NAU8502 - Nuvoton

NAU8502 - Nuvoton
NAU8502
24-bit Stereo Audio ADC with Differential Microphone Inputs
emPowerAudio™
1.
GENERAL DESCRIPTION
The NAU8502 is a low power, high quality audio input system for portable applications. In addition to precision
24-bit stereo ADCs, this device integrates a broad range of additional functions to simplify implementation of
complete audio systems. The NAU8502 includes low-noise stereo differential high gain microphone inputs with
wide range programmable amplifiers, separate line inputs, and an analog bypass/sidetone line level stereo output.
Advanced on-chip digital signal processing includes a limiter/ALC (Automatic Level Control), 5-band equalizer,
notch filter, and a high-pass filter for speech optimization and wind noise reduction. The digital interface can
operate as either a master or a slave. Additionally, an internal fractional-N PLL is available to accurately generate
any audio sample rate clock for the ADCs derived using any available system clock from 8MHz through 33MHz.
The NAU8502 operates with analog supply voltages from 2.7V to 3.6V, while the digital core can operate as low
as 1.71V to conserve power. Internal control registers enable flexible power conserving modes, shutting down or
reducing power in sub-sections of the chip under software control.
The NAU8502 is specified for operation from -40°C to +85°C. AEC-Q100 & TS16949 compliant device is
available upon request.
2.
FEATURES
24-bit signal processing linear Audio ADC
 ADC: 90dB SNR and -80dB THD(“A” weighted)
 Supports any sample rates from 8KHz - 48kHz
Analog I/O
 Very wide range programmable input amplifier
 Stereo line inputs with gain options and mixing
 Stereo differential input microphone amplifiers
Interfaces
2
 Standard audio interfaces: PCM and I S
 Serial control interfaces with read/write capability)
emPowerAudio™
Datasheet Revision 2.5
Page 1 of 92
March, 2014
NAU8502
Additional features
 5-band Graphic Equalizer
 Automatic level control / limiter
 Programmable Notch Filter
 High Pass Filter/ Wind Noise Reduction
Applications
 Audio Recording Devices
 Security Systems
 Video and Still Cameras
 Enhanced Audio Inputs for SOC products
 Audio Input Accessory Products
 Gaming Systems
New Features
 Passive LINE OUT
 On-Chip LDO
 On-chip high resolution fractional-N PLL
LDOVIN
NAU8502YG
P1OUT
MIC1N
MIC1P
P1IN
P2OUT
MIC2N
MIC2P
Stereo
Line Input
and
Microphone
Differential
Input
LDO
ADC Filter
Volume
Control
LADC
Input
Mixer
High Pass &
Notch Filters
RADC
LDOOUT
5-Band
Stereo
Equalizer
LLINOUT
RLINOUT
P2IN
Serial Control Interface
MICBIAS
Microphone
Bias
GPIO
PLL
2-wire
SPI
Digital Audio Interface
I2S
PCM
VMID
emPowerAudio™
Datasheet Revision 2.5
Page 2 of 92
March, 2014
NAU8502
P1OUT
LLINOUT
MIC1N
MIC1P
MIC2P
MIC2N
RLINOUT
P2OUT
24
23
22
21
20
19
18
17
PIN CONFIGURATION
P1IN
25
16
P2IN
VMID
26
15
VDDA/LDOVOUT
VREF
27
14
LDOVIN
GPIO<3>/SO
28
13
MICBIAS
Stereo ADC QFN32
GPIO<1>
8
ADCOUT
BCLK
9
7
32
MCLK
SDIO
6
FS
MODE
10
5
31
VSSD
LDOENABLE
CSb
4
11
VDDC
30
3
VSSA1
VDDB
12
2
29
SCLK
GPIO<2>
1
3.
VSSA2
Figure 1: 32-Pin QFN Package
4.
PIN DESCRIPTION
Pin Name
Pin No Functionality
Pin Type
GPIO<1>
SCLK
VDDB
VDDC
VSSD
MODE
MCLK
BCLK
ADCOUT
FS
LDOENABLE
VSSA2
MICBIAS
LDOVIN
VDDA
/LDOVOUT
P2IN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
I/O
I
PI
PI
PI
I
I
I/O
O
I/O
I
PI
AO
PI
PI
/PO
AI
16
emPowerAudio™
Datasheet Revision 2.5
General Purpose IO Number One
Can or
provide
wire SPI
readout (SO)
SPI
2-Wire4 Serial
Clock
Digital Supply Buffer
Digital Supply Core
Digital Ground
Interface Select (2-Wire:low or SPI:high)
Master Clock
Bit Clock
Digital Audio Data Output
Frame Sync
Enable Internal LDO, 5V Tolerant
Analog Ground
Microphone Bias
LDO Input Voltage (4.5V ~ 5.5V)
Analog Supply,
LDOVOUT when LDOENABLE > 1.8V
Right
Channel
Stage
2 Input
LDO Off:
external
power
supply: 2.7V ~ 3.6V
LDO Output Requires Low ESR 1uF
Page 3 of 92
March, 2014
NAU8502
Pin Name
Pin No Functionality
Pin Type
P2OUT
RLINOUT
MIC2N
MIC2P
MIC1P
MIC1N
LLINOUT
P1OUT
P1IN
VMID
VREF
GPIO<3>/SO
GPIO<2>
VSSA1
CSb
SDIO
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
AO
AO
AI
AI
AI, I
AI, O
AO
AO
AI
AO
AO
I/O
I/O
PI
I
I/O
Right Channel Stage 1 Output
Right Channel High Impedance Output
Right Channel Microphone Negative Input
Right Channel Microphone Positive Input
Left Channel Microphone Positive Input/DM_IN
Left Channel Microphone Negative Input/DM_CLK
Left Channel High Impedance Output
Left Channel Stage 1 Output
Left Channel Stage 2 Input
Decoupling internal analog mid supply reference
Buffer Mid supply reference
General Purpose IO Number Three, 4 Wire SPI
General Purpose IO Number Two
Analog Ground
SPI Chip Select
SPI Data In or 2-Wire I/O
Table 1: Pin Description
TYPE PI: Power In, PO: Power Out, AI: Analog input, AO: Analog output, I: input, O: output, I/O: bi-directional.
1.
The QFN32 package includes a bulk ground connection pad on the underside of the chip. This
bulk ground should be thermally tied to the PCB, and electrically tied to the analog ground.
5.
2.
Unused analog input pins should be left as no-connection.
3.
Unused digital input pins should be tied to ground.
BLOCK DIAGRAM
emPowerAudio™
Datasheet Revision 2.5
Page 4 of 92
March, 2014
NAU8502
VDDB
+13/+18/+28/+33dB
P1OUT
-12dB through
+35dB
gain in 0.75dB
Steps
in both mixing
paths.
VDDC
LDOVIN +4.5V to +5.5V
LDO
Resistive
Analog
Mixing
VDDALDOVOUT
BVref
MIC1N
-
MIC1P
+
S
LDOENABLE
ADC1
LLINOUT
P1IN
P2OUT
BVref
MIC2N
-
MIC2P
+
S
RLINOUT
ADC2
Optional Digital
Features:
ALC
Mixing
High-Pass
Notch Filter
Equalization
Amplitude
Peak-Detect
Interrupts Out On Prescribed
Conditions
P2IN
VMID
VREF
+
MICROPHONE
BIAS
NAU8502
MICBIAS
VDDA
R
PLL
AUDIO INTERFACE
(PCM/IIS)
GPIO1 GPIO2 GPIO3/SO BCLK
FS ADCOUT
VMID
CONTROL INTERFACE
(2-, 3- and 4-wire)
MCLK
SCLK
SDIO CSB/
R
MODE
VSSD
VSSA1 VSSA2
Figure 2: NAU8502 General Block Diagram
emPowerAudio™
Datasheet Revision 2.5
Page 5 of 92
March, 2014
NAU8502
6.
Table of Contents
1.
GENERAL DESCRIPTION .................................................................................................................................1
2.
FEATURES .........................................................................................................................................................1
3.
PIN CONFIGURATION .......................................................................................................................................3
4.
PIN DESCRIPTION .............................................................................................................................................3
5.
BLOCK DIAGRAM ..............................................................................................................................................4
6.
TABLE OF CONTENTS ......................................................................................................................................6
7.
LIST OF FIGURES ............................................................................................................................................10
8.
LIST OF TABLES .............................................................................................................................................12
9.
ABSOLUTE MAXIMUM RATINGS ...................................................................................................................13
10.
OPERATING CONDITIONS ..............................................................................................................................13
11.
FUNCTIONAL DESCRIPTION ..........................................................................................................................17
11.1
SIGNAL PATH ...........................................................................................................................................17
11.1.1
Positive Microphone Inputs (MIC1P MIC2P) ...................................................................................18
11.1.2
Negative Microphone Inputs (MIC1N MIC2N) ..................................................................................19
11.1.3
The Single Ended Auxiliary Input (P1IN P2IN) ................................................................................20
11.1.4
PGA Gain Control ..............................................................................................................................21
11.2
MICROPHONE BIASING ...........................................................................................................................22
11.3
UNUSED ANALOG I/O AND VMID SELECTION ......................................................................................23
11.4
DIGITAL MICROPHONE ...........................................................................................................................25
11.5
ADC DIGITAL FILTER BLOCK .................................................................................................................26
11.5.1
Programmable High Pass Filter (HPF).............................................................................................27
11.5.2
Programmable Notch Filter (NF) ......................................................................................................27
11.5.3
Digital ADC Gain Control ..................................................................................................................28
11.6
EQUALIZER...............................................................................................................................................28
11.7
PROGRAMMABLE GAIN AMPLIFIER (PGA) ...........................................................................................29
11.7.1
Automatic level control (ALC) ..........................................................................................................29
11.7.1.1
Normal Mode .............................................................................................................................32
11.7.1.2
ALC Hold Time (Normal mode Only) ..........................................................................................32
11.7.1.3 Peak Limiter Mode ............................................................................................................................33
11.7.1.4 Attack Time ........................................................................................................................................34
11.7.1.5 Decay Times ......................................................................................................................................34
11.7.1.6 Noise gate (normal mode only):.......................................................................................................34
11.7.2
Zero Crossing ....................................................................................................................................35
11.8
GPIO ..........................................................................................................................................................36
11.9
Clock Generation Circuit .........................................................................................................................38
11.9.1
Phase Locked Loop (PLL) General Description .............................................................................39
11.10 Serial Control Interface ............................................................................................................................42
11.10.1 SPI Serial Control ..............................................................................................................................42
11.10.1.1
16-bit Write Operation (SPI 3 Wire Write) ...........................................................................42
11.10.1.2
24-bit Write Operation (SPI 4 Wire Write) ...........................................................................43
11.10.1.3 32-bit Read Operation (SPI 4 Wire Read) ........................................................................................43
11.10.2
11.10.2.1
2-Wire Serial Control Mode (I2C style Interface) ....................................................................44
2-Wire Protocol Convention ................................................................................................44
emPowerAudio™
Datasheet Revision 2.5
Page 6 of 92
March, 2014
NAU8502
11.10.2.2
2-WIRE Write Operation .......................................................................................................45
11.10.2.3
2-WIRE Read Operation ......................................................................................................45
11.11 DIGITAL AUDIO INTERFACES.................................................................................................................47
11.11.1 Right Justified audio data ................................................................................................................49
11.11.2 Left Justified audio data ...................................................................................................................49
2
11.11.3 I S audio data ....................................................................................................................................50
11.11.4 PCM audio data .................................................................................................................................50
11.11.5 PCM Time Slot audio data ................................................................................................................51
11.11.6 Companding ......................................................................................................................................52
11.12 POWER SUPPLY ......................................................................................................................................53
11.12.1 Power-On Reset ................................................................................................................................53
11.12.2 Power Related Software Considerations ........................................................................................53
11.12.3 Software Reset ..................................................................................................................................54
11.12.4 Power Up/Down Sequencing............................................................................................................54
11.12.5 Reference Impedance (REFIMP) and Analog Bias .........................................................................55
11.12.6 Power Saving.....................................................................................................................................55
11.12.7 Estimated Supply Currents ..............................................................................................................56
12
REGISTER DESCRIPTION ...............................................................................................................................57
nd
12.1
Registers 0x00 0x01 2 stage pga gain.....................................................................................................60
12.2
Registers 0x02 0x03 audio path .................................................................................................................61
12.3
Register 0x04 .............................................................................................................................................61
12.4
Register 0x05 ADC .....................................................................................................................................61
12.5
Register 0x06 power management.............................................................................................................61
ADL/ADR mapping .............................................................................................................................................62
12.6
Register 0x07 audio format and clocking ...................................................................................................62
12.7
Register 0x08 audio format and clocking ...................................................................................................62
Sample Rate register mapping ...........................................................................................................................63
12.8
Register 0x09 analog power control ...........................................................................................................63
12.9
Register 0x0A VMID impedance and input impedance selection ...............................................................64
12.10 Register 0x0B Noise gate and ALC ............................................................................................................64
12.11 Register 0x0C ALC .....................................................................................................................................64
12.12 Register 0x0D ALC.....................................................................................................................................65
12.13 Register 0x0E ALC .....................................................................................................................................65
12.14 Register 0x0F Reset...................................................................................................................................65
12.15 Register 0x1C.............................................................................................................................................65
12.16 Register 0x21 Additional power management registers .............................................................................66
12.17 Register 0x22 Additional audio path registers ............................................................................................66
12.18 Register 0x23 Additional audio path registers ............................................................................................66
12.19 Register 0x24 Left and Right channel select for ADCOUT .........................................................................66
12.20 Register 0x25 Audio format and clocking ...................................................................................................67
12.21 Register 0x26 Clock source and division select and PLL enable ...............................................................67
12.22 Register 0x27 Audio format and clocking ...................................................................................................67
12.23 Register 0x28 RAM ....................................................................................................................................68
12.24 Register 0x29 GPIO ...................................................................................................................................68
12.25 Register 0x2A GPIO ...................................................................................................................................68
12.26 Register 0x2B GPIO ...................................................................................................................................69
12.27 Register 0x2C GPIO ...................................................................................................................................69
12.28 Register 0x2D GPIO ...................................................................................................................................69
emPowerAudio™
Datasheet Revision 2.5
Page 7 of 92
March, 2014
NAU8502
12.29 Register 0x2E ADC controls .......................................................................................................................69
12.30 Register 0x2F ADC controls .......................................................................................................................70
12.31 Register 0x30 ADC controls .......................................................................................................................70
12.32 Register 0x32 Equalizer controls ................................................................................................................70
12.33 Register 0x33 Equalizer controls ................................................................................................................70
12.34 Register 0x34 Equalizer controls ................................................................................................................71
12.35 Register 0x35 Equalizer controls ................................................................................................................71
12.36 Register 0x36 Equalizer controls ................................................................................................................71
12.37 Register 0x37 Analog test modes...............................................................................................................71
12.38 Register 0x3B-0x3E Notch Filters controls .................................................................................................72
12.39 Register 0x44 PLL register A......................................................................................................................72
12.40 Register 0x45 PLL register A......................................................................................................................72
12.41 Register 0x46 PLL register A......................................................................................................................72
12.42 Register 0x47 PLL register A......................................................................................................................72
12.43 Register 0x4B Additional audio path registers ............................................................................................72
12.44 Register 0x4C Additional audio path registers............................................................................................73
12.45 Register 0x4D Additional audio path registers............................................................................................73
12.46 Register 0x4E Additional audio path registers ............................................................................................73
12.47 Register 0x4F PLL register B .....................................................................................................................73
12.48 Register 0x50 PLL register B......................................................................................................................73
12.49 Register 0x51 PLL register B......................................................................................................................74
12.50 Register 0x52 PLL register B......................................................................................................................74
12.51 Register 0x59 ADC mixer ...........................................................................................................................74
12.52 Register 0x5A Power management extra ...................................................................................................74
12.53 Register 0x5B Left Channel PCM time slot Start Count .............................................................................75
12.54 Register 0x5C PCM and time slot Control ..................................................................................................75
12.55 Register 0x5D Right Channel PCM time slot Start Count ...........................................................................75
12.56 Register 0x5E ID registers..........................................................................................................................75
12.57 Register 0x5F ID registers ..........................................................................................................................75
12.58 Register 0x60 ID registers ..........................................................................................................................76
12.59 Register 0x66 ALC interrupts features registers .........................................................................................76
12.60 Register 0x67 ALC interrupts features registers .........................................................................................76
12.61 Register 0x68 ADC and equalizer additional registers ...............................................................................76
12.62 Register 0x69 ADC and equalizer additional registers ...............................................................................77
12.63 Register 0x6A Tie-off registers ...................................................................................................................77
12.64 Register 0x6B Tie-off registers ...................................................................................................................77
12.65 Register 0x6C AGC readout registers ........................................................................................................77
12.66 Register 0x6D AGC readout registers ........................................................................................................78
12.67 Register 0x6E AGC readout registers ........................................................................................................78
12.68 Register 0x6F AGC readout registers ........................................................................................................78
12.69 Register 0x70 Noise gate readout registers ...............................................................................................78
12.70 Register 0x71 Manual tie-off registers ........................................................................................................78
13
CONTROL INTERFACE TIMING DIAGRAM ....................................................................................................79
13.1
SPI WRITE TIMING DIAGRAM ..................................................................................................................79
13.2
2-WIRE TIMING DIAGRAM........................................................................................................................80
14
AUDIO INTERFACE TIMING DIAGRAM ..........................................................................................................81
14.1
AUDIO INTERFACE IN SLAVE MODE ......................................................................................................81
14.2
AUDIO INTERFACE IN MASTER MODE...................................................................................................81
emPowerAudio™
Datasheet Revision 2.5
Page 8 of 92
March, 2014
NAU8502
14.3
PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data) ................................................................82
14.4
PCM AUDIO INTERFACE IN MASTER MODE (PCM Audo Data) ............................................................82
14.5
PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode ) .......................................................83
14.6
PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode ) ...................................................83
14.7
System Clock (MCLK) Timing Diagram ......................................................................................................84
14.8
µ-LAW ENCODE DECODE CHARACTERISTICS ....................................................................................85
14.9
A-LAW ENCODE DECODE CHARACTERISTICS ....................................................................................86
14.10 µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE ........................................................................87
14.11 µ-LAW / A-LAW OUTPUT CODES (DIGITAL MW)...................................................................................87
15
DIGITAL FILTER CHARACTERISTICS ...........................................................................................................88
16
TYPICAL APPLICATION ..................................................................................................................................89
17
PACKAGE SPECIFICATION ............................................................................................................................90
18
ORDERING INFORMATION .............................................................................................................................91
19
VERSION HISTORY .........................................................................................................................................91
emPowerAudio™
Datasheet Revision 2.5
Page 9 of 92
March, 2014
NAU8502
7.
List of Figures
Figure 1: 32-Pin QFN Package .....................................................................................................................................3
Figure 2: NAU8502 General Block Diagram..................................................................................................................5
Figure 3 Input path description .....................................................................................................................................17
Figure 4: Microphone Bias Schematic .........................................................................................................................22
Figure 5 Tie-off Options................................................................................................................................................24
Figure 6 Digital Microphone Waveforms ......................................................................................................................26
Figure 7: ADC Digital Filter Path Block Diagram .........................................................................................................26
Figure 8: ALC Block Diagram ......................................................................................................................................30
Figure 9: ALC Response Graph ..................................................................................................................................30
Figure 10: ALC Normal Mode Operation .....................................................................................................................32
Figure 11: ALC Hold Time ...........................................................................................................................................33
Figure 12: ALC Limiter Mode Operations ....................................................................................................................33
Figure 13: ALC Operation with Noise Gate disabled ...................................................................................................34
Figure 14: ALC Operation with Noise Gate Enabled ...................................................................................................35
Figure 15: PLL and Clock Select Circuit ......................................................................................................................38
Figure 16: Register write operation using a 16-bit SPI Interface .................................................................................43
Figure 17: Register Write operation using a 24-bit SPI Interface ................................................................................43
Figure 18: Register Read operation through a 32-bit SPI Interface.............................................................................44
Figure 19: Valid START Condition ..............................................................................................................................45
Figure 20: Valid Acknowledge .....................................................................................................................................45
Figure 21: Valid STOP Condition ................................................................................................................................45
Figure 22: Slave Address Byte, Control Address Byte, and Data Byte .......................................................................45
Figure 23: Write Sequence(writing 1 register) .............................................................................................................45
Figure 24: Read Sequence (reading 1 register) ..........................................................................................................46
Figure 25: Right Justified Audio Interface....................................................................................................................49
Figure 26: Left Justified Audio Interface ......................................................................................................................49
Figure 27: I2S Audio Interface .....................................................................................................................................50
Figure 28: PCM Mode Audio Interface (Special mode) ...............................................................................................50
Figure 29: PCM Time Slot Mode (Time slot = 0) (Special mode) ................................................................................51
Figure 30: SPI Write Timing Diagram ..........................................................................................................................79
Figure 31: 2-Wire Timing Diagram ..............................................................................................................................80
Figure 32: Audio Interface Slave Mode Timing Diagram .............................................................................................81
Figure 33: Audio Interface in Master Mode Timing Diagram .......................................................................................81
Figure 34: PCM Audio Interface Slave Mode Timing Diagram ....................................................................................82
Figure 35: PCM Audio Interface Slave Mode Timing Diagram ....................................................................................82
Figure 36: PCM Audio Interface Slave Mode (PCM Time Slot Mode )Timing Diagram ..............................................83
Figure 37: PCM Audio Interface Master Mode (PCM Time Slot Mode )Timing Diagram .............................................83
emPowerAudio™
Datasheet Revision 2.5
Page 10 of 92
March, 2014
NAU8502
Figure 38: MCLK Timing Diagram ...............................................................................................................................84
Figure 39: Application Diagram For32 -Pin QFN .........................................................................................................89
emPowerAudio™
Datasheet Revision 2.5
Page 11 of 92
March, 2014
NAU8502
8.
List of Tables
Table 1: Pin Description ................................................................................................................................................4
Table 2: Register associated with Input PGA Control .................................................................................................18
Table 3: Microphone Non-Inverting Input Impedances .................................................................................................19
Table 4: Microphone Inverting Input Impedances .......................................................................................................20
Table 5: Microphone Inverting Input Impedances .......................................................................................................21
Table 6: Registers associated with Input PGA Gain Control .......................................................................................21
Table 7: Register associated with Microphone Bias ....................................................................................................23
Table 8: Microphone Bias Voltage Control ..................................................................................................................23
Table 9: Register associated with ADC .......................................................................................................................27
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1) .......................................................................................27
Table 11: Registers associated with Notch Filter Function ..........................................................................................28
Table 12: Equations to Calculate Notch Filter Coefficients..........................................................................................28
Table 13: Register associated with ADC Gain ............................................................................................................28
Table 14: Equalizer Center/Cutoff Frequencies ..........................................................................................................29
Table 15: Equalizer Gains ...........................................................................................................................................29
Table 16: Registers associated with ALC Control .......................................................................................................31
Table 17: ALC Maximum and Minimum Gain Values ..................................................................................................32
Table 18: General Purpose Control .............................................................................................................................36
Table 19: General Purpose I/O Output Select ..............................................................................................................37
Table 20: Registers associated with PLL ....................................................................................................................39
Table 21: Registers associated with PLL ....................................................................................................................40
Table 22: PLL Frequency Examples ...........................................................................................................................41
Table 23: Control Interface Selection ..........................................................................................................................42
Table 24: ADCOUT pin behavior selections .................................................................................................................47
Table 25: Standard Interface modes ...........................................................................................................................48
Table 26: Audio Interface Control Registers................................................................................................................48
Table 27: Companding Control ...................................................................................................................................52
Table 28: Power up sequence.....................................................................................................................................55
Table 29: Power down Sequence ...............................................................................................................................55
Table 30: Registers associated with Power Saving .....................................................................................................56
Table 31: VDDA 3.3V Supply Current .........................................................................................................................56
Table 32: SPI Timing Parameters ...............................................................................................................................79
Table 33: 2-WireTiming Parameters ...........................................................................................................................80
Table 34: Audio Interface Timing Parameters .............................................................................................................84
Table 35: MCLK Timing Parameter .............................................................................................................................84
emPowerAudio™
Datasheet Revision 2.5
Page 12 of 92
March, 2014
NAU8502
9.
ABSOLUTE MAXIMUM RATINGS
CONDITION
MIN
MAX
Units
VDDB, VDDC, VDDA supply voltages
-0.3
+3.61
V
LDOVIN
-0.3
+5.5
V
Core Digital Input Voltage range
VSSD – 0.3
VDDC + 0.30
V
Buffer Digital Input Voltage range
VSSD – 0.3
VDDB + 0.30
V
Analog Input Voltage range
VSSA – 0.3
VDDA + 0.30
V
Industrial operating temperature
-40
+85
°C
Storage temperature range
-65
+150
°C
CAUTION: Do not operate at or near the maximum ratings listed for extended period of time. Exposure to such
conditions may adversely influence product reliability and result in failures not covered by warranty. These
devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
10. OPERATING CONDITIONS
Condition
Symbol
Min Value
Analogue supplies range
VDDA
2.70
Digital supply range (Buffer)
VDDB
Digital supply range (Core)
Typical
Value
Max Value
Units
1
3.60
V
1.71
2
3.60
V
VDDC
1.71
2
3.60
V
LDO supply range
LDOVIN
4.50
5.50
V
Ground
VSSD
VSSA1
VSSA2
0
V
Note 1 : VDDA ≥ VDDB
Note 2 : VDDB ≥ VDDC
Note3: When Using PLL, VDDA ≥ 2.7V and VDDC ≥ 1.9V
emPowerAudio™
Datasheet Revision 2.5
Page 13 of 92
March, 2014
NAU8502
ELECTRICAL CHARACTERISTICS
o
VDDC = +1.8V, VDDA = VDDB = 3.3V, LDOVIN = +5V, TA = +25 C, 1kHz signal, fs = 48kHz, 24-bit audio data
unless otherwise stated.
Parameter
Symbol
Comments/Conditions
Min
Typ
Max
Units
Analog to Digital Converter (ADC)
Full scale input signal
1
Signal-to-noise ratio
Total harmonic distortion
2
Channel separation at 0dB gain
VINFS
PGABST = 0dB
PGAGAIN = 0dB
SNR
Gain = 0dB, A-weighted
THD+N
tbd
1.0
0
Vrms
dBV
90
dB
Input = -3dB FS input
-80
1kHz input signal
100
tbd
dB
dB
Microphone Inputs (MIC1P, MIC1N, MIC2P, MIC2N, P1IN, P2IN) and Programmable Gain Amplifier (PGA)
Programmable gain
Programmable gain step size
-12
Guaranteed Monotonic
35.25
dB
0.75
dB
110
dB
1.6
47
75
kΩ
kΩ
kΩ
10
pF
0 to 20kHz, Gain set to
35.25dB
120
µV
First stage PGA gain (single
ended on MIC1P MIC2P)
Boost = 00
Boost = 01
Boost = 10
Boost = 11
13
18
28
33
dB
dB
dB
dB
First stage PGA input
resistance (single ended on
MIC1P MIC2P)
LDC/RDC=1
LDC/RDC=0
500
kΩ
kΩ
PGA Gain=10.8dB
Boost=00
5.4
kΩ
PGA Gain=16.8dB
Boost=01
3
kΩ
PGA Gain=27.6dB
Boost=10
955
Ω
PGA Gain=32.8dB
Boost=11
537
Ω
7
nV / √Hz
At 20~20Khz, 28db
2.2
uV rms
At 20~20K, Vdda=2.7
28db
85
dB
Mute Attenuation
PGA Input resistance in single
ended mode (P1IN P2IN)
PGA Gain = 35.25dB
PGA Gain = 0dB
PGA Gain = -12dB
Input capacitance
PGA equivalent input noise
First Stage PGA Amplifier
First stage PGA Microphone
Input resistance (differential
mode MIC1/2P MIC1/2N)
PGA1 equivalent input noise
PGA1 Signal to Noise ratio (Aweighted)
emPowerAudio™
Datasheet Revision 2.5
Input referred Noise
voltage at 1KHz +28db
Page 14 of 92
5000
March, 2014
NAU8502
Parameter
Symbol
Total Harmonic Distortion
Comments/Conditions
Min
Typ
Max
Units
At 20~20K, Vdda=3.3
28db
94
dB
Gain=13db, Vdda=3.3
-80
0.01
dB
%
Line Input to boost/mixer gain
-12
Line Input step size to
boost/mixer
6
dB
3
dB
0.50, 0.60,0.65, 0.70,
0.75, 0.85, or 0.90
VDDA
VDDA
3
mA
1kHz to 20kHz
14
nV/√Hz
LDOVIN=5V
LDOENABLE>1.8V
C=1uF ESR<0.2
3.3
V
Microphone Bias
Bias voltage
VMICBIAS
Bias current source
IMICBIAS
Output noise voltage
Vn
See Table 8
Voltage regulator
Output Voltage
Output current
emPowerAudio™
Datasheet Revision 2.5
VDDA
/LDOVOUT
LDOVIN=5V
LDOENABLE>1.8V
C=1uF ESR<0.2
Page 15 of 92
40
March, 2014
mA
NAU8502
o
VDDC = +1.8V, VDDA = VDDB = 3.3V, LDOVIN = +5, TA = +25 C, 1kHz signal, fs = 48kHz, 24-bit audio data
unless otherwise stated.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Automatic Level Control (ALC)/Limiter – ADC only
Target Record Level
-28.5
-6
dB
Programmable Gain
-12
35.25
dB
Programmable Gain Step
Size
Gain Hold Time
4, 6
Gain Ramp-Up (Decay)
5, 6
Time
Gain Ramp-Down (Attack)
5, 6
Time
0.75
dB
0 / 2.67 / …/ 43691 (time
doubles with each step)
ms
ALC Mode
ALCM=0
MCLK=12.288MHz
3.3 / 6.6 / 13.1 / … / 3360
(time doubles with each step)
ms
Limiter Mode
ALCM=1
MCLK=12.288MHz
0.73 / 1.45 / 2.91 / … / 744
(time doubles with each step)
ms
ALC Mode
ALCM=0
MCLK=12.288MHz
0.83 / 1.66 / 3.33 / … / 852
(time doubles with each step)
ms
Limiter Mode
ALCM=1
MCLK=12.288MHz
0.18 / 0.36 / 0.73 / … / 186
(time doubles with each step)
ms
Guaranteed Monotonic
tHOLD
tDCY
tATK
MCLK=12.288MHz
Digital Input / Output
0.7 ×
VDDB
Input HIGH Level
VIH
Input LOW Level
VIL
Output HIGH Level
VOH
IOL = 1mA
Output LOW Level
VOL
IOH = -1mA
V
0.3 ×
VDDB
0.9 ×
VDDB
V
V
0.1 x
VDDB
V
Notes
1. Full Scale is relative to VDDA (FS = VDDA/3.3.).
2. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full-scale output and the
output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
3. THD+N (dB) - THD+N are a ratio, of the rms values, of (Noise + Distortion)/Signal.
4. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain.
It does not apply to ramping down the gain when the signal is too loud, which happens without a delay.
5. Ramp-up and Ramp-Down times are defined as the time it takes to change the PGA gain by 6dB of its gain
range.
6. All hold, ramp-up and ramp-down times scale proportionally with MCLK
emPowerAudio™
Datasheet Revision 2.5
Page 16 of 92
March, 2014
NAU8502
11. FUNCTIONAL DESCRIPTION
The NAU8502 includes low-noise stereo differential high gain microphone inputs with wide range programmable
amplifiers, separate line inputs, and an analog bypass/sidetone line level stereo output.
Advanced on-chip digital signal processing includes a limiter/ALC (Automatic Level Control), 5-band equalizer,
notch filter, and a high-pass filter for speech optimization and wind noise reduction. The digital interface can
operate as either a master or a slave. Additionally, an internal fractional-N PLL is available to accurately generate
any audio sample rate clock for the ADCs derived using any available system clock from 8MHz through 33MHz.
11.1 SIGNAL PATH
The NAU8502 integrates two audio ADC. The input path is highly configurable with 2 programmable gain stages.
The first gain stages outputs are connected to the pin P1OUT and P2OUT and can be used to ac couple the
signal to the inputs of the second gain stages P1IN and P2IN.
All inputs are maintained at a DC bias at approximately half of the VDDA supply voltage. Connections to these
inputs should be AC-coupled by means of DC blocking capacitors suitable for the device application.
P1OUT
LMIC2_2INPPGA1
LMIC2_2INPPGA1
R
P1IN
R
LMICN2INPPGA1
LMICN2INPPGA1
R
MIC1N
LPGAGAIN2[5:0]
(0x00)
`
LMICN2BVREF
LMIC2_2INPPGA2
R
LMICN2INPPGA2
LMICP2INPPGA &
LMICN2BVREF
MIC1P
R
LMICN2INPPGA2
R
R
13,18,28,33 db
LMICP2INPPGA &
-12 dB to +35.25 dB
LMICN2BVREF
LMICN2BVREF
500K
LMIC2_2INPPGA2
R
LMICBOOST[6:5]
(0x02)
R
To ADC
LMBE
LDC
VMID
Buffered VREF[7]
(0x06)
VREF
P2OUT
RMIC2_2INPPGA1
RMIC2_2INPPGA1
R
P2IN
R
RMICN2INPPGA1
RMICN2INPPGA1
R
MIC2N
RPGAGAIN2[5:0]
(0x01)
R
RMICBOOST[6:5]
(0x03)
RMICN2BVREF
RMIC2_2INPPGA2
RMIC2_2INPPGA2
R
RMICN2INPPGA2
R
RMICN2INPPGA2
R
RMICP2INPPGA &
RMICN2BVREF
MIC2P
500K
RMICP2INPPGA &
RMICN2BVREF
13,18,28,33 db
R
-12 dB to +35.25 dB
RMICN2BVREF
To ADC
R
RMBE
RDC
Figure 3 Input path description
emPowerAudio™
Datasheet Revision 2.5
Page 17 of 92
March, 2014
NAU8502
Bit(s)
Addr
Parameter
LMICP2INPPGA
0x4B[0]
Positive Microphone 1 to PGA
stage 1
LMICN2INPPGA1
0x4B[1]
Negative Microphone 1 to PGA
stage 1
LMIC2_2INPPGA1
0x4B[2]
P1IN to PGA stage 1
LMICN2BVREF
0x22[1]
Buffer voltage to PGA stage 1
LMIC2_2INPPGA2
0x4B[6]
P1IN to PGA stage 2
LMICN2INPPGA2
0x4B[5]
P1OUT to PGA stage 2
RMICP2INPPGA
0x4C[0]
Positive Microphone 2 to PGA
stage 1
RMICN2INPPGA1
0x4C[1]
Negative Microphone 2 to PGA
stage 1
RMIC2_2INPPGA1
0x4C[2]
P2IN to PGA stage 1
RMICN2BREF
0x22[0]
Buffer voltage to PGA stage 1
RMIC2_2INPPGA2
0x4C[6]
P2IN to PGA stage 2
RMICN2INPPGA2
0x4C[5]
P2OUT to PGA stage 2
Programmable Range
0 = Input PGA stage 1 Positive terminal to
VREF
1 = Input PGA stage 1 Positive terminal to
MIC1P
0 = MIC1N not connected to input PGA stage
1
1 = MIC1N to input PGA stage 1 Negative
terminal.
0 = P1IN not connected to input PGA stage1
1 = P1IN to input PGA stage 1 Negative
terminal.
0 = Buffer VREF not connected to input PGA
stage1
1 = Buffer VREF connected to input PGA
stage1
0 = P1IN not connected to input PGA stage2
1 = P1IN to input PGA stage 2 Negative
terminal.
0 = not connected to input PGA stage 2
1 = to input PGA stage 2 Negative terminal.
0 = Input PGA stage 1 Positive terminal to
VREF
1 = Input PGA stage 1 Positive terminal to
MIC2P
0 = MIC2N not connected to input PGA stage
1
1 = MIC2N to input PGA stage 1 Negative
terminal.
0 = P2IN not connected to input PGA stage1
1 = P2IN to input PGA stage 1 Negative
terminal.
0 = Buffer VREF not connected to input PGA
stage1
1 = Buffer VREF connected to input PGA
stage1
0 = P2IN not connected to input PGA stage2
1 = P2IN to input PGA stage 2 Negative
terminal.
0 = not connected to input PGA stage 2
1 = to input PGA stage 2 Negative terminal.
Table 2: Register associated with Input PGA Control
11.1.1
Positive Microphone Inputs (MIC1P MIC2P)
The positive microphone inputs (MIC1P MIC2P) can be used as part of the differential input. They multiplex to the
positive terminal of the first stage PGA gain amplifier by setting LMICP2INPPGA (0x4B[0]) or RMICP2INPPGA
(0x4C[0]) to HIGH or can be connected to VREF by setting LMICP2INPPGA (0x4B[0]) and to RMICP2INPPGA
(0x4C[0]) to LOW. MIC1P and MIC2P can be connected directly to the second stage of the PGA by setting LMBE
(0x2[4]) and RMBE (0x3[4]) to LOW.
In single ended applications where MIC1P, MIC2P inputs are used without using MIC1N and MIC2N, the PGA
gain is
emPowerAudio™
Datasheet Revision 2.5
Page 18 of 92
March, 2014
NAU8502
This gain is valid only if the MIC1N and MIC2N pins are terminated to a low
impedance signal point. This can be done by setting LMICN2BVREF, RMICN2BREF, LMICP2INPPGA,
RMICP2INPPGA, to HIGH and LMICN2INPPGA1(0x4B[1]), RMICN2INPPGA1(0x4C[1]) are set to LOW. This
termination should normally be an AC coupled path to signal ground. This input impedance depends on the
selection of register LDC(0xA[1]) and RDC(0xA[0]). The following table gives the nominal input impedance for
this input.
MICP to non-inverting PGA input
Nominal Input Impedance
Impedance (kΩ) if
Gain (dB)
Impedance (kΩ) if
LDC and RDC are set LDC and RDC are set
to 1
to 0
13
500
>5000
18
500
>5000
28
500
>5000
33
500
>5000
Table 3: Microphone Non-Inverting Input Impedances
When the associated control bit of LMICP2INPPGA, RMICP2INPPGA, LMICN2BVREF and RMICN2BVREF are
set to logic = 0, the positive microphone input pins are connected to a resistor of approximately 40kΩ which is tied
to VREF. The purpose of the tie to VREF is to reduce any pop or click sound by keeping the DC level of the
MIC+ pin close to VREF at all times.
11.1.2
Negative Microphone Inputs (MIC1N MIC2N)
The negative microphone inputs (MIC1N, MIC2N) have two distinctive configuration; differential input or single
ended input.
These inputs multiplex to the negative terminal of the PGA gain amplifier by setting
LMICN2INPPGA1 (0x4B[1]) or RMICN2INPPGA1 (0x4C[1]) to HIGH. When the MIC1N, MIC2N are used as a
single ended input, MIC1P MIC2P should be connected to VMID by setting LMICP2INPPGA, RMICP2INPPGA,
LMICN2BVREF and RMICN2BVREF to LOW. The P1IN, P2IN input signals can also be mixed with the MIC1N
MIC2N input signals by setting LMIC2_2INPPGA1 (0x4B[2]) and RMIC2_2INPPGA1 (0x4C[2]) to HIGH. By
setting LMICN2INPPGA1 and RMICN2INPPGA1 to LOW, the pins of MIC1N and MIC2N internally connect to a
resistor of approximately 30kΩ that’s tied to VREF. The purpose of the tie to VREF is to reduce any pop or click
sound by keeping the DC level of the MIC- pin close to VREF at all times. It is important for a system designer to
know that the MIC1N and MIC2N input impedances vary as a function of the selected PGA gain. This is normal
emPowerAudio™
Datasheet Revision 2.5
Page 19 of 92
March, 2014
NAU8502
and expected for a difference amplifier type topology. The above table gives the nominal resistive impedance
values for this input over the possible gain range. Impedance for specific gain values not listed in this table can
be estimated through interpolation between listed values.
In a differential configuration LMICN2INPPGA1 (0x4B[1]) or RMICN2INPPGA1 (0x4C[1]) and LMICP2INPPGA
(0x4B[0]) or RMICP2INPPGA (0x4C[0]) are set to HIGH. The gain, listed in Table 4, is less than in the MIC1P
MIC2P single-ended configuration explained in chapter 12.1.1.
MICN to inverting PGA input
MICN and MICP to inverting and non-inverting PGA inputs
Nominal Input Impedance
Gain (dB)
Impedance (kΩ)
10.8
16.83
27.65
32.8
5.373
3.021
0.955
0.537
Table 4: Microphone Inverting Input Impedances
11.1.3
The Single Ended Auxiliary Input (P1IN P2IN)
The single ended auxiliary inputs have two different paths.

Directly connected to the first stage Programmable Gain amplifier

Used in conjunction with P[1-2]OUT as AC coupled input to the second stage PGA
The second-stage PGA gain ranges from -12dB to +35.25 dB with 0.75db step.
The two paths above go through the ADC filters where the ALC loop may be used to control the amplitude of the
input signal. The device also has an internal configurable biasing circuit for biasing the microphone, reducing
external components.
When LMIC2_2INPPGA2 and RMIC2_2INPPGA2 are set to LOW, the single ended auxiliary input pins are
connected to a resistor of approximately 30kΩ which is tied to VREF. The purpose of the tie to VREF is to reduce
any pop or click sound by keeping the DC level of the P[1-2]IN pin close to VREF at all times.
MICN PIN to inverting PGA input
Nominal Input Impedance
emPowerAudio™
Datasheet Revision 2.5
Gain (dB)
Impedance (kΩ)
-12
-9
-6
-3
0
3
6
9
75
69
63
55
47
39
31
25
Page 20 of 92
March, 2014
NAU8502
MICN PIN to inverting PGA input
Nominal Input Impedance
Gain (dB)
Impedance (kΩ)
12
18
30
35.25
19
11
2.9
1.6
Table 5: Microphone Inverting Input
Impedances
11.1.4
PGA Gain Control
The two stages of PGA amplification have independent gain settings.
The first stage PGA, also called mic pre-amp or boost, is enabled by LMBE and RMBE (0x02[4] 0x03[4]). The first
stage PGA has four fixed gain settings +13dB, +18dB. +28dB, +33dB controlled by LMICBOOST (0x2[6:5]) and
RMICBOOST (0x3[6:5]). The mute registers LMBMUTE and RMBMUTE are reserved and cannot be used.
When LMBE and RMBE are disabled, the first stage PGA is automatically bypassed and routed to the input of the
second stage PGA.
The second stage PGA has a range of -12dB to +35.25dB in 0.75dB steps, controlled by INPPGALVOL (0x4D)
INPPGARVOL (0x4E). Registers LINVOL 99i and RINVOL 0x01 may also be used to set the second stage PGA
gain that are eventually mapped to INPPGALVOL and INPPGARVOL.
Second stage Input PGA gain will not take effect when ALC is enabled using register ALCEN (0xC[8:7]).
Zero crossing on the first stage PGA is enabled with LMZC (0x2[3]) and RMZC(0x3[3]).
Zero crossing on the second stage PGA is enabled with LPZC (0x2[2]) and RPZC (0x3[2]).
Addr
Bit 8
0x02
0
0x03
0
0x4D
0
0x4E
0
Bit 7
Bit 6
Bit5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Default
LMICBOOST
LMBE
LMZC
LPZC
0x007
RMICBOOST
RMBE
RMZC
RPZC
0x007
LMBMUTE
INPPGALVOL
0x010
RMBMUTE
INPPGARVOL
0x010
Table 6: Registers associated with Input PGA Gain Control
emPowerAudio™
Datasheet Revision 2.5
Page 21 of 92
March, 2014
NAU8502
11.2
MICROPHONE BIASING
Figure 4: Microphone Bias Schematic
The MICBIAS pin is a low-noise microphone bias source for an external microphone, which can provide a
maximum of 3mA of bias current. This DC bias voltage is suitable for powering either traditional ECM (electret)
type microphones, or for MEMS types microphones with an independent power supply pin. Seven different bias
voltages are available for optimum system performance, depending on the specific application. The microphone
bias pin normally requires an external filtering capacitor as shown on the schematic in the Application section.
It has various voltage values selected by a combination of bits MICBIASM[4] address (0x5A) and MICBIASV[1:0]
address (0x06).
When MICBIASM[4] is set to HIGH, low-noise is achieved by an internal resistor of approximately 200-ohms in
series with the output pin. This creates a low pass filter in conjunction with the external microphone-bias filter
capacitor, but without any additional external components.
Bit(s)
Addr
Parameter
MICBIASM
0x05A[4]
Microphone bias mode selection
MICBIASV
0x06[1:0]
Microphone bias voltage selection
emPowerAudio™
Datasheet Revision 2.5
Page 22 of 92
Programmable Range
0=default larger cap on
micbias
1=lower cap on micbias
00 off
01 0.75*VDDA
March, 2014
NAU8502
10 0.9*VDDA
11 0.5*VDDA
Table 7: Register associated with Microphone Bias
Below are the unloaded values when MICBIASM[4] is set to 1 and 0. When loaded, the series resistor will cause
the voltage to drop, depending on the load current.
Microphone Bias Voltage Control
MICBIASV[1:0]
MICBIASM[4] = 0
MICBIASM[4]= 1
0
0
off
off
0
1
0.75* VDDA
0.70* VDDA
1
0
0.9* VDDA
0.85* VDDA
1
1
0.50* VDDA
0.50* VDDA
Table 8: Microphone Bias Voltage Control
11.3
UNUSED ANALOG I/O AND VMID SELECTION
emPowerAudio™
Datasheet Revision 2.5
Page 23 of 92
March, 2014
NAU8502
TIEOFF[5]
(0x71)
P1IN
30k
1K
LMIC2_2INPPGA2[6]
(0x4B)
MIC1N
30k
LMICN2INPPGA1[1]
(0x4B)
MIC1P
40k
LMICP2INPPGA[0]
(0x4B)
500k
LDC[1]
(0x0A)
VMID[8]
(0x06)
VREF
VMID
R
BUFIOEN[3]
(0x21)
VMIDSEL[3:2]
(0x0A)
VREF[7]
(0x06)
R
SHORTBUFL[6]
(0x71)
VMID[8]
(0x06)
0x6A[8]
0x6B[2:0]
Figure 5 Tie-off Options
In audio and voice systems, any time there is a sudden change in voltage to an audio signal, an audible pop or
click sound may be the result. Systems that change input and output configurations dynamically, or which are
required to manage low power operation, need special attention to possible pop and click situations.
The
NAU8502 includes many features which may be used to greatly reduce or eliminate pop and click sounds. The
most common cause of a pop or click signal is a sudden change to an input or output voltage. This may happen
in either a DC coupled system, or in an AC coupled system.
The strategy to control pops and clicks is similar for either a DC coupled system, or an AC coupled system. The
case of the AC coupled system is the most common and the more difficult situation, and therefore, the AC
coupled case will be the focus for this information section. When an input or output pin is being used, the DC
level of that pin will be very close to half of the VDDA voltage that is present on the VMID pin. In all cases, any
input or output capacitors will become charged to the operating voltage of the used input or output pin. The goal
to reduce pops and clicks is to insure that the charge voltage on these capacitors does not change suddenly at
any time.
In order to use the tie-off on the VREF buffer REGENABLE[8] 0x71 must be set to 1.
When an input or output is in a not-used operating condition, it is desirable to keep the DC voltage on that pin at
the same voltage level as the DC level of the used operating condition. This is accomplished using special
emPowerAudio™
Datasheet Revision 2.5
Page 24 of 92
March, 2014
NAU8502
internal DC voltage sources that are at the required DC values. When an input or output is in the not-used
condition, it is connected to the correct internal DC voltage as not to have a pop or click. This type of connection
is known as a “tie-off” condition.
Outputs will automatically be tied to the VMID voltage value. The input pullups are connected to BUFIOEN[3]
address (0x21) buffer with a voltage source (VMID). The output pullups can be connected to the same buffer.
Automatic internal logic determines whether an input or output pin is in the used or un-used condition. This logic
function is always active. An output is determined to be in the un-used condition when it is in the disabled
unpowered condition, as determined by the power management registers. An input is determined to be in the unused condition when all internal switches connected to that input are in the “open” condition.
11.4
DIGITAL MICROPHONE
The digital microphone interface is enabled by setting register EN_DIG_MIC_L (0x68[4]) or EN_DIG_MIC_R
(0x68[5]). NAU8502 can support up to two digital microphones through pin MIC1P. When pin MIC1N is
configured as DM_CLK output, NAU8502 will generate a clock signal in the range of 1-4Mhz to support the digital
microphone operation. Volume control for the digital microphone can be set in two ways. If ALCEN (0xC) is off,
volume control for the digital microphone is provided by ADCVOLL (0x2f) and ADCVOLR(0x30). If ALCEN is on,
volume control is set by the ALC registers in address 0xC.
MCLK
DM_CLK
DMIC1
(Left Channel)
DATA1
HI-Z
DATA1
DMIC2
(Right Channel)
HI-Z
DATA2
HI-Z
DM_IN
(swap_dm_dfe
(0x68[6] = 0)
DATA1
DATA2
DATA1
DATA2
DATA1
DATA2
DM_IN
(swap_dm_dfe
(0x68[6] = 1)
emPowerAudio™
Datasheet Revision 2.5
Page 25 of 92
March, 2014
NAU8502
Figure 6 Digital Microphone Waveforms
11.5
ADC DIGITAL FILTER BLOCK
ADC Digital Filters
ADC
Digital
Decimator
Digital
Filter
/
Gain
High
Pass
Filter
Notch
Filter
Digital
Audio
Interface
Figure 7: ADC Digital Filter Path Block Diagram
The ADC digital filter block performs a 24-bit signal processing. The block consists of an oversampled analog
sigma-delta modulator, digital decimator, digital filter, high pass filter, and a notch filter. The oversampled analog
sigma-delta modulator provides a bit stream to the decimation stages and filter. The ADC coding scheme is in
twos-complement format and the full-scale input level is proportional to VDDA. With a 3.3V supply voltage, the
full-scale level is 1.0VRMS and any voltage greater than full scale may overload the ADC and cause distortion.
The ADC is enabled by setting ADL[3] and ADR[2] in address (0x06) to HIGH. Polarity and oversampling rate of
the ADC output signal can be changed by POLARITY[6:5] address (0x05) and ADCOSR[3] address (0x2E)
respectively.
Bit(s)
Addr
Parameter
POLARITY[6:5]
0x05
ADC Polarity
ADCOSR[3]
0x2E
ADC Over Sample
Rate
Programmable Range
00 no inversion on ADC data
01 Left (1) inverted
10 Right (2) inverted
11 both inverted
0=64x (Lowest power)
1=128x (best SNR at typical condition)
ADCHPD[0]
0x05
High Pass Filter
Disable
0 = Enable
1 = Disable
HPFAPP[7]
0x2E
Audio or Application Mode
0 = Audio (1 order, fc ~ 3.7 Hz)
nd
1 = Application (2 order, fc = HPFCUT)
HPFCUT[6:4]
0x2E
High Pass Filter frequencies
82 Hz to 612 Hz dependant on the sample
rate
ADL[3]
0x02
Enable Left Channel ADC
0 = Disable
1 = Enable
ADR[2]
0x02
Enable Right Channel ADC
0 = Disable
1 = Enable
st
emPowerAudio™
Datasheet Revision 2.5
Page 26 of 92
March, 2014
NAU8502
SMPLR[3:1]
0x27
Sample rate
8k Hz to 48 kHz
Table 9: Register associated with ADC
11.5.1
Programmable High Pass Filter (HPF)
The high pass filter (HPF) has two different modes that it can operate in either Audio or Application mode
HPFAPP[7] address (0x2E). In Audio Mode (HPFAPP=0) the filter is first order, with a cut-off frequency of 3.7Hz.
In Application mode (HPFAPP=1) the filter is second order, with a cut-off frequency selectable via the
HPFCUT[6:4] register bits. Cut-off frequency of the HPF depends on sample frequency selected by SMPLR[3:1]
address (0x27). The HPF is enabled by setting ADCHPD[0] address (0x05) to LOW. Table below shows the cutoff frequencies with different sampling rate.
SMPLR=101/100
8
11.025
12
fs (kHz)
SMPLR=011/010
16
22.05
24
SMPLR=001/000
32
44.1
48
000
82
113
122
82
113
122
82
113
122
001
102
141
153
102
141
153
102
141
153
010
131
180
156
131
180
156
131
180
156
011
163
225
245
163
225
245
163
225
245
100
204
281
306
204
281
306
204
281
306
101
261
360
392
261
360
392
261
360
392
110
327
450
490
327
450
490
327
450
490
111
408
563
612
408
563
612
408
563
612
HPFCUT[6:4]
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1)
11.5.2
Programmable Notch Filter (NF)
Each ADC is optionally supported by a notch filter in the digital output path. Filter operation and settings are
always the same for both left and right channels. A notch filter is useful to filter out a very narrow band of audio
frequencies in a stop band around a given center frequency. The notch filter is enabled by setting NFCEN
(0x3B[7]) to 1. The center frequency is programmed by setting registers 0x3B, 0x3C, 0x3D, and 0x3E, bits 0 to 6
(NFA0[13:7], NFA0[6:0], NFA1[13:7], NFA1[6:0]), with two’s complement coefficient values calculated using Table
12.
Registers that affect operation of the notch filter are:
0x3B
Notch filter enable/disable
0x3B
Notch filter a0 coefficient high order bits and update bit
0x3C
Notch filter a0 coefficient low order bits and update bit
0x3D
Notch filter a1 coefficient high order bits and update bit
0x3E
Notch filter a1 coefficient low order bits and update bit
Important: The register update bits are write-only bits. The update bit function is important so that all filter
coefficients actively being used are changed simultaneously, even though these register values must be written
sequentially. When there is a write operation to any of the filter coefficient settings, but the update bit is not set
emPowerAudio™
Datasheet Revision 2.5
Page 27 of 92
March, 2014
NAU8502
(value = 0), the value is stored as pending for the future, but does not go into effect. When there is a write
operation to any coefficient register, and the update bit is set (value = 1), then the new value in the register being
written is immediately put into effect, and any pending coefficient value is put into effect at the same time.
Coefficient values are in the form of 2’s-complement integer values, and must be calculated based upon the
desired filter properties.
The mathematical operations for calculating these coefficients are detailed in the
following table.
Addr
Bit 8
Bit 7
Bit 6
Bit5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Default
0x3B
NFCU
NFCEN
NFCA0[13:7]
0x000
0x3C
NFCU
0
NFCA0[6:0]
0x000
0x3D
NFCU
0
NFCA1[13:7]
0x000
0x3E
NFCU
0
NFCA1[6:0]
0x000
Table 11: Registers associated with Notch Filter Function
A0
Coefficient
A1
 2  fb
1  tan 
 2 fs

 2  fb
1  tan 
 2 fs









 1  A0 
 2  fc 

x cos


fs


Notation
Register Value (DEC)
fc = center frequency (Hz)
fb = -3dB bandwidth (Hz)
fs = sample frequency
(Hz)
NFCA0 = -A0 x 2
12
NFCA1 = -A1 x 2
(then convert to 2’s
complement)
13
Table 12: Equations to Calculate Notch Filter Coefficients
11.5.3
Digital ADC Gain Control
The digital ADC can be muted by setting “0000 0000” to ADCVOLL[7:0] address (0x2F) for the left channel or
ADCVOLR[7:0] address (0x30) for the right channel. Any other combination digitally attenuates the ADC output
signal in the range -127dB to 0dB in 0.5dB increments]. The gain setting takes effect only when the update bit in
the MSB of the gain register is set.
Addr
Name
Bit 8
Bit 7
Bit 6
Bit5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Default
0x2F
ADCG
ADCVU ADCVOLL
0x0FF
0x30
ADCG
ADCVU ADCVOLR
0x0FF
Table 13: Register associated with ADC Gain
11.6
EQUALIZER
The NAU8502 includes a 5-band graphic equalizer with low distortion, low noise, and wide dynamic range. The
equalizer is applied to both left and right channels. Registers that affect operation of the 5-Band Equalizer are:
0x32
Band 1 gain control and cut-off frequency
0x33
Band 2 gain control, center cut-off frequency, and bandwidth
0x34
Band 3 gain control, center cut-off frequency, and bandwidth
emPowerAudio™
Datasheet Revision 2.5
Page 28 of 92
March, 2014
NAU8502
0x35
Band 4 gain control, center cut-off frequency, and bandwidth
0x36
Band 5 gain control and cut-off frequency
Each of the five equalizer bands is independently adjustable for maximum system flexibility, and each offers up to
12dB of boost and 12dB of cut with 1dB resolution. The high and the low bands are shelving filters (high-pass
and low-pass, respectively), and the middle three bands are peaking filters. Details of the register value settings
are described below. Response curve examples are provided in the Appendix of this document.
Register
Value
00
01
10
11
1 (High Pass)
Register 18
Bits 5 & 6
EQ1CF
80Hz
105Hz
135Hz
175Hz
2 (Band Pass)
Register 19
Bits 5 & 6
EQ2CF
230Hz
300Hz
385Hz
500Hz
Equalizer Band
3 (Band Pass)
Register 20
Bits 5 & 6
EQ3CF
650Hz
850Hz
1.1kHz
1.4kHz
4 (Band Pass)
Register 21
Bits 5 & 6
EQ4CF
1.8kHz
2.4kHz
3.2kHz
4.1kHz
5 (Low Pass)
Register 22
Bits 5 & 6
EQ5CF
5.3kHz
6.9kHz
9.0kHz
11.7kHz
Table 14: Equalizer Center/Cutoff Frequencies
Register Value
Binary
Hex
00000
00h
00001
01h
00010
02h
---01100
0Ch
01101
17h
---11000
18h
11001 to 11111
19h to 1Fh
Gain
Registers
+12db
+11dB
+10dB
Increments 1dB per step
0dB
-11dB
Increments 1dB per step
-12dB
Reserved
Bits 0 to 4
in registers
18 (EQ1GC)
19 (EQ2GC)
20 (EQ3GC)
21 (EQ4GC)
22 (EQ5GC)
Table 15: Equalizer Gains
11.7
PROGRAMMABLE GAIN AMPLIFIER (PGA)
The NAU8502 has a programmable gain amplifier (PGA) which controls the gain such that the signal level of the
PGA remains substantially constant as the input signal level varies within a specified dynamic range.
The
Automatic Level Control (ALC) can operate in either normal mode or limiter mode.
The Automatic Level Control (ALC) seeks to control the PGA gain in response to the amplitude of the input signal
such that the PGA output maintains a constant envelope. A digital peak detector monitors the input signal
amplitude and compares it to a register defined threshold level ALCSL[3:0] address (0x0C).
11.7.1 Automatic level control (ALC)
emPowerAudio™
Datasheet Revision 2.5
Page 29 of 92
March, 2014
NAU8502
The ALC seeks to control the PGA gain such that the PGA output maintains a constant envelope. This helps to
prevent clipping at the input of the sigma delta ADC while maximizing the full dynamic range of the ADC. The
ALC monitors the output of the ADC, measured after the digital decimator has converted it to 1.23 fixed-point
formats. The ADC output is fed into a peak detector, which updates the measured peak value whenever the
absolute value of the input signal is higher than the current measured peak. The measured peak gradually
decays to zero unless a new peak is detected, allowing for an accurate measurement of the signal envelope.
Based on a comparison between the measured peak value and the target value, the ALC block adjusts the gain
control, which is fed back to the PGA.
Rate Convert/ Decimator
Input
Pin
PGA
ADC
Sinc
Filter
Digital
Decimator
Digital
Filter
ALC
Figure 8: ALC Block Diagram
The ALC is enabled by setting ALCEN[8:7] address (0x0C) bit HIGH. The ALC has two functional modes, which
is set by ALCMODE[5] address (0x0D).

Normal mode (ALCMODE = LOW)

Peak Limiter mode (ALCMODE = HIGH)
When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input gain update
must be made by writing to the PGAGAIN[5:0] address (0x4D). A digital peak detector monitors the input signal
Output Level
amplitude and compares it to a register defined threshold level ALCSL[3:0] address (0x0C).
Input < noise
gate threshold
ALC operation range
Target ALCSL -6dB
Gain (Attenuation) Clipped
at ALCMNGAIN -12dB
+33 dB
PGA Gain
0 dB
-12 dB
ALCNEN = 1
ALCNTH = -39dB
MIC Boost Gain = 0dB
ALCSL = -6dB
ALCMNGAIN = -12dB
ALCMXGAIN = +35.25dB
-39dB
-39dB
-6dB +6dB
Input Level
Figure 9: ALC Response Graph
emPowerAudio™
Datasheet Revision 2.5
Page 30 of 92
March, 2014
NAU8502
The registers listed in the following section allow configuration of ALC operation with respect to:

ALC target level

Gain increment and decrement rates

Minimum and maximum PGA gain values for ALC operating range

Hold time before gain increments in response to input signal

Inhibition of gain increment during noise inputs

Limiter mode operation
Bit(s)
Addr
Parameter
Programmable Range
ALCMINGAIN[7:5]
0x0B
Minimum Gain of PGA
Range: -12dB to +30dB @ 6dB increment
Range:
ALCTABLESEL = 0:
-28.5dB to -6dB @ 1.5dB increment
ALCTABLESEL = 1
-22.5dB to -1.5dB @ 1.5dB increment
ALCSL[3:0]
0x0C
ALC Target
ALCMAXGAIN[6:4]
0x0C
Maximum Gain of PGA
Range: -6.75dB to +35.25dB @ 6dB increment
ALCEN[8:7]
0x0C
Enable ALC function
00 = ALC disabled
01 = Right channel ALC enabled
10 = Left channel ALC enabled
11 = Both channels ALC enabled
ALCHLD[3:0]
0x0D
ALC Hold Time
Range: 0ms to 1s, time doubles with every step)
ALCZCE[4]
0x0D
ALC Zero Crossing
0 = Disable
1 = Enable
ALCMODE[5]
0x0D
ALC Select
ALCATK[3:0]
0x0E
ALC Attack time
ALCDCY[7:4]
0x0E
ALC Decay time
ALCTABLESEL[8]
0x66
ALCTABLESEL
0 = ALC mode
1 = Limiter mode
ALCMODE
=0 - Range: 125us to 128ms
=1 - Range: 31us to 32ms (time doubles with every
step)
Note: parameters refer to time to update one 0.75 dB
step
ALCMODE
=0 - Range: 500us to 512ms
=1 - Range: 125us to 128ms (Both ALC time doubles
with every step)
Note: parameters refer to time to update one 0.75 dB
step
0 = ALCSL range -28.5:-6dB
1 = ALCSL range -22.5:-1.5 dB
Table 16: Registers associated with ALC Control
The operating range of the ALC is set by ALCMAXGAIN[6:4] address (0x0C) and ALCMINGAIN[7:5] address
(0x0B) bits such that the PGA gain generated by the ALC is between the programmed minimum and maximum
levels. When the ALC is enabled, the PGA gain setting from INPPGAVOLL and INPPGAVOLR (0x4D and 0x4E)
has no effect.
emPowerAudio™
Datasheet Revision 2.5
Page 31 of 92
March, 2014
NAU8502
In Normal mode, the ALCMXGAIN bits set the maximum level for the PGA in the ALC mode but in the Limiter
mode ALCMXGAIN has no effect because the maximum level is set by the initial PGA gain setting upon enabling
of the ALC.
ALCMAXGAIN
Maximum Gain (dB)
ALCMINGAIN
Minimum Gain (dB)
111
110
35.25
29.25
000
001
-12
-6
ALC Max Gain Range 35.25dB to -6dB @
6dB increments
001
000
-0.75
-6.75
ALC Min Gain Range -12dB to 30dB @
6dB increments
110
111
24
30
Table 17: ALC Maximum and Minimum Gain Values
11.7.1.1 Normal Mode
Normal mode is selected when ALCMODE[5] address (0x0D) is set LOW and the ALC is enabled by setting either
of the ALCEN[8:7] bits address (0x0C) HIGH. This block adjusts the PGA gain setting up and down in response
to the input level. A peak detector circuit measures the envelope of the input signal and compares it to the target
level set by ALCSL[3:0] address (0x0C). The ALC increases the gain when the measured envelope is less than
(target – 1.5dB) and decreases the gain when the measured envelope is greater than the target. The following
waveform illustrates the behavior of the ALC.
PGA Input
PGA Output
PGA Gain
Figure 10: ALC Normal Mode Operation
11.7.1.2 ALC Hold Time (Normal mode Only)
The hold parameter ALCHT[3:0] address (0x0D) configures the time between detection of the input signal
envelope being outside of the target range and the actual gain increase.
emPowerAudio™
Datasheet Revision 2.5
Page 32 of 92
March, 2014
NAU8502
Input signals with different characteristics (e.g., voice vs. music) may require different settings for this parameter
for optimal performance. Increasing the ALC hold time prevents the ALC from reacting too quickly to brief periods
of silence such as those that may appear in music recordings; having a shorter hold time, on the other hand, may
be useful in voice applications where a faster reaction time helps to adjust the volume setting for speakers with
different volumes. The waveform below shows the operation of the ALCHT parameter.
PGA Input
PGA Output
PGA Gain
Hold Delay
Change
Figure 11: ALC Hold Time
11.7.1.3 Peak Limiter Mode
Peak Limiter mode is selected when ALCMODE[5] address (0x0D) is set to HIGH and the ALC is enabled by
setting ALCEN[8:7] address (0x0C). In limiter mode, the PGA gain is constrained to be less than or equal to the
gain setting at the time the limiter mode is enabled. In addition, attack and decay times are faster in limiter mode
than in normal mode as indicated by the different lookup tables for these parameters for limiter mode. The
following waveform illustrates the behavior of the ALC in Limiter mode in response to changes in various ALC
parameters.
PGA Input
PGA
Output
PGA Gain
Limiter
Enabled
Figure 12: ALC Limiter Mode Operations
emPowerAudio™
Datasheet Revision 2.5
Page 33 of 92
March, 2014
NAU8502
When the input signal exceeds 87.5% of full scale, the ALC block ramps down the PGA gain at the maximum
attack rate (ALCATK=0000) regardless of the mode and attack rate settings until the ADC output level has been
reduced below the threshold. This limits ADC clipping if there is a sudden increase in the input signal level.
11.7.1.4 Attack Time
When the absolute value of the ADC output exceeds the level set by the ALC threshold, ALCSL[3:0] address
(0x0C), attack mode is initiated at a rate controlled by the attack rate register ALCATK[3:0] address (0x0E). The
peak detector in the ALC block loads the ADC output value when the absolute value of the ADC output exceeds
the current measured peak; otherwise, the peak decays towards zero, until a new peak has been identified. This
sequence is continuously running. If the peak is ever below the target threshold, then there is no gain decrease
at the next attack timer time; if it is ever above the target-1.5dB, then there is no gain increase at the next decay
timer time.
11.7.1.5 Decay Times
The decay time ALCDCY[7:4] address (0x0E) is the time constant used when the gain is increasing. In limiter
mode, the time constants are faster than in ALC mode.
11.7.1.6 Noise gate (normal mode only):
A noise gate is used when there is no input signal or the noise level is below the noise gate threshold. The noise
gate is enabled by setting NGAT[0] address (0x0B) to HIGH. It does not remove noise from the signal. The noise
gate threshold NGTH[4:2] address (0x0B) is set to a desired level so when there is no signal or a very quiet signal
(pause), which is composed mostly of noise, the ALC holds the gain constant instead of amplifying the signal
towards the target threshold. The noise gate only operates in conjunction with the ALC (ALCEN[8:7] 0x0C) and
ONLY in Normal mode. The noise gate flag is asserted when
(Signal at ADC – PGA gain – MIC Boost gain) < ALCNTH (ALC Noise Gate Threshold) (dB)
Levels at the extremes of the range may cause inappropriate operation, so care should be taken when setting up
the function.
PGA Input
PGA Output
PGA Gain
Figure 13: ALC Operation with Noise Gate disabled
™
emPowerAudio
Datasheet Revision 2.5
Page 34 of 92
March, 2014
NAU8502
PGA Input
Noise Gate Threshold
PGA Output
PGA Gain
Figure 14: ALC Operation with Noise Gate Enabled
11.7.2
Zero Crossing
The PGA gain comes from either the ALC block when it is enabled or from the PGA gain register setting when the
ALC is disabled. Zero crossing detection may be enabled to cause PGA gain changes to occur only at an input
zero crossing. Enabling zero crossing detection limits clicks and pops that may occur if the gain changes while
the input signal has a high volume.
There are two zero crossing detection enables:

Register ALCZCE[8] address (0x0D) – is only relevant when the ALC is enabled.

Register PGAZC[2] address (0x02, 0x03) – is only relevant when the ALC is disabled.
If the zero crossing function is enabled (using either register) and SLOWCLKEN[0] address (0x27) is asserted,
the zero cross timeout function may take effect. If the zero crossing flag does not change polarity within 0.25
seconds of a PGA gain update (either via ALC update or PGA gain register update), then the gain will update.
This backup system prevents the gain from locking up if the input signal has a small swing and a DC offset that
prevents the zero crossing flag from toggling.
The slow clock timer at address 0x27[0] controls features that happen over a relatively long period of time. This
enables the NAU8502 to implement long time-span features without any host/processor management or
intervention. The Slow clock timer is initialized in the disabled state but is automatically asserted when zero
crossing is enabled.
The slow clock timer rate is derived from MCLK using an integer divider that is compensated for the sample rate
as indicated by the register address (0x08/0x27). If the sample rate register value precisely matches the actual
sample rate, then the internal slow clock timer rate will be a constant value of 128ms. If the actual sample rate is,
for example, 44.1kHz and the sample rate selected in register 0x27 is 48kHz, the rate of the slow clock timer will
emPowerAudio™
Datasheet Revision 2.5
Page 35 of 92
March, 2014
NAU8502
be approximately 10% slower in direct proportion of the actual vs. indicated sample rate. This scale of difference
should not be important in relation to the dedicated end uses of the slow clock timer.
11.8 GPIO
There are three GPIO pins can be used for;
Addr
D8
D7
D6
D5
D4
D3
0x29
GPIO_PS[2:0]
GPIO_PE[2:0]
0x2A
GPIO3_OUT_SEL[2:0]
GPIO2_OUT_SEL[2:0]
0x2B
0x2C
D2
D1
0x2D
Default
GPIO_OE[2:0]
0x000
GPIO1_OUT_SEL[2:0]
0x000
GPIO3_IN
INT_POL
D0
GPIO2_IN
GPIO1_IN
Clip2_INTE Clip1_INTE GPIO3_INTE GPIO2_INTE GPIO1_INTE
Clip2_INT Clip1_INT GPIO3_INT GPIO2_INT GPIO1_INT 0x000
Table 18: General Purpose Control
GPIO_OE[2:0] is used to configure the GPIO1, GPIO2, GPIO3 as input or output pins.
If GPIO_OE[2]=1 GPIO3 is configured as output pin.
If GPIO_OE[2]=0 GPIO3 is not configure as input or output pin. See register 0x5A[0] to configure as input pin.
If GPIO_OE[1]=1 GPIO2 is configured as output pin.
If GPIO_OE[1]=0 GPIO2 is configure as input pin.
If GPIO_OE[0]=1 GPIO1 is configured as output pin.
If GPIO_OE[0]=0 GPIO1 is configure as input pin.
emPowerAudio™
Datasheet Revision 2.5
Page 36 of 92
March, 2014
NAU8502
GPIO_PE[2:0] is used for GPIO3, GPIO2, GPIO1 pull up/down enable. It is functional only when the GPIO is set
to input pin.
GPIO_PS[2:0] is used for GPIO3, GPIO2, GPIO1 pull up/down select. If a GPIO’s OE=0, PE=1, PS=1, it is weak
pulled up. If a GPIO’s OE=0, PE=1, PS=0, it is weak pulled down.
GPIOX_OUT_SEL[2:0] (where X=1,2,3 for GPIO1, GPIO2, GPIO3) is used as GPIO output function MUX select,
when this GPIO is set as output pin.
GPIOX_OUT_SEL
000
001
010
011
100
101
110
111
GPIO Output function
Output 0
Output 1
Output PLL Clock
Output PLL Lock
Output MCLK_PIN
Output INT/INTB(note)
Output I2S Master FS
Output I2S Master BCLK
Table 19: General Purpose I/O Output Select
Note: when INT_POL=1, output INTB (low active interrupt), when INT_POL=0, output INT (high active interrupt)
GPIOX_INTE (where X=1,2,3 for GPIO1, GPIO2, GPIO3) is used as GPIO pin trigger interrupt enable.
GPIOX_INT (where X=1,2,3 for GPIO1, GPIO2, GPIO3) is used as GPIO trigger interrupt flag.
When GPIOX_INTE is 1 and GPIOX_OE=0, is a rising or falling edge happen, INT/INTB will be asserted (if one of
GPIO out is set to select INT/INTB out), user should read REG0x2D (interrupt flags) to check which GPIO is
generating Interrupt. Write 1 to corresponding interrupt flag bit will clear the interrupt. Then, the interrupt flag will
be cleared and INT pin will be reset.
REG0x2B bit 2, bit 1, bit 0, can be read through I2C or SPI to check the status the GPIO3, GPIO2, GPIO1 input
level.
emPowerAudio™
Datasheet Revision 2.5
Page 37 of 92
March, 2014
NAU8502
11.9 Clock Generation Circuit
The PLL is fully programmable.
PLLA
Any
frequencies
from 8MHz
to 27MHz
Output frequency
depends on the
PLL registers
setting below
PLLB
Choose frequency coefficient A or
coefficient B with PLLREGSEL 0x4F[5]
ADCOSR[3]
(0x2E)
fPLL
PLLMCLK[4]
(0x44)
f1
MCLK
f/2
PLL1
R=f2/f1
f2
MCLKSEL[7:5]
(0x26)
f/
N
f/4
f/
N
IMCLK
CLKM[8]
(0x26)
PLL BLOCK
BCLKSEL[4:2]
(0x26)
…
GPIO[3:1]
GPIOX_OUT_SEL[8:6
or 5:3 or 2:0]
(0x2A) where X=1,2,3
ADC
f/
N
GPIO_PLLDIV[5:4]
(0x28)
Digital
Audio
Interface
IMCL
K/N
IMCL
K/256
MS[6]
(0x07)
FS
BCLK
Figure 15: PLL and Clock Select Circuit
The 8502 has two clock modes that support the ADC converter. It can accept external clocks in the slave mode,
or in the master mode, it can generate the required clocks from an external reference frequency using an internal
PLL (Phase Locked Loop). The internal PLL is a fractional type scaling PLL, and therefore, a very wide range of
external reference frequencies can be used to create accurate audio sample rates.
emPowerAudio™
Datasheet Revision 2.5
Page 38 of 92
March, 2014
NAU8502
Separate from this ADC clock subsystem, audio data are clocked to and from the 8502 by means of the control
logic described in the Digital Audio Interfaces section. The Frame Sync (FS) and Bit Clock (BCLK) pins in the
Digital Audio Interface manage the audio bit rate and audio sample rate for this data flow.
It is important to understand that the Digital Audio Interface does not determine the sampling rate for the ADC
data converters, and instead, this rate is derived exclusively from the Internal Master Clock (IMCLK).
It is
therefore a requirement that the Digital Audio Interface and data converters be operated synchronously, and that
the FS, BCLK, and IMCLK signals are all derived from a common reference frequency. If these three clock
signals are not synchronous, audio quality will be reduced.
The IMCLK is always exactly 256 times the sampling rate of the data converters. IMCLK is output from the Master
Clock Prescaler. The prescaler reduces by an integer division factor the input frequency input clock. The source
of this input frequency clock is either the external MCLK pin, or the output from the internal PLL Block.
In Master Mode, the IMCLK signal is used to generate FS and BCLK signals that are driven onto the FS and
BCLK pins and input to the Digital Audio Interface. FS is always IMCLK/256 and the duty cycle of FS is
automatically adjusted to be correct for the mode selected in the Digital Audio Interface. The frequency of BCLK
may optionally be divided to optimize the bit clock rate for the application scenario.
In Slave Mode, there is no connection between IMCLK and the FS and BCLK pins. In this mode, FS and BCLK
are strictly input pins, and it is the responsibility of the system designer to ensure that FS, BCLK, and IMCLK are
synchronous and scaled appropriately for the application.
Addr
D8
0x07
0x26
CLKM
D7
D6
SDODIS
MS
D5
D4
D3
FSP
MCLKSEL[2:0]
D2
D1
WLEN
FORMAT
BCLKSEL[2:0]
0x27
PLLEN
SMPLR[3:1]
0x44
PLLMCLK
0x45
D0
Default
0A
0x140
SLOWCLKEN
PLLN_A[3:0]
PLLK_A[23:18]
0x000
0x008
0x00C
0x46
PLLK_A[17:9]
0x093
0x47
PLLK_A[8:0]
0x0E9
0x44
PLLREGSEL
PLLMCLK
0x45
PLLN_B[3:0]
PLLK_B[23:18]
0x008
0x00C
0x46
PLLK_B[17:9]
0x093
0x47
PLLK_B[8:0]
0x0E9
Table 20: Registers associated with PLL
11.9.1
Phase Locked Loop (PLL) General Description
The PLL may be optionally used to multiply an external input clock reference frequency by a high resolution
fractional number. To enable the use of the widest possible range of external reference clocks, the PLL block
emPowerAudio™
Datasheet Revision 2.5
Page 39 of 92
March, 2014
NAU8502
includes an optional divide-by-two prescaler for the input clock, a fixed divide-by-four scaler on the PLL output,
and an additional programmable integer divider that is the Master Clock Prescaler.
The high resolution fraction for the PLL is the ratio of the desired PLL oscillator frequency (f 2), and the reference
frequency at the PLL input (f1). This can be represented as R = f2/f1, with R in the form of a decimal number:
xy.abcdefgh.
To program the NAU8502, this value is separated into an integer portion (“xy”), and a fractional
portion, “abcdefgh”. The fractional portion of the multiplier is a value that when represented as a 24-bit binary
number (stored in three 9-bit registers on the NAU8502), very closely matches the exact desired multiplier factor.
To keep the PLL within its optimal operating range, the integer portion of the decimal number (“xy”), must be any
of the following decimal values: 6, 7, 8, 9, 10, 11, or 12. The input and output dividers outside of the PLL are
often helpful to scale frequencies as needed to keep the “xy” value within the required range. Also, the optimum
PLL oscillator frequency is in the range between 90MHz and 100MHz, and thus, it is best to keep f 2 within this
range.
In summary, for any given design, choose:
Equations
Description
IMCLK = (256) * (desired codec
sample rate)
IMCLK = desired Master Clock
f2 = (4 * P * IMCLK)
where P is the divider ratio in register
MCLKSEL[7:5]
optimal f2: 90MHz< f2 <100MHz
f1 = (MCLK / D)
where D is the PLL Prescale factor of 1,
or 2, and MCLK is the frequency at the
MCLK pin
R = f2 / f1
This is the fractional frequency
multiplication factor for the PLL
N = int(R)
Integer portion of the R value, and N is
the integer element of [6, 7, 8, 9, 10, 11,
12]
K = (2^24) * (R-N)
rounded to the nearest whole integer
value and then converted to a 24-bit
binary value
Notes
The integer values for D and P
are chosen to keep the PLL in its
optimal operating range. It may
be best to assign initial values of
1 to both D and P, and then by
inspection, determine if they
should be a different value.
Table 21: Registers associated with PLL
11.9.2
Phase Locked Loop (PLL) Design Example
In an example application, a desired sample rate for the ADC is known to be 48.000kHz. Therefore, it is also
known that the IMCLK rate will be 256fs, or 12.288MHz. Because there is a fixed divide-by-four scaler on the PLL
output, then the desired PLL oscillator output frequency will be 49.152MHz.
emPowerAudio™
Datasheet Revision 2.5
Page 40 of 92
March, 2014
NAU8502
In this example system design, there is already an available 12.000MHz clock from the USB subystem. To
reduce system cost, this clock will also be used for audio. Therefore, to use the 12MHz clock for audio, the
desired fractional multiplier ratio would be R = 49.152/12.000 = 4.096. This value, however, does not meet the
requirement that the “xy” whole number portion of the multiplier be in the inclusive range between 6 and 12. To
meet the requirement, the Master Clock Prescaler can be set for an additional divide-by-two factor. This now
makes the PLL required oscillator frequency 98.304 MHz, and the improved multiplier value is now R =
98.304/12.000 = 8.192.
To complete this portion of the design example, the integer portion of the multiplier is truncated to the value 8 and
24
the fractional portion is multiplied by 2 , as to create the needed 24-bit binary fractional value. The calculation for
24
this is: (2 )(0.192) = 3221225.472.
It is best to round this value to the nearest whole value of 3221225, or hexadecimal 0x3126E9.
Below are additional examples of results for this calculation applied to commonly available clock frequencies and
desired IMCLK 256fs sample rates.
MCLK
(MHz)
Desired
Output
(MHz)
Input
Frequency
(f1)
f2
(MHz)
MCLK
Divider
bits
R
N
(Hex)
K (Hex)
12.0
11.28960
MCLK/1
90.3168
fPLL/2
7.526400
7
12.0
12.28800
MCLK/1
98.3040
fPLL/2
8.192000
14.4
11.28960
MCLK/1
90.3168
fPLL/2
14.4
12.28800
MCLK/1
98.3040
19.2
11.28960
MCLK/2
19.2
12.28800
19.8
Actual Register Setting
PLLK[23:18]
PLLK[17:9]
PLLK[8:0]
86C226
21
161
26
8
3126E9
0C
93
E9
6.272000
6
45A1CA
11
D0
1CA
fPLL/2
6.826667
6
D3A06D
34
1D0
6D
90.3168
fPLL/2
9.408000
9
6872B0
1A
39
B0
MCLK/2
98.3040
fPLL/2
10.240000
10
3D70A3
0F
B8
A3
11.28960
MCLK/2
90.3168
fPLL/2
9.122909
9
1F76F8
07
1BB
F8
19.8
12.28800
MCLK/2
98.3040
fPLL/2
9.929697
9
EE009E
3B
100
9E
24.0
11.28960
MCLK/2
90.3168
fPLL/2
7.526400
7
86C226
21
161
26
24.0
12.28800
MCLK/2
98.3040
fPLL/2
8.192000
8
3126E9
0C
93
E9
26.0
11.28960
MCLK/2
90.3168
fPLL/2
6.947446
6
F28BD4
3C
145
1D4
26.0
12.28800
MCLK/2
98.3040
fPLL/2
7.561846
7
8FD526
23
1EA
126
Table 22: PLL Frequency Examples
emPowerAudio™
Datasheet Revision 2.5
Page 41 of 92
March, 2014
NAU8502
11.10
Serial Control Interface
The NAU8502 features two serial bus interfaces SPI and 2-Wire that provide access to the control registers. The
MODE pin as shown in the following Table selects the interfaces. 2-Wire interface is compatible with other
2
industry I C serial bus protocol using a bidirectional data signal (SDIO) and a clock signal (SCLK). SPI interface
is also compatible with other industry interfaces allowing operation on a simple 3-wire or 4-wire bus. Table below
describes the selection of the protocol modes.
REG0x69[8]
MODE
Pin
Description
1
x
SPI 4 Wire Mode (4 wire Write / Read)
0
1
0
0
SPI 3 Wire Mode (3 wire Write Only)
I2C Mode (2 wire Write / read)
Table 23: Control Interface Selection
11.10.1
SPI Serial Control
The Serial Peripheral Interface (SPI) is one of the widely accepted communication interfaces implemented in
Nuvoton’s Audio CODEC portfolio. SPI is a software protocol allowing operation on a simple 3-wire or 4-wire bus
where the data is transferred MSB first. NAU8502 has three different architectures a 16-bit write and a 24-bit
write with 32-bit read and 16 Bit 4 wire Write/Read. The SPI interface consists of a clock (SCLK), chip select
(CSb), serial data input (SDIO), and serial data output (SO Pin is ONLY on the 32-PIN QFN package) to configure
all the internal register contents. SCLK is static, allowing the user to stop the clock and then start it again to
resume operations where it left off.
The 24-bit write operation consists of 8-bits of device address, 7-bits of control register address, and 9-bits of data.
The 32-bit read operation consists of 8-bits of device address, 8-bits of control register address, and 16-bits of
data of which 9 LSB bits are actual data bits and the rest are 0’s. The device address for a write operation is
00010000b = 10h and for a read is 00100000b = 20h. To set the SPI 24-bit Write and 32-bit read the Mode pin is
set to “0” and FORCE_4W_SPI[8] address (0x69) is set to “1”. SPI 32-bit read is only available on the QFN 32-Pin.
See below for the detail is the 16 Bit 4 wire Write and Read operation.
11.10.1.1
16-bit Write Operation (SPI 3 Wire Write)
The default control interface architecture is SPI 16-bit. This interface architecture consists of 7-bits of control
register address, and 9-bits of control register data. The MODE Pin selects the SPI 16-bit. In this mode, the user
can only do write operation. The write operation requires a valid control register address, then a valid 9-bit Data
Byte and the finally to complete the transaction the CSb has to transition from LOW to HIGH to latch the last 9bits (data).
emPowerAudio™
Datasheet Revision 2.5
Page 42 of 92
March, 2014
NAU8502
CBb/GPIO
SCLK
A6
SDIO
A5
A4
A3
A2
A1
A0
D8 D7 D6 D5 D4 D3 D2 D1 D0
Control Register
Address
9-bit Data Byte
Figure 16: Register write operation using a 16-bit SPI Interface
11.10.1.2 24-bit Write Operation (SPI 4 Wire Write)
The 24-bit write operation is a three-byte operation. To start the operation the host controller transitions the CSb
from HIGH to LOW. The host micro-controller sends valid device address, then a valid control register address
following Data Byte. Finally the interface is terminated by toggling CSb pin from LOW to HIGH. The write
operation will accept multiple 9-bit DATA blocks, which will be written in to sequential addresses beginning with
the address,
specified in the control register address.
CBb/GPIO
SCLK
SDIO
0
0
0
1
0
0
Device Address = 10h
0
0
A6
A5
A4
A3
A2
A1
Control Register
Address
A0
D8 D7 D6 D5 D4 D3 D2 D1 D0
9-bit Data Byte
Figure 17: Register Write operation using a 24-bit SPI Interface
11.10.1.3 32-bit Read Operation (SPI 4 Wire Read)
The 32-bit read operation is a four-byte operation with 2-bytes of data. The transmission starts with the falling
edge of the CSb line and ends with the rising edge of the CSb. The host micro-controller sends device address,
control register address byte following 2 bytes of data. The device can receive more than one byte of data by
continuously clocking. Note after reaching the maximum address the internal pointer “rolls over” to address 0x00
emPowerAudio™
Datasheet Revision 2.5
Page 43 of 92
March, 2014
NAU8502
(hex). The device will output a dummy byte [0x00] when locations without register assignments are within the
sequence.
CBb/GPIO
SCLK
SDIO
0
0
1
0
0
0
0
0
A6 A5 A4 A3 A2 A1 A0
0
0
SO
Device Address = 20h
Control Register
Address
0
0
0
0
0
0
D8 D7 D6 D5 D4 D3 D2 D1 D0
Data Byte 2
Data Byte 1
Figure 18: Register Read operation through a 32-bit SPI Interface
11.10.2 2-Wire Serial Control Mode (I2C style Interface)
The NAU8502 supports a bidirectional bus oriented protocol. The protocol defines any device that sends data
onto the bus as a transmitter and the receiving device as the receiver. Therefore, the 2-Wire operates as slave
interface. All communication over the 2-Wire interface is conducted by sending the MSB of each byte of data first.
11.10.2.1 2-Wire Protocol Convention
All 2-Wire interface operations must begin with a START condition, which is a HIGH to LOW transition of SDIO
while SCLK is HIGH. All 2-Wire and all interface operations are terminated by a STOP condition, which is a LOW
to HIGH transition of SDIO while SCLK is HIGH. A STOP condition at the end of a or write operation places the
device in standby mode. An acknowledge (ACK), is a software convention used to indicate a successful data
transfer. The transmitting device, either master or slave, releases the SDIO bus after transmitting eight bits.
During the ninth clock cycle, the receiver pulls the SDIO line LOW to acknowledge the reception of the eight bits
of data.
NAU8502 has two available device addresses. When CSB=0 at initial power up stage, the7 bit device address is
“0011010”. When CSB=1 at initial power up stage, the7 bit device address is “1011010”.
Following a START condition, the master must output a device address byte. The 7-MSB bits are the device
address. The LSB of the device address byte is the R/W bit and defines a read (R/W = 0) or write (R/W = 1)
operation. When this, R/W, bit is a “1”, then a read operation is selected and when “0” the device selects a write
operation. The device outputs an acknowledge LOW for a correct device address and HIGH for an incorrect
device address on the SDIO pin.
emPowerAudio™
Datasheet Revision 2.5
Page 44 of 92
March, 2014
NAU8502
SCLK
SCLK
SDIO
Receive
SDIO
9th
Clock
SCLK
ACK
SDIO
SDIO
Transmit
START
STOP
Figure 19: Valid START Condition
Figure 21: Valid STOP Condition
Figure 20: Valid Acknowledge
0
0
1
1
0
1
0
R/W
Device
Address Byte
A6
A5
A4
A3
A2
A1
A0
Write - D8
Read - 0
Control
Address Byte
D7
D6
D5
D4
D3
D2
D1
D0
Data Byte
Figure 22: Slave Address Byte, Control Address Byte, and Data Byte
11.10.2.2
2-WIRE Write Operation
A Write operation consists of a two-byte instruction followed by one or more Data Bytes. A Write operation
requires a START condition, followed by a valid 7 bit device ID byte + (R/W bit=0), a valid 7 bit register address
byte “REGISTER ADDRESS[6:0]” + 1 bit data for bit 8 data, data byte for bit 7 to bit 0, and a STOP condition.
After each three bytes sequence, the NAU8502 responds with an ACK. If the host doesn’t issue a STOP after the
9 bit register data write, the next two bytes write (first 7 bit is dummy data, only remaining 9 bit will be written to
the 9 bit register), the register at “REGISTER ADDRESS[6:0] + 1” will be programmed. This is called Burst
Register Write. If Burst write keep going, after reaching the memory location 7Fh the register address “rolls over”
to 00h.
SCLK
Device ID [6:0]
Write
ACK Addr[6:0]+Wr_Data[8]
ACK
Wr_Data[7:0]
ACK
SDIO
START
STOP
Figure 23: Write Sequence(writing 1 register)
11.10.2.3
2-WIRE Read Operation
A Read operation consists of a three-byte instruction followed by one or more Data Bytes. The master initiates
the operation issuing the following sequence: a START condition, 7 bit device ID byte plus the R/W bit set to “0”, a
emPowerAudio™
Datasheet Revision 2.5
Page 45 of 92
March, 2014
NAU8502
register address byte with 7 bit register address + 1 dummy bit, a second START condition, and a second 7 bit
device ID with the R/W bit set to “1”.
After each of the first three bytes, the NAU8502 responds with an ACK. Then the NAU8502 transmits Data Bytes
as long as the master responds with an ACK during the SCLK cycle following the ninth bit of each byte. For the
first 2 bytes read, it read the 9 bit register data at the “REGISTER ADDRESS” set at the “register address byte”,
the master terminates the read operation (issuing a STOP condition) following the last bit of the last Data Byte. If
the master doesn’t issue STOP right after the first 2 bytes read, the next 2 bytes read will be the register data at
the “REGISTER ADDRESS” + 1. This is called “Burst Register read”, the burst register read will keep going until
the “STOP” condition.
If Burst read keep going, after reaching the memory location 7Fh the pointer “rolls over” to 00h, and the device
continues to output data for each ACK received.
Device ID [6:0]
SCLK
Write
ACK Addr[6:0]+Dummy Bit
ACK
Device ID [6:0]
Rea
d
ACK
SDIO
START
Repeat Start
Host should not drive ACK right before host wants to issue STOP.
Host
0000000+Rd_Data[8]
ACK
Rd_Data[7:0]
STOP
Figure 24: Read Sequence (reading 1 register)
emPowerAudio™
Datasheet Revision 2.5
Page 46 of 92
March, 2014
NAU8502
11.11
DIGITAL AUDIO INTERFACES
NAU8502 only uses the Left and right channel to transfer data in normal mode. It supports an independent digital
interface for voice and audio. The digital interface is used to output digital data from the ADC. The digital
interface can be configured to Master mode or Slave mode.
Master mode is configured by setting MS[6] address (0x07) bit to HIGH. The main clock (MCLK) of the digital
interface is provided from an external clock either from a crystal oscillator or from a microcontroller. With an
appropriate MCLK, the device generates bit clock (BCLK) and frame sync (FS) internally in the master mode. By
generating the bit clock and frame sync internally, the 8502 has full control of the data transfer.
In Master Mode, 8502 drive FS and BCLK, default Frame Sync length of 256 bit clock, it can be set to 128 / 64 /
32 bit clock per Frame Sync. 8502 also can be set to drive Frame Sync length of 192 bit clock in 16KHz sampling
rate with an external Master Clock rate of 12.288MHz
Slave mode is configured by setting MS[6] address (0x07) bit to LOW. In this mode, an external controller has to
supply the bit clock and the frame sync. The 8502 uses ADCOUT, FS, and BCLK pins to control the digital
interface.
Care needs to be exercised when designing a system to operate the 8502 in this mode as the
relationship between the sample rate, bit clock, and frame sync needs to be controlled by other controller. In both
modes of operation, the internal MCLK and MCLK prescalers determine the sample rate for the ADC.
The output state of the ADCOUT pin by default is Hi-Z. Depending on the application, the output can be
configured to be Hi-Z, pull-low, pull-high, Low or High. See the table below.
ADCDAT_OEN_SEL
Ox5C[2]
0
0
0
0
0
0
0
1
SDODIS
0x07[7]
1
1
1
0
0
0
0
X
AI
0x06[6]
X
X
X
0
0
0
1
X
ADCDAT_OEN
0x5C[5]
X
X
X
X
X
X
X
0
ADCDAT_PE
0x5C[4]
0
1
1
0
1
1
X
0
ADCDAT_PS
0x5C[3]
X
1
0
X
1
0
X
X
1
X
X
0
1
1
1
X
X
0
1
0
1
X
X
1
X
X
ADCOUT pin
behavior
Hi-Z
Pull Up
Pull Down
Hi-Z
Pull Up
Pull Down
Output
Output when
data transfer, HiZ when data
transfer done
Output when
data transfer, pull
up when data
transfer done
Output when
data transfer, pull
down when data
transfer done
Output
Table 24: ADCOUT pin behavior selections
emPowerAudio™
Datasheet Revision 2.5
Page 47 of 92
March, 2014
NAU8502
Six different audio formats are supported by 8502 with most significant bit first and they are as follows.
FORMAT[1]
0x07
0
FORMAT[0]
0x07
0
PCMTSEN[8]
0x5C
Don’t care
FSP[4]
0x07
Don’t care
0
1
Don’t care
Don’t care
Left Justified
Don’t care
IS
PCM (DSP A)
PCM (DSP B)
PCM Time Slot
1
0
Don’t care
1
1
0
1
1
1
PCM Mode
Right Justified
2
0
1
Don’t care
Table 25: Standard Interface modes
Addr
D8
0x07
D7
D6
SDO
DIS
MS
D5
D4
D3
FSP
D2
WLEN[3:2]
ADC_R_MUX ADC_L_MUX_
_SEL
SEL
0x25 BCLKP
0x25
Defaul
t
FORMAT[1:0]
0x020
ADCLRS
WAP
MCLKSEL[2:0]
BCLKSEL[2:0]
0x27
SMPLR [3:1]
0x5B
MONO
PLLEN
0x008
SLOWCLK
0x001
GEN
TSLOTL[8:0]
TRI
0x000
U_OFFSE
0x000
T
ADC_COMP
0x26 CLKM
PCMT
0x5C
SEN
D0
D1
0x000
PCM8 ADCDAT_
ADCDAT_OE
ADCDAT_PE ADCDAT_PS
TSLOTL[9] TSLOTR[9] 0x020
BIT
OEN
N_M
0x5D
TSLOTR[8:0]
0x020
Table 26: Audio Interface Control Registers
emPowerAudio™
Datasheet Revision 2.5
Page 48 of 92
March, 2014
NAU8502
11.11.1
Right Justified audio data
In right justified mode, the left channel serial audio data is synchronized with the frame sync falling edge, the left
channel serial audio data is synchronized with the frame sync rising edge. Left channel data is transferred during
the HIGH frame sync. Right Channel data is transferred during the LOW frame sync. The MSB data is sampled
first. The LSB is aligned with the falling edge of the frame sync signal (FS). Right justified format is selected by
setting FORMAT[1:0] address (0x07) to “00” binary.
FS
LEFT CHANNEL
RIGHT CHANNEL
BCLK
ADCOUT
1
2
MSB
N-1 N
1
LSB
2
MSB
N-1 N
LSB
Figure 25: Right Justified Audio Interface
11.11.2 Left Justified audio data
In Left justified mode, the left channel serial audio data is synchronized with the frame sync rising edge, the right
channel serial audio data is synchronized with the frame sync falling edge. Left channel data is transferred during
the HIGH frame sync. Right channel data is transferred during the LOW frame sync. The MSB data is sampled
first. The MSB data is latched on the first rising edge of BCLK following a frame sync transition (FS). Left justified
format is selected by setting FORMAT[1:0] address (0x07) to “01” binary.
FS
LEFT CHANNEL
RIGHT CHANNEL
BCLK
ADCOUT
1
2
MSB
N-1 N
1
LSB
2
MSB
N-1 N
LSB
Figure 26: Left Justified Audio Interface
emPowerAudio™
Datasheet Revision 2.5
Page 49 of 92
March, 2014
NAU8502
2
11.11.3 I S audio data
2
In I S mode, the left and right channel serial audio data is synchronized with the frame sync. Left channel data is
transferred during the LOW frame sync. Left channel data is transferred during the HIGH frame sync. The MSB
data is sampled first. The MSB data is latched on the second rising edge of BCLK following a frame sync
2
transition (FS). I S format is selected by setting FORMAT[1:0] address (0x07) to “10” binary.
FS
LEFT CHANNEL
RIGHT CHANNEL
BCLK
ADCOUT
1
2
N-1 N
MSB
1
LSB
2
MSB
1 BCLK
N-1 N
LSB
1 BCLK
Figure 27: I2S Audio Interface
11.11.4 PCM audio data
In PCM mode, the left channel serial audio data is synchronized with the frame sync. The Left Channel MSB data
is sampled first. The Left Channel MSB data is latched on the first (DSP mode B) or second (DSP mode A) rising
edge of BCLK following a frame sync (FS) rising edge. PCM format is selected by setting FORMAT[1:0] address
(0x07) to “11” binary in conjunction with PCMTSEN[8] address (0x5C) set to LOW. If FSP (address 0x07 bit 4)=0,
this is DSP mode A, if FSP (address 0x07 bit 4)=1, this is DSP mode B
The starting point of the right phase data depends on the word length WLEN[3:2] address (0x07) after the frame
sync (FS) rising edge.
1 BCLK
FS
LEFT CHANNEL
RIGHT CHANNEL
BCLK
ADCOUT
1
MSB
2
N-1 N
LSB
Word Length, WLEN[6:5]
1
2
MSB
N-1 N
LSB
Word Length, WLEN[6:5]
Figure 28: PCM Mode Audio Interface (Special mode)
emPowerAudio™
Datasheet Revision 2.5
Page 50 of 92
March, 2014
NAU8502
11.11.5 PCM Time Slot audio data
PCM Time-Slot format is enabled by setting FORMAT[1:0] address (0x07) to “11” binary in conjunction with
PCMTSEN[8] address (0x5C) set to HIGH.
st
The BCLK 0 is defined as the 1 BCLK rising edge after the rising edge FS, so the next rising edge BCLK is the
BCLK 1, the Xth rising edge after the BCLK count 0 is defined as BCLK “X”
The Left Channel MSB starts from the BCLK “X” set by Registers TSLOTL[9:0]. The Right Channel MSB starts
from the BCLK “Y” set by Registers TSLOTR[9:0] (Register 0x5B, 0x5C and 0x5D).
If ADCOUT will return to the bus condition either on the negative edge of BCLK during the LSB, or on the positive
edge of BCLK following the LSB depending on the setting of TRI[7] address (0x5C) (ADCOUT_OE_SEl(0x5C[2])
must be 1). Tri-stating on the negative edge allows the transmission of data by multiple sources in adjacent
timeslots without the risk of driver contention.
1 BCLK
FS
LEFT CHANNEL
RIGHT CHANNEL
BCLK
ADCOUT
1
2
MSB
N-1 N
1
LSB MSB
Word Length, WLEN[6:5]
2
N-1 N
LSB
Word Length, WLEN[6:5]
Figure 29: PCM Time Slot Mode (Time slot = 0) (Special mode)
emPowerAudio™
Datasheet Revision 2.5
Page 51 of 92
March, 2014
NAU8502
11.11.6 Companding
Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit
rates, and make use of non-linear algorithms. NAU8502 supports two different types of companding A-law and µlaw on both transmit and receive sides. A-law algorithm is used in European communication systems and µ -law
algorithm is used by North America, Japan, and Australia. This feature is enabled by setting ADC_COMP[2:1]
address (0x25) register bits. Companding converts 13 bits (µ -law) or 12 bits (A-law) to 8 bits using non-linear
quantization. The companded signal is an 8-bit word containing sign (1-bit), exponent (3-bits) and mantissa (4bits). As recommended by the G.711 standard (all 8-bits are inverted for µ-law, all even data bits are inverted for
A-law).
Setting PCM8BIT[5] address 0x5C to 1 will cause the PCM interface to use 8-bit word length for data transfer,
overriding the word length configuration setting in WLEN[3:2] address 0x07.
Addr
D8
D7
D6
D5
D4
D3
0x25
D2
D1
D0
Default
ADC_COMP[2:1] U_OFFSET 0x000
Table 27: Companding Control
The following equations for data compression (as set out by ITU-T G.711 standard):
µ-law (where µ=255 for the U.S. and Japan):
F(x) = ln( 1 + µ|x|) / ln( 1 + µ)
-1 ≤ x ≤ 1
A-law (where A=87.6 for Europe):
for x ≤ 1/A
for 1/A ≤ x ≤ 1
emPowerAudio™
Datasheet Revision 2.5
Page 52 of 92
March, 2014
NAU8502
11.12
POWER SUPPLY
This device has been designed to operate reliably using a wide range of power supply conditions and poweron/power-off sequences. There are no special requirements for the sequence or rate at which the various power
supply pins change. Any supply can rise or fall at any time without harm to the device. However, pops and clicks
may result from some sequences.
Optimum handling of hardware and software power-on and power-off
sequencing is described in more detail in the Power Up/Down Sequencing section of this document.
11.12.1 Power-On Reset
The NAU8502 does not have an external reset pin. The device reset function is automatically generated
internally when power supplies are too low for reliable operation. The internal reset is generated any time that
either VDDA or VDDC is lower than is required for reliable maintenance of internal logic conditions. The threshold
voltage for VDDA is approximately ~1.52Vdc and the threshold voltage for VDDC is approximately
~0.67Vdc. Note that these are much lower voltages than are required for normal operation of the chip. These
values are mentioned here as general guidance as to overall system design.
If either VDDA or VDDC is below its respective threshold voltage, an internal reset condition may be
asserted.
During this time, all registers and controls are set to the hardware determined initial
conditions. Software access during this time will be ignored, and any expected actions from software activity will
be invalid.
When both VDDA and VDDC reach a value above their respective thresholds, an internal reset pulse is generated
which extends the reset condition for an additional time. The duration of this extended reset time is approximately
50 microseconds, but not longer than 100 microseconds. The reset condition remains asserted during this
time. If either VDDA or VDDC at any time becomes lower than its respective threshold voltage, a new reset
condition will result. The reset condition will continue until both VDDA and VDDC again higher than their
respective thresholds. After VDDA and VDDC are again both greater than their respective threshold voltage, a
new reset pulse will be generated, which again will extend the reset condition for not longer than an additional 100
microseconds.
11.12.2 Power Related Software Considerations
There is no direct way for software to determine that the device is actively held in a reset condition. If there is a
possibility that software could be accessing the device sooner than 100 microseconds after the VDDA and VDDC
supplies are valid, the reset condition can be determined indirectly. This is accomplished by writing a value to any
register other than register 0x00, with that value being different than the power-on reset initial values. The
optimum choice of register for this purpose may be dependent on the system design, and it is recommended that
the system engineer choose the register test bit for this purpose. After writing a value to register, a read back can
be performed on the same register. When the register test bit returns the new value, instead of the power-on
reset initial value, software can reliably determine that the reset condition has ended.
emPowerAudio™
Datasheet Revision 2.5
Page 53 of 92
March, 2014
NAU8502
Although it is not required, it is strongly recommended that a Software Reset command should be issued after
power-on and after the power-on-reset condition is ended. This will help ensure reliable operation under every
power sequencing condition that could occur.
11.12.3 Software Reset
The control registers can be reset to default conditions by writing 0x000 (TBC) to SoftwareReset[8:0] address
(0x0F), using any of the control interface modes. Writing valid data to any other register disables the reset, but all
registers will need to be initiated again appropriate to the operation. See the applications section on powering
NAU8502 up for information on avoiding pops and clicks after a software reset.
11.12.4 Power Up/Down Sequencing
Most audio products have issues during power up and power down in the form of pop and click noise. To avoid
such issues the NAU8502 provides three different power supplies VDDA, VDDB and VDDC with separated
grounds VSSA1 VSSA2, VSSD. The audio CODEC circuitry, the input amplifiers, output amplifiers and drivers,
the audio ADC converter, the PLL, and so on, can be powered up and down individually by software control via 2Wire or SPI interface. The zero cross function should be used when changing the volume in the PGAs to avoid
any audible pops or clicks. The recommended power-up and power-down sequences for both the modes are
outlined as following.
Power Up
Name
VDDSPK - 3.3V operation
Analog – VDDA
Power supplies
Buffer - VDDB
Digital – VDDC
VMID[8] and VMIDSEL[3:2] as required
(value of the REFIMP bits based on the startup time which is a combination of the
reference impedance and the decoupling capacitor on VREF)
Power Management
BIASEN[3] = 1
(enables the internal device bias for all analog blocks)
BUFIOEN[2] = 1
(enables the internal device bias buffer)
MS[6] if required
Clock divider
BCLKSEL[4:2] if required
MCLKSEL[7:5] if required
PLL
PLLEN[5] if required
st
LMBE[4] = 1
st
RMBE[4] = 1
PGA 1 stage Left
PGA 1 stage Right
PGA 2
nd
stage Left
PGL[5] = 1
emPowerAudio™
Datasheet Revision 2.5
Page 54 of 92
March, 2014
NAU8502
Power Up
Name
PGA 2
nd
VDDSPK - 3.3V operation
stage Right
PGR[4] = 1
ADC Left
ADL[3] = 1
ADC Right
ADR[2] = 1
Table 28: Power up sequence
Name
Power Management
Power Down Both Cases
0x02[4] = 0x000
0x03[4] = 0x000
0x06 = 0x080
0x0A = 0x000
0x21 = 0x000
0x26[1] = 0x000
Analog – VDDA
Power supplies
Buffer - VDDB
Digital – VDDC
Table 29: Power down Sequence
11.12.5
Reference Impedance (REFIMP) and Analog Bias
Before the device is functional or any of the individual analog blocks are enabled VMID[8] address (0x06),
VMIDSEL[3:2] address (0x0A) and BIASEN[3] address (0x21) must be set. The VMIDSEL[3:2] bits control the
resistor values (“R” in Figure 5) that generates the mid supply reference, VMID. VMIDSEL[3:2] bits control the
power up ramp rate in conjunction with the external decoupling capacitor. A small value of “R” allows fast ramp
up of the mid supply reference and a large value of “R” provides higher PSRR of the mid supply reference.
The master analog biasing of the device is enabled by setting BIASEN[3] address (0x21). This bit has to be set
before for the device to function. The VMID reference block must be enabled by setting VMID[8] address (0x06).
11.12.6
Power Saving
Saving power is one of the critical features in a semiconductor device specially ones used in the Bluetooth
headsets and handheld device. NAU8502 has two oversampling rates 64x and 128x. The default mode of
operation for the ADC is in 128x oversampling mode which is set by programming ADCOSR[3] address (0x2E)
respectively to HIGH. Power is saved by choosing 64x oversampling rate compared to 128x oversampling rate
but slightly degrades the noise performance. To reach lowest power possible after the device is functioning set
BIASEN[3] address (0x21) bit to LOW.
emPowerAudio™
Datasheet Revision 2.5
Page 55 of 92
March, 2014
NAU8502
The ADC current can be further reduced by setting HALF_BIAS_ADC_buffer[7] address (0x5A) to high. This
setting is not recommended at high sample rates.
Also the device master bias can be scaled using MBCTRL[1:0] address (0x09).
Addr
D8
D7
D6 D5
D4
0x09
0x21
0x2E
HPFAPP
HPFCUT
0x5A PGA_stage2_bias HALF_BIAS_ADC_buffer
D3
D2
D1 D0 Default
MBCTRL 0x000
BIASEN
BUFIOEN
0x000
ADCOSR
0x000
TRIM_REGULATOR_SV
0x000
Table 30: Registers associated with Power Saving
11.12.7 Estimated Supply Currents
NAU8502 can be programmed to enable or disable various analog blocks individually. The table below shows the
amount of current consumed by certain analog blocks. Sample rate settings will vary current consumption of the
VDDC supply. VDDC consumes approximately 4mA with VDDC = 1.8V and fs = 48kHz. Lower sampling rates
will draw lower current.
BIT
Address
VDDA CURRENT
5.6K => 600 uA
161k/595k < 100 uA
5.6K => 600 uA
161k/595k < 100 uA
VMID[8]
0x06
VMIDSEL[1:0]
0x0A
BUFIOEN[2]
0x21
100 uA
BIASEN[3]
0x21
300 uA
MICBIAS[1:0]
0x06
500 uA
PLLEN[5]
0x26
1.4 mA Clocks Applied
ADL[3]
0x06
ADR[2]
0x06
PGL[5]
0x06
200 uA
PGR[4]
0x06
200 uA
LMBE[4]
0x02
200 uA
RMBE[4]
0x03
200 uA
x64 --- 2.6mA ADCOSR= 0 =>lower current
x128--- 4.9mA ADCOSR= 1 =>higher curren
x64---2,6mA ADCOSR= 0 =>lower current
x128---4.9mA ADCOSR= 1 =>higher curren
Table 31: VDDA 3.3V Supply Current
emPowerAudio™
Datasheet Revision 2.5
Page 56 of 92
March, 2014
NAU8502
12 REGISTER DESCRIPTION
There are two dedicated register spaces:

8737 space 0x00 to 0x0F and 0x1C

NAU8502 space from 0x21 and on
The NAU8502 register map have a reserved space from register 0x00 to register 0x0F and 0x1C that mimic the
8737 registers.. Programming in this address space [0x00-0x0F:0x1C] will trigger the appropriate functions in the
NAU8502 via mapping.
Register
Address
DEC HEX
Register Bits
D8
D7
D6
D5
D4
Default
D3
D2
D1
D0
PGA volume
0
0
LVU
LINVOL
C3
1
1
RVU
RINVOL
C3
Audio path
2
2
LMICBOOST
LMBE
LMZC
LPZC
07
3
3
RMICBOOST
RMBE
RMZC
RPZC
07
3D
4
00
4
ADC control
5
5
POLARITY
0
LP
ADL
ADR
ADC HPD
00
Power Management
6
6
VMID
VREF
AI
PGL
PGR
MICBIAS
80
FORMAT
0A
Audio Format and clocking
7
7
8
8
SDODIS
MS
FSP
CLKDIV2
WLEN
00
SR
Mic pre-amp and bias
9
9
10
A
0F
MBCTRL
VMIDSEL
LIN DC EN
RIN DC EN
03
Noise gate and ALC
11
B
12
C
13
D
14
E
ALCMINGAIN
NGTH
ALCEN
ALCMAXGAIN
ALCMODE
NGAT
00
ALCSL
7C
HLD
00
ATK
32
ALCZCE
DCY
Reset
15
F
16
10
17
11
18
12
19
13
20
14
21
15
22
16
23
17
24
18
25
19
26
1A
27
1B
28
1C
29
1D
30
1E
31
1F
32
20
33
21
00
Software Reset
4
Power management
BIASEN
00
BUFIOEN
Audio path selection
34
22
LLINOUTEN
RLINOUTEN
Register
Address
SLEEP
VINSEL
LMICN2BVREF
Register Bits
emPowerAudio™
Datasheet Revision 2.5
Page 57 of 92
RMICN2BVREF
00
Default
March, 2014
NAU8502
DEC HEX
35
D8
D7
D6
D5
D4
D3
D2
23
D1
LINEOUTSELL
D0
LINEOUTSELR
00
Audio format and clocking
36
24
37
25
38
26
39
27
BCLKP
ADC_R_MUX_SEL ADC_L_MUX_SEL
ADCLRSWAP
ADC_COMP
CLKM
MCLKSEL
BCLKSEL
MONO
00
U_OFFSET
08
PLLEN
SMPLR
SLOWCLKEN
01
GPIO
RAM_TEST_FINISH
RAM_TEST_FAIL
00
40
28 RAM_TEST_START
41
29
GPIO_PS
GPIO_PLLDIV
GPIO_PE
GPIO_OE
00
42
2A
GPIO3_OUT_SEL
GPIO2_OUT_SEL
GPIO1_OUT_SEL
00
GPIO interrupt
43
2B
44
2C
45
2D
POL
GPIO3_IN
GPIO2_IN
GPIO1_IN
RO
clip2_INTE
clip1_INTE
GPIO3_INTE
GPIO2_INTE
GPIO1_INTE
180
clip2_INT
clip1_INT
GPIO3_INT
GPIO2_INT
GPIO1_INT
00
ADC additional control
HPFAPP
HPFCUT
08
46
2E
47
2F
ADCVU
ADCVOLL
ADCOSR
ff
48
30
ADCVU
ADCVOLR
ff
49
31
50
32
51
33
52
Equalizer
EQ1BW
EQ1C
EQ1G
12C
EQ2BW
EQ2C
EQ2G
2C
34
EQ3BW
EQ3C
EQ3G
2C
53
35
EQ4BW
EQ4C
EQ4G
2C
54
36
EQ5BW
EQ5C
EQ5G
2C
Analog test mode
55
37
56
38
00
ANA_TEST
57
39
58
3A
59
3B
NFU
NFA0[13:7]
00
60
3C
NFU
NFA0[6:0]
00
61
3D
NFU
NFA1[13:7]
00
62
3E
NFU
NFA1[6:0]
00
63
3F
64
40
65
41
66
42
67
43
68
44
69
45
70
46
PLLK_A[17:9]
93
71
47
PLLK_A[8:0]
E9
72
48
Notch filter
NFEN
PLL registerA
PLLMCLK
PLLN_A
08
0C
PLLK_A[23:18]
73
49
74
4A
75
4B
LMIC2_2INPPGA2
LMICN2INPPGA2
LMIC2_2INPPGA1 LMICN2INPPGA1 LMICP2INPPGA
00
76
4C
RMIC2_2INPPGA2
RMICN2INPPGA2
RMIC2_2INPPGA1 RMICN2INPPGA1 RMICP2INPPGA
00
77
4D
LMBMUTE
INPPGALVOL
00
78
4E
RMBMUTE
INPPGARVOL
00
Audio path selection
PLL registerB
79
4F
80
50
81
51
PLLREGSEL
PLLMCLK
PLLN_B
Register
Address
emPowerAudio™
Datasheet Revision 2.5
08
0C
PLLK_B[23:18]
PLLK_B[17:9]
93
Register Bits
Default
Page 58 of 92
March, 2014
NAU8502
DEC HEX
82
52
83
53
84
54
85
55
86
56
87
57
88
58
89
59
D8
D7
D6
D5
D4
D3
D2
D1
D0
E9
PLLK_B[8:0]
ADC mixer
MixerMap_ADC2
MixerMap_ADC1
21
Power management and additional GPIO3 control input enable
90
5A
PGA_stage2_bias HALF_BIAS_ADC_buffer HALF_BIAS_SPARES
MCBSMODE
TRIM_REGULATOR_SV
GPIO3_IE
00
PCM and time slot
91
5B
92
5C
93
5D
00
TSLOTL[8:0]
PCMTSEN
TRI
PCM8BIT
ADCDAT_OEN
ADCDAT_PE
ADCDAT_PS
ADCDAT_OEN_SEL
TSLOTR[9]
TSLOTL[9]
20
20
TSLOTR[8:0]
ID register
94
5E
95
5F
96
60
97
61
98
62
99
63
FD
REG_SI_REV
1B/1A
I2C_DEVID
CA
Additional nuvoton ID
100 64
101 65
ALC interrupt features
102 66
ALCTABLESEL
ALCPKSEL
ALCNGSEL
ALCGAIN_L
10
103 67
ALCPKLIMENn
PK_DET_CLR
PK_DET_HOLD
ALCGAIN_R
10
Additional ADC equalizer registers
104 68
LATCH_DLY
SWAP_DM_DFE
EN_DIG_MIC_R
EN_DIG_MIC_L
DM_DS
ALCGRP
EQON_TEST
SKIP_DLY
06
Additional register SPI and notch filter
105 69
FORCE_4W_SPI
FLUSH_ON_ERR
IDSEL_MODE
NOTCH_DLY_DIS
00
PLLOCK_BP
Tie-Off control VMID
106 6A
00
MANU_IN_CTRL
107 6B
00
MANU_VMID_CTRL
AGC readout
108 6C
P2P_OUT_L
RO
109 6D
P2P_OUT_R
RO
110 6E
PEAK_OUT_L
RO
111 6F
PEAK_OUT_R
112 70
NOISE_OUT_R
NOISE_OUT_L
RO
FAST_DEC_L
FAST_DEC_R
RO
Tie-Off control buffer VMID
113 71
REGENABLE
emPowerAudio™
Datasheet Revision 2.5
SHORTBUFL
Tie-off buffered
VREF
Page 59 of 92
00
March, 2014
NAU8502
12.1 REGISTERS 0X00 0X01 2
ND
STAGE PGA GAIN
The registers set the gain of the PGA stage 2. The settings are mapped to the register 0x4D and 0x4E for a
complete range: -12dB to +35.25dB in 0.75dB gain steps.
Bit(s)
Addr
Parameter
Function
[8]
0x00
LVU
Volume update, setting this bit to one will update the gain
[8]
0x01
LVU
Volume update, setting this bit to one will update the gain
[7:0] map to
0x4D[5:0]
0x00
LINVOL
Set the gain from -12dB to 35.25dB
[7:0] map to
0x4E[5:0]
0x01
RINVOL
Set the gain from -12dB to 35.25dB
Note:
The register settings in LINVOL and RINVOL will take effect only when the MCLK is present
The table below describes the mapping between registers 0x00/0x01 and 0x4D/0x4E. It shows that the NAU8502
can adjust the gain on the second stage PGA from -12dB to +35.25dB if the register 0x4D and 0x4E are
programmed.
However for dedicated gain setting like MUTE, +4dB and +29.5dB the user can program the register 0x00 and
0x01 the same it is done on the 8737 and the gain will mapped within 0.5dB.
0x00[7:0]
0x01[7:0]
0x4D[5:0]
0x4E[5:0]
Effective Gain
Settings (decimal)
[dB]
Settings
(decimal)
8737 Gain [dB]
0
MUTE
Assert
INPPGAMUTE
--
1 to 171
-97 to -12
0
-12
172
-11.5
1
-11.25
173
-11
2
-10.5
…
…
…
…
194
-0.5
16
0
…
…
…
…
203
4
22
4.5
…
…
…
…
254
29.5
56
30
emPowerAudio™
Datasheet Revision 2.5
Page 60 of 92
March, 2014
NAU8502
12.2 REGISTERS 0X02 0X03 AUDIO PATH
The registers set the gain, enable the first stage PGA and enable/disable the zero crossing functions.
Bit(s)
Addr
Parameter
[6:5]
0x02
LMICBOOST
[4]
0x02
LMBE
[6:5]
0x03
RMICBOOST
[4]
0x03
RMBE
Function
Set the gain
00 = +13dB
01 = +18dB
10 = +28dB
11 = +33dB
Left (channel 1)
0: Disable PGA 1st stage
1: Enable PGA 1st stage
Set the gain
00 = +13dB
01 = +18dB
10 = +28dB
11 = +33dB
Right (channel 2)
0: Disable PGA 1st stage
1: Enable PGA 1st stage
12.3 REGISTER 0X04
Not supported.
12.4 REGISTER 0X05 ADC
Bit(s)
Addr
Parameter
[6:5]
0x05
POLARITY
[2]
0x05
LP
[0]
0x05
ADCHPD
Function
00 no inversion on ADC data
01 Left (1) inverted
10 Right (2) inverted
11 both inverted
1 reduces ADC current by half
0 nominal ADC current
1 disable ADC high pass filter
0 enable
12.5 REGISTER 0X06 POWER MANAGEMENT
Bit(s)
Addr
Parameter
Function
[8]
0x06
VMID
0 VMID reference turned off
1 VMID reference turned on
[7]
0x06
VREF
0 VREF buffer turned on
1 VREF buffer turned off
[6]
0x06
AI
0 audio interface off
1 audio interface on
[5]
0x06
PGL
0 pga 2nd stage off
1 pga 2nd stage on
[4]
0x06
PGR
0 pga 2nd stage off
1 pga 2nd stage on
[3]
0x06
ADL
0 ADC off
1 ADC on
[2]
0x06
ADR
0 ADC off
1 ADC on
emPowerAudio™
Datasheet Revision 2.5
Page 61 of 92
March, 2014
NAU8502
[1:0]
Note:
0x06
MICBIAS (if MICBMODE = 0)
00 off
01 0.75*VDDA
10 0.9*VDDA
11 0.5*VDDA
The register setting in ADL and ADR will take effect only when the MCLK is present
ADL/ADR mapping
When the ADCs are enabled by setting ADL or ADR high, a corresponding set of registers in the NAU8502 space
are simultaneously and automatically configured. These registers may be overwritten at their locations in the
NAU8502 space, and the most recent configuration will take effect. The mapped register values from ADL/ADR to
NAU8502 space may be read from the NAU8502 space, but the mapping is uni-directional; writes in the NAU8502
space will not be reflected or mapped back to any overwrites of the 8737 space.
When either ADL or ADR are set high, the following register changes are made in NAU8502 space:

BIASEN (0x21[3]) is enabled high

BUFIOEN (0x21[2]) is enabled high

L/RMICP2INPPGA (0x4B[0], 0x4C[0] are enabled high (corresponding to left and/or right channel
ADL/ADR)

L/RMICN2BVREF (0x22[1:0]) are enabled high (corresponding to left and/or right channel ADL/ADR)

L/RMIC2_2INPPGA2 (0x4B[6], 0x4C[6]) are enabled high (corresponding to left and/or right channel
ADL/ADR)

L/RMICN2INPPGA1 (0x4B[1], 0x4C[1]) are disabled low

L/RMIC2_2INPPGA1 (0x4B[2], 0x4C[2]) are disabled low

L/RMICN2INPPGA2 (0x4B[5], 0x4C[5]) are disabled low
When ADL or ADR are subsequently cleared, L/RMICN2BVREF and L/RMIC2_2INPPGA2 are cleared along with
other path selection bits, and BIASEN/BUFIOEN are set to the value at address 0x21.
12.6 REGISTER 0X07 AUDIO FORMAT AND CLOCKING
Bit(s)
Addr
Parameter
[7]
0x07
ADCOUTDIS
[6]
0x07
MS
[4]
0x07
FSP
[3:2]
0x07
WLEN
[1:0]
0x07
FORMAT
Function
Controls ADCOUT enable
0 ADCOUT enable
1 ADCOUT disable
ADCDAT_OE_SEL 0x5C[2] must be set to 0 first
0 Slave PCM bus
1 Master PCM bus
0 frame sync clock non inverted
1 frame sync clock inverted
(this bit is not applicable to FORMAT=11)
00 16 bits
01 20 bits
10 24 bits
11 32 bits (set to 24 bit if FORMAT=00 Right
Justified)
00 Right justified
01 Left justified
10 I2S mode
11 DSP mode A when FSP (0x07[4]) = 0, DSP mode
B when FSP (0x07[4]) = 1
12.7 REGISTER 0X08 AUDIO FORMAT AND CLOCKING
emPowerAudio™
Datasheet Revision 2.5
Page 62 of 92
March, 2014
NAU8502
Bit(s)
Addr
Parameter
[6]
0x08
CLKDIV2
[5:1] mapped to
0x27[3:1]
0x08
SR
Function
0 Master clock not divided by 2
1 Master clock divided by 2
Sample rates supported are:
MCLK=12.288MHz
00100 8KHz
01000 12KHz
01010 16KHZ
11100 24KHZ
01100 32KHZ
00000 48KHZ
MCLK=11.2896MHz
11000 11.025KHz
11010 22.05KHz
10000 44.1KHz
Sample Rate register mapping
The SR (0x08[5:1]) and CLKDIV2 (0x08[6]) register bits map to the MCLKSEL (0x26[7:5]), BCLKSEL (0x26[4:2]),
and SMPLR (0x27[3:1]) registers in NAU8502 space as in the following table:
MCLK
CLKDIV2=0
12.288
MHz
SR
MCLKSEL
BCLKSEL
SMPLR
CLKDIV2=1
24.576
MHz
00100
101 (6)
01000
100 (4)
01010
011 (3)
11100
010 (2)
01100
001 (1.5)
00000
000 (1)
010 (4)
101 (8k)
010 (4)
100 (12k)
110 (192
BCLK per
FS)
010 (4)
011 (16k)
010 (4)
001 (32k)
010 (4)
000 (48k)
010 (24k)
12.8 REGISTER 0X09 ANALOG POWER CONTROL
Bit(s)
Addr
Parameter
[1:0]
0x09
MBCTRL
emPowerAudio™
Datasheet Revision 2.5
Page 63 of 92
Function
Master bias current setting
00 125%
01 85%
10 75%
11 nominal 100%
March, 2014
NAU8502
12.9 REGISTER 0X0A VMID IMPEDANCE AND INPUT IMPEDANCE SELECTION
Bit(s)
Addr
Parameter
[3:2]
0x0A
VMIDSEL
[1]
0x0A
LDC
[0]
0x0A
RDC
12.10
0 500K disconnected from MIC2P
1 500K connected from MIC2P
REGISTER 0X0B NOISE GATE AND ALC
Bit(s)
Addr
Parameter
[7:5]
0x0B
ALCMINGAIN
[4:2]
0x0B
NGATH
[0]
0x0B
NGAT
12.11
Function
VMID impedance selection
00 80K
01 300K
10 2.5K
11 reserved
0 500K disconnected from MIC1P
1 500K connected from MIC1P
Function
Minimum level for ALC operation
0 = -12dB
1 = -6dB
2 = 0dB
3 = +6dB
…
7 = +30dB
Noise gate threshold
000 = -78dB
001 = -72dB
010 = -66dB
011 = -60dB
100 = -54dB
101 = -48dB
110 = -42dB
111 = -30dB
0 Noise gate disabled
1 Noise gate enabled
REGISTER 0X0C ALC
Bit(s)
Addr
Parameter
[8:7]
0x0C
ALCEN
[6:4]
0x0C
ALCMAXGAIN
[3:0]
0x0C
ALCSL
emPowerAudio™
Datasheet Revision 2.5
Page 64 of 92
Function
00 = ALC disabled
01 = Right channel ALC enabled
10 = Left channel ALC enabled
11 = Both channels ALC enabled
Maximum level for ALC operation
0 = -6.75 dB
1 = -.75 dB
2 = +5.25 dB
3 = +11.25 dB
…
7 = +35.25 dB
ALC target level
ALCTABLESEL (0x66.8) = 0
0 = -28.5 dB
1 = -27 dB
2 = -25.5 dB
…
March, 2014
NAU8502
14 = -7.5 dB
15 = -6 dB
ALCTABLESEL (0x66.8) = 1
0 = -22.5 dB
1 = -21 dB
2 = -19.5 dB
…
13 = -3 dB
14 = -1.5 dB
15 = -1.5 dB
12.12
REGISTER 0X0D ALC
Bit(s)
Addr
Parameter
[5]
0x0D
ALCMODE
[4]
0x0D
ALCZCE
[3:0]
0x0D
HLD
12.13
0 = ALC normal operation mode
1 = ALC limiter mode.
ALC zero cross enable
0 = zero crossing disabled
1 = zero crossing enabled
Range: 0ms to 1s, time doubles with
every step)
REGISTER 0X0E ALC
Bit(s)
Addr
Parameter
[7:4]
0x0E
DCY
[3:0]
0x0E
ATK
12.14
Function
Function
ALC decay time
ALCMODE=0
Range: 500us to 512ms
ALCMODE=1
Range: 125us to 128ms (Both ALC time
doubles with every step)
Note: parameters refer to time to update
one 0.75 dB step
ALC attack time
ALCMODE=0
Range: 125us to 128ms
ALCMODE=1
Range: 31us to 32ms (time doubles
with every step)
Note: parameters refer to time to update
one 0.75 dB step
REGISTER 0X0F RESET
Bit(s)
Addr
Parameter
Function
[8:0]
0x0F
Software Reset
Program 0x000 to reset the registers
12.15
REGISTER 0X1C
Natively supported, the maximum ADC code is 0x7FFFFF
emPowerAudio™
Datasheet Revision 2.5
Page 65 of 92
March, 2014
NAU8502
12.16
REGISTER 0X21 ADDITIONAL POWER MANAGEMENT REGISTERS (NOTE: WRITE-ONLY)
Bit(s)
Addr
Parameter
[3]
0x21
BIASEN
[2]
0x21
BUFIOEN
12.17
Function
Register turning on the remaining of the
analog circuitry like band gap and
references
0 disable
1 enable
Buffer enable for tie-off connections
0 disable
1 enable
REGISTER 0X22 ADDITIONAL AUDIO PATH REGISTERS
Bit(s)
Addr
Parameter
Function
[8]
0x22
LLINOUTEN
Not used
[7]
0x22
RLINOUTEN
Not used
[6]
0x22
SLEEP
Stops the clock, same as PLLEN
0x26[2]
[5]
0x22
VINSEL
Not used
[1]
0x22
LMICN2BVREF
Connect MIC1N to reference for single
ended operation
[0]
0x22
RMICN2BVREF
Connect MIC2N to reference for single
ended operation
12.18
REGISTER 0X23 ADDITIONAL AUDIO PATH REGISTERS
Bit(s)
Addr
Parameter
[3:2]
0x23
LINOUTSELL
[1:0]
0x23
LINOUTSELR
12.19
Function
Mix the ADC input signal to LLINOUT
pin
00 none
01 ADC signal left only
10 ADC signal right only
11 both ADC signal
Mix the ADC input signal to RLINOUT
pin
00 none
01 ADC signal left only
10 ADC signal right only
11 both ADC signal
REGISTER 0X24 LEFT AND RIGHT CHANNEL SELECT FOR ADCOUT
Bit(s)
Addr
Parameter
[8]
0x24
BCLKP
[4]
0x24
ADC_R_MUX_SEL
[3]
0x24
ADC_L_MUX_SEL
emPowerAudio™
Datasheet Revision 2.5
Function
BCLK polarity
0 = non-inverted BCLK
1 = inverted BCLK
0 = output Right Channel Data on Right Channel
ADCOUT
1 = output Left Channel Data on Right Channel
ADCOUT
0 = output Left Channel Data on Left Channel
ADCOUT
1 = output Right Channel Data on Left Channel
ADCOUT
Page 66 of 92
March, 2014
NAU8502
[1]
0x24
ADCLRSWAP
[0]
0x24
MONO
12.20
REGISTER 0X25 AUDIO FORMAT AND CLOCKING
Bit(s)
Addr
Parameter
[2:1]
0x25
ADC_COMP
[0]
0x25
U_OFFSET
12.21
Function
ADC Companding Select
00 linear
01 reserved
10 Mu-law
11 A-law
Mu-law
0 = input offset by 32
1 = input offset by 33
REGISTER 0X26 CLOCK SOURCE AND DIVISION SELECT AND PLL ENABLE
Bit(s)
Addr
Parameter
[8]
0x26
CLKM
[7:5]
0x26
MCLKSEL
[4:2]
0x26
BCLKSEL
[1]
0x26
PLLEN
12.22
0 = no swap between the Left and Right Channel
ADCOUT
1 = swap the Left and Right Channel ADCOUT
Select audio data on one channel only
0 = both channel ADCOUT
1 = only Left channel ADCOUT if ADCLRSWAP=0 or
only Right channel ADCOUT if ADCLRSWAP=1
Function
0 PLL is bypassed
1 PLL is used for MCLK
Scale the MCLK or PLL ouput clock
000 = divide by 1
001 = divide by 1.5
010 = divide by 2.0
011 = divide by 3
100 = divide by 4
101 = divide by 6
110 = divide by 8
111 = divide by 12
Scale the bclk output frequency when
used as master.
000 = divide by 1
001 = divide by 2
010 = divide by 4
011 = divide by 8
100 = divide by 16
101 = divide by 32
110 = reserved
111 = reserved
0 PLL off
1 PLL on
REGISTER 0X27 AUDIO FORMAT AND CLOCKING
Bit(s)
Addr
Parameter
[3:1]
0x27
SMPLR
emPowerAudio™
Datasheet Revision 2.5
Page 67 of 92
Function
Direct sample rate selection
000 = 48 kHz
001 = 32 kHz
010 = 24 kHz
011 = 16 kHz
100 = 12 kHz
101 = 8 kHz
110 = reserved
111 = reserved
March, 2014
NAU8502
[0]
0x27
12.23
SLOWCLKGEN
0 = Slow clock disabled
1 = Slow clock enabled. Slow clock
needs to be enabled when zero
crossing is enabled. When zero
crossing is enabled in the 8737 address
space, this register is automatically set.
REGISTER 0X28 RAM
Bit(s)
Addr
[8]
0x28
RAM_TEST_START
RAM test start control
[7]
0x28
RAM_TEST_FINISH
RAM test finished status flag
[6]
0x28
RAM_TEST_FAIL
[5:4]
12.24
Bit(s)
Parameter
0x28
GPIO_PLLDIV
Function
RAM test failed status flag
Scaled PLL output clock
00 = divide by 1
01 = divide by 2
10 = divide by 3
11 = divide by 4
REGISTER 0X29 GPIO
Function
GPIO pull select enable
[8:6]
0x29
GPIO_PS
000 pull low
111 pull high
GPIO pull enable
[5:3]
0x29
GPIO_PE
000 tri-stated input
111 pull enabled
GPIO output enable
[2:0]
0x29
GPIO_OE
x00 disabled
111 enabled
If GPIO_OE[2]=0 GPIO3 is not configure as input or output pin. See register 0x5A[0] to configure as input pin.
12.25
Addr
Parameter
REGISTER 0X2A GPIO
Bit(s)
Addr
[8:6]
0x2A
GPIO3_OUT_SEL
[5:3]
0x2A
GPIO2_OUT_SEL
[2:0]
0x2A
GPIO1_OUT_SEL
emPowerAudio™
Datasheet Revision 2.5
Parameter
Page 68 of 92
Function
GPIO output selection
000 = 0
001 = 1
010 = PLL clock
011 = PLL lock
100 = MCLK_PIN
101 = Interrupt
110 = Master FS
111 = Master BCLK
GPIO output selection
Same as above
GPIO output selection
Same as above
March, 2014
NAU8502
12.26
REGISTER 0X2B GPIO
Bit(s)
Addr
[2]
0x2B
GPIO3_IN
GPIO3 input read out
[1]
0x2B
GPIO2_IN
GPIO2 input read out
[0]
0x2B
GPIO1_IN
GPIO1 input read out
12.27
Parameter
Function
REGISTER 0X2C GPIO
Bit(s)
Addr
[7]
0x2C
POL
[4]
0x2C
Clip2_IE
Clip interrupt enable number 2
[3]
0x2C
Clip1_IE
Clip interrupt enable number 1
[2]
0x2C
GPIO3_IE
GPIO3 interrupt enable
[1]
0x2C
GPIO2_IE
GPIO2 interrupt enable
[0]
0x2C
GPIO1_IE
GPIO1 interrupt enable
12.28
Parameter
Function
0 interrupt polarity, output will be 1 active high
1 interrupt polarity, output will be 0 active low
REGISTER 0X2D GPIO
Bit(s)
Addr
[4]
0x2D
Clip2_INT
Clip1 interrupt read status
[3]
0x2D
Clip1_INT
Clip1 interrupt read status
[2]
0x2D
GPIO3_INT
GPIO3 interrupt read status
[1]
0x2D
GPIO2_INT
GPIO2 interrupt read status
[0]
0x2D
GPIO1_INT
GPIO1 interrupt read status
12.29
Parameter
Function
REGISTER 0X2E ADC CONTROLS
Bit(s)
Addr
[7]
0x2E
HPFAPP
[6:4]
0x2E
HPFCUT
High pass filter cutoff frequency
[3]
0x2E
ADCOSR
0 ADC OSR64 better operation at low V
1 ADC OSR128 lower noise
emPowerAudio™
Datasheet Revision 2.5
Parameter
Page 69 of 92
Function
High pass filter application mode
st
0 audio 1 order fc=3.7Hz
nd
1 2 order, cutoff set by HPFCUT
March, 2014
NAU8502
12.30
REGISTER 0X2F ADC CONTROLS
Bit(s)
Addr
[8]
0x2F
[7:0]
12.31
ADCVOLL
[8]
030
Parameter
Set the ADC volume left channel
0 = digital mute
1 = -127 dB
2 = -126.5 dB
… 0.5 dB steps
255 = 0 dB
Function
ADCVU
0x30
ADCVOLR
ADC volume update bit
Set the ADC volume right channel
0 = digital mute
1 = -127 dB
2 = -126.5 dB
… 0.5 dB steps
255 = 0 dB
REGISTER 0X32 EQUALIZER CONTROLS
Bit(s)
Addr
[7]
0x32
EQ1BW
[6:5]
0x32
EQ1CF
[4:0]
0x32
EQ1GF
12.33
ADC volume update bit
REGISTER 0X30 ADC CONTROLS
Addr
12.32
Function
ADCVU
0x2F
Bit(s)
[7:0]
Parameter
Parameter
Function
Bandwidth control
0 Narrow bandwidth
1 Wide bandwidth
Cut-off frequencies
00 80Hz
01 105Hz
10 135Hz
11 175Hz
Equalizer gain
00000 +12dB
11000 -12dB
11001 to 11111 reserved
REGISTER 0X33 EQUALIZER CONTROLS
Bit(s)
Addr
[8]
0x33
EQ2BW
[6:5]
0x33
EQ2CF
[4:0]
0x33
EQ2GF
emPowerAudio™
Datasheet Revision 2.5
Parameter
Page 70 of 92
Function
Bandwidth control
0 Narrow bandwidth
1 Wide bandwidth
Center frequencies
00 230Hz
01 300Hz
10 385Hz
11 500Hz
Equalizer gain
00000 +12dB
11000 -12dB
11001 to 11111 reserved
March, 2014
NAU8502
12.34
REGISTER 0X34 EQUALIZER CONTROLS
Bit(s)
Addr
[8]
0x34
EQ3BW
[6:5]
0x34
EQ3CF
[4:0]
0x34
EQ3GF
12.35
Parameter
REGISTER 0X35 EQUALIZER CONTROLS
Bit(s)
Addr
[8]
0x35
EQ4BW
[6:5]
0x35
EQ4CF
[4:0]
0x35
EQ4GF
12.36
Parameter
Function
Bandwidth control
0 Narrow bandwidth
1 Wide bandwidth
Center frequencies
00 1.8KHz
01 2.4KHz
10 3.2KHz
11 4.1KHz
Equalizer gain
00000 +12dB
11000 -12dB
11001 to 11111 reserved
REGISTER 0X36 EQUALIZER CONTROLS
Bit(s)
Addr
[8]
0x36
EQ5BW
[6:5]
0x36
EQ5CF
[4:0]
0x36
EQ5GF
12.37
Function
Bandwidth control
0 Narrow bandwidth
1 Wide bandwidth
Center frequencies
00 650Hz
01 850Hz
10 1100Hz
11 1400Hz
Equalizer gain
00000 +12dB
11000 -12dB
11001 to 11111 reserved
Parameter
Function
Bandwidth control
0 Narrow bandwidth
1 Wide bandwidth
Cut-off frequencies
00 5.3KHz
01 6.9KHz
10 9.0KHz
11 11.7KHz
Equalizer gain
00000 +12dB
11000 -12dB
11001 to 11111 reserved
REGISTER 0X37 ANALOG TEST MODES
Bit(s)
Addr
[8:0]
0x37
emPowerAudio™
Datasheet Revision 2.5
Parameter
ANA_TEST
Page 71 of 92
Function
nd
000000100 2 stage PGA bypassed
000010000 1.8V logic supply to POUT
pin
000100000 1.8V logic supply to VREF
pin
March, 2014
NAU8502
12.38
REGISTER 0X3B-0X3E NOTCH FILTERS CONTROLS
Addr
D8
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x3B
NFCU
NFCEN
NFCA0[13:7]
0x000
0x3C
NFCU
0
NFCA0[6:0]
0x000
0x3D
NFCU
0
NFCA1[13:7]
0x000
0x3E NFCU
0x000
0
NFCA1[6:0]
The Notch Filter is enabled by setting NFCEN[7] address (0x3B) bit to HIGH. The coefficients, A 0 and A1, should
be converted to 2’s complement numbers to determine the register values. A0 and A1 are represented by the
register bits NFCA0[13:0] and NFCA1[13:0]. Since there are four register of coefficients, a Notch Filter Update bit
is provided so that the coefficients can be updated simultaneously. NFCU[8] is provided in all registers of the
Notch Filter coefficients but only one bit needs to be toggled for LOW - HIGH - LOW for an update. If any of the
NFCU[8] bits are left HIGH then the Notch Filter coefficients will continuously update. An example of how to
calculate is provided in the Notch Filter section.
12.39
REGISTER 0X44 PLL REGISTER A
Bit(s)
Addr
[4]
0x44
PLLMCLK
[3:0]
0x44
PLLN_A
12.40
Addr
[5:0]
0x45
Addr
[8:0]
0x46
PLL coefficient N
Parameter
Function
PLLK_A[23:18]
PLL coefficient K, upper bits
Parameter
Function
PLLK_A[17:9]
PLL coefficient K, mid bits
REGISTER 0X47 PLL REGISTER A
Bit(s)
Addr
[8:0]
0x47
12.43
0=MCLK input not divided
1=MCLK input is divided by 2
REGISTER 0X46 PLL REGISTER A
Bit(s)
12.42
Function
REGISTER 0X45 PLL REGISTER A
Bit(s)
12.41
Parameter
Parameter
Function
PLLK_A[8:0]
PLL coefficient K, lower bits
REGISTER 0X4B ADDITIONAL AUDIO PATH REGISTERS
Bit(s)
Addr
Parameter
Function
[6]
0x4B
LMIC2_2INPPGA2
0 = P1IN not connected to input PGA stage2
1 = P1IN to input PGA stage 2 Negative terminal.
[5]
0x4B
LMICN2INPPGA2
0 = not connected to input PGA stage 2
1 = to input PGA stage 2 Negative terminal.
[2]
0x4B
LMIC2_2INPPGA1
0 = P1IN not connected to input PGA stage1
1 = P1IN to input PGA stage 1 Negative terminal.
[1]
0x4B
LMICN2INPPGA1
0 = MIC1N not connected to input PGA stage 1
1 = MIC1N to input PGA stage 1 Negative terminal.
[0]
0x4B
LMICP2INPPGA
0 = Input PGA stage 1 Positive terminal to VREF
1 = Input PGA stage 1 Positive terminal to MIC1P
emPowerAudio™
Datasheet Revision 2.5
Page 72 of 92
March, 2014
NAU8502
12.44
REGISTER 0X4C ADDITIONAL AUDIO PATH REGISTERS
Bit(s)
Addr
Parameter
Function
[6]
0x4C
RMIC2_2INPPGA2
0 = P2IN not connected to input PGA stage2
1 = P2IN to input PGA stage 2 Negative terminal.
[5]
0x4C
RMICN2INPPGA2
0 = not connected to input PGA stage 2
1 = to input PGA stage 2 Negative terminal.
[2]
0x4C
RMIC2_2INPPGA1
0 = P2IN not connected to input PGA stage1
1 = P2IN to input PGA stage 1 Negative terminal.
[1]
0x4C
RMICN2INPPGA1
0 = MIC2N not connected to input PGA stage 1
1 = MIC2N to input PGA stage 1 Negative terminal.
[0]
0x4C
RMICP2INPPGA
0 = Input PGA stage 1 Positive terminal to VREF
1 = Input PGA stage 1 Positive terminal to MIC2P
12.45
REGISTER 0X4D ADDITIONAL AUDIO PATH REGISTERS
Bit(s)
Addr
Parameter
Function
[6]
0x4D
LMBMUTE
Reserved/unused
[5:0]
0x4D
INPPGALVOL
Left channel PGA stage 2 gain
12.46
REGISTER 0X4E ADDITIONAL AUDIO PATH REGISTERS
Bit(s)
Addr
Parameter
Function
[6]
0x4E
RMBMUTE
Reserved/unused
[5:0]
0x4E
INPPGARVOL
Right channel PGA stage 2 gain
12.47
REGISTER 0X4F PLL REGISTER B
Bit(s)
Addr
Parameter
[5]
0x4F
PLLREGSEL
[4]
0x4F
PLLMCLK
[3:0]
0x4F
PLLN_B
12.48
Function
0 select PLL coefficients register A
1 select PLL coefficients register B
0=MCLK input not divided
1=MCLK input is divided by 2
PLL coefficient N
REGISTER 0X50 PLL REGISTER B
Bit(s)
Addr
[5:0]
0x50
emPowerAudio™
Datasheet Revision 2.5
Parameter
PLLK_B[23:18]
Page 73 of 92
Function
PLL coefficient K, upper bits
March, 2014
NAU8502
12.49
REGISTER 0X51 PLL REGISTER B
Bit(s)
Addr
[8:0]
0x51
12.50
PLLK_B[17:9]
Addr
[8:0]
0x52
Parameter
PLLK_B[8:0]
PLL coefficient K, mid bits
Function
PLL coefficient K, lower bits
REGISTER 0X59 ADC MIXER
Bit(s)
Addr
[5:4]
0x59
MixerMap_ADC2
[1:0]
0x59
MixerMap_ADC1
12.52
Function
REGISTER 0X52 PLL REGISTER B
Bit(s)
12.51
Parameter
Parameter
Function
ADC right channel digital mixer map
Configure outputs routed out on to ADC
right channel
00: zero
01: left channel input
10: right channel input (default)
11: left + right channel input
ADC left channel digital mixer map
Configure outputs routed out on to ADC
left channel
00: zero
01: left channel input (default)
10: right channel input
11: left + right channel input
REGISTER 0X5A POWER MANAGEMENT EXTRA
Bit(s)
Addr
[8]
0x5A
PGA_stage2_bias
[7]
0x5A
HALF_BIAS_ADC_buffer
0 ADC uses nominal bias
1 ADC uses half current bias
[6]
0x5A
HALF_BIAS_SPARES
(no used)
0 ADC uses nominal bias
1 ADC uses half current bias
[4]
0x5A
MCBSMODE
[3:2]
0x5A
TRIM_REGULATOR_SV
[0]
0x5A
GPIO3_IE
emPowerAudio™
Datasheet Revision 2.5
Parameter
Page 74 of 92
Function
0 PGA stage 2 uses nominal bias
1 PGA stage 2 uses half current bias
0 nominal mode requires large cap
1 lower noise mode requires small cap
00 nominal logic supply 1.8V
01 1.71V
10 1.6V
11 1.4V
0 Input disabled on GPIO3
1 Input enabled on GPIO3
March, 2014
NAU8502
12.53
REGISTER 0X5B LEFT CHANNEL PCM TIME SLOT START COUNT
Bit(s)
Addr
[8:0]
0x5B
12.54
Parameter
TSLOTL[8:0]
Function
Left Channel PCM Time Slot Start Count [8:0]
REGISTER 0X5C PCM AND TIME SLOT CONTROL
Bit(s)
Addr
Parameter
[8]
0x5C
PCMTSEN
[7]
0x5C
TRI
[6]
0x5C
PCM8BIT
[5]
0x5C
ADCDAT_OEN
[4]
0x5C
ADCDAT_PE
[3]
0x5C
ADCDAT_PS
[2]
0x5C
ADCDAT_OEN_SE
L
[1]
0x5C
TSLOTR[9]
Right Channel PCM Time Slot Start Count [9]
[0]
0x5C
TSLOTL[9]
Left Channel PCM Time Slot Start Count [9]
12.55
Addr
[8:0]
0x5D
Parameter
TSLOTR[8:0]
Function
Right Channel PCM Time Slot Start Count [8:0]
REGISTER 0X5E ID REGISTERS
Bit(s)
Addr
[8:0]
0x5E
12.57
0 = Only DSP MODE A or MODE B can be used when FORMT=11
1 = PCM Time Slot Mode is enabled when
FORMT=11
0 = not enabled
1 = when ADCDAT_OEN_SEL (0x5C[2])=1 and
nd
ADCDAT_OEN(0x5C[5)]=0, 2 half of LSB will be
Tri-State or pull up / down
0 = use WLEN to select the Word Length
1 = Word Length is 8 bit
This bit is only effective when
ADCDAT_OEN_SEL(0x5c[2]) = 0
0 = ADCOUT is tri-state or pull up/down before MSB
and after LSB
1 = ADCOUT is always driven 1 or 0 by NAU8502
0 = no internal weak pull up / down on ADCOUT
1 = internal weak pull up / down on ADCOUT
0 = internal weak pull down on ADCOUT when
ADCDAT_PE=1
1 = internal weak pull up on ADCOUT when
ADCDAT_PE=1
0 = use ADCOUTDIS(0x07[7]) to enable or disable
ADCOUT
1 = use ADCDAT_OEN(0x5C[5]) to control ADCOUT
driver
REGISTER 0X5D RIGHT CHANNEL PCM TIME SLOT START COUNT
Bit(s)
12.56
Function
Parameter
REG_SI_REV
Function
Silicon revision set to 0xFE
REGISTER 0X5F ID REGISTERS
Bit(s)
Addr
[8:0]
0x5F
emPowerAudio™
Datasheet Revision 2.5
Parameter
I2C_DEVID
Page 75 of 92
Function
I2C device is set to 0x1A when CSB=0
I2C device is set to 0x1B when CSB=1
March, 2014
NAU8502
12.58
REGISTER 0X60 ID REGISTERS
Bit(s)
Addr
[8:0]
0x60
12.59
Parameter
Function
NTCA
REGISTER 0X66 ALC INTERRUPTS FEATURES REGISTERS
Bit(s)
Addr
[8]
0x66
ALCTABLESEL
[7]
0x66
ALCPKSEL
[6]
0x66
ALCNGSEL
[5:0]
0x66
ALCGAIN_L
12.60
Parameter
Function
0 = ALCSL range -28.5:-6dB
1 = ALCSL range -22.5:-1.5 dB
0 = use absolute peak value for ALC
training
1 = use peak-to-peak value for ALC
training
0 = use peak-to-peak value for noise
gate threshold determination
1 = use absolute peak value for noise
gate threshold determination
Left channel ALC gain status
REGISTER 0X67 ALC INTERRUPTS FEATURES REGISTERS
Bit(s)
Addr
[8]
0x67
ALCPKLIMENn
[7]
0x67
PK_DET_CLR
[6]
0x67
PK_DET_HOLD
[5:0]
0x67
ALCGAIN_R
12.61
Custom register is set to 0xCA
Parameter
Function
0 = enable fast decrement when signal
exceeds 87.5% of full scale
1 = disable fast decrement when signal
exceeds 87.5% of full scale
When PK_DET_HOLD is asserted
HIGH, writing a 1 to this bit clears the
stored peak value
0 = Normal peak detection
1 = Hold peak value until PK_DET_CLR
is written. This should only be used for
signal level diagnostics and not for
normal ALC operation
Right channel ALC gain status
REGISTER 0X68 ADC AND EQUALIZER ADDITIONAL REGISTERS
Bit(s)
Addr
[8]
0x68
LATCH_DLY[1]
[7]
0x68
LATCH_DLY[0]
[6]
0x68
SWAP_DM_DFE
[5]
0x68
EN_DIG_MIC_R
0=disable right digital mic
1=enable right digital mic
[4]
0x68
EN_DIG_MIC_L
0=disable left digital mic
1=enable left digital mic
[3]
0x68
DM_DS
emPowerAudio™
Datasheet Revision 2.5
Parameter
Page 76 of 92
Function
(test mode only)
0 = ADC data sampled on rising edge
1 = ADC data sampled on falling edge
(test mode only)
0 = Normal phase for ADC clock
1 = Inverted phase for ADC clock
0: ch1=left dmic, ch2=right dmic
1: ch1=right dmic, ch2=left dmic
0=slower slew-rate for DM_CLK
1=faster slew-rate for DM_CLK
March, 2014
NAU8502
[2]
0x68
ALCGRP
[1]
0x68
EQON_TEST
[0]
0x68
SKIP_DLY
12.62
REGISTER 0X69 ADC AND EQUALIZER ADDITIONAL REGISTERS
Bit(s)
Addr
[8]
0x69
FORCE_4W_SPI
[5]
0x69
FLUSH_ON_ERR
[4]
0x69
IDSEL_MODE
[3]
0x69
NOTCH_DLY_DIS
[1]
0x69
PLLOCK_BP
12.63
Parameter
Addr
[8]
0x6A
Parameter
Function
MANU_IN_CTRL
0 nominal control of the VMID tie off
1 manual control of the VMID tie off
REGISTER 0X6B TIE-OFF REGISTERS
Bit(s)
Addr
Parameter
[2:0]
0x6B
MANU_VMID_CTRL
12.65
Function
0 = only I2C or SPI 3 wire mode can be
used
1 = use SPI 4 wire mode no matter the
MODE pin is 1 or 0
0 = Normal operation
1 = Flush digital filter memory when
internal clocking error detected
0 = I2C Device ID selected by CSB on
every transaction
1 = I2C Device ID selected by CSB state
at reset
0 = Normal operation – notch filter output
is delayed until stabilized
1 = Notch delay disabled – notch filter
output is available immediately upon
enabling
0 = PLL lock circuit normal operation
1 = PLL lock forced high
REGISTER 0X6A TIE-OFF REGISTERS
Bit(s)
12.64
0 = Left and right channel ALCs train
independently with separate gain
settings for each channel
1 = Left and right channel ALCs train
together with a single gain setting for
both channels when both enabled
(default)
0 = Bypass equalizer
1 = Enable equalizer (default)
0 = Align L/R sinc outputs with delay
1 = Bypass right channel sinc alignment
delay
Function
Require to have 0x6A[8] set to 1
001 5.6K Ohm pull down resistor
010 161K Ohm pull down resistor
100 595K Ohm pull down resistor
REGISTER 0X6C AGC READOUT REGISTERS
Bit(s)
Addr
Parameter
[8:0]
0x6C
P2P_OUT_L
emPowerAudio™
Datasheet Revision 2.5
Page 77 of 92
Function
Left channel peak-to-peak value
March, 2014
NAU8502
12.66
REGISTER 0X6D AGC READOUT REGISTERS
Bit(s)
Addr
Parameter
[8:0]
0x6D
P2P_OUT_R
12.67
Right channel peak-to-peak value
REGISTER 0X6E AGC READOUT REGISTERS
Bit(s)
Addr
Parameter
[8:0]
0x6E
PEAK_OUT_L
12.68
Function
Left channel absolute peak value
REGISTER 0X6F AGC READOUT REGISTERS
Bit(s)
Addr
Parameter
[8:0]
0x6F
PEAK_OUT_R
12.69
Function
Right channel absolute peak value
REGISTER 0X70 NOISE GATE READOUT REGISTERS
Bit(s)
Addr
Parameter
[5]
0x70
NOISE_OUT_R
[4]
0x70
NOISE_OUT_L
[1]
0x70
FAST_DEC_L
[0]
0x70
FAST_DEC_R
12.70
Function
Function
Right channel noise gate flag
0 = signal above noise gate threshold
1 = signal below noise gate threshold
Left channel noise gate flag
0 = signal above noise gate threshold
1 = signal below noise gate threshold
Left channel fast decrement flag
0 = signal below 87.5% of full scale
1 = signal above 87.5% of full scale
Right channel fast decrement flag
0 = signal below 87.5% of full scale
1 = signal above 87.5% of full scale
REGISTER 0X71 MANUAL TIE-OFF REGISTERS
Bit(s)
Addr
Parameter
Function
[8]
0x71
REGENABLE
0 disabled
1 enable direct control on buffer tie off
[6]
0x71
SHORTBUFL
[5]
0x71
Tie-off buffered VREF
emPowerAudio™
Datasheet Revision 2.5
Page 78 of 92
0 tie off buffer is used
1 bypass tie off buffer
0 disabled
1 enabled tie off voltage to VMID buffer
when buffer is off
March, 2014
NAU8502
13
CONTROL INTERFACE TIMING DIAGRAM
13.1
SPI WRITE TIMING DIAGRAM
TCSBH
TCSBL
CSB
TSCCSH
TSCK
TRISE
TFALL
SCLK
TSCKH
TSCKL
SDIO
TSDIOS
TSDIOH
Figure 30: SPI Write Timing Diagram
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
TSCK
SCLK Cycle Time
80
---
---
ns
TSCKH
SCLK High Pulse Width
35
---
---
ns
TSCKL
SCLK Low Pulse Width
35
---
---
ns
TRISE
Rise Time for all SPI Signals
---
---
10
ns
TFALL
Fall Time for all SPI Signals
---
---
10
ns
st
TCSSCS
CSb Falling Edge to 1 SCLK Falling Edge Setup Time (4
wire SPI only)
30
---
---
ns
TSCCSH
Last SCLK Rising Edge to CSb Rising Edge Hold Time
30
---
---
ns
TCSBL
CSb Low Time
30
---
---
ns
TCSBH
CSb High Time between CSb Lows
30
---
---
ns
TSDIOS
SDIO to SCLK Rising Edge Setup Time
20
---
---
ns
TSDIOH
SCLK Rising Edge to SDIO Hold Time
20
---
---
ns
Table 32: SPI Timing Parameters
emPowerAudio™
Datasheet Revision 2.5
Page 79 of 92
March, 2014
NAU8502
13.2
2-WIRE TIMING DIAGRAM
TSTAH
TSDIOS
TSDIOH
TSTAH
SDIO
TSCKH
TFALL
SCLK
TSCKL
TRISE
TSTAS
TSTOS
Figure 31: 2-Wire Timing Diagram
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
TSTAH
START / Repeat START condition, SCLK falling edge to
SDIO falling edge hold timing
600
---
---
ns
TSTAS
Repeat START condition, SDIO rising edge to SCLK
falling edge setup timing
600
---
---
ns
TSTOS
STOP condition, SDIO rising edge to SCLK rising edge
setup timing
600
---
---
ns
TSCKH
SCLK High Pulse Width
600
---
---
ns
TSCKL
SCLK Low Pulse Width
1.3
---
---
us
TRISE
Rise Time for all 2-Wire Signals
---
---
300
ns
TFALL
Fall Time for all 2-Wire Signals
---
---
300
ns
TSDIOS
SDIO to SCLK Rising Edge DATA Setup Time
400
---
---
ns
TSDIOH
SCLK falling Edge to SDIO DATA Hold Time
0
---
600
ns
Table 33: 2-WireTiming Parameters
emPowerAudio™
Datasheet Revision 2.5
Page 80 of 92
March, 2014
NAU8502
14 AUDIO INTERFACE TIMING DIAGRAM
14.1 AUDIO INTERFACE IN SLAVE MODE
TBCK
BCLK
(Slave)
TFSH
TFALL
TBCKH
FS
(Slave)
TFSH
TBCKL
TFSS
TRISE
TFSS
TDOD
ADCOUT
Figure 32: Audio Interface Slave Mode Timing Diagram
14.2 AUDIO INTERFACE IN MASTER MODE
BCLK
(Master)
TFSD
TFSD
FS
(Master)
TDOD
ADCOUT
Figure 33: Audio Interface in Master Mode Timing Diagram
emPowerAudio™
Datasheet Revision 2.5
Page 81 of 92
March, 2014
NAU8502
14.3 PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data)
TBCK
BCLK
(Slave)
TFSH
TRISE
TBCKH
TFSH
TFSS
FS
(Slave)
TFALL
TBCKL
TFSS
TDOD
ADCOUT
MSB
Figure 34: PCM Audio Interface Slave Mode Timing Diagram
14.4 PCM AUDIO INTERFACE IN MASTER MODE (PCM Audo Data)
BCLK
(Master)
FS
(Master)
TFSD
TFSD
TFSD
TDOD
MSB
ADCOUT
Figure 35: PCM Audio Interface Slave Mode Timing Diagram
emPowerAudio™
Datasheet Revision 2.5
Page 82 of 92
March, 2014
NAU8502
14.5 PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode )
TBCK
BCLK
(Slave)
TFSH
TRISE
TBCKH
TFSH
TFSS
FS
(Slave)
TFALL
TBCKL
TFSS
TDOD
ADCOUT
MSB
Figure 36: PCM Audio Interface Slave Mode (PCM Time Slot Mode )Timing Diagram
14.6 PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode )
BCLK
(Master)
TFSD
TFSD
FS
(Master)
TDOD
ADCOUT
MSB
Figure 37: PCM Audio Interface Master Mode (PCM Time Slot Mode )Timing Diagram
emPowerAudio™
Datasheet Revision 2.5
Page 83 of 92
March, 2014
NAU8502
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
TBCK
BSCK Cycle Time (Slave Mode)
50
---
---
ns
TBCKH
BSCK High Pulse Width (Slave Mode)
20
---
---
ns
TBCKL
BSCK Low Pulse Width (Slave Mode)
20
---
---
ns
TFSS
fs to SCK Rising Edge Setup Time (Slave Mode)
20
---
---
ns
TFSH
SCK Rising Edge to fs Hold Time (Slave Mode)
20
---
---
ns
TFSD
fs to SCK falling to fs transition (Master Mode)
---
---
10
ns
TRISE
Rise Time for All Audio Interface Signals
---
---
0.135TBCK
ns
TFALL
Fall Time for All Audio Interface Signals
---
---
0.135TBCK
ns
TDIS
ADCIN to SCK Rising Edge Setup Time
15
---
---
ns
TDIH
SCK Rising Edge to ADCIN Hold Time
15
---
---
ns
Table 34: Audio Interface Timing Parameters
14.7 System Clock (MCLK) Timing Diagram
TMCLKH
MCLK
TMCLKL
Figure 38: MCLK Timing Diagram
PARAMETER
MCLK Duty Cycle
SYMBOL
TMCLKDC
TEST CONDITIONS
MIN
60:40
TYP
MAX
40:60
UNIT
MCLK High Pulse Width
TMCLKH
20
---
---
ns
MCLK Low Pulse Width
TMCLKL
20
---
---
ns
Table 35: MCLK Timing Parameter
emPowerAudio™
Datasheet Revision 2.5
Page 84 of 92
March, 2014
NAU8502
14.8 µ-LAW ENCODE DECODE CHARACTERISTICS
Normalized
Encode
Decision
Levels
Digital Code
D4
D3
D2
D1
D0
Step
Step
Step
Step
Normalized
Decode
Levels
0
0
0
0
0
8031
:
:
:
:
:
:
:
0
0
0
1
1
1
1
4191
:
:
:
:
:
:
:
:
:
1
0
0
1
1
1
1
1
2079
:
:
:
:
:
:
:
:
:
1
0
1
0
1
1
1
1
1023
:
:
:
:
:
:
:
:
:
1
0
1
1
1
1
1
1
495
:
:
:
:
:
:
:
:
:
1
1
0
0
1
1
1
1
231
:
:
:
:
:
:
:
:
:
1
1
0
1
1
1
1
1
99
:
:
:
:
:
:
:
:
:
D7
D6
D5
Sign
Chord
Chord
Chord
1
0
0
:
:
1
8159
7903
:
4319
4063
:
2143
2015
:
1055
991
:
511
479
:
239
223
:
103
95
:
35
1
1
1
0
1
1
1
1
33
31
:
3
:
:
:
:
:
:
:
:
:
1
1
:
1
1
:
1
1
:
1
1
:
1
1
:
1
1
:
1
1
:
1
0
:
1
2
:
0
0
Notes:
Sign bit = 0 for negative values, sign bit = 1 for positive values
emPowerAudio™
Datasheet Revision 2.5
Page 85 of 92
March, 2014
NAU8502
14.9 A-LAW ENCODE DECODE CHARACTERISTICS
Normalized
Encode
Decision
Levels
Digital Code
D4
D3
D2
D1
D0
Step
Step
Step
Step
Normalized
Decode
Levels
0
1
0
1
0
4032
:
:
:
:
:
:
:
0
1
0
0
1
0
1
2112
:
:
:
:
:
:
:
:
:
1
0
1
1
0
1
0
1
1056
:
:
:
:
:
:
:
:
:
1
0
0
0
0
1
0
1
528
:
:
:
:
:
:
:
:
:
1
0
0
1
0
1
0
1
264
:
:
:
:
:
:
:
:
:
1
1
1
0
0
1
0
1
132
:
:
:
:
:
:
:
:
:
1
1
1
0
0
1
0
1
66
:
:
:
:
:
:
:
:
:
1
1
0
1
0
1
0
1
1
D7
D6
D5
Sign
Chord
Chord
Chord
1
0
1
:
:
1
4096
3968
:
2176
2048
:
1088
1024
:
544
512
:
272
256
:
136
128
:
68
64
:
2
0
Notes:
1. Sign bit = 0 for negative values, sign bit = 1 for positive values
2. Digital code includes inversion of all even number bits
emPowerAudio™
Datasheet Revision 2.5
Page 86 of 92
March, 2014
NAU8502
14.10
µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE
µ-Law
Level
A-Law
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
+ Full Scale
1
000
0000
1
010
1010
+ Zero
1
111
1111
1
101
0101
- Zero
0
111
1111
0
101
0101
- Full Scale
0
000
0000
0
010
1010
14.11
µ-LAW / A-LAW OUTPUT CODES (DIGITAL MW)
µ-Law
Sample
A-Law
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
1
0
001
1110
0
011
0100
2
0
000
1011
0
010
0001
3
0
000
1011
0
010
0001
4
0
001
1110
0
011
0100
5
1
001
1110
1
011
0100
6
1
000
1011
1
010
0001
7
1
000
1011
1
010
0001
8
1
001
1110
1
011
0100
emPowerAudio™
Datasheet Revision 2.5
Page 87 of 92
March, 2014
NAU8502
15 DIGITAL FILTER CHARACTERISTICS
PARAMETER
TEST
CONDITIONS
MIN
+/- 0.025dB
0
TYP
MAX
UNIT
ADC Filter
0.454*fs
Passband
-6dB
0.5*fs
Passband Ripple
+/-0.025
Stopband
dB
0.546*fs
Stopband
Attenuation
f > 0.546*fs
-60
Group Delay
dB
21/fs
ADC High Pass Filter
High Pass Filter
Corner Frequency
-3dB
3.7
-0.5dB
10.4
-0.1dB
21.6
Hz
Table 57 Digital Filter Characteristics
TERMINOLOGY
1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)
2. Pass-band Ripple – any variation of the frequency response in the pass-band region
3. Note that this delay applies only to the filters and does not include
emPowerAudio™
Datasheet Revision 2.5
Page 88 of 92
March, 2014
NAU8502
16 TYPICAL APPLICATION
2.2K ohm
2.2K ohm
1uF
1uF
4.7uF
1uF
1uF
2.2K ohm
2.2K ohm
P1IN
P2OUT
1uF
17
RLINOUT
1uF
18
MIC2N
19
MIC2P
20
MIC1P
21
MIC1N
22
24
1uF
23
P1OUT
LLINOUT
1uF
25
16
26
15
27
14
P2IN
1uF
VMID
VDDA/LDOVOUT
4.7uF
12
MICBIAS
10K ohm
4.7uF 5V
4.7uF
VSSA2
LDOENABLE
FS
ADCOUT
BCLK
MCLK
MODE
VSSD
VDDC
GPIO<1>
LDOVIN
8
9
7
32
6
10
5
31
4
11
1
SDIO
13
30
3
CSb
29
VDDB
VSSA1
2
GPIO<2>
NAU8502
Stereo AUDIO ADC
QFN 32-pin
28
SCLK
VREF
4.7uF
GPIO<3>/SO
0 Ohm
4.7uF
Figure 39: Application Diagram for 32-Pin QFN
Note 1: All non-polar capacitors are assumed to be low ESR type parts, such as with MLC construction or similar.
If capacitors are not low ESR, additional 0.1uF and/or 0.01uF capacitors may be necessary in parallel
with the bulk 4.7uF capacitors on the supply rails.
Note 2: Load resistors to ground on outputs may be helpful in some applications to insure a DC path for the
output capacitors to charge/discharge to the desired levels. If the output load is always present and the
output load provides a suitable DC path to ground, then the additional load resistors may not be
necessary. If needed, such load resistors are typically a high value, but a value dependent upon the
application requirements.
Note 3: To minimize pops and clicks, large polarized output capacitors should be a low leakage type.
Note 4: Depending on the microphone device and PGA gain settings, common mode rejection can be improved
by choosing the resistors on each node of the microphone such that the impedance presented to any
noise on either microphone wire is equal.
emPowerAudio™
Datasheet Revision 2.5
Page 89 of 92
March, 2014
NAU8502
17 PACKAGE SPECIFICATION
2
32-lead plastic QFN 32L; 5X5mm , 0.8mm thickness, 0.5mm lead pitch
QFN32 Package
emPowerAudio™
Datasheet Revision 2.5
Page 90 of 92
March, 2014
NAU8502
18
ORDERING INFORMATION
Nuvoton Part Number Description
NAU8502_ _
Package Material:
G
=
Pb-free Package
Package Type:
Y
=
32-Pin QFN Package
19
VERSION HISTORY
VERSION
DATE
0.99
June 2011
1.0
January , 2012
2.0
September,
2012
2.1
October, 2013
2.2
March, 2014
PAGE
88, 90
DESCRIPTION
Changed the package reference to 32 QFN from 24 Pin QFN
88
Corrected the 32QFN package diagram
79
Corrected 2 wire interface timing diagram
83
Corrected rising/fall time specification of I2S
88
Modified application circuit
2.3
Nov. 2014
79
Corrected Tsdios setup time
2.4
Jan 2015
1
Updated AECQ100 description
2.6
July 2015
emPowerAudio™
Datasheet Revision 2.5
25, 68
Change 3.7KHz to 3.7Hz
Page 91 of 92
March, 2014
NAU8502
Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property
damage. Such applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic
energy control instruments, airplane or spaceship instruments, the control or operation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types of safety devices, and other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the
damages and liabilities thus incurred by Nuvoton.
emPowerAudio™
Datasheet Revision 2.5
Page 92 of 92
March, 2014
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising