EVALUATION KIT AVAILABLE MAX98090 Ultra-Low Power Stereo Audio Codec General Description The MAX98090 is a fully integrated audio codec whose high-performance, ultra-low power consumption and small footprint make it ideal for portable applications. The device features a highly flexible input scheme with six input pins (WLP) that can be configured as analog or digital microphone inputs, differential or single-ended line inputs, or as full-scale direct differential inputs. Analog inputs can be routed to the record path ADC or directly to any analog output mixer. The device accepts master clock frequencies of either 256 x fS or from 10MHz to 60MHz. The digital audio interface supports master or slave mode operation, sample rates from 8kHz to 96kHz, and standard PCM formats such as I2S, left/right-justified, and TDM. The record/playback paths feature FlexSound® technology DSP. This includes digital gain and filtering, a biquad filter (record), dynamic range control (playback), and a seven band parametric equalizer (playback) that can improve loudspeaker performance by optimizing the frequency response. The stereo Class D speaker amplifier provides efficient amplification, features low radiated emissions, supports filterless operation, and can drive both 4Ω and 8Ω loads. The DirectDrive® stereo Class H headphone amplifier provides a ground referenced output eliminating the need for large DC-blocking capacitors. The device also includes a differential receiver (earpiece) amplifier that can be reconfigured as a stereo single-ended line output. Simplified Block Diagram DIGITAL MICROPHONE STEREO DIGITAL MICOPHONE OR OR 1 2 ANALOG LINE INPUT MICROPHONE OR ANALOG LINE INPUT MICROPHONE OR ANALOG LINE INPUT MICROPHONE OR 3 4 5 6 LINE INPUT A PGA (DIFFERENTIAL OR SINGLE-ENDED) ● 99dB DR Stereo ADC (8kHz < fS < 96kHz) ● 4.2mW Stereo Record Power Consumption ● 3 Stereo Single-Ended/Differential Analog Microphone/Line Inputs (WLP Version) ● Stereo PDM Digital Microphone Input ● Master Clock Frequencies from 256 x fS to 60MHz ● I2S/LJ/RJ/TDM Digital Audio Interface ● FlexSound Technology Signal Processing • Record Path Biquad Filter • Playback Path 7-Band Parametric EQ • Playback Path Automatic Level Control • Digital Filtering and Gain/Level Control ● Stereo Low EMI Class D Speaker Amplifiers • 3.2W/Channel (RL = 4Ω, VSPK_VDD = 5V, WLP) • 1.8W/Channel (RL = 8Ω, VSPK_VDD = 5V, WLP) ● Stereo DirectDrive Class H Headphone Amplifier Jack Detection and Identification ● Differential Receiver Amplifier/Stereo Line Output ● Extensive Click-and-Pop Reduction Circuitry ● RF Immune Analog Inputs and Outputs ● Programmable Microphone Bias ● I2C Control Interface with Two Address Options ● 49-Bump 0.4mm WLP and 40-Pin TQFN Packages I2S/TDM I2C POWER MANAGEMENT DIGITAL AUDIO INTERFACE CONTROL REGISTERS STEREO ADC FLEXSOUND DSP • DIGITAL BIQUAD FILTER (RECORD) • 7-BAND PARAMETRIC EQUALIZER (PLAYBACK) • DYNAMIC RANGE CONTROL (PLAYBACK) • DIGITAL FILTERING • DIGITAL GAIN/LEVEL CONTROL JACK DETECTION For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX98090.related. Ordering Information appears at end of data sheet. STEREO DAC STEREO LINE OUTPUT CLASS AB AMPLIFIER (SINGLE ENDED) OR SPEAKER LEFT CLASS D AMPLIFIER (DIFFERENTIAL) SPEAKER LEFT CLASS D AMPLIFIER (DIFFERENTIAL) SPEAKER RIGHT CLASS D AMPLIFIER (DIFFERENTIAL) LINE OUTPUT OR RECEIVER/ EARPIECE SPEAKER LEFT/RIGHT STEREO HEADPHONE CLASS H AMPLIFIER (SINGLE ENDED) LINE INPUT B PGA (DIFFERENTIAL OR SINGLE-ENDED) 3-POLE (TRS) 4-POLE (TRRS) 19-6492; Rev 2; 8/13 ● 102dB DR Stereo DAC to HP (8kHz < fS < 96kHz) ● 3.6mW Stereo Playback Power Consumption BATTERY 1.8V 1.2V MICROPHONE 1 PREAMP/PGA (DIFFERENTIAL) MICROPHONE 2 PREAMP/PGA (DIFFERENTIAL) Features and Benefits MAX98090 CHARGE PUMP HEADPHONES OR HEADSET MAX98090 Ultra-Low Power Stereo Audio Codec TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Digital Filter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Digital Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Input Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Digital Audio Interface Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I2C Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Digital Microphone Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Quiescent Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Bump/Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Bump/Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Device I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Power and Performance Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Device Performance Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Device Enable Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Analog Audio Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Analog Microphone Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Analog Microphone Preamplifier and PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Analog Microphone Bias Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Digital Microphone Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Digital Microphone Clock Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Digital Microphone Frequency Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Analog Line Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Analog Line Input Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Analog Line Input PGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Analog Input PGA to Analog Output Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Analog Full-Scale Direct to ADC Mixer Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Audio Record Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 ADC Functional Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 www.maximintegrated.com Maxim Integrated │ 2 MAX98090 Ultra-Low Power Stereo Audio Codec TABLE OF CONTENTS (continued) ADC Input Mixer Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Record Path FlexSound DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Record Path Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Record Path Sidetone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Record Path Digital Gain and Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Digital Audio Interface (DAI) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DAI Clock Control and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Master Mode Clock Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Quick Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Exact Integer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Manual Ratio Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Slave Mode Clock Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DAI Digital Audio Data Path Control and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DAI Digital Audio Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 TDM Mode Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Audio Playback Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Playback Path FlexSound DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Playback Path Digital Gain and Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Playback Path 7-Band Parametric Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Playback Path Dynamic Range Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Playback Path Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Digital-to-Analog Converter (DAC) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Analog Audio Output Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Analog Class AB Configurable Receiver/Line Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Receiver/Earpiece Mixer and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Line Output Mixer and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Analog Class D Speaker Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Speaker Output Mixer and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Efficient Class D Speaker Output Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Analog Class-H Headphone Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Headphone Output Mixer and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Headphone Ground Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 DirectDrive Headphone Output Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Class H Amplifier Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Click-and-Pop Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Jack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Jack Detection Internal Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Jack Detection Programmable Debounce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 www.maximintegrated.com Maxim Integrated │ 3 MAX98090 Ultra-Low Power Stereo Audio Codec TABLE OF CONTENTS (continued) Jack Detection Interrupt Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Operation with an Internal Pullup Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Operation with an External Pullup Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Accessory Button Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Jack Detection with Internal Analog Microphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Quick Setup Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Device Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Status Flag Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Device Revision Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Early STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Write Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Read Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Startup/Shutdown Register Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 AC-Coupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Charge-Pump Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Filterless Class D Speaker Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 EMI Considerations and Optional Ferrite Bead Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 RF Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Supply Bypassing, Layout, and Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Recommended PCB Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 WLP Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 www.maximintegrated.com Maxim Integrated │ 4 MAX98090 Ultra-Low Power Stereo Audio Codec LIST OF FIGURES Figure 1. I2S Audio Interface Timing Diagrams (TDM = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 2. TDM Audio Interface Short Mode Timing Diagram (TDM = 1, BCI = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 3. I2C Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 4. Digital Microphone Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 5. Analog Audio Input Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 6. Analog Microphone Input Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 7. Digital Microphone Input Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 8. Digital Microphone Compensation Filter Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Figure 9. Analog Line Input Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 10. Analog Line Input External Gain Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Figure 11. Analog Direct to ADC Mixer Input Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 12. Record Path Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Figure 13. Record Path ADC Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Figure 14. Record Path FlexSound Technology DSP Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Figure 15. Simplified Digital Audio Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 16. DAI Clock Control and Configuration Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 17. DAI Digital Data Path Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Figure 18. Digital Audio Interface (DAI) Data Path Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Figure 19. DAI Timing for I2S Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Figure 20. DAI Timing for Left Justified Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Figure 21. DAI Timing for Right Justified Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Figure 22. DAI Timing for TDM Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Figure 23. Playback Path Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure 24. Playback Path Sidetone and Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Figure 25. Playback Path DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Figure 26. Dynamic Range Compression and Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 27. DRC Enable and Make-Up Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 28. DRC Compression Ratio and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure 29. DRC Expansion Ratio and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure 30. DRC Attack and Release Time Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Figure 31. Playback Path Digital-to-Analog Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Figure 32. Analog Audio Output Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Figure 33. Receiver Output Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 34. Stereo Single-Ended Line Output Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 35. Class D Speaker Output Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure 36. DirectDrive Headphone Output Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Figure 37. Reduced Power DAC Playback to Headphone Output Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Figure 38. Headphone Output Ground Sense Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 www.maximintegrated.com Maxim Integrated │ 5 MAX98090 Ultra-Low Power Stereo Audio Codec LIST OF FIGURES (continued) Figure 39. Conventional vs. DirectDrive Headphone Output Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Figure 40. Class H Amplifier Charge Pump Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Figure 41. Class H Amplifier Supply Range Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Figure 42. Zero-Crossing Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Figure 43. Block Diagram and Typical Application Circuit for Jack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Figure 44. Jack Detection Cases with Internal Pullup Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Figure 45. Jack Detection Operation with External Pullup Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Figure 46. Jack Detection with Internal Analog Microphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Figure 47. START, STOP, and REPEATED START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 48. Acknowledge Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 49. Writing One Byte of Data to the MAX98090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 50. Writing n-Bytes of Data to the MAX98090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 51. Reading One Byte of Data from the MAX98090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Figure 52. Reading n-Bytes of Data from the MAX98090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Figure 53. Typical Application Circuit with Analog Microphone Inputs and Receiver Output . . . . . . . . . . . . . . . . . . 158 Figure 54. Typical Application Circuit with Digital Microphone Input and Stereo Line Outputs . . . . . . . . . . . . . . . . . 159 Figure 55. Optional Class D Ferrite Bead EMI Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Figure 56. Optional Class H Output RMI Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Figure 57. PCB Breakout Routing Example for WLP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Figure 58. WLP Package Ball Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 LIST OF TABLES Table 1. MAX98090 Control Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 2. Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 3. Bias Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 4. DAC and Headphone Performance Mode Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 5. ADC Performance Mode Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 6. Device Shutdown Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 7. Input Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 8. Output Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 9. Microphone 1 Enable and Level Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 10. Microphone 2 Enable and Level Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 11. Microphone Bias Level Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 12. Digital Microphone Clocks for Commonly Used Master Clocks Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 13. Digital Microphone Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 14. Digital Microphone Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 15. Recommended Compensation Filter Settings for f MCLK = 11.2896MHz . . . . . . . . . . . . . . . . . . . . . . . . . . 87 www.maximintegrated.com Maxim Integrated │ 6 MAX98090 Ultra-Low Power Stereo Audio Codec LIST OF TABLES (continued) Table 16. Recommended Compensation Filter Settings for f MCLK = 12MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 17. Recommended Compensation Filter Settings for f MCLK = 12.288MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 18. Recommended Compensation Filter Settings for f MCLK = 13MHz/26MHz . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 19. Recommended Compensation Filter Settings for f MCLK = 19.2MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 20. Recommended Compensation Filter Settings for f MCLK = 256 x fS . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 21. Line Input Mixer Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 22. External Gain Mode Series Resistance Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 23. Line Input Level Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 24. Input Mode and Source Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 25. Left ADC Mixer Input Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 26. Right ADC Mixer Input Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 27. DSP Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 28. DSP Biquad Filter Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 29. Record Path Biquad Digital Preamplifier Level Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 30. Record Path Biquad Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 31. Record Path Sidetone Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 32. Left Record Path Digital Gain Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 33. Right Record Path Digital Gain Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 34. System Master Clock (MCLK) Prescaler Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 35. Master Mode Clock Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 36. Master Clock Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 37. Sample Rate Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 38. Quick Configuration Mode Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 39. Clock Mode Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 40. Manual Clock Ratio Configuration Register (NI MSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 41. Manual Clock Ratio Configuration Register (NI LSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 42. Manual Clock Ratio Configuration Register (MI MSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 43. Manual Clock Ratio Configuration Register (MI MSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 44. Digital Audio Interface (DAI) Data Path Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 45. Digital Audio Interface (DAI) Input/Output Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 46. Digital Audio Interface (DAI) Format Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 47. Digital Audio Interface (DAI) TDM Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 48. Digital Audio Interface (DAI) TDM Format Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 49. Playback Gain and Level Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 50. DSP Biquad Filter Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 51. Parametric Equalizer Playback Level Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 52. Parametric Equalizer Band N (1–7) Biquad Filter Coefficient Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 53. Dynamic Range Control (DRC) Timing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 www.maximintegrated.com Maxim Integrated │ 7 MAX98090 Ultra-Low Power Stereo Audio Codec LIST OF TABLES (continued) Table 54. Dynamic Range Control (DRC) Gain Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Table 55. Dynamic Range Control (DRC) Compressor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Table 56. Dynamic Range Control (DRC) Expander Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 57. DSP Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 58. Receiver and Left Line Output Mixer Source Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 59. Receiver and Left Line Output Mixer Gain Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 60. Receiver and Left Line Output Volume Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 61. Right Line Output Mixer Source Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 62. Right Line Output Mixer Gain Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 63. Right Line Output Volume Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 64. Left Speaker Mixer Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Table 65. Right Speaker Mixer Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Table 66 Speaker Mixer Gain Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Table 67. Left Speaker Amplifier Volume Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Table 68. Right Speaker Amplifier Volume Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Table 69. Left Headphone Mixer Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 70. Right Headphone Mixer Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 71. Headphone Mixer Control and Gain Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 72. Left Headphone Amplifier Volume Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Table 73. Right Headphone Amplifier Volume Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Table 74. Charge-Pump Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Table 75. Zero-Crossing Detection and Volume Smoothing Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . 142 Table 76. Jack Detection Status Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Table 77. Jack Detect Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Table 78. Jack Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Table 79. Digital Audio Interface (DAI) Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Table 80. Playback Path Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Table 81. Analog Microphone/Direct Input to Record Path Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 82. Line Input to Record Path Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 83. Analog Microphone Input to Analog Output Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 84. Line Input to Analog Output Quick Setup Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 85. Device Status Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Table 86. Device Status Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 87. Revision ID Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 88. Device I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 89. Detailed Device Startup Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Table 90. Register Changes that Require SHDN = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Table 91. Unused Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 www.maximintegrated.com Maxim Integrated │ 8 MAX98090 Ultra-Low Power Stereo Audio Codec Functional Diagram MCLK LRCLK BCLK SDOUT DVDD DVDDIO SDIN SCL DIGITAL AUDIO INTERFACE DATA OUTPUT ENABLE MAS PRESCALED CLOCK (PCLK) GENERATION BCI FRAME CLOCK USE_MI NI[14:0] MI[14:0] PSCLK[1:0] OUTPUT SHIFT REGISTER LOOP BACK MUX CLOCK GENERATION AND DISTRIBUTION FREQ[3:0] TO DIGITAL MIC CONTROL INPUT SHIFT REGISTER RJ, DLY WS[1:0] BSEL[2:0] BIAS MAX98090 DATA INPUT ENABLE PLAYBACK INPUT MIXER DMONO DAI: DATA PATH TO RECORD AND PLAYBACK PATHS LEFT RECORD PATH ADLEN DIGITAL MIC LEFT MUX ADC LEFT LEFT FILTERS LEFT SIDETONE MODE AHPF DHF RECBQEN AVBQ[3:0] REC_B0[23:0] REC_B1[23:0] REC_B2[23:0] REC_A1[23:0] REC_A2[23:0] DSTS[1:0] RIGHT FILTERS RIGHT BIQUAD FILTER RIGHT SIDETONE DIGMICR DIGITAL MIC RIGHT MUX ADC RIGHT LEFT LEVEL LEFT GAIN AVLG[2:0] AVL[3:0] DVG[1:0] AVRG[2:0] AVR[3:0] RIGHT LEVEL RIGHT GAIN L/R ST LEVEL RIGHT RECORD PATH SIDETONE TO PLAYBACK PATH ADREN LEFT SIDETONE DSTS[1:0] RIGHT SIDETONE LEFT LEVEL DVM DV[3:0] RIGHT LEVEL LEFT 7-BAND PARAMETRIC EQUALIZER LEFT/RIGHT DRC: DYNAMIC RANGE CONTROL LEFT FILTERS EQ_BANDEN DVEQ[3:0] EQCLP B0_EQ_[23:0] B1_EQ_[23:0] B2_EQ_[23:0] A1_EQ_[23:0] A2_EQ_[23:0] DRCEN DRCG[4:0] DRCRLS[2:0] DRCATK[2:0] DRCCMP[2:0] DRCTHC[4:0] DRCEXP[2:0] DRCHE[4:0] MODE DHPF RIGHT 7-BAND PARAMETRIC EQUALIZER RIGHT ALC: AUTOMATIC LEVEL CONTROL RIGHT FILTERS MBVSEL[1:0] MICROPHONE BIAS GENERATOR MICBIAS EXTMIC[0] IN1-IN2 IN5-IN6 PA1EN[1:0] MIXSPL[5:0] MIXSPLG[1:0] MIC 1 INPUT MUX MIC 1 PREAMP 0dB 10dB 30dB IN2/DMC IN5-IN6 IN1SEEN IN3SEEN IN5SEEN IN34DIFF IN4 IN1 IN3 IN5 IN3-IN4 IN5 LINE A INPUT MIXER MIXG135 IN6 (WLP ONLY) MIXG246 IN2 IN4 IN6 IN6-IN5 PGAM1[4:0] DAC TO ANALOG OUTPUTS DACR RCV/ -12dB TO 0dB LINE OUT LEFT LINE A MIXER MIC 1 MIC 2 PREAMP 0dB 10dB 30dB PA2EN[1:0] LINE B DMDL DMDR DACR RCV/ LINE OUT MIC 2 RIGHT LINE A MIXER 0dB TO 20dB ZDENB IN2SEEN IN4SEEN IN6SEEN IN65DIFF LINE B MIXSPL[5:0] MIXSPLG[1:0] DACL MIXSPL[5:0] MIXSPLG[1:0] SPK LEFT MIC 2 MIXER LINE A MIC 2 PGA 0dB TO 20dB -12dB TO 0dB SPEAKER LEFT PGA LINE B MIXADL[6:0] LINE A PGA -6dB TO 20dB LINAPGA[2:0] LINBPGA[2:0] LINE B PGA -6dB TO 20dB LINEBEN EXTBUFB RCVLVOL[4:0] RCVLM RCVLEN -62dB TO 8dB DACL IN5-IN6 DACR LINE A MIC 1 SPK RIGHT MIC 2 MIXER LINE A MIC 2 LINE B ADC LEFT LINE B MIXER MIC 1 -12dB TO 0dB SPEAKER RIGHT PGA -62dB TO 8dB LINE OUT RIGHT PGA MIXSPL[5:0] MIXSPLG[1:0] DACL IN5-IN6 ADC RIGHT LINE B MIXER MIXHPL[5:0] MIXHPLG[1:0] DACR LINE A MIC 1 HP MIC 2 LEFT MIXER LINE A MIC 1 RCVRVOL[4:0] RCVRM RCVREN SPVOLL[4:0] SPLM SPLEN SPKLGND -48dB TO 14dB SPKLP SPKLN 6dB HP LEFT MUX MIXHPLSEL MIXHPRSEL ANALOG INPUT TO ANALOG OUTPUT LINE A LINE B DGND -48dB TO 14dB SPKRP SPKRN 6dB SPVOLR[4:0] SPLM SPREN SPKRGND HPVOLL[4:0] HPLM HPLEN HEADPHONE LEFT PGA -67dB TO 3dB ZDEN VS2EN VSEN HPL HPSNS DACL DACR MIC 1 AGND SPK_VDD -12dB TO 0dB LINE B MIXADR[6:0] RCVN/ LOUTR SPKSLAVE IN1-IN2 IN3-IN4 RCVP/ LOUTL ZDEN VS2EN VSEN ZDEN VS2EN VSEN IN3-IN4 MIC 2 www.maximintegrated.com RCV/ LINE OUT MUX MIC 1 MIC 2 LINE B INPUT MIXER -12dB TO 0dB IN1-IN2 LINEAEN EXTBUFA DACREN LINMOD DACL MIC 1 PGA PGAM2[4:0] DAC RIGHT LINE OUT LEFT PGA MIC 2 DACR MIC 2 INPUT MUX EXTMIC[1] IN3 DIGITAL MICROPHONE CONTROL ANALOG INPUTS TO ADC PCLK MIC 1 IN1/DMD IN3-IN4 MICCLK[2:0] DACHP PERFMODE FLEXSOUND TECHNOLOGY DSP DACL MBEN DAC LEFT RIGHT PLAYBACK PATH SIDETONE FROM PLAYBACK PATH DVST[4:0] JACK DETECTION DACLEN LEFT PLAYBACK PATH LEFT BIQUAD FILTER DIGMICL ADCHP OSR128 ADCDITHER JACKSNS AVDD REF BIAS CONTROL AND GENERATION LOOP THROUGH MUX LBEN SDIEN DAI: CLOCK CONTROL AND CONFIGURATION IRQ LTEN TDM, FSW SLOTDLY[3:0] SLOTL/R[1:0] BIT CLOCK WCI SDOEN HIZOFF SDA I2C INTERFACE HP RIGHT MIXER -12dB TO 0dB HP RIGHT MUX MIXHPR[5:0] MIXHPRG[1:0] HEADPHONE RIGHT PGA HPVOLR[4:0] HPRM HPREN -67dB TO 3dB HEADPHONE DIRECTDRIVE CHARGE PUMP HPR HPVDD HPGND CPVSS CPVDD C1N C1P Maxim Integrated │ 9 MAX98090 Ultra-Low Power Stereo Audio Codec Absolute Maximum Ratings (Voltages with respect to AGND, unless otherwise noted.) AVDD, DVDD, HPVDD..........................................-0.3V to +2.2V SPKLVDD, SPKRVDD, DVDDIO..........................-0.3V to +6.0V DGND, HPGND, SPKLGND, SPKRGND..............-0.1V to +0.1V CPVDD.............................(VHPGND - 0.3V) to (VHPGND + 2.2V) CPVSS.............................(VHPGND - 2.2V) to (VHPGND + 0.3V) C1N...................................(VCPVSS - 0.3V) to (VHPGND + 0.3V) C1P................................... (VHPGND - 0.3V) to (VCPVDD + 0.3V) MICBIAS.......................................... -0.3V to (VSPKLVDD + 0.3V) REF, BIAS............................................. -0.3V to (VAVDD + 0.3V) MCLK, SDIN, SDA, SCL, IRQ...............................-0.3V to +6.0V LRCLK, BCLK, SDOUT..................... -0.3V to (VDVDDIO + 0.3V) IN1, IN2, IN3, IN4, IN5, IN6..................................-0.3V to +2.2V HPSNS.............................(VHPGND - 0.3V) to (VHPGND + 0.3V) HPL, HPR..........................(VCPVSS - 0.3V) to (VCPVDD + 0.3V) RCVP/LOUTL............ (VSPKLGND - 0.3V) to (VSPKLVDD + 0.3V) RCVN/LOUTR........... (VSPKLGND - 0.3V) to (VSPKLVDD + 0.3V) SPKLP, SPKLN......... (VSPKLGND - 0.3V) to (VSPKLVDD + 0.3V) SPKRP, SPKRN.......(VSPKRGND - 0.3V) to (VSPKRVDD + 0.3V) JACKSNS..............................................................-0.3V to +6.0V Continuous Power Dissipation (TA = +70°C) WLP (derate 23.8mW/°C above +70°C)...........................1.9W TQFN (derate 35.7mW/°C above +70°C)......................2.86W Operating Temperature Range............................ -40°C to +85°C Storage Temperature Range............................. -65°C to +150°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) WLP Junction-to-Ambient Thermal Resistance (θJA)...........42°C/W TQFN Junction-to-Ambient Thermal Resistance (θJA)...........28°C/W Junction-to-Case Thermal Resistance (θJC)..................2°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX VSPKLVDD, VSPKVDD, VSPKRVDD 2.8 3.7 5.5 VAVDD, VHPVDD 1.65 1.8 2 VDVDD 1.08 1.2 1.98 VDVDDIO 1.65 1.8 3.6 Full-duplex 8kHz Analog mono, receiver Speaker output Digital 1.94 3.5 0.73 2 0.97 1.2 DAC playback 48kHz stereo, headphone outputs Analog 1.45 2 0 0.005 Digital 1.04 1.3 DAC playback 48kHz stereo, speaker outputs Analog 0.91 2.4 Speaker 2.18 3 Digital 1.05 1.3 UNITS POWER SUPPLY Guaranteed by PSRR (Note 3) Supply Voltage Range Quiescent Supply Current (Note 4) www.maximintegrated.com IVDD Speaker V mA Maxim Integrated │ 10 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN REF Voltage TYP MAX 1.25 BIAS Voltage Shutdown Supply Current (Note 4) BIAS from resistive division (BIAS_MODE = 0) 0.90 BIAS from bandgap (BIAS_MODE = 1) 0.78 TA = +25°C UNITS V V Analog 1 10 Speaker 1 5 2.1 20 Digital Shutdown to Full Operation µA 10 ms 97 dB 96 dB DIFFERENTIAL INPUT (ANALOG MICROPHONE) TO ADC RECORD PATH Dynamic Range (Note 5) DR fS = 48kHz, MODE = 1 (FIR audio), A-weighting filter applied fS = 8kHz, MODE = 0 (IIR voice), A-weighting filter applied 90 AV_MICPRE = 20dB, VIN = 90mVRMS, f = 1kHz, Total Harmonic Distortion + Noise Common-Mode Rejection Ratio THD+N CMRR AV_MICPRE = 0dB, VIN = 900mVRMS, Path Phase Delay www.maximintegrated.com PSRR -91 f = 1kHz AV_MICPRE = 30dB, VIN = 28.5mVRMS, f = 1kHz -73 f = 217Hz, VIN_CM = 100mVP-P 59 VAVDD = 1.65V to 2.0V, input referred Power-Supply Rejection Ratio (Note 3) -82 VRIPPLE = 100mVP-P, input referred 1kHz, 0dB input, highpass filter disabled measured from analog input to digital output 40 -75 dB dB 57 f = 217Hz 60 f = 1kHz 60 f = 10kHz 59 MODE = 0 (voice) 8kHz 2.2 MODE = 0 (voice) 16kHz 1.1 MODE = 1 (music) 8kHz 4.5 MODE = 1 (music) 48kHz 0.8 dB ms Maxim Integrated │ 11 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL Gain Error CONDITIONS MIN DC accuracy TYP MAX UNITS 1 6.2 % DIFFERENTIAL (ANALOG MICROPHONE) PREAMP and PGA Full-Scale Input AV_MICPRE = 0dB 1 PA_EN[1:0] = 01 Microphone Preamplifier Gain Microphone Level Adjust Gain (PGA) MIC Input Resistance AV_MICPRE (Note 6) AV_MICPGA (Note 6) RIN_MIC VRMS 0 PA_EN[1:0] = 10 19 20 21 PA_EN[1:0] = 11 29 30 31 PGAM_[4:0] = 0x00 19 20 21 PGAM_[4:0] = 0x14 0 All gain settings, measured at IN_ (measured single-ended) 28 50 ILOAD = 1mA, MBVSEL[1:0] = 00 2.1 2.2 2.3 ILOAD = 1mA, MBVSEL[1:0] = 01 2.3 2.4 2.5 ILOAD = 1mA, MBVSEL[1:0] = 10 2.475 2.57 2.7 ILOAD = 1mA, MBVSEL[1:0] = 11 2.7 2.8 2.9 dB dB kΩ MICROPHONE BIAS MICBIAS Output Voltage VMICBIAS WLP ±0.085 ±0.5 TQFN ±0.085 ±0.75 ±0.01 ±1 Load Regulation ILOAD = 1mA to 2mA, MBVSEL[1:0] = 00 Line Regulation VSPKLVDD = 2.8V to 5.5V, MBVSEL[1:0] = 00 Ripple Rejection VRIPPLE (SPKLVDD) = 100mVP-P Noise Voltage f = 217Hz 95 f = 1kHz 97 f = 10kHz V mV mV dB 85 A-weighted, f = 20Hz to 20kHz 7.4 µVRMS f = 1kHz 52.3 nV/√Hz fS = 48kHz, fMCLK = 12.288MHz, MODE = 1 (FIR audio) 98 dB VIN = 0.222VRMS, f = 1kHz -85 SINGLE-ENDED (LINE) INPUT TO ADC PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N -80 dB SINGLE-ENDED (LINE) INPUT PGA Full-Scale Input www.maximintegrated.com VIN 0.5 AV_EXTERNAL = -6dB, EXTBUF = 1 1 VRMS Maxim Integrated │ 12 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL Line Input Level Adjust Gain (PGA) AV_LINEPGA (Note 6) Line Input Amplifier Gain Input Resistance Feedback Resistance CONDITIONS MIN TYP MAX PGALIN = 0x0 18 20 21.5 PGALIN = 0x1 13 14 15 PGALIN = 0x2 2 3 4 PGALIN = 0x3 -1 0 +1 PGALIN = 0x4 -4 -3 -2 PGALIN = 0x5, 0x6, 0x7 -7 -6 -5 AV_LINEAMP Single-ended only RIN RIN_FB TA = +25°C UNITS dB 6 dB 14 20 kΩ 19 20 21 kΩ DIGITAL LOOP-THROUGH: RECORD OUTPUT TO PLAYBACK INPUT PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N fS = 48kHz, fMCLK = 12.288MHz, MODE = 1 (FIR audio) 97 fIN = 1kHz, fS = 48kHz, fMCLK = 12.288MHz, MODE = 1 (FIR audio) -83 dB -72 dB DAC PLAYBACK PATH TO RECEIVER AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N fS = 48kHz, fMCLK = 12.288MHz 100 f = 1kHz, POUT = 20mW, RREC = 32W -68 dB -58 dB DIFFERENTIAL ANALOG INPUT TO RECEIVER AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR 90 THD+N VSPKLVDD = 2.8V to 5.5V Power-Supply Rejection Ratio (Note 3) PSRR VRIPPLE = 100mVP-P 68.4 96 dB -71 dB 80 f = 217Hz 77 f = 1kHz 77 f = 10kHz 69 dB RECEIVER AMPLIFIER (Note 7) Output Power Full-Scale Output Receiver Volume Control (PGA) www.maximintegrated.com POUT RREC = 32W, f = 1kHz, THD < 1%, BIAS_ MODE = 0 97 RREC = 32W, f = 1kHz, THD < 1%, BIAS_ MODE = 1 74 mW AV_RECPGA = 0dB (Note 8) AV_RECPGA (Notes 6 and 9) 1 VRMS RCVLVOL = 0x00 -63 -61 -59.5 RCVLVOL = 0x1F +7.2 +8 +8.75 dB Maxim Integrated │ 13 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL Volume Control Step Size (Note 9) Mute Attenuation Output Offset Voltage Click-and-Pop Level CONDITIONS TYP +8dB to +6dB 0.5 +6dB to +0dB 1 0dB to -14dB 2 -14dB to -38dB 3 -38dB to -62dB 4 f = 1kHz 87 VOS AV_REC = -62dB, TA = +25°C KCP Peak voltage, A-weighted, 32 samples per second, AV_REC = 0dB No sustained oscillations Capacitive Drive Capability MIN MAX UNITS dB 97 dB ±3 Into shutdown -67 Out of shutdown -68 RL = 32W 500 RL = ∞ 100 mV dBV pF DAC PLAYBACK PATH TO LINEOUT AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N fS = 48kHz, fMCLK = 12.288MHz 100 f = 1kHz, RLOUT = 10kW (0.5VRMS output level) -86 dB -70 dB SINGLE-ENDED ANALOG INPUT TO LINE OUT AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N f = 1kHz, RLOUT = 10kW (0.5VRMS output level) VSPK_VDD = 2.8V to 5.5V Power-Supply Rejection Ratio (Note 3) PSRR VRIPPLE = 100mVP-P 60 98 dB -86 dB 74 f = 217Hz 74 f = 1kHz 74 f = 10kHz 73 dB LINE OUT AMPLIFIER (Note 7) Full-Scale Output Line Output Amplifier Gain www.maximintegrated.com (Note 8) AV_LOUTAMP 0.707 VRMS -3 dB Maxim Integrated │ 14 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER Line Output Volume Control (PGA) SYMBOL AV_LOUTPGA (Notes 6 and 9) Volume Control Step Size (Note 9) MIN TYP RCV_VOL = 0x00 -63 -61 -59.5 RCV_VOL = 0x1F +7.2 +8 +8.75 CONDITIONS 8dB to 6dB 0.5 6dB to 0dB 1 0dB to -14dB 2 -14dB to -38dB 3 -38dB to -62dB 4 Mute Attenuation f = 1kHz Capacitive Drive Capability No sustained oscillations 87 MAX UNITS dB dB 97 dB RLOUT = 1kW 500 RLOUT = ∞ 100 pF DAC PLAYBACK PATH TO SPEAKER AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N Crosstalk 91 dB f = 1kHz, POUT = 200mW, ZSPK = 8W + 68µH, fMCLK = 12.288MHz -70 dB SPKL to SPKR and SPKR to SPKL, POUT = 640mW, f = 1kHz -104 dB 27 µVRMS Output referenced to 2VRMS 91 dB f = 1kHz, POUT = 200mW, ZSPK = 8W + 68mH -70 dB 28 µVRMS Output Noise DIFFERENTIAL ANALOG INPUT TO SPEAKER AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N Output Noise VSPK_VDD= 2.8V to 5.5V Power-Supply Rejection Ratio (Note 3) www.maximintegrated.com PSRR VRIPPLE = 100mVP-P 50 80 f = 217Hz 68 f = 1kHz 67 f = 10kHz 61 dB Maxim Integrated │ 15 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS SPEAKER AMPLIFIER (Note 7) f = 1kHz, THD+N = 1%, ZSPK = 8W + 68µH, WLP package Output Power POUT f = 1kHz, THD+N = 10%, ZSPK = 8W + 68µH, WLP package f = 1kHz, THD+N = 1%, ZSPK = 4W + 33µH, WLP package Output Power POUT f = 1kHz, THD+N = 10%, ZSPK = 4W + 33µH, WLP package Full-Scale Output 1450 VSPK_VDD = 4.2V 1000 VSPK_VDD = 3.7V 780 VSPK_VDD = 3.3V 600 VSPK_VDD = 3.0V 500 VSPK_VDD = 5.0V 1800 VSPK_VDD = 4.2V 1250 VSPK_VDD = 3.7V 970 VSPK_VDD = 3.3V 760 VSPK_VDD = 3.0V 620 VSPK_VDD = 5.0V 2600 VSPK_VDD = 4.2V 1800 VSPK_VDD = 3.7V 1400 VSPK_VDD = 3.3V 1100 VSPK_VDD = 3.0V 900 VSPK_VDD = 5.0V 3250 VSPK_VDD = 4.2V 2250 VSPK_VDD = 3.7V 1700 VSPK_VDD = 3.3V 1350 VSPK_VDD = 3.0V 1100 AV_SPK = +6dB (Note 8) Speaker Output Amplifier Gain AV_SPKAMP Speaker Volume Control (PGA) AV_SPKPGA (Notes 6 and 9) Volume Control Step Size (Note 9) VSPK_VDD = 5.0V www.maximintegrated.com 2 VRMS +6 dB -51 -48 -44.5 SPVOLR = 0x1F 13 14 15 14dB to 9dB 0.5 +9dB to -6dB 1 -6dB to -14dB 2 -14dB to -32dB 3 f = 1kHz mW SPVOLL = 0x00 -32dB to -48dB Mute Attenuation mW dB dB 4 76 84 dB Maxim Integrated │ 16 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER Output Offset Voltage Click-and-Pop Level SYMBOL CONDITIONS VOS AV_SPKPGA = -62dB, TA = +25°C KCP Peak voltage, A-weighted, 32 samples per second, AV_SPK = 0dB MIN Into shutdown TYP MAX UNITS ±0.5 ±4 mV -65 dBV Out of shutdown -65 fS = 48kHz, fMCLK = 12.288MHz Master or slave mode 102 f = 1kHz, POUT = 10mW RHP = 16W -86 RHP = 32W -88 DAC PLAYBACK PATH TO HEADPHONE AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise DR THD+N Crosstalk Slave mode 94 PSRR dB -88 f = 1kHz, VIN = -1dBFS, RHP = 10kW -105 dB HPL to HPR and HPR to HPL, POUT = 5mW, f = 1kHz, RHP = 32W -104 dB 70 f = 217Hz VRIPPLE = 100mVP-P, f = 1kHz AV_HP = 0dB f = 10kHz 1kHz, 0dB input, highpass filter disabled measured from digital input to analog output DAC Path Phase Delay -77 f = 1kHz, VOUT = 1VRMS, RHP = 10kW VAVDD = VHPVDD = 1.65V to 2.0V Power-Supply Rejection Ratio (Note 3) dB 80 79 dB 79 74 MODE = 0 (voice) 8kHz 2.2 MODE = 0 (voice) 16kHz 1.1 MODE = 1 (music) 8kHz 4.5 MODE = 1 (music) 48kHz 0.76 ms Gain Error 1 Channel Gain Mismatch 1 5 % % 101 dB -80 dB -94 dB SINGLE-ENDED ANALOG INPUT TO HEADPHONE AMPLIFIER PATH Dynamic Range (Note 5) Total Harmonic Distortion + Noise Crosstalk www.maximintegrated.com AV_LINE = 0dB AV_HPPGA = 0 dB THD+N VIN = 250mVRMS, f =1kHz HPL to HPR and HPR to HPL, POUT = 5mW, f = 1kHz, RHP = 32W Maxim Integrated │ 17 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS VAVDD = VHPVDD = 1.65V to 2.0V Power-Supply Rejection Ratio (Note 3) PSRR VRIPPLE = 100mVP-P, AV_TOTAL = 0dB MIN TYP 40 60 f = 217Hz 61 f = 1kHz 61 f = 10kHz 60 MAX UNITS dB HEADPHONE AMPLIFIER (Note 7) Output Power Total Harmonic Distortion + Noise POUT THD+N Full-Scale Output Headphone Volume Control (PGA) RHP = 16W 20 RHP = 32W RHP = 16W, POUT = 10mW, f = 1kHz -88 RHP = 10kW, VOUT = 1VRMS, f = 1kHz -88 AV_HPPGA Mute Attenuation -69 -67 -65 HPVOL_ = 0x1F 2.5 3 3.5 0.5 1 -5dB to -19dB 2 -19dB to -43dB 3 -43dB to -67dB 4 No sustained oscillations Click-and-Pop Level Peak voltage, A-weighted, 32 samples per second, AV_HP = -67dB KCP dB HPVOL_ = 0x00 +1dB to -5dB Capacitive Drive Capability -77 VRMS +3dB to +1dB AV_HP = -67dB mW 1 f = 1kHz VOS 40 30 AVHP = 0dB (Note 8) Volume Control Step Size (Note 9) Output Offset Voltage f = 1kHz, THD = 1% dB 110 TA = +25°C dB ±0.5 TA = TMIN to TMAX dB ±1 ±3 RHP = 32W 500 RHP = ∞ 100 Into shutdown -73 mV pF dBV Out of shutdown -73 JACK DETECTION MICBIAS enabled JACKSNS High Threshold www.maximintegrated.com VTH_HIGH MICBIAS disabled 0.80 x 0.95 x 0.98 x VMICBIAS VMICBIAS VMICBIAS 0.80 x 0.95 x 0.98 x V VSPKLVDD VSPKLVDD VSPKLVDD Maxim Integrated │ 18 MAX98090 Ultra-Low Power Stereo Audio Codec Electrical Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MICBIAS enabled JACKSNS Low Threshold VTH_LOW MICBIAS disabled JACKSNS Sense Voltage VSENSE JACKSNS Strong Pullup Resistance RSPU MICBIAS disabled, JDWK = 0 JACKSNS Weak Pullup Current IWPU JACKSNS Glitch Debounce Period www.maximintegrated.com tGLITCH MIN TYP MAX 0.06 x 0.10 x 0.17 x VMICBIAS VMICBIAS VMICBIAS 0.06 x 0.10 x 0.17 x UNITS V VSPKLVDD VSPKLVDD VSPKLVDD MICBIAS disabled VSPKLVDD 1.9 V 2.4 2.7 kΩ MICBIAS disabled, JDWK = 1 5 12 µA JDEB = 00 25 JDEB = 11 200 ms Maxim Integrated │ 19 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Filter Specifications (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line Output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Notes 2, 10) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS +3 dB RECORD PATH LEVEL CONTROL Record Level Adjust Range AV_ADCLVL AVL/AVR = 0xF to 0x0 (Note 6) -12 Record Level Adjust Step Size Record Gain Adjust Range 1 AV_ADCGAIN AVLG/AVRG = 0x0 to 0x3 (Note 6) 0 Record Gain Adjust Step Size dB 42 6 dB dB RECORD PATH VOICE MODE IIR LOWPASS FILTER (MODE = 0) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff 0.444 x fS -3dB cutoff 0.449 x fS f < fPLP -0.1 fSLP Stopband Attenuation f > fSLP Hz 0.1 dB 0.47 x fS Hz 74 dB RECORD PATH STEREO MUSIC MODE FIR LOWPASS FILTER (MODE = 1, DHF = 0, fLRCLK < 50kHz) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff 0.43 x fS -3dB cutoff 0.48 x fS -6.02dB cutoff 0.5 x fS f < fPLP -0.1 fSLP Stopband Attenuation f < fSLP Hz +0.1 dB 0.58 x fS Hz 60 dB RECORD PATH STEREO MUSIC MODE FIR LOWPASS FILTER (MODE = 1, DHF = 1, fLRCLK > 50kHz) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Stopband Attenuation www.maximintegrated.com Ripple Limit cutoff 0.208 x fS -3dB cutoff 0.28 x fS f < fPLP -0.1 fSLP f < fSLP 60 Hz +0.1 dB 0.45 x fS Hz dB Maxim Integrated │ 20 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Filter Specifications (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line Output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Notes 2, 10) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS RECORD PATH DC-BLOCKING HIGHPASS FILTER DC Attenuation AV_ADCHPF AHPF = 1 90 dB RECORD PATH PROGRAMMALE BIQUAD FILTER Preattenuator Gain Range -15 Preattenuator Step Size 0 1 Highpass filter Cutoff Frequency Quality Factor Q dB dB 0.0008 x fS High-frequency shelving filter 0.02 x fS Lowpass filter 0.002 x fS Low-frequency shelving filter 0.0008 x fS Peak filter 0.0008 x fS Hz Peak filter 10 DIGITAL SIDETONE: RECORD PATH TO PLAYBACK PATH (MODE = 0) Sidetone Level Adjust Range AV_STLVL DVST = 0x1F to 0x01 -60.5 Sidetone Level Adjust Step Side -0.5 2 fIN = 1kHz, full-scale amplitude, fS = 8kHz highpass filter disabled fS = 16kHz Sidetone Path Phase Delay dB dB 1.8 ms 0.9 PLAYBACK PATH LEVEL CONTROL Playback Path Attenuation Range Playback Path Attenuation Step Size Playback Path Gain Adjust Range www.maximintegrated.com AV_DACLVL DV = 0xF to 0x0 (Note 6) -15 AV_DACGAIN DVG = 00 to 11 (Note 6) 0 1 0 dB dB 18 dB Maxim Integrated │ 21 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Filter Specifications (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line Output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Notes 2, 10) Playback Path Gain Adjust Step Size PARAMETER SYMBOL 6 CONDITIONS MIN dB TYP MAX UNITS PLAYBACK PATH VOICE MODE IIR LOWPASS FILTER (MODE = 0) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff 0.448 x fS -3dB cutoff 0.451 x fS f < fPLP fSLP Stopband Attenuation (Note 11) Hz -0.1 f > fSLP +0.1 dB 0.476 x fS Hz 75 dB PLAYBACK PATH STEREO MUSIC MODE FIR LOWPASS FILTER (MODE = 1, DHF = 0, fLRCLK < 50kHz) Passband Cutoff fPLP Passband Ripple Stopband Cutoff fSLP Stopband Attenuation (Note 11) Ripple limit cutoff 0.43 x fS -3dB cutoff 0.47 x fS -6.02dB cutoff 0.5 x fS f < fPLP -0.1 Hz f > fSLP +0.1 dB 0.58 x fS Hz 60 dB PLAYBACK PATH STEREO MUSIC MODE FIR LOWPASS FILTER (MODE1 = 1, DHF = 1 for fLRCLK > 50kHz) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Stopband Attenuation (Note 11) www.maximintegrated.com fSLP Ripple limit cutoff 0.24 x fS -3dB cutoff 0.31 x fS f < fPLP -0.1 f < fSLP 60 Hz +0.1 dB 0.477 x fS Hz dB Maxim Integrated │ 22 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Filter Specifications (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line Output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Notes 2, 10) PLAYBACK PATH DC-BLOCKING HIGHPASS FILTER DC Attenuation PARAMETER DHPF = 1 SYMBOL 89 CONDITIONS MIN dB TYP MAX UNITS 0 12 dB -31 0 dBFS -66 -35 dBFS 0.0005 0.2 s 0.0625 8 s Number of Bands Per Band Gain Range -12 +12 dB Preattenuator Gain Range -15 0 dB Preattenuator Step Size Highpass filter 0.0008 x fS PLAYBACK PATH DYNAMIC RANGE CONTROL Gain Range Compression Threshold Expansion Threshold Attack Time Release Time PLAYBACK PATH PARAMETRIC EQUALIZER Cutoff Frequency Quality Factor www.maximintegrated.com Q 7 1 High-frequency shelving filter 0.02 x fS Lowpass filter 0.002 x fS Low-frequency shelving filter 0.0008 x fS Peak filter 0.0008 x fS Peak filter Bands dB Hz 10 Maxim Integrated │ 23 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Input/Output Characteristics (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS MCLK Input High Voltage VIH Input Low Voltage VIL Input Leakage Current IIH, IIL 1.26 VDVDDIO = 2.0V, TA = +25°C V -1 Input Capacitance 0.6 V +1 µA 10 pF SDIN, BCLK, LRCLK (Input) Input High Voltage VIH Input Low Voltage VIL 0.7 x VDVDDIO 0.3 x VDVDDIO Input Hysteresis Input Leakage Current V 100 IIH, IIL VDVDDIO = 3.6V, TA = +25°C -1 Input Capacitance V mV +1 10 µA pF BCLK, LRCLK, SDOUT (Output) Output High Voltage VOH IOH = 3mA Output Low Voltage VOL IOL = 3mA Input Leakage Current IIH, IIL VDVDDIO = 2.0V, TA = +25°C, high-impedance state VDVDDIO - 0.4 V -1 0.4 V +1 µA SDA, SCL (Input) Input High Voltage VIH Input Low Voltage VIL 0.7 x VDVDDIO 0.3 x VDVDDIO Input Hysteresis Input Leakage Current V 100 IIH, IIL VDVDDIO = 2.0V, TA = +25°C Input Capacitance -1 mV +1 10 SDA, IRQ (Output) V µA pF Output Low Voltage VOL VDVDDIO = 1.65V, IOH = 3mA 0.2 x VDVDDIO V Output High Current IOH VDVDDIO = 1.65V, IOL = 3mA 1 µA www.maximintegrated.com Maxim Integrated │ 24 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Input/Output Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIGITAL MICROPHONE DATA (DMD) INPUT Input High Voltage VIH Input Low Voltage VIL 0.65 x VDVDDIO 0.35 x VDVDDIO Input Hysteresis Input Leakage Current V 100 IIH, IIL VDVDDIO = 2.0V, TA = +25°C -25 Input Capacitance V mV +25 10 µA pF DIGITAL MICROPHONE CLOCK (DMC) OUTPUT Output High Voltage VOH IOH = 3mA Output Low Voltage VOL IOL = 3mA www.maximintegrated.com VAVDD 0.4 V 0.4 V Maxim Integrated │ 25 MAX98090 Ultra-Low Power Stereo Audio Codec Input Clock Characteristics (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Notes 2, 10) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS INPUT CLOCK CHARACTERISTICS fS = 8kHz, voice mode filters (MODE = 0) MCLK Input Frequency fMCLK MCLK Input Duty Cycle 2.048 60 fS = 48kHz, music mode filters (MODE = 1) 10 60 fS = 96kHz, music mode filters (MODE = 1) 12.288 60 PSCLK = 01 40 PSCLK = 10 or 11 30 Maximum MCLK Input Jitter LRCLK Sample Rate (Note 12) DAI LRCLK Average Frequency Error (Note 13) fLRCLK 8 48 DHF = 1 48 96 FREQ = 0x8 to 0xF FREQ = 0x0 8kHz ≤ fS ≤ 48kHz, music mode filters (MODE = 1), DHF = 0 0 0 -0.025 +0.025 OSR = 128 or 64 256 x fS OSR = 128 256 x fS OSR = 64 208 x fS OSR = 64 128 x fS www.maximintegrated.com kHz % fPCLK 2 Maximum LRCLK Input Jitter to Maintain PLL Lock Soft-Start/Stop Time % ns DHF = 0 48kHz < fS ≤ 96kHz, music mode filters (MODE = 1), DHF = 1 PLL Lock Time 60 70 1 8kHz ≤ fS ≤ 48kHz, voice mode filters (MODE = 0), DHF = 0 Minimum PCLK to LRCLK Frequency Ratio 50 MHz 10 7 ms ±100 ns ms Maxim Integrated │ 26 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Audio Interface Timing Characteristics (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIGITAL AUDIO INTERFACE TIMING CHARACTERISTICS BCLK Cycle Time tBCLK Slave mode 80 ns BCLK High Time tBCLKH Slave mode 20 ns BCLK Low Time tBCLKL Slave mode 20 ns BCLK or LRCLK Rise and Fall Time SDIN to BCLK Setup Time LRCLK to BCLK Setup Time SDIN to BCLK Hold Time LRCLK to BCLK Hold Time tr, tf tSETUP tSYNCSET Slave mode tHOLD tSYNCHOLD Minimum Delay Time from LSB BCLK Falling Edge to HighImpedance State tHIZOUT LRCLK Rising Edge to SDOUT MSB Delay tSYNCTX BCLK to SDOUT Delay Master mode, CL = 15pF tCLKTX Slave mode Master mode www.maximintegrated.com tCLKSYNC ns 20 ns 20 ns 20 Master mode ns 20 TDM = 1, FSW = 1 20 TDM = 1, FSW = 0 20 TDM = 0, DLY = 1 20 C = 30pF, TDM = 1, FSW = 1 C = 30pF ns 20 TDM = 1 ns 40 TDM = 1, BCLK rising edge 50 TDM = 0 50 TDM = 1 Delay Time from BCLK to LRCLK 5 TDM = 0 -15 ns ns +15 0.8 x tBCLK ns Maxim Integrated │ 27 MAX98090 Ultra-Low Power Stereo Audio Codec tBCLK tF t BCLK R (OUTPUT) tBCLKH BCLK (INPUT) tCLKSYNC tSYNCSET LRCLK (OUTPUT) LSB SDIN (INPUT) LSB LRCLK (INPUT) tCLKTX tHIZOUT SDOUT (OUTPUT) tBCLKL HI-Z MSB tSETUP tHOLD MSB MASTER MODE tCLKTX tHIZOUT SDOUT (OUTPUT) LSB SDIN (INPUT) LSB HI-Z MSB tSETUP tHOLD MSB SLAVE MODE Figure 1. I2S Audio Interface Timing Diagrams (TDM = 0) TDM SHORT MODE TIMING (fSW= 0) tF BCLK (OUTPUT) BCLK (OUTPUT) HI-Z MSB tSETUP SDIN (INPUT) tSYNCSET LRCLK (OUTPUT) tHIZOUT tCLKTX LSB LSB tBCLKL tBCLKH tCLKSYNC tCLKSYNC LRCLK (OUTPUT) tHIZOUT SDOUT (OUTPUT) tBCLK tR tHOLD SDOUT (OUTPUT) tCLKTX LSB HI-Z MSB tHOLD MASTER MODE SLAVE MODE TDM LONG MODE TIMING (fSW = 1) tF BCLK (OUTPUT) SDOUT (OUTPUT) SDIN (INPUT) tR tENDSYNC LRCLK (OUTPUT) tHI-ZOUT HI-Z tBCLKL tCLKSYNC tCLKTX MSB tSETUP LSB tBCLK tBCLKH BCLK (OUTPUT) tSYNCTX LSB tSETUP MSB LSB SDIN (INPUT) MSB tSYNCHOLD MSB tHOLD LRCLK (OUTPUT) tHI-ZOUT SDOUT (OUTPUT) LSB SDIN (INPUT) MASTER MODE tCLKTX tSYNCTX HI-Z MSB tSETUP LSB tHOLD MSB SLAVE MODE Figure 2. TDM Audio Interface Short Mode Timing Diagram (TDM = 1, BCI = 1) www.maximintegrated.com Maxim Integrated │ 28 MAX98090 Ultra-Low Power Stereo Audio Codec I2C Timing Characteristics (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER I2C SYMBOL CONDITIONS MIN TYP MAX UNITS 400 kHz TIMING CHARACTERISTICS Guaranteed by SCL pulse width low and high Serial Clock Frequency fSCL Bus Free Time Between STOP and START Conditions tBUF 1.3 µs Hold Time (Repeated) START Condition tHD,STA 0.6 µs SCL Pulse-Width Low tLOW 1.3 µs SCL Pulse-Width High tHIGH 0.6 µs tSU,STA 0.6 µs Setup Time for a Repeated START Condition Data Hold Time tHD,DAT 0 RPU = 475Ω, CB = 100pF, 400pF 0 900 Transmitting 0 900 Receiving Data Setup Time ns 0 tSU,DAT 100 ns SDA and SCL Receiving Rise Time tR (Note 14) 20 + 0.1 x CB 300 ns SDA and SCL Receiving Fall Time tF (Note 14) 20 + 0.1 x CB 300 ns SDA Transmitting Fall Time tF RPU = 475Ω, CB = 100pF to 400pF (Note 14) 20 + 0.1 x CB 250 ns Setup Time for STOP Condition tSU,STO Bus Capacitance CB Pulse Width of Suppressed Spike tSP 0.6 µs Guaranteed by SDA transmitting fall time 0 400 pF 50 ns SDA tSU,STA tSU,DAT tLOW tHD,DAT tHD,STA tBUF tSP tSU,STO tHIGH SCL tHD,STA START CONDITION tR tF REPEATED START CONDITION STOP CONDITION START CONDITION Figure 3. I2C Interface Timing Diagram www.maximintegrated.com Maxim Integrated │ 29 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Microphone Timing Characteristics (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIGITAL MICROPHONE TIMING CHARACTERISTICS DMC Frequency fDMC MICCLK = 000 fPCLK/2 MICCLK = 001 fPCLK/3 MICCLK = 010 fPCLK/4 MICCLK = 011 fPCLK/5 MICCLK = 100 fPCLK/6 MICCLK = 101 fPCLK/8 MHz DMD to DMC Setup Time tSU,MIC Either clock edge 20 ns DMD to DMC Hold Time tHD,MIC Either clock edge 0 ns 1/fDMC DMC tHD,MIC tSU,MIC tHD,MIC tSU,MIC DMD LEFT RIGHT LEFT RIGHT Figure 4. Digital Microphone Timing Diagram Note 2: The MAX98090 is 100% production tested at TA =+25°C. Specifications over temperature limits are guaranteed by design. Note 3: BIAS derived from a bandgap reference (BIAS_MODE = 1). Note 4: Analog supply current = AVDD + HPVDD, speaker supply current = SPKLVDD + SPKRVDD, and digital supply current = DVDD + DVDDIO. Note 5: Dynamic range measurements are performed with the EIAJ method (a -60dBFS output signal at 1kHz, A-weighted and normalized to 0dBFS; f = 20Hz – 20kHz). Note 6: Gain measured relative to the 0dB setting. Note 7: Performance measured using DAC Inputs, unless otherwise stated. Note 8: Full-scale analog output with 0dB of programmable gain, and a 0dBFS DAC input amplitude, a 1VRMS differential analog input amplitude, or a 0.5VRMS single-ended analog input amplitude. Note 9: Performance measured using an analog input to amplifier output path. Note 10:Digital filter performance is invariant over temperature and production tested at TA = +25°C. Note 11:The filter specification is accurate only for synchronous clocking modes (integer MCLK to LRCLK ratio). Note 12:fLRCLK may be any rate in the indicated range. Asynchronous and non-integer fMCLK/fLRCLK ratios can exhibit some fullscale performance degradation compared to synchronous integer ratios. Note 13:In master-mode operation, the accuracy of the MCLK input proportionally determines the accuracy of the sample clock rate. Note 14:CB is in pF. www.maximintegrated.com Maxim Integrated │ 30 MAX98090 Ultra-Low Power Stereo Audio Codec Quiescent Power Consumption (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V, slave mode operation.) DEVICE MODE AND CONFIGURATION IAVDD (mA) IHPVDD (mA) IDVDD (mA) IDVDDIO (mA) ISPK_VDD (mA) POWER (mW) DYNAMIC RANGE (dB) DIGITAL AUDIO INPUT TO PLAYBACK PATH TO HEADPHONE OUTPUT (MUSIC FILTERS) Stereo DAC Playback to Headphone Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 32Ω 1.39 1.28 1.04 0.02 0.00 6.05 102 Stereo DAC Playback to Headphone Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 32Ω, low power mode 0.94 0.51 1.02 0.02 0.00 3.84 99 Stereo DAC Playback to Headphone Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 32Ω, dynamic range control enabled 1.39 1.28 1.11 0.02 0.00 6.14 102 Stereo DAC Playback to Headphone Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 32Ω, parametric equalizer enabled 1.39 1.28 1.65 0.02 0.00 6.78 102 Stereo DAC Playback to Headphone Output fMCLK = 12.288MHz, fS = 96kHz, 20-bit, music filters, RLOAD = 32Ω 1.39 1.28 1.17 0.02 0.00 6.21 102 Stereo DAC Playback to Headphone Output fMCLK = 13MHz, fS = 44.1kHz, 20-bit, music filters, RLOAD = 32Ω 1.40 1.29 1.00 0.02 0.00 6.03 102 Stereo DAC Playback to Headphone Output fMCLK = 13MHz, fS = 44.1kHz, 20-bit, music filters, RLOAD = 32Ω, low power mode 0.96 0.51 1.00 0.02 0.00 3.85 99 www.maximintegrated.com Maxim Integrated │ 31 MAX98090 Ultra-Low Power Stereo Audio Codec Quiescent Power Consumption (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V, slave mode operation.) DEVICE MODE AND CONFIGURATION IAVDD (mA) IHPVDD (mA) IDVDD (mA) IDVDDIO (mA) ISPK_VDD (mA) POWER (mW) DYNAMIC RANGE (dB) DIGITAL AUDIO INPUT TO PLAYBACK PATH TO HEADPHONE OUTPUT (VOICE FILTERS) Stereo DAC Playback to Headphone Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω 1.35 1.28 0.89 0.02 0.00 5.81 101 Stereo DAC Playback to Headphone Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω, low power mode 0.91 0.51 0.89 0.02 0.00 3.62 98.5 Mono DAC Playback to Headphone Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω 0.78 0.69 0.82 0.02 0.00 3.64 101 Mono DAC Playback to Headphone Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω, low power mode 0.56 0.30 0.82 0.02 0.00 2.55 98.5 Stereo DAC Playback to Headphone Output fMCLK = 13MHz, fS = 16kHz, 16-bit, voice filters, RLOAD = 32Ω 1.35 1.28 0.94 0.02 0.00 5.87 99 Stereo DAC Playback to Headphone Output fMCLK = 13MHz, fS = 16kHz, 16-bit, voice filters, RLOAD = 32Ω, low power mode 0.91 0.50 0.94 0.02 0.00 3.68 97 DIGITAL AUDIO INPUT TO PLAYBACK PATH TO SPEAKER OUTPUT Stereo DAC Playback to Speaker Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 8Ω, LLOAD = 68µH 1.10 0.00 1.04 0.02 2.18 11.47 91 Stereo DAC Playback to Speaker Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 8Ω, LLOAD = 68µH, low power mode 0.91 0.00 1.03 0.02 2.18 10.93 91 Mono DAC Playback to Speaker Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 8Ω, LLOAD = 68µH 0.65 0.00 0.90 0.02 1.11 6.36 91 Mono DAC Playback to Speaker Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 8Ω, LLOAD = 68µH, low power mode 0.51 0.00 0.90 0.02 1.11 6.09 91 Stereo DAC Playback to Speaker Output fMCLK = 12.288MHz, fS = 96kHz, 20-bit, music filters, RLOAD = 8Ω, LLOAD = 68µH 1.21 0.00 1.17 0.02 2.18 11.61 91 Stereo DAC Playback to Speaker Output fMCLK = 13MHz, fS = 44.1kHz, 20-bit, music filters, RLOAD = 8Ω, LLOAD = 68µH 1.21 0.00 1.06 0.02 2.18 11.50 91 www.maximintegrated.com Maxim Integrated │ 32 MAX98090 Ultra-Low Power Stereo Audio Codec Quiescent Power Consumption (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V, slave mode operation.) DEVICE MODE AND CONFIGURATION IAVDD (mA) IHPVDD (mA) IDVDD (mA) IDVDDIO (mA) ISPK_VDD (mA) POWER (mW) DYNAMIC RANGE (dB) ANALOG AUDIO LINE INPUT TO DIGITAL RECORD PATH OUTPUT Stereo Differential Line Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters 3.09 0.00 1.38 0.02 0.00 7.19 98 Stereo Differential Line Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, low power mode 1.97 0.00 1.39 0.02 0.00 5.21 98 Stereo Differential Line Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, Digital Biquad Filter Enabled 3.10 0.00 1.46 0.02 0.00 7.30 98 Mono Differential Line Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters 1.86 0.00 1.10 0.02 0.00 4.65 98 Stereo Single-Ended Line Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters 3.19 0.00 1.35 0.02 0.00 7.33 97 Stereo Single-Ended Line Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, low power mode 2.02 0.00 1.35 0.02 0.00 5.24 97 Stereo Single-Ended Line Input to Record Path fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters 2.90 0.00 0.90 0.02 0.00 6.28 98 Stereo Single-Ended Line Input to Record Path fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters low power mode 1.73 0.00 0.90 0.02 0.00 4.20 97 www.maximintegrated.com Maxim Integrated │ 33 MAX98090 Ultra-Low Power Stereo Audio Codec Quiescent Power Consumption (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V, slave mode operation.) DEVICE MODE AND CONFIGURATION IAVDD (mA) IHPVDD (mA) IDVDD (mA) IDVDDIO (mA) ISPK_VDD (mA) POWER (mW) DYNAMIC RANGE (dB) ANALOG MICROPHONE INPUT TO DIGITAL RECORD PATH OUTPUT (MUSIC FILTERS) Stereo Analog Microphone Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters 3.50 0.00 1.36 0.02 0.00 7.88 97 Stereo Analog Microphone Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, low power mode 2.22 0.00 1.38 0.02 0.00 5.65 97 Mono Analog Microphone Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters 2.02 0.00 1.05 0.02 0.00 4.90 97 Mono Analog Microphone Input to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, low power mode 1.35 0.00 1.08 0.02 0.00 3.74 97 ANALOG MICROPHONE INPUT TO DIGITAL RECORD PATH OUTPUT (VOICE FILTERS) Stereo Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters 3.20 0.00 0.91 0.02 0.00 6.81 99 Stereo Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters low power mode 1.93 0.00 0.92 0.02 0.00 4.57 98 Mono Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters 1.87 0.00 0.82 0.02 0.00 4.35 99 Mono Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters low power mode 1.20 0.00 0.83 0.02 0.00 3.18 98 Stereo Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 16kHz, 16-bit, voice filters 3.26 0.00 1.11 0.02 0.00 7.16 98 Stereo Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 16kHz, 16-bit, voice filters low power mode 1.98 0.00 1.12 0.02 0.00 4.91 97 Mono Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 16kHz, 16-bit, voice filters 1.90 0.00 0.94 0.02 0.00 4.54 98 Mono Analog Microphone Input to Record Path fMCLK = 13MHz, fS = 16kHz, 16-bit, voice filters low power mode 1.23 0.00 0.94 0.02 0.00 3.35 97 www.maximintegrated.com Maxim Integrated │ 34 MAX98090 Ultra-Low Power Stereo Audio Codec Quiescent Power Consumption (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V, slave mode operation.) DEVICE MODE AND CONFIGURATION IAVDD (mA) IHPVDD (mA) IDVDD (mA) IDVDDIO (mA) ISPK_VDD (mA) POWER (mW) DYNAMIC RANGE (dB) ANALOG AUDIO INPUT DIRECT TO DIGITAL RECORD PATH OUTPUT Stereo Differential Input Direct to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters 2.85 0.00 1.39 0.02 0.00 6.76 99 Stereo Differential Input Direct to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, low power mode 1.84 0.00 1.39 0.02 0.00 4.98 98 Mono Differential Input Direct to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters 1.61 0.00 1.08 0.02 0.00 4.20 99 Mono Differential Input Direct to Record Path fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, low power mode 1.09 0.00 1.09 0.02 0.00 3.29 98 ANALOG AUDIO INPUT TO ANALOG AUDIO OUTPUT Stereo Single-Ended Line Input to Headphones (RLOAD = 32Ω) 1.12 2.42 0.00 0.00 0.00 6.34 99 Mono Single-Ended Line Input to Headphones (RLOAD = 32Ω) 0.72 1.57 0.00 0.00 0.00 3.41 99 Stereo Differential Line Input to Headphones (RLOAD = 32Ω) 1.07 1.26 0.00 0.00 0.00 4.19 100 Stereo Differential Line Input to Speaker Output (RLOAD = 8Ω, LLOAD = 68µH) 0.36 0.00 0.00 0.00 2.08 8.34 91 Mono Differential Line Input to Speaker Output (RLOAD = 8Ω, LLOAD = 68µH) 0.31 0.00 0.00 0.00 1.04 4.42 91 Stereo Single-Ended Line Input to Line Output (RLOAD = 10kΩ) 0.76 0.00 0.00 0.00 0.74 4.12 99 www.maximintegrated.com Maxim Integrated │ 35 MAX98090 Ultra-Low Power Stereo Audio Codec Quiescent Power Consumption (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V, slave mode operation.) IAVDD (mA) IHPVDD (mA) IDVDD (mA) IDVDDIO (mA) ISPK_VDD (mA) POWER (mW) DYNAMIC RANGE (dB) Mono Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Receiver Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω 2.67 0.00 0.95 0.02 0.73 8.61 REC: 99 PB: 100 Mono Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Receiver Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω, low power mode 1.94 0.00 0.95 0.02 0.73 7.31 REC: 99 PB: 98 Mono Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Headphone Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 32Ω 2.69 0.69 1.22 0.02 0.00 7.51 REC: 97 PB: 102 Mono Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Headphone Output fMCLK = 12.288MHz, fS = 48kHz, 20-bit, music filters, RLOAD = 32Ω, low power mode 1.80 0.30 1.24 0.02 0.00 5.26 REC: 97 PB: 99 Mono Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Headphone Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω 2.54 0.69 0.95 0.02 0.00 6.93 REC: 99 PB: 102 Mono Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Headphone Output fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω, low power mode 1.66 0.30 0.96 0.02 0.00 4.67 REC: 99 PB: 99 Stereo Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Headphones fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω 4.44 1.28 1.14 0.02 0.00 11.54 REC: 99 PB: 102 Stereo Full Duplex: Analog Microphone Input to Record Path and DAC Playback to Headphones fMCLK = 13MHz, fS = 8kHz, 16-bit, voice filters, RLOAD = 32Ω, low power mode 2.73 0.51 1.15 0.02 0.00 7.18 REC: 99 PB: 99 DEVICE MODE AND CONFIGURATION FULL-DUPLEX AUDIO OPERATION www.maximintegrated.com Maxim Integrated │ 36 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) ANALOG MICROPHONE INPUT TO ADC RECORD PATH OUTPUT TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (MIC TO ADC) -50 -60 -70 MAX98090 toc02 -40 -50 -60 -30 -40 -50 -60 -70 -70 -90 -80 -90 -100 -90 -100 1k 10k -40 1k 10k 100k 10 1k 10k 100k TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (MIC TO ADC) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (MIC TO ADC) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (MIC TO ADC) -50 -60 -70 fMCLK = 13MHz fLRCLK = 8kHz VIN = 70.7mVRMS AV_MIC = +20dB CIN = 10µF -20 -30 -40 0 -50 -60 -70 -20 -30 -40 -50 -60 -70 -90 -90 -90 -100 -100 -100 1k FREQUENCY (Hz) www.maximintegrated.com 10k 100k fMCLK = 13MHz fLRCLK = 8kHz VIN = 22.4mVRMS AV_MIC = +30dB CIN = 10µF -10 -80 100 MAX98090 toc06 0 -10 -80 10 100 FREQUENCY (Hz) THD+N RATIO (dB) -30 100 FREQUENCY (Hz) THD+N RATIO (dB) -20 10 FREQUENCY (Hz) fMCLK = 12.288MHz fLRCLK = 96kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF -10 -80 MAX98090 toc05 0 100 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF -20 -80 10 THD+N RATIO (dB) -30 0 -10 THD+N RATIO (dB) -40 -20 MAX98090 toc04 THD+N RATIO (dB) -30 fMCLK = 13MHz fLRCLK = 44.1kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF -10 THD+N RATIO (dB) fMCLK = 13MHz fLRCLK = 8kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF -20 0 MAX98090 toc01 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (MIC TO ADC) MAX98090 toc03 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (MIC TO ADC) -80 10 100 1k FREQUENCY (Hz) 10k 10 100 1k 10k FREQUENCY (Hz) Maxim Integrated │ 37 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) ANALOG MICROPHONE INPUT TO ADC RECORD PATH OUTPUT (CONTINUED) COMMON-MODE REJECTION RATIO vs. FREQUENCY (MIC TO ADC) 70 60 60 50 30 -3 20 -4 10 -5 0 100 1k 10k 80 60 BIAS_MODE = 0 40 VSPK_VDD = 3.7V VMICBIAS = 2.8V 10 100 1k 10k INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) 20 100 fMCLK = 13MHz fLRCLK = 8kHz AV_MIC = 0dB CIN = 10µF 0 100 0 10 -20 -40 FREQUENCY (Hz) www.maximintegrated.com 10,000 100,000 0 100k MAX98090 toc09 10 100 1k 10k 100k FREQUENCY (Hz) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) -60 -80 -100 -120 20 fMCLK = 13MHz fLRCLK = 8kHz AV_MIC = 0dB CIN = 10µF 0 -20 -40 -60 -80 -100 -120 -140 -140 1,000 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P CIN = 10µF 10 POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (SPK_VDD to MICBIAS) MAX98090 toc10 40 20 FREQUENCY (Hz) BIAS_MODE = 1 50 30 fMCLK = 12.288MHz fLRCLK = 48kHz CIN = 10µF FREQUENCY (Hz) 120 20 AV_MIC = +0dB 40 -2 10 POWER-SUPPLY REJECTION RATIO (dB) 70 MAX98090 toc12 -1 90 80 PSRR (dB) 0 100 OUTPUT AMPLITUDE (dBFS) 1 AV_MIC = +30dB MAX98089 toc11 2 AV_MIC = +20dB 80 OUTPUT AMPLITUDE (dBFS) NORMALIZED GAIN (dB) 3 90 CMRR (dB) fMCLK = 13MHz fLRCLK = 8kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF 4 100 MAX98090 toc07 5 POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (MIC TO ADC) MAX98090 toc08 GAIN vs. FREQUENCY (MIC TO ADC) -160 -160 0 500 1000 1500 2000 2500 3000 3500 4000 FREQUENCY (Hz) 0 500 1000 1500 2000 2500 3000 3500 4000 FREQUENCY (Hz) Maxim Integrated │ 38 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) ANALOG MICROPHONE INPUT TO ADC RECORD PATH OUTPUT (CONTINUED) -80 -100 -120 -140 -60 -80 -100 -120 -140 -160 5 10 15 20 -40 -80 -100 -120 -160 0 5 10 15 20 0 5 10 15 FREQUENCY (kHz) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) -40 -60 -80 -100 -120 0 -20 -40 -60 -80 -100 -120 -140 -140 -160 -160 5 10 FREQUENCY (kHz) www.maximintegrated.com 15 20 fMCLK = 12.288MHz fLRCLK = 96kHz AV_MIC = 0dB CIN = 10µF 20 fMCLK = 12.288MHz fLRCLK = 96kHz AV_MIC = 0dB CIN = 10µF 0 OUTPUT AMPLITUDE (dBFS) -20 20 OUTPUT AMPLITUDE (dBFS) 0 MAX98090 toc16 FREQUENCY (kHz) fMCLK = 12.288MHz fLRCLK = 48kHz AV_MIC = 0dB CIN = 10µF MAX98090 toc15 -60 FREQUENCY (kHz) 20 0 -20 -140 -160 0 OUTPUT AMPLITUDE (dBFS) -40 fMCLK = 12.288MHz fLRCLK = 48kHz AV_MIC = 0dB CIN = 10µF 0 -20 -40 20 MAX98090 toc18 -60 -20 20 OUTPUT AMPLITUDE (dBFS) -40 fMCLK = 13MHz fLRCLK = 44.1kHz AV_MIC = 0dB CIN = 10µF 0 MAX98090 toc17 OUTPUT AMPLITUDE (dBFS) -20 20 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) MAX98090 toc14 fMCLK = 13MHz fLRCLK = 44.1kHz AV_MIC = 0dB CIN = 10µF 0 OUTPUT AMPLITUDE (dBFS) 20 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) MAX98090 toc13 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) -60 -80 -100 -120 -140 -160 0 5 10 FREQUENCY (kHz) 15 20 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 39 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DIGITAL MICROPHONE INPUT TO RECORD PATH OUTPUT INBAND OUTPUT SPECTRUM, -10dBFS INPUT (DIGITAL MIC TO RECORD PATH) VIN = -3dBFS -70 VIN = -26dBFS -80 -80 -100 -120 -90 -140 -100 -160 100 1k 10k FREQUENCY (Hz) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DIGITAL MIC TO RECORD PATH) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DIGITAL MIC TO RECORD PATH) 0 -20 0 -40 -60 -80 -100 -120 fMCLK = 13MHz fLRCLK = 16kHz fDMC = 3.25MHz AV_DMIC = 0dB -10 -20 THD+N RATIO (dB) fMCLK = 13MHz fLRCLK = 8kHz fDMC = 3.25MHz AV_DMIC = 0dB -80 -100 -120 -30 -50 -60 VIN = -3dBFS VIN = -26dBFS 20 -20 -40 -60 -80 -100 -120 -140 -90 -140 -100 -160 FREQUENCY (Hz) www.maximintegrated.com 10 100 1k FREQUENCY (Hz) 10k fMCLK = 13MHz fLRCLK = 16kHz fDMC = 3.25MHz AV_DMIC = 0dB 0 -160 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 INBAND OUTPUT SPECTRUM, -10dBFS INPUT (DIGITAL MIC TO RECORD PATH) -40 -70 0 FREQUENCY (Hz) -80 0 MAX98090 toc21 -60 -160 500 1000 1500 2000 2500 3000 3500 4000 FREQUENCY (Hz) 20 -40 -140 0 MAX98090 toc22 10 OUTPUT AMPLITUDE (dBFS) -60 -20 MAX98090 toc24 -60 -40 fMCLK = 13MHz fLRCLK = 8kHz fDMC = 3.25MHz AV_DMIC = 0dB 0 OUTPUT AMPLITUDE (dBFS) -50 -20 20 OUTPUT AMPLITUDE (dBFS) -40 fMCLK = 13MHz fLRCLK = 8kHz fDMC = 3.25MHz AV_DMIC = 0dB 0 MAX98090 toc23 -30 20 OUTPUT AMPLITUDE (dBFS) fMCLK = 13MHz fLRCLK = 8kHz fDMC = 3.25MHz AV_DMIC = 0dB -20 THD+N RATIO (dB) MAX98090 toc19 0 -10 INBAND OUTPUT SPECTRUM, -26dBFS INPUT (DIGITAL MIC TO RECORD PATH) MAX98090 toc20 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DIGITAL MIC TO RECORD PATH) 0 1k 2k 3k 4k 5k 6k 7k 8k FREQUENCY (Hz) Maxim Integrated │ 40 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DIGITAL MICROPHONE INPUT TO RECORD PATH OUTPUT (CONTINUED) -100 -120 -80 -100 -120 -140 -160 -160 1k 2k 3k 4k 5k 6k 7k 8k 0 1k 2k 3k 4k 5k 6k 7k INBAND OUTPUT SPECTRUM, -10dBFS INPUT (DIGITAL MIC TO RECORD PATH) INBAND OUTPUT SPECTRUM, -26dBFS INPUT (DIGITAL MIC TO RECORD PATH) -20 -40 -60 -80 -100 -120 20 fMCLK = 12.288MHz fLRCLK = 48kHz fDMC = 3.072MHz AV_DMIC = 0dB 0 OUTPUT AMPLITUDE (dBFS) fMCLK = 12.288MHz fLRCLK = 48kHz fDMC = 3.072MHz AV_DMIC = 0dB -60 -20 -40 10 8k -60 -80 -100 -120 -20 -40 -80 -100 -120 -140 www.maximintegrated.com 20k 0 5k 10k FREQUENCY (Hz) 15k 100k -60 -160 15k 20k fMCLK = 12.288MHz fLRCLK = 48kHz fDMC = 3.072MHz AV_DMIC = 0dB 0 -160 10k 10k 20 -160 FREQUENCY (Hz) 1k INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DIGITAL MIC TO RECORD PATH) -140 5k 100 FREQUENCY (Hz) -140 0 VIN = -26dBFS VIN = -3dBFS -80 -120 FREQUENCY (Hz) 0 -40 -100 FREQUENCY (Hz) 20 MAX98090 toc26 -60 -140 0 OUTPUT AMPLITUDE (dBFS) -40 MAX98090 toc30 -80 -20 fMCLK = 12.288MHz fLRCLK = 48kHz fDMC = 3.072MHz AV_DMIC = 0dB -20 THD+N RATIO (dB) -60 0 0 OUTPUT AMPLITUDE (dBFS) -40 fMCLK = 13MHz fLRCLK = 16kHz fDMC = 3.25MHz AV_DMIC = 0dB MAX98090 toc29 -20 MAX98090 toc28 OUTPUT AMPLITUDE (dBFS) 0 20 OUTPUT AMPLITUDE (dBFS) fMCLK = 13MHz fLRCLK = 16kHz fDMC = 3.25MHz AV_DMIC = 0dB MAX98090 toc25 20 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DIGITAL MIC TO RECORD PATH) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DIGITAL MIC TO RECORD PATH) MAX98090 toc27 INBAND OUTPUT SPECTRUM, -26dBFS INPUT (DIGITAL MIC TO RECORD PATH) 0 5k 10k 15k 20k FREQUENCY (Hz) Maxim Integrated │ 41 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO ADC RECORD PATH OUTPUT -50 -60 -70 DIFFERENTIAL -80 SINGLE-ENDED -40 MAX98090 toc32 -50 -60 -70 DIFFERENTIAL -80 0 -20 SINGLE-ENDED -30 -40 -50 -60 -80 -90 -100 -100 -100 1k 10k 100k 10 100 1k 10k SINGLE-ENDED DIFFERENTIAL -70 -90 100 fMCLK = 12.288MHz fLRCLK = 48kHz AV_LINEPGA = +20dB VIN_SE = 35.4mVRMS VIN_DIFF = 70.7mVRMS CIN = 10µF -10 -90 10 100k 10 100 1k 10k FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO ADC) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (LINE TO ADC) CROSSTALK vs. FREQUENCY (LINE TO ADC) -40 70 SINGLE-ENDED -50 DIFFERENTIAL -60 60 50 40 -70 30 -80 20 -90 10 -100 0 10 100 1k FREQUENCY (Hz) www.maximintegrated.com 10k 100k BIAS_MODE = 1 BIAS_MODE = 0 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 0.5mVRMS AV_LINEPRE = 0dB CIN = 10µF -20 -40 -60 SINGLE-ENDED -80 -100 -120 -140 10 100 1k FREQUENCY (Hz) 100k MAX98090 toc36 80 0 CROSSTALK (dB) -30 fMCLK = 12.288MHz fLRCLK = 48kHz VIN SINGLE-ENDED VRIPPLE = 100mVP-P CIN = 10µF 90 MAX98090 toc35 fMCLK = 12.288MHz fLRCLK = 48kHz AV_LINEPGA = -9dB VIN_SE = 2VRMS CIN = 10µF -20 100 MAX98090 toc34 0 -10 THD+N RATIO (dB) -30 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO ADC) THD+N RATIO (dB) -40 -20 PSRR (dB) THD+N RATIO (dB) -30 fMCLK = 12.288MHz fLRCLK = 48kHz AV_LINEPGA = 0dB VIN_SE = 354mVRMS VIN_DIFF = 707mVRMS CIN = 10µF -10 THD+N RATIO (dB) fMCLK = 12.288MHz fLRCLK = 48kHz AV_LINEPGA = -6dB VIN_SE = 0.5VRMS VIN_DIFF = 1VRMS CIN = 10µF -20 0 MAX98090 toc31 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO ADC) MAX98090 toc33 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO ADC) 10k 100k DIFFERENTIAL 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 42 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO ADC RECORD PATH OUTPUT (CONTINUED) INBAND OUTPUT SPECTRUM vs. FREQUENCY,-3dBFS INPUT (LINE TO ADC) OUTPUT AMPLITUDE (dBFS) 0 -20 -40 -60 -80 -100 -120 20 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 0.5mVRMS_SE AV_PRE = 0dB CIN = 10µF 0 -140 -20 -40 MAX98090 toc38 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 354mVRMS_SE AV_PRE = 0dB CIN = 10µF OUTPUT AMPLITUDE (dBFS) 20 MAX98090 toc37 INBAND OUTPUT SPECTRUM vs. FREQUENCY, -60dBFS INPUT (LINE TO ADC) -60 -80 -100 -120 -140 -160 0 5 10 15 -160 20 0 5 FREQUENCY (kHz) 10 15 20 FREQUENCY (kHz) DIRECT ANALOG INPUT TO ADC RECORD PATH OUTPUT POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (INPUT DIRECT TO ADC MIXER) 80 -50 -60 60 50 40 -70 30 -80 20 -90 10 -100 0 10 100 1k FREQUENCY (Hz) www.maximintegrated.com 10k 100k 0 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 0.5VRMS CIN = 10µF -20 CROSSTALK (dB) 70 -40 PSRR (dB) THD+N RATIO (dB) -30 MCLK = 12.288MHz LRCLK = 48kHz VRIPPLE = 100mVP-P CIN = 10µF 90 MAX98090 toc41 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 707mVRMS CIN = 10µF -20 100 MAX98090 toc39 0 -10 CROSSTALK vs. FREQUENCY (INPUT DIRECT TO ADC MIXER) MAX98090 toc40 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (INPUT DIRECT TO ADC MIXER) -40 -60 -80 RIGHT TO LEFT -100 -120 10 100 1k FREQUENCY (Hz) 10k 100k LEFT TO RIGHT -140 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 43 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DIRECT ANALOG INPUT TO ADC RECORD PATH OUTPUT (CONTINUED) 0 AMPLITUDE (dBFS) -20 -40 20 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 1mVRMS CIN = 10µF 0 -20 AMPLITUDE (dBFS) fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 0.707VRMS CIN = 10µF MAX98090 toc42 20 -60 -80 -100 -40 MAX98090 toc43 INBAND OUTPUT SPECTRUM, -60dBFS (INPUT DIRECT TO ADC MIXER) INBAND OUTPUT SPECTRUM, -3dBFS (INPUT DIRECT TO ADC MIXER) -60 -80 -100 -120 -120 -140 -140 -160 -160 0 5 10 15 0 20 5 10 15 20 FREQUENCY (kHz) FREQUENCY (kHz) ADC RECORD PATH TO DAC PLAYBACK INTERNAL LOOP THROUGH TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO ADC TO DAC TO HEADPHONE) THD+N RATIO (dB) -30 -40 -50 -60 POUT = 10mW POUT = 20mW -70 -20 -30 -40 -50 -60 -70 POUT = 10mW POUT = 20mW -80 -80 -90 -90 -100 -100 10 100 1k FREQUENCY (Hz) www.maximintegrated.com 10k 100k 20 fMCLK = 13MHz fLRCLK = 44.1kHz AV_TOTAL = 0dB RHP = 32I CIN = 10µF 0 -20 -40 MAX98090 toc46 MAX98090 toc45 fMCLK = 12.288MHz fLRCLK = 48kHz AV_TOTAL = 0dB RHP = 32I CIN = 10µF -10 THD+N RATIO (dB) fMCLK = 13MHz fLRCLK = 44.1kHz AV_TOTAL = 0dB RHP = 32I CIN = 10µF -20 0 MAX98090 toc44 0 -10 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) OUTPUT AMPLITUDE (dBFS) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO ADC TO DAC TO HEADPHONE) -60 -80 -100 -120 -140 10 100 1k FREQUENCY (Hz) 10k 100k -160 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 44 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) ADC RECORD PATH TO DAC PLAYBACK INTERNAL LOOP THROUGH (CONTINUED) -40 -60 -80 -100 -120 -20 -40 -60 -80 -100 -120 -20 -40 -60 -80 -100 -120 -140 -140 -140 -160 -160 -160 0 5 10 15 20 0 5 FREQUENCY (kHz) 10 15 fMCLK = 12.288MHz fLRCLK = 48kHz AV_TOTAL = 0dB RHP = 32I CIN = 10µF 0 MAX98090 toc49 0 20 OUTPUT AMPLITUDE (dBFS) -20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_TOTAL = 0dB RHP = 32I CIN = 10µF MAX98090 toc48 OUTPUT AMPLITUDE (dBFS) 0 20 OUTPUT AMPLITUDE (dBFS) fMCLK = 13MHz fLRCLK = 44.1kHz AV_TOTAL = 0dB RHP = 32I CIN = 10µF MAX98090 toc47 20 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) 0 20 5 10 15 20 FREQUENCY (kHz) FREQUENCY (kHz) DAC PLAYBACK PATH INPUT TO RECEIVER OUTPUT -40 fIN = 3000Hz -50 -60 -70 -80 0.02 0.04 0.06 0.08 OUTPUT POWER (W) www.maximintegrated.com -40 0.10 0.12 MAX98090 toc51 fIN = 3000Hz -50 -60 -70 fMCLK = 13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32I -20 -30 -40 POUT = 25mW -50 -60 -70 -80 fIN = 1000Hz -90 -100 0 -30 -80 fIN = 1000Hz fIN = 100Hz -90 -20 0 -10 THD+N RATIO (dB) THD+N RATIO (dB) -30 BIAS_MODE = 1 fMCLK = 13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32I -10 THD+N RATIO (dB) BIAS_MODE = 0 fMCLK = 13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32I -20 0 MAX98090 toc50 0 -10 TOTAL HARMONIC DISTORTION vs. FREQUENCY (DAC TO RECEIVER) TOTAL HARMONIC DISTORTION vs. OUTPUT POWER (DAC TO RECEIVER) MAX98090 toc52 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO RECEIVER) POUT = 50mW -90 fIN = 100Hz -100 -100 0 0.02 0.04 0.06 0.08 OUTPUT POWER (W) 0.10 0.12 10 100 1k FREQUENCY (Hz) 10k Maxim Integrated │ 45 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO RECEIVER OUTPUT (CONTINUED) 75 BIAS_MODE = 0 fMCLK = 13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32I SPEAKER SUPPLY VOLTAGE (V) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (DAC TO RECEIVER) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO RECEIVER) 4.0 4.5 PSRR (dB) 70 60 OTHER SUPPLIES 50 40 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P RREC = 32I 10 100 1k FREQUENCY (Hz) www.maximintegrated.com 10k 10 5.5 5.0 80 0 MAX98090 toc55 MAX98090 toc54 -5 3.5 SPK_VDD 10 -2 100 1k FREQUENCY (Hz) 3.0 90 20 -1 160 120 80 fMCLK = 13MHz fLRCLK = 8kHz BIAS_MODE = 1 THD+N ≤ 1% AV_REC = +8dB RREC = 32I 40 -4 100 30 0 RREC = 16I 100k 20 -20 0 -60 -80 -100 -120 100 120 140 -40 -60 -80 -100 -120 -140 15 20 fMCLK = 13MHz fLRCLK = 8kHz AV_REC = 0dB RHP = 32I -20 -160 10 80 0 -140 FREQUENCY (kHz) 60 20 -160 5 40 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO RECEIVER) -40 0 20 OUTPUT POWER (mW) fMCLK = 13MHz fLRCLK = 8kHz AV_REC = 0dB RREC = 32I 0 0 10k OUTPUT AMPLITUDE (dBV) 2.5 1 MAX98090 toc57 0 2 -3 OUTPUT AMPLITUDE (dBV) 25 3 200 POWER CONSUMPTION (mW) 100 fMCLK = 13MHz fLRCLK = 8kHz VOICE FILTER AV_REC = 0dB RREC = 32I 4 NORMALIZED GAIN (dB) BIAS_MODE = 1 50 5 MAX98090 toc53 125 MAX98090 toc56 RECEIVER OUTPUT POWER (mW) 150 POWER CONSUMPTION vs. OUTPUT POWER (DAC TO RECEIVER) GAIN vs. FREQUENCY (DAC TO RECEIVER) MAX98090 toc58 OUTPUT POWER vs. SPEAKER SUPPLY VOLTAGE (DAC TO RECEIVER) 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 46 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO RECEIVER OUTPUT -40 -50 fIN = 6000Hz -60 -70 -80 0 0.02 0.04 -40 -50 fIN = 6000Hz -60 -70 0.08 0.10 0.12 0 OUTPUT POWER (W) 0.02 0.04 2 -70 POUT = 80mW 0.08 0.10 10 0.12 100 1k 10k 100k FREQUENCY (Hz) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (LINE TO RECEIVER) MAX98090 toc62 120 100 SPK_VDD 80 1 0 -1 60 OTHER SUPPLIES 40 -2 -3 DIFFERENTIAL INPUT VRIPPLE = 100mVP-P RREC = 32I CIN = 10µF 20 -4 -5 0 10 100 1k FREQUENCY (Hz) www.maximintegrated.com -60 -100 0.06 PSRR (dB) NORMALIZED GAIN (dB) 3 POUT = 25mW -50 OUTPUT POWER (W) DIFFERENTIAL INPUT AV_TOTAL = 0dB RREC = 32I CIN = 10µF 4 -40 -90 GAIN vs. FREQUENCY (LINE TO RECEIVER) 5 -30 -80 fIN = 100Hz -100 0.06 DIFFERENTIAL INPUT BIAS_MODE = 0 AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32I CIN = 10µF -20 fIN = 1000Hz -90 fIN = 100Hz -100 -30 -80 fIN = 1000Hz -90 MAX98090 toc60 -20 0 -10 MAX98090 toc63 -30 DIFFERENTIAL INPUT BIAS_MODE = 1 AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32I CIN = 10µF THD+N RATIO (dB) THD+N RATIO (dB) -20 0 -10 THD+N RATIO (dB) DIFFERENTIAL INPUT BIAS_MODE = 0 AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32I CIN = 10µF MAX98090 toc59 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO RECEIVER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (LINE TO RECEIVER) MAX98090 toc61 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (LINE TO RECEIVER) 10k 100k 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 47 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO RECEIVER OUTPUT (CONTINUED) INBAND OUTPUT SPECTRUM, -60dBV INPUT (LINE TO RECEIVER) OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 20 MAX98090 toc65 DIFFERENTIAL INPUT AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32I CIN = 10µF 0 DIFFERENTIAL INPUT AV_LINEPGA = 0dB AV_REC = +6dB RREC = 32I CIN = 10µF 0 OUTPUT AMPLITUDE (dBV) 20 MAX98090 toc64 INBAND OUTPUT SPECTRUM, -3dBV INPUT (LINE TO RECEIVER) -20 -40 -60 -80 -100 -120 -140 -140 -160 -160 0 5 10 15 0 20 5 10 15 20 FREQUENCY (kHz) FREQUENCY (kHz) DAC PLAYBACK PATH INPUT TO LINE OUTPUT OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 20 -20 -40 -60 -80 -100 -120 -140 -140 -160 -160 0 5 10 FREQUENCY (kHz) www.maximintegrated.com 15 20 fMCLK = 13MHz fLRCLK = 8kHz AV_LOUT = +3dB RLOUT = 10kI 0 OUTPUT AMPLITUDE (dBV) fMCLK = 13MHz fLRCLK = 8kHz AV_LOUT = +3dB RLOUT = 10kI 0 MAX98090 toc66 20 MAX98090 toc67 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO LINE OUT) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO LINE OUT) 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 48 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO LINE OUTPUT -40 -50 -60 fIN = 6000Hz -70 fIN = 100Hz -30 -40 -50 VOUT = 300mVRMS -60 VOUT = 0.707mVRMS -70 -20 -30 -40 -50 -70 -90 -90 -90 -100 -100 0 0.2 0.4 0.6 -80 10 1.0 0.8 100 1k 10k 10 100 -20 -40 -60 -80 -100 -120 20 AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kI CIN = 10µF 0 OUTPUT AMPLITUDE (dBV) AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kI CIN = 10µF 0 MAX98090 toc71 20 1k 10k 100k FREQUENCY (Hz) INBAND OUTPUT SPECTRUM, -60dBV INPUT (LINE IN TO LINE OUT) INBAND OUTPUT SPECTRUM, -3dBV INPUT (LINE IN TO LINE OUT) OUTPUT AMPLITUDE (dBV) 100k DIFFERENTIAL LINE INPUT FREQUENCY (Hz) OUTPUT LEVEL (V) -20 -40 -60 -80 -100 -120 -140 -140 -160 -160 0 5 10 FREQUENCY (kHz) www.maximintegrated.com SINGLE-ENDED LINE INPUT -60 -80 fIN = 1000Hz VIN = 2VRMS AV_EXTERNAL = -9dB AV_LOUT = +3dB RLOUT = 10kI CIN = 10µF -10 -80 -100 MAX98090 toc70 0 MAX98090 toc69 -20 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE IN TO LINE OUT) THD+N RATIO (dB) THD+N RATIO (dB) -30 AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kI CIN = 10µF -10 THD+N RATIO (dB) AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kI CIN = 10µF -20 0 MAX98090 toc68 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE IN TO LINE OUT) MAX98090 toc72 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT LEVEL (LINE IN TO LINE OUT) 15 20 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 49 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT -40 -20 -50 -60 -70 -80 -50 -60 -70 -20 0.5 1.0 1.5 2.0 -30 -40 fIN = 6000Hz -50 -60 -70 fIN = 1000Hz -80 -90 fIN = 100Hz -100 0 VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8I + 68µH WLP PACKAGE -10 fIN = 1000Hz -90 fIN = 100Hz -100 fIN = 100Hz -100 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 0.2 0.4 0.6 0.8 1.0 1.2 OUTPUT POWER (W) OUTPUT POWER (W) OUTPUT POWER (W) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) -30 -40 -10 -20 -50 -60 -70 fIN = 1000Hz -80 -30 -40 -50 -60 -70 -80 -90 0 0.1 0.2 0.3 0.4 0.5 OUTPUT POWER (W) www.maximintegrated.com 0.6 0.7 0.8 0 0.5 1.0 1.5 -20 -30 -40 -50 -60 -70 fIN = 1000Hz -90 fIN = 100Hz -100 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB fIN = 6000Hz ZSPK = 4I + 33µH WLP PACKAGE -10 -80 fIN = 1000Hz -90 fIN = 100Hz -100 0 fIN = 100Hz -100 2.0 2.5 OUTPUT POWER (W) 3.0 3.5 MAX98090 toc78 -20 fIN = 6000Hz VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB fIN = 6000Hz ZSPK = 4I + 33µH WLP PACKAGE THD+N RATIO (dB) -10 0 THD+N RATIO (dB) VSPK_VDD = 3V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8I + 68µH WLP PACKAGE MAX98090 toc76 0 THD+N RATIO (dB) -40 -80 fIN = 1000Hz -90 -30 fIN = 6000Hz THD+N RATIO (dB) -30 fIN = 6000Hz -10 0 MAX98090 toc77 THD+N RATIO (dB) -20 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8I + 68µH WLP PACKAGE TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) MAX98090 toc74 -10 0 THD+N RATIO (dB) VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8I + 68µH WLP PACKAGE MAX98090 toc73 0 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) MAX98090 toc75 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) 0 0.5 1.0 1.5 2.0 2.5 OUTPUT POWER (W) Maxim Integrated │ 50 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) -40 -50 -60 -70 fIN = 1000Hz -80 -90 0 -30 -40 MAX98090 toc80 -50 fIN = 6000Hz -60 fIN = 1000Hz -70 -90 fIN = 100Hz -100 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 0.2 0.4 0.6 0.8 1.0 1.2 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) MAX98090 toc82 -20 -30 -40 VSPKVDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH TQFN PACKAGE -10 -20 -50 -60 -30 -40 -50 -60 -70 fIN = 6000Hz -80 fIN = 1000Hz -90 fIN = 100Hz 0.00 1.50 2.00 MAX98090 toc84 0 TQFN PACKAGE VSPKVDD = 3V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH -20 -60 1.00 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) -10 -50 0.50 OUTPUT POWER (W) MAX98090 toc83 0 THD+N RATIO (dB) -10 -40 1.4 OUTPUT POWER (W) VSPKVDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH TQFN PACKAGE -30 -100 OUTPUT POWER (W) 0 -20 -80 fIN = 100Hz -100 THD+N RATIO (dB) -20 VSPKVDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH TQFN PACKAGE -10 THD+N RATIO (dB) -30 VSPK_VDD = 3V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4I + 33µH WLP PACKAGE -10 MAX98090 toc81 0 THD+N RATIO (dB) THD+N RATIO (dB) -20 fIN = 6000Hz THD+N RATIO (dB) VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4I + 33µH WLP PACKAGE -10 0 MAX98090 toc79 0 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) -30 -40 -50 -60 -70 fIN = 6000Hz -70 fIN = 6000Hz -70 fIN = 6000Hz -80 fIN = 1000Hz -80 fIN = 1000Hz -80 fIN = 1000Hz -90 fIN = 100Hz -90 fIN = 100Hz -90 fIN = 100Hz -100 -100 0.0 0.2 0.4 0.6 0.8 OUTPUT POWER (W) www.maximintegrated.com 1.0 1.2 1.4 -100 0.0 0.2 0.4 0.6 0.8 OUTPUT POWER (W) 1.0 1.2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 OUTPUT POWER (W) Maxim Integrated │ 51 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) MAX98090 toc85 VSPKVDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 33µH TQFN PACKAGE -20 -40 -20 -50 -60 -30 -40 -60 -40 -50 -60 fIN = 6000Hz -70 fIN = 6000Hz -80 fIN = 1000Hz -80 fIN = 1000Hz -80 fIN = 1000Hz fIN = 100Hz -90 fIN = 100Hz -90 fIN = 100Hz -100 -100 2.0 3.0 0.0 0.5 1.5 2.0 OUTPUT POWER (W) 0 MAX98090 toc88 VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8I + 68µH WLP PACKAGE -10 -20 -50 -60 -30 -40 POUT = 1.00W -50 -60 -70 fIN = 6000Hz -70 -80 fIN = 1000Hz -80 -90 fIN = 100Hz -90 0.2 0.4 0.6 0.8 OUTPUT POWER (W) www.maximintegrated.com 1.0 1.2 1.4 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) 0 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8I + 68µH WLP PACKAGE -10 -20 -30 -40 -50 POUT = 0.76W -60 -70 -80 POUT = 0.25W POUT = 0.20W -90 -100 -100 0.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.5 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) TQFN PACKAGE VSPKVDD = 3V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 33µH 1.0 OUTPUT POWER (W) 10 100 1k FREQUENCY (Hz) 10k 100k MAX98090 toc90 1.0 THD+N RATIO (dB) 0.0 THD+N RATIO (dB) THD+N RATIO (dB) -40 -30 -70 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) -30 -20 -50 OUTPUT POWER (W) -20 -10 fIN = 6000Hz -100 -10 VSPKVDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 33µH TQFN PACKAGE -70 -90 0 MAX98090 toc87 0 MAX98090 toc89 THD+N RATIO (dB) -30 VSPKVDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 33µH TQFN PACKAGE -10 THD+N RATIO (dB) -10 MAX98090 toc86 0 THD+N RATIO (dB) 0 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO SPEAKER) -100 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 52 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) -50 POUT = 0.60W -60 -70 -80 -40 POUT = 2.00W -60 -70 100 1k 10k 10 100k 100 -90 -50 10k 100k POUT = 0.40W -100 10 -60 -20 -30 -40 POUT = 1.00W -30 -40 -50 -70 -80 -80 -90 -90 -90 POUT = 0.25W -100 100 1k FREQUENCY (Hz) www.maximintegrated.com 10k 100k 10 100 1,000 FREQUENCY (Hz) POUT = 0.76W -60 -70 POUT = 0.30W 100k VSPKVDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH TQFN PACKAGE -20 -80 -100 10k MAX98090 toc96 0 -10 -50 -60 1k TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) -70 10 100 FREQUENCY (Hz) VSPKVDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH TQFN PACKAGE -10 THD+N RATIO (dB) VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4I + 33µH WLP PACKAGE POUT = 1.20W -40 -70 MAX98090 toc95 0 MAX98090 toc94 0 -30 -60 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) -20 POUT = 1.50W FREQUENCY (Hz) FREQUENCY (Hz) -10 1k -50 -30 -80 -100 10 -40 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4I + 33µH WLP PACKAGE -20 POUT = 0.50W -90 -100 THD+N RATIO (dB) MAX98090 toc92 -50 -80 POUT = 0.15W -90 -30 THD+N RATIO (dB) -40 -20 0 -10 THD+N RATIO (dB) THD+N RATIO (dB) -30 VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4I + 33µH WLP PACKAGE -10 THD+N RATIO (dB) VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8I + 68µH WLP PACKAGE -20 0 MAX98090 toc91 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) MAX98090 toc93 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) 10,000 100,000 -100 POUT = 0.2W 10 100 1,000 10,000 100,000 FREQUENCY (Hz) Maxim Integrated │ 53 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) MAX98090 toc97 VSPKVDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH TQFN PACKAGE -20 -30 -40 VSPKVDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 68µH TQFN PACKAGE -10 -20 -50 POUT = 0.6W -60 MAX98090 toc98 0 THD+N RATIO (dB) -10 -30 -40 -20 POUT = 1.8W -30 -40 -50 -70 -70 -80 -80 -90 -90 -90 POUT = 0.5W -100 100 1,000 10,000 100,000 10 100 FREQUENCY (Hz) -30 -40 TQFN PACKAGE -50 POUT = 1.0W -60 -70 -80 -90 100,000 MAX98090 toc101 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH WLP PACKAGE 2000 1500 1000 THD+N = 1% 0 1,000 FREQUENCY (Hz) www.maximintegrated.com 10,000 100,000 MAX98090 toc102 4500 THD+N = 10% 500 1,000 OUTPUT POWER vs. SUPPLY VOLTAGE (DAC TO SPEAKER) POUT = 0.3W 100 100 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 68µH WLP PACKAGE 4000 3500 3000 THD+N = 10% 2500 2000 1500 1000 THD+N = 1% 500 -100 10 10 FREQUENCY (Hz) 2500 OUTPUT POWER PER CHANNEL (mW) VSPKVDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 68µH -20 10,000 OUTPUT POWER vs. SUPPLY VOLTAGE (DAC TO SPEAKER) MAX98090 toc100 -10 1,000 FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) 0 POUT = 0.4W -100 OUTPUT POWER PER CHANNEL (mW) 10 POUT = 1.3W -60 -80 POUT = 0.15W VSPKVDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 68µH TQFN PACKAGE -10 -50 -60 MAX98090 toc99 0 -70 -100 THD+N RATIO (dB) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) THD+N RATIO (dB) 0 THD+N RATIO (dB) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO SPEAKER) 10,000 100,000 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 SUPPLY VOLTAGE (V) Maxim Integrated │ 54 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) MAX98090 toc103 1500 OUTPUT POWER PER CHANNEL (mW) 2000 1000 500 THD+N = 1% MAX98090 toc104 4500 THD+N = 10% fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 4Ω + 68µH TQFN PACKAGE 4000 3500 3000 5 3 2500 2000 1500 1000 THD+N = 1% 3.0 3.5 4.0 4.5 5.0 5.5 2.5 SUPPLY VOLTAGE (V) 50 VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB WLP PACKAGE 10 4.0 4.5 5.0 80 ZSPK = 8I + 68µH 70 ZSPK = 4I + 33µH 50 40 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB WLP PACKAGE 20 10 www.maximintegrated.com 3.5 0.5 1.0 1.5 2.0 2.5 OUTPUT POWER PER CHANNEL (W) 1k 10k 100 90 80 ZSPK = 8I + 68µH 70 100k 50 40 VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB WLP PACKAGE 30 20 10 3.0 ZSPK = 4I + 33µH 60 0 0 100 EFFICIENCY vs. OUTPUT POWER (DAC TO SPEAKER) 0 0.5 1.0 1.5 2.0 2.5 3.0 OUTPUT POWER PER CHANNEL (W) 10 FREQUENCY (Hz) 60 30 0 0 -5 5.5 MAX98090 toc107 ZSPK = 4I + 33µH 60 20 3.5 90 EFFICIENCY (%) EFFICIENCY (%) 80 30 3.0 100 MAX98090 toc106 90 40 -2 EFFICIENCY vs. OUTPUT POWER (DAC TO SPEAKER) 100 ZSPK = 8I + 68µH 0 -1 SUPPLY VOLTAGE (V) EFFICIENCY vs. OUTPUT POWER (DAC TO SPEAKER) 70 1 -4 0 EFFICIENCY (%) 2.5 2 -3 500 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = 0dB ZSPK = 8I + 68µH 4 THD+N = 10% MAX98090 toc108 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB ZSPK = 8Ω + 68µH TQFN PACKAGE GAIN vs. FREQUENCY (DAC TO SPEAKER) NORMALIZED GAIN (dB) 2500 OUTPUT POWER PER CHANNEL (mW) OUTPUT POWER vs. SUPPLY VOLTAGE (DAC TO SPEAKER) MAX98090 toc105 OUTPUT POWER vs. SUPPLY VOLTAGE (DAC TO SPEAKER) 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 OUTPUT POWER PER CHANNEL (W) Maxim Integrated │ 55 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) MAX98090 toc109 100 90 80 80 70 70 ZSPK = 8W + 68µH ZSPK = 4W + 33µH 50 40 VSPKVDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB TQFN PACKAGE 20 10 60 ZSPK = 8W + 68µH EFFICIENCY (%) 90 80 60 ZSPK = 4W + 33µH 50 40 VSPKVDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB TQFN PACKAGE 30 20 10 0 3.5 0.0 SUPPLY CURRENT vs. SUPPLY VOLTAGE (DAC TO SPEAKER) fMCLK = 12.288MHz fLRCLK = 48kHz ZSPK = 8I + 68µH 4.5 4.0 120 100 3.5 SPK_VDD 2.0 1.0 60 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P ZSPK = 8I + 68µH 0.5 0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) www.maximintegrated.com 5.0 5.5 0.0 10 100 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 CROSSTALK vs. FREQUENCY (DAC TO SPEAKER) OTHER SUPPLIES 20 0 VSPKVDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = +8dB TQFN PACKAGE OUTPUT POWER PER CHANNEL (W) 40 1.5 40 0 3.0 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = 0dB ZSPK = 8I + 68µH -20 CROSSTALK (dB) PSRR (dB) 2.5 ZSPK = 4W + 33µH 10 80 3.0 ZSPK = 8W + 68µH 50 POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (DAC TO SPEAKER) MAX98090 toc112 5.0 0.5 1.0 1.5 2.0 2.5 OUTPUT POWER PER CHANNEL (W) 60 20 MAX98090 toc113 0.5 1.0 1.5 2.0 2.5 3.0 OUTPUT POWER PER CHANNEL (W) 70 30 0 0.0 MAX98090 toc111 100 90 30 SUPPLY CURRENT (mA) EFFICIENCY vs. OUTPUT POWER (DAC TO SPEAKER) MAX98090 toc110 100 EFFICIENCY (%) EFFICIENCY (%) EFFICIENCY vs. OUTPUT POWER (DAC TO SPEAKER) MAX98090 toc114 EFFICIENCY vs. OUTPUT POWER (DAC TO SPEAKER) -40 -60 LEFT TO RIGHT -80 RIGHT TO LEFT -100 -120 1k FREQUENCY (Hz) 10k 100k 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 56 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO SPEAKER) -60 -80 -100 -120 -140 -160 0 5 10 15 -40 -60 -80 -100 -60 -80 -100 -120 -140 -160 0 5 10 15 0 20 5 0 -20 -40 -60 -80 -100 -120 -140 20 fMCLK = 12.88MHz fLRCLK = 48kHz AV_SPKPGA = -6dB ZSPK = 4I + 33µH 0 OUTPUT AMPLITUDE (dBV) fMCLK = 13MHz fLRCLK = 44.1kHz AV_SPKPGA = -6dB ZSPK = 8I + 68µH 15 20 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO SPEAKER) MAX98090 toc118 20 10 FREQUENCY (kHz) FREQUENCY (kHz) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO SPEAKER) OUTPUT AMPLITUDE (dBV) -40 -140 FREQUENCY (kHz) -20 -40 -60 -80 -100 -120 -140 -160 -160 0 5 10 FREQUENCY (kHz) www.maximintegrated.com -20 -120 -160 20 fMCLK = 13MHz fLRCLK = 44.1kHz AV_SPKPGA = -6dB ZSPK = 8I + 68µH 0 MAX98090 toc117 -20 20 MAX98090 toc119 -40 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = -6dB ZSPK = 8I + 68µH 0 OUTPUT AMPLITUDE (dBV) OUTPUT AMPLITUDE (dBV) -20 20 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO SPEAKER) MAX98090 toc116 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPKPGA = -6dB ZSPK = 8I + 68µH 0 OUTPUT AMPLITUDE (dBV) 20 MAX98090 toc115 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO SPEAKER) 15 20 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 57 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO SPEAKER OUTPUT (CONTINUED) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO SPEAKER) -40 -60 -80 -100 fMCLK = 12.88MHz fLRCLK = 48kHz AV_SPKPGA = 0dB ZSPK = 8W + 68µH -20 -120 MAX98090 toc121 OUTPUT AMPLITUDE (dBV) -20 0 AMPLITUDE (dBV) fMCLK = 12.88MHz fLRCLK = 48kHz AV_SPKPGA = -6dB ZSPK = 4I + 33µH 0 MAX98090 toc120 20 WIDEBAND FREQUENCY SPECTRUM (DAC TO SPEAKER) -40 -60 -80 -100 -140 -120 -160 0 5 10 15 1 0.1 20 10 100 FREQUENCY (MHz) FREQUENCY (kHz) LINE INPUT TO SPEAKER OUTPUT f = 6000Hz -40 -50 -60 -70 -80 MAX98090 toc123 -20 -30 -40 -50 POUT = 0.60W -60 -70 f = 1000Hz f = 100Hz -90 -100 0 0.2 0.4 0.6 OUTPUT POWER (W) www.maximintegrated.com 0.8 1.0 AV_LINEPGA = 0dB AV_SPKPGA = +8dB ZSPK = 8I + 68µH CIN = 10µF 4 3 2 1 0 -1 -2 -3 -80 -90 5 NORMALIZED GAIN (dB) THD+N RATIO (dB) -30 AV_LINEPGA = 0dB AV_SPKPGA = +8dB ZSPK = 8I + 68µH CIN = 10µF -10 THD+N RATIO (dB) AV_LINEPGA = 0dB AV_SPKPGA = +8dB ZSPK = 8I + 68µH CIN = 10µF -20 0 MAX98090 toc122 0 -10 GAIN vs. FREQUENCY (LINE TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO SPEAKER) MAX98090 toc124 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (LINE TO SPEAKER) -4 POUT = 0.15W -5 -100 10 100 1k FREQUENCY (Hz) 10k 100k 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 58 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO SPEAKER OUTPUT (CONTINUED) OTHER SUPPLIES 80 PSRR (dB) 60 SPK_VDD 40 30 VRIPPLE = 100mVP-P ZSPK = 8I + 68µH CIN = 10µF 0 10 100 RIGHT TO LEFT -80 10k 1k -120 100k 10 100 1k 10k FREQUENCY (Hz) FREQUENCY (Hz) INBAND OUTPUT SPECTRUM, -3dBV INPUT (LINE TO SPEAKER) INBAND OUTPUT SPECTRUM, -60dBV INPUT (LINE TO SPEAKER) AV_LINEPGA = -6dB AV_SPKPGA = 0dB ZSPK = 8I + 68µH CIN = 10µF -20 OUTPUT AMPLITUDE (dBV) -60 LEFT TO RIGHT 0 -40 -60 -80 -100 0 AV_LINEPGA = -6dB AV_SPKPGA = 0dB ZSPK = 8I + 68µH CIN = 10µF -20 -40 100k -60 -80 -100 -120 -120 -140 -140 0 5 10 FREQUENCY (kHz) www.maximintegrated.com -40 -100 MAX98090 toc127 10 OUTPUT AMPLITUDE (dBV) 20 AV_LINEPGA = 0dB AV_SPKPGA = 0dB ZSPK = 8I + 68µH CIN = 10µF -20 CROSSTALK (dB) 70 50 0 MAX98090 toc128 90 MAX98090 toc125 100 MAX98090 toc126 CROSSTALK vs. FREQUENCY (LINE TO SPEAKER) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (LINE TO SPEAKER) 15 20 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 59 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO HEADPHONE OUTPUT TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HEADPHONE) f = 1000Hz f = 100Hz -60 -70 -80 -50 -90 -100 0.03 0.04 f = 1000Hz -70 -90 0.02 f = 6000Hz -60 -100 0.01 MAX98090 toc130 -40 -30 -40 f = 1000Hz -50 -60 f = 100Hz -70 f = 6000Hz -80 -90 f = 100Hz 0 0.05 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 32I -20 -80 f = 3000Hz 0 0.01 0.02 0.03 -100 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05 OUTPUT POWER (W) OUTPUT POWER (W) OUTPUT POWER (W) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HEADPHONE) -40 f = 1000Hz -50 -60 f = 100Hz -70 f = 6000Hz -80 -30 -40 f = 1000Hz -50 -60 f = 100Hz f = 6000Hz -70 -80 -20 -30 -40 -70 -80 -90 -90 -100 -100 0.02 0.03 OUTPUT POWER (W) www.maximintegrated.com 0.04 0.05 f = 1000Hz -60 -90 0.01 f = 6000Hz -50 -100 0 MAX98090 toc134 -20 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 16I -10 THD+N RATIO (dB) -30 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 16I -10 0 MAX98090 toc133 fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = +3dB RHP = 32I -20 0 MAX98090 toc132 0 -10 THD+N RATIO (dB) -30 0 -10 THD+N RATIO (dB) -40 -50 -20 THD+N RATIO (dB) THD+N RATIO (dB) -30 fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = +3dB RHP = 32I -10 THD+N RATIO (dB) fMCLK = 13MHz fLRCLK = 8kHz AV_HP = +3dB RHP = 32I -20 0 MAX98090 toc129 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HEADPHONE) MAX98090 toc131 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HEADPHONE) 0 0.01 0.02 0.03 0.04 0.05 0.06 OUTPUT POWER (W) 0.07 f = 100Hz 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 OUTPUT POWER (W) Maxim Integrated │ 60 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO HEADPHONE OUTPUT (CONTINUED) f = 6000Hz -50 f = 1000Hz -60 -70 -30 -50 POUT = 0.01W -70 POUT = 0.02W -80 -80 f = 100Hz -100 0 0.01 0.02 0.03 0.04 -30 -40 -50 -60 -70 POUT = 0.01W -70 -90 -100 100 1k 10k POUT = 0.01W 10 POUT = 0.02W -80 0 fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = +3dB RHP = 32I -10 -20 -30 -40 -50 -60 -70 POUT = 0.01W POUT = 0.02W -80 -30 -60 www.maximintegrated.com POUT = 0.01W -70 POUT = 0.025W -80 -90 100k MAX98090 toc137 -50 -100 10k 100k -40 -90 1k 10k fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 16I -20 -100 FREQUENCY (Hz) 1k 0 -10 -90 100 100 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO HEADPHONE) -100 10 POUT = 0.02W FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO HEADPHONE) THD+N RATIO (dB) -20 -60 FREQUENCY (Hz) MAX98090 toc138 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 32I -50 -100 10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO HEADPHONE) 0 -40 -80 OUTPUT POWER (W) -10 -30 -90 0.05 fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = +3dB RHP = 32I -20 THD+N RATIO (dB) -90 THD+N RATIO (dB) MAX98090 toc136 -40 -60 0 -10 THD+N RATIO (dB) -40 -20 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO HEADPHONE) MAX98090 toc139 THD+N RATIO (dB) -30 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = +3dB RHP = 32I -10 THD+N RATIO (dB) fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 32I -20 0 MAX98090 toc135 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO HEADPHONE) MAX98090 toc140 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HEADPHONE) 10 100 1k FREQUENCY (Hz) 10k 100k 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 61 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO HEADPHONE OUTPUT (CONTINUED) -40 POUT = 0.025W -50 -60 -70 -30 -40 -60 -70 -80 -90 -90 POUT = 0.01W 10 100 1k 10k 100k POUT = 0.02W -50 -80 -100 MAX98090 toc142 -20 10 100 1k 10k MAX98090 toc144 0 -1 -2 -3 100k 120 -5 10 100 1k FREQUENCY (Hz) fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB 100 -5 100 1k FREQUENCY (Hz) 10k 10k RHP = 16I 80 60 40 RHP = 32I 20 -4 www.maximintegrated.com -2 POWER CONSUMPTION vs. OUTPUT POWER (DAC TO HEADPHONE) 1 10 0 -1 FREQUENCY (Hz) CURRENT CONSUMPTION (mA) NORMALIZED GAIN (dB) 2 1 -4 -100 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32I 3 2 -3 GAIN vs. FREQUENCY (DAC TO HEADPHONE) 4 3 POUT = 0.01W FREQUENCY (Hz) 5 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = 0dB RHP = 32I 4 100k MAX98090 toc145 -30 5 NORMALIZED GAIN (dB) THD+N RATIO (dB) -20 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 32I -10 THD+N RATIO (dB) fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 16I -10 0 MAX98090 toc141 0 GAIN vs. FREQUENCY (DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO HEADPHONE) MAX98090 toc143 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (DAC TO HEADPHONE) 0 0.1 1 10 OUTPUT POWER PER CHANNEL (mW) 100 Maxim Integrated │ 62 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO HEADPHONE OUTPUT (CONTINUED) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (DAC TO HEADPHONE) POWER CONSUMPTION vs. OUTPUT POWER (DAC TO HEADPHONE) SPK_VDD 100 RHP = 16I 80 PSRR (dB) 80 60 40 20 20 RHP = 32I OTHER SUPPLIES 60 40 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P RHP = 32I 0 0 1 10 OUTPUT POWER PER CHANNEL (mW) 100 10 100 OTHER SUPPLIES fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE VRIPPLE = 100mVP-P RHP = 32I 40 20 0 10 100 100k -40 -60 LEFT TO RIGHT -80 RIGHT TO LEFT -100 -120 1k FREQUENCY (Hz) www.maximintegrated.com fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32I -20 CROSSTALK (dB) 80 60 0 MAX98090 toc148 SPK_VDD 1k 10k FREQUENCY (Hz) CROSSTALK vs. FREQUENCY (DAC TO HEADPHONE) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (DAC TO HEADPHONE) 120 100 MAX98090 toc149 0.1 PSRR (dB) MAX98090 toc147 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB 100 120 MAX98090 toc146 CURRENT CONSUMPTION (mA) 120 10k 100k 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 63 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO HEADPHONE OUTPUT (CONTINUED) -60 -80 -100 -120 -140 -40 -60 -80 -100 -120 5 10 15 20 MAX98090 toc152 -20 -40 -60 -80 -100 -120 -140 -160 0 fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = 0dB RHP = 32I 0 -140 -160 -160 0 5 10 15 20 0 5 10 15 20 FREQUENCY (kHz) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) -40 -60 -80 -100 -120 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32I 0 -20 -40 -60 -80 -100 -120 20 -20 -40 -60 -80 -100 -120 -140 -140 -140 -160 -160 -160 0 5 10 FREQUENCY (kHz) www.maximintegrated.com 15 20 0 5 10 FREQUENCY (kHz) 15 20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32I 0 OUTPUT AMPLITUDE (dBV) -20 20 OUTPUT AMPLITUDE (dBV) fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = 0dB RHP = 32I 0 MAX98090 toc155 FREQUENCY (kHz) MAX98090 toc153 FREQUENCY (kHz) 20 OUTPUT AMPLITUDE (dBV) -20 20 OUTPUT AMPLITUDE (dBV) -40 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = 0dB RHP = 32I 0 MAX98090 toc154 OUTPUT AMPLITUDE (dBV) -20 20 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) MAX98090 toc151 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = 0dB RHP = 32I 0 OUTPUT AMPLITUDE (dBV) 20 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) MAX98090 toc150 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) 0 5 10 15 20 FREQUENCY (Hz) Maxim Integrated │ 64 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) DAC PLAYBACK PATH INPUT TO HEADPHONE OUTPUT (CONTINUED) -60 -80 -100 -120 -140 -40 -60 -80 -100 -120 5 10 15 20 MAX98090 toc158 -20 -40 -60 -80 -100 -120 -140 -160 0 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = 0dB RHP = 32I 0 -140 -160 -160 0 5 10 15 20 0 5 10 15 20 FREQUENCY (kHz) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -6dBFS INPUT (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) -40 -60 -80 -100 -120 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 16I 0 -20 -40 -60 -80 -100 -120 20 -20 -40 -60 -80 -100 -120 -140 -140 -140 -160 -160 -160 0 5 10 FREQUENCY (kHz) www.maximintegrated.com 15 20 0 5 10 FREQUENCY (kHz) 15 20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 16I 0 OUTPUT AMPLITUDE (dBV) -20 20 OUTPUT AMPLITUDE (dBV) fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = 0dB RHP = 32I 0 MAX98090 toc161 FREQUENCY (kHz) MAX98090 toc159 FREQUENCY (kHz) 20 OUTPUT AMPLITUDE (dBV) -20 20 OUTPUT AMPLITUDE (dBV) -40 fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = 0dB RHP = 32I 0 MAX98090 toc160 OUTPUT AMPLITUDE (dBV) -20 20 INBAND OUTPUT SPECTRUM, -6dBFS INPUT (DAC TO HEADPHONE) MAX98090 toc157 fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = 0dB RHP = 32I 0 OUTPUT AMPLITUDE (dBV) 20 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) MAX98090 toc156 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 65 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO HEADPHONE OUTPUT -60 -70 -80 -90 -100 -110 -120 MAX98090 toc163 -40 -50 -60 -70 POUT = 10mW 3 0.02 0.03 0.04 10 0.05 100 1k 10k FREQUENCY (Hz) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (LINE TO HEADPHONE) CROSSTALK vs. FREQUENCY (LINE TO HEADPHONE) 80 BIAS_MODE = 1 60 40 20 -60 LEFT TO RIGHT RIGHT TO LEFT 10 100 1k FREQUENCY (Hz) www.maximintegrated.com 10k 100k 90 80 100k 60 50 40 RHP = 32I CIN = 10µF AV_HP = 0dB AV_LINEPGA = 0dB 20 -120 0 10k 100 30 -100 BIAS_MODE = 0 1k FREQUENCY (Hz) 70 -40 -80 100 COMMON-MODE REJECTION RATIO vs. FREQUENCY (LINE TO HEADPHONE) fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32I -20 10 CMRR (dBV) 100 0 CROSSTALK (dB) VRIPPLE = 100mVP-P RHP = 32I CIN = 10µF -2 100k MAX98090 toc166 OUTPUT POWER (W) 120 0 -1 -5 -100 0.01 1 -4 -90 fIN = 1000Hz 2 -3 POUT = 20mW -80 0 PSRR (dB) -30 AV_LINEPGA = 0dB AV_HP = 0dB RHP = 32I CIN = 10µF 4 MAX98090 toc167 fIN = 6000Hz fIN = 100Hz 5 NORMALIZED GAIN (dB) -50 -20 MAX98090 toc165 THD+N RATIO (dB) -30 -40 GAIN vs. FREQUENCY (LINE TO HEADPHONE) AV_LINEPGA = 0dB AV_HP = +8dB RHP = 32I CIN = 10µF -10 THD+N RATIO (dB) AV_LINEPGA = 0dB AV_HP = +3dB RHP = 32I CIN = 10µF -20 0 MAX98090 toc162 0 -10 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY (LINE TO HEADPHONE) MAX98090 toc164 TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (LINE TO HEADPHONE) 10 0 10 100 1k FREQUENCY (Hz) 10k 100k 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated │ 66 MAX98090 Ultra-Low Power Stereo Audio Codec Typical Operating Characteristics (continued) (VAVDD = VHPVDD = VDVDDIO = 1.8V, VDVDD = 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RRCV) connected between RCVP/LOUTL and RCVN/LOUTR (LINMOD = 0). Line output loads (RLOUT) connected between from RCVP/LOUTL and RCVN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RRCV = J, RLOUT = J, RHP = J, ZSPK = J. CREF = 2.2µF, CBIAS = CMICBIAS = 1µF, CC1N-C1P = CCPVDD = CCPVSS = 1µF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_RCV = AV_LOUT = AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) LINE INPUT TO HEADPHONE OUTPUT (CONTINUED) OUTPUT AMPLITUDE (dBV) 0 -20 -40 -60 -80 -100 -120 -140 AV_LINEPGA = 0dB AV_HP = 0dB RHP = 32I CIN = 10µF 0 -20 -40 -60 -80 -100 -120 -140 -160 -160 0 5 10 FREQUENCY (kHz) www.maximintegrated.com 20 MAX98090 toc169 AV_LINEPGA = 0dB AV_HP = 0dB RHP = 32I CIN = 10µF OUTPUT AMPLITUDE (dBV) 20 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (LINE TO HEADPHONE) MAX98090 toc168 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (LINE TO HEADPHONE) 15 20 0 5 10 15 20 FREQUENCY (kHz) Maxim Integrated │ 67 MAX98090 Ultra-Low Power Stereo Audio Codec IN4 27 MICBIAS DVDD 28 REF DVDDIO 29 BIAS DGND 30 AVDD SDIN TOP VIEW AGND Bump/Pin Configurations 26 25 24 23 22 21 SDOUT 31 20 IN3 LRCLK 32 19 IN1/DMD BCLK 33 18 IN2/DMC 17 SPKLGND IRQ 34 MCLK 35 16 SPKLP MAX98090 SCL 36 15 SPKLN 14 SPKLVDD SDA 37 HPVDD 38 13 SPKRVDD + C1P 39 12 SPKRP 11 SPKRN 8 9 10 SPKRGND HPR 7 RCVN/LOUTR 6 JACKSNS 5 RCVP/LOUTL 4 HPL CPVSS 3 HPSNS 2 CPVDD 1 HPGND C1N 40 TQFN (5mm x 5mm x 0.75mm) www.maximintegrated.com Maxim Integrated │ 68 MAX98090 Ultra-Low Power Stereo Audio Codec Bump/Pin Configurations (continued) TOP VIEW (BUMP SIDE DOWN) + MAX98090 1 2 3 4 5 6 7 SPKRGND SPKRN SPKRP SPKLP SPKLN RCVN/LOUTR N.C. SPKVDD SPKVDD JACKSNS IN3 IN2/DMC RCVP/LOUTL N.C. N.C. IN5 N.C. IN4 MICBIAS HPR HPSNS SCL IN6 N.C. REF AGND HPL SDA N.C. N.C. SDIN BIAS AVDD CPVDD C1N C1P IRQB LRCLK DVDDIO DVDD HPGND CPVSS HPVDD MCLK BCLK SDOUT DGND SPKLGND IN1/DMD A B C D E F G WLP (3.15mm x 3.15mm, 0.4 pitch) www.maximintegrated.com Maxim Integrated │ 69 MAX98090 Ultra-Low Power Stereo Audio Codec Bump/Pin Descriptions PIN BUMP TQFN WLP 1 G1 HPGND Headphone Ground 2 G2 CPVSS Inverting Charge-Pump Output. Bypass to HPGND with a 1µF ceramic capacitor. 3 F1 CPVDD Noninverting Charge-Pump Output. Bypass to HPGND with a 1µF ceramic capacitor. 4 E1 HPL 5 D2 HPSNS 6 D1 HPR 7 B5 JACKSNS 8 C1 RCVP/LOUTL Positive Earpiece Amplifier Output/Left Line Output Negative Earpiece Amplifier Output/Right Line Output MAX98090 FUNCTION Left-Channel Headphone Output Headphone Amplifier Ground Sense. Connect to the headphone jack ground terminal or connect to ground. Right-Channel Headphone Output Jack detection Input. Connect to the microphone terminal of the headset jack to detect jack activity. 9 B1 RCVN/LOUTR 10 A1 SPKRGND 11 A2 SPKRN Negative Right-Channel Class D Speaker Output 12 A3 SPKRP Positive Right-Channel Class D Speaker Output 13 — SPKRVDD Right Speaker Power Supply. Bypass to SPKRGND with a 1µF capacitor and a single 10µF bulk capacitor shared with SPKLVDD. 14 — SPKLVDD Left Speaker and Microphone Bias Power Supply. Bypass to SPKLGND with a 1µF capacitor and a single 10µF bulk capacitor shared with SPKRVDD. 15 A5 SPKLN Negative Left-Channel Class D Speaker Output 16 A4 SPKLP Positive Left-Channel Class D Speaker Output 17 A6 SPKLGND 18 B7 IN2/DMC Negative Differential Microphone 1 Input or single-ended Line Input 2. AC-couple with a series 1µF capacitor. Can be retasked as a digital microphone clock output. 19 A7 IN1/DMD Positive Differential Microphone 1 Input or single-ended Line Input 1. AC-couple with a series 1µF capacitor. Can be retasked as a digital microphone data input. 20 B6 IN3 Positive Differential Microphone 2 Input or single-ended Line Input 3. AC-couple with a series 1µF capacitor. 21 C6 IN4 Negative Differential Microphone 2 Input or single-ended Line input 4. AC-couple with a series 1µF capacitor. 22 C7 MICBIAS 23 D6 REF Converter Reference. Bypass to AGND with a 2.2µF capacitor. 24 E6 BIAS Common-Mode Reference Voltage. Bypass to AGND with a 1µF capacitor. 25 D7 AGND Analog Ground. 26 E7 AVDD Analog Power Supply. Bypass to AGND with a 1µF capacitor. 27 F7 DVDD Digital Power Supply. Bypass to DGND with a 1µF capacitor. 28 F6 DVDDIO www.maximintegrated.com Right Speaker Amplifier Ground Left Speaker Amplifier Ground. Low-Noise Microphone Bias Voltage Output. Bypass to SPKLGND with a 1µF capacitor. The bias voltage is programmable. An external resistor in the 2.2kΩ to 1kΩ range should be used to set the microphone current. Digital Audio Interface Power-Supply Input. Bypass to DGND with a 1µF capacitor. Maxim Integrated │ 70 MAX98090 Ultra-Low Power Stereo Audio Codec Bump/Pin Descriptions (continued) PIN BUMP TQFN WLP 29 G7 DGND Digital Ground 30 E5 SDIN Digital Audio Serial Data Playback Input. The input voltage is referenced to DVDDIO. 31 G6 SDOUT Digital Audio Serial Data Record Output. The output voltage is referenced to DVDDIO. Digital Audio Left-Right Clock Input/Output. LRCLK is the audio sample rate clock and determines whether audio data is routed to the left or right channel. In TDM mode, LRCLK is a frame sync pulse. LRCLK is an input when the device is in slave mode and an output when in master mode. The input voltage is referenced to DVDDIO. MAX98090 FUNCTION 32 F5 LRCLK 33 G5 BCLK 34 F4 IRQ 35 G4 MCLK 36 D3 SCL I2C Serial Clock Input. Connect a pullup resistor to DVDD for full output swing. 37 E2 SDA I2C Serial Data Input/Output. Connect a pullup resistor to DVDD for full output swing. 38 G3 HPVDD 39 F3 C1P Charge-Pump Flying Capacitor Positive Terminal. Connect a 1µF ceramic capacitor between C1N and C1P. 40 F2 C1N Charge-Pump Flying Capacitor Negative Terminal. Connect a 1µF ceramic capacitor between C1N and C1P. — B3, B4 SPKVDD Speaker and Microphone Bias Power Supply. Bypass each bump to SPK_GND with a 1µF capacitor with a single shared 10µF bulk capacitor. — C4 IN5 Auxiliary Positive Differential Microphone Input or Single-Ended Line Input. AC-couple with a series 1µF capacitor. — D4 IN6 Auxiliary Negative Differential Microphone Input or Single-Ended Line Input. AC-couple with a series 1µF capacitor. — B2, C2, C3, C5, D5, E3, E4 N.C. Not Connected Internally www.maximintegrated.com Digital Audio Bit Clock Input/Output. BCLK is an input when the device is in slave mode and an output when in master mode. The input/output voltage is referenced to DVDDIO. Active-Low Hardware Interrupt Output. Connect a 10kΩ pullup resistor to VDD. Master Clock Input. Acceptable input frequency range is either 256 x fS or from 10MHz to 60MHz. Headphone Power Supply. Bypass to HPGND with a 10µF bulk capacitor with a parallel 0.1µF capacitor as close as possible to the device. Maxim Integrated │ 71 MAX98090 Detailed Description The MAX98090 is a fully integrated stereo audio codec with FlexSound audio processing and integrated input and output audio amplifiers. The device features either six (WLP package) or four (TQFN package) flexible analog inputs. Each pair can be configured as a differential analog microphone input, a stereo single ended or differential line input(s), or as a reduced power, direct differential analog input to the ADC mixer. One input pair, IN1/IN2, can also be retasked to support two digital microphones. As a result, two microphones (either analog or digital) can be recorded from simultaneously. The input analog signals can be amplified by up to 50dB, and then are either recorded by the stereo ADC or routed directly to the analog output mixers for playback. The ADC supports sample rates between 8kHz and 96kHz, features two performance modes, and provides two oversampling rate options. The ADC to DAI digital record path features both voice (IIR) and Music (FIR) filtering, an optional DC-blocking highpass filter, a fully configurable biquad filter, and a -12dB to +45dB range of programmable digital gain and level control. The digital audio interface (DAI) can simultaneously transmit and receive separate and distinct stereo audio signals. The DAI supports a wide range of PCM digital audio formats including I2S, left justified (LJ), right justified (RJ), and four slot TDM. As with the record path, the DAI to DAC playback path supports sample rates from 8kHz to 96kHz, both voice (IIR) and music (FIR) filtering (high stop band attenuation at fS/2), optional DC blocking filters, and a -15dB to +18dB range of programmable digital gain and level control. In addition, the playback path also features a 7-band parametric biquad equalizer, dynamic range control (DRC), and a summing digital sidetone from the record path DSP. The device includes three analog output drivers. The first is a Class AB differential receiver/earpiece amplifier. Alternatively, the receiver amplifier can also be configured as a stereo single-ended line output driver. www.maximintegrated.com Ultra-Low Power Stereo Audio Codec The second is an integrated, filterless, Class D stereo speaker amplifier. This amplifier provides efficient amplification for two speakers, and includes active emissions limiting to minimize the radiated emissions (EMI) traditionally associated with Class D. The right channel features a slave mode, in which the switching is synchronized to that of the left channel to eliminate the beat tone that can occur with asynchronous operation. In most systems with short speaker traces, no Class D output filtering is required. The third is a Class H, ground referenced stereo headphone amplifier featuring Maxim’s second generation DirectDrive architecture. The Class H headphone amplifier features an internal charge pump that generates both a positive and negative supply for the headphone amplifier. This provides a ground referenced output signal that eliminates the need for either DC-blocking capacitors or a midrail bias for the headphone jack ground return. The headphone dedicated ground sense current return reduces crosstalk and output noise. A tracking circuit monitors the signal level and automatically selects the appropriate switching frequency and supply voltage level. For low signal levels, the charge pump switches at a reduced frequency and outputs ±VHPVDD/2 for improved efficiency. When the signal amplitude increases, the charge-pump switching frequency also increases, and continues to output ±VHPVDD/2. For high signal levels, the charge pump outputs full-scale rails at ±VHPVDD to maximize output power. The device also includes several additional features such as a programmable external microphone bias, configurable jack detection and identification, extensive click-and-pop reduction circuitry, power and performance management settings, and a full range of quick configuration options. Device I2C Register Map Table 1 lists all of the registers, their addresses, and power-on-reset (PoR) states. Registers 0x01, 0x02, and 0xFF are read only. Registers 0x01, 0x02, and 0xFF are read only. Registers 0x06 to 0x0B (quick setup) are write only (push button). All of the remaining registers are read/ write. Write zeros to all unused bits in the register table when updating the register, unless otherwise noted. Maxim Integrated │ 72 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map REGISTER DESCRIPTION ADDR NAME R/W REGISTER CONTENTS BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 POR STATE — — — — — — — 0x00 CLD SLD ULK — — JDET DRCACT DRCCLP 0x00 — — — — — LSNS JKSNS — 0x00 ICLD ISLD IULK — — IJDET BIT 7 RESET/STATUS/INTERRUPT REGISTERS 0x00 SOFTWARE RESET W SWRESET 0x01 0x02 DEVICE STATUS CoR JACK STATUS R 0x03 INTERUPT MASKS R/W IDRCACT IDRCCLP 0x04 QUICK SETUP REGISTERS 0x04 SYSTEM CLOCK W 26M 19P2M 13M 12P288M 12M 11P2896M — 256FS 0x00 0x05 SAMPLE RATE W — — SR_96K SR_32K SR_48K SR_44K1 SR_16K SR_8K 0x00 0x06 DAI INTERFACE W — — RJ_M RJ_S LJ_M LJ_S I2S_M I2S_S 0x00 0x07 DAC PATH W DIG2_HP DIG2_ EAR DIG2_ SPK DIG2_ LOUT — — — — 0x00 0x08 MIC/DIRECT TO ADC IN34_ MIC2 — — IN12_ DADC IN34_ DADC IN56_ DADC — 0x00 0x09 LINE TO ADC W IN12_MIC1 W IN12S_AB IN34S_AB IN56S_AB IN34D_A IN65D_B — — — 0x00 IN12_ M1HPL IN12_ M1SPKL IN12_ M1EAR IN12_ M1LOUTL IN34_ M2HPR IN34_ M2SPKR IN34_ M2EAR IN34_ M2LOUTR 0x00 W IN12S_ ABHP IN34D_ ASPKL IN34D_ AEAR IN12S_ ABLOUT IN34S_ ABHP IN65D _BSPKR IN65D_ BEAR IN34S_ ABLOUT 0x00 — — — — — — — — — 0x00 0x0A ANALOG MIC LOOP W 0x0B ANALOG LINE LOOP RESERVED REGISTER 0x0C RESERVED ANALOG INPUT CONFIGURATION REGISTERS 0x0D LINE INPUT CONFIG. R/W IN34DIFF IN65DIFF 0x0E LINE INPUT LEVEL R/W MIXG135 0x0F INPUT MODE IN1SEEN IN2SEEN IN3SEEN MIXG246 R/W EXTBUFA EXTBUFB IN4SEEN LINAPGA[2:0] — — IN5SEEN IN6SEEN LINBPGA[2:0] — — 0x00 0x1B EXT_MIC[1:0] 0x00 0x10 MIC1 INPUT LEVEL R/W — PA1EN[1:0] PGAM1[4:0] 0x14 0x11 MIC2 INPUT LEVEL R/W — PA2EN[1:0] PGAM2[4:0] 0x14 MICROPHONE CONFIGURATION REGISTERS 0x12 MIC BIAS VOLTAGE R/W — 0x13 DIGITAL MIC ENABLE R/W — 0x14 DIGITAL MIC CONFIG. R/W — — MICCLK[2:0] DMIC_COMP[3:0] — — — MBVSEL[1:0] 0x00 — — DIGMICR DIGMICL 0x00 — — DMIC_FREQ[1:0] 0x00 Note: Register bits in bold italics are for the WLP package only. www.maximintegrated.com Maxim Integrated │ 73 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME R/W REGISTER CONTENTS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 POR STATE ADC PATH AND CONFIGURATION REGISTERS 0x15 LEFT ADC MIXER R/W — MIXADL[6:0] 0x00 0x16 RIGHT ADC MIXER R/W — MIXADR[6:0] 0x00 LEFT RECORD LEVEL R/W — AVLG[2:0] AVL[3:0] 0x03 0x18 RIGHT RECORD R/W LEVEL — AVRG[2:0] AVR[3:0] 0x03 0x19 RECORD BIQUAD R/W LEVEL — AVBQ[3:0] 0x00 0x17 0x1A RECORD SIDETONE R/W — — DSTS[1:0] — — DVST[4:0] 0x00 CLOCK CONFIGURATION REGISTERS 0x1B SYSTEM CLOCK R/W — — PSCLK[1:0] FREQ[3:0] — — — — 0x00 — — — USE_MI 0x00 0x1C CLOCK MODE R/W 0x1D CLOCK RATIO NI MSB R/W 0x1E CLOCK RATIO NI LSB R/W NI[7:0] 0x00 0x1F CLOCK RATIO MI MSB R/W MI[15:8] 0x00 0x20 CLOCK RATIO MI LSB R/W MI[7:0] 0x00 0x21 MASTER MODE R/W — MAS NI[14:8] — — — — 0x00 BSEL[2:0] 0x00 INTERFACE CONTROL REGISTERS 0x22 INTERFACE FORMAT R/W — — RJ WCI BCI 0x23 TDM CONTROL R/W — — — — — 0x24 TDM FORMAT R/W SLOTL[1:0] SLOTR[1:0] DLY WS[1:0] — FSW 0x00 TDM SLOTDLY[3:0] 0x00 0x00 0x25 I/O R/W CONFIGURATION — — LTEN LBEN DMONO HIZOFF SDOEN SDIEN 0x00 0x26 FILTER R/W CONFIGURATION MODE AHPF DHPF DHF — — — — 0x80 0x27 DAI PLAYBACK LEVEL R/W DVM — 0x28 EQ PLAYBACK LEVEL R/W — — www.maximintegrated.com DVG[1:0] — EQCLP DV[3:0] 0x00 DVEQ[3:0] 0x00 Maxim Integrated │ 74 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME R/W REGISTER CONTENTS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 POR STATE HEADPHONE (HP) CONTROL REGISTERS R/W — — MIXHPL[5:0] 0x00 0x2A RIGHT HP MIXER R/W 0x29 LEFT HP MIXER — — MIXHPR[5:0] 0x00 0x2B — — MIXHP RSEL 0x2C LEFT HP VOLUME R/W HPLM — — HPVOLL[4:0] 0x1A 0x2D RIGHT HP VOLUME R/W HPRM — — HPVOLR[4:0] 0x1A HP CONTROL R/W MIXHP LSEL MIXHPRG[1:0] MIXHPLG[1:0] 0x00 SPEAKER (SPK) CONFIGURATION REGISTERS 0x2E LEFT SPK MIXER R/W — — MIXSPL[5:0] 0x00 0x2F RIGHT SPK MIXER R/W — SPK_ SLAVE MIXSPR[5:0] 0x00 0x30 — — 0x31 LEFT SPK VOLUME R/W SPLM — SPVOLL[5:0] 0x2C RIGHT SPK VOLUME SPRM — SPVOLR[5:0] 0x2C 0x32 SPK CONTROL R/W R/W — — MIXSPRG[1:0] MIXSPLG[1:0] 0x00 DYNAMIC RANGE CONTROL (DRC) CONFIGURATION REGISTERS 0x33 DRC TIMING 0x34 DRC COMPRESSOR R/W DRCCMP[2:0] DRCTHC[4:0] 0x00 0x35 DRC EXPANDER R/W DRCEXP[2:0] DRCTHE[4:0] 0x00 DRCG[4:0] 0x00 0x36 DRC GAIN R/W DRCEN R/W DRCRLS[2:0] — — — DRCATK[2:0] — 0x00 RECEIVER (RCV OR EARPIECE) AND LINE OUTPUT (LOUT) REGISTERS 0x37 RCV/LOUTL MIXER R/W — — 0x38 RCV/LOUTL CONTROL R/W — — — 0x39 RCV/LOUTL VOLUME R/W RCVLM — — 0x3A LOUTR MIXER R/W LINMOD — 0x3B LOUTR CONTROL R/W 0x3C — MIXRCVL[5:0] — — — 0x00 MIXRCVLG[1:0] RCVLVOL[4:0] 0x15 MIXRCVR[5:0] — — 0x00 — — — — JDWK — — — — — — — MBEN LINEAEN LINEBEN ADREN ADLEN 0x00 HPREN HPLEN SPREN SPLEN RCVLEN RCVREN DAREN DALEN 0x00 — — — — — ZDEN VS2EN VSEN 0x00 LOUTR VOLUME R/W RCVRM — 0x00 MIXRCVRG[1:0] RCVRVOL[4:0] 0x00 0x15 JACK DETECT AND ENABLE REGISTERS 0x3D JACK DETECT R/W JDETEN 0x3E INPUT ENABLE R/W 0x3F OUTPUT ENABLE R/W 0x40 LEVEL CONTROL R/W www.maximintegrated.com JDEB[1:0] 0x00 Maxim Integrated │ 75 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map (continued) REGISTER DESCRIPTION REGISTER CONTENTS ADDR NAME R/W BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 0x41 DSP FILTER ENABLE R/W — — — — RECBQEN BIT 2 BIT 1 BIT 0 EQ3BAND EQ5BAND EQ7BAND EN EN EN POR STATE 0x00 BIAS AND POWER MODE CONFIGURATION REGISTERS 0x42 BIAS CONTROL R/W — — — — — — — BIAS_ MODE 0x00 0x43 DAC CONTROL R/W — — — — — — PERF MODE DACHP 0x00 0x44 ADC CONTROL R/W — — — — — OSR128 ADC DITHER ADCHP 0x06 0x45 DEVICE SHUTDOWN R/W SHDN — — — — — — — 0x00 PLAYBACK PARAMETRIC EQUALIZER BAND 1: BIQUAD FILTER COEFFICIENT REGISTERS 0x46 R/W EQUALIZER BAND 1 R/W COEFFICIENT B0 R/W B0_1[23:16] — B0_1[15:8] — B0_1[7:0] — R/W EQUALIZER BAND 1 0x4A R/W 0x4B COEFFICIENT B1 R/W B1_1[23:16] — B1_1[15:8] — B1_1[7:0] — 0x4C R/W EQUALIZER BAND 1 R/W COEFFICIENT B2 0x4E R/W B2_1[23:16] — 0x4D B2_1[15:8] — B2_1[7:0] — 0x4F EQUALIZER BAND R/W 0x50 1 R/W COEFFICIENT A1 0x51 R/W A1_1[23:16] — A1_1[15:8] — A1_1[7:0] — 0x52 A2_1[23:16] — A2_1[15:8] — A2_1[7:0] — 0x47 0x48 0x49 0x53 0x54 R/W EQUALIZER BAND 1 R/W COEFFICIENT A2 R/W www.maximintegrated.com Maxim Integrated │ 76 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME R/W REGISTER CONTENTS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 POR STATE PLAYBACK PARAMETRIC EQUALIZER BAND 2: BIQUAD FILTER COEFFICIENT REGISTERS 0x55 R/W EQUALIZER BAND 2 R/W COEFFICIENT B0 R/W B0_2[23:16] — B0_2[15:8] — B0_2[7:0] — R/W EQUALIZER 0x59 BAND 2 R/W 0x5A COEFFICIENT B1 R/W B1_2[23:16] — B1_2[15:8] — B1_2[7:0] — 0x5B R/W EQUALIZER BAND 2 R/W COEFFICIENT B2 0x5D R/W B2_2[23:16] — 0x5C B2_2[15:8] — B2_2[7:0] — 0x5E A1_2[23:16] — A1_2[15:8] — 0x60 R/W EQUALIZER BAND 2 R/W COEFFICIENT A1 R/W A1_2[7:0] — 0x61 R/W A2_2[23:16] — A2_2[15:8] — A2_2[7:0] — 0x56 0x57 0x58 0x5F 0x62 0x63 EQUALIZER BAND 2 R/W COEFFICIENT A2 R/W PLAYBACK PARAMETRIC EQUALIZER BAND 3: BIQUAD FILTER COEFFICIENT REGISTERS 0x64 R/W EQUALIZER BAND 3 R/W COEFFICIENT B0 R/W B0_3[23:16] — B0_3[15:8] — B0_3[7:0] — B1_3[23:16] — B1_3[15:8] — 0x69 R/W EQUALIZER BAND 3 R/W COEFFICIENT B1 R/W B1_3[7:0] — 0x6A R/W EQUALIZER 0x6B BAND 3 R/W COEFFICIENT B2 0x6C R/W B2_3[23:16] — B2_3[15:8] — B2_3[7:0] — 0x6D EQUALIZER BAND 3 R/W COEFFICIENT A1 R/W A1_3[23:16] — A1_3[15:8] — A1_3[7:0] — R/W EQUALIZER BAND 3 R/W COEFFICIENT A2 R/W A2_3[23:16] — A2_3[15:8] — A2_3[7:0] — 0x65 0x66 0x67 0x68 0x6E 0x6F 0x70 0x71 0x72 R/W www.maximintegrated.com Maxim Integrated │ 77 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME R/W REGISTER CONTENTS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 POR STATE PLAYBACK PARAMETRIC EQUALIZER BAND 4: BIQUAD FILTER COEFFICIENT REGISTERS 0x73 R/W EQUALIZER BAND 4 R/W COEFFICIENT B0 R/W B0_4[23:16] — B0_4[15:8] — B0_4[7:0] — R/W EQUALIZER BAND 4 R/W COEFFICIENT B1 R/W B1_4[23:16] — B1_4[15:8] — B1_4[7:0] — 0x79 R/W EQUALIZER BAND 4 R/W COEFFICIENT B2 0x7B R/W B2_4[23:16] — 0x7A B2_4[15:8] — B2_4[7:0] — 0x7C EQUALIZER 0x7D BAND 4 R/W COEFFICIENT A1 0x7E R/W A1_4[23:16] — A1_4[15:8] — A1_4[7:0] — 0x7F A2_4[23:16] — A2_4[15:8] — A2_4[7:0] — 0x74 0x75 0x76 0x77 0x78 0x80 0x81 R/W R/W EQUALIZER BAND 4 R/W COEFFICIENT A2 R/W PLAYBACK PARAMETRIC EQUALIZER BAND 5: BIQUAD FILTER COEFFICIENT REGISTERS 0x82 B0_5[23:16] — B0_5[15:8] — 0x84 R/W EQUALIZER BAND 5 R/W COEFFICIENT B0 R/W B0_5[7:0] — 0x85 R/W — B1_5[15:8] — 0x87 EQUALIZER BAND 5 R/W COEFFICIENT B1 R/W B1_5[23:16] B1_5[7:0] — 0x88 R/W EQUALIZER 0x89 BAND 5 R/W 0x8A COEFFICIENT B2 R/W B2_5[23:16] — B2_5[15:8] — B2_5[7:0] — 0x8B R/W EQUALIZER 0x8C BAND 5 R/W 0x8D COEFFICIENT A1 R/W A1_5[23:16] — A1_5[15:8] — A1_5[7:0] — 0x8E A2_5[23:16] — A2_5[15:8] — A2_5[7:0] — 0x83 0x86 0x8F 0x90 R/W EQUALIZER BAND 5 R/W COEFFICIENT A2 R/W www.maximintegrated.com Maxim Integrated │ 78 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME R/W REGISTER CONTENTS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 POR STATE PLAYBACK PARAMETRIC EQUALIZER BAND 6: BIQUAD FILTER COEFFICIENT REGISTERS 0x91 R/W EQUALIZER BAND 6 R/W COEFFICIENT B0 R/W B0_6[23:16] — B0_6[15:8] — B0_6[7:0] — R/W EQUALIZER BAND 6 R/W COEFFICIENT B1 R/W B1_6[23:16] — B1_6[15:8] — B1_6[7:0] — B2_6[23:16] — B2_6[15:8] — 0x99 R/W EQUALIZER BAND 6 R/W COEFFICIENT B2 R/W B2_6[7:0] — 0x9A R/W EQUALIZER 0x9B BAND 6 R/W COEFFICIENT A1 0x9C R/W A1_6[23:16] — A1_6[15:8] — A1_6[7:0] — 0x9D A2_6[23:16] — A2_6[15:8] — A2_6[7:0] — 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x9E 0x9F R/W EQUALIZER BAND 6 R/W COEFFICIENT A2 R/W PLAYBACK PARAMETRIC EQUALIZER BAND 7: BIQUAD FILTER COEFFICIENT REGISTERS 0xA0 R/W EQUALIZER BAND 7 R/W COEFFICIENT B0 0xA2 R/W B0_7[23:16] — 0xA1 B0_7[15:8] — B0_7[7:0] — 0xA3 EQUALIZER 0xA4 BAND 7 R/W COEFFICIENT B1 0xA5 R/W B1_7[23:16] — B1_7[15:8] — B1_7[7:0] — 0xA6 EQUALIZER 0xA7 BAND 7 R/W 0xA8 COEFFICIENT B2 R/W B2_7[23:16] — B2_7[15:8] — B2_7[7:0] — 0xA9 R/W EQUALIZER 0xAA BAND 7 R/W 0xAB COEFFICIENT A1 R/W A1_7[23:16] — A1_7[15:8] — A1_7[7:0] — 0xAC A2_7[23:16] — 0xAD A2_7[15:8] — A2_7[7:0] — R/W R/W R/W EQUALIZER BAND 7 R/W COEFFICIENT A2 0xAE R/W www.maximintegrated.com Maxim Integrated │ 79 MAX98090 Ultra-Low Power Stereo Audio Codec Table 1. MAX98090 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME REGISTER CONTENTS R/W BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 POR STATE RECORD BIQUAD FILTER COEFFICIENT REGISTERS 0xAF R/W RECORD BIQUAD 0xB0 R/W COEFFICIENT B0 0xB1 R/W REC_B0[23:16] — REC_B0[15:8] — REC_B0[7:0] — 0xB2 R/W RECORD BIQUAD 0xB3 R/W COEFFICIENT B1 0xB4 R/W REC_B1[23:16] — REC_B1[15:8] — REC_B1[7:0] — 0xB5 R/W RECORD BIQUAD R/W COEFFICIENT B2 0xB7 R/W REC_B2[23:16] — 0xB6 REC_B2[15:8] — REC_B2[7:0] — 0xB8 R/W RECORD BIQUAD R/W COEFFICIENT A1 0xBA R/W REC_A1[23:16] — 0xB9 REC_A1[15:8] — REC_A1[7:0] — 0xBB REC_A2[23:16] — REC_A2[15:8] — REC_A2[7:0] — REVID[7:0] 0x43 R/W RECORD BIQUAD 0xBC R/W COEFFICIENT A2 0xBD R/W REVISION ID REGISTER 0xFF REVISION ID R Software Reset The device provides a software controlled reset (Table 2) that is used to return most registers to their default (POR) states (the record biquad and playback parametric equalizer coefficients are not reset). The software reset register is a pushbutton, write only register. As a result, a read of this register always returns 0x00. Writing logichigh to SWRESET triggers a software register reset, while writing a logic-low to SWRESET has no effect. Table 2. Software Reset Register ADDRESS: 0x00 BIT NAME TYPE POR DESCRIPTION Pushbutton Software Device Reset 0: Writing a logic low to SWRESET has no effect. 1: Reset all registers to their default POR values. This excludes the record biquad and playback parametric equalizer filter coefficients (Table 30 and Table 52). 7 SWRESET W 0 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — — 1 — — — — 0 — — — — www.maximintegrated.com Maxim Integrated │ 80 MAX98090 Ultra-Low Power Stereo Audio Codec Power and Performance Management The device includes comprehensive power management to allow the disabling of unused blocks to minimize supply current. In addition to this, the available power modes provide a software configurable choice between highest performance and reduced power consumption. Device Performance Configuration The Bias Control register (Table 3) selects the method used to derive the common-mode reference voltage. A common-mode bias created by resistive division (from the AVDD supply) facilitates lower overall power consumption by disabling the bandgap reference circuit. However, this type of BIAS reference has the disadvantage of scaling with the AVDD supply voltage (and thus also has reduced PSRR). When derived from a bandgap reference, BIAS is constant regardless of the supply voltage, but the additional circuitry increases power consumption. The ADC, DAC, and headphone playback all have optional high-performance modes (Tables 4 and 5). In each case, these modes trade additional power consumption for enhanced performance. The ADC also has optional Table 3. Bias Control Register ADDRESS: 0x42 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — — 1 — — — — 0 BIAS_MODE R/W 0 Select source for BIAS. 0: BIAS derived from resistive division. 1: BIAS created by bandgap reference. Table 4. DAC and Headphone Performance Mode Control Register ADDRESS: 0x43 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — — 1 PERFMODE R/W 0 Performance Mode Selects DAC to headphone playback performance mode: 1: Low power headphone playback mode. 0: High performance headphone playback mode. 0 DACHP R/W 0 DAC High-Performance Mode 0: DAC settings optimized for lowest power consumption. 1: DAC settings optimized for best performance. www.maximintegrated.com Maxim Integrated │ 81 MAX98090 Ultra-Low Power Stereo Audio Codec dither (recommended for the cleanest spectrum), and can be configured to two different oversampling rates. See the Analog-to-Digital Converter (ADC) section for additional details on ADC operation. Device Enable Configuration In addition to a device global shutdown control, the major input and output blocks can be independently enabled (or disabled) to optimize power consumption. The device global shutdown control is detailed in Table 6. Table 5. ADC Performance Mode Control Register ADDRESS: 0x44 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 OSR128 R/W 1 ADC Oversampling Rate 0: fADCCLK = 64 x fS 1: fADCCLK = 128 x fS 1 ADCDITHER R/W 1 ADC Quantizer Dither 0: Dither disabled. 1: Dither enabled. 0 ADCHP R/W 0 ADC High-Performance Mode 0: ADC is optimized for low power operation. 1: ADC is optimized for best performance. Table 6. Device Shutdown Register ADDRESS: 0x45 BIT NAME TYPE POR DESCRIPTION Device Active-Low Global Shutdown Control 0: Device is in shutdown. 1: Device is active. Certain registers should not be written to while the device is active (Table 90). 7 SHDN R/W 0 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — — 1 — — — — 0 — — — — www.maximintegrated.com Maxim Integrated │ 82 MAX98090 Ultra-Low Power Stereo Audio Codec Table 7 details the available input signal path enables (with the exception of the analog microphone inputs 1/2, which are enabled from registers 0x10 and 0x11, or Tables 9 and 10, respectively). Table 8 details the available output signal path enables. When the device is in global shutdown, the major input and output blocks are all disabled to conserve power. However, the I2C interface remains active and all device registers can be configured. Certain registers should be programmed while in shutdown only (detailed in Table 90). Changing these registers when the device is active could result in unexpected behavior. For optimal minimized power consumption, only enable the stage blocks that are part of the intended signal path configuration. Table 7. Input Enable Register ADDRESS: 0x3E DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 MBEN R/W 0 Microphone Bias Enable 0: Microphone bias disabled. 1: Microphone bias enabled. 3 LINEAEN R/W 0 Enables Line A Analog Input Block 0: Line A input amplifier disabled. 1: Line A input amplifier enabled. 2 LINEBEN R/W 0 Enables Line B Analog Input Block 0: Line B input amplifier disabled. 1: Line B input amplifier enabled. 1 ADREN R/W 0 Right ADC Enable 0: Right ADC disabled. 1: Right ADC enabled. 0 ADLEN R/W 0 Left ADC Enable 0: Left ADC disabled. 1: Left ADC enabled. www.maximintegrated.com Maxim Integrated │ 83 MAX98090 Ultra-Low Power Stereo Audio Codec Table 8. Output Enable Register ADDRESS: 0x3F DESCRIPTION BIT NAME TYPE POR 7 HPREN R/W 0 Right Headphone Output Enable 0: Right headphone output disabled. 1: Right headphone output enabled. 6 HPLEN R/W 0 Left Headphone Output Enable 0: Left headphone output disabled. 1: Left headphone output enabled. 5 SPREN R/W 0 Right Class D Speaker Output Enable 0: Right speaker output disabled. 1: Right speaker output enabled. 4 SPLEN R/W 0 Left Class D Speaker Output Enable 0: Left speaker output disabled. 1: Left speaker output enabled. 3 RCVLEN R/W 0 Receiver (Earpiece)/Left Line Output Enable 0: Receiver/left line output disabled. 1: Receiver/left line output enabled. 2 RCVREN R/W 0 Right Line Output Enable 0: Right line output disabled. 1: Right line output enabled. 1 DAREN R/W 0 Right DAC Digital Input Enable 0: Right DAC input disabled. 1: Right DAC input enabled. 0 DALEN R/W 0 Left DAC Digital Input Enable 0: Left DAC input disabled. 1: Left DAC input enabled. www.maximintegrated.com Maxim Integrated │ 84 MAX98090 Ultra-Low Power Stereo Audio Codec Audio Input Configuration The device features either six (WLP package) or four (TQFN package) flexible analog inputs. Each pair can be configured as either an analog microphone input, a MBEN MBVSEL[1:0] MICROPHONE BIAS GENERATOR MICBIAS IN1-IN2 IN5-IN6 PA1EN[1:0] PGAM1[4:0] MIC 1 INPUT MUX MIC 1 PREAMP MIC 1 PGA IN3 0dB 10dB 30dB MIC 2 INPUT MUX MIC 2 PREAMP EXTMIC[1] PA2EN[1:0] IN1SEEN IN3SEEN IN5SEEN IN34DIFF IN4 IN1 IN3 IN5 IN3-IN4 LINE A INPUT MIXER PCLK DIGMICR DIGITAL MIC DATA LEFT MUX DIGITAL MIC DATA LEFT MUX DMDL DMDR ADCL ADC LEFT ADLEN IN2/DMC IN5-IN6 DIGITAL MICROPHONE CONTROL FLEXSOUND TECHNOLOGY DSP DIGMICL MICCLK[2:0] EXTMIC[0] IN1/DMD IN3-IN4 single-ended or differential line input(s), or as a reduced power, full-scale differential analog input direct to the ADC mixer. The analog microphone and line inputs can either be routed to the stereo ADC mixer for recording or directly to any analog output mixer for playback. ADCR ADC RIGHT ADCHP OSR128 ADCDITHER ADREN 0dB TO 20dB ZDENB MIC 2 PGA 0dB TO 20dB 0dB 10dB 30dB PGAM2[4:0] IN1-IN2 IN3-IN4 LINEAEN EXTBUFA IN5-IN6 ADC LEFT LINE B MIXER LINE A MIC 1 MIXADL[6:0] MIC 2 LINE A PGA -6dB TO 20dB IN1-IN2 IN3-IN4 IN5 MIXG135 IN6 MIXG246 (WLP ONLY) IN2 IN4 IN6 IN6-IN5 LINAPGA[2:0] LINBPGA[2:0] IN5-IN6 ADC RIGHT MIXER LINE B LINE A MIC 1 MIXADR[6:0] MIC 2 LINE B INPUT MIXER IN2SEEN IN4SEEN IN6SEEN IN65DIFF LINE B PGA -6dB TO 20dB LINEBEN EXTBUFB MAX98090 ANALOG OUTPUT MIXERS Figure 5. Analog Audio Input Functional Diagram www.maximintegrated.com Maxim Integrated │ 85 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Microphone Inputs additional analog input pair (IN5 and IN6) can be configured as a differential input (IN5 - IN6) to either microphone amplifier 1 or 2 (Table 24). The device includes three differential microphone inputs (three for the WLP package and two for the TQFN package) and a programmable, low-noise microphone bias for powering a wide variety of external micro phones (Figure 6). By default, analog inputs IN1 and IN2 differentially (IN1/IN2) provide the input to microphone amplifier 1, while IN3 and IN4 differentially (IN3/IN4) form the input to microphone amplifier 2. For the WLP package, the MBEN In the typical application, one microphone input is used for the handset microphone and the other is used as an accessory microphone (IN1/IN2 and IN3/IN4). In systems using a background noise microphone, IN5/IN6 (WLP only) can be retasked as another microphone input. MIXADL[6:0] MBVSEL[1:0] IN1-IN2 MICROPHONE BIAS GENERATOR MICBIAS EXTMIC[0] PA1EN[1:0] IN3-IN4 IN5-IN6 ADC LEFT MIC 2 MIXER MIC 1 PGAM1[4:0] LINE A IN1/DMD IN2/DMC IN1-IN2 IN5-IN6 MIC 1 INPUT MUX IN5 LINE B MIC 1 PREAMP 0dB 10dB 30dB 0dB TO 20dB IN3-IN4 IN4 IN5-IN6 IN3-IN4 IN5-IN6 ADC RIGHT MIC 2 MIXER ZDENB LINE B IN3 IN1-IN2 MIC 1 LINE A IN6 (WLP ONLY) MIC 1 PGA MAX98090 MIC 2 INPUT MUX MIC 2 PREAMP EXTMIC[1] PA2EN[1:0] 0dB 10dB 30dB LINE A LINE B MIXADR[6:0] MIC 2 PGA 0dB TO 20dB PGAM2[4:0] ANALOG OUTPUT MIXERS Figure 6. Analog Microphone Input Functional Diagram www.maximintegrated.com Maxim Integrated │ 86 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Microphone Preamplifier and PGA The analog microphone inputs have two stages of programmable gain amplifiers, and are then routed to the ADC mixer (record), the analog outputs (playback), or simultaneously to both. The first, a coarse preamplifier gain stage, includes the analog microphone enable, and offers selectable 0dB, 20dB, or 30dB gain settings. The second, a fine gain stage, is a programmable-gain amplifier (PGA) adjustable from 0dB to 20dB in 1dB steps (Tables 9 and 10). Together, the two stages provide up to 50dB of signal gain for the analog microphone inputs. To maximize the signal-to-noise ratio, use the coarse gain settings of the first stage whenever possible. Zerocrossing detection is included on the PGA to minimize zipper noise while making gain changes. Table 9. Microphone 1 Enable and Level Configuration Register ADDRESS: 0x10 BIT NAME TYPE POR 7 — — — DESCRIPTION — 0 Microphone 1 Input Amplifier Enable and Coarse Gain Setting 00: Disabled 10: 20dB 01: 0dB 11: 30dB 4 1 Microphone 1 Programmable Gain Amplifier Fine Adjust Configuration 3 0 6 5 2 PA1EN[1:0] PGAM1[4:0] R/W R/W 0 1 1 0 0 0 0x1F: 0dB 0x14: 0dB 0x13: 1dB 0x12: 2dB 0x11: 3dB 0x10: 4dB 0x0F: 5dB 0x0E: 6dB 0x0D: 7dB 0x0C: 8dB 0x0B: 9dB 0x0A: 10dB 0x09: 11dB 0x08: 12dB 0x07: 13dB 0x06: 14dB 0x05: 15dB 0x04: 16dB 0x03: 17dB 0x02: 18dB 0x01: 19dB 0x00: 20dB Table 10. Microphone 2 Enable and Level Configuration Register ADDRESS: 0x11 BIT NAME TYPE POR 7 — — — PA2EN[1:0] R/W DESCRIPTION — 0 Microphone 2 Input Amplifier Enable and Coarse Gain Setting 00: Disabled 10: 20dB 01: 0dB 11: 30dB 4 1 Microphone 2 Programmable Gain Amplifier Fine Adjust Configuration 3 0 0x1F: 0dB 1 0x14: 0dB 0x13: 1dB 0x12: 2dB 0x11: 3dB 0x10: 4dB 0x0F: 5dB 6 5 2 PGAM2[4:0] R/W 0 1 0 0 0 www.maximintegrated.com 0x0E: 6dB 0x0D: 7dB 0x0C: 8dB 0x0B: 9dB 0x0A: 10dB 0x09: 11dB 0x08: 12dB 0x07: 13dB 0x06: 14dB 0x05: 15dB 0x04: 16dB 0x03: 17dB 0x02: 18dB 0x01: 19dB 0x00: 20dB Maxim Integrated │ 87 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Microphone Bias Voltage The device features a regulated, low noise microphone bias output (MICBIAS) that can be configured to power a wide range of external microphone devices. To enable the microphone bias output, set MBEN in the input enable register (Table 7). When the device is powered and the microphone bias is disabled (MBEN is low or the device is in shutdown), MICBIAS is placed in a high-impedance state. The microphone bias voltage can be set by the software to any one of 4 voltages (2.2V, 2.4V, 2.55V, or 2.8V) by programming the Microphone Bias Level Configuration register (Table 11). Digital Microphone Inputs One pair of microphone inputs (IN1/IN2) can also be configured to interface to up to two digital microphones (Figure 7). The record path DSP is automatically switched to accept the appropriate digital microphone data channel when enabled (Figure 13). Both channels (left and right) must be enabled to use the digital microphone interface. When both channels are enabled, the digital microphone interface provides a digital microphone clock on IN2/DMC and accepts PDM data on IN1/DMD. A single digital microphone input cannot be paired with a single analog microphone input. Left channel data is accepted on falling clock edges while the right channel data is accepted on the rising clock edges (see Figure 4 for timing requirements). To avoid any potential clipping and distortion, always enable the record path DC blocking filters to remove any built-in DC offsets when using a digital microphone input (AHPF, Table 21). The record path biquad filter and digital gain and level control stages can also be applied to digital microphone input signals. Digital Microphone Clock Configuration The digital microphone clock frequency (fDMC) can be configured to any one of 6 settings using MICCLK[2:0] (Table 13). The digital microphone clock is derived from a PCLK divider, with available settings ranging incrementally from fPCLK/2 to fPCLK/8. This wide range of available digital microphone clock frequencies is intended to support both current and next generation digital microphones. Table 12 lists the resulting clock frequencies for commonly used master clock (and resulting PCLK) frequencies. MICCLK[2:0] IN2/DMC IN1/DMD IN3 IN4 PCLK DIGITAL MICROPHONE CONTROL ADC LEFT MIXER ADC LEFT DIGMICL DMDL ADCL DIGITAL MIC LEFT MUX FLEXSOUND TECHNOLOGY DSP DMDR MICBIAS IN5 IN6 (WLP ONLY) MAX98090 ADC RIGHT MIXER ADC RIGHT ADCR LEFT RECORD PATH DSP DIGITAL MIC RIGHT MUX DAI RIGHT RECORD PATH DSP DIGMICR Figure 7. Digital Microphone Input Functional Diagram www.maximintegrated.com Maxim Integrated │ 88 MAX98090 Ultra-Low Power Stereo Audio Codec Table 11. Microphone Bias Level Configuration Register ADDRESS: 0x12 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — — MBVSEL[1:0] R/W 1 0 Microphone Bias Level Configuration 00: 2.2V 01: 2.4V 0 0 10: 2.55V 11: 2.8V Table 12. Digital Microphone Clocks for Commonly Used Master Clocks Settings Master Clock Frequency (fMCLK) Approximate Digital Microphone Clock Frequency (fDMC) 10MHz 11.2896MHz 12MHz 12.288MHz 13/26MHz 19.2MHz fPCLK/2 5.0MHz 5.645MHz 6.0MHz 6.144MHz 6.5MHz — fPCLK/3 3.333MHz 3.763MHz 4.0MHz 4.096MHz 4.333MHz 6.4MHz fPCLK/4 2.5MHz 2.822MHz 3.0MHz 3.072MHz 3.25MHz 4.8MHz fPCLK/5 2.0MHz 2.258MHz 2.4MHz 2.458MHz 2.6MHz 3.84MHz fPCLK/6 1.667MHz 1.882MHz 2.0MHz 2.048MHz 2.167MHz 3.2MHz fPCLK/8 1.25MHz 1.411MHz 1.5MHz 1.536MHz 1.625MHz 2.4MHz Table 13. Digital Microphone Enable ADDRESS: 0x13 BIT NAME TYPE POR 7 — — — 6 5 0 DMICCLK[2:0] R/W 4 0 0 DESCRIPTION — Digital Microphone Clock Rate Configuration 000: fDMC = fPCLK/2 100: fDMC = fPCLK/6 001: fDMC = fPCLK/3 101: fDMC = fPCLK/8 010: fDMC = fPCLK/4 110: Reserved 011: fDMC = fPCLK/5 111: Reserved 3 — — — — 2 — — — — 1 0 DIGMICR DIGMICL www.maximintegrated.com R/W R/W 0 Digital Microphone Clock and Right Channel Enable 0: Right record channel uses on-chip ADC. 1: Right record channel uses digital microphone input. Digital microphone clock (DMC) is enabled once both data channels are enabled. 0 Digital Microphone Clock and Left Channel Enable 0: Left record channel uses on-chip ADC. 1: Left record channel uses digital microphone input. Digital microphone clock (DMC) is enabled once both data channels are enabled. Maxim Integrated │ 89 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Microphone Frequency Compensation The digital microphone inputs can be configured to produce a wide range of digital microphone clock frequencies. To optimize performance over the entire range of available frequencies, the device provides configurable COMPENSATION FILTER RESPONSE (dB) DIGITAL MICROPHONE COMPENSATION FILTER RESPONSE vs. NORMALIZED FREQUENCY 2.5 DMIC_COMP = 6 DMIC_COMP = 5 2.0 DMIC_COMP = 4 1.5 DMIC_COMP = 3 DMIC_COMP = 2 DMIC_COMP = 1 DMIC_COMP = 0 1.0 0.5 0 0 x fS DMIC_COMP = 8 DMIC_COMP = 7 0.1 x fS 0.2 x fS 0.3 x fS 0.4 x fS 0.5 x fS NORMALIZED FREQUENCY Figure 8. Digital Microphone Compensation Filter Frequency Response frequency range and compensation settings. Once the master clock (and thus prescaled clock) frequency is decided, and the digital microphone clock divider is chosen, the digital microphone frequency range bits should be programmed to the correct range (DMIC_FREQ, Table 14). If quick configuration mode is used and a system clock bit is selected (Table 36), then the device automatically calculates and selects the correct range once the digital microphone clock divider is configured. www.maximintegrated.com The digital microphone inputs also provide a configurable frequency compensation filter with 9 frequency response settings (Figure 8). Every sample rate and MCLK/PCLK frequency (and the resulting digital microphone clock frequency) combination results in a different baseline frequency response. Table 15 to Table 20 provide the recommended compensation filter settings for the most commonly used PCLK frequency and sample rate combinations. Choose the PCLK divider that results in the DMC clock frequency closest to the optimal frequency for the built-in digital MIC hardware, and then set the correct DMIC frequency range (DMIC_FREQ, Table 14). Then, based on the desired sample rate, select the appropriate compensation settings from Table 14 (DMIC_COMP). If the system PCLK frequency does not match one of these commonly used rates, then refer to the table for the PCLK frequency that is closest (e.g., if the system PCLK frequency is 12.5MHz, see Table 17 as 12.288MHz is the closest common PCLK frequency). As before, choose the PCLK divider that results in the optimal DMC clock frequency, and set the appropriate DMIC frequency range (DMIC_FREQ, Table 14). Then choose the compensation settings based on the row that is the closest match to the configured DMC frequency. Similarly, for nonstandard sample rates choose the column with the common value closest to the actual system sample rate. In quick configuration mode, once both the system clock and sample rate bits are selected (Table 36 and Table 37), the device automatically selects the recommended response curve once the digital microphone clock divider is configured. The digital microphone input does not support sample rates in excess of 48kHz (where DHF = 1, Table 27). Maxim Integrated │ 90 MAX98090 Ultra-Low Power Stereo Audio Codec Table 14. Digital Microphone Configuration ADDRESS: 0x14 BIT NAME TYPE 7 0 6 DESCRIPTION POR 0 Digital Microphone Compensation Filter Configuration 0000–1000: Figure 8 details the available compensation filter configurations. 1001–1111: Configures the compensation filter to a pass through response. The compensation filter response scales with the sample rate up to the Nyquist bandwidth limit (fS/2). Automatically decoded in quick configuration mode. DMIC_COMP[3:0] R/W 3 — — — — 2 — — — — R/W 0 R/W 0 5 0 4 0 1 DMIC_FREQ[1:0] 0 Digital Microphone Frequency Range Configuration 00: fDMC < 3.5MHz 10: 4.5MHz ≤ fDMC 01: 3.5MHz ≤ fDMC < 4.5MHz 11: Reserved If any of the system clock quick configuration bits in register 0x04 are set, then the frequency range configuration is automatically decoded. Table 15. Recommended Compensation Filter Settings for fPCLK = 11.2896MHz fPCLK = fMCLK/PSCLK (See Table 34) RECOMMENDED DMIC_COMP SETTING BY SAMPLE RATE (kHz) MICCLK DIVIDER fDMC (MHz) DMIC_FREQ 8 16 32 44.1 48 0 fPCLK/2 5.6448 2 7 8 3 3 3 1 fPCLK/3 3.7632 1 7 8 2 2 2 2 fPCLK/4 2.8224 0 7 8 3 3 3 3 fPCLK/5 2.25792 0 7 8 6 6 6 4 fPCLK/6 1.8816 0 7 8 3 3 3 5 fPCLK/8 1.4112 0 7 8 3 3 3 Table 16. Recommended Compensation Filter Settings for fPCLK = 12MHz fPCLK = fMCLK/PSCLK (See Table 34) RECOMMENDED DMIC_COMP SETTING BY SAMPLE RATE (kHz) MICCLK DIVIDER fDMC (MHz) DMIC_FREQ 8 16 32 44.1 48 0 fPCLK/2 6 2 7 8 3 3 3 1 fPCLK/3 4 1 7 8 2 2 2 2 fPCLK/4 3 0 7 8 3 3 3 3 fPCLK/5 2.4 0 7 8 5 5 6 4 fPCLK/6 2 0 7 8 3 3 3 5 fPCLK/8 1.5 0 7 8 3 3 3 www.maximintegrated.com Maxim Integrated │ 91 MAX98090 Ultra-Low Power Stereo Audio Codec Table 17. Recommended Compensation Filter Settings for fPCLK = 12.288MHz fPCLK = fMCLK/PSCLK (See Table 34) RECOMMENDED DMIC_COMP SETTING BY SAMPLE RATE (kHz) MICCLK DIVIDER fDMC (MHz) DMIC_FREQ 8 16 32 44.1 48 0 fPCLK/2 6.144 2 7 8 3 3 3 1 fPCLK/3 4.096 1 7 8 2 2 2 2 fPCLK/4 3.072 0 7 8 3 3 3 3 fPCLK/5 2.4576 0 7 8 6 6 6 4 fPCLK/6 2.048 0 7 8 3 3 3 5 fPCLK/8 1.536 0 7 8 3 3 3 Table 18. Recommended Compensation Filter Settings for fPCLK = 13MHz fPCLK = fMCLK/PSCLK (See Table 34) MICCLK DIVIDER 0 1 RECOMMENDED DMIC_COMP SETTING BY SAMPLE RATE (kHz) fDMC (MHz) DMIC_FREQ 8 16 32 44.1 48 fPCLK/2 6.5 2 7 8 1 1 1 fPCLK/3 4.333 1 7 8 0 0 1 2 fPCLK/4 3.25 0 7 8 1 1 1 3 fPCLK/5 2.6 0 7 8 4 4 5 4 fPCLK/6 2.167 0 7 8 1 1 1 5 fPCLK/8 1.625 0 7 8 1 1 1 Table 19. Recommended Compensation Filter Settings for fPCLK = 19.2MHz fPCLK = fMCLK/PSCLK (See Table 34) RECOMMENDED DMIC_COMP SETTING BY SAMPLE RATE (kHz) MICCLK DIVIDER fDMC (MHz) DMIC_FREQ 8 16 32 44.1 48 0 fPCLK/2 — — — — — — — 1 fPCLK/3 6.4 2 7 8 1 1 1 2 fPCLK/4 4.8 2 7 8 5 5 6 3 fPCLK/5 3.84 1 7 8 2 2 3 4 fPCLK/6 3.2 0 7 8 1 1 2 5 fPCLK/8 2.4 0 7 8 5 5 6 Table 20. Recommended Compensation Filter Settings for fPCLK = 256 x fS fPCLK = fMCLK/PSCLK (See Table 34) RECOMMENDED DMIC_COMP SETTING BY SAMPLE RATE (kHz) MICCLK DIVIDER fDMC (MHz) DMIC_FREQ 8 16 32 44.1 48 0 fPCLK/2 — — 7 8 3 3 3 1 fPCLK/3 — — 7 8 2 2 2 2 fPCLK/4 — — 7 8 3 3 3 3 fPCLK/5 — — 7 8 6 6 6 4 fPCLK/6 — — 7 8 3 3 3 5 fPCLK/8 — — 7 8 3 3 3 www.maximintegrated.com Maxim Integrated │ 92 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Line Inputs Analog Line Input Mixers The device includes multiple line level input options and two analog line input programmable gain amplifiers (PGAs, Figure 9). The line input structure supports multiple configurations including stereo single-ended inputs, stereo differential inputs, and stereo mixed single-ended inputs (any two per line input mixer). The analog line input mixer allows the selection of either single-ended or differential inputs to each line input channel (Table 21). The line A input mixer can accept singleended inputs from IN1, IN3, and IN5, or a differential input from IN3 and IN4 (IN3 - IN4). The line B input mixer can accept single-ended inputs from IN2, IN4, and IN6, or a MIXG135 IN1/DMD IN2/DMC IN1-IN2 IN1 IN3 IN5 IN3-IN4 LINE A INPUT MIXER -6dB/0dB MIC 1 IN4 IN2SEEN IN4SEEN IN6SEEN IN65DIFF MIC 2 IN6 IN5 IN3-IN4 IN5-IN6 ADC LEFT MIC 2 MIXER MIC 1 LINE A LINEAEN EXTBUFA LINE B IN1-IN2 MAX98090 MIC 2 IN2 IN4 IN6 IN6-IN5 -6dB TO 20dB LINE A PGA IN1SEEN IN3SEEN IN5SEEN IN34DIFF MIC 1 IN3 MIXADL[6:0] LINAPGA[2:0] IN3-IN4 IN5-IN6 LINEBEN EXTBUFB ADC RIGHT MIC 2 MIXER MIC 1 LINE A LINE B INPUT MIXER -6dB/0dB -6dB TO 20dB LINE B PGA LINE B MIXADR[6:0] (WLP ONLY) MIXG246 ANALOG OUTPUT MIXERS LINBPGA[2:0] Figure 9. Analog Line Input Functional Diagram Table 21. Line Input Mixer Configuration Register ADDRESS: 0x0D DESCRIPTION BIT NAME TYPE POR 7 IN34DIFF R/W 0 Selects IN3, IN4 differentially as an input to the line A mixer. 6 IN65DIFF R/W 0 Selects IN6, IN5 differentially as an input to the line B mixer (WLP only). 5 IN1SEEN R/W 0 Selects IN1 single ended as an input to the line A mixer. 4 IN2SEEN R/W 0 Selects IN2 single ended as an input to the line B mixer. 3 IN3SEEN R/W 0 Selects IN3 single ended as an input to the line A mixer. 2 IN4SEEN R/W 0 Selects IN4 single ended as an input to the line B mixer. 1 IN5SEEN R/W 0 Selects IN5 single ended as an input to the line A mixer (WLP only). 0 IN6SEEN R/W 0 Selects IN6 single ended as an input to the line B mixer (WLP only). www.maximintegrated.com Maxim Integrated │ 93 MAX98090 Ultra-Low Power Stereo Audio Codec differential input from IN5 and IN6 (IN6 - IN5). Internally, all analog signal paths are differential. As a result, singleended inputs have a built in baseline gain of +6dB (from the single-ended to differential conversion) while differential inputs have 0dB of built in gain. The line input mixer can also be set to accept and mix any two single-ended inputs. To facilitate full-scale signals, when mixing two single-ended inputs an optional -6dB of attenuation is available (MIXG135 and MIXG246, Table 23). The line input mixer attenuation setting has no effect if enabled when only a single input source is selected. If a differential input to either mixer is enabled, any single-ended inputs that are also selected are ignored, and the mixer accepts only the differential input. Analog Line Input PGAs To facilitate a wide range of input signal levels, each analog line input includes a coarse programmable gain amplifier (PGA) that can provide from 6dB of attenuation to 20dB of signal gain. The line inputs are then routed to either the ADC mixer (record) or analog outputs (playback). If the line input signal exceeds full scale and requires additional attenuation, the external gain mode provides trimmed internal feedback resistors (20kΩ) for custom gain levels. Line input external gain mode is not intended to provide positive gain, and as such for optimal performance any gain of -6dB of higher should be set using the provided internal PGA gain settings. Differentially, the external line input gain is set by using two precision (1% or better), well-matched series input resistors (Figure 10). Use the following formula to calculate the appropriate differential series input resistors: AV_EXTLINE = 20 x log (20kΩ/RS_EXT) For single-ended inputs, the external line input gain is set using a single precision (1% or better) series input resistor (Figure 10). However, due to the internal single-ended to differential conversion, this configuration creates an unbalanced differential amplifier configuration (configured external gain paired with a fixed internal gain of +6dB). Table 22 provides the appropriate series resistance values for common attenuation settings. Table 22. External Gain Mode Series Resistance Values RS_EXT LINE INPUT EXTERNAL GAIN (dB) DIFFERENTIAL (kΩ) SINGLE-ENDED (kΩ) AV_EXTLINE = -9.5 60 84.5 AV_EXTLINE = -12.0 80 115 AV_EXTLINE = -15.0 112 165 AV_EXTLINE = -18.0 160 237 DIFFERENTIAL LINE INPUT SINGLE-ENDED LINE INPUT RFB_INT+ = 20kΩ VIN_DIFF+ VIN_DIFF- RS_EXT+ LINE A PGA RS_EXTRFB_INT- = 20kΩ RFB_INT+ = 20kΩ VIN_SINGLE-ENDED VCOMMON_MODE RS_EXT+ LINE A PGA RS_EXT- = 15kΩ RFB_INT- = 30kΩ Figure 10. Analog Line Input External Gain Configurations www.maximintegrated.com Maxim Integrated │ 94 MAX98090 Ultra-Low Power Stereo Audio Codec Table 23. Line Input Level Configuration Register ADDRESS: 0x0E DESCRIPTION BIT NAME TYPE POR 7 MIXG135 R/W 0 Enable for a -6dB Reduction for Two Single-Ended Line A Mixer Inputs 0: Normal line A mixer operation. 1: Gain is reduced by -6dB when two single-ended inputs are selected. 6 MIXG246 R/W 0 Enable for a -6dB Reduction for Two Single-Ended Line B Mixer Inputs 0: Normal line B mixer operation. 1: Gain is reduced by -6dB when two single-ended inputs are selected 0 Line Input A Programmable Internal Preamp Gain Configuration LINAPGA[2:0] R/W 5 4 1 3 1 2 0 1 LINBPGA[2:0] R/W 0 1 1 000: 20dB 001: 14dB 010: 3dB 011: 0dB 100: -3dB 101, 110, 111: -6dB Line Input B Programmable Internal Preamp Gain Configuration 000: 20dB 001: 14dB 010: 3dB 011: 0dB 100: -3dB 101, 110, 111: -6dB Table 24. Input Mode and Source Configuration Register ADDRESS: 0x0F DESCRIPTION BIT NAME TYPE POR 7 EXTBUFA R/W 0 Selects external resistor gain mode for line input A. 6 EXTBUFB R/W 0 Selects external resistor gain mode for line input B. 5 — — — — 4 — — — — 3 — — — — 2 — — — — External Analog Microphone (IN5/IN6) MUX Configuration (WLP Only) 1 0 EXTMIC[1:0] 0 www.maximintegrated.com R/W 0 00: External microphone disabled: IN1/IN2 selected for MIC 1 IN3/IN4 selected for MIC 2 10: External microphone to MIC 2: IN1/IN2 selected for MIC 1 IN5/IN6 selected for MIC 2 01: External microphone to MIC 1: IN5/IN6 selected for MIC 1 IN3/IN4 selected for MIC 2 11: Reserved. Maxim Integrated │ 95 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Input PGA to Analog Output Mixer Analog Full-Scale Direct to ADC Mixer Inputs The analog line input PGA and analog microphone PGA outputs can be routed directly to any of the analog output mixers. This configuration allows the analog inputs to operate as line or microphone level input amplifiers capable of driving headphone, speaker, receiver, or line output loads. The analog inputs can also be mixed with the DAC outputs to any of the available analog output mixers. The figures in the appropriate analog input and output sections detail the signal routing. The analog inputs can also be configured to accept and route differential analog signals directly to the ADC mixers (record path, Figure 11). By disabling and bypassing the analog microphone and line input gain stages, this mode provides a reduced power configuration for full-scale (up to 1VRMS) analog input signals. Unlike the analog microphone and line input configurations, this mode does not allow the input signals to be routed directly to the analog output mixers (playback path, Figure 32). MIXADL[6:0] IN1/DMD IN1-IN2 IN2/DMC IN3-IN4 ADLEN IN5-IN6 ADC LEFT MIC 2 MIXER MIC 1 IN3 LINE A IN4 LINE B IN1-IN2 ADC LEFT ADCHP OSR128 ADCDITHER FLEXSOUND TECHNOLOGY DSP IN3-IN4 IN5-IN6 ADC RIGHT MIC 2 MIXER MIC 1 IN5 IN6 ADC RIGHT LINE A (WLP ONLY) LINE B MAX98090 ADREN MIXADR[6:0] Figure 11. Analog Direct to ADC Mixer Input Functional Diagram www.maximintegrated.com Maxim Integrated │ 96 MAX98090 Ultra-Low Power Stereo Audio Codec Audio Record Path The device record path comprises several sequential blocks. The first block is a stereo ADC with configurable mixers that can accept input from the microphone PGAs, line input PGAs, or directly differentially from any of the analog input pairs. Internally, the digital record path has two channels (left and right), which accept a digital signal either from the appropriate digital microphone or ADC output channel. The two channels then pass through several DSP stages before being routed into the digital audio interface (DAI, Figure 12). DIGITAL MIC DATA IN1-IN2 IN3-IN4 MIXADL[6:0] DMDL IN5-IN6 ADC LEFT LINE B MIXER LINE A ADC LEFT ADCL MIC 1 MIC 2 IN1-IN2 LEFT RECORD PATH DIGITAL MIC LEFT MUX DIGMICL ADLEN ADREN ADCHP OSR128 ADCDITHER DIGMICR DMDR IN3-IN4 IN5-IN6 ADC LINE A RIGHT LINE B MIXER MIC 1 MIC 2 ADC RIGHT MIXADR[6:0] ADCR DIGITAL MIC RIGHT MUX LEFT FILTERS LEFT BIQUAD FILTER MODE AHPF DHF RECBQEN AVBQ[3:0] REC_B0[23:0] REC_B1[23:0] REC_B2[23:0] REC_A1[23:0] REC_A2[23:0] DSTS[1:0] RIGHT FILTERS RIGHT BIQUAD FILTER RIGHT SIDETONE FLEXSOUND TECHNOLOGY DSP LEFT SIDETONE LEFT LEVEL AVLG[2:0] AVL[3:0] AVRG[2:0] AVR[3:0] DAI RIGHT LEVEL RIGHT RECORD PATH SIDETONE TO PLAYBACK PATH L/R ST LEVEL DVST[3:0] Figure 12. Record Path Block Diagram www.maximintegrated.com Maxim Integrated │ 97 MAX98090 Ultra-Low Power Stereo Audio Codec DIGITAL MIC DATA IN1-IN2 IN3-IN4 MIXADL[6:0] DMDL IN5-IN6 ADC LINE A LEFT LINE B MIXER ADC LEFT ADCL MIC 1 MIC 2 IN1-IN2 LEFT RECORD PATH DIGITAL MIC LEFT MUX DIGMICL ADLEN ADREN ADCHP OSR128 ADCDITHER DIGMICR DMDR IN3-IN4 IN5-IN6 ADC RIGHT LINE B MIXER LINE A MIC 1 MIC 2 ADC RIGHT ADCR MIXADR[6:0] DIGITAL MIC RIGHT MUX LEFT FILTERS LEFT BIQUAD FILTER MODE AHPF DHF RECBQEN AVBQ[3:0] REC_B0[23:0] REC_B1[23:0] REC_B2[23:0] REC_A1[23:0] REC_A2[23:0] DSTS[1:0] RIGHT FILTERS RIGHT BIQUAD FILTER RIGHT SIDETONE LEFT SIDETONE LEFT LEVEL AVLG[2:0] AVL[3:0] AVRG[2:0] AVR[3:0] DAI RIGHT LEVEL RIGHT RECORD PATH FLEXSOUND TECHNOLOGY DSP SIDETONE TO PLAYBACK PATH L/R ST LEVEL DVST[3:0] Figure 13. Record Path ADC Section Analog-to-Digital Converter (ADC) The stereo ADC architecture includes two independent audio paths and provides a flexible, fully configurable input mixer, two performance and power based configuration options, oversampling rate selection, and an input dither option (Figure 13). Both ADC channels can be enabled independently allowing the device to support both stereo and left or right mono configurations (Table 7). ADC Functional Configuration The ADC can be configured into one of two operating modes. One operating mode is optimized for maximum dynamic performance while the other is optimized for lower power consumption (Table 5). Input dither can also be added to the ADC record path. This feature consumes almost no appreciable power, but raises the RMS level of the noise floor slightly at the high end of the audio band. The ADC supports both an over sampling rate (OSR) of 64 and 128 times the configured sampling frequency (fS). An OSR of 128 x fS optimizes ADC performance at the cost of slightly more power consumption than an OSR of 64 x fS. www.maximintegrated.com The DSP timing, however, places some limitations on which OSR can be used. For voice applications using standard (fS = 8kHz) and wideband (fS = 16kHz) sampling rates, the DSP is typically configured to utilize the voice filters (IIR). If the voice filters are enabled, the OSR is automatically configured to 128 x fS and cannot be manually reprogrammed in order to meet timing requirements. In most standard music/full audio range applications (where fS = 32kHz, 44.1kHz, 48kHz, etc.) the music filters (FIR) are used. If the music filters are enabled, the OSR can be configured manually, however, the prescaled master clock (PCLK) must always be at least twice the frequency of the ADC sampling clock. To ensure this condition is met, if fPCLK < 256 x fS, then the OSR must be set to 64 x fS. In addition, if the sampling rate exceeds 48kHz (DHF = 1, such as fS = 96kHz), then the OSR must be configured to 64 x fS regardless of the ratio. In any other music filter configuration, OSR = 128 can be selected as desired for optimal ADC performance. Maxim Integrated │ 98 MAX98090 Ultra-Low Power Stereo Audio Codec ADC Input Mixer Configuration The device allows for each ADC input mixer to be configured separately to accept any combination of valid input sources. The ADC mixers can accept input from the microphone PGAs (1 or 2), line input PGAs (A or B), or directly differentially from any of the analog input pairs (IN1/IN2, IN3/IN4, or IN5/IN6). The ADC input mixers then route the selected sources to the left and right ADC inputs (Tables 25 and Table 26). Record Path FlexSound DSP The digital record path is part of the FlexSound technology DSP and comprises multiple sequential DSP blocks. The first DSP stage contains digital filters including a voice filter (IIR), music filter (FIR), and a highpass DC-blocking filter. The next stage is a digital biquad filter with a pre-attenuation amplifier, and it is followed by a digital gain and level control stage. The record path DSP also features a digital sidetone path that is routed to and mixed into the digital playback path (Figure 14). Record Path Digital Filters The record path DSP includes a digital filter stage. One filter, set with the MODE bit (Table 27), offers the choice between the IIR voice filters and the FIR music filters. The IIR filters are optimized for standard (fS = 8kHz) and wideband (fS = 16kHz) voice applications, while the FIR filters are optimized for low power operation at higher audio/ music sampling rates. For sampling rates in excess of 48kHz (fLRCLK > 48kHz), use the FIR music filters and set the DHF bit. The MODE configuration selected applies to both channels of both the record and playback path DSP. The record path DSP also features a DC-blocking filter. This filter can be used with both the IIR voice and FIR music filters, and blocks low frequency (including DC) input signals outside of the lower end of the audio band. Table 25. Left ADC Mixer Input Configuration Register ADDRESS: 0x15 BIT NAME 7 — TYPE POR DESCRIPTION — — — 6 R/W 0 Selects microphone input 2 to left ADC mixer. 5 R/W 0 Selects microphone input 1 to left ADC mixer. 4 R/W 0 Selects line input B to left ADC mixer. R/W 0 Selects line input A to left ADC mixer. 2 R/W 0 Selects IN5/IN6 differential input direct to left ADC mixer (WLP only). 1 R/W 0 Selects IN3/IN4 differential input direct to left ADC mixer. 0 R/W 0 Selects IN1/IN2 differential input direct to left ADC mixer. 3 MIXADL[6:0] Table 26. Right ADC Mixer Input Configuration Register ADDRESS: 0x16 BIT NAME 7 — TYPE POR DESCRIPTION — — 6 R/W 0 Selects microphone input 2 to right ADC mixer. 5 R/W 0 Selects microphone input 1 to right ADC mixer. 4 R/W 0 Selects line input B to right ADC mixer. 3 — R/W 0 Selects line input A to right ADC mixer. 2 R/W 0 Selects IN5/IN6 differential input direct to right ADC mixer (WLP only). 1 R/W 0 Selects IN3/IN4 differential input direct to right ADC mixer. 0 R/W 0 Selects IN1/IN2 differential input direct to right ADC mixer. MIXADR[6:0] www.maximintegrated.com Maxim Integrated │ 99 MAX98090 Ultra-Low Power Stereo Audio Codec DIGITAL MIC DATA IN1-IN2 IN3-IN4 DMDL MIXADL[6:0] IN5-IN6 ADC LEFT LINE B MIXER LINE A ADCL ADC LEFT MIC 1 LEFT RECORD PATH DIGITAL MIC LEFT MUX DIGMICL MIC 2 ADLEN ADREN IN1-IN2 ADCHP OSR128 ADCDITHER DIGMICR DMDR IN3-IN4 IN5-IN6 ADC LINE A RIGHT LINE B MIXER MIC 1 ADCR ADC RIGHT MIXADR[6:0] MIC 2 DIGITAL MIC RIGHT MUX LEFT FILTERS LEFT BIQUAD FILTER MODE AHPF DHF RECBQEN AVBQ[3:0] REC_B0[23:0] REC_B1[23:0] REC_B2[23:0] REC_A1[23:0] REC_A2[23:0] DSTS[1:0] RIGHT FILTERS RIGHT BIQUAD FILTER RIGHT SIDETONE LEFT SIDETONE LEFT LEVEL AVLG[2:0] AVL[3:0] AVRG[2:0] AVR[3:0] DAI RIGHT LEVEL RIGHT RECORD PATH SIDETONE TO PLAYBACK PATH FLEXSOUND TECHNOLOGY DSP L/R ST LEVEL DVST[3:0] Figure 14. Record Path FlexSound Technology DSP Block Table 27. DSP Filter Configuration Register ADDRESS: 0x26 BIT NAME TYPE POR DESCRIPTION 7 MODE R/W 1 Enables the Codec DSP FIR Music Filters (Default IIR Voice Filters) 0: The codec DSP filters operate in IIR voice mode with stop band frequencies below the fS/2 Nyquist rate. The voice mode filters are optimized for 8kHz or 16kHz voice application use. 1: The codec DSP filters operate in a linear phase FIR audio mode optimized to maintain stereo imaging and operate at higher fS rates while utilizing lower power. 6 AHPF R/W 0 Enables the Record Path DC-Blocking Filter 0: DC-blocking filter disabled. 1: DC-blocking filter enabled. 5 DHPF R/W 0 Enables the Playback Path DC-Blocking Filter 0: DC-blocking filter disabled. 1: DC-blocking filter enabled. 4 DHF R/W 0 Enables the DAC High Sample Rate Mode (LRCLK > 48kHz, FIR Only) 0: LRCLK is less than 48kHz. 8x FIR interpolation filter used. 1: LRCLK is greater than 48kHz. 4x FIR interpolation filter used. 3 — — — — 2 — — — — 1 — — — — 0 — — — — www.maximintegrated.com Maxim Integrated │ 100 MAX98090 Ultra-Low Power Stereo Audio Codec Record Path Biquad Filter The record path DSP has a single stage digital biquad filter with a programmable preattenuation amplifier. The digital biquad filter configuration applies to both the left and right record channels. To enable the record path biquad filter, set RECBQEN high (Table 28). Once enabled, the level of preattenuation can be adjusted from 0dB down to -15dB (denoted AV_BQ, see Table 29). The digital biquad filter cannot be set to a gain greater than ±12dB, to a Q greater than 10, or to below a minimum fC that varies by filter type. See the Electrical Characteristics table. The digital biquad coefficients are uninitialized at powerup, and if the filter is going to be used, the coefficients must be programmed before the device and biquad filter are enabled. The transfer function is: H(z) = B 0 + B 1 × Z −1 + B 2 × Z −2 A 0 + A 1 × Z −1 + A 2 × Z −2 Table 28. DSP Biquad Filter Enable Register ADDRESS: 0x41 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 RECBQEN R/W 0 Enable Biquad Filter in Record Path 0: Biquad filter not used. 1: Biquad filter used in record path. 2 EQ3BANDEN R/W 0 Enable 3-Band EQ in Playback Path (Bands 4–7 Are Not Used) 0: 3-band EQ disabled. 1: 3-band EQ enabled. Only valid if EQ7BANDEN = 0 and EQ5BANDEN = 0. 1 EQ5BANDEN R/W 0 Enable 5-Band EQ in Playback Path (Bands 6 and 7 Are Not Used) 0: 5-band EQ disabled. 1: 5-band EQ enabled. Only valid if EQ7BANDEN = 0 0 EQ7BANDEN R/W 0 Enable 7-Band EQ in Playback Path 0 : 7-band EQ disabled. 1 : 7-band EQ enabled. This makes EQ5BANDEN and EQ3BANDEN redundant. Table 29. Record Path Biquad Digital Preamplifier Level Configuration Register ADDRESS: 0x19 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 2 1 0 AVBQ[3:0] 0 www.maximintegrated.com R/W 0 0 0 ADC Biquad Digital Preamplifier Gain Configuration 0x0: +0dB 0x1: -1dB 0x2: -2dB 0x3: -3dB 0x4: -4dB 0x5: -5dB 0x6: -6dB 0x7: -7dB 0x8: -8dB 0x9: -9dB 0xA: -10dB 0xB: -11dB 0xC: -12dB 0xD: -13dB 0xE: -14dB 0xF: -15dB Maxim Integrated │ 101 MAX98090 Ultra-Low Power Stereo Audio Codec The digital biquad filter has five user-programmable coefficients (B0, B1, B2, A1, and A2), and each individual coefficient is 3 bytes (24 bits) long (A0 is fixed at 1). They occupy 15 consecutive registers (Table 30) and each set of three registers (per coefficient) must be programmed consecutively for the settings to take effect. The coefficients are stored using a two’s complement format where the first 4 bits are the integer portion and the last 20 bits are the decimal portion (which results in an approximate +8 to -8 range for each coefficient). Record Path Sidetone The record path sidetone is available to allow a low-level copy of the recorded audio signal to be mixed back into the playback audio signal. When enabled, the sidetone can route the left channel, right channel, or both divided by two and then summed back into the playback path DSP. The sidetone digital gain can be programmed from -0.5dB to -60.5dB (Table 31). The digital sidetone is commonly used in telephony to allow the speaker to hear their own voice to provide a more natural user experience. Table 30. Record Path Biquad Filter Coefficients NAME TYPE 0xAF ADDRESS RANGE 0xB0 0xB1 RECORD BIQUAD COEFFICIENT B0 R/W REC_B0[23:16] COEFFICIENT SEGMENT REC_B0[15:8] REC_B0[7:0] 0xB2 0xB3 0xB4 RECORD BIQUAD COEFFICIENT B1 R/W REC_B1[23:16] REC_B1[15:8] REC_B1[7:0] 0xB5 0xB6 0xB7 RECORD BIQUAD COEFFICIENT B2 R/W REC_B2[23:16] REC_B2[15:8] REC_B2[7:0] 0xB8 0xB9 0xBA RECORD BIQUAD COEFFICIENT A1 R/W REC_A1[23:16] REC_A1[15:8] REC_A1[7:0] 0xBB 0xBC 0xBD RECORD BIQUAD COEFFICIENT A2 R/W REC_A2[23:16] REC_A2[15:8] REC_A2[7:0] Table 31. Record Path Sidetone Configuration Register ADDRESS: 0x1A BIT NAME TYPE 7 0 DSTS[1:0] 6 5 0 — — 0 3 0 DVST[4:0] R/W 0 1 0 0 0 www.maximintegrated.com Sidetone Enable and Digital Source Configuration 00: No sidetone selected 10: Right channel 01: Left channel 11: Left + right channel — 4 2 DESCRIPTION POR — Sidetone Digital Gain Configuration 0x00: OFF 0x01: -0.5dB 0x02: -2.5dB 0x03: -4.5dB 0x04: -6.5dB 0x05: -8.5dB 0x06: -10.5dB 0x07: -12.5dB 0x08: -14.5dB 0x09: -16.5dB 0x0A: -18.5dB 0x0B: -20.5dB 0x0C: -22.5dB 0x0D: -24.5dB 0x0E: -26.5dB 0x0F: -28.5dB 0x10: -30.5dB 0x11: -32.5dB 0x12: -34.5dB 0x13: -36.5dB 0x14: -38.5dB 0x15: -40.5dB 0x16: -42.5dB 0x17: -44.5dB 0x18: -46.5dB 0x19: -48.5dB 0x1A: -50.5dB 0x1B: -52.5dB 0x1C: -54.5dB 0x1D: -56.5dB 0x1E: -58.5dB 0x1F: -60.5dB Maxim Integrated │ 102 MAX98090 Ultra-Low Power Stereo Audio Codec Record Path Digital Gain and Level Control The stereo record path DSP includes a digital gain and level control stage. The settings can be configured independently by channel, and are primarily used when adjusting the record level for digital microphones. The coarse digital gain adjustment can be set from 0dB to +42dB in 6dB increments, and the fine adjust level control gain can be set from -12dB to +3dB in 1dB increments (Tables 32 and 33). Table 32. Left Record Path Digital Gain Configuration Register ADDRESS: 0x17 BIT NAME TYPE POR 7 — — — AVLG[2:0] R/W 6 5 0 0 4 0 3 0 2 1 AVL[3:0] R/W 0 0 1 1 DESCRIPTION — Left Record Path Digital Coarse Gain Configuration 000 : 0dB 010 : +12dB 100 : +24dB 001 : +6dB 011 : +18dB 101 : +30dB 110 : +36dB 111 : +42dB Left Record Path Digital Fine Adjust Gain Configuration 0x0: +3dB 0x4: -1dB 0x8: -5dB 0x1: +2dB 0x5: -2dB 0x9: -6dB 0x2: +1dB 0x6: -3dB 0xA: -7dB 0x3: +0dB 0x7: -4dB 0xB: -8dB 0xC: -9dB 0xD: -10dB 0xE: -11dB 0xF: -12dB Table 33. Right Record Path Digital Gain Configuration Register ADDRESS: 0x18 BIT NAME TYPE POR 7 — — — 6 5 0 AVRG[2:0] R/W 0 4 0 3 0 2 0 1 AVR[3:0] 0 www.maximintegrated.com R/W 1 1 DESCRIPTION — Right Record Path Digital Coarse Gain Configuration 000 : 0dB 010 : +12dB 100 : +24dB 001 : +6dB 011 : +18dB 101 : +30dB 110 : +36dB 111 : +42dB Right Record Path Digital Fine Adjust Gain Configuration 0x0: +3dB 0x4: -1dB 0x8: -5dB 0x1: +2dB 0x5: -2dB 0x9: -6dB 0x2: +1dB 0x6: -3dB 0xA: -7dB 0x3: +0dB 0x7: -4dB 0xB: -8dB 0xC: -9dB 0xD: -10dB 0xE: -11dB 0xF: -12dB Maxim Integrated │ 103 MAX98090 Ultra-Low Power Stereo Audio Codec Digital Audio Interface (DAI) Configuration the device is configured to slave mode, the internal PLL quickly locks onto the external LRCLK frequency. The digital audio interface (DAI) contains two primary sections (Figure 15). The first is the clock control and configuration section. The device supports both master and slave mode operation, can accept a master clock of either 256 x fS or ranging from 10MHz to 60MHz, and can be configured for any digital audio sampling rate (fS) from 8kHz to 96kHz. When the device is configured as the digital audio master, a variety of operating modes are available. These include a simple quick configuration mode, exact integer sampling mode, and a manual clock divider mode. When MCLK LRCLK The second section is the digital audio data path control and signal routing. This section supports a variety of stereo data path configurations including serial audio input and output, audio loop through from the record to playback paths, and audio loop back from the serial data input to the serial data output. The serial data interface also supports several standard digital audio formats (PCM) including I2S, left justified, right justified, and time division multiplexed (TDM). SDOUT BCLK SDIN MAX98090 DATA OUTPUT ENABLE SDOEN HIZOFF LTEN MAS PRESCALED CLOCK GENERATION PCLK FRAME CLOCK BCI WCI 1 TDM, FSW SLOTDLY[3:0] SLOTL/R[1:0] BIT CLOCK USE_MI NI[14:0] MI[14:0] PSCLK[1:0] OUTPUT SHIFT REGISTER LOOP BACK MUX CLOCK GENERATION AND DISTRIBUTION FREQ[3:0] 0 BSEL[2:0] LBEN SDIEN DAI: DATA PATH RECORD PATH CLOCKS L/R AUDIO OUTPUT RECORD PATH DSP INPUT SHIFT REGISTER DATA INPUT ENABLE 1 DMONO DAI: CLOCK CONTROL AND CONFIGURATION DIGITAL MIC CLOCK CONFIGURATION RJ, DLY WS[1:0] 0 LOOP THROUGH MUX PLAYBACK PATH CLOCKS PLAYBACK INPUT MIXER L/R AUDIO INPUT PLAYBACK PATH DSP Figure 15. Simplified Digital Audio Interface Block Diagram www.maximintegrated.com Maxim Integrated │ 104 MAX98090 Ultra-Low Power Stereo Audio Codec DAI Clock Control and Configuration The device digital audio interface supports both master and slave mode operation (Table 35). To properly time the serial data input (SDIN) and output (SDOUT), the DAI requires both a left-right frame clock (LRCLK) and a bit clock (BCLK). In master mode, the device uses one of several modes to generate both LRCLK and BCLK from the internal prescaled master clock (PCLK). In slave mode however, both LRCLK and BCLK must be externally provided. The clock control and configuration section is one of the two major blocks in the digital audio interface (Figure 16). This section is responsible for accepting and scaling the device master clock, for internal digital clock generation, and for digital audio interface data clocking and timing. The device can accept an external master clock (MCLK) with a frequency ranging from 10MHz to 60MHz. However, for digital operation, signal processing, and data conversion the device requires an internal clock between 10MHz and 20MHz. To generate an internal master clock within this frequency range, an internal clock divider is used (Table 34). The internal clock divider can be set to frequency divide MCLK by a factor 1, 2, or 4 to create the internal prescaled master clock (PCLK). PCLK is then used, either directly or through additional divider/multiplier blocks, to clock all internal digital sections. Master Mode Clock Configuration When the device is configured as the digital audio master, the frame clock (LRCLK) and bit clock (BCLK) are configured as outputs and the device uses the internal prescaled master clock (PCLK) to create them. If no clock outputs or unexpected clock outputs are measured on LRCLK and/or BCLK, verify that the device is not in shutdown and that all three clocks are configured correctly. If the master clock prescale value is not selected (PSCLK[1:0]), the clock ratio is not fully configured (operating mode), or if the bit clock rate is not set (BSEL[2:0]) The digital audio interface signal paths support any sampling rate from 8kHz to 96kHz. The device has only a single DAI, and as a result both the record (output) and playback (input) digital audio paths use the same sampling rate. MCLK LRCLK BCLK SDOUT SDIN MAX98090 DATA OUTPUT ENABLE SDOEN HIZOFF LTEN MAS PRESCALED CLOCK GENERATION PCLK FRAME CLOCK BCI WCI 1 TDM, FSW SLOTDLY[3:0] SLOTL/R[1:0] BIT CLOCK USE_MI NI[14:0] MI[14:0] PSCLK[1:0] OUTPUT SHIFT REGISTER LOOP BACK MUX CLOCK GENERATION AND DISTRIBUTION FREQ[3:0] 0 BSEL[2:0] LBEN SDIEN DAI: DATA PATH RECORD PATH CLOCKS L/R AUDIO OUTPUT RECORD PATH DSP INPUT SHIFT REGISTER DATA INPUT ENABLE 1 DMONO DAI: CLOCK CONTROL AND CONFIGURATION DIGITAL MIC CLOCK CONFIGURATION RJ, DLY WS[1:0] 0 LOOP THROUGH MUX PLAYBACK PATH CLOCKS PLAYBACK INPUT MIXER L/R AUDIO INPUT PLAYBACK PATH DSP Figure 16. DAI Clock Control and Configuration Section www.maximintegrated.com Maxim Integrated │ 105 MAX98090 Ultra-Low Power Stereo Audio Codec Table 34. System Master Clock (MCLK) Prescaler Configuration Register ADDRESS: 0x1B DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 0 PSCLK[1:0] R/W 4 0 Master Clock (MCLK) Prescaler Configuration 00: Internal master clock generation disabled 01: fPCLK = fMCLK/1, 10MHz ≤ fMCLK ≤ 20MHz 10: fPCLK = fMCLK/2, 20MHz < fMCLK ≤ 40MHz 11: fPCLK = fMCLK/4, 40MHz < fMCLK ≤ 60MHz 3 — — — — 2 — — — — 1 — — — — 0 — — — — Table 35. Master Mode Clock Configuration Register ADDRESS: 0x21 BIT NAME TYPE DESCRIPTION POR Master Mode Enable 0: Slave mode (LRCLK/BCLK are inputs and accept external clock sources). 1: Master mode (LRCLK/BCLK are outputs and timing signals are generated internally). 7 MAS R/W 0 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 1 0 BSEL[2:0] 0 R/W 0 0 Bit Clock (BCLK) Configuration (Master Mode/Slave Right Justified Only) 000: Bit clock disabled 100: fBCLK = fPCLK/2 001: fBCLK = 32 x fS 101: fBCLK = fPCLK/4 010: fBCLK = 48 x fS 110: fBCLK = fPCLK/8 011: fBCLK = 64 x fS 111: fBCLK = fPCLK/16 then no valid clock output is present. In addition to this, the device does not generate any clocks unless at least one valid digital audio data path is enabled (ADC record, DAC playback, digital microphone input, etc.). In master mode, the device uses two integer values (NI and MI) as a multiplier and divider (respectively) to scale PCLK into LRCLK. BCLK is then created either from a PCLK divider or from an LRCLK multiplier (Table 35). Based on the oversampling rate selected (OSR, see the ADC Functional Configuration section), and the config- www.maximintegrated.com ured NI/MI ratio, the output LRCLK frequency is calculated with the following relationship: NI f LRCLK = f PCLK × MI × OSR This expression illustrates that in master mode, the relationship between LRCLK and PCLK frequency (as well as BCLK) is based on an integer ratio. As a result, any cycle to cycle jitter or absolute frequency variation in MCLK is translated first into PCLK and then into LRCLK (and BCLK) based on the selected clock ratios. Maxim Integrated │ 106 MAX98090 Ultra-Low Power Stereo Audio Codec In master mode, the device provides three clock operating modes. In reality all three modes operate in exactly the same manner (using an internal MI and NI ratio to create LRCLK). However, the first two modes will internally set NI and MI automatically and are provided as configuration shortcuts for commonly used PCLK to LRCLK ratios. The three operating modes are detailed below, and are presented in order of activation priority. Quick Configuration Mode In quick configuration mode, the master clock frequency (Table 36) and sample rate (Table 37) are selected from a list of commonly used frequencies. Only a single bit in each quick setup register can be enabled at any given time. Quick configuration mode is activated anytime that both a master clock frequency quick setup bit and a sample rate quick setup bit are concurrently enabled. Once enabled, this mode supersedes both of the other operating modes and an internal preset ratio for NI and MI is used to create LRCLK. As a result, when Quick Configuration Mode is enabled the exact integer mode settings (Table 39), and the manual ratio mode settings (Tables 40 to 43) are preserved but ignored. If this mode is later disabled, the preserved settings of any active lower precedence modes reassert. To ensure that the DSP is optimally configured and that all timing requirements are met, when using quick configuration mode the master clock divider (PSCLK, Table 34), digital filters (MODE, Table 27), and ADC oversampling rate (OSR128, Table 5) are automatically configured. While in quick configuration mode these registers are Table 36. Master Clock Quick Setup Register ADDRESS: 0x04 BIT DESCRIPTION NAME TYPE POR 7 26M R/W 0 Setup device for operation with a 26MHz master clock (MCLK). 6 19P2M R/W 0 Setup device for operation with a 19.2MHz master clock (MCLK). 5 13M R/W 0 Setup device for operation with a 13MHz master clock (MCLK). 4 12P288M R/W 0 Setup device for operation with a 12.288MHz master clock (MCLK). 3 12M R/W 0 Setup device for operation with a 12MHz master clock (MCLK). 2 11P2896M R/W 0 Setup device for operation with a 11.2896MHz master clock (MCLK). 1 — — — 0 256FS R/W 0 — Setup device for operation with a 256 x fS MHz master clock (MCLK) Table 37. Sample Rate Quick Setup Register ADDRESS: 0x05 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 SR_96K R/W 0 Setup clocks and filters for a 96kHz sample rate. 4 SR_32K R/W 0 Setup clocks and filters for a 32kHz sample fate. 3 SR_48K R/W 0 Setup clocks and filters for a 48kHz sample rate. 2 SR_44K1 R/W 0 Setup clocks and filters for a 44.1kHz sample rate. 1 SR_16K R/W 0 Setup clocks and filters for a 16kHz sample rate. 0 SR_8K R/W 0 Setup clocks and filters for an 8kHz sample rate. www.maximintegrated.com Maxim Integrated │ 107 MAX98090 Ultra-Low Power Stereo Audio Codec fixed and cannot be manually changed. In this mode, when the sample rate is set to 8kHz or 16kHz, voice filters (IIR) are automatically selected and the ADC oversampling rate is fixed to 128. For any other selected sample rate, music filters (FIR) are selected and the ADC oversampling rate is configured to insure that the pre-scaled master clock frequency is greater than or equal to 256 x fS. If fPCLK ≥ 256 x fS then the oversampling rate (OSR) is set to 128, otherwise OSR is set to 64. Table 38 provides a complete lookup table for the resulting quick configuration mode settings. Exact Integer Mode In exact integer mode, the master clock frequency and sample rate can be set to one of eight preprogrammed combinations (Table 39). There are four different available master clock frequencies (12MHz/13MHz/16MHz/19.2MHz), each of which can be selected with a sampling rate (fS) of either 8kHz or 16kHz. Once a configuration is selected, the NI and MI bits are internally programmed to the correct ratio. These combinations are primarily intended for standard or wideband voice applications. Table 38. Quick Configuration Mode Lookup SELECTED SAMPLE RATE (kHz) SELECTED MASTER CLOCK FREQUENCY 8 16 32 44.1 96 DIVIDER fPCLK 26MHz 2 13Mhz OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 64 19.2MHz 1 19.2Mhz OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 64 13MHz 1 13Mhz OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 64 12.288MHz 1 12.288Mhz OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 64 12MHz 1 12MHz OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 64 11.2896MHz 1 11.2896MHz OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 64 OSR = 64 1 256 x fS OSR = 128 OSR = 128 OSR = 128 OSR = 128 OSR = 64 — 2 128 x fS — — — — — OSR = 64 256 x fS VOICE FILTER (IIR) 48 fMCLK MUSIC FILTER (FIR) Table 39. Clock Mode Configuration Register ADDRESS: 0x1C BIT NAME TYPE POR DESCRIPTION 5 0 4 0 Exact Integer Sampling Frequency (LRCLK) Configuration Configure the DAI for specific PCLK to LRCLK ratios for fS = 8kHz/16kHz operation (voice modes). Any setting other than 0x0 overrides manual ratio mode settings. 0000: Disabled 1XXX: Enabled Other combinations are reserved When enabled, the following PCLK to LRCLK ratios are available: 1000: fPCLK = 12MHz, fLRCLK = 8kHz 1001: fPCLK = 12MHz, fLRCLK = 16kHz 1010: fPCLK = 13MHz, fLRCLK = 8kHz 1011: fPCLK = 13MHz, fLRCLK = 16kHz 1100: fPCLK = 16MHz, fLRCLK = 8kHz 1101: fPCLK = 16MHz, fLRCLK = 16kHz 1110: fPCLK = 19.2MHz, fLRCLK = 8kHz 1111: fPCLK = 19.2MHz, fLRCLK = 16kHz 7 0 6 0 FREQ[3:0] R/W 3 — — — — 2 — — — — 1 — — — — 0 USE_MI R/W 0 www.maximintegrated.com Use MI[15:0] in Addition to NI[14:0] to set an Accurate Frequency Ratio 0 : MI = 65536; NI = (fLRCLK / fPCLK) x 65536 x 96 1 : MI is set to the value of MI[15:0] (Table 42 and Table 43). Maxim Integrated │ 108 MAX98090 Ultra-Low Power Stereo Audio Codec When FREQ[3:0] register is set to 0 (FREQ[3:0] = 0000), exact integer mode is disabled. When the MSB is set to 1 (FREQ[3:0] = 1XXX) exact integer mode is enabled and the remaining bits determine which setting is selected (Table 39). If exact integer mode is enabled, the manual ratio mode settings (Tables 40 to 43) are preserved but ignored. However, if this mode is later disabled, the manual ratio mode settings reassert. Manual Ratio Mode In manual ratio mode, the NI and MI registers (Table 40 to Table 43) are directly programmed to set up the clock ratio. Manual ratio mode is only active when the quick Configuration and Exact Integer Modes are disabled. In manual ratio mode, if USE_MI (Table 39) is set to 0, MI is fixed at its maximum value of 0xFFFF (65536) and the programmed value has no effect. For optimal performance (especially with any noninteger PCLK to LRCLK ratio), set USE_MI to 1 and calculate both MI and NI. To calculate the appropriate NI and MI value, use the following method: 1) Choose the over sampling rate (OSR). If fPCLK < 256 x fLRCLK, then OSR must be set to 64. Otherwise, OSR can be set to either 128 or 64. For optimal performance, choose OSR = 128 when possible. 2)Calculate the oversampling frequency using the LRCLK frequency, and the selected oversampling rate: fOSR = fLRCLK x OSR. 3) Calculate MI using the prescaled master clock frequency, and the greatest common denominator (GCD) of the prescaled master clock frequency and the calculated oversampling frequency: 4) Calculate NI using the calculated oversampling frequency and MI value: NI = fOSR x MI/fPCLK Slave Mode Clock Configuration When the device is configured as a digital audio slave, the frame clock (LRCLK) and bit clock (BCLK) are configured as external inputs. These inputs accept an externally generated frame and bit clock, and then an internal PLL determines the correct PCLK to LRCLK frequency ratio. Within a few LRCLK cycles, the internal PLL is locked onto the clock ratio and then automatically programs the internal divider ratio appropriately. The external clocks must not violate the minimum PCLK to LRCLK frequency ratio. See the Input Clock Characteristics table. If the minimum clock ratio is not satisfied, the FlexSound DSP will not have enough clock cycles to operate correctly. As a result, the audio quality and specifications are severely compromised. In slave mode, the clock generation register settings have no effect (quick configuration, exact integer, and manual ratio mode settings have no effect). The correct MCLK to PCLK scaling factor, mode (voice/audio), and oversampling rate still need to be programmed. However, all other clock configuration settings are for master mode only. The only exception to this is when the digital audio format is set to slave mode operation with right justified data. In this configuration, the BCLK setting (BSEL[2:0], Table 35) is used to determine the number of leading padding bits (BCLK cycles) to insert (skip) before the data transmission/receiving in each frame. MI = fPCLK /GCD(fPCLK, fOSR) Table 40. Manual Clock Ratio Configuration Register (NI MSB) ADDRESS: 0x1D BIT NAME TYPE POR 7 — — — 6 0 5 0 4 0 3 NI[14:8] R/W 0 2 0 1 0 0 0 www.maximintegrated.com DESCRIPTION — Upper half of the PLL N value used in master mode clock generation to calculate the frequency ratio (manual ratio master mode). Maxim Integrated │ 109 MAX98090 Ultra-Low Power Stereo Audio Codec Table 41. Manual Clock Ratio Configuration Register (NI LSB) ADDRESS: 0x1E BIT NAME TYPE POR 7 0 6 0 5 0 4 3 NI[7:0] R/W 0 0 2 0 1 0 0 0 DESCRIPTION Lower half of the PLL N value used in master mode clock generation to calculate the frequency ratio (manual ratio master mode). Table 42. Manual Clock Ratio Configuration Register (MI MSB) ADDRESS: 0x1F BIT NAME TYPE POR 7 0 6 0 5 0 4 3 MI[15:8] R/W 0 0 2 0 1 0 0 0 DESCRIPTION Upper half of the PLL M value used in master mode clock generation to calculate an accurate noninteger frequency ratio (manual ratio master mode). Table 43. Manual Clock Ratio Configuration Register (MI MSB) ADDRESS: 0x20 BIT NAME TYPE POR 7 0 6 0 5 0 4 3 MI[7:0] R/W 0 0 2 0 1 0 0 0 www.maximintegrated.com DESCRIPTION Lower half of the PLL M value used in master mode clock generation to calculate an accurate noninteger frequency ratio (manual ratio master mode). Maxim Integrated │ 110 MAX98090 Ultra-Low Power Stereo Audio Codec DAI Digital Audio Data Path Control and Routing for all valid data path combinations are detailed in Table 44 and are illustrated in Figure 18. The digital audio data path section supports a variety of stereo data path configurations and formats (Figure 17). SDOUT can be configured to go to either a high impedance state or to drive a valid logic level (LSB) after all data bits have been transmitted. When high impedance mode is enabled, SDOUT goes to a high-impedance state quickly after the BCLK edge for the LSB occurs to avoid potential bus contention. SDIN/loopthrough audio data can be routed through the playback path input mixer as either stereo audio data, or as a mono representation of the input audio data. By default, playback mono mode is disabled and the left/right input audio data is routed to the left/right playback channels respectively. If playback mono mode is enabled, the input audio data channels are reduced in amplitude by 6dB, mixed together (summed), and then routed to both the left and right record path channels. The full list of DAI data path configuration control bits are detailed in Table 45. The standard configuration is to route either the record path digital audio output to the serial data output (record path to SDOUT) or to route the serial data input to the digital audio playback path (SDIN to playback path). These two primary configurations can be used either individually or together as needed by the application. The DAI data path also supports two loop configurations. Loop back mode takes the digital audio serial data input and routes it back to the serial data output (SDIN to SDOUT). Loop through mode allows the record path audio data output to be looped through to the digital audio playback path (and can be combined with the record path to SDOUT configuration if desired). The configuration settings MCLK LRCLK BCLK SDOUT SDIN MAX98090 DATA OUTPUT ENABLE SDOEN HIZOFF LTEN MAS PRESCALED CLOCK GENERATION PCLK FRAME CLOCK BCI WCI 1 TDM, FSW SLOTDLY[3:0] SLOTL/R[1:0] BIT CLOCK USE_MI NI[14:0] MI[14:0] PSCLK[1:0] OUTPUT SHIFT REGISTER LOOP BACK MUX CLOCK GENERATION AND DISTRIBUTION FREQ[3:0] 0 BSEL[2:0] LBEN SDIEN DAI: DATA PATH RECORD PATH CLOCKS L/R AUDIO OUTPUT RECORD PATH DSP INPUT SHIFT REGISTER DATA INPUT ENABLE 1 DMONO DAI: CLOCK CONTROL AND CONFIGURATION DIGITAL MIC CLOCK CONFIGURATION RJ, DLY WS[1:0] 0 LOOP THROUGH MUX PLAYBACK PATH CLOCKS PLAYBACK INPUT MIXER L/R AUDIO INPUT PLAYBACK PATH DSP Figure 17. DAI Digital Data Path Configuration www.maximintegrated.com Maxim Integrated │ 111 MAX98090 Ultra-Low Power Stereo Audio Codec SDOUT SDIN SDOUT PATH 1: RECORD SDOUT SDIN SDIN PATH 3: FULL DUPLEX PATH 2: PLAYBACK DATA OUTPUT ENABLE LOOP THROUGH MUX DATA OUTPUT ENABLE LOOP THROUGH MUX DATA OUTPUT ENABLE LOOP THROUGH MUX OUTPUT SHIFT REGISTER INPUT SHIFT REGISTER OUTPUT SHIFT REGISTER INPUT SHIFT REGISTER OUTPUT SHIFT REGISTER INPUT SHIFT REGISTER LOOP BACK MUX DATA INPUT ENABLE LOOP BACK MUX DATA INPUT ENABLE LOOP BACK MUX DATA INPUT ENABLE PLAYBACK INPUT MIXER L/R AUDIO (RECORD) L/R AUDIO (PLAYBACK) SDOUT PLAYBACK INPUT MIXER PLAYBACK INPUT MIXER L/R AUDIO (RECORD) L/R AUDIO (RECORD) L/R AUDIO (PLAYBACK) SDIN SDOUT L/R AUDIO (PLAYBACK) SDIN PATH 5: RECORD/ LOOP THROUGH PATH 4: PLAYBACK/ LOOP BACK DATA OUTPUT ENABLE LOOP THROUGH MUX DATA OUTPUT ENABLE LOOP THROUGH MUX OUTPUT SHIFT REGISTER INPUT SHIFT REGISTER OUTPUT SHIFT REGISTER INPUT SHIFT REGISTER LOOP BACK MUX DATA INPUT ENABLE LOOP BACK MUX DATA INPUT ENABLE PLAYBACK INPUT MIXER L/R AUDIO (RECORD) L/R AUDIO (PLAYBACK) PLAYBACK INPUT MIXER L/R AUDIO (RECORD) L/R AUDIO (PLAYBACK) Figure 18. Digital Audio Interface (DAI) Data Path Configurations www.maximintegrated.com Maxim Integrated │ 112 MAX98090 Ultra-Low Power Stereo Audio Codec Table 44. Digital Audio Interface (DAI) Data Path Configurations DAI DATA PATH CONFIGURATION PATH SDOEN SDIEN LTEN LBEN — DAI data path disabled DESCRIPTION 0 0 0 0 1 Record path to serial data output 1 0 0 0 2 Serial data input to playback path 0 1 0 0 3 Record path to serial data output/serial data input to playback path 1 1 0 0 4 Serial data input loop back to serial data output 1 1 0 1 5 Record path to serial data output and loop through to playback path 1 1 1 0 — Invalid configurations All other combinations Table 45. Digital Audio Interface (DAI) Input/Output Configuration Register ADDRESS: 0x25 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 LTEN R/W 0 Enables Data Loop Through (Playback Path to Record Path) 1: ADC to DAC loop-through enabled. 0: ADC to DAC loop-through disabled. 4 LBEN R/W 0 Enables Data Loop Back (SDIN to SDOUT) 1: DAI SDIN used as SDOUT data source. 0: ADC used as SDOUT data source. 0 Enables Playback Mono Mode (SDIN L/2 + R/2 to Playback Path) 1: The left- and right-channel SDIN audio input data are reduced in gain by 6dB, mixed together (summed), and routed to both the left and right record paths. 0: The left- and right-channel SDIN audio input data are routed to the left and right record path channels. 3 DMONO R/W 2 HIZOFF R/W 0 Disables Hi-Z Mode for SDOUT 1: SDOUT drives a valid logic level after all data bits have been transmitted. 0: SDOUT goes to a high-impedance state after all data bits have been transmitted, allowing the SDOUT bus to be shared by other devices. 1 SDOEN R/W 0 Enables the Serial Data Output (SDOUT) 1: Serial data output enabled. 0: Serial data output disabled. 0 SDIEN R/W 0 Enables the Serial Data Input (SDIN/Loop-Through) 1: Serial data input enabled. 0: Serial data input disabled. www.maximintegrated.com Maxim Integrated │ 113 MAX98090 Ultra-Low Power Stereo Audio Codec DAI Digital Audio Data Format The serial data interface supports multiple pulse code modulated (PCM) digital audio formats including I2S, left justified, right justified, and time division multiplexed (TDM). If TDM mode is enabled, it takes precedence and the DAI data is in TDM format. In this case, all non-TDM digital audio data format configuration registers have no effect. If TDM mode is disabled, then the data format is determined by the configuration selected by the control bits detailed in Table 46. These settings can be used to change the DAI data format to several supported standards such as I2S (Figure 19), left justified (Figure 20) or right justified (Figure 21). In addition, the configuration settings can be enabled or disabled independently, allowing the device to support many nonstandard data format variations. Table 46. Digital Audio Interface (DAI) Format Configuration Register ADDRESS: 0x22 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 0 Configures the DAI for Right Justified Mode (No Data Delay) 0: Left justified mode enabled with optional data delay. 1: Right justified mode enabled. DLY register is not used and BSEL[2:0] is used to determine the timing (see the DAI Clock Control and Configuration section for details). Note: TDM has priority over all other data formats. 0 Configures the DAI for Frame Clock (LRCLK) Inversion TDM = 0: 1: Right-channel data is transmitted while LRCLK is low. 0: Left-channel data is transmitted while LRCLK is low. TDM = 1: 0: Start of a new frame is signified by the rising edge of the LRCLK pulse. 1: Start of a new frame is signified by the falling edge of the LRCLK pulse. 0 Configures the DAI for Bit Clock (BCLK) Inversion 1: SDIN is accepted on the falling edge of BCLK. 0: SDIN is accepted on the rising edge of BCLK. Master Mode: 1: LRCLK transitions occur on the rising edge of BCLK. 0: LRCLK transitions occur on the falling edge of BCLK. 0 Configures the DAI for Data Delay (I2S Standard) 1: The most significant bit of an audio word is latched at the second BCLK edge after the LRCLK transition. 0: The most significant bit of an audio word is latched at the first BCLK edge after the LRCLK transition. Set DLY = 1 to conform to the I2S standard. DLY is only effective when TDM = 0. 5 4 3 2 RJ WCI BCI DLY R/W R/W R/W R/W 1 0 WS[1:0] 0 www.maximintegrated.com R/W 0 DAI Input Data Word Size (TDM = 0) If RJ = 1: 00: 16 bits 01: 20 bits 10: 24 bits If RJ = 0: 00: 16 bits 01, 10, 11: 20 bits 11: Reserved Maxim Integrated │ 114 MAX98090 Ultra-Low Power Stereo Audio Codec I2S MODE (TDM = 0, WCI = 0, BCI = 0, DLY = 1, RJ = 0, WS[1:0] = 00, HIZOFF = 0) LRCLK RIGHT LEFT HIZ SDOUT D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ BCLK SDIN D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Figure 19. DAI Timing for I2S Data Format LEFT JUSTIFIED MODE – STANDARD (TDM = 0, WCI = 1, BCI = 0, DLY = 0, RJ = 0, WS[1:0] = 00, HIZOFF = 0) LRCLK SDOUT RIGHT LEFT HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ BCLK SDIN D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 LEFT JUSTIFIED MODE – LRLCK INVERTED (TDM = 0, WCI = 0, BCI = 0, DLY = 0, RJ = 0, WS[1:0] = 00, HIZOFF = 0) LRCLK SDOUT RIGHT LEFT HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ BCLK SDIN D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 LEFT JUSTIFIED MODE – BCLK INVERTED (TDM = 0, WCI = 1, BCI = 1, DLY = 0, RJ = 0, WS[1:0] = 00, HIZOFF = 0) LRCLK SDOUT RIGHT LEFT HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ BCLK SDIN D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Figure 20. DAI Timing for Left Justified Data Formats www.maximintegrated.com Maxim Integrated │ 115 MAX98090 Ultra-Low Power Stereo Audio Codec RIGHT JUSTIFIED MODE – STANDARD (TDM = 0, WCI = 1, BCI = 0, DLY = 0, RJ = 1, WS[1:0] = 00, HIZOFF = 0) LRCLK SDOUT RIGHT LEFT HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ BCLK SDIN D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 RIGHT JUSTIFIED MODE – LRCLK INVERTED (TDM = 0, WCI = 0, BCI = 0, DLY = 0, RJ = 1, WS[1:0] = 00, HIZOFF = 0) LRCLK SDOUT RIGHT LEFT HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ BCLK SDIN D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 RIGHT JUSTIFIED MODE – BCLK INVERTED (TDM = 0, WCI = 1, BCI = 1, DLY = 0, RJ = 1, WS[1:0] = 00, HIZOFF = 0) LRCLK SDOUT RIGHT LEFT HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HIZ BCLK SDIN D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Figure 21. DAI Timing for Right Justified Data Formats www.maximintegrated.com Maxim Integrated │ 116 MAX98090 Ultra-Low Power Stereo Audio Codec TDM Mode Data Format If TDM mode is enabled (Table 47), the register settings in Table 39 have no effect. TDM mode supports up to four mono audio time slots in each frame. However, internally, the device only has two digital audio channels (left and right) that can be assigned to any two of the four available time frames (Table 48). The remaining two time slots remain free for another device to utilize. A data delay can be set individually for each time frame, and when operating in master mode the frame sync pulse can be set to transmit for either a single bit or an entire word in length. TDM mode timing for common configuration options is detailed in Figure 22. Table 47. Digital Audio Interface (DAI) TDM Control Register ADDRESS: 0x23 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — — 1 FSW R/W 0 Configures the DAI Frame Sync Pulse Width (TDM = 1 and MAS = 1) 1: Frame sync pulse has a 50% duty cycle. 0: Frame sync pulse is one bit wide. Note: In slave mode, the device accepts a frame sync pulse width up to frame width - 1. 0 TDM R/W 0 Enable for Time Division Multiplex (TDM) Mode 1: Enable TDM mode and configures the DAI to transmit and receive TDM data. 0: Disable TDM mode. Table 48. Digital Audio Interface (DAI) TDM Format Register ADDRESS: 0x24 BIT 7 6 NAME TYPE SLOTL[1:0] R/W SLOTR[1:0] R/W POR 0 0 DESCRIPTION Selects the Time Slot to use for Left-Channel Data in TDM Mode 00: Time slot 1 10: Time slot 3 01: Time slot 2 11: Time slot 4 0 Selects the Time Slot to use for Right-Channel Data in TDM Mode 00: Time slot 1 10: Time slot 3 01: Time slot 2 11: Time slot 4 3 0 Enables data delay for slot 4 in TDM mode. 2 0 Enables data delay for slot 3 in TDM mode. 0 Enables data delay for slot 2 in TDM mode. 0 Enables data delay for slot 1 in TDM mode. 5 4 1 SLOTDLY[3:0] 0 www.maximintegrated.com R/W 0 Maxim Integrated │ 117 MAX98090 Ultra-Low Power Stereo Audio Codec TDM MODE WITH SINGLE BIT SYNC PULSE (TDM = 1, WCI = 0, BCI = 1, FSW = 0, WS[1:0] = 00, HIZOFF = 0, SLOTL[1:0] = 00, SLOTR[1:0] = 01) LRCLK SDOUT HI-Z L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 HI-Z BCLK SDIN TDM MODE WITH WORD LENGTH SYNC PULSE (TDM = 1, WCI = 0, BCI = 1, FSW = 1, WS[1:0] = 00, HIZOFF = 0, SLOTL[1:0] = 00, SLOTR[1:0] = 01) LRCLK SDOUT HI-Z L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 HI-Z BCLK SDIN TDM MODE WITH HI-Z MODE DISABLED (TDM = 1, WCI = 0, BCI = 1, FSW = 0, WS[1:0] = 00, HIZOFF = 1, SLOTL[1:0] = 00, SLOTR[1:0] = 01) LRCLK SDOUT L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 BCLK SDIN TDM MODE USING SLOTS 2 AND 3 (TDM = 1, WCI = 0, BCI = 1, FSW = 0, WS[1:0] = 00, HIZOFF = 0, SLOTL[1:0] = 10, SLOTR[1:0] = 11) LRCLK HI-Z SDOUT 32 CYCLES L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 HI-Z BCLK SDIN R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 TDM MODE WITH 4 SLOTS (TDM = 1, WCI = 0, BCI = 1, FSW = 0, WS[1:0] = 00, HIZOFF = 0, SLOTL[1:0] = 00, SLOTR[1:0] = 01) LRCLK SDOUT 16 CYCLES HI-Z 16 CYCLES L L L L L L L L R R R R L L L L L L L L R R R R R 16 CYCLES R R R R R 16 CYCLES HI-Z BCLK SDIN R R Figure 22. DAI Timing for TDM Data Format www.maximintegrated.com Maxim Integrated │ 118 MAX98090 Ultra-Low Power Stereo Audio Codec Audio Playback Path The device playback path has two channels (left and right) and can accept digital audio input from the DAI and/or the record path sidetone. The digital audio is then routed through several stages of FlexSound DSP followed by the digital to analog converter (Figure 23). Playback Path FlexSound DSP The first playback path section features the Maxim FlexSound DSP stages. The first stage accepts and mixes the DAI input with the record path sidetone (if enabled), and contains separate digital gain and digital level control stages. This stage is followed by three stereo DSP stages including a 7-band parametric equalizer, a dynamic range control section (DRC), and a digital filter stage. The play- L/R ST LEVEL back path digital output is then routed into the DAC where it is converted back to analog before being routed to the analog output mixers. Playback Path Digital Gain and Level Control The stereo playback path DSP includes separate digital gain and level control stages (Figure 24). Unlike the record path, both playback path channels (left and right) share the same digital gain and level control settings. The coarse digital gain stage accepts its input from the DAI digital data output and can be set from 0dB to +18dB in 6dB increments. The fine adjust, level control stage input is the summation of the coarse gain stage output with the record path sidetone signal. It can be adjusted from -15dB to 0dB in 1dB increments (Table 49). The playback path gain and level control stage also include a mute enable. FLEXSOUND TECHNOLOGY DSP SIDETONE FROM RECORD PATH DALEN LEFT PLAYBACK PATH DVST[3:0] LEFT GAIN DAI DVG[1:0] RIGHT GAIN LEFT SIDETONE DSTS[1:0] RIGHT SIDETONE LEFT LEVEL DVM DV[3:0] RIGHT LEVEL LEFT 7-BAND PARAMETRIC EQUALIZER LEFT ALC: AUTOMATIC LEVEL CONTROL LEFT FILTERS EQ_BANDEN DVEQ[3:0] EQCLP B0_EQ_[23:0] B1_EQ_[23:0] B2_EQ_[23:0] A1_EQ_[23:0] A2_EQ_[23:0] DRCEN DRCG[4:0] DRCRLS[2:0] DRCATK[2:0] DRCCMP[2:0] DRCTHC[4:0] DRCEXP[2:0] DRCTHE[4:0] MODE DHPF RIGHT 7-BAND PARAMETRIC EQUALIZER RIGHT ALC: AUTOMATIC LEVEL CONTROL RIGHT FILTERS DAC LEFT DACHP PERFMODE TO THE ANALOG OUTPUT MIXERS DAC RIGHT RIGHT PLAYBACK PATH DAREN Figure 23. Playback Path Block Diagram www.maximintegrated.com Maxim Integrated │ 119 MAX98090 Ultra-Low Power Stereo Audio Codec L/R ST LEVEL FLEXSOUND TECHNOLOGY DSP SIDETONE FROM RECORD PATH DALEN DVST[3:0] LEFT PLAYBACK PATH LEFT SIDETONE LEFT GAIN DAI DSTS[1:0] DVG[1:0] RIGHT SIDETONE RIGHT GAIN LEFT LEVEL DVM DV[3:0] RIGHT LEVEL LEFT 7-BAND PARAMETRIC EQUALIZER LEFT ALC: AUTOMATIC LEVEL CONTROL LEFT FILTERS EQ_BANDEN DVEQ[3:0] EQCLP B0_EQ_[23:0] B1_EQ_[23:0] B2_EQ_[23:0] A1_EQ_[23:0] A2_EQ_[23:0] DRCEN DRCG[4:0] DRCRLS[2:0] DRCATK[2:0] DRCCMP[2:0] DRCTHC[4:0] DRCEXP[2:0] DRCTHE[4:0] MODE DHPF RIGHT 7-BAND PARAMETRIC EQUALIZER RIGHT ALC: AUTOMATIC LEVEL CONTROL RIGHT FILTERS DAC LEFT DACHP PERFMODE TO THE ANALOG OUTPUT MIXERS DAC RIGHT RIGHT PLAYBACK PATH DAREN Figure 24. Playback Path Sidetone and Level Control Table 49. Playback Gain and Level Configuration Register ADDRESS: 0x27 DESCRIPTION BIT NAME TYPE 7 DVM R/W 0 Enables the playback path data input mute. 6 — — — — DVG[1:0] R/W 5 4 3 2 1 DV[3:0] 0 www.maximintegrated.com R/W POR 0 Playback Path Coarse Adjust Gain Configuration 00: 0dB 10: +12dB 01: +6dB 11: +18dB 0 Playback Path Fine Level Control Configuration 0 0 0 0 0x0: 0dB 0x1: -1dB 0x2: -2dB 0x3: -3dB 0x4: -4dB 0x5: -5dB 0x6: -6dB 0x7: -7dB 0x8: -8dB 0x9: -9dB 0xA: -10dB 0xB: -11dB 0xC: -12dB 0xD: -13dB 0xE: -14dB 0xF: -15dB Maxim Integrated │ 120 MAX98090 Ultra-Low Power Stereo Audio Codec Playback Path 7-Band Parametric Equalizer The playback path DSP features a 7-band parametric equalizer with clipping detection and a programmable pre-attenuation amplifier (Figure 25). Each of the 7 bands is a full, individually programmable digital biquad filter. The chosen configuration for any given band applies to both the left and right playback channels. L/R ST LEVEL The parametric equalizer can be enabled in a 3-band, 5-band, or the full 7-band configuration (Table 50). Once the parametric equalizer is enabled, the clip detection can be set and the level of preattenuation can be adjusted from 0dB down to -15dB (denoted AV_EQ, see Table 51). No single band biquad filter can be set to a gain greater than ±12dB, to a Q greater than 10, or to below a minimum fC that varies by filter type. See the Electrical Characteristics table. FLEXSOUND TECHNOLOGY DSP SIDETONE FROM RECORD PATH DALEN LEFT PLAYBACK PATH DVST[3:0] LEFT GAIN DAI DVG[1:0] RIGHT GAIN LEFT SIDETONE DSTS[1:0] RIGHT SIDETONE LEFT LEVEL DVM DV[3:0] RIGHT LEVEL LEFT 7-BAND PARAMETRIC EQUALIZER LEFT ALC: AUTOMATIC LEVEL CONTROL LEFT FILTERS EQ_BANDEN DVEQ[3:0] EQCLP B0_EQ_[23:0] B1_EQ_[23:0] B2_EQ_[23:0] A1_EQ_[23:0] A2_EQ_[23:0] DRCEN DRCG[4:0] DRCRLS[2:0] DRCATK[2:0] DRCCMP[2:0] DRCTHC[4:0] DRCEXP[2:0] DRCTHE[4:0] MODE DHPF RIGHT 7-BAND PARAMETRIC EQUALIZER RIGHT ALC: AUTOMATIC LEVEL CONTROL RIGHT FILTERS DAC LEFT DACHP PERFMODE TO THE ANALOG OUTPUT MIXERS DAC RIGHT RIGHT PLAYBACK PATH DAREN Figure 25. Playback Path DSP www.maximintegrated.com Maxim Integrated │ 121 MAX98090 Ultra-Low Power Stereo Audio Codec Table 50. DSP Biquad Filter Enable Register ADDRESS: 0x41 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 RECBQEN R/W 0 Enable Biquad Filter in Record Path 0: Biquad filter not used. 1: Biquad filter used in ADC path. 2 EQ3BANDEN R/W 0 Enable 3-Band EQ in DAC Path (Bands 4–7 Are Not Used) 0: 3-band EQ disabled. 1: 3-band EQ enabled. Only valid if EQ7BANDEN == 0 and EQ5BANDEN == 0. 1 EQ5BANDEN R/W 0 Enable 5-Band EQ in DAC Path (Bands 6 and 7 Are Not Used) 0: 5-band EQ disabled. 1: 5-band EQ enabled. Only valid if EQ7BANDEN == 0 0 EQ7BANDEN R/W 0 Enable 7-Band EQ in DAC Path 0: 7-band EQ disabled. 1: 7-band EQ enabled. This makes EQ5BANDEN and EQ3BANDEN redundant. Table 51. Parametric Equalizer Playback Level Configuration Register ADDRESS: 0x28 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 EQCLP R/W 0 Enables DAI Digital Input Equalizer Clipping Detection 1: Equalizer clip detect disabled. 0: Equalizer clip detect enabled. 0 DAI Digital Input Equalizer Attenuation Level Configuration (AV_EQ) 3 2 1 DVEQ[3:0] 0 www.maximintegrated.com R/W 0 0 0 0x0: 0dB 0x1: -1dB 0x2: -2dB 0x3: -3dB 0x4: -4dB 0x5: -5dB 0x6: -6dB 0x7: -7dB 0x8: -8dB 0x9: -9dB 0xA: -10dB 0xB: -11dB 0xC: -12dB 0xD: -13dB 0xE: -14dB 0xF: -15dB Maxim Integrated │ 122 MAX98090 Ultra-Low Power Stereo Audio Codec The parametric equalizer coefficients are uninitialized at power-up, and when used the coefficients should be programmed before the device and equalizer are enabled. The transfer function for each band is defined as: H(z) = B 0 + B 1 × Z −1 + B 2 × Z −2 A 0 + A 1 × Z −1 + A 2 × Z −2 The biquad filter in each band has 5 user programmable coefficients (B0, B1, B2, A1, and A2), and each individual coefficient is 3 bytes (24 bits) long (A0 is fixed at 1). They occupy 15 consecutive registers per band for a total of 105 consecutive registers for all 7 bands (Table 52). Each set of three registers (per coefficient) must be programmed consecutively for the settings to take effect. The coefficients are stored using a two’s complement format where the first 4 bits are the integer portion and the last 20 bits are the decimal portion (which results in an approximate +8 to -8 range for each coefficient). Table 52. Parametric Equalizer Band N (1–7) Biquad Filter Coefficient Registers ADDRESS RANGE (BY BAND) 1 2 3 4 5 6 7 0x46 0x55 0x64 0x73 0x82 0x91 0xA0 0x47 0x56 0x65 0x74 0x83 0x92 0xA1 0x48 0x57 0x66 0x75 0x84 0x93 0xA2 0x49 0x58 0x67 0x76 0x85 0x94 0xA3 0x4A 0x59 0x68 0x77 0x86 0x95 0xA4 0x4B 0x5A 0x69 0x78 0x87 0x96 0xA5 0x4C 0x5B 0x6A 0x79 0x88 0x97 0xA6 0x4D 0x5C 0x6B 0x7A 0x89 0x98 0xA7 0x4E 0x5D 0x6C 0x7B 0x8A 0x99 0xA8 0x4F 0x5E 0x6D 0x7C 0x8B 0x9A 0xA9 0x50 0x5F 0x6E 0x7D 0x8C 0x9B 0xAA 0x51 0x60 0x6F 0x7E 0x8D 0x9C 0xAB 0x52 0x61 0x70 0x7F 0x8E 0x9D 0xAC 0x53 0x62 0x71 0x80 0x8F 0x9E 0xAD 0x54 0x63 0x72 0x81 0x90 0x9F 0xAE www.maximintegrated.com NAME Equalizer Band N Coefficient B0 Equalizer Band N Coefficient B1 Equalizer Band N Coefficient B2 Equalizer Band N Coefficient A1 Equalizer Band N Coefficient A2 TYPE COEFFICIENT SEGMENT R/W B0_N[23:16] R/W B0_N[15:8] R/W B0_N[7:0] R/W B1_N[23:16] R/W B1_N[15:8] R/W B1_N[7:0] R/W B2_N[23:16] R/W B2_N[15:8] R/W B2_N[7:0] R/W A1_N[23:16] R/W A1_N[15:8] R/W A1_N[7:0] R/W A2_N[23:16] R/W A2_N[15:8] R/W A2_N[7:0] Maxim Integrated │ 123 MAX98090 Ultra-Low Power Stereo Audio Codec Playback Path Dynamic Range Control compression is enabled, if the input signal amplitude exceeds the compression threshold the gain is reduced by the chosen compression ratio. This results in a smaller, compressed output dynamic range relative to the input dynamic range. When expansion is enabled, the gain is decreased by the chosen expansion ratio if the input signal amplitude instead falls below the expansion threshold. This results in a larger, expanded output dynamic range. The playback path includes a dynamic range control (DRC) section (Figure 25). The DRC is highly configurable and features digital make-up gain, a dynamic range compression and expansion, and programmable attack and release times. The device dynamic range is determined by the difference between the full-scale and the RMS noise floor amplitude of the configured signal path. To avoid performance limiting, the application dynamic range is typically smaller than the dynamic range of the selected signal path. With dynamic range control disabled, the input dynamic range is equal to the output dynamic range (Figure 26). When DRC DISABLED DYNAMIC RANGE COMPRESSION FULL SCALE 0 -40 -60 APPLICATIN OUTPUT DYNAMIC RANGE -80 -100 -120 NOISE FLOOR -140 APPLICATION INPUT DYNAMIC RANGE -40 -60 COMPRESSED OUTPUT DYNAMIC RANGE -80 COMPRESSION THRESHOLD = -30dB RATIO = 2:1 -100 -120 NOISE FLOOR 0 FULL SCALE 0 -20 -140 -140 -120 -100 -80 -60 -40 -20 INPUT AMPLITUDE (dBFS) DYNAMIC RANGE EXPANSION FULL SCALE OUTPUT AMPLITUDE (dBFS) -20 OUTPUT AMPLITUDE (dBFS) OUTPUT AMPLITUDE (dBFS) 0 The DRC also features a digital make-up gain control section (Table 54), that can be programmed from 0dB to 12dB in 1dB increments. To avoid clipping before compression (during the attack time), the signal cannot at any time exceed the uncompressed full-scale code. Therefore, the APPLICATION INPUT DYNAMIC RANGE -140 -120 -100 -80 -60 -40 -20 INPUT AMPLITUDE (dBFS) -20 -40 EXPANDED OUTPUT DYNAMIC RANGE -60 -80 EXPANSION THRESHOLD = -60dB, RATIO = 1:2 -100 -120 NOISE FLOOR -140 0 APPLICATION INPUT DYNAMIC RANGE -140 -120 -100 -80 -60 -40 -20 INPUT AMPLITUDE (dBFS) 0 Figure 26. Dynamic Range Compression and Expansion DRC DISABLED 0 AV_PLAYBACK = 0dB (DV[3:0] = 0x0) 0 OUTPUT AMPLITUDE (dBFS) -20 -40 -60 -80 -100 FULL-SCALE AV_PLAYBACK = -10dB (DV[3:0] = 0xA) -20 -40 -60 OUTPUT AMPLITUDE (dBFS) FULL-SCALE 0 OUTPUT AMPLITUDE (dBFS) DRC ENABLED WITH MAKE-UP GAIN DRC ENABLED COMPRESSION THRESHOLD = -30dB RATIO = 4:1 EXPANSION THRESHOLD = -60dB RATIO = 1:2 -80 -100 AV_PLAYBACK = -10dB (DV[3:0] = 0xA) -120 -120 -100 -80 -60 -40 -20 INPUT AMPLITUDE (dBFS) AV_PLAYBACK = -10dB (DV[3:0] = 0xF) -20 AV_DRC = +10dB -40 -60 -80 -100 -120 -120 0 FULL-SCALE -120 -100 -80 -60 -40 -20 INPUT AMPLITUDE (dBFS) 0 -120 -100 -80 -60 -40 -20 INPUT AMPLITUDE (dBFS) 0 Figure 27. DRC Enable and Make-Up Gain www.maximintegrated.com Maxim Integrated │ 124 MAX98090 Ultra-Low Power Stereo Audio Codec sum of the digital gain/level control, parametric equalizer gain, and the DRC make-up gain must not exceed 0dB total. Figure 27 shows the effect of enabling the DRC with and without digital make-up gain. input amplitude increases). The compression threshold can be configured from -31dB to 0dB. The compression ratios and a range of thresholds are illustrated in Figure 28. The low amplitude expansion threshold is used to prevent background noise from being amplified. When the signal level drops below the expansion threshold, the DRC reduces the gain until the signal increases above the threshold. The expansion ratio can be set to a 1:1, 1:2, or 1:3 ratio while the threshold can be configured from ‑35dB The DRC features two programmable signal thresholds. The high amplitude compression threshold is used to reduce the maximum sustained signal amplitude. The compression ratio can be set to one of five options from a 1:1 ratio to an infinite:1 ratio (or flat output amplitude as DRC ENABLED -10 -20 -30 COMPRESSION THRESHOLD = -30dB RATIO =4:1 -40 -50 -60 FULL SCALE 1:5:1 -10 -20 2:1 COMPRESSION THRESHOLD = - 30dB -30 4:1 INF:1 -40 -50 -60 -60 -50 -40 -30 -20 -10 0 1:1 RATIO OPTION OUTPUT AMPLITUDE (dBFS) 0 OUTPUT AMPLITUDE (dBFS) OUTPUT AMPLITUDE (dBFS) 0 COMPRESSION RATIO FULL SCALE COMPRESSION THRESHOLD FULL SCALE THRESHOLD OPTIONS -10 -20 -30 COMPRESSION RATION = 4:1 0dB -5dB -10dB -15dB -20dB -25dB -30dB -40 -50 -60 0 -60 -50 INPUT AMPLITUDE (dBFS) -40 -30 -20 -10 0 -60 -50 INPUT AMPLITUDE (dBFS) -40 -30 -20 -10 0 INPUT AMPLITUDE (dBFS) Figure 28. DRC Compression Ratio and Threshold EXPANSION RATIO EXPANSION THRESHOLD -30 -40 -40 -40 -50 -60 EXPANDER THRESHOLD = -60dB RATIO = 1:2 -70 -80 -50 -60 -70 -90 -80 -70 -60 -50 -40 INPUT AMPLITUDE (dBFS) -30 EXPANSION THRESHOLD = -60dB RATIO OPTIONS -80 -90 -90 OUTPUT AMPLITUDE (dBFS) -30 OUTPUT AMPLITUDE (dBFS) OUTPUT AMPLITUDE (dBFS) DRC ENABLED -30 1:1 -90 1:2 -60 -70 THRESHOLD OPTIONS -80 -90 1:3 -80 -70 -60 -50 -40 INPUT AMPLITUDE (dBFS) -50 -35dB -40dB -45dB -50dB EXPANSION -55dB RATIO = 1:2 -60dB -65dB -30 -90 -80 -70 -60 -50 -40 INPUT AMPLITUDE (dBFS) -30 Figure 29. DRC Expansion Ratio and Threshold www.maximintegrated.com Maxim Integrated │ 125 MAX98090 Ultra-Low Power Stereo Audio Codec COMPRESSION ATTACK TIME (2:1) AMPLITUDE INCREASES COMPRESSION THRESHOLD COMPRESSED AMPLITUDE ATTACK TIME COMPRESSION RELEASE TIME (2:1) COMPRESSED AMPLITUDE AMPLITUDE DECECREASES RELEASE TIME RELEASED AMPLITUDE Figure 30. DRC Attack and Release Time Waveforms to ‑66dB. The expansion ratios and a range of threshold are illustrated in Figure 29. The DRC provides a wide range of programmable attack and release times (Table 53). When the compression is enabled and the signal amplitude increases until the compression threshold is exceeded, the attack time determines how quickly the selected compression ratio is applied. When the signal amplitude decreases and the compression threshold would no longer be exceeded, the release time determines how quickly the gain returns to normal (Figure 30). When expansion is enabled and the signal amplitude decreases until it drops below the expansion threshold, the release time determines how quickly the selected expansion ratio is applied. When the signal amplitude increases and the expansion threshold would no longer be exceeded, the attack time determines how quickly the gain returns to normal. The attack and release times are not absolute. They are instead used to set the rate at which the gain is adjusted once the signal amplitude is either above or below the appropriate threshold. Therefore the selected attack/ release times are relative to the ratio of the new signal amplitude to the selected compression and expansion thresholds. The values provided in Table 53 all assume the input signal amplitude changed to exceed the appro- www.maximintegrated.com priate threshold by a ratio of 12dB (above for compression and below for expansion). If the appropriate threshold is exceeded by a larger or smaller ratio, the attack time is increased or decreased appropriately. The change is proportional to the change in ratio in dB. For example, release time is reduced by 50% for 6dB. For compression, if the signal amplitude exceeds the threshold by 12dB, the attack time when entering compression precisely matches the selected configuration. Likewise, when exiting compression, the release time is determined by the ratio by which the threshold was exceeded prior to the amplitude dropping. Expansion works in exactly the same fashion except for two differences. The expansion ratio is applied when the signal amplitude drops below the expansion threshold (rather than above for compression), and the release time (rather than attack time) determines how long it takes to enter expansion (centered at 12dB below the expansion threshold). Likewise, the attack time is then used when exiting expansion. In addition, when entering expansion, the ratio of the initial input amplitude to the expansion threshold sets a delay before the expansion ratio is applied. This delay is centered at 12dB above the expansion threshold and is determined by the selected release time. There is no delay prior to the attack time when exiting expansion. Maxim Integrated │ 126 MAX98090 Ultra-Low Power Stereo Audio Codec Table 53. Dynamic Range Control (DRC) Timing Register ADDRESS: 0x33 DESCRIPTION BIT NAME TYPE POR 7 DRCEN R/W 0 PLAYBACK DRC Enable 0: DRC disabled. 1: DRC enabled. R/W 0 PLAYBACK DRC Release Time Configuration (12dB Relative to Threshold) R/W 0 R/W 0 — — R/W 0 R/W 0 R/W 0 6 5 DRCRLS[2:0] 4 3 — 2 1 DRCATK[2:0] 0 0x0: 8s 0x1: 4s 0x2: 2s 0x3: 1s 0x4: 0.5s 0x5: 0.25s 0x6: 0.125s 0x7: 0.0625s — PLAYBACK DRC Attack Time Configuration (12dB Relative to Threshold) 0x0: 0.125ms 0x1: 0.25ms 0x2: 1.25ms 0x3: 2.5ms 0x4: 6.25ms 0x5: 12.5ms 0x6: 25ms 0x7: 50ms Table 54. Dynamic Range Control (DRC) Gain Configuration Register ADDRESS: 0x36 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 0 3 0 2 DRCG[4:0] R/W 0 1 0 0 0 PLAYBACK DRC Make-Up Gain Configuration 0x0: +0dB 0x1: +1dB 0x2: +2dB 0x3: +3dB 0x4: +4dB 0x5: +5dB 0x6: +6dB 0x7: +7dB 0x8: +8dB 0x9: +9dB 0xA: +10dB 0xB: +11dB 0xC: +12dB 0xD: reserved 0xE: reserved 0xF: reserved Table 55. Dynamic Range Control (DRC) Compressor Register ADDRESS: 0x34 BIT NAME TYPE DESCRIPTION POR 5 0 PLAYBACK DRC Compression Ratio Configuration 0x0: 1:1 0x3: 4:1 0x1: 1.5:1 0x4: INF:1 0x2: 2:1 0x5–0x7: Reserved 4 0 PLAYBACK DRC Compression Threshold Configuration 3 0 7 6 2 0 DRCCMP[2:0] DRCTHC[4:0] R/W R/W 0 0 1 0 0 0 www.maximintegrated.com 0x00: 0 0x01: -1dB 0x02: -2dB 0x03: -3dB 0x04: -4dB 0x05: -5dB 0x06: -6dB 0x07: -7dB 0x08: -8dB 0x09: -9dB 0x0A: -10dB 0x0B: -11dB 0x0C: -12dB 0x0D: -13dB 0x0E: -14dB 0x0F: -15dB 0x10: -16dB 0x11: -17dB 0x12: -18dB 0x13: -19dB 0x14: -20dB 0x15: -21dB 0x16: -22dB 0x17: -23dB 0x18: -24dB 0x19: -25dB 0x1A: -26dB 0x1B: -27dB 0x1C: -28dB 0x1D: -29dB 0x1E: -30dB 0x1F: -31dB Maxim Integrated │ 127 MAX98090 Ultra-Low Power Stereo Audio Codec Table 56. Dynamic Range Control (DRC) Expander Register ADDRESS: 0x35 BIT NAME TYPE POR 7 — — — DRCEXP[2:0] R/W DESCRIPTION — 0 PLAYBACK DRC Expansion Ratio Configuration 0x0: 1:1 0x2: 1:3 0x1: 1:2 0x3–0x7: Reserved 4 0 PLAYBACK DRC Expansion Threshold Configuration 3 0 0x00: -35dB 0x01: -36dB 0x02: -37dB 0x03: -38dB 0x04: -39dB 0x05: -40dB 0x06: -41dB 0x07: -42dB 6 5 2 DRCTHE[4:0] R/W 0 0 1 0 0 0 Playback Path Digital Filters The playback path DSP includes a digital filter stage. One filter, set with the MODE bit (Table 57), offers the choice between the IIR voice filters and the FIR music filters. The IIR filters are optimized for standard (fS = 8kHz) and wideband (fS = 16kHz) voice applications, while the FIR filters are optimized for low power operation at higher audio/music sampling rates. For sampling rates in excess of 50kHz (fLRCLK > 50kHz), the FIR audio filters must be used, and the DHF bit should be set to appropriately scale the FIR interpolation filter. The MODE configuration selected applies to both channels of both the record and playback path DSP. www.maximintegrated.com 0x08: -43dB 0x09: -44dB 0x0A: -45dB 0x0B: -46dB 0x0C: -47dB 0x0D: -48dB 0x0E: -49dB 0x0F: -50dB 0x10: -51dB 0x11: -52dB 0x12: -53dB 0x13: -54dB 0x14: -55dB 0x15: -56dB 0x16: -57dB 0x17: -58dB 0x18: -59dB 0x19: -60dB 0x1A: -61dB 0x1B: -62dB 0x1C: -63dB 0x1D: -64dB 0x1E: -65dB 0x1F: -66dB The playback path DSP also features a DC-blocking filter. This filter can be used with both the IIR voice and FIR music filters, and blocks low-frequency (including DC) input signals outside of the lower end of the audio band. Digital-to-Analog Converter (DAC) Configuration The stereo DAC architecture includes two independent audio paths, analog outputs that can be routed to any of the analog output mixers, and two operating modes (Table 4). One operating mode is optimized for maximum dynamic performance while the other is optimized for lower power consumption. Both DAC channels can be enabled independently, allowing the device to support both stereo and left or right mono configurations (Table 8). Maxim Integrated │ 128 MAX98090 Ultra-Low Power Stereo Audio Codec Table 57. DSP Filter Configuration Register ADDRESS: 0x26 BIT NAME TYPE DESCRIPTION POR 7 MODE R/W 1 Enables the CODEC DSP FIR Music Filters (Default IIR Voice Filters) 0: The codec DSP filters operate in IIR voice mode with stop band frequencies below the fS/2 Nyquist rate. The voice mode filters are optimized for 8kHz or 16kHz voice application use. 1: The codec DSP filters operate in a linear phase FIR audio mode optimized to maintain stereo imaging and operate at higher fS rates while utilizing lower power. 6 AHPF R/W 0 Enables the Record Path DC-Blocking Filter 0: DC-blocking filter disabled. 1: DC-blocking filter enabled. 5 DHPF R/W 0 Enables the Playback Path DC-Blocking Filter 0: DC-blocking filter disabled. 1: DC-blocking filter enabled. 4 DHF R/W 0 Enables the DAC High Sample Rate Mode (LRCLK > 50kHz, FIR Only) 0: LRCLK is less than 50kHz. 8x FIR interpolation filter used. 1: LRCLK is greater than 50kHz. 4x FIR interpolation filter used. 3 — — — — 2 — — — — 1 — — — — 0 — — — — L/R ST LEVEL FLEXSOUND TECHNOLOGY DSP SIDETONE FROM RECORD PATH DALEN DVST[3:0] LEFT GAIN DAI DVG[1:0] RIGHT GAIN LEFT PLAYBACK PATH LEFT SIDETONE DSTS[1:0] RIGHT SIDETONE LEFT LEVEL DVM DV[3:0] RIGHT LEVEL LEFT 7-BAND PARAMETRIC EQUALIZER LEFT ALC: AUTOMATIC LEVEL CONTROL LEFT FILTERS EQ_BANDEN DVEQ[3:0] EQCLP B0_EQ_[23:0] B1_EQ_[23:0] B2_EQ_[23:0] A1_EQ_[23:0] A2_EQ_[23:0] ALCEN ALCG[4:0] ALCRLS[2:0] ALCATK[2:0] ALCCMP[2:0] ALCTHC[4:0] ALCEXP[2:0] ALCTHE[4:0] MODE DHPF RIGHT 7-BAND PARAMETRIC EQUALIZER RIGHT ALC: AUTOMATIC LEVEL CONTROL RIGHT FILTERS DAC LEFT DACHP PERFMODE TO THE ANALOG OUTPUT MIXERS DAC RIGHT RIGHT PLAYBACK PATH DAREN Figure 31. Playback Path Digital-to-Analog Converter www.maximintegrated.com Maxim Integrated │ 129 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Audio Output Configuration speakers. The headphone output drivers utilize Maxim’s DirectDrive architecture with an integrated charge pump, and provide configurable headphone and headset jack detection. Each analog audio output driver has a programmable gain input mixer and output amplifier. Each mixer accepts any combination of signals from the playback DAC, the analog microphone amplifier, and the line input drivers. The device features three independent integrated analog audio output drivers (Figure 32). The receiver/line output driver can be configured either as a differential receiver/ earpiece output or as a stereo single-ended line output driver. The stereo speaker output drivers are filterless Class D differential amplifiers capable of driving both 4Ω and 8Ω MIXRVCL[5:0] MIXRVCLG[1:0] DACL DACR RCV/ -12dB TO 0dB LINE MIC 2 OUT LEFT LINE A MIXER LINE B MIC 1 FLEXSOUND TECHNOLOGY DSP DACLEN DAC RIGHT DACHP PERFMODE DACREN DACL -12dB TO 0dB RCV/ LINE OUT MUX MIXRVCL[5:0] MIXRVCLG[1:0] MIXSPL[5:0] MIXSPLG[1:0] DACR SPK LEFT MIC 2 MIXER LINE A MIC 1 -12dB TO 0dB SPEAKER LEFT PGA LINE B -62dB TO 8dB LINE OUT RIGHT PGA DACL MIC 1 MIC 2 LINE A SPK RIGHT MIXER DACL SPVOLL[4:0] SPLM SPLEN SPKLGND -48dB TO 14dB SPKLP SPKLN 6dB LINE A HP LEFT MIXER -48dB TO 14dB SPKRP SPKRN 6dB SPVOLR[4:0] SPLM SPREN SPKRGND HPVOLL[4:0] HPLM HPLEN -12dB TO 0dB HP LEFT MUX LINE B MIXHPLSEL MIXHPRSEL MAX98090 SPK_VDD SPKSLAVE MIXHPL[5:0] MIXHPLG[1:0] DACR MIC 2 SPEAKER RIGHT PGA MIXSPL[5:0] MIXSPLG[1:0] LINE B MIC 1 -12dB TO 0dB RCVN/ LOUTR RCVRVOL[4:0] RCVRM RCVREN ZDEN VS2EN VSEN DACR RCVP/ LOUTL ZDEN VS2EN VSEN LINMOD DACL DAC LEFT -62dB TO 8dB LINE OUT LEFT PGA DACR RCV/ MIC 1 LINE MIC 2 OUT RIGHT LINE A MIXER LINE B RCVLVOL[4:0] RCVLM RCVLEN HEADPHONE LEFT PGA -67dB TO 3dB ZDEN VS2EN VSEN HPL HPSNS DACL DACR MIC 1 ANALOG INPUT DRIVERS HP MIC 2 RIGHT MIXER LINE A LINE B -12dB TO 0dB HP RIGHT MUX MIXHPR[5:0] MIXHPRG[1:0] HEADPHONE RIGHT PGA HPVOLR[4:0] HPRM HPREN -67dB TO 3dB HEADPHONE DIRECT DRIVE CHARGE PUMP HPR HPVDD HPGND CPVSS CPVDD C1N C1P Figure 32. Analog Audio Output Functional Diagram www.maximintegrated.com Maxim Integrated │ 130 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Class AB Configurable Receiver/Line Output configuration, both channels are configured individually by the left and right channel registers. The device features a configurable analog Class AB programmable gain amplifier output that can be configured to act either a mono differential output or as a stereo singleended output. When configured as a differential analog output (LINEMOD = 0, Table 61), the driver is an ideal receiver driver capable of driving both 16Ω and 32Ω differential loads (such as an earpiece speaker). In the receiver configuration, the mono output of the left receiver/line output mixer is routed to both the left and right output drivers in a bridge tied load (BTL) configuration (Figure 33). In this configuration, the mixer input signal source(s) and both the mixer and output amplifier gain settings are determined by the left channel registers. All right output channel register settings have no effect in receiver/earpiece mode. Receiver/Earpiece Mixer and Gain Control When configured as a stereo single-ended analog output (LINEMOD = 1, Table 61), the driver is optimized for standard ground referenced, high impedance line outputs. In the line output configuration, the output of the left and right line output mixers are individually routed to the left and right output drivers (respectively, Figure 34). In this FLEXSOUND TECHNOLOGY DSP When configured as a differential receiver output, only the left output configuration registers are used. The receiver mixer can be configured to accept any combination of signals from the playback DAC, the analog microphone amplifiers, and the line input drivers (Table 58). The receiver input mixer also provides several attenuation options (Table 59). The mixer attenuation options of -6dB, -9.5dB, and -12dB are sized to prevent clipping when several full-scale input sources are selected. The receiver output is a programmable gain amplifier (PGA) capable of driving a wide range of differential loads (including standard 16Ω and 32Ω earpiece speakers). The receiver PGA has a wide volume adjustment range from -62dB to +8dB, provides a high attenuation mute control (Table 60), and features programmable click and pop reduction options. See the Click-and-Pop Reduction section for details. The receiver PGA output common-mode voltage is either half of VAVDD (in resistive divider BIAS mode) or about 0.78V (in bandgap BIAS mode). SPEAKER/ HEADPHONES DACR DACL DAC LEFT DACLEN RCV/ -12dB TO 0dB LINE MIC 2 OUT LEFT LINE A MIXER LINE B MIC 1 DAC RIGHT DACHP PERFMODE MIXRVCL[5:0] MIXRVCLG[1:0] DACREN DACR DACL ANALOG INPUT DRIVERS RCV/ MIC 1 LINE MIC 2 OUT RIGHT LINE A MIXER LINE B -12dB TO 0dB RCVLVOL[4:0] RCVLM RCVLEN LINE OUT LEFT PGA MIXRVCL[5:0] MIXRVCLG[1:0] RCVP/ LOUTL ZDEN VS2EN ZSEN LINMOD RCV/ LINE OUT MUX -62dB TO 8dB LINE OUT RIGHT PGA -62dB TO 8dB RCVN/ LOUTR MAX98090 RCVRVOL[4:0] RCVRM RCVREN Figure 33. Receiver Output Functional Diagram www.maximintegrated.com Maxim Integrated │ 131 MAX98090 Ultra-Low Power Stereo Audio Codec FLEXSOUND TECHNOLOGY DSP SPEAKER/ HEADPHONES DACR DACL DAC LEFT DACLEN MIXRVCL[5:0] MIXRVCLG[1:0] RCV/ -12dB TO 0dB LINE OUT MIC 2 LEFT LINE A MIXER MIC 1 DAC RIGHT DACHP PERFMODE RCVLVOL[4:0] RCVLM RCVLEN DACREN LINE OUT LEFT PGA LINE B DACL ANALOG INPUT DRIVERS -12dB TO 0dB RCVP/ LOUTL ZDEN VS2EN ZSEN LINMOD DACR RCV/ MIC 1 LINE MIC 2 OUT RIGHT LINE A MIXER LINE B -62dB TO 8dB RCV/ LINE OUT MUX LINE OUT RIGHT PGA -62dB TO 8dB RCVN/ LOUTR MAX98090 MIXRVCL[5:0] MIXRVCLG[1:0] RCVRVOL[4:0] RCVRM RCVREN Figure 34. Stereo Single-Ended Line Output Functional Diagram Table 58. Receiver and Left Line Output Mixer Source Configuration Register ADDRESS: 0x37 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 0 Selects MIC 2 as the input to the receiver/line out left mixer. 4 0 Selects MIC 1 as the input to the receiver/line out left mixer. 0 Selects line B as the input to the receiver/line out left mixer. 0 Selects line A as the input to the receiver/line out left mixer. 1 0 Selects DAC right as the input to the receiver/line out left mixer. 0 0 Selects DAC left as the input to the receiver/line out left mixer. 3 2 MIXRCVL[5:0] www.maximintegrated.com R/W Maxim Integrated │ 132 MAX98090 Ultra-Low Power Stereo Audio Codec Line Output Mixer and Gain Control When configured as a stereo single-ended line output, the left and right configuration registers can be programmed independently. Each channel mixer can be configured to accept any combination of signals from the playback DAC, the analog microphone amplifiers, and the line input drivers (Tables 58 and 61). The input mixers also provide several attenuation options (Tables 59 and 62). The mixer attenuation options of -6dB, -9.5dB, and -12dB are sized to prevent clipping when several full-scale input sources are selected. The left and right line output drivers are independent programmable gain amplifiers (PGAs) capable of driving high impedance ground referenced loads. The line output PGAs have a wide volume adjustment range from -62dB to +8dB, provide a high attenuation mute control (Tables 60 and 63), and feature programmable click and pop reduction options. See the Click-and-Pop Reduction section for details. The output common-mode voltage is either half of VAVDD (in resistive divider BIAS mode) or about 0.78V (in bandgap BIAS mode). As a result of the internal architecture, the left and right channel each have a built in baseline gain of -3dB (when all programmable gain options are set to 0dB). Table 59. Receiver and Left Line Output Mixer Gain Control Register ADDRESS: 0x38 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — — MIXRCVLG[1:0] R/W 1 0 0 0 Receiver/Line Output Left Mixer Gain Configuration 00: 0dB 10: -9.5dB 01: -6dB 11: -12dB Table 60. Receiver and Left Line Output Volume Control Register ADDRESS: 0x39 DESCRIPTION BIT NAME TYPE POR 7 RCVLM R/W 0 6 — — — — 5 — — — — 4 1 3 0 2 RCVLVOL[4:0] R/W 1 1 0 0 1 www.maximintegrated.com Left Receiver/Line Output Mute 0: Left output amplifier not muted. 1: Left output amplifier is muted. Receiver/Line Output Left PGA Volume Configuration 0x1F: +8dB 0x1E: +7.5dB 0x1D: +7dB 0x1C: +6.5dB 0x1B: +6dB 0x1A: +5dB 0x19: +4dB 0x18: +3dB 0x17: +2dB 0x16: +1dB 0x15: +0dB 0x14: -2dB 0x13: -4dB 0x12: -6dB 0x11: -8dB 0x10: -10dB 0x0F: -12dB 0x0E: -14dB 0x0D: -17dB 0x0C: -20dB 0x0B: -23dB 0x0A: -26dB 0x09: -29dB 0x08: -32dB 0x07: -35dB 0x06: -38dB 0x05: -42dB 0x04: -46dB 0x03: -50dB 0x02: -54dB 0x01: -58dB 0x00: -62dB Maxim Integrated │ 133 MAX98090 Ultra-Low Power Stereo Audio Codec Table 61. Right Line Output Mixer Source Configuration Register ADDRESS: 0x3A BIT NAME TYPE POR 7 LINMOD R/W 0 6 — — — DESCRIPTION Selects Between Receiver BTL Mode and Line Output mode 0: Receiver BTL mode. All control of the output is from the left-channel registers. 1: Line Output mode. Left and right channels are programmed independently. — 5 0 Selects MIC 2 as the input to the line out right mixer 4 0 Selects MIC 1 as the input to the line out right mixer 0 Selects Line B as the input to the line out right mixer 0 Selects Line A as the input to the line out right mixer 1 0 Selects DAC Right as the input to the line out right mixer 0 0 Selects DAC Left as the input to the line out right mixer 3 2 MIXRCVR[5:0] R/W Table 62. Right Line Output Mixer Gain Control Register ADDRESS: 0x3B DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 — — — 1 0 MIXRCVRG[1:0] R/W 0 0 — Line Output Right Mixer Gain Configuration 00: 0dB 10: -9.5dB 01: -6dB 11: -12dB Table 63. Right Line Output Volume Control Register ADDRESS: 0x3C DESCRIPTION BIT NAME TYPE POR 7 RCVRM R/W 0 6 — — — — 5 — — — — 4 1 3 0 2 RCVRVOL[4:0] R/W 1 1 0 0 1 www.maximintegrated.com Right Receiver/Line Output Mute 0: Right output amplifier not muted. 1: Right output amplifier is muted. Line Output Right PGA Volume Configuration 0x1F: +8dB 0x1E: +7.5dB 0x1D: +7dB 0x1C: +6.5dB 0x1B: +6dB 0x1A: +5dB 0x19: +4dB 0x18: +3dB 0x17: +2dB 0x16: +1dB 0x15: +0dB 0x14: -2dB 0x13: -4dB 0x12: -6dB 0x11: -8dB 0x10: -10dB 0x0F: -12dB 0x0E: -14dB 0x0D: -17dB 0x0C: -20dB 0x0B: -23dB 0x0A: -26dB 0x09: -29dB 0x08: -32dB 0x07: -35dB 0x06: -38dB 0x05: -42dB 0x04: -46dB 0x03: -50dB 0x02: -54dB 0x01: -58dB 0x00: -62dB Maxim Integrated │ 134 MAX98090 Ultra-Low Power Stereo Audio Codec Analog Class D Speaker Output The device features an integrated stereo differential speaker amplifier. The analog stereo speaker output has three series sections comprising a flexible input mixer, a FLEXSOUND TECHNOLOGY DSP programmable gain amplifier, and a differential Class D output driver (Figure 35). The speaker output is capable of driving both 4Ω and 8Ω loads, utilizes a highly efficient Class D architecture, and meets EMI emission standards while driving a filterless speaker load. RECEIVER/LINE OUT/ HEADPHONES DACR DACL DAC LEFT DACLEN MIC 1 DAC RIGHT DACHP PERFMODE SPK LEFT MIC 2 MIXER LINE A MIXSPL[5:0] MIXSPLG[1:0] DACREN LINE B -12dB TO 0dB SPEAKER LEFT PGA SPVOLL[4:0] SPLM SPLEN -48dB TO 14dB SPKLP 6dB ZDEN VS2EN ZSEN MAX98090 SPK RIGHT MIC 2 MIXER MIC 1 ANALOG INPUT DRIVERS LINE A LINE B SPKLN SPK_VDD SPKSLAVE DACR DACL SPKLGND -12dB TO 0dB SPEAKER RIGHT PGA MIXSPL[5:0] MIXSPLG[1:0] -48dB TO 14dB SPKRP 6dB SPVOLR[4:0] SPLM SPREN SPKRN SPKRGND Figure 35. Class D Speaker Output Functional Diagram www.maximintegrated.com Maxim Integrated │ 135 MAX98090 Ultra-Low Power Stereo Audio Codec Speaker Output Mixer and Gain Control The speaker mixers can be configured to accept any combination of signals from the playback DAC, the analog microphone amplifiers, and the line input drivers (Tables 64 and 65). The input mixers also provide several attenuation options (Table 66). The mixer attenuation options of -6dB, -9.5dB, and -12dB are sized to prevent clipping when several full-scale input sources are selected. Table 64. Left Speaker Mixer Configuration Register ADDRESS: 0x2E BIT NAME TYPE POR 7 — — — 6 — — — DESCRIPTION — — 5 0 Selects microphone input 2 to left speaker mixer 4 0 Selects microphone Input 1 to left speaker mixer 3 0 Selects line input B to left speaker mixer 2 MIXSPL[5:0] R/W 0 Selects line input A to left speaker mixer 1 0 Selects right DAC output to left speaker mixer 0 0 Selects left DAC output to left speaker mixer Table 65. Right Speaker Mixer Configuration Register ADDRESS: 0x2F DESCRIPTION BIT NAME TYPE POR 7 — — — 6 SPK_SLAVE — — Speaker Slave Mode Enable 0: Right-channel clock always generated independently. 1: Right channel uses left-channel clock if both channels are enabled. 5 0 Selects microphone input 2 to right speaker mixer. 4 0 Selects microphone input 1 to right speaker mixer. 3 0 Selects line input B to Right speaker mixer. 0 Selects line input A to right speaker mixer. 1 0 Selects right DAC output to right speaker mixer. 0 0 Selects left DAC output to right speaker mixer. 2 MIXSPR[5:0] R/W — Table 66 Speaker Mixer Gain Control Register ADDRESS: 0x30 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — MIXSPRG[1:0] R/W MIXSPLG[1:0] R/W 3 2 1 0 www.maximintegrated.com 0 0 0 0 Right-Speaker Mixer Gain Configuration 00: +0dB 10: -9.5dB 01: -6dB 11: -12dB Left-Speaker Mixer Gain Configuration 00: +0dB 10: -9.5dB 01: -6dB 11: -12dB Maxim Integrated │ 136 MAX98090 Ultra-Low Power Stereo Audio Codec The speaker output programmable gain amplifiers (PGAs) have a wide volume adjustment range from -48dB to +14dB, provide a high attenuation mute control (Table 67 and Table 68), and feature programmable click and pop reduction options. See Click-and-Pop Reduction section for details. In addition to the programmable gain range, the Class D output driver also provides another 6dB of built-in gain. Table 67. Left Speaker Amplifier Volume Control Register ADDRESS: 0x31 BIT NAME TYPE POR 7 SPLM R/W 0 6 — — — 5 1 4 0 3 1 2 SPVOLL[5:0] R/W 1 1 0 0 0 DESCRIPTION Left Speaker Output Mute Enable 0 : Speaker output volume set by the volume control bits. 1 : Left speaker output muted. — Left Speaker Output Amplifier Volume Control Configuration 0x3F: +14dB 0x3E: +13.5dB 0x3D: +13dB 0x3C: +12.5dB 0x3B: +12dB 0x3A: +11.5dB 0x39: +11dB 0x38: +10.5dB 0x37: +10dB 0x36: +9.5dB 0x35: +9dB 0x34: +8dB 0x33: +7dB 0x32: +6dB 0x31: +5dB 0x30: +4dB 0x2F: +3dB 0x2E: +2dB 0x2D: +1dB 0x2C: +0dB 0x2B: -1dB 0x2A: -2dB 0x29: -3dB 0x28: -4dB 0x27: -5dB 0x26: -6dB 0x25: -8dB 0x24: -10dB 0x23: -12dB 0x22: -14dB 0x21: -17dB 0x20: -20dB 0x1F: -23dB 0x1E: -26dB 0x1D: -29dB 0x1C: -32dB 0x1B: -36dB 0x1A: -40dB 0x19: -44dB 0x18: -48dB Table 68. Right Speaker Amplifier Volume Control Register ADDRESS: 0x32 BIT NAME TYPE POR 7 SPRM R/W 0 6 — — — 5 1 4 0 3 1 2 SPVOLR[5:0] R/W 1 1 0 0 0 www.maximintegrated.com DESCRIPTION Right Speaker Output Mute Enable 0 : Speaker output volume set by the volume control bits. 1 : Right-speaker output muted. — Right Speaker Output Amplifier Volume Control Configuration 0x3F: +14dB 0x3E: +13.5dB 0x3D: +13dB 0x3C: +12.5dB 0x3B: +12dB 0x3A: +11.5dB 0x39: +11dB 0x38: +10.5dB 0x37: +10dB 0x36: +9.5dB 0x35: +9dB 0x34: +8dB 0x33: +7dB 0x32: +6dB 0x31: +5dB 0x30: +4dB 0x2F: +3dB 0x2E: +2dB 0x2D: +1dB 0x2C: +0dB 0x2B: -1dB 0x2A: -2dB 0x29: -3dB 0x28: -4dB 0x27: -5dB 0x26: -6dB 0x25: -8dB 0x24: -10dB 0x23: -12dB 0x22: -14dB 0x21: -17dB 0x20: -20dB 0x1F: -23dB 0x1E: -26dB 0x1D: -29dB 0x1C: -32dB 0x1B: -36dB 0x1A: -40dB 0x19: -44dB 0x18: -48dB Maxim Integrated │ 137 MAX98090 Ultra-Low Power Stereo Audio Codec Efficient Class D Speaker Output Driver A Class D amplifier offers much higher efficiency than a Class AB amplifier. The high efficiency is due to the switching operation of the output stage transistors. In a Class D amplifier, the output transistors act as current steering switches and consume negligible additional power. Any power loss associated with a Class D output stage is primarily due to the loss in the MOSFET onresistance, and the baseline quiescent current overhead. For comparison, the theoretical best-case efficiency of a linear amplifier is 78%. However, that efficiency is only possible at peak output power conditions. Under normal operating levels (typical music reproduction levels), efficiency often falls below 30%. Under the same conditions, the device’s differential Class D speaker output amplifier still exhibits 80% efficiency. By default, the Class D output switching clocks are independently generated for the left and right channels. With slave mode enabled, the right channel becomes a slave to the left channel and uses the same clock (Table 65). In slave mode, the switching scheme is synchronous. As FLEXSOUND TECHNOLOGY DSP MIC 1 DAC RIGHT DACHP PERFMODE Analog Class-H Headphone Output The stereo headphone output driver has a flexible input mixer, programmable gain stage, an integrated charge pump, and a ground referenced DirectDrive Class H output amplifier (Figure 36). The headphone output amplifier is capable of driving both 16Ω and 32Ω groundreferenced headphone loads. MIXHPL[5:0] MIXHPLG[1:0] DACL DACLEN Traditional Class D amplifiers often require the use of external LC filters and/or shielding to meet EN55022B and FCC electromagnetic-interference (EMI) regulation standards. Maxim’s patented active emissions limiting edge-rate control circuitry reduces EMI emissions. This allows the device to drive both 4Ω and 8Ω without any additional output filtering. The filterless Class D outputs are designed for typical applications where the trace length to the speakers is short and has a low series resistance. See the Filterless Class D Speaker Operation section for application level details. SPEAKER/RECEIVER/ LINE OUT DACR DAC LEFT a result, slave mode operation eliminates potential beat tones that can occur with asynchronous stereo Class D switching. MIC 2 DACREN LINE A HP LEFT MIXER LINE B -12dB TO 0dB HP LEFT MUX MIXHPLSEL MIXHPRSEL MAX98090 DACR DACL ANALOG INPUT DRIVERS HP MIC 1 RIGHT MIC 2 MIXER LINE A LINE B HPVOLL[4:0] HPLM HPLEN HP RIGHT -12dB TO 0dB MUX MIXHPR[5:0] MIXHPRG[1:0] HEADPHONE LEFT PGA -67dB TO 3dB ZDEN VS2EN ZSEN HEADPHONE RIGHT PGA HPVOLR[4:0] HPRM HPREN HPL HPSNS -67dB TO 3dB HEADPHONE DIRECT DRIVE CHARGE PUMP HPR HPVDD HPGND C1P C1N CPVDD CPVSS Figure 36. DirectDrive Headphone Output Functional Diagram www.maximintegrated.com Maxim Integrated │ 138 MAX98090 Ultra-Low Power Stereo Audio Codec Headphone Output Mixer and Gain Control The headphone mixers can be configured to accept any combination of signals from the playback DAC, the analog microphone amplifiers, and the line input drivers (Table 69 and Table 70). The input mixers also provide several attenuation options (Table 71). The mixer attenuation options of -6dB, -9.5dB, and -12dB are sized to prevent clipping when several full-scale input sources are selected. Table 69. Left Headphone Mixer Configuration Register ADDRESS: 0x29 BIT NAME TYPE POR 7 — — — 6 — — — DESCRIPTION — — 5 0 Selects microphone input 2 to left headphone mixer. 4 0 Selects microphone input 1 to left headphone mixer. 0 Selects line input B to left headphone mixer. 0 Selects line input A to left headphone mixer. 1 0 Selects right DAC output to left headphone mixer. 0 0 Selects left DAC output to left headphone mixer. 3 2 MIXHPL[5:0] R/W Table 70. Right Headphone Mixer Configuration Register ADDRESS: 0x2A BIT NAME TYPE POR 7 — — — 6 — — — DESCRIPTION — — 5 0 Selects microphone input 2 to right headphone mixer. 4 0 Selects microphone input 1 to right headphone mixer. 3 0 Selects line input B to right headphone mixer. 2 MIXHPR[5:0] R/W 0 Selects line input A to right headphone mixer. 1 0 Selects right DAC output to right headphone mixer. 0 0 Selects left DAC output to right headphone mixer. Table 71. Headphone Mixer Control and Gain Register ADDRESS: 0x2B BIT NAME TYPE POR 7 — — — 6 — — — DESCRIPTION — — 5 MIXHPRSEL R/W 0 Select Headphone Mixer as Right Input Source (Default DAC Right Direct) 0: DAC only source (best dynamic range and power consumption) 1: Headphone mixer source 4 MIXHPLSEL R/W 0 Select Headphone Mixer as Left Input Source (Default DAC Left Direct) 0: DAC only source (best dynamic range and power consumption) 1: Headphone mixer source MIXHPRG[1:0] R/W MIXHPLG[1:0] R/W 3 2 1 0 www.maximintegrated.com 0 0 0 0 Right-Headphone Mixer Gain Configuration 00: +0dB 10: -9.5dB 01: -6dB 11: -12dB Left-Headphone Mixer Gain Configuration 00: +0dB 10: -9.5dB 01: -6dB 11: -12dB Maxim Integrated │ 139 MAX98090 Ultra-Low Power Stereo Audio Codec Additionally, the headphone output has a reduced power direct from DAC playback mode (Figure 37). In this configuration, the stereo DAC outputs from the playback path are routed around the headphone mixer directly to the FLEXSOUND TECHNOLOGY DSP SPEAKER/RECEIVER/ LINE OUT DACR MIXHPL[5:0] MIXHPLG[1:0] DACL DAC LEFT DACLEN MIC 1 DAC RIGHT DACHP PERFMODE headphone output amplifiers. When paired with the low power headphone playback mode (Table 4), this combination is the lowest power digital to analog playback configuration available. MIC 2 DACREN LINE A HP LEFT MIXER -12dB TO 0dB HP LEFT MUX LINE B MIXHPLSEL MIXHPRSEL MAX98090 DACR DACL HP RIGHT MIC 2 MIXER LINE A MIC 1 ANALOG INPUT DRIVERS LINE B HPVOLL[4:0] HPLM HPLEN HP RIGHT -12dB TO 0dB MUX MIXHPR[5:0] MIXHPRG[1:0] HEADPHONE LEFT PGA -67dB TO 3dB ZDEN VS2EN ZSEN HEADPHONE RIGHT PGA HPVOLR[4:0] HPRM HPREN HPL HPSNS -67dB TO 3dB HEADPHONE DIRECT DRIVE CHARGE PUMP HPR HPVDD HPGND C1P C1N CPVDD CPVSS Figure 37. Reduced Power DAC Playback to Headphone Output Configuration www.maximintegrated.com Maxim Integrated │ 140 MAX98090 Ultra-Low Power Stereo Audio Codec The headphone output programmable gain amplifiers (PGAs) have a wide volume adjustment range from -67dB to +3dB, provide a high attenuation mute control (Table 72 and Table 73), and feature programmable click-and-pop reduction options. See the Click-and-Pop Reduction section for details. Table 72. Left Headphone Amplifier Volume Control Register ADDRESS: 0x2C DESCRIPTION BIT NAME TYPE POR 7 HPLM R/W 0 6 — — — — 5 — — — — 4 1 3 1 2 HPVOLL[4:0] R/W 0 1 1 0 0 Left Headphone Output Mute Enable 0 : Headphone output volume set by the volume control bits. 1 : Headphone output muted. Left Headphone Output Amplifier Volume Control Configuration 0x1F: +3dB 0x1E: +2.5dB 0x1D: +2dB 0x1C: +1.5dB 0x1B: +1dB 0x1A: +0dB 0x19: -1dB 0x18: -2dB 0x17: -3dB 0x16: -4dB 0x15: -5dB 0x14: -7dB 0x13: -9dB 0x12: -11dB 0x11: -13dB 0x10: -15d 0x0F: -17dB 0x0E: -19dB 0x0D: -22dB 0x0C: -25dB 0x0B: -28dB 0x0A: -31dB 0x09: -34dB 0x08: -37dB 0x07: -40dB 0x06: -43dB 0x06: -47dB 0x04: -51dB 0x03: -55dB 0x02: -59dB 0x01: -63dB 0x00: -67dB Table 73. Right Headphone Amplifier Volume Control Register ADDRESS: 0x2D BIT NAME 7 HPRM R/W 0 6 — — — 5 — — — 4 1 3 1 2 HPVOLR[4:0] R/W 0 1 1 0 0 www.maximintegrated.com DESCRIPTION TYPE POR Right Headphone Output Mute Enable 0 : Headphone output volume set by the volume control bits. 1 : Headphone output muted. — — Right Headphone Output Amplifier Volume Control Configuration 0x1F: +3dB 0x1E: +2.5dB 0x1D: +2dB 0x1C: +1.5dB 0x1B: +1dB 0x1A: +0dB 0x19: -1dB 0x18: -2dB 0x17: -3dB 0x16: -4dB 0x15: -5dB 0x14: -7dB 0x13: -9dB 0x12: -11dB 0x11: -13dB 0x10: -15dB 0x0F: -17dB 0x0E: -19dB 0x0D: -22dB 0x0C: -25dB 0x0B: -28dB 0x0A: -31dB 0x09: -34dB 0x08: -37dB 0x07: -40dB 0x06: -43dB 0x06: -47dB 0x04: -51dB 0x03: -55dB 0x02: -59dB 0x01: -63dB 0x00: -67dB Maxim Integrated │ 141 MAX98090 Ultra-Low Power Stereo Audio Codec Headphone Ground Sense To improve channel isolation, the device has a low-side headphone sense (HPSNS) that senses the ground return of the headphone load. For optimal performance, connect the headphone sense line through an isolated OPTIMAL GROUND SENSE CONFIGURATION trace to a point as close as possible to the ground pole of the headphone jack (Figure 38). If this is not possible, or if headphone sense is not used, connect it to the analog ground plane. In this configuration, channel isolation can be degraded, resulting in increased channel-to-channel crosstalk. ALTERNATIVE GROUND SENSE CONFIGURATION ISOLATED HP SENSE TRACE HEADPHONE LEFT PGA HP SENSE TO GROUND HPL HEADPHONE LEFT PGA HPSNS HEADPHONE RIGHT PGA HPR HPL HPSNS CODEC GROUND PLANE HEADPHONE OUTPUT JACK HEADPHONE RIGHT PGA HPR CODEC GROUND PLANE HEADPHONE OUTPUT JACK Figure 38. Headphone Output Ground Sense Connections www.maximintegrated.com Maxim Integrated │ 142 MAX98090 Ultra-Low Power Stereo Audio Codec DirectDrive Headphone Output Amplifier Traditional single-supply headphone amplifiers have outputs biased at a nominal DC voltage (typically at either half the high-side supply, or at a bandgap referenced common mode level). As a result, large coupling capacitors are needed to block this DC bias and AC-couple the audio output to the headphone load. Without these capacitors, a significant DC current would flow through the ground referenced headphone load. The result is both unnecessary power dissipation, and potential damage to both the headphone load and amplifier. Maxim’s second-generation DirectDrive architecture solves this problem by using a charge pump to create an internal negative supply voltage. This increases the overall output signal swing while at the same time, allowing the headphone outputs to be biased at GND even while operating from a single supply (Figure 39). Without a DC bias component, there is no need for the large AC-coupling capacitors. Instead of two large (typically 220µF) capacitors, the charge pump only requires three small ceramic capacitors. This conserves board space, reduces cost, and improves the frequency response of the headphone amplifier. Class H Amplifier Charge Pump A Class H amplifier has the same output architecture as a Class AB amplifier. However, in a Class H amplifier the power supplies are modulated by the output signal. The integrated headphone charge pump generates both the positive and negative power supply for the headphone output amplifier. To maximize efficiency, both the charge pump’s switching frequency and output voltage level and format change based on the headphone output signal level. The charge pump has three different operating ranges each with a different switching frequency. The two lower power ranges use a three-level switching scheme to generate half supply rails at ±VHPVDD/2 while the high power range uses a standard two-level switching scheme to generate full supply rails at ±VHPVDD. The switching frequency and voltage levels of each range are optimized to maintain high efficiency while meeting the different output power requirements (Table 74). Table 74. Charge-Pump Operating Ranges CHARGE PUMP CONFIGURATION RANGE HEADPHONE OUTPUT LEVEL (% of VHPVDD) FREQUENCY (kHz) VCPVDD/CPVSS WAVEFORM 1 < 10 ~82 ±VHPVDD/2 Range 1 2 10 to 25 ~660 ±VHPVDD/2 Range 2 3 > 25 ~500 ±VHPVDD Range 3 VHPVDD +VHPVDD VHP_OUT VHPVDD VHP_OUT GND 2 -VHPVDD GND CONVENTIONAL HEADPHONE BIAS DIRECTDRIVE HEADPHONE BIAS Figure 39. Conventional vs. DirectDrive Headphone Output Bias www.maximintegrated.com Maxim Integrated │ 143 MAX98090 Ultra-Low Power Stereo Audio Codec Range 1 (VHP_OUT < 10% of VHPVDD): When the output signal level is less than 10% of HPVDD, the output signal swing is low and the power consumption for driving the headphone load is small relative to the charge pump quiescent consumption and switching losses. Therefore, to minimize switching losses, the charge-pump frequency is reduced to its lowest rate (~82kHz) and the bipolar output supply rails are set to half of HPVDD or ±VHPVDD/2 (Figure 40, Range 1). Range 2 (10% of VHPVDD ≤ VHP_OUT < 25% of VHPVDD): When the output signal level is between 10% and 25% of HPVDD, the output signal swing is still less than half of HPVDD. However, the load power consumption requirements are now much higher than the charge-pump POSITIVE TERMINAL (C1P) Range 3 (25% of VHPVDD ≤ VHP_OUT): When the output signal level exceeds 25% of HPVDD, the output signal swing is much wider. As a result, the charge pump now generates bipolar full HPVDD output supply rails (±VHPVDD). The switching frequency in this range is slightly lower (~500kHz). However, the increased voltage differential allows the headphone output driver to reach its maximum voltage swing and load driving capability (Figure 40, Range 3). OPERATING RANGE 2 10% VHPVDD ≤ VHP_OUT < 25% VHPVDD OPERATING RANGE 1 VHP_OUT < 10% VHPVDD VHPVDD quiescent consumption and switching losses. To meet the increased load power requirements, the charge-pump switching frequency increases (~660kHz) while the bipolar output supply rails remain at half of HPVDD or ±VHPVDD/2 (Figure 40, Range 2). VHPVDD POSITIVE TERMINAL (C1P) OPERATING RANGE 3 25% VHPVDD ≤ VHP_OUT VHPVDD VHPVDD 2 VHPVDD 2 VHPVDD 2 GND GND GND -VHPVDD 2 -VHPVDD 2 -VHPVDD 2 -VHPVDD -VHPVDD -VHPVDD VHPVDD NEGATIVE TERMINAL (C1N) VHPVDD NEGATIVE TERMINAL (C1N) VHPVDD VHPVDD 2 VHPVDD 2 VHPVDD 2 GND GND GND -VHPVDD 2 -VHPVDD 2 -VHPVDD 2 -VHPVDD -VHPVDD -VHPVDD POSITIVE TERMINAL (C1P) NEGATIVE TERMINAL (C1N) Figure 40. Class H Amplifier Charge Pump Operating Ranges www.maximintegrated.com Maxim Integrated │ 144 MAX98090 Ultra-Low Power Stereo Audio Codec To prevent audible crosstalk, the switching frequency in all three charge pump ranges is well outside of the audio band. In addition, to prevent audible distortion during supply range changes, the charge pump transitions from one output power range to another very quickly. When changing from the half supply range (±VHPVDD/2) to the full supply range (±VHPVDD/2), the transition occurs immediately if the threshold is exceeded (to avoid clipping for a rapidly increasing audio output). When moving back down, there is a 32ms delay between the threshold detection and the supply range transition. The quick supply level transitions draw a significant transient current from HPVDD. To prevent a droop/glitch on HPVDD, the bypass capacitance must be appropriate to supply the required transient current (Figures 53 and 54). Click-and-Pop Reduction The device includes extensive click-and-pop reduction circuitry designed to minimizes audible clicks and pops at turn-on, turn-off, and during volume changes. These features include zero-crossing detection, volume change smoothing, and volume change stepping (Table 75). Zero-crossing detection is available on the analog microphone input PGAs and all analog output PGAs and volume controls to prevent large glitches when volume changes are made. Instead of making a volume change immediately, the change is made when the audio signal crosses the midpoint (Figure 42). If no zero crossing occurs within the timeout window (100ms), the volume change occurs regardless of signal level. 32ms VHPVDD VCPVDD VHPVDD 2 VTH_25% GND -VTH_25% VHP_OUT -VHPVDD 2 VCPVSS -VHPVDD 32ms Figure 41. Class H Amplifier Supply Range Transitions I2C PGA VOLUME CHANGE GND I2C PGA VOLUME CHANGE GND AUDIO OUTPUT VOLUME CHANGE ZERO-CROSSING DETECTION DISABLED (ZDEN = 1) AUDIO OUTPUT VOLUME CHANGE ZERO-CROSSING DETECTION ENABLED (ZDEN = 0) Figure 42. Zero-Crossing Detection www.maximintegrated.com Maxim Integrated │ 145 MAX98090 Ultra-Low Power Stereo Audio Codec Table 75. Zero-Crossing Detection and Volume Smoothing Configuration Register ADDRESS: 0x40 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 ZDEN R/W 0 Zero-Crossing Detection 0: Volume changes made only at zero crossings or after approximately 100ms. 1: Volume changes made immediately upon request. 1 VS2EN R/W 0 Enhanced Volume Smoothing Only valid is volume adjustment smoothing is enabled (VSEN = 0). 0: Each volume change waits until the previous volume step has been applied to the output. Allows volume smoothing to function with zero-crossing timeout. 1: Volume smoothing enhancement is disabled. 0 VSEN R/W 0 Volume Adjustment Smoothing 0: Volume changes are smoothed by stepping through intermediate levels. 1: Volume changes are made directly in a single step. Volume smoothing is available on all analog output PGAs. When enabled, all volume changes are broken into the smallest available step size. The volume is then ramped through each step between the initial and final volume setting at a rate of one step every 1ms. Volume smoothing also occurs at device turn-on and turn-off. During turn-on, the volume is first set to mute before the output is enabled. Once enabled, mute is first disabled and then the volume is ramped to the programmed level. At turn-off, the volume is ramped down to the minimum gain, and then muted, before the outputs are disabled. If zero-crossing detection is enabled, each volume step occurs at a zero crossing. When no audio signal is present, zero-crossing detection can timeout and prevent volume smoothing from occurring. Enable enhanced volume smoothing to prevent the volume controller from requesting another volume step www.maximintegrated.com until the previous step has been set. Each step in the volume ramp then occurs either after a zero crossing has occurred in the audio signal or after the timeout window has expired. During PGA turn-off, volume smoothing ramps the volume down to the minimum setting, if enabled. However, to prevent long turn off times enhanced volume smoothing and zero-crossing detection is not applied at PGA mute or turn-off. If volume smoothing is too slow or is not used, the zero-crossing detection can still be used to minimize click and pop when disabling an output PGA. First ramp the PGA volume down to (in one step or multiple steps) its minimum volume setting. Zero-crossing detection is applied to each step of the volume change. Then, once at the minimum volume, either enable mute or disable the output PGA. Maxim Integrated │ 146 MAX98090 Ultra-Low Power Stereo Audio Codec Jack Detection The device features a flexible, software configurable jack detection interface. Once enabled, the jack detection interface uses two internal comparators to sense the insertion/removal of a jack and identify the type of jack inserted (headphones or headset). When the device is in shutdown or the microphone bias is disabled, the comparator thresholds are referenced to VSPKLVDD. When the device is active and microphone bias is enabled, the comparator thresholds are referenced to VMICBIAS. Jack detection operation relies on a pullup resistance to set the bias when no jack is inserted. When the device is in shutdown mode or the microphone bias is disabled (MICBIAS is high impedance), an internal pullup is enabled on JACKSNS, and is referenced to the SPKLVDD supply. When the device is not in shutdown and the microphone bias is enabled, the internal pullup is disabled (JACKSNS is high impedance). In this state, successful jack detection requires an external pullup on JACKSNS to MICBIAS. The jack detection internal interface structure and typical external application circuit is shown in Figure 43. MICBIAS VSPKLVDD 1µF 2.2kΩ 1µF INTERNAL PULL-UP CONTROL VIN+ ANALOG MIC INPUT 1µF VIN- JACKSNS LOAD SENSE COMPARATOR VSPKLVDD VMICBIAS HPL MIC GND RIGHT JDETEN JDWK LSNS VTH 95% JDETEN JDEB[1:0] MBEN LEFT HPR HPSNS VSPKLVDD VMICBIAS JKSNS VTH 10% JACK SENSE COMPARATOR Figure 43. Block Diagram and Typical Application Circuit for Jack Detection www.maximintegrated.com Maxim Integrated │ 147 MAX98090 Ultra-Low Power Stereo Audio Codec Table 76. Jack Detection Status Results JACKSNS VOLTAGE JACK DETECTION RESULTS LSNS JKSNS STATE VTH_95% ≤ VJACKSNS 1 1 No jack detected VTH_10% ≤ VJACKSNS < VTH_95% 0 1 Headset detected VJACKSNS < VTH_10% 0 0 Headphones detected No condition 1 0 Not possible/reserved Jack Detection Internal Comparators When enabled, the device detects jack insertion and removal by monitoring the voltage on JACKSNS with two internal comparators. The load sense comparator has a 95% threshold of the reference supply and is used to determine whether or not a jack has been inserted or removed. The jack sense comparator has a threshold of 10% of the reference supply, and is used to identify the type of jack (headphones/headset) inserted (Table 78). When a jack is not inserted (open), the pullup resistance conducts high. In this state, VJACKSNS is above the load sense comparator threshold and LSNS is set high to indicate that no jack is inserted. When a jack is inserted it loads JACKSNS and pulls the voltage below the load sense comparator threshold. LSNS is then set low to indicate that a jack is now inserted. When the jack is removed, the pullup resistance once again conducts high and LSNS is set high to indicate that the jack was removed. When a jack is inserted, the loading on JACKSNS pulls the voltage below the load sense comparator threshold. However, depending on the type of jack connected the voltage may or may not be pulled below the jack sense comparator threshold. If a headphone jack is inserted (3 pole), JACKSNS is shorted to ground. This pulls the voltage below the jack sense comparator threshold www.maximintegrated.com (10% of the reference supply) and JKSNS is set low to indicate headphones are inserted. If instead, a headset jack is inserted (4 pole, as shown in Figure 44), instead JACKSNS is biased to a voltage somewhere between the referenced supply and ground. In this case, VJACKSNS is above the jack sense comparator threshold but below the load sense comparator threshold. This state indicates that a headset is inserted. Table 76 details the three possible jack detection status results. These comparators are only active when the JDETEN is set high. When jack detection is disabled, JACKSNS is in a high impedance state and the interface is completely shut down. When the device is in shutdown and JDETEN is low, LSNS and JKSNS retain their previous state regardless of the jack status. Jack Detection Programmable Debounce The load sense and jack sense comparators also have a programmable debounce timeout. The debounce timeout ensures that the jack detection status doesn’t change unless the new state is persistent for longer than the timeout. This prevents rapid changes on LSNS and JKSNS during jack insertion/removal transients, and ensures that false jack detection interrupts are not generated. The debounce timeout can be programmed to one of four settings from 25ms to 200ms (Table 77). Maxim Integrated │ 148 MAX98090 1 Ultra-Low Power Stereo Audio Codec 2 JACK DETECTION DISABLED HI-Z JDETEN = 0 MBEN = 0 OR SHDN = 0 OPEN JACK HI-Z MICBIAS VIN+ 1µF JDETEN = 1 MBEN = 0 OR SHDN = 0 OPEN JACK SPKLVDD ANALOG MIC INPUT 1µF MICBIAS 1µF 1µF 2.2kΩ OPEN JACK DETECT (INTERNAL PULLUP) VIN- 2.2kΩ VIN+ 1µF ANALOG MIC INPUT 1µF INTERNAL PULLUP DISABLED HPL HPR JACKSNS PULLUP PATH JACK DETECT COMPARATORS DISABLED HPL HPR HPSNS JDWK = 0 3 LSNS/JKSNS = LAST STATE JDWK = 1 JDETEN = 1 MBEN = 1 SHDN = 1 HEADPHONE JACK LSNS/JKSNS = LAST STATE JDWK = 0 4 LSNS = 1 JKSNS = 1 HI-Z JDETEN = 1 MBEN = 1 SHDN = 1 HEADSET JACK VIN+ 1µF ANALOG MIC INPUT 1µF VIN- JDWK = 1 2.2kΩ MICBIAS 1µF VIN+ 1µF ANALOG MIC INPUT 1µF SPKLVDD VIN- GND JDWK = 0 RIGHT LSNS = 0 JKSNS = 0 HPL LEFT JACKSNS BIAS CURRENT JACK DETECT COMPARATORS ENABLED MIC GND RIGHT HPL LEFT HPR HPR HPSNS HPSNS JDWK = 1 SPKLVDD PULLUP PULLUP JACKSNS SHORT TO GND LSNS = 1 JKSNS = 1 HEADSET DETECT (INTERNAL PULLUP) MICBIAS 1µF 2.2kΩ JACK DETECT COMPARATORS ENABLED HPSNS HEADPHONE DETECT (INTERNAL PULLUP) HI-Z SPKLVDD PULLUP JACKSNS HI-Z VIN- LSNS = 0 JKSNS = 0 JDWK = 0 LSNS = 0 JKSNS = 1 JDWK = 1 JACK DETECT COMPARATORS ENABLED LSNS = 0 JKSNS = 0 Figure 44. Jack Detection Cases with Internal Pullup Resistance www.maximintegrated.com Maxim Integrated │ 149 MAX98090 Jack Detection Interrupt Generation Whenever a jack is inserted or removed and the state of either LSNS or JKSNS changes, a jack detection event is indicated with the jack configuration change flag (JDET, Table 85). If the jack detection event is not masked (IJDET, Table 86), it also generates an interrupt on IRQ. The jack detection event bit (JDET) is clear on read. An I2C read clears both the JDET bit status and the interrupt assertion on IRQ (if present). Unless a read occurs after each jack detection event, both the JDET bit and the IRQ interrupt will remain asserted and no new events or interrupts can be detected. A change in state from LSNS = 1 to LSNS = 0 indicates that a jack has been inserted, while a change in state from LSNS = 0 to LSNS = 1 indicates that a jack has been removed. When an insertion occurs, if JKSNS does not change and remains at JKSNS = 1, a headset insertion is indicated, while a change in state from JKSNS = 1 to JKSNS = 0 indicates headphones have been inserted. The state transitions, and the interrupt events generated, are ideally used for state machine control in any jack detection software drivers. Operation with an Internal Pullup Resistance The device has both a strong and weak internal pullup option. The internal pullup resistors are only active if the device is in shutdown (SHDN = 0,Table 6) or when MICBIAS is disabled (MBEN = 0, Table 7), and they allow jack detection and identification to function in those states. This functionality is ideal for cases where the device is put into a sleep or shutdown state, but needs to trigger a device or system level interrupt signal for wake on insertion operation. When JDWK is low (default, Table 77), the strong internal pullup is used (approximately 2.4kΩ referenced to SPKLVDD). This configuration is capable of detecting and identifying both headphone and headset insertion. When JDWK is high, the weak internal pullup (approximately 5µA to SPKLVDD) is used. The weak internal pullup minimizes the supply current after jack insertion and is ideal for wake on insertion cases where the system might not immediately power up. The weak internal pullup cannot bias a microphone load, and therefore, cannot identify headset insertion or accessory button presses. Figure 44 details how jack detection works with the internal pullup resistance. In case 1, jack detection is disabled and both MICBIAS and JACKSNS are high www.maximintegrated.com Ultra-Low Power Stereo Audio Codec impedance. In this state, LSNS and JKSNS retain the last valid jack detection result. In case 2, no jack is inserted and the internal pullup resistance to SPKLVDD conducts JACKSNS up above both the load and jack sense comparator thresholds. In this case, with an open circuit jack, both the strong and weak internal pullups produce the correct jack detection result and the only power consumption is that required to bias the internal comparators. In case 3, a headphone jack is inserted shorting JACKSNS to ground, well below both the load and jack sense comparator thresholds. In this state, both the strong and weak internal pullups produce the correct jack detection result but the strong internal pullup consumes significantly more current than the weak internal pullup. In case 4, a headset jack is inserted. In this state, the strong and weak internal pullups produce different jack detection results. The strong internal pullup biases the headset MIC (and JACKSNS) to a level between the load sense and jack sense comparator thresholds that produces the correct jack detection result. The weak internal pullup, however, is not strong enough to bias a headset MIC and as a result it falsely reports that a headphones jack is present. Operation with an External Pullup Resistance The internal pullup resistance is sufficient for wake on interrupt or basic jack detection and identification, but an external pullup resistance to MICBIAS is required to properly bias and current limit a headset microphone (Figure 43). When jack detect is enabled and the device is active (SHDN = 1, Table 6) with MICBIAS enabled (MBEN = 1, Table 7), JACKSNS is placed into a high-impedance state and the internal pullup resistor is disabled. In this state, the external pullup resistor then determines the bias voltage level at JACKSNS. Figure 45 details the operation of jack detection with an external pullup resistance. In Case 1, jack detection is disabled. As a result, the internal jack detect comparators are disabled and LSNS/JKSNS retain their last valid jack detection result. In case 2, no jack is inserted and the external pullup resistance to MICBIAS conducts JACKSNS up above both the load and jack sense comparator thresholds. In case 3, a headphone jack is inserted shorting JACKSNS to ground, well below both the load and jack sense comparator thresholds. In case 4, a headset jack is inserted and the external pullup biases the headset MIC (and JACKSNS) to a level between the load sense and jack sense comparator thresholds. Maxim Integrated │ 150 MAX98090 1 Ultra-Low Power Stereo Audio Codec 2 JACK DETECTION DISABLED HI-Z JDETEN = 0 JDWK = X MBEN = 1 SHDN = 1 OPEN JACK PULLUP PATH MICBIAS 1µF 2.2kΩ OPEN JACK DETECT (INTERNAL PULLUP) VIN+ 1µF JDETEN = 1 JDWK = X MBEN = 1 SHDN = 1 OPEN JACK SPKLVDD ANALOG MIC INPUT 1µF VIN- 1µF 2.2kΩ VIN+ 1µF HPL HPR 1µF INTERNAL PULLUP DISABLED HPL JACK DETECT COMPARATORS DISABLED HPR HPSNS INTERNAL PULLUP DISABLED JACK DETECT COMPARATORS ENABLED HPSNS LSNS = 1 JKSNS = 1 4 HEADPHONE DETECT (INTERNAL PULLUP) SHORT TO GND JDETEN = 1 JDWK = X MBEN = 1 SHDN = 1 HEADPHONE JACK VIN- JACKSNS HI-Z LSNS /JKSNS = LAST STATE 3 SPKLVDD ANALOG MIC INPUT JACKSNS HI-Z MICBIAS 2.2kΩ BIAS CURRENT MICBIAS 1µF VIN+ 1µF SPKLVDD ANALOG MIC INPUT 1µF HEADSET DETECT (INTERNAL PULLUP) VIN- JDETEN = 1 JDWK = X MBEN = 1 SHDN = 1 HEADSET JACK 2.2kΩ 1µF VIN+ 1µF GND RIGHT HPL LEFT HPR SPKLVDD ANALOG MIC INPUT 1µF INTERNAL PULLUP DISABLED JACKSNS HI-Z MICBIAS VIN- INTERNAL PULLUP DISABLED JACKSNS JACK DETECT COMPARATORS ENABLED HI-Z MIC RIGHT LEFT HPR HPSNS LSNS = 0 JKSNS = 0 GND HPL JACK DETECT COMPARATORS ENABLED HPSNS LSNS = 0 JKSNS = 1 Figure 45. Jack Detection Operation with External Pullup Resistance www.maximintegrated.com Maxim Integrated │ 151 MAX98090 Ultra-Low Power Stereo Audio Codec 1 FALSE JACK DETECTION WITH INTERNAL ANALOG MICROPHONE 1µF JDETEN = 1 JDWK = X 1µF 2.2kΩ MBEN = 0 OR SHDN = 0 2 SCHOTTKY DIODE BLOCKS BIAS CURRENT PATH TO INTERNAL ANALOG MICROPHONE 1µF VIN+ ANALOG MIC INPUT 2 VIN- JDETEN = 1 JDWK = X 1µF 1µF ANALOG SINGLE-ENDED MICROPHONE 1µF MICBIAS OPEN JACK HI-Z 2.2kΩ VIN+ ANALOG MIC INPUT 1 VIN- ANALOG MIC INPUT 2 VIN- 1µF MBEN = 0 OR SHDN = 0 MICBIAS OPEN JACK 2.2kΩ VIN+ 1µF 2.2kΩ SPKLVDD PULLUP HI-Z ANALOG SINGLE-ENDED MICROPHONE 1µF VIN+ ANALOG MIC INPUT 1 VIN- 1µF JACKSNS BIAS CURRENT PATH LSNS = 0 JKSNS = 1 HPL SPKLVDD PULLUP JACKSNS CURRENT PATH BLOCKED JACK DETECT COMPARATORS ENABLED HPR HPSNS LSNS = 0 JKSNS = 1 HPL JACK DETECT COMPARATORS ENABLED HPR HPSNS Figure 46. Jack Detection with Internal Analog Microphones Accessory Button Detection After jack insertion, the device can detect button presses on any accessories that include a microphone and a switch that shorts the microphone ring to ground. Button presses can be detected either when MICBIAS is enabled or if it is disabled and the strong internal pullup is used (JDWK = 0). A button press changes the state of JKSNS from 1 to 0 until the button is released, and this change in state generates an event on the jack detection change flag (JDET). This event is used to trigger the appropriate action associated with the key press. Jack Detection with Internal Analog Microphones If the application requires fixed internal analog microphone(s), and must also detect, identify, and operate with a headset microphone, the general jack detecaion application circuit (Figure 43) does not operate as expected. The complication introduced by an internal analog microphone is detailed in Figure 46. When no jack is inserted (case 1) the internal pullup resistance attempts to pull JACKSNS above the load sense www.maximintegrated.com comparator threshold. However, the external pullup to MICBIAS creates an unintended current path through the internal analog microphone pullup. As a result, the voltage at JACKSNS is biased to a level between the jack sense and load sense comparator thresholds, resulting in a false headset jack detection. When a headset jack is inserted, there is a parallel load on JACKSNS between the inserted headset jack and the internal analog microphone. This could potentially result in a headset being reported as headphones. A Schottky diode with a very low forward drop (case 2) can be inserted in series with the external pullup resistance. When MICBIAS is disabled, the Schottky diode is reverse biased and the current path is blocked. When MICBIAS is enabled, the diode is forward biased and the external pullup to mic bias functions as detailed in Figure 45. The diode does introduce a series voltage drop, and the MICBIAS voltage and/or the series resistance value might need to be adjusted to compensate and ensure that the headset MIC is properly biased. Alternatively, a switch can be used in series either above or below the internal analog microphone to break the bias current path when MICBIAS is disabled. Maxim Integrated │ 152 MAX98090 Ultra-Low Power Stereo Audio Codec Table 77. Jack Detect Configuration Register ADDRESS: 0x3D DESCRIPTION BIT NAME TYPE POR 7 JDETEN R/W 0 Jack Detect Enable 0: Jack detect circuitry disabled 1: Jack detect circuitry enabled JACKSNS Pullup Configuration 0: 2.4kΩ resistor to SPKLVDD (allows microphone detection) 1: 5µA to SPKLVDD (minimizes supply current) Valid when MICBIAS = 0 or SHDN = 0. 6 JDWK R/W 0 5 — — — — 4 — — — — 3 — — — — 2 — — — — 1 0 JDEB[1:0] R/W 0 0 Jack Detect Debounce Configures the jack detect debounce time: 00: 25ms 10: 100ms 01: 50ms 11: 200ms Table 78. Jack Status Register ADDRESS: 0x02 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 — — — — 4 — — — — 3 — — — — 2 LSNS R 0 Microphone Load Sense (Valid Only if JDETEN = 1) 0: VJACKSNS ≤ 0.95V x VSUPPLY 1: VJACKSNS > 0.95V x VSUPPLY VSUPPLY is determined by the state of MBEN and SHDN so that: MBEN = 0 or SHDN = 0: VSUPPLY = VSPKLVDD (internal pullup) MBEN = 1 and SHDN = 1: VSUPPLY = VMICBIAS (external pullup) Jack Connection Sense (Valid Only if JDETEN = 1) 0: VJACKSNS < 0.1V x VSUPPLY 1: VJACKSNS ≥ 0.1V x VSUPPLY VSUPPLY is determined by the state of MBEN and SHDN so that: MBEN = 0 or SHDN = 0: VSUPPLY = VSPKLVDD (internal pullup) MBEN = 1 and SHDN = 1: VSUPPLY = VMICBIAS (external pullup) 1 JKSNS R 0 0 — — — www.maximintegrated.com — Maxim Integrated │ 153 MAX98090 Ultra-Low Power Stereo Audio Codec Quick Setup Configuration The quick setup configuration registers provide simple device configuration options for commonly used signal paths and settings. Each quick setup register contains write only, push-button configuration bits. When written high, a quick configuration bit will internally set all other appropriate register bits to program the device to the selected configuration. Writing a logical low to a quick configuration bit has no effect, and when read back all quick configuration bits always show a logic-low. Quick setup bits change the state of registers appropriate to the selected configuration only. As such, they do not remove or reset existing device settings that do not share the same configuration registers. This allows complementary selections from several different quick configuration registers to be used together in a logical sequence to configure the device. Do not combine multiple quick setup bits that configure either the same section or any shared data path as part of a single sequence. This type of sequence might not produce the desired results as later quick setup bits may overwrite registers programmed by earlier selections. The digital audio interface (DAI) quick setup register (Table 79) is used to select the DAI data format. The configurations in this register program the master mode clock configuration register (Table 34), the DAI format configuration register (Table 46), and the DAI TDM control register (Table 47). The playback path quick setup register (Table 80) is used to configure the digital playback path and to select and program an analog output. The configuration bits in this register program the DAI I/O configuration register (Table 45), the output enable register (Table 8), and the selected analog output mixer, volume, and control registers (headphones, receiver, speaker, or line output). Table 79. Digital Audio Interface (DAI) Quick Setup Register ADDRESS: 0x06 DESCRIPTION BIT NAME TYPE POR 7 — — — — 6 — — — — 5 RJ_M W 0 Sets up DAI for right-justified master mode operation. 4 RJ_S W 0 Sets up DAI for right-justified slave mode operation. 3 LJ_M W 0 Sets up DAI for left-justified master mode operation. 2 LJ_S W 0 Sets up DAI for left-justified slave mode operation. 1 I2S_M W 0 Sets up DAI for I2S master mode operation. 0 I2S_S W 0 Sets up DAI for I2S slave mode operation. Table 80. Playback Path Quick Setup Register ADDRESS: 0x07 BIT DESCRIPTION NAME TYPE POR 7 DIG2_HP W 0 Sets up the DAC to headphone path. 6 DIG2_EAR W 0 Sets up the DAC to receiver path. 5 DIG2_SPK W 0 Sets up the DAC to speaker path 4 DIG2_LOUT W 0 Sets up the DAC to line out path. 3 — — — — 2 — — — — 1 — — — — 0 — — — — www.maximintegrated.com Maxim Integrated │ 154 MAX98090 Ultra-Low Power Stereo Audio Codec The analog microphone/direct input to record path quick setup register (Table 81) is used to select and program an analog input and to configure the digital record path. The configuration bits in this register program the DAI I/O configuration register (Table 45), the input enable register (Table 7), and the appropriate input mixer, volume, and control registers (analog microphone or direct to ADC mixer). The line input to record path quick setup register (Table 82) is used to program the analog input and to configure the digital record path. The configuration bits in this register program the DAI I/O configuration register (Table 45), the input enable register (Table 7), and the appropriate input mixer, volume, and control registers (single-ended or differential line input). Table 81. Analog Microphone/Direct Input to Record Path Quick Setup Register ADDRESS: 0x08 DESCRIPTION BIT NAME TYPE POR 7 IN12_MIC1 W 0 Sets up the IN1/IN2 to microphone 1 to ADCL path 6 IN34_MIC2 W 0 Sets up the IN3/IN4 to microphone 2 to ADCR path 5 — — — — 4 — — — — 3 IN12_DADC W 0 Sets up the IN1/IN2 direct to ADCL path 2 IN34_DADC W 0 Sets up the IN3/IN4 direct to ADCR path 1 IN56_DADC W 0 Sets up the IN5/IN6 direct to ADCL path (WLP only) 0 — — — — Table 82. Line Input to Record Path Quick Setup Register ADDRESS: 0x09 DESCRIPTION BIT NAME TYPE POR 7 IN12S_AB W 0 Sets up stereo single-ended record: IN1/IN2 to line in A/B to ADCL/R 6 IN34S_AB W 0 Sets up stereo single-ended record: IN3/IN4 to line in A/B to ADCL/R 5 IN56S_AB W 0 Sets up stereo single-ended record: IN5/IN6 to line in A/B to ADCL/R (WLP only) 4 IN34D_A W 0 Sets up mono differential record: IN3/IN4 to line in A to ADCL 3 IN65D_B W 0 Sets up mono differential record: IN6/IN5 to line in B to ADCR (WLP only) 2 — — — — 1 — — — — 0 — — — — www.maximintegrated.com Maxim Integrated │ 155 MAX98090 Ultra-Low Power Stereo Audio Codec The analog microphone input to analog output quick setup register (Table 83) is used to configure the analog input and to select and program an analog output. The configuration bits in this register program the input enable register (Table 7), the output enable register (Table 8), and the appropriate input and output mixer, volume, and control registers (analog microphone and either the headphones, speaker, receiver, or line output). The line input to analog output quick setup register (Table 84) is used to configure the analog input and to select and program an analog output. The configuration bits in this register program the input enable register (Table 7), the output enable register (Table 8), and the appropriate input and output mixer, volume, and control registers (line input and either the headphones, speaker, receiver, or line output). Table 83. Analog Microphone Input to Analog Output Quick Setup Register ADDRESS: 0x0A DESCRIPTION BIT NAME TYPE POR 7 IN12_M1HPL W 0 Sets up the IN1/IN2 differential to microphone 1 to headphone left path 6 IN12_M1SPKL W 0 Sets up the IN1/IN2 differential to microphone 1 to speaker left path 5 IN12_M1EAR W 0 Sets up the IN1/IN2 differential to microphone 1 to receiver path 4 IN12_M1LOUTL W 0 Sets up the IN1/IN2 differential to microphone 1 to lineout left path 3 IN34_M2HPR W 0 Sets up the IN3/IN4 differential to microphone 2 to headphone right path 2 IN34_M2SPKR W 0 Sets up the IN3/IN4 differential to microphone 2 to speaker right path 1 IN34_M2EAR W 0 Sets up the IN3/IN4 differential to microphone 2 to receiver path 0 IN34_M2LOUTR W 0 Sets up the IN3/IN4 differential to microphone 2 to lineout right path Table 84. Line Input to Analog Output Quick Setup Register ADDRESS: 0x0B BIT DESCRIPTION NAME TYPE POR 7 IN12S_ABHP W 0 Sets up the IN1/IN2 single ended to line In A/B to headphone L/R path 6 IN34D_ASPKL W 0 Sets up the IN3/IN4 differential to line in A to speaker left path 5 IN34D_AEAR W 0 Sets up the IN3/IN4 differential to line in A to receiver path 4 IN12S_ABLOUT W 0 Sets up the IN1/IN2 single ended to line in A/B to lineout L/R path 3 IN34S_ABHP W 0 Sets up the IN3/IN4 single ended to line in A/B to headphone L/R path 2 IN65D_BSPKR W 0 Sets up the IN6/IN5 differential to line in B to speaker right path (WLP only) 1 IN65D_BEAR W 0 Sets up the IN6/IN5 differential to line in B to receiver path (WLP only) 0 IN34S_ABLOUT W 0 Sets up the IN3/IN4 single ended to line in A/B to lineout L/R path www.maximintegrated.com Maxim Integrated │ 156 MAX98090 Ultra-Low Power Stereo Audio Codec Device Status Flags The device uses register 0x01 (Table 85) and IRQ to report the status of various device functions. The status register bits are set when their respective events occur, and cleared upon reading the register. Device status can be determined either by polling register 0x01, or by configuring IRQ to pull low when specific events occur. IRQ is an open-drain output that requires a pullup resistor (10kΩ nominal) for proper operation. When first exiting shutdown (into normal operation), other status flags may assert based on the device settings, register sequencing, and clock sequencing. Status Flag Masking Register 0x03, the device status interrupt mask register (Table 86) determines which bits in the device status interrupt register (Table 85) can trigger a hardware interrupt Table 85. Device Status Interrupt Register ADDRESS: 0x01 BIT 7 6 NAME CLD SLD TYPE CoR CoR POR DESCRIPTION 0 Clipping Detect Flag 0: No clipping has occurred. 1: Digital record / playback clipping has occurred. CLD asserts when the digital record or playback path is clipping due to signal amplitude exceeding full-scale. This condition is detected at the record path gain control output (AVLG/AVRG), the playback path gain control output (DVG), and the parametric equalizer output. To resolve, adjust the gain settings near these detection points. 0 Slew Level Detect Flag 0: No volume slewing sequences have completed. 1: All volume / level slewing complete. SLD asserts when any one (or more) of the programmable-gain analog output volume controllers or digital level control arrays has completed slewing from a previous setting to a new programmed setting. If multiple settings are changed at the same time, in either the analog or digital domain, the SLD flag will assert only after the last slew is completed. SLD also asserts when the serial interface soft-start or soft-stop process has completed. 5 ULK CoR 0 Digital Audio Interface (DAI) Phase Locked Loop (PLL) Unlock Flag 0: PLL is locked (if enabled and operating properly). 1: PLL is not locked (if enabled and operating properly). ULK reports that the digital audio phase-locked loop for DAI is not locked. This condition only occurs in slave mode when the deviation on LRCLK relative to PCLK exceeds the lock on range (approximately 4 PCLK periods). This condition can also occur if PCLK is running and LRCLK has been stopped outside of shutdown. Deviation in BCLK (or shutting it down) will never trigger a ULK assertion. DAI input and output data may not be processed / clocked correctly if a ULK event occurs. 4 — — — — 3 — — — — 2 JDET CoR 0 Jack Configuration Change Flag 0: No change in jack configuration. 1: Jack configuration has changed. JDET asserts anytime jack detection is enabled, and either LSNS or JKSNS changes state (Table 78). If jack detection is enabled, JDET will assert correctly even while the device is in the shutdown state. This allows JDET to generate wake on insert interrupts. 1 DRCACT CoR 0 DRC Compression Flag 0: The DRC is either disabled or not in the compression region. 1: The DRC is operating in the compression region. 0 DRCCLP CoR 0 DRC Clipping Flag 0: The DRC is either disabled or no clipping has occurred. 1: DRC clipping has occurred. www.maximintegrated.com Maxim Integrated │ 157 MAX98090 Ultra-Low Power Stereo Audio Codec on IRQ (assert low). By default, all of the device status interrupts (except JDET) only set the corresponding status bit and do not generate a hardware interrupt. Set the corresponding bit high in the mask register to enable hardware interrupts. Device Revision Identification The device provides a Revision ID Number register to allow the software to identify the current version of the device. The current device revision ID value is 0x43. Table 86. Device Status Interrupt Mask Register ADDRESS: 0x03 DESCRIPTION BIT NAME TYPE POR 7 ICLD R/W 0 Clipping Detect Interrupt Enable 0: Clipping detection only sets CLD (0x01[7]). 1: Clipping detection triggers IRQ and sets CLD (0x02[7]). 6 ISLD R/W 0 Slew Level Detect Interrupt Enable 0: Slew level detection only sets SLD (0x01[6]). 1: Slew level detection triggers IRQ and sets SLD (0x02[6]). 5 IULK R/W 0 Digital PLL Unlock Interrupt Enable 0: PLL Unlock Condition only sets ULK (0x01[5]). 1: PLL Unlock Condition triggers IRQ and sets ULK (0x02[5]). 4 — — — — 3 — — — — 2 IJDET R/W 1 Jack Configuration Change Interrupt Enable 0: Changes in headset configuration only sets JDET (0x01[2]). 1: Changes in headset configuration triggers IRQ and sets JDET (0x01[2]). 1 IDRCACT R/W 0 DRC Compression Interrupt Enable 0: DRC compression only sets DRCACT (0x01[1]). 1: DRC compression triggers IRQ and sets DRCACT (0x01[1]). 0 IDRCCLP R/W 0 DRC Clipping Interrupt Enable 0: DRC clipping only sets DRCCLP (0x01[0]). 1: DRC clipping triggers IRQ and sets DRCCLP (0x01[0]). Table 87. Revision ID Number Register ADDRESS: 0xFF BIT NAME TYPE POR 7 0 6 1 5 0 4 3 REV_ID[7:0] R 0 0 2 0 1 1 0 1 www.maximintegrated.com DESCRIPTION Read Back the Revision ID of the Device The current revision ID is 0x43. Maxim Integrated │ 158 MAX98090 Ultra-Low Power Stereo Audio Codec I2C Serial Interface Bit Transfer The MAX98090 features an I2C/SMBus-compatible, 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the MAX98090 and the master at clock rates up to 400kHz. Figure 3 shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the MAX98090 by transmitting the proper slave address followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the MAX98090 is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the MAX98090 transmits the proper slave address followed by a series of nine SCL pulses. The MAX98090 transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 500Ω, is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 500Ω, is required on SCL if there are multiple masters on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the MAX98090 from high voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals. Table 88. Device I2C Slave Address PART NUMBER READ ADDRESS WRITE ADDRESS MAX98090A 0x21 0x20 MAX98090B 0x23 0x22 S One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals. See the START and STOP Conditions section. START and STOP Conditions SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high. A START condition from the master signals the beginning of a transmission to the MAX98090. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition. Early STOP Conditions The MAX98090 recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition. Slave Address The slave address is defined as the seven most significant bits (MSBs) followed by the read/write bit. For the MAX98090A, the seven most significant bits are 0010000. Setting the read/write bit to 1 (slave address = 0x21) configures the MAX98090A for read mode. Setting the read/write bit to 0 (slave address = 0x20) configures the MAX98090A for write mode. The address is the first byte of information sent to the MAX98090 after the START condition. Similarly, for the MAX98090B, the seven most significant bits are 0010001. Setting the read/write bit to 1 (slave address = 0x23) configures the MAX98090B for read mode. Setting the read/write bit to 0 (slave address = 0x22) configures the MAX98090B for write mode. The slave address are summarized in Table 88. Sr P SCL SDA Figure 47. START, STOP, and REPEATED START Conditions www.maximintegrated.com Maxim Integrated │ 159 MAX98090 Ultra-Low Power Stereo Audio Codec Acknowledge the master after each read byte to allow data transfer to continue. A not acknowledge is sent when the master reads the final byte of data from the MAX98090, followed by a STOP condition. The acknowledge bit (ACK) is a clocked 9th bit that the MAX98090 uses to handshake receipt each byte of data when in write mode. The MAX98090 pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master retries communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the MAX98090 is in read mode. An acknowledge is sent by Write Data Format A write to the MAX98090 includes transmission of a START condition, the slave address with the R /W bit set to 0, one byte of data to configure the internal register address pointer, one or more bytes of data, and a STOP condition. Figure 49 illustrates the proper frame format for writing one byte of data to the MAX98090. Figure 50 illustrates the frame format for writing n-bytes of data to the MAX98090. CLOCK PULSE FOR ACKNOWLEDGMENT START CONDITION SCL 2 1 8 9 NOT ACKNOWLEDGE SDA ACKNOWLEDGE Figure 48. Acknowledge Timing ACKNOWLEDGE FROM MAX98090 B7 SLAVE ADDRESS S O B6 B5 B4 B3 B2 B1 B0 ACKNOWLEDGE FROM MAX98090 ACKNOWLEDGE FROM MAX98090 A A REGISTER ADDRESS DATA BYTE A P 1 BYTE R/W AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 49. Writing One Byte of Data to the MAX98090 ACKNOWLEDGE FROM MAX98090 ACKNOWLEDGE FROM MAX98090 S SLAVE ADDRESS B7 B6 B5 B4 B3 B2 B1 B0 ACKNOWLEDGE FROM MAX98090 ACKNOWLEDGE FROM MAX98090 O A REGISTER ADDRESS R/W A DATA BYTE 1 1 BYTE B7 B6 B5 B4 B3 B2 B1 B0 A DATA BYTE n A P 1 BYTE AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 50. Writing n-Bytes of Data to the MAX98090 www.maximintegrated.com Maxim Integrated │ 160 MAX98090 Ultra-Low Power Stereo Audio Codec The slave address with the R /W bit set to 0 indicates that the master intends to write data to the MAX98090. The MAX98090 acknowledges receipt of the address byte during the master-generated 9th SCL pulse. The second byte transmitted from the master configures the MAX98090’s internal register address pointer. The pointer tells the MAX98090 where to write the next byte of data. An acknowledge pulse is sent by the MAX98090 upon receipt of the address pointer data. The third byte sent to the MAX98090 contains the data that is written to the chosen register. An acknowledge pulse from the MAX98090 signals receipt of the data byte. The address pointer autoincrements to the next register address after each received data byte. This autoincrement feature allows a master to write to sequential registers within one continuous frame. The master signals the end of transmission by issuing a STOP condition. Register addresses greater than 0xE7 are reserved. Do not write to these addresses. Read Data Format Send the slave address with the R/W bit set to 1 to initiate a read operation. The MAX98090 acknowledges receipt of its slave address by pulling SDA low during the 9th SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00. ACKNOWLEDGE FROM MAX98090 S O SLAVE ADDRESS ACKNOWLEDGE FROM MAX98090 A The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the MAX98090’s slave address with the R/W bit set to 0 followed by the register address. A REPEATED START condition is then sent followed by the slave address with the R/W bit set to 1. The MAX98090 then transmits the contents of the specified register, and the address pointer autoincrements after transmitting the first byte. The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figure 51 illustrates the frame format for reading one byte from the MAX98090. Figure 52 illustrates the frame format for reading multiple bytes from the MAX98090. ACKNOWLEDGE FROM MAX98090 A Sr REGISTER ADDRESS The first byte transmitted from the MAX98090 is the contents of register 0x00. Transmitted data is valid on the rising edge of SCL. The address pointer autoincrements after each read data byte. This autoincrement feature allows all registers to be read sequentially within one continuous frame. A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read will be from register 0x00. A R/W REPEATED START R/W 1 SLAVE ADDRESS NOT ACKNOWLEDGE FROM MASTER DATA BYTE A P 1 BYTE AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 51. Reading One Byte of Data from the MAX98090 ACKNOWLEDGE FROM MAX98090 S SLAVE ADDRESS R/W O ACKNOWLEDGE FROM MAX98090 A REGISTER ADDRESS ACKNOWLEDGE FROM MAX98090 A Sr REPEATED START SLAVE ADDRESS 1 R/W A DATA BYTE A 1 BYTE AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 52. Reading n-Bytes of Data from the MAX98090 www.maximintegrated.com Maxim Integrated │ 161 MAX98090 Ultra-Low Power Stereo Audio Codec Applications Information Typical Application Circuits Figures 53 and 54 are two example application circuits for the device. The external components shown are the minimum required for the device to operate. Additional application specific components might be required. 1.8V 0.1µF 1µF AVDD 1.8V 1.2V 1µF 1µF 10µF HPVDD DVDDIO 3.7V 1µF DVDD 10µF 1µF SPKLVDD* SPKLVDD* 2.2µF REF 10kΩ CONTROLLER INTERUPT 1µF IRQ VBIAS SDA I2C INTERFACE SCL MASTER CLOCK (10MHz TO 60MHz) MCLK RCVP/LOUTL 16Ω/ 32Ω RCVN/LOUTR BCLK LRCLK DIGITAL AUDIO INTERFACE PORT (DAI) SPKLP SPKLN SDIN RECEIVER/ LINE OUTPUT (RECEIVER BTL MODE) 4Ω/ 8Ω LEFT SPEAKER OUTPUT 4Ω/ 8Ω RIGHT SPEAKER OUTPUT SDOUT SPKRP MICBIAS SPKRN MAX98090 2.2kΩ 1µF IN1/DMD ANALOG SINGLE-ENDED MICROPHONE 1µF HPL IN2/DMC HEADPHONE OUTPUT JACK HPR MICBIAS HPSNS 1kΩ 1µF IN3 ANALOG DIFFERENTIAL MICROPHONE 1µF IN4 JACKSNS 1kΩ 2.2kΩ MICBIAS 1µ F LINE INPUT/ EXTERNAL MICROPHONE IN5* 1µF MICBIAS 1µF IN6* AGND HPGND DGND SPKLGND SPKRGND CPVDD C1N CPVSS 1µF 1µF C1P 1µF *IN5 AND IN6 ARE WLP PACKAGE ONLY. SPKLVDD/SPKRVDD ARE TITLED SPKVDD ON THE WLP PACKAGE (BYPASS EACH SPKVDD AS SHOWN). Figure 53. Typical Application Circuit with Analog Microphone Inputs and Receiver Output www.maximintegrated.com Maxim Integrated │ 162 MAX98090 Ultra-Low Power Stereo Audio Codec 1.8V 1.2V 0.1µF 1µF AVDD 1.8V 1µF 10µF HPVDD 1µF DVDDIO 3.7V 1µF DVDD 10µF 1µF SPKLVDD* SPKRVDD* 2.2µF REF 10kΩ 1µF VBIAS IRQ CONTROLLER INTERUPT SDA I2C INTERFACE 1µF MASTER CLOCK (10MHz TO 60MHz) RECEIVER/ LINE OUTPUT RCVP/LOUTL SCL 1µF MCLK (SINGLE-ENDED LINE OUT MODE) RCVN/LOUTR BCLK SPKLP LRCLK DIGITAL AUDIO INTERFACE PORT (DAI) SPKLN SDIN LEFT SPEAKER OUTPUT 4Ω/ 8Ω RIGHT SPEAKER OUTPUT SDOUT MAX98090 SPKRP SPKRN DIGITAL MICROPHONE 1 4Ω/ 8Ω DATA IN1/DMD CLOCK HPL HEADPHONE OUTPUT JACK HPR DIGITAL MICROPHONE 2 DATA HPSNS CLOCK IN2/DMC 1µF DIFFERENTIAL LINE INPUT IN3 JACKSNS 1µF IN4 2.2kΩ 1µF DIFFERENTIAL LINE INPUT MICBIAS IN5* 1µF 1µF IN6* AGND HPGND DGND SPKLGND SPKRGND CPVSS CPVDD 1µF C1N 1µF C1P 1µF *IN5 AND IN6 ARE WLP PACKAGE ONLY. SPKLVDD/SPKRVDD ARE TITLED SPKVDD ON THE WLP PACKAGE (BYPASS EACH SPKVDD AS SHOWN). Figure 54. Typical Application Circuit with Digital Microphone Input and Stereo Line Outputs www.maximintegrated.com Maxim Integrated │ 163 MAX98090 Ultra-Low Power Stereo Audio Codec Startup/Shutdown Register Sequencing To ensure proper device initialization and minimal clickand-pop, program the devices control registers in the correct order. To shut down the device, simply set SHDN = 0. Table 89 details an example startup sequence for the device. To minimize click and pop on the analog output drivers (headphones, speakers, receiver, and line outputs), the output drivers should be powered using the following sequence: 1) Prior to powering the device (SHDN = 0) and before enabling the outputs, the output driver mute(s) should be enabled and the PGA gain(s) should be set to their lowest setting. 2) After all configuration settings are complete, power up the device (SHDN = 1). 3) Enable any analog outputs that are part of the desired configuration. 4) Disable the mute on each respective analog output. 5) If volume smoothing is disabled (Table 75), ramp the volume up, one register step at a time, from the minimum setting until the desired volume (gain) is reached (this sequence is part of the example in Table 89). If volume smoothing is enabled, this sequence is automatically implemented and the desired volume (gain) can be programmed in a single step. While many configuration options and settings can be changed while the device is operating (SHDN = 1), some settings should only be adjusted with the device in shutdown (SHDN = 0). Table 90 lists the registers and bits that should not be changed during active operation. Changing these settings during normal operation (SHDN = 1) can compromise device stability and performance specifications. All external clocks (MCLK in master mode and MCLK, LRCLK, and BCLK in slave mode) must be running and stable before the device is taken out of shutdown. If the clocks are enabled or changed while the device is active (not in shutdown) phase errors and audible glitches may be introduced. Table 89. Detailed Device Startup Sequence SEQUENCE DESCRIPTION REGISTERS 1 Set SHDN = 0 0x45 (Default POR State) 2 Configure Clocks (also enable all external clocks) 0x1B to 0x21 3 Configure Digital Audio Interface (DAI) 0x22 to 0x25 4 Configure Digital Signal processing (DSP) 5 Load Coefficients 6 Configure Power and Bias Mode 0x17 to 0x1A, 0x26 to 0x28, 0x33 to 0x36, 0x41 0x46 to 0xBD 0x42 to 0x44 7 Configure Analog Mixers 0x0D, 0x15, 0x16, 0x29, 0x2A, 0x2B, 0x2E, 0x2F, 0x37, 0x3A 8 Configure Analog Gain and Volume Controls. To Minimize Click and Pop for Analog Outputs, Enable Mute and Set the Output PGAs to the minimum gain setting. 0x0E to 0x11, 0x2B to 0x2D, 0x30 to 0x32, 0x38, 0x39, 0x3B, 0x3C 9 Configure Miscellaneous Functions 11 Set SHDN = 1 (Power Up) 0x03, 0x12, 0x13, 0x14, 0x40 0x45 10 Enable Desired Functions 0x3D to 0x3F 11 Disable Mute on Analog Output Drivers 12 For all Analog Output Drivers, if Gain Smoothing is Disabled Ramp the Gain up One Volume Step per Write until the Desired Gain is Reached. If it is Enabled, Program the Desired Gain in a Single Step. 0x2C, 0x2D, 0x31, 0x32, 0x39, 0x3C 0x30 to 0x32, 0x38, 0x39, 0x3B, 0x3C Table 90. Register Changes that Require SHDN = 0 DESCRIPTION Clock Control and Quick Configuration Registers DAC/ADC Enables (only these bits) Bias/DAC/ADC Control Digital Signal Processing Enables and Coefficients Digital Microphone Configuration www.maximintegrated.com REGISTER 0x04 to 0x0B, 0x1B to 0x26 0x3E, 0x3F 0x42 to 0x44 0x33 to 0x35, 0x41, 0x46 to 0xBD 0x13, 0x14 Maxim Integrated │ 164 MAX98090 Ultra-Low Power Stereo Audio Codec External Supply Sequencing When powering-up the device, there is no requirement for the sequence with which each supply is applied. All supplies must be brought to their nominal voltage before the part can be configured for proper operation. The part should be placed into software shutdown before any supplies are removed to avoid audible artifacts. Register settings are retained as long as supply voltages are kept above the power-on-reset voltages listed in Table 91. Table 91. Power-On Reset Voltage SUPPLY POR VOLTAGE AVDD 1.0V HPVDD NO POR DVDD 1.0V DVDDIO NO POR SPKVDD 1.2V Component Selection AC-Coupling Capacitors An input capacitor, CIN, in conjunction with the input impedance of the device line inputs forms a highpass filter that removes the DC bias from an incoming analog signal. The AC-coupling capacitor allows the amplifier to automatically bias the signal to an optimum DC level. Assuming very low source impedance (comparatively), the -3dB point of the highpass filter is given by: f −3dB = 1 2π × R IN × C IN Choose CIN such that f-3dB is well below the lowest frequency of interest. For best audio quality, use capacitors whose dielectrics have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, can result in increased distortion at low frequencies. If needed, line output AC-coupling capacitor values can be calculated in similar fashion by using the input resistance of the next stage connected to the line output drivers. Charge-Pump Capacitor Selection Use capacitors with an ESR less than 100mΩ for optimum performance. Low-ESR ceramic capacitors minimize the output resistance of the charge pump. Most surface mount ceramic capacitors satisfy the ESR requirement. For best performance over the extended temperature range, select capacitors with an X7R dielectric. www.maximintegrated.com The value of the flying capacitor (connected between C1N and C1P) affects the output resistance of the charge pump. A value that is too small degrades the device’s ability to provide sufficient current drive, which leads to a loss of output voltage. Increasing the value of the flying capacitor reduces the charge-pump output resistance to an extent. Above 1µF, the on-resistance of the internal switches and the ESR of external charge pump capacitors dominate. The holding capacitor (bypassing HPVSS) value and ESR directly affect the ripple at HPVSS. Increasing the capacitor’s value reduces output ripple. Likewise, decreasing the ESR reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels. See the Output Power vs. Load Resistance graph in the Typical Operating Characteristics section for more information. Filterless Class D Speaker Operation Traditional Class D amplifiers require an output filter to recover the audio signal from the amplifier’s output. The filters add cost, increase the solution size of the amplifier, and can decrease efficiency and THD+N performance. The traditional PWM scheme uses large differential output swings (2 x SPK_VDD peak to peak) and causes large ripple currents. Any parasitic resistance in the filter components results in a loss of power, lowering the efficiency. For typical applications (such as handsets, tablets, etc.) where the trace length from driver the speaker is short and low impedance, the device does not require an output filter. The device relies on the inherent inductance of the speaker coil and the natural filtering of both the speaker and the human ear to recover the audio component of the square-wave output. Eliminating the Class D output filter results in a smaller, less costly, and more efficient solution. In cases where the trace/wire length is long, and/or series resistance/inductance is high, an output LC filter might be required. In such a case, if the nominal impedance of the load is not constant over the entire audio band, a Zobel (impedance matching) circuit might be required. Because the frequency of the IC’s output is well beyond the bandwidth of most speakers, voice coil movement due to the square-wave frequency is very small. Although this movement is small, a speaker not designed to handle the additional power can be damaged. For optimum results, use a speaker with a series inductance > 10µH. Typical 8Ω speakers exhibit series inductances in the 20µH to 100µH range. Maxim Integrated │ 165 MAX98090 Ultra-Low Power Stereo Audio Codec EMI Considerations and Optional Ferrite Bead Filter Reducing trace length minimizes radiated EMI. On the PCB, route SPKLP/SPKLN and SPKRP/SPKRN as differential pairs with the shortest trace lengths possible. This minimizes trace loop area, and thereby, the inductance of the circuit. If filter components are used on the speaker outputs, minimize the trace length from any ground tied passive components to SPK_GND to further minimize radiated EMI. In applications where speaker leads/wires are long (exceeding approximately 12in), additional EMI suppression can be achieved by using a filter constructed from a ferrite bead and a capacitor to ground (Figure 55). Use a ferrite bead with low DC resistance, high frequency (> 600MHz) impedance between 100Ω and 600Ω, and rated for at least 1A. The capacitor value varies based on the ferrite bead chosen and the actual speaker lead length. Select a capacitor less than 1nF with the value based upon optimizing EMI performance. RF Susceptibility GSM radios transmit using time-division multiple access (TDMA) with 217Hz intervals. The result is an RF signal with strong amplitude modulation at 217Hz and its harmonics that is easily demodulated by audio amplifiers. The device is designed specifically to reject RF signals; however, PCB layout has a large impact on the susceptibility of the end product. In RF applications, improvements to both layout and component selection decreases the susceptibility to RF noise and prevent RF signals from being demodulated into audible noise. Trace lengths should be kept below 1/4 of the wavelength of the RF frequency of interest. Minimizing the trace lengths prevents them from functioning as antennas and coupling RF signals into the device. The wavelength (λ) in meters is given by: λ = c/f, where c = 3 x 108 m/s, and f = the RF frequency of interest. MAX98090 SPK_P SPK_N Figure 55. Optional Class D Ferrite Bead EMI Filter HPL HPR HPSNS MAX98090 JACKSNS Figure 56. Optional Class H Output RFI Filter Additional RF immunity can also be obtained by relying on the self-resonant frequency of capacitors, as it exhibits a frequency response similar to a notch filter. Depending on the manufacturer, 10pF to 20pF capacitors typically exhibit self-resonance at RF (high) frequencies. These capacitors, when placed at the input pins, can effectively shunt the RF noise at the inputs of the device. For these capacitors to be effective, they must have a low-impedance, low-inductance path to the ground plane. Avoid using micro vias to connect to the ground plane as these vias do not conduct well at RF frequencies. At the Headphone outputs, additional RFI can be achieved by using series ferrite beads with the parallel capacitors to ground (Figure 56). Route audio signals on inner layers of the PCB to allow ground planes above and below to shield them from RF interference. Ideally the top and bottom layers of the PCB should primarily be ground planes to create effective shielding. www.maximintegrated.com Maxim Integrated │ 166 MAX98090 Ultra-Low Power Stereo Audio Codec LAYER 1 LAYER 2 LAYER 3 Figure 57. PCB Breakout Routing Example for WLP Package Supply Bypassing, Layout, and Grounding Proper layout and grounding are essential for optimum performance. When designing a PCB layout, partition the circuitry so that the analog sections of the device are separated from the digital sections. This ensures that the analog audio traces are not routed near digital traces. Use a large continuous ground plane on a dedicated layer of the PCB to minimize loop areas. Connect AGND, DGND, and HPGND directly to the ground plane using the shortest trace length possible. Proper grounding improves audio performance, minimizes crosstalk between channels, and prevents any digital noise from coupling into the analog audio signals. Ground the bypass capacitors on MICBIAS, BIAS and REF directly to the ground plane with minimum trace length. Also be sure to minimize the path length to AGND, and bypass AVDD directly to AGND. Connect all digital I/O termination to the ground plane with minimum path length to DGND, and bypass DVDD and DVDDIO directly to DGND. Place the capacitor between C1P and C1N as close as possible to the device to minimize trace length from C1P to C1N. Inductance and resistance added between C1P and C1N reduce the output power of the headphone amplifier. Bypass HPVDD, CPVDD and CPVSS with capacitors located close to the pin with short trace lengths to HPGND. Close decoupling of CPVDD and CPVSS minimizes supply ripple and maximizes output power from the headphone amplifier. www.maximintegrated.com HPSNS senses ground noise on the headphone jack and adds the same noise to the output audio signal, thereby making the output (headphone output, ground) noise free. Connect HPSNS to the headphone jack shield to ensure accurate pickup of headphone ground noise. Bypass SPK_VDD to SPK_GND with the shortest trace length possible and connect SPKLP, SPKLN, SPKRP, and SPKRN to the stereo speakers using the shortest traces possible. If filter components are used on the speaker outputs, be sure to locate them as close as possible to the device to ensure maximum effectiveness. Route microphone signals from the microphone to the device as a differential pair, ensuring that the positive and negative signals follow the same path as closely as possible with equal trace length. When using singleended microphones or other single-ended audio sources, ground the negative microphone input as near to the audio source as possible and then treat the positive and negative traces as differential pairs. An evaluation kit (EV Kit) is available to provide an example layout. The EV Kit allows quick setup of the device and includes easy-to-use software allowing all internal registers to be controlled. Recommended PCB Routing The IC uses a 49-bump WLP package. Figure 57 provides an example of how to connect to all active bumps using 3 layers of the PCB. To ensure uninterrupted ground returns, use layer 2 as a connecting or dog-bone layer between layer 1 and layer 3, and flood the remaining area with a copper ground plane. Maxim Integrated │ 167 MAX98090 Ultra-Low Power Stereo Audio Codec Unused Pins inputs might be enabled, then alternatively unused analog audio inputs can be AC coupled to AGND (if component cost and area allow it). Table 92 shows how to connect the devices unused pins when circuit blocks are disabled. If the system is extremely noisy or there is a concern that unused analog Table 92. Unused Pin Connections PIN NAME CONNECTION PIN NAME SUPPLY PLANES CONNECTION ANALOG AUDIO OUTPUTS AVDD Always connect HPL Unconnected AGND Always connect HPR Unconnected HPVDD Always connect HPSNS AGND HPGND Always connect SPKLP Unconnected DVDD Always connect SPKLN Unconnected DVDDIO Always connect SPKRP Unconnected DGND Always connect SPKRN Unconnected SPKVDD Always connect RCVP / LOUTL Unconnected SPKLVDD Always connect RCVN / LOUTR Unconnected SPKRVDD Always connect SPKLGND Always connect SDIN DGND SPKRGND Always connect SDOUT Unconnected MCLK Always connect CPVDD Unconnected LRCLK DGND CPVSS Unconnected BCLK C1P Unconnected CHARGE PUMP C1N Unconnected ANALOG AUDIO INPUTS DIGITAL AUDIO INTERFACE DGND I2C INTERFACE SCL Always connect SDA Always connect IN1/DMD Unconnected IN2/DMC Unconnected IN3 Unconnected MICBIAS IN4 Unconnected JACKSNS Unconnected IN5 Unconnected BIAS Always connect IN6 Unconnected REF Always connect www.maximintegrated.com IRQ Unconnected OTHER Unconnected Maxim Integrated │ 168 MAX98090 Ultra-Low Power Stereo Audio Codec Ordering Information ADDRESS TEMP RANGE PIN-PACKAGE MAX98090AEWJ+T PART 0x20 MAX98090AETL+T 0x20 -40°C to +85°C -40°C to +85°C 40 TQFN MAX98090BEWJ+T 0x22 -40°C to +85°C 49 WLP MAX98090BETL+T 0x22 -40°C to +85°C 40 TQFN 49 WLP +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. Chip Information PROCESS: CMOS www.maximintegrated.com Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 49 WLP W493B3+2 21-0443 Refer to Application Note 1891 40 TQFN T4055+1 21-0140 90-0121 Maxim Integrated │ 169 MAX98090 Ultra-Low Power Stereo Audio Codec Revision History REVISION NUMBER REVISION DATE 0 1/13 1 2 8/13 8/14 DESCRIPTION Initial release PAGES CHANGED — Corrected various errors 1, 9, 11, 15–17, 20–26, 30, 37–48, 50–54, 56–63, 66–68, 72, 78, 79, 82, 84–88, 91, 92, 94–96, 98, 103–105, 110, 113, 120, 121, 129, 141, 142, 146, 149, 150, 151, 158–162, 164 Corrected various errors and made various updates 10, 11, 15, 16, 28, 38–66, 70, 89–92, 100, 111–113, 118, 124, 146, 147, 149, 151, 152, 165, 168 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc. © 2013 Maxim Integrated │ 170
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement