Rev 0p8; 4/13/2012 MAXIM CONFIDENTIAL Ultra Low Power Stereo Audio Codec _____________________ FEATURES The MAX98090 is a fully integrated audio codec whose high performance, ultra low power consumption and small footprint make it ideal for portable applications. AX P R IM E L C IM O I N NA FI D RY EN TI AL Stereo Class D speaker amplifiers provide efficient amplification. Low radiated emissions enable completely filterless operation. 102dB DR Stereo DAC (8kHz < Fs < 96kHz) < 4 mW Playback Power Consumption 95dB DR Stereo ADC (8kHz < Fs < 96kHz) < 4.5 mW Record Playback Power Consumption Stereo Low EMI Class D Amplifier, 950mW / Channel (8Ω , SPK_VDD = 4.2V) Stereo Ground Referenced Class H Headphone Amplifier Differential Earpiece Amplifier / Stereo Line Output 3 Stereo Single-Ended / Mono Differential Inputs (WLP version) FLEXSOUNDTM Technology Signal Processing o 7-Band Parametric EQ o ALC I2S / LJ / RJ / TDM Digital Audio Interface Supports Master Clock Frequencies from 256 x Fs to 60MHz RF Immune Analog Inputs and Outputs Extensive Click-and-Pop Reduction Circuitry I2C Programmable Control Interface Jack Detection 49-Bump 0.4mm WLP and 40-Pin TQFN MAX98090 __________ GENERAL DESCRIPTION The Class H headphone amplifiers provide a ground referenced output eliminating the need for large DC blocking capacitors. Class H operation power by a 1.8V supply ensures low power consumption and high efficiency. Also included is a differential receiver (earpiece) amplifier that can reconfigured as stereo line outputs. The MAX98090 features a highly flexible input scheme that includes six analog input pins that can be configured as microphone inputs or single ended line or differential inputs. The digital audio interface can accept standard PCM formats such as I2S, left-justified, rightjustified, and TDM as well as supporting sample rates from 8-96 kHz. The integrated FLEXSOUNDTM digital signal processing includes an Automatic level control and a seven band equalizer that can improve loudspeaker performance by optimizing the frequency response. ________ ORDERING INFORMATION PART MAX98090AEWJ+T MAX98090AETL+T MAX98090BEWJ+T MAX98090BETL+T TEMP RANGE -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 49 - WLP 40 - TQFN 49 - WLP 40 - TQFN M __________________________________________ SIMPLIFIED BLOCK DIAGRAM ___________________________________________________ Maxim Integrated Products 1 Rev 0p8; 4/13/2012 MAXIM CONFIDENTIAL _________________________________________________ TABLE OF CONTENTS General Description .............................................................................................................................................. 1 Features.................................................................................................................................................................. 1 Simplified Block Diagram ..................................................................................................................................... 1 Table of Contents .................................................................................................................................................. 2 Functional Diagram ............................................................................................................................................... 4 AX P R IM E L C IM O I N NA FI D RY EN TI AL Absolute Maximum Ratings ................................................................................................................................. 5 MAX98090 Ordering Information ............................................................................................................................................ 1 Package Thermal Characteristics ........................................................................................................................ 5 Electrical Characteristics ..................................................................................................................................... 6 Digital Input/Output Characteristics .................................................................................................................. 14 Input Clock Characteristics ................................................................................................................................ 15 Digital Audio Interface Timing Characteristics ................................................................................................ 16 I2C Timing Characteristics .................................................................................................................................. 20 Digital Microphone Timing Characteristics ...................................................................................................... 21 Power Consumption ........................................................................................................................................... 22 Typical Operating Characteristics ..................................................................................................................... 22 Bump Configuration (WLP) ................................................................................................................................ 58 Pin Configuration (TQFN) ................................................................................................................................... 59 Pin / Bump Description ....................................................................................................................................... 60 M Detailed Description............................................................................................................................................ 62 Device I2C Register Map ................................................................................................................................... 63 Power and Performance Management ............................................................................................................. 69 Device Performance Configuration............................................................................................................... 69 Device Enable Configuration ........................................................................................................................ 70 Analog Audio Input Configuration ..................................................................................................................... 72 Analog Microphone Inputs ............................................................................................................................ 73 Analog Microphone Bias .......................................................................................................................... 75 Digital Microphone Inputs ............................................................................................................................. 75 Analog Line Inputs ........................................................................................................................................ 77 Analog Full-Scale Direct to ADC Mixer Inputs .............................................................................................. 79 Analog Input to Analog Output Loopback ..................................................................................................... 79 Analog to Digital Converter (ADC) Configuration ............................................................................................. 80 ADC Input Mixer Configuration ..................................................................................................................... 80 ADC Output Digital Gain ............................................................................................................................... 81 ADC Output Sidetone ................................................................................................................................... 82 ADC Output Biquad Filter ............................................................................................................................. 83 Digital Audio Interface (DAI) Configuration ....................................................................................................... 84 Digital Data Path ........................................................................................................................................... 84 Digital Filtering .............................................................................................................................................. 85 DAI Clock Control ......................................................................................................................................... 86 Slave Mode .............................................................................................................................................. 87 Master Mode ............................................................................................................................................ 87 Clock Configuration .................................................................................................................................. 88 Frequency Ratio ....................................................................................................................................... 89 DAI TDM Mode ............................................................................................................................................. 91 Digital to Analog Converter (DAC) Configuration ......................................................................................... 92 DAC Input Digital Level ................................................................................................................................ 92 ___________________________________________________ Maxim Integrated Products 2 MAXIM CONFIDENTIAL AX P R IM E L C IM O I N NA FI D RY EN TI AL MAX98090 Voice Gain ................................................................................................................................................ 92 Playback Level ......................................................................................................................................... 92 Automatic Level Control ............................................................................................................................... 92 DAC Input Parametric Equalizer................................................................................................................... 94 Analog Audio Output Configuration .................................................................................................................. 96 Analog Receiver (Earpiece) Output .............................................................................................................. 97 Receiver Gain Control .............................................................................................................................. 98 Receiver Output Mixer.............................................................................................................................. 98 Analog Speaker Output ................................................................................................................................ 99 Speaker Class-D Output Amplifier ......................................................................................................... 100 Speaker Gain Control ............................................................................................................................. 100 Speaker Output Mixer ............................................................................................................................ 101 Analog Headphone Output ......................................................................................................................... 102 DirectDrive Headphone Amplifier ........................................................................................................... 105 Class H Operation .................................................................................................................................. 105 Charge Pump ......................................................................................................................................... 105 Headphone Gain Control........................................................................................................................ 105 Headphone Ground Sense .................................................................................................................... 105 Headphone Output Mixer ....................................................................................................................... 105 Analog Line Outputs ................................................................................................................................... 106 Line Output Gain Control........................................................................................................................ 108 Line Output Mixer ................................................................................................................................... 108 Click-and-Pop Reduction ................................................................................................................................ 109 Jack Detection ................................................................................................................................................ 110 Jack Insertion and Removal ....................................................................................................................... 110 Accessory Button Detection ....................................................................................................................... 110 Device Status Flags ........................................................................................................................................ 112 Status Flag Masking ................................................................................................................................... 113 Quick Setup Configuration .............................................................................................................................. 114 Software Reset ............................................................................................................................................... 116 Device Revision Identification ......................................................................................................................... 117 I2C Serial Interface .......................................................................................................................................... 117 Bit Transfer ................................................................................................................................................. 117 START and STOP Conditions .................................................................................................................... 117 Early STOP Conditions ............................................................................................................................... 117 Slave Address............................................................................................................................................. 117 Acknowledge .............................................................................................................................................. 118 Write Data Format ...................................................................................................................................... 118 Read Data Format ...................................................................................................................................... 119 M Applications Information .................................................................................................................................. 121 Typical Application Circuits ............................................................................................................................. 121 Startup / Shutdown Register Sequencing ....................................................................................................... 122 Component Selection...................................................................................................................................... 123 AC Coupling Capacitors ............................................................................................................................. 123 Charge-Pump Capacitor Selection ............................................................................................................. 124 Filterless Class D Speaker Operation............................................................................................................. 124 EMI Considerations and Optional Ferrite Bead Filter ................................................................................. 124 RF Susceptibility ............................................................................................................................................. 125 Supply Bypassing, Layout, and Grounding..................................................................................................... 125 Recommended PCB Routing .......................................................................................................................... 126 Unused Pins .................................................................................................................................................... 126 WLP Applications Information ......................................................................................................................... 126 Package Information ......................................................................................................................................... 127 Revision History ................................................................................................................................................ 130 _____________________________________________________________________ 3 MAXIM CONFIDENTIAL 37 (E2) 34 (F4) /IRQ\ 36 (D3) SCL SDA 28 (F6) DVDDIO 32 (F5) LRCLK 30 (E5) 33 (G5) BCLK I2C HIZOFF SDOEN MICCLK SDIN 31 (G6) SDOUT 27 (F7) DVDD 35 (G4) AVDD MCLK 26 (E7) 24 (E6) REF VCM CLOCK CONTROL BIAS VCM_MODE MAX98090 23 (D6) _______________________________________________ FUNCTIONAL DIAGRAM MAS MAS BIT CLOCK FRAME CLOCK SDIEN DATA INPUT AX P R IM E L C IM O I N NA FI D RY EN TI AL DATA OUTPUT LBEN LTEN MIXING AVL AVLG JACKSNS JACK DETECTION DV1G JDETEN JDWK JDEB SIDETONE HPF ADC_B_ ADCBQEN MICBIAS HPF DVST SINGLE BAND EQ AVBQ MBEN /EQCLP DIGITAL FILTERING DIGMICL ADLEN ADCHP OSR128 ADREN DACLEN MODE DACHP PERFMODE MIXADR LINMOD MIXRCVR MIXRCVRGAIN MIXSPLGAIN MIXSPL SPVOLL 6dB MIX SPKLGND SPKRVDD SPKRP SPKRN 6dB SPKRGND SPRM SPREN MIXHPLGAIN MIXHPL MIXHPLSEL (B3,B4) 14 16 (A4) 15 (A5) 17 (A6) 13 12 (A3) 11 (A2) 10 (A1) HPLEN HPLM HPVOLL MIX MAX98090 9 (B1) SPKVDD SPKLVDD SPKLP SPKLN SPLEN SPLM DACREN SPVOLR MIXSPR MIXSPRGAIN MIXGAIN2_4_6 IN5_6_DIFF IN6_SE_EN EXTBUF_B IN4_SE_EN LINE_B_EN IN2_SE_EN LINBPGA RCVN / LOUTR RCVRVOL RCVRM RCVREN +14dB to -48dB IN5 IN6 8 (C1) +8dB to -62dB +14dB to -48dB MIXADL RCVP / LOUTL +8dB to -62dB ALCATK ALCRLS ALCCMP ALCTHC MIX ADC L MIXER MIX IN1_SE_EN LINAPGA IN3_SE_EN LINE_A_EN IN5_SE_EN EXTBUF_A IN3_4_DIFF MIXGAIN1_3_5 MIXADL DAC L PGAM1 20 / 14 / 3 / 0 / -3 / -6dB MIX HPL 4 (E1) MIXADR 20 / 14 / 3 / 0 / -3 / -6dB IN4 IN3 EXTMIC PA2EN PGAM2 0 / 20 / 30dB +20dB to 0dB +3dB to -67dB HPS 5 (D2) +3dB to -67dB MIX ADC R MIXER 21 (C6) 20 (B6) ALC EQ3BANDEN EQ5BANDEN EQ7BANDEN DIGITAL FILTERING ADC R EXTMIC PA1EN ALCEN ALCEXP ALCTHE ALCG +20dB to 0dB ADC L IN1 / DMD1 IN2 / DMC1 DIGMICR SEVEN BAND EQ RCVLEN RCVLM RCVLVOL MIX 0 / 20 / 30dB (C4) (D4) MIXRCVLGAIN MIXRCVL DVEQ MODE 19 (A7) 18 (B7) DHPF DV1 DV1M FLEXSOUNDTM TECHNOLOGY MIX 22 (C7) DSTS AHPF DAC R 7 (B5) DMONO + AVR AVRG HPR MIXHPRSEL MIXHPR MIXHPRGAIN 6 (D1) HPVOLR HPRM HPREN CHARGE PUMP 38 (G3) 1 (G1) CPVSS C1N C1P 3 (F1) 2 (G2) 40 (F2) 39 (F3) 29 (G7) 25 (D7) CPVDD DGND AGND M HPVDD HPGND _____________________________________________________________________ 4 MAXIM CONFIDENTIAL ________________________________________ ABSOLUTE MAXIMUM RATINGS AX P R IM E L C IM O I N NA FI D RY EN TI AL HPSNS .................................. (HPGND - 0.3V) to (HPGND+0.3V) HPL, HPR .............................. (HPVSS - 0.3V) to (HPVDD+0.3V) RCVP, RCVN ................ (SPKLGND - 0.3V) to (SPKLVDD+0.3V) SPKLP, SPKLN ............. (SPKLGND - 0.3V) to (SPKLVDD+0.3V) SPKRP, SPKRN ........... (SPKRGND - 0.3V) to (SPKRVDD+0.3V) JACKSNS ............................................................... -0.3V to +6.0V Continuous Power Dissipation (TA=+70ºC) 49-Bump WLP (derate 23.8mW/ºC above +70ºC) .......... TBDW 40-Pin TQFN (derate 35.7mW/ºC above +70ºC) ............ 2.86W Operating Temp Range ............................................ -40C to +85C Storage Temp Range ............................................. -65C to +150C MAX98090 (Voltages with respect to AGND) AVDD, CPVDD, HPVDD ........................................ -0.3V to +2.2V SPKLVDD, SPKRVDD, DVDDIO............................-0.3V to +6.0V DGND, HPGND, SPKLGND, SPKRGND ............... -0.1V to +0.1V CPVSS ............................... (HPGND – 2.2V) to (HPGND + 0.3V) C1N ...................................... (HPVSS - 0.3V) to (HPGND + 0.3V) C1P....................................... (HPGND - 0.3V) to (HPVDD + 0.3V) MICBIAS ............................................. -0.3V to (SPKLVDD+0.3V) REF, VCM …….………………………….…-0.3V to (AVDD+0.3V) MCLK, SDIN, SDA, SCL, /IRQ\ .............................. -0.3V to +6.0V LRCLK, BCLK, SDOUT .......................... -0.3V to (DVDDIO+0.3V) IN1, IN2, IN3, IN4, IN5, IN6…………………………-0.3V to +2.2V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ________________________________ PACKAGE THERMAL CHARACTERISTICS 49-Bump WLP Junction-to-Ambient Thermal Resistance (θJA) ............ 42ºC/W Junction-to-Case Thermal Resistance (θJC) .................... 1ºC/W 40-Pin TQFN Junction-to-Ambient Thermal Resistance (θJA) ............ 28ºC/W Junction-to-Case Thermal Resistance (θJC) .................... 2ºC/W M Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, see www.maxim-ic.com/thermal-tutorial. _____________________________________________________________________ 5 MAXIM Confidential MAX98090 _____________________________________ ELECTRICAL CHARACTERISTICS (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER SUPPLY Guaranteed by PSRR (Note 12) 2.8 3.7 5.5 1.65 1.8 2 VDVDD 1.08 1.2 1.98 VDVDDIO 1.65 1.8 3.6 V AX P R IM E L C IM O I N NA FI D RY EN TI AL Supply Voltage Range VSPKLVDD, VSPKRVDD VAVDD, VHPVDD Full Duplex 8kHz Mono, Receiver Output Total Supply Current (Note 2) IVDD DAC Playback 48kHz Stereo, Headphone Outputs DAC Playback 48kHz Stereo, Speaker Outputs Analog 1.97 3.5 Speaker 0.70 2 Digital 0.71 1.2 Analog 1.45 2 Speaker 0 0.005 Digital 0.79 1.2 Analog 0.91 2 Speaker 2.21 3 Digital 0.80 1.2 REF Voltage 1.25 VCM Voltage Shutdown Supply Current (Note 2) VCM from Resistive Division (VCM_MODE = 0) 0.90 VCM from Bandgap (VCM_MODE = 1) 0.78 TA = +25ºC V V Analog 1 10 Speaker 1 5 2.1 20 Digital Shutdown to Full Operation mA μA 10 ms 97 dB 96 dB DIFFERENTIAL INPUT (MICROPHONE) TO ADC PATH Dynamic Range (Note 4) DR Total Harmonic Distortion + Noise Common-Mode Rejection Ratio THD+N CMRR AV_MICPRE_ = 0dB , fS = 48kHz, MODE = 1 (FIR Audio), A-weighting filter applied. AV_MICPRE_ = 0dB, fS = 8kHz, MODE = 0 (IIR Voice), A-weighting filter applied. AV_MICPRE = 20dB, VIN = 90mVRMS, f = 1kHz, -82 AV_MICPRE = 0dB, VIN = 900mVRMS, f = 1kHz -91 AV_MICPRE = 30dB, VIN = 28.5mVRMS, f = 1kHz -73 f = 217Hz, VIN_CM = 100mVP-P 59 VAVDD = 1.65V to 2.0V, input referred Power Supply Rejection Ratio (Note 12) M Path Phase Delay Gain Error PSRR 90 VRIPPLE = 100mVP-P, input referred, AV_MIC = AV_ADC = 0dB 1kHz, 0dB input, High pass filter disabled measured from analog input to digital output DC Accuracy 40 dB dB TBD f = 217Hz 78 f = 1kHz 78 f = 10kHz 77 MODE = 0 (IIR Voice); 8kHz MODE = 0 (IIR Voice); 16kHz MODE = 1 (FIR Audio) 8kHz MODE = 1 (FIR Audio) 48kHz -75 dB 2.2 1.1 ms 4.5 0.8 1 5 % _____________________________________________________________________ 6 MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIFFERENTIAL (MICROPHONE) PREAMP & PGA Full Scale Input AV_MICPRE_ = 0dB 1 PA_EN[1:0] = 01 AV_MICPRE_ Note 5 PA_EN[1:0] = 10 19.5 20 20.5 PA_EN[1:0] = 11 29.5 30 30.5 PGAM_[4:0] = 0x00 19.5 20 20.5 dB AX P R IM E L C IM O I N NA FI D RY EN TI AL Microphone Pre-Amplifier Gain VRMS 0 Microphone Level Adjust Gain (PGA) MIC Input Resistance AV_MICPGA_ RIN_MIC Note 5 PGAM_[4:0] = 0x14 All Gain Settings, measured at IN_ (measured single-ended). 0 30 50 dB kΩ MICROPHONE BIAS MICBIAS Output Voltage VMICBIAS ILOAD = 1mA, MBVSEL[1:0] = 00 TBD 2.2 TBD ILOAD = 1mA, MBVSEL[1:0] = 01 TBD 2.4 TBD ILOAD = 1mA, MBVSEL[1:0] = 10 TBD 2.57 TBD ILOAD = 1mA, MBVSEL[1:0] = 11 TBD 2.8 TBD 0.085 0.28 mV VSPKLVDD = 2.8V to 5.5V, MBVSEL[1:0] = 00 9.7 96 μV f = 217Hz, VRIPPLE (SPKLVDD) = 100mVP-P 70 f = 10kHz, VRIPPLE (SPKLVDD) = 100mVP-P 75 A-weighted, f = 20Hz – 20kHz 7.4 µVRMS f = 1kHz 52.3 nV/√Hz fS = 48kHz, fMCLK = 12.288MHz, MODE = 1 (FIR Audio) 98 dB VIN = 0.222VRMS, f = 1kHz -85 AV_LINEPGA = 0dB 0.5 Load Regulation ILOAD = 1mA to 2mA, MBVSEL[1:0] = 00 Line Regulation Ripple Rejection Noise Voltage V dB SINGLE-ENDED (LINE) INPUT TO ADC PATH Dynamic Range (Note 4) DR Total Harmonic Distortion + Noise THD+N -80 dB SINGLE ENDED (LINE) INPUT PGA Full Scale Input VIN Line Input Level Adjust Gain (PGA) Line Input Amplifier Gain Input Resistance Feedback Resistance AV_LINEPGA AV_LINEAMP RIN RIN_FB AV_EXTERNAL = -6dB, EXTBUF = 1 Note 5 VRMS 1 PGALIN = 0x0 19 20 21 PGALIN = 0x1 13 14 15 PGALIN = 0x2 2 3 4 PGALIN = 0x3 -1 0 1 PGALIN = 0x4 -4 -3 -2 PGALIN = 0x5, 0x6, 0x7 -7 -6 -5 Single Ended Only 6 AV_LINEPGA = 0dB 14 20 TA = +25ºC 19 20 AVL/AVR = 0xF to 0x0 (Note 5) -12 dB dB kΩ 21 kΩ 3 dB ADC LEVEL CONTROL ADC Level Adjust Range AV_ADCLVL ADC Level Adjust Step Size M ADC Gain Adjust Range ADC Gain Adjust Step Size 1 AV_ADCGAIN AVLG/AVRG = 0x0 to 0x3 (Note 5) 0 dB 18 6 dB dB _____________________________________________________________________ 7 MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS ADC DIGITAL FILTERS VOICE MODE IIR LOWPASS FILTER (MODE = 0) 0.445 x fS 0.449 x fS Ripple Limit Cutoff Pass band Cutoff fPLP Hz AX P R IM E L C IM O I N NA FI D RY EN TI AL -3dB Cutoff Pass band Ripple f < fPLP Stop band Cutoff -0.1 fSLP Stop band Attenuation (Note 6) f > fSLP 0.1 dB 0.47 x fS Hz 74 dB PROGRAMMALE BIQUAD FILTER Pre-Attenuator Gain Range -15 Pre-Attenuator Step Size 0 1 High Frequency Shelving Filter Minimum Cutoff Frequency Low Pass Filter Low Frequency Shelving Filter Peak Filter Maximum Q dB 0.0008 x fS 0.02 x fS 0.002 x fS 0.0008 x fS 0.0008 x fS High Pass Filter dB Hz Peak Filter 10 STEREO AUDIO MODE FIR LOWPASS FILTER (MODE = 1, DHF = 0, fLRCLK < 50kHz) 0.43 x fS 0.48 x fS 0.5 x fS Ripple Limit Cutoff Pass band Cutoff fPLP -3dB Cutoff -6.02dB Cutoff Pass band Ripple f < fPLP Stop band Cutoff Hz -0.1 fSLP Stop band Attenuation (Note 6) f < fSLP 0.1 dB 0.58 x fS Hz 60 dB 0.208 x fS 0.28 x fS Hz ADC STEREO AUDIO MODE FIR LOWPASS FILTER (MODE = 1, DHF = 1, fLRCLK > 50kHz) Ripple Limit Cutoff Pass band Cutoff fPLP -3dB Cutoff Pass band Ripple f < fPLP Stop band Cutoff -0.1 fSLP Stop band Attenuation f < fSLP 0.1 dB 0.45 x fS Hz 60 dB ADC DC BLOCKING HIGHPASS FILTER DC Attenuation AV_ADCHPF AHPF = 1 90 dB M ADC TO DAC DIGITAL SIDETONE (MODE = 0) Sidetone Level Adjust Range AV_STLVL DVST = 0x1F to 0x01 -60.5 Sidetone Level Adjust Step Size Sidetone Path Phase Delay -0.5 2 1kHz, 0dB input, High pass filter disabled 8kHz 1.8 16kHz 0.9 dB dB ms _____________________________________________________________________ 8 MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS ADC TO DAC DIGITAL LOOP-THROUGH PATH Dynamic Range (Note 4) DR Total Harmonic Distortion + Noise fS = 48kHz, fMCLK = 12.288MHz, MODE = 1 (FIR Audio) 97 THD+N fIN = 1kHz, fS = 48kHz, fMCLK = 12.288MHz, MODE = 1 (FIR Audio) -83 AV_DACLVL DV1 = 0xF to 0x0 (Note 5) dB -75 dB 0 dB DAC LEVEL CONTROL -15 AX P R IM E L C IM O I N NA FI D RY EN TI AL DAC Attenuation Range DAC Attenuation Step Size 1 DAC Gain Adjust Range AV_DACGAIN DV1G = 00 to 11 (Note 5) 0 DAC Gain Adjust Step Size dB 18 6 dB dB DAC DIGITAL FILTERS VOICE MODE IIR LOWPASS FILTER (MODE = 0) Pass band Cutoff Ripple Limit Cutoff 0.448 x fS -3dB Cutoff 0.451 x fS fPLP Pass band Ripple f < fPLP Stop band Cutoff Hz -0.1 fSLP Stop band Attenuation (Note 6) f > fSLP 0.1 dB 0.476 x fS Hz 75 dB STEREO AUDIO MODE FIR LOWPASS FILTER (MODE = 1, DHF = 0, fLRCLK < 50kHz) Ripple Limit Cutoff Pass band Cutoff fPLP -3dB Cutoff -6.02dB Cutoff Pass band Ripple f < fPLP Stop band Cutoff 0.43 x fS 0.47 x fS 0.5 x fS Hz -0.1 fSLP Stop band Attenuation (Note 6) f > fSLP 0.1 dB 0.58 x fS Hz 60 dB Ripple Limit Cutoff 0.24 x fS Hz -3dB Cutoff 0.31 x fS f < fPLP -0.1 STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF = 1 for fLRCLK > 50kHz) fPLP Pass band Cutoff Pass band Ripple Stop band Cutoff fSLP Stop band Attenuation (Note 6) f < fSLP 0.1 dB 0.477 x fS Hz 60 dB DAC DC BLOCKING HIGHPASS FILTER DC Attenuation AV_DACHPF DHPF = 1 89 dB AUTOMATIC LEVEL CONTROL M Gain Range Compression Threshold Verify – EC table master states -35 but description doesn’t match Expansion Threshold Attack Time Release Time Discuss – EV-kit does not match Austin - faster 0 12 dB -31 0 dBFS -66 -35 dBFS 0.0005 0.2 s 0.0625 8 s _____________________________________________________________________ 9 MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN PARAMETRIC EQUALIZER Number of Bands Per Band Gain Range -12 Pre-Attenuator Gain Range -15 TYP MAX UNITS 12 Bands dB 0 dB 7 Pre-Attenuator Step Size 1 dB 0.0008 x fS 0.02 x fS 0.002 x fS 0.0008 x fS 0.0008 x fS AX P R IM E L C IM O I N NA FI D RY EN TI AL High Pass Filter High Frequency Shelving Filter Minimum Cutoff Frequency Low Pass Filter Low Frequency Shelving Filter Peak Filter Maximum Q Hz Peak Filter 10 DAC TO RECEIVER AMPLIFIER PATH Dynamic Range (Note 4) DR Total Harmonic Distortion + Noise THD+N fS = 48kHz, fMCLK = 12.288MHz 100 f = 1kHz, POUT = 20mW, RREC = 32Ω -68 dB -58 dB ANALOG INPUT TO RECEIVER AMPLIFIER PATH Dynamic Range (Note 4) DR Total Harmonic Distortion + Noise 93 THD+N SPKLVDD = 2.8V to 5.5V Power Supply Rejection Ratio (Note 12) PSRR VRIPPLE = 100mVP-P 72 96 dB -71 dB 80 f = 217Hz 77 f = 1kHz 77 f = 10kHz 69 dB RECEIVER AMPLIFIER (Note 7) Output Power POUT Full Scale Output RREC = 32Ω, f = 1kHz, THD < 1%, VCM_MODE = 0 97 RREC = 32Ω, f = 1kHz, THD < 1%, VCM_MODE = 1 74 AV_RECPGA = 0dB (Note 8) Receiver Volume Control (PGA) AV_RECPGA Volume Control Step Size (Note 13) Note 5 and Note 13 1 Output Offset Voltage -63 -61 -59 RCVLVOL = 0x1F +7.5 +8 +8.5 +8dB to +6dB 0.5 +6dB to +0dB 1 0dB to -14dB 2 -14dB to -38dB 3 Click and Pop Level M Capacitive Drive Capability KCP 88 No sustained oscillations dB 97 AV_REC = -62dB, TA = 25ºC Peak Voltage, A-weighted, 32 samples per second, AV_REC = 0dB dB 4 f = 1kHz VOS VRMS RCVLVOL = 0x00 -38dB to -62dB Mute Attenuation mW dB ±1 Into shutdown -67 Out of shutdown -68 RL = 32Ω RL = ∞ 500 100 mV dBV pF _____________________________________________________________________ 10 MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DAC TO LINEOUT AMPLIFIER PATH Dynamic Range (Note 4) DR Total Harmonic Distortion + Noise THD+N fS = 48kHz, fMCLK = 12.288MHz 100 f = 1kHz, RLOUT = 10KΩ (0.707VRMS Output Level) -86 dB -70 dB ANALOG INPUT TO LINE OUT AMPLIFIER PATH DR 98 dB -86 dB AX P R IM E L C IM O I N NA FI D RY EN TI AL Dynamic Range (Note 4) Total Harmonic Distortion + Noise THD+N f = 1kHz, RLOUT = 10KΩ (0.707VRMS Output Level) VSPK_VDD = 2.8V to 5.5V Power Supply Rejection Ratio (Note 12) PSRR VRIPPLE = 100mVP-P 60 74 74 74 73 f = 217Hz f = 1kHz f = 10kHz dB LINE OUT AMPLIFIER (Note 7) Full Scale Output AV_LOUT = 0dB (Note 8) Line Output Amplifier Gain 0.707 AV_LOUTAMP Line Output Volume Control (PGA) AV_LOUTPGA Volume Control Step Size (Note 13) VRMS -3 Note 5 and Note 13 -63 -61 -59 RCV_VOL = 0x1F +7.5 +8 +8.5 +8dB to +6dB 0.5 +6dB to +0dB 1 0dB to -14dB 2 -14dB to -38dB 3 -38dB to -62dB Mute Attenuation f = 1kHz Capacitive Drive Capability No sustained oscillations dB RCV_VOL = 0x00 dB dB 4 88 97 RLOUT = 1kΩ 500 RLOUT = ∞ 100 dB pF DAC TO SPEAKER AMPLIFIER PATH Dynamic Range (Note 4) DR AV_SPK = 0 dB 96 dB f = 1kHz, POUT = 200mW, ZSPK = 8Ω + 68µH, fMCLK = 12.288MHz -73 dB Crosstalk SPL to SPR and SPR to SPL, POUT = 640mW, f = 1kHz -108 Output Noise AV_SPK = 0dB 27 µVRMS AV_MIC = 0dB AV_SPK = 0 dB (Output referenced to 2Vrms) 94 dB f = 1kHz, POUT = 200mW, ZSPK = 8Ω + 8µH -73 dB 28 µVRMS Total Harmonic Distortion + Noise THD+N ANALOG INPUT TO SPEAKER AMPLIFIER PATH Dynamic Range (Note 4) DR Total Harmonic Distortion + Noise THD+N Output Noise VSPK_VDD= 2.8V to 5.5V PSRR VRIPPLE = 100mVP-P 80 68 f = 1kHz 67 f = 10kHz 61 dB M Power Supply Rejection Ratio (Note 12) 60 f = 217Hz _____________________________________________________________________ 11 MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS SPEAKER AMPLIFIER (Note 7) POUT f = 1kHz, THD < 1%, ZSPK = 8Ω + 68µH 950 730 SPK_VDD = 3.3V 580 SPK_VDD = 3.0V 400 mW AX P R IM E L C IM O I N NA FI D RY EN TI AL Output Power SPK_VDD = 4.2V SPK_VDD = 3.7V Full Scale Output Speaker Output Amplifier Gain AV_SPK = +6dB (Note 8) AV_SPKAMP Speaker Volume Control (PGA) AV_SPKPGA Note 5 and Note 13 2 +6 SPVOL_ = 0x00 -50 -48 -46 SPVOL_ = 0x1F +13.5 +14 +14.5 Mute Attenuation Output Offset Voltage VOS Click and Pop Level +9dB to -6dB 1 -6dB to -14dB 2 -14dB to -32dB 3 -32dB to -48dB 4 f = 1kHz 84 AV_SPKPGA = -62dB KCP Peak Voltage, A-weighted, 32 samples per second, AV_SPK = 0dB DR fS = 48kHz, fMCLK = 12.288MHz dB 0.5 +14dB to +9dB Volume Control Step Size (Note 13) VRMS dB ±0.5 Into shutdown -65 Out of shutdown -65 dB dB ±3 mV dBV DAC TO HEADPHONE AMPLIFIER PATH Dynamic Range (Note 4) Total Harmonic Distortion + Noise THD+N Crosstalk f = 1kHz, POUT = 10mW Master or Slave Mode Slave Mode RHP = 16Ω -88 RHP = 32Ω -86 PSRR -80 dB -88 f = 1kHz, VIN = -1dBFS, RHP = 10kΩ TBD dB HPL to HPR and HPR to HPL, POUT = 5mW, f = 1kHz, RHP = 32Ω TBD dB VRIPPLE = 100mVP-P, AV_HP = 0dB 70 85 f = 217Hz 79 f = 1kHz 79 f = 10kHz 74 MODE = 0 (IIR Voice); 8kHz DAC Path Phase Delay dB f = 1kHz, VOUT = 1VRMS, RHP = 10kΩ VAVDD = VHPVDD = 1.65V to 2.0V Power Supply Rejection Ratio (Note 12) 102 96 dB 2.2 1kHz, 0dB input, High pass filter MODE = 0 (IIR Voice); 16kHz disabled measured from digital input MODE = 1 (FIR Audio) 8kHz to analog output 1.1 MODE = 1 (FIR Audio) 48kHz 0.76 ms 2.5 1 Channel Gain Mismatch 1 5 % % M Gain Error _____________________________________________________________________ 12 MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS ANALOG INPUT TO HEADPHONE AMPLIFIER PATH Dynamic Range (Note 4) Total Harmonic Distortion + Noise THD+N AV_LINE = 0dB AV_HPPGA= 0 dB 101 VIN = 250mVRMS, f =1kHz -80 VAVDD = VHPVDD = 1.65V to 2.0V PSRR 60 f = 217Hz 61 f = 1kHz 61 f = 10kHz 60 dB AX P R IM E L C IM O I N NA FI D RY EN TI AL Power Supply Rejection Ratio (Note 12) 40 dB VRIPPLE = 100mVP-P, AV_TOTAL = 0dB HEADPHONE AMPLIFIER (Note 7) Output Power POUT Total Harmonic Distortion + Noise THD +N Full Scale Output f = 1kHz, THD < 1% RL = 16Ω 20 RL = 32Ω RHP = 16Ω, POUT = 10mW, f = 1kHz -88 RHP = 10kΩ, VOUT = 1Vrms, f = 1kHz -88 AV_HPPGA Volume Control Step Size (Note 13) 1 -67 -65 HPVOL_ = 0x1F 2.5 3 3.5 +3dB to +1dB 0.5 +1dB to -5dB 1 -5dB to -19dB 2 -19dB to -43dB 3 VOS AV_HP = -67dB 4 TA = +25ºC Capacitive Drive Capability No sustained oscillations Peak Voltage, A-weighted, 32 samples per second, AV_HP = -67dB ±0.5 TA = TMIN to TMAX HPL to HPR and HPR to HPL, POUT = 5mW, f = 1kHz, RHP = 32Ω KCP dB dB 110 Crosstalk Click and Pop Level dB VRMS -69 f = 1kHz Output Offset Voltage -80 HPVOL_ = 0x00 -43dB to -67dB Mute Attenuation mW 30 AVHP = 0dB (Note 8) Headphone Volume Control (PGA) 40 dB ±1 ±3 TBD RHP = 32Ω 500 RHP = ∞ 100 Into shutdown -73 Out of shutdown -73 mV dB pF dBV JACK DETECTION JACKSNS High Threshold MICBIAS Enabled 0.92 x VMICBIAS MICBIAS Disabled 0.92 x 0.95 x 0.98 x VSPKLVDD VSPKLVDD VSPKLVDD MICBIAS Enabled 0.06 x VMICBIAS MICBIAS Disabled 0.06 x 0.10 x 0.17 x VSPKLVDD VSPKLVDD VSPKLVDD MICBIAS Disabled VSPKLVDD VTH_HIGH JACKSNS Low Threshold VTH_LOW JACKSNS Sense Voltage VSENSE 0.95 x VMICBIAS 0.10 x VMICBIAS 0.98 x VMICBIAS 0.17 x VMICBIAS V V V RSPU MICBIAS Disabled, JDWK = 0 TBD 2.3 TBD kΩ JACKSNS Weak Pull-up Current IWPU MICBIAS Disabled, JDWK = 1 2.5 5 12 μA M JACKSNS Strong Pull-up Resistance JACKSNS Glitch Debounce Period tGLITCH JDEB = 00 25 JDEB = 11 200 ms _____________________________________________________________________ 13 MAXIM Confidential MAX98090 _____________________________ DIGITAL INPUT/OUTPUT CHARACTERISTICS (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS MCLK VIH Input Low Voltage VIL 1.2 V AX P R IM E L C IM O I N NA FI D RY EN TI AL Input High Voltage Input Leakage Current IIH, IIL VDVDDIO = 2.0V, VIN = 0V, 5.5V, TA = +25ºC -1 Input Capacitance 0.6 V 1 μA 10 pF SDIN, BCLK, LRCLK - INPUT Input High Voltage VIH VDVDDIO = 1.65V Input Low Voltage VIL VDVDDIO = 1.65V 0.7 x VDVDDIO V 0.3 x VDVDDIO Input Hysteresis 125 Input Leakage Current IIH, IIL VDVDDIO = 3.6V, VIN = 0V, 3.6V, TA = +25ºC -1 Input Capacitance V mV 1 10 μA pF BCLK, LRCLK, SDOUT - OUTPUT Output High Voltage VOH VDVDDIO = 1.65V, IOH = 3mA Output Low Voltage VOL VDVDDIO = 1.65V, IOL = 3mA Input Leakage Current IIH, IIL VDVDDIO = 2.0V, VIN = 0V, 5.5V, TA = +25ºC, High-Z State VDVDDIO – 0.4 V -1 0.4 V 1 μA SDA, SCL - INPUT Input High Voltage VIH VDVDDIO = 1.65V Input Low Voltage VIL VDVDDIO = 1.65V 0.7 x VDVDDIO 0.3 x VDVDDIO Input Hysteresis Input Leakage Current V 100 IIH, IIL VDVDDIO = 2.0V, VIN = 0V, 5.5V, TA = +25ºC -1 Input Capacitance V mV 1 10 μA pF SDA, /IRQ\ - OUTPUT Output Low Voltage VOL VDVDDIO = 1.65V, IOH = 3mA 0.2 x VDVDDIO V Output High Current IOH VDVDDIO = 1.65V, IOL = 3mA 1 μA Input High Voltage VIH VDVDDIO = 1.65V Input Low Voltage VIL VDVDDIO = 1.65V M DIGMICDATA - INPUT 0.65 x VDVDDIO 0.35 x VDVDDIO Input Hysteresis Input Leakage Current Input Capacitance V 100 IIH, IIL VDVDDIO = 2.0V, VIN = 0V, 5.5V, TA = +25ºC -25 V mV 25 10 _____________________________________________________________________ 14 μA pF MAXIM Confidential MAX98090 (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIGMICCLK - INPUT Input High Voltage VIH VDVDDIO = 1.65V Input Low Voltage VIL VDVDDIO = 1.65V 0.65 x VDVDDIO V 0.35 x VDVDDIO 100 mV AX P R IM E L C IM O I N NA FI D RY EN TI AL Input Hysteresis V Input Capacitance 10 pF DIGMICCLK - OUTPUT Output High Voltage VOH VDVDDIO = 1.65V, IOH = 3mA Output Low Voltage VOL VDVDDIO = 1.65V, IOL = 3mA VDVDDIO – 0.4 V 0.4 V ______________________________________ INPUT CLOCK CHARACTERISTICS (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 60 MHz INPUT CLOCK CHARACTERISTICS MCLK Input Frequency fMCLK MCLK Input Duty Cycle 2.048 PSCLK = 01 40 PSCLK = 10 or 11 30 DHF = 0 8 48 DHF = 1 48 96 Maximum MCLK Input Jitter LRCLK Sample Rate (Note 9) DAI LRCLK average frequency error (Note 10) PLL Lock Time 50 70 1 fLRCLK FREQ = 0x8 to 0xF FREQ = 0x0 % ns 0 0 -0.025 0.025 Rapid Lock Mode 2 7 Non-Rapid Lock Mode 12 25 Maximum LRCLK input jitter to maintain PLL lock ±100 10 M Soft Start / Stop Time 60 _____________________________________________________________________ 15 kHz % ms ns ms MAXIM Confidential MAX98090 ___________________ DIGITAL AUDIO INTERFACE TIMING CHARACTERISTICS (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIGITAL AUDIO INTERFACE TIMING CHARACTERISTICS tBCLK Slave Mode 80 ns BCLK High Time tBCLKH Slave Mode 20 ns BCLK Low Time tBCLKL Slave Mode 20 ns BCLK or LRCLK Rise and Fall Time tr, tf Master Mode, CL = 15pF SDIN to BCLK Set-Up Time tSETUP LRCLK to BCLK Set-Up Time tSYNCSET SDIN to BCLK Hold Time tHOLD LRCLK to BCLK Hold Time tSYNCHOLD AX P R IM E L C IM O I N NA FI D RY EN TI AL BCLK Cycle Time Slave Mode Slave Mode Minimum delay time from LSB BCLK falling edge to Hi-Z state tHIZOUT Master Mode LRCLK rising edge to SDOUT MSB Delay tSYNCTX C = 30pF, TDM = 1, FSW = 1 BCLK to SDOUT Delay tCLKTX C = 30pF SDOUT valid time before opposite BCLK edge SDOUT valid time after opposite BCLK edge 5 ns 20 ns 20 ns 20 ns 20 20 20 20 TDM = 1, BCLK rising edge TDM = 0 ns TBD ns TBD TBD ns 20 tVALIDPOST SE Mode TDM = 1 Master Mode TDM = 0 20 150 -15 ns ns 15 0.8 x tBCLK M tCLKSYNC 20 TDM = 1 TDM = 1, FSW = 1 TDM = 1, FSW = 0 TDM = 0, DLY = 1 tVALIDPRE Delay Time from BCLK to LRCLK ns _____________________________________________________________________ 16 ns MAX98090 AX P R IM E L C IM O I N NA FI D RY EN TI AL MAXIM Confidential M Figure 1: I2S Audio Interface Timing Diagrams (TDM = 0) _____________________________________________________________________ 17 MAX98090 AX P R IM E L C IM O I N NA FI D RY EN TI AL MAXIM Confidential M Figure 2: TDM Audio Interface Short Mode Timing Diagram (TDM = 1) _____________________________________________________________________ 18 MAX98090 AX P R IM E L C IM O I N NA FI D RY EN TI AL MAXIM Confidential M Figure 3: TDM Long Mode Timing Diagram (TDM = 1) _____________________________________________________________________ 19 MAXIM Confidential MAX98090 _________________________________________ I2C TIMING CHARACTERISTICS (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 400 kHz I C TIMING CHARACTERISTICS 2 Serial Clock Frequency Bus Free Time Between STOP and START Conditions fSCL Guaranteed by SCL Pulse-Width Low and High 0 tBUF 1.3 µs tHD,STA 0.6 µs SCL Pulse-Width Low tLOW 1.3 µs SCL Pulse-Width High tHIGH 0.6 µs Setup Time for a Repeated START Condition tSU,STA 0.6 µs Data Hold Time tHD,DAT AX P R IM E L C IM O I N NA FI D RY EN TI AL Hold Time (Repeated) START Condition RPU = 475Ω, CB = 100pF, 400pF 0 900 Transmitting 0 900 Receiving Data Setup Time ns 0 tSU,STA 100 SDA and SCL Receiving Rise Time tR Note 11 20 + 0.1xCB 300 ns SDA and SCL Receiving Fall Time tF Note 11 20 + 0.1xCB 300 ns SDA Transmitting Fall Time tF RPU = 475Ω, CB = 100pF to 400pF, Note 11 20 + 0.1xCB 250 ns Setup Time for STOP Condition tSU,STO Bus Capacitance CB Pulse Width of Suppressed Spike tSP ns 0.6 Guaranteed by SDA Transmitting Fall Time 0 µs 400 pF 50 ns M Figure 4: I2C Interface Timing Diagram _____________________________________________________________________ 20 MAXIM Confidential MAX98090 _______________________ DIGITAL MICROPHONE TIMING CHARACTERISTICS (VAVDD = VHPVDD = VDVDDIO = +1.8V, VDVDD= 1.2V, VSPKLVDD = VSPKRVDD = VSPKVDD = 3.7V. Receiver load (RREC) connected between RECP/LOUTL and RECN/LOUTR (LINMOD=0). Line Output loads (RLOUT) connected between from RECP/LOUTL and RECN/LOUTR to GND (LINMOD = 1). Headphone loads (RHP) connected from HPL or HPR to GND. Speaker loads (ZSPK) connected between SPK_P and SPK_N. RREC = ∞, RLOUT = ∞, RHP = ∞, ZSPK = ∞. CREF = 2.2μF, CVCM = CMICBIAS = 1μF, CC1N-C1P = CCPVDD = CCPVSS = 1μF. AV_MICPRE_ = AV_MICPGA_ = AV_LINEPGA_= 0dB, AV_ADCLVL = AV_ADCGAIN = 0dB, AV_DACLVL = AV_DACGAIN = 0dB, AV_MIXGAIN = 0dB, AV_REC = AV_LOUT, AV_HP = AV_SPK = 0dB. fMCLK = 12.288MHz, fLRCLK = 48kHz, MAS = 0, 20-bit source data. TA = TMIN to TMAX unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIGITAL MICROPHONE TIMING CHARACTERISTICS fPCLK/2 MICCLK = 001 fPCLK/3 MICCLK = 010 fPCLK/4 MICCLK = 011 fPCLK/5 MICCLK = 100 fPCLK/6 MICCLK = 101 fPCLK/8 AX P R IM E L C IM O I N NA FI D RY EN TI AL MICCLK = 000 DIGMICCLK Frequency fDIGMICCLK fMCLK = 12.288MHz MICCLK = 110 MHz fPCLK/10 DIGMICDATA to DIGMICCLK Set-Up Time tSU,MIC Either clock edge 20 ns DIGMICDATA to DIGMICCLK Hold Time Either clock edge 0 ns tHD,MIC 1 / fMICCLK DIGMICCLK tHD,MIC tSU,MIC tHD,MIC tSU,MIC DIGMICDATA Figure 5: Digital Microphone Timing Diagram Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: Note 11: Note 12: M Note 13: The MAX98090 is 100% production tested at TA =+25ºC. Specifications over temperature limits are guaranteed by design. Analog Supply Current = AVDD + HPVDD, Speaker Supply Current = SPKLVDD + SPKRVDD, and Digital Supply Current = DVDD + DVDDIO Performance measured at Headphone Outputs, unless otherwise stated. Dynamic range measured with the EIAJ method. -60dBFS, 1kHz output signal, A-weighted and normalized to 0dBFS. f = 20Hz – 20kHz Gain measured relative to the 0dB setting. Accurate for synchronous clocking modes where NI is a multiple of 0x1000. Performance measured using DAC Inputs, unless otherwise stated. Full scale analog output with 0dB of programmable gain, and a 0dBFS DAC input amplitude, a 1VRMS differential analog input amplitude, or a 0.5VRMS single-ended analog input amplitude. fLRCLK may be any rate in the indicated range. Asynchronous and non-integer fMCLK/fLRCLK ratios may exhibit some full scale performance degradation compared to Synchronous integer ratios. In master-mode operation, the accuracy of the MCLK input proportionally determines the accuracy of the sample clock rate. CB is in pF. VCM will be derived from a bandgap reference (VCM_MODE = 1) to allow the DC PSRR measurement to test the supply voltage range. Performance measured using an analog input to amplifier output path. _____________________________________________________________________ 21 MAXIM Confidential MAX98090 _______________________________________________ POWER CONSUMPTION _______________________________ TYPICAL OPERATING CHARACTERISTICS TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (MIC TO ADC) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (MIC TO ADC) 0 0 fMCLK = 13MHz fLRCLK = 8kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF THD+N RATIO (dB) -30 -40 -50 -60 -70 -80 -90 -100 -20 -30 THD+N RATIO (dB) -20 fMCLK = 12.288MHz fLRCLK = 48kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF -10 AX P R IM E L C IM O I N NA FI D RY EN TI AL -10 -40 -50 -60 -70 -80 -90 -100 10 100 1000 10000 10 100 FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (MIC TO ADC) -10 -20 THD+N RATIO (dB) -30 -40 -50 -60 -70 -80 -90 -100 10000 100000 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (MIC TO ADC) 0 fMCLK = 13MHz fLRCLK = 44.1kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF fMCLK = 12.288MHz fLRCLK = 96kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF -10 -20 -30 THD+N RATIO (dB) 0 1000 FREQUENCY (Hz) -40 -50 -60 -70 -80 -90 100 1000 FREQUENCY (Hz) 10000 100000 -100 10 100 1000 FREQUENCY (Hz) 10000 M 10 _____________________________________________________________________ 22 100000 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (MIC TO ADC) GAIN vs FREQUENCY (MIC TO ADC) 5 0 fMCLK = 13MHz fLRCLK = 8kHz VIN = 70.7mVRMS AV_MIC = +20dB CIN = 10µF -10 -20 3 2 NORMALIZED GAIN (dB) -40 -50 -70 -80 -90 -100 1 0 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 fMCLK = 13MHz fLRCLK = 8kHz VIN = 707mVRMS AV_MIC = 0dB CIN = 10µF 4 -1 -2 -3 -4 -5 10 100 1000 10000 10 100 FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (MIC TO ADC) -10 -20 THD+N RATIO (dB) -30 -40 -50 -60 -70 -80 -90 -100 10000 COMMON MODE REJECTION RATIO vs FREQUENCY (MIC TO ADC) 100 fMCLK = 13MHz fLRCLK = 8kHz VIN = 22.4mVRMS AV_MIC = +30dB CIN = 10µF 90 AV_MIC = +20dB 80 70 60 CMRR (dB) 0 1000 FREQUENCY (Hz) 50 AV_MIC = 0dB 40 AV_MIC = +30dB 30 20 fMCLK = 12.288MHz fLRCLK = 48kHz CIN = 10µF 10 10 100 1000 0 10 100 1000 FREQUENCY (Hz) 10000 M FREQUENCY (Hz) 10000 ____________________________________________________________________ 23 100000 MAXIM Confidential MAX98090 POWER SUPPLY REJECTION RATIO vs FREQUENCY (MIC to ADC) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) 120 20 fMCLK = 13MHz fLRCLK = 8kHz AV_MIC = 0dB CIN = 10µF 0 100 OUTPUT AMPLITUDE (dBFS) -20 60 40 20 0 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL PSRR (dB) 80 -100 -120 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P CIN = 10µF -140 -160 10 100 1000 FREQUENCY (Hz) 10000 0 100000 500 1000 1500 2000 2500 FREQUENCY (Hz) 3000 3500 4000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) 20 fMCLK = 13MHz fLRCLK = 8kHz AV_MIC = 0dB CIN = 10µF 0 OUTPUT AMPLITUDE (dBFS) -20 -40 -60 -80 -100 -120 -140 -160 500 1000 1500 2000 2500 FREQUENCY (Hz) M 0 ____________________________________________________________________ 24 3000 3500 4000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) 20 20 fMCLK = 13MHz fLRCLK = 44.1kHz AV_MIC = 0dB CIN = 10µF 0 OUTPUT AMPLITUDE (dBFS) -20 -40 -60 -80 -100 -120 -140 -160 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBFS) -20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_MIC = 0dB CIN = 10µF 0 -100 -120 -140 -160 0 5000 10000 FREQUENCY (Hz) 15000 20000 0 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) 0 OUTPUT AMPLITUDE (dBFS) -20 -40 -60 -80 -100 -120 -140 -160 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) 20 fMCLK = 13MHz fLRCLK = 44.1kHz AV_MIC = 0dB CIN = 10µF fMCLK = 12.288MHz fLRCLK = 48kHz AV_MIC = 0dB CIN = 10µF 0 -20 OUTPUT AMPLITUDE (dBFS) 20 5000 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) 15000 20000 0 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 25 15000 20000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (MIC TO ADC) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO ADC) 0 20 fMCLK = 12.288MHz fLRCLK =96kHz AV_MIC = 0dB CIN = 10µF 0 -20 -30 THD+N RATIO (dB) -40 -60 -80 -100 -120 -140 -160 -40 -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBFS) -20 fMCLK = 12.288MHz fLRCLK =48kHz AV_LINEPGA = -6dB VIN_SE = 0.5VRMS VIN_DIFF = 1VRMS CIN = 10µF -10 -60 -70 DIFFERENTIAL -90 -100 0 5000 10000 FREQUENCY (Hz) 15000 10 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (MIC TO ADC) 0 OUTPUT AMPLITUDE (dBFS) -20 -40 -60 -80 -100 -120 -140 -160 100 1000 FREQUENCY (Hz) 10000 100000 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO ADC) 0 fMCLK = 12.288MHz fLRCLK =96kHz AV_MIC = 0dB CIN = 10µF fMCLK = 12.288MHz fLRCLK =48kHz AV_LINEPGA = 0dB VIN_SE = 354mVRMS VIN_DIFF = 707mVRMS CIN = 10µF -10 -20 -30 THD+N RATIO (dB) 20 SINGLE-ENDED -80 -40 -50 -60 -70 DIFFERENTIAL -80 SINGLE-ENDED -90 -100 5000 10000 FREQUENCY (Hz) 15000 20000 10 100 1000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 26 10000 100000 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO ADC) POWER SUPPLY REJECTION RATIO vs FREQUENCY (LINE to ADC) 0 120 fMCLK = 12.288MHz fLRCLK =48kHz AV_LINEPGA = +20dB VIN_SE = 35.4mVRMS VIN_DIFF = 70.7mVRMS CIN = 10µF -10 -20 VCM_MODE = 1 80 PSRR (dB) -40 -50 -60 -70 60 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 100 DIFFERENTIAL SINGLE-ENDED 40 VCM_MODE = 0 -80 -90 -100 20 0 10 100 1000 FREQUENCY (Hz) 10000 100000 10 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO ADC) -10 -20 THD+N RATIO (dB) -30 -40 -50 -70 -80 1000 FREQUENCY (Hz) 10000 100000 CROSSTALK vs FREQUENCY (LINE TO ADC) fMCLK = 12.288MHz fLRCLK =48kHz AV_EXTERNAL = -9dB VIN = 2VRMS CIN = 10µF DIFFERENTIAL -60 100 0 fMCLK = 12.288MHz fLRCLK =48kHz VIN = 0.5mVRMS AV_LINEPRE = 0dB CIN = 10µF -20 -40 CROSSTALK (dB) 0 fMCLK = 12.288MHz fLRCLK = 48kHz VIN SINGLE-ENDED VRIPPLE = 100mVP-P CIN = 10µF SINGLE-ENDED -60 DIFFERENTIAL SINGLE-ENDED -80 -100 -120 -90 -100 -140 100 1000 FREQUENCY (Hz) 10000 100000 10 100 1000 FREQUENCY (Hz) M 10 ____________________________________________________________________ 27 10000 100000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM vs FREQUENCY, -3dBFS INPUT (LINE to ADC) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (INPUT DIRECT TO ADC MIXER) 0 20 fMCLK = 12.288MHz fLRCLK =48kHz VIN = 354mVRMS_SE AV_PRE = 0dB CIN = 10µF 0 -20 -30 THD+N RATIO (dB) -40 -60 -80 -100 -120 -140 -160 -40 -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBFS) -20 -60 -70 -80 -90 -100 0 5000 10000 FREQUENCY (Hz) 15000 10 20000 INBAND OUTPUT SPECTRUM vs FREQUENCY, -60dBFS INPUT (LINE to ADC) 20 0 -40 100 1000 FREQUENCY (Hz) 10000 100000 POWER SUPPLY REJECTION RATIO vs FREQUENCY (IN_ DIRECT TO ADC MIXER) 100 fMCLK = 12.288MHz fLRCLK =48kHz VIN = 0.5mVRMS_SE AV_PRE = 0dB CIN = 10µF MCLK = 12.288MHz LRCLK = 48kHz VRIPPLE = 100mVP-P CIN = 10µF 90 80 70 60 -60 -80 PSRR (dB) OUTPUT AMPLITUDE (dBFS) -20 fMCLK = 12.288MHz fLRCLK =48kHz VIN = 707mVRMS CIN = 10µF -10 TBD 50 40 -100 -120 -140 -160 30 20 10 0 5000 10000 FREQUENCY (Hz) 15000 20000 10 100 1000 FREQUENCY (Hz) 10000 M 0 ____________________________________________________________________ 28 100000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -60dBFS (IN_ DIRECT TO ADC MIXER) CROSSTALK vs FREQUENCY (INPUT DIRECT TO ADC MIXER) 20 0 fMCLK = 12.288MHz fLRCLK =48kHz VIN = 0.5VRMS CIN = 10µF -10 -20 -20 AMPLITUDE (dBFS) -40 -40 TBD -50 -70 -80 -90 -100 TBD -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL CROSSTALK (dB) -30 -60 fMCLK = 12.288MHz fLRCLK =48kHz VIN = 1mVRMS CIN = 10µF 0 -100 -120 -140 -160 10 100 1000 FREQUENCY (Hz) 10000 0 100000 -20 AMPLITUDE (dBFS) -40 -60 -80 -100 -120 -140 -160 15000 20000 0 fMCLK = 12.288MHz fLRCLK =48kHz VIN = 0.707VRMS CIN = 10µF fMCLK = 13MHz fLRCLK = 44.1kHz AV_TOTAL = 0dB RHP = 32Ω CIN = 10µF -10 -20 -30 THD+N RATIO (dB) 0 10000 FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO ADC TO DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBFS (INPUT DIRECT TO ADC MIXER) 20 5000 TBD -40 -50 -60 POUT = 10mW -70 POUT = 20mW -80 -90 -100 5000 10000 FREQUENCY (Hz) 15000 20000 10 100 1000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 29 10000 100000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO ADC TO DAC TO HEADPHONE) 20 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_TOTAL = 0dB RHP = 32Ω CIN = 10µF -10 -20 -20 OUTPUT AMPLITUDE (dBV) -40 -50 POUT = 10mW -70 -80 -90 -100 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 fMCLK = 13MHz fLRCLK = 44.1kHz AV_TOTAL = 0dB RHP = 32Ω CIN = 10µF 0 POUT = 20mW -100 -120 -140 -160 10 100 1000 FREQUENCY (Hz) 10000 0 100000 5000 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) 20 fMCLK = 13MHz fLRCLK = 44.1kHz AV_TOTAL = 0dB RHP = 32Ω CIN = 10µF 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 30 15000 20000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO RECEIVER) 20 0 fMCLK =12.288MHz fLRCLK = 48kHz AV_TOTAL = 0dB RHP = 32Ω CIN = 10µF 0 -20 -30 THD+N RATIO (dB) -40 -60 -80 -100 -120 -140 -160 -40 -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 VCM_MODE = 0 fMCLK =13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32Ω -10 -60 -70 -80 fIN = 100Hz -90 5000 10000 FREQUENCY (Hz) 15000 20000 0 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (LINE TO ADC TO DAC TO HEADPHONE) OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 0.02 0.04 0.06 0.08 OUTPUT POWER (W) 0.1 0.12 0.1 0.12 TOTAL HARMONIC DISTORTION vs OUTPUT POWER (DAC TO RECEIVER) 0 fMCLK =12.288MHz fLRCLK = 48kHz AV = 0dB RHP = 32Ω CIN = 10µF VCM_MODE = 1 fMCLK =13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32Ω -10 -20 -30 THD+N RATIO (dB) 0 fIN = 3000Hz -100 0 20 fIN = 1000Hz -40 -50 -60 -70 -80 fIN = 100Hz -90 5000 10000 FREQUENCY (Hz) 15000 20000 fIN = 3000Hz -100 0 0.02 0.04 0.06 0.08 OUTPUT POWER (W) M 0 fIN = 1000Hz ____________________________________________________________________ 31 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION vs FREQUENCY (DAC TO RECEIVER) GAIN vs FREQUENCY (DAC TO RECEIVER) 5 0 -20 3 2 NORMALIZED GAIN (dB) -40 -50 -70 -80 -90 -100 POUT = 25mW 1 0 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 fMCLK =13MHz fLRCLK = 8kHz VOICE FILTER AV_REC = 0dB RREC = 32Ω 4 fMCLK =13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32Ω -10 -1 -2 -3 POUT = 50mW -4 -5 10 100 1000 10 10000 100 200 VCM_MODE = 1 100 75 50 RREC = 16Ω 160 POWER CONSUMPTION (mW) RECEIVER OUTPUT POWER (mW) 125 10000 POWER CONSUMPTION vs OUTPUT POWER (DAC TO RECEIVER) OUTPUT POWER vs SPEAKER SUPPLY VOLTAGE (DAC TO RECEIVER) 150 1000 FREQUENCY (Hz) FREQUENCY (Hz) 120 80 VCM_MODE = 0 25 0 fMCLK =13MHz fLRCLK = 8kHz VCM_MODE = 1 THD+N ≤ 1% AV_REC = +8dB 40 fMCLK =13MHz fLRCLK = 8kHz AV_REC = +8dB RREC = 32Ω RREC = 32Ω 0 3 3.5 4 4.5 SPEAKER SUPPLY VOLTAGE (V) 5 5.5 0 20 40 60 80 OUTPUT POWER (mW) 100 M 2.5 ____________________________________________________________________ 32 120 140 MAXIM Confidential MAX98090 POWER SUPPLY REJECTION RATIO vs FREQUENCY (DAC to RECEIVER) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO RECEIVER) 120 20 OTHER SUPPLIES fMCLK =13MHz fLRCLK = 8kHz AV_REC = 0dB RREC = 32Ω 0 100 OUTPUT AMPLITUDE (dBV) -20 60 SPK_VDD 40 20 0 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL PSRR (dB) 80 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P RREC = 32Ω -100 -120 -140 -160 10 100 1000 FREQUENCY (Hz) 10000 0 100000 5000 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO RECEIVER) 20 fMCLK =13MHz fLRCLK = 8kHz AV_REC = 0dB RHP = 32Ω 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 33 15000 20000 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO RECEIVER) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (LINE TO RECEIVER) 0 0 DIFFERENTIAL INPUT VCM_MODE = 0 AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32Ω CIN = 10µF -10 -20 -20 THD+N RATIO (dB) -30 -40 -50 -60 -70 -80 -90 -100 POUT = 25mW -40 -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 DIFFERENTIAL INPUT VCM_MODE = 0 AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32Ω CIN = 10µF -10 -60 -70 -80 -90 fIN = 100Hz 0 0.02 fIN = 1000Hz POUT = 80mW fIN = 6000Hz 0.04 0.06 0.08 OUTPUT POWER (W) -100 0.1 10 0.12 100 -20 THD+N RATIO (dB) -30 -40 -50 -60 -70 -80 -90 -100 100000 10000 100000 5 DIFFERENTIAL INPUT VCM_MODE = 1 AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32Ω CIN = 10µF DIFFERENTIAL INPUT AV_TOTAL = 0dB RREC = 32Ω CIN = 10µF 4 3 2 NORMALIZED GAIN (dB) -10 10000 GAIN vs FREQUENCY (LINE TO RECEIVER) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (LINE TO RECEIVER) 0 1000 FREQUENCY (Hz) 1 0 -1 -2 -3 -4 fIN = 100Hz 0.02 0.04 0.06 0.08 OUTPUT POWER (W) -5 0.1 0.12 10 100 1000 FREQUENCY (Hz) M 0 fIN = 1000Hz fIN = 6000Hz ____________________________________________________________________ 34 MAXIM Confidential MAX98090 POWER SUPPLY REJECTION RATIO vs FREQUENCY (LINE TO RECEIVER) INBAND OUTPUT SPECTRUM, -3dBV INPUT (LINE TO RECEIVER) 120 20 SPK_VDD DIFFERENTIAL INPUT AV_LINEPGA = 0dB AV_REC = +8dB RREC = 32Ω CIN = 10µF 0 100 OUTPUT AMPLITUDE (dBV) -20 60 OTHER SUPPLIES 40 20 0 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL PSRR (dB) 80 -100 -120 DIFFERENTIAL INPUT VRIPPLE = 100mVP-P RREC = 32Ω CIN = 10µF -140 -160 10 100 1000 FREQUENCY (Hz) 10000 0 100000 5000 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBV INPUT (LINE TO RECEIVER) 20 DIFFERENTIAL INPUT AV_LINEPGA = 0dB AV_REC = +6dB RREC = 32Ω CIN = 10µF 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) 15000 M 0 ____________________________________________________________________ 35 20000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO LINE) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT LEVEL (LINE IN TO LINE OUT) 20 0 fMCLK = 13MHz fLRCLK = 8kHz AV_LOUT = +3dB RLOUT = 10kΩ 0 -20 -30 THD+N RATIO (dB) -40 -60 -80 -100 -120 -140 -160 -40 -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kΩ CIN = 10µF -10 -60 fIN = 6000Hz -70 -90 -100 5000 10000 FREQUENCY (Hz) 15000 20000 0 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO LINE) OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 0.2 0.4 0.6 OUTPUT LEVEL (V) 0.8 1 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE IN TO LINE OUT) 0 fMCLK = 13MHz fLRCLK = 8kHz AV_LOUT = +3dB RLOUT = 10kΩ AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kΩ CIN = 10µF -10 -20 -30 THD+N RATIO (dB) 0 fIN = 100Hz -80 0 20 fIN = 1000Hz -40 -50 -60 -70 VOUT = 300mVRMS VOUT = 0.707mVRMS 100 1000 FREQUENCY (Hz) -80 -90 5000 10000 FREQUENCY (Hz) 15000 20000 -100 10 M 0 ____________________________________________________________________ 36 10000 100000 MAXIM Confidential INBAND OUTPUT SPECTRUM, -3dBV INPUT (LINE IN TO LINE OUT) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE IN TO LINE OUT) 0 20 VIN = 2VRMS AV_EXTERNAL = -9dB AV_LOUT = +3dB RLOUT = 10kO CIN = 10µF -10 -20 -20 OUTPUT AMPLITUDE (dBV) -40 SINGLE ENDED LINE INPUT -70 -60 -80 -100 -120 DIFFERENTIAL LINE INPUT -80 -40 AX P R IM E L C IM O I N NA FI D RY EN TI AL -50 -60 AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kΩ CIN = 10µF 0 -30 THD+N RATIO (dB) MAX98090 -140 -90 -160 -100 10 100 1000 FREQUENCY (Hz) 10000 0 100000 5000 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBV INPUT (LINE IN TO LINE OUT) 20 AV_LINEPGA = 0dB AV_LOUT = +3dB RLOUT = 10kΩ CIN = 10µF 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 37 15000 20000 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) 0 0 VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH -10 -20 -20 -30 THD+N RATIO (dB) f = 6000Hz -40 -50 -70 -80 -90 -50 -60 -70 -80 -90 f = 100Hz -100 f = 6000Hz -40 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH -10 -100 0 0.5 1 OUTPUT POWER (W) 1.5 2 0 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) 0 -10 -20 -50 -60 -70 -80 -90 0.6 0.8 OUTPUT POWER (W) 1 1.2 VSPK_VDD = 3V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH -10 -20 f = 6000Hz -30 -40 -50 -60 -70 -80 -90 f = 100Hz -100 0.4 0 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH f = 6000Hz -40 0.2 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) THD+N RATIO (dB) THD+N RATIO (dB) -30 f = 1000Hz f = 100Hz f = 1000Hz f = 100Hz f = 1000Hz f = 1000Hz -100 0.2 0.4 0.6 0.8 OUTPUT POWER (W) 1 1.2 1.4 0 0.1 0.2 0.3 0.4 0.5 OUTPUT POWER (W) M 0 ____________________________________________________________________ 38 0.6 0.7 0.8 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) 0 0 VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH -10 -20 -20 -30 THD+N RATIO (dB) f = 6000Hz -40 -50 -70 -80 -90 -40 -50 -60 -70 -80 -90 f = 100Hz -100 f = 1000Hz 0.5 1 1.5 2 OUTPUT POWER (W) 2.5 3 3.5 0 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) -10 -20 -50 -60 -70 -80 -90 0.75 1 1.25 OUTPUT POWER (W) 1.5 1.75 2 VSPK_VDD = 3V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH -10 -20 f = 6000Hz -30 -40 -50 -60 -70 -80 -90 f = 100Hz -100 0.5 0 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH f = 6000Hz -40 0.25 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO SPEAKER) THD+N RATIO (dB) THD+N RATIO (dB) -30 f = 1000Hz f = 100Hz -100 0 0 f = 6000Hz AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH -10 f = 1000Hz f = 1000Hz f = 100Hz -100 0.5 1 1.5 OUTPUT POWER (W) 2 2.5 0 0.2 0.4 0.6 0.8 OUTPUT POWER (W) M 0 ____________________________________________________________________ 39 1 1.2 1.4 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO SPEAKER) 0 0 VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH -10 -20 -20 THD+N RATIO (dB) -30 -40 POUT = 1.00W -50 -70 -80 -90 POUT = 0.60W -40 -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH -10 -60 -70 -80 -90 POUT = 0.15W POUT = 0.25W -100 -100 10 100 1000 FREQUENCY (Hz) 10000 100000 10 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO SPEAKER) 0 -10 -20 -50 -60 -70 -80 -90 -100 10000 100000 0 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH -10 -20 -30 POUT = 0.76W -40 1000 FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO SPEAKER) THD+N RATIO (dB) THD+N RATIO (dB) -30 100 POUT = 2.00W -40 -50 -60 -70 -80 -90 POUT = 0.50W POUT = 0.20W 100 1000 FREQUENCY (Hz) 10000 100000 10 100 1000 FREQUENCY (Hz) M 10 -100 ____________________________________________________________________ 40 10000 100000 MAXIM Confidential MAX98090 OUTPUT POWER vs SUPPLY VOLTAGE (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO SPEAKER) 0 2500 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH -20 POUT = 1.50W -40 -50 -70 -80 -90 THD+N = 10% 1500 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 8Ω + 68µH 2000 OUTPUT POWER PER CHANNEL (mW) -10 1000 THD+N = 1% 500 POUT = 0.40W -100 0 10 100 1000 FREQUENCY (Hz) 10000 2.5 100000 -20 THD+N RATIO (dB) -30 -50 -60 -70 -80 -90 5 5.5 5 5.5 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH 4000 POUT = 1.20W -40 4 4.5 SUPPLY VOLTAGE (V) 4500 VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB ZSPK = 4Ω + 33µH OUTPUT POWER PER CHANNEL (mW) -10 3.5 OUTPUT POWER vs SUPPLY VOLTAGE (DAC TO SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO SPEAKER) 0 3 3500 THD+N = 10% 3000 2500 2000 1500 1000 THD+N = 1% 500 POUT = 0.30W -100 0 100 1000 FREQUENCY (Hz) 10000 100000 2.5 3 3.5 4 4.5 SUPPLY VOLTAGE (V) M 10 ____________________________________________________________________ 41 MAXIM Confidential MAX98090 GAIN vs FREQUENCY (DAC TO SPEAKER) EFFICIENCY vs OUTPUT POWER (DAC TO SPEAKER) 5 100 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = 0dB ZSPK = 8Ω + 68µH 4 80 70 1 60 EFFICIENCY (%) 2 0 -1 ZSPK = 8Ω + 68H 50 40 30 -2 VSPK_VDD = 4.2V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB 20 -3 10 -4 0 -5 10 100 1000 FREQUENCY (Hz) 10000 0 100000 0.5 1 1.5 2 OUTPUT POWER PER CHANNEL (W) 2.5 3 EFFICIENCY vs OUTPUT POWER (DAC TO SPEAKER) EFFICIENCY vs OUTPUT POWER (DAC TO SPEAKER) 100 100 90 90 80 80 70 70 ZSPK = 8Ω + 68H 60 ZSPK = 8Ω + 68H ZSPK = 4Ω + 33H EFFICIENCY (%) EFFICIENCY (%) ZSPK = 4Ω + 33H AX P R IM E L C IM O I N NA FI D RY EN TI AL NORMALIZED GAIN (dB) 3 90 50 40 ZSPK = 4Ω + 33H 60 50 40 30 30 10 VSPK_VDD = 3.7V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB 20 VSPK_VDD = 5V fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = +8dB 20 10 0 0 0.5 1 1.5 2 2.5 OUTPUT POWER PER CHANNEL (W) 3 3.5 0 0.25 0.5 0.75 1 1.25 1.5 OUTPUT POWER PER CHANNEL (W) M 0 ____________________________________________________________________ 42 1.75 2 MAXIM Confidential MAX98090 SUPPLY CURRENT vs SUPPLY VOLTAGE (DAC TO SPEAKERS) CROSSTALK vs FREQUENCY (DAC TO SPEAKERS) 0 5 fMCLK = 12.288MHz fLRCLK = 48kHz ZSPK = 8Ω + 68µH 4.5 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = 0dB ZSPK = 8Ω + 68µH -20 4 CROSSTALK (dB) -40 3 2.5 2 -60 RIGHT TO LEFT LEFT TO RIGHT AX P R IM E L C IM O I N NA FI D RY EN TI AL SUPPLY CURRENT (mA) 3.5 -80 1.5 1 0.5 0 -100 -120 2.5 3 3.5 4 4.5 SUPPLY VOLTAGE (V) 5 5.5 10 100 1000 FREQUENCY (Hz) POWER SUPPLY REJECTION RATIO vs FREQUENCY (DAC to SPEAKER) 120 100 PSRR (dB) 80 60 40 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P ZSPK = 8Ω + 68µH OTHER SUPPLIES SPK_VDD 20 0 100 1000 FREQUENCY (Hz) 10000 100000 M 10 ____________________________________________________________________ 43 10000 100000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO SPEAKERS) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO SPEAKERS) 20 20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = -6dB ZSPK = 8Ω + 68µH 0 -20 -40 OUTPUT AMPLITUDE (dBV) -40 -60 -80 -100 -120 -140 -160 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 fMCLK = 13MHz fLRCLK = 44.1kHz AV_SPK = -6dB ZSPK = 8Ω + 68µH 0 -100 -120 -140 -160 0 5000 10000 FREQUENCY (Hz) 15000 20000 0 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO SPEAKERS) 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO SPEAKERS) 20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = -6dB ZSPK = 8Ω + 68µH fMCLK = 13MHz fLRCLK = 44.1kHz AV_SPK = -6dB ZSPK = 8Ω + 68µH 0 -20 OUTPUT AMPLITUDE (dBV) 20 5000 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) 15000 20000 0 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 44 15000 20000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO SPEAKERS) WIDEBAND FREQUENCY SPECTRUM (DAC TO SPEAKERS) 0 20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = -6dB ZSPK = 4Ω + 33µH 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = 0dB ZSPK = 8W + 68µH -20 -40 AMPLITUDE (dBV) -40 -60 -80 -100 -120 -60 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 -80 -100 -140 -160 -120 0 5000 10000 FREQUENCY (Hz) 15000 0.1 20000 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_SPK = -6dB ZSPK = 4Ω + 33µH AV_LINEPGA = 0dB AV_SPK = +8dB ZSPK = 8Ω + 68µH CIN = 10µF -10 -20 f = 6000Hz -30 -40 -50 -60 -70 -80 -90 f = 100Hz -160 100 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (LINE TO SPEAKER) THD+N RATIO (dB) 0 10 FREQUENCY (MHz) INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO SPEAKERS) 20 1 f = 1000Hz -100 5000 10000 FREQUENCY (Hz) 15000 20000 0 0.2 0.4 0.6 OUTPUT POWER (W) M 0 ____________________________________________________________________ 45 0.8 1 MAXIM Confidential MAX98090 POWER SUPPLY REJECTION RATIO vs FREQUENCY (LINE to SPEAKER) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO SPEAKER) 120 0 AV_LINEPGA = 0dB AV_SPK = +8dB ZSPK = 8Ω + 68µH CIN = 10µF -10 -20 100 -30 80 POUT = 0.60W PSRR (dB) -40 -50 -60 -70 -80 -90 -100 60 40 SPK_VDD 20 POUT = 0.15W 10 100 1000 FREQUENCY (Hz) 10000 0 10 100000 100 1000 FREQUENCY (Hz) 10000 100000 CROSSTALK vs FREQUENCY (LINE TO SPEAKER) GAIN vs FREQUENCY (LINE TO SPEAKER) 0 5 AV_LINEPGA = 0dB AV_SPK = +8dB ZSPK = 8Ω + 68µH CIN = 10µF 4 3 2 AV_SPK = 0dB ZSPK = 8Ω + 68µH CIN = 10µF -20 -40 CROSSTALK (dB) NORMALIZED GAIN (dB) OTHER SUPPLIES AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) VRIPPLE = 100mVP-P ZSPK = 8Ω + 68µH CIN = 10µF 1 0 -1 -60 RIGHT TO LEFT -80 -2 -3 -100 -4 LEFT TO RIGHT -120 -5 100 1000 FREQUENCY (Hz) 10000 100000 10 100 1000 FREQUENCY (Hz) M 10 ____________________________________________________________________ 46 10000 100000 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBV INPUT (LINE TO SPEAKERS) 0 0 AV_LINEPGA = -6dB AV_SPK = 0dB ZSPK = 8O + 68µH CIN = 10µF -20 -40 THD+N RATIO (dB) -30 -60 -80 -100 -40 TBD -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 f = 3000Hz fMCLK = 13MHz fLRCLK = 8kHz AV_HP = +3dB RHP = 32Ω -10 -60 -70 -80 -120 -90 f = 100Hz -140 0 5000 10000 FREQUENCY (Hz) 15000 0 20000 -40 -60 -80 -100 0.02 0.03 OUTPUT POWER (W) 0.04 0.05 0 AV_LINEPGA = -6dB AV_SPK = 0dB ZSPK = 8O + 68µH CIN = 10µF fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = +3dB RHP = 32Ω -10 -20 -30 THD+N RATIO (dB) OUTPUT AMPLITUDE (dBV) -20 0.01 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -60dBV INPUT (LINE TO SPEAKERS) 0 f = 1000Hz -100 -40 -50 f = 1000Hz f = 6000Hz -60 -70 -80 -120 -140 -90 f = 100Hz -100 5000 10000 FREQUENCY (Hz) 15000 20000 0 0.01 0.02 0.03 OUTPUT POWER (W) M 0 ____________________________________________________________________ 47 0.04 0.05 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO HEADPHONE) 0 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 32Ω -10 -20 -20 THD+N RATIO (dB) -30 -40 -50 f = 1000Hz f = 100Hz -70 -80 -40 -50 f = 6000Hz f = 1000Hz AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 16Ω -10 -60 -70 -80 f = 6000Hz -90 -100 -90 f = 100Hz -100 0 0.01 0.02 0.03 OUTPUT POWER (W) 0.04 0.05 0 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (DAC TO HEADPHONE) -10 -20 THD+N RATIO (dB) -30 -40 -50 -60 -80 0.03 0.04 OUTPUT POWER (W) 0.05 0.06 0.07 0.06 0.07 0 fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = +3dB RHP = 32Ω fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 16Ω -10 -20 -30 -40 f = 1000Hz f = 6000Hz -50 -60 f = 1000Hz f = 100Hz -70 0.02 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) THD+N RATIO (dB) 0 0.01 -70 -80 f = 6000Hz -90 -100 -90 f = 100Hz -100 0.01 0.02 0.03 OUTPUT POWER (W) 0.04 0.05 0 0.01 0.02 0.03 0.04 OUTPUT POWER (W) 0.05 M 0 ____________________________________________________________________ 48 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) 0 0 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 32Ω -10 -20 -20 THD+N RATIO (dB) -30 -40 f = 1000Hz f = 6000Hz -50 -70 -80 -90 -40 -50 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = +3dB RHP = 32Ω -10 -60 POUT = 0.01W POUT = 0.02W -70 -80 -90 f = 100Hz -100 -100 0 0.01 0.02 0.03 OUTPUT POWER (W) 0.04 0.05 10 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) -10 -20 THD+N RATIO (dB) -30 -40 -50 -60 -80 -90 10000 100000 0 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = +3dB RHP = 32Ω fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 32Ω -10 -20 -30 POUT = 0.02W -70 1000 FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) THD+N RATIO (dB) 0 100 -40 -50 -60 POUT = 0.01W POUT = 0.02W 100 1000 FREQUENCY (Hz) -70 -80 -90 POUT = 0.01W -100 -100 10 100 1000 10 M FREQUENCY (Hz) 10000 ____________________________________________________________________ 49 10000 100000 MAXIM Confidential MAX98090 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) 0 0 fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = +3dB RHP = 32Ω -10 -20 -20 THD+N RATIO (dB) -30 -40 -50 POUT = 0.01W -70 -80 -90 -100 -40 TBD -50 POUT = 0.02W -60 -70 -90 -100 100 1000 FREQUENCY (Hz) 10000 100000 10 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) -20 THD+N RATIO (dB) -30 -40 -50 -70 -80 -90 1000 FREQUENCY (Hz) 10000 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 32Ω -10 -20 -30 POUT = 0.025W -40 TBD -50 -60 -70 -80 -90 POUT = 0.01W -100 100000 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB RHP = 16Ω POUT = 0.01W -60 100 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (DAC TO HEADPHONE) THD+N RATIO (dB) -10 POUT = 0.01W -80 10 0 POUT = 0.025W AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB RHP = 16Ω -10 POUT = 0.02W -100 100 1000 FREQUENCY (Hz) 10000 100000 10 100 1000 FREQUENCY (Hz) M 10 ____________________________________________________________________ 50 10000 100000 MAXIM Confidential MAX98090 POWER CONSUMPTION vs OUTPUT POWER (DAC TO HEADPHONE) GAIN vs FREQUENCY (DAC TO HEADPHONE) 5 100 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = 0dB RHP = 32Ω 4 3 80 CURRENT CONSUMPTION (mA) 1 0 -2 70 RHP = 16Ω 60 50 40 AX P R IM E L C IM O I N NA FI D RY EN TI AL NORMALIZED GAIN (dB) 2 -1 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = +3dB 90 30 20 -3 RHP = 32Ω 10 -4 0 0.1 -5 10 100 1000 10000 1 10 OUTPUT POWER PER CHANNEL (mW) 100 FREQUENCY (Hz) POWER CONSUMPTION vs OUTPUT POWER (DAC TO HEADPHONE) GAIN vs FREQUENCY (DAC TO HEADPHONE) 5 2 1 0 -1 80 CURRENT CONSUMPTION (mA) 3 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = +3dB 90 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32Ω 4 NORMALIZED GAIN (dB) 100 70 RHP = 16Ω 60 50 40 30 20 -2 RHP = 32Ω 10 -3 0 -4 0.1 -5 100 1000 FREQUENCY (Hz) 10000 100000 M 10 1 10 OUTPUT POWER PER CHANNEL (mW) ____________________________________________________________________ 51 100 MAXIM Confidential MAX98090 POWER SUPPLY REJECTION RATIO vs FREQUENCY (DAC to HEADPHONES) CROSSTALK vs FREQUENCY (DAC TO HEADPHONE) 0 120 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32Ω SPK_VDD -20 100 RIGHT TO LEFT LEFT TO RIGHT -40 CROSSTALK (dB) 60 OTHER SUPPLIES 40 20 0 TBD -60 AX P R IM E L C IM O I N NA FI D RY EN TI AL PSRR (dB) 80 -80 fMCLK = 12.288MHz fLRCLK = 48kHz VRIPPLE = 100mVP-P RHP = 32Ω -100 -120 10 100 1000 FREQUENCY (Hz) 10000 100000 10 100 1000 FREQUENCY (Hz) POWER SUPPLY REJECTION RATIO vs FREQUENCY (DAC to HEADPHONES) 120 SPK_VDD 100 PSRR (dB) 80 60 OTHER SUPPLIES 40 20 0 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE VRIPPLE = 100mVP-P RHP = 32Ω 100 1000 FREQUENCY (Hz) 10000 100000 M 10 ____________________________________________________________________ 52 10000 100000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) 20 20 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = 0dB RHP = 32Ω 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = 0dB RHP = 32Ω 0 -100 -120 -140 -160 0 5000 10000 FREQUENCY (Hz) 15000 20000 0 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) 20 fMCLK = 13MHz fLRCLK = 8kHz AV_HP = 0dB RHP = 32Ω fMCLK = 13MHz fLRCLK = 44.1kHz AV_HP = 0dB RHP = 32Ω 0 -20 OUTPUT AMPLITUDE (dBV) 20 5000 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) 15000 20000 0 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 53 15000 20000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) 20 20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32Ω 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = 0dB RHP = 32Ω 0 -100 -120 -140 -160 0 5000 10000 FREQUENCY (Hz) 15000 20000 0 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) 20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32Ω fMCLK = 12.288MHz fLRCLK = 96kHz AV_HP = 0dB RHP = 32Ω 0 -20 OUTPUT AMPLITUDE (dBV) 20 5000 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) 15000 20000 0 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 54 15000 20000 MAXIM Confidential MAX98090 INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBFS INPUT (DAC TO HEADPHONE) 20 20 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = 0dB RHP = 32Ω 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 -40 TBD -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL OUTPUT AMPLITUDE (dBV) -20 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 16Ω 0 -100 -120 -140 -160 0 5000 10000 FREQUENCY (Hz) 15000 20000 0 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) 0 OUTPUT AMPLITUDE (dBV) -20 -40 -60 -80 -100 -120 -140 -160 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBFS INPUT (DAC TO HEADPHONE) 20 fMCLK = 12.288MHz fLRCLK = 48kHz LOW POWER MODE AV_HP = 0dB RHP = 32Ω fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 16Ω 0 -20 OUTPUT AMPLITUDE (dBV) 20 5000 -40 -60 -80 -100 -120 -140 -160 5000 10000 FREQUENCY (Hz) 15000 20000 0 5000 10000 FREQUENCY (Hz) M 0 ____________________________________________________________________ 55 15000 20000 MAXIM Confidential MAX98090 GAIN vs FREQUENCY (LINE TO HEADPHONE) TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER (LINE TO HEADPHONE) 5 0 -20 3 2 NORMALIZED GAIN (dB) -40 -50 -70 -80 -90 f = 6000Hz f = 100Hz 1 0 AX P R IM E L C IM O I N NA FI D RY EN TI AL THD+N RATIO (dB) -30 -60 AV_LINEPGA = 0dB AV_HP = 0dB RHP = 32Ω CIN = 10µF 4 AV_LINEPGA = 0dB AV_HP = +3dB RHP = 32Ω CIN = 10µF -10 -1 -2 -3 -4 f = 1000Hz -100 -5 0 0.01 0.02 0.03 OUTPUT POWER (W) 0.04 10 0.05 -10 -20 1000 FREQUENCY (Hz) 10000 100000 POWER SUPPLY REJECTION RATIO vs FREQUENCY (LINE to HEADPHONES) TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY (LINE TO HEADPHONE) 0 100 120 AV_LINEPGA = 0dB AV_HP = +3dB RHP = 32Ω CIN = 10µF VRIPPLE = 100mVP-P RHP = 32Ω CIN = 10µF 100 VCM_MODE = 1 -40 -50 -60 80 PSRR (dB) THD+N RATIO (dB) -30 POUT = 0.01W -70 -80 -90 -100 60 40 20 VCM_MODE = 0 POUT = 0.02W 100 1000 FREQUENCY (Hz) 0 10000 100000 10 100 1000 FREQUENCY (Hz) 10000 M 10 ____________________________________________________________________ 56 100000 MAXIM Confidential MAX98090 CROSSTALK vs FREQUENCY (LINE TO HEADPHONE) INBAND OUTPUT SPECTRUM, -3dBV INPUT (LINE TO HEADPHONE) 0 fMCLK = 12.288MHz fLRCLK = 48kHz AV_HP = 0dB RHP = 32Ω -20 20 RIGHT TO LEFT LEFT TO RIGHT -20 OUTPUT AMPLITUDE (dBV) TBD -80 -40 -60 -80 AX P R IM E L C IM O I N NA FI D RY EN TI AL CROSSTALK (dB) -40 -60 AV_LINEPGA = -6dB AV_HP = 0dB RHP = 32Ω CIN = 10µF 0 -100 -120 -100 -140 -120 -160 10 100 1000 FREQUENCY (Hz) 10000 0 100000 COMMON MODE REJECTION RATIO vs FREQUENCY (LINE TO HEADPHONE) 80 10000 FREQUENCY (Hz) 15000 20000 INBAND OUTPUT SPECTRUM, -60dBV INPUT (LINE TO HEADPHONE) 20 RHP = 32Ω CIN = 10µF 70 AV_LINEPGA = -6dB AV_HP = 0dB RHP = 32Ω CIN = 10µF 0 OUTPUT AMPLITUDE (dBV) -20 60 TBD 50 CMRR (dBV) 5000 40 30 20 -40 -60 -80 -100 -120 10 -140 0 -160 100 1000 FREQUENCY (Hz) 10000 100000 0 5000 10000 FREQUENCY (Hz) M 10 ____________________________________________________________________ 57 15000 20000 MAXIM Confidential MAX98090 M AX P R IM E L C IM O I N NA FI D RY EN TI AL _________________________________________ BUMP CONFIGURATION (WLP) _____________________________________________________________________ 58 MAXIM Confidential MAX98090 M AX P R IM E L C IM O I N NA FI D RY EN TI AL ___________________________________________ PIN CONFIGURATION (TQFN) _____________________________________________________________________ 59 MAXIM Confidential MAX98090 _____________________________________________ PIN / BUMP DESCRIPTION BUMP WLP MAX98090 FUNCTION 1 G1 HPGND 2 G2 CPVSS 3 F1 CPVDD 4 E1 HPL Headphone Ground. Inverting Charge-Pump Output. Bypass to HPGND with a 1µF ceramic capacitor. Non-Inverting Charge-Pump Output. Bypass to HPGND with a 1µF ceramic capacitor. Left-Channel Headphone Output Headphone Amplifier Ground Sense. Connect to the headphone jack ground terminal or connect to ground. Right-Channel Headphone Output Jack detection Input. Connect to the microphone terminal of the headset jack to detect jack activity. Positive Earpiece Amplifier Output/Left Line Output Negative Earpiece Amplifier Output/Right Line Output Right Speaker Amplifier ground. Negative Right-Channel Class D Speaker Output Positive Right-Channel Class D Speaker Output Right Speaker power supply. Bypass to SPKRGND with a 1µF capacitor. Left Speaker and Microphone Bias Power Supply. Bypass to SPKLGND with a 1µF capacitor. Negative Left-Channel Class D Speaker Output Positive Left-Channel Class D Speaker Output Left Speaker Amplifier Ground. AX P R IM E L C IM O I N NA FI D RY EN TI AL PIN TQFN D2 HPSNS 6 D1 HPR 7 B5 JACKSNS 8 9 10 11 12 13 C1 B1 A1 A2 A3 - RCVP/LOUTL RCVN/LOUTR SPKRGND SPKRN SPKRP SPKRVDD 14 - SPKLVDD 15 16 17 A5 A4 A6 SPKLN SPKLP SPKLGND 18 B7 IN2 / DMC 19 A7 IN1 / DMD 20 B6 IN3 21 C6 IN4 22 C7 MICBIAS 23 24 25 26 27 D6 E6 D7 E7 F7 REF VCM AGND AVDD DVDD 28 29 30 F6 G7 E5 DVDDIO DGND SDIN 31 G6 SDOUT DVDDIO. LRCLK Digital Audio Left-Right Clock Input/Output. LRCLK is the audio sample rate clock and determines whether audio data is routed to the left or right channel. In TDM mode, LRCLK is a frame sync pulse. LRCLK is an input when the AX49 is in slave mode and an output when in master mode. M 5 32 F5 Positive Differential Microphone 1 Input or single-ended Line Input 2. ACcouple with a series 1μF capacitor. Can be retasked as a digital microphone clock output. Negative Differential Microphone 1 Input or single-ended Line Input 1. ACcouple with a series 1μF capacitor. Can be retasked as a digital microphone data input. Negative Differential Microphone 2 Input or single-ended Line Input 3. ACcouple with a series 1μF capacitor. Positive Differential Microphone 2 Input or single-ended Line input 4. ACcouple with a series 1μF capacitor. Low-Noise Bias Voltage. The bias voltage is programmable. An external resistor in the 2.2k to 1k range should be used to set the microphone current. Converter Reference. Bypass to AGND with a 2.2µF capacitor. Common Mode Reference Voltage. Bypass to AGND with a 1µF capacitor. Analog Ground. Analog Power Supply. Bypass to AGND with a 1µF capacitor. Digital Power Supply. Bypass to DGND with a 1µF capacitor. Digital Audio Interface Power-Supply Input. Bypass to DGND with a 1µF capacitor. Digital Ground Digital Audio Serial Data DAC Input Digital Audio Serial Data ADC Output. The output voltage is referenced to _____________________________________________________________________ 60 MAXIM Confidential MAX98090 Digital Audio Bit Clock Input/Output. BCLK is an input when the IC is in slave mode and an output when in master mode. The input/output voltage is 33 G5 BCLK F4 G4 D3 /IRQ\ MCLK SCL 37 38 E2 G3 SDA HPVDD 39 F3 C1P 40 C1N - F2 B3, B4 SPKVDD - C4 IN5 AX P R IM E L C IM O I N NA FI D RY EN TI AL 34 35 36 referenced to DVDDIO. Active Low Hardware Interrupt Output. Connect a 10KΩ pull-up resistor to VDD. Master Clock Input. Acceptable input frequency range is 10MHz to 60MHz. I2C Serial Clock Input. Connect a pull-up resistor to DVDD for full output swing. I2C Serial Data Input/Output. Connect a pull-up resistor to DVDD for full output swing. Headphone Power Supply. Bypass to HPGND with a 1µF capacitor. Charge-Pump Flying Capacitor Positive Terminal. Connect a 1µF ceramic capacitor between C1N and C1P. Charge-Pump Flying Capacitor Negative Terminal. Connect a 1µF ceramic capacitor between C1N and C1P. Speaker and Microphone Bias Power Supply. Bypass to SPK_GND with a 1µF capacitor. Auxiliary Negative Differential Microphone Input or single-ended line input AC-couple with a series 1µF capacitor. Auxiliary Positive Differential Microphone Input or single-ended line input - IN6 AC-couple with a series 1µF capacitor. NC Not internally connected. M - D4 B2, C2, C3, C5, D5, E3, E4 _____________________________________________________________________ 61 MAXIM Confidential ____________________________________________________________ DETAILED MAX98090 DESCRIPTION The MAX98090 is a fully integrated stereo audio codec with FLEXSOUND audio processing and integrated input and output audio amplifiers. The device features either six (WLP package) or four (TQFN package) flexible analog inputs. Each pair can be configured as a differential analog microphone input, a single ended or differential Line input(s), or as a reduced power, direct differential analog input to the ADC mixer. One input pair, IN1/IN2, can also be re-tasked to support two digital microphones. As a result, any combination of two microphones (either analog or digital) can be recorded from simultaneously. The input analog signals are amplified by up to 50dB, and then are either recorded by the stereo ADC or routed directly to the analog output mixers for playback. AX P R IM E L C IM O I N NA FI D RY EN TI AL The ADC supports sample rates between 8kHz and 96kHz, an optional dither enable, and features two performance modes and oversampling rates. The ADC to DAI recording path features both voice (IIR) and Music (FIR) filtering, optional DC blocking and configurable biquad filters, and up to 21dB of programmable digital gain and level control. The digital audio interface (DAI) can simultaneously transmit and receive separate and distinct stereo audio signals in a wide range of formats including I2S, LJ, RJ, and up to four slots in TDM. Like the ADC to DAI recording path, the DAI to DAC playback path supports sample rates from 8kHz to 96kHz, both voice (IIR) and Music (FIR) filtering (high stop band attenuation at fs/2), optional DC blocking filters, and up to 18dB of digital gain and level control. In addition, the DAI playback path also features a 7 band parametric biquad equalizer, automatic level control (ALC) with up to 12dB of compression, and a summing digital sidetone from the ADC recording path. The MAX98090 includes three analog output drivers. The first is a differential receiver / earpiece BTL amplifier. Alternatively, the receiver amplifier can also be configured a stereo single ended line output. The second is an integrated, filterless, class D stereo speaker amplifier. This amplifier provides efficient amplification for two speakers, and includes active emissions limiting to minimize the radiated emissions (EMI) traditionally associated with class D. The right channel features a slave mode where the switching is synchronized to that of the left channel to eliminate the beat tone that can occur with asynchronous operation. In most systems, no output filtering is required. M Finally, the third is a class H, ground referenced stereo headphone amplifier featuring Maxim’s second generation DirectDrive architecture. The class H headphone amplifiers use a charge pump to generate a ground referenced output signal. This eliminates the need for either DC blocking capacitors or a mid-rail bias for the headphone jack ground return. The charge pump generates both the positive and negative supply for the headphone amplifier. A tracking circuit monitors the input signal level and automatically selects between two supply voltage levels based on the signal level. For low signal levels the charge pump outputs HPVDD / 2 and –HPVDD / 2 for improved efficiency. For high signal levels the charge pump outputs HPVDD and –HPVDD to maximum output power. Ground sense reduces output noise caused by ground return current. _____________________________________________________________________ 62 MAXIM Confidential MAX98090 Device I2C Register Map Table 1 lists all of the registers, their addresses, and power-on-reset (PoR) states. Registers 0x01, 0x02 and 0xFF are read-only. Register 0x00, and all of the remaining registers, are read/write. Write zeros to all unused bits in the register table when updating the register, unless otherwise noted. Table 1: MAX98090 Control Register Map (Register Bits in Bold are WLP Package Only) REGISTER DESCRIPTION ADDR NAME REGISTER CONTENTS R/W BIT 7 POR BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 - - - - - - - DS STATE PAGE RESET / STATUS / INTERRUPT REGISTERS 0x01 0x02 0x03 SOFTWARE RESET W SWRESET 0x00 116 AX P R IM E L C IM O I N NA FI D RY EN TI AL 0x00 DEVICE STATUS CoR CLD SLD ULK - - JDET ALCACT ALCCLP 0x00 112 JACK STATUS R - - - - - LSNS JKSNS - 0x00 111 INTERUPT MASKS R/W ICLD ISLD IULK - - IJDET IALCACT IALCCLP 0x04 113 SYSTEM CLOCK W 26M 19P2M 13M 12P288M 12M 11P2896M - 256FS 0x00 114 SAMPLE RATE W - - SR_96K SR_32K SR_48K SR_44K1 SR_16K SR_8K 0x00 114 QUICK SETUP REGISTERS 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B DAI INTERFACE W - - RJ_M RJ_S LJ_M LJ_S I2S_M I2S_S 0x00 114 DAC PATH W DIG2_HP DIG2_EAR DIG2_SPK DIG2_LOUT - - - - 0x00 115 MIC/DIRECT TO ADC W IN12_MIC1 IN34_MIC2 IN56_MIC1 IN56_MIC2 - 0x00 115 LINE TO ADC W IN12S_AB IN34S_AB IN56S_AB IN34D_A IN56D_B - - - 0x00 115 IN12_ IN12_ IN12_ IN12_ IN34_ IN34_ IN34_ IN34_ M1HPL M1SPKL M1EAR M1LOUTL M2HPR M2SPKR M2EAR M2LOUTR 0x00 116 IN12S_ IN34D_ IN34D_ IN12S_ IN34S_ IN56D_ IN56D_ IN34S_ ABHP ASPKL AEAR ABLOUT ABHP BSPKR BEAR ABLOUT 0x00 116 0x00 - 0x00 78 ANALOG MIC LOOP W ANALOG LINE LOOP W IN12_DADC IN34_DADC IN56_DADC RESERVED REGISTERS 0x0C RESERVED - ANALOG INPUT CONFIGURATION REGISTERS 0x0D 0x0E 0x0F 0x10 0x11 INPUT CONFIG. R/W IN34DIFF IN56DIFF LINE INPUT LEVEL R/W MIXG135 MIXG246 IN1SEEN LINE CONFIG. R/W EXTBUFA EXTBUFB MIC1 INPUT LEVEL R/W - PA1EN[1:0] MIC2 INPUT LEVEL R/W - PA2EN[1:0] IN2SEEN IN3SEEN IN4SEEN LINAPGA[2:0] - - IN5SEEN IN6SEEN LINBPGA[2:0] - 0x1B 78 0x00 78 PGAM1[4:0] 0x11 74 PGAM2[4:0] 0x11 74 0x00 75 - EXTMIC[1:0] MICROPHONE CONFIGURATION REGISTERS 0x12 0x13 0x14 R/W - DIGITAL MIC CONFIG. R/W MIC BIAS VOLTAGE - DIGITAL MIC MODE - - - MICCLK[2:0] R/W DMIC_COMP[3:0] - - - - - - MBVSEL[1:0] DIGMICR DIGMICL DMIC_FREQ[1:0] 0x00 76 0x00 76 ADC PATH AND CONFIGURATION REGISTERS 0x15 0x16 0x17 0x18 0x19 R/W MIXADL[7:0] 0x00 80 R/W MIXADR[7:0] 0x00 80 81 LEFT ADC LEVEL R/W - AVLG[2:0] AVL[3:0] 0x03 RIGHT ADC LEVEL R/W - AVRG[2:0] AVR[3:0] 0x03 81 ADC BIQUAD LEVEL R/W - AVBQ[3:0] 0x00 83 ADC SIDETONE R/W 0x00 82 - DSTS[1:0] - - - DVST[4:0] M 0x1A LEFT ADC MIXER RIGHT ADC MIXER _____________________________________________________________________ 63 MAXIM Confidential REGISTER DESCRIPTION ADDR NAME MAX98090 REGISTER CONTENTS R/W BIT 7 BIT 6 BIT 5 BIT 4 POR BIT 0 DS STATE PAGE BIT 3 BIT 2 BIT 1 - - - - 0x00 88 - - - USE_M1 0x00 88 CLOCK CONFIGURATION REGISTERS 0x1B SYSTEM CLOCK R/W 0x1C CLOCK MODE R/W - - PSCLK[1:0] 0x1D ANY CLOCK 1 R/W 0x00 89 0x1E ANY CLOCK 2 R/W NI1[7:0] 0x00 89 0x1F ANY CLOCK 3 R/W MI1[15:8] 0x00 90 0x20 ANY CLOCK 4 R/W MI1[7:0] 0x00 90 0x21 MASTER MODE R/W 0x00 86 FREQ1[3:0] - NI1[14:8] - - - - BSEL[2:1] - - RJ WCI BCI DLY - - - - - - 0x00 91 - - LTEN LBEN DMONO HIZOFF SDOEN SDIEN 0x00 84 R/W MODE AHPF DHPF DHF - - - - 0x80 85 DAI PLAYBACK LEVEL R/W DV1M - EQ PLAYBACK LEVEL R/W - - AX P R IM E L C IM O I N NA FI D RY EN TI AL MAS INTERFACE CONTROL REGISTERS 0x22 0x23 0x24 0x25 0x26 0x27 0x28 INTERFACE FORMAT R/W TDM FORMAT 1 R/W TDM FORMAT 2 R/W I/O CONFIGURATION R/W FILTER CONFIG. SLOTL[1:0] SLOTR[1:0] TDM SLOTDLY[3:0] DV1G[1:0] - WS[1:0] FSW /EQCLP\ 0x00 87 0x00 91 DV1[3:0] 0x00 92 DVEQ[3:0] 0x00 94 HEADPHONE (HP) CONTROL REGISTERS 0x29 0x2A 0x2B 0x2C 0x2D LEFT HP MIXER R/W - - MIXHPL[5:0] 0x00 102 RIGHT HP MIXER R/W - - MIXHPR[5:0] 0x00 102 HP CONTROL R/W - - 0x00 103 LEFT HP VOLUME R/W HPLM - - HPVOLL[4:0] 0x1A 103 RIGHT HP VOLUME R/W HPRM - - HPVOLR[4:0] 0x1A 104 100 MIXHPRSEL MIXHPLSEL MIXHPRG[1:0] MIXHPLG[1:0] SPEAKER (SPK) CONFIGURATION REGISTERS 0x2E 0x2F 0x30 0x31 0x32 LEFT SPK MIXER R/W - - MIXSPL[5:0] 0x00 RIGHT SPK MIXER R/W - SPK_SLAVE MIXSPR[5:0] 0x00 100 SPK CONTROL R/W - - 0x00 101 LEFT SPK VOLUME R/W SPLM - SPVOLL[5:0] 0x2C 101 RIGHT SPK VOLUME R/W SPRM - SPVOLR[5:0] 0x2C 101 0x00 92 - MIXSPRG[1:0] MIXSPLG[1:0] AUTOMATIC LEVEL CONTROL (ALC) CONFIGURATION REGISTERS 0x33 0x34 0x35 0x36 ALC TIMING R/W ALC COMPRESSOR R/W ALCEN ALCCMP[2:0] ALCTHC[4:0] 0x00 93 ALC EXPANDER R/W ALCEXP[2:0] ALCTHE[4:0] 0x00 93 ALC GAIN R/W ALCG[4:0] 0x00 93 - ALCRLS[2:0] - - - ALCATK[2:0] RECEIVER (RCV OR EARPIECE) AND LINE OUTPUT (LOUT) REGISTERS 0x37 RCV/LOUTL MIXER R/W 0x38 RCV/LOUTL CONTROL R/W 0x39 0x3A 0x3B - MIXRCVL[5:0] - - - RCVLM - - LINMOD - LOUTR MIXER R/W LOUTR CONTROL R/W - - - LOUTR VOLUME R/W RCVRM - - - - - 0x00 97, 106 MIXRCVLG[1:0] RCVLVOL[4:0] 0x15 98, 107 MIXRCVR[5:0] - - - RCVRVOL[4:0] 0x00 97, 106 MIXRCVRG[1:0] 0x00 107 0x00 107 0x15 108 M 0x3C RCV/LOUTL VOLUME R/W - _____________________________________________________________________ 64 MAXIM Confidential REGISTER DESCRIPTION ADDR NAME MAX98090 REGISTER CONTENTS R/W BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 POR BIT 2 BIT 1 BIT 0 DS STATE PAGE JACK DETECT AND ENABLE REGISTERS 0x3D JACK DETECT R/W JDETEN JDWK - - - - 0x3E INPUT ENABLE R/W - - - MBEN LINEAEN LINEBEN 0x3F OUTPUT ENABLE R/W HPREN HPLEN SPREN SPLEN RCVLEN 0x40 LEVEL CONTROL R/W - - - - - DSP FILTER ENABLE R/W - - - - 0x41 JDEB[1:0] 0x00 111 0x00 71 ADREN ADLEN RCVREN DAREN DALEN 0x00 71 /ZDEN\ /VS2EN\ /VSEN\ 0x00 109 0x00 94 ADCBQEN EQ3BANDEN EQ5BANDEN EQ7BANDEN BIAS AND POWER MODE CONFIGURATION REGISTERS 0x43 0x44 0x45 BIAS CONTROL R/W - - - - - - - VCM_MODE 0x00 69 DAC CONTROL R/W - - - - - - PERFMODE DACHP 0x00 69 AX P R IM E L C IM O I N NA FI D RY EN TI AL 0x42 ADC CONTROL R/W - - - - - OSR128 ADCDITHER ADCHP 0x06 70 DEVICE SHUTDOWN R/W /SHDN\ - - - - - - - 0x00 70 DAI PARAMETRIC EQUALIZER BAND 1: BIQUAD FILTER COEFFICIENT REGISTERS 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51 0x52 0x53 0x54 EQUALIZER BAND 1 COEFFICIENT B0 EQUALIZER BAND 1 COEFFICIENT B1 EQUALIZER BAND 1 COEFFICIENT B2 EQUALIZER BAND 1 COEFFICIENT A1 EQUALIZER BAND 1 COEFFICIENT A2 R/W B0_1[23:16] 0x00 R/W B0_1[15:8] 0x00 R/W B0_1[7:0] 0x00 R/W B1_1[23:16] 0x00 R/W B1_1[15:8] 0x00 R/W B1_1[7:0] 0x00 R/W B2_1[23:16] 0x00 R/W B2_1[15:8] 0x00 R/W B2_1[7:0] 0x00 R/W A1_1[23:16] 0x00 R/W A1_1[15:8] 0x00 R/W A1_1[7:0] 0x00 R/W A2_1[23:16] 0x00 R/W A2_1[15:8] 0x00 R/W A2_1[7:0] 0x00 R/W B0_2[23:16] 0x00 R/W B0_2[15:8] 0x00 95 DAI PARAMETRIC EQUALIZER BAND 2: BIQUAD FILTER COEFFICIENT REGISTERS 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E 0x5F 0x60 COEFFICIENT B0 EQUALIZER BAND 2 COEFFICIENT B1 EQUALIZER BAND 2 COEFFICIENT B2 EQUALIZER BAND 2 COEFFICIENT A1 EQUALIZER BAND 2 M 0x61 EQUALIZER BAND 2 0x62 0x63 COEFFICIENT A2 R/W B0_2[7:0] 0x00 R/W B1_2[23:16] 0x00 R/W B1_2[15:8] 0x00 R/W B1_2[7:0] 0x00 R/W B2_2[23:16] 0x00 R/W B2_2[15:8] 0x00 R/W B2_2[7:0] 0x00 R/W A1_2[23:16] 0x00 R/W A1_2[15:8] 0x00 R/W A1_2[7:0] 0x00 R/W A2_2[23:16] 0x00 R/W A2_2[15:8] 0x00 R/W A2_2[7:0] 0x00 _____________________________________________________________________ 65 95 MAXIM Confidential REGISTER DESCRIPTION ADDR NAME MAX98090 REGISTER CONTENTS R/W BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 POR BIT 2 BIT 1 BIT 0 DS STATE PAGE DAI PARAMETRIC EQUALIZER BAND 3: BIQUAD FILTER COEFFICIENT REGISTERS 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70 0x71 0x72 EQUALIZER BAND 3 COEFFICIENT B0 EQUALIZER BAND 3 COEFFICIENT B1 R/W B0_3[23:16] 0x00 R/W B0_3[15:8] 0x00 R/W B0_3[7:0] 0x00 R/W B1_3[23:16] 0x00 R/W B1_3[15:8] 0x00 R/W B1_3[7:0] 0x00 R/W B2_3[23:16] 0x00 AX P R IM E L C IM O I N NA FI D RY EN TI AL 0x64 EQUALIZER BAND 3 COEFFICIENT B2 EQUALIZER BAND 3 COEFFICIENT A1 EQUALIZER BAND 3 COEFFICIENT A2 R/W B2_3[15:8] 0x00 R/W B2_3[7:0] 0x00 R/W A1_3[23:16] 0x00 R/W A1_3[15:8] 0x00 R/W A1_3[7:0] 0x00 R/W A2_3[23:16] 0x00 R/W A2_3[15:8] 0x00 R/W A2_3[7:0] 0x00 R/W B0_4[23:16] 0x00 R/W B0_4[15:8] 0x00 R/W B0_4[7:0] 0x00 R/W B1_4[23:16] 0x00 R/W B1_4[15:8] 0x00 R/W B1_4[7:0] 0x00 95 DAI PARAMETRIC EQUALIZER BAND 4: BIQUAD FILTER COEFFICIENT REGISTERS 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C 0x7D 0x7E 0x7F 0x80 COEFFICIENT B0 EQUALIZER BAND 4 COEFFICIENT B1 EQUALIZER BAND 4 COEFFICIENT B2 EQUALIZER BAND 4 COEFFICIENT A1 EQUALIZER BAND 4 COEFFICIENT A2 R/W B2_4[23:16] 0x00 R/W B2_4[15:8] 0x00 R/W B2_4[7:0] 0x00 R/W A1_4[23:16] 0x00 R/W A1_4[15:8] 0x00 R/W A1_4[7:0] 0x00 R/W A2_4[23:16] 0x00 R/W A2_4[15:8] 0x00 R/W A2_4[7:0] 0x00 M 0x81 EQUALIZER BAND 4 _____________________________________________________________________ 66 95 MAXIM Confidential REGISTER DESCRIPTION ADDR NAME MAX98090 REGISTER CONTENTS R/W BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 POR BIT 2 BIT 1 BIT 0 DS STATE PAGE DAI PARAMETRIC EQUALIZER BAND 5: BIQUAD FILTER COEFFICIENT REGISTERS 0x83 0x84 0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C 0x8D 0x8E 0x8F 0x90 EQUALIZER BAND 5 COEFFICIENT B0 EQUALIZER BAND 5 COEFFICIENT B1 R/W B0_5[23:16] 0x00 R/W B0_5[15:8] 0x00 R/W B0_5[7:0] 0x00 R/W B1_5[23:16] 0x00 R/W B1_5[15:8] 0x00 R/W B1_5[7:0] 0x00 R/W B2_5[23:16] 0x00 AX P R IM E L C IM O I N NA FI D RY EN TI AL 0x82 EQUALIZER BAND 5 COEFFICIENT B2 EQUALIZER BAND 5 COEFFICIENT A1 EQUALIZER BAND 5 COEFFICIENT A2 R/W B2_5[15:8] 0x00 R/W B2_5[7:0] 0x00 R/W A1_5[23:16] 0x00 R/W A1_5[15:8] 0x00 R/W A1_5[7:0] 0x00 R/W A2_5[23:16] 0x00 R/W A2_5[15:8] 0x00 R/W A2_5[7:0] 0x00 R/W B0_6[23:16] 0x00 R/W B0_6[15:8] 0x00 R/W B0_6[7:0] 0x00 R/W B1_6[23:16] 0x00 R/W B1_6[15:8] 0x00 R/W B1_6[7:0] 0x00 95 DAI PARAMETRIC EQUALIZER BAND 6: BIQUAD FILTER COEFFICIENT REGISTERS 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C 0x9D 0x9E COEFFICIENT B0 EQUALIZER BAND 6 COEFFICIENT B1 EQUALIZER BAND 6 COEFFICIENT B2 EQUALIZER BAND 6 COEFFICIENT A1 EQUALIZER BAND 6 COEFFICIENT A2 R/W B2_6[23:16] 0x00 R/W B2_6[15:8] 0x00 R/W B2_6[7:0] 0x00 R/W A1_6[23:16] 0x00 R/W A1_6[15:8] 0x00 R/W A1_6[7:0] 0x00 R/W A2_6[23:16] 0x00 R/W A2_6[15:8] 0x00 R/W A2_6[7:0] 0x00 M 0x9F EQUALIZER BAND 6 _____________________________________________________________________ 67 95 MAXIM Confidential REGISTER DESCRIPTION ADDR NAME MAX98090 REGISTER CONTENTS R/W BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 POR BIT 2 BIT 1 BIT 0 DS STATE PAGE DAI PARAMETRIC EQUALIZER BAND 7: BIQUAD FILTER COEFFICIENT REGISTERS 0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7 0xA8 0xA9 0xAA 0xAB 0xAC 0xAD 0xAE EQUALIZER BAND 7 COEFFICIENT B0 EQUALIZER BAND 7 COEFFICIENT B1 R/W B0_7[23:16] 0x00 R/W B0_7[15:8] 0x00 R/W B0_7[7:0] 0x00 R/W B1_7[23:16] 0x00 R/W B1_7[15:8] 0x00 R/W B1_7[7:0] 0x00 R/W B2_7[23:16] 0x00 R/W B2_7[15:8] 0x00 R/W B2_7[7:0] 0x00 AX P R IM E L C IM O I N NA FI D RY EN TI AL 0xA0 EQUALIZER BAND 7 COEFFICIENT B2 EQUALIZER BAND 7 COEFFICIENT A1 EQUALIZER BAND 7 COEFFICIENT A2 R/W A1_7[23:16] 0x00 R/W A1_7[15:8] 0x00 R/W A1_7[7:0] 0x00 R/W A2_7[23:16] 0x00 R/W A2_7[15:8] 0x00 R/W A2_7[7:0] 0x00 R/W ADC_B0[23:16] 0x00 R/W ADC_B0[15:8] 0x00 R/W ADC_B0[7:0] 0x00 R/W ADC_B1[23:16] 0x00 R/W ADC_B1[15:8] 0x00 R/W ADC_B1[7:0] 0x00 95 ADC BIQUAD FILTER COEFFICIENT REGISTERS 0xAF 0xB0 0xB1 0xB2 0xB3 0xB4 0xB5 0xB6 0xB7 0xB8 0xB9 0xBA 0xBB 0xBC 0xBD ADC BIQUAD COEFFICIENT B0 ADC BIQUAD COEFFICIENT B1 ADC BIQUAD COEFFICIENT B2 ADC BIQUAD COEFFICIENT A1 ADC BIQUAD COEFFICIENT A2 R/W ADC_B2[23:16] 0x00 R/W ADC_B2[15:8] 0x00 R/W ADC_B2[7:0] 0x00 R/W ADC_A1[23:16] 0x00 R/W ADC_A1[15:8] 0x00 R/W ADC_A1[7:0] 0x00 R/W ADC_A2[23:16] 0x00 R/W ADC_A2[15:8] 0x00 R/W ADC_A2[7:0] 0x00 R REVID[7:0] 0x42 83 REVISION ID REGISTER REVISION ID M 0xFF _____________________________________________________________________ 68 117 MAXIM Confidential MAX98090 Power and Performance Management The device includes comprehensive power management to allow the disabling of unused blocks to minimize supply current. In addition to this, the available power modes provide a software configurable choice between optimized performance and reduced power consumption. AX P R IM E L C IM O I N NA FI D RY EN TI AL Device Performance Configuration The Common Mode Bias Register (Table 2) selects the method used to derive the common mode reference voltage. A common mode bias created by resistive division (from the AVDD supply) facilitates lower overall power consumption (disables the bandgap reference circuit). However, this type of VCM reference has the disadvantage of scaling with the AVDD supply voltage (and thus also has reduced PSRR). When derived from a bandgap reference, VCM is constant regardless of the supply voltage but the additional circuitry does increase power consumption. The ADC, DAC, and headphone playback all have optional high performance modes (Table 3 / Table 4). In each case, these modes trade additional power consumption for enhanced performance. The ADC also has optional dither (recommended for the cleanest spectrum), and can be configured to two different oversampling rates (see section TBD for additional details on ADC operation) Table 2: Common Mode Bias Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x42 NAME TYPE PoR - VCM_MODE R/W 0 DESCRIPTION - Select source for VCM. 0 : VCM derived from resistive division selected (default) 1 : VCM created by bandgap reference selected Table 3: Output Power and Performance Mode Register BIT 7 6 5 4 3 2 1 PERFMODE R/W 0 DACHP R/W 0 M 0 ADDRESS: 0x43 NAME TYPE PoR - DESCRIPTION - Performance Mode Selects DAC to headphone playback performance mode. 1 : Low power playback mode. 0 : High performance playback mode. DAC High Performance Mode 0 : DAC settings optimized for lowest power consumption 1 : DAC settings optimized for best performance _____________________________________________________________________ 69 MAXIM Confidential MAX98090 Table 4: Input Power and Performance Mode Register 2 1 0 DESCRIPTION ADC Oversampling Rate 0 : ADCCLK = 64*fS 1 : ADCCLK = 128*fS (default) ADC Quantizer Dither 0 : Dither disabled 1 : Dither enabled ADC High Performance Mode 0 : ADC is optimized for low power operation 1 : ADC is optimized for best performance AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 ADDRESS: 0x45 NAME TYPE PoR OSR128 R/W 0 ADCDITHER R/W 0 ADCHP R/W 0 Device Enable Configuration In addition to a device global shutdown control, the major input and output blocks can be independently enabled (or disabled) to optimize power consumption. The device global shutdown control is detailed in Table 5. Table 6 details the available input signal path enables (with the exception of the analog microphone inputs 1/2, which are enabled from registers 0x10 and 0x11, or Table 8 and Table 9 respectively). Table 7 details the available output signal path enables. When the device is in global shutdown, the major input and output blocks are all disabled to conserve power. However, the I2C interface remains active and all device registers can be configured. Certain registers should only be programmed while in shutdown (detailed in Table 79). Changing these registers when the device is active could result in unexpected behavior. For optimal, minimized power consumption, only enable the stage blocks that are part of the intended signal path configuration. Table 5: Device Global Shutdown Register BIT 7 6 5 4 3 2 1 /SHDN\ R/W 0 DESCRIPTION Device Active-low Global Shutdown Control 0 : Device is in shutdown. 1 : Device is active. Certain registers should not be written to while the device is active (). M 0 ADDRESS: 0x45 NAME TYPE PoR - _____________________________________________________________________ 70 MAXIM Confidential MAX98090 Table 6: Input Enable Register BIT 7 6 5 3 2 1 0 MBEN R/W 0 DESCRIPTION Microphone Bias Enable 0 : Disable Microphone Bias 1 : Enable Microphone Bias Enables Line A Analog Input Block 0 : Line A Input amplifier disabled 1 : Line A Input amplifier enabled Enables Line A Analog Input Block 0 : Line B Input amplifier disabled 1 : Line B Input amplifier enabled Right ADC Enable 0 : Right ADC disabled 1 : Right ADC enabled Left ADC Enable 0 : Left ADC disabled 1 : Left ADC enabled AX P R IM E L C IM O I N NA FI D RY EN TI AL 4 ADDRESS: 0x3E NAME TYPE PoR - LINEAEN R/W 0 LINEBEN R/W 0 ADREN R/W 0 ADLEN R/W 0 Table 7: Output Enable Register BIT 7 6 5 4 3 2 HPREN R/W 0 HPLEN R/W 0 SPREN R/W 0 SPLEN R/W 0 RCVLEN R/W 0 RCVREN R/W 0 DAREN R/W 0 R/W 0 M 1 ADDRESS: 0x3F NAME TYPE PoR 0 DALEN DESCRIPTION Right Headphone Output Enable 0 : Disable Right Headphone Output 1 : Enable Right Headphone Output Left Headphone Output Enable 0 : Disable Left Headphone Output 1 : Enable Left Headphone Output Right Class-D Speaker Output Enable 0 : Disable Right Speaker Output 1 : Enable Right Speaker Output Left Class-D Speaker Output Enable 0 : Disable Left Speaker Output 1 : Enable Left Speaker Output Receiver (Earpiece) / Line Out Left Output Enable 0 : Disable Receiver / Left Line Output 1 : Enable Receiver / Left Line Output Right Line Output Enable 0 : Disable Right Line Output 1 : Enable Right Line Output Right DAC Digital Input Enable 0 : Disable Right DAC Input 1 : Enable Right DAC Input Left DAC Digital Input Enable 0 : Disable Left DAC Input 1 : Enable Left DAC Input _____________________________________________________________________ 71 MAXIM Confidential MAX98090 Analog Audio Input Configuration The device features either six (WLP package) or four (TQFN package) flexible analog inputs. Each pair can be configured as either an analog microphone input, a single ended or differential line input(s), or as a reduced power, full-scale differential analog input direct to the ADC mixer. The analog microphone and line inputs can either be routed to the stereo ADC mixer for recording or directly to any analog output mixer for playback. MBEN MBVSEL[1:0] FLEXSOUND TECHNOLOGY DSP MICCLK[1:0] DIGMICL MICBIAS DIGITAL MIC. CLOCK CONTROL DIGITAL MIC DATA LEFT MUX DIGITAL MIC DATA RIGHT MUX AX P R IM E L C IM O I N NA FI D RY EN TI AL MICROPHONE BIAS GENERATOR DIGMICR DMDL MIXG135 IN5 LINE A INPUT MIXER DMDR ADC LEFT IN1 IN3 ADCL ADCR LINAPGA[2:0] -6dB / 0dB -6dB to 20dB ADC RIGHT LINE A PGA IN3-IN4 ADLEN ADCHP OSR128 ADCDITHER ADREN IN1-IN2 IN1SEEN IN3SEEN IN5SEEN IN34DIFF IN1 / DMD IN3-IN4 LINEAEN EXTBUFA IN5-IN6 MIC 1 IN2 / DMC MIC 2 PA1EN[1:0] PGAM1[4:0] EXTMIC[0] ADC LEFT MIXER LINE A MIXADL[7:0] LINE B IN1-IN2 IN5-IN6 0dB to 50dB MIC 1 INPUT MUX MIC 1 PGA IN1-IN2 IN3-IN4 ZDENB IN3 MIXADR[7:0] IN5-IN6 IN4 MIC 1 ZDENB IN3-IN4 IN5-IN6 MIC 2 0dB to 50dB MIC 2 INPUT MUX MIC 2 PGA ADC RIGHT MIXER LINE A LINE B PA2EN[1:0] PGAM2[4:0] EXTMIC[1] IN5 IN6 IN2SEEN IN4SEEN IN6SEEN IN56DIFF WLP ONLY ANALOG OUTPUT MIXERS LINEAEN EXTBUFA IN2 IN4 IN6 LINE B INPUT MIXER -6dB / 0dB -6dB to 20dB LINE B PGA M IN6-IN5 MIXG246 LINAPGA[2:0] Figure 6: Analog Audio Input Functional Diagram _____________________________________________________________________ 72 MAXIM Confidential MAX98090 M AX P R IM E L C IM O I N NA FI D RY EN TI AL Analog Microphone Inputs The device includes three differential microphone inputs (three for the WLP package and two for the TQFN package) and a programmable, low-noise microphone bias for powering a wide variety of external microphones (Figure 7). By default, analog inputs IN1 and IN2 differentially (IN1 – IN2) provide the input to microphone amplifier 1, while IN3 and IN4 differentially (IN3 – IN4) form the input to microphone amplifier 2. For the WLP package, the additional analog input pair IN5 and IN6 can be configured as a differential input (IN5 – IN6) to either microphone amplifier 1 or 2 (Table 15). In the typical application, one microphone input is used for the handset microphone and the other is used as an accessory microphone (IN1/IN2 and IN3/IN4). In systems using a background noise microphone, IN5/IN6 (WLP only) can be retasked as another microphone input. Analog microphone input signals are amplified by two stages of programmable gain amplifiers, and then routed to either the ADC mixer (record) or analog outputs (playback). The first, a coarse gain stage, includes the analog microphone enable, and offers selectable 0dB, 20dB, or 30dB gain settings. The second, a fine gain stage, is a programmable-gain amplifier (PGA) adjustable from 0dB to 20dB in 1dB steps (Table 8 and Table 9). Together, the two stages provide up to 50dB of signal gain for the analog microphone inputs. To maximize the signal-to-noise ratio, use the coarse gain settings of the first stage whenever possible. Zero-crossing detection is included on the PGA to minimize zipper noise while making gain changes. Figure 7: Analog Microphone Input Functional Diagram _____________________________________________________________________ 73 MAXIM Confidential MAX98090 Table 8: Microphone 1 Enable and Level Configuration Register BIT 7 6 ADDRESS: 0x10 NAME TYPE PoR PA1EN[1:0] 5 R/W 3 2 1 0 - 0 Microphone 1 Input Amplifier Enable and Coarse Gain Setting 00 : Disabled 10 : 20dB 01 : 0dB 11 : 30dB 1 Microphone 1 Programmable Gain Amplifier Fine Adjust Configuration 0 0x1F : 0dB ⋮ 0x14 : 0dB 0x13 : 1dB 0x12 : 2dB 0x11 : 3dB 0x10 : 4dB 0x0F : 5dB 0x0E : 6dB 0x0D : 7dB 0x0C : 8dB 0x0B : 9dB 0x0A : 10dB 0x09 : 11dB 0x08 : 12dB 0x07 : 13dB 0x06 : 14dB 0x05 : 15dB 0x04 : 16dB 0x03 : 17dB 0x02 : 18dB 0x01 : 19dB 0x00 : 20dB AX P R IM E L C IM O I N NA FI D RY EN TI AL 4 DESCRIPTION 0 PGAM1[4:0] R/W 0 0 1 Table 9: Microphone 2 Enable and Level Configuration Register BIT 7 6 5 4 3 2 1 PA2EN[1:0] R/W 0 Microphone 2 Input Amplifier Enable and Coarse Gain Setting 00 : Disabled 10 : 20dB 01 : 0dB 11 : 30dB 1 Microphone 2 Programmable Gain Amplifier Fine Adjust Configuration 0 0 PGAM2[4:0] R/W DESCRIPTION 0 0 1 0x1F : 0dB ⋮ 0x14 : 0dB 0x13 : 1dB 0x12 : 2dB 0x11 : 3dB 0x10 : 4dB 0x0F : 5dB 0x0E : 6dB 0x0D : 7dB 0x0C : 8dB 0x0B : 9dB 0x0A : 10dB 0x09 : 11dB 0x08 : 12dB 0x07 : 13dB 0x06 : 14dB 0x05 : 15dB 0x04 : 16dB 0x03 : 17dB 0x02 : 18dB 0x01 : 19dB 0x00 : 20dB M 0 ADDRESS: 0x11 NAME TYPE PoR - _____________________________________________________________________ 74 MAXIM Confidential MAX98090 Analog Microphone Bias The device features a low noise microphone bias output (MICBIAS) that can be configured to power a wide range of external microphone devices. The microphone bias can be set by the software to any one of 4 voltages (2.2V, 2.4V, 2.55V, or 2.8V) by programming the Microphone Bias Level Configuration Register (Table 10). Table 10: Microphone Bias Level Configuration Register 1 0 DESCRIPTION - AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 ADDRESS: 0x12 NAME TYPE PoR - MBVSEL[1:0] R/W 0 0 Microphone Bias Level Configuration 00 : 2.2V 10 : 01 : 2.4V 11 : 2.55V 2.8V Digital Microphone Inputs One microphone input, IN1/IN2, can also be configured as a digital microphone input accepting signals from two different digital microphones (Figure 8). Any two microphones, either analog or digital, can be recorded from simultaneously. Digital microphone left and right are routed through the left and right record path DSP to the DAI. The appropriate channel record path DSP is automatically switched to either of the digital microphones when they are enabled (DIGIMICR and DIGIMICL, Error! Reference source not found.). IN2 / DMC DIGITAL MIC. CLOCK CONTROL MICCLK[1:0] DIGMICL DMDL IN1 / DMD IN3 IN4 ADC LEFT MIXER ADC LEFT MICBIAS IN5 IN6 M WLP ONLY ADCL DIGITAL MIC DATA LEFT MUX FLEXSOUND TECHNOLOGY DSP DMDR ADC RIGHT MIXER ADC RIGHT ADCR LEFT RECORD PATH DSP DIGITAL MIC DATA RIGHT MUX DAI RIGHT RECORD PATH DSP DIGMICR Figure 8: Digital Microphone Input Functional Diagram _____________________________________________________________________ 75 MAXIM Confidential MAX98090 To avoid any potential clipping and minimize potential distortion, always enable the record path DC blocking filters to remove any DC offsets (AHPF, Table 25). The record path biquad filter, and digital gain and level control can also optionally be applied to digital microphone inputs. The digital microphone clock rate can be configured to any one of 4 settings using MICCLK[1:0] (Error! Reference source not found.). The digital microphone clock can be derived either from a PCLK divider or a sample rater multiplier. If MICCLK is set to 1x and PCLK is not an integer multiple of the sample rate then the generated clock will potentially be jittered. Table 11: Digital Microphone 1 6 5 4 3 2 1 0 DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 ADDRESS: 0x13 NAME TYPE PoR 0 MICCLK[2:0] R/W 0 0 - - - DIGMICR R/W 0 DIGMICL R/W 0 Digital Microphone Clock Rate Configuration 000 : fDIGMICCLK = PCLK / 2 100 : fDIGMICCLK = PCLK / 6 001 : fDIGMICCLK = PCLK / 3 101 : fDIGMICCLK = PCLK / 8 010 : fDIGMICCLK = PCLK / 4 110 : fDIGMICCLK = PCLK / 10 011 : fDIGMICCLK = PCLK / 5 111 : RESERVED Digital Microphone Right Channel Enable 0 : Right record channel uses on-chip ADC 1 : Right record channel uses digital microphone input Digital Microphone Left Channel Enable 0 : Left record channel uses on-chip ADC 1 : Left record channel uses digital microphone input Table 12: Digital Microphone 2 BIT 7 6 5 4 3 2 1 ADDRESS: 0x14 NAME TYPE PoR 0 0 DMIC_COMP[3:0] R/W 0 0 R/W 0 R/W 0 DMIC_FREQ[1:0] Digital Microphone Compensation Filter Configuration 0000 - 1111 : TBD If the system clock and sample rate bits in register 0x04 / 0x05 are set, then the compensation filter configuration is automatically decoded. Digital Microphone Frequency Range Configuration 00 : fDIGMICCLK < 3.5MHz 10 : 4.5MHz ≤ fDIGMICCLK 01 : 3.5MHz ≤ fDIGMICCLK < 4.5MHz 11 : Reserved If any of the system clock bits in register 0x04 are set, then the frequency range configuration is automatically decoded. M 0 DESCRIPTION _____________________________________________________________________ 76 MAXIM Confidential MAX98090 Analog Line Inputs The device includes two sets of line inputs (Figure 9). The line inputs can be configured as stereo single-ended inputs, stereo differential inputs, or multiple mixed single ended inputs. To allow the line inputs to match a wide range of input signal levels, each line input includes a coarse programmable gain amplifier (PGA) that can provide up to 6dB of attenuation or 20dB of signal gain. After the PGAs, the line inputs are then routed to either the ADC mixer (record) or analog outputs (playback). If the line input requires a custom gain level, the external gain mode provides a trimmed feedback resistor. The line input gain is then set by using the following formula to calculate the appropriate series input resistor: AX P R IM E L C IM O I N NA FI D RY EN TI AL AVPGAIN = 20 x log (20kΩ/RIN) M In addition to custom gain levels, the external gain mode allows the line input PGAs to be reconfigured into a variety of different amplifier topologies. It allows for the summing of multiple signals into a single input by connecting multiple input resistors in a summing topology as shown in Figure TBD. It also allows the line inputs to accept analog input signals larger than 1VRMS by creating a voltage divider and adjusting the ratio of the series input resistor to the internal feedback resistor to less than 1 (20kΩ/RIN < 1). Figure 9: Analog Line Input Functional Diagram _____________________________________________________________________ 77 MAXIM Confidential MAX98090 Table 13: Line Input Mixer Configuration Register DESCRIPTION Selects IN3-IN4 Differentially as an Input to the Line A Mixer Selects IN6-IN5 Differentially as an Input to the Line B Mixer (WLP Only) Selects IN1 Single Ended as an Input to the Line A Mixer Selects IN2 Single Ended as an Input to the Line B Mixer Selects IN3 Single Ended as an Input to the Line A Mixer Selects IN4 Single Ended as an Input to the Line B Mixer Selects IN5 Single Ended as an Input to the Line A Mixer (WLP Only) Selects IN6 Single Ended as an Input to the Line B Mixer (WLP Only) AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x0D NAME TYPE PoR IN34DIFF R/W 0 IN56DIFF R/W 0 IN1SEEN R/W 0 IN2SEEN R/W 0 IN3SEEN R/W 0 IN4SEEN R/W 0 IN5SEEN R/W 0 IN6SEEN R/W 0 Table 14: Line Input Level Configuration Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x0E NAME TYPE PoR MIXG135 R/W 0 MIXG246 R/W 0 LINAPGA[2:0] R/W LINBPGA[2:0] R/W 0 1 1 0 1 1 DESCRIPTION Enable for a -6dB Reduction for Multiple Single Ended Line A Mixer Inputs 0 : Normal Line A Mixer Operation 1 : Gain is Reduced by -6dB when Multiple Single Ended Inputs are selected Enable for a -6dB Reduction for Multiple Single Ended Line B Mixer Inputs 0 : Normal Line B Mixer Operation 1 : Gain is Reduced by -6dB when Multiple Single Ended Inputs are selected Line Input A Programmable Internal Preamp Gain Configuration 000 : 20dB 001 : 14dB 010 : 3dB 011 : 0dB 100 : -3dB 101, 110, 111 : -6dB Line Input B Programmable Internal Preamp Gain Configuration 000 : 20dB 001 : 14dB 010 : 3dB 011 : 0dB 100 : -3dB 101, 110, 111 : -6dB Table 15: Line Input Mode and Source Configuration Register BIT 7 6 5 4 3 2 1 EXTMIC[1:0] M 0 ADDRESS: 0x0F NAME TYPE PoR EXTBUFA R/W 0 EXTBUFB R/W 0 R/W 0 0 DESCRIPTION Selects External Resistor Gain Mode for Line Input A Selects External Resistor Gain Mode for Line Input B External Microphone (IN6–IN5) Input Control Configuration (WLP Only) 00 : EXT_MIC not selected 10 : EXT_MIC selected on MIC 2 01 : EXT_MIC selected on MIC 1 11 : EXT_MIC not selected _____________________________________________________________________ 78 MAXIM Confidential MAX98090 AX P R IM E L C IM O I N NA FI D RY EN TI AL Analog Full-Scale Direct to ADC Mixer Inputs The analog inputs can also be configured to accept and route differential analog signals directly to the ADC mixers (record, Figure 10). By disabling and bypassing the analog microphone and line input gain stages, this mode provides a reduced power configuration for full-scale (up to 1VRMS) analog input signals. Unlike the analog microphone and line input configurations, this mode does not allow the input signals to be routed directly to the analog output mixers (playback). Figure 10: Analog Direct to ADC Mixer Input Functional Diagram M Analog Input to Analog Output Loopback _____________________________________________________________________ 79 MAXIM Confidential MAX98090 Analog to Digital Converter (ADC) Configuration ADC Input Mixer Configuration Table 16: Left ADC Mixer Input Configuration Register ADDRESS: 0x15 NAME TYPE PoR R/W 0 R/W 0 R/W 0 MIXADL[6:0] R/W 0 R/W 0 R/W 0 R/W 0 - DESCRIPTION Select IN1-IN2 Differential Input Direct to Left ADC Mixer Select IN3-IN4 Differential Input Direct to Left ADC Mixer Select IN6-IN5 Differential Input Direct to Left ADC Mixer (WLP Only) Select Line Input A to Left ADC Mixer Select Line Input B to Left ADC Mixer Select Microphone Input 1 to Left ADC Mixer Select Microphone Input 2 to Left ADC Mixer - AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 1 0 Table 17: Right ADC Mixer Input Configuration Register DESCRIPTION Select IN1-IN2 Differential Input Direct to Right ADC Mixer Select IN3-IN4 Differential Input Direct to Right ADC Mixer Select IN6-IN5 Differential Input Direct to Right ADC Mixer (WLP Only) Select Line Input A to Right ADC Mixer Select Line Input B to Right ADC Mixer Select Microphone Input 1 to Right ADC Mixer Select Microphone Input 2 to Right ADC Mixer - M BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x16 NAME TYPE PoR R/W 0 R/W 0 R/W 0 MIXADR[6:0] R/W 0 R/W 0 R/W 0 R/W 0 - _____________________________________________________________________ 80 MAXIM Confidential MAX98090 ADC Output Digital Gain The IC includes separate digital level control for the left and right ADC outputs (Figure 13). To optimize dynamic range, use analog gain to adjust the signal level and set the digital level control to 0dB whenever possible. Digital level control is primarily used when adjusting the record level for digital microphones. Table 18: Left ADC Digital Level Configuration Register 3 2 1 0 DESCRIPTION - AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 ADDRESS: 0x17 NAME TYPE PoR 0 AVLG[2:0] R/W 0 0 0 AVL[3:0] R/W 0 1 1 Left ADC Digital Coarse Gain Configuration 000 : 0dB 010 : +12dB 100 : +24dB 001 : +6dB 011 : +18dB 101 : +30dB 110 : +36dB 111 : +42dB Left ADC Digital Fine Adjust Gain Configuration 0x0 : +3dB 0x1 : +2dB 0x2 : +1dB 0x3 : +0dB 0x8 : -5dB 0x9 : -6dB 0xA : -7dB 0xB : -8dB 0x4 : -1dB 0x5 : -2dB 0x6 : -3dB 0x7 : -4dB 0xC : -9dB 0xD : -10dB 0xE : -11dB 0xF : -12dB Table 19: Right ADC Digital Level Configuration Register BIT 7 6 5 4 3 2 1 0 AVR[3:0] R/W 0 1 1 DESCRIPTION - Right ADC Digital Coarse Gain Configuration 000 : 0dB 010 : +12dB 100 : +24dB 001 : +6dB 011 : +18dB 101 : +30dB 110 : +36dB 111 : +42dB Right ADC Digital Fine Adjust Gain Configuration 0x0 : +3dB 0x1 : +2dB 0x2 : +1dB 0x3 : +0dB 0x4 : -1dB 0x5 : -2dB 0x6 : -3dB 0x7 : -4dB 0x8 : -5dB 0x9 : -6dB 0xA : -7dB 0xB : -8dB 0xC : -9dB 0xD : -10dB 0xE : -11dB 0xF : -12dB M 0 ADDRESS: 0x18 NAME TYPE PoR 0 AVRG[2:0] R/W 0 0 _____________________________________________________________________ 81 MAXIM Confidential MAX98090 ADC Output Sidetone Enable sidetone during full-duplex operation to add a low-level copy of the recorded audio signal to the playback audio signal (Figure 14). Sidetone is commonly used in telephony to allow the speaker to hear himself speak, providing a more natural user experience. The IC implements sidetone digitally. Doing so helps prevent unwanted feedback into the playback signal path and better matches the playback audio signal. Table 20: ADC Sidetone Configuration Register 7 6 5 4 3 2 1 - 0 ADC Sidetone Digital Gain Configuration 0 - 0 DVST[4:0] R/W 0 0 0 0x00 : OFF 0x01 : -0.5dB 0x02 : -2.5dB 0x03 : -4.5dB 0x04 : -6.5dB 0x05 : -8.5dB 0x06 : -10.5dB 0x07 : -12.5dB 0x08 : -14.5dB 0x09 : -16.5dB 0x0A : -18.5dB 0x0B : -20.5dB 0x0C : -22.5dB 0x0D : -24.5dB 0x0E : -26.5dB 0x0F : -28.5dB 0x10 : -30.5dB 0x11 : -32.5dB 0x12 : -34.5dB 0x13 : -36.5dB 0x14 : -38.5dB 0x15 : -40.5dB 0x16 : -42.5dB 0x17 : -44.5dB 0x18 : -46.5dB 0x19 : -48.5dB 0x1A : -50.5dB 0x1B : -52.5dB 0x1C : -54.5dB 0x1D : -56.5dB 0x1E : -58.5dB 0x1F : -60.5dB M 0 - ADC Sidetone Enable and Digital Source Configuration 00 : No sidetone selected 10 : Right ADC 01 : Left ADC 11 : Left + Right ADC - 0 DSTS[1:0] DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT ADDRESS: 0x1A NAME TYPE PoR _____________________________________________________________________ 82 MAXIM Confidential MAX98090 ADC Output Biquad Filter Table 21: ADC Biquad Digital Preamplifier Level Configuration Register 3 2 1 0 DESCRIPTION - AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 ADDRESS: 0x18 NAME TYPE PoR - AVBQ[3:0] R/W 0 ADC Biquad Digital Preamplifier Gain Configuration 0 0x0 : +0dB 0x1 : -1dB 0x2 : -2dB 0x3 : -3dB 0 0 0x8 : -8dB 0x9 : -9dB 0xA : -10dB 0xB : -11dB 0x4 : -4dB 0x5 : -5dB 0x6 : -6dB 0x7 : -7dB 0xC : -12dB 0xD : -13dB 0xE : -14dB 0xF : -15dB Table 22: DSP Biquad Filter Enable Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x41 NAME TYPE PoR - ADCBQEN R/W 0 EQ3BANDEN R/W 0 EQ5BANDEN R/W 0 EQ7BANDEN R/W 0 DESCRIPTION - Enable Biquad filter in ADC path. 0 : biquad filter not used 1 : biquad filter used in ADC path Enable 3 Band EQ in DAC path. Bands 4 through 7 are not used. 0 : 3 band EQ disabled 1 : 3 band EQ enabled. Only valid if EQ7BANDEN == 0 and EQ5BANDEN == 0. Enable 5 Band EQ in DAC path. Bands 6 & 7 are not used. 0 : 5 band EQ disabled 1 : 5 band EQ enabled. Only valid if EQ7BANDEN == 0 Enable 7 Band EQ in DAC path. 0 : 7 band EQ disabled. 1 : 7 band EQ enabled. This makes EQ5BANDEN and EQ3BANDEN redundant. Table 23: ADC Biquad Filter Coefficient NAME 0xAF 0xB0 0xB1 ADC BIQUAD COEFFICIENT B0 R/W 0x00 ADC_B0[23:16] ADC_B0[15:8] ADC_B0[7:0] 0xB2 0xB3 0xB4 ADC BIQUAD COEFFICIENT B1 R/W 0x00 ADC_B1[23:16] ADC_B1[15:8] ADC_B1[7:0] 0xB5 0xB6 0xB7 ADC BIQUAD COEFFICIENT B2 R/W 0x00 ADC_B2[23:16] ADC_B2[15:8] ADC_B2[7:0] 0xB8 0xB9 0xBA ADC BIQUAD COEFFICIENT A1 R/W 0x00 ADC_A1[23:16] ADC_A1[15:8] ADC_A1[7:0] ADC BIQUAD COEFFICIENT A2 R/W 0x00 ADC_A2[23:16] ADC_A2[15:8] ADC_A2[7:0] M ADDRESS RANGE 0xBB 0xBC 0xBD TYPE PoR COEFFICIENT SEGMENT _____________________________________________________________________ 83 MAXIM Confidential MAX98090 Digital Audio Interface (DAI) Configuration Digital Data Path Table 24: Digital Audio Interface (DAI) Input / Output Configuration Register 5 4 3 2 1 LTEN R/W 0 LBEN R/W 0 DMONO R/W 0 HIZOFF R/W 0 SDOEN R/W 0 SDIEN R/W 0 DESCRIPTION Enables Data Loop Through from the ADC Output to the DAC Input 1 : ADC to DAC loop-through enabled. 0 : ADC to DAC loop-through disabled. Enables Data Loop Back from the SDIEN Input to the SDOEN Output 1 : DAI SDIN used as SDOUT data source 0 : ADC used as SDOUT data source. Enables DAC Mono Mode where SDIN L/R are Mixed and Input to DAC L/R 1 : The left and right channel SDIN input data are mixed together and input to both the left and right DAC channel signal paths. 0 : The SDIN DAC input data is treated as left/right stereo signal data processed separately. When operating in mono voice mode (MODE=1) stereo data may still be input via SDIN and optionally mixed using DMONO=1. Disables Hi-Z Mode for SDOUT 1 : The SDOUT pin drives a valid logic level after all data bits have been transferred out of the part. 0 : The SDOUT pin goes to a high impedance state after all 16 ADC data bits have been transferred out of the part, allowing the SDOUT line to be shared to the destination by other devices Enables the Serial Data Output 1 : Serial data output enabled. 0 : Serial data output disabled. Enables the Serial Data Input 1 : Serial data input enabled. 0 : Serial data input disabled. M 0 ADDRESS: 0x25 NAME TYPE PoR - AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 _____________________________________________________________________ 84 MAXIM Confidential MAX98090 Digital Filtering Table 25: Digital Audio Interface (DAI) Filter Configuration Register BIT 6 5 4 R/W 1 Enables the CODEC DSP FIR Music filters (Default IIR Voice Filters) 0 : The CODEC DSP filters operate in IIR Voice mode with stop band frequencies below the fs/2 Nyquist rate. The Voice mode filters are optimized for 8kHz or 16kHz voice application use. 1 : The CODEC DSP filters operate in a linear phase FIR Audio mode with optional DC blocking that may be enabled using the AHPF and DHPF I2C bits. The Audio mode filters are optimized to maintain stereo imaging and operate at higher fs rates while utilizing lower power. Enables the ADC DC Blocking Filter 0 : DC blocking filter disabled 1 : DC blocking filter enabled Enables the DAC DC Blocking Filter 0 : DC blocking filter disabled 1 : DC blocking filter enabled Enables the DAC High Sample Rate Mode (LRCLK > 50kHz, FIR Only) 1 : LRCLK is greater than 50kHz. 4x FIR interpolation filter used. 0 : LRCLK is less than 50kHz. 8x FIR interpolation filter used. - AHPF R/W 0 DHPF R/W 0 DHF R/W 0 - - - M 3 2 1 0 MODE DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL 7 ADDRESS: 0x26 NAME TYPE PoR _____________________________________________________________________ 85 MAXIM Confidential MAX98090 DAI Clock Control The digital signal paths in the IC require a master clock (MCLK) between 10MHz and 60MHz to function. The MAX98090 requires an internal clock between 10MHz and 20MHz. A prescaler divides MCLK by 1, 2, or 4 to create the internal clock (PCLK). PCLK is used to clock all portions of the IC. The MAX98089 includes a digital audio signal path, capable of supporting any sample rate from 8kHz to 96kHz. Table 26: Master Mode Clock Configuration Register 7 6 5 4 3 2 1 Master Mode Enable 1 : Master mode (LRCLK and BCLK timing signals generated internally; LRCLK and BCLK configured as outputs). 0 : Slave mode (LRCLK and BCLK accepted from external source; LRCLK and BCLK configured as inputs). Bit Clock (BCLK) Rate Configuration (Master Mode Only) 000 : off 100 : PCLK / 2 001 : 32 x fS 101 : PCLK / 4 010 : 48 x fS 110 : PCLK / 8 011 : 64 x fS 111 : PCLK / 16 MAS R/W 0 - - - 0 BSEL[2:0] R/W 0 0 M 0 DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT ADDRESS: 0x21 NAME TYPE PoR _____________________________________________________________________ 86 MAXIM Confidential MAX98090 Table 27: Digital Audio Interface (DAI) Format Configuration Register BIT 7 6 4 3 2 1 RJ 0 WCI R/W 0 BCI R/W 0 DLY R/W 0 0 WS[1:0] 0 R/W DESCRIPTION Configures the DAI for Right Justified Mode (No Data Delay) 0 : left justified mode with optional data delay 1 : right justified mode. DLY register is not used. Note: TDM has priority over RJ. Configures the DAI for Frame Clock (LRCLK) Inversion TDM1 = 0: 1 : Right-channel data is transmitted while LRCLK is low. 0 : Left-channel data is transmitted while LRCLK is low. TDM1 = 1: 0 : Start of a new frame is signified by the rising edge of the LRCLK pulse. 1 : Start of a new frame is signified by the falling edge of the LRCLK pulse. Configures the DAI for Bit Clock (BCLK) Inversion 1 : SDIN is accepted on the falling edge of BCLK. 0 : SDIN is accepted on the rising edge of BCLK. Master Mode: 1 : LRCLK transitions occur on the rising edge of BCLK. 0 : LRCLK transitions occur on the falling edge of BCLK. Configures the DAI for Data Delay (I2S Standard) 1 : The most significant bit of an audio word is latched at the second BCLK edge after the LRCLK transition. 0 : The most significant bit of an audio word is latched at the first BCLK edge after the LRCLK transition. Set DLY1/DLY2 = 1 to conform to the I2S standard. DLY1/DLY2 are only effective when TDM1/TDM2 = 0. DAI Input Data Word Size If RJ = 1: 00 : 16-bits 10 : 24-bits 01 : 20-bits 11 : Reserved If RJ = 0: 00 : 16-bits 01, 10, 11 : 20-bits AX P R IM E L C IM O I N NA FI D RY EN TI AL 5 ADDRESS: 0x22 NAME TYPE PoR - R/W 0 M Slave Mode Master Mode _____________________________________________________________________ 87 MAXIM Confidential MAX98090 Clock Configuration Table 28: System Master Clock (MCLK) Prescaler Configuration Register BIT 7 6 ADDRESS: 0x1B NAME TYPE PoR - 5 0 4 3 2 1 0 R/W Master Clock (MCLK) Prescaler Configuration 00 : Disabled 01 : MCLK / 1, 10MHz <= MCLK <= 20MHz 10 : MCLK / 2, 20MHz < MCLK <= 40MHz 11 : MCLK / 4, 40MHz < MCLK <= 60MHz - AX P R IM E L C IM O I N NA FI D RY EN TI AL PSCLK[1:0] DESCRIPTION 0 - - - Table 29: Clock Mode Configuration Register BIT 7 6 5 4 3 2 1 0 FREQ1[3:0] R/W 0 0 0 - - - USE_MI1 R/W 0 DESCRIPTION Exact Integer Sampling Frequency (LRCLK) Configuration Allows integer sampling on DAI1 for specific PCLK frequencies in 8kHz or 16kHz voice modes. All modes 0x8 – 0xF are available in either Master or Slave modes of operation. If the exact indicated PCLK/LRCLK ratio cannot be guaranteed by the user, AnyClock mode (0x0) should be used. Any FREQ setting other than 0x0 overrides the PLL and NI settings. Set the PLL to use MI1[15:0] to set a More Accurate Frequency Ratio 0 : M = 65536 1 : M is set by PLLM register. M 0 ADDRESS: 0x1B NAME TYPE PoR _____________________________________________________________________ 88 MAXIM Confidential MAX98090 Frequency Ratio The NI and MI registers are used to set up the clock generation counter in Master Mode. They can be used under the following conditions: - Master Mode (MAS = 1) All of the System Clock Quick Setup bits (Index 0x04) are set to 0 FREQ1 bit is set to 0 To set the NI/MI values follow the following method: Choose Over Sampling Rate (OSR). If fPCLK >= 256 x SR, then OSR = 128 (otherwise OSR = 64). Calculate fOSR = SR x OSR Choose MI. This is fPCLK/GCD(fPCLK, fOSR) Choose NI. This is fOSR x MI/fPCLK AX P R IM E L C IM O I N NA FI D RY EN TI AL 1. 2. 3. 4. Table 30: Any Clock Configuration Register 1 (NI1 MSBs) BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x1D NAME TYPE PoR 0 0 0 NI1[14:8] R/W 0 0 0 0 DESCRIPTION - Upper Half of the PLL N Value used in Master Mode Clock Generation to Calculate the Frequency Ratio (Integer or NI Master Mode). Table 31: Any Clock Configuration Register 2 (NI1 LSBs) DESCRIPTION Lower Half of the PLL N Value used in Master Mode Clock Generation to Calculate the Frequency Ratio (Integer or NI Master Mode). M BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x1E NAME TYPE PoR 0 0 0 0 NI1[7:0] R/W 0 0 0 0 _____________________________________________________________________ 89 MAXIM Confidential MAX98090 Table 32: Any Clock Configuration Register 3 (MI1 MSBs) ADDRESS: 0x1F NAME TYPE PoR 0 0 0 0 MI1[15:8] R/W 0 0 0 0 DESCRIPTION Upper Half of the PLL M Value used in Master Mode Clock Generation to Calculate an Accurate Non-Integer Frequency Ratio (PLL Master Mode). AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 1 0 Table 33: Any Clock Configuration Register 4 (MI1 LSBs) DESCRIPTION Lower Half of the PLL M Value used in Master Mode Clock Generation to Calculate an Accurate Non-Integer Frequency Ratio (PLL Master Mode). M BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x20 NAME TYPE PoR 0 0 0 0 MI1[7:0] R/W 0 0 0 0 _____________________________________________________________________ 90 MAXIM Confidential MAX98090 DAI TDM Mode Table 34: Digital Audio Interface (DAI) TDM Format Register 1 1 0 DESCRIPTION Configures the DAI Frame Sync Pulse Width 1 : Frame sync pulse extended to the width of the entire data word. (TDM1/TDM2 = 1 only) 0 : Frame sync pulse is one bit wide Enables the DAI for Time Division Multiplex (TDM) Mode 1 : Enables time-division multiplex mode and configures the audio interface to accept PCM data. 0 : Disables time-division multiplex mode. AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 ADDRESS: 0x23 NAME TYPE PoR FSW R/W 0 TDM R/W 0 Table 35: Digital Audio Interface (DAI) TDM Format Register 2 BIT 7 6 5 4 0 SLOTR[1:0] SLOTDLY[3:0] R/W R/W 0 0 0 0 0 DESCRIPTION Selects the Time Slot to use for Left Channel Data in TDM Mode 00 : Time Slot 1 10 : Time Slot 3 01 : Time Slot 2 11 : Time Slot 4 Selects the Time Slot to use for Right Channel Data in TDM Mode 00 : Time Slot 1 10 : Time Slot 3 01 : Time Slot 2 11 : Time Slot 4 Enables Data Delay for Slot 4 in TDM Mode Enables Data Delay for Slot 3 in TDM Mode Enables Data Delay for Slot 2 in TDM Mode Enables Data Delay for Slot 1 in TDM Mode M 3 2 1 0 ADDRESS: 0x24 NAME TYPE PoR 0 SLOTL[1:0] R/W 0 _____________________________________________________________________ 91 MAXIM Confidential MAX98090 Digital to Analog Converter (DAC) Configuration DAC Input Digital Level Voice Gain Playback Level Table 36: Digital Audio Interface (DAI) Playback Level Configuration Register 5 4 3 2 1 0 DESCRIPTION Enables the DAI DAC Data Input Mute 0 DAI Digital Input Coarse Adjust Gain Configuration 00 : 0dB 10 : +12dB 01 : +6dB 11 : +18dB 0 DAI Digital Input Fine Adjust Gain Configuration AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 ADDRESS: 0x27 NAME TYPE PoR DV1M R/W 0 - DV1G[1:0] DV1[3:0] R/W R/W 0 0 1 1 0x0 : 0dB 0x1 : -1dB 0x2 : -2dB 0x3 : -3dB 0xC : -12dB 0xD : -13dB 0xE : -14dB 0xF : -15dB 0x8 : -8dB 0x9 : -9dB 0xA : -10dB 0xB : -11dB 0x4 : -4dB 0x5 : -5dB 0x6 : -6dB 0x7 : -7dB Automatic Level Control Table 37: Automatic Level Control (ALC) Timing Register BIT 7 ALCEN ALCRLS[2:0] - ALCATK[2:0] R/W 0 R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 DESCRIPTION DAC ALC Enable 0 : ALC disabled 1 : ALC enabled DAC ALC Release Time Configuration 0x0 : 8s 0x1 : 4s 0x2 : 2s 0x3 : 1s 0x4 : 0.5s 0x5 : 0.25s 0x6 : 0.125s 0x7 : 0.0625s 0x4 : 25ms 0x5 : 50ms 0x6 : 100ms 0x7 : 200ms - DAC ALC Attack Time Configuration 0x0 : 0.5ms 0x1 : 1ms 0x2 : 5ms 0x3 : 10ms M 6 5 4 3 2 1 0 ADDRESS: 0x33 NAME TYPE PoR _____________________________________________________________________ 92 MAXIM Confidential MAX98090 Table 38: Automatic Level Control (ALC) Compressor Register BIT ADDRESS: 0x34 NAME TYPE PoR DESCRIPTION 5 0 DAC ALC Compression Ratio Configuration 0x0 : 1:1 0x3 : 1:4 0x1 : 1:1.5 0x4 : 1:inf 0x2 : 1:2 4 0 DAC ALC Compression Threshold Configuration 7 0 6 2 1 0 R/W 0 0x00 : 0 0x01 : -1dB 0x02 : -2dB 0x03 : -3dB 0x04 : -4dB 0x05 : -5dB 0x06 : -6dB 0x07 : -7dB 0x08 : -8dB 0x09 : -9dB 0x0A : -10dB 0x0B : -11dB 0x0C : -12dB 0x0D : -13dB 0x0E : -14dB 0x0F : -15dB 0x10 : -16dB 0x11 : -17dB 0x12 : -18dB 0x13 : -19dB 0x14 : -20dB 0x15 : -21dB 0x16 : -22dB 0x17 : -23dB 0x18 : -24dB 0x19 : -25dB 0x1A : -26dB 0x1B : -27dB 0x1C : -28dB 0x1D : -29dB 0x1E : -30dB 0x1F : -31dB AX P R IM E L C IM O I N NA FI D RY EN TI AL 3 ALCCMP[2:0] 0 ALCTHC[4:0] R/W 0 0 0 Table 39: Automatic Level Control (ALC) Expander Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x35 NAME TYPE PoR 0 DAC ALC Expansion Ratio Configuration 0x0 : 1:1 0x1 : 2:1 0x2 : 3:1 0 DAC ALC Expansion Threshold Configuration 0 ALCEXP[2:0] R/W 0 0 ALCTHC[4:0] R/W DESCRIPTION 0 0 0 0x00 : -35dB 0x01 : -36dB 0x02 : -37dB 0x03 : -38dB 0x04 : -39dB 0x05 : -40dB 0x06 : -41dB 0x07 : -42dB 0x08 : -43dB 0x09 : -44dB 0x0A : -45dB 0x0B : -46dB 0x0C : -47dB 0x0D : -48dB 0x0E : -49dB 0x0F : -50dB 0x10 : -51dB 0x11 : -52dB 0x12 : -53dB 0x13 : -54dB 0x14 : -55dB 0x15 : -56dB 0x16 : -57dB 0x17 : -58dB 0x18 : -59dB 0x19 : -60dB 0x1A : -61dB 0x1B : -62dB 0x1C : -63dB 0x1D : -64dB 0x1E : -65dB 0x1F : -66dB Table 40: Automatic Level Control (ALC) Gain Configuration Register M BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x36 NAME TYPE PoR 0 0 ALCG[4:0] R/W 0 0 0 DESCRIPTION DAC ALC Make-Up Gain Configuration 0x0 : +0dB 0x1 : +1dB 0x2 : +2dB 0x3 : +3dB 0x4 : +4dB 0x5 : +5dB 0x6 : +6dB 0x7 : +7dB 0x8 : +8dB 0x9 : +9dB 0xA : +10dB 0xB : +11dB 0xC : +12dB 0xD : reserved 0xE : reserved 0xF : reserved _____________________________________________________________________ 93 MAXIM Confidential MAX98090 DAC Input Parametric Equalizer Table 41: DSP Biquad Filter Enable Register 3 2 1 0 DESCRIPTION Enable Biquad filter in ADC path. 0 : biquad filter not used 1 : biquad filter used in ADC path Enable 3 Band EQ in DAC path. Bands 4 through 7 are not used. 0 : 3 band EQ disabled 1 : 3 band EQ enabled. Only valid if EQ7BANDEN == 0 and EQ5BANDEN == 0. Enable 5 Band EQ in DAC path. Bands 6 & 7 are not used. 0 : 5 band EQ disabled 1 : 5 band EQ enabled. Only valid if EQ7BANDEN == 0 Enable 7 Band EQ in DAC path. 0 : 7 band EQ disabled. 1 : 7 band EQ enabled. This makes EQ5BANDEN and EQ3BANDEN redundant. AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 ADDRESS: 0x41 NAME TYPE PoR ADCBQEN R/W 0 EQ3BANDEN R/W 0 EQ5BANDEN R/W 0 EQ7BANDEN R/W 0 Table 42: Parametric Equalizer Playback Level Configuration Register BIT 7 6 5 4 3 2 1 /EQCLP\ DVEQ[3:0] R/W 0 R/W 0 0 0 0 DESCRIPTION Enables DAI Digital Input Equalizer Clipping Detection 1 : Equalizer Clip detect disabled 0 : Equalizer Clip detect enabled DAI Digital Input Equalizer Attenuation Level Configuration 0x8 : -8dB 0x4 : -4dB 0x0 : +0dB 0x9 : -9dB 0x5 : -5dB 0x1 : -1dB 0xA : -10dB 0x6 : -6dB 0x2 : -2dB 0xB : -11dB 0x7 : -7dB 0x3 : -3dB 0xC : -12dB 0xD : -13dB 0xE : -14dB 0xF : -15dB M 0 ADDRESS: 0x28 NAME TYPE PoR - _____________________________________________________________________ 94 MAXIM Confidential MAX98090 Table 43: Parametric Equalizer Band N (1-7) Biquad Filter Coefficient Registers ADDRESS RANGE (BY BAND) 1 2 3 4 5 6 7 0x46 0x55 0x64 0x73 0x82 0x91 0xA0 0x47 0x56 0x65 0x74 0x83 0x92 0xA1 0x48 0x57 0x66 0x75 0x84 0x93 0xA2 0x49 0x58 0x67 0x76 0x85 0x94 0xA3 EQUALIZER BAND N COEFFICIENT B0 EQUALIZER BAND N COEFFICIENT B1 TYPE PoR COEFFICIENT SEGMENT R/W 0x00 B0_N[23:16] R/W 0x00 B0_N[15:8] R/W 0x00 B0_N[7:0] R/W 0x00 B1_N[23:16] R/W 0x00 B1_N[15:8] R/W 0x00 B1_N[7:0] R/W 0x00 B2_N[23:16] R/W 0x00 B2_N[15:8] R/W 0x00 B2_N[7:0] R/W 0x00 A1_N[23:16] R/W 0x00 A1_N[15:8] R/W 0x00 A1_N[7:0] R/W 0x00 A2_N[23:16] R/W 0x00 A2_N[15:8] R/W 0x00 A2_N[7:0] AX P R IM E L C IM O I N NA FI D RY EN TI AL 0x4A 0x59 0x68 0x77 0x86 0x95 0xA4 NAME 0x4B 0x5A 0x69 0x78 0x87 0x96 0xA5 0x4C 0x5B 0x6A 0x79 0x88 0x97 0xA6 0x4D 0x5C 0x6B 0x7A 0x89 0x98 0xA7 0x4E 0x5D 0x6C 0x7B 0x8A 0x99 0xA8 0x4F 0x5E 0x6D 0x7C 0x8B 0x9A 0xA9 0x50 0x5F 0x6E 0x7D 0x8C 0x9B 0xAA 0x51 0x60 0x6F 0x7E 0x8D 0x9C 0xAB 0x52 0x61 0x70 0x7F 0x8E 0x9D 0xAC 0x53 0x62 0x71 0x80 0x8F 0x9E 0xAD EQUALIZER BAND N COEFFICIENT A1 EQUALIZER BAND N COEFFICIENT A2 M 0x54 0x63 0x72 0x81 0x90 0x9F 0xAE EQUALIZER BAND N COEFFICIENT B2 _____________________________________________________________________ 95 MAXIM Confidential MAX98090 Analog Audio Output Configuration The device features three different integrated flexible analog audio output drivers. The receiver / line output driver can be configured either as a differential receiver output (optimal for a 32Ω earpiece speaker) or as a stereo single ended line output driver. The stereo speaker output drivers are filterless class D amplifiers capable of driving both 4Ω and 8Ω speakers. The headphone output drivers utilize Maxim’s DirectDrive architecture with an integrated charge pump, and provide configurable headphone and headset jack detection. Each analog audio output driver has an individual programmable gain mixer and amplifier. Each output mixer accepts any combination of signals from both the integrated DAC, and the analog microphone and line input drivers. DACL DACR AX P R IM E L C IM O I N NA FI D RY EN TI AL RCV / LINE OUT RCVLVOL[4:0] RCVLM RCVLEN MIXRCVL[5:0] MIXRCVLG[1:0] MIC 1 MIC 2 LINE A FLEXSOUND TECHNOLOGY DSP -12dB to 0dB MIC 2 LINE A RCV / LINE OUT RIGHT MIXER LINE B -12dB to 0dB RCV / LINE OUT MUX MIC 1 DACREN MIC 2 SPK LEFT MIXER SPVOLL[4:0] SPLM SPLEN -12dB to 0dB SPKLGND -48dB to 14dB SPEAKER LEFT PGA LINE A RCVN / LOUTR RCVRVOL[4:0] RCVRM RCVREN MIXRCVR[5:0] MIXRCVRG[1:0] MIXSPL[5:0] MIXSPLG[1:0] DACR -62dB to 8dB LINE OUT RIGHT PGA DACL DAC RIGHT DACHP PERFMODE ZDENB VS2ENB VSENB LINMOD DACL MIC 1 DACLEN RCVP / LOUTL LINE B DACR DAC LEFT -62dB to 8dB LINE OUT LEFT PGA LEFT MIXER SPKLP 6dB SPKLN LINE B -48dB to 14dB DACR MIC 1 MIC 2 SPK RIGHT MIXER -12dB to 0dB SPEAKER RIGHT PGA SPKSLAVE DACL MIXHPL[5:0] MIXHPLG[1:0] DACR MIC 2 HP LEFT MIXER SPKRN SPKRGND SPVOLR[4:0] SPRM SPREN MIXSPL[5:0] MIXSPLG[1:0] LINE B SPKRP 6dB LINE A MIC 1 SPK_VDD ZDENB VS2ENB VSENB DACL HPVOLL[4:0] HPLM HPLEN -12dB to 0dB HP LEFT MUX LINE A -67dB to 3dB HEADPHONE LEFT PGA HPL LINE B ZDENB VS2ENB VSENB MIXHPLSEL MIXHPRSEL HPSNS DACL DACR MIC 1 MIC 2 -12dB to 0dB HP RIGHT MUX LINE A LINE B MIXHPR[5:0] MIXHPRG[1:0] -67dB to 3dB HEADPHONE RIGHT PGA HPVOLR[4:0] HPRM HPREN HEADPHONE DIRECT DRIVE CHARGE PUMP HPR HPVDD HPGND C1P C1N CPVDD VPVSS M ANALOG INPUT DRIVERS HP RIGHT MIXER Figure 11: Analog Audio Output Functional Diagram _____________________________________________________________________ 96 MAXIM Confidential MAX98090 Analog Receiver (Earpiece) Output SPEAKER / HEADPHONES FLEXSOUND TECHNOLOGY DSP DACR DACL MIC 1 MIC 2 DAC LEFT DAC RIGHT LINE A RCV / LINE OUT MIXRCVL[5:0] MIXRCVLG[1:0] RCVLVOL[4:0] RCVLM RCVLEN -12dB to 0dB LINE OUT LEFT PGA LEFT MIXER -62dB to 8dB RCVP / LOUTL LINE B DACLEN ZDENB VS2ENB VSENB LINMOD DACREN DACHP PERFMODE AX P R IM E L C IM O I N NA FI D RY EN TI AL DACR DACL MIC 1 MIC 2 ANALOG INPUT DRIVERS LINE A LINE B RCV / LINE OUT RIGHT MIXER -12dB to 0dB RCV / LINE OUT MUX MIXRCVR[5:0] MIXRCVRG[1:0] LINE OUT RIGHT PGA -62dB to 8dB RCVN / LOUTR RCVRVOL[4:0] RCVRM RCVREN Figure 12: Receiver Output Functional Diagram Table 44: Receiver and Left Line Output Mixer Source Configuration Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x37 NAME TYPE PoR 0 0 0 MIXRCVL[5:0] R/W 0 0 0 DESCRIPTION Selects DAC Left as the Input to the Receiver / Line Out Left Mixer Selects DAC Right as the Input to the Receiver / Line Out Left Mixer Selects Line A as the Input to the Receiver / Line Out Left Mixer Selects Line B as the Input to the Receiver / Line Out Left Mixer Selects MIC 1 as the Input to the Receiver / Line Out Left Mixer Selects MIC 2 as the Input to the Receiver / Line Out Left Mixer Table 45: Receiver and Left Line Output Mixer Level Control Register BIT 7 6 5 4 3 2 1 ADDRESS: 0x38 NAME TYPE PoR 0 M MIXRCVLG[1:0] 0 R/W 0 DESCRIPTION Receiver / Line Output Left Mixer Gain Configuration. 00 : 0dB 10 : -9.5dB 01 : -6dB 11 : -12dB Note: these gains are relative to the maximum output signal. In Line Output Mode this is 1Vpk, while in receiver BTL mode it is 1Vrms differential. _____________________________________________________________________ 97 MAXIM Confidential MAX98090 Table 46: Receiver and Left Line Output Volume Control Register BIT ADDRESS: 0x39 NAME TYPE PoR 7 RCVLM R/W 0 6 5 - - - 3 2 1 0 1 Receiver / Line Output Left Mute 0 : not muted 1 : muted Receiver / Line Output Left PGA Volume Configuration AX P R IM E L C IM O I N NA FI D RY EN TI AL 4 DESCRIPTION 0 RCVLVOL[4:0] R/W 1 0 1 0x1F : +8dB 0x1E : +7.5dB 0x1D : +7dB 0x1C : +6.5dB 0x1B : +6dB 0x1A : +5dB 0x19 : +4dB 0x18 : +3dB 0x17 : +2dB 0x16 : +1dB 0x15 : +0dB 0x14 : -2dB 0x13 : -4dB 0x12 : -6dB 0x11 : -8dB 0x10 : -10dB 0x0F : -12dB 0x0E : -14dB 0x0D : -17dB 0x0C : -20dB 0x0B : -23dB 0x0A : -26dB 0x09 : -29dB 0x08 : -32dB 0x07 : -35dB 0x06 : -38dB 0x05 : -42dB 0x04 : -46dB 0x03 : -50dB 0x02 : -54dB 0x01 : -58dB 0x00 : -62dB Receiver Gain Control Receiver Output Mixer M The IC’s receiver amplifier accepts input from the stereo DAC, the line inputs (single-ended or differential), and the MIC inputs. Configure the mixer to mix any combination of the available sources. When more than one signal is selected, the mixed signal can be configured to attenuate 6dB, 9.5dB, or 12dB. _____________________________________________________________________ 98 MAXIM Confidential MAX98090 Analog Speaker Output The IC integrates a stereo filterless Class D amplifier that offers much higher efficiency than Class AB without the typical disadvantages. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. In a Class D amplifier, the output transistors act as current steering switches and consume negligible additional power. Any power loss associated with the Class D output stage is mostly due to the I2R loss of the MOSFET on-resistance, and quiescent current overhead. The theoretical best efficiency of a linear amplifier is 78%, however, that efficiency is only exhibited at peak output power. Under normal operating levels (typical music reproduction levels), efficiency falls below 30%, whereas the IC’s Class D amplifier still exhibits 80% efficiency under the same conditions. AX P R IM E L C IM O I N NA FI D RY EN TI AL Traditional Class D amplifiers require the use of external LC filters or shielding to meet EN55022B and FCC electromagnetic-interference (EMI) regulation standards. Maxim’s patented active emissions limiting edge-rate control circuitry reduces EMI emissions, allowing operation without any output filtering in typical applications. RECEIVER / LINE OUT / HEADPHONES FLEXSOUND TECHNOLOGY DSP DACR MIC 1 MIC 2 DAC LEFT DAC RIGHT SPVOLL[4:0] SPLM SPLEN MIXSPL[5:0] MIXSPLG[1:0] DACL SPK LEFT MIXER -48dB to 14dB -12dB to 0dB SPEAKER LEFT PGA LINE A SPKLGND SPKLP 6dB SPKLN LINE B DACLEN DACHP PERFMODE ZDENB VS2ENB VSENB DACREN DACR DACL MIC 1 ANALOG INPUT DRIVERS MIC 2 SPKSLAVE -48dB to 14dB SPK RIGHT MIXER -12dB to 0dB SPEAKER RIGHT PGA LINE A LINE B MIXSPL[5:0] MIXSPLG[1:0] SPK_VDD SPKRP 6dB SPVOLR[4:0] SPRM SPREN SPKRN SPKRGND M Figure 13: Class D Speaker Output Functional Diagram _____________________________________________________________________ 99 MAXIM Confidential MAX98090 Speaker Class-D Output Amplifier Speaker Gain Control Table 47: Left Speaker Amplifier Volume Control Register BIT 6 5 4 3 SPLM R/W - - 1 0 - Left Speaker Output Mute Enable 1 : Left Speaker output muted. 0 : Speaker output volume set by the volume control bits. When going into mute, the volume will slew to full attenuation, after which mute will be asserted. When coming out of mute, the volume will slew from full attenuation to the current SPVOLL / SPVOLR setting. - 1 Left Speaker Output Amplifier Volume Control Configuration 0 0 1 SPVOLL[5:0] 2 DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL 7 ADDRESS: 0x31 NAME TYPE PoR R/W 1 0 0 0x3F : +14dB 0x3E : +13.5dB 0x3D : +13dB 0x3C : +12.5dB 0x3B : +12dB 0x3A : +11.5dB 0x39 : +11dB 0x38 : +10.5dB 0x37 : +10dB 0x36 : +9.5dB 0x35 : +9dB 0x34 : +8dB 0x33 : +7dB 0x32 : +6dB 0x31 : +5dB 0x30 : +4dB 0x2F : +3dB 0x2E : +2dB 0x2D : +1dB 0x2C : +0dB 0x2B : -1dB 0x2A : -2dB 0x29 : -3dB 0x28 : -4dB 0x27 : -5dB 0x26 : -6dB 0x25 : -8dB 0x24 : -10dB 0x23 : -12dB 0x22 : -14dB 0x21 : -17dB 0x20 : -20dB 0x1F : -23dB 0x1E : -26dB 0x1D : -29dB 0x1C : -32dB 0x1B : -36dB 0x1A : -40dB 0x19 : -44dB 0x18 : -48dB Table 48: Right Speaker Amplifier Volume Control Register BIT 7 6 5 4 3 ADDRESS: 0x32 NAME TYPE PoR SPRM R/W 0 - - - Right Speaker Output Mute Enable 1 : Right Speaker output muted. 0 : Speaker output volume set by the volume control bits. When going into mute, the volume will slew to full attenuation, after which mute will be asserted. When coming out of mute, the volume will slew from full attenuation to the current SPVOLL / SPVOLR setting. - 1 Right Speaker Output Amplifier Volume Control Configuration 0 1 SPVOLR[5:0] 2 M 1 0 DESCRIPTION R/W 1 0 0 0x3F : +14dB 0x3E : +13.5dB 0x3D : +13dB 0x3C : +12.5dB 0x3B : +12dB 0x3A : +11.5dB 0x39 : +11dB 0x38 : +10.5dB 0x37 : +10dB 0x36 : +9.5dB 0x35 : +9dB 0x34 : +8dB 0x33 : +7dB 0x32 : +6dB 0x31 : +5dB 0x30 : +4dB 0x2F : +3dB 0x2E : +2dB 0x2D : +1dB 0x2C : +0dB 0x2B : -1dB 0x2A : -2dB 0x29 : -3dB 0x28 : -4dB 0x27 : -5dB 0x26 : -6dB 0x25 : -8dB 0x24 : -10dB 0x23 : -12dB 0x22 : -14dB 0x21 : -17dB 0x20 : -20dB 0x1F : -23dB 0x1E : -26dB 0x1D : -29dB 0x1C : -32dB 0x1B : -36dB 0x1A : -40dB 0x19 : -44dB 0x18 : -48dB ____________________________________________________________________ 100 MAXIM Confidential MAX98090 Speaker Output Mixer The IC’s speaker amplifiers accept input from the stereo DAC, the line inputs (single-ended ore differential), and the MIC inputs. Configure the mixer to mix any combination of the available sources. When more than one signal is selected, the mixer can be configured to attenuate the signal by 6dB, 9dB or 12dB. Table 49: Left Speaker Mixer Configuration Register DESCRIPTION Select Left DAC Output to Left Speaker Mixer Select Right DAC Output to Left Speaker Mixer Select Line Input A to Left Speaker Mixer Select Line Input B to Left Speaker Mixer Select Microphone Input 1 to Left Speaker Mixer Select Microphone Input 2 to Left Speaker Mixer AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x2E NAME TYPE PoR 0 0 0 MIXSPL[5:0] R/W 0 0 0 Table 50: Right Speaker Mixer Configuration Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x2F NAME TYPE PoR - SPK_SLAVE MIXSPR[5:0] - - R/W 0 0 0 0 0 0 DESCRIPTION - Speaker Slave Mode Enable 0 : right channel clock always generated independently 1 : right channel speaker uses left channel speaker clock if both speaker channels are enabled Select Left DAC Output to Right Speaker Mixer Select Right DAC Output to Right Speaker Mixer Select Line Input A to Right Speaker Mixer Select Line Input B to Right Speaker Mixer Select Microphone Input 1 to Right Speaker Mixer Select Microphone Input 2 to Right Speaker Mixer Table 51: Speaker Mixer Gain Register BIT 7 6 5 4 3 MIXSPRG[1:0] M 2 ADDRESS: 0x30 NAME TYPE PoR - 1 0 MIXSPLG[1:0] R/W R/W 0 0 0 0 DESCRIPTION Right Speaker Mixer Gain Configuration 00 : +0dB 10 : -9.5dB 01 : -6dB 11 : -12dB Left Speaker Mixer Gain Configuration 00 : +0dB 10 : -9.5dB 01 : -6dB 11 : -12dB ____________________________________________________________________ 101 MAXIM Confidential MAX98090 AX P R IM E L C IM O I N NA FI D RY EN TI AL Analog Headphone Output Figure 14: DirectDrive Headphone Output Functional Diagram Table 52: Left Headphone Mixer Configuration Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x29 NAME TYPE PoR 0 0 0 MIXHPL[5:0] R/W 0 0 0 DESCRIPTION Select Left DAC Output to Left Headphone Mixer Select Right DAC Output to Left Headphone Mixer Select Line Input A to Left Headphone Mixer Select Line Input B to Left Headphone Mixer Select Microphone Input 1 to Left Headphone Mixer Select Microphone Input 2 to Left Headphone Mixer Table 53: Right Headphone Mixer Configuration Register ADDRESS: 0x2A NAME TYPE PoR 0 0 0 MIXHPR[5:0] R/W 0 0 0 M BIT 7 6 5 4 3 2 1 0 DESCRIPTION Select Left DAC Output to Right Headphone Mixer Select Right DAC Output to Right Headphone Mixer Select Line Input A to Right Headphone Mixer Select Line Input B to Right Headphone Mixer Select Microphone Input 1 to Right Headphone Mixer Select Microphone Input 2 to Right Headphone Mixer ____________________________________________________________________ 102 MAXIM Confidential MAX98090 Table 54: Headphone Mixer Control and Gain Register BIT 7 6 4 3 2 1 0 MIXHPRSEL R/W 0 DESCRIPTION Select Headphone Mixer as Right Input Source (Default DAC Right Direct) 0 : DAC only source (best dynamic range and power consumption) 1 : Headphone mixer source Select Headphone Mixer as Left Input Source (Default DAC Left Direct) 0 : DAC only source (best dynamic range and power consumption) 1 : Headphone mixer source Right Headphone Mixer Gain Configuration 00 : +0dB 10 : -9.5dB 01 : -6dB 11 : -12dB Left Headphone Mixer Gain Configuration 00 : +0dB 10 : -9.5dB 01 : -6dB 11 : -12dB AX P R IM E L C IM O I N NA FI D RY EN TI AL 5 ADDRESS: 0x2B NAME TYPE PoR - MIXHPLSEL R/W MIXHPRG[1:0] R/W MIXHPLG[1:0] R/W 0 0 0 0 0 Table 55: Left Headphone Amplifier Volume Control Register BIT 7 6 5 4 3 2 1 DESCRIPTION HPLM R/W 0 - - - Left Headphone Output Mute Enable 1 : Headphone output muted. 0 : Headphone output volume set by the volume control bits. When going into mute, the volume will slew to full attenuation, after which mute will be asserted. When coming out of mute, the volume will slew from full attenuation to the current HPVOLL / HPVOLR setting. - 1 Left Headphone Output Amplifier Volume Control Configuration 1 HPVOLL[4:0] R/W 0 1 0 0x1F : +3dB 0x1E : +2.5dB 0x1D : +2dB 0x1C : +1.5dB 0x1B : +1dB 0x1A : +0dB 0x19 : -1dB 0x18 : -2dB 0x17 : -3dB 0x16 : -4dB 0x15 : -5dB 0x14 : -7dB 0x13 : -9dB 0x12 : -11dB 0x11 : -13dB 0x10 : -15d 0x0F : -17dB 0x0E : -19dB 0x0D : -22dB 0x0C : -25dB 0x0B : -28dB 0x0A : -31dB 0x09 : -34dB 0x08 : -37dB 0x07 : -40dB 0x06 : -43dB 0x06 : -47dB 0x04 : -51dB 0x03 : -55dB 0x02 : -59dB 0x01 : -63dB 0x00 : -67dB M 0 ADDRESS: 0x2C NAME TYPE PoR ____________________________________________________________________ 103 MAXIM Confidential MAX98090 Table 56: Right Headphone Amplifier Volume Control Register BIT ADDRESS: 0x2D NAME TYPE PoR DESCRIPTION HPRM R/W 0 6 5 - - - 1 Right Headphone Output Amplifier Volume Control Configuration 4 3 2 1 1 HPVOLR[4:0] R/W 0 1 0 0x1F : +3dB 0x1E : +2.5dB 0x1D : +2dB 0x1C : +1.5dB 0x1B : +1dB 0x1A : +0dB 0x19 : -1dB 0x18 : -2dB 0x17 : -3dB 0x16 : -4dB 0x15 : -5dB 0x14 : -7dB 0x13 : -9dB 0x12 : -11dB 0x11 : -13dB 0x10 : -15d 0x0F : -17dB 0x0E : -19dB 0x0D : -22dB 0x0C : -25dB 0x0B : -28dB 0x0A : -31dB 0x09 : -34dB 0x08 : -37dB 0x07 : -40dB 0x06 : -43dB 0x06 : -47dB 0x04 : -51dB 0x03 : -55dB 0x02 : -59dB 0x01 : -63dB 0x00 : -67dB M 0 AX P R IM E L C IM O I N NA FI D RY EN TI AL 7 Right Headphone Output Mute Enable 1 : Headphone output muted. 0 : Headphone output volume set by the volume control bits. When going into mute, the volume will slew to full attenuation, after which mute will be asserted. When coming out of mute, the volume will slew from full attenuation to the current HPVOLL / HPVOLR setting. - ____________________________________________________________________ 104 MAXIM Confidential MAX98090 DirectDrive Headphone Amplifier Traditional single-supply headphone amplifiers have outputs biased at a nominal DC voltage (typically half the supply). Large coupling capacitors are needed to block this DC bias from the headphone. Without these capacitors, a significant amount of DC current flows to the headphone, resulting in unnecessary power dissipation and possible damage to both headphone and headphone amplifier. Maxim’s second-generation DirectDrive architecture uses a charge pump to create an internal negative supply voltage. This allows the headphone outputs of the ICs to be biased at GND while operating from a single supply (Figure TBD). Without a DC component, there is no need for the large DC-blocking capacitors. Instead of two large (220μF typ.) capacitors, the IC’s charge pump requires 3 small ceramic capacitors, conserving board space, reducing cost, and improving the frequency response of the headphone amplifier. AX P R IM E L C IM O I N NA FI D RY EN TI AL Class H Operation A Class H amplifier uses a Class AB output stage with power supplies that are modulated by the output signal. In the case of the ICs, two nominal power-supply differentials of 1.8V (+0.9V to -0.9V) and 3.6V (+1.8V to -1.8V) are available from the charge pump. Figure TBD shows the operation of the output-voltage-dependent power supply. Charge Pump The dual-mode charge pump generates both the positive and negative power supply for the headphone amplifier. To maximize efficiency, both the charge pump’s switching frequency and output voltage change based on signal level. When the input signal level is less than 10% of PVDD, the switching frequency is reduced to a low rate. This minimizes switching losses in the charge pump. When the input signal exceeds 10% of PVDD, the switching frequency increases to support the load current. For input signals below 25% of PVDD, the charge pump generates Q(PVDD/2) to minimize the voltage drop across the amplifier’s power stage and thus improve efficiency. Input signals that exceed 25% of PVDD cause the charge pump to output QPVDD. The higher output voltage allows for full output power from the headphone amplifier. To prevent audible glitches when transitioning from the Q(PVDD/2) output mode to the QPVDD output mode, the charge pump transitions very quickly. This quick change draws significant current from PVDD for the duration of the transition. The bypass capacitor on PVDD supplies the required current and prevents droop on PVDD. The charge pump’s dynamic switching mode can be turned off through the I2C interface. The charge pump can then be forced to output either Q(PVDD/2) or QPVDD regardless of input signal level Headphone Gain Control Headphone Ground Sense HPSNS senses the ground return for the headphone load. For optimal performance, connect HPSNS to the ground pole of the jack through an isolated trace, as shown in Figure TBD. If HPSNS is not used, connect to the analog ground plane. Headphone Output Mixer M The headphone amplifier mixer accepts input from the stereo DAC, the line inputs (single-ended or differential), and the MIC inputs. Configure the mixer to mix any combination of the available sources. When more than one signal is selected, the mixer can be configured to attenuate the signal by 6dB, 9.5dB, or 12dB. The stereo DAC can bypass the headphone mixers, and be connected directly to the headphone amplifiers to provide lower power consumption. ____________________________________________________________________ 105 MAXIM Confidential MAX98090 Analog Line Outputs SPEAKER / HEADPHONES FLEXSOUND TECHNOLOGY DSP DACR DACL MIC 1 MIC 2 DAC LEFT DAC RIGHT LINE A RCV / LINE OUT MIXRCVL[5:0] MIXRCVLG[1:0] RCVLVOL[4:0] RCVLM RCVLEN -12dB to 0dB LINE OUT LEFT PGA LEFT MIXER -62dB to 8dB RCVP / LOUTL LINE B DACLEN LINMOD DACREN ZDENB VS2ENB VSENB AX P R IM E L C IM O I N NA FI D RY EN TI AL DACHP PERFMODE DACR DACL MIC 1 MIC 2 ANALOG INPUT DRIVERS LINE A LINE B RCV / LINE OUT RIGHT MIXER -12dB to 0dB RCV / LINE OUT MUX MIXRCVR[5:0] MIXRCVRG[1:0] LINE OUT RIGHT PGA -62dB to 8dB RCVN / LOUTR RCVRVOL[4:0] RCVRM RCVREN Figure 15: Stereo Single-Ended Line Output Functional Diagram Table 57: Receiver and Left Line Output Mixer Source Configuration Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x37 NAME TYPE PoR 0 0 0 MIXRCVL[5:0] R/W 0 0 0 DESCRIPTION Selects DAC Left as the Input to the Receiver / Line Out Left Mixer Selects DAC Right as the Input to the Receiver / Line Out Left Mixer Selects Line A as the Input to the Receiver / Line Out Left Mixer Selects Line B as the Input to the Receiver / Line Out Left Mixer Selects MIC 1 as the Input to the Receiver / Line Out Left Mixer Selects MIC 2 as the Input to the Receiver / Line Out Left Mixer Table 58: Receiver and Left Line Output Mixer Level Control Register BIT 7 6 5 4 3 2 0 M 1 ADDRESS: 0x38 NAME TYPE PoR - MIXRCVLG[1:0] 0 R/W 0 DESCRIPTION Receiver / Line Output Left Mixer Gain Configuration. 00 : 0dB 10 : -9.5dB 01 : -6dB 11 : -12dB Note: these gains are relative to the maximum output signal. In Line Output Mode this is 1Vpk, while in receiver BTL mode it is 1Vrms differential. ____________________________________________________________________ 106 MAXIM Confidential MAX98090 Table 59: Receiver and Left Line Output Volume Control Register BIT ADDRESS: 0x39 NAME TYPE PoR 7 RCVLM R/W 0 6 5 - - - 3 2 1 0 1 Receiver / Line Output Left Mute 0 : not muted 1 : muted Receiver / Line Output Left PGA Volume Configuration AX P R IM E L C IM O I N NA FI D RY EN TI AL 4 DESCRIPTION 0 RCVLVOL[4:0] R/W 1 0 1 0x1F : +8dB 0x1E : +7.5dB 0x1D : +7dB 0x1C : +6.5dB 0x1B : +6dB 0x1A : +5dB 0x19 : +4dB 0x18 : +3dB 0x0F : -12dB 0x0E : -14dB 0x0D : -17dB 0x0C : -20dB 0x0B : -23dB 0x0A : -26dB 0x09 : -29dB 0x08 : -32dB 0x17 : +2dB 0x16 : +1dB 0x15 : +0dB 0x14 : -2dB 0x13 : -4dB 0x12 : -6dB 0x11 : -8dB 0x10 : -10dB 0x07 : -35dB 0x06 : -38dB 0x05 : -42dB 0x04 : -46dB 0x03 : -50dB 0x02 : -54dB 0x01 : -58dB 0x00 : -62dB Table 60: Right Line Output Mixer Source Configuration Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x3A NAME TYPE PoR LINMOD R/W 0 - - MIXRCVR[5:0] R/W 0 0 0 0 0 0 DESCRIPTION Selects Between Receiver BTL mode and Line Output mode 1 : LINEOUT mode. Receiver output is a stereo pair of line outputs. All control of the Receiver output is from the left control bits. 0 : BTL mode. All control of the Receiver output is from the left control bits. Selects DAC Left as the Input to the Line Out Right Mixer Selects DAC Right as the Input to the Line Out Right Mixer Selects Line A as the Input to the Line Out Right Mixer Selects Line B as the Input to the Line Out Right Mixer Selects MIC 1 as the Input to the Line Out Right Mixer Selects MIC 2 as the Input to the Line Out Right Mixer Table 61: Right Line Output Mixer Level Control Register M BIT 7 6 5 4 3 2 ADDRESS: 0x3B NAME TYPE PoR - 1 MIXRCVRG[1:0] R/W 0 DESCRIPTION - Line Output Right Mixer Gain Configuration. 00 : 0dB 10 : -9.5dB ____________________________________________________________________ 107 MAXIM Confidential 0 0 MAX98090 01 : -6dB 11 : -12dB Note: these gains are relative to the maximum output signal. In Line Output Mode this is 1Vpk, while in receiver BTL mode it is 1Vrms differential. Table 62: Right Line Output Volume Control Register BIT 6 5 4 3 2 1 0 RCVRM R/W 0 DESCRIPTION Line Output Right Mute 0 : not muted 1 : muted AX P R IM E L C IM O I N NA FI D RY EN TI AL 7 ADDRESS: 0x3C NAME TYPE PoR - - - 1 0 RCVRVOL[4:0] R/W 1 0 1 - Line Output Right PGA Volume Configuration 0x1F : +8dB 0x1E : +7.5dB 0x1D : +7dB 0x1C : +6.5dB 0x1B : +6dB 0x1A : +5dB 0x19 : +4dB 0x18 : +3dB 0x17 : +2dB 0x16 : +1dB 0x15 : +0dB 0x14 : -2dB 0x13 : -4dB 0x12 : -6dB 0x11 : -8dB 0x10 : -10dB 0x0F : -12dB 0x0E : -14dB 0x0D : -17dB 0x0C : -20dB 0x0B : -23dB 0x0A : -26dB 0x09 : -29dB 0x08 : -32dB 0x07 : -35dB 0x06 : -38dB 0x05 : -42dB 0x04 : -46dB 0x03 : -50dB 0x02 : -54dB 0x01 : -58dB 0x00 : -62dB M Line Output Gain Control Line Output Mixer ____________________________________________________________________ 108 MAXIM Confidential MAX98090 Click-and-Pop Reduction The IC includes extensive click-and-pop reduction circuitry. The circuitry minimizes clicks and pops at turn-on, turn-off, and during volume changes. Zero-crossing detection is implemented on all analog PGAs and volume controls to prevent large glitches when volume changes are made. Instead of making a volume change immediately, the change is made when the audio signal crosses the midpoint. If no zero-crossing occurs within the timeout window, the change is forced. AX P R IM E L C IM O I N NA FI D RY EN TI AL Volume slewing breaks up large volume changes into the smallest available step size and the steps through each step between the initial and final volume setting. When enabled, volume slewing also occurs at device turn-on and turn-off. During turn-on the volume is set to mute before the output is enabled. Once the output is on, the volume ramps to the desired level. At turn-off the volume is ramped to mute before the outputs are disabled. When there is no audio signal zero-crossing detection can prevent volume slewing from occurring. Enable enhanced volume slewing to prevent the volume controller from requesting another volume level until the previous one has been set. Each step in the volume ramp then occurs after a zero crossing has occurred in the audio signal or the timeout window has expired. During turn-off, enhance volume slewing is always disabled. Table 63: Zero-Crossing Detection and Volume Smoothing Configuration Register BIT 7 6 5 4 3 2 1 /ZDEN\ R/W 0 /VS2EN\ R/W 0 /VSEN\ R/W 0 DESCRIPTION - Zero-Crossing Detection 1 : Volume changes made immediately upon request. 0 : Volume changes made only at zero crossings in the audio waveform or after approximately 100ms. The following registers bits are affected by /ZDEN: PGAM1, PGAM2, HPVOLL, HPVOLR, RECVOLL, RECVOLR, SPVOLL, SPVOLR Enhanced Volume Smoothing /VS2EN enhances the volume slew and is only used when /VSEN = 0. 1 : Enhancement disabled. 0 : Slewed volume changes wait until the previous volume step has been applied to the output before changing to the next step. The following register bits are affected by /VS2EN: HPVOLL, HPVOLR, RECVOLL, RECVOLR, SPVOLL, SPVOLR Volume Adjustment Smoothing 1 : Volume changes made by bypassing intermediate settings. 0 : Volume changes smoothed by stepping through intermediate values at a rate of one setting every 1ms. The following register bits are affected by /VSEN: HPVOLL, HPVOLR, RECVOLL, RECVOLR, SPVOLL, SPVOLR M 0 ADDRESS: 0x40 NAME TYPE PoR - ____________________________________________________________________ 109 MAXIM Confidential MAX98090 Jack Detection AX P R IM E L C IM O I N NA FI D RY EN TI AL The device features a software configurable jack detection block that can both sense the insertion and removal of a jack, as well as identify the type of load inserted (headphone or headset). Figure 16 shows the typical application circuit configuration for jack detection (and is the assumed configuration for the following sections) Figure 16: Typical Application Circuit for Jack Detection To detect a jack insertion/removal, the device must be powered (but may be operating in or out of shutdown mode). Set JDETEN to enable the jack detection circuitry. When the device is in shutdown mode or the microphone bias is disabled (MICBIAS is high impedance), an internal pull-up is enabled on JACKSNS, and is referenced to the SPKLVDD supply. When the device is not in shutdown and the microphone bias is enabled, the internal pull-up is disabled (JACKSNS is high impedance). In this state, successful jack detection requires an external pull-up on JACKSNS to MICBIAS (Figure 16). The device has both a strong and weak internal pull-up option. When JDWK is low (default, Table 64), the strong internal pull-up is used (approximately 2.2kΩ referenced to SPKLVDD). This configuration is capable of detecting and identifying both headphone and headset insertion. When JDWK is high, the weak internal pull-up (approximately 5µA to SPKLVDD) is used. This minimizes the supply current however the weak internal pull-up cannot identify headset insertion or accessory buttons. Jack Insertion and Removal The device detects jack insertion and removal by monitoring the voltage on JACKSNS with two internal comparators. The output of these comparators is used to set the state of the Jack Status Register bits (LSNS and JKSNS, Table 65). These comparators are only active when the JDETEN is set high. When the device is in shutdown and JDETEN is low, LSNS and JKSNS will retain their previous state regardless of the jack status. When JDETEN is set high, LSNS and JKSNS can report three possible jack states (Table TBD). When LSNS = JKSNS = 1, jack detection is reporting that no jack is currently inserted. When LSNS = JKSNS = 0, jack detection is reporting that a jack is inserted, but that no microphone load was detected (headset). When LSNS = 0 and JKSNS = 1, jack detection is reporting that a jack is inserted and that a microphone load is present (Headset detection). If the weak internal pull-up is used, and the microphone bias is disabled, the jack detection block will not be able to identify a microphone load and will report the headphone detection state even if a headset is inserted. When jack insertion or removal is detected (any change of state for LSNS and JKSNS), the Jack detection change flag is set (JDET, Table 66). In addition to this, an interrupt on /IRQ\ (to alert the microcontroller of the event) can also be triggered if IJDET is set (Table 67). M Accessory Button Detection After jack insertion, the MAX98089 can detect button presses on accessories that include a microphone and a switch that shorts the microphone signal to ground. Set JDETEN to enable jack detection circuitry. Button presses can be detected either when MICBIAS is enabled or if it is disabled and the strong internal pull-up is used (JDWK = 0). A button press will change the state of JKSNS from 1 to 0 until the button is released, and this change in state will generate an event on the jack detection change flag (JDET). ____________________________________________________________________ 110 MAXIM Confidential MAX98090 Table 64: Jack Detect Configuration Register BIT ADDRESS: 0x3D NAME TYPE PoR JDETEN R/W 0 6 JDWK R/W 0 5 4 3 2 1 0 Jack Detect Enable 0 : Jack Detect Circuitry Disabled 1 : Jack Detect Circuitry Enabled JACKSNS Pull-up Configuration 0 : 2.4kΩ resistor to SPKLVDD (allows microphone detection) 1 : 5uA to SPKLVDD (minimizes supply current) When JDWK = 1, JACKSNS is slow to increase in voltage. Set JDWK = 0 before setting JDETEN = 1 to prevent false detection. Valid when MBIAS = 0 or /SHDN = 0. Jack Detect Debounce Configures the jack detect debounce time 00 : 25ms 10 : 100ms 01 : 50ms 11 : 200ms AX P R IM E L C IM O I N NA FI D RY EN TI AL 7 DESCRIPTION - - - 0 JDEB[1:0] R/W 0 Table 65: Jack Status Register BIT 7 6 5 4 3 2 LSNS R 0 JKSNS R 0 - - - DESCRIPTION Microphone Load Sense (Valid only if JDETEN = 1) 0 : VJACKSNS ≤ 0.95V x VSUPPLY 1 : VJACKSNS > 0.95V x VSUPPLY VSUPPLY is determined by the state of MBEN and /SHDN\ such that: MBEN = 0 or /SHDN\ = 0 : VSUPPLY = VSPKLVDD (Internal) MBEN =1 and /SHDN\ = 1 : VSUPPLY = VMICBIAS (Configuration of Figure 16) Jack Connection Sense (Valid only if JDETEN = 1) 0 : VJACKSNS < 0.1V x VSUPPLY 1 : VJACKSNS ≥ 0.1V x VSUPPLY VSUPPLY is determined by the state of MBEN and /SHDN\ such that: MBEN = 0 or /SHDN\ = 0 : VSUPPLY = VSPKLVDD (Internal) MBEN =1 and /SHDN\ = 1 : VSUPPLY = VMICBIAS (Configuration of Figure 16) - M 1 ADDRESS: 0x02 NAME TYPE PoR - ____________________________________________________________________ 111 MAXIM Confidential MAX98090 Device Status Flags The device uses register 0x01 (Table 66) and /IRQ\ to report the status of various device functions. The status register bits are set when their respective events occur, and cleared upon reading the register. Device status can be determined either by poling register 0x01, or by configuring /IRQ\ to pull low when specific events occur. /IRQ\ is an open-drain output that requires a pull-up resistor (10kΩ to TBD) for proper operation. Table 66: Device Status Interrupt Register 7 6 5 4 3 2 1 Clipping Detect Flag 0 : No clipping has occurred. 1 : DAC or ADC clipping has occurred. CLD reports that the DAC input data or ADC output data is clipping due to excessive signal amplitude in the digital signal path. To resolve a clip condition in the signal path, the DAC gain settings and analog input gain settings should be lowered. As the CLD bit does not indicate where the overload has occurred, identify the source by lowering gains individually. Slew Level Detect Flag 0 : No volume slewing sequences have completed. 1 : Volume slewing complete. SLD reports that any one of the programmable-gain arrays or volume controllers has completed slews from a previous setting to a new programmed setting. If multiple gain arrays or volume controllers are changed at the same time, in either the analog or digital domain, SLD flag will be set after the last slew adjusting in each domain. SLD also reports when the serial interface soft-start or soft-stop process has completed. CLD CoR 0 SLD CoR 0 ULK CoR 0 - - - JDET CoR 0 ALCACT CoR 0 ALCCLP CoR 0 Digital PLL Unlock Flag 0 : PLL is locked if enabled and operating properly. 1 : When enabled, either of the PLL is not locked. ULK reports that the digital audio phase-locked loop for either interface became unlocked and input digital signal data is unreliable. Jack Configuration Change Flag 0 : No change in jack configuration. 1 : Jack configuration has changed. JDET reports changes to any bits in the Jack Status register. Changes to the Jack Status bits are debounced before setting JDET. The debounce period is programmable using the JDEB bits. ALC Compression Flag 0 : The ALC is either disabled or not in the compression region. 1 : The ALC is operating in the compression region. ALC Clipping Flag 0 : The ALC is either disabled or no clipping has occurred. 1 : ALC clipping has occurred. M 0 DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT ADDRESS: 0x01 NAME TYPE PoR ____________________________________________________________________ 112 MAXIM Confidential MAX98090 Status Flag Masking Register 0x03, the device status interrupt mask register (Table 67) determines which bits in the device status interrupt register (Table 66) can trigger a hardware interrupt on /IRQ\ (assert low). By default, all of the device status interrupts (except JDET) will only set the corresponding status bit and will not generate a hardware interrupt. Set the corresponding bit high in the mask register to enable hardware interrupts. Table 67: Device Status Interrupt Mask Register 7 6 5 4 3 2 1 R/W 0 ISLD R/W 0 IULK R/W 0 - - - IJDET R/W 1 IALCACT R/W 0 IALCCLP R/W 0 Clipping Detect Interrupt Enable 0 : Clipping detection only sets CLD (0x01[7]). 1 : Clipping detection triggers /IRQ\ and sets CLD (0x02[7]). Slew Level Detect Interrupt Enable 0 : Slew level detection only sets SLD (0x01[6]). 1 : Slew level detection triggers /IRQ\ and sets SLD (0x02[6]). Digital PLL Unlock Interrupt Enable 0 : PLL Unlock Condition only sets ULK (0x01[5]). 1 : PLL Unlock Condition triggers /IRQ\ and sets ULK (0x02[5]). Jack Configuration Change Interrupt Enable 0 : Changes in headset configuration only sets JDET (0x01[2]). 1 : Changes in headset configuration triggers /IRQ\ and sets JDET (0x01[2]). ALC Compression Interrupt Enable 0 : ALC compression only sets ALCACT (0x01[1]). 1 : ALC compression triggers /IRQ\ and sets ALCACT (0x01[1]). ALC Clipping Interrupt Enable 0 : ALC clipping only sets ALCCLP (0x01[0]). 1 : ALC clipping triggers /IRQ\ and sets ALCCLP (0x01[0]). M 0 ICLD DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT ADDRESS: 0x03 NAME TYPE PoR ____________________________________________________________________ 113 MAXIM Confidential MAX98090 Quick Setup Configuration Table 68: System Clock Quick Setup Register 1 0 DESCRIPTION Setup Device for Operation with a 26MHz Master Clock (MCLK) Setup Device for Operation with a 19.2MHz Master Clock (MCLK) Setup Device for Operation with a 13MHz Master Clock (MCLK) Setup Device for Operation with a 12.288MHz Master Clock (MCLK) Setup Device for Operation with a 12MHz Master Clock (MCLK) Setup Device for Operation with a 11.2896MHz Master Clock (MCLK) AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 ADDRESS: 0x04 NAME TYPE PoR 26M W 0 19P2M W 0 13M W 0 12P288M W 0 12M W 0 11P2896M W 0 - - - 256FS W 0 - Setup Device for Operation with a 256 x fS MHz Master Clock (MCLK) Table 69: Sample Rate Quick Setup Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x05 NAME TYPE PoR SR_96K W 0 SR_32K W 0 SR_48K W 0 SR_44K1 W 0 SR_16K W 0 SR_8K W 0 DESCRIPTION Setup Clocks and Filters for a 96kHz Sample Rate Setup Clocks and Filters for a 32kHz Sample Rate Setup Clocks and Filters for a 48kHz Sample Rate Setup Clocks and Filters for a 44.1kHz Sample Rate Setup Clocks and Filters for a 16kHz Sample Rate Setup Clocks and Filters for an 8kHz Sample Rate Table 70: Digital Audio Interface (DAI) Quick Setup Register ADDRESS: 0x06 NAME TYPE PoR RJ_M W 0 RJ_S W 0 LJ_M W 0 LJ_S W 0 I2S_M W 0 I2S_S W 0 DESCRIPTION Setup DAI for Right Justified Master Mode Operation Setup DAI for Right Justified Slave Mode Operation Setup DAI for Left Justified Master Mode Operation Setup DAI for Left Justified Slave Mode Operation Setup DAI for I2S Master Mode Operation Setup DAI for I2S Slave Mode Operation M BIT 7 6 5 4 3 2 1 0 ____________________________________________________________________ 114 MAXIM Confidential MAX98090 Table 71: Digital to Analog Converter (DAC) Path Quick Setup Register DESCRIPTION Setup the DAC to Headphone Path Setup the DAC to Receiver Path Setup the DAC to Speaker Path Setup the DAC to Line Out Path - AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x07 NAME TYPE PoR DIG2_HP W 0 DIG2_EAR W 0 DIG2_SPK W 0 DIG2_LOUT W 0 - Table 72: Microphone / Direct to Analog to Digital Converter (ADC) Path Quick Setup Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x08 NAME TYPE PoR IN12_MIC1 W 0 IN34_MIC2 W 0 IN56_MIC1 W 0 IN56_MIC2 W 0 IN12_DADC W 0 IN34_DADC W 0 IN56_DADC W 0 - DESCRIPTION Setup the IN1-IN2 to Microphone 1 to ADCL Path Setup the IN3-IN4 to Microphone 2 to ADCR Path Setup the IN6-IN5 to Microphone 1 to ADCL Path (WLP Only) Setup the IN6-IN5 to Microphone 2 to ADCR Path (WLP Only) Setup the IN1-IN2 Direct to ADCL Path Setup the IN3-IN4 Direct to ADCR Path Setup the IN6-IN5 Direct to ADCL Path (WLP Only) - Table 73: Line Input to Analog to Digital Converter (ADC) Path Quick Setup Register DESCRIPTION Setup Stereo Single Ended Record: IN1/IN2 to Line In A/B to ADCL/R Setup Stereo Single Ended Record: IN3/IN4 to Line In A/B to ADCL/R Setup Stereo Single Ended Record: IN5/IN6 to Line In A/B to ADCL/R (WLP Only) Setup Mono Differential Record: IN3-IN4 to Line In A to ADCL Setup Mono Differential Record: IN6-IN5 to Line In B to ADCR (WLP Only) - M BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x09 NAME TYPE PoR IN12S_AB W 0 IN34S_AB W 0 IN56S_AB W 0 IN34D_A W 0 IN56D_B W 0 - ____________________________________________________________________ 115 MAXIM Confidential MAX98090 Table 74: Analog Microphone Input to Analog Output Loop Quick Setup Register DESCRIPTION Setup the IN1-IN2 Differential to Microphone 1 to Headphone Left Path Setup the IN1-IN2 Differential to Microphone 1 to Speaker Left Path Setup the IN1-IN2 Differential to Microphone 1 to Receiver Path Setup the IN1-IN2 Differential to Microphone 1 to Lineout Left Path Setup the IN3-IN4 Differential to Microphone 2 to Headphone Left Path Setup the IN3-IN4 Differential to Microphone 2 to Speaker Left Path Setup the IN3-IN4 Differential to Microphone 2 to Receiver Path Setup the IN3-IN4 Differential to Microphone 2 to Lineout Left Path AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x0A NAME TYPE PoR IN12_M1HPL W 0 IN12_M1SPKL W 0 IN12_M1EAR W 0 IN12_M1LOUTL W 0 IN34_M2HPR W 0 IN34_M2SPKR W 0 IN34_M2EAR W 0 IN34_M2LOUTR W 0 Table 75: Analog Line Input to Analog Output Loop Quick Setup Register BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x0B NAME TYPE PoR IN12S_ABHP W 0 IN34D_ASPKL W 0 IN34D_AEAR W 0 IN12S_ABLOUT W 0 IN34S_ABHP W 0 IN56D_BSPKR W 0 IN56D_BEAR W 0 IN34S_ABLOUT W 0 DESCRIPTION Setup the IN1/IN2 Single Ended to Line In A/B to Headphone L/R Path Setup the IN3-IN4 Differential to Line In A to Speaker Left Path Setup the IN3-IN4 Differential to Line In A to Receiver Path Setup the IN1/IN2 Single Ended to Line In A/B to Lineout L/R Path Setup the IN3/IN4 Single Ended to Line In A/B to Headphone L/R Path Setup the IN6-IN5 Differential to Line In B to Speaker Right Path (WLP Only) Setup the IN6-IN5 Differential to Line In B to Receiver Path (WLP Only) Setup the IN3/IN4 Single Ended to Line In A/B to Lineout L/R Path Software Reset The device provides a software reset (SWRESET, Table 76) that is used to return most registers to their default (PoR) states (The ADC Biquad and DAC Equalizer coefficient registers are not reset). The software reset register is a pushbutton, write only register. As a result, a read of this register always returns 0x00. Writing a logic high to SWRESET triggers a software register reset, while writing a logic low to SWRESET has no effect. Table 76: Software Reset Register BIT 7 SWRESET W 0 - - - M 6 5 4 3 2 1 0 ADDRESS: 0x00 NAME TYPE PoR DESCRIPTION Pushbutton Software Device Reset 0 : Writing a logic low to SWRESET has no effect. 1 : Reset all registers to their default PoR values. This excludes the ADC Biquad and DAC Equalizer filter coefficients (Table 23). - ____________________________________________________________________ 116 MAXIM Confidential MAX98090 Device Revision Identification The device provides a Revision ID Number register to allow the software to identify the current version of the device. The current device revision ID value is 0x42. Table 77: Revision ID Number Register DESCRIPTION AX P R IM E L C IM O I N NA FI D RY EN TI AL BIT 7 6 5 4 3 2 1 0 ADDRESS: 0x45 NAME TYPE PoR 0 1 0 0 REV_ID[7:0] R 0 0 1 0 2 Read back the revision ID of the device I2C Serial Interface The MAX98090 features an I C/SMBus™-compatible, 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the MAX98090 and the master at clock rates up to 400kHz. Error! Reference source not found.TBD shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the MAX98090 by transmitting the proper slave address followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the MAX98090 is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the MAX98090 transmits the proper slave address followed by a series of nine SCL pulses. The MAX98090 transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pull-up resistor, typically greater than 500Ω, is required on SDA. SCL operates only as an input. A pull-up resistor, typically greater than 500Ω, is required on SCL if there are multiple masters on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the MAX98090 from high voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals. Bit Transfer One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the START and STOP Conditions section). M START and STOP Conditions SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-tohigh transition on SDA while SCL is high (Figure 17). A START condition from the master signals the beginning of a transmission to the MAX98090. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition. Early STOP Conditions The MAX98090 recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition. Slave Address ____________________________________________________________________ 117 MAXIM Confidential MAX98090 The slave address is defined as the seven most significant bits (MSBs) followed by the read/write bit. For the MAX98090A, the seven most significant bits are 0010000. Setting the read/write bit to 1 (slave address = 0x21) configures the MAX98090A for read mode. Setting the read/write bit to 0 (slave address = 0x20) configures the MAX98090A for write mode. The address is the first byte of information sent to the MAX98090 after the START condition. Similarly, for the MAX98090B, the seven most significant bits are 0010001. Setting the read/write bit to 1 (slave address = 0x23) configures the MAX98090B for read mode. Setting the read/write bit to 0 (slave address = 0x22) configures the MAX98090B for write mode. AX P R IM E L C IM O I N NA FI D RY EN TI AL Acknowledge The acknowledge bit (ACK) is a clocked 9th bit that the MAX98090_ uses to handshake receipt each byte of data when in write mode (Figure 18). The MAX98090_ pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master will retry communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the MAX98090_ is in read mode. An acknowledge is sent by the master after each read byte to allow data transfer to continue. A notacknowledge is sent when the master reads the final byte of data from the MAX98090_, followed by a STOP condition. - Figure 17: START, STOP, and REPEATED START Conditions Figure 18: Acknowledge M Write Data Format A write to the MAX98090_ includes transmission of a START condition, the slave address with the R//W\ bit set to 0, one byte of data to configure the internal register address pointer, one or more bytes of data, and a STOP condition. Figure 19 illustrates the proper frame format for writing one byte of data to the MAX98090_. Figure 20 illustrates the frame format for writing n-bytes of data to the MAX98090_. The slave address with the R//W\ bit set to 0 indicates that the master intends to write data to the MAX98090. The MAX98090_ acknowledges receipt of the address byte during the master-generated 9th SCL pulse. The second byte transmitted from the master configures the MAX98090_’s internal register address pointer. The pointer tells the MAX98090_ where to write the next byte of data. An acknowledge pulse is sent by the MAX98090 upon receipt of the address pointer data. ____________________________________________________________________ 118 MAXIM Confidential MAX98090 The third byte sent to the MAX98090_ contains the data that will be written to the chosen register. An acknowledge pulse from the MAX98090_ signals receipt of the data byte. The address pointer auto increments to the next register address after each received data byte. This auto-increment feature allows a master to write to sequential registers within one continuous frame. The master signals the end of transmission by issuing a STOP condition. Register addresses greater than 0xE7 are reserved. Do not write to these addresses. ACKNOWLEDGE FROM AX36 B7 ACKNOWLEDGE FROM AX36 B6 B5 B4 B3 B2 B1 B0 AX P R IM E L C IM O I N NA FI D RY EN TI AL ACKNOWLEDGE FROM AX36 S SLAVE ADDRESS 0 A REGISTER ADDRESS R/W A DAT A BYTE A P 1 BYTE AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 19: Writing One Byte of Data to the MAX98090. Figure 20: Writing n-Bytes of Data to the MAX98090 Read Data Format Send the slave address with the R//W\ bit set to 1 to initiate a read operation. The MAX98090_ acknowledges receipt of its slave address by pulling SDA low during the 9th SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00. The first byte transmitted from the MAX98090_ will be the contents of register 0x00. Transmitted data is valid on the rising edge of SCL. The address pointer auto-increments after each read data byte. This auto-increment feature allows all registers to be read sequentially within one continuous frame. A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read will be from register 0x00. M The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the MAX98090’s slave address with the R//W\ bit set to 0 followed by the register address. A REPEATED START condition is then sent followed by the slave address with the R//W\ bit set to 1. The MAX98090_ then transmits the contents of the specified register. The address pointer autoincrements after transmitting the first byte. ____________________________________________________________________ 119 MAXIM Confidential MAX98090 AX P R IM E L C IM O I N NA FI D RY EN TI AL The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figure 21 illustrates the frame format for reading one byte from the MAX98090_. Figure 22 illustrates the frame format for reading multiple bytes from the MAX98090_. Figure 21: Reading One Byte of Data from the MAX98090_ M Figure 22: Reading n-Bytes of Data from the MAX98090_ ____________________________________________________________________ 120 MAXIM Confidential MAX98090 _________________________________________ APPLICATIONS INFORMATION Typical Application Circuits AX P R IM E L C IM O I N NA FI D RY EN TI AL Figures are two example application circuits for the device. The external components shown are the minimum required for the device to operate. Additional application specific components may be required. M Figure 23: Typical Application Circuit with Analog Microphone Inputs and Receiver Output ____________________________________________________________________ 121 MAX98090 AX P R IM E L C IM O I N NA FI D RY EN TI AL MAXIM Confidential Figure 24: Typical Application Circuit with Digital Microphone Input and Stereo Line Outputs Startup / Shutdown Register Sequencing To ensure proper device initialization and minimal click-and-pop, program the devices control registers in the correct order. To shutdown the MAX98090, simply set /SHDN\ = 0. Table 78 details an example startup sequence for the device. To minimize click and pop on the analog output drivers (headphones, speakers, receiver, and line outputs), the output drivers should be powered using the following sequence: M 1. Prior to powering the device (/SHDN\ = 0) and before enabling the outputs, the output driver mute(s) should be enabled and the PGA gain(s) should be set to their lowest setting. 2. After all configuration settings are complete, power up the device (/SHDN\ = 1). 3. Enable any analog outputs that are part of the desired configuration. 4. Disable the mute on each respective analog output. Ramp the volume up, one register step at a time, from the minimum setting until the desired volume (gain) is reached (this sequence is part of the example in Table 78). ____________________________________________________________________ 122 MAXIM Confidential MAX98090 Table 78: Device Startup Sequence SEQUENCE 1 2 3 DESCRIPTION Set /SHDN\ = 0 Configure Clocks Configure Digital Audio Interface (DAI) Configure Digital Signal processing (DSP) 5 6 Load Coefficients Configure Power and Bias Mode AX P R IM E L C IM O I N NA FI D RY EN TI AL 4 REGISTERS 0x45 (Default PoR State) 0x1B to 0x21 0x22 to 0x25 0x17 to 0x1A, 0x26 to 0x28, 0x33 to 0x36, 0x41 0x46 to 0xBD 0x42 to 0x44 0x0D, 0x15, 0x16, 0x29, 0x2A, 0x2B, 0x2E, 0x2F, 0x37, 0x3A 0x0E to 0x11, 0x2B to 0x2D, 0x30 to 0x32, 0x38, 0x39, 0x3B, 0x3C 0x03, 0x12, 0x13, 0x14, 0x40 0x45 0x3D to 0x3F 0x2C, 0x2D, 0x31, 0x32, 0x39, 0x3C 0x30 to 0x32, 0x38, 0x39, 0x3B, 0x3C 7 Configure Analog Mixers 9 11 10 Configure Analog Gain and Volume Controls. To Minimize Click and Pop for Analog Outputs, Enable Mute and Set the Output PGAs to the minimum gain setting. Configure Miscellaneous Functions Set /SHDN\ = 1 (Power Up) Enable Desired Functions 11 Disable Mute on Analog Output Drivers 12 For all Analog Output Drivers, Ramp the Gain up One Volume Step per Write until the Desired Gain is Reached 8 While many configuration options and settings can be changed while the device is operating (/SHDN\ = 1), some registers should only be adjusted with the device in shutdown (/SHDN\ = 0). Table 79 lists the registers that should not be changed during active operation. Table 79: Register Changes that Require /SHDN\ = 0 DESCRIPTION Clock Control Registers Bias Control Digital Signal Processing Coefficients REGISTER 0x04, 0x05, 0x1B to 0x20 0x42 to 0x44 0x46 to 0xBD Component Selection AC Coupling Capacitors An input capacitor, CIN, in conjunction with the input impedance of the MAX98090 line inputs forms a high pass filter that removes the DC bias from an incoming analog signal. The AC coupling capacitor allows the amplifier to automatically bias the signal to an optimum DC level. Assuming very low source impedance (comparatively), the -3dB point of the high pass filter is given by: f 3dB 1 2 RIN C IN M Choose CIN such that f-3dB is well below the lowest frequency of interest. For best audio quality use capacitors whose dielectrics have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with highvoltage coefficients, such as ceramics, may result in increased distortion at low frequencies. If needed, line output AC coupling capacitor values can be calculated in similar fashion by using the input resistance of the output stage connected to the line output drivers. ____________________________________________________________________ 123 MAXIM Confidential MAX98090 Charge-Pump Capacitor Selection Use capacitors with an ESR less than 100mΩfor optimum performance. Low-ESR ceramic capacitors minimize the output resistance of the charge pump. Most surface mount ceramic capacitors satisfy the ESR requirement. For best performance over the extended temperature range, select capacitors with an X7R dielectric. The value of the flying capacitor (connected between C1N and C1P) affects the output resistance of the charge pump. A value that is too small degrades the device’s ability to provide sufficient current drive, which leads to a loss of output voltage. Increasing the value of the flying capacitor reduces the charge-pump output resistance to an extent. Above 1μF, the on-resistance of the internal switches and the ESR of external charge pump capacitors dominate. AX P R IM E L C IM O I N NA FI D RY EN TI AL The holding capacitor (bypassing HPVSS) value and ESR directly affect the ripple at HPVSS. Increasing the capacitor’s value reduces output ripple. Likewise, decreasing the ESR reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels. See the Output Power vs. Load Resistance graph in the Typical Operating Characteristics for more information. Filterless Class D Speaker Operation Traditional Class D amplifiers require an output filter to recover the audio signal from the amplifier’s output. The filters add cost, increase the solution size of the amplifier, and can decrease efficiency and THD+N performance. The traditional PWM scheme uses large differential output swings (2 x SPKVDD peak to peak) and causes large ripple currents. Any parasitic resistance in the filter components results in a loss of power, lowering the efficiency. The IC does not require an output filter. The device relies on the inherent inductance of the speaker coil and the natural filtering of both the speaker and the human ear to recover the audio component of the square-wave output. Eliminating the output filter results in a smaller, less costly, and more efficient solution. Because the frequency of the IC’s output is well beyond the bandwidth of most speakers, voice coil movement due to the square-wave frequency is very small. Although this movement is small, a speaker not designed to handle the additional power can be damaged. For optimum results, use a speaker with a series inductance > 10µH. Typical 8Ω speakers exhibit series inductances in the 20µH to 100µH range. EMI Considerations and Optional Ferrite Bead Filter Reducing trace length minimizes radiated EMI. On the PCB, route SPKLP/SPKLN and SPKRP/SPKRN as differential pairs with the shortest trace lengths possible. This will minimize trace loop area, and thereby the inductance of the circuit. If filter components are used on the speaker outputs, minimize the trace length from any ground tied passive components to SPK_GND to further minimize radiated EMI. M In applications where speaker leads exceed 20mm, additional EMI suppression can be achieved by using a filter constructed from a ferrite bead and a capacitor to ground (Figure 25). Use a ferrite bead with low DC resistance, high frequency (>600MHz) impedance between 100Ω and 600Ω, and rated for at least 1A. The capacitor value varies based on the ferrite bead chosen and the actual speaker lead length. Select a capacitor less than 1nF, with the value based upon optimizing EMI performance. Figure 25. Optional Class D Ferrite Bead Filter ____________________________________________________________________ 124 MAXIM Confidential MAX98090 RF Susceptibility GSM radios transmit using time-division multiple access (TDMA) with 217Hz intervals. The result is an RF signal with strong amplitude modulation at 217Hz and its harmonics that is easily demodulated by audio amplifiers. The MAX98090 is designed specifically to reject RF signals; however, PCB layout has a large impact on the susceptibility of the end product. In RF applications, improvements to both layout and component selection decreases the MAX98090’s susceptibility to RF noise and prevent RF signals from being demodulated into audible noise. Trace lengths should be kept below 1/4 of the wavelength of the RF frequency of interest. Minimizing the trace lengths prevents them from functioning as antennas and coupling RF signals into the MAX98090. The wavelength () in meters is given by: = c / f where c = 3 x 108 m/s, and f = the RF frequency of interest. AX P R IM E L C IM O I N NA FI D RY EN TI AL Route audio signals on middle layers of the PCB to allow ground planes above and below to shield them from RF interference. Ideally the top and bottom layers of the PCB should primarily be ground planes to create effective shielding. Additional RF immunity can also be obtained by relying on the self-resonant frequency of capacitors, as it exhibits a frequency response similar to a notch filter. Depending on the manufacturer, 10pF to 20pF capacitors typically exhibit self resonance at RF frequencies. These capacitors, when placed at the input pins, can effectively shunt the RF noise at the inputs of the MAX98090. For these capacitors to be effective, they must have a low-impedance, low-inductance path to the ground plane. Avoid using micro-vias to connect to the ground plane as these vias do not conduct well at RF frequencies. Supply Bypassing, Layout, and Grounding Proper layout and grounding are essential for optimum performance. When designing a PCB for the MAX98090, partition the circuitry so that the analog sections of the MAX98090 are separated from the digital sections. This ensures that the analog audio traces are not routed near digital traces. Use a large continuous ground plane on a dedicated layer of the PCB to minimize loop areas. Connect AGND, DGND, and HPGND directly to the ground plane using the shortest trace length possible. Proper grounding improves audio performance, minimizes crosstalk between channels, and prevents any digital noise from coupling into the analog audio signals. Ground the bypass capacitors on MICBIAS, VCM and REF directly to the ground plane with minimum trace length. Also be sure to minimize the path length to AGND, and bypass AVDD directly to AGND. Connect all digital I/O termination to the ground plane with minimum path length to DGND, and bypass DVDD and DVDDIO directly to DGND. Place the capacitor between C1P and C1N as close to the MAX98090 as possible to minimize trace length from C1P to C1N. Inductance and resistance added between C1P and C1N reduce the output power of the headphone amplifier. Bypass HPVDD, CPVDD and CPVSS with capacitors located close to the pin with short trace lengths to HPGND. Close decoupling of CPVDD and CPVSS minimizes supply ripple and maximizes output power from the headphone amplifier. HPSNS senses ground noise on the headphone jack and adds the same noise to the output audio signal, thereby making the output (headphone output – ground) noise free. Connect HPSNS to the headphone jack shield to ensure accurate pickup of headphone ground noise. Bypass SPK_VDD to SPK_GND with the shortest trace length possible and connect SPKLP, SPKLN, SPKRP, and SPKRN to the stereo speakers using the shortest traces possible. If filter components are used on the speaker outputs, be sure to locate them as close to the MAX98090 as possible to ensure maximum effectiveness. M Route microphone signals from the microphone to the MAX98090 as a differential pair, ensuring that the positive and negative signals follow the same path as closely as possible with equal trace length. When using single-ended microphones or other single-ended audio sources, ground the negative microphone input as near to the audio source as possible and then treat the positive and negative traces as differential pairs. An evaluation kit (EV Kit) is available to provide an example layout for the MAX98090. The EV Kit allows quick setup of the MAX98090 and includes easy-to-use software allowing all internal registers to be controlled. ____________________________________________________________________ 125 MAXIM Confidential MAX98090 Recommended PCB Routing AX P R IM E L C IM O I N NA FI D RY EN TI AL The IC uses a 49-bump WLP package. Figure 26 provides an example of how to connect to all active bumps using 3 layers of the PCB. To ensure uninterrupted ground returns, use layer 2 as a connecting layer between layer 1 and layer 2 and flood the remaining area with ground. Figure 26: WLP Package Suggested Routing for MAX98090 Unused Pins Table TBD shows how to connect the IC pins when circuit blocks are unused. WLP Applications Information For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note: UCSP - A Wafer-Level Chip-Scale Package on Maxim’s website at www.maxim-ic.com/ucsp. Figure 27 shows the dimensions of the WLP balls used on the MAX98090. M Figure 27: MAX98090 WLP Ball Dimensions ____________________________________________________________________ 126 MAXIM Confidential MAX98090 ______________________________________________ PACKAGE INFORMATION DOCUMENT NO. 21-0443 21-0140 M AX P R IM E L C IM O I N NA FI D RY EN TI AL For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE PACKAGE CODE 49 - WLP W493B3+2 40 - TQFN T4055+1 ____________________________________________________________________ 127 MAX98090 M AX P R IM E L C IM O I N NA FI D RY EN TI AL MAXIM Confidential ____________________________________________________________________ 128 MAX98090 M AX P R IM E L C IM O I N NA FI D RY EN TI AL MAXIM Confidential ____________________________________________________________________ 129 MAXIM Confidential MAX98090 ___________________________________________________ REVISION HISTORY REVISION NUMBER 0.1 0.5 0.6 0.7 DESCRIPTION Initial draft release Second draft release Third draft release Fourth draft release Fifth draft release (Front Page, EC table, TOC, Register Map and Description, Applications Information, Etc. Updates) PAGES CHANGED — Significant updates Significant updates Significant updates Significant updates M AX P R IM E L C IM O I N NA FI D RY EN TI AL 0.8 REVISION DATE ____________________________________________________________________ 130
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement