EN / Crane Control Program (+N697) Firmware Manual

EN / Crane Control Program (+N697) Firmware Manual
ACS800
Firmware Manual
Crane Control Program (+N697)
Special application guides
(available on request)
Fieldbus Control Application Guide
3AUA0000046481 (English)
Load Speed Control Application Guide
3AUA0000046482 (English)
Functional Specification for Conical Motor Function
3AUA0000046480 (English)
The special application guides as well as this manual can be found and downloaded from ABB IHMM.
Crane Control Program (+N697)
Firmware Manual
3AFE68775230 REV E
EN
EFFECTIVE: 2012-09-25
© 2012 ABB Oy. All Rights Reserved.
5
Table of contents
Table of contents
Introduction to the manual
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
15
15
15
16
Start-up and control through the I/O interface
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to start-up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to perform the limited start-up (covers only the basic settings) . . . . . . . . . . . . . . . . . . . . .
How to control the drive through the I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to perform the ID run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ID run procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
17
18
23
24
24
Quick start-up guide
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crane macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for controlling the drive from the keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for controlling the drive from digital inputs and the potentiometer . . . . . . . . . . . . .
Checklist for controlling the drive from the joystick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for controlling the drive from digital inputs and motorized potentiometer . . . . . . . .
Checklist for controlling the drive using Step reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for controlling the drive in the fieldbus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety Control configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for safety control configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brake control configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for the brake control configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Master/Follower configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for Master/Follower configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shaft synchronisation configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for Master/Follower configuration in Shaft synchronisation mode . . . . . . . . . . . . .
Load speed control configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checklist for Load speed control configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
27
27
27
27
28
28
29
29
30
30
31
31
31
31
33
33
34
34
Table of contents
6
Control panel
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview of the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Panel operation mode keys and displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status row – How to read the drive status at a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive control with the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to start, stop and change direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to set speed reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual signal display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to select actual signals to the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to display the full name of the actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to view and reset the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to display and reset an active fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
About the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to select a parameter and change the value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to adjust a source selection (pointer) parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to upload data from a drive to the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to download data from the panel to a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to set the contrast of the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to select a drive and change its panel link ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reading and entering packed boolean values on the display . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
37
38
39
40
40
41
42
42
43
43
44
44
45
45
46
47
47
48
49
50
50
51
Program features
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical crane configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stand-alone mode (EXT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram: start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram: reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Master/Follower and Synchro control (EXT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zero position of the joystick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Update cycles in the Crane control program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of contents
53
53
53
54
55
56
56
56
56
57
57
58
58
58
59
59
59
60
60
60
60
7
Programmable analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Update cycles in the Crane control program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Update cycles in the Crane control program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Additional information for Digital Inputs and Pointers PTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Update cycles in the Crane control program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start function: Constant DC magnetising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flux braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flux optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Step referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IR compensation for a scalar-controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hexagonal motor flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AI<Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Panel loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
61
61
61
62
62
62
62
63
64
64
64
64
65
65
65
66
66
66
66
66
66
66
67
67
68
68
68
68
69
69
70
70
71
71
71
72
72
73
73
73
73
74
74
74
74
74
74
74
74
Table of contents
8
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor temperature thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Use of the motor thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stall protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Underload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Earth fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Communication fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supervision of optional inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Preprogrammed faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control board temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overfrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Automatic resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor temperature measurement through the standard I/O interface . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor temperature measurement through an analogue I/O extension . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External speed limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed monitor (internal overspeed protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed matching (internal overload protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Torque proving (Crane system check) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of contents
74
75
75
75
75
76
76
76
76
76
76
77
77
77
77
77
77
78
78
78
78
79
79
80
80
80
80
80
80
80
80
81
81
81
82
82
83
84
84
85
85
85
86
86
86
87
88
88
88
89
9
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Power ON acknowledge and internal fault reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Actual position configuration based on a motor encoder signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Actual position reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Homing sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Manual reset of actual position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Control location EXT1/EXT2 supervision mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Master/Follower use of several drives (Only in EXT2 Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Master/Follower interlock words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Speed reference scaling between the Master and the Follower . . . . . . . . . . . . . . . . . . . . . . . . . 98
Settings and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Shaft synchro (Only in EXT2 Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Defining the basic data for speed correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Calculating the linear rope speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Defining the basic data for speed reference calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
External speed correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Synchro error blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Service counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Adaptive Programming using the function blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
DriveAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Examples of crane functionalities created with DriveAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Main contactor control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Brake match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Redundancy in Master/Follower crane control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Scaling actual encoder position signal (mm) to analogue output as mA . . . . . . . . . . . . . . . 111
Slack rope torque detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Conical rotor motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Control of a mechanical brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Operation time scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
State shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Reduced run function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table of contents
10
Safety functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External 24 V supply of RMIO board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slowdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fast stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-end and Low-end limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start high logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverter limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Load speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application message blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117
117
117
117
118
118
118
118
118
119
120
120
121
121
121
121
122
122
123
127
127
127
Application macros, control location EXT1/EXT2
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control locations EXT1/EXT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control locations and control modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stand-alone mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Master/Follower and Synchro control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crane macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control using digital inputs and Potentiometer Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RDIO-01 digital I/O extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control using Joystick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RDIO-01 digital I/O extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wiring diagrams for Joystick using external and internal power supplies . . . . . . . . . . . . . . . .
Control using motorized potentiometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RDIO-01 digital I/O extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control using step reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RDIO-01 digital I/O extension module -1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RDIO-01 digital I/O extension module -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control using fieldbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RDIO-01 digital I/O extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of contents
129
129
129
130
130
130
130
131
132
134
134
136
136
140
140
141
143
143
145
145
146
148
11
Actual signals and parameters
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
01 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
02 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
04 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
09 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 STEP REFERENCING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 ANALOGUE INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 ANALOGUE OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 SYST CTRL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 SPEED CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 TORQUE CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 MOTOR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 BRAKE CHOPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 PROCESS VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 MOT TEMP MEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 BRAKE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 ENCODER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51 COMM MODULE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52 STANDARD MODBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60 MASTER/FOLLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70 DDCS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74 SPEED MONITOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75 SPEED MATCHING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76 TORQUE PROVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77 LOAD SPEED CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78 SHAFT SYNCRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79 SERVICE COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83 ADAPT PROG CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84 ADAPTIVE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
85 USER CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
90 D SET REC ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
92 D SET TR ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
95 HARDWARE SPECIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96 EXTERNAL AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97 MOTOR MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
98 OPTION MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
151
151
152
152
153
154
156
156
157
157
161
166
167
170
171
172
174
177
180
182
184
185
187
187
193
193
194
196
200
201
201
201
205
205
206
206
207
209
210
210
212
213
214
214
216
218
219
220
Table of contents
12
99 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Fieldbus control
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Redundant fieldbus control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting up communication through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . .
Modbus addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting up communication through Advant controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus reference selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram: Control data input from fieldbus when a type Rxxx fieldbus adapter is used .
Block diagram: Actual value selection for fieldbus when a type Rxxx fieldbus adapter is used
Block diagram: Control data input from fieldbus when a type Nxxx fieldbus adapter is used .
Block Diagram: Actual value selection for fieldbus when a type Nxxx fieldbus adapter is used
Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABB Drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.01 MAIN CONTROL WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.02 MAIN STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State Machine for the ABB Drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start/Stop sequence using communication bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flow chart for Main Control Command Bit sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus references in a Master/Follower configuration . . . . . . . . . . . . . . . . . . . . . . . . . . .
Generic Drive communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive commands supported by the Generic Drive communication profile . . . . . . . . . . . . .
Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CONTROL WORD for the CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . .
STATUS WORD for the CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . .
Diverse control, status, fault, alarm and limit words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.03 AUXILIARY STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.04 LIMIT WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.05 FAULT WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.06 FAULT WORD 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.07 SYSTEM FAULT WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.08 ALARM WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.09 ALARM WORD 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.11 FOLLOWER MAIN COMMAND WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.13 AUXILIARY STATUS WORD 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.14 AUXILIARY STATUS WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.15 FAULT WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.16 ALARM WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of contents
229
229
230
231
233
234
235
237
241
242
242
242
242
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
260
260
260
261
261
262
262
263
264
264
265
265
267
267
267
268
13
03.17 FAULT WORD 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.18 ALARM WORD 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.19 INT INIT FAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.20...03.24 Fault codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.25...03.29 Warning codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.30 LIMIT WORD INV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.31 ALARM WORD 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.32 CRANE STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.33 CRANE FAULT WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.34 APPL CONTROL WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.36 M F STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03.37 FCW WITH POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
04.01 FAULTED INT INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
04.02 INT SC INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
268
269
269
269
272
274
275
275
276
276
276
277
277
278
Fault tracing
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Warning and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Warning messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Warning messages generated by the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
279
279
279
279
279
280
287
288
Adaptive Programming examples for crane control
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main contactor control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brake match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Working logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Redundancy in Master/Follower crane control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scaling actual encoder position signal (mm) to analogue output as mA . . . . . . . . . . . . . . . . . . . .
Slack rope torque detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conical rotor motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
297
297
301
301
304
310
311
313
Analogue Extension Module
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed control through the analogue extension module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings of the analogue extension module and the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter settings: bipolar input in basic speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter settings: bipolar input in joystick mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
315
315
315
315
316
317
Table of contents
14
Additional data: actual signals and parameters
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . .
Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
319
319
319
319
319
320
324
DriveWindow
Control block diagrams
Further information
Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document library on the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of contents
339
339
339
339
15
Introduction to the manual
Chapter overview
The chapter includes a description of the contents of the manual. In addition, it
contains information about the compatibility, safety, intended audience, and related
publications.
Compatibility
The manual is compatible with ACS800 Crane control program (+N697) version
AQCR7XXX. This software supports the RMIO-01/02 and RMIO-11/12 Motor and I/O
Control Boards. See parameter 33.01 SOFTWARE VERSION.
The Crane control program version AQCR7xxxx is also compatible with the ACS800
Anti-sway control program version A9XRxxx. For more information, see ACS800
Anti-sway Control Program (+N816) Supplement (3AUA0000094750 [English]).
With the DriveWindow PC tool version 2.xx, it is possible create a full back-up of the
software (*.bpg file). You can use the back-up file, for example, when replacing the
RMIO-xx board or a whole drive.
Safety instructions
Follow all safety instructions delivered with the drive.
• Read the complete safety instructions before you install, commission, or use
the drive. The complete safety instructions are given at the beginning of the
relevant hardware manual.
• Read the software-function-specific warnings and notes before changing the
default settings of the function. For each function, the warnings and notes are
given in this manual in the section describing the related user-adjustable
parameters.
Reader
The reader of the manual is expected to know the standard electrical wiring
practices, electronic components, and electrical schematic symbols.
16
Contents
The manual consists of the following chapters:
• Start-up and control through the I/O interface instructs in setting up the control
program, and how to start, stop and regulate the speed of the drive.
• Quick start-up guide describes the quick start-up procedure while using different
control schemes and a different drive configuration.
• Control panel gives instructions on using the panel.
• Program features contains the feature descriptions and the reference lists of the
user settings and diagnostic signals.
• Application macros, control location EXT1/EXT2 contains a short description of
each macro together with a connection diagram and also short descriptions of the
control locations and modes.
• Actual signals and parameters describes the actual signals and parameters of the
drive.
• Fieldbus control describes the communication through the serial communication
links.
• Fault tracing lists the warning and fault messages with the possible causes and
remedies.
• Adaptive Programming examples for crane control includes examples of Adaptive
Programming (AP) for Crane control program (+N697).
• Analogue Extension Module describes the communication between the drive and
the analogue I/O extension (optional).
• Additional data: actual signals and parameters contains more information on the
actual signals and parameters.
• Control block diagrams
• DriveWindow contains a screenshot of DriveWindow connected to the ACS800
RMIO/RDCO board and channel CH3.
17
Start-up and control through the I/O interface
Chapter overview
The chapter instructs how to:
• do the start-up
• start, stop, change the direction of rotation, and adjust the speed of the motor
through the I/O interface
• perform an identification run for the drive.
How to start-up the drive
You can perform a limited start-up. The drive gives no guidance: go through the very
basic settings by following the instructions given in the manual.
• If you want to perform the limited start-up, follow the instructions given in
section How to perform the limited start-up (covers only the basic settings) on
page 18.
Note! Start the drive in the following order:
• First, select values for parameter group 99, that is, enter the motor data and
create the DTC motor model.
• Only then, give values for parameter groups 10...98, that is, adjust the application
parameters AFTER the DTC motor model is ready. Never give parameter groups
10...98 without having filled in parameter group 99 first.
Note: Once the ID run has been completed successfully, group 99 is locked to
prevent resetting the ID run results. The group can be reopened, if required, by
entering pass code 584 into parameter 16.03 PASS CODE.
Start-up and control through the I/O interface
18
How to perform the limited start-up (covers only the basic settings)
Before you start, ensure that you have the motor nameplate data at hand.
SAFETY
The start-up may only be carried out by a qualified electrician.
The safety instructions must be followed during the start-up procedure. See the
appropriate hardware manual for safety instructions.
Check the installation. See the installation checklist in the appropriate hardware/installation
manual.
Check that the starting of the motor does not cause any danger.
De-couple the driven machine if:
- there is a risk of damage in case of incorrect direction of rotation, or
- a Standard ID run needs to be performed during the drive start-up. (ID run is essential only
in applications which require the ultimate in motor control accuracy.)
POWER-UP
Apply mains power. The control panel first shows the panel
identification data …
CDP312 PANEL Vx.xx
.......
… then the Identification Display of the drive …
ACS800
ID NUMBER 1
… then the Actual Signal Display …
1 -> 0.0 rpm O
0.00 Hz
FREQ
CURRENT 0.00 A
POWER
0.00 %
1
The drive is now ready for the limited start-up.
->
0.0 rpm
O
1 -> 0.0 rpm O
0.00 Hz
FREQ
CURRENT 0.00 A
POWER
0.00 %
ENTERING START-UP DATA MANUALLY (parameter group 99)
Select the language. The general parameter setting procedure is
described below.
The general parameter setting procedure:
- Press PAR to select the Parameter Mode of the panel.
- Press the double-arrow keys (
- Press the arrow keys (
or
or
) to scroll the parameter groups.
) to scroll parameters within a group.
- Press ENTER to activate the setting of a new value.
- Use the arrow keys (
double-arrow keys (
or
or
) to change the value. For fast change use the
1
-> 0.0 rpm
99 START-UP DATA
01 LANGUAGE
ENGLISH
O
1
-> 0.0 rpm
99 START-UP DATA
01 LANGUAGE
[ENGLISH]
O
).
- Press ENTER to accept the new value (brackets disappear).
Select the Application Macro. The general parameter setting
procedure is given above.
The default value is CRANE.
Start-up and control through the I/O interface
1
-> 0.0 rpm
O
99 START-UP DATA
02 APPLICATION MACRO
[ ]
19
Select the motor control mode. The general parameter setting
procedure is given above.
DTC is suitable in most cases. The SCALAR control mode is recommended
- for multimotor drives when the number of the motors connected to the drive is
variable
1
->
0.0 rpm O
99 START-UP DATA
04 MOTOR CTRL MODE
[DTC]
- when the nominal current of the motor is less than 1/6 of the nominal current of
the inverter
- when the inverter is used for test purposes with no motor connected.
Enter the motor data from the motor nameplate:
ABB Motors
3
motor
V
690 Y
400 D
660 Y
380 D
415 D
440 D
Cat. no
M2AA 200 MLA 4
IEC 200 M/L 55
No
Ins.cl. F
IP 55
Hz
kW
r/min
A
cos
IA/IN t E/s
30
1475
32.5 0.83
50
56
50
1475
0.83
30
50
1470
34
0.83
30
30
1470
59
0.83
50
1475
50
54
0.83
30
35 1770
59
0.83
60
3GAA 202 001 - ADA
6312/C3
6210/C3
380 V
mains
voltage
Note: Set the motor data to
exactly the same value as
on the motor nameplate.
For example, if the motor
nominal speed is 1440 rpm
on the nameplate, setting
the value of parameter
99.08 MOTOR NOM
SPEED to 1500 rpm
results in the wrong
operation of the drive.
180
IEC 34-1
- motor nominal voltage
Allowed range: 1/2 · UN … 2 · UN of ACS800. (UN refers to the highest voltage in
1
-> 0.0 rpm
O
99 START-UP DATA
05 MOTOR NOM VOLTAGE
[ ]
- motor nominal current
1
-> 0.0 rpm
O
99 START-UP DATA
06 MOTOR NOM CURRENT
[ ]
each of the nominal voltage ranges: 415 V AC for 400 V AC units, 500 V AC for
500 V AC units and 690 V AC for 600 V AC units.)
Allowed range: approx. 1/6 · I2hd
99.04 = SCALAR))
… 2 · I2hd of ACS800 (0 … 2 · I2hd if parameter
- motor nominal frequency
Range: 8 … 300 Hz
1
-> 0.0 rpm
99 START-UP DATA
07 MOTOR NOM FREQ
[ ]
- motor nominal speed
Range: 1 …18000 rpm
1
-> 0.0 rpm
O
99 START-UP DATA
08 MOTOR NOM SPEED
[ ]
-motor nominal power
Range: 0 …9000 kW
1
-> 0.0 rpm
O
99 START-UP DATA
09 MOTOR NOM POWER
[ ]
O
Start-up and control through the I/O interface
20
When the motor data has been entered, two displays (warning and
information) start to alternate. Move to next step without pressing
any key.
1
-> 0.0 rpm
ACS800
** WARNING **
ID MAGN REQ
O
1 L-> 0.0 rpm
I
*** Information ***
Press green button
to start ID MAGN
Note: The POWER ON acknowledge (DI_L) must be active
(closed) before the drive is ready to continue with the next steps.
The drive is ready when “0” appears in the upper right corner of the
control panel display. For more information, see section Power ON
acknowledge and internal fault reset on page 90.
Note: The mechanical brake is controlled as default from the RMIO
board relay output RO1. For more information, see section Control
of a mechanical brake on page 112.
Select the motor identification method.
The default value ID MAGN (ID Magnetisation) is suitable for most applications. It is applied
in this basic start-up procedure. If your selection is ID Magnetisation, move to next step
without pressing any key.
The ID run (STANDARD) should be selected if:
- the operation point is near zero speed, and/or
- operation at torque range above the motor nominal torque within a wide speed range and
without any measured speed feedback is required.
Note: If STANDARD ID run is selected, the brake is opened when the Start command is
given and remains open until the STANDARD ID run is completed. If ID MAGN is selected,
the brake is kept closed during the ID run sequence.
If your selection is ID run, continue by following the separate instructions given a few pages
ahead in section How to perform the ID run on page 24.
IDENTIFICATION MAGNETISATION (with Motor ID run selection ID MAGN)
Press the LOC/REM key to change to local control (L shown on the
first row).
Press
to start the identification magnetisation. The motor is
magnetised at zero speed for 20 to 60 s. Three warnings are
displayed:
The first warning is displayed when the magnetisation starts.
The second warning is displayed while the magnetisation is on.
The third warning is displayed after the magnetisation is completed.
Start-up and control through the I/O interface
1 L -> 1242.0 rpm
** WARNING **
MOTOR STARTS
I
1 L-> 0.0 rpm
** WARNING **
ID MAGN
I
1 L-> 0.0 rpm
** WARNING **
ID DONE
O
21
DIRECTION OF ROTATION OF THE MOTOR
Check the direction of rotation of the motor.
Note:
In the crane application,
- the forward direction (positive) must be the UP direction.
- the reverse direction (negative) must be the DOWN direction.
This is important because the torque memory uses the positive
direction in starts.
1 L->[xxx] rpm
I
FREQ
xxx Hz
CURRENT
xx A
POWER
xx %
- Press ACT to get the status row visible.
- Increase the speed reference from zero to a small value by
pressing REF and then the arrow keys ( ,
,
or
).
- Press
to start the motor.
- Check that the motor is running in the desired direction.
- Stop the motor by pressing
.
To change the direction of rotation of the motor:
- Disconnect mains power from the drive, and wait 5 minutes for the
intermediate circuit capacitors to discharge. Measure the voltage
between each input terminal (U1, V1 and W1) and earth with a
multimeter to ensure that the frequency converter is discharged.
- Exchange the position of two motor cable phase conductors at the
motor terminals or at the motor connection box.
- Verify your work by applying mains power and repeating the check
as described above.
forward
direction
reverse
direction
SPEED LIMITS AND ACCELERATION/DECELERATION TIMES
Set the minimum speed. This value will be used as the speed limit
in the reverse direction.
1 L-> 0.0 rpm
20 LIMITS
01 MINIMUM SPEED
[ ]
O
Set the maximum speed. This value will be used as the speed limit
in the forward direction.
1 L->
0.0 rpm
20 LIMITS
02 MAXIMUM SPEED
[ ]
O
Set the acceleration time 1.
1 L->
0.0 rpm
22 ACCEL/DECEL
02 ACCEL TIME 1
[ ]
O
Set the acceleration time 2.
1 L->
0.0 rpm
22 ACCEL/DECEL
04 ACCEL TIME 2
[ ]
O
Start-up and control through the I/O interface
22
Set the deceleration time 1.
1 L->
0.0 rpm
22 ACCEL/DECEL
03 DECEL TIME 1
[ ]
O
Set the deceleration time 2.
Note: The default setting of acceleration and deceleration selection
is ACC/DEC DIR, where the acceleration time 1 and deceleration
time 1 are used if the motor is running in the forward direction, and
acceleration time 2 and deceleration time 2 are used if the motor is
running in the reverse direction.
1 L->
0.0 rpm
22 ACCEL/DECEL
05 DECEL TIME 2
[ ]
O
The drive is now ready for use.
Start-up and control through the I/O interface
23
How to control the drive through the I/O interface
The table below instructs how to operate the drive through the digital and analogue
inputs when:
• the motor start-up is performed, and
• the default (Crane) parameter settings are valid.
PRELIMINARY SETTINGS
Ensure the Crane macro is active.
See parameter 99.02.
The crane is normally operated in both the forward and reverse direction
and therefore the default setting of the parameter 10.03 is REQUEST.
Ensure that the control connections are wired according to the
connection diagram given for the Crane macro.
See chapter Application
macros, control location
EXT1/EXT2.
Ensure that the drive is in external control. Press the LOC/REM key to
switch between external and local control.
In External control, there is
no L visible on the first row
of the panel display.
STARTING IN FORWARD DIRECTION AND CONTROLLING THE SPEED OF THE MOTOR
Start in the forward direction by switching the digital input DI1 ON. DI2
should be OFF.
Note: The default setting for forward direction start digital input is DI1
and reverse direction start digital input is DI2.
1
->
FREQ
CURRENT
POWER
Regulate the speed by adjusting the voltage of the analogue input AI1.
1
-> 500.0 rpm I
16.66 Hz
FREQ
CURRENT
12.66 A
POWER
8.33 %
0.0 rpm I
0.00 Hz
0.00 A
0.00 %
STARTING IN REVERSE DIRECTION AND CONTROLLING THE SPEED OF THE MOTOR
Start in the reverse direction by switching the digital input DI2 ON. DI1
should be OFF.
Note: The default setting for reverse direction start digital input is DI2
and forward direction start digital input is DI1.
1
<FREQ
CURRENT
POWER
Regulate the speed by adjusting the voltage of the analogue input AI1.
1
<- 500.0 rpm I
FREQ
16.66 Hz
CURRENT
12.66 A
POWER
8.33 %
0.0 rpm I
0.00 Hz
0.00 A
0.00 %
STOPPING THE MOTOR
Switch OFF digital input DI1 if in forward condition, or DI2 if in reverse
condition.
1
-> 500.0 rpm O
FREQ
0.00 Hz
CURRENT
0.00 A
POWER
0.00 %
Start-up and control through the I/O interface
24
How to perform the ID run
The drive performs the ID Magnetisation automatically at the first start. In most
applications there is no need to perform a separate ID run. The ID run (STANDARD)
should be selected if:
• The operation point is near zero speed, and/or
• Operation at torque range above the motor nominal torque within a wide speed
range and without any measured speed feedback is required.
ID run procedure
Note: If parameter values (Group 10 … 98) are changed before the ID run, check
that the new settings meet the following conditions:
• 20.01 MINIMUM SPEED < 0 rpm
• 20.02 MAXIMUM SPEED > 80% of motor rated speed
• 20.03 MAXIMUM CURRENT > 100% · Ihd
• 20.04 TORQ MAX LIM1 > 50%
• Ensure that the panel is in the local control mode (L displayed on the status row).
Press the LOC/REM key to switch between modes.
• Change the ID run selection to STANDARD.
1 L ->1242.0 rpm
99 START-UP DATA
10 MOTOR ID RUN
[STANDARD]
O
• Press ENTER to verify the selection. The following message is displayed:
1 L ->1242.0 rpm
ACS800
**WARNING**
ID RUN SEL
O
• If brake control is active, the brake is opened when STANDARD ID run is
selected.
• To start the ID run, press the
key. The Run Enable signal must be active (see
parameter 16.01 RUN ENABLE).
Warning when the ID run is
started
1 L -> 1242.0 rpm
ACS800
**WARNING**
MOTOR STARTS
I
Warning during the ID run
1 L -> 1242.0 rpm
ACS800
**WARNING**
ID RUN
Start-up and control through the I/O interface
I
Warning after a successfully
completed ID Run
1 L -> 1242.0 rpm
ACS800
**WARNING**
ID DONE
I
25
It is recommended not to press any control panel keys during the ID run. However:
• The Motor ID run can be stopped at any time by pressing the control panel stop
key ( ).
• After the ID run is started with the start key ( ), it is possible to monitor the
actual values by first pressing the ACT key and then a double-arrow key ( ).
• After the STANDARD ID run is completed, the brake is closed.
• After the motor STANDARD ID run is successfully completed, the speed
controller parameters (Group 23 SPEED CTRL) are updated to optimized settings
for the crane applications. Parameter 23.01 GAIN is set to 15 and parameter
23.02 INTEGRATION TIME to 0.5 s. You can change these settings afterwards
manually.
Note: If parameter group 99 gets locked, the following warning message is
displayed: WRITE ACCESS DENIED. PARAMETER SETTING NOT POSSIBLE.
• Group 99 gets locked once the ID run is completed successfully. The group can
be unlocked, if required, by entering pass code 584 into parameter 16.03 PASS
CODE.
Note: Actual signal 03.03 bit 7 (IDENTIF RUN DONE) is displayed if the STANDARD
ID run is done (the motor ID run is successfully completed).
Start-up and control through the I/O interface
26
Start-up and control through the I/O interface
27
Quick start-up guide
Chapter overview
This chapter describes the quick start-up procedure while using different control
schemes and a different drive configuration.
Crane macro
This section describes the checklist for configuring the drive in different control
schemes, as well as the other various configuration settings to be done for the crane
application.
Control configuration
This section explains how the drive can be configured in different control schemes.
Checklist for controlling the drive from the keypad
• Power up the drive and wait for 10 seconds to ensure that all the boards are
powered and the application is running.
• Press the Local/Remote button on the CDP to put the drive in local mode.
• Select the Crane macro (Par. 99.02).
• Enter the motor name plate data into group 99.
• Select the direction to Request (Par. 10.03).
• Open the group 99 read-only lock using passcode 584 (Par. 16.03).
• Perform the ID run (Par. 99.10).
• After the ID run, check the direction of rotation of the motor: Forward direction
(positive) must be the UP direction.
• Select the keypad ref. selection (Par. 11.01).
• Set the speed, torque, and current limits in group 20.
Checklist for controlling the drive from digital inputs and the potentiometer
• Power up the drive and wait for a period of power on reset time delay (Par. 16.12)
to ensure that all the boards are powered and the application is running.
• Press the Local/Remote button on the CDP to put the drive in Remote mode.
• Select the Crane macro (Par. 99.02).
• Enter the motor name plate data into group 99.
• Open the group 99 read-only lock using passcode 584 (Par. 16.03).
• Perform the ID run (Par. 99.10).
Quick start-up guide
28
• After the ID run, check the direction of rotation of the motor: Forward direction
(positive) must be the UP direction.
• Select the external control location EXT1 / EXT2 (Par. 11.02). For example: EXT1
selected.
• Select the start/stop control (Par. 10.01). For example: DI1 F, DI2 R.
• Select the direction control (Par. 10.03).
• Select the drive referencing control (Par. 11.03). For example: AI1/JOYSTICK.
• Enter the minimum reference limit (Par. 11.04).
• Enter the maximum reference limit (Par. 11.05).
• Set the analog input scaling and limits (group 13).
• Set the speed, torque, and current limits in group 20.
Checklist for controlling the drive from the joystick
• Power up the drive and wait for a period of power on reset time delay (Par. 16.12)
to ensure that all the boards are powered and the application is running.
• Press the Local/Remote button on the CDP to put the drive in Remote mode.
• Select the Crane macro (Par. 99.02).
• Enter the motor name plate data into group 99.
• Open the group 99 read-only lock using passcode 584 (Par. 16.03).
• Perform the ID run (Par. 99.10).
• After the ID run, check the direction of rotation of the motor: Forward direction
(positive) must be the UP direction.
• Select the external control location EXT1 / EXT2 (Par. 11.02). For example: EXT1
selected.
• Select the start/stop control (Par. 10.01). For example: PARAM 10.04.
• Select the direction control (Par. 10.03).
• Select the ZERO POS PTR (Par. 10.16).
• Select the drive referencing control (Par. 11.03). For example: AI1/JOYSTICK for
unipolar, and AI1 BIPOLAR for a bipolar signal.
• Enter the minimum reference limit (Par. 11.04).
• Enter the maximum reference limit (Par. 11.05).
• Set the analog input scaling and limits (group 13).
• Set the joystick warning time delay (Par. 11.13).
• Set the speed, torque, and current limits in group 20.
Checklist for controlling the drive from digital inputs and motorized potentiometer
• Power up the drive and wait for a period of power on reset time delay (Par. 16.12)
to ensure that all the boards are powered and the application is running.
Quick start-up guide
29
• Press the Local/Remote button on the CDP to put the drive in Remote mode.
• Select the Crane macro (Par. 99.02).
• Enter the motor name plate data into group 99.
• Open the group 99 read-only lock using passcode 584 (Par. 16.03).
• Perform the ID run (Par. 99.10).
• After the ID run, check the direction of rotation of the motor: Forward direction
(positive) must be the UP direction.
• Select the external control location EXT1 / EXT2 (Par. 11.02). For example: EXT1
selected.
• Select the start/stop control (Par. 10.01). For example: DI1 F, DI2 R.
• Select the direction control (Par. 11.03).
• Select the drive referencing control (Par. 11.03). For example: DI3U,4D.
• Enter the minimum reference limit (Par. 11.04).
• Enter the maximum reference limit (Par. 11.05).
• Set the speed, torque, and current limits in group 20.
Checklist for controlling the drive using Step reference
• Power up the drive and wait for a period of power on reset time delay (Par. 16.12)
to ensure that all the boards are powered and the application is running.
• Press the Local/Remote button on the CDP to put the drive in Remote mode.
• Select the Crane macro (Par. 99.02).
• Enter the motor name plate data into group 99.
• Open the group 99 read-only lock using passcode 584 (Par. 16.03).
• Perform the ID run (Par. 99.10).
• After the ID run, check the direction of rotation of the motor: Forward direction
(positive) must be the UP direction.
• Select the external control location EXT1 / EXT2 (Par. 11.02). For example: EXT1
selected.
• Select the start/stop control (Par. 10.01). For example: DI1 F, DI2 R.
• Select the direction control (Par. 10.03).
• Select the step reference setting (Par. 12.01).
• Set the step reference (Par. 12.02, 12.03, 12.04, 12.05).
• Set the speed, torque, and current limits in group 20.
Checklist for controlling the drive in the fieldbus mode
• Power up the drive and wait for a period of power on reset time delay (Par. 16.12)
to ensure that all the boards are powered and the application is running.
• Press the Local/Remote button on the CDP to put the drive in Remote mode.
Quick start-up guide
30
• Select the Crane macro (Par. 99.02).
• Enter the motor name plate data into group 99.
• Open the group 99 read-only lock using passcode 584 (Par. 16.03).
• Perform the ID run (Par. 99.10).
• After the ID run, check the direction of rotation of the motor: Forward direction
(positive) must be the UP direction.
• Select the external control location EXT1 / EXT2 (Par. 11.02). For example: EXT1
selected.
• Select the start/stop control as COMM.CW (Par. 10.01).
• Select the direction control as REQUEST (Par. 10.03).
• Select the drive referencing control as COMM.REF (Par. 11.03).
• Enter the minimum reference limit (Par. 11.04).
• Enter the maximum reference limit (Par. 11.05).
• Set the speed, torque, and current limits in group 20.
• Select the communication interface (Par. 98.02).
• Select the communication profile (Par. 98.07).
• Set the communication adapter if it is used (group 51).
• Set the modbus control if modbus is used (group 52).
• Set the CH0 address if ADVANT communication is used via modulebus (Par.
70.01).
• Set the CH0 topology if ADVANT communication is used via modulebus (Par.
70.04).
See also chapter Fieldbus control for more information.
Safety Control configuration
This section explains how the safety controls like Slowdown, End limits, and Fast
stop have to be configured.
Checklist for safety control configuration
• Select the Slowdown input (Par. 10.09). There can be either parallel inputs wired
as a single input to the drive (For example: DI4 configured using selection
Par. 10.19) or separate inputs (For example: DI3 F, DI5 R).
• Setting the Slowdown reference (Par. 11.12).
• Select the fast stop input (Par. 10.10).
• Setting the fast stop deceleration time (Par. 22.10).
• Select the highend input (Par. 10.12).
• Select the lowend input (Par. 10.13).
• Set the emergency stop time (Par. 22.07).
Quick start-up guide
31
• Select the acceleration/deceleration function (Par. 22.10).
• Set the acceleration times (Par. 22.02, 22.04).
• Set the deceleration times (Par. 22.03, 22.05).
Brake control configuration
This section explains how the brake control configuration has to be done.
Checklist for the brake control configuration
• Select the brake control (Par. 42.01).
• Select the brake acknowledge function (Par. 42.02).
• Set brake open and close delays (Par. 42.03, 42.04).
• Set the brake closing speed (Par. 42.05).
• Select the brake fault function (Par. 42.06).
• Select Torque proving (Par. 76.01).
• Set the torque prove fault delay (Par. 76.02).
• Select start torque reference (Par. 42.07, 42.08).
• Set the motor slip speed (Par. 42.11).
• Set the slip fault delay (Par. 42.12).
• Set the brake long flt delay (Par. 42.13)
• Set the brake reopen delay (Par. 42.16)
• Set the brake chopper if it is used (group 27).
See section Control of a mechanical brake for more information.
Master/Follower configuration
This section explains how to configure the drive as a Master or a Follower. A
maximum of four Followers can be configured on a Master drive using the CH 2
communication link. The Master/Follower configuration has to be used with EXT2
control. If the Master/Follower configuration is used with EXT1 control, the drive acts
as a stand-alone drive.
Checklist for Master/Follower configuration
• Switch off the power from the drives to be configured as Master/Follower, and
build the optic fibre link using the communication channel 2. The link should be
made in a ring topology.
• Switch on the power for the drive.
• Select the drive as a Master or a Follower (Par. 60.01).
Set the following parameters in the Master drive.
• Select the control location as EXT2 (Par. 11.02)
• Select the drive as a Master (Par. 60.01).
Quick start-up guide
32
• Select the drive mode as speed/torque (Par. 60.02).
• Select the number of Followers attached to the drive (Par. 60.10).
• Select the mode of the Follower drives (Par. 60.11).
• Select the signal to be sent to the Follower as reference 1 (Par. 60.07). For
example: 202 for speed.
• Select the signal to be sent to the Follower as reference 2 (Par. 60.08). For
example: 213 for torque.
• Select the CH2 link topology as ring (Par. 70.05).
Set the following parameters in the Follower drive.
• Select the control location as EXT2 (Par. 11.02)
• Select the drive as a Follower (Par. 60.01).
• Select the drive mode as speed/torque (Par. 60.02). The torque mode should be
selected if the Follower is to run in the load sharing mode.
• Select the control location as EXT2(Par. 11.02).
• Select the Start/Stop control as COMM.CW if the Master command is to be used
(Par. 10.02 for EXT2).
• Select the direction control as REQUEST (Par. 10.03).
• Select the drive reference control as COMM.REF/FAST COMM. (Par. 11.06 in
EXT2). The FAST COMM selection should be used if the load sharing parameter
(Par. 60.09) is to be functional.
• Set the load sharing factor (Par. 60.09).
• Set the minimum reference limits (Par. 11.07 for EXT2).
• Set the maximum reference limits (Par. 11.08 for EXT2).
• Select the CH2 communication link topology as ring (Par. 70.05).
For hoist applications, both the Master and the Follower should have the pulse
encoder in use for speed feedback. Set the following parameters for encoder
configuration:
• Select the encoder module type (Par. 98.01).
• Set the encoder PPR (Par. 50.01).
• Select the speed measurement mode (Par. 50.02).
• Select the speed feedback selection as ENCODER (Par. 50.06).
• Configure the encoder fault (Par. 50.03).
See section Master/Follower use of several drives (Only in EXT2 Control) for more
information.
Quick start-up guide
33
Shaft synchronisation configuration
This section explains how to configure the drive as a Master or a Follower in the
Shaft synchronisation mode. A maximum of four Followers can be used in
synchronisation with a Master drive using the CH2 communication link. The Shaft
synchronisation works only when the drive is in EXT2 control.
Checklist for Master/Follower configuration in Shaft synchronisation mode
• Switch off the power for the drives to be configured as Master/Follower and build
the optic fibre link using the communication channel 2. The link should be made in
a ring topology.
• Switch on the power for the drive.
• Select the drive as a Master or a Follower (Par. 60.01).
Since Shaft synchronisation is used for actual position synchronisation, both the
Master and the Follower should have the pulse encoder is use for speed feedback.
The encoder counts are used to calculate the actual position in mm.
Set the following parameters for encoder configuration:
• Select the encoder module type (Par. 98.01).
• Set the encoder PPR (Par. 50.01).
• Select the speed measurement mode (Par. 50.02).
• Select the speed feedback selection as ENCODER (Par. 50.06).
• Configure the encoder fault (Par. 50.03).
Set the following parameters in the Master drive.
• Select Synchro control as ON (Par. 78.01).
• Select the control location as EXT2 (Par. 11.02)
• Select the drive as a Master (Par. 60.01).
• Select the drive mode as speed (Par. 60.02).
• Select the number of Followers attached to the drive (Par. 60.10).
• Select the mode of the Follower drives as speed (Par. 60.11).
• Select the signal to be sent to the Follower as reference 2 as 202 (Speed)
(Par. 60.08).
• Select the CH2 link topology as ring (Par. 70.05).
• Select Synchro control as ON (Par. 78.01).
• Select the synchro input (Par. 10.14 and Par. 10.17).
• Set the position scaling factor (Par. 78.04).
Set the following parameters in the Follower drive.
• Select the control location as EXT2 (Par. 11.02)
• Select the drive as a Follower (Par. 60.01).
• Select the drive mode as speed (Par. 60.02).
Quick start-up guide
34
• Select the start/stop control as COMM.CW, if the Master command is to be used
(Par. 10.02).
• Select the direction control as REQUEST (Par. 10.03).
• Select the drive reference control as COMM.REF(Par. 11.06).
• Set the minimum reference limits (Par. 11.07).
• Set the maximum reference limits (Par. 11.08).
• Select the CH2 link topology as ring (Par. 70.05). Select the Synchro control as
ON (Par. 78.01).
• Select the synchro input (Par. 10.14).
• Set the synchro gain (Par. 78.02).
• Set the shaft scaling factor for the scaling of speed reference received from the
Master (Par. 78.03).
• Set the position scaling factor (Par. 78.04).
• Set the maximum position correction limit in mm (Par. 78.05).
• Set the minimum position correction limit in mm (Par. 78.06).
• Set the synchronisation error limit for the Follower drive (Par. 78.09).
• Set the synchro correction scale in terms of rpm equivalent to 1 mm position error
(Par. 78.08).
• Set the synchro correction mode (Par. 78.12)
• Set the position hysteresis value (Par. 78.13)
Load speed control configuration
This section explains how the Load speed control function parameters have to be
configured. See section Load speed control for detailed explanation.
Checklist for Load speed control configuration
• Activate the Load speed control function (Par. 77.01).
• Set the motor base speed (Par. 77.20). This is the speed at which the actual
motor current is checked with the load for calculating the maximum allowed
speed.
• Set the hold ramp time period (Par. 77.03). The speed reference is on hold at the
base speed for this period. The motor current at the base speed is checked after
this time period.
• Set the current values for the forward direction (Par. 77.04, 77.06, 77.08 and
77.10). Par. 77.04 can be set with the empty hook current at the base speed
when running in the forward direction. Par. 77.10 can be set with the maximum
load current at the base speed in the forward direction. These parameters are to
be entered in the increasing order in the above sequence. For more details, see
section Load speed control.
Quick start-up guide
35
• Set the speed limit values for the forward direction (Par. 77.05, 77.07, 77.09 and
77.11). Par. 77.05 can be set with the maximum allowed speed in empty hook
condition in the forward direction. Par. 77.11 can be set with the minimum allowed
speed in maximum load condition, in the forward direction. These parameters are
to be entered in the decreasing order in the above sequence. For more details,
see section Load speed control.
• Set the current values for the reverse direction (Par. 77.12, 77.14, 77.16 and
77.18). Par. 77.12 can be set with the empty hook current at the base speed
when running in the reverse direction. Par. 77.18 can be set with the maximum
load current at the base speed, in the reverse direction. These parameters are to
be entered in the increasing order in the above sequence. For more details, see
section Load speed control.
• Set the speed limit values for the reverse direction (Par. 77.13, 77.15, 77.17 and
77.19). Par. 77.13 can be set with the maximum allowed speed in empty hook
condition in the reverse direction. Par. 77.19 can be set with the minimum allowed
speed in maximum load condition, in the reverse direction. These parameters are
to be entered in the decreasing order in the above sequence. For more details,
see section Load speed control.
Quick start-up guide
36
Quick start-up guide
37
Control panel
Chapter overview
The chapter describes how to use the control panel CDP 312R.
The same control panel is used with all ACS800 series drives, so the instructions
given apply to all ACS800 types.
Overview of the panel
The LCD type display has 4 lines of 20 characters.
The language is selected at start-up (parameter 99.01).
The control panel has four operation modes:
- Actual Signal Display Mode (ACT key)
1 L -> 1242.0 rpm I
SPEED
1500.0 rpm
CURRENT
80.00 A
TORQUE
75.00 %
- Parameter Mode (PAR key)
- Function Mode (FUNC key)
- Drive Selection Mode (DRIVE key)
The use of single arrow keys, double arrow keys and
ENTER depend on the operation mode of the panel.
ACT
PAR
FUNC
DRIVE
ENTER
7
6
3
LOC
RESET
REF
1
The drive control keys are:
No.
Use
1
Start
2
Stop
3
Activate reference setting
4
Forward direction of rotation
5
Reverse direction of rotation
6
Fault reset
7
Change between Local / Remote (external)
control
REM
I
4
0
5
2
For more information, see Panel operation mode keys
and displays on page 38 and Status row – How to read
the drive status at a glance on page 39.
Control panel
38
Panel operation mode keys and displays
The figure below shows the mode selection keys of the panel, and the basic
operations and displays in each mode.
Actual Signal Display Mode
Act. signal / Fault history
selection
ACT
Act. signal / Fault message
scrolling
ENTER
1 L ->
FREQ
CURRENT
POWER
1242.0 rpm O
45.00 Hz
80.00 A
75.00 %
Status row
Actual signal names
and values
Enter selection mode
Accept new signal
Parameter Mode
Group selection
Fast value change
PAR
Parameter selection
Slow value change
ENTER
1 L -> 1242.0 rpm O
10 START/STOP/DIR
01 EXT1 STRT/STP/DIR
DI1,2
Status row
Parameter group
Parameter
Parameter value
Enter change mode
Accept new value
Function Mode
Row selection
FUNC
Page selection
ENTER
1 L -> 1242.0 rpm O
<=<=
UPLOAD
DOWNLOAD
=>=>
CONTRAST
4
Status row
List of functions
Function start
Drive Selection Mode
DRIVE
ENTER
Control panel
Drive selection
ID number change
ACS800
Device type
Enter change mode
Accept new value
AQCR7190 xxxxxx
ID NUMBER 1
SW loading package
name and ID number
39
Status row – How to read the drive status at a glance
The top line of the LCD display shows the basic status information of the drive.
1 L -> 1242.0 rpm I
SPEED
1500.0 rpm
CURRENT
80.00 A
TORQUE
75.00 %
Drive ID number
Drive control status
L = Local control
R = Remote control
“ “ = External control
The figure below describes the status row digits.
1 L ->
1242.0 rpm I
Direction of rotation
-> = Forward
<- = Reverse
Drive reference
Drive status
I = Motor is running.
O = Motor is stopped, ready for
new start.
“ “ = ACS800 is not ready for
start (fault or any interlock open).
Control panel
40
Drive control with the panel
You can control the drive with the panel as follows:
• start, stop, and change direction of the motor
• give the motor speed reference or torque reference
• reset the fault and warning messages
• change between local and external drive control.
The panel can be used for control of the drive control always when the drive is under
local control and the status row is visible on the display.
How to start, stop and change direction
Step
Action
1.
To show the status row.
Press Key
ACT
PAR
FUNC
2.
To switch to local control.
(only if the drive is not under local control, that is, there is
no L on the first row of the display.)
LOC
REM
Display
1
->1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
1 L ->1242.0 rpm I
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
3.
To stop
1 L ->1242.0 rpm O
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
4.
To start
1 L ->1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
5.
To change the direction to reverse.
0
6.
To change the direction to forward.
Control panel
I
1 L <-1242.0 rpm I
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
1 L ->1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
41
How to set speed reference
Step
Action
1.
To show the status row.
Press Key
ACT
PAR
FUNC
2.
To switch to local control.
(Only if the drive is not under local control, that is, there is
no L on the first row of the display.)
3.
4.
To enter the Reference Setting function.
LOC
REM
REF
To change the reference.
(fast change)
To save the reference.
(The value is stored in the permanent memory; it is
restored automatically after power switch-off.)
1
->1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
1 L ->1242.0 rpm I
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
1 L ->[1242.0 rpm]I
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
1 L ->[1325.0 rpm]I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
(slow change)
5.
Display
ENTER
1 L -> 1325.0 rpm I
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
Control panel
42
Actual signal display mode
In the Actual Signal Display Mode, you can:
• have three actual signals on the display at a time
• select the actual signals to display
• view the fault history
• reset the fault history.
The panel enters the Actual Signal Display Mode when you press the ACT key, or if
you do not press any key within one minute.
How to select actual signals to the display
Step
Action
1.
To enter the Actual Signal Display Mode.
Press key
Display
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
ACT
2.
To select a row (a blinking cursor indicates the selected
row).
3.
To enter the actual signal selection function.
4.
To select an actual signal.
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
80.00 A
CURRENT
POWER
75.00 %
ENTER
1 L -> 1242.0 rpm I
1 ACTUAL SIGNALS
05 TORQUE
70.00 %
To change the actual signal group.
5.a
To accept the selection and to return to the Actual Signal
Display Mode.
5.b
To cancel the selection and keep the original selection.
ENTER
ACT
PAR
FUNC
DRIVE
The selected keypad mode is entered.
Control panel
1 L -> 1242.0 rpm I
1 ACTUAL SIGNALS
04 CURRENT
80.00 A
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
70.00 %
TORQUE
POWER
75.00 %
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
43
How to display the full name of the actual signals
Step
Action
Press key
Display
1.
To display the full name of the three actual signals.
Hold
1 L -> 1242.0 rpm I
FREQUENCY
CURRENT
POWER
ACT
2.
To return to the Actual Signal Display Mode.
Release
ACT
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
How to view and reset the fault history
Note: The fault history cannot be reset if there are active faults or warnings.
Step
Action
1.
To enter the Actual Signal Display Mode.
Press key
ACT
Display
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
2.
To enter the Fault History Display.
1 L -> 1242.0 rpm I
1 LAST FAULT
+OVERCURRENT
6451 H 21 MIN 23 S
3.
To select the previous (UP) or the next fault/warning
(DOWN).
1 L -> 1242.0 rpm I
2 LAST FAULT
+OVERVOLTAGE
1121 H 1 MIN 23 S
To clear the Fault History.
4.
To return to the Actual Signal Display Mode.
RESET
1 L -> 1242.0 rpm I
2 LAST FAULT
H
MIN
S
1 L -> 1242.0 rpm I
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
Control panel
44
How to display and reset an active fault
WARNING! If an external source for Start command is selected and it is ON, the
drive will start immediately after fault reset. If the cause of the fault has not been
removed, the drive will trip again.
Step
Action
Press Key
1.
To display an active fault.
ACT
2.
To reset the fault.
RESET
Display
1 L -> 1242.0 rpm
ACS800
** FAULT **
ACS800 TEMP
1 L -> 1242.0 rpm O
45.00 Hz
FREQ
CURRENT
80.00 A
POWER
75.00 %
About the fault history
The fault history restores information on the latest events (faults, warnings and
resets) of the drive. The table below shows how the events are stored in the fault
history.
A Fault History View
Sign
Event
Information on display
Drive detects a fault and
generates a fault message
Sequential number of the event and
LAST FAULT text.
Name of the fault and a “+” sign in front
of the name.
Name and
code
Sequential number
(1 is the most recent event)
1 L -> 1242.0 rpm I
2 LAST FAULT
+DC OVERVOLT (3210)
1121 H 1 MIN 23 S
Total power-on time.
Poweron time
User resets the fault message.
Sequential number of the event and
LAST FAULT text.
-RESET FAULT text.
Total power-on time.
Drive generates a warning
message.
Sequential number of the event and
LAST WARNING text.
Name of the warning and a “+” sign in
front of the name.
Total power-on time.
Drive deactivates the warning
message.
Sequential number of the event and
LAST WARNING text.
Name of the warning and a “-” sign in
front of the name.
Total power-on time.
Control panel
45
Parameter mode
In the Parameter Mode, you can:
• view the parameter values
• change the parameter settings.
The panel enters the Parameter Mode when you press the PAR key.
How to select a parameter and change the value
Step
Action
1.
To enter the Parameter Mode.
Press key
Display
1 L -> 1242.0 rpm O
10 START/STOP/DIR
01 EXT1 STRT/STP/DIR
DI1,2
PAR
2.
To select a group.
1 L -> 1242.0 rpm O
11 REFERENCE SELECT
01 KEYPAD REF SEL
REF1 (rpm)
3.
To select a parameter within a group.
1 L -> 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
AI1
4.
To enter the parameter setting function.
5.
To change the parameter value.
ENTER
1 L -> 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
[AI2]
- (slow change for numbers and text)
- (fast change for numbers only)
6a.
To save the new value.
6b.
To cancel the new setting and keep the original value,
press any of the mode selection keys.
1 L -> 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
[AI1]
ENTER
ACT
PAR
FUNC
DRIVE
The selected mode is entered.
1 L -> 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
AI2
1 L -> 1242.0 rpm O
11 REFERENCE SELECT
03 EXT REF1 SELECT
AI1
Control panel
46
How to adjust a source selection (pointer) parameter
Most parameters define values that are used directly in the drive control program.
Source selection (pointer) parameters are exceptions: They point to the value of
another parameter. The parameter setting procedure differs somewhat from that of
the other parameters.
Step
Action
Press Key
1.
See the table above to
PAR
- enter the Parameter Mode
- select the correct parameter group and parameter
- enter the parameter setting mode
Display
1 L ->1242.0 rpm O
84 ADAPTIVE PROGRAM
06 INPUT1
[±000.000.00]
ENTER
2.
To scroll between the inversion, group, index and bit
fields.1)
1 L ->1242.0 rpm O
84 ADAPTIVE PROGRAM
06 INPUT1
[±000.000.00]
3.
To adjust the value of a field.
1 L ->1242.0 rpm O
84 ADAPTIVE PROGRAM
06 INPUT1
[±000.018.00]
4.
To accept the value.
ENTER
1)
1 L ->1242.0 rpm O
84 ADAPTIVE PROGRAM
06 INPUT1
[±001.018.00]
Inversion field
Group field
Index field
Bit field
Inversion field inverts the selected parameter
value. Plus sign (+): no inversion, minus (-) sign:
inversion.
Bit field selects the bit number (relevant only if the
parameter value is a packed boolean word).
Index field selects the parameter index.
Group field selects the parameter group.
Note: Instead of pointing to another parameter, it is also possible to define a
constant with the source selection parameter. Proceed as follows:
- Change the inversion field to C. The appearance of the row changes. The rest of
the line is now a constant setting field.
- Give the constant value to the constant setting field.
- Press Enter to accept.
Control panel
47
Function mode
In the Function Mode, you can:
• upload the drive parameter values and motor data from the drive to the panel.
• download group 1 to 97 parameter values from the panel to the drive. 1)
• adjust the contrast of the display.
The panel enters the Function Mode when you press the FUNC key.
How to upload data from a drive to the panel
Note:
• Upload before downloading.
• Ensure the firmware of the destination drive is the same (for example, standard
firmware).
• Before removing the panel from a drive, ensure the panel is in remote operating
mode (change with the LOC/REM key).
• Stop the drive before downloading.
Before upload, repeat the following steps in each drive:
• Setup the motors.
• Activate the communication to the optional equipment. (See parameter group 98
OPTION MODULES.)
Before upload, do the following in the drive from which the copies are to be taken:
• Set the parameters in groups 10 to 97 as preferred.
• Proceed to the upload sequence (below).
Step
Action
1.
Enter the Function Mode.
Press Key
FUNC
2.
Select the upload function (a flashing cursor indicates the
selected function).
3.
Enter the upload function.
4.
Switch to external control.
(No L on the first row of the display.)
Display
1 L -> 1242.0 rpm O
UPLOAD
<=<=
DOWNLOAD
=>=>
CONTRAST
4
1 L -> 1242.0 rpm O
<=<=
UPLOAD
DOWNLOAD
=>=>
CONTRAST
4
ENTER
LOC
REM
1 L -> 1242.0 rpm O
UPLOAD
<=<=
1
-> 1242.0 rpm O
UPLOAD
<=<=
DOWNLOAD
=>=>
CONTRAST
4
1)
By default, the parameter groups 98, 99 and the results of the motor identification are not included. The restriction
prevents downloading of unfit motor data. In special cases it is, however, possible to download all. For more information,
please contact your local ABB representative.
Control panel
48
Step
Action
Press Key
5.
Disconnect the panel and reconnect it to the drive into
which the data will be downloaded.
Display
How to download data from the panel to a drive
Consider the notes in section How to upload data from a drive to the panel on page
47.
Step
Action
1.
Connect the panel containing the uploaded data to the
drive.
2.
Ensure the drive is in local control (L shown on the first row
of the display). If necessary, press the LOC/REM key to
change to local control.
3.
Press Key
LOC
REM
Enter the Function Mode.
FUNC
4.
Select the download function (a flashing cursor indicates
the selected function).
5.
Start the download.
Control panel
Display
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
1 L -> 1242.0 rpm O
<=<=
UPLOAD
DOWNLOAD
=>=>
CONTRAST
4
1 L -> 1242.0 rpm O
UPLOAD
<=<=
DOWNLOAD
=>=>
CONTRAST
4
ENTER
1 L -> 1242.0 rpm O
DOWNLOAD
=>=>
49
How to set the contrast of the display
Step
Action
1.
Enter the Function Mode.
Press Key
Display
1 L -> 1242.0 rpm O
<=<=
UPLOAD
DOWNLOAD
=>=>
CONTRAST
4
FUNC
2.
Select a function (a flashing cursor indicates the selected
function).
3.
Enter the contrast setting function.
4.
Adjust the contrast.
5.a
Accept the selected value.
5.b
Cancel the new setting and retain the original value by
pressing any of the mode selection keys.
The selected mode is entered.
1 L -> 1242.0 rpm O
UPLOAD
<=<=
DOWNLOAD
=>=>
4
CONTRAST
ENTER
1 L -> 1242.0 rpm O
CONTRAST
[4]
1 L -> 1242.0 rpm
CONTRAST
[6]
ENTER
ACT
PAR
FUNC
DRIVE
1 L -> 1242.0 rpm O
UPLOAD
<=<=
DOWNLOAD
=>=>
6
CONTRAST
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
Control panel
50
Drive selection mode
In normal use, the features available in the Drive Selection Mode are not needed;
the features are reserved for applications where several drives are connected to one
panel link. (For more information, see the Installation and Start-up Guide for the
Panel Bus Connection Interface Module, NBCI, [3AFY58919748 (English)].
In the Drive Selection Mode, you can:
• View the device type, drive SW loading package name and ID number
• Select the drive with which the panel communicates through the panel link
• Change the identification number of a drive connected to the panel link
• View the status of the drives connected on the panel link.
The panel enters the Drive Selection Mode when you press the DRIVE key.
Each on-line station must have an individual identification number (ID). By default,
the ID number of the drive is 1.
Note: The default ID number setting of the drive should not be changed unless the
drive is to be connected to the panel link with other drives on-line.
How to select a drive and change its panel link ID number
Step
Action
1.
To enter the Drive Selection Mode.
Press key
Display
ACS800
DRIVE
AQCCXXXX xxxxxx
ID NUMBER 1
2.
To select the next drive/view.
ACS800
The ID number of the station is changed by first pressing
ENTER (the brackets round the ID number appear) and
then adjusting the value with arrow buttons. The new value
is accepted with ENTER. The power of the drive must be
switched off to validate its new ID number setting.
AQCCXXXX xxxxxx
ID NUMBER 1
1o
The status display of all devices connected to the Panel
Link is shown after the last individual station. If all stations
do not fit on the display at once, press the double-arrow up
to view the rest of them.
3.
To connect to the last displayed drive and to enter another
mode, press one of the mode selection keys.
The selected mode is entered.
Control panel
Status Display Symbols:
o = Drive stopped, direction
forward
= Drive running, direction
reverse
F = Drive tripped on a fault
PAR
ACT
FUNC
1 L -> 1242.0 rpm I
FREQ
45.00 Hz
CURRENT
80.00 A
POWER
75.00 %
51
Reading and entering packed boolean values on the display
Some actual values and parameters are packed boolean, that is, each individual bit
has a defined meaning (explained at the corresponding signal or parameter). On the
control panel, packed boolean values are read and entered in hexadecimal format.
In this example, bits 1, 3 and 4 of the packed boolean value are ON:
Bit 15
Boolean
Hex
Bit 0
0000 0000 0001 1010
0
0
1
A
Control panel
52
Control panel
53
Program features
Chapter overview
The chapter describes program features. For each feature, there is a list of related
user settings, actual signals, and fault and warning messages.
Typical crane configuration
The Crane control program can be used, for example, in the following kinds of
applications:
• Hoist drives: Closed-loop motor control with an incremental encoder for:
- additional safety and performance
- anti-sway control (hook position needed)
- Master/Follower synchro control
• Trolley drives: Open-loop motor control without an incremental encoder
• Long travel drives: Open-loop motor control without an incremental encoder.
Local control vs. external control
The drive can receive Start, Stop and Direction commands and reference values
from the control panel or through digital and analogue inputs. An optional fieldbus
adapter module enables control over an open fieldbus link. A PC equipped with
DriveWindow can also control the drive. DriveWindow is mainly used to select
parameters and monitor signals. See page 333 for a screenshot of DriveWindow
connected to an ACS800 drive with the Crane control program.
Note: The crane drive is not ready for start if the drive status displayed in the upper
right corner of the control panel is not “0”.
Program features
54
Local control
External control
ACS800
Standard I/O
Control panel
Fieldbus
adapter
Slot 1
RTAC/RDIO/RAIO Slot 1 or Slot 2
module
CH3
DriveWindow
(DDCS)
RDCO
module
CH0
(DDCS)
Fieldbus adapter
Nxxx
or
Advant controller
(eg AC 80, AC 800M)
CH1
(DDCS)
AIMA-01 I/O
adapter module
RTAC/RDIO/RAIO
module
Local control
Note: When you are using (L) local control, you are responsible for the application
safety. If you are operating with a stand-alone crane and a Master/Follower, and if
the control panel is transferred from the remote mode to the local mode on the
Master or on the Follower, the application protections are not used.
When the drive is in local control, the control commands are given from the control
panel keypad. L indicates local control on the panel display.
1 L ->1242 rpm
I
The control panel always overrides the external control signal sources when used in
the local control mode.
Program features
55
External control
When the drive is in external control, the commands are given through standard I/O
terminals (digital and analogue inputs), optional I/O extension modules and/or the
fieldbus interface. In addition, it is also possible to set the control panel as the source
for the external control.
External control is indicated by a blank on the panel display or with an R in those
special cases when the panel is defined as a source for the external control.
1
->1242 rpm
I
External control through the Input/
Output terminals, or through the
fieldbus interfaces
1 R ->1242 rpm
I
External control by control panel
You can connect the control signals to two external control locations, EXT1 or EXT2.
Depending on the selection, either one is active at a time. This function operates on
a 20 ms time level.
The figure below illustrates the use of the external control locations.
10.01 EXT1 STRT/STP/DIR
11.03 EXT REF1 SELECT
EXT1
Stand-alone mode
Homing
11.02 EXT1/EXT2 SELECT
EXT2
10.02 EXT2 STRT/STP/DIR
Master/Follower
11.06 EXT REF2 SELECT
Synchro control
CH2
Program features
56
Settings
Panel key
Additional information
LOC/REM
Selection between local and external control
Parameter
11.02
Selection between EXT1 and EXT2
10.01
Start, stop, direction source for EXT1
11.03
Reference source for EXT1
10.02
Start, stop, direction source for EXT2
11.06
Reference source for EXT2
Group 98 OPTION
MODULES
Activation of the optional I/O and serial communication
Diagnostics
Actual signals
Additional information
01.11, 01.12
EXT1 reference, EXT2 reference
03.02
EXT1 / EXT2 selection bit in a packed boolean word
Stand-alone mode (EXT1)
In the stand-alone mode, a speed-controlled crane is controlled in control location
EXT1. Homing is also possible only from location EXT1. For more information, see
section Master/Follower use of several drives (Only in EXT2 Control) on page 94
and a separate Master/Follower Application Guide [3AFE64590430 (English)].
Block diagram: start, stop, direction source for EXT1
The figure below shows the parameters that select the interface for start, stop, and
direction for external control location EXT1.
DI1
DI1 / Std IO
Select
DI6
DI6 / Std IO
10.01
Fieldbus adapter slot 1
CH0 / RDCO board
Standard Modbus Link
Control panel
Fb. selection
See chapter
Fieldbus control.
COMM.
CW
KEYPAD
DI1 / Std IO = Digital input DI1 on the standard I/O terminal block
Program features
EXT1
Start/stop/
direction
57
Block diagram: reference source for EXT1
The figure below shows the parameters that select the interface for the speed
reference of external control location EXT1.
AI1 / Std IO
AI2 / Std IO
AI3 / Std IO
DI3 / Std IO
DI4 / Std IO
AI1 / AIO EXT
AI2 / AIO EXT
DI1 / DIO EXT3
DI2 / DIO EXT3
Fieldbus adapter slot 1
CH0 / RDCO board
Standard Modbus Link
Control panel
AI1, AI2, AI3, DI3, DI4
Select
AI5, AI6
DI11, DI12
11.03
EXT1
Reference
REF1 (rpm)
I/O Extensions
See parameter
group 98 OPTION
MODULES.
Fb. selection
See chapter
Fieldbus control.
COMM.
REF
KEYPAD
AI1 / Std IO = Analogue input AI1 on the standard I/O terminal block
AI1 / AIO ext = Analogue input AI1 on the analogue I/O extension module
Master/Follower and Synchro control (EXT2)
A speed-controlled Master and a speed/torque-controlled or synchro-controlled
Follower is controlled in control location EXT2. For more information, see section
Master/Follower use of several drives (Only in EXT2 Control) on page 94 and a
separate Master/Follower Application Guide [3AFE64590430 (English)].
Program features
58
Zero position of the joystick
The function supervises a 10.16 ZERO POSition PTR input in case of a stop or a
trip. The input can be used either as a NO contact or as an NC contact depending on
the configuration selected in the pointer value. The drive will check for a 1 -> 0 edge
of this input before it activates the next start. The input must be zero for the Start
command to be executed. If the drive does not accept the Start command because
there is a sequence problem in the zero position input, it generates a ZERO POS
WARN warning.
The following figure shows a connection diagram of the Zero position input for an NC
configuration.
DI1F NO
DI2R NO
Zero position NC
You can also use the Zero position input for a joystick error check when the
reference is taken from a joystick. If the Zero position input is true, and the speed
reference or torque reference is greater than +/- 10% of the minimum or maximum
scaled value of the used joystick reference, a JOYSTICK CHECK warning is
generated after a delay of 11.13 JOYSTICK WARN TD. If Start commands in both
directions are true simultaneously, then it is also detected as a joystick hardware
error.
Settings
Parameter
Additional information
10.16
Settings of the Zero position input
11.13
Settings of joystick error time delay
Diagnostics
Program features
Actual signal
Additional information
03.32
Bit 13, Zero position warning from joystick Zero position
Warning
Additional information
ZERO POS WARN
Incorrect start command or start command active with Zero position
input ON
JOYSTICK CHECK
Joystick hardware error or simultaneous start command in forward
and reverse directions
59
Reference types and processing
In addition to the conventional analogue input signal and control panel signals, the
drive can accept a variety of references.
• The drive reference can be given with two digital inputs: One digital input
increases the speed and the other decreases it.
• The drive accepts a bipolar analogue speed reference. This feature allows both
the speed and the direction to be controlled with a single analogue input. The
minimum signal is full speed reversed and the maximum signal is full speed
forward.
• The drive can form a reference from the signal received through a communication
interface.
It is possible to scale the external reference so that the minimum and maximum
values of the signal correspond to speeds other than the minimum and maximum
speed limits.
Settings
Parameter
Additional information
Group 11 REFERENCE
SELECT
External reference source, type and scaling
Group 20 LIMITS
Operating limits
Group 22 ACCEL/DECEL
Speed reference acceleration and deceleration ramps
Group 24 TORQUE CTRL
Torque reference ramp times
Diagnostics
Actual signal
Additional information
01.11, 01.12
Values of external references
Group 02 ACTUAL SIGNALS The reference values in different stages of the reference processing
chain
Parameter
Group 14 RELAY OUTPUTS
Active reference / reference loss through a relay output
Group 15 ANALOGUE
OUTPUTS
Reference value
Program features
60
Programmable analogue inputs
The drive has three programmable analogue inputs: one voltage input (0/2 to 10 V or
-10 to 10 V) and two current inputs (0/4 to 20 mA). Two extra inputs are available if
an optional analogue I/O extension module is used. Each input can be inverted and
filtered, and the maximum and minimum values can be adjusted.
The Crane control program supports unipolar and bipolar joystick configuration:
• Unipolar (AI1/JOYST), 0 ... 10 V for the reference and digital inputs for the sign
and start (for example, DIF, DI2 R)
• Bipolar (AI1 BIPOLAR), -10 ... +10 V for the sign and reference and one digital
input for main start (for example, DI1).
Update cycles in the Crane control program
Input
Cycle
AI / standard
6 ms
AI / extension
6 ms (100 ms 1))
1)
Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.
Settings
Parameter
Additional information
Group 11 REFERENCE AI as a reference source
SELECT
Group 13 ANALOGUE
INPUTS
Processing of the standard inputs
30.01
Supervision of AI loss
35.01
AI in a motor temperature measurement
42.07
AI in a mechanical brake control function
98.06
Activation of optional analogue inputs
98.13
Optional AI signal type definition (bipolar or unipolar)
98.14
Optional AI signal type definition (bipolar or unipolar)
Diagnostics
Program features
Actual signal
Additional information
01.18, 01.19, 01.20
Values of standard inputs
01.38, 01.39
Value of optional inputs
Group 09 ACTUAL
SIGNALS
Scaled analogue input values (integer values for function block
programming)
61
Programmable analogue outputs
Two programmable current outputs (0/4 to 20 mA) are available as standard, and
two outputs can be added by using an optional analogue I/O extension module.
Analogue output signals can be inverted and filtered.
The analogue output signals can be proportional to motor speed, process speed
(scaled motor speed), output frequency, output current, motor torque, motor power,
etc.
It is possible to write a value to an analogue output through a serial communication
link.
Update cycles in the Crane control program
Output
Cycle
AO / standard
24 ms
AO / extension
24 ms (1000 ms 1) )
1)
Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.
Settings
Parameter
Additional information
Group 15 ANALOGUE
OUTPUTS
AO value selection and processing (standard outputs)
30.22
Supervision of the use of optional AO
Group 35 MOT TEMP
MEAS
AO in motor temperature measurement
Group 96 EXTERNAL
AO
Optional AO value selection and processing
Group 98 OPTION
MODULES
Activation of optional I/O
Diagnostics
Actual signal
Additional information
01.22, 01.23
Values of the standard outputs
01.28, 01.29
Values of the optional outputs
Warning
IO CONFIG
Improper use of optional I/O
Program features
62
Programmable digital inputs
The drive has seven programmable digital inputs as a standard. Nine extra inputs
are available if optional digital I/O extension modules are used.
Update cycles in the Crane control program
Input
Cycle
DI / standard
6 ms
DI / extension
20 ms
Settings
Parameter
Additional information
Group 10 START/STOP/
DIR
DI as start, stop, direction
Group 11 REFERENCE
SELECT
DI in reference selection, or reference source
Group 12 STEP
REFERENCING
DI in step reference selection
Group 16 SYST CTRL
INPUTS
DI as external Run Enable, fault reset or user macro change signal
22.01
DI as acceleration and deceleration ramp selection signal
30.03
DI as external fault source
30.05
DI in motor overtemperature supervision function
30.22
Supervision of optional I/O use
42.02
DI as mechanical Brake Acknowledge signal
98.03…96.05
Activation of the optional digital I/O extension modules
Diagnostics
Actual signal
Additional information
01.17
Status of the standard digital inputs.
Example: 0000001 = DI1 is on, DI2 to DI6 and DIL are off.
01.40
Bit
6
5
4
3
2
1
0
Value
0
0
0
0
0
0
1
Input
DIL
DI6
DI5
DI4
DI3
DI2
DI1
Values of the optional digital inputs
Warning
IO CONFIG
Improper use of optional I/O
Fault
I/O COMM ERR
Program features
Communication loss to I/O
63
The Crane control program supports programmable digital inputs with a (PTR) logic
with sign.group.index.bit (+.000.000.00).
Additional information for Digital Inputs and Pointers PTR
+001.017.00 Values of standard Digital Inputs on RMIO board
DIL D16-1 STATUS
RMIO DI1 = +001.017.00
RMIO DI2 = +001.017.01
RMIO DI3 = +001.017.02
RMIO DI4 = +001.017.03
RMIO DI5 = +001.017.04
RMIO DI6 = +001.017.05
RMIO DIL = +001.017.06 (Power ON acknowledge), programmable with parameter 97.18
+001.040.00 Values of optional Digital Inputs on RDIO board
DI15-7 STATUS
RDIO DI7 = +001.040.00
RDIO DI8 = +001.040.01
RDIO DI9 = +001.040.02
RDIO DI10 = +001.040.03
RDIO DI11 = +001.040.04
RDIO DI12 = +001.040.05
RDIO DI13 = +001.040.06
RDIO DI14 = +001.040.07
RDIO DI15 = +001.040.08
Program features
64
Programmable relay outputs
As standard there are three programmable relay outputs. Six outputs can be added
by using the optional digital I/O extension modules. By means of a parameter
setting, you can choose which information to indicate through the relay output:
ready, running, fault, warning, motor stall, etc.
The standard relay output’s RO1, RO2 and RO3 are configured to the brake open,
running and inverted faults, respectively, as shown below.
Par. 14.01 RO PTR1 is configured default for brake open as +003.013.06
(Par. 03.13 bit 6)
Par. 14.02 RO PTR2 is configured default for running as +003.002.02
(Par. 03.02 bit 2)
Par. 14.03 RO PTR3 is configured default for inverted fault as -003.002.03
(Par. 03.03 bit 3)
It is possible to write a value to a relay output through a serial communication link.
Update cycles in the Crane control program
Output
Cycle
RO / standard
100 ms
RO / extension
100 ms
Settings
Parameter
Additional information
Group 14 RELAY
OUTPUTS
RO value selections and operation times
Group 42 BRAKE
CONTROL
RO in a mechanical brake control
Group 98 OPTION
MODULES
Activation of optional relay outputs
Diagnostics
Program features
Actual signal
Additional information
01.21
Standard relay output states
01.41
Optional relays output states
65
Actual signals
Several actual signals are available:
• Drive output frequency, current, voltage and power
• Motor speed and torque
• Mains voltage and intermediate circuit DC voltage
• Active control location (Local, EXT1 or EXT2)
• Reference values
• Drive temperature
• Operating time counter (h), kWh counter
• Digital I/O and Analogue I/O status
Three signals can be shown simultaneously on the control panel display. It is also
possible to read the values through the serial communication link or through the
analogue outputs.
Settings
Parameter
Additional information
Group 15 ANALOGUE
OUTPUTS
Selection of an actual signal to an analogue output
Group 92 D SET TR
ADDR
Selection of an actual signal to a data set (serial communication)
Diagnostics
Actual signal
Additional information
Group 01 ACTUAL
SIGNALS … 09
ACTUAL SIGNALS
Lists of actual signals
Program features
66
Motor identification
The performance of Direct torque control is based on an accurate motor model
determined during the motor start-up.
A motor identification magnetisation is automatically done the first time the start
command is given. During this first start-up, the motor is magnetised at zero speed
for several seconds to allow the motor model to be created. This identification
method is suitable for most applications.
In demanding applications a separate identification run can be performed.
Settings
Parameter 99.10 MOTOR ID RUN MODE
• ID MAGN: Identification with the motor at a standstill and the mechanical brake
closed.
• STANDARD: Identification with a rotating motor and the mechanical brake open.
Diagnostics
Actual signal 03.03.
• Bit 6: First start not done.
• Bit 7: STANDARD ID run done.
Start function: Constant DC magnetising
When DC magnetising is activated, the drive automatically magnetises the motor
before starting. This feature guarantees the highest possible breakaway torque, up
to 200% of motor nominal torque. In crane applications, this parameter is fixed to
constant DC magnetising (CNST DC MAGN).
Settings
Parameters 21.01 and 21.02.
DC hold
By activating the motor DC hold feature, you can lock the
rotor at zero speed. When both the reference and the
motor speed fall below the preset DC hold speed, the
drive stops the motor and starts to inject DC into the
motor. When the reference speed again exceeds the DC
hold speed, the normal drive operation resumes.
Motor
Speed
DC hold
speed
DC hold
t
Speed
Reference
Settings
Parameters 21.04, 21.05, and 21.06.
Program features
DC hold
speed
t
67
Flux braking
The drive can provide greater deceleration by raising the level of magnetisation in
the motor. By increasing the motor flux, the energy generated by the motor during
braking can be converted to motor thermal energy. This feature is useful in motor
power ranges below 15 kW.
TBr
TN (%)
Motor
Speed
TBr = Braking Torque
TN = 100 Nm
60
No Flux braking
40
Flux braking
20
Flux braking
No Flux braking
t (s)
f (Hz)
50 HZ / 60 Hz
Braking Torque (%)
120
No Flux braking
1
80
Rated Motor Power
1
2
3
4
5
2.2 kW
15 kW
37 kW
75 kW
250 kW
40
2
0
3
5
4
5
10
20
30
40
f (Hz)
50
40
f (Hz)
50
120
1
80
2
40
0
Flux braking
3
4
5
5
10
20
30
The drive monitors the motor status continuously, also during the Flux braking.
Therefore, Flux braking can be used both for stopping the motor and for changing
the speed. The other benefits of Flux braking are:
• The braking starts immediately after a stop command is given. The function does
not need to wait for the flux reduction before it can start the braking.
• The cooling of the motor is efficient. The stator current of the motor increases
during the Flux braking, not the rotor current. The stator cools much more
efficiently than the rotor.
Settings
Parameter 26.02.
Program features
68
Flux optimisation
Flux optimisation reduces the total energy consumption and motor noise level when
the drive operates below the nominal load. The total efficiency (motor and the drive)
can be improved by 1% to 10%, depending on the load torque and speed.
Settings
Parameter 26.01.
FS method
The Flux stabilization method improves the behaviour of open-loop trolley drives and
long travel drives without speed feedback especially when the drive operates around
the zero speed with high load. The method is active on frequencies below 10% of
nominal frequency and when the torque exceeds 30%.
Settings
Parameter 26.07.
Program features
69
Acceleration and deceleration ramps
Two user-selectable acceleration and deceleration ramps are available. It is possible
to adjust the acceleration/deceleration times and the ramp shape. Switching
between the two ramps can be controlled via a digital input.
The available ramp shape alternatives are Linear
and S-curve.
Motor speed
Linear: Suitable for drives requiring steady or slow
acceleration/deceleration.
Linear
S-curve
S-curve: Ideal for conveyors carrying fragile loads,
or other applications where a smooth transition is
required when changing the speed.
2 t (s)
The default setting for Par. 22.01 ACCEL/DECEL acceleration/deceleration selection
is ACC/DEC DIR for crane control. In this selection, acceleration time 1 and
deceleration time 1 is used when the motor is running in the forward direction, while
acceleration time 2 and deceleration time 2 is used when the motor is running in the
reverse direction. The following figure shows how the acceleration and deceleration
times are used according to the direction of the motor.
Max speed
a1 = Acceleration time1
Par. 22.02
Motor speed
Motor running d1 = Deceleration time1
in fwd direction
Par. 22.03
a1
a2 = Acceleration time2
Par. 22.04
d1
0
a2
d2
t (s)
d2 = Deceleration time2
Par. 22.05
Motor running
in rev direction
Min speed
Settings
Parameter group 22 ACCEL/DECEL.
Program features
70
Step referencing
It is possible to predefine four step references. The step references are selected with
digital inputs. Step reference activation overrides the external speed reference.
This function operates on a 6 ms time level.
The four step references are based on a combination of three digital inputs, for
example, DI3, DI4 and DI5.
DI3
DI4
DI5
Operation
0
0
0
STEP REF 1
1
0
0
STEP REF 2
1
1
0
STEP REF 3
1
1
1
STEP REF 4
If you need any other combination than three digital inputs, you can use the following
parameters for defining the combination. For example, if you need two-step
references with one digital input, you can set:
• Parameter 12.01 STEP REF SEL to STEP POINTER (Speed defined by pointer
selections)
• Parameter 12.02 to, for example, 500 rpm
• Parameter 12.03 to, for example, 1000 rpm
• Parameter 12.06 to, for example, +.001.017.04 (= DI5)
After this:
• If DI5 = 0, step reference 500 rpm is valid by par. 12.02.
• If DI5 = 1, step reference 1000 rpm is valid by par. 12.03.
Settings
Parameter group 12 STEP REFERENCING.
Program features
71
Speed controller tuning
During the motor identification, the speed controller is automatically tuned. It is,
however, possible to manually adjust the controller gain, integration time and
derivation time, or let the drive perform a separate speed controller Autotune Run. In
Autotune Run, the speed controller is tuned based on the load and inertia of the
motor and the machine. The following figure shows speed responses at a speed
reference step (typically, 1 to 20%).
n
nN
%
A
B
D
C
A: Undercompensated
B: Normally tuned (autotuning)
C: Normally tuned (manually). Better dynamic performance than with B
D: Overcompensated speed controller
t
The following figure is a simplified block diagram of the speed controller. The
controller output is the reference for the torque controller.
Derivative
acceleration
compensation
Speed
reference
+
-
Error
value
Proportional,
integral
+
+ Torque
+ reference
Derivative
Calculated actual speed
Settings
Parameter group 23 SPEED CTRL and 20 LIMITS.
Diagnostics
Actual signal 01.02.
Program features
72
Speed control performance figures
The table below shows typical performance figures for speed control when Direct
torque control is used.
T (%)
TN
Speed control
No pulse
encoder
With pulse
encoder
Static speed error, + 0.1 to 0.5%
% of nN
(10% of nominal
slip)
+ 0.01%
Dynamic speed
error
0.1%s*
0.4%s*
*Dynamic speed error depends on speed controller tuning.
Tload
100
t (s)
0.1 - 0.4%s
nact-nref
nN
TN = rated motor torque
nN = rated motor speed
nact = actual speed
nref = speed reference
Torque control performance figures
The drive can perform precise torque control without any speed feedback from the
motor shaft. The table below shows typical performance figures for torque control
when Direct torque control is used.
Torque control
No pulse
encoder
With pulse
encoder
Linearity error
+ 4%*
+ 3%
Repeatability
error
+ 3%*
+ 1%
Torque rise time
1 to 5 ms
1 to 5 ms
T (%)
TN
100
90
Tref
Tact
*When operated around zero frequency, the error may be
greater.
10
< 5 ms
TN = rated motor torque
Tref = torque reference
Tact = actual torque
Program features
t(s)
73
Scalar control
It is possible to select Scalar control as the motor control method instead of Direct
torque control (DTC). In the Scalar control mode, the drive is controlled with a
frequency reference. The outstanding performance of the default motor control
method, Direct torque control, is not achieved in Scalar control.
It is recommended to activate the Scalar control mode in the following special
applications:
• In multimotor drives: 1) if the load is not equally shared between the motors, 2) if
the motors are of different sizes, or 3) if the motors are going to be changed after
the motor identification
• If the nominal current of the motor is less than 1/6 of the nominal output current of
the drive
• If the drive is used without a motor connected (for example, for test purposes)
• The drive runs a medium voltage motor via a step-up transformer.
In the Scalar control mode, some standard features are not available.
Settings
Parameter 99.04.
IR compensation for a scalar-controlled drive
Motor Voltage
IR compensation is active only when the motor
control mode is Scalar (see section Scalar control
IR compensation
on page 73. When IR compensation is activated,
the drive gives an extra voltage boost to the
motor at low speeds. IR compensation is useful in
applications that require high breakaway torque.
No compensation
In Direct torque control, no IR compensation is
possible/needed.
f (Hz)
Settings
Parameter 26.03.
Program features
74
Hexagonal motor flux
Typically, the drive controls the motor flux in such a way that the rotating flux vector
follows a circular pattern. This is ideal in most applications. When operated above
the field weakening point (FWP, typically 50 or 60 Hz), it is, however, not possible to
reach 100% of the output voltage. The peak load capacity of the drive is lower than
with the full voltage.
If hexagonal flux control is selected, the motor flux is controlled along a circular
pattern below the field weakening point, and along a hexagonal pattern in the field
weakening range. The applied pattern is changed gradually as the frequency
increases from 100% to 120% of the FWP. Using the hexagonal flux pattern, the
maximum output voltage can be reached; The peak load capacity is higher than with
the circular flux pattern but the continuous load capacity is lower in the frequency
range of FWP to 1.6 · FWP, due to increased losses.
Settings
Parameter 26.05.
Programmable protection functions
AI<Min
AI<Min function defines the drive operation if an analogue input signal falls below the
preset minimum limit.
Settings
Parameter 30.01.
Panel loss
Panel loss function defines the operation of the drive if the control panel selected as
control location for the drive stops communicating.
Settings
Parameter 30.02.
External fault
External faults can be supervised by defining one digital input as a source for an
External fault indication signal.
Settings
Parameter 30.03.
Program features
75
Motor thermal protection
The motor can be protected against overheating by activating the Motor thermal
protection function and by selecting one of the Motor thermal protection modes
available.
The Motor thermal protection modes are based either on a motor temperature
thermal model or on an overtemperature indication from a motor thermistor.
Motor temperature thermal model
The drive calculates the temperature of the motor on the basis of the following
assumptions:
1) The motor is at the estimated temperature (value of 01.37 MOTOR TEMP EST
saved at power switch off) when power is applied to the drive. When power is
applied for the first time, the motor is at the ambient temperature (30 °C).
2) Motor temperature is calculated using either the user-adjustable or automatically
calculated motor thermal time and motor load curve (see the figures below). The
load curve should be adjusted in case the ambient temperature exceeds 30 °C.
Motor
Load
100%
Motor
Current 150
(%)
100
Break point
Motor load curve
50
Temp.
Rise
t
Zero speed load
Speed
100%
63%
Motor thermal time
t
Use of the motor thermistor
It is possible to detect motor overtemperature by connecting a motor thermistor
(PTC) between the +24 V DC voltage supply offered by the drive and digital input
DI6. In normal motor operation temperature, the thermistor resistance should be less
than 1.5 kohm (current 5 mA). The drive stops the motor and gives a fault indication
if the thermistor resistance exceeds 4 kohm. The installation must meet the
regulations for protecting against contact.
Settings
Parameters 30.04 to 30.09.
Note: It is also possible to use the motor temperature measurement function. See
sections Motor temperature measurement through the standard I/O interface on
page 81 and Motor temperature measurement through an analogue I/O extension on
page 83.
Program features
76
Stall protection
The drive protects the motor in a stall situation. It is possible to adjust the supervision
limits (torque, frequency, time) and choose how the drive reacts to a motor stall
condition (warning indication / fault indication & stop the drive / no reaction).
The torque and current limits, which define the stall limit, must be set according to
the maximum load of the used application.
Note: Stall limit is restricted by internal current limit TORQ_INV_CUR_LIM (03.04
LIMIT WORD 1 bit 4).
When the application reaches the stall limit and the output frequency of the drive is
below the stall frequency: Fault is activated after the stall time delay.
Settings
Parameters 30.10 to 30.12.
Parameters 20.03, 20.13 and 20.14 (Define the stall limit.)
Underload protection
Loss of motor load may indicate a process malfunction. The drive provides an
underload function to protect the machinery and process in such a serious fault
condition. Supervision limits - underload curve and underload time - can be chosen
as well as the action that the drive takes upon the underload condition (warning
indication / fault indication & stop the drive / no reaction).
Settings
Parameters 30.13 to 30.15.
Motor phase loss
The Phase Loss function monitors the status of the motor cable connection. The
function is useful especially during the motor start: the drive detects if any of the
motor phases is not connected and refuses to start. The Phase loss function also
supervises the motor connection status during normal operation.
Settings
Parameter 30.16.
Program features
77
Earth fault protection
The Earth fault protection detects earth faults in the motor or motor cable. The
protection is based on sum current measurement.
• An earth fault in the mains does not activate the protection.
• In an earthed (grounded) supply, the protection activates in 200 microseconds.
• In floating mains, the mains capacitance should be 1 microfarad or more.
• The capacitive currents due to screened copper motor cables up to 300 metres
do not activate the protection.
• Earth fault protection is deactivated when the drive is stopped.
Note: With parallel connected inverter modules, the earth fault indication is
CUR UNBAL xx. See chapter Fault tracing.
Settings
Parameter 30.17.
Communication fault
The Communication fault function supervises the communication between the drive
and an external control device (for example, a fieldbus adapter module).
Settings
Parameters 30.18 to 30.21.
Supervision of optional inputs/outputs
The function supervises the use of the optional analogue and digital inputs and
outputs in the application program, and warns if the communication to the input/
output is not operational.
Settings
Parameter 30.22.
Program features
78
Preprogrammed faults
Overcurrent
The Overcurrent trip limit is 3.5 * Ihd (nominal motor current for heavy duty use).
There are several sources of the overcurrent trip:
• Software trip (time level 100 ms, level = 97% of measurement scale)
• Hardware level trip (97% of measurement scale for 35 ms)
• Hardware derivative trip (12.5% of measurement scale for 75 ms)
• Hardware level trip in parallel connected units by PBU logic (94% of
measurement scale for 75 ms)
A fault “OVERCURRENT” is given during overcurrent condition.The current
measurement is calibrated automatically during the start procedure.
DC overvoltage
The DC overvoltage trip limit is 1.3 * 1.35 * U1max, where U1max is the maximum
value of the mains voltage range. For 400 V units, U1max is 415 V. For 500 V units,
U1max is 500 V. For 690 V units, U1max is 690 V.
The actual voltage in the intermediate circuit corresponding to the mains voltage trip
level is 728 V DC for 400 V units, 877 V DC for 500 V units, and 1210 V DC for 690 V
units. See the following Figure: DC voltage control and trip limits.
DC undervoltage
The DC undervoltage trip limit is 0.6 *1.35 * U1min, where U1min is the minimum
value of the mains voltage range. For 400 V and 500 V units, U1min is 380 V. For 690
V units, U1min is 525 V.
The actual voltage in the intermediate circuit corresponding to the mains voltage trip
level is 307 V DC for 400 V and 500 V units, and 425 V DC for 690 V units. See the
following Figure: DC voltage control and trip limits.
Program features
79
Figure: DC voltage control and trip limits.
HIGH VOLTAGE TRIP LIMIT: 130%
HIGH VOLTAGE CONTROL LIMIT: 124%
BRAKE CHOPPER LIMIT: 120%
LOW VOLTAGE CONTROL LIMIT: 82%
CHARGING LIMIT: 79%
LOW VOLTAGE TRIPPING LIMIT: 60%
According to the above figure, for a 400 V drive unit the voltage level at the
intermediate circuit in the overload area should be 560 V DC corresponding to U1max
(415 V), while in the underload area it should be 513 V DC corresponding to U1min
(380 V).
• DC overvoltage trip limit will be 1.3 * 560 = 728 V DC
• DC undervoltage trip limit will be 0.6 * 513 = 307 V DC
• High voltage control limit will be 1.24 * 560 = 695 V DC
• Low voltage control limit will be 0.82 * 560 = 459 V DC
• Brake chopper limit will be 1.2 * 560 = 672 V DC
• Charging limit will be 0.79 * 560 = 442 V DC
Drive temperature
The drive supervises the inverter module temperature. There are two supervision
limits: warning limit and fault trip limit. If the inverter module temperature exceeds
115 oC, the warning is generated, and if the temperature exceeds 125 oC, the fault is
generated. Signal 01.10 can be used for monitoring the temperature.
Short circuit
There are separate protection circuits for supervising the motor cable and the
inverter short circuits. If a short circuit occurs, the drive will not start and a fault
indication is given.
Program features
80
Input phase loss
Input phase loss protection circuits supervise the mains cable connection status by
detecting intermediate circuit ripple. If a phase is lost, the ripple increases. The drive
is stopped and a fault indication is given if the ripple exceeds 13%.
Control board temperature
The drive supervises the control board temperature. A fault indication CTRL B TEMP
is given, if the temperature exceeds 88 °C.
Overfrequency
If the drive output frequency exceeds the preset level, the drive is stopped and a
fault indication is given. The preset level is 50 Hz over the operating range absolute
maximum speed limit (the Direct torque control mode active) or frequency limit
(Scalar control active).
Internal fault
If the drive detects an internal fault, the drive is stopped and a fault indication is
given.
Operation limits
ACS800 has adjustable limits for speed, current (maximum), torque (maximum) and
DC voltage.
Settings
Parameter group 20 LIMITS.
Power limit
Power limitation is used to protect the input bridge and the DC intermediate circuit.
If the maximum allowed power is exceeded, the drive torque is automatically limited.
Maximum overload and continuous power limits depend on the drive hardware.
For specific values, refer to the appropriate hardware manual.
Automatic resets
Automatic reset can created with the help of Adaptive Programming (AP), and
connected to parameter 16.11 FAULT RESET PTR.
For more information, see Adaptive Programming using the function blocks on page
110.
Program features
81
Parameter lock
You can prevent parameter adjustment by activating the parameter lock.
Settings
Parameters 16.02 and 16.03.
Motor temperature measurement through the standard I/O interface
This section describes the temperature measurement of one motor when the RMIO
drive control board is used as the connection interface.
WARNING! According to IEC 664, the connection of the motor temperature sensor
to the RMIO board requires double or reinforced insulation between motor live parts
and the sensor. Reinforced insulation entails a clearance and creepage distance of
8 mm (400 / 500 V AC equipment). If the assembly does not fulfil the requirement:
• The RMIO board terminals must be protected against contact and they may not
be connected to other equipment.
Or
• The temperature sensor must be isolated from the RMIO board terminals.
RMIO board
One sensor
Motor
AI1+
AI1-
T
AO1+
AO110 nF
(> 630 V AC)
Three sensors
The capacitor voltage
rating must be 630 V AC
at least.
RMIO board
AI1+
Motor
T
T
AI1T
AO1+
AO1-
10 nF
(> 630 V AC)
See also section Motor thermal protection on page 75.
Program features
82
Settings
Parameter
Additional information
15.01
Analogue output in a motor 1 temperature measurement. Set to M1 TEMP
MEAS.
35.01…35.03
Settings of motor 1 temperature measurement
Other
Parameters 13.01 to 13.05 (AI1 processing) and 15.02 to 15.05 (AO1 processing) are not effective.
At the motor end, the cable shield should be earthed through a 10 nF capacitor. If this is not possible,
the shield is to be left unconnected.
Diagnostics
Actual signal
Additional information
01.35
Temperature value
Warnings
MOTOR 1 TEMP
Measured motor temperature has exceeded the set alarm limit.
T MEAS ALM
Motor temperature measurement is out of acceptable range.
Faults
MOTOR 1 TEMP
Program features
Measured motor temperature has exceeded the set fault limit.
83
Motor temperature measurement through an analogue I/O extension
This section describes the motor temperature measurement of one motor when an
optional analogue I/O extension module RAIO is used as the connection interface.
WARNING! According to IEC 664, the connection of the motor temperature sensor
to the RAIO module requires double or reinforced insulation between motor live
parts and the sensor. Reinforced insulation entails a clearance and creepage
distance of 8 mm (400 / 500 V AC equipment). If the assembly does not fulfil the
requirement:
• The RAIO module terminals must be protected against contact and they may not
be connected to other equipment.
Or
• The temperature sensor must be isolated from the RAIO module terminals.
RAIO module
One sensor
Motor
AI1+
AI1-
T
AO1+
10 nF
(> 630 V AC)
AO1-
SHLD
Three sensors
RAIO module
AI1+
Motor
T
T
The capacitor voltage
rating must be 630 V AC
at least.
AI1T
10 nF
(> 630 V AC)
AO1+
AO1-
SHLD
See also section Motor thermal protection on page 75.
Program features
84
Settings
Parameter
Additional information
35.01 … 35.03
Settings of motor 1 temperature measurement
98.12
Activation of optional analogue I/O for motor temperature measurement
Other
Parameters 13.16 to 13.20 (AI1 processing) and 96.01 to 96.05 (AO1 signal selection and processing)
are not effective.
At the motor end, the cable shield should be earthed through a 10 nF capacitor. If this is not possible,
the shield is to be left unconnected.
Diagnostics
Actual signal
Additional information
01.35
Temperature value
Warnings
MOTOR 1 TEMP
Measured motor temperature has exceeded the set alarm limit
T MEAS ALM
Motor temperature measurement is out of acceptable range
Faults
MOTOR 1 TEMP
Program features
Measured motor temperature has exceeded the set fault limit
85
External speed limitation
The External speed limitation function limits the speed reference to a predefined
value when an external speed limit signal is activated. You can define the speed
limits in parameters 20.22 MAX EXT LIM SPD and 20.23 MIN EXT LIM SPD, while
the external speed limit signal has to be configured in parameter 10.20 EXT SPD
LIM PTR. The speed limit signal is a pointer parameter, and hence, it can be
configured to a DI, PLC DI using fieldbus communication or to any other signal bits.
When the speed limit signal is activated, the drive speed reference is limited to 20.22
MAX EXT LIM SPD if the motor is running in the forward direction or to 20.23 MIN
EXT LIM SPD if the motor is running in the reverse direction. The limitation status
can be monitored using bits 03.14 AUXILIARY STATUS WORD 4 bit 10 for
maximum external speed limit and 03.14 AUXILIARY STATUS WORD 4 bit 11 for
minimum external speed limit.
EXT SPD LIM PTR
10.20
SPEED
LIMITER
SPEED
IN
REF IN
0
IN
EXT1/EXT2
SPEED REF
11.04
EXT 1 MIN
11.05
EXT 1 MAX
11.07
EXT 2 MIN
11.08
SPEED
LIMITER
EXT 2 MAX
0
EXT SPEED
LIMIT REF
20.22
MAX EXT
LIM SPD
20.23
MIN EXT
LIM SPD
Settings
Parameter
Additional information
10.20
Configuring the external speed limit signal
20.22
Configuring the maximum external speed limit
20.23
Configuring the minimum external speed limit
Diagnostics
Actual signal
Additional information
03.14 bit 10
Maximum speed limited with activation of external speed signal
03.14 bit 11
Minimum speed limited with activation of external speed signal
Program features
86
Speed monitor (internal overspeed protection)
The Speed monitor function is an internal overspeed protection function. It
supervises the speed of the motor and trips the drive at motor overspeed. The
function defines the motor overspeed level in percentage of the minimum (Par.
20.01) or maximum speed (Par. 20.02), as well as maximum external speed (Par.
20.22) and minimum external speed (Par. 20.23). The default value is 110%.
If the motor speed exceeds the limit defined with a parameter, the drive trips to a
fault, the converter is switched off and the mechanical brake is controlled on.
(rpm)
74.01 overspeed level
110%
20.02 maximum speed
100%
actual speed
(s)
Settings
Parameter
Additional information
74.01
Settings of motor overspeed level
Diagnostics
Actual signal
Additional information
03.33 bit 0
Motor over speed fault bit
Faults
MOTOROVER SPD
Program features
Fault when the speed exceeds the allowed limit
87
Speed matching (internal overload protection)
The Speed matching function is an internal overload protection function. It
supervises the motor torque. The function checks that the motor follows the speed
reference during acceleration and deceleration, and does not have an excessive
speed error during acceleration, deceleration and when running at the constant
speed.
There are two different parameters that can be used to define the speed matching
deviation, one during acceleration/deceleration and the other during steady state.
Parameter 75.02 SPD DEV LEV is used to check the deviation when the motor is
running in the steady state or when the motor is not accelerating or decelerating.
This is defined in terms of percentage of Par. 20.02 MAXIMUM SPEED.
Parameter 75.04 SPD CHG PER SEC, the rate of the actual speed change in % per
second in terms of percentage of Par. 20.02 MAXIMUM SPEED, can be set so that
the difference between the rate of change of the motor speed and the rate of change
of the ramped speed reference is within this value during acceleration or
deceleration. If the difference between the rate of change of the motor speed and the
rate of change of the ramped speed reference is greater than the setting of Par.
75.04 for a period of Par. 75.03 SPD MATCH FLT TD, the drive trips on SPD MATCH
FLT.
Example: Acceleration/deceleration ramp times are set to, for example, 3 seconds.
The maximum speed is 1500 rpm. Therefore, the drive speed reference should ramp
at 500 rpm/s or 33%/s. With SPD CHG PER SEC set to 2% / s (30 rpm/s), the drive
does not trip on SPD MATCH FLT during acceleration/deceleration as long as the
rate of change of the motor speed is within (31% to 35%). In the steady state, if the
SPD DEV LEV is set to 10%, the drive will trip when the difference between the
major speed and the ramped speed reference is greater than 150 rpm (10% of 1500
is 150 rpm). See the following figure. If the speed deviation is outside the window as
shown in the figure, the drive will wait for the Par. 75.03 SPD MATCH FLT TD period
and then trip on the SPD MATCH FLT fault.
(rpm)
1650rpm
1500rpm
500rpm
1000rpm
1350rpm
500rpm
500rpm
500rpm
1s
2s
3s
(s)
The speed change must be within 31% (= 470 rpm/s) and 35% (= 530 rpm/s).
Program features
88
Settings
Parameter
Additional information
75.01
Activation of the function
75.02
Speed deviation limit
75.03
Delay for the fault trip
75.04
Speed change per second
Diagnostics
Actual signal
Additional information
03.33 bit 1
Speed match fault bit
Faults
SPD MATCH FLT
Excessive speed error when running at set point or rate of change of actual
speed is low
Torque proving (Crane system check)
Torque proving (Crane system check) consists of electrical and mechanical tests.
Both functions are tested at the same time, and if the electrical test is accepted, the
mechanical test is not continued. You can enable both functions with parameter
76.01 TORQ PROV SEL:
• electrical test with Torque proving (parameters 76.01 and 76.02 TORQ PROV
FLT TD) to make sure that electrical components are healthy.
• mechanical test with brake slip (parameters 76.01, 42.11 MOTOR SLIP SPD and
42.12 SLIP FAULT DELAY) to make sure that the motor brake is not slipping.
Torque proving ensures that the drive is able to produce torque before it releases the
brake and starts the crane operation. The function is mainly intended for hoist drives,
but it can also be used with drives that control other crane motions if they have the
encoder feedback in use.
Torque proving gives a positive torque reference when the mechanical brake is still
on. If the Torque proving is successful, in other words, the actual torque of the drive
reaches the reference level, the drive allows the brake to open and initiates the next
step in the starting sequence.
The time to execute the torque proving sequence is so short (executed in 20 ms
cycle time) that the operator does not experience any time delay in the starting
sequence. The maximum allowed time for the torque to be proved is set in
parameter 76.02 TORQ PROV FLT TD. The drive waits for a time period of 76.02 for
the torque to be proved. An unsuccessful torque proving will trip the drive on TORQ
PROVE FLT.
The function operates as follows (see the block diagram below):
• Parameter 76.01 TORQ PROV SEL (= TRUE) activates the function.
• The output signal TORQ PROV OK is “0” until the Torque proving is performed.
Program features
89
• The torque proving sequence can start when the input signal RUNNING (B3 of
actual signal 03.02) is ”1”, in other words, when the converter is in operation. After
a successful sequence, the output signal TORQ PROV OK changes to “1”.
• If the function detects a fault during the sequence, it keeps the signal TORQ
PROV OK in value “0”, changes the signal TORQ PROVE FLT to “1” and trips the
drive.
• Torque proving reference is fixed to 30% of the motor torque (signal TORQ PROV
REF below).
• The torque proving reference is changed from 30 % to 10 % if the High-end limit
(parameter 10.12 HIGHEND PTR) is true and the drive receives a new start
signal given by the operator.
• The actual torque is read from the signal MOT TORQ (signal 01.05).
<TORQ PROV SEL>
MOTOR TORQUE (1.05)
_ 1
>
S
R
<TORQ PROV SEL>
<TORQ PROV FLT TD>
Running
I
Torq prov OK
&
Torq prov flt
O
Torq prov ref
<TORQ PROV REF>
Settings
Parameter
Additional information
76.01 ... 76.02
Activates the monitoring
76.02
Fault delay time
Other
Parameters 42.01 should be active.
Diagnostics
Actual signal
Additional information
03.33 bit 2
Torque prove fault bit
Faults
TORQ PROVE FLT
Torque proving not successful
Program features
90
Power ON acknowledge and internal fault reset
The Power ON Ack signal (usually from the main contactor auxiliary contact) is, by
default, programmed to the DIL input on the RMIO board. For more information, see
section Programmable digital inputs on page 62 and Additional information for Digital
Inputs and Pointers PTR on page 63.
If the Power ON Ack signal is not connected, the drive is not ready for start.
After the Power ON Ack signal is closed (digital input DIL is TRUE = 1), the drive
generates one internal fault reset after the time defined with parameter 16.12
POWER ON RESET TD.
Power ON acknowledge
Internal fault reset
16.12
The wiring diagram for the Power ON acknowledge signal is shown below.
Settings
Parameters 16.12, 97.18.
Program features
91
Actual position configuration based on a motor encoder signal
Position
The Position function calculates the actual position of the hook. The Shaft synchro
function uses the hook position when synchronising the Master and Follower drives.
In addition, the position is used in anti-sway controlled trolley drives and long travel
drives. The position is based on the encoder on the motor shaft. To enable the
position calculation, you must define the factor that scales the encoder pulse to
actual position units. See the following example.
The actual position value 02.21 POS ACT PPU is saved in the memory after the
power is switched off/on in the RMIO board.
Example
If the hoist drive operates at 40 000 mm/min corresponding to the motor speed of
1500 rpm, and the encoder parameter 50.01 PULSE NR ppr is set to 2048,
parameter 78.04 POS SCALE value equals to ((1500*2048) / 40 000) = 76.8 pulses/
mm. The POS SCALE in pulses/mm can be calculated by multiplying the motor
speed with the PPR and then dividing with the corresponding linear speed. The
linear speed can be calculated using the equation shown in section Calculating the
linear rope speed on page 103. If the motor speed is 500 rpm, which corresponds to
linear speed of 13333.33 mm/min, then the POS SCALE would be ((500 * 2048) /
13333.33) = 76.8 pulses/mm. The Shaft synchro function uses the actual position in
the Master and Follower drives. That is why you should use the same measurement
unit for the scaling factor in both drives, that is, mm.
If the parameters (gearbox ratio, diameter) used for calculating the linear speed are
not available, the position scale can be calculated by the following procedure.
1. Set the encoder PPR in parameter 50.01 PULSE NR.
2. Monitor the shaft position signal 02.22 SHAFT POS, mark the rope with a marker
and note the shaft position signal 02.22 SHAFT POS.
3. Start the drive and stop it after a few mm travel of the rope.
4. Check the shaft position signal 02.22 and the corresponding travel in mm.
Suppose the initial value in shaft position 02.22 was zero, after stopping it shows
2000, and this motion has resulted in the rope travel of 20 mm, then the position
scale would be (2000 / 20) = 100 P/mm.
Note: The value range of actual position 02.21 POS ACT PPU is -8388608 to
+8388608, but when the value is used in the fieldbus for data transfer, it is truncated
to -32767 to +32767.
Program features
92
Settings
Parameter
Additional information
78.04
Settings of the position scale
Diagnostics
Actual signals
Additional information
02.21
Actual Position
Actual position reset
You can reset the actual position value (02.21 POS ACT PPU) by using the Homing
sequence or manually through parameters.
Homing sequence
The Homing function is used to calibrate the actual position value 02.21 POS ACT
PPU to a reference value. You have to do the homing sequence from the EXT1
control location. You have to configure parameter 10.21 HOMING SEL PTR to the
homing activation input, homing acknowledgement signal in parameters 10.15
HOMING ACK SEL and 10.22 HOMING ACK PTR. When the homing signal is active
and the drive is in EXT1, the message “HOMING ACTIVE” is displayed.
The homing reference has to be configured in parameter 11.14 HOMING REF. The
sign of the homing reference is only considered when the Start command does not
define the direction.
The Start command can be issued with the EXT1 start/stop control; you have to
decide the direction according to the present position and the homing
acknowledgement signal position 02.28. The homing sequence will be completed
when the homing acknowledge signal gets activated and the drive stops
automatically. The message “HOMING DONE” will be displayed when the homing is
completed.
The actual position will be initialized to the position set in parameter 78.10 HOME
POSITION. For initializing the position value via the fieldbus, see application control
word 03.34 APPL CONTROL WORD bit 1 on page 276.
Manual reset of actual position
Manual reset of actual position 02.21 POS ACT PPU (mm) without running the
homing sequence:
- EXT1 mode selected (stand-alone)
- Enable par 10.21 HOMING SEL PTR
+.000.000.00 -> C.1
- Enable par 10.15 HOMING ACK SEL
NOT SEL -> RESET
Actual position value 02.21 is defined with par 78.10 HOME POSITION (0 mm by
default).
Program features
- Disable par 10.21 HOMING SEL PTR
C.1 -> +.000.000.00
- Disable par 10.15 HOMING ACK SEL
RESET -> NOT SEL
93
Settings
Parameter
Additional information
10.15
Homing acknowledge selection
10.21
Homing signal selection
10.22
Homing acknowledge signal selection
11.14
Homing reference to be used in homing sequence
78.10
Homing position value for initializing the actual position on completion of
homing sequence.
Diagnostics
Actual signals
Additional information
02.21
Actual position in mm
Warnings
HOMING ACTIVE
Homing sequence in progress
HOMING DONE
Homing sequence completed
Control location EXT1/EXT2 supervision mismatch
Before starting a Master/Follower Synchro control application, check that the Master
and the Followers are in control location EXT2. If any of the Followers is in the EXT1
stand-alone mode, the Master indicates a CTRL LOC DIFF warning, and the start is
prevented. For more information, see section Master/Follower use of several drives
(Only in EXT2 Control) on page 94. The control location selection 11.02 must be
switched at the same time in the Master and the Followers.
MASTER
FOLLOWER
EXT1
10.01=DI1 F, DI2 R
11.03=AI1/JOYST
EXT1
10.01=DI1 F, DI2 R
11.03=AI1/JOYST
EXT2
10.02=DI1 F, DI2 R
11.06=AI1/JOYST
EXT2
10.02=COMM.CW
11.06=COMM.REF
11.02
CH2 communication
11.02
Actual signal 03.36 M F STATUS WORD shows the different Master and Follower
modes. For more information, see section 03.36 M F STATUS WORD on page 276.
Program features
94
Master/Follower use of several drives (Only in EXT2 Control)
In a Master/Follower application, the system is run by several drives, the motor
shafts of which are coupled to each other. The Master and Follower drives
communicate via a fibre optic link. For the Master/Follower configuration to work, the
drive has to be in EXT2 control. If the Master/Follower configuration is used in EXT1,
the drive works as a stand-alone drive.
The Master drive communicates with the Follower drive through channel 2. The
channel 2 addresses are set internally in the Follower drives. The fault, torque prove
OK, safety control bits and the drive ready bits of the Follower drives are used for the
interlock in the Master drive. These interlocks work only when the drive is in EXT2
control. In EXT1 control none of these interlocks are checked and the drive works
like a stand-alone drive. The Follower drive uses the data set 44 for transmitting the
interlock status word. The Master also sends the interlock bits to the slave using data
set 43. The Master monitors if any of the Follower drives goes into the fault or limit
state and the FLWRx LIM/FLT message (where x is the Follower drive number) is
displayed in such condition. The detailed description of the fault or limit will be
available in the Follower drive.
Note: Even though the Master/Follower interlock functions are checked only in EXT2
control, the Master/Follower communication link should be active in both EXT1 and
EXT2 control. Otherwise the drives will trip on Communication fault.
The user defines the number of Follower drives in the Master drive. One Master
drive can have a maximum of four Follower drives. Note that you must configure the
Follower drives in a sequential order. In other words, if the configuration includes
one Follower drive, it is configured as Follower 1, not as Follower 2, Follower 3, or
Follower 4. Similarly, if the configuration includes two Follower drives, the correct
configuration is Follower 1 and Follower 2, not Follower 2 and Follower 3, or any
other combination. A follower drive is configured as Follower 4 only when the
configuration includes four Follower drives.
Program features
95
The following figure illustrates data transmission in a Master/Follower application.
Note: Only the ring topology is supported.
T = Transmitter; R = Receiver; RMIO = I/O and Control Board
Please note that channels CH0/CH2/CH3 are located on the optional RDCO-0x board.
Master
*)
ACS800
RMIO-XX
V17
CH2
T R
V18
V17
V18
RDCO-0X
RDCO-0X
RMIOXX
CH2
T R
RDCO-0X
V17
RMIO-XX
CH2
T R
ACS800
*)
V18
ACS800
*)
Follower
Follower
*) External 24 V to the RMIO board, support fast start-up and avoid communication error between
drives.
For more information on the requirements for a redundant crane control application
between Master, Followers and spare units, see section Redundancy in Master/
Follower crane control on page 304.
Data set 41 is used for transmission of data from Master to Follower as follows. Data
set 41 is updated on 6 ms.
• If the Master is in EXT2 and parameter 60.11 SLAVE MODE is TORQUE, then
signal 03.11 FOLLOWER MCW is transferred using data set word 41.1. Signal
02.02 SPEED REF 3 is transferred using data set word 41.2 and signal 02.13
TORQ USED REF is transferred using data set word 41.3
• If the Master is in EXT2 and parameter 60.11 SLAVE MODE is SPEED and
parameter 78.01 SYNCHRO CONTROL is ON, then signal 03.37 FLW CMD
WITH POS is transferred using data set word 41.1. Signal 03.38 POSITION REM
is transferred using data set word 41.2 and signal 02.02 SPEED REF 3 is
transferred using data set word 41.3.
• If the Master is in EXT2 and parameter 60.11 SLAVE MODE is SPEED and
parameter 78.01 SYNCHRO CONTROL is OFF, then signal 03.11 FOLLOWER
MCW is transferred using data set word 41.1. Signal 02.02 SPEED REF 3 is
transferred using data set word 41.2 and signal 02.02 SPEED REF 3 is
transferred using data set word 41.3.
Program features
96
The figure below illustrates the data transmission from Master to Follower on
channel 2 communication.
Master
Follower n
DATA SET 41
Command Word
Command Word
Speed reference
Speed
6 ms
Torque reference2)
Torque reference
Master position
Master position
1) If
2)
Program features
reference1)
Par. 10.02 = COMM
Par. 11.06 = COMM
Position error
calculation
Speed mode / Shaft synchro = Separate drums
If Torque mode / Load sharing = Common load
97
Master/Follower interlock words
Data set 43 is used for transmission of Master Interlock Word from Master drive to
Follower drive. Data set 43 is updated on 100 ms.
Data set word 44.1 is used for transmission of Follower Interlock Word from Follower
drive to Master drive. Data set word 44.2 is used for transmission of sync pos error
from Follower drive to Master drive. Data set 44 is updated on 100 ms.
The figure below illustrates the transmission of Master and Follower interlock words
in both directions.
Master
DATA SET 43
Follower n
100 ms
Interlock
- M OFF2 OK
- M Fault
- M torque prove OK
- M Slow Down
- M End limit
- M Fast stop
- EXT1/EXT2 control diff
- Brake open for torque
controlled follower
Interlock Word
Interlock
- F OFF2 OK
- F Fault- M torque prove OK
- F Slow Down
- F End limit
- F Fast stop
- EXT1/EXT2 control diff
100 ms
DATA SET 44
Interlock Word
Program features
98
Speed reference scaling between the Master and the Follower
When a Master/Follower and Synchro control application is used, the Follower
usually needs to have a speed buffer for correcting the position error between the
Master and the Follower. The Follower speed buffer needs to have +5 or +10%
higher speed limit settings than the Master.
Example: The Follower’s speed buffer is 200 rpm more than the Master’s.
Master using AI1/Joystick in EXT2
Follower using COMM REF in EXT2
Master minimum and maximum limit speed =
1700 rpm
Follower minimum and maximum limit speed =
1700 rpm
Master sends out -20000 & +20000 on
COMM REF
Follower receives -20000 & +20000 on
COMM REF
Master parameter 13.03 SCALE AI1 = 88%
(1500 rpm/1700 rpm = 88%)
Master using 88% of limit speed 1700 rpm as
maximum reference
Program features
Follower receives 1500 rpm and has a speed
buffer of 200 rpm
99
The following figures illustrate two basic application types.
Master and Follower with a common drum and separate motors (Load Sharing)
MASTER
DRIVE
START/STOP
DIRECTION
COMMAND
SPEED REF
TO MASTER
TO FOLLOWER
SPEED
CONTROLLER
TORQUE REFERENCE SELECTOR
0
TORQUE REFERENCE CONTROL
INVERTER
CONTROL
SPEED
SPEED REF 3 +
TORQUE
2.02
PID
MIN
2
3
MAX
4
1 0
=
5
~
ADD
ACTUAL SPEED
Inverter
2.09
2.10
TORQUE REF 2
TORQUE REF 3
TORQ USED REF
Master
TO FOLLOWER Drive
B
Follower
SYNCHRO
LOAD SHARE
X (Par 60.09)
FROM
MASTER
DRIVE
CH2
COMM
2.13
START/STOP
DIRECTION
COMMAND
SPEED REF
SPEED
CONTROLLER
TORQUE REFERENCE SELECTOR
0
FROM MASTER
B
TORQUE REFERENCE CONTROL
INVERTER
CONTROL
SPEED
SPEED REF 3 +
2.02
TORQUE
‚
PID
MIN
2
3
MAX
4
1 0
=
5
~
ADD
ACTUAL SPEED
Inverter
2.09
2.10
TORQUE REF 2
TORQUE REF 3
2.13
TORQ USED REF
Program features
100
Master and Follower with separate drums and separate motors (Shaft synchro)
START/STOP
DIRECTION
COMMAND
SPEED REF
MASTER
DRIVE
TO MASTER
SPEED
CONTROLLER
TO FOLLOWER
TORQUE REFERENCE SELECTOR
0
TORQUE REFERENCE CONTROL
INVERTER
CONTROL
SPEED
SPEED REF 3 +
TORQUE
2.02
PID
MIN
2
3
MAX
4
1 0
=
5
~
ADD
ACTUAL SPEED
Inverter
2.09
2.10
TORQUE REF 2
TORQUE REF 3
Follower
Master
SYNC POS ERROR
2.23
02.21 POS ACT PPU
SYNCHRO
CONTROL
MASTER POSITION
FROM
MASTER
DRIVE
CH2
COMM
* When Shaft synchro function is not used,
external pointer parameter can be used to
write speed correction to this signal 03.35.
SPEED CORRECTION FACTOR*
3.35
START/STOP
DIRECTION
COMMAND
97.16 SPD CORR PTR
SPEED
CONTROLLER
TORQUE REFERENCE SELECTOR
0
TORQUE REFERENCE CONTROL
INVERTER
CONTROL
SPEED
SPD REF
SHAFT
SCALE
78.03
+
2.02
TORQUE
‚
PID
MIN
2
3
MAX
4
1 0
=
5
~
ADD
ACTUAL SPEED
Inverter
2.09
2.10
TORQUE REF 2
TORQUE REF 3
Settings and Diagnostics
Parameter
Additional information
Group 60 MASTER/
FOLLOWER
Master/Follower parameters
Program features
101
Shaft synchro (Only in EXT2 Control)
The Shaft synchro function synchronises the Master and Follower drives when the
drives are in the Master/Follower mode (see section Master/Follower use of several
drives (Only in EXT2 Control) on page 94). However, the synchronisation is in use
only when the drives are set to the speed mode. The function transfers the Master
drive position to the Follower and uses the difference between the positions as the
speed correction factor in the speed control loop of the Follower drive.
Note: The function can only be used if the drive is controlled from location EXT2.
The following figure gives an example of two motors in the Shaft synchro mode.
10.02, 11.06
START/STOP
DIRECTION
COMMAND
SPEED REF
MASTER
DRIVE
TO MASTER
23.xx
60.xx
SPEED
CONTROLLER
TO FOLLOWER
TORQUE REFERENCE SELECTOR
0
TORQUE REFERENCE CONTROL
SPEED
SPEED REF 3 +
TORQUE
2.02
PID
MIN
2
3
MAX
4
1 0
=
5
~
ADD
ACTUAL SPEED
Inverter
2.09
2.10
TORQUE REF 2
TORQUE REF 3
Follower
Master
M1
M2
INCREMENTAL
ENCODER
M2
FROM
MASTER
DRIVE
CH2
COMM
INVERTER
CONTROL
78.xx
SYNC POS ERROR
* When Synchro function is not used,
external pointer parameter can be used to
write speed correction to this signal 3.35.
2.23
02.21 POS ACT PPU SYNCHRO
CONTROL
MASTER POSITION
SPEED CORRECTION FACTOR*
3.35
97.16 SPD CORR PTR
+.000.000.00
START/STOP
DIRECTION
COMMAND
SPEED
CONTROLLER
TORQUE REFERENCE SELECTOR
0
TORQUE REFERENCE CONTROL
INVERTER
CONTROL
SPEED
SPD REF
SHAFT
SCALE
78.03
+
2.02
TORQUE
‚
PID
MIN
2
3
MAX
4
1 0
=
5
~
ADD
ACTUAL SPEED
Inverter
2.09
2.10
TORQUE REF 2
TORQUE REF 3
Program features
102
The Master position will be transferred at 6 ms intervals using data sets 41.1 and
41.2. Both data sets are required since the data set words are of integer type which
limits the position value to -32767 mm to 32767 mm. Hence, for a wider position,
range some of the unused bits in the Follower Control Word (signal 03.11) are
combined together and used as the multiplying factor for position value in terms of
32767. Six bits of the Follower Control Word are used for generating the multiplying
factor. With these six bits (one bit for sign), we can have a maximum possible range
of position value from -1048544 mm to 1048544 mm. The Follower Control Word
(signal 03.11) is modified to include the position multiplying bits, and a new Follower
Control Word (signal 03.37) is used for transmission from the Master to the Follower
drives in the Shaft synchro mode. The position remainder (signal 03.38) is
transferred using data set 41.2.
The Master transmits the new Follower Control Word (signal 03.37) which consists of
the new Follower Control Word and the position multiplying bits using data set 41.1
when the Synchro control is enabled with Par. 78.01. When Synchro control is OFF
in the Master or Master is in EXT1, the Follower Control Word (signal 03.11) is
transmitted using data set 41.1. Similarly, when Synchro control is ON in the Master
and the drive is in EXT2, the Master position remainder value is sent using data set
41.2; when Synchro control is OFF or the drive is in EXT1, the Speed reference
(signal 02.02) is sent to the Follower.
The parameter 78.01 SYNCRO CONTROL activates the execution of the Shaft
synchro function in the Master and Follower drives. The position error is calculated in
all the Follower drives only when the Synchro control is ON. Therefore, the speed
correction according to the position error in the respective Follower drives does not
happen when Synchro control is OFF. Parameters 10.14 SYNC SEL and the signal
02.23 SYNC POS ERROR are not updated in the Follower drives if the Synchro
control is OFF. SYNC FAULT will not be generated if Synchro control is OFF.
However, actual position value 02.21 will be available even when the Synchro
control is OFF.
To configure the Shaft synchro function, do the following:
• enable the use of the function with parameter 10.14 SYNC SEL in both Master
and Follower drives. Define the basic data for speed correction in the Follower
drive.
• calculate the linear rope speed.
• define the basic data for speed reference calculation in the Follower drive.
Program features
103
Defining the basic data for speed correction
Example: If parameter 78.02 SYNCRO GAIN is set to 0.1, the speed correction in
the Follower drive is (0.1 × 78.08 SYNC CORR SCALE) rpm if the position error
between the Master and Follower drive is 1 unit.
Calculating the linear rope speed
The linear rope speed can be calculated as follows.
Linear speed =
Pi * Diameter of the rope drum (mm) * Motor speed (rpm)
Gear ratio
Example:
If the diameter of rope drum = 1000 mm
Gear ratio = 2.5
Motor rotating at 500 rpm
Then the linear speed = (3.1416 * 1000 * 500) / 2.5 = 628320 mm/min
Defining the basic data for speed reference calculation
Parameter 78.03 SHAFT SCALE defines the position correction factor used in the
speed reference calculation in the Follower drive.
Example: If the Master drive full speed corresponds to a rope speed of 40 000 mm/
min, and the Follower drive full speed corresponds to 30 000 mm/min, parameter
78.03 SHAFT SCALE should be set to value 40 000/30 000 = 1.333. The Follower
multiplies this factor with the speed reference of the Master drive. (Note that there
may be a difference in the gear ratio, which also needs to be considered.)
Parameters 78.05 POS CORR MAX LIMIT and 78.06 POS CORR MIN LIMIT are
used for limiting the speed correction in terms of mm. If the error exceeds or falls
below these parameters (respectively), the speed correction in terms of mm will be
limited to these parameter values.
When the absolute error is greater than the value defined in 78.09 SYNC ERR LIM
for a period longer than 78.07 SYNC ERR FLT DLY, the drive will trip on SYNC
FAULT.
Signal 02.23 SYNC POS ERROR displays the position error of the drive in mm if the
drive is a Follower. Signals 02.24 SYNC POS ERROR 1, 02.25 SYNC POS
ERROR 2, 02.26 SYNC POS ERROR 3 and 02.27 SYNC POS ERROR 4 are the
respective Follower 1, Follower 2, Follower 3 and Follower 4 position errors in mm
that are displayed in the Master drive.
Program features
104
The position can be moved to a predefined value using the Homing sequence. An
initial position value in mm can be entered in Par. 78.10 HOME POSITION to
initialize the actual position to the predefined value. The actual position is initialized
in the respective drives on completion of the homing sequence. Homing is possible
from EXT1 control location only. Therefore, after the homing sequence is done, the
control should be moved to EXT2 and a Synchro command given using Par. 10.14.
Before the Synchro command is given, parameter 78.12 SYNC CORR MODE has to
be selected.
If an offset of position is required in the Follower, set parameter 78.12 to OFFSET
and activate the Synchro command in the Follower when it is at the required
position. The difference in the position between the Master and the Follower when
the Synchro command is activated is taken as a constant offset in this case.
If an offset is not required in the Follower, set parameter 78.12 to DIRECT and
activate the Synchro command in the Follower. The difference in the position
between the Master and Follower when the Synchro command is activated is taken
as the position error in this case. The position error will be calculated with the new
position value with respect to the actual Master position.
Example: Actual position value 02.21 is initialized with 1000 mm after a homing
sequence, and the drive is then moved to EXT2 control for synchronisation.
Consider the Master actual position received by Follower drive as 5000 mm. After a
Synchro command is given with parameter 78.12 SYNC CORR MODE as DIRECT,
the 02.23 SYNC POS ERROR will be (5000 … 1000) 4000 mm. If a Synchro
command is given with parameter 78.12 SYNC CORR MODE as OFFSET, the 02.23
SYNC POS ERR will be 0 mm, and the difference (5000 … 1000) 4000 mm will be
considered a permanent offset.
Program features
105
Figure: Control diagram for Shaft synchronisation executed in 20 ms
Program features
106
Settings
Parameter
Additional information
Group 60
Settings for the Master/Follower application. To be adjusted in the Master
and Follower drives.
78.01, 78.03
Activation of the Shaft synchro function. To be adjusted in the Master and
Follower drives.
78.01, 78.02, 78.03,
78.04, 78.05, 78.06,
78.07, 78.08
Settings of the Shaft synchro function. To be adjusted in the Follower drive.
78.09
Settings of the Synchro error limit. To be adjusted in the Follower drives.
78.10
Setting and selection of home position value in case of a homing sequence.
10.14
Enables the Shaft synchro function. To be adjusted in the Master and
Follower drives.
Settings for resetting of actual position
10.15
Diagnostics
Actual signals
Additional information
02.21, 02.22
Actual Position value and Shaft Position value.
02.23, 02.24, 02.25,
02.26, 02.27
Actual Shaft Position error values.
03.32 bit 7
Synchronisation enabled
03.33 bit 4
Synchro Fault
Faults
SYNC FAULT
Program features
Synchro fault generated in Follower because of position error greater than
the Synchro error limit
107
Example:
The following example shows the parameter configuration for a Master/Follower
Synchro control application.
Master in speed mode
Follower in speed/synchro mode
EXT1 = stand-alone mode
EXT1 = stand-alone mode
EXT2 = MF + synchro
EXT2 = MF + synchro
Program features
108
External speed correction
When the Synchro function is not used, you can use External speed correction.
Parameter 97.16 SPD CORR PTR defines the correction by writing it to signal 03.35
SPEED CORR BUFF. This speed correction bypasses internal ramps. The speed
correction value is added to the speed controller.
Example: To make an external device control the follower speed reference, for
example, through analogue input AI3, connect it to be the source for the reference:
97.16 SPD CORR PTR = 09.03.00 (09.03 AI3 SCALED).
The figure below illustrates the operation of the function.
Encoder
pulses
Homing
Actual
position
calculation
(mm)
78.04 POS SCALE
02.21 POS
ACT PPU
02.23 SYNC
POS ERROR
Position error
calculation
(mm)
Synchron.
10.14 SYNC SEL
78.01 SYNCRO CONTROL
Enable
Master
position
Position
error for
correction
(mm)
Position
error limiter
(mm)
Speed
correction
factor (rpm)
03.35 SPEED CORR BUF
ADD
97.16 SPD CORR PTR
Settings
Parameter 97.16
Program features
Speed
controller
loop
109
Synchro error blocking
For special cases (for example, external disturbances), it is possible to block speed
correction signal 03.35 SPEED CORR BUFF with parameter 97.19 SYNC ERR BLK
LVL. If the change in 02.23 SYNC POS ERROR is bigger than the value of 97.19
SYNC ERR BLK LVL, signal 03.35 SPEED CORR BUFF is blocked and no
synchronisation correction is performed during that period (in the following example
figure 20 ms).
78.09 SYNC ERR LIM (mm)
Change of 02.23 SYNC POS ERROR > 97.19 SYNC ERR BLK LVL (mm)
02.23 SYNC POS ERROR
Position hysteresis stop
78.13 POS HYSTERESIS (mm)
20 ms
Sync (03.35)
Speed+synch - - - -- - > speed---> speed+synch
Settings
Parameter 97.19.
Program features
110
Service counter
The Service counter function supervises the 01.43 CRANE OPT TIME and the 02.28
BRAKE OPT COUNTS. The two signals can be monitored for the calculation of the
overall crane operation time and the brake open counts. The brake open counts can
be reset using the parameter 79.01 BRAKE CTR RESET and the crane operation
time can be reset using the parameter 79.02 RESET OPT TIME.
Settings
Parameter
Additional information
79.01
Reset brake operation counts
79.02
Reset crane operation time
Diagnostics
Actual signals
Additional information
01.43
Crane operation time
02.28
Number of brake open counts
Adaptive Programming using the function blocks
Conventionally, you can control the operation of the drive with parameters. Each
parameter has a fixed set of choices or a setting range. The parameters make the
programming easy, but the choices are limited. You cannot customise the operation
any further. The Adaptive Program (AP) makes free customising possible without the
need of a special programming tool or language:
• The program is built of standard function blocks included in the drive application
program.
• The control panel is the programming tool.
• You can document the program by drawing it on block diagram template sheets.
The maximum size of the Adaptive Program is 15 function blocks. The program may
consist of several separate functions. For more information, see the Application
Guide for Adaptive Program (3AFE64527274 [English]).
For examples of Adaptive Programming (AP) and creating AP files for new features,
see Adaptive Programming examples for crane control on page 297.
Note: If you use and/or change the AP blocks used in the Crane control program
made by ABB, you are responsible for the software and the application.
DriveAP
DriveAP is a Windows-based tool for Adaptive Programming. With DriveAP it is
possible to upload the Adaptive Program from the drive and edit it with PC.
For more information, see DriveAP User’s Manual (3AFE64540998 [English]).
Program features
111
Examples of crane functionalities created with DriveAP
Main contactor control logic
Using Adaptive Programming (AP), you can create a main contactor control logic for
the 3-phase power supply of the ACS800 drive. With the help of the main contactor
control logic, the power supply of the drive is disabled when the crane is not used
(the standby energy-efficiency mode).
For an example how to create the AP file, see Main contactor control logic on page
297.
Brake match
Brake match detects mechanical brake slips and downward movement of the load
when Mechanical brake control is in use, the operator has given the stop command
and the target is to close the brake. The slip detection is based on the motor encoder
position signal, and the function works only if an encoder is used. You can use the
function for an automatic restart of the crane or just for a warning (alarm) indication.
For an example how to create the AP file, see section Brake match on page 301.
Redundancy in Master/Follower crane control
In the Master/Follower crane control, redundancy is implemented using a spare drive
unit that is ready to be used as a Master or a Follower. The spare unit usually
replaces the faulty Master or one of the Followers.
Adaptive Programming provides the ability to switch between the Master, Follower or
standby (spare unit) mode. This means that the Master and Follower are no longer
fixed, but can be changed when needed.
Using the Adaptive Programming (AP), you can create a redundancy control logic.
For an example how to create the AP file, see Redundancy in Master/Follower crane
control on page 304.
Scaling actual encoder position signal (mm) to analogue output as mA
The actual encoder position signal 02.21 POS ACT PPU (mm) can be scaled to
4 … 20 mA for analogue outputs and sent to other systems as an mA signal, for
example, for supervision or protection purposes.
Using Adaptive Programming (AP), you can create an AP file for scaling the actual
encoder position signal for an analogue output. For an example how to create the
AP file, see Scaling actual encoder position signal (mm) to analogue output as mA
on page 310.
Slack rope torque detection
Using Adaptive Programming (AP), you can create a function for detecting slackness
of the ropes on the drum. The detection is based on monitoring the motor torque. For
more information, see Slack rope torque detection on page 311.
Conical rotor motors
Using Adaptive Programming (AP), you can create a file for handling brake control of
conical rotor motors that do not have an external brake. With the help of Adaptive
Programming, the conical rotor motors can be used together with the Crane control
program. For more information, see Conical rotor motors on page 313.
Program features
112
Control of a mechanical brake
The mechanical brake (a disk or drum brake) is used for holding the motor and
driven machinery at zero speed when the drive is stopped, or not powered.
Example
The figure below shows a brake control application example.
WARNING! Make sure that the machinery into which the drive with brake control
function is integrated fulfils the personnel safety regulations. Note that the frequency
converter (a Complete Drive Module or a Basic Drive Module, as defined in IEC
61800-2), is not considered as a safety device mentioned in the European
Machinery Directive and related harmonised standards. Thus, the personnel safety
of the complete machinery must not be based on a specific frequency converter
feature (such as the brake control function), but it has to be implemented as defined
in the application-specific regulations.
Brake control logic is integrated in
the drive application program. The
brake control hardware and wirings
needs to be done by the user.
Brake control
hardware
230 V AC
- Brake on/off control through relay
output RO1.
- Brake supervision through digital
input DI3 (optional).
- Emergency brake switch in the
brake control circuit.
Emergency
Stop
Program features
X25
1
RO1
2
RO1
3
RO1
X22
M
Motor
RMIO board
Mechanical brake
3
DI3
7
+24 V
113
Operation time scheme
The time scheme below illustrates the operation of the brake control function. See
also State shifts on page 114.
Start command
1
5
External speed
reference
7
Inverter modulating
tmd
Motor magnetised
textmt
ttrqpv
Torque proved
tcd
Open brake
command
4
Internal speed
reference (actual
motor speed)
tod
3
ncs
6
Torque reference
Tpv
Ts
20ms
time
Ts
Start torque at brake release (Parameters 42.07 and 42.08 from torque memory
or AI or as per selection of Par. 42.07)
tmd
Motor magnetising delay (Par. 21.02, Constant DC Magn time)
tod
Brake open delay (Parameter 42.03, Speed reference delay and brake ackn DI
supervision delay)
ncs
Brake close speed (Parameter 42.05, Absolute brake close speed level)
tcd
Brake close delay (Parameter 42.04, Torque ON time during closing of mechanical brake and brake ackn DI supervision time)
ttrqpv
Torque proving time period
Tpv
Torque proving reference. Fixed as 30% positive torque reference.
textmt
Extended run time (Parameter 42.09, Magnetising ON after brake close)
Program features
114
State shifts
From any state
(rising edge)
1)
NO
MODULATION
0/0/1
2)
OPEN
BRAKE
1/1/1
3)
A
5)
RELEASE RFG
INPUT
1/1/0
4)
RFG INPUT
TO ZERO
1/1/1
7)
10)
RFG = Ramp Function
Generator in the speed
control loop (reference
handling).
State (Symbol
6)
CLOSE
BRAKE
11)
12)
0/1/1
A
13)
8)
BRAKE
ACK FAULT
NN
X/Y/Z
9)
0/0/1
)
- NN: State name
- X/Y/Z: State outputs/operations
X = 1 Open the brake. The relay output set to brake on/off control energises.
Y = 1 Forced start. The function keeps the internal Start on until the brake is closed in spite of the
status of the external Start signal.
Z=1
Ramp in zero. Forces the used speed reference (internal) to zero along a ramp.
State change conditions (Symbol
)
1) Brake control active 0 -> 1 OR Inverter is modulating = 0
2) Motor magnetised = 1 AND Drive running = 1 and Torque prove Ok
3) Brake Acknowledge = 1 AND Brake open delay passed AND Start = 1
4) Start = 0
5) Start = 0
6) Start = 1
7)
Actual motor speed < Brake close speed AND Start = 0
8) Start = 1
9) Brake Acknowledge = 0 AND Brake close delay passed = 1 AND Start = 0
Only if parameter 42.02 = OFF:
10) Brake Acknowledge = 0 AND Brake open delay passed =1
11) Brake Acknowledge = 0
12) Brake Acknowledge = 0
13) Brake Acknowledge = 1 AND Brake close delay passed. See 42.13 BRK LONG FLT DLY also.
Program features
115
As seen in the state diagram, the brake Open command is triggered when the drive
comes to the run mode after the motor gets magnetised. The drive waits for the
Torque proving ok signal and then releases the brake Open command, which
switches on the brake open relay output. Any rotation of the motor above the allowed
motor slip speed during the torque generation will result in a brake slip fault. The
drive waits for the period of the brake open delay for the brake to get opened
mechanically. The drive supervises for a brake fault if the brake does not open within
the period of the brake open delay time. If the brake open delay has elapsed, the
drive moves on to the next state for the releasing of the speed reference.
The (42.09) EXTEND RUN T can be used when the start request is released within a
short span on receiving the Stop command. The drive keeps the motor magnetised
for the extended time, and thereby reduces the next start sequence time. In the local
control mode, the extended run time can be stopped by pressing the CDP stop
button twice. The second stop request should be given when the drive is in the
extended time period.
The (42.13) BRK LONG FLT DLY can be used for safety purposes if the brake is not
closed properly in the stopping sequence. The delay is applicable only when
encoder feedback is used and when the brake acknowledge is configured to a DI.
The drive checks for the brake acknowledge signal during the stopping sequence. If
the signal remains ON after the brake close delay (Par. 42.04) has elapsed, the drive
keeps the torque ON to the motor for the brake long fault delay period. This ensures
that the drive does not trip immediately and drops the load. During the brake long
fault delay period, a signal (03.32 bit 9) is activated which can be used for safety
interlocks. If the brake long fault delay has elapsed and the brake acknowledge is
still ON, the drive trips on a brake fault. See the figure below.
Program features
116
The (42.16) BRK REOPEN DELAY can be used for a safety purpose in the event of
a frequent Start -> Stop -> Start sequence. This parameter delays the opening of the
brake when a Start command is issued immediately after a stop sequence.
Settings
Parameter
Additional information
14.01
Relay output for the brake control (set to BRAKE CTRL)
Group 42 BRAKE CONTROL Brake function settings
Diagnostics
Actual signal
Additional information
03.01
Ramp in zero bit
03.13 bit 6
The state of bit “brake Open/Close command”
03.32 bit 9
The brake long time active bit
Warnings
BRAKE ACKN
Unexpected state of Brake Acknowledge signal
BRK LONG TIME
Brake closing sequence not completed and drive active with zero
speed reference
BRAKE SLIP FLT
Brake slip detected during starting sequence when the brake is closed
Faults
BRAKE ACKN
Unexpected state of Brake Acknowledge signal
Reduced run function
The Reduced run function is available for parallel-connected inverters. The function
makes it possible to continue the operation with limited current if an inverter
module(s) is out of order. If one of the modules is broken, it must be removed.
Parameter change is needed to continue the run with reduced current (95.03 INT
CONFIG USER). For instructions on how to remove and reconnect an inverter
module, see the appropriate drive hardware manual.
Program features
117
Settings
Parameter
Additional information
95.03
Number of existing parallel connected inverters
Diagnostics
Actual signal
Additional information
04.01
INT board fault
Faults
INT CONFIG
Number of inverter modules is not equal to original number of inverters
Safety functions
External 24 V supply of RMIO board
In crane applications, external voltage is typically connected to the RMIO board to
keep the software running even if the main power supply is disabled. If the external
auxiliary voltage is used, parameter 16.09 CTRL BOARD SUPPLY must be set to
EXTERNAL 24V. The default value of the parameter is INTERNAL 24V.
Settings
Parameter
Additional information
16.09
Source of the control board power supply
Slowdown
This function limits speed to a preset level (parameter SLOW DOWN REF 11.12) if
the 10.09 SLOW DOWN INPUT is active (DI = 0). The drive remembers the direction
of movement and allows full speed in the opposite direction as long as the supply
voltage (AMC board supply) is not switched off. If the voltage has been switched off
and the input SLOWDOWN is active (DI = 0), then only slow speed is allowed in both
directions.
By setting parameter 10.09 SLOW DOWN INPUT to DI3 F,DI4 R, separate inputs
are available for wiring slowdown limit switches to the drive. Slowdown forward (UP)
is wired to digital input 3, Slowdown reverse (down) to digital input 4. If input 3 is
active (DI = 0), speed is limited to the slowdown reference level in the forward (up)
speed direction, but not limited in the reverse direction (down). And vice versa if
input 4 is active (DI = 0). If both inputs 3 and 4 are not active (DI = 1), there is no
slowdown speed limitation in any direction, and full speed is allowed. See Figure:
Slowdown and End limit on page 120.
If the drives are in a Master/Follower configuration and in EXT2 control, then all the
drives will run within the slowdown limit if Slowdown is activated in any of the drives.
The drive displays SLOW DOWN UP and SLOW DOWN DOWN warning messages
according to the Slowdown condition active.
Program features
118
Settings
Parameter
Additional information
10.09
Selection for Slowdown
11.12
Speed limit during Slowdown
Diagnostics
Actual signal
Additional information
03.32 bit 0
Slowdown enabled bit
Warnings
SLOW DOWN UP
SLOW DOWN DOWN
Slowdown activated in up direction
Slowdown activated in down direction
Fast stop
This function is used to ramp down to zero speed according to a predefined
deceleration time (parameter 22.10 FST STP DCCL TIME). The drive decelerates to
zero speed on receiving the 10.10 FAST STOP PTR command. The FAST STOP
PTR should be active (according to the selection of pointer value) for enabling the
Fast stop command. After the command, the input must be inactive for the next start
sequence to happen.
When receiving a Fast stop command, the drive gives a FAST STOP warning
message on the panel.
If the drives are in a Master/Follower configuration and in EXT2 control, all the drives
will stop on a Fast stop command from any of the drives.
Settings
Parameter
Additional information
10.10
Selection for fast stop
22.10
Deceleration time on Fast stop command
Diagnostics
Actual signal
Additional information
03.32 bit 1
Fast stop enabled bit
Warnings
FAST STOP
Program features
Fast stop is active
119
High-end and Low-end limits
This function releases an Emergency command to the drive if any of the end limits
are active. Two separate end limits, 10.12 HIGHEND PTR and 10.13 LOWEND PTR
can be configured to be used in the forward (up) and reverse (down) direction,
respectively. The two limits are independent of each other, and thus, they get
activated only if configured properly. The HIGHEND input (active when DI = 0 if the
pointer value is used after inverting the bit value) should be wired to the forward (up)
limit switch, while the LOWEND input (active when DI = 0 if the pointer value is used
after inverting the bit value) should be used for the reverse (down) limit switches.
The function releases an Emergency command (OFF3) if the HIGHEND input gets
activated while the drive is running in the forward (up) direction. The drive then
decelerates according to the EM STOP RAMP TIME 22.07. The HIGHEND input
should be inactive for the drive to release a new start sequence in the forward
direction. However, the drive can be run in the reverse (down) direction when the
HIGHEND input is active. The drive generates a HIGHEND LIMIT warning on the
activation of the HIGHEND command.
Similarly, an Emergency command (OFF3) is released if the LOWEND input gets
activated while the drive is running in the reverse (down) direction. The drive then
decelerates according to the EM STOP RAMP TIME 22.07. The LOWEND input
should be inactive for the drive to release a new start sequence in the reverse
direction. However, the drive can be run in the forward (up) direction when the
LOWEND input is active. The drive generates a LOWEND LIMIT warning on the
activation of the LOWEND command. If the warnings do not need to be shown in the
control panel or fault logger, they can be blocked. See Application message blocking
on page 127.
If the drives are in a Master/Follower configuration and in EXT2 control, all the drives
will stop when a HIGHEND or LOWEND command comes from any of the drives.
Program features
120
Figure: Slowdown and End limit
ROOF
HIGHEND INPUT (Par. 10.12) NC
SLOW DOWN (Par. 10.09) NC
Forward
(Up)
Reverse
(Down)
SLOW DOWN (Par. 10.09) NC
LOWEND INPUT(Par. 10.13) NC
FLOOR
Speed Ref = Drive speed ref
Speed Ref = Drive speed ref limited
to Slowdown ref Par. 11.12
Settings
Parameter
Additional information
10.12
Selection of High-end limit
10.13
Selection of Low-end limit
22.07
Setting of Emergency stop ramp time
Diagnostics
Actual signal
Additional information
03.32 bit 2
High-end limit enabled
03.32 bit 3
Low-end limit enabled
Warnings
HIGHEND LIMIT
LOWEND LIMIT
Program features
High-end limit is activated in up direction
Low-end limit is activated in down direction
121
Start high logic
Warning START HIGH (FFB3) may be caused by the following conditions:
• Prevention of start during power-on sequence. The Crane control program
includes prevention of the crane start when the mains power is switched on. If the
crane start signal is TRUE during mains power switch-on, the drive indicates
warning START HIGH (FFB3). Change the crane start signal to zero and give a
new crane start command.
• Use of fieldbus control bits in the wrong order. For more information, see section
Start/Stop sequence using communication bits on page 254.
Diagnostics
Actual signal
Additional information
03.32 bit 14
START HIGH (FFB3): Crane start signal high when switching power ON or
starting against end limit logic sensor high
Watchdog function
This function supervises the below-mentioned fault and alarm conditions and
generates a WATCH DOG BIT-N bit, which can be used for safety or emergency
interlocks. The drive is healthy when the bit is active (value = 1). When any of the
fault or alarm conditions get activated, the bit becomes inactive (value = 0). The fault
and alarm conditions used to generate the WATCH DOG BIT-N are listed below.
1. CPU HEALTHY
2. EXTERNAL FAULT (3.06 bit 8)
3. M_F COMM ERROR (3.3 bit 13)
4. BR OVER TEMP (3.17 bit 3)
5. BC OVER TEMP (3.17 bit 4)
6. BC SHORT CIRC (3.17 bit 2)
7. FB COMM ERROR (3.6 bit 12)
Diagnostics
Actual signal
Additional information
03.32 bit 11
WATCH DOG-N active (bit = 0)
Program features
122
Inverter limit
This function is a safety protection from the drive operation point. The function
checks for the following limits when the drive is running in the generating mode with
generating power greater than 10% of the motor nominal power and the speed
greater than 5% of the maximum speed. The limits checked are TORQUE
INVERTER CURRENT LIMIT and IPP OVERLOAD ALARM. If one of these limits is
hit, and a period of 200 ms elapses, the drive trips on the INV LIMIT fault, and the
brake is closed.
03.04 LIMIT WORD 1 bit 4 indicates the current limit of the torque inverter.
Diagnostics
Actual signal
Additional information
03.33 bit 5
INV LIMIT fault active bit
Warnings
INV LIMIT (FFBF)
Program features
Inverter limit hit when the drive is in the generating mode
123
Load speed control
This function is used for running the motor above the base speed if the motor is able
to provide a sufficient torque with respect to the load condition. The function allows
you to run the motor at a higher speed above the base speed according to the motor
current at the base speed with the load. It is assumed that the load at which the
motor crosses the base speed remains constant until the motor stops, and then a
new Start command is given.
The user defines a set of current (A) and speed (rpm) parameters, which specify the
curve to be used to calculate the motor speed limit according to the current at the
base speed Par. 77.20. The motor current at the base speed Par. 77.20 is checked
for a predefined time period of Par. 77.03 HOLD RAMP, so that the motor current
would have settled down to a less oscillating value.
Parameter 77.01 LOAD SPD CTRL SEL defines the activation command for the
Load speed control function. Parameter 77.03 HOLD RAMP defines the time period
after which the motor has crossed the base speed to check for the motor current.
This motor current after this time period delay is regarded by the function as the
base speed current for the particular load used. Parameters 77.04…77.19 plot the
base speed versus current graph in both the forward and reverse direction and are
further used to limit the speed according to the base speed current.
If parameters 77.04…77.19 are not configured properly in the correct sequence, the
speed is always limited to Par. 77.20 BASE SPEED, and the error bit (signal 03.32
bit 10) is set to 1. Parameters 77.04…77.19 are to be configured as follows:
• The current values for the forward direction to be entered in parameters 77.04,
77.06, 77.08 and 77.10 have to be entered in the increasing order.
• The speed limit values for the forward direction to be entered in parameters
77.05, 77.07, 77.09 and 77.11 have to be entered in the decreasing order.
• The current values for the reverse direction to be entered in parameters 77.12,
77.14, 77.16 and 77.18 have to be entered in the increasing order.
• The speed limit values for the reverse direction to be entered in parameters
77.13, 77.15, 77.17 and 77.19 have to be entered in the decreasing order.
Program features
124
Example: Consider that the motor nominal current is 10 A corresponding to the
base speed of 1500 rpm. Then the parameters are to be configured in the following
sequence.
Note: The values defined below are only used to define the sequence, and the
actual parameter values have to be entered according to the actual motor details
and the load.
Par. 77.04 ------- 7 A
Par. 77.05 ------- 2000 rpm
Par. 77.06 ------- 8 A
Par. 77.07 ------- 1800 rpm
Par. 77.08 ------- 9 A
Par. 77.09 ------- 1600 rpm
Par. 77.10 ------- 10 A
Par. 77.11 ------- 1500 rpm
Parameters 77.12…77.19 for the reverse direction should also be entered in the
same sequence as shown above. If the sequence of the parameters is not correct,
then the speed is automatically limited to Par. 77.20 BASE SPEED, and the error bit
(signal 03.32 bit 10) is set to 1.
Example: This example describes the parameter configuration that can be used for
having a two-speed control. This configuration enables you to run the motor at two
speeds, one being a high speed in the empty hook condition and the other a limited
speed in the load condition.
Note: The values defined below are considered only to describe the function, and
the actual parameter values have to be entered according to the actual motor details
and the load.
Par. 77.04 CURR X1 FWD ------- 10 A
Par. 77.05 REF Y1 FWD ------- 2000 rpm
Par. 77.06 CURR X2 FWD ------- 12 A
Par. 77.07 REF Y2 FWD
------- 2000 rpm
Par. 77.08 CURR X3 FWD ------- 20 A
Par. 77.09 REF Y3 FWD ------- 1300 rpm
Par. 77.10 CURR X4 FWD ------- 25 A
Par. 77.11 REF Y4 FWD ------- 1300 rpm
Par. 77.12 CURR X1 REV ------- 10 A
Par. 77.13 REF Y1 REV ------- 2000 rpm
Par. 77.14 CURR X2 REV ------- 12 A
Par. 77.15 REF Y2 REV ------- 2000 rpm
Par. 77.16 CURR X3 REV ------- 20 A
Program features
125
Par. 77.17 REF Y3 REV ------- 1300 rpm
Par. 77.18 CURR X4 REV ------- 25 A
Par. 77.19 REF Y4 REV ------- 1300 rpm
In this example, the empty hook current is considered in the range 10 … 12 A, both
in the forward and reverse direction. The current in the load condition is considered
in the range 20 … 25 A, both in the forward and reverse direction. In the empty hook
condition, the Load speed control function would allow the speed of 2000 rpm,
provided that the speed reference given is more than or equal to 2000 rpm, and the
speed is not limited by Par. 20.01 Minimum speed or 20.02 Maximum speed or any
other speed limits. In the load condition, if the actual motor current at the base speed
is within the range of 20 … 25 A, the Load speed control function will limit the speed
to 1300 rpm. Therefore, the functionality of two-speed control is achieved with these
settings.
The figure below shows the speed reference chain in Load speed control.
77.01
EXT SPD LIM PTR
10.20
SPEED
LIMITER
SPEED
IN
LOAD SPD CTRL SEL
SPEED
LIMITER
SPEED
LIMITER
0
REF IN
EXT1/EXT2
IN
SPEED REF
11.04
EXT 1 MIN
11.05
EXT 1 MAX
11.07
EXT 2 MIN
11.08
EXT 2 MAX
0
EXT SPEED IN
0
MAX EXT
SPD LIM
20.23
MIN EXT
SPD LIM
LOAD SPEED CTRL
IN
0
Load Speed
Limit
FINAL
SPEED REF
LIMIT REF
LIMIT REF
20.22
SPEED
LIMITER
20.01
Minimum
speed
20.02
Maximum
speed
Program features
126
The figures below show speed limits according to different load conditions.
Program features
127
Settings
Parameter
Additional information
77.01
Selection of Load speed control
77.03
Setting of time period for holding the speed reference at base speed
77.04…77.19
Setting of speed limits according to motor current at the base speed
Diagnostics
Actual signal
Additional information
03.32 bit 10
Load speed control error bit
03.32 bit 5
03.32 bit 6
Speed is limited in the forward direction by the Load speed control function
Speed is limited in the reverse direction by the Load speed control function
Warnings
LOAD SP UP LIM
LOAD SP DW LIM
Speed limited in the forward direction by the Load speed control function
Speed limited in the reverse direction by the Load speed control function
Application message blocking
You can use parameter 97.17 APL LIM WRN MASK to block the application
messages if you do not need the messages. When a message is blocked, the
relevant function remains in use, but the message itself is not shown on the control
panel display and in the PC tool history.
You can activate or deactivate the messages by setting or resetting the individual
message masking bits. Bit value “1” activates the message: the combined value of
the bits has to be entered in integer format.
The messages and the corresponding masking bits are as follows:
Bit
Messages
Default
0
SLOW DOWN UP (FFF4)
0
1
HIGHEND LIMIT (FFF6)
SLOW DOWN DOWN (FFF5)
0
LOWEND LIMIT (FFF7)
2
LOAD SP UP LIM (FFB8)
0
LOAD SP DW LIM (FFB9)
3
JOYSTICK CHECK (FFFA)
1
4
ZERO POS WARN (FFFB)
1
5
START HIGH (FFB3)
1
6
HOMING ACTIVE (FFB1)
1
7
FLWR1 LIM/FLT (FFFD)
HOMING DONE (FFB0)
FLWR2 LIM/FLT (FFFE)
1
FLWR3 LIM/FLT (FFB5)
FLWR4 LIM/FLT (FFB4)
8
MASTERLIM/FLT (FFB2)
1
9
START INTERLOCK
1
Program features
128
Program features
129
Application macros, control location EXT1/EXT2
Chapter overview
This chapter describes the intended use, operation and the default control
connections of the standard application macros. It also describes how to save a user
macro, and how to recall it.
Overview of macros
Application macros are preprogrammed parameter sets. While starting up the drive,
you typically select one of the macros - the one that is best suited to your needs with parameter 99.02, make the essential changes and save the result as a user
macro.
There is a crane macro and two user macros. The table below contains a summary
of the macros and describes the suitable applications.
Macro
Suitable Applications
Crane
Crane control
User
You can save the customised standard macro, that is the parameter settings
including group 99, and the results of the motor identification into the permanent
memory, and recall the data at a later time. Two user macros are essential when
switching between two different motors is required.
Control locations EXT1/EXT2
Two control locations are used in the crane macro for fast switch-over between
different modes. Control location EXT1 is used for the stand-alone mode, and control
location EXT2 is used for the Master/Follower and Synchro control mode.
EXT1
STANDALONE
10.01 START/STOP
11.03 REF
EXT2
11.02 EXT1/EXT2 SELECT
MASTER-FOLLOWER
10.02 START/STOP
11.06 REF
Application macros, control location EXT1/EXT2
130
Control locations and control modes
Stand-alone mode
Control location EXT1 is used for the stand-alone mode when the crane motion is
working alone. For more information, see Stand-alone mode (EXT1) on page 56.
The homing control mode is used in the stand-alone state. For more information, see
section Homing sequence on page 92.
A speed-controlled crane is also controlled in control location EXT1.
Master/Follower and Synchro control mode
Control location EXT2 is used for the Master/Follower and Synchro control mode
when the crane motions (for example, hooks) are working together. For the MasterFollower data transfer, see the figure in section Master/Follower use of several
drives (Only in EXT2 Control).
The control location EXT2 Master can be in the speed or torque control mode and
the Followers can be in the speed, torque or Synchro control mode.
Crane macro
This section describes the default control interfaces and signals of the macro and
shows the connection diagrams. You can give all drive commands and reference
settings from the control panel (local control) or an external device (external control).
The LOC/REM key of the panel selects between local and external control.
The drive is speed-controlled as default.
EXT1 is the default external control location of the application program. The
reference signal is connected to analogue input AI1. The Start Fwd and Start Rev
signals are connected to digital inputs DI1 and DI2. By default, the direction is fixed
to REQUEST (with parameter 10.03).
The Slowdown signal, the Fast Stop signal DI5, High-end limit and Low-end limit
signals do not have any default values as they are pointer parameters. You have to
configure these signals.
Two analogue signals (speed and current) and three relay output signals (Brake Lift,
running and inverted fault) are available.
The default signals on the display of the control panel are SPEED, CURRENT and
TORQUE.
Application macros, control location EXT1/EXT2
131
Default control connections
The figure below shows the external control connections for the Crane macro. The
markings of the standard I/O terminals on the RMIO board are shown.
1)
Parameter 10.03 should be
REQUEST.
2)
The US default settings differ as
follows:
DI1
0
1
0
1
DI2
0
0
1
1
Operation
Stop
Start Forward
Start Reverse
Stop
rpm
A
3) See
the wiring diagram on page
338 if used as power ackn signal.
4) +24
V DC external auxiliary
voltage to the RMIO board.
For more information, see External
24 V supply of RMIO board on page
117.
X20
1
2
X21
1
2
3
4
5
6
7
8
9
10
11
12
X22
1
2
3
4
5
6
7
8
9
10
11
X23
1
2
X25
1
2
3
X26
1
2
3
X27
1
2
3
VREF
GND
Reference voltage -10 V DC
1 kohm < RL < 10 kohm
VREF
GND
AI1+
AI1AI2+
AI2AI3+
AI3AO1+
AO1AO2+
AO2-
Reference voltage 10 V DC
1 kohm < RL < 10 kohm
Speed reference 0(2) … 10 V, Rin > 200 kohm
DI1
DI2
DI3
DI4
DI5
DI6
+24 V
+24 V
DGND1
DGND2
DI IL
Forward Start 2)
Reverse Start 1, 2)
+24 V
GND
Auxiliary voltage input/output, non-isolated,
24 V DC, 250 mA4)
RO11
RO12
RO13
RO21
RO22
RO23
R031
R032
R033
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
Motor speed 0(4) … 20 mA = 0 … motor nom.
speed, RL < 700 ohm
Output current 0(4) … 20 mA = 0 … motor
nom. current, RL < 700 ohm
+24 V DC, max. 100 mA
Digital ground
Digital ground
Start interlock (0 = stop) 3)
Relay output 1
Open Brake
Relay output 2
Running
Relay output 3
Inverted fault
Application macros, control location EXT1/EXT2
132
User macros
In addition to the standard application macros, it is possible to create two user
macros.
User macro 1
EXT1
Stand-alone
speed control
16.05 USER MACRO IO CHG
EXT2
Master/Follower and Synchro
control
User macro 2
EXT1
Stand-alone
speed control
EXT2
Master/Follower and Synchro
control
The user macro allows you to save the parameter settings including Group 99, and
the results of the motor identification into the permanent memory, and to recall the
data at a later time. The panel reference is also saved, if the macro is saved and
loaded in the Local control mode. The Remote control location setting is saved into
the user macro, but the Local control location setting is not.
To create User Macro 1:
• Adjust the parameters. Perform the motor identification if it has not been
performed yet.
• Save the parameter settings and the results of the motor identification by
changing the parameter 99.02 APPLICATION MACRO to USER 1 SAVE (press
ENTER). The storing takes 20 s to 1 min.
Note: If the user macro save function is executed several times, the drive memory
fills up and file compression starts. The file compression can last up to 10 minutes.
Macro saving will be completed after the file compression. (The operation is
indicated on the last row of the control panel display by blinking dots).
Application macros, control location EXT1/EXT2
133
To recall the user macro:
• Change the parameter 99.02 APPLICATION MACRO to USER 1 LOAD.
• Press ENTER to load.
The user macro can also be switched via digital inputs (see parameter 16.05 USER
MACRO IO CHG).
Note: The user macro load also restores the motor settings in group 99 START-UP
DATA and the results of the motor identification. Check that the settings correspond
to the motor used.
Example: You can switch the drive between two motors without having to adjust the
motor parameters and to repeat the motor identification every time the motor is
changed. You only need to adjust the settings and perform the motor identification
once for both of the motors, and then to save the data as two user macros. When the
motor is changed, only the corresponding user macro needs to be loaded, and the
drive is ready to operate.
Application macros, control location EXT1/EXT2
134
Control schemes
This section describes the different control schemes which can be used to control
the drive and the parameters to be set accordingly.
Control using digital inputs and Potentiometer Reference
Name
Description
Start/Stop Control
Selecting the source for start and stop signals of the
two external control locations, EXT1 and EXT2
for EXT1
Set parameters
Parameter value
Selecting between EXT1 and EXT2
11.02
EXT 1
Defining Start/Stop selection
10.01
DI1 F, DI2 R
Defining the direction control
10.03
REQUEST
Selecting the DI for Slowdown
10.09
DI4
Selecting signal Fast Stop
10.10
Selecting the signal High-end limit
10.12
Selecting the signal Low-end limit
10.13
Selecting the source for the speed reference
11.03
Referencing EXT1
AI1
(If AI1 is used: Setting analogue input AI1 limits, scale, (13.01, 13.02, 13.03,
inversion)
13.04, 13.05, 30.01)
Setting the reference limits
11.04,11.05
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration/deceleration
22.01
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Selecting the source for the speed/torque reference
11.06
ACC/DEC DIR
Referencing EXT2
AI1
(If AI1 is used: Setting analogue input AI1 limits, scale, (13.01, 13.02, 13.03,
inversion)
13.04, 13.05, 30.01)
Setting the reference limits
11.07,11.08
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting acceleration/deceleration
22.01
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Application macros, control location EXT1/EXT2
ACC/DEC DIR
135
See figures below for control connection for control using digital inputs and
Potentiometer Reference.
1)
*
See the wiring diagram on page 338
if used as power ON ackn signal.
To be configured using respective
pointer parameters
2)
Considering the function pointer is
configured with an inverted signal
rpm
A
X20
1
2
X21
1
2
3
4
5
6
7
8
9
10
11
12
X22
1
2
3
4
5
6
7
8
9
10
11
X23
1
2
X25
1
2
3
X26
1
2
3
X27
1
2
3
VREF
GND
Reference voltage -10 V DC
1 kohm < RL < 10 kohm
VREF
GND
AI1+
AI1AI2+
AI2AI3+
AI3AO1+
AO1AO2+
AO2-
Reference voltage 10 V DC
1 kohm < RL < 10 kohm
Speed reference 0(2) … 10 V, Rin > 200 kohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
Motor speed 0(4) … 20 mA = 0 … motor nom.
speed, RL < 700 ohm
Output current 0(4) … 20 mA = 0 … motor
nom. current, RL < 700 ohm
DI1
DI2
DI3
DI4
DI5
DI6
+24 V
+24 V
DGND1
DGND2
DI IL
Forward Start
Reverse Start
Brake Acknowledge (1= brake open) *
Slowdown (0= Slowdown active)*
Fast Stop (0= Fast Stop active) 2) *
Digital ground
Digital ground
Start interlock (0 = stop) 1)
+24 V
GND
Auxiliary voltage output, non-isolated, 24 V
DC, 250 mA
+24 V DC, max. 100 mA
RO11
RO12
RO13
Relay output 1
RO21
RO22
RO23
Relay output 2
R031
R032
R033
Relay output 3
Open Brake
Running
Inverted fault
Application macros, control location EXT1/EXT2
136
RDIO-01 digital I/O extension
1)
Considering the function pointer is
configured with an inverted signal
*
N
24 - 230 V AC
To be configured using respective
pointer parameters
X11
1
2
X12
1
2
3
4
DI1A
DI1B
High-end limit (0 = Emergency stop) 1) *
High-end limit
DI2A
DI2B
DI3A
DI3B
Low-end limit (0 = Emergency stop) 1) *
Low-end limit
Control using Joystick
Name
Description
Start/Stop Control
Selecting the source for start and stop signals of the two
external control locations, EXT1 and EXT2
for EXT1
Set parameters
Parameter value
Selecting between EXT1 and EXT2
11.02
EXT 1
Defining Start/Stop selection
10.01
DI1
Defining the direction control
10.03
REQUEST
Selecting the DI for Slowdown
10.09
DI4
Selecting the signal for Fast Stop
10.10
Selecting the signal for High-end limit
10.12
Selecting the signal for Low-end limit
10.13
Selecting the signal for Zero Position
10.16
Selecting the source for the speed reference (If
unipolar)
11.03
AI1/JOYSTICK
11.03
AI1 BIPOLAR
Referencing EXT1
Selecting the source for the speed reference (If Bipolar)
(If AI1 is used: Setting analogue input AI1 limits, scale,
inversion)
(13.01, 13.02, 13.03,
13.04, 13.05, 30.01)
Setting the reference limits
11.04
11.05
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Setting Joystick Warning delay
11.13
Application macros, control location EXT1/EXT2
2 seconds
137
Name
Description
Set parameters
Parameter value
Selecting the source for the speed/ torque reference (If
unipolar)
11.06
AI1/JOYSTICK
Referencing EXT2
Selecting the source for the speed / torque reference (If 11.06
Bipolar)
(If AI1 is used: Setting analogue input AI1 limits, scale,
inversion)
(13.01, 13.02, 13.03,
13.04, 13.05, 30.01)
Setting the reference limits
11.07
AI1 BIPOLAR
11.08
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Setting Joystick Warning delay
11.13
2 seconds
Application macros, control location EXT1/EXT2
138
See figures below for control connection using Joystick in Unipolar configuration
1)
See the wiring diagram on page 338
if used as power ON ackn signal.
2) Considering the function pointer is
configured with an inverted signal
*
To be configured using respective
pointer parameters
rpm
A
X20
1
2
X21
1
2
3
4
5
6
7
8
9
10
11
12
X22
1
2
3
4
5
6
7
8
9
10
11
X23
1
2
X25
1
2
3
X26
1
2
3
X27
1
2
3
VREF
GND
Reference voltage -10 V DC
1 kohm < RL < 10 kohm
VREF
GND
AI1+
AI1AI2+
AI2AI3+
AI3AO1+
AO1AO2+
AO2-
Reference voltage 10 V DC
1 kohm < RL < 10 kohm
Speed reference 0(2) … 10 V, Rin > 200 kohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
Motor speed 0(4) … 20 mA = 0 … motor nom.
speed, RL < 700 ohm
Output current 0(4) … 20 mA = 0 … motor
nom. current, RL < 700 ohm
DI1
DI2
DI3
DI4
DI5
DI6
+24 V
+24 V
DGND1
DGND2
DI IL
Start / Stop(0=stop, 1=start)
Digital ground
Digital ground
Start interlock (0 = stop) 1)
+24 V
GND
Auxiliary voltage output, non-isolated, 24 V
DC, 250 mA
Brake Acknowledge (1= brake open) *
Slowdown (0= Slowdown active)*
Fast Stop (0= Fast Stop active)2 *)
Zero position (1=Zero position active) 2) *
+24 V DC, max. 100 mA
RO11
RO12
RO13
Relay output 1
RO21
RO22
RO23
Relay output 2
R031
R032
R033
Relay output 3
Application macros, control location EXT1/EXT2
Open Brake
Running
Inverted fault
139
See figures below for control connection using Joystick in Bipolar configuration
1)
See the wiring diagram on page 338
if used as power ON ackn signal.
2)
Considering the function pointer is
configured with an inverted signal
rpm
A
*
To be configured using respective
pointer parameters
X20
1
2
X21
1
2
3
4
5
6
7
8
9
10
11
12
X22
1
2
3
4
5
6
7
8
9
10
11
X23
1
2
X25
1
2
3
X26
1
2
3
X27
1
2
3
VREF
GND
Reference voltage -10 V DC
1 kohm < RL < 10 kohm
VREF
GND
AI1+
AI1AI2+
AI2AI3+
AI3AO1+
AO1AO2+
AO2-
Reference voltage 10 V DC
1 kohm < RL < 10 kohm
Speed reference 0(2) … 10 V, Rin > 200 kohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
Motor speed 0(4) … 20 mA = 0 … motor nom.
speed, RL < 700 ohm
Output current 0(4) … 20 mA = 0 … motor
nom. current, RL < 700 ohm
DI1
DI2
DI3
DI4
DI5
DI6
+24 V
+24 V
DGND1
DGND2
DI IL
Start /Stop (0=stop, 1=start)
Digital ground
Digital ground
Start interlock (0 = stop) 1)
+24 V
GND
Auxiliary voltage output, non-isolated, 24 V
DC, 250 mA
Brake Acknowledge (1= brake open) *
Slowdown (0= Slowdown active) *
Fast Stop (0= Fast Stop active) 2) *
Zero position (1=Zero position active) 2) *
+24 V DC, max. 100 mA
RO11
RO12
RO13
Relay output 1
RO21
RO22
RO23
Relay output 2
R031
R032
R033
Relay output 3
Open Brake
Running
Inverted fault
Application macros, control location EXT1/EXT2
140
RDIO-01 digital I/O extension
1)
Considering the function pointer is
configured with an inverted signal N
*
24 - 230 V AC
To be configured using respective
pointer parameters
X11
1
2
X12
1
2
3
4
DI1A
DI1B
High-end limit (0 = Emergency stop) 1) *
High-end limit
DI2A
DI2B
DI3A
DI3B
Low-end limit (0 = Emergency stop) 1) *
Low-end limit
Wiring diagrams for Joystick using external and internal power supplies
Application macros, control location EXT1/EXT2
141
Control using motorized potentiometer
Name
Description
Start/Stop Control
Selecting the source for start and stop signals of the two
external control locations, EXT1 and EXT2
for EXT1
Set parameters
Parameter value
Selecting between EXT1 and EXT2
11.02
EXT 1
Defining Start/Stop selection
10.01
DI1 F, DI2 R
Defining the direction control
10.03
REQUEST
Selecting the DI for Slowdown
10.09
DI5
Selecting the signal for Fast Stop
10.10
Selecting the signal for the High-end limit
10.12
Selecting the signal for Low-end limit
10.13
Selecting the source for the speed reference
11.03
Setting the reference limits
11.04
Referencing EXT1
DI3U,4D
11.05
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Selecting the source for the speed/ torque reference
11.06
Setting the reference limits
11.07
Referencing EXT2
DI3U,4D
11.08
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Setting Joystick Warning delay
11.13
2 seconds
Application macros, control location EXT1/EXT2
142
See figures below for control connection using motorized potentiometer
1)
*
See the wiring diagram on page 338
if used as power ON ackn signal.
To be configured using respective
pointer parameters
rpm
A
X20
1
2
X21
1
2
3
4
5
6
7
8
9
10
11
12
X22
1
2
3
4
5
6
7
8
9
10
11
X23
1
2
X25
1
2
3
X26
1
2
3
X27
1
2
3
VREF
GND
Reference voltage -10 V DC
1 kohm < RL < 10 kohm
VREF
GND
AI1+
AI1AI2+
AI2AI3+
AI3AO1+
AO1AO2+
AO2-
Reference voltage 10 V DC
1 kohm < RL < 10 kohm
not in use 0(2) … 10 V, Rin > 200 kohm
DI1
DI2
DI3
DI4
DI5
DI6
+24 V
+24 V
DGND1
DGND2
DI IL
Forward Start
Reverse Start
Speed Increase
Speed Decrease
Slowdown (0= Slowdown active) *
Brake Acknowledge (1= brake open) *
+24 V DC, max. 100 mA
Digital ground
Digital ground
Start interlock (0 = stop) 1)
+24 V
GND
Auxiliary voltage output, non-isolated, 24 V
DC, 250 mA
RO11
RO12
RO13
RO21
RO22
RO23
R031
R032
R033
Application macros, control location EXT1/EXT2
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
Motor speed 0(4) … 20 mA = 0 … motor nom.
speed, RL < 700 ohm
Output current 0(4) … 20 mA = 0 … motor
nom. current, RL < 700 ohm
Relay output 1
Open Brake
Relay output 2
Running
Relay output 3
Inverted fault
143
RDIO-01 digital I/O extension
1)
Considering the function pointer is
configured with an inverted signal
*
N
24 - 230 V AC
To be configured using respective
pointer parameters
X11
1
2
X12
1
2
3
4
DI1A
DI1B
High-end limit (0 = Emergency stop) 1) *
High-end limit
DI2A
DI2B
DI3A
DI3B
Low-end limit (0 = Emergency stop) 1) *
Low-end limit
Fast Stop (0= Fast Stop active)1)
Fast Stop
Control using step reference
Name
Description
Start/Stop Control
Selecting the source for start and stop signals of the
two external control locations, EXT1 and EXT2
for EXT1
Set parameters
Parameter value
Selecting between EXT1 and EXT2
11.02
EXT 1
Defining Start/Stop selection
10.01
DI1 F, DI2 R
Defining the direction control
10.03
REQUEST
Selecting the DI for Slowdown
10.09
DI4
Selecting the signal for Fast Stop
10.10
Selecting the signal for the High-end limit
10.12
Selecting the signal for Low-end limit
10.13
Selecting the Step reference
12.01
Setting Step references
12.02
DI9,DI10,DI11
Referencing
12.03
12.04
12.05
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Application macros, control location EXT1/EXT2
144
See figures below for control connection using step reference
1)
See the wiring diagram on page 338
if used as power ON ackn signal.
2)
Considering the function pointer is
configured with an inverted signal
*
To be configured using respective
pointer parameters
rpm
A
X20
1
2
X21
1
2
3
4
5
6
7
8
9
10
11
12
X22
1
2
3
4
5
6
7
8
9
10
11
X23
1
2
X25
1
2
3
X26
1
2
3
X27
1
2
3
VREF
GND
Reference voltage -10 V DC
1 kohm < RL < 10 kohm
VREF
GND
AI1+
AI1AI2+
AI2AI3+
AI3AO1+
AO1AO2+
AO2-
Reference voltage 10 V DC
1 kohm < RL < 10 kohm
not in use 0(2) … 10 V, Rin > 200 kohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
Motor speed 0(4) … 20 mA = 0 … motor nom.
speed, RL < 700 ohm
Output current 0(4) … 20 mA = 0 … motor
nom. current, RL < 700 ohm
DI1
DI2
DI3
DI4
DI5
DI6
+24 V
+24 V
DGND1
DGND2
DI IL
Forward Start
Reverse Start
Brake Acknowledge (1= brake open) *
Slowdown (0= Slowdown active) *
Fast Stop (0= Fast Stop active) 2) *
Digital ground
Digital ground
Start interlock (0 = stop) 1)
+24 V
GND
Auxiliary voltage output, non-isolated, 24
V DC, 250 mA
+24 V DC, max. 100 mA
RO11
RO12
RO13
Relay output 1
RO21
RO22
RO23
Relay output 2
R031
R032
R033
Relay output 3
Application macros, control location EXT1/EXT2
Open Brake
Running
Inverted fault
145
RDIO-01 digital I/O extension module -1
1)
Considering the function pointer is
configured with an inverted signal
*
N
24 - 230 V AC
To be configured using respective
pointer parameters
X11
1
2
X12
1
2
3
4
DI1A
DI1B
High-end limit (0 = Emergency stop) 1) *
High-end limit
DI2A
DI2B
DI3A
DI3B
Low-end limit (0 = Emergency stop) 1) *
Low-end limit
Step reference DI
RDIO-01 digital I/O extension module -2
N
24 - 230 V AC
X11
1
2
X12
1
2
3
4
DI1A
DI1B
Step reference DI
DI2A
DI2B
DI3A
DI3B
Step reference DI
Application macros, control location EXT1/EXT2
146
Control using fieldbus
Name
Description
Start/Stop Control
Selecting the source for start and stop signals of the two
external control locations, EXT1 and EXT2
for EXT1
Set parameters
Parameter value
Selecting between EXT1 and EXT2
11.02
COMM.CW
Defining Start/Stop selection
10.01
COMM.CW
Defining the direction control
10.03
REQUEST
Selecting the DI for Slowdown
10.09
DI4
Selecting the signal for Fast Stop
10.10
Selecting the signal for the High-end limit
10.12
Selecting the signal for Low-end limit
10.13
Selecting the source for the speed reference
11.03
Setting the reference limits
11.04
Referencing EXT1
COMM.REF
11.05
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Selecting the source for the speed/ torque reference
11.06
Setting the reference limits
11.07
Referencing EXT2
COMM.REF
11.08
Communication
Setup
Setting the speed (frequency) limits
20.02, 20.01, (20.08,
20.07)
Setting the Slowdown reference
11.12
Setting acceleration and deceleration times
22.02, 22.03, 22.10
Setting Joystick Warning delay
11.13
Setting the communication Interface
98.02
Setting the communication profile
98.07
Setting up the communication Adapter (If Adapter used)
group51
Setting up the communication (If Standard Modbus used) group52
Application macros, control location EXT1/EXT2
2 seconds
147
See figures below for control connection in fieldbus mode
1)
See the wiring diagram on page 338
if used as power ON ackn signal.
2)
Considering the function pointer is
configured with an inverted signal
*
To be configured using respective
pointer parameters
rpm
A
X20
1
2
X21
1
2
3
4
5
6
7
8
9
10
11
12
X22
1
2
3
4
5
6
7
8
9
10
11
X23
1
2
X25
1
2
3
X26
1
2
3
X27
1
2
3
VREF
GND
Reference voltage -10 V DC
1 kohm < RL < 10 kohm
VREF
GND
AI1+
AI1AI2+
AI2AI3+
AI3AO1+
AO1AO2+
AO2-
Reference voltage 10 V DC
1 kohm < RL < 10 kohm
not in use 0(2) … 10 V, Rin > 200 kohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
By default, not in use. 0(4) … 20 mA, Rin =
100 ohm
Motor speed 0(4) … 20 mA = 0 … motor nom.
speed, RL < 700 ohm
Output current 0(4) … 20 mA = 0 … motor
nom. current, RL < 700 ohm
DI1
DI2
DI3
DI4
DI5
DI6
+24 V
+24 V
DGND1
DGND2
DI IL
Digital ground
Digital ground
Start interlock (0 = stop 1)
+24 V
GND
Auxiliary voltage output, non-isolated, 24
V DC, 250 mA
RO11
RO12
RO13
RO21
RO22
RO23
R031
R032
R033
Brake Acknowledge (1= brake open) *
Slowdown (0= Slowdown active) *
Fast Stop (0= Fast Stop active) 2) *
+24 V DC, max. 100 mA
Relay output 1
Open Brake
Relay output 2
Running
Relay output 3
Inverted fault
Application macros, control location EXT1/EXT2
148
2)
RDIO-01 digital I/O extension
Considering the function pointer is
configured with an inverted signal
N
*
24 - 230 V AC
To be configured using respective
X11
1
2
X12
1
2
3
4
DI1A
DI1B
High-end limit (0 = Emergency stop) 2) *
High-end limit
DI2A
DI2B
DI3A
DI3B
Low-end limit (0 = Emergency stop) 2) *
Low-end limit
pointer parameters
Application macros, control location EXT1/EXT2
149
Communication Interface
DI1
•••
11.02
COMM.CW
10.01
03.01
MAIN CW
•••
DI1
COMM.CW
10.02
AI1
•••
MAIN
REFERENCE
DATA SET
REF2
11.03
AI1
•••
REF1
01.11
EXT REF1
COMM.REF
CW
01.12
EXT REF2
COMM.REF
Fieldbus
Communication
AUXILLARY 1
REFERENCE
DATA SET
REF 3
REF 4
11.06
90.01
REF 5
PARAMETER
TABLE
10.01
90.02
AUXILLARY 2
REFERENCE
DATA SET
10.02
90.03
•••
REF 6
REF 7
89.99
REF 8
90.04
90.05
90.06
•••
•••
•••
Application macros, control location EXT1/EXT2
150
Application macros, control location EXT1/EXT2
151
Actual signals and parameters
Chapter overview
The chapter describes the actual signals and parameters and gives the fieldbus
equivalent values for each signal/parameter. More data is given in chapter Additional
data: actual signals and parameters.
Terms and abbreviations
Term
Definition
Absolute Maximum
Frequency
Value of 20.08, or 20.07 if the absolute value of the minimum limit is
greater than the maximum limit.
Absolute Maximum
Speed
Value of parameter 20.02, or 20.01 if the absolute value of the minimum
limit is higher than the maximum limit.
Actual signal
Signal measured or calculated by the drive. You can monitor the signal
but no user settings are possible.
FbEq
Fieldbus equivalent: The scaling between the value shown on the panel
and the integer used in serial communication.
Parameter
A user-adjustable operation instruction of the drive.
Actual signals and parameters
152
Actual signals
No.
Name/Value
Description
FbEq
01 ACTUAL SIGNALS
Basic signals for monitoring of the drive.
01.02
SPEED
Calculated motor speed in rpm. Filter time setting with parameter 34.04
MOTOR SP FILT TIM.
-20000 =
-100% 20000
= 100% of
motor abs.
max. speed
01.03
FREQUENCY
Calculated drive output frequency.
-100 = -1 Hz
100 = 1 Hz
01.04
CURRENT
Measured motor current.
10 = 1 A
01.05
TORQUE
Calculated motor torque. 100 is the motor nominal torque. Filter time
setting with parameter 34.05 TORQ ACT FILT TIM.
-10000 =
-100% 10000
= 100% of
motor nom.
torque
01.06
POWER
Motor power. 100 is the nominal power.
-1000 =
-100% 1000 =
100% of motor
nom. power
01.07
DC BUS VOLTAGE V
Measured intermediate circuit voltage.
1=1V
01.08
MAINS VOLTAGE
Calculated supply voltage.
1=1V
01.09
OUTPUT VOLTAGE
Calculated motor voltage.
1=1V
01.10
ACS800 TEMP
Calculated IGBT temperature.
1 = 1 °C
01.11
EXTERNAL REF 1
External reference REF1 in rpm. (Hz if value of parameter 99.04 MOTOR 1 = 1 rpm
CTRL MODE is SCALAR.)
01.12
EXTERNAL REF 2
External reference REF2. Depending on the use, 100% is the motor
0 = 0% 10000
maximum speed, motor nominal torque, or maximum process reference. = 100% 1)
01.13
CTRL LOCATION
Active control location. (1,2) LOCAL; (3) EXT1; (4) EXT2. See section
Local control vs. external control.
See descr.
01.14
OP HOUR COUNTER
Elapsed time counter. Runs when the control board is powered.
1=1h
01.15
KILOWATT HOURS
kWh counter. Counts inverter output kWh during operation (motor side generator side).
1 = 100 kWh
01.17
DIL DI6-1 STATUS
Status of digital inputs. Example: 0000001 = DI1 is on, DI2 to DI6 and
DIL are off.
01.18
AI1 [V]
Value of analogue input AI1.
1 = 0.001 V
01.19
AI2 [mA]
Value of analogue input AI2.
1 = 0.001 mA
01.20
AI3 [mA]
Value of analogue input AI3.
1 = 0.001 mA
01.21
RO3-1 STATUS
Status of relay outputs. Example: 001 = RO1 is energised, RO2 and
RO3 are de-energised.
01.22
AO1 [mA]
Value of analogue output AO1.
1 =0.001 mA
01.23
AO2 [mA]
Value of analogue output AO2.
1 = 0.001 mA
01.27
APPLICATION MACRO
Active application macro (value of parameter 99.02).
See 99.02
01.28
EXT AO1 [mA]
Value of output 1 of the analogue I/O extension module (optional).
1 = 0.001 mA
01.29
EXT AO2 [mA]
Value of output 2 of the analogue I/O extension module (optional).
1 = 0.001 mA
01.30
PP 1 TEMP
Measured heatsink temperature in inverter no. 1.
1 = 1°C
01.31
PP 2 TEMP
Measured heatsink temperature in inverter no. 2 (used only in high power 1 = 1 °C
units with parallel inverters).
Actual signals and parameters
153
No.
Name/Value
Description
FbEq
01.32
PP 3 TEMP
Measured heatsink temperature in inverter no. 3 (used only in high power 1 = 1 °C
units with parallel inverters).
01.33
PP 4 TEMP
Measured heatsink temperature in inverter no. 4 (used only in high power 1 = 1 °C
units with parallel inverters).
01.35
MOTOR 1 TEMP
Measured temperature of motor 1. See parameter 35.01 MOT 1 TEMP
AI1 SEL.
1 = 1 °C
01.36
MOTOR 2 TEMP
Measured temperature of motor 2. See parameter 35.04 MOT 2 TEMP
AI2 SEL.
1 = 1 °C
01.37
MOTOR TEMP EST
Estimated motor temperature. Signal value is saved at power switch off.
1 = 1 °C
01.38
AI5 [mA]
Value of analogue input AI5 read from AI1 of the analogue I/O extension 1 = 0.001 mA
module (optional). A voltage signal is also displayed in mA (instead of V).
01.39
AI6 [mA]
Value of analogue input AI6 read from AI2 of the analogue I/O extension 1 = 0.001 mA
module (optional). A voltage signal is also displayed in mA (instead of V).
01.40
DI15-7 STATUS
Status of digital inputs DI15 to DI7 read from the digital I/O extension
modules (optional). For example, value 000000001: DI7 is on, DI8 to
DI15 are off.
01.41
EXT RO STATUS
Status of the relay outputs on the digital I/O extension modules (optional). 1 = 1
For example, value 0000001: RO1 of module 1 is energised. Other relay
outputs are de-energised.
01.42
PROCESS SPEED REL
Motor actual speed in percent of the Absolute Maximum Speed. If
parameter 99.04 MOTOR CTRL MODE is SCALAR, the value is the
relative actual output frequency.
1=1
01.43
CRANE OPT TIME
Crane operation time counter. The counter runs when the inverter
modulates. Can be reset with parameter 79.02 RESET OPT TIME.
1 = 10 h
01.44
FAN ON-TIME
Running time of the drive cooling fan.
1 = 10 h
1=1
Note: Resetting of the counter is recommended when the fan is replaced.
For more information, contact your local ABB representative.
01.45
CTRL BOARD TEMP
Control board temperature.
1 = 1°C
01.46
OEM SIGNAL
Text defined in parameter 99.12 OEM SIGNAL. Can be used for
displaying in the control panel.
02 ACTUAL SIGNALS
Speed and torque reference monitoring signals.
02.01
SPEED REF 2
Limited speed reference. 100% corresponds to the Absolute Maximum
Speed of the motor.
0 = 0% 20000
= 100% of
motor
absolute max.
speed
02.02
SPEED REF 3
Ramped and shaped speed reference. 100% corresponds to the
Absolute Maximum Speed of the motor.
20000 = 100%
02.09
TORQUE REF 2
Speed controller output. 100% corresponds to the motor nominal torque. 0 = 0% 10000
= 100% of
motor nominal
torque
02.10
TORQUE REF 3
Torque reference. 100% corresponds to the motor nominal torque.
10000 = 100%
02.13
TORQ USED REF
Torque reference after frequency, voltage and torque limiters. 100%
corresponds to the motor nominal torque.
10000 = 100%
02.14
FLUX REF
Flux reference in percent.
10000 = 100%
02.17
SPEED ESTIMATED
Estimated motor speed. 100% corresponds to the Absolute Maximum
Speed of the motor.
20000 = 100%
Actual signals and parameters
154
No.
Name/Value
Description
FbEq
02.18
SPEED MEASURED
Measured motor actual speed (zero when no encoder is used). 100%
corresponds to the Absolute Maximum Speed of the motor.
20000 = 100%
02.19
MOTOR ACCELERATIO Calculated motor acceleration from signal 01.02 SPEED.
02.21
POS ACT PPU
02.22
SHAFT POS
Actual shaft position in pulses.
1=1
02.23
SYNC POS ERROR
Actual Shaft position error in mm. Applicable only if the drive is a
Follower.
1=1 mm
02.24
SYNC POS ERROR 1
Actual Shaft position error of Follower 1 in mm. Applicable only if the
drive is the Master.
1=1 mm
02.25
SYNC POS ERROR 2
Actual Shaft position error of Follower 2 in mm. Applicable only if the
drive is the Master.
1=1 mm
02.26
SYNC POS ERROR 3
Actual Shaft position error of Follower 3 in mm. Applicable only if the
drive is the Master.
1=1 mm
02.27
SYNC POS ERROR 4
Actual Shaft position error of Follower 4 in mm. Applicable only if the
drive is the Master.
1=1 mm
02.28
BRAKE OPT COUNTS
Brake open counter. The counter displays the number of brake open
counts. Can be reset with parameter 79.01 BRAKE CTR RESET.
1=1 rpm/s.
Actual position measurement value, which is scaled with Par. 78.04 POS 1=1mm
SCALE.
03 ACTUAL SIGNALS
Data words for monitoring of fieldbus communication (each signal is a 16- 2)
bit data word).
03.01
MAIN CTRL WORD
A 16-bit data word. See section 03.01 MAIN CONTROL WORD in
chapter Fieldbus control.
03.02
MAIN STATUS WORD
A 16-bit data word. See section 03.02 MAIN STATUS WORD in chapter
Fieldbus control.
03.03
AUX STATUS WORD
A 16-bit data word. See section 03.03 AUXILIARY STATUS WORD in
chapter Fieldbus control.
03.04
LIMIT WORD 1
A 16-bit data word. See section 03.04 LIMIT WORD 1 in chapter Fieldbus
control.
03.05
FAULT WORD 1
A 16-bit data word. See section 03.05 FAULT WORD 1 in chapter
Fieldbus control.
03.06
FAULT WORD 2
A 16-bit data word. See section 03.06 FAULT WORD 2 in chapter
Fieldbus control.
03.07
SYSTEM FAULT
A 16-bit data word. See section 03.07 SYSTEM FAULT WORD in chapter
Fieldbus control.
03.08
ALARM WORD 1
A 16-bit data word. See section 03.08 ALARM WORD 1 in chapter
Fieldbus control.
03.09
ALARM WORD 2
A 16-bit data word. See section 03.09 ALARM WORD 2 in chapter
Fieldbus control.
03.11
FOLLOWER MCW
A 16-bit data word. See section 03.11 FOLLOWER MAIN COMMAND
WORD in chapter Fieldbus control. For the contents, see also Master/
Follower Application Guide [3AFE64590430 (English)].
03.13
AUX STATUS WORD 3
A 16-bit data word. See section 03.13 AUXILIARY STATUS WORD 3 in
chapter Fieldbus control.
03.14
AUX STATUS WORD 4
A 16-bit data word. See section 03.14 AUXILIARY STATUS WORD 4 in
chapter Fieldbus control.
03.15
FAULT WORD 4
A 16-bit data word. See section 03.15 FAULT WORD 4 in chapter
Fieldbus control.
Actual signals and parameters
155
No.
Name/Value
Description
FbEq
03.16
ALARM WORD 4
A 16-bit data word. See section 03.16 ALARM WORD 4 in chapter
Fieldbus control.
03.17
FAULT WORD 5
A 16-bit data word. See section 03.17 FAULT WORD 5 in chapter
Fieldbus control.
03.18
ALARM WORD 5
A 16-bit data word. See section 03.18 ALARM WORD 5 in chapter
Fieldbus control.
03.19
INT INIT FAULT
A 16-bit data word. See section 03.19 INT INIT FAULT in chapter
Fieldbus control.
03.20
LATEST FAULT
Fieldbus code of the latest fault. See section 03.20...03.24 Fault codes in
chapter Fieldbus control.
03.21
2.LATEST FAULT
Fieldbus code of the 2nd latest fault. See section 03.20...03.24 Fault
codes in chapter Fieldbus control.
03.22
3.LATEST FAULT
Fieldbus code of the 3rd latest fault. See section 03.20...03.24 Fault
codes in chapter Fieldbus control.
03.23
4.LATEST FAULT
Fieldbus code of the 4th latest fault. See section 03.20...03.24 Fault
codes in chapter Fieldbus control.
03.24
5.LATEST FAULT
Fieldbus code of the 5th latest fault. See section 03.20...03.24 Fault
codes in chapter Fieldbus control.
03.25
LATEST WARNING
Fieldbus code of the latest warning. See section 03.25...03.29 Warning
codes in chapter Fieldbus control.
03.26
2.LATEST WARNING
Fieldbus code of the 2nd latest warning. See section 03.25...03.29
Warning codes in chapter Fieldbus control.
03.27
3.LATEST WARNING
Fieldbus code of the 3rd latest warning. See section 03.25...03.29
Warning codes in chapter Fieldbus control.
03.28
4.LATEST WARNING
Fieldbus code of the 4th latest warning. See section 03.25...03.29
Warning codes in chapter Fieldbus control.
03.29
5.LATEST WARNING
Fieldbus code of the 5th latest warning. See section 03.25...03.29
Warning codes in chapter Fieldbus control.
03.30
LIMIT WORD INV
A 16-bit data word. See section 03.30 LIMIT WORD INV in chapter
Fieldbus control.
03.31
ALARM WORD 6
A 16-bit data word. See section 03.31 ALARM WORD 6 in chapter
Fieldbus control.
03.32
CRANE STATUS WORD A 16-bit data word. See section 03.32 CRANE STATUS WORD in
chapter Fieldbus control.
03.33
CRANE FAULT WORD
A 16-bit data word. See section 03.33 CRANE FAULT WORD in chapter
Fieldbus control.
03.34
APPL CONTROL
WORD
A 16-bit data word. See section 03.34 APPL CONTROL WORD in
chapter Fieldbus control.
03.35
SPEED CORR BUF
A real value which shows the speed correction value in rpm that is used
in speed control loop.
03.36
M F STATUS WORD
A 16-bit data word. See section 03.36 M F STATUS WORD in chapter
Fieldbus control.
03.37
FLW CMD WITH POS
A 16-bit data word. See section 03.37 FCW WITH POS in chapter
Fieldbus control.
03.38
POSITION REM
An integer word which is used for transmission of Master position
remainder, when the drive is in Shaft synchro mode. See section Control
location EXT1/EXT2 supervision mismatch for more explanation.
Actual signals and parameters
156
No.
Name/Value
Description
FbEq
04 ACTUAL SIGNALS
Signals for the Adaptive Program
2)
04.01
FAULTED INT INFO
A 16-bit data word. See section 03.37 FCW WITH POS in chapter
Fieldbus control.
04.02
INT SC INFO
A 16-bit data word. See section 04.02 INT SC INFO in chapter Fieldbus
control.
09 ACTUAL SIGNALS
Signals for the Adaptive Program
09.01
AI1 SCALED
Value of analogue input AI1 scaled to an integer value.
20000 = 10 V
09.02
AI2 SCALED
Value of analogue input AI2 scaled to an integer value.
20000 = 20
mA
09.03
AI3 SCALED
Value of analogue input AI3 scaled to an integer value.
20000 = 20
mA
09.04
AI5 SCALED
Value of analogue input AI5 scaled to an integer value.
20000 = 20
mA
09.05
AI6 SCALED
Value of analogue input AI6 scaled to an integer value.
20000 = 20
mA
09.06
DS MCW
Control Word (CW) of the Main Reference data set received from the
Master station through the fieldbus interface
0 ... 65535
(Decimal)
09.07
MASTER REF1
Reference 1 (REF1) of the Main Reference data set received from the
Master station through the fieldbus interface
-32768 …
32767
09.08
MASTER REF2
Reference 2 (REF2) of the Main Reference data set received from the
Master station through the fieldbus interface
-32768 …
32767
09.09
AUX DS VAL1
Auxiliary data set value 1 received from the Master station through the
fieldbus interface
-32768 …
32767
09.10
AUX DS VAL2
Auxiliary data set value 2 received from the Master station through the
fieldbus interface
-32768 …
32767
09.11
AUX DS VAL3
Auxiliary data set value 3 received from the Master station through the
fieldbus interface
-32768 …
32767
09.12
AUX DS VAL4
Auxiliary data set value 4 received from the Master station through the
fieldbus interface
-32768 …
32767
09.13
AUX DS VAL5
Auxiliary data set value 5 received from the Master station through the
fieldbus interface
-32768 …
32767
09.14
AUX DS VAL6
Auxiliary data set value 6 received from the Master station through the
fieldbus interface
-32768 …
32767
09.15
LCU ACT SIGNAL1
Line-side converter signal selected with parameter 95.08 LCU PAR1
SEL. A 16-bit data word.
09.16
LCU ACT SIGNAL2
Line-side converter signal selected with parameter 95.09 LCU PAR2
SEL. A 16-bit data word.
1) Percent of motor maximum speed / nominal torque / maximum process reference (depending on the
ACS800 macro selected).
2) The contents of these data words are detailed in chapter Fieldbus control.
Actual signals and parameters
157
Parameters
Index
Name/Selection
Description
FbEq
10 START/STOP/DIR
The sources for external start, stop and direction control
10.01
Defines the connections and the source of the Start, Stop and Direction
commands for external control location 1 (EXT1).
EXT1 STRT/STP/DIR
Note: In M/F configuration, EXT2 should be used for M/F mode and EXT1 for
stand-alone mode.
NOT SEL
No Start, Stop and Direction command source.
1
DI1 F, DI2 R
Start, Stop and Direction commands through digital inputs DI1 and DI2.
2
DI1
0
1
0
1
DI2
0
0
1
1
Operation
Stop
Start forward
Start reverse
Stop
Note: Parameter 10.03 REF DIRECTION must be REQUEST.
DI3 F, DI4R
Start, Stop and Direction commands through digital inputs DI3 and DI4.
3
See selection DI1 F, DI2 R.
DI5 F, DI6 R
Start, Stop and Direction commands through digital inputs DI5 and DI6.
4
See selection DI1 F, DI2 R.
10.02
KEYPAD
Control panel. To control the direction, parameter 10.03 REF DIRECTION must 5
be REQUEST.
COMM.CW
Fieldbus Control Word. See 03.01 MAIN CONTROL WORD bit 3 on page 250. 6
PARAM 10.04
Source selected with parameter 10.04 EXT1 STRT PTR. This selection can be 7
used for joystick controls when the joystick reference is used for deciding the
direction.
EXT2 STRT/STP/DIR
Defines the connections and the source of the Start, Stop and Direction
commands for external control location 2 (EXT2).
Note: In M/F configuration, EXT2 should be used for M/F mode and EXT1 for
stand-alone mode.
10.03
NOT SEL
See parameter 10.01 EXT1 STRT/STP/DIR.
1
DI1 F, DI2 R
See parameter 10.01 EXT1 STRT/STP/DIR.
2
DI3 F, DI4R
See parameter 10.01 EXT1 STRT/STP/DIR.
3
DI5 F, DI6 R
See parameter 10.01 EXT1 STRT/STP/DIR.
4
KEYPAD
See parameter 10.01 EXT1 STRT/STP/DIR.
5
COMM.CW
See parameter 10.01 EXT1 STRT/STP/DIR.
6
PARAM 10.05
Source selected with10.05 EXT2 STRT PTR.This selection can be used for
joystick controls when the joystick reference is used for deciding the direction.
7
REF DIRECTION
Enables the control of rotation direction of the motor, or fixes the direction.
FORWARD
Fixed to forward
1
REVERSE
Fixed to reverse
2
REQUEST
Direction of rotation control allowed
3
Actual signals and parameters
158
Index
Name/Selection
Description
10.04
EXT1 STRT PTR
Defines the source or constant for value Par. 10.04 EXT1 STRT PTR of
parameter 10.01 EXT1 STRT/STP/DIR.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value:
FbEq
-
- Parameter pointer: Inversion, group, index and bit fields. The bit number is
effective only for blocks handling boolean inputs.
- Constant value: Inversion and constant fields. Inversion field must have value
C to enable the constant setting.
10.05
10.07
EXT2 STRT PTR
Defines the source or constant for value Par. 10.05 of parameter 10.02 EXT2
STRT/STP/DIR.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
NET CONTROL
When active, fieldbus overrides the selection of parameter 10.01 EXT1 STRT/
STP/DIR. Fieldbus Control Word (except bit 11) is enabled when EXT1 is
selected as the active control location.
-
Note: Only visible with the Generic Drive communication profile selected
(98.07).
Note: The setting is not saved in the permanent memory (will reset to zero
when power is switched off).
10.08
0
Inactive
0
1
Active
1
NET REFERENCE
When active, fieldbus overrides the selection of parameter 11.03 EXT REF1
SELECT. Fieldbus reference REF1 is enabled when EXT1 is selected as the
active control location.
Note: Only visible with the Generic Drive communication profile selected
(98.07).
Note: The setting is not saved in the permanent memory (will reset to zero
when power is switched off).
10.09
0
Inactive
0
1
Active
1
SLOW DOWN INPUT Defines the input for the Slowdown command for external control location 1
(EXT1) and 2 (EXT2). When the command is active, the drive limits the speed
to the slowdown reference defined with parameter 11.12 SLOW DOWN REF.
NOT SEL
No Slowdown selection.
1
DI3 F,DI4 R
Slowdown command through digital input 3 and digital input 4. Slowdown
active in forward direction (UP) when DI3 = 0, inactive when DI3 = 1.
Slowdown active in reverse (down) direction when DI4 = 0, inactive when
DI4 = 1.
2
DI4 F,DI5 R
Slowdown command through digital input 4 and digital input 5.
3
See DI3 F,DI4 R selection.
DI7 F,DI8 R
Slowdown command through digital input 7 and digital input 8.
DI9 F,DI10 R
Slowdown command through digital input 9 and digital input 10.
4
See DI3 F,DI4 R selection.
5
See DI3 F,DI4 R selection.
PAR 10.19
Slowdown command through parameter 10.19. This selection can be used if
only one DI is used for up and down directions in parallel. Slowdown active
when pointer value = 0, inactive when pointer value = 1.
Actual signals and parameters
6
159
Index
Name/Selection
Description
FbEq
10.10
FAST STOP PTR
Defines the source or constant for the Fast Stop command. The command can
be a normally open (if the bit selection is not inverted) or normally closed (if the
bit selection is inverted) logic according to the selection in the pointer value.
When the command is active, the drive decelerates according to the parameter
22.10 value.
Note: For safety, it is better to use the bit selection as normally closed by
inverting the bit in the pointer value.
10.12
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
HIGHEND PTR
Defines the source or constant for the High-end limit command. The command
can be a normally open (if the bit selection is not inverted) or normally closed (if
the bit selection is inverted) logic according to the selection in the pointer
value. When the command is active, emergency stop in forward direction, stop
within time defined with Par. 22.07 EM STOP RAMP TIME.
-
Note: For safety, it is better to use the bit selection as normally closed by
inverting the bit in the pointer value.
10.13
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
LOWEND PTR
Defines the source or constant for the Low-end limit command. The command
can be a normally open (if the bit selection is not inverted) or normally closed (if
the bit selection is inverted) logic according to the selection in the pointer
value. When the command is active, emergency stop in reverse direction, stop
within time defined with Par. 22.07.
-
Note: For safety, it is better to use the bit selection as normally closed by
inverting the bit in the pointer value.
10.14
10.15
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
-
SYNC SEL
Defines the Input for the Synchro command. When the command is active, and
the drive is in Master/Follower mode, the Shaft synchronisation is enabled. The
synchronisation should be enabled through the parameter 78.01 SYNCRO
CONTROL Synchro selection for this parameter to be used.
NOT SEL
No Synchro selection.
1
ENABLE
Synchro command always active.
2
COMM.MODULE
Synchro command through APPL CONTROL WORD (3.34) bit 0.
3
PARAM 10.17
Source selected with Par. 10.17 SYNC PTR.
4
HOMING ACK SEL
Defines the Input for homing acknowledgment signal used in the homing
sequence. The signal initialises Actual Position PPU Par. 02.21 POS ACT
PPU. The value is initialised to value defined in Par. 78.10 HOME POSITION
when the drive is in homing sequence. The drive stops automatically on
receiving this command in homing sequence. For more details, see section
Homing sequence on page 92.
Note: Homing is activated only when the drive is controlled from EXT1.
NOT SEL
No selection.
RESET
Homing acknowledgment using the control panel. Automatically reverts back to 2
NOT SEL, once the acknowledgment is done.
1
COMM.MODULE
Homing Ackn command through (03.34) APPL CONTROL WORD bit 1.
3
PARAM 10.22
Source selected with Par. 10.22 HOMING ACK PTR.
4
Actual signals and parameters
160
Index
Name/Selection
Description
10.16
ZERO POS PTR
Defines the source or constant for Zero position input. Checks for this signal
before the drive can be started in case the drive has stopped in a fast stop or
fault condition.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
SYNC PTR
Defines the source or constant for value Par. 10.17 SYNC PTR of parameter
10.14 SYNC SEL.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value:
10.17
FbEq
-
-
- Parameter pointer: Inversion, group, index and bit fields. The bit number is
effective only for blocks handling boolean inputs.
- Constant value: Inversion and constant fields. Inversion field must have value
C to enable the constant setting.
10.19
10.20
10.21
SLOW DOWN PTR
Defines the source or constant for value Par. 10.19 SLOW DOWN PTR of
parameter 10.09 SLOW DOWN INPUT.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
EXT SPD LIM PTR
Defines the source or constant for the External Speed Limit command. The
command can be a normally open (if the bit selection is not inverted) or
normally closed (if the bit selection is inverted) logic according to the selection
in the pointer value. When the command is active, the drive speed reference is
limited to the value defined in Par. 20.22 MAX EXT LIM SPD or Par. 20.23 MIN
EXT LIM SPD depending on the motor direction.
Note: For safety, it is better to use the bit selection as normally closed by
inverting the bit in the pointer value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
HOMING SEL PTR
Defines the source or constant for Homing activation command. When the
command is activated, homing sequence is activated and homing reference
(Par. 11.14) is used as the speed reference.
-
-
Note: Homing is activated only when the drive is controlled from EXT1.
10.22
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
HOMING ACK PTR
Defines the source or constant for Homing acknowledge command. When the
command is activated and the drive is in homing sequence, the drive actual
position (02.21) is initialized with the value set in parameter 78.10 HOME
POSITION. The drive stops automatically on receiving this command during
the homing sequence.
-
Note: Homing is activated only when the drive is controlled from EXT1.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
Actual signals and parameters
-
161
Index
Name/Selection
Description
FbEq
11 REFERENCE
SELECT
Panel reference type, external control location selection and external reference
sources and limits
11.01
KEYPAD REF SEL
Selects the type of the reference given from panel.
REF1 (rpm)
Speed reference in rpm. (Frequency reference (Hz) if parameter 99.04 is
SCALAR.)
1
REF2 (%)
%-reference. The use of REF2 vary depending on the application. For
example, if the Torque Control using M/F is selected, REF2 is the torque
reference.
2
EXT1/EXT2 SELECT
Defines the source from which the drive reads the signal that selects between
the two external control locations, EXT1 or EXT2.
11.02
Note: In M/F configuration, EXT2 should be used for control in M/F mode and
EXT1 for stand-alone mode.
11.03
EXT1
EXT1 active. The control signal sources are defined with parameter 10.01 and 1
11.03.
EXT2
EXT2 active. The control signal sources are defined with parameter 10.02 and 2
11.06.
COMM.CW
Fieldbus Control Word. See 03.01 MAIN CONTROL WORD bit 11 on page
250.
3
DI7
Digital input DI7 is the signal source.
4
DI8
Digital input DI8 is the signal source.
5
DI9
Digital input DI9 is the signal source.
6
DI10
Digital input DI10 is the signal source.
7
PARAM 11.09
Source selected with parameter 11.09.
8
EXT REF1 SELECT
Selects the signal source for external reference REF1
Note: In M/F configuration, EXT2 should be used for M/F mode and EXT1 for
stand-alone mode.
KEYPAD
AI1
Control panel. The first line on the display shows the reference value.
1
Analogue input AI1.
2
Note: If the signal is bipolar (±10 V DC), use the selection AI1 BIPOLAR. (The
selection AI1 ignores the negative signal range.)
AI2
Analogue input AI2.
3
AI3
Analogue input AI3.
4
Actual signals and parameters
162
Index
Name/Selection
Description
FbEq
AI1/JOYST
5
Unipolar analogue input AI1 as joystick. The minimum input signal runs the
motor at the maximum reference in the reverse direction, the maximum input at
the maximum reference in the forward direction.
Note: Parameter 10.03 REF DIRECTION must have the value REQUEST.
Start DI direction, if used (10.01 or 10.02) overwrites the joystick direction.
WARNING! Minimum reference for joystick must be higher than 0.5 V.
Set parameter 13.01 MINIMUM AI1 to 2 V or to a value higher than
0.5 V and analogue signal loss detection parameter 30.01 AI<MIN
FUNCTION to FAULT. The drive will stop in case the control signal is lost.
Speed Reference (REF1)
11.05
11.04
0
AI1
-11.04
-11.05
2
6
10
Par. 13.01 = 2 V, Par. 13.02 = 10 V
Note: If the signal is bipolar (±10 V DC), use the selection AI1 BIPOLAR. The
selection AI1/JOYST ignores the negative signal range.
AI2/JOYST
See selection AI1/JOYST.
6
DI3U,4D(R)
Digital input 3: Reference increase. Digital input DI4: Reference decrease.
Stop command or power switch off resets the reference to zero. Parameter
22.04 ACCEL TIME 2 defines the rate of the reference change.
7
DI3U,4D
Digital input 3: Reference increase. Digital input DI4: Reference decrease. The 8
program stores the active speed reference (not reset with a Stop command or
power switch-off). Parameter 22.04 ACCEL TIME 2 defines the rate of the
reference change.
DI5U,6D
See selection DI3U, 4D.
9
COMM. REF
Fieldbus reference REF1
10
FAST COMM
As with the selection COMM. REF, except the following differences:
11
- shorter communication cycle time when transferring the reference to the core
motor control program (6 ms -> 2 ms)
- the direction cannot be controlled through interfaces defined with parameters
10.01 or 10.02, nor with the control panel
Note: If any of the following selections is true, the selection is not effective.
Instead, the operation is according to COMM. REF.
- parameter 99.04 MOTOR CTRL MODE is SCALAR
AI5
Analogue input AI5
12
AI5/JOYST
See selection AI1/JOYST.
13
AI6/JOYST
See selection AI1/JOYST.
14
DI11U,12D(R)
See selection DI3U,4D(R).
15
Actual signals and parameters
163
Name/Selection
Description
FbEq
DI11U,12D
See selection DI3U,4D.
16
PARAM 11.10
Source selected with Par. 11.10 EXT1 REF PTR.
17
AI1 BIPOLAR
Bipolar analogue input AI1 (-10 … 10 V). The figure below illustrates the use of 18
the input as the speed reference.
Operation Range
scaled
maxREF1
Speed Reference
Index
10.03 REF
DIRECTION =
FORWARD or
REQUEST
minREF1
-minREF1
10.03 REF
DIRECTION =
REVERSE or
REQUEST
-scaled
maxREF1
-maxAI1
-minAI1
minAI1
maxAI1
Analogue Input signal
minAI1
maxAI1
scaled maxREF1
minREF1
=
=
=
=
13.01 MINIMUM AI1
13.02 MAXIMUM AI1
13.03 SCALE AI1 x 11.05 EXT REF1 MAXIMUM
11.04 EXT REF1 MINIMUM
Note: Start DI direction, if used (10.01 or 10.02) overwrites the joystick
direction.
Actual signals and parameters
164
Index
Name/Selection
Description
FbEq
11.04
EXT REF1 MINIMUM
Defines the minimum value for external reference REF1 (absolute value).
Corresponds to the minimum setting of the source signal used.
0 … 18000 rpm
Setting range in rpm (Hz if parameter 99.04 is SCALAR).
1 … 18000
Example: Analogue input AI1 is selected as the reference source (value of
parameter 11.03 is AI1). The reference minimum and maximum correspond
the AI minimum and maximum settings as follows:
EXT REF1 Range
11.05
13.01
13.02
11.04
11.05
11.04
13.01
13.02
Minimum setting for AI1
Maximum setting for AI1
Minimum reference
Maximum reference
AI1 Range
Note: If the reference is given through fieldbus, the scaling differs from that of
an analogue signal. See chapter Fieldbus control for more information.
11.05
EXT REF1 MAXIMUM Defines the maximum value for external reference REF1 (absolute value).
Corresponds to the maximum setting of the used source signal.
0 … 18000 rpm
Setting range (Hz if value of parameter 99.04 is SCALAR).
1 … 18000
See parameter 11.04 EXT REF1 MINIMUM.
11.06
EXT REF2 SELECT
Selects the signal source for external reference REF2. REF2 is a
- speed reference in percent of the Absolute Maximum Speed if parameter
99.02 = CRANE.
- frequency reference in percent of the Absolute Maximum Frequency if
parameter 99.04 = SCALAR.
Note: In M/F configuration, EXT2 should be used for M/F mode and EXT1 for
stand-alone mode.
KEYPAD
See parameter 11.03 EXT REF1 SELECT.
1
AI1
See parameter 11.03.
2
Note: If the signal is bipolar (±10 V DC), use the selection AI1 BIPOLAR. The
selection AI1 ignores the negative signal range.
AI2
See parameter 11.03.
3
AI3
See parameter 11.03.
4
AI1/JOYST
See parameter 11.03.
5
AI2/JOYST
See parameter 11.03.
6
DI3U,4D(R)
See parameter 11.03.
7
DI3U,4D
See parameter 11.03.
8
DI5U,6D
See parameter 11.03.
9
COMM. REF
See parameter 11.03.
10
FAST COMM
See parameter 11.03.
11
Note: In addition to the conditions stated for parameter 11.03, the drive must
be in Torque control, and this reference used as a torque reference by the
Follower drive. Otherwise this selection works like COMM.REF.
Actual signals and parameters
165
Index
11.07
Name/Selection
Description
FbEq
AI5
See parameter 11.03.
12
AI5/JOYST
See parameter 11.03.
13
AI6/JOYST
See parameter 11.03.
14
DI11U,12D(R)
See parameter 11.03.
15
DI11U,12D
See parameter 11.03.
16
PARAM 11.11
Source selected with Par. 11.11 EXT2 REF PTR.
17
AI1 BIPOLAR
See parameter 11.03 EXT REF1 SELECT.
18
EXT REF2 MINIMUM
Defines the minimum value for external reference REF2 (absolute value).
Corresponds to the minimum setting of the source signal used.
0 … 100%
Setting range in percent. Correspondence to the source signal limits:
0 … 10000
- Source is an analogue input: See the example in parameter 11.04.
- Source is a serial link: See chapter Fieldbus control.
11.08
EXT REF2 MAXIMUM Defines the maximum value for external reference REF2 (absolute value).
Corresponds to the maximum setting of the source signal used.
0 … 600%
Setting range. Correspondence to the source signal limits:
0 … 6000
- Source is an analogue input: See parameter 11.04.
- Source is a serial link: See chapter Fieldbus control.
11.09
11.10
11.11
11.12
11.13
EXT 1/2 SEL PTR
Defines the source or constant for value Par. 11.09 of parameter 11.02.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
EXT 1 REF PTR
Defines the source or constant for value Par. 11.10 of parameter 11.03.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
EXT 2 REF PTR
Defines the source or constant for value Par. 11.11 of parameter 11.06.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
SLOW DOWN REF
Defines the absolute speed reference limit in Slowdown mode. Value in
percentage of the motor maximum or minimum speed defined in Par. 20.02 or
Par. 20.01. If in Scalar Mode then maximum or minimum frequency defined in
Par. 20.08 or Par. 20.07. See Par. 10.09 also
0 … 100%
Setting range
-
-
-
0 … 100
JOYSTICK WARN TD Defines the time delay for Joystick check warning in case of a joystick
hardware error. Joystick error is detected, if zero speed selection is true and
the speed reference or torque reference is greater than +/- 10% of minimum or
maximum scaled value of the used joystick reference. If Start commands in
both the direction is true simultaneously, then also it is detected as a joystick
hardware error.
0 … 10 s
Setting range
0 … 100
Actual signals and parameters
166
Index
Name/Selection
Description
FbEq
11.14
HOMING REF
Defines the speed reference in homing sequence. Value in rpm. The speed
reference sign is not considered if the Start command used defines the
direction also (For example, Par. 10.01 EXT1 STRT/STP/DIR configured as
DI1F, DI2R). The speed reference sign will be considered when Start
command does not define the direction (For example, Par. 10.01 EXT1 STRT/
STP/DIR configured as Par.10.04).
-18000 … 18000 rpm
Setting range
-180000 …
180000
12 STEP REFERENCING Step referencing selection and values. An active step reference overrides the
drive speed reference.
12.01
STEP REF SEL
Activates the step reference or selects the activation signal.
NOT SEL
No step reference in use
1
DI3,4,5
Speed defined by digital input DI3, DI4 and DI5.
2
DI3
0
1
1
1
DI4
0
0
1
1
DI5
0
0
0
1
Operation
STEP REF 1
STEP REF 2
STEP REF 3
STEP REF 4
Any other combination of DI will activate STEP REF 1.
12.02
12.03
12.04
DI4,5,6
Speed defined by digital input DI4, DI5 and DI6. See DI3, 4, 5 selection.
3
DI7,8,9
Speed defined by digital input DI7, DI8 and DI9. See DI3, 4, 5 selection.
4
DI8,9,10
Speed defined by digital input DI8, DI9 and DI10. See DI3, 4, 5 selection.
5
DI9,10,11
Speed defined by digital input DI9, DI10 and DI11. See DI3, 4, 5 selection.
6
STEP POINTER
Speed defined by pointer selections Par. 12.06, Par. 12.07 and Par. 12.08. See 7
DI3, 4, 5 selection.
STEP REF 1
Defines speed 1. An absolute value. Does not include the direction information.
0 … 18000 rpm
Setting range
STEP REF 2
Defines speed 2. An absolute value. Does not include the direction information.
-18000 … 18000 rpm
Setting range
STEP REF 3
0 … 18000
-18000 …
18000
Defines speed 3. An absolute value. Does not include the direction information.
Note: If inching is in use, the parameter defines the inching 1 speed. The sign
is taken into account. See chapter Fieldbus control.
12.05
-18000 … 18000 rpm
Setting range
STEP REF 4
Defines speed 4. An absolute value. Does not include the direction information.
-18000 …
18000
Note: If inching is in use, the parameter defines the inching 2 speed. The sign
is taken into account. See chapter Fieldbus control.
-18000 … 18000 rpm
12.06
Setting range
STEP DI1 PTR
Defines the source or constant for value Par. 12.06 of parameter 12.01.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
Actual signals and parameters
-18000 …
18000
-
167
Index
Name/Selection
Description
12.07
STEP DI2 PTR
Defines the source or constant for value Par. 12.07 of parameter 12.01.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
STEP DI3 PTR
Defines the source or constant for value Par. 12.08 of parameter 12.01.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
12.08
FbEq
13 ANALOGUE INPUTS
The analogue input signal processing. See section Programmable analogue
inputs on page 60.
13.01
Defines the minimum value for analogue input AI1. When used as a reference,
the value corresponds to the reference minimum setting.
MINIMUM AI1
-
-
Example: If AI1 is selected as the source for external reference REF1, this
value corresponds to the value of parameter 11.04.
0V
Zero volts. Note: The program cannot detect a loss of analogue input signal.
1
2V
Two volts
2
TUNED VALUE
The value measured by the tuning function. See the selection TUNE.
3
TUNE
The value measurement triggering. Procedure:
4
- Connect the minimum signal to input.
- Set the parameter to TUNE.
Note: The readable range in tuning is 0 … 10 V.
13.02
MAXIMUM AI1
Defines the maximum value for analogue input AI1. When used as a reference,
the value corresponds to the reference maximum setting.
Example: If AI1 is selected as the source for external reference REF1, this
value corresponds to the value of parameter 11.05.
10 V
Ten volts (DC).
1
TUNED VALUE
The value measured by the tuning function. See the selection TUNE.
2
Triggering of the tuning function. Procedure:
3
TUNE
- Connect the maximum signal to input.
- Set the parameter to TUNE.
Note: The readable range in tuning is 0 … 10 V.
Actual signals and parameters
168
Index
Name/Selection
Description
FbEq
13.03
SCALE AI1
Scales analogue input AI1.
Example: The effect on speed reference REF1 when:
- REF1 source selection (parameter 11.03) = AI1
- REF1 maximum value setting (parameter 11.04) = 0 rpm
- REF1 maximum value setting (parameter 11.05) = 1500 rpm
- Minimum AI1 setting (parameter 13.01) = 0 V
- Maximum AI1 setting (parameter 13.02) = 10 V
- Actual AI1 value = 4 V (40% of the full scale value)
- AI1 scaling = 100%
13.04
AI1 V DC
Speed Ref
10 V
1500 rpm
4V
600 rpm
0V
0 rpm
If the actual value of AI1 is
4 V, then the speed reference
will correspond to
(4 / (10-0)*100) = 40% of
1500 rpm which will be
600 rpm.
0 … 1000%
Scaling range
FILTER AI1
Defines the filter time constant for analogue input AI1.
%
0 … 32767
Unfiltered signal
O = I · (1 - e-t/T)
100
63
Filtered signal
T
t
I = filter input (step)
O = filter output
t = time
T = filter time constant
Note: The signal is also filtered due to the signal interface hardware (10 ms
time constant). This cannot be changed with any parameter.
13.05
13.06
0.00 … 10.00 s
Filter time constant
INVERT AI1
Activates/deactivates the inversion of analogue input AI1.
NO
No inversion
YES
Inversion active. The maximum value of the analogue input signal corresponds 65535
to the minimum reference and vice versa.
MINIMUM AI2
See parameter 13.01.
0 mA
See parameter 13.01.
1
4 mA
See parameter 13.01.
2
TUNED VALUE
See parameter 13.01.
3
TUNE
See parameter 13.01.
4
Actual signals and parameters
0 … 1000
0
169
Index
Name/Selection
Description
13.07
MAXIMUM AI2
See parameter 13.02.
FbEq
20 mA
See parameter 13.02.
1
TUNED VALUE
See parameter 13.02.
2
TUNE
See parameter 13.02.
3
13.08
SCALE AI2
See parameter 13.03.
0 … 1000%
See parameter 13.03.
13.09
FILTER AI2
See parameter 13.04.
0.00 … 10.00 s
See parameter 13.04.
INVERT AI2
See parameter 13.05.
13.10
13.11
13.12
0 … 32767
0 … 1000
NO
See parameter 13.05.
0
YES
See parameter 13.05.
65535
MINIMUM AI3
See parameter 13.01.
0 mA
See parameter 13.01.
1
4 mA
See parameter 13.01.
2
TUNED VALUE
See parameter 13.01.
3
TUNE
See parameter 13.01.
4
MAXIMUM AI3
See parameter 13.02.
20 mA
See parameter 13.02.
1
TUNED VALUE
See parameter 13.02.
2
TUNE
See parameter 13.02.
3
13.13
SCALE AI3
See parameter 13.03.
0 … 1000%
See parameter 13.03.
13.14
FILTER AI3
See parameter 13.04.
0.00 … 10.00 s
See parameter 13.04.
INVERT AI3
See parameter 13.05.
13.15
13.16
13.17
0 … 32767
0 … 1000
NO
See parameter 13.05.
0
YES
See parameter 13.05.
65535
MINIMUM AI5
See parameter 13.01.
Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.
0 mA
See parameter 13.01.
1
4 mA
See parameter 13.01.
2
TUNED VALUE
See parameter 13.01.
3
TUNE
See parameter 13.01.
4
MAXIMUM AI5
See parameter 13.02.
Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.
13.18
13.19
20 mA
See parameter 13.02.
1
TUNED VALUE
See parameter 13.02.
2
TUNE
See parameter 13.02.
3
SCALE AI5
See parameter 13.03.
0 … 1000%
See parameter 13.03.
FILTER AI5
See parameter 13.04.
0.00 … 10.00 s
See parameter 13.04.
0 … 32767
0 … 1000
Actual signals and parameters
170
Index
Name/Selection
Description
13.20
INVERT AI5
See parameter 13.05.
13.21
FbEq
NO
See parameter 13.05.
0
YES
See parameter 13.05.
65535
MINIMUM AI6
See parameter 13.01.
Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.
13.22
0 mA
See parameter 13.01.
1
4 mA
See parameter 13.01.
2
TUNED VALUE
See parameter 13.01.
3
TUNE
See parameter 13.01.
4
MAXIMUM AI6
See parameter 13.02.
Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.
20 mA
See parameter 13.02.
1
TUNED VALUE
See parameter 13.02.
2
TUNE
See parameter 13.02.
3
13.23
SCALE AI6
See parameter 13.03.
0 … 1000%
See parameter 13.03.
13.24
FILTER AI6
See parameter 13.04.
0.00 … 10.00 s
See parameter 13.04.
INVERT AI6
See parameter 13.05.
13.25
See parameter 13.05.
0
YES
See parameter 13.05.
65535
Status information indicated through the relay outputs, and the relay operating
delays. See section Programmable relay outputs on page 64.
14.01
14.03
14.10
0 … 1000
NO
14 RELAY OUTPUTS
14.02
0 … 32767
RO PTR1
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
RO PTR2
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
RO PTR3
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
-
For example, default value +003.013.06 (Par. 03.13 bit 6) is used for Open
brake command.
-
For example, default value +003.002.02 (Par. 03.02 bit 2) is used for drive
running.
-
For example, default value -003.002.03 (Par. 03.02 bit 3) is used for inverted
drive fault.
RO PTR4
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
Actual signals and parameters
-
171
Index
Name/Selection
Description
14.11
RO PTR5
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
RO PTR6
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
RO PTR7
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
RO PTR8
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
RO PTR9
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
14.12
14.13
14.14
14.15
FbEq
-
-
-
-
-
15 ANALOGUE
OUTPUTS
Selection of the actual signals to be indicated through the analogue outputs.
Output signal processing. See section Programmable analogue outputs on
page 61.
15.01
AO1 PTR
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
INVERT AO1
Inverts the analogue output AO1 signal. The analogue signal is at the minimum
level when the indicated drive signal is at its maximum level and vice versa.
NO
Inversion off
0
YES
Inversion on
65535
MINIMUM AO1
Defines the minimum value of the analogue output signal AO1.
0 mA
Zero mA
1
4 mA
Four mA
2
FILTER AO1
Defines the filtering time constant for analogue output AO1.
0.00 … 10.00 s
Filter time constant
15.02
15.03
15.04
1000 =
1 mA
For example, default value 001.002 (signal 01.02) is used for actual speed.
%
0 … 1000
Unfiltered signal
O = I · (1 - e-t/T)
100
63
Filtered signal
T
t
I = filter input (step)
O = filter output
t = time
T = filter time constant
Note: Even if you select 0 s as the minimum value, the signal is still filtered
with a time constant of 10 ms due to the signal interface hardware. This cannot
be changed with any parameters.
Actual signals and parameters
172
Index
Name/Selection
Description
15.05
SCALE AO1
Scales the analogue output AO1 signal.
10 … 1000%
Scaling factor. If the value is 100%, the reference value of the drive signal
corresponds to 20 mA.
FbEq
100 …
10000
Example: The nominal motor current is 7.5 A and the measured maximum
current at maximum load 5 A. The motor current 0 to 5 A needs to be read as 0
to 20 mA analogue signal through AO1. The required settings are:
1. AO1 is set to CURRENT with parameter 15.01.
2. AO1 minimum is set to 0 mA with parameter 15.03.
3. The measured maximum motor current is scaled to correspond to 20 mA
analogue output signal by setting the scaling factor (k) to 150%. The value is
defined as follows: The reference value of the output signal CURRENT is the
motor nominal current, that is 7.5 A (see parameter 15.01 AO1 PTR). To make
the measured maximum motor current correspond to 20 mA, it should be
scaled equal to the reference value before it is converted to an analogue
output signal. Equation:
k × 5 A = 7.5 A => k = 1.5 = 150%
15.06
15.07
15.08
AO2 PTR
Defines the source or constant for value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
INVERT AO2
See parameter 15.02.
NO
See parameter 15.02.
0
YES
See parameter 15.02.
65535
1000 =
1 mA
For example, default value 001.005 (signal 01.05) is used for actual torque.
MINIMUM AO2
See parameter 15.03.
0 mA
See parameter 15.03.
1
4 mA
See parameter 15.03.
2
15.09
FILTER AO2
See parameter 15.04.
0.00 … 10.00 s
See parameter 15.04.
15.10
SCALE AO2
See parameter 15.05.
10 … 1000%
See parameter 15.05.
0 … 1000
100 …
10000
16 SYST CTRL INPUTS
Run Enable, parameter lock etc.
16.01
RUN ENABLE
Sets the Run Enable signal on, or selects a source for the external Run Enable
signal. If Run Enable signal is switched off, the drive does not start or stops if it
is running. The stop mode is set with parameter 21.07 RUN ENABLE FUNC.
After the drive stops on Run disable condition, the drive does not restart
automatically if the run enable signal is switched on with the Start command is
ON. A new Start command has to be given for a new start.
YES
Run Enable signal is on.
1
COMM.CW
External signal required through the Fieldbus Control Word (bit 3).
2
DI7
Digital input DI7 is the signal source.
3
DI9
Digital input DI9 is the signal source.
4
DI11
Digital input DI11 is the signal source.
5
PARAM 16.08
Source selected with parameter 16.08.
6
Actual signals and parameters
173
Index
Name/Selection
Description
16.02
PARAMETER LOCK
Selects the state of the parameter lock. The lock prevents parameter changing.
16.03
16.04
FbEq
OPEN
The lock is open. Parameter values can be changed.
LOCKED
Locked. Parameter values cannot be changed from the control panel. The lock 1
can be opened by entering the valid code to parameter 16.03.
0
PASS CODE
Selects the pass code for the parameter lock (see parameter 16.02).
0 … 30000
Setting 358 opens the lock. Setting 584 opens the group 99 read only lock. The 0 … 30000
value reverts back to 0 automatically.
FAULT RESET SEL
Selects the source for the fault reset signal. The signal resets the drive after a
fault trip if the cause of the fault no longer exists.
NOT SEL
Fault reset only from the control panel keypad (RESET key).
1
COMM.CW
Reset through the fieldbus Control Word (bit 7), or with the RESET key of the
control panel.
2
Note: Reset through fieldbus Control Word (bit 7) is enabled automatically and
it is independent of parameter 16.04 setting if parameter 10.01 or 10.02 is set
to COMM.CW.
16.05
ON STOP
Reset along with the stop signal received through a digital input, or with the
RESET key of the control panel.
3
DI8
Digital input DI8 is the signal source.
4
DI10
Digital input DI10 is the signal source.
5
DI12
Digital input DI12 is the signal source.
6
PARAM 16.11
Source selected with parameter 16.11.
7
USER MACRO IO
CHG
Enables the change of the user macro through a digital input. See parameter
99.02. The change is only allowed when the drive is stopped. During the
change, the drive does not start.
Note: Always save the user macro with parameter 99.02 after changing any
parameter settings, or reperforming the motor identification. The last settings
you have saved are loaded into use whenever the power is switched off and on
again or the macro is changed. Any unsaved changes will be lost.
Note: The value of this parameter is not included in the user macro. A setting
once made remains despite the user macro change.
Note: Selection of User Macro 2 can be supervised via relay output RO3. See
parameter 14.03 RO PTR3 for more information.
16.06
NOT SEL
User macro change is not possible.
1
DI8
Digital input DI8 is the signal source.
2
DI9
Digital input DI9 is the signal source.
3
DI10
Digital input DI10 is the signal source.
4
COMM.CW
Macro change through the fieldbus Control Word (bit 12).
5
PARAM 16.13
Source selected with parameter 16.13.
6
LOCAL LOCK
Disables entering local control mode (LOC/REM key of the panel).
WARNING! Before activating, ensure that the control panel is not
needed for stopping the drive!
OFF
Local control allowed.
0
ON
Local control disabled.
65535
Actual signals and parameters
174
Index
Name/Selection
Description
16.07
PARAMETER SAVE
Saves the valid parameter values to the permanent memory.
FbEq
Note: A new parameter value of a standard macro is saved automatically when
changed from the panel but not when altered through a fieldbus connection.
DONE
16.08
16.09
16.11
16.12
16.13
16.14
Saving completed
0
SAVE..
Saving in progress
1
RUN ENA PTR
Defines the source or constant for value Par. 16.08 of parameter 16.01.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
CTRL BOARD
SUPPLY
Defines the source of the control board power supply.
INTERNAL 24V
Internal (default).
1
EXTERNAL 24V
External. The control board is powered from an external supply.
2
FAULT RESET PTR
Defines the source or constant for selection PARAM 16.11 of parameter 16.04.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
POWER ON RESET
TD
Defines the time delay for drive reset after the power on ackn (DIL) signal is
activated. Can be used for faults generated during drive initialization. See page
338 for a wiring diagram of the power ackn signal.
0 ... 60 s
Setting range in seconds.
USER MACRO PTR
Defines the source or constant for parameter 16.05.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
FAN KWH CNT
RESET
Resets the cooling fan running time counter or kWh counter.
NOT SEL
No selection.
0
FAN CNT RST
Resets the running time counter of the drive cooling fan indicated by actual
signal 01.44 FAN ON-TIME.
1
KWH CNT RST
Resets the kWh counter indicated by actual signal 01.15 KILOWATT HOURS.
2
Note: If an external supply is used but this parameter has value INTERNAL,
the drive trips on a fault at power switch off.
20 LIMITS
Drive operation limits.
20.01
Defines the allowed minimum speed. This value is the limit the drive will use in
reverse direction. The limit cannot be set if parameter 99.04 = SCALAR.
MINIMUM SPEED
-
-
0 ... 600
-
Note: The limit is linked to the motor nominal speed setting, that is
parameter 99.08. If 99.08 is changed, the default speed limit will also
change.
20.02
-18000 / (no. of pole
pairs) … Par. 20.02
rpm
Minimum speed limit.
MAXIMUM SPEED
Defines the allowed maximum speed. This value is the limit the drive will use in
forward direction. The value cannot be set if parameter 99.04 = SCALAR.
1 = 1 rpm
Note: If the value is positive, the motor cannot be run in the reverse direction.
Note: The limit is linked to the motor nominal speed setting, that is
parameter 99.08. If 99.08 is changed, the default speed limit will also
change.
Par. 20.01 … 18000 / Maximum speed limit
(no. of pole pairs) rpm
Actual signals and parameters
1 = 1 rpm
175
Index
Name/Selection
20.03
MAXIMUM CURRENT Defines the allowed maximum motor current.
20.04
20.05
Description
0.0 … x.x A
Current limit
TORQ MAX LIM1
Defines the maximum torque limit 1 for the drive.
0.0 … 600.0%
Value of limit in percent of motor nominal torque.
OVERVOLTAGE
CTRL
FbEq
0 …10·x.x
0 … 60000
Activates or deactivates the overvoltage control of the intermediate DC link.
Fast braking of a high inertia load causes the voltage to rise to the overvoltage
control limit. To prevent the DC voltage from exceeding the limit, the
overvoltage controller automatically decreases the braking torque.
Note: If a brake chopper and resistor are connected to the drive, the controller
must be off (selection NO) to allow chopper operation.
OFF
20.06
20.07
Overvoltage control deactivated.
0
ON
Overvoltage control activated.
65535
UNDERVOLTAGE
CTRL
Activates or deactivates the undervoltage control of the intermediate DC link.
If the DC voltage drops due to input power cut off, the undervoltage controller
will automatically decrease the motor speed in order to keep the voltage above
the lower limit. By decreasing the motor speed, the inertia of the load will cause
regeneration back into the drive, keeping the DC link charged and preventing
an undervoltage trip until the motor coasts to stop. This will act as a power-loss
ride-through functionality in systems with a high inertia, such as a centrifuge or
a fan.
OFF
Undervoltage control deactivated.
0
ON
Undervoltage control activated.
65535
MINIMUM FREQ
Defines the minimum limit for the drive output frequency. The limit can be set
only if parameter 99.04 = SCALAR.
-300.00 … 50 Hz
Minimum frequency limit.
Note: If the value is positive, the motor cannot be run in the reverse direction.
20.08
20.11
20.12
20.13
20.14
MAXIMUM FREQ
Defines the maximum limit for the drive output frequency. The limit can be set
only if parameter 99.04 = SCALAR.
-50 … 300.00 Hz
Maximum frequency limit
P MOTORING LIM
Defines the allowed maximum power fed by the inverter to the motor.
0 … 600%
Power limit in percent of the motor nominal power.
-30000 …
5000
-5000 …
30000
0 … 60000
P GENERATING LIM
Defines the allowed maximum power fed by the motor to the inverter.
-600 … 0%
Power limit in percent of the motor nominal power.
MIN TORQ SEL
Selects the minimum torque limit for the drive. The update interval is 100 ms.
MIN LIM1
Value of parameter 20.15.
1
AI1
Analogue input AI1. See parameter 20.20 on how the signal is converted to a
torque limit.
2
AI2
See selection AI1.
3
AI5
See selection AI1.
4
PARAM 20.18
Limit given with 20.18
5
NEG MAX TORQ
Inverted maximum torque limit defined with parameter 20.14.
6
MAX TORQ SEL
Defines the maximum torque limit for the drive. The update interval is 100 ms.
MAX LIM1
Value of parameter 20.04.
1
AI1
Analogue input AI1. See parameter 20.20 on how the signal is converted to a
torque limit.
2
-60000 … 0
Actual signals and parameters
176
Index
20.15
20.16
20.17
20.18
20.19
20.20
Name/Selection
Description
FbEq
AI2
See selection AI1.
3
AI5
See selection AI1.
4
PARAM 20.19
Limit given with 20.19
5
TORQ MIN LIM1
Defines the minimum torque limit 1 for the drive.
-600.0 … 0.0%
Value of limit in percent of motor nominal torque.
TORQ MIN LIM2
Defines the minimum torque limit 2 for the drive.
-600.0 … 0.0%
Value of limit in percent of motor nominal torque
TORQ MAX LIM2
Defines the maximum torque limit 2 for the drive.
0.0 … 600.0%
Value of limit in percent of motor nominal torque.
TORQ MIN PTR
Defines the source or constant for value Par. 20.18 of parameter 20.13
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value.
-60000 … 0
-60000 … 0
0 … 60000
100 = 1%
TORQ MAX PTR
Defines the source or constant for value Par. 20.19 of parameter 20.14
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference. FbEq for the torque value is 100 = 1%.
MIN AI SCALE
Defines how an analogue signal (mA or V) is converted to a torque minimum or
maximum limit (%). The figure below illustrates converting when analogue
input AI1 has been set the source for a torque limit with parameter 20.13 or
20.14.
100 = 1%
Torque limit
20.21
20.20
13.01
Minimum setting for AI1
13.02
Maximum setting for AI1
20.20
Minimum torque
20.21
Maximum torque
13.01
13.02
Analogue signal
20.21
20.22
20.23
0.0 … 600.0%
%-value that corresponds to the minimum setting of the analogue input.
MAX AI SCALE
See parameter 20.20.
0.0 … 600.0%
%-value that corresponds to the maximum setting of the analogue input.
MAX EXT SPD LIM
Maximum external speed limit used for limiting the drive speed reference using
an external source. The drive speed reference is limited to this value when the
signal defined in Par. 10.20 is active in the forward direction. Signal 03.14
AUXILIARY STATUS WORD 4 bit 10 can be used to monitor if the drive speed
reference is limited because of this function.
0… 18000 rpm
Setting range
MIN EXT SPD LIM
Minimum external speed limit used for limiting the drive speed reference using
an external source. The drive speed reference is limited to this value when the
signal defined in Par. 10.20 is active in the reverse direction. Signal 03.14
AUXILIARY STATUS WORD 4 bit 11 can be used to monitor if the drive speed
reference is limited because of this function.
-18000… 0 rpm
Setting range
Actual signals and parameters
100 = 1%
100 = 1%
0 ... 180000
-180000 ...0
177
Index
Name/Selection
Description
21 START/STOP
Start and stop modes of the motor.
21.01
Selects the motor starting method.
START FUNCTION
FbEq
In special crane applications like slew-motion cranes, its possible to enable the
auto start function mode. For more information, contact your local ABB
representative.
CNST DC MAGN
In the crane applications, this parameter is fixed to CNST DC MAGN. Constant 3
DC magnetising is needed when constant pre-magnetising time is required
(For example, if the motor start must be simultaneous with a mechanical brake
release). CNST DC MAGN also guarantees the highest possible break-away
torque when the pre-magnetising time is set long enough. The pre-magnetising
time is defined with parameter 21.02.
Note: Starting to a rotating machine is not possible when DC magnetising is
selected.
Note: DC magnetising cannot be selected if parameter 99.04 = SCALAR.
WARNING! The drive will start after the set magnetising time has
passed although the motor magnetisation is not completed. Ensure
always in applications where a full break-away torque is essential, that
the constant magnetising time is long enough to allow generation of full
magnetisation and torque.
21.02
21.03
CONST MAGN TIME
Defines the magnetising time in the constant magnetising mode. See
parameter 21.01. After the Start command, the drive automatically premagnetises the motor the set time.
30.0 … 10000.0 ms
Magnetising time. To ensure full magnetising, set this value to the same value
as or higher than the rotor time constant. If not known, use the rule-of-thumb
value given in the table below:
Motor Rated Power
Constant Magnetising Time
< 10 kW
> 100 to 200 ms
10 to 200 kW
> 200 to 1000 ms
200 to 1000 kW
> 1000 to 2000 ms
STOP FUNCTION
Selects the motor stop function.
COAST
Stop by cutting of the motor power supply. The motor coasts to a stop.
30 … 10000
1
WARNING! If the mechanical brake control function is on, the
application program uses ramp stop in spite of the selection COAST
(see parameter group 42 BRAKE CONTROL).
RAMP
Stop along a ramp. See parameter group 22 ACCEL/DECEL.
2
Actual signals and parameters
178
Index
Name/Selection
Description
FbEq
21.04
DC HOLD
Activates/deactivates the DC hold function. DC hold is not possible if
parameter 99.04 = SCALAR.
When both the reference and the speed drop below the value of parameter
21.05, the drive will stop generating sinusoidal current and start to inject DC
into the motor. The current is set with parameter 21.06. When the reference
speed exceeds parameter 21.05, normal drive operation continues.
SPEEDmotor
DC hold
Ref.
t
DC HOLD SPEED
t
Note: DC hold has no effect if the start signal is switched off.
Note: Injecting DC current into the motor causes the motor to heat up. In
applications where long DC hold times are required, externally ventilated
motors should be used. If the DC hold period is long, the DC hold cannot
prevent the motor shaft from rotating if a constant load is applied to the motor.
21.05
21.06
21.07
NO
Inactive
0
YES
Active
65535
DC HOLD SPEED
Defines the DC hold speed. See parameter 21.04.
0 … 3000 rpm
Speed in rpm
DC HOLD CURR
Defines the DC hold current. See parameter 21.04.
0 … 100%
Current in percent of the motor nominal current
RUN ENABLE FUNC
Selects the stop mode applied when Run Enable signal is switched off. Run
Enable signal is put into use with parameter 16.01.
0 … 3000
0 … 100
Note: In the Master/Follower mode, the settings must be the same in both the
Master and the Follower drives.
Note: The setting overrides the normal stop mode setting (parameter 21.03)
when Run Enable signal is switched off.
RAMP STOP
The application program stops the drive along the deceleration ramp defined in 1
group 22 ACCEL/DECEL.
COAST STOP
The application program stops the drive by cutting off the motor power supply
(the inverter IGBTs are blocked). The motor rotates freely to zero speed.
2
WARNING! If the brake control function is on, the application program
uses ramp stop in spite of the selection COAST STOP (see parameter
group 42 BRAKE CONTROL).
OFF2 STOP
The application program stops the drive by cutting off the motor power supply
(the inverter IGBTs are blocked). The motor rotates freely to zero speed. The
drive will restart only when the Run Enable signal is on and the start signal is
switched on (the program receives the rising edge of the start signal).
OFF3 STOP
The application program stops the drive along the ramp defined with parameter 4
22.07. The drive will restart only when the Run Enable is on and the start signal
is switched on (the program receives the rising edge of the start signal).
Actual signals and parameters
3
179
Index
Name/Selection
Description
21.08
SCALAR FLY START
Activates the flying start feature in the Scalar control mode. See parameters
21.01 and 99.04.
NO
Inactive
0
YES
Active
65535
START INTRL FUNC
Defines how the Start Interlock input on the RMIO board affects the drive
operation.
21.09
FbEq
Note: In the Master/Follower mode, the settings must be the same in both the
Master and the Follower drives.
OFF2 STOP
Drive running: 1 = Normal operation. 0 = Stop by coasting.
1
Drive stopped: 1 = Start allowed. 0 = No start allowed.
Restart after OFF2 STOP: Input is back to 1 and the drive receives rising edge
of the Start signal.
OFF3 STOP
Drive running: 1 = Normal operation. 0 = Stop by ramp. The ramp time is
defined with parameter 22.07 EM STOP RAMP.
2
Drive stopped: 1 = Normal start. 0 = No start allowed.
Restart after OFF3 STOP: Start Interlock input = 1 and the drive receives rising
edge of the Start signal.
21.10
ZERO SPEED DELAY Defines the delay for the zero speed delay function. The function is useful in
applications where a smooth and quick restarting is essential. During the delay
the drive knows accurately the rotor position.
No Zero Speed Delay
Speed
With Zero Speed Delay
Speed
Speed controller
switched off: Motor
coasts to stop.
Zero Speed
Time
Speed controller remains live.
Motor is decelerated to true 0
speed.
Zero Speed
Delay Time
No Zero Speed Delay
The drive receives a Stop command and decelerates along a ramp. When the
motor actual speed falls below an internal limit (called Zero Speed), the speed
controller is switched off. The inverter modulation is stopped and the motor
coasts to standstill.
With Zero Speed Delay
The drive receives a Stop command and decelerates along a ramp. When the
actual motor speed falls below an internal limit (called Zero Speed), the zero
speed delay function activates. During the delay the functions keeps the speed
controller live: the inverter modulates, motor is magnetised and the drive is
ready for a quick restart.
0.0 … 60.0 s
Delay time
10 = 1 s
Actual signals and parameters
180
Index
Name/Selection
Description
FbEq
22 ACCEL/DECEL
Acceleration and deceleration times.
22.01
ACC/DEC SEL
Selects the active acceleration/deceleration time pair.
ACC/DEC 1
Acceleration time 1 and deceleration time 1 are used. See parameters 22.02
and 22.03.
1
ACC/DEC 2
Acceleration time 2 and deceleration time 2 are used. See parameters 22.04
and 22.05.
2
ACC/DEC DIR
Acceleration time 1 and deceleration time 1 are used in forward direction and 3
Acceleration time 2 and deceleration time 2 are used in reverse direction. See
figure below.
Max Speed
a1 = Acceleration time1
Motor Running
In Fwd Direction
Motor speed
d1 = Deceleration time1
a1
d1
0
a2
a2 = Acceleration time2
d2 = Deceleration time2
d2
t (s)
Motor Running
In Rev Direction
Min Speed
22.02
PAR 22.08&09
Acceleration and deceleration times given with parameters 22.08 and 22.09
ACCEL TIME 1
Defines the acceleration time 1, that is the time required for the speed to
change from zero to the maximum speed.
4
- If the speed reference increases faster than the set acceleration rate, the
motor speed will follow the acceleration rate.
- If the speed reference increases slower than the set acceleration rate, the
motor speed will follow the reference signal.
- If the acceleration time is set too short, the drive will automatically prolong the
acceleration in order not to exceed the drive operating limits.
0.00 … 1800.00 s
Acceleration time
Actual signals and parameters
0 … 18000
181
Index
Name/Selection
Description
FbEq
22.03
DECEL TIME 1
Defines the deceleration time 1, that is the time required for the speed to
change from the maximum (see parameter 20.02) to zero.
- If the speed reference decreases slower than the set deceleration rate, the
motor speed will follow the reference signal.
- If the reference changes faster than the set deceleration rate, the motor
speed will follow the deceleration rate.
- If the deceleration time is set too short, the drive will automatically prolong the
deceleration in order not to exceed drive operating limits. If there is any doubt
about the deceleration time being too short, ensure that the DC overvoltage
control is on (parameter 20.05).
Note: If a short deceleration time is needed for a high inertia application, the
drive should be equipped with an electric braking option, for example, with a
brake chopper and a brake resistor.
22.04
22.05
22.06
0.00 … 1800.00 s
Deceleration time
ACCEL TIME 2
See parameter 22.02.
0.00 … 1800.00 s
See parameter 22.02.
DECEL TIME 2
See parameter 22.03.
0 … 18000
0 … 18000
0.00 … 1800.00 s
See parameter 22.03.
ACC/DEC RAMP
SHPE
Selects the shape of the acceleration/deceleration ramp.
0 … 18000
0.00 … 1000.00 s
0.00 s: Linear ramp. Suitable for steady acceleration or deceleration and for
slow ramps.
0 … 10000
0.01 … 1000.00 s: S-curve ramp. S-curve ramps are ideal for conveyors
carrying fragile loads, or other applications where a smooth transition is
required when changing from one speed to another. The S curve consists of
symmetrical curves at both ends of the ramp and a linear part in between.
A rule of thumb
Speed
A suitable relation between the
ramp shape time and the
acceleration ramp time is 1/5.
Max
Linear ramp: Par. 22.06 = 0 s
S-curve ramp:
Par. 22.06 > 0 s
time
Par. 22.02
22.07
EM STOP RAMP
TIME
Par. 22.06
Defines the time inside which the drive is stopped if
- the drive receives an emergency Stop command or
- the Run Enable signal is switched off and the Run Enable function has value
OFF3 (see parameter 21.07).
The emergency Stop command can be given through a fieldbus or an
Emergency Stop module (optional). Consult the local ABB representative for
more information on the optional module and the related settings of the
Standard Application Program.
0.00 … 2000.00 s
Deceleration time
0 … 20000
Actual signals and parameters
182
Index
Name/Selection
Description
22.08
ACC PTR
Defines the source or constant for value PAR 22.08&09 of parameter 22.01.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
DEC PTR
Defines the source or constant for value PAR 22.08&09 of parameter 22.01
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 EXT1 STRT PTR
for information on the difference.
22.09
22.10
FbEq
100 = 1 s
100 = 1 s
FST STP DCCL TIME Defines the time inside which the drive is stopped if the drive receives an Fast
Stop command (parameter 10.10).
0.00 … 1800.00 s
23 SPEED CTRL
Deceleration time
0 … 18000
Speed controller variables. The parameters are not visible if parameter 99.04 =
SCALAR. See section Speed controller tuning on page 71.
Note: After the motor STANDARD ID run is successfully completed, the speed
controller parameters 23.01 GAIN and 23.02 INTEGRATION TIME are
updated to optimized crane application settings (parameter 23.01 to 15 and
parameter 23.02 to 0.5). You can manually change these settings afterwards.
23.01
GAIN
Defines a relative gain for the speed controller. Great gain may cause speed
oscillation.
The figure below shows the speed controller output after an error step when
the error remains constant.
%
Gain = Kp = 1
TI = Integration time = 0
TD= Derivation time = 0
Error Value
Controller Output
Controller
output = Kp · e
e = Error value
t
0.0 … 250.0
Gain
Actual signals and parameters
0 … 25000
183
Index
Name/Selection
Description
FbEq
23.02
INTEGRATION TIME
Defines an integration time for the speed controller. The integration time
defines the rate at which the controller output changes when the error value is
constant. The shorter the integration time, the faster the continuous error value
is corrected. Too short an integration time makes the control unstable.
The figure below shows the speed controller output after an error step when
the error remains constant.
%
Controller Output
Gain = Kp = 1
TI = Integration time > 0
TD= Derivation time = 0
Kp · e
e = Error value
Kp · e
t
TI
23.03
0.01 … 999.97 s
Integration time
10 …
999970
DERIVATION TIME
Defines the derivation time for the speed controller. Derivative action boosts
the controller output if the error value changes. The longer the derivation time,
the more the speed controller output is boosted during the change. If the
derivation time is set to zero, the controller works as a PI controller, otherwise
as a PID controller.
The derivation makes the control more responsive for disturbances.
Note: Changing this parameter is recommended only if a pulse encoder is
used.
The figure below shows the speed controller output after an error step when
the error remains constant.
%
Kp · T ·
Δe
Ts
Gain = Kp = 1
TI = Integration time > 0
TD= Derivation time > 0
Ts= Sample time period = 1 ms
Δe = Error value change between
two samples
Controller Output
Kp · e
Error Value
e = Error value
Kp · e
TI
0.0 … 9999.8 ms
Derivation time value.
t
1 = 1 ms
Actual signals and parameters
184
Index
Name/Selection
Description
FbEq
23.04
ACC
COMPENSATION
Defines the derivation time for acceleration/(deceleration) compensation. In
order to compensate inertia during acceleration a derivative of the reference is
added to the output of the speed controller. The principle of a derivative action
is described for parameter 23.03.
Note: As a general rule, set this parameter to the value between 50 … 100% of
the sum of the mechanical time constants of the motor and the driven machine.
(The speed controller Autotune Run does this automatically, see parameter
23.06.)
The figure below shows the speed responses when a high inertia load is
accelerated along a ramp.
No Acceleration Compensation
%
Acceleration Compensation
%
Speed reference
Actual speed
t
23.05
t
0.00 … 999.98 s
Derivation time
SLIP GAIN
Defines the slip gain for the motor slip compensation control. 100% means full
slip compensation; 0% means no slip compensation. The default value is
100%. Other values can be used if a static speed error is detected despite of
the full slip compensation.
0 … 9999
Example: 1000 rpm constant speed reference is given to the drive. Despite of
the full slip compensation (SLIP GAIN = 100%), a manual tachometer
measurement from the motor axis gives a speed value of 998 rpm. The static
speed error is 1000 rpm - 998 rpm = 2 rpm. To compensate the error, the slip
gain should be increased. At the 106% gain value, no static speed error exists.
23.06
0.0 … 400.0%
Slip gain value.
AUTOTUNE RUN
Start automatic tuning of the speed controller. Instructions:
0 … 400
- Run the motor at a constant speed of 20 to 40% of the rated speed.
- Change the auto tuning parameter 23.06 to YES.
Note: The motor load must be connected to the motor.
23.07
NO
No auto tuning.
0
YES
Activates the speed controller auto tuning. Automatically reverts to NO.
65535
SP ACT FILT TIME
Defines the time constant of the actual speed filter, that is time within the actual
speed has reached 63% of the nominal speed.
0...1000000 ms
Time constant
24 TORQUE CTRL
1 = 1 ms
Torque control variables.
Visible only if Master/Follower is Active (parameter 60.01 and parameter 99.04
= DTC.
24.01
24.02
TORQ RAMP UP
Defines the torque reference ramp up time.
0.00 … 120.00 s
Time for the reference to increase from zero to the nominal motor torque.
TORQ RAMP DOWN
Defines the torque reference ramp down time.
0.00 … 120.00 s
Time for the reference to decrease from the nominal motor torque to zero.
Actual signals and parameters
0 … 12000
0 … 12000
185
Index
Name/Selection
Description
FbEq
26 MOTOR CONTROL
26.01
FLUX OPTIMIZATION Activates/deactivates the Flux optimisation function. See section Flux
optimisation on page 68.
Note: The function cannot be used if parameter 99.04 = SCALAR.
Note: The function should generally not be activated for crane application.
26.02
NO
Inactive
0
YES
Active
65535
FLUX BRAKING
Activates/deactivates the Flux braking function.
Note: The function cannot be used if parameter 99.04 = SCALAR.
See section Flux braking on page 67.
NO
26.03
Inactive
0
YES
Active
65535
IR-COMPENSATION
Defines the relative output voltage boost at zero speed (IR compensation). The
function is useful in applications with high break-away torque, but no DTC
motor control cannot be applied. The figure below illustrates the IR
compensation.
Note: The function can be used only if parameter 99.04 is SCALAR.
U /UN
(%)
Relative output voltage. IR
compensation set to 15%.
100%
15%
Relative output voltage. No IR
compensation.
f (Hz)
Field weakening point
0 … 30%
Voltage boost at zero speed in percent of the motor nominal voltage
0 … 3000
Actual signals and parameters
186
Index
Name/Selection
Description
FbEq
26.04
IR STEP-UP FREQ
Defines the frequency at which the step-up IR compensation reaches the
IR compensation used in Scalar control (26.03 IR COMPENSATION).
100 = 1
A voltage boost is used in step-up applications to achieve higher break-away
torque. Since voltage cannot be fed to the transformer at 0 Hz, special IR
compensation is used in step-up applications. Full IR compensation starts
around slip frequency. The figure below illustrates the step-up
IR compensation.
U / UN
(%)
100%
26.03 IR
COMPENSATION
f (Hz)
26.04 IR STEP-UP
FREQ
Field weakening
point (FWP)
For more information, see Sine Filters User’s Manual for ACS800 Drives
[3AFE68389178 (English)].
0...50 Hz
26.05
26.06
26.07
Frequency
HEX FIELD WEAKEN Selects whether motor flux is controlled along a circular or a hexagonal pattern
in the field weakening area of the frequency range (above 50/60 Hz). See
section Hexagonal motor flux on page 74.
OFF
The rotating flux vector follows a circular pattern. Optimal selection in most
0
applications: Minimal losses at constant load. Maximal instantaneous torque is
not available in the field weakening range of the speed.
ON
Motor flux follows a circular pattern below the field weakening point (typically
50 or 60 Hz) and a hexagonal pattern in the field weakening range. Optimal
selection in the applications that require maximal instantaneous torque in the
field weakening range of the speed. The losses at constant operation are
higher than with the selection NO.
FLUX REF PTR
Selects the source for the flux reference, or sets the flux reference value.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference. The range of the flux is 25 … 140%. With constant value
settings 100% = C.10000. Typically there is no need to change this value.
FS METHOD
Activates the flux correction at low frequencies, < 10% of nominal frequency,
when the torque exceeds 30%. Effective in the motoring and generating
modes.
OFF
Inactive
0
ON
Active.
1
Actual signals and parameters
65535
100 = 1%
187
Index
Name/Selection
Description
27 BRAKE CHOPPER
Control of the brake chopper.
27.01
Activates the brake chopper control.
27.02
27.03
27.04
BRAKE CHOPPER
CTL
FbEq
OFF
Inactive
0
ON
Active. Note: Ensure the brake chopper and resistor are installed and the
overvoltage control is switched off (parameter 20.05).
65535
BR OVERLOAD
FUNC
Activates the overload protection of the brake resistor. The user-adjustable
variables are parameters 27.04 and 27.05.
NO
Inactive
0
WARNING
Active. If the drive detects an overload, it generates a warning.
1
FAULT
Active. If the drive detects an overload, it trips on a fault.
2
BR RESISTANCE
Defines the resistance value of the brake resistor. The value is used for brake
chopper protection.
0.00 … 100.00 ohm
Resistance value
0 … 100
BR THERM T CONST Defines the thermal time constant of the brake resistor. The value is used in the
overload protection. See parameter 27.02.
With the SACE brake resistors, the parameter setting must be 200 s.
With the SAFUR brake resistors, the parameter setting must be 555 s.
27.05
27.06
0.000 … 10000.000 s
Time constant
1=1
MAX CONT BR
POWER
Defines the maximum continuous braking power which will raise the resistor
temperature to the maximum allowed value. The value is used in the overload
protection. See parameter 27.02.
0.00 …10000 kW
Power
BC CTRL MODE
Selects the control mode of the braking chopper.
AS GENERATOR
Chopper operation is allowed when the DC voltage exceeds the braking limit,
the inverter bridge modulates and the motor generates power to the drive.
1=1
0
The selection prevents the operation in case the intermediate circuit DC
voltage rises due to abnormally high supply voltage level. Long time supply
voltage rise would damage the chopper.
COMMON DC
Chopper operation is allowed always when the DC voltage exceeds the
braking limit. The selection is to be used in applications where several
inverters are connected to the same intermediate circuit (DC bus).
65535
WARNING! Excessive supply voltage will raise the intermediate circuit
voltage above the operation limit of the chopper. If the voltage remains
abnormally high for a long period, the braking chopper will be
overloaded and damaged.
30 FAULT FUNCTIONS
Programmable protection functions
30.01
Selects how the drive reacts when an analogue input signal falls below the set
minimum limit.
AI<MIN FUNCTION
Note: The analogue input minimum setting must be set to 0.5 V (1 mA) or
above (see parameter group 13 ANALOGUE INPUTS).
30.02
FAULT
The drive trips on a fault and the motor coasts to stop.
1
NO
Inactive
2
PANEL LOSS
Selects how the drive reacts to a control panel communication break.
FAULT
Drive trips on a fault and the motor stops as defined with parameter 21.03.
1
NO
Inactive
2
Actual signals and parameters
188
Index
Name/Selection
Description
30.03
EXTERNAL FAULT
Selects an interface for an External fault signal.
30.04
30.05
FbEq
NOT SEL
Inactive
1
PAR 30.24
External fault indication is given through pointer value in Par. 30.24.
0: Fault trip. Motor coasts to stop.
1: No External fault.
2
MOTOR THERM
PROT
Selects how the drive reacts when the motor overtemperature is detected by
the function defined with parameter 30.05.
FAULT
The drive generates a warning when the temperature exceeds the warning
level (95% of the allowed maximum value). The drive trips on a fault when the
temperature exceeds the fault level (100% of the allowed maximum value).
1
WARNING
The drive generates a warning when the temperature exceeds the warning
level (95% of the allowed maximum value).
2
NO
Inactive
3
MOT THERM P
MODE
Selects the thermal protection mode of the motor. When overtemperature is
detected, the drive reacts as defined with parameter 30.04.
DTC
The protection is based on the calculated motor thermal model. The following
assumptions are used in the calculation:
1
- The motor is at the estimated temperature (value of 01.37 MOTOR
TEMP EST saved at power switch off) when the power is switched on. With the
first power switch on, the motor is at the ambient temperature (30 °C).
- The motor temperature increases if it operates in the region above the load
curve and decreases if it operates below the curve.
- The motor thermal time constant is an approximate value for a standard selfventilated squirrel-cage motor.
It is possible to finetune the model with parameter 30.07.
Note: The model cannot be used with high power motors (parameter 99.06 is
higher than 800 A).
WARNING! The model does not protect the motor if it does not cool
properly due to dust and dirt.
USER MODE
The protection is based on the user-defined motor thermal model and the
following basic assumptions:
- The motor is at the estimated temperature (value of 01.37 MOTOR
TEMP EST saved at power switch off) when the power is switched on. With the
first power switch on, the motor is at the ambient temperature (30 °C).
- The motor temperature increases if it operates in the region above the motor
load curve and decreases if it operates below the curve.
The user-defined thermal model uses the motor thermal time constant
(parameter 30.06) and the motor load curve (parameters 30.07, 30.08 and
30.09). User tuning is typically needed only if the ambient temperature differs
from the normal operating temperature specified for the motor.
WARNING! The model does not protect the motor if it does not cool
properly due to dust and dirt.
Actual signals and parameters
2
189
Index
Name/Selection
Description
FbEq
THERMISTOR
Motor thermal protection is activated through digital input DI6. A motor
3
thermistor, or a break contact of a thermistor relay, must be connected to digital
input DI6. The drive reads the DI6 states as follows:
DI6 Status (Thermistor resistance)
Temperature
1 (0 … 1.5 kohm)
Normal
0 (4 kohm or higher)
Overtemperature
WARNING! According to IEC 664, the connection of the motor
thermistor to the digital input requires double or reinforced insulation
between motor live parts and the thermistor. Reinforced insulation
entails a clearance and creeping distance of 8 mm (400 / 500 V AC
equipment). If the thermistor assembly does not fulfil the requirement, the other
I/O terminals of the drive must be protected against contact, or a thermistor
relay must be used to isolate the thermistor from the digital input.
WARNING! Digital input DI6 may be selected for another use. Change
these settings before selecting THERMISTOR. In other words, ensure
that digital input DI6 is not selected with any other parameter.
The figure below shows the alternative thermistor connections. At the motor
end the cable shield should be earthed through a 10 nF capacitor. If this is not
possible, the shield is to be left unconnected.
Alternative 1
Thermistor
relay
RMIO board, X22
T
DI6
7
+24 V DC
Motor
Alternative 2
T
6
Motor
RMIO board, X22
6
DI6
7
+24 V DC
10 nF
Actual signals and parameters
190
Index
Name/Selection
Description
FbEq
30.06
MOTOR THERM
TIME
Defines the thermal time constant for the user-defined thermal model (see the
selection USER MODE of parameter 30.05).
Motor
Load
100%
Temperature
t
100%
63%
Motor thermal time constant
30.07
t
256.0 … 9999.8 s
Time constant
256 … 9999
MOTOR LOAD
CURVE
Defines the load curve together with parameters 30.08 and 30.09. The load
curve is used in the user-defined thermal model (see the selection USER
MODE of parameter 30.05).
I/IN
I = Motor current
(%)
IN = Nominal motor current
150
30.07
100
50
30.08
30.09
30.08
30.09
Drive output frequency
50.0 … 150.0%
Allowed continuous motor load in percent of the nominal motor current.
ZERO SPEED LOAD
Defines the load curve together with parameters 30.07 and 30.09.
25.0 … 150.0%
Allowed continuous motor load at zero speed in percent of the nominal motor
current
BREAK POINT
Defines the load curve together with parameters 30.07 and 30.08.
1.0 … 300.0 Hz
Drive output frequency at 100% load
Actual signals and parameters
50 … 150
25 … 150
100 …
30000
191
Index
Name/Selection
Description
FbEq
30.10
STALL FUNCTION
Selects how the drive reacts to a motor stall condition. The protection wakes up
if:
- the drive is at stall limit (defined with parameters 20.03, 20.13 and 20.14)
- the output frequency is below the level set with parameter 30.11 and
- the conditions above have been valid longer than the time set with parameter
30.12 STALL TIME.
Note: Stall limit is restricted by internal current limit 03.04
TORQ_INV_CUR_LIM.
30.11
30.12
30.13
FAULT
The drive trips on a fault.
1
WARNING
The drive generates a warning. The indication disappears in half of the time set 2
with parameter 30.12 STALL TIME.
NO
Protection is inactive.
STALL FREQ HI
Defines the frequency limit for the stall function. See parameter 30.10 STALL
FUNCTION.
0.5 … 50.0 Hz
Stall frequency
STALL TIME
Defines the time for the stall function. See parameter 30.10 STALL
FUNCTION.
3
50 … 5000
10.00 … 400.00 s
Stall time
UNDERLOAD FUNC
Selects how the drive reacts to underload. The protection wakes up if:
10 … 400
- the motor torque falls below the curve selected with parameter 30.15,
- output frequency is higher than 10% of the nominal motor frequency and
- the above conditions have been valid longer than the time set with parameter
30.14.
30.14
30.15
NO
Protection is inactive.
1
WARNING
The drive generates a warning.
2
FAULT
The drive trips on a fault.
3
UNDERLOAD TIME
Time limit for the underload function. See parameter 30.13.
0 … 600 s
Underload time
UNDERLOAD
CURVE
Selects the load curve for the underload function. See parameter 30.13.
TM/TN
(%)
100
0 … 600
TM = Motor torque
TN= Nominal motor torque
ƒN = Nominal motor frequency
3
80
70%
60
2
50%
40
1
20
5
30%
4
0
ýí
1…5
Number of the load curve
2.4 *ýí
1…5
Actual signals and parameters
192
Index
Name/Selection
Description
30.16
MOTOR PHASE
LOSS
Activates the Motor phase loss supervision function.
NO
Inactive
0
FAULT
Active. The drive trips on a fault.
65535
EARTH FAULT
Selects how the drive reacts when an earth fault is detected in the motor or the
motor cable. See section Earth fault protection on page 77.
WARNING
The drive generates a warning.
0
FAULT
The drive trips on a fault.
65535
COMM FLT FUNC
Selects how the drive reacts in a fieldbus communication break, that is when
the drive fails to receive the Main Reference Data Set or the Auxiliary
Reference Data Set. The time delays are given with parameters 30.19 and
30.21.
FAULT
Protection is active. The drive trips on a fault and stops the motor as defined
with parameter 21.03.
1
NO
Protection is inactive.
2
30.17
30.18
30.19
30.21
FbEq
MAIN REF DS T-OUT Defines the time delay for the Main Reference data set supervision. See
parameter 30.18.
0.1 … 60.0 s
Time delay
AUX DS T-OUT
Defines the delay time for the Auxiliary Reference data set supervision. See
parameter 30.18. The drive automatically activates the supervision 60 seconds
after power switch-on if the value is other than zero.
10 … 6000
Note: The supervision can be displayed by setting the value to 0.
30.22
0.0 … 60.0 s
Time delay. 0.0 s = The function is inactive.
IO CONFIG FUNC
Selects how the drive reacts in case an optional input or output channel has
been selected as a signal interface, but the communication to the appropriate
analogue or digital I/O extension module has not been set up accordingly in
parameter group 98 OPTION MODULES.
0 … 6000
Example: The supervision function wakes up if parameter 16.01 is set to DI7,
but 98.03 is set to NO.
30.23
NO
Inactive.
1
WARNING
Active. The drive generates a warning.
2
LIMIT WARNING
Activates/deactivates limit alarms INV CUR LIM, DC BUS LIM, MOT CUR LIM,
MOT TORQ LIM and/or MOT POW LIM. For more information, see chapter
Fault tracing.
0...255
Value in decimal. As default none of the alarms are active, that is, the
parameter value is 0.
-
bit 0 INV_CUR_LIM_IND
bit 1 DC_VOLT_LIM_IND
bit 2 MOT_CUR_LIM_IND
bit 3 MOT_TORQ_LIM_IND
bit 4 MOT_POW_LIM_IND
Example: When parameter value is set to 3 (bit 0 and 1 values are 1), alarms
INV CUR LIM and DC BUS LIM are active.
30.24
EXT FAULT PTR
Defines the source or constant for selection PAR 30.24 of parameter 30.03.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
Actual signals and parameters
-
193
Index
Name/Selection
Description
FbEq
33 INFORMATION
Program versions, test date
33.01
Displays the type and the version of the firmware package in the drive.
Note: You cannot change the parameter setting.
SOFTWARE
VERSION
Decoding key:
AQCR716x
Product Series
A = ACS800
Product
Q = ACS800 Crane
Firmware Version
716x = Version 7.16x
33.02
APPL SW VERSION
Displays the type and the version of the application program.
Note: You cannot change the parameter setting.
Decoding key:
AQCCxxyx
Product Series
A = ACS800
Product
Q = ACS800 Crane
Firmware Type
C = Crane Application Program
Firmware Version
7xyx = Version 7.xyx
33.03
TEST DATE
Displays the test date.
Note: You cannot change the parameter setting.
Date value in format DDMMYY (day, month, year)
-
34 PROCESS VARIABLE - filtering for the actual signals speed and torque
34.04
MOTOR SP FILT TIM
Defines a filter time constant for actual signal 01.02 SPEED. The time constant
has an effect on all functions in which signal SPEED is used.
The actual speed value is used, for example, in analogue output value (group
15 ANALOGUE OUTPUTS) or as an actual signal shown on the control panel
display or PC screen.
0 … 20000 ms
Filter time constant
%
0 … 20000
Unfiltered Signal
O = I · (1 - e-t/T)
100
63
Filtered Signal
T
t
I = filter input (step)
O = filter output
t = time
T = filter time constant
Actual signals and parameters
194
Index
Name/Selection
Description
34.05
TORQ ACT FILT TIM
Defines a filter time for the actual signal torque (actual signal 01.05). Affects
also on the torque read through an analogue output.
0 … 20000 ms
Filter time constant
%
FbEq
0 … 20000
Unfiltered signal
O = I · (1 - e-t/T)
100
63
Filtered signal
T
35 MOT TEMP MEAS
35.01
t
I = filter input (step)
O = filter output
t = time
T = filter time constant
Motor temperature measurement. For the function description, see sections
Motor temperature measurement through the standard I/O interface on page
81 and Motor temperature measurement through an analogue I/O extension
on page 83.
MOT 1 TEMP AI1 SEL Activates the motor 1 temperature measurement function and selects the
sensor type.
Note: If an optional analogue I/O extension module RAIO is used for the
temperature measurement and 35.01 MOT 1 TEMP AI1 SEL and/or 35.04
MOT 2 TEMP AI2 SEL are set to 1xPT100, analogue extension module input
signal range must be set to 0 ... 2 V (instead of 0 ... 10 V) with DIP switches.
NOT IN USE
The function is inactive.
1xPT100
The function is active. The temperature is measured with one Pt 100 sensor.
2
Analogue output AO1 feeds constant current through the sensor. The sensor
resistance increases as the motor temperature rises, as does the voltage over
the sensor. The temperature measurement function reads the voltage through
analogue input AI1 and converts it to degrees centigrade.
2XPT100
The function is active. Temperature is measured using two Pt 100 sensors.
See selection 1xPT100.
3
3XPT100
The function is active. Temperature is measured using three Pt 100 sensors.
See selection 1xPT100.
4
Actual signals and parameters
1
195
Index
Name/Selection
Description
FbEq
1...3 PTC
The function is active. The temperature is supervised using one to three PTC 5
sensors. Analogue output AO1 feeds constant current through the sensor(s).
The resistance of the sensor increases sharply as the motor temperature rises
over the PTC reference temperature (Tref), as does the voltage over the
resistor. The temperature measurement function reads the voltage through
analogue input AI1 and converts it into ohms. The figure below shows typical
PTC sensor resistance values as a function of the motor operating
temperature.
Ohm
Temperature
Resistance
Normal
0 … 1.5 kohm
Excessive
> 4 kohm
4000
1330
550
100
T
35.02
35.03
35.04
MOT 1 TEMP ALM L
Defines the alarm limit for motor 1 temperature measurement. The alarm
indication is given when the limit is exceeded.
-10 … 5000 ohm/°C
(PTC/Pt100)
Limit in °C or ohms. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100.
Ohm: parameter 35.01 is 1...3 PTC.
MOT 1 TEMP FLT L
Defines the fault trip limit for motor 1 temperature measurement. The fault
indication is given when the limit is exceeded.
-10 … 5000 ohm/°C
(PTC/Pt100)
Limit in °C or ohms. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100.
Ohm: parameter 35.01 is 1...3 PTC.
-10 … 5000
-10 … 5000
MOT 2 TEMP AI2 SEL Activates the motor 2 temperature measurement function and selects the
sensor type. Two motors can be protected only by using an optional analogue
extension module. Parameter 98.12 needs to be activated.
Note: If 98.12 is activated, the analogue I/O extension is also used for motor 1
temperature measurement (the standard I/O terminals are not in use).
Note: If an optional analogue I/O extension module RAIO is used for the
temperature measurement and 35.01 MOT 1 TEMP AI1 SEL and/or 35.04
MOT 2 TEMP AI2 SEL are set to 1xPT100, analogue extension module input
signal range must be set to 0 ... 2 V (instead of 0 …10 V) with DIP switches.
35.05
NOT IN USE
See 35.01.
1
1xPT100
See 35.01.
2
2XPT100
See 35.01.
3
3XPT100
See 35.01.
4
1...3 PTC
See 35.01.
5
MOT 2 TEMP ALM L
Defines the alarm limit for the motor 2 temperature measurement function. The
alarm indication is given when the limit is exceeded.
-10 … 5000 ohm/°C
(PTC/Pt100)
See 35.02.
-10 … 5000
Actual signals and parameters
196
Index
Name/Selection
Description
35.06
MOT 2 TEMP FLT L
Defines the fault trip limit for the motor 2 temperature measurement function.
The fault indication is given when the limit is exceeded.
-10 … 5000 ohm/°C
(PTC/Pt100)
See 35.03.
MOT MOD
COMPENSAT
Selects whether measured motor 1 temperature is used in the motor model
compensation.
NO
The function is inactive.
1
YES
The temperature is used in the motor model compensation.
2
35.07
FbEq
-10 … 5000
Note: Selection is possible only when Pt 100 sensor(s) are used.
42 BRAKE CONTROL
Control of a mechanical brake. The function operates on a 20 ms time level.
For the function description, see section Control of a mechanical brake on
page 112.
42.01
BRAKE CTRL
Activates the brake control function.
OFF
Inactive
1
ON
Active
2
BRAKE
ACKNOWLEDGE
Activates the external brake on/off supervision and selects the source for the
signal. The use of the external on/off supervision signal is optional.
OFF
Inactive
1
DI11
Active. Digital input DI11 is the signal source.
DI11 = 1: Brake is open.
DI11 = 0: Brake is closed.
2
DI12
Digital input DI11 is the signal source. See selection DI11
3
PAR 42.15
Signal source selected using Par. 42.15 BRAKE ACKN PTR. See selection
DI11.
4
42.02
42.03
BRAKE OPEN DELAY Defines the brake open delay (= the delay between the internal Open brake
command and the release of the motor speed control). The delay counter
starts when the drive has magnetised the motor and risen the motor torque to
the level required at the brake release (parameters 42.07 and 42.08).
Simultaneously with the counter start, the brake function energises the relay
output controlling the brake and the brake starts opening.
Note: If DI is used for brake acknowledge, the speed control is released on the
DI activation and does not wait for the complete time delay.
42.04
0.0 … 5.0 s
Delay time. Set the delay time to the same value as the mechanical opening
delay of the brake specified by the brake manufacturer.
BRAKE CLOSE
DELAY
Defines the brake close delay. The delay counter starts when the motor actual
speed has fallen below the set level (parameter 42.05) after the drive has
received the Stop command. Simultaneously with the counter start, the brake
control function de-energises the relay output controlling the brake, and the
brake starts closing. During the delay, the brake function keeps the motor live
preventing the motor speed from falling below zero.
0 … 500
Note: See also Par. 78.13 POS HYSTERISIS.
42.05
0.0 … 60.0 s
Delay time. Set the delay time to the same value as the mechanical make-up
time of the brake (= operating delay when closing) specified by the brake
manufacturer.
ABS BRAKE CLS
SPD
Defines the brake close speed. See parameter 42.04.
Note: See also Par. 78.13 POS HYSTERISIS.
0 … 1000 rpm
Speed (an absolute value)
Actual signals and parameters
0 … 6000
0 …10000
197
Index
Name/Selection
42.06
BRAKE FAULT FUNC Defines how the drive reacts in case the status of the optional external Brake
Acknowledge signal does not meet the status presumed by the brake control
function.
42.07
Description
FbEq
FAULT
The drive trips on a fault: fault indication and drive stops the motor.
1
WARNING
The drive generates a warning.
2
STRT TORQ REF
SEL
Selects the source for the motor starting torque reference applied at the brake
release. The value is read in percent of the motor nominal torque.
Note: For all selections, the minimum value used will be the value defined in
Par. 42.08.
42.08
42.09
NO
No source selected. This is the default value.
1
AI1
Analogue input AI1
2
AI2
Analogue input AI2
3
AI3
Analogue input AI3
4
AI5
Analogue input AI5
5
AI6
Analogue input AI6
6
PAR 42.08
Defined with parameter 42.08.
7
MEMORY
The motor torque stored at the previous brake Close command.
8
START TORQ REF
Defines the motor starting torque at brake release if parameter 42.07 START
TORQ REF SEL has value PAR 42.08.
10 … 300%
Torque value in percent of the motor nominal torque
EXTEND RUN T
Defines an extended run time for the brake control function at stop. During the
delay, the motor is kept magnetised and ready for an immediate restart.
1000 …
30000
Note: During operation in the local control mode, the magnetisation delay can
be interrupted by giving a second Stop command from the panel. The second
Stop command would be effective only to break the extended run time
sequence when it is already in the extended run time phase.
0.0 …3600.0 s
0.0 s = Normal stop routine of the brake control function: The motor
magnetisation is switched off after the brake close delay has passed.
100 = 1 s
0.1 … 3600.0 s = Extended stop routine of the brake control function: The
motor magnetisation is switched off after the brake close delay and the
extended run time have passed. During the extended run time, a zero torque
reference is applied, and the motor is ready for an immediate restart.
Start/Stop
Motor magnetised
Actual speed
1 = brake close speed
2 = brake close delay
3 = extended run time
1
2
3
t
Actual signals and parameters
198
Index
Name/Selection
42.10
LOW REF BRK HOLD Activates a brake hold function and defines the hold delay for it. The function
stabilises the operation of the brake control application when the motor
operates near zero speed.
0.0 … 60.0 s
Description
FbEq
0.0 s = inactive.
100 = 1 s
0.1 s … 60.0 s = active. When the absolute value of the motor speed reference
falls below the brake close speed:
- The brake is closed according to the normal stop routine of the brake control
function
- The brake hold delay counter starts after the brake close delay.
During the delay, the function keeps the brake closed despite the speed
reference value and the value of the Start command. When the set delay has
passed, the normal operation resumes if the absolute speed reference is
greater than the brake close speed.
The following figures explain the two different scenarios that can occur in the
LOW REF BRK HOLD function.
Case 1: The absolute speed reference goes above the brake close speed
before the Low Ref Brk Hold time has elapsed.
BRAKE CLOSE DELAY
Speed Ref.
LOW REF BRK HOLD
BRAKE CLOSE SPEED
t
BRAKE OPEN DELAY
Internal Speed Ref.
t
t
BRAKE OPEN CMD
Case 2: The absolute speed reference goes above the brake close speed after
the Low Ref Brk Hold time has elapsed. The brake is opened only after the
speed reference goes above the brake close speed. In this case the brake
immediately opens when the speed ref is greater than the brake close speed,
because the LOW REF BRK HOLD time has already elapsed.
BRAKE CLOSE DELAY
Speed Ref.
LOW REF BRK HOLD
BRAKE CLOSE SPEED
Internal Speed Ref.
t
*
BRAKE OPEN DELAY
t
BRAKE OPEN CMD
t
* This time is the additional delay until the speed ref goes above the brake
close speed.
Actual signals and parameters
199
Index
Name/Selection
Description
42.11
MOTOR SLIP SPD
Defines the motor slip speed allowed during brake opening. If the motor speed
exceeds this level during brake opening, a brake slip fault will be generated.
This function performs a mechanical system check of the brake during the
Torque proving sequence, ensuring that the brake does not slip during the
Torque proving sequence with the brake closed. Not applicable in Scalar
mode.
0 … 100 rpm
Speed (an absolute value)
SLIP FAULT DELAY
Defines the motor slip time delay during brake opening. If the motor speed
exceeds the slip speed during brake opening, BRAKE SLIP FAULT will be
generated. Not applicable in Scalar mode.
0 … 60 s
Time
42.13
BRK LONG FLT DLY
Defines the time delay for generating a brake fault after the brake close delay
has elapsed. This parameter is applicable only when encoder feedback is used
and brake acknowledge DI is used. During the brake close delay, the drive
checks whether the brake has physically closed by checking the status of the
brake acknowledge DI. If the DI is still active after the brake close delay, the
drive keeps the torque ON to the motor for the time defined. If the brake long
fault delay time has elapsed and the DI is still active, the drive trips on a brake
fault. A status bit (03.32 bit 9) is available when the drive is operating at the
brake long fault delay period along with a CDP message ‘BRK LONG TIME’,
which can be used for safety interlock or generating alarms.
0 … 60 s
Time
42.14
SAFETY CLOSE
CMD
Activates the Safety close function. This function monitors the actual speed of
the motor when the drive is running without the encoder. When the actual
speed is below 1% of the max speed for more than 2 seconds with the Start
command active, the drive trips on SAFETYCLS FLT.
DISABLE
Function is inactive
1
ENABLE
Function is active
2
BRAKE ACKN PTR
Defines the source or constant for value PAR 42.15 of parameter 42.02
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
BRK REOPEN DLY
Defines the brake reopen delay time after a Stop command is issued. The
brake is opened only after this time period after brake closing sequence is over
with a Stop command. This function helps in improper brake opening and
closing sequence due to immediate Start -> Stop -> Start sequence.
0…5s
Time
42.12
42.15
42.16
FbEq
0 …1000
0 …6000
0 …6000
-
0 …500
Actual signals and parameters
200
Index
Name/Selection
50 ENCODER MODULE
Description
FbEq
Encoder connection. Visible only when a pulse encoder module (optional) is
installed and activated with parameter 98.01.
The settings will remain the same even though the application macro is
changed.
50.01
50.02
PULSE NR
States the number of encoder pulses per one revolution.
0 … 29999 ppr
Pulse number in pulses per round (ppr)
SPEED MEAS MODE Defines how the encoder pulses are calculated.
A -- B DIR
Channel A: positive edges calculated for speed. Channel B: direction.
0
A--
Channel A: positive and negative edges calculated for speed. Channel B: not
used.
1
A --- B DIR
Channel A: positive and negative edges are calculated for speed. Channel B:
direction.
2
A --- B ---
All edges of the signals are calculated.
3
ENCODER FAULT
Defines the operation of the drive if a failure is detected in communication
between the pulse encoder and the pulse encoder interface module, or
between the module and the drive. Encoder supervision function activates if
either of the following conditions is valid:
-
50.03
0 … 29999
-The difference between the estimated and measured speed is greater than
20% of the motor nominal speed.
- No pulses are received from the encoder within the defined time (see
parameter 50.04) and the drive is simultaneously at the current or torque limit.
When the torque is zero or low, the shaft may not move and no pulses are
detected. This means that at low torque/current the missing-pulse-supervision
is not possible. Therefore there must be conditional torque or current limit in
the pulse supervision. Now the limit is the maximum torque/current, because
then the shaft is expected to move at least a little bit and at least some encoder
pulses are detected.
50.04
WARNING
The drive generates a warning indication.
0
FAULT
The drive trips on a fault, gives a fault indication and stops the motor.
65535
ENCODER DELAY
Defines the time delay for the encoder supervision function at start (See
parameter 50.03).
Note: It the delay is set to 0 ms, encoder supervision at start is disabled.
0 … 50000 ms
50.05
Time delay
0 … 50000
ENCODER DDCS CH Defines the fibre optic channel of the control board from which the drive
program reads the signals coming from the pulse encoder interface module.
The setting is valid only if the module is connected to the drive via the DDCS
link (that is not to the option slot of the drive).
50.06
CH 1
Signals via channel 1 (CH1). The pulse encoder interface module must be
connected to CH1 instead of CH2 in applications where CH2 is reserved by a
Master station (For example, a Master/Follower application). See also
parameter 70.03.
1
CH 2
Signals via channel 2 (CH2). Can be used in most cases.
2
SPEED FB SEL
Defines the speed feedback value used in control.
INTERNAL
Calculated speed estimate
65535
ENCODER
Actual speed measured with an encoder
0
Actual signals and parameters
201
Index
Name/Selection
50.07
ENC CABLE CHECK
Description
FbEq
Selects the drive operation when encoder signal is missing.
Note: Monitoring is only for RTAC-03. For more information, see RTAC-03
TTT Pulse Encoder Interface Module User’s Manual [3AFE68650500
(English)]
DISABLED
Not active
1
WARNING
Drive generates warning ENC CABLE.
2
FAULT
The drive trips on ENC CABLE.
3
51 COMM MODULE
DATA
The parameters are visible and need to be adjusted, only when a fieldbus
adapter module (optional) is installed and activated with parameter 98.02. For
details on the parameters, refer to the manual of the fieldbus module and
chapter Fieldbus control.
These parameter settings will remain the same even though the macro is
changed.
52 STANDARD
MODBUS
The settings for the Standard Modbus Link. See chapter Fieldbus control.
52.01
STATION NUMBER
Defines the address of the device. Two units with the same address are not
allowed on-line.
1 … 247
Address
BAUDRATE
Defines the transfer rate of the link.
52.02
52.03
600
600 bit/s
1
1200
1200 bit/s
2
2400
2400 bit/s
3
4800
4800 bit/s
4
9600
9600 bit/s
5
19200
19200 bit/s
6
PARITY
Defines the use of parity and stop bit(s). The same setting must be used in all
on-line stations.
NONE1STOPBIT
No parity bit, one stop bit
1
NONE2STOPBIT
No parity bit, two stop bits
2
ODD
Odd parity indication bit, one stop bit
3
EVEN
Even parity indication bit, one stop bit
4
60 MASTER/
FOLLOWER
60.01
1=1
Master/Follower application. For more information, see section Master/
Follower use of several drives (Only in EXT2 Control) on page 94 and a
separate Master/Follower Application Guide [3AFE64590430 (English)].
MASTER LINK MODE Defines the role of the drive on the Master/Follower link.
Note: Master/Follower configuration will work with complete functionality only
when the drive is in EXT2 control. EXT1 control can be used for the drive to be
a stand-alone drive with M/F link active.
Two Master stations are not allowed on-line. If a Follower drive is changed to
be a Master drive (or vice versa) with this parameter, the RMIO board must be
powered up again for the M/F link to work properly.
NOT IN USE
The Master/Follower link is not active.
1
MASTER
Master drive
2
FOLLOWER 1
Follower drive
3
FOLLOWER 2
Follower drive
4
FOLLOWER 3
Follower drive
5
Actual signals and parameters
202
Index
60.02
Name/Selection
Description
FbEq
FOLLOWER 4
Follower drive
6
STANDBY
Follower drive which reads the control signals through a fieldbus interface, not 7
from the Master/Follower link as usual.
TORQUE SELECTOR Selects the reference used in motor torque control. Typically, the value needs
to be changed only in the Follower station(s).
The parameter is visible only when Master/Follower is active (See Par. 60.01).
ZERO
This selection forces the output of the torque selector to zero.
1
SPEED
The Follower speed controller output is used as a reference for motor torque
control. The drive is speed-controlled. SPEED can be used both in the
Follower and in the Master if
2
- the motor shafts of the Master and Follower are connected flexibly. (A slight
speed difference between the Master and the Follower is possible/allowed.)
- drooping is used (see parameter 60.06).
TORQUE
The drive is torque-controlled. The selection is used in the Follower(s) when
the motor shafts of the Master and Follower are coupled solidly to each other
by gearing, a chain or other means of mechanical power transmission and no
speed difference between the drives is allowed or possible.
3
Note: If TORQUE is selected, the drive does not restrict the speed variation as
long as the speed is within the limits defined with parameters 20.01 and 20.02.
More definite speed supervision is often needed. In those cases, the selection
ADD should be used instead of TORQUE. Par. 11.02 should be EXT2.
4
MINIMUM
The torque selector compares the direct torque reference and the speed
controller output, and the smaller of them is used as the reference for the
motor torque control. MINIMUM is selected in special cases only. Par. 11.02
should be EXT2. Speed reference should be connected to EXT1 and torque
reference to EXT2.
MAXIMUM
The torque selector compares the direct torque reference and the speed
5
controller output and the greater of them is used as the reference for the motor
torque control. MAXIMUM is selected in special cases only. Par. 11.02 should
be EXT2. Speed reference should be connected to EXT1 and torque reference
to EXT2.
ADD
The torque selector adds the speed controller output to the direct torque
reference. The drive is torque-controlled in the normal operating range. The
selection ADD, together with the window control, forms a speed supervision
function for a torque-controlled Follower drive. See parameter 60.03. Par.
11.02 should be EXT2. Speed reference should be connected to EXT1 and
torque reference to EXT2.
Actual signals and parameters
6
203
Index
Name/Selection
Description
FbEq
60.03
WINDOW SEL ON
Activates the Window control function. The Window control, together with
selection ADD at parameter 60.02, forms a speed supervision function for a
torque-controlled drive. The parameter is visible only when Master/Follower is
active (See Par. 60.01). External control location 2 (EXT2) must be active to
enable window control.
NO
Inactive
YES
Window control is active. Selection YES is used only when parameter 60.02
65535
has value ADD. Window control supervises the speed error value (Speed
Reference - Actual Speed). In the normal operating range, window control
keeps the speed controller input at zero. The speed controller is evoked only if:
0
- the speed error exceeds the value of parameter 60.04 or
- the absolute value of the negative speed error exceeds the value of
parameter 60.05.
When the speed error moves outside the window, the exceeding part of the
error value is connected to the speed controller. The speed controller produces
a reference term relative to the input and gain of the speed controller
(parameter 23.01) which the torque selector adds to the torque reference. The
result is used as the internal torque reference for the drive.
Example: In a load loss condition, the internal torque reference of the drive is
decreased to prevent an excessive rise of the motor speed. If window control
were inactivated, the motor speed would rise until a speed limit of the drive
were reached.
60.04
60.05
WINDOW WIDTH
POS
Defines the supervision window width above the speed reference. See
parameter 60.03. The parameter is visible only when Master/Follower is active
(See Par. 60.01).
0 … 1500 rpm
Positive window width
WINDOW WIDTH
NEG
Defines the supervision window width below the speed reference. See
parameter 60.03. The parameter is visible only when Master/Follower is active
(See Par. 60.01).
0 … 1500 rpm
Negative window width
0… 20000
0… 20000
Actual signals and parameters
204
Index
Name/Selection
Description
FbEq
60.06
DROOP RATE
Defines the droop rate. The parameter value needs to be changed only if both
the Master and the Follower are speed-controlled:
- External control location 1 (EXT1) is selected (see parameter 11.02 or
- External control location 2 (EXT2) is selected (see parameter 11.02) and
parameter 60.02 is set to SPEED.
The droop rate needs to be set both for the Master and the Follower. The
correct droop rate for a process must be found out case by case in practice.
The drooping prevents a conflict between the Master and the Follower by
allowing a slight speed difference between them. The drooping slightly
decreases the drive speed as the drive load increases. The actual speed
decrease at a certain operating point depends on the droop rate setting and
the drive load ( = torque reference / speed controller output). At 100% speed
controller output, drooping is at its nominal level, that is equal to the value of
the DROOP RATE. The drooping effect decreases linearly to zero along with
the decreasing load.
Motor
Speed
% of
nominal
Speed Decrease =
Speed Controller Output · Drooping · Max. Speed
Example: Speed Controller output is 50%, DROOP RATE is
1%, maximum speed of the drive is 1500 rpm.
Speed decrease = 0.50 × 0.01 × 1500 rpm = 7.5 rpm
100%
No Drooping
} Par. 60.06 DROOP RATE
Drooping
100%
60.07
60.08
Speed Controller Drive load
Output / %
0 … 100%
Droop rate in percent of the motor nominal speed.
MASTER SIGNAL 2
Selects the signal that is sent by the Master to the Follower(s) as Reference 1
(speed reference).
0000 … 9999
Parameter index
MASTER SIGNAL 3
Selects the signal that is sent by the Master to the Follower(s) as Reference 2
(torque reference for load sharing or speed reference for Shaft
synchronisation).
0 … 1000
0000 …
9999
Note: This has to be set to 202 when the Par. 60.11 is set as SPEED and has
to be set 213 when the Par. 60.11 is set as TORQUE.
60.09
60.10
0000 … 9999
Parameter index
LOAD SHARE
Selects the scaling factor in percentage of the signal that is sent by the Master
to the Follower(s) as Reference 2 (torque reference). Active only in Follower
drives.
0.... 400 %
Percentage
NO OF SLAVES
Selects the number of slaves when the drive is selected as the Master. Active
only if selected as Master.
1.... 4
Setting range
Actual signals and parameters
0000 …
9999
0.... 400
1.... 4
205
Index
Name/Selection
Description
FbEq
60.11
SLAVE MODE
Defines the Follower control mode. To be defined only in the Master drive. This
defines the Master signal 3 (see parameter 60.08) to be used according to the
slave mode.
SPEED
The Follower drives are configured for speed control. For example,: Follower
drives are in Shaft synchro mode.
1
TORQUE
The Follower drives are configured for torque control. For example, Follower
drives are in load sharing mode.
2
70 DDCS CONTROL
Settings for the fibre optic channels 0, 1 and 3.
70.01
CHANNEL 0 ADDR
Defines the node address for channel 0. No two nodes on-line may have the
same address. The setting needs to be changed when a master station is
connected to channel 0 and it does not automatically change the address of
the slave. Examples of such masters are an ABB Advant Controller or another
drive.
1 … 125
Address.
CHANNEL 3 ADDR
Node address for channel 3. No two nodes on-line may have the same
address. Typically the setting needs to be changed when the drive is
connected in a ring which consists of several drives and a PC with the
DriveWindow program running.
1 … 254
Address.
CH1 BAUD RATE
The communication speed of channel 1. Typically the setting needs to be
changed only if the pulse encoder interface module is connected to channel 1
instead of channel 2. Then the speed must be changed to 4 Mbit/s. See also
parameter 50.05.
8 Mbit/s
8 megabits per second
0
4 Mbit/s
4 megabits per second
1
2 Mbit/s
2 megabits per second
2
1 Mbit/s
1 megabits per second
3
CH0 DDCS HW
CONN
Selects the topology of the channel 0 link.
RING
Devices are connected in ring topology.
0
STAR
Devices are connected in a star topology.
1
CH2 HW
CONNECTION
Selects the topology of the channel 2 link.
RING
Devices are connected in ring topology.
0
STAR
Devices are connected in a star topology. Not supported.
1
70.02
70.03
70.04
70.05
1 … 125
1 … 254
Note: Only the RING topology is supported.
74 SPEED MONITOR
Settings for Speed monitoring. See section External speed limitation on page
85.
74.01
MOT OVERSPEED
LEV
Defines the motor overspeed level in percentage of maximum speed (Par.
20.02). The value is applicable in both forward and reverse direction. The drive
trips indicating MOTOROVER SPD when the motor speed exceeds this level.
0 … 200 %
Percent.
0 … 2000
Actual signals and parameters
206
Index
Name/Selection
75 SPEED MATCHING
Description
FbEq
Settings for Speed matching. See section Speed matching (internal overload
protection) on page 87.
Note: When Shaft synchronisation is active, avoid using this function as the
speed correction from synchronisation block can do step speed corrections
after the speed ramp.
75.01
SPEED MATCH SEL
Selects whether Speed matching is active or not.
Note: This function should be activated only for drives running in Speed mode.
75.02
75.03
75.04
TRUE
Active.
FALSE
Inactive.
SP DEV LEV
Defines the motor speed deviation level in percentage of maximum speed (Par.
20.02) when the drive is running at the set point. Value is applicable in both
forward and reverse direction. A speed above this level when the drive is at set
point, means that the speed error is too high. See also parameter 75.03.
0 … 100 %
Percent.
SPD MATCH FLT TD
Defines the Speed match fault delay time when the speed error is higher than
defined in the parameter 75.02 SP DEV LEV. The drive trips on SPD MATCH
FLT if the speed error is higher than the SP DEV LEV for more than the delay
time defined.
0 … 60 s
Time. Defines the Speed match fault delay time.
SPD CHG PER SEC
Defines the Speed matching deviation when the drive is accelerating or
decelerating. While accelerating/decelerating, if the absolute difference
between the rate of ramped speed reference, and the rate of change of actual
speed, is greater the defined value and continues for a period defined in the
Par. 75.03 then the drive will trip on SPD MATCH FLT during acceleration/
deceleration. The rate of change of ramped speed reference is calculated
using the active acceleration/deceleration time. See section Speed matching
(internal overload protection) for more explanation.
0 … 100 %/s
Percent per second
76 TORQUE PROVING
Settings for Torque proving. See section Torque proving (Crane system check)
on page 88.
76.01
Selects whether Torque proving is active or not.
76.02
TORQ PROV SEL
TRUE
Active.
FALSE
Inactive.
TORQ PROV FLT TD
Defines the Torque proving fault delay time. The drive trips on TORQ PROVE
FLT if actual motor torque of 30% has not been attained in the time interval
defined.
0 … 100 s
Time. Defines the Torque proving fault delay time.
Actual signals and parameters
0 … 1000
0 … 600
0 … 1000
0 … 1000
207
Index
Name/Selection
77 LOAD SPEED CTRL
Description
FbEq
Settings for Load speed control. See section Load speed control on page 123.
Note: The Base speed versus Motor current graph is plotted using the
parameters 77.04 … 77.19. These parameters have to be configured in the
correct sequence and if the sequence of values in these parameters are not
correct, the speed will be limited to Par. 77.04 Base speed. For more
information, see section Load speed control on page 123.
77.01
77.02
LOAD SPD CTRL
SEL
Defines the Load speed control function activation command. If this selection
command is not active then the speed limit is not calculated with this function.
NOT SEL
No Load speed control.
1
ENABLE
Load speed control always active.
2
COMM.MODULE
Load speed control through APPL CONTROL WORD (3.34) bit 2.
3
PARAM 77.02
Load speed selected with Par. 77.02 LOAD SPD CTRL PTR.
4
LOAD SPD CTRL
PTR
Defines the source or constant for value Par. 77.02 LOAD SPD CTRL PTR of
parameter 77.01 LOAD SPD CTRL SEL.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value:
-
- Parameter pointer: Inversion, group, index and bit fields. The bit number is
effective only for blocks handling boolean inputs.
- Constant value: Inversion and constant fields. Inversion field must have value
C to enable the constant setting.
77.03
77.04
77.05
77.06
77.07
77.08
77.09
HOLD RAMP
Defines time period for holding the speed reference after which the motor has
crossed the base speed to check for the motor current. This motor current after
this time period delay is regarded by the function as the base speed current for
the particular load used.
0.00 … 5.00 s
The speed reference holding time.
CURRENT X1 FWD
Defines the current in amps expected at the base speed in forward direction for
limiting the speed reference to the value in parameter 77.05 REF Y1 FWD.
This current can be the empty hook current at the base speed when running in
the forward direction.
0.0 … 3000.0 A
Setting range in amps.
REF Y1 FWD
Defines the speed in rpm to be used as the speed limit in forward direction, if
the current at the base speed in forward direction is equal to the value in
parameter 77.04 CURR X1 FWD. This value can be the maximum allowed
speed in empty hook condition in the forward direction.
0.0 … 18000.0 rpm
Setting range in rpm.
CURRENT X2 FWD
Defines the current in amps expected at the base speed in forward direction for
limiting the speed reference to the value in parameter 77.07 REF Y2 FWD.
0.0 … 3000.0 A
Setting range in amps.
REF Y2 FWD
Defines the speed in rpm to be used as the speed limit in forward direction, if
the current at the base speed in forward direction is equal to the value in
parameter 77.06 CURR X2 FWD.
0.0 … 18000.0 rpm
Setting range in rpm.
CURRENT X3 FWD
Defines the current in amps expected at the base speed in forward direction for
limiting the speed reference to the value in Parameter 77.09 REF Y3 FWD.
0.0 … 3000.0 A
Setting range in amps.
REF Y3 FWD
Defines the speed in rpm to be used as the speed limit in forward direction, if
the current at the base speed in forward direction is equal to the value in
parameter 77.08 CURR X3 FWD.
0.0 … 18000.0 rpm
Setting range in rpm.
0 … 500
0 … 30000
0 … 180000
0 … 30000
0 … 180000
0 … 30000
0 … 180000
Actual signals and parameters
208
Index
Name/Selection
Description
77.10
CURRENT X4 FWD
Defines the current in amps expected at the base speed in forward direction for
limiting the speed reference to the value in parameter 77.11 REF Y4 FWD.
This current can be the current at the base speed with maximum load when
running in the forward direction.
0.0 … 3000.0 A
Setting range in amps.
REF Y4 FWD
Defines the speed in rpm to be used as the speed limit in forward direction, if
the current at the base speed in forward direction is equal to the value in
parameter 77.10 CURR X4 FWD. This value can be the minimum allowed
speed in maximum load condition in the forward direction.
0.0 … 18000.0 rpm
Setting range in rpm.
CURRENT X1 REV
Defines the current in amps expected at the base speed in reverse direction for
limiting the speed reference to the value in parameter 77.13 REF Y1 REV. This
current can be the empty hook current at the base speed when running in the
reverse direction.
0.0 … 3000.0 A
Setting range in amps.
REF Y1 REV
Defines the speed in rpm to be used as the speed limit in forward direction, if
the current at the base speed in reverse direction is equal to the value in
parameter 77.12 CURR X1 REV. This value can be the maximum allowed
speed in empty hook condition in the reverse direction.
0.0 … 18000.0 rpm
Setting range in rpm.
CURRENT X2 REV
Defines the current in amps expected at the base speed in reverse direction for
limiting the speed reference to the value in parameter 77.15 REF Y2 REV.
0.0 … 3000.0 A
Setting range in amps.
REF Y2 REV
Defines the speed in rpm to be used as the speed limit in reverse direction, if
the current at the base speed in reverse direction is equal to the value in
parameter 77.14 CURR X2 REV.
0.0 … 18000.0 rpm
Setting range in rpm.
CURRENT X3 REV
Defines the current in amps expected at the base speed in reverse direction for
limiting the speed reference to the value in parameter 77.17 REF Y3 REV.
0.0 … 3000.0 A
Setting range in amps.
REF Y3 REV
Defines the speed in rpm to be used as the speed limit in reverse direction, if
the current at the base speed in reverse direction is equal to the value in
parameter 77.16 CURR X3 REV.
0.0 … 18000.0 rpm
Setting range in rpm.
CURRENT X4 REV
Defines the current in amps expected at the base speed in reverse direction for
limiting the speed reference to the value in parameter 77.19 REF Y4 REV. This
current can be the current at the base speed with maximum load when running
in the reverse direction.
0.0 … 3000.0 A
Setting range in amps.
REF Y4 REV
Defines the speed in rpm to be used as the speed limit in reverse direction, if
the current at the base speed in reverse direction is equal to the value in
parameter 77.18 CURR X4 REV. This value can be the minimum allowed
speed in maximum load condition in the reverse direction.
0.0 … 18000.0 rpm
Setting range in rpm.
77.11
77.12
77.13
77.14
77.15
77.16
77.17
77.18
77.19
Actual signals and parameters
FbEq
0 … 30000
0 … 180000
0 … 30000
0 … 180000
0 … 30000
0 … 180000
0 … 30000
0 … 180000
0 … 30000
0 … 180000
209
Index
Name/Selection
Description
FbEq
77.20
BASE SPEED
Defines the base speed in rpm. This value is used to check for the actual motor
current when the motor speed crosses this value. The motor current when the
actual speed crosses this base speed in either forward or reverse direction is
checked for a period of Par. 77.03 HOLD RAMP. This motor current is further
used along with parameters 77.04 … 77.19 to calculate the speed limit in
forward and reverse directions. If the parameters 77.04 … 77.19 are not
configured properly in the correct sequence, the speed is always limited to this
value. For more information, see section Load speed control on page 123.
0.0 … 18000.0 rpm
Setting range in rpm.
0 … 180000
78 SHAFT SYNCRO
Settings for Shaft synchronisation. See section Control location EXT1/EXT2
supervision mismatch on page 93. The drive has to be in EXT2 control location
for the function to be active.
78.01
SYNCRO CONTROL
Defines whether the Synchro control is active or not. If this parameter is set to
OFF, the position error calculation, position correction, and synchronisation
error fault functions are not operational. This parameter should be active for
parameter 10.14 to be functional.
OFF
Synchro control is not selected
0
ON
Synchro control is selected
1
SYNCRO GAIN
Defines the gain for the Synchro controller (P -Controller). Only used in
Follower drives. See section Control location EXT1/EXT2 supervision
mismatch on page 93.
0... 100.00
Setting range
SHAFT SCALE
Defines the scaling factor used for the shaft position in the Follower drives. The
scaling factor should be calculated as the ratio between the Master speed in
m/min or mm/min at the maximum speed defined to that of the Follower drive.
This factor is multiplied with the speed reference in the Follower drive only
when the Synchro control is on. Used only in Follower drives. See section
Control location EXT1/EXT2 supervision mismatch on page 93.
0... 100.00
Setting range
POS SCALE
Defines the position scaling factor for the actual position value. The scaling
factor should be calculated as number of Pulses Per Unit (Pulses/mm). See
section Actual position configuration based on a motor encoder signal on page
91.
0.1 … 10000.0 P/mm
Setting range in pulses/mm
78.02
78.03
78.04
78.05
78.06
78.07
78.08
0... 10000
0... 100000
1 … 100000
POS CORR MAX LIM Defines the maximum limit for the position correction value. The difference
between the Master and Follower position in unit (mm) is limited to this value
before its given as a speed correction factor to the Follower speed loop.
0 … 100.0 mm
Setting range in mm
POS CORR MIN LIM
Defines the minimum limit for the position correction value. The difference
between the Master and Follower position in unit (mm) is limited to this value
before its given as a speed correction factor to the Follower speed loop.
0 … 1000
-100.0 … 0 mm
Setting range in mm
SYNC ERR FLT DLY
Defines the time delay for the generation of SYNC FAULT when the absolute
difference between the Master and Follower position in unit (mm) is greater
than what is defined in Par. 78.09. The fault will be generated in respective
Follower drives.
-1000 … 0
0 … 10 s
Setting range in seconds
SYNC CORR SCALE
Defines the scaling factor which will be used for the final speed correction
reference in slave speed loop. Scaling value will correspond to a correction of
that rpm for a position error of 1 mm.
0 … 100
Actual signals and parameters
210
Index
78.09
78.10
78.12
Name/Selection
Description
FbEq
0 ... 100.0 rpm
Setting range in rpm
0 … 1000
SYNC ERR LIM
Defines the Synchro error limit which will be used if configured as Follower
drive for the SYNC FAULT fault generation. See Par. 78.07.
0 ... 100.0 mm
Setting range in mm
HOME POSITION
Defines the initial position value when a homing acknowledgment is done
using Par. 10.15 selection. The actual position is initialized to this value.
-1000000.0 ...
1000000.0 mm
Setting range in mm
SYNC CORR MODE
Defines the synchronisation correction mode to be used on the activation
Synchro command through the signal defined in Par. 10.14 SYNC SEL.
Note: When using the Fieldbus communication to write to this parameter the
value would be limited to -32768 … 32767
0 … 1000
-1000000
… 1000000
Note: The Synchro command should be reactivated using the signal defined in
Par. 10.14 SYNC SEL, after the synchronisation mode is changed from
OFFSET to DIRECT or from DIRECT to OFFSET.
78.13
OFFSET
The synchronisation correction is offset correction. In this mode, the difference 0
between the Master position and the Follower position at the time of Synchro
command activation is taken as an offset and is not considered as position
error.
DIRECT
The synchronisation correction is direct correction. In this mode, the difference 1
between the Master position and the Follower position at the time of Synchro
command activation is taken as position error. No permanent offset is
calculated in this mode.
POS HYSTERISIS
Defines the position hysteresis for stopping sequence in synchronisation
mode. This parameter is applicable only for Follower drives in synchronisation
mode. The drive is stopped only when the absolute Synchro position error Par.
02.23 SYNC POS ERROR is in this range. When the brake control is active the
drive issues a brake Closing command while in stopping sequence, only when
the Master drive brake has closed and the absolute Synchro position error
02.23 SYNC POS ERROR is within this hysteresis value. When brake control
is not active and the drive is a Follower, the drive stops only when the Master
drive stops and then the Synchro position error Par. 02.23 SYNC POS ERROR
is within this hysteresis value.
Note: When brake control is active the brake closing speed 42.05 ABS BRAKE
CLS SPD is not considered in this mode.
1.0 ... 50.0 mm
Setting range in mm
10 … 500
79 SERVICE COUNTER
Settings for Service Counter.
79.01
BRAKE CTR RESET
Reset selection of brake open counts. Used to reset the brake open count
value. Reset clears the value of signal 02.28.
NO
No reset
0
RESET
Resets the counter. Automatically reverts back to 0.
1
RESET OPT TIME
Crane operation time reset selection. Used to reset the crane operation timer
value. Reset clears the value of signal 01.43.
NO
No reset
0
RESET
Reset value. Automatically reverts back to 0.
1
79.02
83 ADAPT PROG CTRL
Control of the Adaptive Program execution. For more information, see the
Adaptive Program Application Guide [3AFE64527274 (English)].
83.01
ADAPT PROG CMD
Selects the operation mode for the Adaptive Program.
STOP
Stop. The program cannot be edited.
1
RUN
Run. The program cannot be edited.
2
Actual signals and parameters
211
Index
83.02
Name/Selection
Description
FbEq
EDIT
Stop to edit mode. Program can be edited.
3
EDIT COMMAND
Selects the command for the block placed in the location defined with
parameter 83.03. The program must be in the editing mode (see parameter
83.01).
NO
Home value. The value automatically restores to NO after an editing command 1
has been executed.
PUSH
Shifts the block in location defined with parameter 83.03 and the following
blocks one location up. A new block can be placed in the emptied location by
programming the Block Parameter Set as usual.
2
Example: A new block needs to be placed in between the current block
number four (parameters 84.20 … 84.25) and five (parameters 84.25 …
84.29).
In order to do this:
- Shift the program to the editing mode with parameter 83.01.
- Select location number five as the desired location for the new block with
parameter 83.03.
- Shift the block in location number 5 and the following blocks one location
forward with parameter 83.02. (selection PUSH)
- Program the emptied location number 5 with parameters 84.25 to 84.29 as
usual.
DELETE
Deletes the block in location defined with parameter 83.03 and shifts the
following blocks one step down.
3
PROTECT
Activation of the Adaptive Program protection. Activate as follows:
4
- Ensure the Adaptive Program operation mode is START or STOP (parameter
83.01).
- Set the passcode (parameter 83.05).
- Change parameter 83.02 to PROTECT.
When activated:
- All parameters in group 84 excluding the block output parameters are hidden
(read protected).
- It is not possible to switch the program to the editing mode (parameter 83.01).
- Parameter 83.05 is set to 0.
UNPROTECT
Inactivation of the Adaptive Program protection. Inactivate as follows:
5
- Ensure the Adaptive Program operation mode is START or STOP (parameter
83.01).
- Set the passcode (parameter 83.05).
- Change parameter 83.02 to UNPROTECT.
Note: If the passcode is lost, it is possible to reset the protection also by
changing the application macro setting (parameter 99.02 APPLICATION
MACRO).
83.03
83.04
EDIT BLOCK
Defines the block location number for the command selected with parameter
83.02.
1 … 15
Block location number
TIMELEVEL SEL
Selects the execution cycle time for the Adaptive Program. The setting is valid
for all blocks.
12 ms
12 milliseconds
1
100 ms
100 milliseconds
2
1000 ms
1000 milliseconds
3
1=1
Actual signals and parameters
212
Index
Name/Selection
Description
83.05
PASSCODE
Sets the passcode for the Adaptive Program protection. The passcode is
needed at activation and inactivation of the protection. See parameter 83.02.
0…
Passcode. The setting restores to 0 after the protection is activated/inactivated.
Note: When activating, write down the passcode and store it in a safe place.
84 ADAPTIVE
PROGRAM
FbEq
- selections of the function blocks and their input connections.
- diagnostics
For more information, see the Adaptive Program Application Guide
[3AFE64527274 (English)].
84.01
STATUS
Shows the value of the Adaptive Program status word. The table below shows
the alternative bit states and the corresponding values on the panel display.
Bit
0
1
2
3
4
5
6
8
Display
1
2
4
8
10
20
40
100
Meaning
Stopped
Running
Faulted
Editing
Checking
Pushing
Popping
Initialising
84.02
FAULTED PAR
Points out the faulted parameter in the Adaptive Program.
84.05
BLOCK1
Selects the function block for Block Parameter Set 1. See the Adaptive
Program Application Guide [3AFE64527274 (English)].
-
ABS
11
ADD
10
AND
2
BITWISE
26
COMPARE
16
COUNT
21
DPOT
23
EVENT
20
FILTER
13
MASK-SET
24
MAX
17
MIN
18
MULDIV
12
NO
1
OR
3
PI
14
PI-BAL
15
PI BIPOLAR
25
RAMP
22
SR
5
SWITCH-B
7
SWITCH-I
19
Actual signals and parameters
213
Index
84.06
Name/Selection
Description
FbEq
TOFF
9
TON
8
TRIGG
6
XOR
4
INPUT1
Selects the source for input I1 of Block Parameter Set 1.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value:
-
- Parameter pointer: Inversion, group, index and bit fields. The bit number is
effective only for blocks handling boolean inputs.
- Constant value: Inversion and constant fields. Inversion field must have value
C to enable the constant setting.
Example: The state of digital input DI2 is connected to Input 1 as follows:
- Set the source selection parameter (84.06) to +.01.17.01. (The application
program stores the state of digital input DI2 to bit 1 of actual signal 01.17.)
- If you need an inverted value, switch the sign of the pointer value
(-01.17.01.).
84.07
INPUT2
See parameter 84.06.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
See parameter 84.06.
INPUT3
See parameter 84.06.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
See parameter 84.06.
84.09
OUTPUT
Stores and displays the output of Block Parameter Set 1.
…
…
84.79
OUTPUT
84.08
-
-
Stores the output of Block Parameter Set 15.
-
85 USER CONSTANTS
Storage of the Adaptive Program constants and messages. For more
information, see the Adaptive Program Application Guide [3AFE64527274
(English)].
85.01
CONSTANT1
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
CONSTANT2
Sets a constant for the Adaptive Program.
85.02
85.03
85.04
85.05
85.06
85.07
85.08
-8388608 to 8388607
Integer value
CONSTANT3
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
CONSTANT4
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
CONSTANT5
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
CONSTANT6
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
CONSTANT7
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
CONSTANT8
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
1=1
1=1
1=1
1=1
1=1
1=1
1=1
1=1
Actual signals and parameters
214
Index
Name/Selection
Description
85.09
CONSTANT9
Sets a constant for the Adaptive Program.
85.10
85.11
85.12
85.13
85.14
85.15
-8388608 to 8388607
Integer value
CONSTANT10
Sets a constant for the Adaptive Program.
-8388608 to 8388607
Integer value
STRING1
Stores a message to be used in the Adaptive Program (EVENT block).
MESSAGE1
Message
STRING2
Stores a message to be used in the Adaptive Program (EVENT block).
MESSAGE2
Message
STRING3
Stores a message to be used in the Adaptive Program (EVENT block).
MESSAGE3
Message
STRING4
Stores a message to be used in the Adaptive Program (EVENT block).
MESSAGE4
Message
STRING5
Stores a message to be used in the Adaptive Program (EVENT block).
MESSAGE5
90 D SET REC ADDR
Message
FbEq
1=1
1=1
-
- Addresses into which the received fieldbus data sets are written.
- Numbers of the main and auxiliary data sets.
The parameters are visible only when a fieldbus communication is activated
with parameter 98.02. For more information, see chapter Fieldbus control.
90.01
90.02
90.03
90.04
90.05
90.06
90.07
AUX1 DS REF3
Selects the address into which the value of fieldbus reference REF3 is written.
0 … 8999
Parameter index
AUX1 DS REF4
Selects the address into which the value of fieldbus reference REF4 is written.
0 … 8999
Parameter index
AUX1 DS REF5
Selects the address into which the value of fieldbus reference REF5 is written.
0 … 8999
Parameter index
AUX2 DS REF6
Selects the address into which the value of fieldbus reference REF6 is written.
0 … 8999
Parameter index
AUX2 DS REF7
Selects the address into which the value of fieldbus reference REF7 is written.
0 … 8999
Parameter index
AUX2 DS REF8
Selects the address into which the value of fieldbus reference REF8 is written.
0 … 8999
Parameter index
START DS REC
Defines the starting data set from which the drive reads the Control Word,
Reference REF1 and Reference REF2.
1
Data set number 1 is the starting address. Can be used for standard drives.
1
10
Data set number 10 is the starting address. Can be used for multidrives.
2
92 D SET TR ADDR
Main and Auxiliary Data Sets which the drive sends to the fieldbus master
station.
The parameters are visible only when a fieldbus communication is activated
with parameter 98.02. For more information, see chapter Fieldbus control.
92.01
92.02
MAIN DS STATUS
WORD
Stores the address from which the Main Status Word is read from. Fixed value,
not visible.
302 (fixed)
Parameter index
MAIN DS ACT1
Selects the address from which the Actual signal 1 is read to the Main Data
Set.
0 … 9999
Parameter index
Actual signals and parameters
215
Index
Name/Selection
Description
92.03
MAIN DS ACT2
Selects the address from which the Actual signal 2 is read to the Main Data
Set.
0 … 9999
Parameter index
AUX1 DS ACT3
Selects the address from which the Actual signal 3 is read to the Auxiliary Data
Set.
0 … 9999
Parameter index
AUX1 DS ACT4
Selects the address from which the Actual signal 4 is read to the Auxiliary Data
Set.
0 … 9999
Parameter index
AUX1 DS ACT5
Selects the address from which the Actual signal 5 is read to the Auxiliary Data
Set.
0 … 9999
Parameter index
AUX2 DS ACT6
Selects the address from which the Actual signal 6 is read to the Auxiliary Data
Set.
0 … 9999
Parameter index
AUX2 DS ACT7
Selects the address from which the Actual signal 7 is read to the Auxiliary Data
Set.
0 … 9999
Parameter index
AUX2 DS ACT8
Selects the address from which the Actual signal 8 is read to the Auxiliary Data
Set.
0 … 9999
Parameter index
92.04
92.05
92.06
92.07
92.08
92.09
92.10
FbEq
MSW B10 PTR
Selects the address from which the 03.02 Main Status Word bit 10 is read from.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value:
- Parameter pointer: Inversion, group, index and bit fields. The bit number is
effective only for blocks handling boolean inputs.
- Constant value: Inversion and constant fields. Inversion field must have value
C to enable the constant setting.
92.11
MSW B13 PTR
Selects the address from which the 03.02 Main Status Word bit 13 is read from.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value:
- Parameter pointer: Inversion, group, index and bit fields. The bit number is
effective only for blocks handling boolean inputs.
- Constant value: Inversion and constant fields. Inversion field must have value
C to enable the constant setting.
92.12
MSW B14 PTR
Selects the address from which the 03.02 Main Status Word bit 14 is read from.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value:
- Parameter pointer: Inversion, group, index and bit fields. The bit number is
effective only for blocks handling boolean inputs.
- Constant value: Inversion and constant fields. Inversion field must have value
C to enable the constant setting.
92.13
START DS TRA
Defines the starting data set where the drive writes the Status Word, Actual
signal 1 and Actual signal 2.
2
Data set number 2 is the starting address. Can be used for Standard drives.
1
11
Data set number 11 is the starting address. Can be used for multidrives.
2
Actual signals and parameters
216
Index
Name/Selection
Description
FbEq
95 HARDWARE SPECIF Fan speed control, sine filter application etc.
95.01
95.02
FAN SPD CTRL
MODE
Selects the speed control of the optional inverter cooling fan.
CONST 50 Hz
Fan is running at constant frequency of 50 Hz when powered.
0
RUN/STOP
Drive stopped: Fan is running at constant frequency of 10 Hz.
Drive running: Fan is running at constant frequency of 50 Hz.
1
CONTROLLED
The speed of the fan is determined from IGBT temperature vs. fan speed
curve.
2
FUSE SWITCH CTRL Activates the inverter DC switch (switch fuse) monitoring function. The
monitoring must be active when the Switch Fuse Control Board (ASFC) is in
use and connected to the inverter AINT board, that is in all frame R8i inverters
equipped with the DC switch. The function must be inactive in units that do not
use the ASFC board with the DC switch, that is for frame R2i…R7i inverters
and all single drive units where no DC switch exists. The default setting (ON or
OFF) for each unit is set accordingly at the factory as default.
ACS800 IGBT pulses are always blocked when the program detects that the
DC switch is opened or inverter charging is ongoing (at power switch on). The
application program generates alarm INV DISABLED if the DC switch is
opened when the inverter is stopped. The inverter trips to fault INV DISABLED
if the DC switch is opened when the inverter is running.
95.03
95.04
95.05
OFF
Inactive
0
ON
Active
1
INT CONFIG USER
Number of parallel connected inverter modules. Activates the Reduced run
function. See section Reduced run function on page 116.
1...12
Number of parallel connected inverter modules
EX/SIN REQUEST
Activates the sine filter or Ex-motor application.
NO
Inactive
EX
Ex-motor application. Used with motors which comply with the ATEX directive. 2
SIN
Sine filter application. See Sine Filters User’s Manual for ACS800 Drives
[3AFE68389178 (English)].
3
EX&SIN
EX-motor and sine filter applications. See Sine Filters User’s Manual for
ACS800 Drives [3AFE68389178 (English)].
4
ENA INC SW FREQ
Activates the minimum switching frequency limitation for Ex-motor
applications. Parameter is visible if parameter 95.04 EX/SIN REQUEST is set
to EX.
NO
Inactive
0
YES
Active. Minimum switching frequency limit is set to 2 kHz. Used with motors
with an ATEX certification based on 2 kHz minimum switching frequency.
1
Actual signals and parameters
1
217
Index
Name/Selection
Description
FbEq
95.06
LCU Q PW REF
Defines the reference value for the line-side converter reactive power
generation. Line-side converter can generate reactive power to the supply
network. This reference is written into line-side converter unit parameter 24.02
Q POWER REF2. For more information, see IGBT Supply Control Program 7.x
Firmware manual [3AFE68315735 (English)].
Example 1: When parameter 24.03 Q POWER REF2 SEL is set to PERCENT,
value 10000 of parameter 24.02 Q POWER REF2 equals to value 100% of
parameter 24.01 Q POWER REF (that is 100% of the converter nominal power
given in signal 04.06 CONV NOM POWER).
Example 2: When parameter 24.03 Q POWER REF2 SEL is set to kVAr, value
1000 of parameter 24.02 Q POWER REF2 equals to parameter 24.01 Q
POWER REF value calculated with the following equation: 100 · (1000 kVAr
divided by converter nominal power in kVAr)%.
Example 3: When parameter 24.03 Q POWER REF2 SEL is set to PHI, value
3000 of parameter 24.02 POWER REF2 equals approximately to parameter
24.01 Q POWER REF value calculated with the following equation:
P
P
cos ( 30 ) = ---- = -----------------------S
2
2
P +Q
S
Q
30°
P
Positive reference 30° denotes capacitive load.
Negative reference 30° denotes inductive load.
P = signal 01.09 POWER value
Parameter 24.03 values are converter to degrees by the line-side converter
application program: -3000 ... 30000 = -30°... 30°. Value -10000/10000 equals
to -30° / 30°, since the range is limited to -3000/3000.
95.07
95.08
95.09
95.10
-10000...10000
Reference value.
See par.
description.
LCU DC REF
Defines the intermediate circuit DC voltage reference for the line-side
converter. This reference is written into line-side converter parameter 23.01 DC
VOLT REF. For more information, see IGBT Supply Control Program 7.x
Firmware manual [3AFE68315735 (English)].
0...1100 V
Voltage
LCU PAR1 SEL
Selects the line-side converter address from which the actual signal 09.15 LCU
ACT SIGNAL1 is read from.
0…9999
Line-side converter parameter index. For more information, see IGBT Supply
Control Program 7.x Firmware manual [3AFE68315735 (English)].
LCU PAR2 SEL
Selects the line-side converter address from which the actual signal 09.16 LCU
ACT SIGNAL2 is read from.
0…9999
Line-side converter parameter index. For more information, see IGBT Supply
Control Program 7.x Firmware manual [3AFE68315735 (English)].
TEMP INV AMBIENT
Defines the ambient temperature for the Enhanced drive temperature
monitoring function.
1=1V
0…9999
0…9999
Note: If ambient temperature exceeds 40 °C, the drive load capacity
decreases. See the derating instructions in the appropriate hardware manual.
20...50°C
Temperature
10 = 1 °C
Actual signals and parameters
218
Index
Name/Selection
96 EXTERNAL AO
Description
FbEq
Output signal selection and processing for the analogue extension module
(optional).
The parameters are visible only when the module is installed and activated
with parameter 98.06.
96.01
96.02
96.03
EXT AO1 PTR
Defines the source or constant for value.
1000 =
1 mA
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
-
INVERT EXT AO1
Activates the inversion of analogue output AO1 of the analogue I/O extension
module.
NO
Inactive
0
YES
Active. The analogue signal is at a minimum level when the drive signal
indicated is at its maximum and vice versa.
65535
MINIMUM EXT AO1
Defines the minimum value for the analogue output AO1 of the analogue I/O
extension module.
Note: Actually, the setting 10 mA or 12 mA does not set the AO1 minimum but
fixes 10/12 mA to actual signal value zero.
Example: Motor speed is read through the analogue output.
- The motor nominal speed is 1000 rpm (parameter 99.08).
- 96.02 is NO.
- 96.05 is 100%.
The analogue output value as a function of the speed is shown below.
Analogue output
mA
20
Analogue output
signal minimum
12
10
4
2
3
1
-1000
96.04
96.05
-500
2
4
1
0 mA
2
4 mA
3
10 mA
4
12 mA
1
0
500
1000
Speed/rpm
0 mA
0 mA
1
4 mA
4 mA
2
10 mA
10 mA
3
12 mA
12 mA
4
FILTER EXT AO1
Defines the filtering time constant for analogue output AO1 of the analogue I/O
extension module. See parameter 15.04.
0.00 … 10.00 s
Filtering time constant
SCALE EXT AO1
Defines the scaling factor for analogue output AO1 of the analogue I/O
extension module. See parameter 15.05.
10 … 1000%
Scaling factor
Actual signals and parameters
0 … 1000
100 …
10000
219
Index
Name/Selection
Description
FbEq
96.06
EXT AO2 PTR
Defines the source or constant for value.
1000 =
1 mA
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value. See parameter 10.04 for information on
the difference.
-
INVERT EXT AO2
Activates the inversion of analogue output AO2 of the analogue I/O extension
module. The analogue signal is at its minimum level when the drive signal
indicated is at its maximum and vice versa.
NO
Inactive
0
YES
Active
65535
MINIMUM EXT AO2
Defines the minimum value for analogue output AO2 of the analogue I/O
extension module. See parameter 96.03.
0 mA
0 mA
1
4 mA
4 mA
2
10 mA
10 mA
3
12 mA
12 mA
4
FILTER EXT AO2
Defines the filtering time constant for analogue output AO2 of the analogue I/O
extension module. See parameter 15.04.
0.00 … 10.00 s
Filtering time constant
SCALE EXT AO2
Defines the scaling factor for analogue output AO2 of the analogue I/O
extension module. See parameter 15.05.
10 … 1000%
Scaling factor
96.07
96.08
96.09
96.10
0 … 1000
100 …
10000
97 MOTOR MODEL
97.12
EM STOP DIO
Enables emergency stop commands through the RDIO module located on the
RMIO board (RDIO-SLOT1 or RDIO-SLOT2) or in the external I/O Module
Adapter AIMA (RDIO-DDCS).
- RDIO digital input 1 (DI1) = OFF2 STOP
- RDIO digital input 2 (DI2) = OFF3 STOP
The OFF3 deceleration time is defined by parameter 22.07 EM STOP RAMP
TIME.
NO
Emergency stop through the RDIO module is not in use.
1
RDIO-SLOT1
OFF2 STOP (through DI1) and/or OFF3 STOP (through DI2) is taken from the 2
RDIO module located in option SLOT 1.
RDIO-SLOT2
OFF2 STOP (through DI1) and/or OFF3 STOP (through DI2) is taken from the 3
RDIO module located in option SLOT 2.
RDIO-DDCS
OFF2 STOP (through DI1) and/or OFF3 STOP (through DI2) is taken from the 4
RDIO module located on the AIMA I/O Module Adapter (RDIO-DDCS).
Note: If RDIO-DDCS is selected, the module node number must be set to 7.
97.16
97.17
SPD CORR PTR
Speed correction pointer. Default: +.000.000.00. Defines external speed
correction by writing it to signal SPEED CORR BUFF (03.35). Speed correction
pointer is to be used only when Synchro control is not used.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value.
APL LIM WRN MASK
Application limit warning mask. Default 0000 0001 1111 1000 b (binary mode).
This parameter can block application messages not required for the control
panel display.
Actual signals and parameters
220
Index
Name/Selection
Description
FbEq
See Application message blocking on page 127.
97.18
PWRON STRTINT
PTR
PowerON start interlock pointer. Power ON start interlock pointer can be
programmed for another use. Default: DI_IL (+.001.017.06) (start interlock
input on the RMIO board).
If you need to use DIL input for some other purpose than Power ON
acknowledge, set parameter 97.18 to 0 (= +.000.000.00) to disable Power ON
acknowledge.
97.19
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value.
SYNC ERR BLK LVL
Blocking level of speed correction signal 03.35 SPEED CORR BUFF in
millimetres. The default value is 0.
1 = 1 mm
If the change in signal 02.23 SYNC POS ERROR is bigger than the value of
97.19 SYNC ERR BLK LVL, signal 03.35 SPEED CORR BUFF is blocked and
no synchronisation correction is performed during that period.
For more information, see section Synchro error blocking on page 109.
97.20
97.21
0 … 200 mm
Setting range in mm
PWR ACK START
DLY
Power acknowledge start delay, that is, the time before the drive is ready to
start after the DI_IL circuit is closed. (DI_IL is the start interlock input of the
RMIO board.)
0 …5s
Setting range in seconds.
ZERO SPEED PTR
Zero speed pointer input for restarting the drive with the zero speed reference
used with the Brake match function created by DriveAP.
-255.255.31 …
+255.255.31 / C.32768 … C.32767
Parameter index or a constant value.
98 OPTION MODULES
100 = 1 s
Activation of the option modules.
The parameter settings will remain the same even though the application
macro is changed (parameter 98.02).
98.01
ENCODER MODULE
Activates the communication to the optional pulse encoder module. See also
parameter group 50 ENCODER MODULE.
NTAC
Communication active. Module type: NTAC module. Connection interface:
Fibre optic DDCS link.
0
Note: Module node number must be set to 16. For directions, see the NTAC-0x
Module Installation and Start-up Guide [3AFY58919730 (English)].
NO
Inactive
1
RTAC-SLOT1
Communication active. Module type: RTAC. Connection interface: Option
slot 1 of the drive.
2
RTAC-SLOT2
Communication active. Module type: RTAC. Connection interface: Option
slot 2 of the drive.
3
RTAC-DDCS
Communication active. Module type: RTAC. Connection interface: Optional I/O 4
module adapter (AIMA) that communicates with the drive through a fibre optic
DDCS link.
Note: Module node number must be set to 16. For directions, see RTAC-01
Pulse Encoder Interface User's Manual [3AFE64486853 (English)].
RRIA-SLOT1
Communication active. Module type: RRIA. Connection interface: Option Slot 1 5
of the drive.
RRIA-SLOT2
Communication active. Module type: RRIA. Connection interface: Option Slot 2 6
of the drive.
Actual signals and parameters
221
Index
98.02
98.03
Name/Selection
Description
FbEq
RRIA-DDCS
Communication active. Module type: RRIA. Connection interface: Optional I/O 7
module adapter (AIMA) that communicates with the drive through a fibre optic
DDCS link.
RTAC03-SLOT1
Communication active. Module type: RTAC03. Connection interface: Option
Slot 1 of the drive.
8
RTAC03-SLOT2
Communication active. Module type: RTAC03. Connection interface: Option
Slot 2 of the drive.
9
RTAC03-DDCS
Communication active. Module type: RTAC03. Connection interface: Optional
I/O module adapter (AIMA) that communicates with the drive through a fibre
optic DDCS link.
10
COMM. MODULE
LINK
Activates the external serial communication and selects the interface. See
chapter Fieldbus control.
NO
No communication
1
FIELDBUS
The drive communicates via a fieldbus adapter module in option slot 1 of the
drive, or via CH0 on the RDCO board. See also parameter group 51 COMM
MODULE DATA.
2
ADVANT
The drive communicates with an ABB Advant OCS system via CH0 on the
RDCO board (optional). See also parameter group 70 DDCS CONTROL.
3
STD MODBUS
The drive communicates with a Modbus controller via the Modbus Adapter
Module (RMBA) in option slot 1 of the drive. See also parameter 52
STANDARD MODBUS.
4
DI/O EXT MODULE 1 Activates the communication to the digital I/O extension module 1 (optional)
and defines the type and connection interface of the module.
Module outputs: See parameters 14.10 and 14.11 for selecting the drive states
that are indicated through the relay outputs.
NO
Inactive
1
RDIO-SLOT1
Communication active. Module type: RDIO. Connection interface: Option slot 1 2
of the drive.
RDIO-SLOT2
Communication active. Module type: RDIO. Connection interface: Option slot 2 3
of the drive.
RDIO-DDCS
Communication active. Module type: RDIO. Connection interface: Optional I/O 4
module adapter (AIMA) that communicates with the drive through a fibre optic
DDCS link.
Note: Module node number must be set to 2. For directions, see RDIO Module
User’s Manual [3AFE64485733 (English)].
98.04
DI/O EXT MODULE 2 Activates the communication to the digital I/O extension module 2 (optional)
and defines the type and connection interface of the module.
Module outputs: See parameters 14.12 and 14.13 for selecting the drive states
that are indicated through the relay outputs.
NO
Inactive
1
RDIO-SLOT1
Communication active. Module type: RDIO. Connection interface: Option slot 1 2
of the drive.
RDIO-SLOT2
Communication active. Module type: RDIO. Connection interface: Option slot 2 3
of the drive.
RDIO-DDCS
Communication active. Module type: RDIO. Connection interface: Optional I/O 4
module adapter (AIMA) that communicates with the drive through a fibre optic
DDCS link.
Note: Module node number must be set to 3. For directions, see RDIO Module
User’s Manual [3AFE64485733 (English)].
Actual signals and parameters
222
Index
Name/Selection
Description
98.05
DI/O EXT MODULE 3 Activates the communication to the digital I/O extension module 3 (optional)
and defines the type and connection interface of the module.
FbEq
Module outputs: See parameters 14.14 and 14.15 for selecting the drive states
that are indicated through the relay outputs.
NO
Inactive
RDIO-SLOT1
Communication active. Module type: RDIO. Connection interface: Option slot 1 2
of the drive.
1
RDIO-SLOT2
Communication active. Module type: RDIO. Connection interface: Option slot 2 3
of the drive.
RDIO-DDCS
Communication active. Module type: RDIO. Connection interface: Optional I/O 4
module adapter (AIMA) that communicates with the drive through a fibre optic
DDCS link.
Note: Module node number must be set to 4. For directions, see RDIO Module
User’s Manual [3AFE64485733 (English)].
98.06
AI/O EXT MODULE
Activates the communication to the analogue I/O extension module (optional),
and defines the type and connection interface of the module.
Module inputs:
- Values AI5 and AI6 in the drive application program are connected to module
inputs 1 and 2.
- See parameters 98.13 and 98.14 for the signal type definitions.
Module outputs:
- See parameters 96.01 and 96.06 for selecting the drive signals that are
indicated through module outputs 1 and 2.
NO
Communication inactive
1
RAIO-SLOT1
Communication active. Module type: RAIO. Connection interface: Option Slot 1 2
of the drive.
RAIO-SLOT2
Communication active. Module type: RAIO. Connection interface: Option Slot 2 3
of the drive.
RAIO-DDCS
Communication active. Module type: RAIO. Connection interface: Optional I/O 4
module adapter (AIMA) that communicates with the drive through a fibre optic
DDCS link.
Note: Module node number must be set to 5. For directions, see RAIO Module
User’s Manual [3AFE64484567 (English)].
98.07
COMM PROFILE
Defines the profile on which the communication with the fieldbus or another
drive is based. Visible only when fieldbus communication is activated with
parameter 98.02.
ABB DRIVES
ABB Drives profile
1
GENERIC
Generic drive profile. Typically used with the fieldbus modules that have the
type designation of form Rxxx (installed in the option slot of the drive).
2
CSA 2.8/3.0
Communication profile used by application program versions 2.8 and 3.0.
3
Actual signals and parameters
223
Index
Name/Selection
Description
FbEq
98.12
AI/O MOTOR TEMP
Activates the communication to the analogue I/O extension module and
reserves the module for the use of the motor temperature measurement
function. The parameter also defines the type and connection interface of the
module.
For more information on the temperature measurement function, see
parameter group 35 MOT TEMP MEAS.
The use of the analogue inputs (AI) and outputs (AO) of the module is shown in
the table below.
Motor 1 temperature measurement
AO1
Feeds a constant current to motor 1 temperature sensor. The current
value depends on the setting of parameter 35.01:
- AO1 is 9.1 mA with selection 1xPT100
- AO1 is 1.6 mA with selection 1...3 PTC
AI1
Measures voltage over motor 1 temperature sensor.
Motor 2 temperature measurement
AO2
Feeds a constant current to motor 2 temperature sensor. The current
value depends on the setting of parameter 35.04:
- AO2 is 9.1 mA with selection 1xPT100,
- AO2 is 1.6 mA with selection 1...3 PTC
AI2
Measures voltage over motor 2 temperature sensor.
Before setting the drive parameters, ensure the module hardware settings are
appropriate for the motor temperature measurement:
1. The module node number is 9.
2. The input signal type selections are the following:
- for one Pt 100 sensor measurement, set the range to 0 … 2 V.
- for two to three Pt 100 sensors or one to three PTC sensors, set the range to
0 … 10 V.
3. The operation mode selection is unipolar.
NO
Inactive
1
RAIO-SLOT1
Communication active. Module type: RAIO. Connection interface: Option Slot 1 2
of the drive.
Note: Make the module hardware settings as described above. The node
number is not required. For directions, see RAIO Module User’s Manual
[3AFE64484567 (English)].
RAIO-SLOT2
Communication active. Module type: RAIO. Connection interface: Option Slot 2 3
of the drive.
Note: Make the module hardware settings as described above. The node
number is not required. For directions, see RAIO Module User’s Manual
[3AFE64484567 (English)].
RAIO-DDCS
Communication active. Module type: RAIO. Connection interface: Optional I/O 4
module adapter (AIMA) that communicates with the drive through a fibre optic
DDCS link.
Note: Set the module node number to 9. For directions, see RAIO Module
User’s Manual [3AFE64484567 (English)].
Actual signals and parameters
224
Index
Name/Selection
Description
98.13
AI/O EXT AI1 FUNC
Defines the signal type for input 1 of the analogue I/O extension module (AI5 in
the drive application program). The setting must match the signal connected to
the module.
FbEq
Note: The communication must be activated with parameter 98.06.
98.14
UNIPOLAR AI5
Unipolar
1
BIPOLAR AI5
Bipolar
2
AI/O EXT AI2 FUNC
Defines the signal type for input 2 of the analogue I/O extension module (AI6 in
the drive application program). The setting must match the signal connected to
the module.
Note: The communication must be activated with parameter 98.06.
98.16
UNIPOLAR AI6
Unipolar
1
BIPOLAR AI6
Bipolar
2
SIN FILT SUPERV
Activates the communication to the digital I/O extension module and reserves
the module for the use of the sine-filter temperature measurement.
Parameter is visible if parameter 98.04 is set to SIN or EX&SIN. Parameter
value is automatically set to NO, when parameter 95.04 value is changed.
Note: This parameter is used only in special applications.
NO
Supervision disabled.
1
RDIO-SLOT1
Module type: RDIO. Connection interface: Option slot 1 of the drive.
2
RDIO-SLOT2
Module type: RDIO. Connection interface: Option slot 2 of the drive.
3
RDIO-DDCS
Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) 4
that communicates with the drive through a fibre optic DDCS link.
Note: Module node number must be set to 8. For directions, see RDIO Module
User's Manual [3AFE64485733 (English)].
99 START-UP DATA
Language selection. Definition of motor set-up data. This group gets write
protect locked once the motor data is entered and the drive is initialized. The
lock can be opened with passcode 584.
99.01
Selects the display language.
LANGUAGE
ENGLISH
British English
0
ENGLISH AM
American English. If selected, the unit of power used is HP instead of kW.
1
DEUTSCH
German
2
ITALIANO
Italian
3
ESPANOL
Spanish
4
PORTUGUES
Portuguese
5
NEDERLANDS
Dutch
6
FRANCAIS
French
7
DANSK
Danish
8
SUOMI
Finnish
9
SVENSKA
Swedish
10
CESKY
Czech
11
POLSKI/LOC1
Polish
12
PO-RUS/LOC2
Russian
13
Actual signals and parameters
225
Index
Name/Selection
Description
FbEq
99.02
APPLICATION
MACRO
Selects the application macro. See chapter Application macros, control
location EXT1/EXT2 for more information.
Note: When you change the default parameter values of a macro, the new
settings become valid immediately and stay valid even if the power of the drive
is switched off and on. However, backup of the default parameter settings
(factory settings) of each standard macro is still available. See parameter
99.03.
CRANE
For Crane application
1
USER 1 LOAD
User 1 macro loaded into use. Before loading, check that the saved parameter 2
settings and the motor model are suitable for the application.
USER 1 SAVE
Save User 1 macro. Stores the current parameter settings and the motor
model.
3
Note: There are parameters that are not included in the macros. See
parameter 99.03.
USER 2 LOAD
User 2 macro loaded into use. Before loading, check that the saved parameter 4
settings and the motor model are suitable for the application.
USER 2 SAVE
Save User 2 macro. Stores the current parameter settings and the motor
model.
5
Note: There are parameters that are not included in the macros. See
parameter 99.03.
99.03
APPLIC RESTORE
Restores the original settings of the active application macro (99.02).
- If a CRANE macro is active, the parameter values are restored to the default
settings (factory settings). Exceptions: parameter settings in parameter group
99 remain unchanged. The motor model remains unchanged.
- If User Macro 1 or 2 is active, the parameter values are restored to the last
saved values. In addition, the last saved motor model are restored. Exceptions:
Settings of parameters 16.05 and 99.02 remain unchanged.
Note: The parameter settings and the motor model are restored according to
the same principles when a macro is changed to another.
99.04
NO
No action
0
YES
Restoring
65535
MOTOR CTRL MODE Selects the motor control mode.
DTC
Direct torque control mode is suitable for most applications.
0
Actual signals and parameters
226
Index
Name/Selection
Description
FbEq
SCALAR
Scalar control is suitable in special cases where the DTC cannot be applied.
The Scalar control mode is recommended:
65535
- for multimotor drives with variable number of motors
- when the nominal current of the motor is less than 1/6 of the nominal output
current of the drive (inverter)
- the drive is used for test purposes with no motor connected.
Note: The outstanding motor control accuracy of the DTC cannot be achieved
in Scalar control. The differences between the scalar and DTC control modes
are pointed out in this manual in relevant parameter lists. There are some
standard features that are disabled in the Scalar control mode: Motor
identification run (group 99 START-UP DATA), Speed Limits (group 20
LIMITS), Torque Limit (group 20 LIMITS), DC hold (group 21 START/STOP),
DC Magnetizing (group 21 START/STOP), Speed Controller Tuning (group 23
SPEED CTRL), Torque Control (group 24 TORQUE CTRL), Flux optimisation
(group 26 MOTOR CONTROL), Flux braking (group 26 MOTOR CONTROL),
Underload Function (group 30 FAULT FUNCTIONS), Motor phase loss
Protection (group 30 FAULT FUNCTIONS), Motor Stall protection (group 30
FAULT FUNCTIONS).
For more information, see section Scalar control on page 73.
99.05
MOTOR NOM
VOLTAGE
Defines the nominal motor voltage. Must be equal to the value on the motor
rating plate.
1/2 … 2 · UN
Voltage. Allowed range is 1/2 … 2 · UN of the drive.
1=1V
Note: The stress on the motor insulations is always dependent on the drive
supply voltage. This also applies to the case where the motor voltage rating is
lower than the rating of the drive and the supply of the drive.
99.06
MOTOR NOM
CURRENT
Defines the nominal motor current. Must be equal to the value on the motor
rating plate.
Note: Correct motor run requires that the magnetizing current of the motor
does not exceed 90 percent of the nominal current of the inverter.
0 … 2 · I2hd
Allowed range: approx. 1/6 … 2 · I2hd of ACS800 (parameter 99.04 = DTC).
1 = 0.1 A
Allowed range: approx. 0 … 2 · I2hd of ACS800 (parameter 99.04 = SCALAR).
99.07
99.08
MOTOR NOM FREQ
Defines the nominal motor frequency.
8 … 300 Hz
Nominal frequency (50 or 60 Hz typically)
800 …
30000
MOTOR NOM SPEED Defines the nominal motor speed. Must be equal to the value on the motor
rating plate. The motor synchronous speed or another approximate value must
not be given instead!
Note: If the value of parameter 99.08 is changed, the speed limits in parameter
group 20 LIMITS change automatically as well.
99.09
1 … 18000 rpm
Nominal motor speed
MOTOR NOM
POWER
Defines the nominal motor power. Set exactly as on the motor rating plate.
0 … 9000 kW
Nominal motor power
Actual signals and parameters
1 … 18000
0 … 90000
227
Index
Name/Selection
Description
FbEq
99.10
MOTOR ID RUN
MODE
Selects the type of the motor identification. During the identification, the drive
will identify the characteristics of the motor for optimum motor control. The ID
run procedure is described in chapter Start-up and control through the I/O
interface.
Note: The ID run (STANDARD or REDUCED) should be selected if:
- The operation point is near zero speed, and/or
- Operation at torque range above the motor nominal torque within a wide
speed range and without any measured speed feedback is required.
Note: The ID run (STANDARD) cannot be performed if parameter 99.04 =
SCALAR.
ID MAGN
No ID run. The motor model is calculated at first start by magnetising the motor 1
for 20 to 60 s at zero speed. This can be selected in most applications. The
brake is kept closed during ID MAGN Run.
STANDARD
Standard ID run. Guarantees the best possible control accuracy. The ID run
takes about one minute. The brake is opened when STANDARD ID run is
selected. The brake gets closed once the STANDARD ID run is performed.
2
Note: The motor must be de-coupled from the driven equipment.
Note: Check the direction of rotation of the motor before starting the ID run.
During the run, the motor will rotate in the forward direction.
WARNING! The motor will run at up to approximately 50 … 80% of the
nominal speed during the ID run. ENSURE THAT IT IS SAFE TO RUN
THE MOTOR BEFORE PERFORMING THE ID RUN!
99.11
DEVICE NAME
Defines the name for the drive or application. The name is visible on the
control panel display in the Drive Selection Mode. Note: The name can be
typed only by using a drive PC tool.
99.12
OEM SIGNAL
Defines the text for the OEM signal. The signal can be displayed on the control
panel display by selecting the actual parameter 01.46. Note: The name can be
entered only by using a drive PC tool.
Actual signals and parameters
228
Actual signals and parameters
229
Fieldbus control
Chapter overview
The chapter describes how the drive can be controlled by external devices over
a communication network.
System overview
The drive can be connected to an external control system – usually a fieldbus
controller – via an adapter module. The drive can be set to receive all of its control
information through the external control interface, or the control can be distributed
between the external control interface and other available sources, for example,
digital and analogue inputs. The following diagram shows the control interfaces and
I/O connections of the drive.
Fieldbus
controller
Fieldbus
Other
devices
ACS800
(*
(*
Fieldbus adapter
Rxxx
Controller
Modbus
RMIO board
Slot 1
(*
RMBA-01 adapter
std. Modbus link
I/O adapter
RTAC/RDIO/RAIO
Slot 1 or 2
RDCO comm.
module
Advant
controller
(Eg AC 800M,
AC 80)
CH1
AIMA-01 I/O
(DDCS) adapter module
CH0
(DDCS)
Fieldbus adapter
Nxxx
or
Data Flow
Control Word (CW)
References
Process I/O (cyclic)
Status Word (SW)
Actual values
Parameter R/W requests/responses
(*
Service messages (acyclic)
Either an Rxxx or Nxxx, and an RMBA-01 adapter can be connected to the drive simultaneously.
Fieldbus control
230
Redundant fieldbus control
It is possible to connect two fieldbuses to the drive with the following adapter
configuration:
• Type Rxxx fieldbus adapter module (not RMBA-01) is installed in drive slot 1.
• RMBA-01 Modbus Adapter module is installed in drive slot 2.
Eg PROFIBUS
Modbus
ACS800
RMIO board
RPBA-01 adapter
PROFIBUS-DP link
Slot 1
RMBA-01 adapter
std. Modbus link
Slot 2
The control (that is, the Main Reference data set, see section The fieldbus control
interface on page 241) is activated by setting parameter 98.02 COMM MODULE
LINK to FIELDBUS or STD MODBUS.
In case there is a communication problem with one fieldbus, the control can be
switched to the other fieldbus. Switching between the buses can be controlled, for
example, with Adaptive Programming. Parameters and signals can be read by both
fieldbuses, but simultaneous cyclical writing to the same parameter is forbidden.
Fieldbus control
231
Setting up communication through a fieldbus adapter module
Fieldbus adapters for several communication protocols are available (for example,
PROFIBUS and Modbus). Rxxx type fieldbus adapter modules are mounted in
expansion slot 1 of the drive. Nxxx type fieldbus adapter modules are connected to
channel CH0 of the RDCO module.
Note: For instructions on setting up an RMBA-01 module, see section Setting up
communication through the Standard Modbus Link on page 233.
Before configuring the drive for fieldbus control, the adapter module must be
mechanically and electrically installed according to the instructions given in the
hardware manual of the drive, and the module manual.
The following table lists the parameters which need to be defined when setting up
communication through a fieldbus adapter.
Parameter
Alternative
settings
Setting for
fieldbus control
Function/Information
COMMUNICATION INITIALISATION
98.02
NO
FIELDBUS
ADVANT
STD MODBUS
CUSTOMISED
FIELDBUS
Initialises communication between drive and
fieldbus adapter module. Activates module set-up
parameters (Group 51).
98.07
ABB DRIVES
GENERIC
CSA 2.8/3.0
ABB DRIVES
GENERIC or
CSA 2.8/3.0
Selects the communication profile used by the
drive. See section Communication profiles on page
249. 249
–
Displays the type of the fieldbus adapter module.
ADAPTER MODULE CONFIGURATION
51.01 MODULE
TYPE
–
51.02 (FIELDBUS
PARAMETER 2)
These parameters are adapter-module-specific. For more information, see the module manual.
Note that not all of these parameters are necessarily visible.
•••
51.26 (FIELDBUS
PARAMETER 26)
51.27 FBA PAR
REFRESH*
(0) DONE
(1) REFRESH
–
Validates any changed adapter module
configuration parameter settings. After refreshing,
the value reverts automatically to DONE.
51.28 FILE CPI
FW REV*
xyz (binary coded
decimal
–
Displays the required CPI firmware revision of the
fieldbus adapter as defined in the configuration file
stored in the memory of the drive. The CPI firmware
version of the fieldbus adapter (refer to Par. 51.32)
must contain the same or a later CPI version to be
compatible. x = major revision number; y = minor
revision number; z = correction number. Example:
107 = revision 1.07.
Fieldbus control
232
Parameter
Alternative
settings
Setting for
fieldbus control
Function/Information
51.29 FILE
CONFIG ID*
xyz (binary coded
decimal)
–
Displays the fieldbus adapter module configuration
file identification stored in the memory of the drive.
This information is drive application programdependent.
51.30 FILE
CONFIG REV*
xyz (binary coded
decimal)
–
Displays the fieldbus adapter module configuration
file revision stored in the memory of the drive.
x = major revision number; y = minor revision
number; z = correction number. Example: 1 =
revision 0.01.
51.31 FBA
STATUS*
(0) IDLE
(1) EXEC. INIT
(2) TIME OUT
(3) CONFIG
ERROR
(4) OFF-LINE
(5) ON-LINE
(6) RESET
–
Displays the status of the adapter module.
IDLE = Adapter not configured.
EXEC. INIT = Adapter initialising.
TIME OUT = A timeout has occurred in the
communication between the adapter and the drive.
CONFIG ERROR = Adapter configuration error.
The major or minor revision code of the CPI
program revision in the drive is not the revision
required by the module (refer to par. 51.32) or
configuration file upload has failed more than five
times.
OFF-LINE = Adapter is off-line.
ON-LINE = Adapter is on-line.
RESET = Adapter performing a hardware reset.
51.32 FBA CPI FW
REV*
–
–
Displays the CPI program revision of the module
inserted in slot 1. x = major revision number;
y = minor revision number; z = correction number.
Example: 107 = revision 1.07.
51.33 FBA APPL
FW REV*
–
–
Displays the application program revision of the
module inserted in slot 1. x = major revision
number; y = minor revision number; z = correction
number. Example: 107 = revision 1.07.
*Parameters 51.27 to 51.33 are only visible when type Rxxx fieldbus adapter is installed.
After the module configuration parameters in group 51 have been set, the drive
control parameters (section Drive control parameters on page 237) must be checked
and adjusted where necessary.
The new settings will take effect when the drive is next powered up, or when
parameter 51.27 is activated.
Fieldbus control
233
Setting up communication through the Standard Modbus Link
An RMBA-01 Modbus Adapter installed in slot 1 or 2 of the drive forms an interface
called the Standard Modbus Link. The Standard Modbus Link can be used for
external control of the drive by a Modbus controller (RTU protocol only).
Before configuring the drive for Modbus control, the adapter module must be
mechanically and electrically installed according to the instructions given in the
hardware manual of the drive, and the module manual.
The following table lists the parameters, which need to be defined when setting up
communication through the standard Modbus link.
Parameter
Alternative settings
Setting for control
through Standard
Modbus Link
Function/Information
COMMUNICATION INITIALISATION
98.02
NO
FIELDBUS
ADVANT
STD MODBUS
CUSTOMISED
STD MODBUS
Initialises communication between drive
(Standard Modbus Link) and Modbus-protocol
controller. Activates communication parameters
in group 52.
98.07
ABB DRIVES
GENERIC
CSA 2.8/3.0
ABB DRIVES
Selects the communication profile used by the
drive. See section Communication profiles on
page 249.
COMMUNICATION PARAMETERS
52.01
1 to 247
–
Specifies the station number of the drive on the
Standard Modbus Link.
52.02
600
1200
2400
4800
9600
19200
–
Defines the communication speed for the
Standard Modbus Link.
52.03
ODD
EVEN
NONE1STOPBIT
NONE2STOPBIT
–
Selects the parity setting for the Standard
Modbus Link.
After the communication parameters in group 52 STANDARD MODBUS have been
set, the drive control parameters (section Drive control parameters on page 237)
must be checked and adjusted where necessary.
Fieldbus control
234
Modbus addressing
In the Modbus controller memory, the Control Word, the Status Word, the
references, and the actual values are mapped as follows:
Data from fieldbus controller to drive
Data from drive to fieldbus controller
Address
Contents
Address
Contents
40001
Control Word
40004
Status Word
40002
Reference 1
40005
Actual 1
40003
Reference 2
40006
Actual 2
40007
Reference 3
40010
Actual 3
40008
Reference 4
40011
Actual 4
40009
Reference 5
40012
Actual 5
40013
Reference 6
40016
Actual 6
40014
Reference 7
40017
Actual 7
40015
Reference 8
40018
Actual 8
More information on Modbus communication is available on the
http://www.modbus.org/ website.
Fieldbus control
235
Setting up communication through Advant controller
The Advant controller is connected via DDCS link to channel CH0 of the RDCO
module.
• AC 800M Advant Controller
Optical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd) Optical
ModuleBus Port Interface required. See section Optical ModuleBus connection
below.
For more information, see AC 800M Controller Hardware Manual [3BSE027941
(English)], AC 800M/C Communication, Protocols and Design Manual [3BSE028811
(English),] ABB Industrial Systems, Västerås, Sweden.
• AC 80 Advant Controller
Optical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd) Optical
ModuleBus Port Interface required. See section Optical ModuleBus connection
below.
• CI810A Fieldbus Communication Interface (FCI)
Optical ModuleBus connection
TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required.
The TB811 Optical ModuleBus Port Interface is equipped with 5 MBd optical
components and the TB810 is equipped with 10 MBd components. All optical
components on a fibre optic link must be of the same type since 5 MBd components
do not match with 10 MBd components. The choice between TB810 and TB811
depends on the equipment it is connected to. With RDCO Communication Option
Module, the Interface is selected as follows:
Optional ModuleBus Port
Interface
DDCS Communication Option Module
RDCO-01
TB811
TB810
RDCO-02
RDCO-03
×
×
×
If branching unit NDBU-85/95 is used with CI810A, TB810 Optical ModuleBus Port
Interface must be used.
Fieldbus control
236
The following table lists the parameters which need to be defined when setting up
communication between the drive and Advant controller.
Parameter
Alternative settings
Setting for control through
CH0
Function/Information
COMMUNICATION INITIALISATION
98.02
NO
FIELDBUS
ADVANT
STD MODBUS
CUSTOMISED
ADVANT
Initialises communication between drive
(fibre optic channel CH0) and Advant
controller. The transmission speed is
4 Mbit/s.
98.07
ABB DRIVES
GENERIC
CSA 2.8/3.0
ABB DRIVES
Selects the communication profile used by
the drive. See section Communication
profiles on page 249.
70.01
0-254
AC 800M ModuleBus
1...125
AC 80 ModuleBus
17-125
FCI (CI810A)
17-125
Defines the node address for DDCS
channel CH0.
70.04
RING
STAR
Selects the topology of the channel CH0
link.
After the communication initialisation parameters have been set, the drive control
parameters (section Drive control parameters on page 237) must be checked and
adjusted where necessary.
In an Optical ModuleBus connection, channel 0 address (parameter 70.01) is
calculated from the value of the POSITION terminal in the appropriate database
element (for the AC 80, DRISTD) as follows:
1. Multiply the hundreds of the value of POSITION by 16.
2. Add the tens and ones of the value of POSITION to the result.
For example, if the POSITION terminal of the DRISTD database element has the
value of 110 (the tenth drive on the Optical ModuleBus ring), parameter 70.01 must
be set to 16 × 1 + 10 = 26.
Fieldbus control
237
Drive control parameters
After the fieldbus communication has been set up, the drive control parameters
listed in the table below must be checked and adjusted where necessary.
The Setting for fieldbus control column gives the value to use when the fieldbus
interface is the desired source or destination for that particular signal. The
Function/Information column gives a description of the parameter.
The fieldbus signal routes and message composition are explained later in section
The fieldbus control interface.
Parameter
Setting for
fieldbus control
Function/Information
CONTROL COMMAND SOURCE SELECTION
10.01
COMM.CW
Enables the fieldbus Control Word (except 03.01 Main Control Word bits 3
and 11) when EXT1 is selected as the active control location. See also par.
10.07.
10.02
COMM.CW
Enables the fieldbus Control Word (except 03.01 Main Control Word bits 3
and 11) when EXT2 is selected as the active control location.
10.03
FORWARD
REVERSE or
REQUEST
Enables rotation direction control as defined with parameters 10.01 and
10.02. The direction control is explained in section Reference handling on
page 242.
10.07
0 or 1
Setting the value to 1 overrides the setting of par. 10.01 so that the fieldbus
Control Word (except 03.01 Main Control Word bit 11) is enabled when
EXT1 is selected as the active control location.
Note 1: Only visible with the Generic Drive communication profile selected
(see par. 98.07).
Note 2: Setting not saved into permanent memory.
10.08
0 or 1
Setting the value to 1 overrides the setting of par. 11.03 so that Fieldbus
reference REF1 is used when EXT1 is selected as the active control
location.
Note 1: Only visible with the Generic Drive communication profile selected
(see par. 98.07).
Note 2: Setting not saved into permanent memory.
11.02
COMM.CW
Enables EXT1/EXT2 selection by fieldbus Control Word bit 11 EXT CTRL
LOC.
11.03
COMM. REF1
FAST COMM
Fieldbus reference REF1 is used when EXT1 is selected as the active
control location. See section References on page 242 for information on
the alternative settings.
11.06
COMM. REF2
FAST COMM
Fieldbus reference REF2 is used when EXT2 is selected as the active
control location. See section References on page 242 for information on
the alternative settings.
Fieldbus control
238
Parameter
Setting for
fieldbus control
Function/Information
SYSTEM CONTROL INPUTS
16.01
COMM.CW
Enables the control of the Run Enable signal through fieldbus 03.01 Main
Control Word bit 3.
Note: Must be set to YES when the Generic Drive communication profile is
selected (see Par. 98.07).
16.04
COMM.CW
Enables fault reset through fieldbus 03.01 Main Control Word bit 7.
Note: Reset through fieldbus Control Word (03.01 bit 7) is enabled
automatically and it is independent of parameter 16.04 setting if parameter
10.01 or 10.02 is set to COMM.CW.
16.07
DONE; SAVE
Saves parameter value changes (including those made through fieldbus
control) to permanent memory.
COMMUNICATION FAULT FUNCTIONS
30.18
FAULT
NO
Determines drive action in case fieldbus communication is lost.
30.19
0.1 … 60.0 s
Defines the time between Main Reference data set loss detection and the
action selected with parameter 30.18.
30.21
0.0 … 60.0 s
Defines the time between Auxiliary Reference data set loss detection and
the action selected with parameter 30.18.
Note: The communication loss detection is based on monitoring of
received Main and Auxiliary data sets (whose sources are selected with
parameters 90.04 and 90.05 respectively).
Note: This supervision function is disabled if this parameter, or parameters
90.01, 90.02 and 90.03 are set to 0.
FIELDBUS REFERENCE TARGET SELECTION
90.01
0 … 8999
Defines the drive parameter into which the value of fieldbus reference
REF3 is written.
Format: xxyy, where xx = parameter group (10 to 89), yy = parameter
Index. For example, 3001 = parameter 30.01.
90.02
0 … 8999
Defines the drive parameter into which the value of fieldbus reference
REF4 is written.
Format: see parameter 90.01.
90.03
0 … 8999
Defines the drive parameter into which the value of fieldbus reference
REF5 is written.
Format: see parameter 90.01.
90.04
0 … 8999
Defines the drive parameter into which the value of fieldbus reference
REF6 is written.
Format: see parameter 90.01.
90.05
0 … 8999
Defines the drive parameter into which the value of fieldbus reference
REF7 is written.
Format: see parameter 90.01.
Fieldbus control
239
Parameter
Setting for
fieldbus control
Function/Information
90.06
0 … 8999
Defines the drive parameter into which the value of fieldbus reference
REF8 is written.
Format: see parameter 90.01.
90.07
1 (Standard) or
10 (Multidrive)
This parameter selects the source from which the drive reads the Main
Reference data set (comprising the fieldbus Control Word, fieldbus
reference REF1, REF2, REF3, REF4 and REF5).
ACTUAL SIGNAL SELECTION FOR FIELDBUS
92.01
302 (Fixed)
The Status Word is transmitted to as the first word of the Main Actual Signal
data set.
92.02
0 … 9999
Selects the Actual signal or parameter value to be transmitted as the
second word (ACT1) of the Main Actual Signal data set.
Format: (x)xyy, where (x)x = actual signal group or parameter group, yy =
actual signal or parameter index. For example, 103 = actual signal 1.03
FREQUENCY; 2202 = parameter 22.02 ACCEL TIME 1.
Note: With the Generic Drive communication profile active (Par. 98.07 =
GENERIC), this parameter is fixed to 102 (actual signal 1.02 SPEED – in
DTC motor control mode) or 103 (1.03 FREQUENCY – in Scalar mode).
92.03
0 … 9999
Selects the actual signal or parameter value to be transmitted as the third
word (ACT2) of the Main Actual Signal data set.
Format: see parameter 92.02.
92.04
0 … 9999
Selects the actual signal or parameter value to be transmitted as the first
word (ACT3) of the Auxiliary1 Actual Signal data set.
Format: see parameter 92.02.
92.05
0 … 9999
Selects the actual signal or parameter value to be transmitted as the
second word (ACT4) of the Auxiliary1 Actual Signal data set.
Format: see parameter 92.02.
92.06
0 … 9999
Selects the actual signal or parameter value to be transmitted as the third
word (ACT5) of the Auxiliary1 Actual Signal data set.
Format: see parameter 92.02.
92.07
0 … 9999
Selects the actual signal or parameter value to be transmitted as the first
word (ACT6) of the Auxiliary2 Actual Signal data set.
Format: see parameter 92.02.
92.08
0 … 9999
Selects the actual signal or parameter value to be transmitted as the
second word (ACT7) of the Auxiliary2 Actual Signal data set.
Format: see parameter 92.02.
92.09
0 … 9999
Selects the actual signal or parameter value to be transmitted as the third
word (ACT8) of the Auxiliary2 Actual Signal data set.
Format: see parameter 92.02.
92.10
-255.255.31…+255.255.31
/ C.-32768 … C.32767
Selects the address from which the 03.02 Main Status Word bit 10 is read
from.
92.11
-255.255.31…+255.255.31
/ C.-32768 … C.32767
Selects the address from which the 03.02 Main Status Word bit 13 is read
from.
Fieldbus control
240
Parameter
Setting for
fieldbus control
Function/Information
92.12
-255.255.31…+255.255.31
/ C.-32768 … C.32767
Selects the address from which the 03.02 Main Status Word bit 14 is read
from.
92.13
2 (Standard) or
11 (Multidrive)
This parameter selects the source to which the drive writes the Main Status
data set (comprising the Status Word, Actual Signal1, Actual Signal2, and
the Auxillary signals.
Fieldbus control
241
The fieldbus control interface
The communication between a fieldbus system and the drive employs data sets.
One data set (abbreviated DS) consists of three 16-bit words called data words
(DW). The Crane control program supports the use of four data sets, two in each
direction.
The three data sets for controlling the drive are referred to as the Main Reference
data set, the Auxiliary1 Reference data set, and the Auxiliary2 Reference data set.
The source from which the drive reads the Main and Auxiliary Reference data sets is
defined with parameter 90.07. The contents of the Main Reference data set are
fixed. The contents of the Auxiliary Reference data sets can be selected using
parameters 90.01, 90.02, 90.03, 90.04, 90.05 and 90.06.
The three data sets containing actual information on the drive are referred to as the
Main Actual Signal data set, the Auxiliary1 Actual Signal data set, and the Auxiliary2
Actual Signal data set. The contents of these data sets are partly selectable with the
parameters in group 92.
*Index
Data from fieldbus controller to drive
Data from drive to fieldbus controller
Word
Word
Contents
Selector
Main Reference data set DS1
*Index
Contents
Selector
Main Actual Signal data set DS2
1
1st word
Control Word
(Fixed)
4
1st word
Status Word
(Fixed)
2
2nd word
Reference 1
(Fixed)
5
2nd word
Actual 1
**Par. 92.02
3
3rd word
Reference 2
(Fixed)
6
3rd word
Actual 2
Par. 92.03
*Index
Auxiliary Reference data set DS3
*Index
Aux. Actual Signal data set DS4
7
1st word
Reference 3
Par. 90.01
10
1st word
Actual 3
Par. 92.04
8
2nd word
Reference 4
Par. 90.02
11
2nd word
Actual 4
Par. 92.05
9
3rd word
Reference 5
Par. 90.03
12
3rd word
Actual 5
Par. 92.06
*Index
Auxiliary Reference data set DS5
*Index
Aux. Actual Signal data set DS6
13
1st word
Reference 6
Par. 90.04
16
1st word
Actual 6
Par. 92.07
14
2nd word
Reference 7
Par. 90.05
17
2nd word
Actual 7
Par. 92.08
15
3rd word
Reference 8
Par. 90.06
18
3rd word
Actual 8
Par. 92.09
*The index number is required when the data word allocation to process data is
defined via the fieldbus parameters in group 51. This function is dependent on the
type of the fieldbus adapter.
**With the Generic Drive communication profile active, Actual 1 is fixed to the actual
signal 01.02 SPEED (in DTC motor control mode) or 01.03 FREQUENCY (in scalar
mode).
The update time for the Main Reference and the Main Actual Signal data sets is 6
milliseconds, and for the Auxiliary Reference and the Auxiliary Actual Signal data
sets it is 100 milliseconds.
Fieldbus control
242
The Control Word and the Status Word
The Control Word (CW) is the principal means of controlling the drive from a fieldbus
system. It is effective when the active control location (EXT1 or EXT2, see
parameters 10.01 and 10.02) is set to COMM.CW, or if Par. 10.07 is set to 1 (with
Generic Drive communication profile only).
The Control Word is sent by the fieldbus controller to the drive. The drive switches
between its states according to the bit-coded instructions of the Control Word.
The Status Word (SW) is a word containing status information, sent by the drive to
the fieldbus controller.
See section Communication profiles on page 249 for information on the composition
of the Control Word and the Status Word.
References
References (REF) are 16-bit signed integers. A negative reference (indicating
reversed direction of rotation) is formed by calculating the two’s complement from
the corresponding positive reference value.
Fieldbus reference selection
Fieldbus reference (called COMM. REF in signal selection contexts) is selected by
setting a Reference selection parameter – 11.03 or 11.06 – to COMM. REFx or FAST
COMM. (With Generic Drive communication profile, fieldbus reference is also
selected when Par. 10.08 is set to 1.)
COMM. REF1 (in 11.03) or COMM. REF2 (in 11.06)
The fieldbus reference is forwarded.
FAST COMM
The fieldbus reference is forwarded. The reference is read every 2 milliseconds if
either of the following conditions is met:
• Control location is EXT1, Par. 99.04 MOTOR CTRL MODE is DTC
• Control location is EXT2, Par. 99.04 MOTOR CTRL MODE is DTC and a torque
reference is used.
In any other event, the fieldbus reference is read every 6 milliseconds.
Reference handling
The control of rotation direction is configured for each control location (EXT1 and
EXT2) using the parameters in group 10. Fieldbus references are bipolar, that is they
can be negative or positive. The following diagrams illustrate how group 10
parameters and the sign of the fieldbus reference interact to produce the reference
REF1/REF2.
Notes:
• With the ABB Drives communication profile, 100% reference is defined with
parameters 11.05 (REF1) and 11.08 (REF2).
Fieldbus control
243
• With the Generic Drive communication profile, 100% reference is defined with
parameter 99.08 in DTC motor control mode (REF1), or 99.07 in the Scalar
control mode (REF1), and with parameter 11.08 (REF2).
• External reference scaling parameters 11.04 and 11.07 are also in effect.
For information on the scaling of the fieldbus reference, see section Fieldbus
reference scaling on page 253 (for ABB Drives profile) or Fieldbus reference scaling
on page 259 (for Generic Drive profile).
*Direction determined by the sign of
COMM. REF
Par. 10.03 REF
DIRECTION =
FORWARD
Direction determined by digital command,
for example, digital input, control panel
Resultant
REF1/2
Resultant
REF1/2
Max.Ref.
Fieldbus
Ref. 1/2
Max.Ref.
-100%
-163%
Fieldbus
Ref. 1/2
100%
163%
-100%
-163%
–[Max.Ref.]
Par. 10.03 REF
DIRECTION =
REVERSE
100%
163%
–[Max.Ref.]
Resultant
REF1/2
Resultant
REF1/2
Max.Ref.
Fieldbus
Ref. 1/2
-163%
-100%
Max.Ref.
163%
100%
Fieldbus
Ref. 1/2
-163%
-100%
–[Max.Ref.]
Par. 10.03 REF
DIRECTION =
REQUEST
–[Max.Ref.]
Resultant
REF1/2
Resultant
REF1/2
Max.Ref.
Fieldbus
Ref. 1/2
163%
100%
Direction command:
FORWARD
Max.Ref.
-163%
-100%
100%
163%
–[Max.Ref.]
Fieldbus
Ref. 1/2
-100%
-163%
100%
163%
–[Max.Ref.]
Direction command:
REVERSE
Fieldbus control
244
*Direction is determined by the sign of COMM. REF when
Par. 10.01 / 10.02 EXTx STRT/STP/DIR is set to COMM.CW
OR
Par. 11.03 / 11.06 EXT REFx SELECT is set to FAST COMM.
Actual Values
Actual Values (ACT) are 16-bit words containing information on selected operations
of the drive. The functions to be monitored are selected with the parameters in group
92. The scaling of the integers sent to the master as Actual Values depends on the
selected function; please refer to chapter Actual signals and parameters.
Fieldbus control
n
3
PAR
DS
PAR
DS
DS 5
DS 4
DS 3
DS 2
DS 1
97
98 DS 33
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
** See the fieldbus adapter user’s manual for more information.
* Depends on the selected motor control mode (parameter 99.04).
Addresses for words 3 … n in
format xxyy
xx
Address
00
yy = word no. in data set
table
01 … xx = par. group
99
yy = par. index
in parameter table
Fieldbus-specific selectors
in Group 51**
Word n
…
Word 1
(Control word)
Word 2
(Speed/freq ref.*)
Word 3
DATA
SET
TABLE
…
Words 1 … n **
…
Fieldbus
Adapter
Slot1
REF 8
REF 7
REF 6
AUXILIARY 2
REFERENCE
DATA SET
REF 5
REF 4
REF 3
AUXILIARY 1
REFERENCE
DATA SET
REF2
REF1
CW
MAIN
REFERENCE
DATA SET
30.18 COMM FAULT FUNC
30.20 COMM FLT RO/AO
30.21 AUX REF DS T-OUT
98.02
CUSTOMISED
STD
MODBUS
ADVANT
FIELDBUS
NO
98.02
CUSTOMISED
STD
MODBUS
ADVANT
FIELDBUS
NO
98.02
CUSTOMISED
STD
MODBUS
ADVANT
FIELDBUS
NO
30.18 COMM FAULT FUNC
30.19 MAIN REF DS T-OUT
COMM.REF
AI1
COMM.REF
AI1
COMM.CW
DI1
COMM.CW
DI1
10.01
10.02
11.03
90.06
90.05
90.04
90.03
90.02
90.01
11.06
…
11.02
10.02
10.01
PARAMETER
TABLE
01.12
EXT REF2
01.11
EXT REF1
03.01
MAIN CW
89.99
…
…
…
…
…
…
…
Block diagram: Control data input from fieldbus when a type Rxxx
fieldbus adapter is used
245
Fieldbus control
1.02
1.01
92.09
92.08
92.07
92.06
92.05
ACT6
ACT7
ACT 8
AUXILIARY 2
ACTUAL SIGNAL
DATA SET
ACT3
ACT4
ACT 5
AUXILIARY 1
ACTUAL SIGNAL
DATA SET
STATUS WORD*
ACT1**
ACT2
DS 4
DS 3
DS 2
DS 1
DS 6
DS 33
97
98
99
1
2
3
4
5
6
7
8
9
10
11
12
PAR
DS
PAR
DS
*** See the fieldbus adapter user’s manual for more information.
Word n
…
Word 1
(STATUS WORD)
Word 2
(ACT1**)
Word 3
Words 1 … n **
Addresses for words 3 … n in
format xxyy
xx
Address
00
yy = word no. in data set
table
01 … xx = par. group
99
yy = par. index
in parameter table
Fieldbus-specific selectors
in Group 51 ***
n
3
** Fixed to 01.02 SPEED (DTC control) or 01.03 FREQUENCY (Scalar control) when Generic communication profile is used.
* Fixed to 03.02 MAIN STATUS WORD (bits 10, 13 and 14 are programmable).
99.99
…
…
…
10.01
…
3.99
92.04
92.03
92.02
MAIN
ACTUAL SIGNAL
DATA SET
…
ACTUAL SIGNAL/
PARAMETER
TABLE
DATA SET
TABLE
…
…
Fieldbus control
92.01
Block diagram: Actual value selection for fieldbus when a type Rxxx
fieldbus adapter is used
Fieldbus
Adapter
(Slot 1)
246
40013
40014
40015
40007
40008
40009
40001
40002
40003
Modbus
Controller
Standard
Modbus
Link
(RMBA)
(Slot 1/2)
3 words
(6 bytes)
3 words
(6 bytes)
3 words
(6 bytes)
3 words
(6 bytes)
3 words
(6 bytes)
DS 5
DS 4
DS 3
DS 2
DS 85
DS 84
DS 83
DS 82
DS 81
…
Fieldbus
Adapter
(CH0)
DS 1
…
3 words
(6 bytes)
1
1
255
…
1
255
…
255
…
90.07
90.07
90.07
REF8
REF7
REF6
AUXILIARY 2
REFERENCE
DATA SET
REF5
REF4
REF3
AUXILIARY 1
REFERENCE
DATA SET
30.18 COMM FAULT FUNC
30.20 COMM FLT RO/AO
30.21 AUX REF DS T-OUT
98.02
CUSTOMISED
STD
MODBUS
ADVANT
FIELDBUS
NO
98.02
CUSTOMISED
STD
MODBUS
ADVANT
FIELDBUS
NO
REF1
98.02
REF2
CW
MAIN
REFERENCE
DATA SET
CUSTOMISED
STD
MODBUS
ADVANT
FIELDBUS
NO
DI1
DI1
COMM.CW
…
AI1
COMM.CW
…
AI1
COMM.REF
…
COMM.REF
…
DATA
SET
TABLE
90.06
90.05
90.04
90.03
90.02
90.01
11.06
11.03
10.02
10.01
11.02
10.02
10.01
PARAMETER
TABLE
01.12
EXT REF2
01.11
EXT REF1
03.01
MAIN CW
89.99
…
30.18 COMM FAULT FUNC
30.19 MAIN REF DS T-OUT
…
Block diagram: Control data input from fieldbus when a type Nxxx
fieldbus adapter is used
247
Fieldbus control
1.02
1.01
ACTUAL SIGNAL/
PARAMETER
TABLE
92.09
92.08
92.07
92.06
92.05
ACT6
ACT7
ACT8
AUXILIARY 2
ACTUAL SIGNAL
DATA SET
ACT3
ACT4
ACT5
AUXILIARY 1
ACTUAL SIGNAL
DATA SET
STATUS WORD*
ACT1**
ACT2
MAIN
ACTUAL SIGNAL
DATA SET
DS 6
DS 5
DS 4
DS 3
DS 2
DS 86
DS 85
DS 84
DS 83
DS 82
DS 81
3 words
(6 bytes)
3 words
(6 bytes)
3 words
(6 bytes)
3 words
(6 bytes)
3 words
(6 bytes)
3 words
(6 bytes)
** Fixed to 01.02 SPEED (DTC motor control) or 0103 FREQUENCY (Scalar control) when Generic communication profile is used.
* Fixed to 03.02 MAIN STATUS WORD (bits 10, 13 and 14 are programmable).
99.99
…
10.01
…
3.99
92.04
92.03
92.02
DS 1
…
…
Fieldbus control
…
92.01*
DATA SET
TABLE
Block Diagram: Actual value selection for fieldbus when a type Nxxx
fieldbus adapter is used
Standard
Modbus
Link
Fieldbus
Adapter
(CH0)
40016
40017
40018
40010
40011
40012
40004
40005
40006
Modbus
Controller
248
249
Communication profiles
The ACS800 supports three communication profiles:
• ABB Drives communication profile
• Generic Drive communication profile.
• CSA 2.8/3.0 communication profile.
The ABB Drives communication profile should be selected with type Nxxx fieldbus
adapter modules, and when the manufacturer-specific mode is selected (via the
PLC) with type Rxxx fieldbus adapter modules.
The Generic Drive profile is supported by type Rxxx fieldbus adapter modules only.
The CSA 2.8/3.0 communication profile can be selected for backward compatibility
with Application Program versions 2.8 and 3.0. This eliminates the need for
reprogramming the PLC when drives with the above-mentioned program versions
are replaced.
ABB Drives communication profile
The ABB Drives communication profile is active when parameter 98.07 is set to
ABB DRIVES. The Control Word, Status Word, and reference scaling for the profile
are described below.
The ABB Drives communication profile can be used through both EXT1 and EXT2.
The Control Word commands are in effect when Par. 10.01 or 10.02 (whichever
control location is active) is set to COMM.CW.
Fieldbus control
250
03.01 MAIN CONTROL WORD
The upper case boldface text refers to the states shown in the State Machine for the
ABB Drives communication profile on page 252.
Bit
Name
Value
0
OFF1 CONTROL 1
0
1
OFF2 CONTROL 1
0
2
OFF3 CONTROL 1
Enter STATE/Description
Enter READY TO OPERATE.
Stop along currently active deceleration ramp (22.03/22.05). Enter OFF1 ACTIVE;
proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active.
Continue operation (OFF2 inactive).
Emergency OFF, coast to stop.
Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.
Continue operation (OFF3 inactive).
0
Emergency stop, stop within time defined with Par. 22.07. Enter OFF3 ACTIVE;
proceed to SWITCH-ON INHIBITED.
1
Enter OPERATION ENABLED. (Note: The Run Enable signal must be active; see
parameter 16.01. If Par. 16.01 is set to COMM.CW, this bit also activates the Run
Enable signal.)
0
Inhibit operation. Enter OPERATION INHIBITED.
1
Normal operation.
Enter RAMP FUNCTION GENERATOR: OUTPUT ENABLED.
0
Force Ramp Function Generator output to zero.
Drive ramps to stop (current and DC voltage limits in force).
1
Enable ramp function.
Warning: Ensure motor and driven machine can be stopped using this stop mode.
3
INHIBIT_
OPERATION
4
RAMP_OUT_
ZERO
5
RAMP_HOLD
Enter RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED.
6
RAMP_IN_
ZERO
7
RESET
8
INCHING_1
0
Halt ramping (Ramp Function Generator output held).
1
Normal operation. Enter OPERATING.
0
Force Ramp Function Generator input to zero.
0⇒1
Fault reset if an active fault exists. Enter SWITCH-ON INHIBITED.
0
Continue normal operation.
1
Not in use.
1⇒0
Not in use.
Not in use.
9
INCHING_2
1
1⇒0
Not in use.
10
REMOTE_CMD
1
Fieldbus control enabled.
0
Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference.
Control Word = 0 and Reference = 0: Fieldbus control enabled.
Reference and deceleration/acceleration ramp are locked.
1
Select External Control Location EXT2. Effective if Par. 11.02 is set to COMM.CW.
0
Select External Control Location EXT1. Effective if Par. 11.02 is set to COMM.CW.
0⇒1
User Macro 2 loaded. Effective if Par. 16.05 is set to COMM.CW.
1⇒0
User Macro 1 loaded. Effective if Par. 16.05 is set to COMM.CW.
11
EXT CTRL LOC
12
USER MACRO
CHANGE
12 …
15
Reserved
Fieldbus control
251
03.02 MAIN STATUS WORD
The upper case boldface text refers to the states shown in the State Machine for the
ABB Drives communication profile on page 252.
Bit
Name
Value
STATE/Description
0
RDY_ON
1
READY TO SWITCH ON.
0
NOT READY TO SWITCH ON.
1
READY TO OPERATE.
0
OFF1 ACTIVE.
1
OPERATION ENABLED.
0
OPERATION INHIBITED.
1
2
3
4
5
6
RDY_RUN
RDY_REF
TRIPPED
OFF_2_STA
OFF_3_STA
SWC_ON_INHIB
1
FAULT.
0
No fault.
1
OFF2 inactive.
0
OFF2 ACTIVE.
1
OFF3 inactive.
0
OFF3 ACTIVE.
1
SWITCH-ON INHIBITED.
0
7
8
9
ALARM
AT_SETPOINT
REMOTE
10
1
Warning/Alarm.
0
No Warning/Alarm.
1
OPERATING. Actual value equals reference value (= is within tolerance limits
i.e in speed control the speed error is less than or equal to 10% of the nominal
motor speed).
0
Actual value differs from reference value (= is outside tolerance limits).
1
Drive control location: REMOTE (EXT1 or EXT2).
0
Drive control location: LOCAL.
1
Bit is read from the address defined with parameter 92.10 MSW B10 PTR.
By default no address has been selected.
0
11
12
EXT CTRL LOC
EXT RUN ENABLE
Actual frequency or speed value is within supervision limit.
1
External Control Location EXT2 selected.
0
External Control Location EXT1 selected.
1
External Run Enable signal received.
0
No External Run Enable received.
13
Bit is read from the address defined with parameter 92.11 MSW B13 PTR.
By default no address has been selected.
14
Bit is read from the address defined with parameter 92.12 MSW B14 PTR.
By default no address has been selected.
15
1
Communication error detected by fieldbus adapter module (on fibre optic
channel CH0).
0
Fieldbus adapter (CH0) communication OK.
Fieldbus control
252
State Machine for the ABB Drives communication profile
SWITCH-ON
INHIBITED
MAINS OFF
Power ON
ABB Drives
Communication
Profile
(SW Bit6=1)
(CW Bit0=0)
NOT READY
TO SWITCH ON
A B C D
(SW Bit0=0)
(CW=xxxx x1xx xxxx x110)
(CW Bit3=0)
READY TO
SWITCH ON
OPERATION
INHIBITED
CW = Control Word
SW = Status Word
n = Speed
I = Input Current
RFG = Ramp Function Generator
f = Frequency
(SW Bit0=1)
(SW Bit2=0)
from any state
operation
inhibited
(CW=xxxx x1xx xxxx x111)
Fault
READY TO
OPERATE
FAULT
(SW Bit1=1)
from any state
OFF1
ACTIVE
(CW Bit7=1)
(CW=xxxx x1xx xxxx 1111
and SW Bit12=1)
OFF1 (CW Bit0=0)
from any state
(SW Bit1=0)
n(f)=0 / I=0
B C D
from any state
Emergency Stop
OFF3 (CW Bit2=0)
(CW Bit3=1
and
SW Bit12=1)
OFF3
ACTIVE
(SW Bit5=0)
n(f)=0 / I=0
(CW Bit4=0)
OPERATION
ENABLED
C D
(SW Bit2=1)
A
(CW Bit5=0)
(CW=xxxx x1xx xxx1 1111)
RFG: OUTPUT
ENABLED
D
B
(CW Bit6=0)
(CW=xxxx x1xx xx11 1111)
RFG: ACCELERATOR
ENABLED
C
(CW=xxxx x1xx x111 1111)
OPERATING
D
Fieldbus control
(SW Bit8=1)
(SW Bit3=1)
Emergency OFF
OFF2 (CW Bit1=0)
OFF2
ACTIVE
(SW Bit4=0)
253
Fieldbus reference scaling
With the ABB Drives communication profile active, fieldbus references REF1 and
REF2 are scaled as shown in the table below.
Note: Any correction of the reference is applied before scaling. See section
References on page 242.
Ref.
No.
Application
Macro used
(par. 99.02)
Range
Reference type
Scaling
Notes
REF1
(any)
-32768 ...
32767
Speed or Frequency
(not with
FAST COMM)
-20000 = -[par. 11.05]
Final reference limited
with 20.01/20.02 [speed]
or 20.07/20.08
[frequency].
-1 = -[par. 11.04]
0 = [par. 11.04]
20000 = [par. 11.05]
Speed or Frequency
with FAST COMM
-20000 = -[par. 11.05]
0=0
20000 = [par. 11.05]
REF2
Crane macro
with speed
mode
Crane macro
with M/F in
torque mode
-32768 ...
32767
-32768 ...
32767
Final reference limited
with 20.01/20.02 [speed]
or 20.07/20.08
[frequency].
Speed or Freq. (not
with FAST COMM)
-20000 = -[par. 11.08]
-1 = -[par. 11.07]
0 = [par. 11.07]
20000 = [par. 11.08]
Final reference limited
with 20.01/20.02 [speed]
or 20.07/20.08
[frequency].
Speed or Freq. with
FAST COMM
-20000 = -[par. 11.08]
0=0
20000 = [par. 11.08]
Final reference limited
with 20.01/20.02 [speed]
or 20.07/20.08
[frequency].
Torque (not with
FAST COMM)
-10000 = -[par. 11.08]
-1 = -[par. 11.07]
0 = [par. 11.07]
10000 = [par. 11.08]
Final reference limited
with Par. 20.04.
Torque with
FAST COMM
-10000 = -[par. 11.08]
0=0
10000 = [par. 11.08]
Final reference limited
with Par. 20.04.
Fieldbus control
254
Start/Stop sequence using communication bits
This section describes the sequence of the 03.01 MAIN CONTROL WORD bits used
for starting, stopping and restarting after a fault condition or an abnormal stop, when
the drive is configured in the ABB Drives communication profile. For the flow
sequence of the communication bits, see Flow chart for Main Control Command Bit
sequence on page 255.
Normal starting sequence
You can start the drive through the controlling device by giving the following main
command word bit sequence:
• Enable Bit 10 (Bit 10 = 1) to activate the fieldbus command.
• Enable Bit 4, Bit 5 and Bit 6 (Bit 4, Bit 5 and Bit 6 = 1) to activate the normal ramp
block functions.
• Enable Bit 1 (Bit 1 = 1) to deactivate the OFF2 command.
• Enable Bit 2 (Bit 2 = 1) to deactivate the OFF3 command.
• Enable Bit 0 (Bit 0 = 1) to deactivate the OFF1 command.
• Enable Bit 3 (Bit 3 = 1) to issue the start command.
Normal stopping sequence and restarting
You can stop and restart the drive through the controlling device by giving the
following main command word bit sequence:
• Disable Bit 3 (Bit 3 = 1 -> 0) to issue a stop command. Brake control must be
activated, or else the drive will stop by coasting.
• Enable Bit 3 (Bit 3 = 0 -> 1) to issue the start command.
OFF1, OFF2, OFF3 stopping sequence and restarting
You can stop and restart the drive through the controlling device by giving the
following main command word bit sequence:
• Disable Bit 0 (Bit 0 = 1 -> 0) to issue an OFF1 stop command, disable Bit 1
(Bit 1 = 1 -> 0) to issue an OFF2 stop command and Disable Bit 2 (Bit 2 = 1 -> 0)
to issue an OFF3 stop command, respectively.
• The drive can be started again only after the drive has stopped.
• To issue a start command again, disable Bit 3 (Bit 3 = 1 -> 0).
• Disable Bit 0 (Bit 0 = 1 -> 0) if the OFF2/OFF3 command was issued.
• Enable Bit 0 (Bit 0 = 0 -> 1) again if the OFF1 stop command was issued, or Bit 1
(Bit 1 = 0 -> 1) if the OFF2 stop command was issued, or Bit 2 (Bit 2 = 0 -> 1) if
the OFF3 stop command was issued.
• Enable Bit 0 (Bit 0 = 1) to make the drive ready to start.
• Enable Bit 3 (Bit 3 = 1) to issue the start command.
Fieldbus control
255
Fault condition/abnormal stop and restarting
After a drive fault condition or an abnormal stop, the drive can be restarted through
the controlling device by giving the following main command word bit sequence:
• Enable Bit 7 (Bit 7 = 1) to issue the fault reset command if the drive has tripped on
a fault.
• Disable Bit 3 (Bit 3 = 1 -> 0) to remove the drive start command. Else the drive will
not start, and the START HIGH (FFB3) warning will be displayed.
• Disable Bit 0 (Bit 0 = 1 -> 0), and then enable this bit (Bit 0 = 0 -> 1) again to make
the drive ready to accept the start command.
• Enable Bit 3 (Bit 3 = 1) to issue the start command.
Flow chart for Main Control Command Bit sequence
MCW corresponds to signal 09.06 (Main Control Word) from the
PLC. MSW corresponds to signal 03.02 (Main Status Word). The
MCW and MSW values are shown in decimal and hex values (in
MCW Corresponds to Signal 9.06 Main Control Word from PLC
brackets).
The MCW values are shown in decimal and hex values (in brackets)
End Limit activation issues an OFF3 command to the drive, and
MSW Corresponds
Signal 3.01inMain
therefore,
the drivetobehaves
theStatus
sameWord
manner as the OFF3
The MSW values are shown in decimal and hex values (in brackets)
command when the end limits are hit. The only difference is that
Limitcommand
activation issues
a OFF3
Command to the
drive and
therefore,
the End
OFF3
will get
automatically
enabled
again
when
drive behaves
in theissame
manner as OFF3 command when End
the the
reference
polarity
reversed.
limits are hit. Only difference here would be that the OFF3 Command
Fastwould
stopautomatically
activationget
issues
a back
normal
command
to isthe drive,
enabled
whenStop
the reference
polarity
andreversed.
therefore, the drive behaves in the same manner as the Stop
command
when the Fast stop command is issued.
Fast Stop activation issues a Normal Stop Command to the drive and
Enable Fieldbus
For Control
Bit 10 = 1
MCW Value = 1024 (400)
MSW = 4608 (1200)
Enable Ramp Function
Bit’s 4, 5, 6 = 1
MCW Value = 1136 (470)
MSW = 4608 (1200)
therefore, the drive behaves in the same manner as Drive Stop
Command when Fast Stop command is issued.
Enable OFF2 Cmd
Bit 1 = 1
MCW Value = 1138 (472)
MSW = 4624 (1210)
Enable OFF3 Cmd
Bit 2 = 1
MCW Value = 1142 (476)
Disable OFF1 Cmd
Disable Start Cmd
Bit 3 = 0
Bit 0 = 0
MCW Value = 1138 (472)
MSW = 4657 (1231)
MSW = 4624 (1210)
Enable OFF1 Cmd
Bit 0 = 1
MCW Value = 1143 (477)
Enable OFF2 Cmd
Bit 1 = 1
MCW Value = 1142 (476)
MSW = 4659 (1233)
MSW = 4657 (1231)
Disable Start Cmd
Disable OFF1 Cmd
Bit 3 = 0
Bit 0 = 0
MCW Value = 1142 (476)
MSW = 4657 (1231)
Disable Start Cmd
Bit 3 =0
MCW Value = 1143 (477)
Enable Start Cmd
Bit 3 = 1
MCW Value = 1151 (47F)
Enable OFF1 Cmd
Bit 0 = 1
MCW Value = 1143 (477)
MSW = 4659 (1233)
MSW = 4919 (1337)
MSW = 4659 (1233)
Disable OFF1 Cmd
Disable Start Cmd
Bit 1 = 0
Bit 3 = 0
MCW Value = 1140 (474)
MSW = 4640 (1220)
Fault Reset Cmd
Bit 7 = 1
MCW Value = 1279 ( 4FF)
Disable Start Cmd
Disable OFF1 Cmd
Bit 3 = 0
Bit 0 = 0
MCW Value = 1142 (476)
MSW = 4648 (12F0)
MSW = 4657 (1231)
MSW = 4664 (1238)
DRV FAULT
DRV STOP
OFF1 STOP
Disable OFF2 Cmd
Bit 1 = 0
MCW Value = 1149 (47D)
Disable OFF3 Cmd
Bit 2 = 0
MCW Value = 1147 (47B)
MSW = 4832 (12E0)
MSW = 4816 (12D0)
OFF2 STOP
OFF3 STOP
DRIVE RUNNING STATE
Fieldbus control
256
Fieldbus references in a Master/Follower configuration
When the ABB Drives communication profile is active, the fieldbus interface uses the
following references in the Master drive:
• When the Master is in control location EXT1 (stand-alone, speed-controlled), the
fieldbus interface uses REF1 for the speed reference.
• When the Master is in control location EXT2 (Master/Follower, either speedcontrolled or torque-controlled depending on the selection of Par. 60.02 TORQUE
SELECTOR), the fieldbus interface uses REF2 for the speed or torque reference.
When the ABB Drives communication profile is active, the fieldbus interface uses the
following references in the Follower drives:
• When Follower n is in control location EXT1 (stand-alone, speed-controlled), the
fieldbus interface uses REF1 for the speed reference.
Note: For the fieldbus interface to work in follower drives in EXT1, Par. 60.01
MASTER LINK MODE must be set to value NOT IN USE in the follower drives.
Ensure this either through the fieldbus (parameter writing) or DriveAP's Write
block.
• When Follower n is in control location EXT2 (Master/Follower, either speedcontrolled or torque-controlled depending on the selection of Par. 60.02 TORQUE
SELECTOR), the fieldbus interface cannot control the references because they
come through the M/F link (CH).
The figure below illustrates the use of fieldbus references in a Master/Follower
configuration.
Master
Follower n
EXT 1
EXT 1
Stand-alone mode
Stand-alone mode
10.01 EXT1 STRT/STP/DIR
10.01 EXT1 STRT/STP/DIR
11.03 EXT REF1 SELECT
11.03 EXT REF1 SELECT
EXT 2
EXT 2
Master/Follower
CH2
Master/Follower
10.02 EXT2 STRT/STP/DIR
10.02 EXT2 STRT/STP/DIR
11.06 EXT REF2 SELECT
11.06 EXT REF2 SELECT
Note: In follower drives in EXT1,
Par. 60.01 must have value NOT IN
USE for the fieldbus interface to
work.
Fieldbus control
257
Generic Drive communication profile
The Generic Drive communication profile is active when parameter 98.07 is set to
GENERIC. The Generic Drive profile realises the device profile for drives – speed
control only – as defined by specific fieldbus standards such as PROFIDRIVE for
PROFIBUS, AC/DC Drive for DeviceNet, Drives and Motion Control for CANopen,
etc. Each device profile specifies its Control and Status Words, Reference and
Actual value scaling. The profiles also define Mandatory services which are
transferred to the application interface of the drive in a standardised way.
The Generic Drive communication profile can be used through both EXT1 and
EXT2*. The proper functioning of the Generic Drive profile requires that Control
Word commands are enabled by setting parameter 10.01 or 10.02 (whichever
control location is active) to COMM.CW (or Par. 10.07 to 1) and by setting parameter
16.01 to YES.
*For vendor-specific support of EXT2 reference, see the appropriate fieldbus
manual.
Note: The Generic Drive profile is only available with type Rxxx fieldbus adapter
modules.
Fieldbus control
258
Drive commands supported by the Generic Drive communication profile
Name
Description
STOP
The drive decelerates the motor to zero speed according to the active deceleration ramp
(parameter 22.03 or 22.05).
START
The drive accelerates to the set reference value according to the active acceleration ramp (Par.
22.02 or 22.04). The direction of rotation is determined by the sign of the reference value and the
setting of par. 10.03.
COAST STOP
The drive coasts to stop, that is the drive stops modulating. However, this command can be
overridden by the Brake Control function, which forces the drive to decelerate to zero speed by the
active deceleration ramp. When the Brake Control function is active, Coast stop and Emergency
coast stop (OFF2) commands given after the Emergency ramp stop (OFF3) coast the drive to
a stop.
QUICK STOP
The drive decelerates the motor to zero speed within the emergency stop deceleration time
defined with Par. 22.07.
CURRENT LIMIT
STOP (CLS)
The drive decelerates the motor to zero speed according to the set current limit (Par. 20.03) or
torque limit (20.04), whichever is first reached. The same procedure is valid in case of a Voltage
Limit Stop (VLS).
INCHING1
With this command active, the drive accelerates the motor to Step reference 3 (defined with Par.
12.04). After the command is removed, the drive decelerates the motor to zero speed.
Note: The speed reference ramps are not effective. The speed change rate is only limited by the
current (or torque) limit of the drive.
Note: Inching 1 takes priority over Inching 2.
Note: Not effective in Scalar control mode.
INCHING2
With this command active, the drive accelerates the motor to Step reference 4 (defined with Par.
12.05). After the command is removed, the drive decelerates the motor to zero speed.
Note: The speed reference ramps are not effective. The speed change rate is only limited by the
current (or torque) limit of the drive.
Note: Inching 1 takes priority over Inching 2.
Note: Not effective in Scalar control mode.
RAMP OUT ZERO
When active, forces the output of the reference function generator to zero.
RAMP HOLD
When active, freezes the reference function generator output.
FORCED TRIP
Trips the drive. The drive will indicate fault FORCED TRIP.
RESET
Resets an active fault.
Fieldbus control
259
Fieldbus reference scaling
With the Generic Drive communication profile active, the speed reference value
received from the fieldbus and the actual speed value received from the drive are
scaled as shown in the table below.
Note: Any correction of the reference (see section References on page 242) is
applied before scaling.
Ref.
No.
Application
Macro used
(par. 99.02)
Range
Reference
type
Speed reference
scaling
Actual speed
scaling*
REF1
(any)
-32768...
32767
Speed or
Frequency
0=0
0=0
20000 =
[par. 99.08 (DTC) /
99.07 (scalar)]**
20000 = [par.
99.08 (DTC) /
99.07 (scalar)]**
-32768...
32767
Speed or Freq.
(not with
FAST COMM)
-20000 = -[par. 11.08]
-1 = -[par. 11.07]
0 = [par. 11.07]
20000 = [par. 11.08]
0=0
Speed or Freq.
with
FAST COMM
-20000 = -[par. 11.08]
0=0
20000 = [par. 11.08]
0=0
Torque
(not with
FAST COMM)
-10000 = -[par. 11.08]
-1 = -[par. 11.07]
0 = [par. 11.07]
10000 = [par. 11.08]
0=0
Torque with
FAST COMM
-10000 = -[par. 11.08]
0=0
10000 = [par. 11.08]
0=0
REF2
Crane macro
with speed
mode
Crane macro
with M/F in
torque mode
-32768...
32767
20000 = [par.
99.08 (DTC) /
99.07 (scalar)]**
20000 = [par.
99.08 (DTC) /
99.07 (scalar)]**
20000 = [par.
99.08 (DTC) /
99.07 (scalar)]**
20000 = [par.
99.08 (DTC) /
99.07 (scalar)]**
Notes
Final reference
limited with
20.01/20.02
[speed] or
20.07/20.08
[frequency]
Final reference
limited with
20.01/20.02
[speed] or
20.07/20.08
[frequency]
Final reference
limited with 20.04
Final reference
limited with 20.04
* With DTC the filter time of the actual speed value can be adjusted using parameter 34.04.
** Note: The maximum reference value is 163% (that is,163% = 1.63 · value of parameter 99.08/99.07 value).
Fieldbus control
260
CSA 2.8/3.0 communication profile
The CSA 2.8/3.0 communication profile is active when parameter 98.07 is set to
CSA 2.8/3.0. The Control Word and Status Word for the profile are described below.
CONTROL WORD for the CSA 2.8/3.0 communication profile
Bit
Name
0
Reserved
1
ENABLE
2
Reserved
3
START/STOP
4
Reserved
5
CNTRL_MODE
6
Reserved
7
Reserved
8
RESET_FAULT
9 … 15
Value Description
1
Enabled.
0
Coast to stop.
0 ⇒ 1 Start.
0
Stop according to parameter 21.03 STOP FUNCTION.
1
Select control mode 2.
0
Select control mode 1.
0 ⇒ 1 Reset drive fault.
Reserved
STATUS WORD for the CSA 2.8/3.0 communication profile
Bit
0
1
Name
READY
ENABLE
2
Reserved
3
RUNNING
4
Reserved
5
REMOTE
6
Reserved
7
AT_SETPOINT
8
FAULTED
Value Description
1
Ready to start.
0
Initialising, or initialising error.
1
Enabled.
0
Coast to stop.
1
Running with selected reference.
0
Stopped.
1
Drive in Remote mode
0
Drive in Local mode
1
Drive at reference
0
Drive not at reference
1
A fault is active.
0
No active faults
A warning is active.
9
WARNING
1
0
No active warnings
10
LIMIT
1
Drive at a limit
0
Drive at no limit
11 … 15 Reserved
The reference and actual scaling is equal to that of the ABB Drives profile.
Fieldbus control
261
Diverse control, status, fault, alarm and limit words
03.03 AUXILIARY STATUS WORD
Bit
Name
Description
0
Reserved
1
OUT OF WINDOW
2
Reserved
3
MAGNETIZED
4
Reserved
5
SYNC RDY
Position counter synchronised.
6
1 START NOT
DONE
Drive has not been started after changing the motor
parameters in group 99.
7
IDENTIF RUN
DONE
Motor ID run successfully completed.
8
START INHIBITION
Safe Torque Off active.
9
LIMITING
Control at a limit. See actual signal 3.04 LIMIT WORD 1 below.
10
TORQ CONTROL
Torque reference is followed*.
11
ZERO SPEED
Absolute value of motor actual speed is below zero speed limit
(4% of synchronous speed).
12
INTERNAL SPEED
FB
Internal speed feedback followed.
13
M/F COMM ERR
Master/Follower link (on CH2) communication error*.
14 … 15
Reserved
Speed difference is out of the window (in speed control)*.
Flux has been formed in the motor.
*See the Master/Follower Application Guide [3AFY58962180 (English)].
Fieldbus control
262
03.04 LIMIT WORD 1
Bit
Name
Active Limit
0
TORQ MOTOR LIM
Pull-out limit
1
SPD_TOR_MIN_LIM
Speed control torque min. limit
2
SPD_TOR_MAX_LIM
Speed control torque max. limit
3
TORQ_USER_CUR_LIM
User-defined current limit
4
TORQ_INV_CUR_LIM
Internal current limit
5
TORQ_MIN_LIM
Any torque min. limit
6
TORQ_MAX_LIM
Any torque max. limit
7
TREF_TORQ_MIN_LIM
Torque reference min. limit
8
TREF_TORQ_MAX_LIM
Torque reference max. limit
9
FLUX_MIN_LIM
Flux reference min. limit
10
FREQ_MIN_LIMIT
Speed/frequency min. limit
11
FREQ_MAX_LIMIT
Speed/frequency max. limit
12
DC_UNDERVOLT
DC undervoltage limit
13
DC_OVERVOLT
DC overvoltage limit
14
TORQUE LIMIT
Any torque limit
15
FREQ_LIMIT
Any speed/frequency limit
03.05 FAULT WORD 1
Fieldbus control
Bit
Name
Description
0
SHORT CIRC
1
OVERCURRENT
For the possible causes and remedies, see chapter Fault
tracing.
2
DC OVERVOLT
3
ACS800 TEMP
4
EARTH FAULT
5
THERMISTOR
6
MOTOR TEMP
7
SYSTEM_FAULT
A fault is indicated by the System Fault Word (Actual
Signal 03.07).
8
UNDERLOAD
9
OVERFREQ
For the possible causes and remedies, see chapter Fault
tracing.
10 … 15
Reserved
263
03.06 FAULT WORD 2
Bit
Name
Description
0
SUPPLY PHASE
1
NO MOT DATA
For the possible causes and remedies, see chapter Fault
tracing.
2
DC UNDERVOLT
3
Reserved
4
Not Used
5
ENCODER ERR
6
I/O COMM
7
CTRL B TEMP
8
EXTERNAL FLT
9
OVER SWFREQ
10
AI < MIN FUNC
11
PPCC LINK
12
COMM MODULE
13
PANEL LOSS
14
MOTOR STALL
15
MOTOR PHASE
For the possible causes and remedies, see chapter Fault
tracing.
Fieldbus control
264
03.07 SYSTEM FAULT WORD
Bit
Name
Description
0
FLT (F1_7)
Factory default parameter file error
1
USER MACRO
User Macro file error
2
FLT (F1_4)
FPROM operating error
3
FLT (F1_5)
FPROM data error
4
FLT (F2_12)
Internal time level 2 overflow
5
FLT (F2_13)
Internal time level 3 overflow
6
FLT (F2_14)
Internal time level 4 overflow
7
FLT (F2_15)
Internal time level 5 overflow
8
FLT (F2_16)
State machine overflow
9
FLT (F2_17)
Application program execution error
10
FLT (F2_18)
Application program execution error
11
FLT (F2_19)
Illegal instruction
12
FLT (F2_3)
Register stack overflow
13
FLT (F2_1)
System stack overflow
14
FLT (F2_0)
System stack underflow
15
Reserved
03.08 ALARM WORD 1
Fieldbus control
Bit
Name
Description
0
START INHIBIT
For the possible causes and remedies, see chapter Fault
tracing.
1
Reserved
2
THERMISTOR
3
MOTOR TEMP
4
ACS800 TEMP
5
ENCODER ERR
6
T MEAS ALM
7 … 11
Reserved
12
COMM MODULE
13
Reserved
14
EARTH FAULT
15
Reserved
For the possible causes and remedies, see chapter Fault
tracing.
For the possible causes and remedies, see chapter Fault
tracing.
For the possible causes and remedies, see chapter Fault
tracing.
265
03.09 ALARM WORD 2
Bit
Name
Description
0
Reserved
1
UNDERLOAD
2, 3
Reserved
4
ENCODER
5, 6
Reserved
7
POWFAIL FILE (FFA0)
Error in restoring POWERFAIL.DDF
8
ALM (OS_17)
Error in restoring POWERDOWN.DDF
9
MOTOR STALL
10
AI < MIN FUNC
For the possible causes and remedies, see chapter Fault
tracing.
11, 12
Reserved
13
PANEL LOSS
14, 15
Reserved
For the possible causes and remedies, see chapter Fault
tracing.
For the possible causes and remedies, see chapter Fault
tracing.
For the possible causes and remedies, see chapter Fault
tracing.
03.11 FOLLOWER MAIN COMMAND WORD
This signal is sent from the Master drive to the Follower drive as the
command word for the Follower drives.
Bit
Name
Description
0
OFF1
Not in use (Internally forced to "1")
1
OFF2
Not in use (Internally forced to "1")
2
OFF3
Not in use (Internally forced to "1")
3
RUNNING
Master drive running bit. This bit is used to issue the start
command in the Follower drive based on the Master drive
running status (1 = Start (Master running), 0 = Stop
(Master stopped). The start command is issued in the
Follower drive only when the Master drive is in the EXT2
control. If the Master drive is in the EXT1 control, the start
command is blocked and the Follower does not start.
4
RAMP_OUT_ZERO
Not in use (Internally forced to "1")
5
RAMP_HOLD
Not in use (Internally forced to "1")
6
RAMP_IN_ZERO
Not in use (Internally forced to "1")
7
FAULT RESET
Drive fault reset. This bit issues a fault reset command in
the Follower drive when a fault reset command is issued
in the Master drive.
0 = Fault reset inactive
1 = Fault reset active
Fieldbus control
266
Bit
Name
Description
8
INCHING_1
Not in use (Inching function is not available in crane
control)
9
INCHING_2
Not in use (Inching function is not available in crane
control)
10
REMOTE_CMD
Fieldbus control enabled (Set to "1")
11
START REQ
Start request status in the Master. Used to check whether
the Master drive has an active start request. Used for
interlocking in the Follower drive for position hysteresis
and Synchro control.
0 = No start request in the Master
1 = Start request active in the Master
12
REF UNDER LIM
Master speed reference is under the brake close speed
limit. Used for the low reference brake hold function in the
Follower drive in the Master/Follower configuration.
0 = Speed reference not under the brake close speed
1 = Speed reference under the brake close speed
13
RMP REF LIMIT
Master ramped speed reference is under the brake close
speed limit. Used for low reference brake hold function in
the Follower drive in the Master/Follower configuration.
0 = Ramped speed reference not under the brake close
speed
1 = Ramped speed reference under the brake close
speed
14
BRAKE CLOSED
Master brake is closed. Used for forced brake closing in
the Follower drive in the torque mode in the
Master/Follower configuration.
0 = Master brake open
1 = Master brake closed
15
Fieldbus control
Not used
267
03.13 AUXILIARY STATUS WORD 3
Bit
Name
Description
0
REVERSED
Motor rotates in reverse direction.
1
EXT CTRL
External control is selected.
2
REF 2 SEL
Reference 2 is selected.
3
STEP REF
A Step reference (1 … 4) is selected.
4
STARTED
The drive has received a Start command.
5
USER 2 SEL
User Macro 2 has been loaded.
6
OPEN BRAKE
The Open brake command is ON. See group 42 BRAKE
CONTROL.
7
LOSS OF REF
The reference has been lost.
8
STOP DI STATUS
The state of the interlock input on the RMIO board.
9
READY
Ready to function: Run enable signal on, no fault
10
DATASET STATUS
Data set has not been updated.
11
MACRO CHG
Macro is changing or is being saved.
12…15
Reserved
03.14 AUXILIARY STATUS WORD 4
Bit
Name
Description
0 ... 6
Unused
7 ... 9
Reserved
10
EXT SPD MAX LIMIT
Speed is limited in the forward direction according to the
value set in par 20.22.
11
EXT SPD MIN LIMIT
Speed is limited in the reverse direction according to the
value set in par 20.23.
03.15 FAULT WORD 4
Bit
Name
0
Reserved
1
MOTOR 1 TEMP
2
MOTOR 2 TEMP
3
BRAKE ACKN
4 … 15
Reserved
Description
For the possible causes and remedies, see chapter Fault
tracing.
Fieldbus control
268
03.16 ALARM WORD 4
Bit
Name
0
Reserved
1
MOTOR 1 TEMP
2
MOTOR 2 TEMP
3
BRAKE ACKN
4 … 15
Reserved
Description
For the possible causes and remedies, see chapter Fault
tracing.
03.17 FAULT WORD 5
Fieldbus control
Bit
Name
Description
0
BR BROKEN
1
BR WIRING
For the possible causes and remedies, see chapter Fault
tracing.
2
BC SHORT CIR
3
BR OVERHEAT
4
BC OVERHEAT
5
IN CHOKE TEMP
6
PP OVERLOAD
7
INV DISABLED
8
TEMP DIF
9
POWERF INV xx/
POWERFAIL
10
INT CONFIG
11
USER L CURVE
12
Reserved
13
INV OVERTEMP
14...15
Reserved
For the possible causes and remedies, see chapter Fault
tracing.
269
03.18 ALARM WORD 5
Bit
Name
Description
0
REPLACE FAN
1
SYNCRO SPEED
For the possible causes and remedies, see chapter Fault
tracing.
2
BR OVERHEAT
3
BC OVERHEAT
4
IN CHOKE TEMP
5
PP OVERLOAD
6
INV DISABLED
7
CUR UNBAL
8
INV CUR LIM
9
DC BUS LIM
10
MOT CUR LIM
11
MOT TORQ LIM
12
MOT POW LIM
13
USER L CURVE
14
Reserved
15
BATT FAILURE
For the possible causes and remedies, see chapter Fault
tracing.
03.19 INT INIT FAULT
Bit
Name
Description
0
AINT FAULT
Wrong EPLD version
1
AINT FAULT
Wrong AINT board revision
2
AINT FAULT
Du/dt limitation hardware failure
3
AINT FAULT
Current measurement scaling error
4
AINT FAULT
Voltage measurement scaling error
5 … 15
Reserved
This signal is active with AINT board.
03.20...03.24 Fault codes
Code
Description
Application/Fault Word Status Bit
4210
ACS800 TEMP
03.05 FAULT WORD 1 bit 3
4210
ACS TEMP xx y
03.05 FAULT WORD 1 bit 3 and 04.01 FAULTED INT INFO
8110
AI < MIN FUNC
03.06 FAULT WORD 2 bit 10
FFA2
BACKUP ERROR
Fieldbus control
270
Code
Description
Application/Fault Word Status Bit
7114
BC OVERHEAT
03.17 FAULT WORD 5 bit 4
7113
BC SHORT CIR
03.17 FAULT WORD 5 bit 2
FF74
BRAKE ACKN
03.15 FAULT WORD 4 bit 3
FFF3
BRAKE SLIP FLT
03.33 CRANE FAULT WORD bit 3
7110
BR BROKEN
03.17 FAULT WORD 5 bit 0
7112
BR OVERHEAT
03.17 FAULT WORD 5 bit 3
7111
BR WIRING
03.17 FAULT WORD 5 bit 1
FF82
CHOKE OTEMP
7510
COMM MODULE
03.06 FAULT WORD 2 bit 12
4110
CTRL B TEMP
03.06 FAULT WORD 2 bit 7
2211
CURR MEAS
2330
CUR UNBAL xx
FF80
DC HIGH RUSH
3210
DC OVERVOLT
03.05 FAULT WORD 1 bit 2
3220
DC UNDERVOLT
03.06 FAULT WORD 2 bit 2
2330
EARTH FAULT
03.05 FAULT WORD 1 bit 4
7302
ENCODER A<>B
7301
ENCODER ERR
03.06 FAULT WORD 2 bit 5
9000
EXTERNAL FLT
03.06 FAULT WORD 2 bit 8
FF83
FAN OVERTEMP
FF8F
FORCED TRIP
FFBA
FLWR1 COM FLT
FFBB
FLWR2 COM FLT
FFBC
FLWR3 COM FLT
FFBD
FLWR4 COM FLT
03.05 FAULT WORD 1 bit 4 and 04.01 FAULTED INT INFO
GD DISABLED X
Fieldbus control
FF84
ID RUN FAIL
FF81
IN CHOKE TEMP
03.17 FAULT WORD 5 bit 5
5410
INT CONFIG
03.17 FAULT WORD 5 bit 10
3200
INV DISABLED
03.17 FAULT WORD 5 bit 7
FFBF
INV LIMIT
03.33 CRANE FAULT WORD bit 5
4290
INV OVERTEMP
03.17 FAULT WORD 5 bit 13
7000
I/O COMM ERR
03.06 FAULT WORD 2 bit 6
271
Code
Description
Application/Fault Word Status Bit
FF51
LINE CONV
FFF0
MOTOROVER SPD
FF56
MOTOR PHASE
03.06 FAULT WORD 2 bit 15
4310
MOTOR TEMP
03.05 FAULT WORD 1 bit 6
4312
MOTOR 1 TEMP
03.15 FAULT WORD 4 bit 1
4313
MOTOR 2 TEMP
03.15 FAULT WORD 4 bit 2
FF52
NO MOT DATA
03.06 FAULT WORD 2 bit 1
2310
OVERCURR xx
03.05 FAULT WORD 1 bit 1 and 04.01 FAULTED INT INFO
2310
OVERCURRENT
03.05 FAULT WORD 1 bit 1
7123
OVERFREQ
03.05 FAULT WORD 1 bit 9
FF55
OVER SWFREQ
03.06 FAULT WORD 2 bit 9
5300
PANEL LOSS
03.06 FAULT WORD 2 bit 13
6320
PARAM CRC
3381
POWERFAIL
03.17 FAULT WORD 5 bit 9
3381
POWERF INV xx
03.17 FAULT WORD 5 bit 9 and 04.01 FAULTED INT INFO
5210
PPCC LINK
03.06 FAULT WORD 2 bit 11
5210
PPCC LINK xx
03.06 FAULT WORD 2 bit 11 and 04.01 FAULTED INT
INFO
5482
PP OVERLOAD
03.17 FAULT WORD 5 bit 6
FF54
RUN DISABLED
FF7D
SAFETYCLS FLT
FFF1
SPD MATCH FLT
03.33 CRANE FAULT WORD bit 1
2340
SC INV xx y
03.05 FAULT WORD 1 bit 0, 04.01 FAULTED INT INFO
and 04.02 INT SC INFO
2340
SHORT CIRC
03.05 FAULT WORD 1 bit 0 and 04.01 FAULTED INT INFO
FF8A
SLOT OVERLAP
FF7A
START INHIBI
03.03 AUXILIARY STATUS WORD bit 8
3130
SUPPLY PHASE
03.06 FAULT WORD 2 bit 0
FFBE
SYNC FAULT
03.33 CRANE FAULT WORD bit 4
4380
TEMP DIF xx y
03.17 FAULT WORD 5 bit 8 and 04.01 FAULTED INT INFO
FF50
THERMAL MODE
4311
THERMISTOR
FFF2
TORQ PROVE FLT
FF6A
UNDERLOAD
03.05 FAULT WORD 1 bit 5
03.05 FAULT WORD 1 bit 8
Fieldbus control
272
Code
Description
Application/Fault Word Status Bit
FFA1
USER MACRO
03.07 SYSTEM FAULT WORD bit 1
03.25...03.29 Warning codes
Fieldbus control
Code
Description
Application/Fault Word Status Bit
4210
ACS800 TEMP
03.08 ALARM WORD 1 bit 4
8110
AI < MIN FUNC
03.09 ALARM WORD 2 bit 10
FFA3
BACKUP USED
5581
BATT FAILURE
03.18 ALARM WORD 5 bit 15
7114
BC OVERHEAT
03.18 ALARM WORD 5 bit 3
FF74
BRAKE ACKN
03.16 ALARM WORD 4 bit 3
FFFC
BRK LONG TIME
03.32 CRANE STATUS WORD bit 9
7112
BR OVERHEAT
03.18 ALARM WORD 5 bit 2
FF37
CALIBRA DONE
FF36
CALIBRA REQ
7510
COMM MODULE
03.08 ALARM WORD 1 bit 12
2330
CUR UNBAL xx
03.08 ALARM WORD 1 bit 14 and 04.01 FAULTED INT
INFO
3211
DC BUS LIM
03.18 ALARM WORD 5 bit 9
2330
EARTH FAULT
03.08 ALARM WORD 1 bit 14
7302
ENCODER A<>B
03.09 ALARM WORD 2 bit 4
7301
ENCODER ERR
03.08 ALARM WORD 1 bit 5
FFF8
FAST STOP
FFFD
FLWR1 LIM/FLT
FFFE
FLWR2 LIM/FLT
FFB5
FLWR3 LIM/FLT
FFB4
FLWR4 LIM/FLT
FF38
HW RECONF RQ
FFF6
HIGHEND LIMIT
FFB1
HOMING ACTIVE
FFB0
HOMING DONE
FFF7
LOWEND LIMIT
FF32
ID DONE
FF31
ID MAGN
273
Code
Description
Application/Fault Word Status Bit
FF30
ID MAGN REQ
FF68
ID N CHANGED
FF35
ID RUN
FF33
ID RUN SEL
FF81
IN CHOKE TEMP
03.18 ALARM WORD 5 bit 4
2212
INV CUR LIM
03.18 ALARM WORD 5 bit 8
3200
INV DISABLED
03.18 ALARM WORD 5 bit 6
4290
INV OVERTEMP
03.31 ALARM WORD 6 bit 0
FF8B
IO CONFIG
FFFA
JOYSTICK CHECK
FFB8
LOAD SP UP LIM
FFB9
LOAD SP DW LIM
FF69
MACRO CHANGE
FFB2
MASTERLIM/FLT
2300
MOT CUR LIM
03.18 ALARM WORD 5 bit 10
7121
MOTOR STALL
03.09 ALARM WORD 2 bit 9
FF34
MOTOR STARTS
4310
MOTOR TEMP
03.08 ALARM WORD 1 bit 3
4312
MOTOR 1 TEMP
03.16 ALARM WORD 4 bit 1
4313
MOTOR 2 TEMP
03.16 ALARM WORD 4 bit 2
FF86
MOT POW LIM
03.18 ALARM WORD 5 bit 12
FF85
MOT TORQ LIM
03.18 ALARM WORD 5 bit 11
5300
PANEL LOSS
03.09 ALARM WORD 2 bit 13
FFD0
POINTER ERROR
FF39
->POWEROFF!
5482
PP OVERLOAD
03.18 ALARM WORD 5 bit 5
4280
REPLACE FAN
03.18 ALARM WORD 5 bit 0
FF7A
START INHIBI
03.08 ALARM WORD 1 bit 0
FFB3
START HIGH
03.32 CRANE STATUS WORD bit 14
FF8D
START INTERL
03.32 CRANE STATUS WORD bit 8
FFF4
SLOW DOWN UP
FFF5
SLOW DOWN DOWN
FF87
SYNCRO SPEED
03.32 CRANE STATUS WORD bit 5
03.18 ALARM WORD 5 bit 1
Fieldbus control
274
Code
Description
Application/Fault Word Status Bit
4380
TEMP DIF xx y
04.01 FAULTED INT INFO
4311
THERMISTOR
03.08 ALARM WORD 1 bit 2
FF91
T MEAS ALM
03.08 ALARM WORD 1 bit 6
FF6A
UNDERLOAD
03.09 ALARM WORD 2 bit 1
FFFB
ZERO POS WARN
FFEF
CTRL LOC DIFF
03.32 CRANE STATUS WORD bit 12
03.30 LIMIT WORD INV
The LIMIT WORD INV Word includes faults and warnings which occur when the
output current limit of the drive is exceeded. The current limit protects the drive in
various cases, for example, in case of integrator overload, high IGBT temperature,
etc.
Bit
Name
Description
0
INTEGRAT 200
Current limit at 200% integrator overload. Temperature
model is not active.*
1
INTEGRAT 150
Current limit at 150% integrator overload. Temperature
model is not active.*
2
INT LOW FREQ
Current limit at high IGBT temperature with low output
frequency (<10 Hz). Temperature model is not active.*
3
INTG PP TEMP
Current limit at high IGBT temperature. Temperature model
is not active.*
4
PP OVER TEMP
Current limit at high IGBT temperature. Temperature model
is active.
5
PP OVERLOAD
Current limit at high IGBT junction to case temperature.
Temperature model is active.
If the IGBT junction to case temperature continues to rise in
spite of the current limitation, the PP OVERLOAD alarm or
fault occurs. See chapter Fault tracing.
6
INV POW LIM
Current limit at inverter output power limit.
7
INV TRIP CUR
Current limit at inverter overcurrent trip limit.
8
OVERLOAD CUR
Maximum inverter overload current limit. See par. 20.03.
9
CONT DC CUR
Continuous dc-current limit.
10
CONT OUT CUR
Continuous output current limit (Icont.max).
11 … 15
Reserved
*Not active with ACS800 Default settings.
Fieldbus control
275
03.31 ALARM WORD 6
Bit
Name
Description
0
INV OVERTEMP
For the possible causes and remedies, see chapter Fault
tracing.
1 … 15
Reserved
03.32 CRANE STATUS WORD
Bit
Name
Description
0
SLOW DOWN ENABLED
Slow down enabled by the activation of the configured
input. See Par. 10.09
1
FAST STOP ENABLED
Fast Stop enabled by the activation of the configured input.
See Par. 10.10
2
HIGH END LIMIT INPUT
ENABLED
High-end limit enabled by the activation of the configured
input. See Par 10.12
3
LOW END LIMIT INPUT
ENABLED
Low-end limit enabled by the activation of the configured
input. See Par. 10.13
4
LOAD SPEED CTRL
ENABLED
The Load speed control function is activated using Par
77.01.
5
LOAD SP UP LIM
The speed is limited in the forward direction by the Load
speed control function. See chapter Fault tracing for more
details.
6
LOAD SP DW LIM
The speed is limited in the reverse direction by the Load
speed control function. See chapter Fault tracing for more
details.
7
SYNC ENABLED
Synchro control active. See Par. 78.01
8
POWER ON ACK SIGNAL
Start Interlock DI active.
9
BRK LONG TIME
Brake long time sequence active. See Par. 42.13
10
LOAD SPEED CTRL ERR
The Load speed control function is activated but not able to
calculate the speed limit according to the motor current
because of wrong configuration of parameters in group 77.
See chapter Fault tracing for more details.
11
WATCH DOG BIT-N
Watch dog bit. See section Watchdog function
12
CTRL LOC DIFF
EXT1/EXT2 mismatch. For more information, see sections
Master/Follower use of several drives (Only in EXT2
Control) and Control location EXT1/EXT2 supervision
mismatch.
13
ZERO POS WARN
Zero position warning from joystick Zero position. For more
information, see Par. 10.16.
14
START HIGH
Crane start signal high when power is switched on, or
running to direction where end limit sensor is high.
15
SYNCH ERROR BLOCK
LEVEL
Synch error correction is blocked.
Fieldbus control
276
03.33 CRANE FAULT WORD
Bit
Name
Description
0
MOTOR OVER SPD
For the possible causes and remedies, see chapter Fault
tracing.
1
SPD MATCH FLT
For the possible causes and remedies, see chapter Fault
tracing.
2
TRQ PROVE FLT
For the possible causes and remedies, see chapter Fault
tracing.
3
BRAKE SLIP FLT
For the possible causes and remedies, see chapter Fault
tracing.
4
SYNC FAULT
For the possible causes and remedies, see chapter Fault
tracing.
5
INV LIMIT
For the possible causes and remedies, see chapter Fault
tracing.
6
SAFETY CLS FLT
For the possible causes and remedies, see chapter Fault
tracing.
7 … 15
Reserved
03.34 APPL CONTROL WORD
Bit
Name
Description
0
SYNC ENABLE
Used when selection of Par 10.14 is COMM.MODULE.
Bit = 1 Synchro command is active, Bit = 0 Synchro
command is inactive. See Par. 10.14.
1
HOMING ACK
Used when selection of Par. 10.15 is COMM.MODULE.
Bit = 1; Homing Ackn command is active, Bit = 0; Homing
Ackn command is inactive. A pulse signal is required for
initializing the position value. See Par. 10.15.
2 … 15
Not Used
03.36 M F STATUS WORD
Fieldbus control
Bit
Name
Description
0
STANDBY
The drive is configured as standby. See Par. 60.01.
1
STANDALONE IN M/F
The drive is configured as Master or Follower but not in
EXT2 control
2
ACTIVE MASTER
The drive is configured as Master and in EXT2 control
3
ACTIVE FOLLOWER
The drive is configured as Follower and in EXT2 control
4
SYNC FOLLOWER
The drive is configured as Follower, in EXT2 control and in
shaft synchronisation mode
5 … 15
Not Used
277
03.37 FCW WITH POS
Bit
Name
Description
0…2
Reserved
3
START
Follower Start command from Master
4
POS BIT 0
Position multiplying factor bit 0. For more details see
section Control location EXT1/EXT2 supervision mismatch
5
POS BIT 1
Position multiplying factor bit 1. For more details see
section Control location EXT1/EXT2 supervision mismatch
6
POS BIT 2
Position multiplying factor bit 2. For more details see
section Control location EXT1/EXT2 supervision mismatch
7
RESET
Follower drive Reset command from Master
8
POS BIT 3
Position multiplying factor bit 3. For more details see
section Control location EXT1/EXT2 supervision mismatch
9
POS BIT 4
Position multiplying factor bit 4. For more details see
section Control location EXT1/EXT2 supervision mismatch
10
POS BIT 5
Position multiplying factor bit 5. For more details see
section Control location EXT1/EXT2 supervision mismatch
11 … 15
Reserved
04.01 FAULTED INT INFO
The FAULTED INT INFO Word includes information on the location of faults PPCC
LINK, OVERCURRENT, EARTH FAULT, SHORT CIRCUIT, ACS800 TEMP,
TEMP DIF and POWERF INV (see 03.05 FAULT WORD 1, 03.06 FAULT WORD 2,
03.17 FAULT WORD 5 and chapter Fault tracing).
Bit
Name
Description
0
INT 1 FLT
INT 1 board fault
1
INT 2 FLT
INT 2 board fault
2
INT 3 FLT
INT 3 board fault
3
INT 4 FLT
INT 4 board fault
4
INT 5 FLT
INT 5 board fault
5
INT 6 FLT
INT 6 board fault
6
INT 7 FLT
INT 7 board fault
7
INT 8 FLT
INT 8 board fault
8
INT 9 FLT
INT 9 board fault
9
INT 10 FLT
INT 10 board fault
10
INT 11 FLT
INT 11 board fault
11
INT 12 FLT
INT 12 board fault
12 … 14
Reserved
Fieldbus control
278
Bit
Name
Description
15
PBU FLT
PBU board fault
Used only with parallel connected inverters.
Inverter Block Diagram
Upper-leg IGBTs
RMIO
INT
RMIO
Motor Control and I/O Board
INT
Main Circuit Interface Board
PBU
PPCS Link Branching Unit
Lower-leg IGBTs
U
V
W
Inverter Unit Block Diagram (2 to 12 parallel inverters)
PBU
RMIO
1
INT3
INT1 INT2
2
INT
U
V
W
3
INT
U
V
W
INT
U
V
W
...
04.02 INT SC INFO
The INT SC INFO Word includes information on the location of the SHORT CIRCUIT
fault (see 03.05 FAULT WORD 1 and chapter Fault tracing).
Fieldbus control
Bit
Name
Description
0
U-PH SC U
Phase U upper-leg IGBT(s) short circuit
1
U-PH SC L
Phase U lower-leg IGBT(s) short circuit
2
V-PH SC U
Phase V upper-leg IGBT(s) short circuit
3
V-PH SC L
Phase V lower-leg IGBT(s) short circuit
4
W-PH SC U
Phase W upper-leg IGBT(s) short circuit
5
W-PH SC L
Phase W lower-leg IGBT(s) short circuit
6 … 15
Reserved
279
Fault tracing
Chapter overview
The chapter lists all warning and fault messages including the possible cause and
corrective actions.
Safety
WARNING! Only qualified electricians are allowed to maintain the drive. The Safety
Instructions on the first pages of the appropriate hardware manual must be read
before you start working with the drive.
Warning and fault indications
A warning or fault message on the panel display indicates an abnormal drive status.
Most warning and fault causes can be identified and corrected using this information.
If not, you must contact an ABB representative.
If the drive is operated with the control panel detached, the red LED in the panel
mounting platform indicates the fault condition. (Note: Some drive types are not
fitted with the LEDs as standard).
The four digit code number in brackets after the message is for the fieldbus
communication. (See chapter Fieldbus control.)
How to reset
The drive can be reset either by pressing the keypad RESET key, by digital input or
fieldbus, or switching the supply voltage off for a while. When the fault has been
removed, the motor can be restarted.
Fault history
When a fault is detected, it is stored in the Fault History. The latest faults and
warnings are stored together with the time stamp at which the event was detected.
The fault logger collects 64 of the latest faults. When the drive power is switched off,
16 of the latest faults are stored.
See chapter Control panel for more information.
Fault tracing
280
Warning messages generated by the drive
WARNING
CAUSE
WHAT TO DO
ACS800 TEMP
Drive IGBT temperature is excessive. Fault trip
limit is 100%.
Check ambient conditions.
(4210)
Check air flow and fan operation.
Check heatsink fins for dust pick-up.
3.08 AW 1 bit 4
Check motor power against unit power.
AI < MIN FUNC
(8110)
3.09 AW 2 bit 10
Analogue control signal is below minimum
allowed value due to incorrect signal level or
failure in control wiring.
Check for proper analogue control signal
levels.
Check control wiring.
Check Fault Function parameters.
(programmable
Fault Function
30.01)
AP [message]
Message generated by an EVENT block in the
Adaptive Program.
Consult the documentation or author of the
Adaptive Program.
BACKUP USED
PC stored backup of drive parameters is
downloaded into use.
Wait until download is completed.
(5581)
APBU branching unit memory backup battery
error caused by
3.18 AW 5 bit 15
- incorrect APBU switch S3 setting
With parallel connected inverters, enable
backup battery by setting actuator 6 of switch
S3 to ON.
- too low battery voltage.
Replace backup battery.
Brake chopper overload
Stop drive. Let chopper cool down.
(FFA3)
BATT FAILURE
BC OVERHEAT
(7114)
Check parameter settings of resistor overload
protection function (see parameter group 27
BRAKE CHOPPER).
3.18 AW 5 bit 3
Check that braking cycle meets allowed limits.
Check that drive supply AC voltage is not
excessive.
BRAKE ACKN
Unexpected state of brake acknowledge signal
(FF74)
Check connection of brake acknowledgement
signal.
3.16 AW 4 bit 3
BRK LONG TIME
(FFFC)
3.32 Crane SW bit 9
See parameter group 42 BRAKE CONTROL.
Brake acknowledge active after brake close
delay has elapsed. Drive active with zero
speed reference.
See parameter group 42 BRAKE CONTROL.
Check connection of brake acknowledgement
signal.
Check mechanical brake.
BR OVERHEAT
Brake resistor overload
(7112)
Stop drive. Let resistor cool down.
Check parameter settings of resistor overload
protection function (see parameter group 27
BRAKE CHOPPER).
3.18 AW 5 bit 2
Check that braking cycle meets allowed limits.
CALIBRA DONE
(FF37)
Fault tracing
Calibration of output current transformers is
completed.
Continue normal operation.
281
WARNING
CAUSE
WHAT TO DO
CALIBRA REQ
Calibration of output current transformers is
required. Displayed at start if drive is in Scalar
control (parameter 99.04) and scalar fly start
feature is on (parameter 21.08).
Calibration starts automatically. Wait for a
while.
Cyclical communication between drive and
master is lost.
Check status of fieldbus communication. See
chapter Fieldbus control, or appropriate
fieldbus adapter manual.
(FF36)
COMM MODULE
(7510)
3.08 AW 1 bit 12
Check parameter settings:
(programmable
Fault Function
30.18, 30.19)
- group 51 COMM MODULE DATA (for fieldbus
adapter)
- group 52 STANDARD MODBUS (for
Standard Modbus Link).
Check Fault Function parameters.
Check cable connections.
Check if master can communicate.
CTRL LOC DIFF
3.32 bit 12
CUR UNBAL xx
(2330)
3.08 AW1 bit 14 and
4.01
(programmable
Fault Function
30.17)
DC BUS LIM
(3211)
Master and Follower are not in the same
control location.
Check that the Master and the Follower are
both in EXT2.
Drive has detected excessive output current
unbalance in inverter unit of several parallel
connected inverter modules. This can be
caused by external fault (earth fault, motor,
motor cabling, etc.) or internal fault (damaged
inverter component). xx (2...12) refers to
inverter module number.
Check that there are no power factor correction
capacitors or surge absorbers in motor cable.
Drive limits torque due to too high or too low
intermediate circuit DC voltage.
Informative alarm
Drive has detected load unbalance typically
due to earth fault in motor or motor cable.
Check there are no power factor correction
capacitors or surge absorbers in motor cable.
Check that there is no earth fault in motor or
motor cables:
- measure insulation resistances of motor and
motor cable.
If no earth fault can be detected, contact your
local ABB representative.
Check Fault Function parameters.
3.18 AW5 bit 9
(programmable
Fault Function
30.23)
EARTH FAULT
(2330)
Check that there is no earth fault in motor or
motor cables:
3.08 AW 1 bit 14
(programmable
Fault Function
30.17)
- measure insulation resistances of motor and
motor cable.
If no earth fault can be detected, contact your
local ABB representative.
ENCODER A<>B
(7302)
3.09 AW 2 bit 4
ENCODER ERR
(7301)
3.08 AW 1 bit 5
Pulse encoder phasing is wrong: Phase A is
connected to terminal of phase B and vice
versa.
Interchange connection of pulse encoder
phases A and B.
Communication fault between pulse encoder
and pulse encoder interface module and
between module and drive
Check pulse encoder and its wiring, pulse
encoder interface module and its wiring,
parameter group 50 ENCODER MODULE
settings.
Fault tracing
282
WARNING
CAUSE
WHAT TO DO
FAST STOP
Fast Stop Signal 10.10 activated.
Deactivate the Fast Stop signal.
Follower 1 has gone into a fault or has hit any
of the limits. This message is displayed in the
Master drive only
See Follower 1 drive for more detailed
description of fault of limit.
Follower 2 has gone into a fault or has hit any
of the limits. This message is displayed in the
Master drive only
See Follower 2 drive for more detailed
description of fault of limit.
Follower 3 has gone into a fault or has hit any
of the limits. This message is displayed in the
Master drive only
See Follower 3 drive for more detailed
description of fault of limit.
Follower 4 has gone into a fault or has hit any
of the limits. This message is displayed in the
Master drive only
See Follower 4 drive for more detailed
description of fault of limit.
Inverter type (for example, sr0025_3) has been
changed. Inverter type is usually changed at
factory or during drive implementation.
Wait until alarm POWEROFF! activates and
switch control board power off to validate
inverter type change.
High-end limit Signal 10.12 activated in the Up
direction
Run the motor in the opposite direction and
deactivate the High-end limit signal.
Homing activation signal 10.21 activated in
EXT 1 control
Homing sequence is activated. Start the drive
and complete the homing sequence. After
homing sequence is done deactivate the
homing active signal.
Homing sequence is completed in EXT 1
control. The position is initialized to the value
define in par 78.10.
Homing sequence is completed. Deactivate
the homing active signal and continue
operation.
Low-end limit Signal 10.13 activated in the
down direction
Run the motor in the opposite direction and
deactivate the Low-end limit signal.
Drive has performed motor identification
magnetisation and is ready for operation. This
warning belongs to normal start-up procedure.
Continue drive operation.
Motor identification magnetisation is on. This
warning belongs to normal start-up procedure.
Wait until drive indicates that motor
identification is completed.
Motor identification is required. This warning
belongs to normal start-up procedure. The
drive expects you to select how motor
identification should be performed: With
identification magnetisation or with ID Run.
Start identification magnetisation by pressing
Start key, or select ID run and start (see
parameter 99.10).
Drive ID number has been changed from 1.
Change ID number back to 1. See chapter
Control panel.
Motor identification run is on.
Wait until drive indicates that motor
identification run is completed.
(FFF8)
FLWR1 LIM/FLT
(FFFD)
FLWR2 LIM/FLT
(FFFE)
FLWR3 LIM/FLT
(FFB5)
FLWR4 LIM/FLT
(FFB4)
HW RECONF RQ
(FF38)
HIGHEND LIMIT
(FFF6)
HOMING ACTIVE
(FFB1)
HOMING DONE
(FFB0)
LOWEND LIMIT
(FFF7)
ID DONE
(FF32)
ID MAGN
(FF31)
ID MAGN REQ
(FF30)
ID N CHANGED
(FF68)
ID RUN
(FF35)
Fault tracing
283
WARNING
CAUSE
WHAT TO DO
ID RUN SEL
Press Start key to start identification run.
(FF33)
Motor identification run is selected, and drive is
ready to start ID run. This warning belongs to
ID run procedure.
IN CHOKE TEMP
Excessive input choke temperature
Stop drive. Let it cool down.
(FF81)
Check ambient temperature.
3.18 AW 5 bit 4
Check that fan rotates in correct direction and
air flows freely.
INV CUR LIM
(2212)
Internal inverter current or power limit has
been exceeded.
3.18 AW 5 bit 8
(programmable
Fault Function
30.23)
INV DISABLED
(3200)
Reduce load or increase ramp time.
Limit inverter actual power or decrease lineside converter reactive power generation
reference value (parameter 95.06 LCU Q PW
REF).
Check Fault Function parameters.
Optional DC switch has opened while unit was
stopped.
Close DC switch.
Converter module temperature is excessive.
Check ambient temperature. If it exceeds
40°C, ensure that load current does not
exceed derated load capacity of drive. See
appropriate hardware manual.
Check AFSC-0x Fuse Switch Controller unit.
3.18 AW 5 bit 6
INV OVERTEMP
(4290)
3.31 AW6 bit 0
Check that ambient temperature setting is
correct (parameter 95.10).
Check converter module cooling air flow and
fan operation.
Cabinet installation: Check cabinet air inlet
filters. Change when necessary. See
appropriate hardware manual.
Modules installed in cabinet by user: Check
that cooling air circulation in cabinet has been
prevented with air baffles. See module
installation instructions.
Check inside of cabinet and heatsink of
converter module for dust pick-up. Clean when
necessary.
IO CONFIG
(FF8B)
(programmable
Fault Function
30.22)
JOYSTICK CHECK
Input or output of optional I/O extension or
fieldbus module has been selected as signal
interface in application program but
communication to appropriate I/O extension
module has not been set accordingly.
Check Fault Function parameters.
Hardware error in the configured joystick.
Check joystick connection.
The speed reference is limited in the forward
direction according to the Load speed control
function.
Check motor current settings and group 77
settings.
Check parameter group 98 OPTION
MODULES.
(FFFA)
LOAD SP UP LIM
(FFB8)
3.32 CSW bit 5
Fault tracing
284
WARNING
CAUSE
WHAT TO DO
LOAD SP DW LIM
The speed reference is limited in the reverse
direction according to the Load speed control
function.
Check motor current settings and group 77
settings.
Macro is restoring or user macro is being
saved.
Wait until drive has finished task.
Master drive has gone into a fault or has hit
any of the limits. This message is displayed in
the Follower drives only
See Master drive for more detailed description
of fault of limit.
Drive limits motor current according to current
limit defined with parameter 20.03 MAXIMUM
CURRENT.
Reduce load or increase ramp time.
(FFB9)
3.32 CSW bit 6
MACRO CHANGE
(FF69)
MASTERLIM/FLT
(FFB2)
MOT CUR LIM
(2300)
3.18 AW 5 bit 10
Check Fault Function parameters.
(programmable
Fault Function
30.23)
MOTOR STALL
(7121)
3.09 AW 2 bit 9
Increase parameter 20.03 MAXIMUM
CURRENT value.
Motor is operating in stall region due to, for
example, excessive load or insufficient motor
power.
Check motor load and drive ratings.
Motor identification run starts. This warning
belongs to ID run procedure.
Wait until drive indicates that motor
identification is completed.
Motor temperature is too high (or appears to be
too high) due to excessive load, insufficient
motor power, inadequate cooling or incorrect
start-up data.
Check motor ratings, load and cooling.
Measured motor temperature has exceeded
alarm limit set with parameter 35.02.
Check value of alarm limit.
Check Fault Function parameters.
(programmable
Fault Function
30.10)
MOTOR STARTS
(FF34)
MOTOR TEMP
(4310)
3.08 AW 1 bit 3
(programmable
Fault Function
30.04…30.09)
MOTOR 1 TEMP
(4312)
3.16 AW 4 bit 1
Check start-up data.
Check Fault Function parameters.
Check that actual number of sensors
corresponds to value set with parameter.
Let motor cool down. Ensure proper motor
cooling: Check cooling fan, clean cooling
surfaces, etc.
MOTOR 2 TEMP
(4313)
3.16 AW 4 bit 2
Measured motor temperature has exceeded
alarm limit set with parameter 35.05.
Check value of alarm limit.
Check that actual number of sensors
corresponds to value set with parameter.
Let motor cool down. Ensure proper motor
cooling: Check cooling fan, clean cooling
surfaces, etc.
Fault tracing
285
WARNING
CAUSE
WHAT TO DO
MOT POW LIM
Drive limits motor power according to limits
defined with parameters 20.11 and 20.12.
Informative alarm
(FF86)
3.18 AW 5 bit 12
Check Fault Function parameters.
(programmable
Fault Function
30.23)
MOT TORQ LIM
(FF85)
3.18 AW 5 bit 11
(programmable
Fault Function
30.23)
Check parameter 20.11 P MOTORING LIM
and 20.12 P GENERATING LIM settings.
Drive limits motor torque according to
calculated motor pull-out torque limit and
minimum and maximum torque limits defined
with parameters 20.13 and 20.14.
Informative alarm
Check parameter 20.13 MIN TORQ SEL and
20.14 MAX TORQ SEL settings.
Check Fault Function parameters.
If LIMIT WORD 1 bit 0 TORQ MOTOR LIM
is 1,
- check motor parameter settings (parameter
group 99 START-UP DATA)
- ensure that ID run has been completed
successfully.
PANEL LOSS
(5300)
Control panel selected as active control
location for drive has ceased communicating.
Check control panel connector.
Replace control panel in mounting platform.
3.09 AW 2 bit 13
(programmable
Fault Function
30.02)
POINTER ERROR
Check panel connection (see appropriate
hardware manual).
Check Fault Function parameters.
Source selection (pointer) parameter points to
non existing parameter index.
Check source selection (pointer) parameter
settings.
Inverter type (for example, sr0025_3) has been
changed. Inverter type is usually changed at
factory or during drive implementation.
Switch control board power off to validate
inverter type change.
Excessive IGBT junction to case temperature.
This can be caused by excessive load at low
frequencies (for example, fast direction change
with excessive load and inertia).
Increase ramp time.
Running time of inverter cooling fan has
exceeded its estimated life time.
Replace fan.
(FFF4)
Slowdown signal 10.09 activated in the Up
direction
Run the motor in the opposite direction and
deactivate the Slowdown signal. Or let the
drive run in the limited speed reference.
SLOW DOWN
DOWN
Slowdown signal 10.09 activated in the down
direction
Run the motor in the opposite direction and
deactivate the Slowdown signal. Or let the
drive run in the limited speed reference.
Optional start inhibit hardware logic is
activated.
Check start inhibit circuit (AGPS board).
(FFD0)
->POWEROFF!
(FF39)
PP OVERLOAD
(5482)
3.18 AW 5 bit 5
REPLACE FAN
(4280)
Reduce load.
Reset fan run time counter 01.44.
3.18 AW 5 bit 0
SLOW DOWN UP
(FFF5)
START INHIBI
(FF7A)
AW 1 bit 0
Fault tracing
286
WARNING
CAUSE
WHAT TO DO
START HIGH
(FFB3)
The Start command is active when the drive is
powered ON. The Start command remains ON
after a fault or fast stop has occurred and a
reset is done.
Start command should be made OFF and then
can be made ON for a start sequence.
START INTERL
No Start Interlock signal received.
Check the circuit connected to the Start
Interlock input on the RMIO board.
Value of motor nominal speed set to parameter
99.08 is not correct: Value is too near
synchronous speed of motor. Tolerance is
0.1%. This warning is active only in DTC mode.
Check nominal speed from motor rating plate
and set parameter 99.08 exactly accordingly.
Excessive temperature difference between
several parallel connected inverter modules.
xx (1...12) refers to inverter module number
and y refers to phase (U, V, W).
Check cooling fan.
(FF8D)
SYNCRO SPEED
(FF87)
3.18 AW 5 bit 1
TEMP DIF xx y
(4380)
4.01 FAULTED INT
INFO
Replace fan.
Check air filters.
Alarm is indicated when temperature difference
is 15°C. Fault is indicated when temperature
difference is 20°C.
Excessive temperature can be caused, for
example, by unequal current sharing between
parallel-connected inverters.
THERMISTOR
(4311)
Motor temperature is excessive. Motor thermal
protection mode selection is THERMISTOR.
(programmable
Fault Function
30.04 … 30.05)
(FF91)
Motor temperature measurement is out of
acceptable range.
Check connections of motor temperature
measurement circuit. See chapter Program
features for circuit diagram.
Motor load is too low due to, For example,
release mechanism in driven equipment.
Check for problem in driven equipment.
Start command with incorrect Zero position
input.
Check for Zero position DI.
3.08 AW 1 bit 6
UNDERLOAD
(FF6A)
Check start-up data.
Check thermistor connections to digital input
DI6.
3.08 AW 1 bit 2
T MEAS ALM
Check motor ratings and load.
Check Fault Function parameters.
3.09 AW 2 bit 1
(programmable
Fault Function
30.13)
ZERO POS WARN
(FFFB)
Fault tracing
287
Warning messages generated by the control panel
WARNING
CAUSE
WHAT TO DO
DOWNLOADING
FAILED
Download function of panel has failed. No data
has been copied from panel to drive.
Make sure panel is in local mode.
Retry (there might be interference on link).
Contact ABB representative.
DRIVE IS
RUNNING
DOWNLOADING
NOT POSSIBLE
Downloading is not possible while motor is
running.
Stop motor. Perform downloading.
NO
COMMUNICATION
(X)
Cabling problem or hardware malfunction on
Panel Link
Check Panel Link connections.
(4) = Panel type not compatible with drive
application program version
Check panel type and drive application
program version. Panel type is printed on
panel cover. Application program version is
stored in parameter 33.02.
NO FREE ID
NUMBERS ID
NUMBER
SETTING NOT
POSSIBLE
Panel Link already includes 31 stations.
Disconnect another station from link to free ID
number.
NOT UPLOADED
DOWNLOADING
NOT POSSIBLE
No upload function has been performed.
Perform upload function before downloading.
See chapter Control panel.
UPLOADING
FAILED
Upload function of panel has failed. No data
has been copied from drive to panel.
Retry (there might be interference on link).
WRITE ACCESS
DENIED
PARAMETER
SETTING NOT
POSSIBLE
Certain parameters do not allow changes while
motor is running. If tried, no change is
accepted, and warning is displayed.
Stop motor, then change parameter value.
Parameter lock is on.
Open parameter lock (see parameter 16.02).
Press RESET key. Panel reset may take up to
half a minute, please wait.
Contact ABB representative.
Fault tracing
288
Fault messages generated by the drive
FAULT
CAUSE
WHAT TO DO
ACS800 TEMP
Drive IGBT temperature is excessive. Fault trip
limit is 100%.
Check ambient conditions.
(4210)
Check air flow and fan operation.
Check heatsink fins for dust pick-up.
3.05 FW 1 bit 3
Check motor power against unit power.
ACS TEMP xx y
(4210)
3.05 FW 1 bit 3 and
4.01
AI < MIN FUNC
(8110)
3.06 FW 2 bit 10
Excessive internal temperature in inverter unit
of several parallel connected inverter modules.
xx (1...12) refers to inverter module number
and y refers to phase (U, V, W).
Check ambient conditions.
Analogue control signal is below minimum
allowed value due to incorrect signal level or
failure in control wiring.
Check for proper analogue control signal
levels.
Check air flow and fan operation.
Check heatsink fins for dust pick-up.
Check motor power against unit power.
Check control wiring.
Check Fault Function parameters.
(programmable
Fault Function
30.01)
AP [message]
Message generated by an EVENT block in the
Adaptive Program.
Consult the documentation or author of the
Adaptive Program.
BACKUP ERROR
Failure when restoring PC stored backup of
drive parameters.
Retry.
(FFA2)
Check connections.
Check that parameters are compatible with
drive.
BC OVERHEAT
Brake chopper overload
Let chopper cool down.
Check parameter settings of resistor overload
protection function (see parameter group 27
BRAKE CHOPPER).
(7114)
3.17 FW 5 bit 4
Check that braking cycle meets allowed limits.
Check that drive supply AC voltage is not
excessive.
BC SHORT CIR
Short circuit in brake chopper IGBT(s)
(7113)
Ensure brake resistor is connected and not
damaged.
3.17 FW 5 bit 2
BRAKE ACKN
Unexpected state of brake acknowledge signal
(FF74)
See parameter group 42 BRAKE CONTROL.
Check connection of brake acknowledgement
signal.
3.15 FW 4 bit 3
BRAKE SLIP FLT
Replace brake chopper.
The brake slipped and the motor speed
exceeded the motor slip speed 42.11 for a
period of slip fault delay 42.12 time.
Check brakes.
Brake resistor is not connected or it is
damaged.
Check resistor and resistor connection.
(7110)
3.17 FW 5 bit 0
Resistance rating of brake resistor is too high.
(FFF3)
3.33 CraneFW bit 3
BR BROKEN
Fault tracing
Check that resistance rating meets
specifications. See appropriate drive hardware
manual.
289
FAULT
CAUSE
WHAT TO DO
BR OVERHEAT
Brake resistor overload
Let resistor cool down.
(7112)
Check parameter settings of resistor overload
protection function (see parameter group 27
BRAKE CHOPPER).
3.17 FW 5 bit 3
Check that braking cycle meets allowed limits.
Check that drive supply AC voltage is not
excessive.
BR WIRING
Wrong connection of brake resistor
Check resistor connection.
Ensure brake resistor is not damaged.
(7111)
3.17 FW 5 bit 1
CHOKE OTEMP
(FF82)
Excessive temperature of drive output filter.
Supervision is in use in step-up drives.
Let drive cool down.
Check ambient temperature.
Check filter fan rotates in correct direction and
air flows freely.
COMM MODULE
(7510)
Cyclical communication between drive and
master is lost.
3.06 FW 2 bit 12
Check status of fieldbus communication. See
chapter Fieldbus control, or appropriate
fieldbus adapter manual.
Check parameter settings:
(programmable
Fault Function
30.18, 30.19)
- group 51 COMM MODULE DATA (for fieldbus
adapter), or
- group 52 STANDARD MODBUS (for
Standard Modbus Link).
Check Fault Function parameters.
Check cable connections.
Check if master can communicate.
CTRL B TEMP
Control board temperature is above 88°C.
Check ambient conditions.
(4110)
Check air flow.
3.06 FW 2 bit 7
Check main and additional cooling fans.
CURR MEAS
(2211)
CUR UNBAL xx
(2330)
3.05 FW 1 bit 4 and
4.01
(programmable
Fault Function
30.17)
DC HIGH RUSH
(FF80)
Current transformer failure in output current
measurement circuit
Check current transformer connections to Main
Circuit Interface Board, INT.
Drive has detected excessive output current
unbalance in inverter unit of several parallel
connected inverter modules. This can be
caused by external fault (earth fault, motor,
motor cabling, etc.) or internal fault (damaged
inverter component). xx (1...12) refers to
inverter module number.
Check there are no power factor correction
capacitors or surge absorbers in motor cable.
Drive supply voltage is excessive. When
supply voltage is over 124% of unit voltage
rating (415, 500 or 690 V), motor speed rushes
to trip level (40% of nominal speed).
Check supply voltage level, drive rated voltage
and allowed voltage range of drive.
Check that there is no earth fault in motor or
motor cables:
- measure insulation resistances of motor and
motor cable.
If no earth fault can be detected, contact your
local ABB representative.
Fault tracing
290
FAULT
CAUSE
WHAT TO DO
DC OVERVOLT
Excessive intermediate circuit DC voltage.
DC overvoltage trip limit is 1.3 · U1max, where
U1max is maximum value of mains voltage
range. For 400 V units, U1max is 415 V. For
500 V units, U1max is 500 V. Actual voltage in
intermediate circuit corresponding to mains
voltage trip level is 728 V DC for 400 V units
and 877 V DC for 500 V units.
Check that overvoltage controller is on
(parameter 20.05).
(3210)
3.05 FW 1 bit 2
DC UNDERVOLT
(3220)
3.06 FW 2 bit 2
EARTH FAULT
(2330)
Intermediate circuit DC voltage is not sufficient
due to missing mains phase, blown fuse or
rectifier bridge internal fault.
Check mains for static or transient overvoltage.
Check brake chopper and resistor (if used).
Check deceleration time.
Use coast-to-stop function (if applicable).
Retrofit frequency converter with brake
chopper and brake resistor.
Check mains supply and fuses.
DC undervoltage trip limit is 0.6 · U1min, where
U1min is minimum value of mains voltage
range. For 400 V and 500 V units, U1min is
380 V. For 690 V units, U1min is 525 V. Actual
voltage in intermediate circuit corresponding to
mains voltage trip level is 307 V DC for 400 V
and 500 V units, and 425 V DC for 690 V units.
Drive has detected load unbalance typically
due to earth fault in motor or motor cable.
Check there are no power factor correction
capacitors or surge absorbers in motor cable.
Check that there is no earth fault in motor or
motor cables:
3.05 FW 1 bit 4
(programmable
Fault Function
30.17)
- measure insulation resistances of motor and
motor cable.
If no earth fault can be detected, contact your
local ABB representative.
ENCODER A<>B
(7302)
ENCODER ERR
(7301)
3.06 FW 2 bit 5
EXTERNAL FLT
(9000)
3.06 FW 2 bit 8
Pulse encoder phasing is wrong: Phase A is
connected to terminal of phase B and vice
versa.
Interchange connection of pulse encoder
phases A and B.
Communication fault between pulse encoder
and pulse encoder interface module and
between module and drive
Check pulse encoder and its wiring, pulse
encoder interface module and its wiring and
parameter group 50 ENCODER MODULE
settings.
Fault in external device. (This information is
configured through one of programmable
digital inputs.)
Check external devices for faults.
Excessive temperature of drive output filter fan.
Supervision is in use in step-up drives.
Stop drive. Let it cool down.
Check parameter 30.03 EXTERNAL FAULT.
(programmable
Fault Function
30.03)
FAN OVERTEMP
(FF83)
Check ambient temperature.
Check fan rotates in correct direction and air
flows freely.
FORCED TRIP
(FF8F)
Fault tracing
Generic Drive Communication Profile trip
command
See appropriate communication module
manual.
291
FAULT
CAUSE
WHAT TO DO
FLWR1 COM FLT
Follower 1 Communication error .
Check CH2 communication, communication
settings.
Follower 2 Communication error .
Check CH2 communication, communication
meetings.
Follower 3 Communication error .
Check CH2 communication, communication
meetings.
Follower 4 Communication error .
Check CH2 communication, communication
meetings.
AGPS power supply of parallel connected R8i
inverter module has been switched off during
run. X (1...12) refers to inverter module
number.
Check Safe Torque Off circuit.
Motor ID run is not completed successfully.
Check maximum speed (parameter 20.02). It
should be at least 80% of motor nominal speed
(parameter 99.08).
Excessive input choke temperature
Stop drive. Let it cool down.
(FFBA)
FLWR2 COM FLT
(FFBB)
FLWR3 COM FLT
(FFBC)
FLWR4 COM FLT
(FFBD)
GD DISABLED X
ID RUN FAIL
(FF84)
IN CHOKE TEMP
Replace AGPS board of R8i inverter module.
(FF81)
Check ambient temperature.
3.17 FW 5 bit 5
Check that fan rotates in correct direction and
air flows freely.
INT CONFIG
(5410)
Number of inverter modules is not equal to
original number of inverters.
Check status of inverters. See signal 03.34
APPL CONTROL WORD.
Check fibre optic cables between APBU and
inverter modules.
03.17 FW 5 bit 10
If Reduced run function is used, remove
faulted inverter module from main circuit and
write number of remaining inverter modules
into parameter 95.03 INT CONFIG USER.
Reset drive.
INV DISABLED
03.17 FW 5 bit 7
Optional DC switch has opened while unit was
running or Start command was given.
Close DC switch.
The fault is generated when the drive has hit
TORQUE INVERTER CURRENT LIMIT or IPP
OVERTEMP ALM is active and a period of 200
ms has elapsed. The fault condition is only
checked when the generating power is more
than 10% of motor nominal power and the
speed is greater than 5% of the maximum
speed.
Check the Speed controller torque settings.
Check AFSC-0x Fuse Switch Controller unit.
(3200)
INV LIMIT
(FFBF)
3.33 CraneFW bit 5
Check torque, speed, power limit settings.
Fault tracing
292
FAULT
CAUSE
WHAT TO DO
INV OVERTEMP
Converter module temperature is excessive.
Check ambient temperature. If it exceeds
40°C, ensure that load current does not
exceed derated load capacity of drive. See
appropriate hardware manual.
(4290)
3.17 FW 5 bit 13
Check that ambient temperature setting is
correct (parameter 95.10).
Check converter module cooling air flow and
fan operation.
Cabinet installation: Check cabinet air inlet
filters. Change when necessary. See
appropriate hardware manual.
Modules installed in cabinet by user: Check
that cooling air circulation in cabinet has been
prevented with air baffles. See module
installation instructions.
Check inside of cabinet and heatsink of
converter module for dust pick-up. Clean when
necessary.
Reset and restart after problem is solved and
let converter module cool down.
I/O COMM ERR
(7000)
Communication error on control board,
channel CH1
Check connections of fibre optic cables on
channel CH1.
3.06 FW 2 bit 6
Electromagnetic interference
Check all I/O modules (if present) connected to
channel CH1.
Check for proper earthing of equipment. Check
for highly emissive components nearby.
LINE CONV
Fault on line side converter
(FF51)
Shift panel from motor side converter control
board to line side converter control board.
See line side converter manual for fault
description.
MOTOROVER
SPD
(FFF0)
The speed exceeds the MOT OVERSPEED
LEV (Par. 74.01)
(FF56)
3.06 FW 2 bit 15
One of motor phases is lost due to fault in
motor, motor cable, thermal relay (if used) or
internal fault.
Check motor and motor cable.
Motor temperature is too high (or appears to be
too high) due to excessive load, insufficient
motor power, inadequate cooling or incorrect
start-up data.
Check motor ratings and load.
(programmable
Fault Function
30.16)
MOTOR TEMP
(4310)
3.05 FW 1 bit 6
(programmable
Fault Function
30.04 … 30.09)
Fault tracing
Check motor and motor cables
Check pulse encoder connections if used
3.33 CRANE FW bit 0
MOTOR PHASE
Check Torque and Current limit settings
Check thermal relay (if used).
Check Fault Function parameters. Disable this
protection.
Check start-up data.
Check Fault Function parameters.
293
FAULT
CAUSE
WHAT TO DO
MOTOR 1 TEMP
Measured motor temperature has exceeded
fault limit set with parameter 35.03.
Check value of fault limit.
Measured motor temperature has exceeded
fault limit set with parameter 35.06.
Check value of fault limit.
Motor data is not given or motor data does not
match with inverter data.
Check motor data parameters
99.04 … 99.09.
Overcurrent fault in inverter unit of several
parallel connected inverter modules. xx (1...12)
refers to inverter module number.
Check motor load.
(4312)
3.15 FW 4 bit 1
MOTOR 2 TEMP
(4313)
3.15 FW 4 bit 2
NO MOT DATA
(FF52)
Let motor cool down. Ensure proper motor
cooling: Check cooling fan, clean cooling
surfaces, etc.
Let motor cool down. Ensure proper motor
cooling: Check cooling fan, clean cooling
surfaces, etc.
3.06 FW 2 bit 1
OVERCURR xx
(2310)
3.05 FW 1 bit 1 and
4.01
Check acceleration time.
Check motor and motor cable (including
phasing).
Check encoder cable (including phasing).
Check motor nominal values from group 99
START-UP DATA to confirm that motor model
is correct.
Check that there are no power factor correction
or surge absorbers in motor cable.
OVERCURRENT
Output current exceeds trip limit.
Check motor load.
(2310)
Check acceleration time.
3.05 FW 1 bit 1
Check motor and motor cable (including
phasing).
Check that there are no power factor correction
capacitors or surge absorbers in motor cable.
Check encoder cable (including phasing).
OVERFREQ
(7123)
3.05 FW 1 bit 9
Motor is turning faster than highest allowed
speed due to incorrectly set minimum/
maximum speed, insufficient braking torque or
changes in load when using torque reference.
Check minimum/maximum speed settings.
Check adequacy of motor braking torque.
Check applicability of torque control.
Check need for brake chopper and resistor(s).
Trip level is 40 Hz over operating range
absolute maximum speed limit (the Direct
torque control mode active) or frequency limit
(Scalar control active). Operating range limits
are set with parameters 20.01 and 20.02 (DTC
mode active) or 20.07 and 20.08 (Scalar
control active).
OVER SWFREQ
(FF55)
3.06 FW 2 bit 9
Switching frequency is too high.
Check motor parameter settings (parameter
group 99 START-UP DATA)
Ensure that ID run has been completed
successfully.
Fault tracing
294
FAULT
CAUSE
WHAT TO DO
PANEL LOSS
Control panel or DriveWindow selected as
active control location for drive has ceased
communicating.
Check panel connection (see appropriate
hardware manual).
(5300)
3.06 FW 2 bit 13
PARAM CRC
Check control panel connector.
Replace control panel in mounting platform.
(programmable
Fault Function
30.02)
Check Fault Function parameters.
Check DriveWindow connection.
CRC (Cyclic Redundancy Check) error
(6320)
Switch control board power off and on again.
Reload firmware to control board.
Replace control board.
POWERFAIL
(3381)
INT board powerfail in several inverter units of
parallel connected inverter modules.
Check that INT board power cable is
connected.
Check that POW board is working correctly.
3.17 FW 5 bit 9
Replace INT board.
POWERF INV xx
(3381)
3.17 FW 5 bit 9 and
4.01
PPCC LINK
INT board powerfail in inverter unit of several
parallel connected inverter modules. xx (1...12)
refers to inverter module number.
Check that INT board power cable is
connected.
Check that POW board is working correctly.
Replace INT board.
Fibre optic link to INT board is faulty.
(5210)
Check fibre optic cables or galvanic link. With
frame sizes R2-R6 link is galvanic.
If RMIO is powered from external supply,
ensure that supply is on. See parameter 16.09
CTRL BOARD SUPPLY.
3.06 FW 2 bit 11
Check signal 03.19. Contact ABB
representative if any of faults in signal 3.19 are
active.
PPCC LINK xx
(5210)
3.06 FW 2 bit 11 and
4.01
PP OVERLOAD
(5482)
3.17 FW 5 bit 6
RUN DISABLED
INT board fibre optic connection fault in
inverter unit of several parallel connected
inverter modules. xx refers to inverter module
number.
Check signal 03.19. Contact ABB
representative if any of faults in signal 3.19 are
active.
Excessive IGBT junction to case temperature.
This fault protects IGBT(s) and it can be
activated by short circuit at output of long
motor cables.
Check motor cables.
No Run enable signal received.
Check setting of parameter 16.01. Switch on
signal or check wiring of selected source.
When an encoder is not used and the actual
speed is below 1% of the max speed for more
than 2 seconds with the Start command active,
the drive trips on SAFETYCLS FLT.
Check references.
(FF54)
SAFETYCLS FLT
(FF7D)
3.33 CRANE FW bit 6
Fault tracing
Check connection from inverter module Main
Circuit Interface Board, INT to PPCC
Branching Unit, PBU. (Inverter module 1 is
connected to PBU INT1 etc.)
Check motor model settings.
295
FAULT
CAUSE
WHAT TO DO
SPD MATCH FLT
(FFF1)
If speed error at set point is higher than SP
DEV LEV (Par. 75.02) or the actual speed
change per second during acceleration/
deceleration is less than SPD CHG PER SEC
(Par. 75.04) for a time longer than SPD
MATCH FLT TD (Par. 75.03) the drive will trip
for SPD MATCH FLT.
Check ramp times.
Short circuit in inverter unit of several parallel
connected inverter modules. xx (1 ... 12) refers
to inverter module number and y refers to
phase (U, V, W).
Check motor and motor cable.
Short-circuit in motor cable(s) or motor
Check motor and motor cable.
3.33 CRANE FW bit 1
SC INV xx y
(2340)
3.05 FW 1 bit 0, 4.01
and 4.02
SHORT CIRC
(2340)
(FF8A)
START INHIBI
(FF7A)
3.03 bit 8
SUPPLY PHASE
(3130)
3.06 FW 2 bit 0
settings.
Check power semiconductors (IGBTs) of
inverter module.
Check there are no power factor correction
capacitors or surge absorbers in motor cable.
3.05 FW 1 bit 0 and
4.02
SLOT OVERLAP
Check Torque and Current limit
Output bridge of converter unit is faulty.
Contact ABB representative.
Two option modules have the same connection
interface selection.
Check connection interface selections in group
98 OPTION MODULES.
Optional start inhibit hardware logic is
activated.
Check start inhibit circuit (AGPS board).
Intermediate circuit DC voltage is oscillating
due to missing mains phase, blown fuse or
rectifier bridge internal fault.
Check mains fuses.
Check for mains supply imbalance.
Trip occurs when DC voltage ripple is 13% of
DC voltage.
SYNC FAULT
(FFBE)
3.33 CRANE FW
bit 4
Synchronisation error of Follower drive. The
error in position of the Follower drive is greater
than the allowed limits.
Check the Synchro error limits.
TEMP DIF xx y
Excessive temperature difference between
several parallel connected inverter modules. xx
(1...12) refers to inverter module number and y
refers to phase (U, V, W).
Check cooling fan.
(4380)
3.17 FW 5 bit 8 and
4.01
Check encoder connections.
Replace fan.
Check air filters.
Alarm is indicated when temperature difference
is 15 °C. Fault is indicated when temperature
difference is 20 °C
Excessive temperature can be caused, for
example, by unequal current sharing between
parallel connected inverters.
THERMAL MODE
(FF50)
Motor thermal protection mode is set to DTC
for high-power motor.
See parameter 30.05.
Fault tracing
296
FAULT
CAUSE
WHAT TO DO
THERMISTOR
Motor temperature is excessive. Motor thermal
protection mode selection is THERMISTOR.
Check motor ratings and load.
(4311)
Check start-up data.
Check thermistor connections to digital input
DI6.
3.05 FW 1 bit 5
(programmable
Fault Function
30.04 … 30.05)
TORQ PROVE FLT
(FFF2)
If Torque proving is not successful, that
Check motor and motor cables.
means torque does not reach the test level
Check if setting of parameter 21.2
3.33 CRANE FW bit 2
within the time TORQ PROV FLT TD
Control Magnetising time is to low.
(Par. 76.02), the drive will trip. (Normally only
used if active load, for example, hoist drive,
with pulse encoder feedback.
UNDERLOAD
(FF6A)
Motor load is too low due to, for example,
release mechanism in driven equipment.
Check for problem in driven equipment.
No user macro saved or file is defective.
Create user macro.
Check Fault Function parameters.
3.05 FW 1 bit 8
(programmable
Fault Function
30.13 … 30.15)
USER MACRO
(FFA1)
3.07 SFW bit 1
Fault tracing
297
Adaptive Programming examples for crane control
Chapter overview
This chapter includes examples of Adaptive Programming (AP) for Crane control
program (+N697).
For more information on Adaptive Programming, see Adaptive Programming using
the function blocks on page 110 and Application Guide for Adaptive Program
(3AFE64527274 [English]). For information on DriveAP (a Windows-based tool for
Adaptive Programming), see DriveAP User’s Manual (3AFE64540998 [English]).
Note: If you use and/or change the AP blocks used in the Crane control program
made by ABB, you are responsible for the software and the application.
Main contactor control logic
Using the Adaptive Programming (AP), you can create a main contactor control logic
for the 3-phase power supply of the ACS800 drive. With the help of the main
contactor control logic, the power supply of the drive is disabled when the crane is
not used (the standby energy-efficiency mode).
For this, you must have the +24 V DC external auxiliary voltage supplied to the
RMIO board (see External 24 V supply of RMIO board on page 117). You can use a
RMIO or RDIO relay output for controlling the main contactor, and you can close the
main contactor with a command through a dedicated digital input of RMIO or RDIO.
For more information, see the Application Guide for Adaptive Program
(3AFE64527274 [English]) and DriveAP User’s Manual (3AFE64540998 [English]).
Adaptive Programming examples for crane control
298
The following figures show the main circuit and control circuit diagrams for the main
contactor control logic.
Adaptive Programming examples for crane control
299
Adaptive Programming examples for crane control
300
Create an AP file for the automatic control of opening and closing the main contactor
according to the following example.
+1.17.5
BLOCK 1
TRIGG
84.05
IN2
IN3
+84.29
-1.17.5
IN1
OUT
84.09
BLOCK 2
TRIGG
84.10
+84.09
IN1
+84.34
IN2
IN3
OUT
84.14
+84.14
BLOCK 3
SR
84.15
-3.02.2
IN1
-84.09
IN2
IN3
OUT
84.19
BLOCK 4
AND
84.20
+84.24
IN1
+85.01
IN2
IN3
OUT
84.24
BLOCK 5
TON
84.25
IN1
IN2
IN3
OUT
84.29
BLOCK 6
TRIGG
84.30
IN1
IN2
IN3
OUT
84.34
In the AP file example:
• Parameter 84.06 defines the bit input used for the opening and closing command
of the main contactor. Parameter 84.06 INPUT1 is configured to digital input DI6.
When the DI6 bit value (actual signal 01.17 bit 5) changes from 0 to 1, the main
contactor is closed. When the bit value changes from 1 to 0, the main contactor is
opened.
• The main contactor must be closed before issuing the start command. Ensure this
using the main contactor close request (DI6 0 ->1). You can also use the Power
on acknowledge information to indicate that the main contactor is closed. In
Crane control program +N697, the DIL input is, by default, used for Power ON
acknowledge. For more information, see par. 97.18 PWRON STRTINT PTR and
Power ON acknowledge and internal fault reset on page 90.
• Parameter 85.01 defines the delay time in milliseconds for automatic opening of
the main contactor after the drive has stopped running and the extended run time
has elapsed. The default time is set to 10000 ms (= 10 s).
• The main contactor opening and closing command (relay output) (par. 84.19 bit 0)
is, by default, linked to par. 14.02 RO PTR2 (bit value 1 = Main contactor closing
command and bit value 0 = Main contactor opening command).
The main contactor opens automatically after:
• the stop command has been given (par. 10.01 or 10.02) and the drive has
stopped running,
• the possible extended run time has passed (par. 42.09) and
• a user-configurable time delay has passed (parameter 85.01, by default 10 s).
You can also open the main contactor manually without waiting for the delay time.
You can do this with the lowering edge of digital input DI6 (1 -> 0).
Adaptive Programming examples for crane control
301
Brake match
Brake match detects mechanical brake slips and downward movement of the load
when Mechanical brake control is in use, the operator has given the stop command
and the target is to close the brake. The slip detection is based on the motor encoder
position signal, and the function works only if an encoder is used. You can use the
function for an automatic restart of the crane or just for a warning (alarm) indication.
Working logic
The logic checks whether the motor is rotating when the mechanical brake should be
closed. The rotation is detected by comparing two successive position signal
samples (02.21 POS ACT PPU). Therefore, the system needs to be equipped with a
pulse encoder. The logic works during the normal Stop command, extended run
time, and also, when the drive is in the standby (spare unit) mode.
If the position differs between the two successive samples more than set with
parameter 85.01 CONSTANT1, and the motor torque is less than the preset value,
Brake match is activated. By means of pointer parameter 97.21 ZERO SPEED PTR,
the drive will start with a zero speed reference, and a brake match warning is shown
on the control panel and in the fault logger. You can reset the warning by giving a
new start command: DI1 forward or DI2 reverse. While brake match is active, the
mechanical brake open command is prevented.
For Brake match to work, you need to connect the output of AP block number 10 to
hidden parameter 97.21 ZERO SPEED PTR. You can open group 97 by entering
pass code 5600 into parameter 16.03 PASS CODE.
The following figures present an example AP file solution for Brake match.
Note: When creating the actual AP files, you must be pay attention to safety issues
and carefully check the logic case by case.
Adaptive Programming examples for crane control
Adaptive Programming examples for crane control
Reverse (lower), eg, DI2
Forward (lift), eg, DI1
TQ_REF_USED
POS_ACT(n)
POS_ACT(n-1)
”Start command”
pulse
”TORQUE < 1”
=> motor rotates
”POS_ACTnow <>POS_ACT previous”
BrakeOpenCommand
”BRAKE
MATCH”
OpenBrake
RO_PTR2
ZERO SPEED PTR
Brake match
warning
302
1.17
1.17.1
2.13
2.21
3.13.6
85.01
85.02
85.03
85.04
85.05
85.06
85.07
85.08
85.09
85.10
85.11
85.12
85.13
85.14
85.15
= 10
=0
=0
=0
=0
=0
=0
=0
=0
=0
= B R K MATC H
= ME S S AG E 2
= ME S S AG E 3
= ME S S AG E 4
= ME S S AG E 5
+2.21
OUT
IN3
IN2
IN1
OUT
84.35
+85.11
IN3
IN2
33.02
C0
83.04
OUT
S oftware Version = AQC C 7170
IN3
IN2
IN1
OUT
84.60
IN1
84.59
OUT
B LOC K 7
C OMP AR E
IN3
84.55
+84.54
C1
+84.34.1
+85.01
IN2
IN1
B LOC K 12
E VE NT
OUT
84.34
84.09
+84.24
+84.09
B LOC K 11
AND
IN3
IN2
IN1
84.30
B LOC K 6
AB S
IN3
IN2
IN1
84.10
B LOC K 2
C OMP AR E
Time Level = 20 msec
-84.54
+3.13.6
C1
+2.13
C1
84.05
B LOC K 1
AB S
84.64
84.39
84.14
+84.14
C0
+1.17.1
+1.17
C0
+84.14.2
OUT
IN3
IN2
IN1
OUT
84.40
B LOC K 8
OR
IN3
IN2
IN1
84.15
B LOC K 3
OR
84.44
84.19
+2.21
+84.44
C1
OUT
IN1
IN3
IN2
OUT
84.45
B LOC K 9
TR IG G
IN3
IN2
IN1
84.20
B LOC K 4
AB S
84.49
84.24
+84.19
+84.49
+84.29
+84.39.2
OUT
IN3
IN2
IN1
OUT
84.50
B LOC K 10
SR
IN3
IN2
IN1
84.25
B LOC K 5
AND
84.54
84.29
10.15
10.22
HOMING AC K S E L
HOMING AC K P TR
12.06
12.07
12.08
14.01
14.02
14.03
14.10
14.11
14.12
14.13
14.14
14.15
15.01
15.06
26.06
92.10
92.11
92.12
97.16
97.18
97.21
S TE P DI1 P TR
S TE P DI2 P TR
S TE P DI3 P TR
R O P TR 1
R O P TR 2
R O P TR 3
R O P TR 4
R O P TR 5
R O P TR 6
R O P TR 7
R O P TR 8
R O P TR 9
AO1 P TR
AO2 P TR
F LUX R E F P TR
MS W B 10 P TR
MS W B 13 P TR
MS W B 14 P TR
S P D C OR R P TR
P W R ON S TR TINT P TR
ZE R O S P E E D P TR
11.06
11.11
11.03
11.10
E XT R E F 1 S E LE C T
E XT 1 R E F P TR
E XT R E F 2 S E LE C T
E XT 2 R E F P TR
11.02
11.09
10.20
10.21
E XT1/E XT2 S E LE C T
E XT 1/2 S E L P TR
E XT S P D LIM P TR
HOMING S E L P TR
10.09
10.19
10.14
10.17
S YNC S E L
S YNC P TR
S LOW DOW N INP UT
S LOW DOW N P TR
10.10
10.12
10.13
10.16
10.02
10.05
E XT2 S TR T/S TP /DIR
E XT 2 S TR T P TR
F AS T S TOP P TR
HIG HE ND P TR
LOW E ND P TR
ZE R O P OS P TR
10.01
10.04
E XT1 S TR T/S TP /DIR
E XT 1 S TR T P TR
+1.17.6
+84.54
C 10000
+3.14.9
+1.02
+1.05
+3.02.0
+84.59.6
+84.54.6
303
Adaptive Programming examples for crane control
304
Redundancy in Master/Follower crane control
In the Master/Follower crane control, redundancy is implemented using a spare drive
unit that is ready to be used as a Master or a Follower. The spare unit usually
replaces the faulty Master or one of the Followers.
Adaptive Programming provides the ability to switch between the Master, Follower or
standby (spare unit) mode. This means that the Master and Follower are no longer
fixed, but can be changed when needed.
For more information, see the Application Guide for Adaptive Program
(3AFE64527274 [English]) and DriveAP User’s Manual (3AFE64540998 [English]).
When you use a spare unit, the ACS800 motor output must be provided with an
interlock power switch. The spare unit must be connected to the Master/Follower
optical fibre ring network (communication channel 2). All RMIO control boards of the
drives must be powered on with the external power supply (see External 24 V supply
of RMIO board on page 117).
The spare unit is normally in the standby mode.
The following figure shows a Master/Follower standby configuration with output
contactors and encoder splitters.
Master
Spare unit
DI4
- Master
- Standby
DI4, DI5
Follower
- Master
- Standby
- Follower 1
DI4
- Follower
- Standby
Encoder
splitter
M
3~
Encoder
splitter
Encoder
splitter
M
3~
The following figure shows an example of a main circuit diagram with a Master, a
Follower and a standby unit together with output interlock power switches.
Adaptive Programming examples for crane control
305
Adaptive Programming examples for crane control
306
The following figure describes the Master/Follower ring network (channel 2) on the
RMIO boards.
Note: Only the ring topology is supported.
T = Transmitter; R = Receiver; RMIO = I/O and Control Board
Please note that channels CH0/CH2/CH3 are located on the optional RDCO-0x board.
Master
ACS800
ACS800
CH2
T R
RDCO-0X
V17
RDCO-0X
RMIOXX
V18
V18
V17
V18
CH2
T R
V17
RDCO-0X
ACS800
RMIO-XX
RMIO-XX
CH2
T R
Follower
Standby
Using the Adaptive Programming (AP) and the Write block, you can switch between
the Master/Follower/standby link modes in the drives connected to the ring network
(channel 2). Parameter 60.01 MASTER LINK MODE defines the role of the drive on
the Master/Follower link. The mode is switched between MASTER, FOLLOWER1
and STANDBY via two available digital inputs.
In the following example:
• Actual signal 01.17.3 = digital input DI4
• Actual signal 01.17.4 = digital input DI5
DI4
DI5
0
0
Standby (value 7)
Master link mode (60.1)
0
1
Follower 1 (value 3)
1
0
Master (value 2)
1
1
Follower 1 (value 7)
When the Master or Follower mode is switched, parameters 10.02 EXT2 STRT/STP/
DIR and 11.06 EXT REF2 SELECT must be updated according to the correct
sources.
Parameter 03.36 M F STATUS WORD indicates the drive mode.
Adaptive Programming examples for crane control
10.02 EXT2
STRT/STP/DIR
60.01 MASTER
LINK MODE
11.06 EXT REF2
SELECT
03.36 M F STATUS
WORD bit 3
60.02 TORQUE
SELECTOR
307
Adaptive Programming examples for crane control
308
After switching the link mode, the RMIO +24 V DC must be switched OFF/ON before
restarting the crane.
In the following example:
• Drive 01 {0}-{1} is the Master and it is running.
• Drive 02 {0}-{2} is a Follower and it is running.
• Drive 03 {0}-{3} is in the standby mode and ready.
In the following example:
• Drive 01 {0}-{1} is the Master and it is running.
• Drive 02 {0}-{2} is in the standby mode and ready.
• Drive 03 {0}-{3} is a Follower and it is running.
Adaptive Programming examples for crane control
309
In the following example:
• Drive 01 {0}-{1} in the standby mode and ready.
• Drive 02 {0}-{2} is the Master and it is running.
• Drive 03 {0}-{3} is a Follower and it is running.
Adaptive Programming examples for crane control
310
Scaling actual encoder position signal (mm) to analogue output as mA
The actual encoder position signal 02.21 POS ACT PPU (mm) can be scaled to
4 … 20 mA for analogue outputs and sent to other systems as an mA signal, for
example, for supervision or protection purposes. For more information on the
Position function, see section Position on page 91.
Create an AP file for scaling the actual encoder position signal to an analogue output
according to the following example. In the example:
• 4 mA is the negative position
• 12 mA is the zero position
• 20 mA is the positive position.
Adaptive Programming examples for crane control
311
Slack rope torque detection
Using Adaptive Programming (AP), you can create a function for detecting slackness
of the ropes on the drum. The slack rope detection is done by monitoring the actual
motor torque and comparing it with a slack-rope-detection torque level. When the
actual torque of the motor falls below the defined level and the slack rope detection
delay has passed, the drive trips on "SLACK FLT".
The function starts to monitor the motor actual torque:
• after the drive has started running,
• the motor has magnetised and
• the speed reference ramp has exceeded 1% of the maximum/minimum speed
limit.
Create an AP file for slack rope torque detection according to the following example.
In the example:
• Par. 84.06 defines the Slack-rope-detection bit input that is used to activate the
Slack rope detection function. The Slack-rope-detection bit is, by default, set to
digital input DI6 (Actual signal 01.17 bit 5).
• Parameter settings:
Bit value
Description
1
Slack rope detection function is enabled.
0
Slack rope detection function is disabled.
• User par. 85.01 defines the lack-rope-detection torque level as % of the motor
nominal torque. When the actual motor torque is lower than the value defined in
this parameter, a slack rope is detected. If this condition lasts for a period longer
than the time defined in par 85.02 SLACK ROPE DETECTION DELAY, the drive
trips on "SLACK FLT".
• User par. 85.01 has a scaling of 100. For example, if a torque level of 50% has to
be set, the value entered in this parameter must be 5000. The default for Slackrope-detection torque level is set to 50% (par. 85.01 = 50000).
• Par. 85.02 defines the delay time in milliseconds. The default for Slack-ropedetection delay is set to 2000 ms.
Adaptive Programming examples for crane control
312
The following figures show the previous example enlarged.
Adaptive Programming examples for crane control
313
Conical rotor motors
Using the Adaptive Programming (AP), you can create a file for handling brake
control of conical rotor motors that do not have an external brake. With the help of
Adaptive Programming, the conical rotor motors can be used together with the
Crane control program.
For more information, see the Application Guide for Adaptive Program
(3AFE64527274 [English]) and DriveAP User’s Manual (3AFE64540998 [English]).
The brake control of conical rotor motors is done by using a high flux level during
start and a lower flux level during stopping.
Abs Motor Spd
I1
Brake Close Spd
COMPARE
I2
I1 < I2
Zero Speed
AND
Ramp Stopping
ACT
START
Start Flux Hold
Stop Flux Lev
1
TOFF
SWITCH
RAMP
Flux Ref
Pointer
0
ACT
Start Flux Lev
Normal Flux Lev
1
SWITCH
0
The figure on the following pages is an example of the conical rotor motor function
using DriveAP for the crane control application.
Adaptive Programming examples for crane control
314
The following figures show the previous example enlarged.
Adaptive Programming examples for crane control
315
Analogue Extension Module
Chapter overview
The chapter describes the use of analogue extension module RAIO as the speed
reference interface of an ACS800 drive equipped with the Crane control program.
Speed control through the analogue extension module
Two variants are described:
• Bipolar Input in Basic Speed Control
• Bipolar Input in Joystick Mode
Only the use of a bipolar input (± signal range) is covered here. The use of unipolar
input corresponds to that of a standard unipolar input when:
• the settings described below are done, and
• the communication between the module and the drive is activated with parameter
98.06 AI/O EXT MODULE.
Basic checks
Ensure the drive is:
• installed and commissioned, and
• the external start and stop signals are connected.
Ensure the extension module:
• settings are adjusted. (See below.)
• is installed and reference signal is connected to AI1.
• is connected to the drive.
Settings of the analogue extension module and the drive
• Set the module node address to 5 (not required if installed to the option slot of the
drive).
• Select the signal type for the module input AI1 (switch).
• Select the operation mode (unipolar/bipolar) of the module input (switch).
• Ensure the drive parameter settings correspond to the mode of the module inputs
(parameter 98.13 AI/O EXT AI1 FUNC and 98.14 AI/O EXT AI2 FUNC).
• Set the drive parameters (see the appropriate section on the following pages).
Analogue Extension Module
316
Parameter settings: bipolar input in basic speed control
The table below lists the parameters that affect the handling of the speed reference
received through the extension module bipolar input AI1 (AI5 of the drive).
Parameter
98.06 AI/O EXT MODULE
98.13 AI/O EXT AI1 FUNC
10.03 REF DIRECTION
11.02 EXT1/EXT2 SELECT
11.03 EXT REF1 SELECT
11.04 EXT REF1 MINIMUM
11.05 EXT REF1 MAXIMUM
13.16 MINIMUM AI5
13.17 MAXIMUM AI5
13.18 SCALE AI5
13.20 INVERT AI5
30.01 AI<MIN FUNCTION
Setting
RAIO-SLOT1
BIPOLAR AI5
FORWARD; REVERSE; REQUEST(1
EXT1
AI5
minREF1
maxREF1
minAI5
maxAI5
100%
NO
(2
The figure below presents the speed reference corresponding to bipolar input AI1 of
the extension module.
Operation Range
scaled
maxREF1
Speed Reference
10.03 REF DIRECTION =
FORWARD or
REQUEST1)
minREF1
-minREF1
10.03 REF DIRECTION =
REVERSE or
REQUEST1)
-scaled
maxREF1
-maxAI5
-minAI5
minAI5
maxAI5
Analogue Input Signal
minAI5
maxAI5
scaled maxREF1
minREF1
1) For
2)
=
=
=
=
13.16 MINIMUM AI5
13.17 MAXIMUM AI5
13.18 SCALE AI5 x 11.05 EXT REF1 MAXIMUM
11.04 EXT REF1 MINIMUM
the negative speed range, the drive must receive a Separate reverse command.
Set if supervision of living zero is used.
Analogue Extension Module
317
Parameter settings: bipolar input in joystick mode
The table below lists the parameters that affect the handling of the speed and
direction reference received through the extension module bipolar input AI1 (AI5 of
the drive).
Parameter
98.06 AI/O EXT MODULE
98.13 AI/O EXT AI1 FUNC
10.03 REF DIRECTION
11.02 EXT1/EXT2 SELECT
11.03 EXT REF1 SELECT
11.04 EXT REF1 MINIMUM
11.05 EXT REF1 MAXIMUM
13.16 MINIMUM AI5
13.17 MAXIMUM AI5
13.18 SCALE AI5
13.20 INVERT AI5
30.01 AI<MIN FUNCTION
Setting
RAIO-SLOT1
BIPOLAR AI5
FORWARD; REVERSE; REQUEST(1
EXT1
AI5/JOYST
minREF1
maxREF1
minAI5
maxAI5
100%
NO
(2
The figure below presents the speed reference corresponding to bipolar input AI1 of
the extension module in joystick mode.
Operation Range
scaled
maxREF1
Speed Reference
10.03 REF DIRECTION =
FORWARD or
REQUEST1)
minREF1
-minREF1
10.03 REF DIRECTION =
REVERSE or
REQUEST1)
-scaled
maxREF1
-maxAI5
-minAI5
minAI5
maxAI5
Analogue Input Signal
minAI5
maxAI5
scaled maxREF1
minREF1
=
=
=
=
13.16 MINIMUM AI5
13.17 MAXIMUM AI5
13.18 SCALE AI5 x 11.05 EXT REF1 MAXIMUM
11.04 EXT REF1 MINIMUM
1) Enables
2)
the use of both positive and negative speed range.
Set if supervision of living zero is used.
Analogue Extension Module
318
Analogue Extension Module
319
Additional data: actual signals and parameters
Chapter overview
This chapter lists the actual signal and parameter lists with some additional data. For
the descriptions, see chapter Actual signals and parameters.
Terms and abbreviations
Term
Definition
PB
Profibus equivalent for drive parameters communicating through
the NPBA-12 Profibus Adapter.
FbEq
Fieldbus equivalent: The scaling between the value shown on
the panel and the integer used in serial communication.
Absolute Maximum Frequency
Value of 20.08, or 20.07 if the absolute value of the minimum limit
is greater than the maximum limit.
Absolute Maximum Speed
Value of parameter 20.02, or 20.01 if the absolute value of the
minimum limit is higher than the maximum limit.
W
Write access is not allowed when the motor is running.
Fieldbus addresses
Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.)
See the appropriate fieldbus adapter module User’s Manual.
Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.)
NPBA-12 Profibus Adapter:
• See column PB in the tables below.
NIBA-01 InterBus-S Adapter:
• xxyy · 100 + 12288 converted into hexadecimal, where xxyy = drive parameter
number
Example: The index number for drive parameter 13.09 is 1309 + 12288 = 13597
(dec) = 351D (hex)
NMBP-01 ModbusPlus Adapter and NMBA-01 Modbus Adapter:
• 4xxyy, where xxyy = drive parameter number
Additional data: actual signals and parameters
320
Actual signals
Index Name
01
ACTUAL SIGNALS
01.02 SPEED
Short name
FbEq
SPEED
01.03 FREQUENCY
FREQ
01.04 CURRENT
01.05 TORQUE
CURRENT
TORQUE
01.06 POWER
POWER
01.07
01.08
01.09
01.10
01.11
01.12
DC BUS V
MAINS V
OUT VOLT
ACS TEMP
EXT REF1
EXT REF2
-20000 = -100%
rpm
20000 = 100% of
motor absolute max.
speed
-100 = -1 Hz 100 = 1 Hz
Hz
10 = 1 A
A
-10000 = -100%
%
10000 = 100% of
motor nominal torque
-1000 = -100% 1000 %
= 100% of motor
nominal power
1=1V
V
1=1V
V
1=1V
V
1 = 1°C
°C
1 = 1 rpm
rpm
0 = 0% 10000 =
%
100% 1)
(1,2) LOCAL; (3)
EXT1; (4) EXT2
1=1h
h
1 = 100 kWh
kWh
1=1
1 = 0.001 V
V
1 = 0.001 mA
mA
1 = 0.001 mA
mA
1=1
1 =0.001 mA
mA
1 = 0.001 mA
mA
1…5
DC BUS VOLTAGE V
MAINS VOLTAGE
OUTPUT VOLTAGE
ACS800 TEMP
EXTERNAL REF 1
EXTERNAL REF 2
01.13 CTRL LOCATION
CTRL LOC
01.14
01.15
01.17
01.18
01.19
01.20
01.21
01.22
01.23
01.27
OP HOUR COUNTER
KILOWATT HOURS
DIL DI6-1 STATUS
AI1 [V]
AI2 [mA]
AI3 [mA]
RO3-1 STATUS
AO1 [mA]
AO2 [mA]
APPLICATION MACRO
OP HOUR
KW HOURS
DIL DI6-1
AI1 [V]
AI2 [mA]
AI3 [mA]
RO3-1
AO1 [mA]
AO2 [mA]
MACRO
01.28
01.29
01.30
01.31
01.32
01.33
01.35
01.36
01.37
01.38
01.39
01.40
01.41
01.42
01.43
01.44
01.45
01.46
02
02.01
02.02
EXT AO1 [mA]
EXT AO1
EXT AO2 [mA]
EXT AO2
PP 1 TEMP
PP 1 TEM
PP 2 TEMP
PP 2 TEM
PP 3 TEMP
PP 3 TEM
PP 4 TEMP
PP 4 TEM
MOTOR 1 TEMP
M1 TEMP
MOTOR 2 TEMP
M2 TEMP
MOTOR TEMP EST
MOTOR TE
AI5 [mA]
AI5 [mA]
AI6 [mA]
AI6 [mA]
DI15-7 STATUS
DI15-7
EXT RO STATUS
EXT RO
PROCESS SPEED REL P SPEED
CRANE OPT TIME
CR OPTTIME
FAN ON-TIME
FAN TIME
CTRL BOARD TEMP
CTRL B T
OEM SIGNAL
OEM PAR
ACTUAL SIGNALS
SPEED REF 2
S REF 2
SPEED REF 3
S REF 3
Additional data: actual signals and parameters
1 = 0.001 mA
1 = 0.001 mA
1 = 1°C
1 = 1°C
1 = 1°C
1 = 1°C
1 = 1°C
1 = 1°C
1 = 1°C
1 = 0.001 mA
1 = 0.001 mA
1=1
1=1
1=1
1 = 10 h
10 h = 1
1=1
Unit
mA
mA
°C
°C
°C
°C
°C
°C
°C
mA
mA
%
h
h
°C
0 = 0% 20000 =
rpm
100% of motor
rpm
absolute max. speed
Range
PB
2
3
4
5
6
7
8
9
10
11
12
LOCAL; EXT1;
EXT2
According to
parameter 99.02
13
14
15
17
18
19
20
21
22
23
27
28
29
30
31
32
33
35
36
37
38
39
40
41
42
43
44
45
46
51
52
321
Index Name
02.09 TORQUE REF 2
02.10 TORQUE REF 3
02.13 TORQ USED REF
02.14 FLUX REF
Short name
T REF 2
T REF 3
T USED R
FLUX REF
02.17 SPEED ESTIMATED
02.18 SPEED MEASURED
SPEED ES
SPEED ME
02.19 MOTOR
ACCELERATIO
02.21 POS ACT PPU
02.22 SHAFT POS
02.23 SYNC POS ERROR
02.24 SYNC POS ERROR 1
02.25 SYNC POS ERROR 2
02.26 SYNC POS ERROR 3
02.27 SYNC POS ERROR 4
02.28 BRAKE OPT COUNTS
03
ACTUAL SIGNALS
03.01 MAIN CTRL WORD
MOT AC
POS ACT PPU
SHAFT POS
SYNC ER
SYNC ER1
SYNC ER2
SYNC ER3
SYNC ER4
BRK CNTS
03.02 MAIN STATUS WORD
MAIN SW
03.03 AUX STATUS WORD
AUX SW
03.04 LIMIT WORD 1
LIMIT W1
03.05 FAULT WORD 1
FAULT W1
03.06 FAULT WORD 2
FAULT W2
03.07 SYSTEM FAULT
SYS FLT
03.08 ALARM WORD 1
ALARM W1
03.09 ALARM WORD 2
ALARM W2
03.11 FOLLOWER MCW
FOLL MCW
MAIN CW
03.13 AUX STATUS WORD 3 AUX SW3
03.14 AUX STATUS WORD 4 AUX SW4
03.15 FAULT WORD 4
FAULT W4
03.16 ALARM WORD 4
ALARM W4
03.17 FAULT WORD 5
FAULT W5
03.18 ALARM WORD 5
ALARM W5
03.19 INT INIT FAULT
INT INIT
03.20 LATEST FAULT
LAST FLT
03.21 2.LATEST FAULT
2.FAULT
FbEq
0 = 0% 10000 =
100% of motor
nominal torque
0 = 0% 10000 =
100%
0 = 0% 20000 =
100% of motor
absolute max. speed
1 = 1 rpm/s.
Unit
%
%
%
%
Range
PB
59
60
63
64
rpm
rpm
67
68
rpm/s
69
1=1mm
1=1
1=1 mm
1=1 mm
1=1 mm
1=1 mm
1=1 mm
1=1
2)
71
72
73
74
75
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
76
77
78
79
80
81
82
83
84
86
88
89
90
91
92
93
94
95
96
Additional data: actual signals and parameters
322
Index Name
03.22 3.LATEST FAULT
Short name
3.FAULT
03.23 4.LATEST FAULT
4.FAULT
03.24 5.LATEST FAULT
5.FAULT
03.25 LATEST WARNING
LAST WRN
03.26 2.LATEST WARNING
2.WARN
03.27 3.LATEST WARNING
3.WARN
03.28 4.LATEST WARNING
4.WARN
03.29 5.LATEST WARNING
5.WARN
03.30 LIMIT WORD INV
LIMIT WO
03.31 ALARM WORD 6
ALARM W6
FbEq
03.32 CRANE STATUS
CRANE SW
WORD
03.33 CRANE FAULT WORD CRANE FW
03.34 APPL CONTROL
WORD
03.35 SPEED CORR BUF
APPL CW
SPD CORR
03.36 M F STATUS WORD
M F SW
03.37 FLW CMD WITH POS
FCW POS
03.38 POSITION REM
POS R
04
ACTUAL SIGNALS
04.01 FAULTED INT INFO
FLTD INT
04.02 INT SC INFO
INT SC
09
09.01
09.02
09.03
09.04
09.05
09.06
ACTUAL SIGNALS
AI1 SCALED
AI2 SCALED
AI3 SCALED
AI5 SCALED
AI6 SCALED
DS MCW
AI1 SCAL
AI2 SCAL
AI3 SCAL
AI5 SCAL
AI6 SCAL
DS MCW
20000 = 10 V
20000 = 20 mA
20000 = 20 mA
20000 = 20 mA
20000 = 20 mA
0...65535 (Decimal)
09.07
09.08
09.09
09.10
09.11
09.12
09.13
09.14
09.15
09.16
MASTER REF1
MASTER REF2
AUX DS VAL1
AUX DS VAL2
AUX DS VAL3
AUX DS VAL4
AUX DS VAL5
AUX DS VAL6
LCU ACT SIGNAL1
LCU ACT SIGNAL2
M REF1
M REF2
AUX DSV1
AUX DSV2
AUX DSV3
AUX DSV4
AUX DSV5
AUX DSV6
LCU ACT1
LCU ACT2
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
1=1
1=1
Additional data: actual signals and parameters
Unit
Range
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
0...65535
(Decimal)
PB
97
0...65535
(Decimal)
0...65535
(Decimal)
-
0…20000
0…20000
0…20000
0…20000
0…20000
0...65535
(Decimal)
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-32768…32767
-
-
98
99
100
-
-
-
323
1) Percent of motor max. speed / nominal torque / max. process reference (depending on the ACS800
macro selected).
2) The contents of these data words are detailed in chapter Fieldbus control. For the contents of Actual
Signal 03.11, see the Master/Follower Application Guide [3AFE64590430 (English)].
Additional data: actual signals and parameters
324
Parameters
Index
10
10.01
10.02
10.03
10.04
10.05
10.07
10.08
10.09
10.10
10.12
10.13
10.14
10.15
10.16
10.17
10.19
10.20
10.21
10.22
11
11.01
11.02
11.03
11.04
11.05
11.06
11.07
11.08
11.09
11.10
11.11
11.12
11.13
11.14
12
12.01
12.02
12.03
12.04
12.05
12.06
12.07
12.08
13
13.01
13.02
13.03
13.04
13.05
13.06
13.07
13.08
13.09
13.10
13.11
Name/Selection
START/STOP/DIR
EXT1 STRT/STP/DIR
EXT2 STRT/STP/DIR
REF DIRECTION
EXT 1 STRT PTR
EXT 2 STRT PTR
NET CONTROL
NET REFERENCE
SLOW DOWN INPUT
FAST STOP PTR
HIGHEND PTR
LOWEND PTR
SYNC SEL
HOMING ACK SEL
ZERO POS PTR
SYNC PTR
SLOW DOWN PTR
EXT SPD LIM PTR
HOMING SEL PTR
HOMING ACK PTR
REFERENCE SELECT
KEYPAD REF SEL
EXT1/EXT2 SELECT
EXT REF1 SELECT
EXT REF 1 MINIMUM
EXT REF 1 MAXIMUM
EXT REF2 SELECT
EXT REF 2 MINIMUM
EXT REF 2 MAXIMUM
EXT 1/2 SEL PTR
EXT 1 REF PTR
EXT 2 REF PTR
SLOW DOWN REF
JOYSTICK WARN TD
HOMING REF
STEP REFERENCING
STEP REF SEL
STEP REF 1
STEP REF 2
STEP REF 3
STEP REF 4
STEP DI1 PTR
STEP DI2 PTR
STEP DI3 PTR
ANALOGUE INPUTS
MINIMUM AI1
MAXIMUM AI1
SCALE AI1
FILTER AI1
INVERT AI1
MINIMUM AI2
MAXIMUM AI2
SCALE AI2
FILTER AI2
INVERT AI2
MINIMUM AI3
User
Additional data: actual signals and parameters
Default
PB
DI1 F, DI2 R
NOT SEL
REQUEST
0
0
0
0
NOT SEL
0
0
0
NOT SEL
NOT SEL
0
0
0
0
0
0
101
102
103
104
105
107
108
109
110
112
113
114
115
116
117
119
120
121
122
REF1 (rpm)
EXT1
AI1/JOYST
0 rpm
1500 rpm
Keypad
0%
100%
0
0
0
0%
2s
0 rpm
126
127
128
129
130
131
132
133
134
135
136
137
138
139
NOT SEL
0 rpm
0 rpm
0 rpm
0 rpm
0
0
0
151
152
153
154
155
156
157
158
0V
10 V
100%
0.10 s
NO
0 mA
20 mA
100%
0.10 s
NO
0 mA
176
177
178
179
180
181
182
183
184
185
186
325
Index
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25
14
14.01
14.02
14.03
14.10
14.11
14.12
14.13
14.14
14.15
15
15.01
15.02
15.03
15.04
15.05
15.06
15.07
15.08
15.09
15.10
16
16.01
16.02
16.03
16.04
16.05
16.06
16.07
16.08
16.09
16.11
16.12
16.13
16.14
20
20.01
20.02
20.03
20.04
20.05
20.06
20.07
20.08
Name/Selection
MAXIMUM AI3
SCALE AI3
FILTER AI3
INVERT AI3
MINIMUM AI5
MAXIMUM AI5
SCALE AI5
FILTER AI5
INVERT AI5
MINIMUM AI6
MAXIMUM AI6
SCALE AI6
FILTER AI6
INVERT AI6
RELAY OUTPUTS
RO PTR1
RO PTR2
RO PTR3
RO PTR4
RO PTR5
RO PTR6
RO PTR7
RO PTR8
RO PTR9
ANALOGUE OUTPUTS
AO1 PTR
INVERT AO1
MINIMUM AO1
FILTER AO1
SCALE AO1
AO2 PTR
INVERT AO2
MINIMUM AO2
FILTER AO2
SCALE AO2
SYST CTRL INPUTS
RUN ENABLE
PARAMETER LOCK
PASS CODE
FAULT RESET SEL
USER MACRO IO CHG
LOCAL LOCK
PARAMETER SAVE
RUN ENA PTR
CTRL BOARD SUPPLY
FAULT RESET PTR
POWER ON RESET TD
USER MACRO PTR
FAN KWH CNT RESET
LIMITS
MINIMUM SPEED
MAXIMUM SPEED
MAXIMUM CURRENT
TORQ MAX LIM1
OVERVOLTAGE CTRL
UNDERVOLTAGE CTRL
MINIMUM FREQ
MAXIMUM FREQ
User
Default
20 mA
100%
0.10 s
NO
0 mA
20 mA
100%
0.10 s
NO
0 mA
20 mA
100%
0.10 s
NO
PB
187
188
189
190
191
192
193
194
195
196
197
198
199
200
+003.013.06
+003.002.02
-.003.002.03
0
0
0
0
0
0
201
202
203
210
211
212
213
214
215
+.001.002.00
NO
0 mA
0.10 s
100%
+.001.005.00
NO
0 mA
2.00 s
100%
226
227
228
229
230
231
232
233
234
235
YES
OPEN
0
NOT SEL
NOT SEL
OFF
DONE
0
INTERNAL 24V
0
10 s
0
NOT SEL
251
252
253
254
255
256
257
258
259
261
262
263
(calculated)
(calculated)
type-specific
300%
OFF
ON
- 50 Hz
50 Hz
351
352
353
354
355
356
357
358
Additional data: actual signals and parameters
326
Index
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21
20.22
20.23
21
21.01
21.02
21.03
21.04
21.05
21.06
21.07
21.08
21.09
21.10
22
22.01
22.02
22.03
22.04
22.05
22.06
22.07
22.08
22.09
22.10
23
23.01
23.02
23.03
23.04
23.05
23.06
23.07
24
24.01
24.02
26
26.01
26.02
26.03
26.04
26.05
26.06
26.07
27
27.01
27.02
27.03
Name/Selection
P MOTORING LIM
P GENERATING LIM
MIN TORQ SEL
MAX TORQ SEL
TORQ MIN LIM1
TORQ MIN LIM2
TORQ MAX LIM2
TORQ MIN PTR
TORQ MAX PTR
MIN AI SCALE
MAX AI SCALE
MAX EXT SPD LIM
MIN EXT SPD LIM
START/STOP
START FUNCTION
CONST MAGN TIME
STOP FUNCTION
DC HOLD
DC HOLD SPEED
DC HOLD CURR
RUN ENABLE FUNC
SCALAR FLY START
START INTRL FUNC
ZERO SPEED DELAY
ACCEL/DECEL
ACC/DEC SEL
ACCEL TIME 1
DECEL TIME 1
ACCEL TIME 2
DECEL TIME 2
ACC/DEC RAMP SHPE
EM STOP RAMP TIME
ACC PTR
DEC PTR
FST STP DCCL TIME
SPEED CTRL
GAIN
INTEGRATION TIME
DERIVATION TIME
ACC COMPENSATION
SLIP GAIN
AUTOTUNE RUN
SP ACT FILT TIME
TORQUE CTRL
TORQ RAMP UP
TORQ RAMP DOWN
MOTOR CONTROL
FLUX OPTIMIZATION
FLUX BRAKING
IR-COMPENSATION
IR STEP-UP FREQ
HEX FIELD WEAKEN
FLUX REF PTR
FS METHOD
BRAKE CHOPPER
BRAKE CHOPPER CTL
BR OVERLOAD FUNC
BR RESISTANCE
User
Default
300%
-300%
NEG MAX TORQ
MAX LIM1
0.0%
0.0%
300.0%
0
0
0%
300%
1500 rpm
-1500 rpm
PB
361
362
363
364
365
366
367
368
369
370
371
372
373
<read-protected>
CNST DC MAGN
500.0 ms
RAMP
NO
5 rpm
30%
COAST STOP
NO
OFF2 STOP
0.5 s
376
377
378
379
380
381
382
383
384
385
ACC/DEC DIR
3.00 s
3.00 s
3.00 s
3.00 s
0.00 s
3.00 s
0
0
3.00 s
401
402
403
404
405
406
407
408
409
410
10
2.50 s
0.0 ms
0.00 s
100.0%
NO
3.9 ms
426
427
428
429
430
431
432
Additional data: actual signals and parameters
451
452
NO
YES
0%
0
NO
C.10000
ON
501
502
503
504
505
506
507
OFF
NO
100.00 ohm
526
527
528
327
Index
27.04
27.05
27.06
30
30.01
30.02
30.03
30.04
30.05
30.06
30.07
30.08
30.09
30.10
30.11
30.12
30.13
30.14
30.15
30.16
30.17
30.18
30.19
30.21
30.22
30.23
30.24
33
33.01
33.02
33.03
34
34.04
34.05
35
35.01
35.02
35.03
35.04
35.05
35.06
35.07
42
42.01
42.02
42.03
42.04
42.05
42.06
42.07
42.08
42.09
42.10
42.11
42.12
42.13
42.14
42.15
Name/Selection
BR THERM T CONST
MAX CONT BR POWER
BC CTRL MODE
FAULT FUNCTIONS
AI<MIN FUNCTION
PANEL LOSS
EXTERNAL FAULT
MOTOR THERM PROT
MOT THERM P MODE
MOTOR THERM TIME
MOTOR LOAD CURVE
ZERO SPEED LOAD
BREAK POINT
STALL FUNCTION
STALL FREQ HI
STALL TIME
UNDERLOAD FUNC
UNDERLOAD TIME
UNDERLOAD CURVE
MOTOR PHASE LOSS
EARTH FAULT
COMM FLT FUNC
MAIN REF DS T-OUT
AUX DS T-OUT
IO CONFIG FUNC
LIMIT WARNING
EXT FAULT PTR
INFORMATION
SOFTWARE VERSION
APPL SW VERSION
TEST DATE
PROCESS VARIABLE
MOTOR SP FILT TIM
TORQ ACT FILT TIM
MOT TEMP MEAS
MOT 1 TEMP AI1 SEL
MOT 1 TEMP ALM L
MOT 1 TEMP FLT L
MOT 2 TEMP AI2 SEL
MOT 2 TEMP ALM L
MOT 2 TEMP FLT L
MOT MOD COMPENSAT
BRAKE CONTROL
BRAKE CTRL
BRAKE ACKNOWLEDGE
BRAKE OPEN DELAY
BRAKE CLOSE DELAY
ABS BRAKE CLS SPD
BRAKE FAULT FUNC
STRT TORQ REF SEL
START TORQ REF
EXTEND RUN T
LOW REF BRK HOLD
MOTOR SLIP SPD
SLIP FAULT DELAY
BRK LONG FLT DLY
SAFETY CLOSE CMD
BRAKE ACKN PTR
User
Default
0s
0 kW
COMMON DC
PB
529
530
531
FAULT
FAULT
NOT SEL
NO
DTC/USER MODE
(calculated)
100.0%
74.0%
45.0 Hz
FAULT
20.0 Hz
20.00 s
NO
600.0 s
1
NO
FAULT
FAULT
3.00 s
3.0 s
WARNING
0
0
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
621
622
623
624
(Version)
(Version)
(Date)
676
677
678
100 ms
100 ms
704
705
NOT IN USE
110
130
NOT IN USE
110
130
YES
726
727
728
729
730
731
732
ON
OFF
1s
2s
30 rpm
FAULT
PAR 42.08
50%
60 s
0.0 s
10 rpm
0.5 s
10 s
ENABLE
0
-
Additional data: actual signals and parameters
328
Index
42.16
50
50.01
50.02
50.03
50.04
50.05
50.06
50.07
51
Name/Selection
BRK REOPEN DLY
ENCODER MODULE
PULSE NR
SPEED MEAS MODE
ENCODER FAULT
ENCODER DELAY
ENCODER DDCS CH
SPEED FB SEL
ENC CABLE CHECK
COMM MOD DATA
52
52.01
52.02
52.03
60
60.01
60.02
60.03
60.04
60.05
60.06
60.07
60.08
60.09
60.10
60.11
70
70.01
70.02
70.03
70.04
70.05
74
74.01
75
75.01
75.02
75.03
75.04
76
76.01
76.02
77
77.01
77.02
77.03
77.04
77.05
77.06
77.07
77.08
77.09
77.10
77.11
77.12
77.13
77.14
STANDARD MODBUS
STATION NUMBER
BAUDRATE
PARITY
MASTER/FOLLOWER
MASTER LINK MODE
TORQUE SELECTOR
WINDOW SEL ON
WINDOW WIDTH POS
WINDOW WIDTH NEG
DROOP RATE
MASTER SIGNAL 2
MASTER SIGNAL 3
LOAD SHARE
NO OF SLAVES
SLAVE MODE
DDCS CONTROL
CHANNEL 0 ADDR
CHANNEL 3 ADDR
CH1 BAUDRATE
CH0 DDCS HW CONN
CH2 HW CONNECTION
SPEED MONITOR
MOT OVERSPEED LEV
SPEED MATCHING
SPEED MATCH SEL
SP DEV LEV
SPD MATCH FLT TD
SPD CHG PER SEC
TORQUE PROVING
TORQ PROV SEL
TORQ PROV FLT TD
LOAD SPEED CTRL
LOAD SPD CTRL SEL
LOAD SPD CTRL PTR
HOLD RAMP
CURRENT X1 FWD
REF Y1 FWD
CURRENT X2 FWD
REF Y2 FWD
CURRENT X3 FWD
REF Y3 FWD
CURRENT X4 FWD
REF Y4 FWD
CURRENT X1 REV
REF Y1 REV
CURRENT X2 REV
User
Additional data: actual signals and parameters
Default
0s
PB
-
1024
A --- B --FAULT
1000
CH 1
ENCODER
DISABLED
1001
1002
1003
1004
1005
1006
1007
1026
...
1
9600
ODD
1051
1052
1053
NOT IN USE
not visible
not visible
not visible
not visible
0
202
213
100
1
SPEED
1195
1196
1167
1198
1199
1200
1201
1202
1203
1204
1205
1
1
4 Mbit/s
RING
RING
1375
1376
1377
1378
1379
110 %
1447
TRUE
10 %
1s
5s
1465
1466
1467
1468
TRUE
1.0 s
1483
1484
NOT SEL
0
0.2 s
0A
0 rpm
0A
0 rpm
0A
0 rpm
0A
0 rpm
0A
0 rpm
0A
329
Index
77.15
77.16
77.17
77.18
77.19
77.20
78
78.01
78.02
78.03
78.04
78.05
78.06
78.07
78.08
78.09
78.10
78.12
78.13
79
79.01
79.02
83
83.01
83.02
83.03
83.04
83.05
84
84.01
84.02
84.05
84.06
84.07
84.08
84.09
…
Name/Selection
REF Y2 REV
CURRENT X3 REV
REF Y3 REV
CURRENT X4 REV
REF Y4 REV
BASE SPEED
SHAFT SYNCRO
SYNCRO CONTROL
SYNCRO GAIN
SHAFT SCALE
POS SCALE
POS CORR MAX LIM
POS CORR MIN LIM
SYNC ERR FLT DLY
SYNC CORR SCALE
SYNC ERR LIM
HOME POSITION
SYNC CORR MODE
POS HYSTERISIS
SERVICE COUNTER
BRAKE CTR RESET
RESET OPT TIME
ADAPT PROG CTRL
ADAPT PROG CMD
EDIT COMMAND
EDIT BLOCK
TIMELEVEL SEL
PASSCODE
ADAPTIVE PROGRAM
STATUS
FAULTED PAR
BLOCK1
INPUT1
INPUT2
INPUT3
OUTPUT
…
84.79
85
85.01
85.02
85.03
85.04
85.05
85.06
85.07
85.08
85.09
85.10
85.11
85.12
85.13
85.14
85.15
90
90.01
90.02
OUTPUT
USER CONSTANTS
CONSTANT1
CONSTANT2
CONSTANT3
CONSTANT4
CONSTANT5
CONSTANT6
CONSTANT7
CONSTANT8
CONSTANT9
CONSTANT10
STRING1
STRING2
STRING3
STRING4
STRING5
D SET REC ADDR
AUX DS REF3
AUX DS REF4
User
Default
0 rpm
0A
0 rpm
0A
0 rpm
1500 rpm
PB
OFF
1.0
1.0
1.0 P/mm
10.00 mm
-10.00 mm
2s
1 rpm
10.0 mm
0 mm
OFFSET
5 mm
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1530
1531
NO
NO
1537
1538
EDIT
NO
0
100 ms
0
1609
1610
1611
1612
1613
8h
+.000.000.00
NO
0
0
0
0
0
1628
1629
1630
1631
1632
1633
1634
…
1644
-
0
0
0
0
0
0
0
0
0
0
MESSAGE1
MESSAGE2
MESSAGE3
MESSAGE4
MESSAGE5
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
0
0
1735
1736
Additional data: actual signals and parameters
330
Index
90.03
90.04
90.05
90.06
90.07
92
92.01
92.02
92.03
92.04
92.05
92.06
92.07
92.08
92.09
92.10
92.11
92.12
92.13
95
95.01
95.02
95.03
95.04
95.05
95.06
95.07
95.08
95.09
95.10
96
96.01
96.02
96.03
96.04
96.05
96.06
96.07
96.08
96.09
96.10
96.11
96.12
97
97.12
97.16
97.17
Name/Selection
AUX DS REF5
AUX DS REF6
AUX DS REF7
AUX DS REF8
START DS REC
D SET TR ADDR
MAIN DS STATUS WORD
MAIN DS ACT1
MAIN DS ACT2
AUX1 DS ACT3
AUX1 DS ACT4
AUX1 DS ACT5
AUX2 DS ACT6
AUX2 DS ACT7
AUX2 DS ACT8
MSW B10 PTR
MSW B13 PTR
MSW B14 PTR
START DS TRA
HARDWARE SPECIF
FAN SPD CTRL MODE
FUSE SWITCH CTRL
INT CONFIG USER
EX/SIN REQUEST
ENA INC SW FREQ
LCU Q PW REF
LCU DC REF
LCU PAR1 SEL
LCU PAR2 SEL
TEMP INV AMBIENT
EXTERNAL AO
EXT AO1 PTR
INVERT EXT AO1
MINIMUM EXT AO1
FILTER EXT AO1
SCALE EXT AO1
EXT AO2 PTR
INVERT EXT AO2
MINIMUM EXT AO2
FILTER EXT AO2
SCALE EXT AO2
EXT AO1 PTR
EXT AO2 PTR
MOTOR MODEL
EM STOP DIO
SPD CORR PTR
APL LIM WRN MASK
97.18
97.19
97.20
97.21
98
98.01
98.02
98.03
98.04
98.05
PWRON STRTINT PTR
SYNC ERR BLK LVL
PWR ACK START DLY
ZERO SPEED PTR
OPTION MODULES
ENCODER MODULE
COMM. MODULE LINK
DI/O EXT MODULE 1
DI/O EXT MODULE 2
DI/O EXT MODULE 3
User
Additional data: actual signals and parameters
Default
0
0
0
0
1
PB
1737
1738
1739
1740
1741
302
102
105
0
0
0
0
0
0
+.003.014.09
0
0
2
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
CONTROLLED
Inverter type dependent
0
NO
0
0
0
106
110
40°C
SPEED
NO
0 mA
0.01 s
100%
CURRENT
NO
0 mA
2.00 s
100%
0
0
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
NO
+.000.000.00
0000 0011 1111 1000 b
(binary mode)
+.001.017.06
0 mm
0.00 s
+.000.000.00
NO
NO
NO
NO
NO
1901
1902
1903
1904
1905
331
Index
98.06
98.07
98.12
98.13
98.14
98.16
99
99.01
99.02
99.03
99.04
99.05
99.06
99.07
99.08
99.09
99.10
99.11
Name/Selection
AI/O EXT MODULE
COMM PROFILE
AI/O MOTOR TEMP
AI/O EXT AI1 FUNC
AI/O EXT AI2 FUNC
SIN FILT SUPERV
START-UP DATA
LANGUAGE
APPLICATION MACRO
APPLIC RESTORE
MOTOR CTRL MODE
MOTOR NOM VOLTAGE
MOTOR NOM CURRENT
MOTOR NOM FREQ
MOTOR NOM SPEED
MOTOR NOM POWER
MOTOR ID RUN MODE
DEVICE NAME
99.12
OEM SIGNAL
User
Default
NO
ABB DRIVES
NO
UNIPOLAR AI5
UNIPOLAR AI6
NO
PB
1906
1907
1912
1913
1914
1915
ENGLISH
CRANE
NO
DTC
0V
0.0 A
50.0 Hz
2900 rpm
0.0 kW
ID MAGN
ACS800 CRANE
CONTROL
ACS800 CRANE
CONTROL
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
Additional data: actual signals and parameters
332
Additional data: actual signals and parameters
333
DriveWindow
DriveWindow connected to the ACS800 RMIO/RDCO board and channel CH3.
DriveWindow
334
DriveWindow
335
Control block diagrams
Control block diagrams
336
Control block diagrams
337
Control block diagrams
338
Control block diagrams
Further information
Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting
the type designation and serial number of the unit in question. A listing of ABB sales,
support and service contacts can be found by navigating to www.abb.com/drives and
selecting Sales, Support and Service network.
Product training
For information on ABB product training, navigate to www.abb.com/drives and select
Training courses.
Providing feedback on ABB Drives manuals
Your comments on our manuals are welcome. Go to www.abb.com/drives and select
Document Library – Manuals feedback form (LV AC drives).
Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet.
Go to www.abb.com/drives and select Document Library. You can browse the library
or enter selection criteria, for example a document code, in the search field.
www.abb.com/drives
www.abb.com/drivespartners
3AFE68775230 Rev E (EN) 2012-09-25
Contact us
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising