34
2-2, 2-3, 2-6
6-15, 6-20
Controller
- DB
- information
- setting
6-18
6-19
6-20
- RAM
- schematic representation
Crimp-snap-in
- connections
5-10
2-11
3-29
8-42
- structure
Conversion
- blocks
6-16
6-1
6-2
Cross-reference lists
CSF Control System Flowchart
CSF
10-1
3-69
2-4, 2-9,
3-1, 3-51,
Current sensor
Cursor keys Key assignment
Cutout ability
10-41
3-69, 3-71
3-71
3-51
Cycle
- control
- time exceeded
10-27
5-13
4-3
Cyclic sampling
Cyclic scanning
6-41
6-28
- function
- operation
- condition code generation
- processing
2-3, 2-6
9-5
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
5
Index
S5-115F Manual
D
Data
- correction
- flow charts
- to be initialized
- traffic between the master
and the slave
- transmission
Data block (DB)
- address
- call
- calling
- DB 1
- print
- delete
10-69
10-1
1-31
Diagnostics
- functions
1-21
9-3
Digital input
2-5, 2-7, 2-8,
2-10, 10-17,
1-28
7-10, 10-16,
Digital input module
7-4
7-2
1-14, 1-23,
- 430-7LA12
- 434-7LA12
10-25, 1-34
8-10
8-11
2-5, 2-10,
2-18, 3-32,
3-37, 5-3,
- 435-7LB11
- 436-7LC11
- 482-7LF31
8-12
8-13
8-21
5-7
5-3
3-32
- check
- non-intermittent
- type 1
10-24
10-24
10-18
3-35
- type 2
- type 3
Digital input/output module
10-19
10-21
1-52
- generate
1-25, 3-32,
3-35, 3-36
3-32, 3-35,
- length
- load
3-36
5-3
1-26
- 482-7LF31
Digital input value
Digital logic operation
8-24, 8-25
6-16
3-46, 3-70
- number
- program processing
- transfer
1-37
2-19
1-26
- processing
Digital module
- addresses
3-46
1-3, 4-18
5-1
- used
Data communication equipment
DB Data block
10-13
7-47
1-54
- connection
- initialization form
Digital output
3-28
1-29
2-5, 2-10,
Dead time of interposing relay
Decrement
Default
10-30
3-52
1-7, 1-22,
- screen form
Define test block time
2-11
1-4, 1-6, 1-7
1-12
Delete
- menu
Design
- modular
Destination
- address
- slave
Destination slave number
- high-level protection
DI with interrupt capability
Discrepancy time
DI without interrupt capability
Discrepancy time
1-35, 1-38
1-25
2-1
10-12, 1-33,
1-34
1-15
1-16
- 482-7LA11
- 482-7LF11
- 482-7LF21
8-20
8-21, 8-23
8-22, 8-23
- 24 V, safety-related
- 220 V, safety-related
Digital output module
- 451-7LA11
- 454-7LB11
Digital output module (cont.)
10-29, 10-31,
10-40, 1-28
10-31
10-31
7-10, 10-16,
10-27, 10-28,
10-43
8-14
8-16
- 456-7LB11
- check
- non-intermittent
8-17
10-37
10-29
- requirements
- safety-related
- type 8
10-29
10-37
10-28
- type 9
- type 10
Digital representation
- of an analog value
- of a measured value
10-29
10-29
6-31
6-16, 6-22
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
6
EWA 4NEB 811 6148-02
S5-115F Manual
Digital words unused
- I/O type assignment
Dimension drawing
Index
10-51
Discrepancy (cont.)
- time
9-5, 10-7,
3-15, 3-16,
3-17
3-17
10-8, 10-10,
10-11, 10-25,
10-29,
1-8, 1-36,
casing
- mounting racks
Diode switching
3-16
3-15
10-31, 10-32,
1-38, 1-39,
1-56, 2-10,
5-10, 5-11,
Direct access
10-33
5-8, 5-9,
9-5, 10-2,
- long
10-5, 10-8,
10-24, 10-25,
10-63
- short
- short, for DIs without
interrupt capability
- modules with adapter casing
- modules without adapter
1-38, 1-39,
3-12, 6-4,
6-7, 6-22,
- short, for non-interrupt
DIs
- value
6-23
6-1, 6-5
10-10,
1-10, 3-12
10-10, 3-12
1-10
10-11
1-46, 1-47,
10-2
Display
- cause of F error
1-50
4-4
1-21
10-2
10-32
10-2
- generation operation
- signal states
Disturbance variable
3-38, 3-39
4-2
6-15, 6-16,
Direct read access
- to DI modules
Directory
10-24
Divider
Documentation
6-18
6-4
1-24
- display
- menu
DIR PLC
10-67, 4-5
1-24
5-5
DO operation
Down time
DQ address 126
3-35, 3-64
10-38
10-27
Disconnection facilities
Discrepancy
4-18
1-8, 2-5,
2-7, 2-8,
Duplication of addresses
10-55
E
9-5,
3-12, 5-16,
6-7
Early failures
Edge
- change
9-2
5-6, 9-5,
10-24
3-12, 6-5
1-46, 1-47,
- evaluation
- initialization
- trigger flag
EEPROM
3-72
10-26
4-3
1-27
1-50
1-47
1-47
EEPROM submodule
Electrical shock
Electromagnetic interference
2-12
3-41
3-46
2-7
2-8
2-7
Emergency OFF
- commands
- equipment
10-27
4-18
Enable
- functions
- operation
9-5
3-42
Enable/disable initialization
10-25
Direct control
- in OB 2
- in OB 13
- intermittent
- in the user program
- analysis
- criterion
- absolute
- relative
- interval
- long
- short
5-12
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
7
Index
S5-115F Manual
Entry
- fields
1-8
- function
- illegal
- in the Error DB
Entry DB
4-5
1-8
5-10
4-6
4-6, 10-25,
10-27, 10-63,
10-65,
1-38, 1-49,
EPROM
- submodule
Equipotential bonding
1-27
2-12
3-44, 6-29
5-12, 5-14,
5-15, 5-16
- conductor
- in the case of distributed
configurations
Error (cont.)
- response
1-8, 2-7,
- routine
3-44
5-15
3-45
- central
- signalling
- indicated by LEDs
- accumulation
- address
5-17
5-5, 5-6
- stack
- tolerance variant
I/O modules error tolerance
10-58, 5-15
10-57, 10-58
- determining
- analysis
- bit
5-5
10-63
6-7, 6-22,
variant
Evaluation of error DB
Exec key
5-16
1-7
- bits/words
- buffer
6-23
5-14
5-15
Execution
- of the operation
- time
3-52
2-9, 2-10,
9-5, 10-58
10-13, A-1,
5-10
- time component
Expansion
Error
- bursts
- DB
5-5
10-7
10-8
- block 1
- error entry
- evaluation
10-69
5-14
5-16
- memory area 0
- transfer
- detection
10-59
7-11
5-10
3-6, 3-8,
3-10, 5-2,
8-3, 8-4,
- diagnostic
- entry
- in error DBs
1-21, 5-1
4-6, 5-14
5-14
8-5, 8-38,
8-40, 10-54
- group
- ID
- information
7-39, 5-16
3-39
4-13
F
- line
- message
1-32
5-9, 10-63,
A-1
5-15
- occurrences
- distribution
Failsafe characteristics
- of the CP 523
1-56, 1-57
1-58
False interrupts
Fastening screw
Fault-voltage-operated circuit breaker
diskettes
- PLC interface
- message frame
1-59
1-59
7-11, 7-37
FB
- integrated
FB 250 ANEI Function block
5-13
- message text
7-39
FB 252 BLUE
FB 253
FB 253 MBXT
6-10
7-32, 6-10
7-32
FB 254
FB 255 DEPA
6-11
6-14
- COM 115F
- COM 115F configuration
- EPROM function
- occurring when using
- capability
- unit (EU)
1-4
1-4, 2-2,
2-4, 3-4,
Failure
- characteristics
9-2
9-3
7-47
10-25
3-31
3-35
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
8
EWA 4NEB 811 6148-02
S5-115F Manual
Feedback
- address
Index
1-31, 1-33
- module
Feedforward injection of disturbance
variable
Field transfer
1-8, 9-5
Function block (cont.)
- integral
6-1
6-17
3-67
- integrated
- programming
- test
Function selector switch
2-17, 5-13
2-17
10-13, 10-38
File name
Filter program
1-6
7-10, 10-67,
10-68, 4-4
- AE 460
Fuses
- for sensors and actuators
6-10
8-44
4-19
Flag
2-10
5-9
2-16
G
Global wire-break limit
1-12
Flip-flop
Footer
FORCE
3-8, 3-9
1-6
4-3
Grounding
- of the cable shielding
- point
3-46
3-35
FORCE VAR
Formal operand
4-3
2-14, 2-17,
2-18, 3-59,
H
- area
- word
Handling menu
1-8, 1-36,
Hardware defects
High availability
1-53
5-10
7-31, 7-32
Four-wire transducer
3-62, 3-64,
3-69
6-8
Frame
- body
- header
7-11
7-11
I
Illegal access
3-75
3-29, 8-27,
8-32, 8-34,
8-36, 8-42
IM 306
IM 306 interface module
- addressing
B-6
10-49
3-30, 6-11
6-2
IM 324 Parallel interface
IM 324
- jumper settings for parallel
3-35, 6-7
6-12
interface
Image comparison
- cyclic
3-20
1-7
10-63
5-7
5-8, 7-37,
Increment
Incrementing sequence
Individual
3-52, 3-53
3-76
Front connector
- installation
- pin assignment
- terminal assignment
Front connector AE 463
- terminal assignment
Function
- BSTACK
Function block
7-41, 8-9,
10-14, 10-47,
2-5, 2-13,
2-15, 3-30,
- acceptance test
- error
- passivation
10-54
10-68, 10-70
5-17
10-57, 10-58,
10-59
- creating
- FB 250 ANEI
3-64
2-14
10-38, 1-12,
- test
Inductances
- installed
- FB 251
- FB 252
1-47, 6-4
6-8
7-44, 7-48
Initial address
Initial module address
Initialization
- FB 252 BLUE
- FB 253
- FB 253 MBXT
6-9
6-11
9-4
- form
- analog modules
- for CP 523 I/O type 13
1-30
1-45
- FB 254 SYNC
- FB 255 DEPA
10-9
6-14
- for digital modules
1-29
10-66
3-46
10-54
10-53
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
9
Index
S5-115F Manual
Initialization (cont.)
- form
Interface module (cont.)
- connector pin assignment
B-4
- I/O type 2
- I/O type 8
- I/O type 9
- I/O type 10
1-38
1-40
1-41
1-42
- functions
- IM 304
- IM 306
2-11
8-38
3-21, 5-2,
5-3, 8-39
- I/O type 13
- I/O type 14
- I/O type 15
1-43
1-46
1-49
- IM 314
- IM 324
- setting addresses
8-40
8-41
5-3
- I/O type 18
- of the operating system
- program
- screen form
- for I/O type 3
Initialize Operating system
Initialize operating system
Input
- field
1-51
2-10, 7-5
4-4
Interface relays
Intermittent
- signal
9-6
1-36, 1-39
1-38, 1-50
1-39
Internode
- communication
- message structure
7-14, 7-15,
7-22
1-8
- traffic
Interposing relay
5-3
10-29, 10-30,
10-32, 10-46
Interrupt
5-14, 10-9,
10-25
5-1
1-7
- frequency
- module
3-73
1-3, 2-2,
1-43, 1-44
- parameter
- signal
2-15
10-24, 10-37,
10-38
- block
- DI 434 Interrupt digital
inputs
2-12
- intermittent
- value
- digital
10-19, 10-46
5-6
6-16
- digital inputs DIs
- automatically initialized
- module, non-matching
10-25
10-26
3-12
- disable
Input/output I/O
Input/output bus
Installation
- analysis
- DI test
10-26, 2-10,
3-53, 5-3
10-27
3-34
3-30, 6-11
3-1
- edge byte
- enable
- enable byte
5-4
3-53, 5-3
5-4
- mechanical
- of the modules
Installation in a 19-in cabinet
3-12
3-12
- evaluation
- generation
- handling
8-4
2-8
1-10, 2-9,
- dimensions
Integration time
Intercall interval
Interconnecting the two subunits
3-18
8-27, 8-30
10-26
3-19
- inhibit
- input
- input module
3-54
10-7
5-15
5-4
2-4
- list
- messages
- module
10-68
7-22
5-14
1-3, 7-35
1-2, 1-4,
2-2, 3-1,
- processing
5-14, 10-9,
1-8, 1-12,
2-10
3-16, 3-17,
3-21 to 3-23,
7-9,
- register
- register byte
- request
5-12, 10-25
5-4
5-15, 5-3
8-38 to 8-40,
10-54, 10-56,
5-1
- response time
2-10, 6-11
- electrical
- of the front connector
- guidelines
Interface SINEC L1
Interface
- serial
Interface connector
Interface module (IM)
2-4
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
10
EWA 4NEB 811 6148-02
S5-115F Manual
Index
Interrupt (cont.)
- stack
5-1, 5-2
I/O type 10
I/O type 13
1-42
1-43
- synchronization
Interslave data traffic
Interval monitoring
I/O error
5-3
7-31
2-10, 3-54
7-40, 10-6,
I/O type 14
I/O type 15
I/O type 16
I/O type 18
1-46
1-49
1-50
1-51
10-57, 10-58,
10-66,
1-10, 1-54,
Isolation
- galvanic
ISTACK
3-32
1-21
5-10
10-58
10-57
J
- I/O ETV 2
- I/O ETV 3
- I/O ETV 4
10-57
10-57
10-57
- header
- number
Jump
- I/O ETV 3 and 4
- flowchart
- I/O ETV 3 with signal group 28
10-65
10-58
- I/O ETV 4 with signal groups 28
and 29
- process schematic
10-63
10-60
2-5, 2-14,
3-33 to 3-35,
3-37, 3-57,
- signal group
- using I/O ETV 3
- using I/O ETV 4
10-58
10-65
10-65
3-69 to 3-71,
5-7
3-57
I/O error tolerance variant (I/O ETV)
- I/O ETV 1
- with signal group 28
I/O ETV 1, 2, 3
I/O error tolerance variant
I/O module CP 523
I/O modules
- configuring
- error tolerance variant
- responding to errors
- serial
I/O type
- assignment
- unused analog channels
Job
- conditionally
- functions
- operations
- processing
10-58
1-19
1-10
10-57, 1-30
7-34
- to missing blocks
- to unloaded blocks
- response
- statement
- unconditionally
Jumper comb
5-12
7-39
3-32, 3-57
3-49
10-12, 10-13,
3-33, 3-34
10-13
6-19
2-17
3-32, 3-57
8-42
K
Key assignment
1-7
L
10-51
Label strips
3-27
- unused digital words
- characteristics
- characteristics field
- configuration field
10-51
10-16
1-29 to 1-31
1-29, 1-30
LAD Ladder diagram
Ladder diagram (LAD)
LAN fault
Library number
2-2, 2-3
9-4
2-14
- mixes
- nonsafety-related
10-52
6-33
- print
1-2
9-5
4-2
1-52
Licensing authority
Limit value processing
Line voltage connection
- safety-related
I/O type 1
I/O type 2
6-33
1-37
1-38
LIR operations
Load circuit
- grounding
10-12
3-33
3-35
- initialization form
I/O type 3
I/O type 8
1-38
1-39
1-40
Load operation
3-10, 3-12,
3-42, 3-61,
3-66
I/O type 9
1-41
- overview
3-61, 3-66
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
11
Index
S5-115F Manual
Load power supply
- units
10-59
3-33, 3-34
Matching blocks
Mean time to repair
Load resistance
8-32, 8-34,
8-36
Measured value
- binary
Measures against electromagnetic
interference
modules
Local area network SINEC L1
Location
6-29
Memory
- area
- illegal
- parameter
Logic operation
- binary
6-11
1-8, 2-3
3-59
- available
- capacity
- cell
2-12
2-12
3-73
Logical program counter
Lower limit
LPLZ Logical program counter
10-1
6-15
- internal
- program memory
- map
2-10
5-10, 2-15
LPLZ sequence
2-7, 3-39,
3-76
- CPU
- programming number
- requirement
5-10
1-26
2-14
- submodule
2-2, 2-3,
2-11, 2-12,
4-3, 1-8,
Loads
- connecting to analog output
10-26
M
253 MBXT
Mailbox
6-10
7-3, 7-14,
7-15,
7-19 to 7-22,
7-30 to 7-32,
- type
Message
6-4
9-4
6-16, 6-22
3-46
10-12
1-26
4-9, 4-10
- mode
- module
- address
10-69,
1-3, 1-57
1-17
- length
- structure
- system
7-21, 1-17
7-18
7-19
- structure for internode
communication
- text
- table
- print out
- transfer block FB 253
1-17
- number
- printout
Methods of representation
7-39, 7-40
7-44
2-1
Main circuits
Main menu of the printout package
Main message
10-32
1-52
5-14 to 5-16
Mode
- LEDs
- selector
4-4
4-4, 2-12,
Main switch
Malfunction
- analysis
- report
4-19
5-3
5-1
Modifying the program
Module
7-13
7-37, 10-63,
1-45
7-22
7-34, 2-18
3-39, 5-3,
5-4
2-20
Manipulated variable
Manual mode
6-16
6-16, 6-18, 623
- addressing
- delay
- installation
10-52
2-6, 10-2
3-12
Marking field
Master
- coordination byte
5-15
- intelligent
- test
- with adapter casing
1-4
1-8
- traffic
Master-slave
- data traffic
7-14
- dimension drawing
- without adapter casing
- dimension drawing
3-17
- data transfer
- principle
1-17
7-31
7-5
7-1
Monitoring
- program
- time
3-16
2-13
1-8, 2-5,
10-9, 10-65
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
12
EWA 4NEB 811 6148-02
S5-115F Manual
Mounting rack
- CR 700-0
- for central controller
- possible configurations
- CR 700-2F
- for central controller
- possible configurations
- dimension drawing
- ER 701-1
- for expansion unit 1
Index
2-2,
3-1 to 3-3,
O
3-5, 3-6, 3-8,
3-10, 3-12 to
3-15, 8-3 to
8-5
OB 2
ODGR Analog value matching
blocks
Off-delay
5-14
3-16, 3-62
8-3
3-3
- timer
OGR Analog value matching blocks
On-delay
8-3
3-2
3-15
8-4
- possible configurations
- ER 701-2
- for expansion unit 2
3-6
- possible configurations
- ER 701-3
- for expansion unit 3
3-8
8-4
8-5
OB Organization block
- latching
- reset
- timer
3-24
3-22, 3-23
3-23
3-23
3-16, 3-62
Operand
- areas
- digital
5-3
2-3, 3-10
3-44
Operating function
Operating mode
- changing
1-23
4-4
4-8
- settings
Operating system
- additional tasks
4-7
1-8
1-8
- possible configurations
Multi-mailbox system
Multiple connection CP
3-10
7-14, 7-30
- central functions
- function
- initializing
5-13
1-8
7-5
Multiple message
Multiplier
Multitest
5-4
6-3
10-63
- maximum execution time
- parameters
- run time
10-7
3-54
2-10
N
Nesting
2-5
- depth
Network SINEC L1
Network
2-5, 2-11
Operating voltage
Operation
- arithmetic
1-2
1-2
3-30, 3-31,
- condition code generation
- changing the memory
3-68
3-70
10-1
- fault-tolerant
- interrupt
- via SINEC L1 LAN
7-30
5-18
10-2
- DI
- JUR
- LIR
3-76
3-76
3-75
Noise immunity
Nominal current Power supply
Nominal range
Non-interrupt DI
8-2
- L PW
- L PY
- mnemonics
- other
3-75
3-75
2-21
3-38, 3-69
- direct access
Non-interrupt-generating DI module
- nonmatching
10-63
- output inhibit
- register
- sequence
4-3
5-3
3-76
”NOP” operation
Number
- format
3-39
10-26
6-17, 3-31
- set
2-10, 2-5,
2-14, 3-42
10-65
10-5
2-20
- supplementary
- of data paths
- representation
6-4, 6-5, 6-8
10-25
3-12
- supervised
2-3, 3-1,
3-42, 3-65
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
13
Index
S5-115F Manual
Operation (cont.)
- TIR
- TNB
- T PW
- T PY
Operator
- entry function
Parallel interface
3-75
3-75
3-13, 3-75
3-13, 3-75
10-67, 10-68
- functions
- of the CPU
- overview
4-3, 4-4
4-5
- programmer
- inputs
- panel
4-4
7-10
2-2
- settings on the IM 304
- settings on the IM 324
Parallel link
Parameter
- entry DB
- list
- setting
1-7,
2-2 to 2-4,
3-19,
3-20, 5-11,
8-41, 5-12
3-19
3-20
5-11
1-14, 4-4
2-17, 2-18,
3-40
1-35
- parameter
OP mode
Optocoupler
4-4
1-6
3-28, 7-45,
Parentheses
- level
Parenthesized structure
10-12
3-76
3-2
Partners
Passivation
OR-before-AND-operation
8-10, 8-17,
8-20
3-5
7-9
4-6, 9-4,
10-57, 10-59,
Ordinal number
Organization block
6-11
2-4, 2-5,
2-7 to 2-9,
10-63, 10-66,
1-38, 1-39,
1-42, 1-47,
3-1, 6-1
2-9
2-4
- AI modules
5-15, 5-17,
6-7
10-59
- OB 2
- OB 13
10-26
1-10, 2-11,
2-12, 6-13
- AQ modules
- DI modules with interrupt
capability
10-59
- OB 21
- OB 22
- OB 251
2-12
10-69, 2-12
3-1, 6-1,
- DQ modules
- error
- value
10-59
4-6, 5-15
10-59, 10-63,
- integral
- OB 1
- overview
Output
- modules
- RESET
6-15
2-8
4-4
- cycle time
- defining
- function
Output signal
- analog
- intermittent
Overall reset
6-32
10-29
10-66
- max.
- redundancy
- scan time
- STOP program
Overflow condition code
Overvoltages
3-70, 3-71
3-48
- switch
1-2, 1-3, 2-2
4-13, 10-61
Path name
PLC
P
Package selection
Page area
1-54
3-75
Parallel configuration
3-2, 3-3
10-59
6-7, 6-22
1-6
10-2
10-7
1-20
1-9
9-5
2-6
- RESTART
Peripherial access
Permanent enable
4-11
2-5
10-27
Permanent error
Permission
- to send
10-69
- to write
7-5
7-5
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
14
EWA 4NEB 811 6148-02
S5-115F Manual
Personal computer
PG Programmer
Index
1-2
PID
- algorithm
- assigning parameters
- calling the controller
- control algorithm
- typical application
- DB
PII
Pin assignment
- front connector
- socket connector of the CP 523
Plaintext
- error message
- line
- message
Point-to-point connection
1-3,
6-1, 6-15
6-18
6-19
Printout
- configuration
- configured data
- package
Process
- access
- image
6-20
6-15
5-8, 10-61
- input image
6-2
7-43
- interrupt
1-21
1-31
5-16
6-10
10-11
5-6, 5-7
5-5
7-19, 7-21,
10-5, 10-6,
10-70
- output image
- parameters already set
- response time
10-3
1-7
10-26
- signals
- handling
- stand-alone
5-5
10-59
2-10
6-3
4-2
3-48
1-2, 5-3, 5-4
- PS 951 connection
10-63
1-7, 5-12,
5-14, 5-15,
- I/O image
- accessing
- of the outputs
Power
- cable filter
- failure
POWER ON
- RESTART
Power supply module
3-14, 4-2,
4-3, 5-9
10-3, 10-10,
7-21, 10-6,
10-70
Mounting rack ER 701-1
Mounting rack ER 701-2
Potential difference
- connector pin assignment
- nominal current
2-4, 4-4,
4-5, 5-5,
5-10,
- interrupt scanning
- synchronization
Possible configurations
Mounting rack CR 700-0
Mounting rack CR 700-2F
- supply
5-13
7-9, 7-11,
7-34, 1-15
Polling time SINEC L1
Polling time
1-52
1-52
10-5, 10-26,
2-8, 2-10,
5-13, 6-1,
Polling list SINEC L1
Polling list
1-28, 1-54
- variable
Processing
- an arithmetic operation
4-3
3-31
- comparison operation
- for servicing process
- of interrupts
3-29
6-13
2-5
1-2, 3-31,
9-4
B-1
3-33
- status
- time-controlled
Processing for time interrupts
Organization block (OB 13)
1-32
6-15
Processor
Program
- block
2-4, 2-11
4-4
2-1, 4-2, 8-6
8-8
3-27
Print
- check
- menu
- mode
Printed circuit boards
1-28
7-34, 7-37
3-14
Printer
2-13
- counters
9-4,
2-13, 2-16,
3-35, 3-37
5-3
2-4,
3-2, 3-7,
3-39, 3-76
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
15
Index
S5-115F Manual
Program (cont.)
- cyclical
Proportional-action
Protection facilities
6-15
10-38
- error-detecting
- errors
- file
- memory
5-11
5-5
1-7
2-3, 2-10
- outputting operations
Protective ground conductor
Prototype test certification
Pulse
10-27
3-41
C-1
3-20
- operation
- parts
- processing
2-11
2-5
2-19
- extended
Pulse duty train
Pulse train
3-21
3-74
3-74
- time-driven
- with data block
- scanning
2-11
2-19
2-5, 2-10,
Pulse width
3-43
2-8, 2-10,
2-12, 4-1
2-5, 2-9
Quiescent state
- safe
QVZ Time-out
- scan time
- structure
- structured
2-6
2-4
3-32
R
- test
- time-driven
- trace
7-32, 4-1
10-38
5-7
- comparison-errors
- submodule
Range card
4-6
2-12
6-8, 10-39,
1-6, 2-12,
2-13, 7-32,
1-1, 1-2,
- module
Reaction-free
1-44, 1-47
1-3
1-5
1-6, 1-27,
3-38, 3-72
Read
- accesses
- loops
10-10
10-21
of the CPU
- connecting
- connection to power supply
7-32
10-66
3-47
Readback
- digital input
- function
10-37
10-31
- connectors
- display
- function
4-3
4-4
4-6, 7-2, 5-5
- handling
- input data
- number
10-66
7-10, 7-32
1-58
Reading
- cyclical
Readout
- operation
- operator
- entry
- function
4-6
- safety-related
Receive
- error
- frame
- cyclic
Programmer (PG)
- connected to the serial interface
- port
Programmer function Programmer
Programmer operator function
Programmer
Programmer (PG) (cont.)
Programming
10-67
4-4
7-1
2-7
Q
9-5
RAM
- inputs
- method
- result
- mailbox
- delete
9-6, 10-29
10-32
10-32
10-2
1-52
5-14
7-11
7-3, 7-6,
7-15, 7-16,
7-18, 7-32,
10-5, 10-65,
6-10
10-70
- linear
- number
- memory submodule
2-4
1-26
1-26
- permission
Redundancy structure
Register contents
5-3
1-7
5-12
- structured
2-5
- loading
- transferring
3-65
3-65
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
16
EWA 4NEB 811 6148-02
S5-115F Manual
Regulations for applications
requiring official approval
Relay
- digital output
- DQ 458-7LB11
- output
- output module
- 458-7LA11
Index
Result of the logic operation
Return address
2-4
10-27
3-27, 10-24,
- absolute
- relative
RI specification
RS flip-flop with flags
5-7
5-7
8-2
3-9
10-28, 10-36
”RUN” mode
4-5
1-1
8-17, 8-44
8-18
S
8-19
5-9
S5 command interpreter
S5 DOS operating system
Safe inputs
1-6
1-23
9-5
programmable controllers
Repair procedure
Replacement of modules
9-2
10-66
3-13
Safety
- class requirements
- function
1-1
5-8, 5-12,
Representation of an analog value
- digital
Representation of a measured value
6-31
- 458-7LB11
Release
Reliability of SIMATIC S5
- digital
Requirements
- for sensors with current outputs
- interval of SINEC L1
- mode
10-26
7-22, 2-12
4-6,
4-9 to 4-13,
4-17, 4-24,
10-1, 10-13 to
6-16, 6-22
10-37
- to safety class
Reset
- counter
1-1
3-25
10-15, 10-66,
10-69
1-8, 1-13,
Resistance thermometers
- connecting
Resistance-type sensor
2-2, 3-52
6-6
6-4
1-14, 3-33,
3-34, 4-4,
4-5, 5-3,
Response accuracy
- in the case of interrupts
Response time SINEC L1-LAN
10-9
5-17, 5-18,
6-25
4-17
- startup of an S5-115F
- operation
- requirements
- requirements made of the user
4-19
10-70
- in the case of direct access in the
cyclic program
10-3
- in the case of direct access in the
program
- response
10-64
10-58, 10-63,
10-61, 10-70
process interrupt OB (OB 2)
10-5
- in the case of direct access in the
time interrupt OB (OB 13)
10-5
- in the case of SINEC L1-LAN link 10-5
- test
- time
6-25
7-19, 7-21,
7-31, 9-5,
10-2, 10-5,
Response time
- in the case of cyclic reading
- of the PC S5-115F
- SINEC L1
Restart
- block
- characteristics
- setting
- from POWER ON
- from STOP
- manual
RESTART test
2-6, 10-2,
10-5, 10-9
10-3
10-7
10-5, 10-6
4-4, 4-8, 5-6
- SINEC L1
10-7, 10-9,
10-70
7-30, 10-69
6-22
6-33
2-12
Safety-related use
- analog input module
Safety time SINEC L1
4-4
4-4
2-12
Sample programs
Sampling
- cyclical
3-72
4-4
- instant
6-20
4-8, 2-12
6-41, 6-5
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
17
Index
S5-115F Manual
Sampling (cont.)
- interval
Sensor
3-27, 3-28,
3-31, 3-34,
6-15
- selecting
- point
- selective
Scaling
6-19
6-17
6-41
4-19, 5-12,
6-2, 9-3,
10-21, 10-23,
10-24, 10-40,
- of analog values
- schematic
Scan
6-5
6-5
10-41, 10-43,
10-47,
1-39, 1-46,
- monitoring time
- time
- exceeded
2-10, 2-11
2-5
5-3 to 5-5
- connecting
- deactivatable
4-4, 8-9,
2-11
2-5, 4-1
- connection
- floating
- fuses
10-21
6-3
4-19
Scanning
- cyclic
- selective
6-26
6-28
6-28
- implementation
- line
10-17
8-31, 8-33,
8-35
Scratch flag
Screw terminals
Screw-type
2-10, 2-12
1-2
- non-deactivatable
- connecting
- nonfloating
10-23
6-3
- connection
- terminals
Search keys
1-3, 3-29
8-42
4-4
- requirements with current
outputs
- signal
10-37
10-17, 10-22,
Secondary message
Second error
- entry time
1-22
- monitoring
- trigger
- occurrence
- occurrence time
Segment
- boundaries
- non-intermittent
- requirements
5-10
9-5
10-15, 10-20,
10-58, 10-65,
10-66, 1-38
3-39
3-57
- supply
- two-channel connection
Sequence block
Sequence of operations
1-47, 1-49
6-3, 6-11
10-25
10-22
10-17
10-21, 10-22,
10-24
10-20
2-5, 2-13,
2-16, 3-1
10-1, 10-2
Segmentation
- operation
3-39
10-2, 2-8,
2-13
Set
Segmenting
Selective sampling
3-1
6-40, 1-43,
6-5, 6-7,
6-22, 6-23
Set/reset operation
- overview
Setting
- addresses
3-7, 3-60
3-60
Selective scanning
Selftest
6-41
6-28
4-6, 1-9
- communication parameters
Sheet-metal barriers
Shielding
1-13
3-47
3-45
Send
- buffer
- mailbox
Shift operation
7-4, 7-5
7-3, 7-15
- condition code generation
3-49, 3-69,
3-71
3-71
- intermittent
- overview
- processing
1-38
3-49
3-49
- counter
- operation
3-25
3-65
5-4
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
18
EWA 4NEB 811 6148-02
S5-115F Manual
Index
Short test at restart
Shutdown
10-27
10-29
SINEC L1 (cont.)
- LAN
Signal
- binary
- characteristics
- group
6-31
10-25
9-4, 10-25,
- link
- master
- master coordination byte
- messages
1-5
7-33
1-17
7-11
10-46, 10-57,
10-59, 1-36,
1-38, 1-39,
- network
- polling list
- polling time
1-15
10-69, 1-14
10-69, 1-16
1-41, 1-42,
1-46, 1-49,
1-50, 1-54,
- processing
- programmer functions
- redundant
6-13
7-2
1-17
- mix
- group number
5-14, 5-15
10-60
10-38, 5-15
- response time
- safety interval
- safety time
10-5, 1-16
7-22
7-30, 10-5,
- of the AI and the relevant
check AQ
- intermittent
10-38
10-15, 10-16,
- single LAN
- transmission time
10-69, 1-16
1-17
10-9
- non-intermittent
10-25, 10-37,
10-38, 1-38
10-36
- output
- RS flip-flop
- safety-related
3-8
10-15
- sensors
- permanently failsafe
- status display
10-17
4-1
- coding
3-21, 5-2,
10-53
3-13, 3-16,
- ”STATUS”
- ”STATUS VAR”
Signalling functions
4-2
4-2
2-1
- mechanical
- number
3-17
3-13
10-56, 6-9
Signature
4-10, 4-11,
7-22, 7-29,
1-26, 1-27
- extension
SIGUT
SIMICONT
7-22
3-29
8-17
- commands
- copy
- search
1-32
1-32
Simulator
SINEC L1
3-31, 8-43
4-3, 4-5,
7-1, 10-2,
10-5, 10-9,
- operations
- delete
- save
- swap
1-35
1-36
1-35
Single coding
Slave number
8-27, 8-30
1-14, 1-15,
1-17, 7-40
Slot
2-2, 3-1,
3-3, 3-6,
3-8, 3-10
- addressing
Slot addressing Addressing
Softkey
- command line
1-32
- types
- routine
Source
1-36
1-32, 1-36
- configuration
10-63, 10-66,
10-68
7-19
- data exchange
- data path
- interface
10-6
5-15
1-16, 1-17
- addresses
- slave
Specification of type
10-12, 3-65
1-14, 5-14
1-6
- LAN
- networking
- redundancy
10-68, 6-10
10-2
9-4
Standard function block
Function block
Standard function block
6-25
1-16
7-17
- loadable
Standard value
6-1
3-12
- response time
- single-channel
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
19
Index
S5-115F Manual
Standardization schematic
Starting COM 115F
6-39
1-6
”Start” operation
Startup
- analog input module 460
Statement list (STL)
3-43
6-8
2-1
Status
- byte
- line
5-4, 5-13
1-32
- processing
- register
- scan
1-8, 7-30,
7-32, 10-9,
10-26
3-17, 3-18,
3-20, 3-23,
6-10
- block
5-13
5-12, 10-25
5-13
STATUS Signal status display
STATUS VAR Signal status display
STEP 5
- address counter
- illegal operations
- introduction
Synchronization
5-5
10-12
2-1
6-10
10-5, 10-9,
10-26
- error
- event-driven
- FB 254
5-3
1-7
10-26
- intervals
- of process interrupt handling
- parameter
6-11
2-10
6-11
- pattern
SYS.OPS
System
2-7
4-3
- limitations
STL Statement list
STL form
3-42
STOP
- ANLAUF
- loop
2-10
4-5
1-22
- checking a plant
- configuration of the
operating system and the
4-19
4-5
4-5
4-4, 4-5
I/O modules
- enter subunit IDs
- of an S5-115F in safety
4-16
4-15
- large
- lesser
- mode
- operation
- program
Stray noise
10-11
- FB 254 SYNC
- calls
3-39
4-10
3-35
Submodule
- ID
- identifiers
5-4
4-11
Substitution
- error
- operations
5-3, 5-4
2-9, 3-59
- parameters
- response
- startup
mode
- startup
- overview
- safety measures
- steps
System components
5-9
10-57, 10-58
4-1, 10-27
4-17
4-14
4-18
4-14
1-2
- configuration
- safety-oriented
- data
2-1
5-10, 2-11,
1-37
1-13, 1-27,
- data word
- handling
3-42, 3-65,
3-66
10-27
1-23
5-14, 7-5
1-8
10-18
- operation
- synchronization
Supply voltage
Symbols
SYNC
1-6
6-11
Subtraction
Subunit
- definition
- identifier
3-30
System test
2-2, 2-3,
3-1, 3-65,
3-66, 3-69
10-73
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
20
EWA 4NEB 811 6148-02
S5-115F Manual
Index
T
Timer
T BIT Analog value matching blocks
Technical specifications
Temperature sensor
Terminal
- assignment
- front connector
- front connector AE 463
8-1
6-20
3-35, 6-7
6-12
- operation
2-4, 2-10,
3-19
2-3, 3-16,
3-17, 3-19,
3-62
- overview
TNB operations
Tolerance variant
3-16, 3-62
10-12
10-57, 10-58,
- connector
Terminating connector
3-2, 3-3
3-23, 5-2,
8-40, 10-53
Total current consumption
10-65,
1-11, 1-54
3-32
Terminator
Test
- block
5-4
5-10
4-1
Total nesting depth
Transceiver
- BT 777
2-5
10-68, 10-69
7-9, 10-68
- block time
- calculated
- component
1-8, 1-39
1-9
1-9
Transducer
- connecting
- four-wire
8-30, 6-20
6-8
6-8
- conflict
- cycle
- cycle time
10-63
10-21, 10-29
1-8, 1-9,
- two-wire
Transfer (cont.)
- block
6-8
- functions
5-10
4-6,
4-1 to 4-3
- byte
- error
- memory
10-5
5-3, 5-4
7-45
- mode
- operation
1-8
4-6, 4-19,
10-1, 3-44
- menu
- operations
1-26
2-9, 3-10,
3-13 to 3-15,
- organization
- slices
- supplementary
Thermocouple
4-6
10-7, 1-9
10-27
6-4
- overview
Transferring an input/output value
Transitional-pulse relay
3-61, 3-65
3-61, 3-65
3-13
3-72
- accuracy
- base
2-11
3-17
Transmission
- data byte
- time of the SINEC L1-LAN
1-16
10-9
- discrepancies
- interrupt
10-11
1-7, 10-9,
10-26, 10-68,
Trick programming
TTY interface
Two's complement
10-12, 3-76
2-2
2-20, 3-71
2-8, 3-53,
4-5
2-12
Two-wire transducer
Type
- access to the analog value
6-8
Time
- interval
7-32
6-4
- OB 13
- loading
1-10
3-14, 3-15,
3-17, 3-18
- display
- entry
- error
1-36
1-35, 1-36
5-10, 5-17,
- out
- scan
- slices
5-3 to 5-5
3-19
4-5, 5-10,
- input
5-18
1-29, 1-30,
1-37 to 1-39,
- starting
- transferring
5-11
3-19
3-14
- update
Time-out (QVZ)
1-11
5-9
1-41, 1-42,
1-44, 1-46,
1-49
- matrix
- mixes
- number
1-32
1-37
1-30, 1-32,
1-35, 1-36,
1-53
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
EWA 4NEB 811 6148-02
21
Index
S5-115F Manual
U
W
UDGR Analog value matching
Wear-out failures
9-2
blocks
Unified value
Uniform value
Wire-break
6-5
10-10, 10-24,
6-17, 8-27,
8-30, 9-5,
9-6, 1-12,
- generation
Unit value
10-25, 10-63
10-63
1-47
- detection
- with the FB 250 ANEI
6-6
6-26, 1-47
6-26
Updating
- cyclic
- user cycle time
1-43
1-10
- per hardware
- per user program
- limit
6-26
6-26
1-8, 1-12,
6-7
6-16, 6-7
10-37, 10-38
Use
- safety-related
6-22
- monitor
- monitoring
- interface
- locations
- memory
2-10
5-11
10-1
- input ranges
- signalling
- for resistance
- message frame
- program check
- times
7-11
2-2
10-7, 6-1,
User
- accuracy
- updating
Using the programmer
- outside a cabinet
10-38
6-26
thermometers
Wiring
- arrangement
6-13
10-9
6-13
6-27
3-27
- inside a cabinet
- outside buildings
- outside a cabinet
1-14
3-45
Word
- addressing
- operations
9-2
7-10
X
3-42
3-43
3-42
10-52
2-11, 10-12
V
Visual checks
Visualization
XA Analog value matching blocks
Index S5-115F Manual, Volume 1
Index S5-115F Manual, Volume 2
22
EWA 4NEB 811 6148-02
Siemens AG
AUT 125 Doku
Postfach 1963
D-92209 Amberg
Federal Republic of Germany
From:
Your Name:
Your Title:
Company Name:
Street:
City, Zip Code:
Country:
Phone:
Please check any industry that applies to you:
Automotive
Pharmaceutical
Chemical
Plastic
Electrical Machinery
Pulp and Paper
Food
Textiles
Instrument and Control
Transportation
Nonelectrical Machinery
Other
Petrochemical
Remarks Form
Your comments and recommendations will help us to improve the quality and usefulness of
our publications. Please take the first available opportunity to fill out this questionnaire and
return it to Siemens.
Title of Your Manual:
Order No. of Your Manual:
Edition:
Please give each of the following questions your own personal mark within the range from 1
(very good) to 5 (poor).
1.
Do the contents meet your requirements?
2.
Is the information you need easy to find?
3.
Is the text easy to understand?
4.
Does the level of technical detail meet your requirements?
5.
Please rate the quality of the graphics/tables:
Additional comments:
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement