CFAF320240F-035T Data Sheet Release 2012-07-18

CFAF320240F-035T Data Sheet Release 2012-07-18
Crystalfontz America, Incorporated
GRAPHIC TFT MODULE SPECIFICATIONS
Crystalfontz Model Number
CFAF320240F-035T
Data Sheet Release
July 18, 2012
Product Pages
www.crystalfontz.com/product/CFAF320240F-035T.html
Crystalfontz America, Incorporated
12412 East Saltese Avenue
Spokane Valley, WA 99216-0357
Phone:
Fax:
Email:
URL:
888-206-9720
509-892-1203
techinfo@crystalfontz.com
www.crystalfontz.com
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 2
Note on Hardware Revisions
For information about hardware revisions, see the Part Change Notifications (PCNs) under “News” in our
website’s navigation bar.
Data Sheet Revision History
Data Sheet Release Date: 2012/07/18
Since last Data Sheet (2012/04/11):
 Wherever described, clarified module dimensions. Module has not changed.
 Updated Data Sheet formatting to match current standards.
Data Sheet Release Date: 2012/04/11
Since last Data Sheet (v1.0, 2011/08/15):
 Updated Interface Pin Usage Table.
 Added reference to TFT module available mounted on a carrier board (part number
CFAF320240F-035T-CB).
 Added Solomon Systech SSDD2119 controller RGB information as APPENDIX D: SOLOMON
SYSTECH SSD2119 RGB INTERFACE.
 Publish Data Sheet Release Date instead of Data Sheet version number.
CFAF320240F-035T
2011/08/15
Data Sheet version: v1.0
No changes except the module part number. Previous part number
was CFAF320240F-T.
CFAF320240F-T
(previous part number)
2010/08/24
Data Sheet version: v1.2
Since last Data Sheet (v1.1):
In Additional Information on Interface Types section, corrected text
in third bullet from
“what should be done with pins DB17-DB8 (pins 19-28)?”
to
“what should be done with pins DB9-DB0 (pins 27-36)?”
CFAF320240F-T
(previous part number)
2010/07/20
Data Sheet version: v1.1
Since last Data Sheet (v1.0):
Improved information in LED Backlight Characteristics
specifications. Specifications for luminous intensity were direct
measurement of backlight (not through the TFT). Specifications are
now through the TFT. Luminous intensity has not changed.
Continued on next page.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 3
Data Sheet Revision History (Continued)
CFAF320240F-T
(previous part number)
2010/07/09
Continued on next page.
Data Sheet version: v1.0
Since last Data Sheet (Preliminary, no version number):
 Moved information from preliminary Data Sheet into this v1.0
Data Sheet. This Data Sheet uses the standard Graphic TFT
template.
 If and how the module’s FFC (Flat Flex Cable) is folded or
unfolded affects the overall module dimensions. Wherever
listed in this Data Sheet v1.0, module width and height
dimensions have been changed to define (1) module
excluding FFC and (2) module including FFC unfolded. Actual
width and height dimensions have not changed.
- Expanded “Module Dimension” depth description. Nominal
depth is still “3.10” millimeters. Maximum depth of “3.30”
millimeters was added. Actual module dimensions have not
changed.
- “Active Area/Viewing Area” width changed from “70.08”
millimeters to “70.07” millimeters. “Active Area/Viewing
Area” height changed from “52.56” millimeters to “52.55”
millimeters.
 In Physical Characteristics, added specifications for Module
Connector Pitch, FFC Bend Radius, Weight, and resources for
ZIF connectors.
 Improved Module Outline Drawings and System Block
Diagram.
 In the preliminary Data Sheet, temperatures under section “1
General Specifications” were listed correctly. In Absolute
Maximum Ratings section of preliminary Data Sheet, previous
specifications were for controller SSD2119 only and did not
include the module. In this Data Sheet v1.0,
- Operating Temperature changed minimum from “-40°C” to “20°C” and maximum from “+85°C” to “+70°C”.
- Storage Temperature changed minimum from “-65°C” to “30°C” and maximum from “+150°C” to “+80°C”.
Actual module temperature ranges have not changed.
 The previous DC Characteristics specifications were for the
controller SSD2119. The DC Characteristics section in this
Data Sheet are for the module.
 In Details of Interface Pin Function, used Crystalfontz
standard terms for signals and improved descriptions.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 4
Data Sheet Revision History (Continued)
CFAF320240F-T
(previous part number)
2010/07/09
CFAF320240F-T
(previous part number)
2010/01/19
 New sections include:
- MAIN FEATURES.
- To improve explanation of how pins are used for the various
interfaces, added Photo Reference for Pin Functions,
Interface Pin Usage Table, and Additional Information on
Interface Types.
- ESD (Electro-Static Discharge). Please read this caution.
- Some OPTICAL SPECIFICATIONS are now available.
- LED Backlight Characteristics includes information on how
to step up a +3.3v power supply for the backlight and
describes typical connections as well as a complete list of
specifications.
- SOURCES FOR DRIVER LIBRARIES AND SAMPLE
CODE.
- MODULE RELIABILITY AND LONGEVITY.
- CARE AND HANDLING PRECAUTIONS.
- APPENDIX A: QUALITY ASSURANCE STANDARDS.
- APPENDIX B: TFT MODULE TERMS AND SYMBOLS.
- APPENDIX C: SOLOMON SYSTECH SSD2119 TFT
DRIVER. Controller specifications are added for your
convenience.
 Deleted information from the preliminary Data Sheet that was
copied from the controller specifications. The controller
specifications are appended to this v1.0 Data Sheet.
Data Sheet version: Preliminary, no version number
New Data Sheet.
About Variations
We work continuously to improve our products. Because display technologies are quickly evolving, these
products may have component or process changes. Slight variations (for example, contrast, color, or intensity)
between lots are normal. If you need the highest consistency, whenever possible, order and arrange delivery for
your production runs at one time so your displays will be from the same lot.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 5
The Fine Print
Certain applications using Crystalfontz America, Inc. products may involve potential risks of death, personal injury, or severe
property or environmental damage (“Critical Applications”). CRYSTALFONTZ AMERICA, INC. PRODUCTS ARE NOT
DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of Crystalfontz America, Inc.
products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with
customer applications, adequate design and operating safeguards should be provided by the customer to minimize inherent
or procedural hazard. Please contact us if you have any questions concerning potential risk applications.
Crystalfontz America, Inc. assumes no liability for applications assistance, customer product design, software performance,
or infringements of patents or services described herein. Nor does Crystalfontz America, Inc. warrant or represent that any
license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of
Crystalfontz America, Inc. covering or relating to any combination, machine, or process in which our products or services
might be or are used.
The information in this publication is deemed accurate but is not guaranteed.
Company and product names mentioned in this publication are trademarks or registered trademarks of their respective
owners.
Copyright ©2012 by Crystalfontz America, Inc., 12412 East Saltese Avenue, Spokane Valley, WA 99216-0357 U.S.A.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 6
CONTENTS
MAIN FEATURES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
Features - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
Module Classification Information - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
Ordering Information - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
MECHANICAL SPECIFICATIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10
Physical Characteristics - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10
Module Outline Drawings Front and Side Views - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11
ELECTRICAL SPECIFICATIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
System Block Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
Absolute Maximum Ratings - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15
DC Characteristics - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16
Details of Interface Pin Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17
Photo Reference for Pin Functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 19
Interface Pin Usage Table - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20
Additional Information on Interface Types - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20
ESD (Electro-Static Discharge) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20
OPTICAL SPECIFICATIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21
Optical Characteristics - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21
Definition of Response Time (Tr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, Tf) 22
Definition of 6 O'Clock and 12:00 O'Clock Viewing Angles - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23
LED Backlight - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23
"Always On" Backlight Connections - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 24
PWM Dimming - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 24
Backlight Characteristics - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25
How to Use Current Feedback LED Driver - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25
TFT CONTROLLER INTERFACE- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 26
SOURCES FOR DRIVER LIBRARIES AND SAMPLE CODE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 26
Sources for Driver Libraries - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 26
Sample Code - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 26
MODULE RELIABILITY AND LONGEVITY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27
Module Reliability - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27
Module Longevity (EOL/Replacement Policy) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27
CARE AND HANDLING PRECAUTIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 28
APPENDIX A: QUALITY ASSURANCE STANDARDS- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 30
APPENDIX B: TFT MODULE TERMS AND SYMBOLS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 33
APPENDIX C: SOLOMON SYSTECH SSD2119 TFT DRIVER - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 36
APPENDIX D: SOLOMON SYSTECH SSD2119 RGB INTERFACE - - - - - - - - - - - - - - - - - - - - - - - - - - - 37
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 7
LIST OF FIGURES
Figure 1. Module Outline Drawings (3 pages) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11
Figure 2. System Block Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
Figure 3. Back View of FFC (Pins Labeled) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 19
Figure 4. Definition of Response Time (Tr, Tf) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22
Figure 5. Definition of Horizontal and Vertical Viewing Angles (CR>2)- - - - - - - - - - - - - - - - - - - - - - - - - - 22
Figure 6. Definition of 6:00 O’Clock and 12:00 O’Clock Viewing Angles - - - - - - - - - - - - - - - - - - - - - - - - 23
Figure 7. Typical LED Backlight Connections for “Always On” - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 24
Figure 8. Example of LED Backlight Connections for PWM Dimming - - - - - - - - - - - - - - - - - - - - - - - - - - 24
Figure 9. Circuit Example Using Feedback LED Driver - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 26
Figure 10. Limit Bend Radius of FFC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 28
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 8
MAIN FEATURES
FEATURES
 Full-color (16.7M) 320 x RGB x 240 TFT consists of a TFT panel, a driver IC, an FFC (Flat Flexible Cable), and an
LED backlight.
 Active Area is 3.5" diagonal, 70.08 (W) x 52.56 (H) mm (2.76" (W) x 2.07" (H)). For more dimension details, see
Module Outline Drawings Front and Side Views (Pg. 11).
 8-bit, 9-bit, 16-bit, and 18-bit parallel (8080 or 6800), RGB, or SPI interface.
 Built-in Solomon SSD2119 or compatible controller.
 Transmissive display with LED backlight. White edge-lit with two parallel rows of LEDs, three LEDs in each row, six
LEDs total. Display light pixels on a dark colored area (any color combination) or invert for dark colored pixels (any
color combination) on a light area.
 Built-in for DC-DC converter for panel voltage.
 12:00 o’clock polarizer viewing direction.
 Wide temperature for operation is -20°C to +70°C.
 Module is available mounted on a carrier board CFAF320240F-035T-CB. Demonstration Code is available.
 RoHS compliant.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 9
MODULE CLASSIFICATION INFORMATION
CFA F 320 240 F - 035 T







Brand
Crystalfontz America, Inc.

Model Identifier
F – TFT

Number of Pixels (Width)
320 pixels

Number of Pixels (Height)
240 pixels

Model Identifier
F

Diagonal Dimension
035 – 3.5-inch diagonal

Backlight Type & Color
T – White LED Backlight
ORDERING INFORMATION
Part Number
CFAF320240F-035T
Additional modules in this series.
CFAF320240F-035T-TS*
*Touch Screen

Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 10
MECHANICAL SPECIFICATIONS
PHYSICAL CHARACTERISTICS
Number of Pixels
Module Depth
320 x 240 pixels = 76,800 pixels
Pixel Detail
Horizontal
Vertical
Pixel Size
0.063
0.209
RGB Pixel Pitch
0.219
0.219
Maximum
Nominal
3.3
3.1
0.13"
0.12"
Millimeters
Inches
Viewing Area
Active Area
Width
Height
Millimeters
70.08
52.56
Inches
2.76"
2.07"
Diagonal
Module Excluding FFC
Inches: 3.5"
Width
Height
Millimeters
70.08
52.56
Inches
2.76"
2.07"
Module Overall Including FFC Unfolded
Width
Height
Millimeters
77.6
64.4
Inches
3.06"
2.54"
Width
Height
Millimeters
87.7
106.8
Inches
3.45"
4.20"
Module Including FFC Folded
Width
Height
Millimeters
77.6
65.4
Inches
3.06"
2.57"
General
Module Connector Pitch1
0.5 mm
FFC Bend Radius2
>R.5.0 mm
Weight
22 grams (typical)
1
The module’s 50-pin FFC mates with standard 0.5mm ZIF connectors such as HFJ150CTND and HFK150CT-ND available from Digi-Key.
2See
"No Bend Area" detail on third page of Module Outline Drawings Front and Side
Views (Pg. 11).
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 11
MODULE OUTLINE DRAWINGS FRONT AND SIDE VIEWS
Figure 1. Module Outline Drawings (3 pages)
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 12
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 13
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 14
ELECTRICAL SPECIFICATIONS
SYSTEM BLOCK DIAGRAM
Note: Selected interface will affect which pins are actually used.
BACKLIGHT
A1
A2
320X RGB X 240
K2
50-PIN FFC
Figure 2. System Block Diagram
K1 (LED1 -)
A1 (LED1 +)
Aɑ(LEDɑ+)
Kɑ(LEDɑ-)
V LOGIC
DCLK
D/C
WR 8080 (R/W 6800)
DEN
HSYNC
VSYNC
RST
CS
SCL
SDI
SDO
RD8080 (E6800 )
PS3-PS0
GND
Solomon Systech SSD2119
DB17-DB0
K1
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 15
SYMBOL
MINIMUM
MAXIMUM
ABSOLUTE MAXIMUM RATINGS
Operating Temperature*
TOP
-20°C
+70°C
Storage Temperature*
TST
-30°C
+80°C
Humidity
RH
0%
90%
VLOGICIO
-0.3v
+4.0v
VLOGIC
-0.3v
+4.0v
IDD
TBD mA
TBD mA
ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Logic Supply Voltage
Power Supply Current for TFT
*Prolonged exposure at temperatures outside of this range may cause permanent damage
to the module.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 16
DC CHARACTERISTICS
TEST
CONDITION
SYMBOL
MINIMUM
TYPICAL
MAXIMUM
This is a summary of the module’s major operating parameters. For detailed information see APPENDIX C: SOLOMON
SYSTECH SSD2119 TFT DRIVER (Pg. 36).
Logic Supply Voltage*
TOP = -20°C to +70°C
VLOGIC
+2.5
+3.0v
+3.6v
Supply Voltage for
I/O signals
TOP = -20°C to +70°C
VLOGIC I/O
+1.4v
+3.0v
+3.6v
Input High Voltage
VIH
+0.8v x VLogic
For VLogic = +3.0v
VOH= +0.8v x +3.0v = +2.4v
VLogic
Input Low Voltage
VIL
0v (GND)
+0.2v x VLogic
For VLogic = +3.0v
VIL = +0.2v x +3.0v = +0.6v
DC
CHARACTERISTICS
Output High Voltage
IOUT = 100µA
3.3MHz
VOH
+0.9v x VLogic
For VLogic = +3.0v
VOH= +0.9v x +3.0v = +2.7v
VLogic
Output Low Voltage
IOUT = 100µA
3.3MHz
VOL
0v (GND)
+0.1v x VLogic
For VLogic = +3.0v
VOL= +0.1v x +3.0v = +0.3v
Current for
Normal Operation
IOP
0.05mA
Current for
Standby Mode
IST
0.03mA
*
0.2mA
If you use a +3.3v supply, you will need to step up the power supply for the LED backlight because it requires +9.9v. For
information on how to do this, see How to Use Current Feedback LED Driver (Pg. 25).
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 17
DETAILS OF INTERFACE PIN FUNCTION
SIGNAL
1
GND
L
2-3
NC
4-6
GND
DIRECTION
PIN
LEVEL
Note: Pins depends on choice of 8-bit, 9-bit, 16-bit, and 18-bit parallel (8080 or 6800), RGB, or SPI interface. See
Interface Pin Usage Table.
DESCRIPTION
Power supply and signal ground. Must be connected to an external ground.
No Connection
L
Ground. Must be connected to an external ground.
7
RD8080 (E6800)
H/L
I
Host interface input.
8080 Host: Active low. Signal on the databus is latched at the rising edge of
RD.
6800 Host: Enable control signal input active high.
E = High: Read or Write operation is active
E = Low: No operation
8
SDO
H/L
O
Data output pin in serial interface. (Serial Data Out/MISO)
I
Reset signal.
Low: Display controller is reset. The RST pin should be pulsed low shortly
after power is applied.
High: The RST pin should be brought high for normal operation.
9
RST
H/L
10
CS
H/L
I
Chip select input.
Low: Controller chip is selected. Communications with host is possible.
High: Controller chip is not selected. Host interface signals are ignored by the
controller.
11
SCL
H/L
I
Serial clock input.
12
SDI
H/L
I
Data input pin in serial interface. (Serial Data In/MOSI)
13
D/C
H/L
I
Data/Command control. Determines whether data bits are data or command.
1 – High: Addresses the data register.
0 – Low: Addresses the command register.
IO
Host interface input.
8080 Host: Active low. Signal on the databus is latched at the rising edge of
WR signal.
6800 Host: Read/Write control signal output.
R/W = High: Read (HostModule)
R/W = Low: Write (HostModule)
14
WR8080 (R/W6800)
H/L
15-18
PS3-PS0
H/L
19-36
DB17-DB0
H/L
IO
37
DEN
H/L
I
Display enable pin from controller. (RGB interface only.)
38
HSYNC
H/L
I
Line synchronization input. (RGB interface only.)
39
VSYNC
H/L
I
Frame/RAM write synchronization input. (RGB interface only.)
Notice the descending order.
See Interface Pin Usage Table.
Parallel databus. Notice the descending order.
PIN
SIGNAL
DIRECTION
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 18
LEVEL
Crystalfontz America, Inc.
www.crystalfontz.com
DESCRIPTION (Continued)
40
DCLK
H/L
I
Dot-clock signal and oscillator source. A non-stop external clock must be provided to that pin even at front or back porch non-display period.
41
NC
42-43
GND
L
44-45
VLOGIC
H
46
NC
47
K2 (LED2 -)
L
Supply pin for LED. “K” (cathode or kathode for German and original Greek
spelling) or “-” of LED backlight.
48
A2 (LED2 +)
H
Supply pin for LED. “A” (anode) or “+” of LED backlight.
49
A1 (LED1 +)
H
Supply pin for LED. “A” (anode) or “+” of LED backlight.
50
K1 (LED1 -)
L
Supply pin for LED. “K” (cathode or kathode for German and original Greek
spelling) or “-” of LED backlight.
No Connection.
Ground. Must be connected to an external ground.
I
Power supply input. Must be connected to an external source.
Note: Both pins must be connected.
No Connection.
For backlight connections, please refer to LED Backlight (Pg. 23).
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 19
PHOTO REFERENCE FOR PIN FUNCTIONS
Note: Both VLOGIC pins (44 and 45) must be connected.
(1) GND
(2) NC
(3) NC
(4) GND
(5) GND
(6) GND
(7) RD8080(E6800)
(8) SDO
(9) RST
(10) CS
(11) SCL
(12) SDI
(13) D/C
(14) WR8080(R/W6800)
(15) PS3
(16) PS2
(17) PS1
(18) PS0
(19) DB17
(20) DB16
(21) DB15
(22) DB14
(23) DB13
(24) DB12
(25) DB11
(26) DB10
(27) DB9
(28) DB8
(29) DB7
(30) DB6
(31) DB5
(32) DB4
(33) DB3
(34) DB2
(35) DB1
(36) DB0
(37) DEN
(38) HSYNC
(39) VSYNC
(40) DCLK
(41) NC
(42) GND
(43) GND
(44) VLOGIC
(46) NC
(48) A2 (LED2 +)
(50) K1 (LED1 -)
Figure 3. Back View of FFC (Pins Labeled)
(45) VLOGIC
(47) K2 (LED2 -)
(49) A1 (LED1 +)
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 20
INTERFACE PIN USAGE TABLE
Click here to view a full size PDF file of the table below.
M##
M##
M##
M##
!
" #
$ %
&#
%
&#
%
&#
%
&#
%
&#
%
&#
%
&#
%
&#
%
&#
' %
&
%
&
%
&
%
&
%
&
%
&
%
&
%
&
%
&
*,&
.
,&
:;; :;; :;; :;; :;; :;; :;; :;; :;;
<
:<
:<
:<
:<
<
:
<
:
<
:
<
:
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
"
'
'
'
'
=
$
>
>
>
>
>
>
>
>
=
'
>
>
>
>
>
>
>
>
=
>
>
>
>
>
>
>
>
=
>
>
>
>
>
>
>
>
=
>
>
>
>
>
>
>
>
=
>
>
>
>
>
>
>
>
=
>
>
>
>
>
>
>
>
='
>
>
>
>
>
>
>
>
=$
>
>
>
>
="
" >
>
>
>
=
$ >
>
>
>
=
' >
>
>
>
=
>
>
>
>
=
>
>
>
>
=
>
>
>
>
=
>
>
>
>
=
>
>
>
>
='
>
>
?@ " M@ $ Z
' M##
M##
M
[
[
[
[
[
[
[
[
[
M
[
[
[
[
[
[
[
[
[
Z
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
.
" =*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
.
$ =*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
=*
\%[
Z
' =*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
=*
\%]
%
&#
%
&
*,&
,&
%
&#
%
&
*,&
,&
'
[
[
=*
\%]
=*
\%[
=*
\%[
=*
\%]
%
&#
%
&
*,&
,&
'
'
'
'
==
==
==
==
==
=='
J
Q;:.UJ
*
[
[
=*
\%]
=*
\%[
=*
\%[
=*
\%]
'
'
'
'
==
==
==
==
=='
J
Q;:.UJ
*
[
[
=*
\%]
=*
\%[
=*
\%[
=*
\%]
ADDITIONAL INFORMATION ON INTERFACE TYPES
 I want to display video. Which interface is faster, SPI or parallel?
The SPI interface is a clocked interface. Each command or data bit is clocked. With the 18-bit parallel interface, you
are able to pass 18 bits of command or data at a time. Using the same controller at the same clock speed, the parallel interface will always be faster.
 What if I need RS-232 serial interface?
Three-wire or four-wire SPI interface is not RS-232 but does not require the control lines that the 8-, 9-, of 16-bit
interfaces do.
 Using the 8-bit 8080 interface, what should be done with pins DB9-DB0 (pins 27-36)? Tie them to ground, pull them
up, or let them float?
Leave unused pins floating.
ESD (ELECTRO-STATIC DISCHARGE)
The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic
precautions as you would for any other static sensitive devices such as expansion cards, motherboards, or integrated
circuits. Ground your body, work surfaces, and equipment.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 21
OPTICAL SPECIFICATIONS
OPTICAL CHARACTERISTICS
T
with polarizer
Contrast Ratio (CR)2
TFT Response Time3
Red Chromaticity
Green Chromaticity
Blue Chromaticity
White Chromaticity
5.7%
6.76%
320
400
Tr
8 ms
12 ms
Tf
17 ms
23 ms
x
0.627 ms
0.647 ms
0.667 ms
y
0.316 ms
0.336 ms
0.356 ms
0.116 ms
0.136 ms
0.156 ms
y
0.556 ms
0.576 ms
0.596 ms
x
0.116 ms
0.136 ms
0.156 ms
y
0.109 ms
0.129 ms
0.149 ms
x
0.285 ms
0.305 ms
0.325 ms
y
0.314 ms
0.334 ms
0.354 ms
x
θ = φ - 0°
Viewing Direction (O’Clock)
1
MAXIMUM
16.7M1
Color Depth
Transmittance
TYPICAL
MINIMUM
ADDITIONAL TEST
CONDITIONS
ITEM
SYMBOL
Ambient Temperature (Ta) = 25°C,
Maximum 75% Relative Humidity
>12:00
Any one of the pixels can show any of the 16.7 million colors.
2Contrast
Ratio = (brightness with pixels light)/(brightness with pixels dark).
3Response Time is the amount of time it takes a pixel to change from active to inactive
or back again. Tr = T rise, Tf = T fall.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 22
DEFINITION OF RESPONSE TIME (TR, TF)
100%
Light
Transmitted
Intensity
90%
Light
Transmitted
80%
Light
Blocked
10%
0%
Time
Tr
Tr = Rise Time
Tf = Fall Time
Tf
Figure 4. Definition of Response Time (Tr, Tf)
DEFINITION OF VERTICAL AND HORIZONTAL VIEWING ANGLES (CR>2)
Vertical
Horizontal
Figure 5. Definition of Horizontal and Vertical Viewing Angles (CR>2)
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 23
DEFINITION OF 6 O'CLOCK AND 12:00 O'CLOCK VIEWING ANGLES
This module has a 12:00 o’clock viewing angle. A 6:00 o’clock viewing angle is a bottom viewing angle like what you
would see when you look at a cell phone or calculator. A 12:00 o’clock viewing angle is a top viewing angle like what you
would see when you look at the gauges in a golf cart or airplane.
Eyes look down
Eyes look up
6:00 O’Clock
Bottom Viewing Angle
12:00 O’Clock
Top Viewing Angle
Figure 6. Definition of 6:00 O’Clock and 12:00 O’Clock Viewing Angles
LED BACKLIGHT
The CFAF320240F-035T uses an LED backlight. LED backlights are easy to use, but they are also easily damaged by
abuse.
NOTE
We recommend that the LED backlight be dimmed or turned off during periods of inactivity to conserve
its lifetime.
LEDs are “current” devices. The important aspect of driving an LED is the current flowing through it, not the voltage
across it. Ideally, a current source would be used to drive the LEDs. In practice, a simple current limiting resistor in line
from a voltage source will work well in most applications and is much less complex than a current source.
You need to know what the forward voltage of the LEDs is so you can calculate the current limiting resistor (RLIMIT). The
forward voltage will vary slightly from display to display.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 24
"Always On" Backlight Connections
Backlight Vf = +9.9v, 12.5mA per side
A1 (LED +)
A2 (LED +)
LED
Backlight
Vf = Forward Voltage
K1 (LED -)
RLIMIT1
K2 (LED -)
RLIMIT2
GND
Figure 7. Typical LED Backlight Connections for “Always On”
PWM Dimming
The backlight may be dimmed by PWM (Pulse Width Modulation). The typical range for the PWM frequency is from 100
to 300 Hz.
Backlight Vf = +9.9v, 12.5mA per side
A1 (LED +)
A2 (LED +)
LED
Backlight
Vf = Forward Voltage
K2 (LED -)
K1 (LED -)
RLIMIT1
PWM signal from
microcontroller
RLIMIT2
IRLML2502 (typical)
GND
Figure 8. Example of LED Backlight Connections for PWM Dimming
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 25
Backlight Characteristics
Ambient temperature: TA = 25°C
Backlight Characteristics
White edge-lit with two parallel rows of LEDs, three LEDs in each row, six total LEDs.
White LED backlight displays light pixels on a dark colored area (any color combination) or invert for dark colored pixels (any
color combination) on a light area.
PARAMETER
Forward Current (ILED)
MINIMUM
TYPICAL
MAXIMUM
10mA per row
10mA x 2 rows = 20mA
12.5mA per row
12.5mA x 2 rows = 25mA
20mA per row
20mA x 2 rows = 40mA
Driving the backlight above 25mA will shorten its lifetime.
Forward Voltage (VLED)
+8.4v
+9.6v
+10.2v
Luminous Intensity* (IV)
ILED = 25mA
175 cd/m2
200 cd/m2
225 cd/m2
The backlight is measured through the TFT. Direct backlight measurement is significantly brighter.
Reverse Voltage (VR)
Wavelength (l λ)
ILED = 25mA
Uniformity
(minimum/maximum x 100%)
15v
x=0.25
y=0.25
x=0.29
y=0.29
80%
How to Use Current Feedback LED Driver
The backlight has a total of six LEDs with two rows of three LEDs in series. The forward voltage for each LED is +3.3v.
You need about +9.9v on each of the two anode lines for +19.8v total. Your ILED (current) is about 12.5mA. You can, of
course, adjust these values as needed for your application.
The maximum forward voltage is +3.5v. For lifetime reliability, we do not recommend pushing more than the 12.5mA
through the LEDs.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 26
If you have only +3.3v available and need to step up the power supply for the LED backlight, use a current feedback LED
driver such as the Fairchild Semiconductor FAN5333 (www.fairchildsemi.com/pf/FA/FAN5333B.html). One source for
the FAN5333 is here: http://search.digikey.com/scripts/DkSearch/dksus.dll?Cat=2556628&k=FAN5333. The FAN5333
is good to +30v. Many similar drivers are available. By using a driver, you do not need a current limiting resistor. Here is
the example circuit from the FAN5333 datasheet:
V IN
C IN
V OUT
BAT54
L
A1
A2
C OUT
6.8ȝH to 10ȝH
4.7ȝF
0.1ȝF
to
10ȝF
to
2.2ȝF
5
V IN
SW
Fairchild
Semiconductor
FAN5333
FB
1
3
I LED
GND
K1
K2
FAN5333A
4
ON
SHDN
GND
2
R
110 mV = 8.8 Ÿ
R=
12.5 mA
FAN5333B
315 mV = 25.2 Ÿ
R=
12.5 mA
OFF
GND
Figure 9. Circuit Example Using Feedback LED Driver
TFT CONTROLLER INTERFACE
This module uses a Solomon Systech SSD2119 controller. For your reference, we added APPENDIX C: SOLOMON
SYSTECH SSD2119 TFT DRIVER (Pg. 36). to this Data Sheet. Also see Interface Pin Usage Table (Pg. 20).
SOURCES FOR DRIVER LIBRARIES AND SAMPLE CODE
SOURCES FOR DRIVER LIBRARIES
Graphic LCD driver libraries may save you a lot of time and help you develop a more professional product. Possible
library sources are easyGUI, en.radzio.dxp.pl, Micriµm, RAMTEX, and Segger emWin.
SAMPLE CODE
Free downloadable sample code is on our website here under "Other Files": http://www.crystalfontz.com/product/
CFAF320240F035T#docs.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 27
MODULE RELIABILITY AND LONGEVITY
MODULE RELIABILITY
PART NUMBER
CFAF320240F-035T
SPECIFICATION*
50,000 hours >50% of Initial Brightness (New Module)
*Under operating and storage temperature specification limitations, humidity RH 45+20%, and no exposure to direct sunlight.
The white LEDs dim over time, especially if driven with high currents. The dimming may not be noticeable when a single
display is installed. However, if a new display is installed next to a display that has been on continuously for a very long
time, you will see the difference. To preserve the lifetime of white LEDs, we recommend that white LED backlights are
dimmed or turned off when not needed. Also, please do not use more current than you need to achieve your brightness
requirements.
MODULE LONGEVITY (EOL/REPLACEMENT POLICY)
Crystalfontz is committed to making all of our modules available for as long as possible. For each module we introduce,
we intend to offer it indefinitely. We do not preplan a module's obsolescence. The majority of modules we have
introduced are still available.
We recognize that discontinuing a module may cause problems for some customers. However, rapidly changing
technologies, component availability, or low customer order levels may force us to discontinue ("End of Life", EOL) a
module. For example, we must occasionally discontinue a module when a supplier discontinues a component or a
manufacturing process becomes obsolete. When we discontinue a module, we will do our best to find an acceptable
replacement module with the same fit, form, and function.
In most situations, you will not notice a difference when comparing a "fit, form, and function" replacement module to the
discontinued module. However, sometimes a change in component or process for the replacement module results in a
slight variation, perhaps an improvement, over the previous design.
Although the replacement module is still within the stated Data Sheet specifications and tolerances of the discontinued
module, changes may require modification to your circuit and/or firmware. Possible changes include:
 Controller. A new controller may require minor changes in your code.
 Component tolerances. Module components have manufacturing tolerances. In extreme cases, the tolerance stack
can change the visual or operating characteristics.
Please understand that we avoid changing a module whenever possible; we only discontinue a module if we have no
other option. We will post Part Change Notices on the product's webpage as soon as possible. If interested, you can
subscribe to future part change notifications.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 28
CARE AND HANDLING PRECAUTIONS
For optimum operation of the module and to prolong its life, please follow the precautions below.
ESD (ELECTRO-STATIC DISCHARGE)
The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic
precautions as you would for any other static sensitive devices such as expansion cards, motherboards, or integrated
circuits. Ground your body, work surfaces, and equipment.
DESIGN AND MOUNTING
 The exposed surface of the “glass” is actually a polarizer laminated on top of the glass. To protect the soft plastic
polarizer from damage, the module ships with a protective film over the polarizer. Please peel off the protective
film slowly. Peeling off the protective film abruptly may generate static electricity.
 The polarizer is made out of soft plastic and is easily scratched or damaged. When handling the module, avoid
touching the polarizer. Finger oils are difficult to remove.
 To protect the soft plastic polarizer from damage, place a transparent plate (for example, acrylic, polycarbonate,
or glass) in front of the module, leaving a small gap between the plate and the display surface. We use GE HP92 Lexan, which is readily available and works well.
 Do not disassemble or modify the module.
 Do not modify the tab of the metal holder or make connections to it.
 Do not reverse polarity to the power supply connections. Reversing polarity will immediately ruin the module.
 Use care to keep the exposed terminals clean. Contamination, including fingerprints, may make soldering difficult
and the reliability of the soldered connection poor.
 Sharp bends can damage the module FFC (Flat Flex Cable). Limit bend radius to at least R5.00 mm.
R5.00 mm Minimum
Figure 10. Limit Bend Radius of FFC
 Sharp bends can damage the module’s FFC. Do not crease FFC. Do not bend FFC tightly against the edge of
the TFT panel.
 Do not repeatedly bend the FFC beyond its elastic region.
AVOID SHOCK, IMPACT, TORQUE, OR TENSION
 Do not expose the module to strong mechanical shock, impact, torque, or tension.
 Do not drop, toss, bend, or twist the module.
 Do not place weight or pressure on the module.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 29
CLEANING
 The polarizer (laminated to the glass) is soft plastic. The soft plastic is easily scratched or damaged. Be very
careful when you clean the polarizer.
 Do not clean the polarizer with liquids. Do not wipe the polarizer with any type of cloth or swab (for example, Qtips).
 Use the removable protective film to remove smudges (for example, fingerprints) and any foreign matter. If you
no longer have the protective film, use standard transparent office tape (for example, Scotch® brand “Crystal
Clear Tape”). If the polarizer is dusty, you may carefully blow it off with clean, dry, oil-free compressed air.
OPERATION
 We do not recommend connecting this module to a PC's parallel port as an "end product.” This module is not
"user friendly" and connecting it to a PC's parallel port is often difficult, frustrating, and can result in a "dead"
display due to mishandling. For more information, see our forum thread at http://www.crystalfontz.com/forum/
showthread.php?s=&threadid=3257.
 Your circuit should be designed to protect the module from ESD and power supply transients.
 Observe the operating temperature limitations: from -20°C minimum to +70°C maximum with minimal
fluctuations. Operation outside of these limits may shorten the life and/or harm the display.
 Operate away from dust, moisture, and direct sunlight.
STORAGE AND RECYCLING
 Store in an ESD-approved container away from dust, moisture, and direct sunlight, fluorescent lamps, or any
ultraviolet ray.
 Observe the storage temperature limitations: from -30°C minimum to +80°C maximum with minimal fluctuations.
Rapid temperature changes can cause moisture to form, resulting in permanent damage.
 Maximum storage life is 10 years within storage temperature limitations and normal humidity.
 Do not allow weight to be placed on the modules while they are in storage.
 Please recycle your outdated Crystalfontz modules at an approved facility.
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 30
APPENDIX A: QUALITY ASSURANCE STANDARDS
INSPECTION CONDITIONS
 Environment
 Temperature: 25±5°C
 Humidity: 30~85% RH (noncondensing)
 For visual inspection of active display area
 Source lighting: two 20-Watt or one 40-Watt fluorescent light
 Display adjusted for best contrast
 Viewing distance: 30±5 cm (about 12 inches)
 Viewing angle: inspect at 45° angle of vertical line right and left, top and bottom
COLOR DEFINITIONS
We try to describe the appearance of our modules as accurately as possible. For the photos, we adjust for optimal
appearance. Actual display appearance may vary due to (1) different operating conditions, (2) small variations of
component tolerances, (3) inaccuracies of our camera, (4) color interpretation of the photos on your monitor, and/or (5)
personal differences in the perception of color.
DEFINITION OF ACTIVE AREA AND VIEWING AREA
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 31
ACCEPTANCE SAMPLING
AQL*
Defect Type
Major
<.65%
Minor
<1.0%
* Acceptable Quality Level: maximum allowable error rate or variation from standard
DEFECTS CLASSIFICATION
Defects are defined as:
 Major Defect: results in failure or substantially reduces usability of unit for its intended purpose.
 Minor Defect: deviates from standards but is not likely to reduce usability for its intended purpose.
#
Major/
Mintor
ACCEPTANCE STANDARDS
Criteria
Defect Type
1
Electrical defects
1. No display, display malfunctions, or shorted segments.
2. Current consumption exceeds specifications.
Major
2
Viewing area defect
Viewing area does not meet specifications.
Major
3
Blemishes or foreign
matter on display
segments
Blemish
Defect Size
Acceptable Qty
<0.30 mm
3
Minor
<2 defects within 10 mm of each other
4
Dark lines or scratches
in display area
Width
Length
Defect Width
Defect Length
Acceptable Qty
<0.03 mm
<3.0 mm
3
0.03 to 0.05
<2.0 mm
2
0.05 to 0.08
<2.0 mm
1
0.08 to 0.10
≤3.0 mm
0
>0.10
>3.0 mm
0
Minor
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 32
#
5
Criteria
Bubbles between polarizer film and glass
Defect Size
Acceptable Qty
<0.20 mm
Ignore
0.20 to 0.40 mm
3
0.40 to 0.60 mm
2
>0.60 mm
0
Display pattern defect
Minor
D
E
6
Defect Type
Major/
Mintor
ACCEPTANCE STANDARDS, CONTINUED
F
A
G
B
Pixel Size
C
Acceptable Qty
Minor
((A+B)/2)<0.20 mm
C>0 mm
((D+E)/2)<0.25 mm
<3 total defects
<2 pinholes per digit
((F+G)/2)<0.25 mm
7
PCB defects
1. Oxidation or contamination on connectors.*
2. Wrong parts, missing parts, or parts not in specification.*
3. Jumpers set incorrectly.
4. Solder (if any) on bezel, LED pad, zebra pad, or screw hole
pad is not smooth.
Minor
*Minor if display functions correctly. Major if the display fails.
8
Soldering defects
1. Unmelted solder paste.
2. Cold solder joints, missing solder connections, or oxidation.*
3. Solder bridges causing short circuits.*
4. Residue or solder balls.
5. Solder flux is black or brown.
*Minor if display functions correctly. Major if the display fails.
Minor
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 33
APPENDIX B: TFT MODULE TERMS AND SYMBOLS
Symbol
Description
A (LED +)
Supply pin for LED. “A” (anode) or “+” of LED backlight. If more than one, may be labeled as A1, A2, ...
cd/m2
lumen
Candela per square meter. A unit of measurement used to measure Luminous Intensity.
cd/m2 = 1 lumen
Chip select input.
CS
CS#
Low: Controller chip is selected. Communications with host are possible.
High: Controller chip is not selected. Host interface signals are ignored by the controller.
COF
Chip On Flex. Controller is on the FPC. Similar in appearance to “TAB.” The flex circuit on COF is
typically much thinner than the flex of a “flex tail.”
COG
Chip On Glass. Controller is on the glass panel.
DB0 ~ DBn
D0 ~ Dn
D/C
RS
A0
CD
D/C#
Parallel databus.
Data/Command control. Determines whether data bits are data or command.
1 – High: Addresses the data register.
0 – Low: Addresses the command register.
DCLK
Dot-clock signal and oscillator source. A non-stop external clock must be provided to that pin even at
front or back porch non-display period. RGB interface only.
DEN
Display enable pin from controller. RGB interface only.
ESD
Electro-Static Discharge. Sudden and brief electrical current that flows between two objects. ESD
between a human and a TFT module can cause permanent damage.
FFC
Flat Flexible Cable. Also called “flex tail” or “pigtail”. Typically thinner than the “flex” film of COG (Chip
On Glass).
FPC
Flexible Printed Circuit. Also called “flex tail” or “pigtail”. Typically much thicker than the “flex” film of
COF (Chip On Flex).
GND
VSS
Power supply and signal ground. Must be connected to an external ground.
HSYNC
Line synchronization input. RGB interface only.
IDD
Typical power supply current for LCD.
Total electrical current (I) in the Drains of a CMOS circuit.
ILED
Current used by LED backlight.
IMn
Interface mode select pin. (Where n is the corresponding number.)
IOP
Current for normal Operation, typically measured in milliamperes (mA).
1 mA = 0.001A (Ampere)
IST
Current for STandby mode, typically measured in microampere (μA).
1 μA = 0.000,001A (Ampere)
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 34
Symbol
I/O
IO
K (LED -)
Description (Continued)
Input/Output
Supply pin for LED. “K” (cathode or kathode for German and original Greek spelling) or “-” of LED
backlight. If more than one, may be labeled as K1, K2, ...
mm
Millimeter or millimetre. Unit of length equal to one thousandth of a meter.
1 millimeter = 0.0394 inches
mW
Milliwatt is equal to one thousandth of a Watt.
Watts = Volts x Amps
NC
nc
Make no connection.
PSn-PS0
PS3
PS2
PS1
PS0
Interface Mode
0
0
0
0
16-bit 6800 parallel interface.
(if available)
0
0
0
1
8-bit 6800 parallel interface.
(if available)
0
0
1
0
16-bit 8080 parallel interface.
.....................................
0
PWM
0
1
1
8-bit 8080 parallel interface.
(if available)
Pulse Width Modulation is a way to simulate intermediate levels by switching a level between full on and
full off. PWM is typically used to control the brightness of LED backlights, relying on the natural
averaging by the human eye.
Host interface input.
RD8080 (E6800)
RD (E)
E (RD)
E
8080 Host: Active low. Signal on the databus is latched at the rising edge of RD.
6800 Host (if available): Enable control signal input active high.
E = High: Read or Write operation is active
E = Low: No operation
RGB
Typically used to indicate that Red, Green, and Blue are combined to produce a broad array of colors.
RoHS
Restriction of Hazardous Substances Directive, an environmental standard.
RST
RES
RST#
RES
RESET#
SCL
SDO
MISO
Reset signal.
Low: Display controller is reset. The RST pin should be pulsed low shortly after power is applied.
High: The RST pin should be brought high for normal operation.
Serial clock input.
Data output pin in serial interface. (Serial Data Out)
Crystalfontz America, Inc.
www.crystalfontz.com
Symbol
SI
SDI
MOSI
Ta
TA
Tf
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 35
Description (Continued)
Data input pin in serial interface. (Serial Data In)
“Ambient temperature” is the temperature of the air that surrounds a component.
Unit of measurement for LCD response time.
f = falling edge. See Definition of Response Time (Tr , Tf) (Pg. 22).
TFT
Thin-Film Transistor fabricated directly on the display substrate.
TOP
Operating temperature.
Tr
Unit of measurement for LCD response time.
r = rising edge. See Definition of Response Time (Tr , Tf) (Pg. 22).
TST
TSTG
Storage temperature.
VIH
VICH
High level input voltage.
VIL
VLCH
Low level input voltage.
VLED
Forward voltage for LED backlight.
VLOGIC
VCC
VDD
VCI
VLOGIC I/O
VCCIO
Power supply input. Must be connected to an external source.
Supply voltage for I/O signals.
VOH
VOHC
High level output voltage.
VOL
VOLC
Low level output voltage.
VSYNC
Frame/RAM write synchronization input. RGB Interface only.
Host interface input.
WR8080 (R/W6800)
R/W (WR)
WR (R/W)
R/W#
8080 Host: Active low. Signal on the databus is latched at the rising edge of WR signal.
6800 Host (if available): Read/Write control signal output.
R/W = High: Read (HostModule)
R/W = Low: Write (HostModule)
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 36
APPENDIX C: SOLOMON SYSTECH SSD2119 TFT DRIVER
The complete Solomon Systech SSD2119 Advance Information 320 RGB x 240 TFT LCD Driver Integrated Power
Circuit, Source and Gate Driver and RAM, revision 1.4, June 2009, (95 pages) follows.
SOLOMON SYSTECH
Appendix
SEMICONDUCTOR TECHNICAL DATA
SSD2119
Advance Information
320 RGB x 240 TFT LCD Driver
Integrated Power Circuit, Source and Gate Driver and RAM
This document contains information on a new product. Specifications and information herein are subject to change
without notice.
http://www.solomon-systech.com
SSD2119
Rev 1.4
P 1/95
Jun 2009
Copyright © 2009 Solomon Systech Limited
Appendix
IC Revision history of SSD2119 Specification
Version
0.10
0.20
0.30
0.40
0.41
0.42
0.43
0.44
0.45
Change Items
1st Release
P.76 Application Circuit updated
P.80 Figure 19-4 – ITO and FPC connection example added
P.26 Remove SPI Interface from CS
P.26 Add SCS for SPI Chip Select, CS/SCS – chip select pin for both parallel and serial
interface.
P.66 All Waveform pin name is updated
P.13 PadCo pin name of pad# 266 & 269 is updated
P.66 Figure 13.1, 13.2 13.3 are updated.
P.10 Alignment Mark Updated base on padco v4.0
–
P.265 Padco updated to v5.0 on Table 5-2
P.63 Test condition (Booster Ratio) added for Idp(8 color) on page 13
P.72 Table 15-1 is updated to 1000 18-bit 6800
1001 9-bit 6800
1010 18-bit 8080
1011 9-bit 8080
P.1-80 “CONFIDENTIAL” water mark being removed.
P.267 Pin name updated for pin 308 to 327
P.62 Operating Temperature update to -40 to +85 oC for Section 11(page 13) and Section
12(page 13).
P.10 Die Size(No Scribe) updated to 23724 x 780 um2
P.10 Die Thickness updated to 400 ± 25 um
P.80 Figure 19-4 Pin 229 to Pin 242 Updated
P.32 R01h, R44h, R45h, R46h, R48h, R49h, R4Ah, R4Bh, R4Eh, R4Fh Command Updated
P.27 D9-D16 is used for RGB, D12 short to D17 for 65K color
P64-66 Updated AC Timing Diagrams
P.49 Updated OTP programming sequence
P.52 Updated RAM address set (R4Eh-R4Fh) Swapped X and Y position
P. 28-29 Updated SPI interface
P.74 Updated SPI bit mapping
P.52 Updated OTP
P.68 Updated Tas and Tah definition
P.32 Updated R11h POR to 6230h
P.41 Updated R03h POR to 6ª64h
P.45 Updated Frame Frequency formula
P.50 Updated diagram address to 13F, EFH.
P.56 Updated Conditions to HEA[8:0]<= 13FH, VEA[7:0]<=EFH .
P.56-58 Updated all VEA to [7:0] and all HEA to [8:0]
Effective
Date
31-Jan-08
26-Feb-08
06-Mar-08
18-Mar-08
17-Apr-08
23-Jul-08
08-Aug-08
P.67-68 Updated (Tcycle = Min. 100ns, PWcsl = PWcsh = Min. 50ns)
to Tcycle = Min. 75ns, PWcsl = Min.40ns PWcsh = Min. 25ns
added Note: CS can be pulled low during the write cycle, only /RW is needed to be toggled
P.70-71 Added RGB Timing
P.36 Change GS to TB
P.12 Change OE to DEN in table 5-2
P.12 Remove G0 in table 5-2
P.65-70 Corrected VDDIO from 1.65V to 1.4V
P.76 Added Mapping for Writing Pixel Data in SPI mode
19-Aug-08
P.70 Updated RGB Timing Characteristics
P.62 Updated Gama Ladder Resistor table format
P.12-22, 36, 59-60, 80, 84 Fixed format of Table 5-2, TB Table, Grayscale Amplifier, Power
supply block diagram and Figure 19-4
20-Aug-08
Solomon Systech
Jun 2009
P 2/95
Rev 1.4
SSD2119
Appendix
Version
Effective
Date
Change Items
P. 68-70 Updated all temperature to -40 to 85°C
0.46
P.74 Updated Table 15.2 The Function of 6800-series parallel interface
P.52 Updated Internal Oscillator Frequency
P.76 Updated Table 15.4 Mapping for Writing Pixel Data in generic mode
P.79-80 Updated 16.2 Display OFF Sequence and 16.3 Sleep Mode Display Sequence
P.35 Updated Device Code
P.33 Remove SR(status read) register
P.87 Added Section 21 OTP explanation
P.53 Added OTP sequence step 4 “Turn on the display as normal to 65k/262k color mode”
P.34, 56 Updated GDDRAM X Y address
24-Sep-08
0.47
P52. Add Deep sleep mode command R12 and correct R10 description
P37. Add R12.
06-Oct-08
0.48
P.50 Corrected
Dmode=1 : Display engine will be clocked by DOTCLK pin and onchip oscillator will be off
(POR, if PS:00xx)
Dmode=0 : Display engine will be clocked by on chip oscillator and ignore DOTCLK pin
P.71 Corrected Table 13-2: RGB Timing Characteristics
Dotclock period to ns
P.48 Swapped R12 and R10 in deep sleep sequence
13-Nov-08
0.49
P.80, 82 Added Halt, Deep sleep sequence.
P.67 Updated power consumption information of sleep mode
P.67 Added power consumption information of Halt and Deep sleep mode
P.67 Added “The leakage current is below 100uA if Reset keeps at low state when power on”
P.67 Updated deep sleep mode max current to 15uA
P.26 RESB pin description amend to “An external reset pulse to RESB is required for power
up (sequence).” This change is to prevent unexpected internal RESET by excessive electrical
stress.
26-Nov-08
0.50
P.52 Corrected R1EH VCM default to x2B
P.53 Added analogue setting register description
P.48-49 Added VSH[2:0] and HVCI of R12h
P.68-69 Change read cycle to 450ns
P.70 Updated Ihalt max to 120uA
P.78 Added reset pulse timing
P.52 Updated “GDDRAM data and instruction setting needed to be sent again after exit deep
sleep mode” to “DDRAM data needed to be sent again after exit deep sleep mode”
P.94 Added Chip tray information
Advanced information
P.33, 48 Remove HVCI bit in R12h
P.48, 87 Corrected R12h code to 2999h
P.33, 51 Corrected R15h POR to B010h
P.35 Correct read ID code from 1919h to 9919h
P.12, 91 Swapped CYN and CYP pins
P.33, 52, 53Add R16 and R17 register
P.57 Add Program voltage range – 14.5 to 15.5
P.57 Added “It is possible to skip step3 and step4” and changed “Step 4-9” to “Step 5-9”
P.34, 54 Added R20h Uniformity settings
P.11 Updated ordering part number as SSD2119Z7
P.73 Removed (/CS) from tr and tf
P.73 Added VCI and Reset pin to diagram
P.74 Removed (/CS) from tr and tf
P.75 Added VCI and Reset pin to diagram
P.78 Updated Fig13-5 as power up sequence for RGB mode
P.87 Added timing to display off sequence
16-Dec-08
1.0
1.1
SSD2119
Rev 1.4
P 3/95
Jun 2009
23-Jan-09
13-Feb-09
Solomon Systech
Appendix
Version
1.2
1.3
1.4
Effective
Date
Change Items
P.96 Added Chiptray diagram of SSD2119Z7
P.95 Corrected shifted VCHS to Gnd wire to proper position
P.47 Added notes below table of R0CH
P.52 Added “Note: ID and AM functions are not supported in RGB mode”
P.50 Added “DenMode=1 (DEN signal is necessary); DenMode=0 (DEN pin must connect to
VDDIO)”
P.8 Changed from "Charge sharing function for step-up circuits" to "charge sharing function
P.26 Corrected 3n to 3n+3
P.34 Removed "Note: The POR value of REV, BGR, RL are determined by the
corresponding hardware pin state. The software bit setting will override hardware setting if
this command is sent."
P.62 Corrected to 240 row in R41h/R42h
P.62 Corrected Ensure that SS1[8:0] ≤ SE1[8:0] ≤ EFH. (R48h/R49h)
P.63 Corrected "Ensure that SS1[8:0] ≤ SE1[8:0] ; SS2[8:0] ≤ SE2[8:0] ≤ EFH.
(R4Ah/R4Bh)
P.65 Corrected "Partial Display Mode" to EFh
P.82 Corrected the no. of gate/source in section "GDDRAM Address".
P.13 Die size (no scribe; seal ring only) corrected from 23850 x 730 μm2 to 23724 x 780
μm2
P.69 Add remark in DC table12: The setting of VLCD63 is needed to below 0.5V of VCIX2.
It is the prevention of VCIX2 noise to couple to VLCD63 gamma voltage
Solomon Systech
Jun 2009
P 4/95
Rev 1.4
20-Mar-09
08-May-09
09-Jun-09
SSD2119
Appendix
CONTENTS
SSD2119...............................................................................................................................................................................1
1
GENERAL DESCRIPTION.........................................................................................................................................9
2
FEATURES ................................................................................................................................................................10
3
ORDERING INFORMATION...................................................................................................................................11
4
BLOCK DIAGRAM...................................................................................................................................................12
5
DIE PAD FLOOR PLAN ...........................................................................................................................................13
6
PIN DESCRIPTION ...................................................................................................................................................13
7
FUNCTION BLOCK DESCRIPTIONS.....................................................................................................................13
7.1
SYSTEM INTERFACE .............................................................................................................................................13
7.1.1
MPU Parallel 6800-series Interface...........................................................................................................13
7.1.2
MPU Parallel 8080-series Interface...........................................................................................................13
7.1.3
4-wire Serial Peripheral Interface (8 bits)..................................................................................................13
7.1.4
3-lines Serial Peripheral Interface .............................................................................................................13
7.2
RGB INTERFACE..................................................................................................................................................13
7.3
ADDRESS COUNTER (AC) ....................................................................................................................................13
7.4
GRAPHIC DISPLAY DATA RAM (GDDRAM) ......................................................................................................13
7.5
GAMMA/GRAYSCALE VOLTAGE GENERATOR .....................................................................................................13
7.6
BOOSTER AND REGULATOR CIRCUIT ...................................................................................................................13
7.7
TIMING GENERATOR ............................................................................................................................................13
7.8
OSCILLATION CIRCUIT (OSC)..............................................................................................................................13
7.9
DATA LATCHES ...................................................................................................................................................13
7.10 LIQUID CRYSTAL DRIVER CIRCUIT ......................................................................................................................13
8
COMMAND TABLE (TBC)......................................................................................................................................13
9
COMMAND DESCRIPTION (TBC).........................................................................................................................13
10
GAMMA ADJUSTMENT FUNCTION ................................................................................................................13
10.1 STRUCTURE OF GRAYSCALE AMPLIFIER ..............................................................................................................13
10.2 GAMMA ADJUSTMENT REGISTER........................................................................................................................13
10.2 GAMMA ADJUSTMENT REGISTER ........................................................................................................................13
10.2.1 Gradient adjusting register.........................................................................................................................13
10.2.2 Amplitude adjusting register.......................................................................................................................13
10.2.3 Micro adjusting register .............................................................................................................................13
10.3 LADDER RESISTOR / 8 TO 1 SELECTOR .................................................................................................................13
11
MAXIMUM RATINGS..........................................................................................................................................13
12
DC CHARACTERISTICS......................................................................................................................................13
13
AC CHARACTERISTICS......................................................................................................................................13
14
GDDRAM ADDRESS ...........................................................................................................................................13
15
INTERFACE MAPPING........................................................................................................................................13
15.1 INTERFACE SETTING ............................................................................................................................................13
15.1.1 6800-series System Bus Interface ...............................................................................................................13
15.1.2 8080-series System Bus Interface ...............................................................................................................13
15.2 MAPPING FOR WRITING AN INSTRUCTION ...........................................................................................................13
SSD2119
Rev 1.4
P 5/95
Jun 2009
Solomon Systech
Appendix
15.3
15.4
15.5
16
16.1
16.2
16.3
16.4
16.5
MAPPING FOR WRITING PIXEL DATA...................................................................................................................13
MAPPING FOR WRITING PIXEL DATA IN GENERIC MODE ......................................................................................13
MAPPING FOR WRITING PIXEL DATA IN SPI MODE ..............................................................................................13
DISPLAY SETTING SEQUENCE ........................................................................................................................13
DISPLAY ON SEQUENCE ......................................................................................................................................13
DISPLAY OFF SEQUENCE ....................................................................................................................................13
HALT SEQUENCE .................................................................................................................................................13
SLEEP MODE DISPLAY SEQUENCE .......................................................................................................................13
DEEP SLEEP MODE DISPLAY SEQUENCE ..............................................................................................................13
17
POWER SUPPLY BLOCK DIAGRAM ................................................................................................................13
18
SSD2119 OUTPUT VOLTAGE RELATIONSHIP ...............................................................................................13
19
APPLICATION CIRCUIT .....................................................................................................................................13
20
PACKAGE INFORMATION.................................................................................................................................13
20.1
21
CHIP TRAY INFORMATION ...................................................................................................................................13
OTP DETAIL .........................................................................................................................................................13
Solomon Systech
Jun 2009
P 6/95
Rev 1.4
SSD2119
Appendix
TABLES
CORRECTED TABLE 13-1: RGB TIMING CHARACTERISTICS ..................................................................................................3
P.71 CORRECTED TABLE 13-2: RGB TIMING CHARACTERISTICS ..........................................................................................3
TABLE 3-1: ORDERING INFORMATION .................................................................................................................................11
TABLE 5-1: DIE INFORMATION ...................................................................................................................................13
TABLE 5-2: SSD2119 BUMP DIE PAD COORDINATES (BUMP CENTRE) ...............................................................................13
TABLE 6-1: POWER SUPPLY PINS .........................................................................................................................................13
TABLE 6-2: INTERFACE LOGIC PINS ....................................................................................................................................13
TABLE 6-3: MODE SELECTION PINS .....................................................................................................................................13
TABLE 6-4: DRIVER OUTPUT PINS .......................................................................................................................................13
TABLE 6-5: MISCELLANEOUS PINS ......................................................................................................................................13
TABLE 7-1: DATA BUS SELECTION MODES ...........................................................................................................................13
TABLE 8-1: COMMAND TABLE ............................................................................................................................................13
TABLE 9-1: 3-FIELD INTERLACE DRIVING ............................................................................................................................13
TABLE 13-1: PARALLEL 6800 TIMING CHARACTERISTICS ...................................................................................................13
TABLE 13-2: PARALLEL 8080 TIMING CHARACTERISTICS ...................................................................................................13
TABLE 13-3: SERIAL TIMING CHARACTERISTICS .................................................................................................................13
TABLE 13-4: RGB TIMING CHARACTERISTICS ....................................................................................................................13
TABLE 13-5: RESET TIMING ................................................................................................................................................13
TABLE 15-1: INTERFACE SETTING AND DATA BUS SETTING .................................................................................................13
TABLE 15-2: THE FUNCTION OF 6800-SERIES PARALLEL INTERFACE ...................................................................................13
SSD2119
Rev 1.4
P 7/95
Jun 2009
Solomon Systech
Appendix
FIGURES
FIGURE 4-1: SSD2119 BLOCK DIAGRAM ............................................................................................................................12
FIGURE 5-1: SSD2119 DIE PAD FLOOR PLAN......................................................................................................................13
FIGURE 5-2: ALIGNMENT MARKS ........................................................................................................................................13
FIGURE 5-3: OUTPUT PAD PITCH (PAD 361 - 1574) .............................................................................................................13
FIGURE 7-1: READ DISPLAY DATA ......................................................................................................................................13
FIGURE 7-2: 4-WIRE SPI INTERFACE (8 BITS) .......................................................................................................................13
FIGURE 7-3: 3-WIRE SPI INTERFACE (9 BITS) .......................................................................................................................13
FIGURE 9-1: GATE OUTPUT TIMING IN 3-FIELD INTERLACING DRIVING.................................................................................13
FIGURE 9-2: LINE INVERSION AC DRIVER ...........................................................................................................................13
FIGURE 9-3: OTP CIRCUITRY ...............................................................................................................................................13
FIGURE 13-1: PARALLEL 6800-SERIES INTERFACE TIMING CHARACTERISTICS ...................................................................13
FIGURE 13-2: PARALLEL 8080-SERIES INTERFACE TIMING CHARACTERISTICS ...................................................................13
FIGURE 13-3: 4 WIRE SERIAL TIMING CHARACTERISTICS ....................................................................................................13
FIGURE 13-4: RGB TIMING CHARACTERISTICS ...................................................................................................................13
FIGURE 13-5: POWER UP SEQUENCE FOR RGB MODE .........................................................................................................13
FIGURE 13-6: RESET TIMING CHARACTERISTICS .................................................................................................................13
FIGURE 19-1: BOOSTER CAPACITORS ..................................................................................................................................13
FIGURE 19-2: FILTERING AND CHARGE SHARING CAPACITORS ...........................................................................................13
FIGURE 19-3: PANEL CONNECTION EXAMPLE .....................................................................................................................13
FIGURE 19-4: ITO AND FPC CONNECTION EXAMPLE ...........................................................................................................13
Solomon Systech
Jun 2009
P 8/95
Rev 1.4
SSD2119
Appendix
1
GENERAL DESCRIPTION
SSD2119 is an all in one TFT LCD Driver that integrated the power circuits, gate driver and source driver
into a single chip. It can drive up to 262k color amorphous TFT panel with resolution of 320 RGB x 240.
It also integrated the controller function and consists of up to 172,800 bytes (320 x 240 x 18 / 8) Graphic
Display Data RAM (GDDRAM) such that it interfaced with common MCU through 8/9/16/18-bits 6800series / 8080-series compatible Parallel Interface or Serial Interface and stored the data in the GDDRAM.
Auxiliary 18-/6- bit video interface (VSYNC, HSYNC, DOTCLK, DEN) are integrated into SSD2119 for
animation image display.
SSD2119 embeds DC-DC Converter and Voltage generator to provide all necessary voltage required by
the driver with minimum external components. A Common Voltage Generation Circuit is included to
drive the TFT-display counter electrode. An Integrated Gamma Control Circuit is also included that can
be adjusted by software commands to provide maximum flexibility and optimal display quality.
SSD2119 can be operated down to 1.4V and provide different power save modes. It is suitable for any
portable battery-driven applications requiring long operation period and compact size.
SSD2119
Rev 1.4
P 9/95
Jun 2009
Solomon Systech
Appendix
2
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
320RGBx240 single chip controller driver IC for 262k color amorphous TFT LCD
Power Supply
o VDDIO = 1.4V – 3.6V (I/O Interface)
o VCI = 2.5V – 3.6V (power supply for internal analog circuit)
Output Voltages
o Gate Driver:
ƒ VGH-GND = 9V ~ 18V
ƒ VGL-GND = -6 ~ -15V
ƒ VGH-VGL = 30Vp-p max.
o Source Driver:
ƒ V0 – V63 = 0 – 6V max.
o VCOM drive:
ƒ VCOMH = 3.0V ~ 5.0V
ƒ VCOML = -1.0V ~ -3.0V
ƒ VCOMA = 6V max.
System Interface
o 8/ 9/ 16/ 18-bit 6800-series / 8080-series Parallel Interface
o Serial Peripheral Interface (SPI)
Moving picture display interface
o 18-/6-bit RGB interface (DEN, DOTCLK, HSYNC, VSYNC, DB[17:0])
o VSYNC interface (system interface + VSYNC)
o WSYNC interface (system interface + WSYNC)
Support low power consumption:
o Low voltage supply
o Low current sleep mode
o 8-color display mode for power saving
o Charge sharing functions
High-speed RAM addressing functions
o RAM write synchronization function
o Window address function
o Vertical scrolling function
o Partial display function
Internal power supply circuit
o Voltage generator
o DC-DC converter up to 6x/-5x
Built-in internal oscillator
Internal GDDRAM capacity: 172800 Byte
Support Frame and Line inversion AC drive
TFT storage capacitance: Cs on common
Support source and gate scan direction control
Programmable gamma correction curve
4 Preset gamma correction curve
Built-in Non Volatile Memory for VCOM calibration
Support flexible arrangement of gate circuits on both sides of the glass substrate
Solomon Systech
Jun 2009 P 10/95
Rev 1.4
SSD2119
Appendix
3
ORDERING INFORMATION
Table 3-1: Ordering Information
Ordering Part Number
SSD2119Z7
SSD2119
Rev 1.4
Source
output
channel
320 x 3
(960)
P 11/95
Gate
output
channel
240
Jun 2009
Package Form
Reference
Remark
Gold Bump Die
Solomon Systech
Appendix
4
BLOCK DIAGRAM
Figure 4-1: SSD2119 Block Diagram
G1 to G240
VCOM
VCI
VDDIO
VDD
regulator
circuit
Source driver
Regulator
Circuit
Gamma /
Grayscale
Voltage
Generator
VCI
VCIP
C1N
C1P
C2N
C2P
C3N
C3P
CXP
CXN
CYP
CYN
S1 to S960
Data
Regulator
Circuit
Booster
Circuit
Switches Network
VLCD63
Address
Counter
VGH
VGL
GateDriver
GDDRAM
Timing Generation
System Interface
OSC
Solomon Systech
Jun 2009 P 12/95
DOTCLK
HSYNC
VSYNC
D[17:0]
DC/SDC
RD/WR
CS/SCS
SDI/SDO
PS0-3
RES
WSYNC
VSS/AVSS/
VCHS/VSSRC
Rev 1.4
SSD2119
Appendix
5
DIE PAD FLOOR PLAN
Figure 5-1: SSD2119 Die Pad Floor Plan
Pin 1574
Pin 1
Note
(1)
Diagram showing the die face up.
(2)
Coordinates are referenced to center of the
chip.
(3)
Coordinate units and size of all alignment
marks are in um.
(4)
All alignment keys do not contain gold
bump.
30
30
30
30
30
30
Figure 5-2: Alignment Marks
30
30
30
30
30
30
Center: (10945, -275)
Size:
90 x 90 μm2
Center: (-10945, -275)
Size:
90 x 90 μm2
18 18
45
100
y
Die Center (0,0)
Figure 5-3: Output Pad Pitch (Pad 361 - 1574)
100
x
18
Table 5-1: Die Information
Die Size (no scribe)
Die Thickness
Typical Bump Height
Bump Co-planarity
(within die)
Bump Size 1
Pad Pitch 1
Bump Size 2
Pad Pitch 2
Pin 360
SSD2119
23724 x 780 um2
400 ± 25 um
15 um
≤ 2 um
40 x 80 μm2 (Pin 1 – 360)
60 μm
18 x 100 μm2 (Pin 361 – 1574)
18 μm stagger
Pin 361
Rev 1.4
P 13/95
Jun 2009
Solomon Systech
Appendix
Table 5-2: SSD2119 Bump Die Pad Coordinates (Bump Centre)
Note: IC material temperature expansion factor is 2.6ppm, customer should take into account during panel design
Pad #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Pad Name
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
C1P
C1P
C1P
C1P
C1N
C1N
C1N
C1N
C2P
C2P
C2P
C2P
C2N
C2N
C2N
C2N
C3P
C3P
C3P
C3P
C3N
C3N
C3N
C3N
VGL
VGL
Solomon Systech
X-pos
-10770
-10710
-10650
-10590
-10530
-10470
-10410
-10350
-10290
-10230
-10170
-10110
-10050
-9990
-9930
-9870
-9810
-9750
-9690
-9630
-9570
-9510
-9450
-9390
-9330
-9270
-9210
-9150
-9090
-9030
-8970
-8910
-8850
-8790
-8730
-8670
-8610
-8550
-8490
-8430
-8370
-8310
-8250
-8190
-8130
-8070
-8010
-7950
-7890
-7830
Y-pos
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
Pad #
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Pad Name
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
VCIM
VCIM
VCIM
VCIM
VCIM
VCIM
VCIM
CXN
CXN
CXN
CXN
CXN
X-pos
-7770
-7710
-7650
-7590
-7530
-7470
-7410
-7350
-7290
-7230
-7170
-7110
-7050
-6990
-6930
-6870
-6810
-6750
-6690
-6630
-6570
-6510
-6450
-6390
-6330
-6270
-6210
-6150
-6090
-6030
-5970
-5910
-5850
-5790
-5730
-5670
-5610
-5550
-5490
-5430
-5370
-5310
-5250
-5190
-5130
-5070
-5010
-4950
-4890
-4830
Y-pos
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
Pad #
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Pad Name
CXP
CXP
CXP
CXP
CXP
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
X-pos
-4770
-4710
-4650
-4590
-4530
-4470
-4410
-4350
-4290
-4230
-4170
-4110
-4050
-3990
-3930
-3870
-3810
-3750
-3690
-3630
-3570
-3510
-3450
-3390
-3330
-3270
-3210
-3150
-3090
-3030
-2970
-2910
-2850
-2790
-2730
-2670
-2610
-2550
-2490
-2430
-2370
-2310
-2250
-2190
-2130
-2070
-2010
-1950
-1890
-1830
Jun 2009 P 14/95
Y-pos
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
-286
Rev 1.4
SSD2119
Appendix
Pad #
151
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
-286
DUMMY
1230
-286
Pad #
251
Pad Name
-1770
Pad #
201
Pad Name
CYN
VSSRC
4230
-286
152
CYN
-1710
-286
202
DUMMY
1290
-286
252
VSSRC
4290
-286
153
CYN
-1650
-286
203
DUMMY
1350
-286
253
VSSRC
4350
-286
154
CYP
-1590
-286
204
DUMMY
1410
-286
254
VSSRC
4410
-286
155
CYP
-1530
-286
205
DUMMY
1470
-286
255
VSSRC
4470
-286
156
CYP
-1470
-286
206
DUMMY
1530
-286
256
VSSRC
4530
-286
157
CYP
-1410
-286
207
DUMMY
1590
-286
257
VSSRC
4590
-286
158
CYP
-1350
-286
208
DUMMY
1650
-286
258
VSSRC
4650
-286
159
CYP
-1290
-286
209
VSS
1710
-286
259
VSSRC
4710
-286
160
CYP
-1230
-286
210
VSS
1770
-286
260
VSSRC
4770
-286
161
CYP
-1170
-286
211
VSS
1830
-286
261
VSSRC
4830
-286
162
CYP
-1110
-286
212
VSS
1890
-286
262
VSSRC
4890
-286
163
CYP
-1050
-286
213
VSS
1950
-286
263
NC
4950
-286
164
CYP
-990
-286
214
VSS
2010
-286
264
NC
5010
-286
165
CYP
-930
-286
215
VSS
2070
-286
265
RESB
5070
-286
166
VCIX2G
-870
-286
216
VSS
2130
-286
266
DC/SDC
5130
-286
167
VCIX2G
-810
-286
217
VSS
2190
-286
267
RD
5190
-286
168
VCIX2G
-750
-286
218
VSS
2250
-286
268
RW
5250
-286
169
VCIX2G
-690
-286
219
VSS
2310
-286
269
CS/SCS
5310
-286
170
VCIX2G
-630
-286
220
VSS
2370
-286
270
SCL
5370
-286
171
VCIX2G
-570
-286
221
VREGC
2430
-286
271
SCL
5430
-286
172
VCIX2G
-510
-286
222
VREGC
2490
-286
272
SDO
5490
-286
173
VCIX2G
-450
-286
223
VREGC
2550
-286
273
SDI
5550
-286
174
VCIX2G
-390
-286
224
VREGC
2610
-286
274
VSS
5610
-286
175
VCIX2G
-330
-286
225
VREGC
2670
-286
275
WSYNC
5670
-286
176
VCIX2G
-270
-286
226
VREGC
2730
-286
276
D17
5730
-286
177
VCIX2G
-210
-286
227
VREGC
2790
-286
277
D16
5790
-286
178
VCIX2
-150
-286
228
VREGC
2850
-286
278
D15
5850
-286
179
VCIX2
-90
-286
229
VCORE
2910
-286
279
D14
5910
-286
180
VCIX2
-30
-286
230
VCORE
2970
-286
280
D13
5970
-286
181
VCIX2
30
-286
231
VCORE
3030
-286
281
D12
6030
-286
182
VCIX2
90
-286
232
VCORE
3090
-286
282
D11
6090
-286
183
VCIX2
150
-286
233
VCORE
3150
-286
283
D10
6150
-286
184
VCIX2
210
-286
234
VCORE
3210
-286
284
D9
6210
-286
185
VCIX2
270
-286
235
VDDIO
3270
-286
285
D8
6270
-286
186
CDUM0
330
-286
236
VDDIO
3330
-286
286
D7
6330
-286
187
CDUM0
390
-286
237
VDDIO
3390
-286
287
D6
6390
-286
188
CDUM0
450
-286
238
VDDIO
3450
-286
288
D5
6450
-286
189
CDUM0
510
-286
239
VDDIO
3510
-286
289
D4
6510
-286
190
CDUM0
570
-286
240
VDDIO
3570
-286
290
D3
6570
-286
191
CDUM0
630
-286
241
VDDIO
3630
-286
291
D2
6630
-286
192
CDUM0
690
-286
242
VDDIO
3690
-286
292
D1
6690
-286
193
CDUM0
750
-286
243
VDDIO
3750
-286
293
D0
6750
-286
194
CDUM0
810
-286
244
VDDIO
3810
-286
294
VSS
6810
-286
195
CDUM0
870
-286
245
VDDIO
3870
-286
295
DOTCLK
6870
-286
196
CDUM0
930
-286
246
VDDIO
3930
-286
296
HSYNC
6930
-286
197
CDUM0
990
-286
247
VDDIO
3990
-286
297
VSYNC
6990
-286
198
EXVR
1050
-286
248
VDDIO
4050
-286
298
DEN
7050
-286
199
VCOMR
1110
-286
249
VDDIO
4110
-286
299
VSS
7110
-286
200
VLCD63
1170
-286
250
VDDIO
4170
-286
300
PS0
7170
-286
SSD2119
Rev 1.4
P 15/95
Jun 2009
Solomon Systech
Appendix
Pad #
301
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
-286
NC
10230
-286
Pad #
401
Pad Name
7230
Pad #
351
Pad Name
VDDIO
G81
10221
226
302
PS1
7290
-286
352
NC
10290
-286
402
G83
10203
81
303
VSS
7350
-286
353
NC
10350
-286
403
G85
10185
226
304
PS2
7410
-286
354
NC
10410
-286
404
G87
10167
81
305
VDDIO
7470
-286
355
NC
10470
-286
405
G89
10149
226
306
PS3
7530
-286
356
NC
10530
-286
406
G91
10131
81
307
VSS
7590
-286
357
NC
10590
-286
407
G93
10113
226
308
NC
7650
-286
358
NC
10650
-286
408
G95
10095
81
309
NC
7710
-286
359
NC
10710
-286
409
G97
10077
226
310
NC
7770
-286
360
NC
10770
-286
410
G99
10059
81
311
NC
7830
-286
361
G1
10941
226
411
G101
10041
226
312
NC
7890
-286
362
G3
10923
81
412
G103
10023
81
313
NC
7950
-286
363
G5
10905
226
413
G105
10005
226
314
NC
8010
-286
364
G7
10887
81
414
G107
9987
81
315
NC
8070
-286
365
G9
10869
226
415
G109
9969
226
316
NC
8130
-286
366
G11
10851
81
416
G111
9951
81
317
NC
8190
-286
367
G13
10833
226
417
G113
9933
226
318
NC
8250
-286
368
G15
10815
81
418
G115
9915
81
319
NC
8310
-286
369
G17
10797
226
419
G117
9897
226
320
NC
8370
-286
370
G19
10779
81
420
G119
9879
81
321
NC
8430
-286
371
G21
10761
226
421
G121
9861
226
322
NC
8490
-286
372
G23
10743
81
422
G123
9843
81
323
NC
8550
-286
373
G25
10725
226
423
G125
9825
226
324
NC
8610
-286
374
G27
10707
81
424
G127
9807
81
325
NC
8670
-286
375
G29
10689
226
425
G129
9789
226
326
NC
8730
-286
376
G31
10671
81
426
G131
9771
81
327
NC
8790
-286
377
G33
10653
226
427
G133
9753
226
328
NC
8850
-286
378
G35
10635
81
428
G135
9735
81
329
NC
8910
-286
379
G37
10617
226
429
G137
9717
226
330
NC
8970
-286
380
G39
10599
81
430
G139
9699
81
331
NC
9030
-286
381
G41
10581
226
431
G141
9681
226
332
NC
9090
-286
382
G43
10563
81
432
G143
9663
81
333
NC
9150
-286
383
G45
10545
226
433
G145
9645
226
334
NC
9210
-286
384
G47
10527
81
434
G147
9627
81
335
NC
9270
-286
385
G49
10509
226
435
G149
9609
226
336
NC
9330
-286
386
G51
10491
81
436
G151
9591
81
337
NC
9390
-286
387
G53
10473
226
437
G153
9573
226
338
NC
9450
-286
388
G55
10455
81
438
G155
9555
81
339
NC
9510
-286
389
G57
10437
226
439
G157
9537
226
340
NC
9570
-286
390
G59
10419
81
440
G159
9519
81
341
NC
9630
-286
391
G61
10401
226
441
G161
9501
226
342
NC
9690
-286
392
G63
10383
81
442
G163
9483
81
343
NC
9750
-286
393
G65
10365
226
443
G165
9465
226
344
NC
9810
-286
394
G67
10347
81
444
G167
9447
81
345
NC
9870
-286
395
G69
10329
226
445
G169
9429
226
346
NC
9930
-286
396
G71
10311
81
446
G171
9411
81
347
NC
9990
-286
397
G73
10293
226
447
G173
9393
226
348
NC
10050
-286
398
G75
10275
81
448
G175
9375
81
349
NC
10110
-286
399
G77
10257
226
449
G177
9357
226
350
NC
10170
-286
400
G79
10239
81
450
G179
9339
81
Solomon Systech
Jun 2009 P 16/95
Rev 1.4
SSD2119
Appendix
Pad #
451
452
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
226
81
S19
S20
8407
8389
226
81
Pad #
551
552
Pad Name
9321
9303
Pad #
501
502
Pad Name
G181
G183
S69
S70
7507
7489
226
81
453
G185
9285
226
503
S21
8371
226
553
S71
7471
226
454
G187
9267
81
504
S22
8353
81
554
S72
7453
81
455
G189
9249
226
505
S23
8335
226
555
S73
7435
226
456
G191
9231
81
506
S24
8317
81
556
S74
7417
81
457
G193
9213
226
507
S25
8299
226
557
S75
7399
226
458
G195
9195
81
508
S26
8281
81
558
S76
7381
81
459
G197
9177
226
509
S27
8263
226
559
S77
7363
226
460
G199
9159
81
510
S28
8245
81
560
S78
7345
81
461
G201
9141
226
511
S29
8227
226
561
S79
7327
226
462
G203
9123
81
512
S30
8209
81
562
S80
7309
81
463
G205
9105
226
513
S31
8191
226
563
S81
7291
226
464
G207
9087
81
514
S32
8173
81
564
S82
7273
81
465
G209
9069
226
515
S33
8155
226
565
S83
7255
226
466
G211
9051
81
516
S34
8137
81
566
S84
7237
81
467
G213
9033
226
517
S35
8119
226
567
S85
7219
226
468
G215
9015
81
518
S36
8101
81
568
S86
7201
81
469
G217
8997
226
519
S37
8083
226
569
S87
7183
226
470
G219
8979
81
520
S38
8065
81
570
S88
7165
81
471
G221
8961
226
521
S39
8047
226
571
S89
7147
226
472
G223
8943
81
522
S40
8029
81
572
S90
7129
81
473
G225
8925
226
523
S41
8011
226
573
S91
7111
226
474
G227
8907
81
524
S42
7993
81
574
S92
7093
81
475
G229
8889
226
525
S43
7975
226
575
S93
7075
226
476
G231
8871
81
526
S44
7957
81
576
S94
7057
81
477
G233
8853
226
527
S45
7939
226
577
S95
7039
226
478
G235
8835
81
528
S46
7921
81
578
S96
7021
81
479
G237
8817
226
529
S47
7903
226
579
S97
7003
226
480
G239
8799
81
530
S48
7885
81
580
S98
6985
81
481
DUMMY
8781
226
531
S49
7867
226
581
S99
6967
226
482
DUMMY
8763
81
532
S50
7849
81
582
S100
6949
81
483
S1
8731
226
533
S51
7831
226
583
S101
6931
226
484
S2
8713
81
534
S52
7813
81
584
S102
6913
81
485
S3
8695
226
535
S53
7795
226
585
S103
6895
226
486
S4
8677
81
536
S54
7777
81
586
S104
6877
81
487
S5
8659
226
537
S55
7759
226
587
S105
6859
226
488
S6
8641
81
538
S56
7741
81
588
S106
6841
81
489
S7
8623
226
539
S57
7723
226
589
S107
6823
226
490
S8
8605
81
540
S58
7705
81
590
S108
6805
81
491
S9
8587
226
541
S59
7687
226
591
S109
6787
226
492
S10
8569
81
542
S60
7669
81
592
S110
6769
81
493
S11
8551
226
543
S61
7651
226
593
S111
6751
226
494
S12
8533
81
544
S62
7633
81
594
S112
6733
81
495
S13
8515
226
545
S63
7615
226
595
S113
6715
226
496
S14
8497
81
546
S64
7597
81
596
S114
6697
81
497
S15
8479
226
547
S65
7579
226
597
S115
6679
226
498
S16
8461
81
548
S66
7561
81
598
S116
6661
81
499
S17
8443
226
549
S67
7543
226
599
S117
6643
226
500
S18
8425
81
550
S68
7525
81
600
S118
6625
81
SSD2119
Rev 1.4
P 17/95
Jun 2009
Solomon Systech
Appendix
Pad #
601
602
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
226
81
S169
S170
5707
5689
226
81
Pad #
701
702
Pad Name
6607
6589
Pad #
651
652
Pad Name
S119
S120
S219
S220
4807
4789
226
81
603
S121
6571
226
653
S171
5671
226
703
S221
4771
226
604
S122
6553
81
654
S172
5653
81
704
S222
4753
81
605
S123
6535
226
655
S173
5635
226
705
S223
4735
226
606
S124
6517
81
656
S174
5617
81
706
S224
4717
81
607
S125
6499
226
657
S175
5599
226
707
S225
4699
226
608
S126
6481
81
658
S176
5581
81
708
S226
4681
81
609
S127
6463
226
659
S177
5563
226
709
S227
4663
226
610
S128
6445
81
660
S178
5545
81
710
S228
4645
81
611
S129
6427
226
661
S179
5527
226
711
S229
4627
226
612
S130
6409
81
662
S180
5509
81
712
S230
4609
81
613
S131
6391
226
663
S181
5491
226
713
S231
4591
226
614
S132
6373
81
664
S182
5473
81
714
S232
4573
81
615
S133
6355
226
665
S183
5455
226
715
S233
4555
226
616
S134
6337
81
666
S184
5437
81
716
S234
4537
81
617
S135
6319
226
667
S185
5419
226
717
S235
4519
226
618
S136
6301
81
668
S186
5401
81
718
S236
4501
81
619
S137
6283
226
669
S187
5383
226
719
S237
4483
226
620
S138
6265
81
670
S188
5365
81
720
S238
4465
81
621
S139
6247
226
671
S189
5347
226
721
S239
4447
226
622
S140
6229
81
672
S190
5329
81
722
S240
4429
81
623
S141
6211
226
673
S191
5311
226
723
S241
4411
226
624
S142
6193
81
674
S192
5293
81
724
S242
4393
81
625
S143
6175
226
675
S193
5275
226
725
S243
4375
226
626
S144
6157
81
676
S194
5257
81
726
S244
4357
81
627
S145
6139
226
677
S195
5239
226
727
S245
4339
226
628
S146
6121
81
678
S196
5221
81
728
S246
4321
81
629
S147
6103
226
679
S197
5203
226
729
S247
4303
226
630
S148
6085
81
680
S198
5185
81
730
S248
4285
81
631
S149
6067
226
681
S199
5167
226
731
S249
4267
226
632
S150
6049
81
682
S200
5149
81
732
S250
4249
81
633
S151
6031
226
683
S201
5131
226
733
S251
4231
226
634
S152
6013
81
684
S202
5113
81
734
S252
4213
81
635
S153
5995
226
685
S203
5095
226
735
S253
4195
226
636
S154
5977
81
686
S204
5077
81
736
S254
4177
81
637
S155
5959
226
687
S205
5059
226
737
S255
4159
226
638
S156
5941
81
688
S206
5041
81
738
S256
4141
81
639
S157
5923
226
689
S207
5023
226
739
S257
4123
226
640
S158
5905
81
690
S208
5005
81
740
S258
4105
81
641
S159
5887
226
691
S209
4987
226
741
S259
4087
226
642
S160
5869
81
692
S210
4969
81
742
S260
4069
81
643
S161
5851
226
693
S211
4951
226
743
S261
4051
226
644
S162
5833
81
694
S212
4933
81
744
S262
4033
81
645
S163
5815
226
695
S213
4915
226
745
S263
4015
226
646
S164
5797
81
696
S214
4897
81
746
S264
3997
81
647
S165
5779
226
697
S215
4879
226
747
S265
3979
226
648
S166
5761
81
698
S216
4861
81
748
S266
3961
81
649
S167
5743
226
699
S217
4843
226
749
S267
3943
226
650
S168
5725
81
700
S218
4825
81
750
S268
3925
81
Solomon Systech
Jun 2009 P 18/95
Rev 1.4
SSD2119
Appendix
Pad #
751
752
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
226
81
S319
S320
3007
2989
226
81
Pad #
851
852
Pad Name
3907
3889
Pad #
801
802
Pad Name
S269
S270
S369
S370
2107
2089
226
81
753
S271
3871
226
803
S321
2971
226
853
S371
2071
226
754
S272
3853
81
804
S322
2953
81
854
S372
2053
81
755
S273
3835
226
805
S323
2935
226
855
S373
2035
226
756
S274
3817
81
806
S324
2917
81
856
S374
2017
81
757
S275
3799
226
807
S325
2899
226
857
S375
1999
226
758
S276
3781
81
808
S326
2881
81
858
S376
1981
81
759
S277
3763
226
809
S327
2863
226
859
S377
1963
226
760
S278
3745
81
810
S328
2845
81
860
S378
1945
81
761
S279
3727
226
811
S329
2827
226
861
S379
1927
226
762
S280
3709
81
812
S330
2809
81
862
S380
1909
81
763
S281
3691
226
813
S331
2791
226
863
S381
1891
226
764
S282
3673
81
814
S332
2773
81
864
S382
1873
81
765
S283
3655
226
815
S333
2755
226
865
S383
1855
226
766
S284
3637
81
816
S334
2737
81
866
S384
1837
81
767
S285
3619
226
817
S335
2719
226
867
S385
1819
226
768
S286
3601
81
818
S336
2701
81
868
S386
1801
81
769
S287
3583
226
819
S337
2683
226
869
S387
1783
226
770
S288
3565
81
820
S338
2665
81
870
S388
1765
81
771
S289
3547
226
821
S339
2647
226
871
S389
1747
226
772
S290
3529
81
822
S340
2629
81
872
S390
1729
81
773
S291
3511
226
823
S341
2611
226
873
S391
1711
226
774
S292
3493
81
824
S342
2593
81
874
S392
1693
81
775
S293
3475
226
825
S343
2575
226
875
S393
1675
226
776
S294
3457
81
826
S344
2557
81
876
S394
1657
81
777
S295
3439
226
827
S345
2539
226
877
S395
1639
226
778
S296
3421
81
828
S346
2521
81
878
S396
1621
81
779
S297
3403
226
829
S347
2503
226
879
S397
1603
226
780
S298
3385
81
830
S348
2485
81
880
S398
1585
81
781
S299
3367
226
831
S349
2467
226
881
S399
1567
226
782
S300
3349
81
832
S350
2449
81
882
S400
1549
81
783
S301
3331
226
833
S351
2431
226
883
S401
1531
226
784
S302
3313
81
834
S352
2413
81
884
S402
1513
81
785
S303
3295
226
835
S353
2395
226
885
S403
1495
226
786
S304
3277
81
836
S354
2377
81
886
S404
1477
81
787
S305
3259
226
837
S355
2359
226
887
S405
1459
226
788
S306
3241
81
838
S356
2341
81
888
S406
1441
81
789
S307
3223
226
839
S357
2323
226
889
S407
1423
226
790
S308
3205
81
840
S358
2305
81
890
S408
1405
81
791
S309
3187
226
841
S359
2287
226
891
S409
1387
226
792
S310
3169
81
842
S360
2269
81
892
S410
1369
81
793
S311
3151
226
843
S361
2251
226
893
S411
1351
226
794
S312
3133
81
844
S362
2233
81
894
S412
1333
81
795
S313
3115
226
845
S363
2215
226
895
S413
1315
226
796
S314
3097
81
846
S364
2197
81
896
S414
1297
81
797
S315
3079
226
847
S365
2179
226
897
S415
1279
226
798
S316
3061
81
848
S366
2161
81
898
S416
1261
81
799
S317
3043
226
849
S367
2143
226
899
S417
1243
226
800
S318
3025
81
850
S368
2125
81
900
S418
1225
81
SSD2119
Rev 1.4
P 19/95
Jun 2009
Solomon Systech
Appendix
Pad #
901
902
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
226
81
S469
S470
307
289
226
81
Pad #
1001
1002
Pad Name
1207
1189
Pad #
951
952
Pad Name
S419
S420
S509
S510
-613
-631
226
81
903
S421
1171
226
953
S471
271
226
1003
S511
-649
226
904
S422
1153
81
954
S472
253
81
1004
S512
-667
81
905
S423
1135
226
955
S473
235
226
1005
S513
-685
226
906
S424
1117
81
956
S474
217
81
1006
S514
-703
81
907
S425
1099
226
957
S475
199
226
1007
S515
-721
226
908
S426
1081
81
958
S476
181
81
1008
S516
-739
81
909
S427
1063
226
959
S477
163
226
1009
S517
-757
226
910
S428
1045
81
960
S478
145
81
1010
S518
-775
81
911
S429
1027
226
961
S479
127
226
1011
S519
-793
226
912
S430
1009
81
962
S480
109
81
1012
S520
-811
81
913
S431
991
226
963
DUMMY
91
226
1013
S521
-829
226
914
S432
973
81
964
DUMMY
73
81
1014
S522
-847
81
915
S433
955
226
965
DUMMY
55
226
1015
S523
-865
226
916
S434
937
81
966
DUMMY
37
81
1016
S524
-883
81
917
S435
919
226
967
DUMMY
19
226
1017
S525
-901
226
918
S436
901
81
968
DUMMY
-19
81
1018
S526
-919
81
919
S437
883
226
969
DUMMY
-37
226
1019
S527
-937
226
920
S438
865
81
970
DUMMY
-55
81
1020
S528
-955
81
921
S439
847
226
971
DUMMY
-73
226
1021
S529
-973
226
922
S440
829
81
972
DUMMY
-91
81
1022
S530
-991
81
923
S441
811
226
973
S481
-109
226
1023
S531
-1009
226
924
S442
793
81
974
S482
-127
81
1024
S532
-1027
81
925
S443
775
226
975
S483
-145
226
1025
S533
-1045
226
926
S444
757
81
976
S484
-163
81
1026
S534
-1063
81
927
S445
739
226
977
S485
-181
226
1027
S535
-1081
226
928
S446
721
81
978
S486
-199
81
1028
S536
-1099
81
929
S447
703
226
979
S487
-217
226
1029
S537
-1117
226
930
S448
685
81
980
S488
-235
81
1030
S538
-1135
81
931
S449
667
226
981
S489
-253
226
1031
S539
-1153
226
932
S450
649
81
982
S490
-271
81
1032
S540
-1171
81
933
S451
631
226
983
S491
-289
226
1033
S541
-1189
226
934
S452
613
81
984
S492
-307
81
1034
S542
-1207
81
935
S453
595
226
985
S493
-325
226
1035
S543
-1225
226
936
S454
577
81
986
S494
-343
81
1036
S544
-1243
81
937
S455
559
226
987
S495
-361
226
1037
S545
-1261
226
938
S456
541
81
988
S496
-379
81
1038
S546
-1279
81
939
S457
523
226
989
S497
-397
226
1039
S547
-1297
226
940
S458
505
81
990
S498
-415
81
1040
S548
-1315
81
941
S459
487
226
991
S499
-433
226
1041
S549
-1333
226
942
S460
469
81
992
S500
-451
81
1042
S550
-1351
81
943
S461
451
226
993
S501
-469
226
1043
S551
-1369
226
944
S462
433
81
994
S502
-487
81
1044
S552
-1387
81
945
S463
415
226
995
S503
-505
226
1045
S553
-1405
226
946
S464
397
81
996
S504
-523
81
1046
S554
-1423
81
947
S465
379
226
997
S505
-541
226
1047
S555
-1441
226
948
S466
361
81
998
S506
-559
81
1048
S556
-1459
81
949
S467
343
226
999
S507
-577
226
1049
S557
-1477
226
950
S468
325
81
1000
S508
-595
81
1050
S558
-1495
81
Solomon Systech
Jun 2009 P 20/95
Rev 1.4
SSD2119
Appendix
Pad #
1051
1052
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
226
81
S609
S610
-2413
-2431
226
81
Pad #
1151
1152
Pad Name
-1513
-1531
Pad #
1101
1102
Pad Name
S559
S560
S659
S660
-3313
-3331
226
81
1053
S561
-1549
226
1103
S611
-2449
226
1153
S661
-3349
226
1054
S562
-1567
81
1104
S612
-2467
81
1154
S662
-3367
81
1055
S563
-1585
226
1105
S613
-2485
226
1155
S663
-3385
226
1056
S564
-1603
81
1106
S614
-2503
81
1156
S664
-3403
81
1057
S565
-1621
226
1107
S615
-2521
226
1157
S665
-3421
226
1058
S566
-1639
81
1108
S616
-2539
81
1158
S666
-3439
81
1059
S567
-1657
226
1109
S617
-2557
226
1159
S667
-3457
226
1060
S568
-1675
81
1110
S618
-2575
81
1160
S668
-3475
81
1061
S569
-1693
226
1111
S619
-2593
226
1161
S669
-3493
226
1062
S570
-1711
81
1112
S620
-2611
81
1162
S670
-3511
81
1063
S571
-1729
226
1113
S621
-2629
226
1163
S671
-3529
226
1064
S572
-1747
81
1114
S622
-2647
81
1164
S672
-3547
81
1065
S573
-1765
226
1115
S623
-2665
226
1165
S673
-3565
226
1066
S574
-1783
81
1116
S624
-2683
81
1166
S674
-3583
81
1067
S575
-1801
226
1117
S625
-2701
226
1167
S675
-3601
226
1068
S576
-1819
81
1118
S626
-2719
81
1168
S676
-3619
81
1069
S577
-1837
226
1119
S627
-2737
226
1169
S677
-3637
226
1070
S578
-1855
81
1120
S628
-2755
81
1170
S678
-3655
81
1071
S579
-1873
226
1121
S629
-2773
226
1171
S679
-3673
226
1072
S580
-1891
81
1122
S630
-2791
81
1172
S680
-3691
81
1073
S581
-1909
226
1123
S631
-2809
226
1173
S681
-3709
226
1074
S582
-1927
81
1124
S632
-2827
81
1174
S682
-3727
81
1075
S583
-1945
226
1125
S633
-2845
226
1175
S683
-3745
226
1076
S584
-1963
81
1126
S634
-2863
81
1176
S684
-3763
81
1077
S585
-1981
226
1127
S635
-2881
226
1177
S685
-3781
226
1078
S586
-1999
81
1128
S636
-2899
81
1178
S686
-3799
81
1079
S587
-2017
226
1129
S637
-2917
226
1179
S687
-3817
226
1080
S588
-2035
81
1130
S638
-2935
81
1180
S688
-3835
81
1081
S589
-2053
226
1131
S639
-2953
226
1181
S689
-3853
226
1082
S590
-2071
81
1132
S640
-2971
81
1182
S690
-3871
81
1083
S591
-2089
226
1133
S641
-2989
226
1183
S691
-3889
226
1084
S592
-2107
81
1134
S642
-3007
81
1184
S692
-3907
81
1085
S593
-2125
226
1135
S643
-3025
226
1185
S693
-3925
226
1086
S594
-2143
81
1136
S644
-3043
81
1186
S694
-3943
81
1087
S595
-2161
226
1137
S645
-3061
226
1187
S695
-3961
226
1088
S596
-2179
81
1138
S646
-3079
81
1188
S696
-3979
81
1089
S597
-2197
226
1139
S647
-3097
226
1189
S697
-3997
226
1090
S598
-2215
81
1140
S648
-3115
81
1190
S698
-4015
81
1091
S599
-2233
226
1141
S649
-3133
226
1191
S699
-4033
226
1092
S600
-2251
81
1142
S650
-3151
81
1192
S700
-4051
81
1093
S601
-2269
226
1143
S651
-3169
226
1193
S701
-4069
226
1094
S602
-2287
81
1144
S652
-3187
81
1194
S702
-4087
81
1095
S603
-2305
226
1145
S653
-3205
226
1195
S703
-4105
226
1096
S604
-2323
81
1146
S654
-3223
81
1196
S704
-4123
81
1097
S605
-2341
226
1147
S655
-3241
226
1197
S705
-4141
226
1098
S606
-2359
81
1148
S656
-3259
81
1198
S706
-4159
81
1099
S607
-2377
226
1149
S657
-3277
226
1199
S707
-4177
226
1100
S608
-2395
81
1150
S658
-3295
81
1200
S708
-4195
81
SSD2119
Rev 1.4
P 21/95
Jun 2009
Solomon Systech
Appendix
Pad #
Pad Name
X-pos
Y-pos
Pad #
Pad Name
X-pos
Y-pos
Pad #
Pad Name
X-pos
Y-pos
1201
1202
S709
-4213
226
1251
S710
-4231
81
1252
S759
-5113
226
1301
S809
-6013
226
S760
-5131
81
1302
S810
-6031
1203
S711
-4249
226
81
1253
S761
-5149
226
1303
S811
-6049
226
1204
S712
-4267
1205
S713
-4285
81
1254
S762
-5167
81
1304
S812
-6067
81
226
1255
S763
-5185
226
1305
S813
-6085
226
1206
S714
-4303
1207
S715
-4321
81
1256
S764
-5203
81
1306
S814
-6103
81
226
1257
S765
-5221
226
1307
S815
-6121
226
1208
S716
-4339
1209
S717
-4357
81
1258
S766
-5239
81
1308
S816
-6139
81
226
1259
S767
-5257
226
1309
S817
-6157
226
1210
S718
-4375
81
1260
S768
-5275
81
1310
S818
-6175
81
1211
S719
1212
S720
-4393
226
1261
S769
-5293
226
1311
S819
-6193
226
-4411
81
1262
S770
-5311
81
1312
S820
-6211
1213
S721
-4429
81
226
1263
S771
-5329
226
1313
S821
-6229
226
1214
S722
1215
S723
-4447
81
1264
S772
-5347
81
1314
S822
-6247
81
-4465
226
1265
S773
-5365
226
1315
S823
-6265
226
1216
S724
-4483
81
1266
S774
-5383
81
1316
S824
-6283
81
1217
S725
-4501
226
1267
S775
-5401
226
1317
S825
-6301
226
1218
S726
-4519
81
1268
S776
-5419
81
1318
S826
-6319
81
1219
S727
-4537
226
1269
S777
-5437
226
1319
S827
-6337
226
1220
S728
-4555
81
1270
S778
-5455
81
1320
S828
-6355
81
1221
S729
-4573
226
1271
S779
-5473
226
1321
S829
-6373
226
1222
S730
-4591
81
1272
S780
-5491
81
1322
S830
-6391
81
1223
S731
-4609
226
1273
S781
-5509
226
1323
S831
-6409
226
1224
S732
-4627
81
1274
S782
-5527
81
1324
S832
-6427
81
1225
S733
-4645
226
1275
S783
-5545
226
1325
S833
-6445
226
1226
S734
-4663
81
1276
S784
-5563
81
1326
S834
-6463
81
1227
S735
-4681
226
1277
S785
-5581
226
1327
S835
-6481
226
1228
S736
-4699
81
1278
S786
-5599
81
1328
S836
-6499
81
1229
S737
-4717
226
1279
S787
-5617
226
1329
S837
-6517
226
1230
S738
-4735
81
1280
S788
-5635
81
1330
S838
-6535
81
1231
S739
-4753
226
1281
S789
-5653
226
1331
S839
-6553
226
1232
S740
-4771
81
1282
S790
-5671
81
1332
S840
-6571
81
1233
S741
-4789
226
1283
S791
-5689
226
1333
S841
-6589
226
1234
S742
-4807
81
1284
S792
-5707
81
1334
S842
-6607
81
1235
S743
-4825
226
1285
S793
-5725
226
1335
S843
-6625
226
1236
S744
-4843
81
1286
S794
-5743
81
1336
S844
-6643
81
1237
S745
-4861
226
1287
S795
-5761
226
1337
S845
-6661
226
1238
S746
-4879
81
1288
S796
-5779
81
1338
S846
-6679
81
1239
S747
-4897
226
1289
S797
-5797
226
1339
S847
-6697
226
1240
S748
-4915
81
1290
S798
-5815
81
1340
S848
-6715
81
1241
S749
-4933
226
1291
S799
-5833
226
1341
S849
-6733
226
1242
S750
-4951
81
1292
S800
-5851
81
1342
S850
-6751
81
1243
S751
-4969
226
1293
S801
-5869
226
1343
S851
-6769
226
1244
S752
-4987
81
1294
S802
-5887
81
1344
S852
-6787
81
1245
S753
-5005
226
1295
S803
-5905
226
1345
S853
-6805
226
1246
S754
-5023
81
1296
S804
-5923
81
1346
S854
-6823
81
1247
S755
-5041
226
1297
S805
-5941
226
1347
S855
-6841
226
1248
S756
-5059
81
1298
S806
-5959
81
1348
S856
-6859
81
1249
S757
-5077
226
1299
S807
-5977
226
1349
S857
-6877
226
1250
S758
-5095
81
1300
S808
-5995
81
1350
S858
-6895
81
Solomon Systech
Jun 2009 P 22/95
Rev 1.4
SSD2119
Appendix
Pad #
1351
1352
Pad Name
X-pos
Y-pos
X-pos
Y-pos
X-pos
Y-pos
226
81
S909
S910
-7813
-7831
226
81
Pad #
1451
1452
Pad Name
-6913
-6931
Pad #
1401
1402
Pad Name
S859
S860
S959
S960
-8713
-8731
226
81
1353
S861
-6949
226
1403
S911
-7849
226
1453
DUMMY
-8763
226
1354
S862
-6967
81
1404
S912
-7867
81
1454
DUMMY
-8781
81
1355
S863
-6985
226
1405
S913
-7885
226
1455
G240
-8799
226
1356
S864
-7003
81
1406
S914
-7903
81
1456
G238
-8817
81
1357
S865
-7021
226
1407
S915
-7921
226
1457
G236
-8835
226
1358
S866
-7039
81
1408
S916
-7939
81
1458
G234
-8853
81
1359
S867
-7057
226
1409
S917
-7957
226
1459
G232
-8871
226
1360
S868
-7075
81
1410
S918
-7975
81
1460
G230
-8889
81
1361
S869
-7093
226
1411
S919
-7993
226
1461
G228
-8907
226
1362
S870
-7111
81
1412
S920
-8011
81
1462
G226
-8925
81
1363
S871
-7129
226
1413
S921
-8029
226
1463
G224
-8943
226
1364
S872
-7147
81
1414
S922
-8047
81
1464
G222
-8961
81
1365
S873
-7165
226
1415
S923
-8065
226
1465
G220
-8979
226
1366
S874
-7183
81
1416
S924
-8083
81
1466
G218
-8997
81
1367
S875
-7201
226
1417
S925
-8101
226
1467
G216
-9015
226
1368
S876
-7219
81
1418
S926
-8119
81
1468
G214
-9033
81
1369
S877
-7237
226
1419
S927
-8137
226
1469
G212
-9051
226
1370
S878
-7255
81
1420
S928
-8155
81
1470
G210
-9069
81
1371
S879
-7273
226
1421
S929
-8173
226
1471
G208
-9087
226
1372
S880
-7291
81
1422
S930
-8191
81
1472
G206
-9105
81
1373
S881
-7309
226
1423
S931
-8209
226
1473
G204
-9123
226
1374
S882
-7327
81
1424
S932
-8227
81
1474
G202
-9141
81
1375
S883
-7345
226
1425
S933
-8245
226
1475
G200
-9159
226
1376
S884
-7363
81
1426
S934
-8263
81
1476
G198
-9177
81
1377
S885
-7381
226
1427
S935
-8281
226
1477
G196
-9195
226
1378
S886
-7399
81
1428
S936
-8299
81
1478
G194
-9213
81
1379
S887
-7417
226
1429
S937
-8317
226
1479
G192
-9231
226
1380
S888
-7435
81
1430
S938
-8335
81
1480
G190
-9249
81
1381
S889
-7453
226
1431
S939
-8353
226
1481
G188
-9267
226
1382
S890
-7471
81
1432
S940
-8371
81
1482
G186
-9285
81
1383
S891
-7489
226
1433
S941
-8389
226
1483
G184
-9303
226
1384
S892
-7507
81
1434
S942
-8407
81
1484
G182
-9321
81
1385
S893
-7525
226
1435
S943
-8425
226
1485
G180
-9339
226
1386
S894
-7543
81
1436
S944
-8443
81
1486
G178
-9357
81
1387
S895
-7561
226
1437
S945
-8461
226
1487
G176
-9375
226
1388
S896
-7579
81
1438
S946
-8479
81
1488
G174
-9393
81
1389
S897
-7597
226
1439
S947
-8497
226
1489
G172
-9411
226
1390
S898
-7615
81
1440
S948
-8515
81
1490
G170
-9429
81
1391
S899
-7633
226
1441
S949
-8533
226
1491
G168
-9447
226
1392
S900
-7651
81
1442
S950
-8551
81
1492
G166
-9465
81
1393
S901
-7669
226
1443
S951
-8569
226
1493
G164
-9483
226
1394
S902
-7687
81
1444
S952
-8587
81
1494
G162
-9501
81
1395
S903
-7705
226
1445
S953
-8605
226
1495
G160
-9519
226
1396
S904
-7723
81
1446
S954
-8623
81
1496
G158
-9537
81
1397
S905
-7741
226
1447
S955
-8641
226
1497
G156
-9555
226
1398
S906
-7759
81
1448
S956
-8659
81
1498
G154
-9573
81
1399
S907
-7777
226
1449
S957
-8677
226
1499
G152
-9591
226
1400
S908
-7795
81
1450
S958
-8695
81
1500
G150
-9609
81
SSD2119
Rev 1.4
P 23/95
Jun 2009
Solomon Systech
Appendix
Pad #
1501
1502
Pad Name
X-pos
Y-pos
X-pos
Y-pos
-9627
-9645
226
81
Pad #
1551
1552
Pad Name
G148
G146
G48
G46
-10527
-10545
226
81
1503
G144
-9663
226
1553
G44
-10563
226
1504
G142
-9681
81
1554
G42
-10581
81
1505
G140
-9699
226
1555
G40
-10599
226
1506
G138
-9717
81
1556
G38
-10617
81
1507
G136
-9735
226
1557
G36
-10635
226
1508
G134
-9753
81
1558
G34
-10653
81
1509
G132
-9771
226
1559
G32
-10671
226
1510
G130
-9789
81
1560
G30
-10689
81
1511
G128
-9807
226
1561
G28
-10707
226
1512
G126
-9825
81
1562
G26
-10725
81
1513
G124
-9843
226
1563
G24
-10743
226
1514
G122
-9861
81
1564
G22
-10761
81
1515
G120
-9879
226
1565
G20
-10779
226
1516
G118
-9897
81
1566
G18
-10797
81
1517
G116
-9915
226
1567
G16
-10815
226
1518
G114
-9933
81
1568
G14
-10833
81
1519
G112
-9951
226
1569
G12
-10851
226
1520
G110
-9969
81
1570
G10
-10869
81
1521
G108
-9987
226
1571
G8
-10887
226
1522
G106
-10005
81
1572
G6
-10905
81
1523
G104
-10023
226
1573
G4
-10923
226
1524
G102
-10041
81
1574
G2
-10941
81
1525
1526
G100
G98
-10059
-10077
226
81
1527
G96
-10095
226
1528
G94
-10113
81
1529
G92
-10131
226
1530
G90
-10149
81
1531
G88
-10167
226
1532
G86
-10185
81
1533
G84
-10203
226
1534
G82
-10221
81
1535
G80
-10239
226
1536
G78
-10257
81
1537
G76
-10275
226
1538
G74
-10293
81
1539
G72
-10311
226
1540
G70
-10329
81
1541
G68
-10347
226
1542
G66
-10365
81
1543
G64
-10383
226
1544
G62
-10401
81
1545
G60
-10419
226
1546
G58
-10437
81
1547
G56
-10455
226
1548
G54
-10473
81
1549
G52
-10491
226
1550
G50
-10509
81
Solomon Systech
Jun 2009 P 24/95
Rev 1.4
SSD2119
Appendix
6
PIN DESCRIPTION
Remark:
I = Input;
O = Output;
IO = Bi-directional;
P = Power;,
GND = System VSS;
Table 6-1: Power Supply Pins
Pin Name
VSS
VSSRC
AVSS
VCHS
Type
P
VCI
Connect
to
GND
GND
GND
AVSS
Power
Supply
P
VCIP
VCI
VCIM
VCIX2
O
VCIX2G
VCOMR
I
VCOMH
O
VCOML
VLCD63
VGH
O
VGL
Stabilizing
capacitor
Stabilizing
capacitor
VCIX2 on
FPC
External
voltage
source or
Open
Stabilizing
capacitor
Stabilizing
capacitor
Stabilizing
capacitor
Stabilizing
capacitor
Stabilizing
capacitor
I
GND
CXP
CXN
CYP
CYN
C1P
C1N
C2P
C2N
C3P
C3N
I
Booster
capacitor
Booster
capacitor
Booster
capacitor
Booster
capacitor
Booster
capacitor
Rev 1.4
Ground of
the Power
Supply
Power
Supply for
Analog
Circuits
P 25/95
Description
System ground pin of the IC.
Grounding for gamma circuit
Grounding for analog circuit.
Grounding for booster circuit.
Booster input voltage pin.
- Connect to voltage source between 2.5V to 3.6V
Voltage supply pin for analog circuit. This pin requires a
noise free path for providing accurate LCD driving
voltages.
- Connect to same source of VCI
Negative voltage of VCI.
Booster
voltages
When
not in
use
-
Equals to 2x VCI
-
External
Reference
Voltages for
VCOM
Signal
LCD
Driving
Voltages
External
Reference
EXVR
SSD2119
Function
Booster and
Stabilization
Capacitors
Jun 2009
This pin provides voltage reference for internal voltage
regulator when register VDV[4:0] of Power Control 4
set to “01111”.
- Connect to an external voltage source for reference
This pin indicates a HIGH level of VCOM generated in
driving the VCOM alternation.
This pin indicates a LOW level of VCOM generated in
driving the VCOM alternation.
Open
-
This pin is the maximum source driver voltage.
-
A positive power output pin for gate driver and for OTP
programming
-
A negative power output pin for gate driver.
-
External reference of internal gamma resistor
- Connect to VSS
- Connect a capacitor to CXN
- Connect a capacitor to CXP
- Connect a capacitor to CYN
- Connect a capacitor to CYP
- Connect a capacitor to C1N
- Connect a capacitor to C1P
- Connect a capacitor to C2N
- Connect a capacitor to C2P
- Connect a capacitor to C3N
- Connect a capacitor to C3P
-
Solomon Systech
Appendix
Pin Name
Type
CDUM0
Connect
to
Function
Stabilizing
capacitor
Stabilizing
capacitor
Power for
Core Logic
Regulator
output for
logic
circuits
Power for
interface
logic pins
VCORE
P
Stabilizing
capacitor
VREGC
P
VCORE
VDDIO
P
Power
Supply
Solomon Systech
When
not in
use
Description
- Connect a capacitor to VSS
Open
Vdd for core use. Connect a capacitor for stabilization
-
Regulator output for VCORE use.
Voltage input pin for logic I/O, connect to system VDD.
- Connect to voltage source between 1.4V to 3.6V
Jun 2009 P 26/95
-
Rev 1.4
SSD2119
-
Appendix
Table 6-2: Interface Logic Pins
Name
Type
Connect
to
DC/SDC
MPU
CS/SCS
MPU
I
RD
MPU
RW
MPU
Function
Logic
Control
D0-D17
IO
MPU
WSYNC
O
MPU
DOTCLK
I
MPU
HSYNC
VSYNC
DEN
I
I
I
MPU
MPU
MPU
RESB
I
MPU
System
Reset
SDI
SDO
SCL
I
O
I
MPU
MPU
MPU
Serial
interface
SSD2119
Rev 1.4
Data bus
Display
Timing
Signal
P 27/95
When
not in
use
Description
Data or command
DC : Parallel Interface
SDC : Serial Interface
CS : Chip select pin for 6800/8080 Parallel Interface
SCS : Chip Select pin for Serial Mode Interface
6800-system : E (enable signal)
8080-system : RD (read strobe signal)
Serial mode : Not used and should be connected to VDDIO or Vss
6800-system : RW (indicates read cycle when High, write cycle
when Low)
8080-system : WR (write strobe signal)
For parallel mode, 8/9/16/18 bit interface.
Please refer to Section 15 Interface Mapping Section for
definition.
Unused pins should connect to VSS.
Ram Write Synchronization output
Dot-clock signal and oscillator source. A non-stop external
clock must be provided to that pin even at front or black porch
non-display period.
Line Synchronization input
Frame/Ram Write Synchronization input
Display enable pin from controller.
System reset pin.
- An active low pulse at this pin will reset the IC, Connect to
VDDIO in normal operation
An external reset pulse to RESB is required for power up
(sequence)
Data input pin in serial interface
Data output pin in serial interface
Serial clock input
Jun 2009
VDDIO
or Vss
VDDIO
or Vss
VDDIO
or Vss
VSS
Open
Vss
VSS
VSS
Vss
-
VSS
Open
Vss
Solomon Systech
Appendix
Table 6-3: Mode Selection Pins
Name
Connect
to
Type
PS[3:0]
Function
Interface
Selection
VDDIO or
VSS
I
When
not in
use
Description
PS3
0
0
0
0
0
PS2
0
0
0
0
1
PS1
0
0
1
1
0
PS0
0
1
0
1
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
1
1
1
1
0
0
0
1
1
0
1
1
1
1
1
0
1
0
1
Interface Mode
16-bit 6800 parallel interface
8-bit 6800 parallel interface
16-bit 8080 parallel interface
8-bit 8080 parallel interface
9-bit generic D[17:9] (262k
colour) + 3-wire SPI If 65K
color, D12 shorts to D17
internally
16-bit generic (262k colour)
+ 3-wire SPI
18-bit generic (262k colour)
+ 3-wire SPI
6-bit generic D[17:12] (262k
colour) + 3-wire SPI
18-bits 6800 parallel
interface
9-bits 6800 parallel interface
18-bit 8080 parallel interface
9-bit 8080 parallel interface
3-wire SPI
4-wire SPI
-
Table 6-4: Driver Output Pins
Name
Connect
to
Type
VCOM
LCD
G1-G240
LCD
LCD
Driving
Signals
O
S1-S960
Function
LCD
Description
A power supply for the TFT-display common electrode.
Gate driver output pins. These pins output VGH, VGL or VGOFFH
level.
Source driver output pins.
S(3n+1) : display Red if BGR = LOW, Blue if BGR = HIGH.
S(3n+2) : display Green.
S(3n) : display Blue if BGR = LOW, Red if BGR = HIGH.
When
not in
use
Open
Open
Open
Table 6-5: Miscellaneous Pins
Name
Type
Connect
to
Function
Description
NC
-
-
-
These pins must be left open and cannot be connected together
Floating pins and no connection inside the IC. These pins
should be open.
DUMMY
Solomon Systech
-
Jun 2009 P 28/95
Rev 1.4
SSD2119
When
not in
use
Open
Open
Appendix
7
FUNCTION BLOCK DESCRIPTIONS
7.1
System Interface
The System Interface unit consists of three functional blocks for driving the 6800-series parallel interface,
8080-series high speed parallel interface, 3-lines serial peripheral interface and 4-lines serial peripheral
interface. The selection of different interface is done by PS3, PS2, PS1 and PS0 pins. Please refer to the
pin descriptions on page 13 and 13.
Data Read
Data Write
Command Read
Command Write
7.1.1
Table 7-1: Data bus selection modes
6800 – series Parallel
8080 – series Parallel
Interface
Interface
18/16/9/8-bits
18/16/9/8-bits
18/16/9/8-bits
18/16/9/8-bits
Status only
Status only
Yes
Yes
MCU Serial Interface
Yes
8-bits
No
8-bits
MPU Parallel 6800-series Interface
The parallel Interface consists of 18 bi-directional data pins D[17:0], RW, DC, E and CS.
RW input high indicates a read operation from the Graphical Display Data RAM (GDDRAM) or
status register. RW input low indicates a write operation to Display Data RAM or Internal Command
Registers depending on the status of DC input.
The E input served as data latch signal (clock) when high provided that CS is low. Please refer to
Parallel Interface Timing Diagram of 6800-series microprocessors.
In order to match the operating frequency of the GDDRAM with that of the MCU, pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual
display data read. This is shown in the following diagram.
Figure 7-1: Read Display Data
RW#(WR#)
E
DATA BUS
N
n
write column address
7.1.2
dummy read
data read1
n+1
data read 2
n+2
data read 3
MPU Parallel 8080-series Interface
The parallel interface consists of 18 bi-directional data pins D[17:0], WR, DC, and CS.
RD input served as data read latch signal (clock) when low provided that CS is low. Weather reading
the display data from GDDRAM or reading the status from the status register is controlled by DC.
WR input served as data write latch signal (clock) when low provided that CS is low. Weather writing
the display data to the GDDRAM or writing the command to the command register is controlled by
DC. A dummy read is also required before the first actual display data read for 8080-series interface.
Please refer to .
SSD2119
Rev 1.4
P 29/95
Jun 2009
Solomon Systech
Appendix
7.1.3
4-wire Serial Peripheral Interface (8 bits)
The clock synchronized serial peripheral interface (SPI) using the chip select line (SCS), serial
transfer clock line (SCL), serial input data (SDI). The serial data transfer starts at the falling edge of
SCS input and ends at the rising edge of SCS.
SDC determinates the data of SDI which is register or data.
Figure 7-2: 4-wire SPI interface (8 bits)
Transfer starts
Transfer ends
Transfer starts
Transfer ends Transfer starts
Transfer ends
SCS
SDC
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL
LSB
MSB
SDI
LSB
MSB
Register
LSB
MSB
DB DB DB DB DB DB DB DB
8
9
15 14 13 12 11 10
DB DB DB DB DB DB DB DB
0
6
4
2
5
3
1
7
DB DB DB DB DB DB DB DB
0
6
5
4
3
2
1
7
Data
Data
Example of 4-wires (8 bits)
Frame 1 (Command 10h)
Transfer starts
Transfer ends
Frame 2 (Data 5Ah)
Transfer starts
SCS
SCS
SDC
SDC
SCL
1
2
3
4
5
6
7
8
SCL
1
Transfer ends
2
3
4
5
6
7
8
SDI
SDI
Frame 3 (Data 78h)
Transfer starts
Transfer ends
SCS
SDC
SCL
1
2
3
4
5
6
7
8
SDI
Solomon Systech
Jun 2009 P 30/95
Rev 1.4
SSD2119
Appendix
7.1.4
3-lines Serial Peripheral Interface
The operation is similar to 4-lines serial peripheral interface while SDC is not use. There are
altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: DC bit, D7 to
D0 bit. The DC bit (first bit of the sequential data) will determine the following data byte in the shift
register is written to the Display Data RAM (DC bit = 1) or the command register (DC bit = 0).
Figure 7-3: 3-wire SPI interface (9 bits)
Transfer starts
Transfer ends
Transfer starts
Transfer ends
Transfer starts
Transfer ends
SCS
1
SCL
2
3
4
5
6
7
8
1
LSB
MSB
SDI
9
3
4
5
6
7
D
Register
8
9
1
LSB
MSB
DB DB DB DB DB DB DB DB
0
6
4
2
5
3
1
7
C
2
2
3
4
5
6
7
8
LSB
MSB
DB DB DB DB DB DB DB DB
8
9
15 14 13 12 11 10
D
9
DB
7
DB DB DB DB DB DB DB
0
6
5
4
3
2
1
Data
Data
Example of 3-wires (9 bits)
Frame 1 (Command 10h)
Transfer starts
Frame 2 (Data 5Ah)
Transfer ends
SCS
Transfer starts
Transfer ends
SCS
1
2
3
4
5
6
7
8
1
9
SCL
SCL
SDI
SDI
2
3
4
5
6
7
8
9
Frame 3 (Data 78h)
Transfer starts
Transfer ends
SCS
1
2
3
4
5
6
7
8
9
SCL
SDI
SSD2119
Rev 1.4
P 31/95
Jun 2009
Solomon Systech
Appendix
7.2
RGB Interface
SSD2119 supports RGB interface. RGB interface unit consists of D[17:0], HSYNC, VSYNC, DOTCLK
and DEN signals for display moving pictures. When the RGB interface is selected, the display operation
is synchronized with external control signals (HSYNC, VSYNC and DOTCLK). Data is written in
synchronization with the control signals when DEN is enabled for write operation in order to avoid
flicker or tearing effect while updating display data.
7.3
Address Counter (AC)
The address counter (AC) assigns address to the GDDRAM. When an address set instruction is written
into the IR, the address information is sent from the IR to the AC.
After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After
reading the data, the AC is not updated. A window address function allows for data to be written only to a
window area specified by GRAM.
7.4
Graphic Display Data RAM (GDDRAM)
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM
is 320 RGB x 240 x 18 / 8 = 172,800 bytes. For mechanical flexibility, re-mapping on both Segment and
Common outputs can be selected by software. Please refer to the command “Data Output/Scan direction”
for detail description.
Four pages of display data forms a RAM address block and stored in the GDDRAM. Each block will
form the fundamental units of scrolling addresses. Various types of area scrolling can be performed by
software program according to the command “Set area Scroll” and “Set Scroll Start”.
7.5
Gamma/Grayscale Voltage Generator
The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as
specified in the grayscale gamma adjustment resister. 262,144 possible colors can be displayed when 1
pixel = 18 bit. For details, see the gamma adjustment register.
7.6
Booster and Regulator Circuit
These two functional blocks generate the voltage of VGH, VGL, VCOM levels and VLCD0~63 which are
necessary for operating a TFT LCD.
7.7
Timing Generator
The timing generator generates a timing signal for the operation of internal circuit such as the internal RAM
accessing, date output timing etc.
7.8
Oscillation Circuit (OSC)
This module is an on-chip low power RC oscillator circuitry. The oscillator generates the clock for the
DC-DC voltage converter. This clock is also used in the display timing generator.
7.9
Data Latches
This block is a series of latches carrying the display signal information. These latches hold the data, which
will be fed to the HV Buffer Cell and Level Selector to output the required voltage level.
Solomon Systech
Jun 2009 P 32/95
Rev 1.4
SSD2119
Appendix
7.10 Liquid Crystal Driver Circuit
SSD2119 consists of a 960-output source driver (S1-S960) and a 240-output gate driver (G1-G240). The
display image data is latched when 960 bits of data are inputted. The latched data control the source driver
and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level.
The shift direction of 960-bit source output from the source driver can be changed by setting the RL bit
and the shift direction of gate output from the gate driver can be changed by setting the TB bit. The scan
mode by the gate driver can be changed by setting the SM bit. Sets the gate driver pin arrangement in
combination with the TB bit to select the optimal scan mode for the module.
SSD2119
Rev 1.4
P 33/95
Jun 2009
Solomon Systech
Appendix
8
COMMAND TABLE (TBC)
Table 8-1: Command Table
Reg#
R
R00h
Register
R/W D/C IB15 IB14 IB13 IB12 IB11 IB10
0
Index
0
0
Oscillation Start
1
(0000h)
R01h
Driver output
control
0
1
(3AEFh)
R02h
LCD drive AC
control
R03h
R07h
R0Bh
R0Ch
0
0
IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
0
0
ID7
ID6
ID5
ID4
ID3
ID2
ID1
IB0
ID0
OSCE
N
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RL
REV
GD
BGR
SM
TB
0
MUX7
MUX6
MUX5
MUX4
MUX3
MUX2
MUX1
MUX0
0
0
1
1
1
0
1
0
1
1
1
0
1
1
1
1
0
0
FLD
ENWS
B/C
EOR
WSMD
NW7
NW6
NW5
NW4
NW3
NW2
NW1
NW0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
DCT3
DCT2
DCT1
DCT0
BT2
BT1
BT0
0
DC3
DC2
DC1
DC0
AP2
AP1
AP0
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
0
0
D0
0
1
0
1
0
1
(5308h)
Power control (2)
0
1
(0000h)
Frame cycle control
0
0
All GAMAS[2:0] setting
8 color (6A64h)
Display control
0
0
(0000h)
Power control (1)
0
(0004h)
0
0
0
PT1
PT0
VLE2
VLE1
SPT
0
0
GON
DTE
CM
0
D1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NO1
NO0
SDT1
SDT0
0
EQ2
EQ1
EQ0
DIV1
DIV0
SDIV
SRTN
RTN3
RTN2
RTN1
RTN0
0
1
0
1
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VRC2
VRC1
VRC0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
R0Dh
Power control (3)
0
1
0
0
0
0
0
0
0
0
0
0
0
0
VRH3
VRH2
VRH1
VRH0
R0Eh
Power control (4)
0
1
0
0
VCOMG
VDV4
VDV3
VDV2
VDV1
VDV0
0
0
0
0
0
0
0
0
R0Fh
Gate scan start
position
0
1
0
0
0
0
0
0
0
SCN8
SCN7
SCN6
SCN5
SCN4
SCN3
SCN2
SCN1
SCN0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SLP
0
0
0
0
0
0
1
0
1
VS mode
DFM1
DFM0
0
0
1
1
0
0
(0000h)
R10h
R11h
R12h
R15h
R16h
R17h
Sleep mode
(0001h)
Entry mode
(6230h)
0
Sleep mode
1
(0D99h)
0
Entry mode
1
(B010h)
Horizontal Porch
1
0
(001Dh)
Vertical Porch
(0003h)
Solomon Systech
0
1
0
0
0
0
0
0
0
0
0
Nosync
DMode
TY1
TY0
ID1
ID0
AM
0
0
0
0
1
0
0
0
1
1
0
0
0
0
1
Denmode WMode
0
0
DSLP
0
1
1
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
HBP7
HBP6
HBP5
HBP4
0
0
0
1
1
1
0
1
VFP7
VFP6
VFP5
VFP4
VFP3
VFP2
VFP1
VFP0
VBP7
VBP6
VBP5
VBP4
VBP3
VBP2
VBP1
VBP0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
Jun 2009 P 34/95
INVDOT INVDEN INVHS
1
INVVS
0
0
0
0
HBP3
HBP2
HBP1
HBP0
Rev 1.4
SSD2119
Appendix
(continued)
Reg#
R1Eh
R20h
Register
R/W D/C IB15 IB14 IB13 IB12 IB11 IB10 IB9
Power control (5)
0
1
Uniformity
0
1
(B0EBh)
R22h
R25h
R26h
RAM data write
RAM data read
Frame Frequency
0
1
0
1
1
1
(8000h)
Analogue Setting
0
1
(3800h)
0
0
0
0
0
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
0
nOTP
0
VCM5
VCM4
VCM3
VCM2
VCM1
VCM0
1
0
1
1
0
0
0
0
1
1
ENSVIN
0
1
0
1
1
1
0
1
1
0
0
0
0
1
1
1
0
1
0
1
1
Data[17:0] mapping depends on the interface setting
OSC3
OSC2
OSC1
OSC0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW_T
VCB
RLTM
ENN
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
VCOM OTP
(000Ah)
VCOM OTP
(80C0h)
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
R30h
R31h
γ control (1)
0
0
0
0
PKP12
PKP11
PKP10
0
0
0
0
0
PKP02
PKP01
PKP00
0
0
0
0
0
PKP32
PKP31
PKP30
0
0
0
0
0
PKP22
PKP21
PKP20
γ control (3)
0
0
0
0
0
PKP52
PKP51
PKP50
0
0
0
0
0
PKP42
PKP41
PKP40
0
0
0
0
0
PRP12
PRP11
PRP10
0
0
0
0
0
PRP02
PRP01
PRP00
0
0
0
0
0
PKN12
PKN11
PKN10
0
0
0
0
0
PKN02
PKN01
PKN00
0
0
0
0
0
PKN32
PKN31
PKN30
0
0
0
0
0
PKN22
PKN21
PKN20
0
0
0
0
0
PKN52
PKN51
PKN50
0
0
0
0
0
PKN42
PKN41
PKN40
0
0
0
0
0
PRN12
PRN11
PRN10
0
0
0
0
0
PRN02
PRN01
PRN00
0
0
0
VRP14
VRP13
VRP12
VRP11
VRP10
0
0
0
0
VRP03
VRP02
VRP01
VRP00
γ control (10)
1
1
1
1
1
1
1
1
1
1
0
R32h
R33h
R34h
R35h
R36h
R37h
R3Ah
R3Bh
0
0
0
0
0
0
0
0
0
0
0
0
0
VRN14
VRN13
VRN12
VRN11
VRN10
0
0
0
0
VRN03
VRN02
VRN01
VRN00
Vertical scroll
control (1)
0
1
R28h
R29h
R41h
γ control (2)
γ control (4)
γ control (5)
γ control (6)
γ control (7)
γ control (8)
γ control (9)
(0000h)
R42h
Vertical scroll
control (2)
0
1
(0000h)
R44h
Vertical RAM
address position
0
1
(EF00h)
R45h
Horizontal RAM
address start
position
0
1
(0000h)
R46h
Horizontal RAM
address end
position
0
1
(013Fh)
R48h
R49h
R4Ah
First window start
0
1
0
1
(0000h)
First window end
(00EFh)
Second window
start
0
1
0
1
0
1
0
1
(0000h)
R4Bh
R4Eh
Second window end
(00EFh)
Set GDDRAM X
address counter
(0000h)
R4Fh
Set GDDRAM Y
address counter
(0000h)
Note:
0
0
0
0
0
0
0
VL18
VL17
VL16
VL15
VL14
VL13
VL12
VL11
VL10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VL28
VL27
VL26
VL25
VL24
VL23
VL22
VL21
VL20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VEA7
VEA6
VEA5
VEA4
VEA3
VEA2
VEA1
VEA0
VSA7
VSA6
VSA5
VSA4
VSA3
VSA2
VSA1
VSA0
1
1
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HSA8
HSA7
HSA6
HSA5
HSA4
HSA3
HSA2
HSA1
HSA0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HEA8
HEA7
HEA6
HEA5
HEA4
HEA3
HEA2
HEA1
HEA0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
SS18
SS17
SS16
SS15
SS14
SS13
SS12
SS11
SS10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SE18
SE17
SE16
SE15
SE14
SE13
SE12
SE11
SE10
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
0
0
0
0
SS28
SS27
SS26
SS25
SS24
SS23
SS22
SS21
SS20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SE28
SE27
SE26
SE25
SE24
SE23
SE22
SE21
SE20
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
0
0
0
0
XAD8
XAD7
XAD6
XAD5
XAD4
XAD3
XAD2
XAD1
XAD0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
YAD7
YAD6
YAD5
YAD4
YAD3
YAD2
YAD1
YAD0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
In R01h, bits REV, BGR, RL, CM will override the corresponding hardware pins settings.
Setting R28h as 0x0006 is required before setting R25h and R29h registers.
SSD2119
Rev 1.4
P 35/95
Jun 2009
Solomon Systech
Appendix
9
COMMAND DESCRIPTION (TBC)
Index (IR)
R/W
W
DC
0
IB15
0
IB14
0
IB13
0
IB12
0
IB11
0
IB10
0
IB9
0
IB8
0
IB7
ID7
IB6
ID6
IB5
ID5
IB4
ID4
IB3
ID3
IB2
ID2
IB1
ID1
IB0
ID0
The index instruction specifies the RAM control indexes (R00h to RFFh). It sets the register number in the range of
00000000 to 11111111 in binary form. But do not access to Index register and instruction bits which do not have it’s
own index register.
Device Code Read (R00h)
R/W
R
DC
1
IB15
1
IB14
0
IB13
0
IB12
1
IB11
1
IB10
0
IB9
0
IB8
1
IB7
0
IB6
0
IB5
0
IB4
1
IB3
1
IB2
0
IB1
0
IB0
1
If this register is read forcibly, 9919h is read in 16 bit mode and 99h is read continuously in 8 bit mode.
Oscillator (R00h) (POR = 0000h)
R/W
DC
W
1
POR
IB15
0
0
IB14
0
0
IB13
0
0
IB12
0
0
IB11
0
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
0
0
IB6
0
0
IB5
0
0
IB4
0
0
IB3
0
0
IB2
0
0
IB1
0
0
IB0
OSCEN
0
OSCEN: The oscillator will be turned on when OSCEN = 1, off when OSCEN = 0.
Driver Output Control (R01h) (POR = 3AEFh)
R/W
DC
W
1
POR
IB15
0
0
IB14
RL
0
IB13
REV
1
IB12
GD
1
IB11
BGR
1
IB10
SM
0
IB9
TB
1
IB8
0
0
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
MUX7 MUX6 MUX5 MUX4 MUX3 MUX2 MUX1 MUX0
1
1
1
0
1
1
1
1
REV: Displays all character and graphics display sections with reversal when REV = “1”. Since the grayscale level can
be reversed, display of the same data is enabled on normally white and normally black panels. Source output level is
indicated below.
REV
0
1
RGB data
00000H
:
3FFFFH
00000H
:
3FFFFH
Source Output level
Vcom = ”L”
V63
:
V0
V0
:
V63
Vcom = ”H”
V0
:
V63
V63
:
V0
GD: Selects the 1st output Gate
GD
0
1
Normal
Flip
Left Side
G1, 3, 5,…, 239
G2, 4, 6,…, 240
Right Side
G240, 218, … , 4, 2
G239, 317, … , 3, 1
BGR: Selects the order from RGB to BGR in writing 18-bit pixel data in the GDDRAM.
When BGR = “0” <R><G><B> color is assigned from S1.
When BGR = “1” <B><G><R> color is assigned from S1.
Solomon Systech
Jun 2009 P 36/95
Rev 1.4
SSD2119
Appendix
SM: Change scanning order of gate driver.
SM
0
1
Gate scan squence (GD=’0’)
G1, G2, G3……G240 (left and right gate interlaced)
G1, G3, ……G239, G2, G4, ……G240
See “Scan mode setting” on next page.
RL: Selects the output shift direction of the source driver.
When RL = “1”, S1 shifts to S960 and <R><G><B> color is assigned from S1.
When RL = “0”, S960 shifts to S1 and <R><G><B> color is assigned from S960.
Set RL bit and BGR bit when changing the dot order of R, G and B. RL setting will be ignored when display with RAM
(Dmode[1:0] = 00).
MUX[7:0]: Specify number of lines for the LCD driver. MUX[7:0] settings cannot exceed 240.
Remark: When using the partial display, the output for non-display area will be minimum voltage.
TB
When TB = 1, scan from G1 to G240
When TB = 0, scan from G240 to G1
SSD2119
Rev 1.4
P 37/95
Jun 2009
Solomon Systech
Appendix
GD=’0’, G1 is the 1st gate output channel, gate output sequence is G1, G2, G3, …, G239, G240.
SM = 0
TB = 1
RL = 1
SM = 1
G1
G3
G5
G2
G4
G6
G237
G239
S1
TB = 0
RL = 1
S960
G1
G3
G5
G1
G3
G237
G239
G2
G4
G238
G240
S1
G2
G4
G6
S960
G1
G3
G237
G239
G237
G239
TB = 1
RL = 0
S960
S960
G2
G4
S1
G2
G4
G6
S960
S960
G238
G240
G1
G3
G237
G239
G2
G4
G238
G240
S1
G238
G240
G1
G3
G238
G240
G1
G3
G5
Solomon Systech
S960
G237
G239
S1
G237
G239
S1
G2
G4
G6
G1
G3
G5
G237
TB = 0
RL = 0
G2
G4
G238
G240
S1
G238
G240
S1
Jun 2009 P 38/95
S960
Rev 1.4
G238
G240
SSD2119
Appendix
GD=’1’, G1 is the 1st gate output channel, gate output sequence is G2, G1, G4, G3, …, G240, G239.
SM = 0
TB = 1
RL = 1
SM = 1
G2
G4
G6
G1
G3
G5
S1
S960
S1
S960
G2
G4
G238
G240
G1
G3
S1
S960
G238
G240 G237
G239
S1
S960
S1
S960
G2
G4
G6
G1
G3
G5
G1
G3
G237
G239
S1
TB = 0
RL = 0
G238
G240 G237
G239
G2
G4
G6
G1
G3
G5
G237
G239
TB = 1
RL = 0
G238
G240
G1
G3
G237
G239
TB = 0
RL = 1
G2
G4
S960
G238
G240 G237
G239
G2
G4
G6
G1
G3
G5
G2
G4
G238
G240
G237
G239
320
S1
SSD2119
Rev 1.4
P 39/95
S960
Jun 2009
G237
G239
S960
Solomon Systech
Appendix
LCD-Driving-Waveform Control (R02h) (POR = 0000h)
R/W
DC
W
1
POR
IB15
0
0
IB14
0
0
IB13
0
0
IB12 IB11 IB10
FLD ENWS B/C
0
0
0
IB9
IB8
IB7
EOR WSMD NW7
0
0
0
IB6
NW6
0
IB5
NW5
0
IB4
NW4
0
IB3
NW3
0
IB2
NW2
0
IB1
NW1
0
IB0
NW0
0
FLD: Set display in interlace drive mode to protect from flicker. It splits one frame into 3 fields and drive.
When FLD = 1, it is 3 field driving, which also limit VBP = 1.
When FLD = 0, it is normal driving.
The following figure shows the gate selection when the 3-field invension is enabled and the output waveform of the 3field interlaced driving.
TB = 1
Gate
G1
G2
G3
G4
G5
G238
G239
G240
Table 9-1: 3-field interlace driving
TB = 0
FLD = 0 FLD = 1 Gate
FLD = 0
X
G240
X
X
G239
X
X
X
G238
X
X
G237
X
X
G236
X
X
X
X
X
X
X
x
X
G3
X
X
G2
X
X
X
G1
X
FLD = 1
X
X
X
Figure 9-1: gate output timing in 3-field interlacing driving
1 frame
Field 1
Blank period
Field 2
Field 3
Field 1
AC Polarity
G1
G2
G3
G4
G5
G6
G3n +1
G3n +2
G3n +3
Solomon Systech
Jun 2009 P 40/95
Rev 1.4
SSD2119
Appendix
B/C: Select the liquid crystal drive waveform VCOM.
When B/C = 0, frame inversion of the LCD driving signal is enabled.
When B/C = 1, a N-line inversion waveform is generated and alternates in a N-line equals to NW[7:0]+1.
EOR: When B/C = 1 and EOR = 1, the odd/even frame-select signals and the N-line inversion signals are EORed for
alternating drive. EOR is used when the LCD is not alternated by combining the set values of the lines of the LCD driven
and the N-lines.
NW[7:0]: Specify the number of lines that will alternate at the N-line inversion setting (B/C = 1). N-line is equal to
NW[7:0]+1.
Figure 9-2: Line Inversion AC Driver
N Frame
Back porch
1
2
N+1 Frame
Front porch
3
242
255
256
Back porch
1
2
Front porch
3
242
255
256
Frame Inversion
320 line drive
N Frame
Back porch
1
2
N+1 Frame
Front porch
3
242
255
256
Back porch
1
2
Front porch
3
242
255
256
Line Inversion
320 line drive
SSD2119
Rev 1.4
P 41/95
Jun 2009
Solomon Systech
Appendix
ENWS: When ENWS = 1, it enables WSYNC output pin. Mode1 or Mode2 is selected by WSMD. When ENWS =
0(POR), it disables WSYNC feature, the WSYNC output pin will be high-impedance.
WSYNC
/CS
MPU
DC
SSD2119
/WR
D[17:0]
18
WSMD = 0 is mode1, the waveform of WSYNC output will be:
tn
tu
WSYNC
100%
Memory
Access
0%
Fast write MCU
Slow write MCU
SSD2119 displaying memory
tn is the time when there is No Update of LCD screen from on-chip ram content.
tu is the time when the LCD screen is updating based on on-chip ram content.
e.g. fosc = 380KHz, for 320mux, tn = 282us (6 lines), tu =15.06ms (320 lines)
WSMD = 1 is mode2, the waveform of WSYNC output will be:
WSYNC
0
1
2
m-1
mux line read
For fast write MCU: MCU should start to write new frame of ram data just after rising edge of long WSYNC pulse and
should be finished well before the rising edge of the next long WSYNC pulse.
e.g. 5MHz 8 bit parallel write cycle for 18 bit color depth, or 3MHz 8 bit parallel write cycle for 16 bit color depth.
For slow write MCU (Half the write speed of fast write): MCU should start to write new frame ram data after the rising
edge of the first short WSYNC pulse and must be finished within 2 frames time.
e.g. 2.5MHz 8 bit parallel write cycle for 18 bit color depth.
* Usually, mode2 is for slower MCU, while mode1 is for fast MCU.
Solomon Systech
Jun 2009 P 42/95
Rev 1.4
SSD2119
Appendix
Power control 1 (R03h) (POR = 6A64h)
R/W DC
W
1
POR
IB15 IB14 IB13 IB12 IB11
DCT3 DCT2 DCT1 DCT0 BT2
0
1
1
0
1
IB10
BT1
0
IB9
BT0
1
IB8
0
0
IB7
DC3
0
IB6
DC2
1
IB5
DC1
1
IB4
DC0
0
IB3
AP2
0
IB2
AP1
1
IB1
AP0
0
IB0
0
0
DCT[3:0]: Set the step-up cycle of the step-up circuit for 8-color mode (CM = VDDIO). When the cycle is accelerated, the
driving ability of the step-up circuit increases, but its current consumption increases too. Adjust the cycle taking into
account the display quality and power consumption.
DCT3 DCT2 DCT1 DCT0
Step-up cycle
0
0
0
0
Fline × 24
0
0
0
1
Fline × 16
0
0
1
0
Fline × 12
0
0
1
1
Fline × 8
0
1
0
0
Fline × 6
0
1
0
1
Fline × 5
0
1
1
0
Fline × 4
0
1
1
1
Fline × 3
1
0
0
0
Fline × 2
1
0
0
1
Fline × 1
1
0
1
0
fosc / 4
1
0
1
1
fosc / 6
1
1
0
0
fosc / 8
1
1
0
1
fosc / 10
1
1
1
0
fosc / 12
1
1
1
1
fosc / 16
* Fline = Line frequency
fosc = Internal oscillator frequency (~380KHz)
BT[2:0]: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power-supply
voltage to be used.
BT2
0
0
0
0
1
1
1
1
SSD2119
BT1
0
0
1
1
0
0
1
1
Rev 1.4
BT0
0
1
0
1
0
1
0
1
VGH output
3 x VCIX2
3 x VCIX2
3 x VCIX2
2 x VCIX2 + VCI
2 x VCIX2 + VCI
2 x VCIX2 + VCI
2 x VCIX2
2 x VCIX2
P 43/95
Jun 2009
VGL output
-(VGH) + VCI
-(VGH) + VCIX2
-(VCIX2)
-(VGH)
-(VGH) + VCI
-(VGH) + VCix2
-(VGH)
-(VGH) + VCI
VGH booster ratio
+6
+6
+6
+5
+5
+5
+4
+4
VGL booster ratio
-5
-4
-2
-5
-4
-3
-4
-3
Solomon Systech
Appendix
DC[3:0]: Set the step-up cycle of the step-up circuit for 262k-color mode (CM = VSS). When the cycle is accelerated, the
driving ability of the step-up circuit increases, but its current consumption increases too. Adjust the cycle taking into
account the display quality and power consumption.
DC3 DC2 DC1 DC0
Step-up cycle
0
0
0
0
Fline × 24
0
0
0
1
Fline × 16
0
0
1
0
Fline × 12
0
0
1
1
Fline × 8
0
1
0
0
Fline × 6
0
1
0
1
Fline × 5
0
1
1
0
Fline × 4
0
1
1
1
Fline × 3
1
0
0
0
Fline × 2
1
0
0
1
Fline × 1
1
0
1
0
fosc / 4
1
0
1
1
fosc / 6
1
1
0
0
fosc / 8
1
1
0
1
fosc / 10
1
1
1
0
fosc / 12
1
1
1
1
fosc / 16
* Fline = Line frequency
fosc = Internal oscillator frequency (~380KHz)
AP[2:0]: Adjust the amount of current from the stable-current source in the internal operational amplifier circuit. When
the amount of current becomes large, the driving ability of the operational-amplifier circuits increase. Adjust the current
taking into account the power consumption. During times when there is no display, such as when the system is in a sleep
mode.
AP2
0
0
0
0
1
1
1
1
Solomon Systech
AP1
0
0
1
1
0
0
1
1
AP0
0
1
0
1
0
1
0
1
Op-amp power
Least
Small
Small to medium
Medium
Medium to large
Large
Large to Maximum
Maximum
Jun 2009 P 44/95
Rev 1.4
SSD2119
Appendix
Display Control (R07h) (POR = 0000h)
R/W DC
W
1
POR
IB15
0
0
IB14 IB13
0
0
0
0
IB12
PT1
0
IB11
PT0
0
IB10
IB9
IB8
VLE2 VLE1 SPT
0
0
0
IB7
0
0
IB6
0
0
IB5
IB4
GON DTE
0
0
IB3
CM
0
IB2
0
0
IB1
D1
0
IB0
D0
0
PT[1:0]: Normalize the source outputs when non-displayed area of the partial display is driven.
VLE[2:1]: When VLE1 = 1 or VLE2 = 1, a vertical scroll is performed in the 1st screen by taking data VL17-0 in R41h
register. When VLE1 = 1 and VLE2 = 1, a vertical scroll is performed in the 1st and 2nd screen by VL1[8:0] and VL2[8:0]
respectively.
SPT: When SPT = “1”, the 2-division LCD drive is performed.
CM: 8-color mode setting.
When CM = 1, 8-color mode is selected.
When CM = 0, 8-color mode is disable.
GON: Gate off level becomes VGH when GON = “0”.
DTE: When GON = “1” and DTE = “0”, all gate outputs become VGL. When GON = “1” and DTE = “1”, selected gate
wire becomes VGH, and non-selected gate wires become VGL.
D[1:0]: Display is on when D1 = “1” and off when D1 = “0”. When off, the display data remains in the GDDRAM, and
can be displayed instantly by setting D1 = “1”. When D1= “0”, the display is off with all of the source outputs set to the
GND level. Because of this, the driver can control the charging current for the LCD with AC driving. When D[1:0] =
“01”, the internal display is performed although the display is off. When D[1:0] = “00”, the internal display operation
halts and the display is off. Control the display on/off while control GON and DTE.
GON
DTE
D1
D0
0
0
1
0
0
0
0
0
0
0
1
1
Internal
Display
Operation
Halt
Operation
Operation
1
0
1
1
Operation
1
1
1
1
Operation
Source output
Gate output
GND
GND
GND
Grayscale level
output
VGH
VGH
VGOFFL
VGOFFL
Selected gate line: VGH
Non-selected gate line:
VGOFFL
Grayscale level
output
Frame Cycle Control (R0Bh) (POR = 5308h)
R/W
DC
W
1
POR
IB15
NO1
0
IB14 IB13 IB12 IB11
NO0 SDT1 SDT0
0
1
0
1
0
IB10
EQ2
0
IB9
EQ1
1
IB8
EQ0
1
IB7
DIV1
0
IB6
IB5
IB4
IB3
IB2
IB1
IB0
DIV0 SDIV SRTN RTN3 RTN2 RTN1 RTN0
0
0
0
1
0
0
0
NO[1:0]: Sets amount of non-overlap of the gate output.
NO1
0
0
1
1
NO0
0
1
0
1
1 Line period
Amount of non-overlap
reserved
1 clock cycle (POR)
2 clock cycle
3 clock cycle
1 Line period
Gn
Gn+1
SSD2119
Rev 1.4
Non-overlap period
P 45/95
Jun 2009
Solomon Systech
Appendix
SDT[1:0]: Set delay amount from the gate output signal falling edge of the source outputs.
SDT1
0
0
1
1
SDT0
0
1
0
1
Delay amount of the source output
0 clock cycle
1 clock cycle (POR)
2 clock cycle
3 clock cycle
EQ[2:0]: Sets the equalizing period.
EQ2
0
0
0
0
1
1
1
1
EQ1
0
0
1
1
0
0
1
1
EQ0
0
1
0
1
0
1
0
1
1 Line period
EQ period
No EQ
2 clock cycle
3 clock cycle
4 clock cycle
5 clock cycle
6 clock cycle
7 clock cycle
8 clock cycle
1 Line period
Gn
Sn
EQ
Delay amount of
the source output
Equalizing
period
DIV[1:0]: Set the division ratio of clocks for internal operation. Internal operations are driven by clocks which
frequency is divided according to the DIV1-0 setting.
DIV1
0
0
1
1
DIV0
0
1
0
1
Division Ratio
1
2
4
8
* fosc = internal oscillator frequency, ~380kHz
SDIV: When SDIV = 1, DIV1-0 value will be count. When SDIV = 0, DIV1-0 value will be auto determined.
SRTN: When SRTN =1, RTN3-0 value will be count. When SRTN = 0, RTN3-0 value will be auto determined.
RTN[3:0]: Set the no. of clocks in each line. The total number will be the decimal value of RTN3-0 plus 16. e.g. if
RTN3-0 = “1010h”, the total number of clocks in each line = 10 +16 = 26 clocks.
Solomon Systech
Jun 2009 P 46/95
Rev 1.4
SSD2119
Appendix
Frame frequency calculation
For DMode = ‘0’
Frame _ frequency =
where
Fosc
div × (rtn + 16) × (mux + vbp + vfp + 3)
Fosc = internal oscillator frequency
div = Division ratio determined by DIV[1:0]
rtn = RTN[3:0]
mux = MUX[8:0]
vbp = VBP[7:0]
vfp = VFT[7:0]
for default values of SSD2119
Fosc = ~380KHz, DIV[1:0] = ‘00’, RTN[3:0] = 8, MUX[8:0] = 239, VBP[7:0] = 3, VFP[7:0] = 1,
Frame frequency =
380 K
380 K
=
= 65 Hz
1 × (8 + 16) × (239 + 3 + 1 + 3) 1 × 24 × 246
Power Control 2 (R0Ch) (POR = 0004h)
R/W DC
W
1
POR
IB15 IB14
0
0
0
0
IB13
0
0
IB12 IB11
0
0
0
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
0
0
IB6
0
0
IB5
0
0
IB4
0
0
IB3
0
0
IB2
IB1
IB0
VRC2 VRC1 VRC0
1
0
0
VRC[2:0]: Adjust VCIX2 output voltage. The adjusted level is indicated in the chart below VRC2-0 setting.
VRC2 VRC1 VRC0
VCIX2 voltage
0
0
0
5.1V
0
0
1
5.3V
0
1
0
5.5V
0
1
1
5.7V
1
0
0
5.9V
1
0
1
6.1V
1
1
0
Reserved
1
1
1
Reserved
Note: The above setting is valid when VCI has high enough voltage supply for boosting up the required voltage.
The above setting is assumed 100% booster efficiency. Please refer to DC Characteristics for detail.
Data from the above table are based on targeted VCIX2 output, actual VCIX2 voltage depends on VCI, booster efficiency and panel loading.
Data from the above table are measured at VCI=3.3V and without panel loading.
SSD2119
Rev 1.4
P 47/95
Jun 2009
Solomon Systech
Appendix
Power Control 3 (R0Dh) (POR = 0009h)
R/W DC
W
1
POR*
IB15 IB14
0
0
0
0
IB13
0
0
IB12 IB11
0
0
0
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
0
0
IB6
0
0
IB5
0
0
IB4
0
0
IB3
IB2
IB1
IB0
VRH3 VRH2 VRH1 VRH0
1
0
0
1
VRH[3:0]: Set amplitude magnification of VLCD63. These bits amplify the VLCD63 voltage 1.78 to 3.00. times the Vref
voltage set by VRH[3:0].
VRH3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VRH2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
VRH1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
VRH0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VLCD63 Voltage
Vref x 2.810
Vref x 2.900
Vref x 3.000
Vref x 1.780
Vref x 1.850
Vref x 1.930
Vref x 2.020
Vref x 2.090
Vref x 2.165
Vref x 2.245
Vref x 2.335
Vref x 2.400
Vref x 2.500
Vref x 2.570
Vref x 2.645
Vref x 2.725
*Vref is the internal reference voltage equals to 2.0V.
Power Control 4 (R0Eh) (POR = 3200h)
R/W DC
W
1
POR*
IB15 IB14 IB13 IB12 IB11 IB10
IB9
IB8
0
0 VCOMG VDV4 VDV3 VDV2 VDV1 VDV0
0
0
1
1
0
0
1
0
IB7
0
0
IB6
0
0
IB5
0
0
IB4
0
0
IB3
0
0
IB2
0
0
IB1
0
0
IB0
0
0
VcomG: When VcomG = “1”, it is possible to set output voltage of VcomL to any level, and the instruction (VDV4-0)
becomes available. When VcomG = “0”, VcomL output is fixed to Hi-z level, VCIM output for VcomL power supply
stops, and the instruction (VDV4-0) becomes unavailable. Set VcomG according to the sequence of power supply setting
flow as it relates with power supply operating sequence.
VDV[4:0]: Set the alternating amplitudes of Vcom at the Vcom alternating drive. These bits amplify 0.6 to 1.23 times
the VLCD63 voltage. When VcomG = “0”, the settings become invalid. External voltage at VcomR is referenced when
VDV = “01111”.
VCOML = 0.9475*VCOMH - VCOMA
VDV4
0
0
0
VDV3
0
0
0
VDV1
0
0
1
VDV0
0
1
0
1
1
VDV2
0
0
0
:
:
:
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
1
0
0
:
:
:
1
1
1
∗
0
1
1
∗
1
0
1
∗
Vcom Amplitude
VLCD63 x 0.60
VLCD63 x 0.63
VLCD63 x 0.66
:
Step = 0.03
:
VLCD63 x 0.99
VLCD63 x 1.02
Reference from
external variable
resistor
VLCD63 x 1.05
VLCD63 x 1.08
:
Step = 0.03
:
VLCD63 x 1.20
VLCD63 x 1.23
Reserved
Reserved
Note: Vcom amplitude < 6V
Solomon Systech
Jun 2009 P 48/95
Rev 1.4
SSD2119
Appendix
Gate Scan Position (R0Fh) (POR = 0000h)
R/W DC
W
1
POR
IB15 IB14 IB13 IB12 IB11
0
0
0
0
0
0
0
0
0
0
IB10
0
0
IB9
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
SCN8 SCN7 SCN6 SCN5 SCN4 SCN3 SCN2 SCN1 SCN0
0
0
0
0
0
0
0
0
0
SCN[8:0]: Set the scanning starting position of the gate driver. The valid range is from 1 to 240.
1st line of
data
G1
G1
1st line of
data
G30
SCN8-0
= 000000000
SCN8-0
= 000011101
G240
G240
Sleep mode (R10h, R12h)
Reg# R/W DC
W
1
R10h
POR
W
1
R12h
POR
IB15
0
0
0
0
IB14 IB13 IB12 IB11 IB10 IB9
0
0
0
0
0
0
0
0
0
0
0
0
0
DSLP
0
VSH2 VSH1 VSH0
0
0
0
1
1
0
IB8
0
0
1
1
IB7
0
0
1
1
IB6
0
0
0
0
IB5
0
0
0
0
IB4
0
0
1
1
IB3
0
0
1
1
IB2
0
0
0
0
IB1
0
0
0
0
IB0
SLP
0
1
1
SLP:
When SLP = 1, the driver enters normal sleep mode if DSLP = 0. The driver will enter deep sleep mode if DSLP=1.
When SLP = 0, the driver leaves the sleep mode.
In normal sleep mode, the internal display operations and step-up circuits are halted. GDDRAM data and instruction
setting are retained when exit sleep mode.
In deep sleep mode DSLP=1, internal logic power is turned off to further reduce power consumption. GDDRAM data
needed to be sent again after exit deep sleep mode.
For example :
Normal sleep mode command
R10, x0001 (enter sleep mode)
R07, x0000 (display off)
Deep sleep mode command
R28, x0006 (enable test command)
R10, x0001 (enter sleep mode)
R12, x2999 (enable deep sleep function)
R07, x0000 (display off)
VSH[2:0]: Vcore voltage select
VSH[2:0]
000
001
010
011
100
101
110
111
SSD2119
Rev 1.4
P 49/95
Jun 2009
Vcore
1.3V
1.4V
1.5V
1.6V
1.7V
1.8V
1.9V (por)
2.0V
Solomon Systech
Appendix
Entry Mode (R11h) (POR = 6230h)
R/W DC
IB15
IB14 IB13
W
1 VSMode DFM1 DFM0
POR
0
1
1
IB12
0
0
IB11
IB10
IB9
IB8
DenMode Wmode Nosync Dmode
0
0
1
0
IB7
TY1
0
IB6
TY0
0
IB5
ID1
1
IB4
ID0
1
IB3
AM
0
IB2
0
0
IB1
0
0
IB0
0
0
VSMode: When VSMode = 1 at DMode = “0”, the frame frequency will be dependent on VSYNC.
VSYNC
/CS
MPU
DC
SSD2119
/WR
D[17:0]
18
In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to
the internal RAM at faster than the calculated minimum speed (internal display oerpation speed + buffer), it becomes
possible to rewrite the moving picture data without flickering the display and display a moving picture via system
interface.
The display operation is performed in synchronization with the internal clock signal generated from the internal
oscillator and the VSYNC signal. The display data is written in the internal RAM so that the SSD2119 rewrites the data
only within the moving picture area and minimize the number of data transfer required for moving picture display.
Therefore, the SSD2119 can write data via VSYNC interface in high speed with low power consumption.
VSYNC
RAM data
write via
system I/F
The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more
than the values calculated from the following formulas, respectively.
Fosc[ Hz ] = Frame _ frequency * (mux + vfp + vbp + 3) * (rtn + 16) * (div)
320 * mux
RAMWriteSpeed (min)[ Hz ] >
1
(vbp + mux − m arg ins ) * (rtn + 16) *
fosc
where
Fosc = internal oscillator frequency
div = Division ratio determined by DIV[1:0]
rtn = RTN[3:0]
mux = MUX[8:0]
vbp = VBP[7:0]
vfp = VFT[7:0]
Note: When RAM write operation is not started right after the falling edge of VSYNC, the time from the falling edge of
VSYNC until the start of RAM write operation must also be taken into account.
DFM[1:0]: Set the color display mode.
DFM1
1
1
DFM0
1
0
Color mode
65k color (POR)
262k color
DenMode:
DenMode=1 : RGB interface ignore HSYNC, VSYNC pin and HBP, VBP
DenMode=0 : RGB interface control by HSYNC, VSYNC pin and HBP, VBP
Solomon Systech
Jun 2009 P 50/95
Rev 1.4
SSD2119
Appendix
When DenMode=1, Generic mode will write each input rgb pixel into RAM buffer, the window of ram buffer to
be written defined by command R44h (define Y of window)m R45h (define X start),R46 (define X end),
whenever the input RGB dimension is larger than the defined ram window, it wont have any effect.
Note: For RGB mode
When DenMode=1, DEN signal is necessary
When DenMode=0, DEN pin must connect to VDDIO
WMode:
WMode=1 : Write RAM from Generic RGB data (POR, if PS:00xx)
WMode=0 : Write RAM from SPI interface
Nosync:
Nosync=1 : Dmode change immediately
Nosync=0 : Dmode change Sync with on chip frame start
Dmode:
Dmode=1 : Display engine will be clocked by DOTCLK pin and onchip oscillator will be off (POR, if PS:00xx)
Dmode=0 : Display engine will be clocked by on chip oscillator and ignore DOTCLK pin
TY[1:0]: In 262k color mode, 16 bit parallel interface, there are three types of methods in writing data into the ram,
Type A, B and C are described as below.
TY1
0
0
1
Interface Color mode Cycle
262k Type A 1st
nd
2
3rd
16 bit 262k Type B 1st
2nd
262k Type C 1st
2nd
Remark :
SSD2119
Rev 1.4
x
D17
R5
B5
G5
R5
x
R5
B5
D16
R4
G4
G4
R4
x
R4
G4
TY0
0
1
0
D15
R3
B3
G3
R3
x
R3
B3
D14
R2
B2
G2
R2
x
R2
B2
Writing mode
Type A
Type B
Type C
D13
R1
B1
G1
R1
x
R1
B1
Hardware pins
D12 D11 D10 D9 D8 D7
R0 x
x
G5 G4
B0 x
x
R5 R4
G0 x
x
B5 G4
R0 x
x
G5 G4
x
x
x
B5 G4
R0 x
x
G5 G4
B0 x
x
x
x
D6
G3
R3
B3
G3
B3
G3
x
D5
G2
R2
B2
G2
B2
G2
x
D4
G1
R1
B1
G1
B1
G1
x
D3 D2 D1 D0
G0 x
x
R0 x
x
B0 x
x
G0 x
x
B0 x
x
G0 x
x
x
x
x
Don't care bits
Not connected pins
P 51/95
Jun 2009
Solomon Systech
Appendix
ID[1:0]: The address counter is automatically incremented by 1, after data are written to the GDDRAM when ID[1:0] =
“1”. The address counter is automatically decremented by 1, after data are written to the GDDRAM when ID[1:0] = “0”.
The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower
bit of the address. The direction of the address when data are written to the GDDRAM is set with AM bits.
AM: Set the direction in which the address counter is updated automatically after data are written to the GDDRAM.
When AM = “0”, the address counter is updated in the horizontal direction. When AM = “1”, the address counter is
updated in the vertical direction. When window addresses are selected, data are written to the GDDRAM area specified
by the window addresses in the manner specified with ID1-0 and AM bits.
ID[1:0]="00”
Horizontal: decrement
Vertical: decrement
ID[1:0]="01”
Horizontal: increment
Vertical: decrement
ID[1:0]="10”
Horizontal: decrement
Vertical: increment
ID[1:0]="11”
Horizontal: increment
Vertical: increment
00,00h
00,00h
00,00h
00,00h
AM="0”
Horizontal
13F,EFh
13F,EFh
00,00h
13F,EFh
00,00h
00,00h
13F,EFh
00,00h
AM="1”
Vertical
13F,EFh
13F,EFh
13F,EFh
13F,EFh
Note: ID and AM functions are not supported in RGB mode
Generic Interface Control (R15h) (POR = B010h)
R/W DC IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8
W 1
0
0
0
0
0
0
0
0
POR
1
0
1
1
0
0
0
0
IB7
0
0
IB6 IB5 IB4 IB3
IB2
IB1
IB0
0
0
0
INVDOT INVDEN INVHS INVVS
0
0
1
0
0
0
0
INVDOT: sets the signal polarity of DOTCLK pin. When INVDOT = 0, data is latched at positive edge of DOTCLK.
When INVDOT = 1, data is latched at negative edge of DOTCLK.
INVDEN: sets the signal polarity of DEN pin. When INVDEN = 0, DEN is active high. When INVDEN = 1, DEN is
active low.
INVHS: sets the signal polarity of HSYNC pin. When INVHS = 0, HSYNC is active low. When INVHS = 1, HSYNC is
active high.
INVVS: sets the signal polarity of VSYNC pin. When INVVS = 0, VSYNC is active low. When INVVS = 1, VSYNC is
active high.
Solomon Systech
Jun 2009 P 52/95
Rev 1.4
SSD2119
Appendix
Horizontal Porch (R16h) (POR = 001Dh)
R/W DC
W
1
POR
IB15 IB14 IB13 IB12 IB11
0
0
0
0
0
0
0
0
0
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
HBP7 HBP6 HBP5 HBP4 HBP3 HBP2 HBP1 HBP0
0
0
0
1
1
1
0
1
HBP[7:0]: Set the delay period from falling edge of HSYNC signal to first valid data.
HBP7
HBP6
HBP5
HBP4
HBP3
HBP2
HBP1
HBP0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
:
:
:
:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
0
1
0
1
0
1
1
1
1
1
1
0
1
:
:
:
1
1
1
1
1
1
1
1
No. of clock
cycle of
DOTCLK
1
2
Step = 1
:
27
28
29
30 (POR)
31
:
Step = 1
:
255
256
Cycle time of HYSYNC
Set by HBP7-0
HYSNC
Default 320 pixels per line
Pixel
Data
Dummy
D0
D1
D2
D317 D318 D319
Dummy
DOTCLK
30 clock cycles of DOTCLK
HBP7-0 = 00011101
SSD2119
Rev 1.4
P 53/95
Jun 2009
Solomon Systech
Appendix
Vertical Porch (R17h) (POR = 0003h)
R/W DC
W
1
POR
IB15 IB14 IB13 IB12 IB11 IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
0
VFP6 VFP5 VFP4 VFP3 VFP2 VFP1 VFP0 VBP7 VBP6 VBP5 VBP4 VBP3 VBP2 VBP1 VBP0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
VFP[6:0]: Set the delay period from the last valid line to the falling edge of VSYNC of the next frame. The line data
within this delay period will be treated as dummy line.
VFP6 VFP5 VFP4 VFP3 VFP2 VFP1 VFP0
0
0
0
0
:
:
1
1
1
1
No. of clock cycle of
HSYNC
0
0
0
0
0
0
0
0
0
1
1 (POR)
1
1
1
1
1
1
1
1
0
1
127
2
:
Step = 1
:
128
VBP[7:0]: Set the delay period from falling edge of VSYNC to first valid line. The line data within this delay period
will be treated as dummy line.
VBP7 VBP6 VBP5 VBP4 VBP3 VBP2 VBP1 VBP0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
0
1
:
:
:
1
1
1
1
1
1
1
1
No. of clock cycle of
HSYNC
1
2
3
4 (POR)
:
Step = 1
:
255
256
Cycle time of VSYNC
Set by VFP[6:0]
Set by VBP[7:0]
VSYNC
Set by MUX[8:0]
HSYNC
Dummy Lines
Solomon Systech
st
1 Line
Last Line
Dummy Lines
Jun 2009 P 54/95
Rev 1.4
SSD2119
Appendix
Power Control 5 (R1Eh) (POR = 002Bh)
R/W DC
W
1
POR*
IB15 IB14 IB13 IB12 IB11
0
0
0
0
0
0
0
0
0
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
nOTP
0
IB6
IB5
IB4
IB3
IB2
IB1
IB0
0
VCM5 VCM4 VCM3 VCM2 VCM1 VCM0
0
1
0
1
0
1
1
nOTP: nOTP equals to “0” after power on reset and VcomH voltage equals to programmed OTP value. When nOTP set
to “1”, setting of VCM[5:0] becomes valid and voltage of VcomH can be adjusted.
VCM[5:0]: Set the VcomH voltage if nOTP = “1”. These bits amplify the VcomH voltage 0.36 to 0.99 times the
VLCD63 voltage. Default value is “101001” when power on reset.
VCM5
0
0
VCM4
0
0
VCM3
0
0
VCM2
0
0
VCM1
0
0
VCM0
0
1
1
1
1
1
1
1
0
1
IB10
0
0
IB9
0
0
:
:
:
1
1
1
1
VcomH
VLCD63 x 0.36
VLCD63 x 0.37
:
Step = 0.01
:
VLCD63 x 0.98
VLCD63 x 0.99
Uniformity (R20h) (POR = B0EBh)
R/W DC
W
1
POR
IB15 IB14 IB13 IB12 IB11
1
0
1
1
0
1
0
1
1
0
IB8
0
0
IB7
1
1
IB6
IB5
IB4
1 ENSVIN
0
1
1
0
IB3
1
1
IB2
0
0
IB1
1
1
IB0
1
1
ENSVIN: When ENSVIN = 1, uniformity improvement scheme is enabled
When ENSVIN = 0, uniformity improvement scheme is disabled
Write Data to GRAM (R22h)
R/W
W
DC
1
D[17:0]
WD[17:0] mapping depends on the interface setting
WD[17:0]: Transforms all the GDDRAM data into 18-bit, and writes the data. Format for transforming data into 18-bit
depends on the interface used. SSD2119 selects the grayscale level according to the GDDRAM data. After writing data
to GDDRAM, address is automatically updated according to AM bit and ID bit. Access to GDDRAM during stand-by
mode is not available.
Read Data from GRAM (R22h)
R/W
R
DC
1
D[17:0]
RD[17:0] mapping depends on the interface setting
RD[17:0]: Read 18-bit data from the GDDRAM. When the data is read to the microcomputer, the first-word read
immediately after the GDDRAM address setting is latched from the GDDRAM to the internal read-data latch. The data
on the data bus (DB17–0) becomes invalid and the second-word read is normal. When bit processing, such as a logical
operation, is performed, only one read can be processed since the latched data in the first word is used.
Frame Frequency Control (R25h) (POR = 8000h)
R/W DC IB15 IB14 IB13 IB12 IB11
W
1 OSC3 OSC2 OSC1 OSC0 0
POR*
1
0
0
0
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
0
0
IB6
0
0
IB5
0
0
IB4
0
0
IB3
0
0
IB2
0
0
IB1
0
0
IB0
0
0
OSC[3:0]: Set the frame frequency by OSC[3:0]
OSC[3:0]
Internal Oscillator
Frequency (Hz)
Corresponding
Frame Freq (Hz)
(other registers are at
POR value)
0000
0010
0101
SSD2119
Rev 1.4
P 55/95
Jun 2009
295K
325K
354K
50
55
60
Solomon Systech
Appendix
1000
1010
1100
1110
380K
413K
443K
472K
65
70
75
80
Analogue Setting (R26h) (POR = 7000h)
R/W DC
W
1
POR*
IB15 IB14 IB13 IB12 IB11
0 RW_T VCB RTLM ENN
0
1
1
1
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
0
0
IB6
0
0
IB5
0
0
IB4
0
0
IB3
0
0
IB2
0
0
IB1
0
0
IB0
0
0
RW_T (RAM read/write timing)
RW_T=0 : ON Wordline after Bitlines Pre-charge OFF
RW_T=1 : ON Wordline before Bitlines Pre-charge OFF(por)
VCB (VCOM buffer)
VCB=1 : VCOML buffer off during VCOM output VCOMH (por)
VCB=0: VCOML buffer on even VCOM output VCOMH
RTLM (RAM read/write monitoring)
RTLM=1: RAM read/write monitoring ON (por)
RTLM=0: RAM read/write monitoring OFF
ENN (enable deep sleep mode of ram)
ENN=1 : stop precharge bitlines in sleep mode
ENN=0 : always precharge bitlines (por)
Suggested Code for R26H is x3800.
Vcom OTP (R28h – R29h)
Reg# R/W
R28h W
R29h W
DC
1
1
IB15
0
1
IB14
0
0
IB13
0
0
IB12
0
0
IB11
0
0
IB10
0
0
IB9
0
0
IB8
0
0
IB7
0
1
IB6
0
1
IB5
0
0
IB4
0
0
IB3
0
0
IB2
1
0
IB1
1
0
When OTP is access, these registers must be set accordantly.
OTP programming sequence
Step
1
2
3
4
5
6
7
8
Solomon Systech
Operation
Power up the module with VCI and VDDIO set to customer application
input voltage
Turn on the display as normal to 65k/262k color mode (displaying a test
pattern if any).
Set nOTP to “1” (R1Eh) and optimizes VcomH by adjusting VCM[5:0]
(R1Eh).
Apply Display off sequence (Section 16.2)
Power up the module with VCI and VDDIO set to customer application
input voltage
Turn on the display as normal to 65k/262k color mode
Write below commands for OTP initialization and wait for 200ms for
activate the OTP :
Index
Value
R00h
0x0001
R28h
0x0006
R29h
0x80C0
Connect a 15.0V (Range of Vpp=14.5V-15.0V) supply to VGH through
a current limiting resistor, see figure below.
Write the optimized value found in Step 2 to VCM[5:0] (R1Eh) and set
nOTP to “1”.
Fire the OTP by write HEX code “000Ah” to register R28h.
Wait 500ms.
Jun 2009 P 56/95
Rev 1.4
SSD2119
IB0
0
0
Appendix
9
OTP complete. Apply Display off sequence and disconnect power
Note: nOTP must set to “0” to activate the OTP effect.
During Step 5 to 9, display is not on
It is possible to skip step3 and step4
Precaution:
1. All capacitors on OTP machine should be discharged completely before placing the LCD module.
2. The OTP programming voltage should not be applied when placing and removing the LCD module.
3. The OTP programming voltage should not be applied before VDDIO/VDDEXT/VCI.
4. After OTP is finished, the capacitors at VGH and VCIX2 must be discharged completely before
removing the LCD module.
Figure 9-3: OTP circuitry
SSD2119
R
VGH
+ C
-
Note:
GND
14.5V -15.0V
R = 1K ~ 2k ohm
C = 1uF
(built-in on the module)
GND
Gamma Control (R30h to R3Bh)
Reg# R/W DC IB15
IB14
IB13
IB12
IB11
R30h
W
1
0
0
0
0
0
R31h
W
1
0
0
0
0
0
R32h
W
1
0
0
0
0
0
R33h
W
1
0
0
0
0
0
R34h
W
1
0
0
0
0
0
R35h
W
1
0
0
0
0
0
R36h
W
1
0
0
0
0
0
R37h
W
1
0
0
0
0
0
R3Ah
W
1
0
0
0
R3Bh
W
1
0
0
0
VRP
14
VRN
14
VRP
13
VRN
13
IB10
PKP
12
PKP
32
PKP
52
PRP
12
PKN
12
PKN
32
PKN
52
PRN
12
VRP
12
VRN
12
IB9
PKP
11
PKP
31
PKP
51
PRP
11
PKN
11
PKN
31
PKN
51
PRN
11
VRP
11
VRN
11
IB8
PKP
10
PKP
30
PKP
50
PRP
10
PKN
10
PKN
30
PKN
50
PRN
10
VRP
10
VRN
10
IB7
IB6
IB5
IB4
IB3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VRP
03
VRN
03
IB2
PKP
02
PKP
22
PKP
42
PRP
02
PKN
02
PKN
22
PKN
42
PRN
02
VRP
02
VRN
02
IB1
PKP
01
PKP
21
PKP
41
PRP
01
PKN
01
PKN
21
PKN
41
PRN
01
VRP
01
VRN
01
IB0
PKP
00
PKP
20
PKP
40
PRP
00
PKN
00
PKN
20
PKN
40
PRN
00
VRP
00
VRN
00
Note: please refer to table 5 for POR values.
PKP[52:00]: Gamma micro adjustment register for the positive polarity output
PRP[12:00]: Gradient adjustment register for the positive polarity output
VRP[14:00]: Adjustment register for amplification adjustment of the positive polarity output
PKN[52:00]: Gamma micro adjustment register for the negative polarity output
PRN[12:00]: Gradient adjustment register for the negative polarity output
VRN[14:00]: Adjustment register for the amplification adjustment of the negative polarity output.
(For details, see the Section 11 Gamma Adjustment Function).
SSD2119
Rev 1.4
P 57/95
Jun 2009
Solomon Systech
Appendix
Vertical Scroll Control (R41h-R42h) (POR =0000h)
Reg# R/W DC
W
1
R41h
POR
W
1
R42h
POR
IB15
0
0
0
0
IB14
0
0
0
0
IB13
0
0
0
0
IB12
0
0
0
0
IB11
0
0
0
0
IB10
0
0
0
0
IB9
0
0
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
VL18 VL17 VL16 VL15 VL14 VL13 VL12 VL11 VL10
0
0
0
0
0
0
0
0
0
VL28 VL27 VL26 VL25 VL24 VL23 VL22 VL21 VL20
0
0
0
0
0
0
0
0
0
VL1[8:0]: Specify scroll length at the scroll display for vertical smooth scrolling. Any raster-row from the first to 240th
can be scrolled for the number of the raster-row. After 240th raster-row is displayed, the display restarts from the first
raster-row. The display-start raster-row (VL1[8:0]) is valid when VLE1 = “1” or VLE2 = “1”. The raster-row display is
fixed when VLE[2:1] = “00”.
VL2[8:0]: Specify scroll length at the scroll display for vertical smooth scrolling at 2nd screen. The display-start rasterrow (VL2[8:0]) is valid when VLE1 = “1” and VLE2 = “1”.
Vertical RAM address position (R44h) (POR = EF00h)
R/W DC
W
1
POR
IB15 IB14 IB13 IB12 IB11 IB10 IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
VEA7 VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 VSA0
1
1
1
0
1
1
1
1
0
0
0
0
0
0
0
0
VEA[7:0]/VSA[7:0]: Specify the start/end positions of the window address in the vertical direction by an address unit.
Data are written to the GDDRAM within the area determined by the addresses specified by VEA[7:0] and VSA[7:0].
These addresses must be set before the RAM write. In setting these bits, make sure that “00”h ≤ VSA[7:0] ≤ VEA[7:0] ≤
“EF”h.
Horizontal RAM address position (R45h-R46h)
Reg# R/W DC
W
1
R45h
POR
W
1
R46h
POR
IB15
0
0
0
0
IB14
0
0
0
0
IB13
0
0
0
0
IB12
0
0
0
0
IB11
0
0
0
0
IB10
0
0
0
0
IB9
0
0
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
HSA8 HSA7 HSA6 HSA5 HSA4 HSA3 HSA2 HSA1 HSA0
0
0
0
0
0
0
0
0
0
HEA8 HEA7 HEA6 HEA5 HEA4 HEA3 HEA2 HEA1 HEA0
1
0
0
1
1
1
1
1
1
HSA[8:0]/HEA[8:0]: Specify the start/end positions of the window address in the horizontal direction by an address unit.
Data are written to the GRAM within the area determined by the addresses specified by HEA[8:0] and HSA[8:0]. These
addresses must be set before the RAM write. In setting these bits, make sure that “00”h ≤ HSA[8:0] ≤ HEA[8:0] ≤
“13F”h.
1st Screen driving position (R48h-R49h)
Reg# R/W DC
W
1
R48h
POR
W
1
R49h
POR
IB15
0
0
0
0
IB14
0
0
0
0
IB13
0
0
0
0
IB12
0
0
0
0
IB11
0
0
0
0
IB10
0
0
0
0
IB9
0
0
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
SS18 SS17 SS16 SS15 SS14 SS13 SS12 SS11 SS10
0
0
0
0
0
0
0
0
0
SE18 SE17 SE16 SE15 SE14 SE13 SE12 SE11 SE10
0
1
1
1
0
1
1
1
1
SS1[8:0]: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the set gate
driver, i.e. the first driving Gate is G1 if SS1[8:0] = 00H
SE1[8:0]: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the set gate
driver. For instance, when SS1[8:0] = “07”H and SE1[8:0] = “10”H are set, the LCD driving is performed from G7 to
G16, and non-selection driving is performed for G1 to G6, G17, and others. Ensure that SS1[8:0] ≤ SE1[8:0] ≤ EFH.
Solomon Systech
Jun 2009 P 58/95
Rev 1.4
SSD2119
Appendix
2nd Screen driving position (R4Ah-R4Bh)
Reg# R/W DC
W
1
R4Ah
POR
W
1
R4Bh
POR
IB15
0
0
0
0
IB14
0
0
0
0
IB13
0
0
0
0
IB12
0
0
0
0
IB11
0
0
0
0
IB10
0
0
0
0
IB9
0
0
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
SS28 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20
0
0
0
0
0
0
0
0
0
SE28 SE27 SE26 SE25 SE24 SE23 SE22 SE21 SE20
0
1
1
1
0
1
1
1
1
SS2[8:0]: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the set gate
driver. The second screen is driven when SPT = “1”.
SE2[8:0]: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the set
gate driver. For instance, when SPT = “1”, SS2[8:0] = “20”H, and SE2[8:0] = “2F”H are set, the LCD driving is
performed from G32 to G47. Ensure that SS1[8:0] ≤ SE1[8:0] ; SS2[8:0] ≤ SE2[8:0] ≤ EFH..
RAM address set (R4Eh-R4Fh)
Reg# R/W DC IB15 IB14 IB13 IB12 IB11 IB10 IB9
W
1
0
0
0
0
0
0
0
R4Eh
POR
0
0
0
0
0
0
0
W
1
0
0
0
0
0
0
0
R4Fh
POR
0
0
0
0
0
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
XAD8 XAD7 XAD6 XAD5 XAD4 XAD 3 XAD 2 XAD 1 XAD 0
0
0
0
0
0
0
0
0
0
0
YAD7 YAD6 YAD5 YAD4 YAD3 YAD2 YAD1 YAD0
0
0
0
0
0
0
0
0
0
YAD[7:0]: Make initial settings for the GDDRAM Y address in the address counter (AC).
XAD[8:0]: Make initial settings for the GDDRAM X address in the address counter (AC).
After GDDRAM data are written, the address counter is automatically updated according to the settings with AM, I/D
bits and setting for a new GDDRAM address is not required in the address counter. Therefore, data are written
consecutively without setting an address. The address counter is not automatically updated when data are read out from
the GDDRAM. GDDRAM address setting cannot be made during the standby mode. The address setting should be made
within the area designated with window addresses.
Window Address Function
The window address function enables writing display data sequentially in a window address area made in the internal
GDDRAM. The window address area is made by setting the horizontal address register (start: HSA8-0, end: HEA 8-0
bits) and the vertical address register (start: VSA7-0, end: VEA7-0 bits). The AM and ID[1:0] bits set the transition
direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables
the SSD2119 to write data including image data sequentially without taking the data wrap position into account. The
window address area must be made within the GDDRAM address map area.
Condition:
00h ≤ HSA[8:0] ≤ HEA[8:0] ≤ 13Fh
00h ≤ VSA[7:0] ≤ VEA[7:0] ≤ EFh
AM and ID[1:0] refer to R11h
SSD2119
Rev 1.4
P 59/95
Jun 2009
Solomon Systech
Appendix
GDDRAM address map
0000h
0000h
013Fh
0000h
Window address area
120x40 at middle
0000h
00EFh
013Fh
0EFh
Window address setting area:
HSA[8:0] = 3Bh; HEA[8:0] = B3h
VSA[7:0] = 8Bh; VEA[7:0] = B3h
AM = “0” and ID[1;]] = “11”
Partial Display Mode
The SSD2119 enables to selectively drive two screens at arbitrary positions with the screen-driving position registers
(R48h to R4Bh). Only the lines required to display two screens at arbitrary positions are selectively driven to reduce the
power consumption.
The first screen driving position registers (R48 and R49) specifies the start line (SS18-10) and the end line (SE18-10) for
displaying the first screen. The second screen driving position register (R4A) specifies the start line (SS28-20) and the
end line (SE28-20) for displaying the second screen. The second screen control is effective when the SPT bit is set to 1.
The total number of lines driven for displaying the first and second screens must be less than the number of lines to drive
the LCD.
Condition:
SS1[8:0] ≤ SE1[8:0] ≤ EFH
SS1[8:0] ≤ SE1[8:0]
SS2[8:0] ≤ SE2[8:0] ≤ EFH
G1
G9
1st screen
¦ SSD2119 Non display area
G150
2nd screen
SOLOMON SYSTECH
G159
Non display area
The number of driven display lines: MUX[8:0] = 13F (319+1 lines)
1st screen setting: SS[18:10] = 00h, SE[18:10] = 09h
2nd screen seeting: SS[28:10] = 96h, SE[28:10] = 9Fh
Solomon Systech
Jun 2009 P 60/95
Rev 1.4
SSD2119
Appendix
10 GAMMA ADJUSTMENT FUNCTION
The SSD2119 incorporates gamma adjustment function for the 262,144-color display. Gamma adjustment is
implemented by deciding the 8-grayscale levels with angle adjustment and micro adjustment register. Also, angle
adjustment and micro adjustment is fixed for each of the internal positive and negative polarity. Set up by the liquid
crystal panel’s specification.
RGB Interface
Display Data
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0
PKP02 PKP01 PKP00
PKP12 PKP11 PKP10
PKP22 PKP21 PKP20
Positive
polarity
register
V0
PKP32 PKP31 PKP30
PKP42 PKP41 PKP40
8-levels
Grayscale
amplifier
PRP12 PRP11 PRP10
6-bits
6-bits
64 grayscale
Control <R>
64 grayscale
Control <G>
64 grayscale
Control <B>
LCD Driver
LCD Driver
LCD Driver
G
B
64 levels
PKP52 PKP51 PKP50
PRP02 PRP01 PRP00
6-bits
VRP03 VRP02 VRP01 VRP00
VRP14 VRP13 VRP12 VRP11 VRP10
V63
PKN02 PKN01 PKN00
PKN12 PKN11 PKN10
PKN22 PKN21 PKN20
Negative
polarity
register
PKN32 PKN31 PKN30
R
PKN42 PKN41 PKN40
PKN52 PKN51 PKN50
PRN02 PRN01 PRN00
LCD
PRN12 PRN11 PRN10
VRN03 VRN02 VRN01 VRN00
VRN14 VRN13 VRN12 VRN11 VRN10
SSD2119
Rev 1.4
P 61/95
Jun 2009
Solomon Systech
Appendix
10.1
Structure of Grayscale Amplifier
Below figure indicates the structure of the grayscale amplifier. It determines 8 levels (VIN0-VIN7) by the gradient
adjuster and the micro adjustment register. Also, dividing these levels with ladder resistors generates V0 to V63.
Gradient
adjustment register
VLCD63
PRP0
3
PRP1
3
Amplitude
adjustment register
Micro adjustment register
PKP0
PKP1
PKP2
PKP3
PKP4
3
3
3
3
3
PKP5
VRP0
VRP1
4
5
3
VINP0
V0
VINP1
8 to 1
selector
VINP2
8 to 1
selector
VINP3
VINP4
8 to 1
selector
Grayscale Amplifier
i t
V8
:
8 to 1
selector
L dd
V1
V19
V20
:
V42
V43
:
V54
VINP5
8 to 1
selector
V55
:
V61
8 to 1
selector
VINP6
V62
VINP7
*
GND
Solomon Systech
V63
Individual ladder resistors are used for positive and
negative polarity.
Jun 2009 P 62/95
Rev 1.4
SSD2119
Appendix
Ladder resistor for negative polarity
Ladder resistor for positive polarity
VLCD63
VRP0[3:0]
0 to 30R
VRP0
5R
RP1
RP2
RP3
RP4
RP5
RP6
RP7
4R
0 to 28R
VRHP
1R
5R
1R
16R
KVP1
KVP2
KVP3
KVP4
KVP5 8 to 1
KVP6 selector
KVP7
KVP8
PRP0[2:0]
KVP9
RP8 KVP10
RP9 KVP11
RP10 KVP12
RP11 KVP13 8 to 1
RP12 KVP14 selector
RP13 KVP15
RP14 KVP16
RP15 KVP17
RP16 KVP18
RP17 KVP19
RP18 KVP20
RP19 KVP21 8 to 1
RP20 KVP22 selector
RP21 KVP23
RP22 KVP24
RP23 KVP25
RP24 KVP26
RP25 KVP27
RP26 KVP28
RP27 KVP29 8 to 1
RP28 KVP30 selector
RP29 KVP31
RP30 KVP32
1R
5R
RP31
RP32
RP33
RP34
RP35
RP36
RP37
RP38
1R
KVP33
KVP34
KVP35
KVP36
KVP37 8 to 1
KVP38 selector
KVP39
KVP40
PRP1[2:0]
KVP41
RP39 KVP42
RP40 KVP43
RP41 KVP44
RP42 KVP45 8 to 1
RP43 KVP46 selector
RP44 KVP47
RP45 KVP48
0 to 28R
VRLP
4R
10.2
VRN0
KVP0
RP0
5R
0 to 31R
VRP1 8R
VRN0[3:0]
VINP0
PKP0[2:0]
VINP1
PKP1[2:0]
VINP2
PKP2[2:0]
VINP3
PKP3[2:0]
VINP4
PKP4[2:0]
VINP5
PKP5[2:0]
VINP6
5R
4R
0 to 28R
VRHN
1R
5R
1R
16R
1R
5R
1R
0 to 28R
VRLN
4R
5R
RP46
KVN0
RN0
RN1
RN2
RN3
RN4
RN5
RN6
RN7
KVN1
KVN2
KVN3
KVN4
KVN5 8 to 1
KVN6 selector
KVN7
KVN8
PRN0[2:0]
KVN9
RN8 KVN10
RN9 KVN11
RN10 KVN12
RN11 KVN13 8 to 1
RN12 KVN14 selector
RN13 KVN15
RN14 KVN16
RN15 KVN17
RN16 KVN18
RN17 KVN19
RN18 KVN20
RN19 KVN21 8 to 1
RN20 KVN22 selector
RN21 KVN23
RN22 KVN24
RN23 KVN25
RN24 KVN26
RN25 KVN27
RN26 KVN28
RN27 KVN29 8 to 1
RN28 KVN30 selector
RN29 KVN31
RN30 KVN32
RN31
RN32
RN33
RN34
RN35
RN36
RN37
RN38
KVN33
KVN34
KVN35
KVN36
KVN37 8 to 1
KVN38 selector
KVN39
KVN40
PRN1[2:0]
KVN41
RN39 KVN42
RN40 KVN43
RN41 KVN44
RN42 KVN45 8 to 1
RN43 KVN46 selector
RN44 KVN47
RN45 KVN48
RN46
VINP7
RP47
PKN0[2:0]
VINN1
PKN1[2:0]
VINN2
PKN2[2:0]
VINN3
PKN3[2:0]
VINN4
PKN4[2:0]
VINN5
PKN5[2:0]
VINN6
VINN7
0 to 31R
VRN1 8R
VRP1[4:0]
VINN0
VRN1[4:0]
RN47
GND
SSD2119
Rev 1.4
P 63/95
Jun 2009
Solomon Systech
Appendix
Gamma Adjustment Register
This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This
register can independent set up to positive/negative polarities and there are three types of register groups to adjust
gradient, amplitude, and micro-adjustment on number of the grayscale, characteristics of the grayscale voltage. (Using
the same setting for Reference-value and R.G.B.) Following graphics indicates the operation of each adjusting register.
Grayscale Number
10.2.1
Micro adjustment
Grayscale Voltage
Amplitude adjustment
Grayscale Voltage
Grayscale Voltage
Gradient adjustment
Grayscale Number
Grayscale Number
Gradient adjusting register
The gradient-adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the
grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable resistors in
the middle of the ladder resistor by registers (PRP(N)0 / PRP(N)1) for the grayscale voltage generator. Also, there is an
independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.
10.2.2
Amplitude adjusting register
The amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it
controls the variable resistors in the boundary of the ladder resistor by registers (VRP(N)0 / VRP(N)1) for the grayscale
voltage generator. Also, there is an independent resistor on the positive/negative polarities as well as the gradientadjusting resistor.
10.2.3
Micro adjusting register
The micro-adjusting register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it
controls each reference voltage level by the 8 to 1 selector towards the 8-level reference voltage generated from the
ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting
resistors.
Solomon Systech
Jun 2009 P 64/95
Rev 1.4
SSD2119
Appendix
10.3
Ladder Resistor / 8 to 1 selector
This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable
resistor and the 8 to 1 selector selecting voltage generated by the ladder resistor. The gamma registers control the
variable resistors and 8 to 1 selector resistors.
Variable Resistor
There are 3 types of the variable resistors that are for the gradient and amplitude adjustment. The resistance is set by the
resistor (PRP(N)0 / PRP(N)1) and (VRP(N)0 / VRP(N)1) as below.
PRP(N)[0:1]
000
001
010
011
100
101
110
111
Resistance
0R
4R
8R
12R
16R
20R
24R
28R
VRP(N)0
0000
0001
0010
Resistance
0R
2R
4R
:
Step = 2R
:
1110
1111
28R
30R
VRP(N)1
00000
00001
00010
Resistance
0R
1R
2R
:
Step = 1R
:
11110
30R
11111
31R
8 to 1 selecter
In the 8 to 1 selector, a reference voltage VIN can be selected from the levels which are generated by the ladder resistors.
There are six types of reference voltage (VIN1 to VIN6) and totally 48 divided voltages can be selected in one ladder
resistor. Following figure explains the relationship between the micro-adjusting register and the selecting voltage.
Registor
PKP[2:0]
000
001
010
011
100
101
110
111
VINP1
KVP1
KVP2
KVP3
KVP4
KVP5
KVP6
KVP7
KVP8
Grayscale voltage
V0
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
SSD2119
Postive polarity
Selected voltage
VINP2 VINP3 VINP4
KVP9 KVP17 KVP25
KVP10 KVP18 KVP26
KVP11 KVP19 KVP27
KVP12 KVP20 KVP28
KVP13 KVP21 KVP29
KVP14 KVP22 KVP30
KVP15 KVP23 KVP31
KVP16 KVP24 KVP32
VINP5
KVP33
KVP34
KVP35
KVP36
KVP37
KVP38
KVP39
KVP40
Formula
VINP(N)0
VINP6
KVP41
KVP42
KVP43
KVP44
KVP45
KVP46
KVP47
KVP48
Grayscale voltage
V22
V23
VINP(N)1
V8+(V1-V8)*(30/48)
V24
V8+(V1-V8)*(23/48)
V25
V8+(V1-V8)*(16/48)
V26
V8+(V1-V8)*(12/48)
V27
V8+(V1-V8)*(8/48)
V28
V8+(V1-V8)*(4/48)
V29
V30
VINP(N)2
V20+(V8-V20)*(22/24)
V31
V20+(V8-V20)*(20/24)
V32
V20+(V8-V20)*(18/24)
V33
V20+(V8-V20)*(16/24)
V34
V20+(V8-V20)*(14/24)
V35
V20+(V8-V20)*(12/24)
V36
V20+(V8-V20)*(10/24)
V37
V20+(V8-V20)*(8/24)
V38
V20+(V8-V20)*(6/24)
V39
V20+(V8-V20)*(4/24)
V40
V20+(V8-V20)*(2/24)
V41
V42
VINP(N)3
V43+(V20-V43)*(22/23)
V43
Rev 1.4
P 65/95
Jun 2009
Registor
PKN[2:0]
000
001
010
011
100
101
110
111
Negative polarity
Selected voltage
VINN1 VINN2 VINN3 VINN4
KVN1 KVN9 KVN17 KVN25
KVN2 KVN10 KVN18 KVN26
KVN3 KVN11 KVN19 KVN27
KVN4 KVN12 KVN20 KVN28
KVN5 KVN13 KVN21 KVN29
KVN6 KVN14 KVN22 KVN30
KVN7 KVN15 KVN23 KVN31
KVN8 KVN16 KVN24 KVN32
Formula
Grayscale voltage
V43+(V20-V43)*(21/23) V44
V43+(V20-V43)*(20/23)
V45
V43+(V20-V43)*(19/23)
V46
V43+(V20-V43)*(18/23)
V47
V43+(V20-V43)*(17/23)
V48
V43+(V20-V43)*(16/23)
V49
V43+(V20-V43)*(15/23)
V50
V43+(V20-V43)*(14/23)
V51
V43+(V20-V43)*(13/23)
V52
V43+(V20-V43)*(12/23)
V53
V43+(V20-V43)*(11/23)
V54
V43+(V20-V43)*(10/23)
V55
V43+(V20-V43)*(9/23)
V56
V43+(V20-V43)*(8/23)
V57
V43+(V20-V43)*(7/23)
V58
V43+(V20-V43)*(6/23)
V59
V43+(V20-V43)*(5/23)
V60
V43+(V20-V43)*(4/23)
V61
V43+(V20-V43)*(3/23)
V62
V43+(V20-V43)*(2/23)
V63
V43+(V20-V43)*(1/23)
VINN5
KVN33
KVN34
KVN35
KVN36
KVN37
KVN38
KVN39
KVN40
VINN6
KVN41
KVN42
KVN43
KVN44
KVN45
KVN46
KVN47
KVN48
Formula
V55+(V43-V55)*(22/24)
V55+(V43-V55)*(20/24)
V55+(V43-V55)*(18/24)
V55+(V43-V55)*(16/24)
V55+(V43-V55)*(14/24)
V55+(V43-V55)*(12/24)
V55+(V43-V55)*(10/24)
V55+(V43-V55)*(8/24)
V55+(V43-V55)*(6/24)
V55+(V43-V55)*(4/24)
V55+(V43-V55)*(2/24)
VINP(N)5
V62+(V55-V62)*(44/48)
V62+(V55-V62)*(40/48)
V62+(V55-V62)*(36/48)
V62+(V55-V62)*(32/48)
V62+(V55-V62)*(25/48)
V62+(V55-V62)*(18/48)
VINP(N)6
VINP(N)7
VINP(N)4
Solomon Systech
Appendix
Reference voltage of positive polarity:
Reference
Formula
Micr0-adjusting rgister
-KVP0
VLCD63 - ΔV x VRP0 / SUMRP
PKP0[2:0] = “000”
KVP1
VLCD63 - ΔV x (VRP0 + 5R) / SUMRP
PKP0[2:0] = “001”
KVP2
VLCD63 - ΔV x (VRP0 + 9R) / SUMRP
PKP0[2:0] = “010”
KVP3
VLCD63 - ΔV x (VRP0 + 13R) / SUMRP
PKP0[2:0] = “011”
KVP4
VLCD63 - ΔV x (VRP0 + 17R) / SUMRP
PKP0[2:0] = “100”
KVP5
VLCD63 - ΔV x (VRP0 + 21R) / SUMRP
PKP0[2:0] = “101”
VLCD63 - ΔV x (VRP0 + 25R) / SUMRP
KVP6
PKP0[2:0] = “110”
KVP7
VLCD63 - ΔV x (VRP0 + 29R) / SUMRP
PKP0[2:0] = “111”
KVP8
VLCD63 - ΔV x (VRP0 + 33R) / SUMRP
PKP1[2:0] = “000”
KVP9
VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP
PKP1[2:0] = “001”
KVP10
VLCD63 - ΔV x (VRP0 + 34R + VRHP) / SUMRP
PKP1[2:0] = “010”
KVP11
VLCD63 - ΔV x (VRP0 + 35R + VRHP) / SUMRP
PKP1[2:0] = “011”
KVP12
VLCD63 - ΔV x (VRP0 + 36R + VRHP) / SUMRP
PKP1[2:0] = “100”
KVP13
VLCD63 - ΔV x (VRP0 + 37R + VRHP) / SUMRP
PKP1[2:0] = “101”
KVP14
VLCD63 - ΔV x (VRP0 + 38R + VRHP) / SUMRP
PKP1[2:0] = “110”
KVP15
VLCD63 - ΔV x (VRP0 + 39R + VRHP) / SUMRP
PKP1[2:0] = “111”
KVP16
VLCD63 - ΔV x (VRP0 + 40R + VRHP) / SUMRP
PKP2[2:0] = “000”
KVP17
VLCD63 - ΔV x (VRP0 + 45R + VRHP) / SUMRP
PKP2[2:0] = “001”
KVP18
VLCD63 - ΔV x (VRP0 + 46R + VRHP) / SUMRP
PKP2[2:0] = “010”
KVP19
VLCD63 - ΔV x (VRP0 + 47R + VRHP) / SUMRP
PKP2[2:0] = “011”
KVP20
VLCD63 - ΔV x (VRP0 + 48R + VRHP) / SUMRP
PKP2[2:0] = “100”
KVP21
VLCD63 - ΔV x (VRP0 + 49R + VRHP) / SUMRP
PKP2[2:0] = “101”
KVP22
VLCD63 - ΔV x (VRP0 + 50R + VRHP) / SUMRP
PKP2[2:0] = “110”
KVP23
VLCD63 - ΔV x (VRP0 + 51R + VRHP) / SUMRP
PKP2[2:0] = “111”
KVP24
VLCD63 - ΔV x (VRP0 + 52R + VRHP) / SUMRP
PKP3[2:0] = “000”
KVP25
VLCD63 - ΔV x (VRP0 + 68R + VRHP) / SUMRP
PKP3[2:0] = “001”
KVP26
VLCD63 - ΔV x (VRP0 + 69R + VRHP) / SUMRP
PKP3[2:0] = “010”
KVP27
VLCD63 - ΔV x (VRP0 + 70R + VRHP) / SUMRP
PKP3[2:0] = “011”
KVP28
VLCD63 - ΔV x (VRP0 + 71R + VRHP) / SUMRP
PKP3[2:0] = “100”
KVP29
VLCD63 - ΔV x (VRP0 + 72R + VRHP) / SUMRP
PKP3[2:0] = “101”
KVP30
VLCD63 - ΔV x (VRP0 + 73R + VRHP) / SUMRP
PKP3[2:0] = “110”
KVP31
VLCD63 - ΔV x (VRP0 + 74R + VRHP) / SUMRP
PKP3[2:0] = “111”
KVP32
VLCD63 - ΔV x (VRP0 + 75R + VRHP) / SUMRP
PKP4[2:0] = “000”
KVP33
VLCD63 - ΔV x (VRP0 + 80R + VRHP) / SUMRP
PKP4[2:0] = “001”
KVP34
VLCD63 - ΔV x (VRP0 + 81R + VRHP) / SUMRP
PKP4[2:0] = “010”
KVP35
VLCD63 - ΔV x (VRP0 + 82R + VRHP) / SUMRP
PKP4[2:0] = “011”
KVP36
VLCD63 - ΔV x (VRP0 + 83R + VRHP) / SUMRP
PKP4[2:0] = “100”
KVP37
VLCD63 - ΔV x (VRP0 + 84R + VRHP) / SUMRP
PKP4[2:0] = “101”
KVP38
VLCD63 - ΔV x (VRP0 + 85R + VRHP) / SUMRP
PKP4[2:0] = “110”
KVP39
VLCD63 - ΔV x (VRP0 + 86R + VRHP) / SUMRP
PKP4[2:0] = “111”
KVP40
VLCD63 - ΔV x (VRP0 + 87R + VRHP) / SUMRP
PKP5[2:0] = “000”
KVP41
VLCD63 - ΔV x (VRP0 + 87R + VRHP + VRLP) / SUMRP
PKP5[2:0] = “001”
KVP42
VLCD63 - ΔV x (VRP0 + 91R + VRHP + VRLP) / SUMRP
PKP5[2:0] = “010”
VLCD63 - ΔV x (VRP0 + 95R + VRHP + VRLP) / SUMRP
KVP43
PKP5[2:0] = “011”
KVP44
VLCD63 - ΔV x (VRP0 + 99R + VRHP + VRLP) / SUMRP
PKP5[2:0] = “100”
KVP45
VLCD63 - ΔV x (VRP0 + 103R + VRHP + VRLP) / SUMRP
PKP5[2:0] = “101”
KVP46
VLCD63 - ΔV x (VRP0 + 107R + VRHP + VRLP) / SUMRP
PKP5[2:0] = “110”
KVP47
VLCD63-ΔV x (VRP0 + 111R + VRHP + VRLP) / SUMRP
PKP5[2:0] = “111”
KVP48
VLCD63 - ΔV x (VRP0 + 115R + VRHP + VRLP) / SUMRP
-KVP49
VLCD63 - ΔV x (VRP0 + 120R + VRHP + VRLP) / SUMRP
SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP0 + VRP1
ΔV: Voltage difference between VLCD63 and of GND.
Solomon Systech
Reference voltage
VINP0
Jun 2009 P 66/95
VINP1
VINP2
VINP3
VINP4
VINP5
VINP6
VINP7
Rev 1.4
SSD2119
Appendix
Reference voltage of negative polarity:
Reference
KVN0
KVN1
KVN2
KVN3
KVN4
KVN5
KVN6
KVN7
KVN8
KVN9
KVN10
KVN11
KVN12
KVN13
KVN14
KVN15
KVN16
KVN17
KVN18
KVN19
KVN20
KVN21
KVN22
KVN23
KVN24
KVN25
KVN26
KVN27
KVN28
KVN29
KVN30
KVN31
KVN32
KVN33
KVN34
KVN35
KVN36
KVN37
KVN38
KVN39
KVN40
KVN41
KVN42
KVN43
KVN44
KVN45
KVN46
KVN47
KVN48
KVN49
Formula
Micr0-adjusting rgister
Reference voltage
-VINN0
VLCD63 - ΔV x VRN0 / SUMRN
PKN0[2:0] = “000”
VLCD63 - ΔV x (VRN0 + 5R) / SUMRN
PKN0[2:0] = “001”
VLCD63 - ΔV x (VRN0 + 9R) / SUMRN
PKN0[2:0] = “010”
VLCD63 - ΔV x (VRN0 + 13R) / SUMRN
PKN0[2:0] = “011”
VLCD63 - ΔV x (VRN0 + 17R) / SUMRN
VINN1
PKN0[2:0] = “100”
VLCD63 - ΔV x (VRN0 + 21R) / SUMRN
PKN0[2:0] = “101”
VLCD63 - ΔV x (VRN0 + 25R) / SUMRN
PKN0[2:0] = “110”
VLCD63 - ΔV x (VRN0 + 29R) / SUMRN
PKN0[2:0] = “111”
VLCD63 - ΔV x (VRN0 + 33R) / SUMRN
PKN1[2:0] = “000”
VLCD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN
PKN1[2:0] = “001”
VLCD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN
PKN1[2:0] = “010”
VLCD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN
PKN1[2:0] = “011”
VLCD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN
VINN2
PKN1[2:0] = “100”
VLCD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN
PKN1[2:0] = “101”
VLCD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN
PKN1[2:0] = “110”
VLCD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN
PKN1[2:0] = “111”
VLCD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN
PKN2[2:0] = “000”
VLCD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN
PKN2[2:0] = “001”
VLCD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN
PKN2[2:0] = “010”
VLCD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN
PKN2[2:0] = “011”
VLCD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN
VINN3
PKN2[2:0] = “100”
VLCD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN
PKN2[2:0] = “101”
VLCD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN
PKN2[2:0] = “110”
VLCD63 - ΔV x (VRN0 + 51R + VRHN) / SUMRN
PKN2[2:0] = “111”
VLCD63 - ΔV x (VRN0 + 52R + VRHN) / SUMRN
PKN3[2:0] = “000”
VLCD63 - ΔV x (VRN0 + 68R + VRHN) / SUMRN
PKN3[2:0] = “001”
VLCD63 - ΔV x (VRN0 + 69R + VRHN) / SUMRN
PKN3[2:0] = “010”
VLCD63 - ΔV x (VRN0 + 70R + VRHN) / SUMRN
PKN3[2:0] = “011”
VLCD63 - ΔV x (VRN0 + 71R + VRHN) / SUMRN
VINN4
PKN3[2:0] = “100”
VLCD63 - ΔV x (VRN0 + 72R + VRHN) / SUMRN
PKN3[2:0] = “101”
VLCD63 - ΔV x (VRN0 + 73R + VRHN) / SUMRN
PKN3[2:0] = “110”
VLCD63 - ΔV x (VRN0 + 74R + VRHN) / SUMRN
PKN3[2:0] = “111”
VLCD63 - ΔV x (VRN0 + 75R + VRHN) / SUMRN
PKN4[2:0] = “000”
VLCD63 - ΔV x (VRN0 + 80R + VRHN) / SUMRN
PKN4[2:0] = “001”
VLCD63 - ΔV x (VRN0 + 81R + VRHN) / SUMRN
PKN4[2:0] = “010”
VLCD63 - ΔV x (VRN0 + 82R + VRHN) / SUMRN
PKN4[2:0] = “011”
VLCD63 - ΔV x (VRN0 + 83R + VRHN) / SUMRN
VINN5
PKN4[2:0] = “100”
VLCD63 - ΔV x (VRN0 + 84R + VRHN) / SUMRN
PKN4[2:0] = “101”
VLCD63 - ΔV x (VRN0 + 85R + VRHN) / SUMRN
PKN4[2:0] = “110”
VLCD63 - ΔV x (VRN0 + 86R + VRHN) / SUMRN
PKN4[2:0] = “111”
VLCD63 - ΔV x (VRN0 + 87R + VRHN) / SUMRN
PKN5[2:0] = “000”
VLCD63 - ΔV x (VRN0 + 87R + VRHN + VRLN) / SUMRN
PKN5[2:0] = “001”
VLCD63 - ΔV x (VRN0 + 91R + VRHN + VRLN) / SUMRN
PKN5[2:0] = “010”
VLCD63 - ΔV x (VRN0 + 95R + VRHN + VRLN) / SUMRN
PKN5[2:0] = “011”
VLCD63 - ΔV x (VRN0 + 99R + VRHN + VRLN) / SUMRN
VINN6
PKN5[2:0] = “100”
VLCD63 - ΔV x (VRN0 + 103R + VRHN + VRLN) / SUMRN
PKN5[2:0] = “101”
VLCD63 - ΔV x (VRN0 + 107R + VRHN + VRLN) / SUMRN
PKN5[2:0] = “110”
VLCD63-ΔV x (VRN0 + 111R + VRHN + VRLN) / SUMRN
PKN5[2:0] = “111”
VLCD63 - ΔV x (VRN0 + 115R + VRHN + VRLN) / SUMRN
-VINN7
VLCD63 - ΔV x (VRN0 + 120R + VRHN + VRLN) / SUMRN
SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN0 + VRN1
ΔV: Voltage difference between VLCD63 and of GND.
SSD2119
Rev 1.4
P 67/95
Jun 2009
Solomon Systech
Appendix
MAXIMUM RATINGS
11
Maximum Ratings (Voltage Referenced to VSS)
Symbol
VDDIO
VCI
I
TA
Tstg
Parameter
Supply Voltage
Input Voltage
Current Drain Per Pin Excluding VDDIO and
VSS
Operating Temperature
Storage Temperature
Value
-0.3 to +4.0
VSS - 0.3 to 5.0
Unit
V
V
25
mA
-40 to +85
-65 to +150
o
o
C
C
Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics
tables or Pin Description section.
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, strong electric fields, when exposed to a MOS
device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible,
and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using
insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material.
All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must
not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. It is advised that proper precautions to be taken
to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that VCI and Vout be
constrained to the range VSS < VDDIO ≤ VCI < VOUT. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either
VSS or VDDIO). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during
normal operation. This device is not radiation protected.
12 DC CHARACTERISTICS
DC Characteristics (Unless otherwise specified, Voltage Referenced to VSS, VDDIO = 1.4 to 3.6V, TA = -40 to 85°C)
Symbol
Parameter
VDDIO
Power supply pin of IO pins
VCI
Booster Reference Supply
Voltage Range
VGH
VCIX2
VGH
VGL
VcomH
VcomL
VLCD63
ΔVLCD63
VOH1
VOL1
VIH1
VIL1
IOH
IOL
IOZ
IIL/IIH
Gate driver High Output
Voltage Booster efficiency
VCIX2 primary booster
efficiency
Gate driver High Output
Voltage
Gate driver Low Output
Voltage
Vcom High Output Voltage
Vcom Low Output Voltage
Max. Source Voltage
Source voltage variation
Logic High Output Voltage
Logic Low Output Voltage
Logic High Input voltage
Logic Low Input voltage
Logic High Output Current
Source
Logic Low Output Current
Drain
Logic Output Tri-state Current
Drain Source
Logic Input Current
Solomon Systech
Test Condition
Recommend Operating Voltage
Possible Operating Voltage
Min
Typ
Max
Unit
1.4
-
3.6
V
2.5 or
VDDIO
whichever
is higher
-
3.6
V
88
90
-
%
82
84
-
%
83
85
-
%
9
-
18
V
-15
-
-6
V
VCI + 0.5
-VCIM+0.5
-2
0.9* VDDIO
0
0.8*VDDIO
0
-
5
-1
6
2
VDDIO
0.1*VDDIO
VDDIO
0.2*VDDIO
V
V
V
%
V
V
V
V
Vout = VDDIO-0.4V
50
-
-
μA
Vout = 0.4V
-
-
-50
μA
-1
-
1
μA
-1
-
1
μA
Recommend Operating Voltage
Possible Operating Voltage
No panel loading; 4x or 5x
booster; ITO for CYP, CYN,
VCIX2, VCI and VCHS = 10
Ohm
No panel loading; 6x booster;
ITO for CYP, CYN, VCIX2, VCI
and VCHS = 10 Ohm
No panel loading, ITO for CYP,
CYN, VCIX2, VCI and VCHS =
10 Ohm
Iout=-100μA
Iout=100μA
Jun 2009 P 68/95
Rev 1.4
SSD2119
Appendix
CIN
RSON
RGON
RCON
Idp(262k)
Logic Pins Input Capacitance
Source drivers output
resistance
Gate drivers output resistance
Vcom output resistance
Display current for 262k
Idp(8 color)
Display current for 8 color
mode
Ihalt
Halt mode current
Islp
Ideepsleep
Sleep mode current
Deep Sleep mode current
Vddio= 1.8V, Vci = 2.8V,
5x/-5x(VGH/VGL)
booster ratio. Full color
current consumption,
without panel loading
Vddio= 1.8V, Vci = 2.8V,
+5/-3(VGH/VGL) booster
ratio
Current consumption for
8 color partial display,
without panel loading
Oscillator off, no
source/gate output, Ram
read write halt. RESB
pull-low
Oscillator off, no
source/gate output, Ram
read write halt. Send
command R10-0001
(sleep mode)
Oscillator off, no
source/gate output, Ram
read write halt. Send
command R10-0001
(sleep mode), R12-6D99
(deep sleep mode)
-
5
7.5
pF
-
1
-
kΩ
-
500
200
-
Ω
Ω
Ivdd
-
150
300
uA
Ivci
-
2.5
8
mA
Ivdd
-
120
300
μA
Ivci
-
1
5
mA
Ivdd
-
1
2
μA
Ivci
-
65
120
μA
Ivdd
-
1
2
μA
Ivci
-
65
200
μA
Ivdd
-
0.5
1
μA
Ivci
-
5
15
μA
Remark:
Ivdd = Ivddio
Ihalt is the current consumption of Power on and Reset keeps low state; the maximum rating is 100uA.
The setting of VLCD63 is needed to below 0.5V of VCIX2. It is the prevention of VCIX2 noise to couple to VLCD63
gamma voltage.
SSD2119
Rev 1.4
P 69/95
Jun 2009
Solomon Systech
Appendix
13
AC CHARACTERISTICS
Table 13-1: Parallel 6800 Timing Characteristics
(TA = -40 to 85°C, VDDIO = 1.4V to 3.6V)
Symbol
tcycle
tcycle
tAS
tAH
tDSW
tDHW
tACC
tOH
PW CSL
PW CSH
PW CSL
PW CSH
tR
tF
Parameter
Clock Cycle Time (write cycle)
Clock Cycle Time (read cycle)
(Based on VOL/VOH = 0.3*VDDIO/0.7*VDDIO)
Address Setup Time ( R / W )
Address Hold Time ( R / W )
Data Setup Time (D0~D7, WRITE)
Data Hold Time (D0~D7, WRITE))
Data Access Time (D0~D7, READ)
Output Hold time (D0~D7, READ)
Pulse width /CS low (write cycle)
Pulse width /CS high (write cycle)
Pulse width /CS low (read cycle)
Pulse width /CS high (read cycle)
Rise time
Fall time
Min
Typ
Max
75
-
-
Unit
ns
450
-
-
ns
0
0
5
5
250
100
40
25
500
500
-
-
4
4
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: CS can be pulled low during the write cycle, only /RW is needed to be toggled
Figure 13-1: Parallel 6800-series Interface Timing Characteristics
VCI
0.2VDDIO
VDDIO
≥0ms
REST
10us
0.8VDDIO
D/C
0.2VDDIO
tAS
R/W
CS
tAH
0.8VDDIO
0.2VDDIO
tF
0.8VDDIO
tR
0.2VDDIO
tcycle
PWCSH
PWCSL
E
tDHW
tDSW
D0~D7(WRITE)
0.8VDDIO
0.2VDDIO
Valid Data
tOH
tACC
D0~D7(READ)
Solomon Systech
0.7VDDIO
0.3VDDIO
Valid Data
Jun 2009 P 70/95
Rev 1.4
SSD2119
Appendix
Table 13-2: Parallel 8080 Timing Characteristics
(TA = -40 to 85°C, VDDIO = 1.4V to 3.6V)
Symbol
tcycle
tcycle
tAS1
tAH1
tAS2
tAH2
tDSW
tDHW
tACC
tOH
PW CSL
PW CSH
PW CSL
PW CSH
tR
tF
Parameter
Clock Cycle Time (write cycle)
Clock Cycle Time (read cycle)
(Based on VOL/VOH = 0.3*VDDIO/0.7*VDDIO)
Address Setup Time between ( R / W ) and D / C
Address Hold Time between ( R / W ) and D / C
Address Setup Time between ( R / W ) and CS
Address Hold Time between ( R / W ) and CS
Data Setup Time (D0~D7, WRITE)
Data Hold Time (D0~D7, WRITE))
Data Access Time (D0~D7, READ)
Output Hold time (D0~D7, READ)
Pulse width /CS low (write cycle)
Pulse width /CS high (write cycle)
Pulse width /CS low (read cycle)
Pulse width /CS high (read cycle)
Rise time
Fall time
Min
Typ
Max
75
-
-
Unit
ns
450
-
-
ns
0
-
-
0
-
-
0
-
-
0
5
5
250
100
40
25
500
500
-
-
4
4
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: CS can be pulled low during the write cycle, only /RW is needed to be toggled
SSD2119
Rev 1.4
P 71/95
Jun 2009
Solomon Systech
Appendix
Figure 13-2: Parallel 8080-series Interface Timing Characteristics
Write Cycle
0.2VDDIO
VCI
VDDIO
≥0ms
REST
10us
0.8VDDIO
D/C
0.2VDDIO
tAS1
tAH1
0.8VDDIO
tF
CS
tR
0.2VDDIO
tcycle
0.8VDDIO
WR
PWCSL
0.2VDDIO
tAS2
PWCSH
tAH2
tDHW
tDSW
0.8VDDIO
D0~D7 (WRITE)
0.2VDDIO
Valid Data
Remark: It’s highly recommended that RD remains high for the whole write cycle
Read Cycle
WR
0.8VDDIO
D/C
0.2VDDIO
tAS1
tAH1
0.8VDDIO
CS
tF
tR
0.2VDDIO
tcycle
0.8VDDIO
RD
tAS2
PWCSL
0.2VDDIO
tAH2
PWCSH
tOH
tACC
D0~D7(READ)
0.7VDDIO
0.3VDDIO
Solomon Systech
Valid Data
Jun 2009 P 72/95
Rev 1.4
SSD2119
Appendix
Table 13-3: Serial Timing Characteristics
(TA = -40 to 85°C, VDDIO = 1.4V to 3.6V )
Symbol
tcycle
fCLK
tAS
tAH
tCSS
tCSH
tDSW
tOHW
tCLKL
tCLKH
tR
tF
Parameter
Clock Cycle Time
Serial Clock Cycle Time
SPI Clock tolerance = +/- 2 ppm
Register select Setup Time
Register select Hold Time
Chip Select Setup Time
Chip Select Hold Time
Write Data Setup Time
Write Data Hold Time
Clock Low Time
Clock High Time
Rise time
Fall time
Min
Typ
Max
77
-
-
Unit
ns
-
-
15
MHz
4
5
2
10
5
10
38
38
-
-
4
4
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Figure 13-3: 4 wire Serial Timing Characteristics
0.8VDDIO
SDC
0.2VDDIO
tAS
tAH
tCSS
SCS
tCSH
tcycle
tCLKL
SCL
tCLKH
0.8VDDIO
0.2VDDIO
tF
tR
tDSW
0.8VDDIO
SDI
0.2VDDIO
tDHW
Valid Data
SCS
SCL
SDI
SSD2119
D7
D6
Rev 1.4
P 73/95
D5
Jun 2009
D4
D3
D2
D1
D0
Solomon Systech
Appendix
Table 13-4: RGB Timing Characteristics
(TA = -40 to 85°C, VDDIO = 1.4V to 3.6V )
Symbol
fDOTCLK
tDOTCLK
tVSYS
tVSYH
tHSYS
tHSYH
tHV
tCLK
tCKH
tDS
tDH
Parameter
DOTCLK Frequency (70Hz frame rate)
DOTCLK Period
Vertical Sync Setup Time
Vertical Sync Hold Time
Horizontal Sync Setup Time
Horizontal Sync Hold Time
Phase difference of Sync Signal Falling Edge
DOTCLK Low Period
DOTCLK High Period
Data Setup Time
Data hold Time
Min
1
122
20
20
20
20
0
61
61
25
25
Typ
5.5
182
-
Max
8.2
1000
320
-
Unit
MHz
ns
ns
ns
ns
ns
tDOTCLK
ns
ns
ns
ns
Note: External clock source must be provided to DOTCLK pin of SSD2119. The driver will not operate in absence of the clocking signal.
Figure 13-4: RGB Timing Characteristics
tvsys
VSYNC
tvsyh
0.2VDDIO
0.2VDDIO
thsys
HSYNC
0.2VDDIO
thv
tDOTCLK
0.8VDDIO
0.2VDDIO
0.8VDDIO
DOTCLK
0.2VDDIO
tCKL
tds
tr
Pixel
Data
thsyh
DATA
0.8VDDIO
0.2VDDIO
0.2VDDIO
0.8VDDIO
0.2VDDIO
0.8VDDIO
tCKH
tdh
0.8VDDIO
0.2VDDIO
DATA
tr / tf
Solomon Systech
Jun 2009 P 74/95
Rev 1.4
SSD2119
Appendix
Figure 13-5: Power Up Sequence for RGB mode
SSD2119
Rev 1.4
P 75/95
Jun 2009
Solomon Systech
Appendix
Table 13-5: Reset Timing
(TA = -40 to 85°C, VDDIO = 1.4V to 3.3V)
Symbol
Parameter
Min
Typ
Max
tRES
Reset pulse duration
15
-
-
Uni
t
us
Figure 13-6: Reset Timing Characteristics
tRES
RESB
0.2VDDIO
Solomon Systech
Jun 2009 P 76/95
Rev 1.4
SSD2119
Appendix
14
GDDRAM Address
TB=1
G0
G1
G2
G3
G4
.
.
.
G236
G237
G238
G239
RL=1
S0
S1
S2
S3
S4
S5
S6
S7
S8
RL=0 S959 S958 S957 S956 S955 S954 S953 S952 S951
BGR=0 R
G
B
R
G
B
R
G
B
BGR=1 B
G
R
B
G
R
B
G
R
TB=0
0000H,0000H
0000H, 0001H
0000H, 0010H
G239
0001H,0000H
0001H, 0001H
0001H, 0010H
G238
0010H,0000H
0010H, 0001H
0010H, 0010H
G237
0011H,0000H
0011H, 0001H
0011H, 0010H
G236
0100H,0000H
0100H, 0001H
0100H, 0010H
G235
.
.
.
.
.
.
.
.
.
.
.
.
G3
013CH, 0000H
013CH, 0001H
013CH, 0010H
G2
013DH, 0000H
013DH, 0001H
013DH, 0010H
G1
013EH, 0000H
013EH, 0001H
013EH, 0010H
G0
013FH, 0000H
013FH, 0001H
013FH, 0010H
Horizontal address
Remark :
SSD2119
0
1
2
… S954 S955 S956 S957 S958 S959
… S5
S4
S3
S2
S1
S0
…
R
G
B
R
G
B
…
B
G
R
B
G
R
…
…
…
…
…
.
.
.
…
…
…
…
0000H, 013EH
0001H, 013EH
0010H, 013EH
0011H, 013EH
0100H, 013EH
0000H, 013FH
0001H, 013FH
0010H, 013FH
0011H, 013FH
0100H, 013FH
.
.
.
00ECH, 013EH
00EDH, 013EH
00EEH, 013EH
00EFH, 013EH
.
.
.
00ECH, 013FH
00EDH, 013FH
00EEH, 013FH
00EFH, 013FH
…
318
319
Vertical
address
0
1
2
3
4
.
.
.
236
237
238
239
The address is in 00xxH,0yyyH format, where yyy is the vertical address and xx is the horizontal address
Rev 1.4
P 77/95
Jun 2009
Solomon Systech
Appendix
15
INTERFACE MAPPING
15.1
Interface Setting
Table 15-1: Interface setting and data bus setting
PS3 PS2 PS1 PS0 Interface Mode
0
0
0
0 16-bit 6800 parallel interface
0
0
0
1 8-bit 6800 parallel interface
0
0
1
0 16-bit 8080 parallel interface
0
0
1
1 8-bit 8080 parallel interface
1
0
1
0 18-bit 8080 parallel interface
1
0
1
1 9-bit 8080 parallel interface
1
0
0
0 18-bit 6800 parallel interface
1
0
0
1 9-bit 6800 parallel interface
15.1.1
Data bus input
D[17:10], D[8:1]
D[17:10]
D[17:10], D[8:1]
D[17:10]
D[17:0]
D[17:9]
D[17:0]
D[17:9]
Data bus output
D[17:10], D[8:1]
D[17:10]
D[17:10], D[8:1]
D[17:10]
D[17:0]
D[17:9]
D[17:0]
D[17:9]
6800-series System Bus Interface
E
/CS
MPU
SSD2119
DC
RW
D[17:0]
18/16/9/8
Table 15-2: The Function of 6800-series parallel interface
PS3 PS2 PS1 PS0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
1
Interface Mode
16-bit 6800 parallel interface
8-bit 6800 parallel interface
18-bits 6800 parallel interface
9-bits 6800 parallel interface
Data bus
D[17:10],
D[8:1]
D[17:10]
D[17:0]
D[17:9]
RW
E
DC
/CS
Operation
1
0
0
1
1
0
Read 16-bit parameters or status*
0
0
0
Write 8-bit command
0
1
0
Write 16-bit display data
1
0
0
Read 8-bit command
1
1
0
Read 8-bit parameters or status*
0
0
0
Write 8-bit command
0
1
0
Write 8-bit display data
1
0
0
Read 8-bit command
1
1
0
Read 18-bit parameters or status*
0
0
0
Write 8-bit command
0
1
0
Write 18-bit display data
1
0
0
Read 8-bit command
1
1
0
Read 9-bit parameters or status*
0
0
0
Write 8-bit command
0
1
0
Write 9-bit display data
Read 8-bit command
* A dummy read is required before the first actual display data read
Solomon Systech
Jun 2009 P 78/95
Rev 1.4
SSD2119
Appendix
15.1.2
8080-series System Bus Interface
/RD
/CS
MPU
SSD2119
DC
/WR
D[17:0]
18/16/9/8
Table 15-3: The Function of 8080-series parallel interface
PS3 PS2 PS1 PS0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
1
Interface Mode
Data bus
16-bit 8080 parallel interface
8-bit 8080 parallel interface
18-bit 8080 parallel interface
9-bit 8080 parallel interface
D[17:10],
D[8:1]
D[17:10]
D[17:0]
D[17:9]
/WR
/RD
DC
/CS
Operation
1
0
0
0
Read 8-bit command
1
0
1
0
Read 8-bit parameters or status*
0
1
0
0
Write 8-bit command
0
1
1
0
Write 16-bit display data
1
0
0
0
Read 8-bit command
1
0
1
0
Read 8-bit parameters or status*
0
1
0
0
Write 8-bit command
0
1
1
0
Write 8-bit display data
0
1
0
0
Read 8-bit command
1
0
1
0
Read 8-bit parameters or status*
0
1
0
0
Write 8-bit command
0
1
1
0
Write 18-bit display data
1
0
0
0
Read 8-bit command
1
0
1
0
Read 8-bit parameters or status*
0
1
0
0
Write 8-bit command
0
1
1
0
Write 9-bit display data
* A dummy read is required before the first actual display data read
SSD2119
Rev 1.4
P 79/95
Jun 2009
Solomon Systech
Appendix
15.2
Interface
18 bits
16 bits
9 bits
8 bits
Remark :
15.3
Mapping for Writing an Instruction
Cycle D17
IB15
IB15
st
1
IB15
nd
2
IB7
st
1
IB15
nd
2
IB7
x
D16
IB14
IB14
IB14
IB6
IB14
IB6
D15
IB13
IB13
IB13
IB5
IB13
IB5
D12
IB10
IB10
IB10
IB2
IB10
IB2
D11
IB9
IB9
IB9
IB1
IB9
IB1
Hardware pins
D10 D9 D8 D7
IB8
x
IB7 IB6
IB8
IB7 IB6
IB8
x
IB0
x
IB8
IB0
D6
IB5
IB5
D5
IB4
IB4
D4
IB3
IB3
D3
IB2
IB2
D2
IB1
IB1
D1
IB0
IB0
D0
x
Mapping for Writing Pixel Data
Remark :
Interface
D13
IB11
IB11
IB11
IB3
IB11
IB3
Don't care bits
Not connected pins
Interface Color mode Cycle D17
18 bits
262k
R5
st
R5
1
nd
2
B5
rd
G5
3
st
262k
1
R5
16 bits
nd
x
2
st
1
R5
nd
B5
2
65k
R4
st
1
R5
9 bits
262k
nd
G2
2
st
1
R5
nd
262k
G5
2
rd
8 bits
3
B5
st
1
R4
65k
nd
2
G2
15.4
D14
IB12
IB12
IB12
IB4
IB12
IB4
x
D16
R4
R4
B4
G4
R4
x
R4
B4
R3
R4
G1
R4
G4
B4
R3
G1
D15
R3
R3
B3
G3
R3
x
R3
B3
R2
R3
G0
R3
G3
B3
R2
G0
D14
R2
R2
B2
G2
R2
x
R2
B2
R1
R2
B5
R2
G2
B2
R1
B4
D13
R1
R1
B1
G1
R1
x
R1
B1
R0
R1
B4
R1
G1
B1
R0
B3
D12
R0
R0
B0
G0
R0
x
R0
B0
G5
R0
B3
R0
G0
B0
G5
B2
D11
G5
x
x
x
x
x
x
x
G4
G5
B2
x
x
x
G4
B1
Hardware pins
D10 D9 D8 D7
G4 G3 G2 G1
x
G5 G4
x
R5 R4
x
B5 B4
x
G5 G4
x
B5 B4
x
G5 G4
x
x
x
G3
G2 G1
G4 G3
B1 B0
x
x
x
G3
B0
D6
G0
G3
R3
B3
G3
B3
G3
x
G0
D5
B5
G2
R2
B2
G2
B2
G2
x
B4
D4
B4
G1
R1
B1
G1
B1
G1
x
B3
D3 D2 D1 D0
B3 B2 B1 B0
G0 x
x
R0 x
x
B0 x
x
G0 x
x
B0 x
x
G0 x
x
x
x
x
B2 B1 B0
Don't care bits
Not connected pins
Mapping for Writing Pixel Data in generic mode
Color mode Cycle D17 D16 D15 D14 D13 D12 D11 D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
18-bit RGB
PS=[0110]
262k
-
RR5 RR4 RR3 RR2 RR1 RR0 GG5 GG4 GG3 GG2 GG1 GG0 BB5 BB4 BB3 BB2 BB1 BB0
18-bit RGB
PS=[0110]
65k
-
RR4 RR3 RR2 RR1 RR0 RR4 GG5 GG4 GG3 GG2 GG1 GG0 BB4 BB3 BB2 BB1 BB0 BB4
16-bit RGB
PS=[0101]
65k
-
RR4 RR3 RR2 RR1 RR0 GG5 GG4 GG3
st
9-bit RGB
6-bit RGB
262k
262k
1
nd
Solomon Systech
RR5 RR4 RR3 RR2 RR1 RR0 GG5 GG4 GG3
2
BB5 BB4 BB3 BB2 BB1 BB0 GG2 GG1 GG0
1st
RR5 RR4 RR3 RR2 RR1 RR0
2nd
GG5 GG4 GG3 GG2 GG1 GG0
rd
BB5 BB4 BB3 BB2 BB1 BB0
3
Remark:
GG2 GG1 GG0 BB4 BB3 BB2 BB1 BB0
Not Connected pins
Jun 2009 P 80/95
Rev 1.4
SSD2119
Appendix
15.5
Mapping for Writing Pixel Data in SPI mode
3-wire SPI write display data
SCS
SCL
1
2
3
4
5
6
7
8
9
SDI
D/C
R5
R4
R3
R2
R1
R0
--
--
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
D/C G5
G4
G3
G2
G1
G0
--
--
D/C
B5
B4
B3
B2
B1
R0
--
--
1
2
4-wire SPI write display data
SDC
SCS
SCL
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SDI
R5
R4
R3
R2
R1
R0
--
--
G5
G4
G3
G2
G1
G0
--
--
B5
B4
B3
B2
B1
B0
--
--
SSD2119
Rev 1.4
P 81/95
Jun 2009
Solomon Systech
Appendix
15.6 Mapping for Writing Pixel Data in RGB DEN mode
DEN Mode
DEN
RR
Line
1
Line
2
Line
3
Line
4
Line
5
Line
6
Line
7
Line
8
Line
9
Line
10
Line
11
Line
12
Line
13
Line
14
Line
15
Line
16
Line
n
GG
Line
1
Line
2
Line
3
Line
4
Line
5
Line
6
Line
7
Line
8
Line
9
Line
10
Line
11
Line
12
Line
13
Line
14
Line
15
Line
16
Line
n
BB
Line
1
Line
2
Line
3
Line
4
Line
5
Line
6
Line
7
Line
8
Line
9
Line
10
Line
11
Line
12
Line
13
Line
14
Line
15
tV
DOTCLK
HBP
DEN Mode
DEN
RR
Invalid Data
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R8
R
R
R
R
GG
Invalid Data
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
BB
Invalid Data
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
Solomon Systech
Jun 2009 P 82/95
Rev 1.4
SSD2119
Appendix
16
16.1
DISPLAY SETTING SEQUENCE
Display ON Sequence
Power supply setting
Set R07h at 0021h
GON = 1
DTE = 0
D[1:0] = 01
Set R00h at 0001h
Set R07h at 0023h
GON = 1
DTE = 0
D[1:0] = 11
Set R10h at 0000h
Exit sleep mode
Wait 30ms
Set R07h at 0033h
GON = 1
DTE = 1
D[1:0] = 11
Entry Mode setting (R11h)
LCD driver AC setting (R02h)
RAM data write (R22h)
Display ON
and start to write RAM
SSD2119
Rev 1.4
P 83/95
Jun 2009
Solomon Systech
Appendix
16.2
Display OFF Sequence
Display ON
Set R10h at 0001h
Enter sleep mode
Set R07h at 0000h
Halt the operation
Wait unit VGH < 5V
Remove power from VCI, then remove VDDIO
Display OFF
VGH
VCIX2
RESB
VCI
500ms
VDDIO
Note:
1. VDDIO should be the last to fall, or VCI/VDDIO could be power off at the same time
2. If OTP is active in the application, the OTP programming voltage should be turned off and cap
discharged before VCI/VDDIO are turned off.
Solomon Systech
Jun 2009 P 84/95
Rev 1.4
SSD2119
Appendix
16.3 Halt Sequence
Display ON
Pull-low RESB
Halt
Set Pull-up
R07h atRESB
0000h
Send Initial code to SSD2119
Display ON
SSD2119
Rev 1.4
P 85/95
Jun 2009
Solomon Systech
Appendix
16.4 Sleep Mode Display Sequence
Display ON
Set R10h at 0001h
Set R07h at 0000h
wait for 1.5 frame
e.g. for 60Hz – 25ms
Sleeping
Release from Sleep
Set R10h at 0000h
0033h
Set R07h at 0000h
wait for 10 frames
e.g. for 60Hz – 166.7ms
Display ON
Solomon Systech
Jun 2009 P 86/95
Rev 1.4
SSD2119
Appendix
16.5 Deep Sleep Mode Display Sequence
Display ON
Set R10h at 0001h
Ivci = 66uA
Set R12h at 2999h
Ivci = 2uA
Set R07h at 0000h
wait for 1.5 frame
e.g. for 60Hz – 25ms
Sleeping
Set R12h at 0999h
Release from Sleep
Set R10h at 0000h
0033h
Set R07h at 0000h
wait for 10 frames
e.g. for 60Hz – 166.7ms
Display ON
SSD2119
Rev 1.4
P 87/95
Jun 2009
Solomon Systech
Appendix
17
POWER SUPPLY BLOCK DIAGRAM
VCOM
VCIM
VGH
VCOMH VCOML
VGL
VLCD63
CDUM0
S1 to S960
VCIX2/G/J
VCI
Regulator Circuit &
VCOM Generator Circuit
VCIP
VSS/VSSRC/
AVSS/VCHS
Source
driver
Booster
Circuit
Gamma /
Grayscale
Voltage
Generator
&
CXP
Supply Voltage
Regulator
Circuit
CXN
CYP
VLCD63
Regulator
Circuit
Switches
Network
Data
Latches
CYN
C1P
C1N
C2P
GDDRAM
G1 to G240
Gate Driver
C2N
C3P
OSC /
Timing
Generator
C3N
Address
Counter
System Interface / Control Logic
Solomon Systech
HSYNC
VSYNC
D[0-17]
R\W
DC
CS
PS0-3
RESB
VCORE/
VREGC
WSYNC
VDDIO
Jun 2009 P 88/95
Rev 1.4
SSD2119
Appendix
18 SSD2119 OUTPUT VOLTAGE RELATIONSHIP
VGH (9~18V)
VLCD63 (max 5.5V)
VCOMH (max 5V)
VCI (2.5~3.6V)
VCOM amplitude
(max 5.5V)
VSS
VCOML
VGL (-6~ -15V)
Note: VGH-VGL<30Vp-p
SSD2119
Rev 1.4
P 89/95
Jun 2009
Solomon Systech
Appendix
19 APPLICATION CIRCUIT
Figure 19-1: Booster Capacitors
CYP
CYN
CXP
CXN
C1P
C1N
C2P
C2N
C3P
C3N
+
6.3V
+
6.3V
-
All capacitors
0.1 ~ 0.22uF (0.22uF for better
stability)
+
6.3V
+
16V
+
16V
-
Figure 19-2: Filtering and Charge Sharing Capacitors
VCIX2G
6.3V
VCIX2
VCIM 6.3V
(CDUM0) 6.3V
VGH
VGL
VCI
VCIP
VCORE
VCOMH
VCOML
(VLCD63)
Solomon Systech
16V
16V
6.3V
6.3V
6.3V
6.3V
6.3V
+
+
+
+
+
+
+
VSS
Mandatory requirement on external components for SSD2119 is 10
capacitors.
VCIX2, VCIM, VGH, VGL, VCI, VCORE, VCOMH, VCOML
C1P/C1N, C2P/C2N, C3P/C3N, CYP/CYN, CXP/CXN
Remark:
Capacitor for VCIX2 = 2.2uF
VCI should be separated with VCIP at ITO layout to provide noise free
path.
VSS should be separated with VCHS, AVSS and VSSRC at ITO layout to
provide noise free path.
All other capacitors 1.0uF ~ 2.2uF (2.2uF is preferred for better display
quality and power consumption.)
(Optional capacitors)
VLCD63, capacitors are for stability
Capacitors on CDUM0 are for power saving.
Jun 2009 P 90/95
Rev 1.4
SSD2119
Appendix
Figure 19-3: Panel Connection Example
32RGB x 240 TFT Panel
(Cs on Common)
240
960
MCU interface and
control
RESB
CS
DC
WR
D0-D17
External component
pins
VCOM
SSD2119
Refer to figure 194
SSD2119
S1-S960
Power/Ground
VCI / VSS
AVSS /DVSS
VDDIO
G1-G240
Rev 1.4
P 91/95
Jun 2009
Solomon Systech
Appendix
Figure 19-4: ITO and FPC connection example
10
Suggested Panel
ITO resistance
10
10
20
20
20
20
Operating conditions:
• Cs on common structure is used
• Color filter mapping
• Normal white panel is used
20
20
20
20
10
5
20
20
10
10
VCI
5
20
20
10
10
10
100
100
10
10
20
VDDIO
10
10
100
100
100
100
100
100
100
100
100
10
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
10
100
100
100
100
10
100
10
100
10
100
10
100
10
Solomon Systech
Jun 2009 P 92/95
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
C1P
C1P
C1P
C1P
C1N
C1N
C1N
C1N
C2P
C2P
C2P
C2P
C2N
C2N
C2N
C2N
C3P
C3P
C3P
C3P
C3N
C3N
C3N
C3N
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VGH
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
VCIM
VCIM
VCIM
VCIM
VCIM
VCIM
VCIM
CXN
CXN
CXN
CXN
CXN
CXP
CXP
CXP
CXP
CXP
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCHS
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCIP
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYP
CYP
CYP
CYP
CYP
CYP
CYP
CYP
CYP
CYP
CYP
CYP
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2G
VCIX2
VCIX2
VCIX2
VCIX2
VCIX2
VCIX2
VCIX2
VCIX2
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
CDUM0
EXVR
VCOMR
VLCD63
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VREGC
VREGC
VREGC
VREGC
VREGC
VREGC
VREGC
VREGC
VCORE
VCORE
VCORE
VCORE
VCORE
VCORE
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
VSSRC
NC
NC
RESB
DC/SDC
RD
RW
CS/SCS
SCL
SCL
SDO
SDI
VSS
WSYNC
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
VSS
DOTCLK
HSYNC
VSYNC
DEN
VSS
PS0
VDDIO
PSI
VSS
PS2
VDDIO
PS3
VSS
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
VDDIO
VDDIO
Rev 1.4
SSD2119
Appendix
20 PACKAGE INFORMATION
20.1 Chip Tray Information
SSD2119Z7
SSD2119
Rev 1.4
P 93/95
Jun 2009
Solomon Systech
Appendix
21 OTP DETAIL
Fresh die
1) Example 1 - VCMR[5:0] is as default
A fresh SSD2119 will have the OTP register default value of OTPR[5:0]=0x00 and default value of
VCMR[5:0]=0x2B, which corresponds to base values [110110] from the 6 least significant bits.
VCMR[5:0]
OTPR[5:0]
VCOMH = VCMR XOR OTPR
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
1
0
1
2) Example 2 - VCM[5:0] is adjusted and nOTP=1
nOTP=1 will override the default VCOMH value and is used together with VCM[5:0] to find out the
optimal value against flickering.
Purpose VCMR[5:0] and OTPR[5:0] is the same as example 2.
For example, when nOTP=1 and VCM[5:0]=0x2B which corresponding to [110110], the resultant
VCOMH will equal VCM regardless the value of VCMR XOR OTPR.
VCM[5:0]
VCOMH = VCM
1
1
0
0
1
1
0
0
1
1
1
1
The new VCOMH value will become, 0x2B
(Please be noted that preceding 10’b is added to the result so as to have uniformity as R1E command is
sent.)
Program OTP
When nOTP=1, R1E command is mainly used to find out the optimal value against flickering. The OTPR
will be programmed as below.
(The equivalent VCOMH value is simply VCM[5:0] if nOTP is 1)
Example - VCMR[5:0] is as default, target VCOMH value is equivalent to VCM[5:0] = 0x30.
When R1E-0x00B0 is sent, VCM[5:0] will be [110000]. The OTPR will be the XOR result of VCM[5:0]
and VCMR[5:0]. In this case, VCMR[5:0] is the default = 0x2B.
VCM[5:0]
VCMR[5:0]
OTPR[5:0]
1
1
0
1
0
1
0
1
1
0
0
0
0
1
1
0
1
1
The result in OTPR means bit 4, bit3, bit 1 and bit 0 in OTPR[5:0] are programmed.
Solomon Systech
Jun 2009 P 94/95
Rev 1.4
SSD2119
Appendix
Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without
limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters,
including “Typical” must be validated for each customer application by the customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the
part.
All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) “Restriction of
Hazardous Substance (RoHS) Directive (2002/95/EC)” and China standard “电子信息产品污染控制标识要求 (SJ/T11364-2006)” with
control Marking Symbol
. Hazardous Substances test report is available upon requested.
http://www.solomon-systech.com
SSD2119
Rev 1.4
P 95/95
Jun 2009
Solomon Systech
Crystalfontz America, Inc.
www.crystalfontz.com
Data Sheet Release Date 2012/07/18
CFAF320240F-035T LCD Module
Page 37
APPENDIX D: SOLOMON SYSTECH SSD2119 RGB
INTERFACE
The Solomon Systech SSD2119 RGB Interface information, published 2009 (4 pages) follows.
SOLOMON SYSTECH
Appendix
SEMICONDUCTOR TECHNICAL DATA
SSD2119
RGB Interface
This document contains information on a new product. Specifications and information herein are subject to change
without notice.
http://www.solomon-systech.com
SSD2119
Copyright  2009 Solomon Systech Limited
Appendix
RGB Interface
SSD2119 supports RGB interface. RGB interface unit consists of D[17:0], HSYNC, VSYNC,
DOTCLK and OE signals for display moving pictures. When the RGB interface is selected, the
display operation is synchronized with external control signals (HSYNC, VSYNC and DOTCLK).
Data is written in synchronization with the control signals when DEN is enabled for write operation
in order to avoid flicker or tearing effect while updating display data.
Mode Selection Pins
Name
PS[3:0]
Type
I
Connect
to
VDDIO or
VSS
Function
Interface
Selection
Description
PS3 PS2 PS1 PS0 Interface Mode
0
1
0
0 9-bit generic D[8:0]
(262k colour) + 3-wire
SPI
If 65K color, D3 shorts
to D8 internally
0
1
0
1 16-bit generic (262k
colour) + 3-wire SPI
0
1
1
0 18-bit generic (262k
colour) + 3-wire SPI
0
1
1
1 6-bit generic D[8:3]
(262k
colour) + 3-wire SPI
When
not in
use
-
Appendix
SSD2119 init Code for RGB
Comment Data[7:4] Data[3:0]
28
00
01
02
SSD2119
00
00
30
06
06
01
EF
00
Description
Turn Oscillator On
11
46
70
DFM[1:0] : 262k Color Mode
DenMode = 0 : RGB interface controlled by HSYNC,
VSYNC pin and HBP, VBP
WMode = 1 : Write RAM from Generic RGB data
(POR, if PS:00xx)
Nosync=1 : Dmode change immediately
Dmode=0 : Display engine will be clocked by DOTCLK
pin and onchip oscillator will be off (POR, if PS:00xx)
10
07
0C
30
31
32
33
34
35
36
37
3A
3B
0D
0E
15
00
00
00
0
3
4
3
0
6
7
6
10
10
0
31
0
00
33
05
0
2
7
3
0
3
7
0
0
3
0d
0
58
Gamma Setting
Solomon Systech
Appendix
Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are
not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.
All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) “Restriction
电子信息产品污染控制标识要求 (SJ/T11364-2006)”
of Hazardous Substance (RoHS) Directive (2002/95/EC)” and China standard “
with control Marking Symbol
. Hazardous Substances test report is available upon requested.
http://www.solomon-systech.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising