dvd player service manual


Add to my manuals
19 Pages

advertisement

dvd player service manual | Manualzz

DVD6000

DVD PLAYER

SERVICE MANUAL

1. G

ENERAL

D

ESCRIPTION

1.1

ZR36768

The ZR36768 Disc Loader Controller and Decoder Device can control disc loaders and read bitstreams using the following media: DVD-ROM, DVDRW, CD-DA, CD-ROM, CD-R and CD-R/W discs. The device can decode bitstreams and process navigation data of the following formats:

DVD-Video, DVD-Audio, CD-DA, VCD (Video-CD), SVCD (Super Video-CD) and MP3.

The features of this chip can be listed as follows:

Disc loader control and bitstream processing

• 8 analog inputs (low frequency) for servo errors and RF signals envelope monitoring

• 11 actuators drive or control outputs. Two analog outputs through 11 bits DACs (e.g. for the tracking and focus coils), and 9 PWM outputs divided into two type groups: High frequency,

“uniform” type PWMs (e.g. for the spindle and sled motor drives), and lower frequency

“regular” type PWMs, which can be used e.g. for programmed tray motion or RF amplifier parameter setting.

• Processing of spindle and sled position read-back devices

• All servo loop closure, closed loop control and error handling.

• Bitstream extraction using AGC, bit clock frequency detection and phase lock loop, adaptive threshold calculations, Viterbi bit decision, defect detection, frame sync detection and EFM/P conversion.

• CD sub-code extraction and processing.

• CD ECC for all CD types. CD EDC for Mode 1 discs

• DVD ECC and EDC.

• Track buffer and re-try management

Decoding

• Single chip solution for playback of DVD-Video, DVD-Audio Video-CD, Super Video-CD, CD-

DA, and MP3 from CD-ROM, CD-R or CD-R/W.

• Decoding and display of high resolution MPEG 1 and MPEG 2 still image sequences

(including ASVs from DVD-Audio but without the transition effects).

• Decoding of Dolby AC-3, DTS or MLP multi-channel audio.

• Decoding of MPEG 1 or MPEG 2 layer II mono, stereo, or multi-channel audio. Decoding of

MPEG 1 or MPEG 2 Layer 3 (MP3) mono and stereo audio.

• PCM and LPCM audio playback from DVD-Video, DVD-Audio, Video-CD and CD-DA.

• Decoding and playback of sub-picture (including Highlight), and closed captions (“line 21”) data from DVD-Video discs.

• Interlaced digital and analog video output or progressive analog video output.

• NTSC and PAL standards. PAL playback of NTSC discs and NTSC playback of PAL discs.

• Special modes support like pause, slow motion, fast forward and reverse.

Post Processing

• Audio down mixing, sample rate conversion, Dolby's pro-logic and 3D enhancement.

• Karaoke mixing of decoded audio and two channels of input audio.

• On-chip OSD engine with 32 color (24-bit YUV) palette, up to 8 levels of transparency; and capability of blinking regions and vertical scrolling.

• On-screen and off-screen OSD memory regions for animation support.

• 1/4 pixel and 1/4 line pan&scan

2

• Horizontal and vertical up- and down-scaling with polyphase two-tap vertical and horizontal interpolation.

• Letterbox and Pan-scan display aspect ratio conversion (16:9 to 4:3)

• Automatic frame rate conversion (e.g., 3/2 pull down) and format conversion (16:9, 4:3, 1:1).

• EIA-608 compatible modulation of line 21 (NTSC) or line 22 (PAL) closed captions data over the video output.

• Edge adaptive, two fields, de-interlacing generating a progressive analog video output.

Interfaces

• 8-bit YUV 4:2:2 digital interlaced video output.

• Composite, Y/C, YUV or RGB interlaced analog video output or component progressive analog video output (using 10 bits on-chip DACs)

• Internally generated video sync signals and internally generated audio port clock signals.

• 6/18/20/24-bit I2S or EIAJ serial audio outputs. 16 bit I2S EIAJ serial audio input

• 2 to 8 channels audio output. 2 channels audio input

• S/PDIF output for compressed audio (including DTS) or reconstructed audio (according to

IEC 958 and its extensions).

• Single 64-Mbit, single 16-Mbits and dual 16 Mbits SDRAMs (16 bits data)

• Direct interface (through RF and servo amplifiers) to several types of disc loaders.

• SW controlled GPIO to interface to IR remote control receiver, front panel concentrator, audio

DACs and ADC, etc.’, e.g. using I2C, SPI and other protocols.

• 3 line serial general purpose slave interface (SSC)

• 2 UART interfaces for CPU SW debug

• JTAG interfaces for CPU, ADP and DSP SW debug

Physical Features

• Dual supply: 1.8V for the core and PLL, and 3.3V for the I/O and DACs.

• 208 pin, PQFP package.

• TTL I/O levels. 5V tolerance on many inputs.

• Single 27MHz crystal/clock input.

• 5 layer metal, 0.18 micron technology.

• Less than 1.6 W power consumption during operation.

• Several power-down modes

1.2 M

EMORY

1.2.1

SDRAM Memory Interface

The ZR36768 provides 16-bit interface to DRAM memory devices used as OSD, MPEG stream and video buffer memory for a DVD player. The maximum amount of memory supported is 8 MB of Synchronous DRAM (SDRAM). The memory interface is configurable in depth to support 64-Mb addressing.

1.3 D

RIVE

I

NTERFACES

The ZR36768 supports d irect interface (through RF and servo amplifiers) to several types of disc loaders.

1.4 F

RONT

P

ANEL

The front panel is based around a Futaba VFD and a Princeton front panel controller chip, (PT6311). The ZR36768 controls the PT16311 using several control signals, (clock, data, chip select). The infrared remote control signal is passed directly to the ZR36768 for decoding.

3

1.5 R

EAR

P

ANEL

A typical rear panel supports:

- Six channel or two channel audio outputs

- Optical and coax S/PDIF outputs.

- Composite, S-Video, and SCART outputs

Outputs provided by ZR36768 are Composite, Y/C, YUV or RGB interlaced analog video output or component progressive analog video output (using 10 bits on-chip DACs). DVD6000 rear panel has Composite and S-video otputs on it.

ZR36768 provides 2 to 8 channels audio output. DVD6000 has 2 channels audio output on its rear panel. The rear panel has S/PDIF serial stream and optical output generated by the

ZR36768. CS4392 Audio DACs are used for two channel audio output with ZR36768.

2. S

YSTEM

B

LOCK

D

IAGRAM and

ZR36768 P

IN

D

ESCRIPTION

2.1

ZR36768 PIN DESCRIPTION

Pin No Pin Functions Direction Description

CPU Interface (15 pins)

DUPTD0 //

153

GPCI/O[36]

O //

I/O

DUPRD0 //

152

GPCI/O[35]

DUPTD1 //

156

GPCI/O[38]

DUPRD1 //

155

GPCI/O[37]

I //

I/O

O //

I/O

I //

I/O

GPCI/O[20]

106

CPUNMI //

I/O //

I //

SDATA[0] // I //

PM[0] O

108

109

ICGPCI/O[0]

AOUT[3] //

I/O //

O //

SDATA[1] // //

PM[1] O

IDGPCI/O[0] // I/O //

First debug UART data output //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW

First debug UART data input //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW

Second debug UART data output //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW

Second debug UART data input //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW

General purpose input/output pin, monitored/controlled by the CPU or DSP

CPU non-maskable interrupt input //

SERVO channel sample data input for AFE by-pass //

Probe mux data output

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the CPU //

Serial output of digital stereo audio //

SERVO channel sample data input for AFE by-pass //

Probe mux data output

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the DSP //

4

SDATA[2] // I //

PM[2] O

149,147 GPCI/O[34-31] I/O

145,136

148,146

ICGPCI/O[5,4] I/O

150

IDGPCI/O[3] I/O

PLL Signals (4 pins)

139

RESET#

142

141

GCLKP

XO

ID

ID

AO

143

GCLKA ID

Analog Video Port, (5 pins)

AO CVBS/G/Y

158

(DAC A)

AO Y/R/V/C

161

(DAC B)

C/B/U

162

(DAC C)

159

CVBS/C/Y

(DAC D)

AO

AO

SERVO channel sample data input for AFE by-pass //

Probe mux data output

General purpose input/output pins, monitored/controlled by the CPU or DSP

SW.

General purpose input/output pins monitored/controlled by the CPU or DSP

SW. When input, the pins can be used as general purpose external interrupts

to the CPU

General purpose input/output pins, monitored/controlled by the CPU or DSP

SW. When input, the pins can be used as general purpose external interrupts

to the DSP

Reset input (active low)

27.000MHz clock or crystal input for main processing clock generation.

Output to a crystal that is connected to GCLK. If a crystal is not used at

GCLK, XO must be left not connected.

27.000MHz clock input for audio master clock generation. In normal operation

must be connected to GCLKP

When the I64 outputs composite video, this line is CVBS

When the I64 outputs RGB, this line is the Green output

When the I64 outputs YUV, this line is the Y output

When the I64 outputs the composite video, this line is Y

When the I64 outputs RGB, this line is the Red output

When the I64 outputs YUV, this line is the V output

When the I64 outputs SCART, this line is the C output

When the I64 outputs the composite video, this line is C

When the I64 outputs RGB, this line is the Blue output

When the I64 outputs YUV, this line is the U output

The output on this line can be either CVBS or C or Y

The selection is independent of the selection of the other three DACs.

163

RSET AI Resistive load for gain adjustment of the DACs

Digital Video Port, CPU, DSP and ADP de-bug (11 pins)

VID[7] //

ICETMS //

128

DJTMS //

O //

I //

I //

GPCI/O[26] // I/O //

Digital video luma/chroma output, multiplexed in time according to the

CCIR656 standard (for interlaced video) or luma (for progressive) //

ADP debug interface //

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

DACTEST[7] I

VID[6] // O //

ICETDI //

129

DJTDI //

ICGPCI/O[2]//

I //

I/O //

I //

DACTEST[6] I

VID[5] // O //

DACs test input

Digital video luma/chroma output, multiplexed in time according to the

CCIR656 standard (for interlaced video) or luma (for progressive) //

ADP debug interface //

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the CPU//

DACs test input

Digital video luma/chroma output, multiplexed in time according to the

5

ICETDO //

130

DJTDO //

IDGPCI/O[1]//

O //

O //

I/O //

DACTEST[5] I

VID[4] //

ICETCK //

131

DJTCK //

I //

I //

GPCI/O[27]// I/O //

DACTEST[4]

O //

I

VID[3] // O //

DJTMS // I //

132

GPCI/O[28]// I/O //

DACTEST[3] // I //

SERVOCLK O

VID[2] // O //

DJTDI // I //

133

GPCI/O[29]// I/O //

DACTEST[2] // I //

SSEL[0] O

VID[1] //

DJTDO //

O //

O //

134

GPCI/O[30]// I/O //

DACTEST[1] // I //

SSEL[1] O

126

VID[0] // O //

I // DJTCK //

135

ICGPCI/O[3]// I/O //

DACTEST[0] // I //

SSEL[2]

VCLKx2 //

COSYNC //

O

O //

O //

ICGPCI/O[1]//

CJTMS //

PM[11]

I/O //

I //

DACTEST[10] // I //

O

CCIR656 standard (for interlaced video) or luma (for progressive) //

ADP debug interface //

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the DSP//

DACs test input

Digital video luma/chroma output, multiplexed in time according to the

CCIR656 standard (for interlaced video) or luma (for progressive) //

ADP debug interface /

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

DACs test input

Digital video luma/chroma output, multiplexed in time according to the

CCIR656 standard (for interlaced video) or luma (for progressive) //

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

DACs test input //

SERVO channel clock output for AFE by-pass

Digital video luma/chroma output, multiplexed in time according to the

CCIR656 standard (for interlaced video) or luma (for progressive) //

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

DACs test input //

SERVO channel select output for AFE by-pass

Digital video luma/chroma output, multiplexed in time according to the

CCIR656 standard (for interlaced video) or luma (for progressive) //

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

DACs test input //

SERVO channel select output for AFE by-pass

Digital video luma/chroma output, multiplexed in time according to the

CCIR656 standard (for interlaced video) or luma (for progressive) //

DSP debug interface //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the CPU //

DACs test input //

SERVO channel select output for AFE by-pass

Digital video clock output. 27.000MHz //

Composite sync output. Active only when component analog output is

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the CPU //

CPU debug interface //

DACs test input //

Probe mux data output

6

122

124

HSYNC# //

GPCI/O[25]//

CJTDO //

PM[10]

VSYNC# //

GPCI/O[24]//

O //

I/O //

O //

DACTEST[8] // I //

O

O //

I/O //

Digital video horizontal sync signal//

General purpose input/output pin, monitored/controlled by the CPU or DSP

CPU debug interface //

DACs test input //

Probe mux data output

Digital video vertical sync signal//

General purpose input/output pin, monitored/controlled by the CPU or DSP

CJTDI // I //

DACTEST[9] // I //

PM[9] O

CPU debug interface //

DACs test input //

Probe mux data output

Digital Audio Port and CPU de-bug (9 pins)

AIN // I //

GPCI/O[23]// I/O //

Serial input of digital stereo audio //

General purpose input/output pin, monitored/controlled by the CPU or DSP

120

CJTCK //

PM[8]

I //

O

CPU debug interface //

Probe mux data output

118

AMCLK I/O Audio Master Clock input/output. 128, 192, 256 or 384 times the sampling

(programmable).

S/PDIF // O //

110

SDATA[3] // I //

PM[3] O

S/PDIF transmitter output for digital coded or reconstructed audio data //

SERVO channel sample data input for AFE by-pass //

Probe mux data output

Serial outputs of digital stereo audio //

General purpose input/output pin, monitored/controlled by the CPU or DSP

111,112

AOUT[2,1] // O //

GPCI/O[21,22] I/O //

SDATA[4,5] I //

PM[4,5] O

O AOUT[0] //

113

SDATA[6] //

PM[6]

115

ALRCLK

116

ABCLK

O

O

GPAI/O // I/O //

114

AOUT[3] //

SDATA[7] //

O //

I //

PM[7] O

SERVO channel sample data inputs for AFE by-pass //

Probe mux data outputs

Serial output of digital stereo audio //

SERVO channel sample data input for AFE by-pass //

Probe mux data outputs

Digital audio left/right select output for the audio port. Square wave, at the

sampling frequency. Programmable polarity

Digital audio bit-clock output. Data on AOUT and AIN is output or latched,

respectively, with the rising or falling (programmable) edge of this clock.

General purpose input/output pin, monitored/controlled by the ADP SW //

Serial output of digital stereo audio //

SERVO channel sample data input for AFE by-pass //

Probe mux data output

Loader interface, RF amplifier interface, AV bitstream interface (28 pins)

185,184 VBIASS[1,0] AI

169,167 DACDRIVE[1,0] AO

Servo analog signal reference voltage inputs

Drive DACs output signals

PWMACT[0] O //

GPCI/O[39] I/O //

PWM0 output signal //

General purpose input/output pin, monitored/controlled by the CPU or DSP

187

DVDDAT[0]

NRZDATA

GPCI/O[40]

I //

I

PWMACT[1] O //

I/O //

DVD-DSP data input for FE by-pass //

NRZ data input for AFE and DRC by-pass

PWM1 output signal //

General purpose input/output pin, monitored/controlled by the CPU or DSP

7

188

205

DVDDAT[1] I //

NRZCLK I

SLEDPULSE I //

IDGPCI/O[6] // I/O //

DVDSOS I

SPINDLE

PULSE //

I //

206

IDGPCI/O[7] I/O

172

RFINP AI

173

RFINN AI

ADCIN[7] // AI //

124

AFETESTN AI/O

ADCIN[6] //

125

AFETESTP

AI //

AI/O

178-183 ADCIN[5-0] AI

PWMCO[0] // O //

GPCI/O[41] // I/O //

189

DVDDAT[2] //

NRZLOCK

I //

I

PWMCO[1] // O //

GPCI/O[42] // I/O //

191

DVDDAT[3] //

NRZDFCT

I //

I

PWMCO[5-2] O //

198,196, GPCI/O[46-43] I/O //

194,193

DVDDAT[7-4] I //

RFDAT[3-0] I

199

203

PWMCO[6] // O //

IDGPCI/O[4] // I/O //

DVDREQ //

RFDAT[4]

DVDERR //

RFCLK //

PM[12]

DEFECT //

O //

O

ICGPCI/O[7] // I/O //

I //

O //

O

I/O //

IDGPCI/O[5] // I/O //

DVD-DSP data input for FE by-pass //

NRZ clock input for AFE and DRC by-pass

Sled optical encoder input //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the DSP //

AV start of sector indication input for FE by-pass. Programmable polarity

Spindle optical encoder input //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the DSP

RF positive input signal (differential input) // RF input signal (single ended)

RF negative input signal (differential input) // RF reference input signal

SERVO ADC input signal from RF amplifier //

AFE test differential signal, input or output. AFETESTN carries the negative

Signal

SERVO ADC input signal from RF amplifier //

AFE test differential signal, input or output. AFETESTP carries the positive

Signal

SERVO ADC input signals from RF amplifier

PWM2 output signal //

General purpose input/output pin, monitored/controlled by the CPU or DSP

DVD-DSP data input for FE by-pass //

NRZ lock input for AFE and DRC by-pass

PWM3 output signal //

General purpose input/output pin, monitored/controlled by the CPU or DSP

DVD-DSP data input for FE by-pass //

NRZ defect input for AFE and DRC by-pass

PWM4 to PWM7 output signals //

General purpose input/output pins, monitored/controlled by the CPU or DSP

DVD-DSP data inputs for FE by-pass //

RF channel sample data inputs for AFE by-pass

PWM8 output signal //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the DSP //

DVD-DSP data request output for FE by-pass. Programmable polarity //

RF channel sample data inputs for AFE by-pass

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the CPU //

DVD-DSP error input for FE by-pass. Programmable polarity//

RF channel sampling clock output for AFE by-pass //

Probe mux data output

Disc defect input or output signal //

General purpose input/output pin, monitored/controlled by the CPU or DSP

8

200

201

DVDVALID //

PM[16]

DVDSTRB // O //

RFDAT[5] I

ICGPCI/O[6] // I/O //

I //

O

SDRAM Interface (36 pins)

103,100,

98,94,90

,88,85,8

2,84,86,

89,92,96

,99,102,

104

RAMDAT[15-0] I/O

SW. When input, the pin can be used as general purpose external interrupt

to the DSP //

AV data bit strobe (clock) input for FE by-pass. Programmable polarity //

RF channel sample data inputs for AFE by-pass

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW. When input, the pin can be used as general purpose external interrupt

to the CPU //

AV data valid input for FE by-pass. Programmable polarity //

Probe mux data output

SDRAM bidirectional data bus

69,65,67

,63,60,5

7,55,53,

54,56,59

,61

RAMADD[11-0] O SDRAM address bus output

74

RAMRAS# O SDRAM row select (active low) output

75

RAMCAS# O SDRAM select (active low) output

80

PCLK O SDRAM clock output (same as internal processing clock).

78

RAMDQM O masking (active high) output

71

RAMBA[0] O

70

RAMCS[0]# // O

RAMBA[1]

73

RAMCS[1]# O

77

RAMWE# O

SSC Interface (3 pins)

SSCTXD // O //

208

GPCI/O[16] // I/O //

PM[14] O

SDRAM bank select output

SDRAM chip select (active low) //

SDRAM bank select output

SDRAM chip select (active low) output

SDRAM write enable (active low) output.

SSC data output signal //

General purpose input/output pin, monitored/controlled by the CPU or DSP

Probe mux data output

SSC data input. //

General purpose input/output pin, monitored/controlled by the CPU or DSP

SSCRXD // I //

1

GPCI/O[17] // I/O //

PM[15]

SSCCLK //

O

I/O //

207

GPCI/O[47] // I/O //

PM[13] O

PNVM/SRAM Interface (41 pins)

Probe mux data output

SSC clock input signal or output //

General purpose input/output pin, monitored/controlled by the CPU or DSP

Probe mux data output

9

9,14,18,

22,26,30

,35,39,1

1,16,19,

24,27,33

,37,42

MEMDA[15-0] I/O PNVM/SRAM bidirectional data bus

20

MEMAD[20] //

MEMCS[2]# //

GPCI/O[19]

O //

O //

I/O

28

MEMAD[19] // O //

PLLSEL I

31,34,5,

4,6

MEMAD[18-14] O

PNVM/SRAM address bus outputs //

PNVM/SRAM chip select (active low) output//

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW

PNVM/SRAM address bus outputs //

PLL frequency selection - 108 MHz (low) or 135 MHz (high). Level sampled

PNVM/SRAM address bus outputs

MEMAD[13] // O //

7

AFETESTEN I

MEMAD[12] // O //

8

PLLCFGA I

PNVM/SRAM address bus output //

Audio PLL configuration input. Level sampled during RESET. In normal

operation the pin must be low during RESET

PNVM/SRAM address bus output //

AFE test mode enable input. Level sampled during RESET. In normal operation

the pin must be low during RESET

MEMAD[11] // O // PNVM/SRAM address bus output //

10

PLLCFGP I configuration input. Level sampled during RESET. In normal

MEMAD[10] // O //

13

TESTMODE I

operation the pin must be low during RESET

PNVM/SRAM address bus output //

Operational mode selection. Level sampled during RESET. In normal operation

the pin must be low during RESET.

PNVM/SRAM address bus outputs

15,17,36

,38,40,4

3,45,46

MEMAD[9-2] O

48,49

MEMAD[1,0] // O //

BOOTSEL[2,1] I

MEMAD[0] // O //

49

BOOTSEL1 I

23

MEMWR#

44

MEMRD#

O

O

47

MEMCS[0]# O

MEMCS[1]# // O //

2

GPCI/O[18] I/O

Power Signals (56 pins)

PNVM/SRAM address bus output //

CPU SW boot (and execute) source selection:

(high, high) - For production testing;

(high, low) - Flash+SRAM (for debug monitor);

(low, high) - First debug UART; (low, low) - Flash (low) or

Level sampled during RESET

PNVM/SRAM address bus output //

CPU SW boot (and execute) source selection - Flash (low) or first debug

UART (high). Level sampled during RESET

PNVM/SRAM write enable (active low) output.

PNVM/SRAM read enable (active low) output.

PNVM/SRAM chip select (active low) output

PNVM/SRAM chip select (active low) output//

General purpose input/output pin, monitored/controlled by the CPU or DSP

SW

10

12,32,50

,62,72,8

3,91,101

,107,125

,151,202

GNDP S Digital periphery ground of 3.3 V supply (12 pins)

3,21,41,

52,58,68

,76,87,9

7,105,12

7,144,20

4

VDDP S 3.3 V Digital periphery power supply. (13 pins)

51,154 VDDP-IP

117

GNDP-A2

119

VDDP-A2

79

GNDPCLK

81

VDDPCLK

29,66,95

,121,190

GNDC

25,64,93

,123,192

VDDC

S

S

S

S

S

S

S

3.3 V periphery reference voltage (2 pins)

Digital ground of filtered 3.3 V supply for AMCLK

3.3 V filtered digital power supply for AMCLK

Digital ground of filtered 3.3 V supply for PCLK

3.3 V filtered digital power supply for PCLK

Digital core ground of 1.8 V supply (5 pins)

1.8 V Digital core power supply. (5 pins)

138

GNDA

140

VDDA

160

VDDDAC

S

S

Ground plane of internal PLL circuit

1.8 V Power supply for internal PLL circuit

S 3.3 V Analog power supply for the video DACs

164

GNDDACP // S Grounds for the video DACs 3.3 V analog power supply (2 pins)

157

GNDDACD

165

GNDDABS2 S Common Ground for the video and SERVO DACs

166

GNDDACPS // S Grounds for the SERVO DAC 3.3 V analog power supply (2 pins)

170

GNDDACDS

174

GNDAFERF S

171

VDDAFERF S

186

GNDAFES S

Analog RF (AFE) ground of 3.3 V supply

3.3 V Analog RF (AFE) power supply

Analog SERVO (AFE) ground of 3.3 V supply

175

VDDAFES

168

VDDDACS

195

GNDPWMS S

197

VDDPWMS S

S

S

3.3 V Analog SERVO (AFE) power supply

3.3 V SERVO DACs power supply

SERVO PWMs ground of 3.3 V supply

3.3 V SERVO PWM power supply

11

2.2 SYSTEM BLOCK DIAGRAM

A sample system block diagram for the MT1379 DVD player board design is shown in the following figure:

3. A

UDIO

O

UTPUT

The ZR36768 supports two-channel to eight-channel analog audio output. This version has twochannel output.

The ZR36768 also provides digital output in S/PDIF format. The board supports both optical and coaxial SPDIF outputs.

4. A

UDIO

DAC

S

The ZR36768 supports several variations of an I

2

S type bus. The I

2 lines and three clock lines. The I

2

S format uses four stereo data

S data and clock lines can be connected directly to one or more audio DAC to generate analog audio output.

The two-channel DAC is a Cirrus Logic CS4392. The DACs support up to 192kHz sampling rate.

The outputs of the DACs are differential, not single ended so a buffering circuit is required. The buffer circuit use a National LM833 op-amp to perform the low-pass filtering and the buffering.

5 .VPU - V

IDEO

P

ROCESSING

U

NIT

The VPU is responsible for all video output processing and timing. It outputs 8 bit (CCIR 656 type) digital interlaced video and separate syncs. It can also output interlaced composite, S- or component analog video, or progressive components analog video.

The VPU units have two operating modes: Interlaced when the output is interlaced and

Progressive when the output is progressive. A two fields Deinterlacer can be used (as needed) for the decoded image.

The VPU has a sync generator and output unit. The sync signals are used by the sync receiver unit to generate all video timing for all other VPU units and timing signals for the CPU and PDU.

12

The image post-processing unit can scale the stored image (horizontally and vertically with scale ratios of 1/2 to 2) and shift it with 1/4 pixel resolution. Then, it can enhance the image and pad it with background colour.

In addition, the VPU has a DVD sub-picture decoding unit. The sub-picture is blended with the enhanced image. The resulting image is blended with an OSD image generated by a 2, 4 or 8 bits per pixel OSD Decoder. Finally, closed captions is added to generate the final digital video.

The final interlaced digital video is processed by the video encoder to generate six 10 bit video streams. One stream is composite video, the next two are the luma and composite chroma components of the Svideo format. The three other streams are color components, either Y,U,V or

R,G,B. Four of the sixstreams are converted to analog by four on-chip 54 MHz DACs. For three of the four DACs, the selected combination can be: (a) Interlaced composite and S-video; (b) Three interlaced components (either Y,U,V or R,G,B); (c) Three progressive Y,U,V components. For cases (a) and (b), the fourth DAC can output either the composite signal, the luma (Y) signal, or the chroma (C) signal of the S-Video.

The final progressive digital video is processed by the video encoder to generate three 10 bit video color components streams, either Y,U,V or R,G,B. The streams are converted to analog by three on-chip 54 MHz DACs. The fourth DAC has no output.

6. FLASH M

EMORY

The decoder board supports 70ns Flash memories. The CPU executes from a NOR type Flash memory with 16 bit data bus. Alternately, a compatible EPROM, PROM, OTPROM or masked

ROM can be connected.

7. S

ERIAL

EEPROM M

EMORY

An I2C serial EEPROM is used to store user configuration (i.e. language preferences, speaker setup, etc.) and software configuration.. Industry standard EEPROM range in size from

1kbit to 256kbit and share the same IC footprint and pinout. The default device is 2kbit, 256kx 8,

SOIC8 CSI 24WC02 or equivalent.

8. ADP - A

UDIO

D

ATA

P

ROCESSOR

The ADP is the audio processing unit of the I64. It is based on a 20 bits data and 32 bits instruction ADP44 core. The ADP core has attached to it 24 KWords (32 bits) instruction and data

ROM, 5 Kwords (32 bits) instruction RAM, 8 KWords (20 bits) data RAM, 1 KWords (20 bits) data

DMA caches, and several peripheral units mentioned below.

The peripherals are DMA interface unit, audio code interface unit, CPU and DVP interface unit, realtime clock unit, serial port unit, serial port PLL unit and interrupt handler.

All the ADP peripheral units are connected to the ADP core through the AP_Bus (audio peripherals bus). The interrupt handler is also connected directly to the interrupt port of the ADP core.

Several external pins (multiplexed with the digital video pins) can be used for debugging. This interface is usually called "ICE" (which is of course a mis-nomer as ICE means "In-Circuit

Emulation") but they are similar to JTAG.

13

9. PLL - P

ROCESSING

C

LOCK

G

ENERATION

U

NIT

The PLL unit consists of three sub-units:

The PLLa unit generates (under ADP control) the audio interface master clock (AMCLK). It has

13 bits of frequency multiply and divide factors. Its input can be a separate clock generator or be

(externally) tied to the clock generator or crystal input to the processing clock PLL (see below).

An external control pin can indicate by-pass of this PLL unit to be used mainly for testing or for low jitter operation.

The PLLp unit generates (under CPU control) the processing clocks. It has 8 bits of frequency multiply and 6 bits of divide ratios. In most cases the input clock frequency will be 27 MHz multiplied by 5 and divided by 1 to generate clk and PCLK with frequency of 135 MHz. An external control pin can indicate by-pass of this PLL unit to be used mainly for testing. The PLL also generates the 27 MHz video clock signal (clk27 and VCLKx2), the encoder and DACs 54

MHz processing signal (clk54), the RF channel ADC sampling clock (rf_clk) and the servo ADC and DACs sampling clock (adc_servo_clk).

The third unit is responsible to generate the internal reset signals to all I64 units after detecting a proper power-up condition or a proper external reset input signal.

10. F

RONT

P

ANEL

10.1 VFD C

ONTROLLER

The VFD controller is a PTC PT6311. This controller is not a processor, but does include a simple state machine, which scans the VFD and reads the front panel button matrix. The 6311 also includes RAM so it can store the current state of all the VFD icons and segments. Therefore, the 6311 needs only be accessed when the VFD status changes and when the button status is read. The ZR36768 can control this chip directly using PIO pins or can allow the front panel PIC to control the VFD.

11. C

ONNECTORS

11.1 SCART C

ONNECTORS

Pinout of the scart connector:

1

Æ Audio Right Out

2

Æ Audio Right In

3

Æ Audio Left / Monu Out

4

Æ Audio Gnd

5

Æ Blue Gnd

6

Æ Audio Left / Mono In

7

Æ Blue

8

Æ Control Voltage

9

Æ Green Gnd

10

Æ Comms Data 2

11

Æ Green

12

Æ Comms Data 1

14

13

Æ Red Gnd

14

Æ Comms Data Gnd

15

Æ Red

16

Æ Fast Blanking

17

Æ Video Gnd

18

Æ Fast Blanking Gnd

19

Æ Composite Video In

20

Æ Composite Video Out

21

Æ Shield

Some cheaper SCART cables use unshielded wires, which is just about acceptable for short cable lengths. For longer lengths, shielded co-ax cable become essential.

Scart Signals:

Audio signals

0.5V RMS, <1K output impedance, >10K input impedance.

Red, Green, Blue

0.7Vpp ±2dB, 75R input and output impedance. Note that the Red connection (pin 20) can alternatively carry the S-Video Chrominance signal, which is 0.3V.

Composite Video / CSync

1Vpp including sync, ±2dB, 75R input and output impedance.Bandwidth = 25Hz to 4.8MHz for normal TV Video de-emphasis to CCIR 405.1 (625-line TV)

Fast Blanking

75R input and output impedance. This control voltage allows devices to over-ride the composite video input with RGB inputs, for example when inserting closed caption text. It is called fast because this can be done at the same speeds as other video signals, which is why it requires the same 75R impedances.

0 to 0.4V: TV is driven by the composite video input signal (pin 19).

Left unconnected, it is pulled to 0V by its 75R termination.

1V to 3V: the TV is driven by the signals Red, Green, Blue and composite sync. The latter is sent to the TV on pin 19. This signal is useful when using a TV to display the

RGB output of devices such as home computers with TV-compatible frame rates. Tying the signal to 5V via 100R forms a potential divider with the 75R termination, holding the signal at around 2V. Alternatively, if a TTL level (0 to 5V) negative sync pulse is available, this will be high during the display periods, so this can drive the blanking signal via a suitable resistor.

Control Voltage

0 to 2V = TV, Normal.

5 to 8V = TV wide screen

9.5 to 12V = AV mode

15

12.

CIRCUIT DESCRIPTION

12.1 POWER SUPPLY:

• Socket PL2 is the 220VAC input.

• 2.5A fuse F1 is used to protect the device against short circuit.

• Line filters and capacitors L1, C1, L5 and L6 are used to block the parasitic coming from the mains. They also prevent the noise, produced in the circuit, from being injected to the line.

• Voltage is rectified by using diodes D1, D2, D3 and D4. Using capacitor C3

(470

μf) a DC voltage is produced. (310- 320VDC).

• The current in the primary side of the transformer TR1 comes to the SMPS

IC (IC1 STR-A6351). The SMPS IC has a eight-pin DIP case.

• Voltages on the secondary side are as follows: -22V, -12V, 3.3V, 5V, 15V.

• IC3 TL431 is a constant current regulator. TL431 watches the 5 volts and supplies the required current to IC2. There are a LED and a photo transistor in IC2. The LED inside the IC2 transmits the value of the current from IC3 to phototransistor. Depending on the current gain of the phototransistor IC1 keeps the voltage on the 5-volt-winding constant.

• –22 Volts is used to feed the VFD (Vacuum Fluorescent Display) driver IC on the front panel.

12.2 FRONT PANEL:

• All the functions on the front panel are controlled by IC1 (ZR36768) on the mainboard.

• IC1 sends the commands to IC2 PT6311 via socket PL1 (pins 3,4 and 5).

• There are 16 keys scanning function, 2 LED outputs, 1 Stand-by output and

VFD drivers on IC2.

• Pin 52 is the oscillator pin and is connected via R5 56K.

• LED D6 is red in stand-by mode and green when the device is on. When entering stand-by mode, pin 48 goes HIGH (+5V) and controls the transistor

Q2 on the power board.

• Vacuum fluorescent display MD2 is specially designed for DVD.

• The scanned keys are transmitted via IC2 pin 5 and 6 to IC1 on the mainboard.

• IR remote control receiver module IC3 (TSOP1836) sends the commands from the remote control directly to U1.

• Socket PL2 carries the VFD filament voltage and –22 Volts.

12.3 BACK PANEL:

• There are 1 SCART connector (PL2), 2 pieces RCA audio jacks, for audio output, 1 coaxial digital audio output JK1 and 1 laser digital audio output MD1 on the back panel.

16

• TOTX176 is used for laser output.

• For coaxial audio output SPDIF is used.

• Q4, Q5, Q6, Q7, Q8 and Q9 transistors are to mute the audio outputs while switching the state of the unit(power on/off)

• There are two op-amps in U9, U12 and U14. They are used for left,right,rear left and right, subwoofer center audio channels. The feedback resistor is amplifying the gain.

• SCART pin 8 controls 16:9 and 4:3 mode using Q19, Q20, Q21 and Q22.

• When the pin8 output of the scart becomes 5 Volts, 4:3 mode is selected and

16:9 mode is selected when this output becomes 0. The circuit is adjusted to output 12 Volts for 4:3 mode and 6 Volts for 16:9 mode.

• Transistors Q19, Q20, Q21 and Q22 transmit these voltages when the device is turned on and cuts them off when it is turned off.

• FBL on pin 16 transmits 5 Volts via transistors Q17 and Q18 when the device is on.

• Socket PL2, which is coming from the mainboard, transmits RED, GREEN,

BLUE and VIDEO signals to SCART over the buffer stage.

• LUMA and CHROMA signals of S-Video are transmitted to S-Video socket via transistors Q25 - Q29, Q26 - Q30 respectively.

13.SOFWARE UPTATE

13.1 Universal Service Password for Parental Level = 1369

13.2 Version Page (Hidden Menu)

To see Version Page;

- Press DISPLAY button from remote

- Press “1”-“3”-“5”-“7” at Setup Menu

- Setup Menu screen refresh and “Version” selection can be seen under

“Preferences Setup”

- Select “Version” for Version Page

- First 6 lines contains current VERSION information.1st and 5th line is for customers

Other lines (Sub-Ver, 8032, Servo, Risc) for factory use only;

1st line contains build information example: 02.01.EF65

5th line contains hardware option example: A6AO1.bin

7th line contains Region Code (Management )

- Press “DISPLAY” button on remote control to exit hidden menu.

5 th

line also shows CD update file name. It defines also Hardware options.

17

13.3 Build Names for Hardware Options

DVD6000 MTK Concept has 3 different hardware option:

1. 2 OPU Option

2. 3 VFD Option +TV DVD

3. 4 DAC Option

4. 3 Language Group (19 Language total)

There is a naming standard for software builds according to player’s hardware options like;

X X X X X. bin

VFD

OPU

DAC

VFD Type: O = Old VFD / N = New small VFD / T = TV DVD/7 NoVFD

OPU Type: A = ASA SANYO HD60 / F = FUSS HITACHI HOP 1200

DAC Type: A6 = AK4356 / A2 = AK4382 / P6 = PCM1606 / C2 = CS4392

Example:

A6AO1.bin = AK4356, ASA, OLD VFD,Language Group 1

C2FN2.bin = CS4392 ,ASA, NEW small VFD, Language Group 2

Note: Update CD should have no volume ID.

13.4 CD UPTADE PROCEDURE:

1) Any Player can be updated automatically with Update CD which contains proper files (see Service Cd.Jpg )

2) Burn up CD within proper files

2) There should be no Volume Name for CD

3) Open Tray and place update CD

4) You can see "Upgrade File Detected. Press Play to start" OSD message

5) Press Play button to start upgrade

6) You can see "File copying" OSD message for a few second

7) Tray is open automatically

8) No need for CD in tray;Take it from tray.

9) During upgrade procedure "CD upgrade start, Please wait.." indicator at

OSD, and "UPG" indicator at VFD

10) Upgrade procedure takes about a few minutes, please wait if tray is open.

18

11) When CD update is finished tray is closed, screen is refreshed, update is finished.

12) To see Version Page;

- Press DISPLAY button from remote

- Press “1”-“3”-“5”-“7” at Setup Menu

- Setup Menu screen refresh and “Version” selection

can be seen under “Preferences Setup”

- Select “Version”or version Page

- 1st line contains release number like EFXX

- 5 th

line contains hardware options and build number

- Press “DISPLAY” button on remote control to exit hidden menu.

13.5 Region Management

At version Page by using arrow keys you can change region.

14.CIRCUIT SCHEMATICS :

Appendix A

19

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement