Mediant MSBR
Configuration Guide
Multi-Service Business Routers Product Series
Mediant MSBR
IP Networking Configuration
Version 6.8
Version 6.8
Document # LTRT-31654
Version 6.8
Configuration Guide
Contents
Table of Contents
1
Introduction ....................................................................................................... 11
2
IPv4 ..................................................................................................................... 13
2.1
2.2
3
2.1.1
2.1.2
Configuration ...........................................................................................................13
Output ......................................................................................................................13
2.2.1
Configuration ...........................................................................................................14
Interface VLAN – Link State Monitor ..................................................................... 14
ICMP ................................................................................................................... 15
3.1
3.2
4
Example of Primary and Secondary IP Address Configuration ............................. 13
ping ......................................................................................................................15
Traceroute ............................................................................................................16
VRRP .................................................................................................................. 17
4.1
4.2
Feature Key ..........................................................................................................17
CLI Configuration and Status Commands............................................................. 17
4.2.1
4.2.2
4.3
5
VRRP Example ....................................................................................................19
DHCP .................................................................................................................. 27
5.1
5.2
DHCP Client .........................................................................................................27
DHCP Server........................................................................................................28
5.2.1
5.3
5.4
5.5
5.6
5.7
6
DHCP Zones ............................................................................................................29
5.2.1.1 Selectors...................................................................................................29
5.2.1.2 Default Zone .............................................................................................30
DHCP Relay .........................................................................................................31
Example of DHCP Server and DHCP Client ......................................................... 32
5.4.1
5.4.2
DHCP Client Configuration Example (WAN Side) ...................................................32
DHCP Server Configuration Example (LAN Side) ...................................................32
5.7.1
5.7.2
show dhcp server leased ip addresses ...................................................................35
show dhcp relay configuration display .....................................................................35
Example of DHCP Relay ......................................................................................33
Example of DHCP Server with Zones ................................................................... 33
Output of show Commands ..................................................................................35
DNS..................................................................................................................... 37
6.1
DNS Configuration................................................................................................37
6.1.1
6.1.2
6.2
6.3
Global Configuration ................................................................................................37
Interface-specific Configuration ...............................................................................37
Example #1 of Basic Dynamic DNS Configuration ................................................ 38
6.2.1
6.2.2
Configuration ...........................................................................................................38
Output and show Commands ..................................................................................39
Example #2 of Basic Static DNS Configuration..................................................... 40
6.3.1
7
Configuration Commands ........................................................................................17
Status Commands ...................................................................................................17
Configuration ...........................................................................................................40
Track................................................................................................................... 41
7.1
7.2
Configuring Track .................................................................................................41
Output ..................................................................................................................41
Version 6.8
3
Mediant MSBR
IP Networking Configuration
8
Static Routing .................................................................................................... 43
8.1
8.2
Configuring Static Routing ....................................................................................43
Example of Basic Static Route Configuration........................................................ 43
8.2.1
8.2.2
8.3
Example of "Floating” Static Route and Track ...................................................... 45
8.3.1
9
Configuration ...........................................................................................................43
Output ......................................................................................................................44
Configuration ...........................................................................................................45
Manipulating the Routing Table ....................................................................... 47
10 Administrative Distance ................................................................................... 49
10.1 Examples of Configuring AD for Various Protocols ............................................... 49
10.2 Example of Changing Default AD for a Dynamic Routing Protocol ....................... 50
10.2.1 Configuration ...........................................................................................................50
10.2.2 Output ......................................................................................................................50
10.3 Example of Configuring Static Route with Custom Metric ..................................... 51
10.3.1 Configuration ...........................................................................................................51
10.3.2 Output ......................................................................................................................51
11 Dynamic IP Routing .......................................................................................... 53
11.1 RIP Routing Protocol ............................................................................................53
11.1.1 Configuring RIP .......................................................................................................53
11.1.2 Example of RIP Routing ..........................................................................................55
11.1.2.1 Configuration ............................................................................................55
11.1.2.2 Output and show Commands ...................................................................56
11.2 OSPF Routing Protocol ........................................................................................57
11.2.1 Configuring OSPF ....................................................................................................57
11.2.1.1 Router-Configuration Level ......................................................................57
11.2.1.2 Interface-Configuration Level ...................................................................58
11.2.2 Example of OSPF Routing.......................................................................................59
11.2.3 Useful Output and show Commands .......................................................................60
11.3 Border Gateway Protocol (BGP) ........................................................................... 62
11.3.1 Configuring BGP ......................................................................................................62
11.3.1.1 Address-Family Level Configuration (configuration can also be set
without entering the AF mode) ................................................................................62
11.3.1.2 General Configuration ..............................................................................64
11.3.2 Example of Basic BGP WAN Connectivity ..............................................................65
11.3.2.1 Configuration ............................................................................................65
11.3.2.2 Output .......................................................................................................66
11.3.3 Example 2 ................................................................................................................66
11.3.3.1 Configuration ............................................................................................67
11.3.3.2 Output .......................................................................................................68
11.4 Advanced Routing Examples ................................................................................ 69
11.4.1 Multi-WAN with BGP and Static Route ....................................................................69
11.4.1.1 Configuration ............................................................................................69
11.4.1.2 Output and show Commands ...................................................................70
11.4.2 Filtering Dynamic Routing Protocol Routes .............................................................71
11.4.3 Multi-WAN with BGP and IPSec ..............................................................................72
11.4.3.1 MSBR1 Configuration...............................................................................72
11.4.3.2 Output .......................................................................................................74
12 Policy Based Routing (PBR) ............................................................................ 75
12.1 PBR Configuration ................................................................................................75
12.1.1 Example of PBR using Route-Map-Static................................................................75
12.1.1.1 Configuration ............................................................................................76
Configuration Guide
4
Document #: LTRT-31657
Configuration Guide
Contents
12.1.1.2 Output .......................................................................................................76
13 Loopback Interfaces ......................................................................................... 79
13.1.1 Loopback Interface Configuration ............................................................................79
13.1.2 Example of Loopback Interface Configuration ........................................................79
13.1.2.1 Configuration ............................................................................................79
13.1.2.2 Output .......................................................................................................79
13.1.3 Example of Protocol Binding to Loopback Interfaces ..............................................81
13.1.3.1 OAMP Binding to Loopback .....................................................................81
13.1.3.2 BGP Termination on Loopback ................................................................81
13.1.4 Configuring Loopback Interfaces to Work with Voice ..............................................82
14 Virtual Routing and Forwarding (VRF) ............................................................ 85
14.1.1 VRF Configuration ...................................................................................................85
14.1.1.1 Global Configuration.................................................................................85
14.1.1.2 Interface Configuration .............................................................................85
14.1.1.3 Other.........................................................................................................85
14.1.2 VRF App Awareness ...............................................................................................86
14.1.3 Example of Segment Isolation using VRF ...............................................................87
14.1.3.1 Configuration ............................................................................................87
14.1.3.2 Output .......................................................................................................88
14.1.4 Routing Services on Different VRF’S ......................................................................89
14.1.4.1 Configuration ............................................................................................89
14.1.4.2 Output .......................................................................................................90
15 GRE Tunnels ...................................................................................................... 91
15.1.1 Configuring GRE Tunnels ........................................................................................91
15.1.2 Example of Connecting Multiple Subnets using GRE .............................................91
15.1.2.1 Configuration ............................................................................................92
15.1.2.2 Output .......................................................................................................93
16 Quality of Service (QoS) ................................................................................... 95
16.1.1 QoS Configuration ...................................................................................................96
16.1.2 Example of Weighted Bandwidth Sharing ...............................................................97
16.1.2.1 Configuration ............................................................................................98
16.1.2.2 Output .......................................................................................................98
16.1.3 Example using QoS to Ensure Bandwidth for Critical Traffic ................................100
16.1.3.1 Configuration ..........................................................................................100
16.1.3.2 Output .....................................................................................................100
17 IPv6 ................................................................................................................... 103
17.1 Example of multiple IPv6 Address Configuration ................................................ 104
17.1.1 Configuration .........................................................................................................104
17.1.2 Output ....................................................................................................................104
17.1.3 Example of a Dual-Stack Configuration.................................................................105
17.1.3.1 Configuration ..........................................................................................105
17.1.3.2 Output .....................................................................................................105
18 ICMPv6 ............................................................................................................. 107
18.1 ping ipv6 ............................................................................................................. 107
18.2 Traceroute v6 ..................................................................................................... 108
19 Track v6............................................................................................................ 109
19.1 Configuring Track ............................................................................................... 109
19.2 Output ................................................................................................................109
Version 6.8
5
Mediant MSBR
IP Networking Configuration
20 IPv6 Routing .................................................................................................... 111
20.1 Static Routing ..................................................................................................... 111
20.1.1 Configuring Static Routing .....................................................................................111
20.1.2 Example of a Basic Static Route Configuration .....................................................111
20.1.2.1 Configuration ..........................................................................................111
20.1.2.2 Output .....................................................................................................112
20.2 RIPng Routing Protocol ...................................................................................... 113
20.2.1 Configuring RIPng .................................................................................................113
20.2.2 Example of RIPng Routing ....................................................................................114
20.2.2.1 Configuration ..........................................................................................114
20.2.2.2 Output and show Commands .................................................................115
20.3 OSPFv3 Routing Protocol................................................................................... 116
20.3.1 Configuring OSPF ..................................................................................................116
20.3.1.1 Router-Configuration Level ....................................................................116
20.3.1.2 OSPF6 Router Level ..............................................................................116
20.3.1.3 Main options for Interface-Configuration Level ......................................116
20.3.2 Example of OSPFv3 Routing .................................................................................117
20.3.3 Useful Output and show Commands .....................................................................118
20.4 Border Gateway Protocol (BGP) for IPv6............................................................ 119
20.4.1 Configuring BGP ....................................................................................................119
20.4.1.1 Main options for Address-Family Level Configuration ...........................119
20.4.2 Example of Basic BGP WAN Connectivity ............................................................120
20.4.2.1 Configuration ..........................................................................................120
20.4.2.2 Output .....................................................................................................120
20.4.3 Example 2 ..............................................................................................................121
20.4.3.1 Configuration ..........................................................................................121
20.4.3.2 Output .....................................................................................................123
20.5 DCHPv6 ............................................................................................................. 125
20.5.1
20.5.2
20.5.3
20.5.4
20.5.5
Configuring Stateless DHCP .................................................................................126
Configuring Stateful DHCP ....................................................................................126
Configuring Router Advertisement ........................................................................126
Configuring Prefix Delegation ................................................................................127
Example of DHCPv6 Prefix Delegation .................................................................128
20.5.5.1 Configuration of Prefix Delegation .........................................................128
20.5.5.2 Output .....................................................................................................129
20.5.6 Example of RA Configuration ................................................................................130
20.5.6.1 Configuration ..........................................................................................130
20.5.6.2 Output .....................................................................................................130
20.6 DNSv6 ................................................................................................................131
20.6.1 DNSv6 Configuration .............................................................................................131
20.6.1.1 Global Configuration...............................................................................131
20.6.1.2 Interface-Specific Configuration .............................................................131
20.6.2 Example of Basic Static DNS Configuration ..........................................................132
21 IP Multicast – PIM Sparse Mode ..................................................................... 133
21.1 Feature Key ........................................................................................................ 133
21.2 CLI Configuration and Status Commands........................................................... 133
21.2.1
21.2.2
21.2.3
21.2.4
Configuration Commands ......................................................................................133
Status Commands .................................................................................................134
Multicast Example - Static RP ...............................................................................136
Multicast Example - Dynamic RP – Bootstrap Router Elects RP ..........................150
21.2.4.1 On the Client \ Media Receiving Side ....................................................150
22 IP Multicast – IGMP Proxy .............................................................................. 153
22.1 Feature Key ........................................................................................................ 153
Configuration Guide
6
Document #: LTRT-31657
Configuration Guide
Contents
22.2 CLI Configuration and Status Commands........................................................... 153
22.2.1 Configuration Commands ......................................................................................153
22.2.2 Status Commands .................................................................................................153
22.2.3 Multicast Example..................................................................................................154
A
Mediant 500 Transmitter Examples ............................................................... 165
Version 6.8
7
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
8
Document #: LTRT-31657
Configuration Guide
Notices
Notice
This document describes IP network configuration using the CLI management interface for
AudioCodes Multi-Service Business Routers (MSBR).
Information contained in this document is believed to be accurate and reliable at the time of
printing. However, due to ongoing product improvements and revisions, AudioCodes cannot
guarantee accuracy of printed material after the Date Published nor can it accept responsibility
for errors or omissions. Before consulting this document, check the corresponding Release
Notes regarding feature preconditions and/or specific support in this release. In cases where
there are discrepancies between this document and the Release Notes, the information in the
Release Notes supersedes that in this document. Updates to this document and other
documents as well as software files can be downloaded by registered customers at
http://www.audiocodes.com/downloads.
© Copyright 2016 AudioCodes Ltd. All rights reserved.
This document is subject to change without notice.
Date Published: April-144-2016
Trademarks
AudioCodes, AC, HD VoIP, HD VoIP Sounds Better, IPmedia, Mediant, MediaPack, What’s
Inside Matters, OSN, SmartTAP, VMAS, VoIPerfect, VoIPerfectHD, Your Gateway To
VoIP, 3GX, VocaNOM and CloudBond 365 are trademarks or registered trademarks of
AudioCodes Limited All other products or trademarks are property of their respective
owners. Product specifications are subject to change without notice.
WEEE EU Directive
Pursuant to the WEEE EU Directive, electronic and electrical waste must not be disposed
of with unsorted waste. Please contact your local recycling authority for disposal of this
product.
Customer Support
Customer technical support and services are provided by AudioCodes or by an authorized
AudioCodes Service Partner. For more information on how to buy technical support for
AudioCodes products and for contact information, please visit our Web site at
www.audiocodes.com/support.
Abbreviations and Terminology
Each abbreviation, unless widely used, is spelled out in full when first used.
Version 6.8
9
Mediant MSBR
IP Networking Configuration
Document Revision Record
LTRT
Description
31652
Initial document release.
31653
Updated Section 4.1 DHCP Client.
31654
Sections 4, 7, 18, 19, 21 and 22 were added.
31655
Added configuration for loopback of interfaces to work with voice.
31656
Updates to the Ping command, Traceroute command, Static routing, RIP interface
configuration, Dynamic Routing protocol routes, OAMP Binding to loopback, VRF
configuration, OSPF Routing protocol and BGP configuration.
31657
Updates to the Policy Based Routing (PBR) configuration.
Documentation Feedback
AudioCodes continually strives to produce high quality documentation. If you have any
comments (suggestions or errors) regarding this document, please fill out the
Documentation Feedback form on our Web site at http://www.audiocodes.com/downloads.
Configuration Guide
10
Document #: LTRT-31657
Configuration Guide
1
1. Introduction
Introduction
As an all-in-one product family, the MSBR provides a variety of data services. As a rule,
data services of any-size organization are based on IP networking as a standard, as IPv4
(and in the future, IPv6) are the official and standard suits of data network protocols.
This document deals with the IP data functionality of the MSBR and addresses the purpose
of listing and explaining the kinds and nature of the IP protocols supported by the MSBR,
explaining their most common uses and functionality, how to configure and implement
them in an existing network, and demonstrating the most common and real-life-like
scenarios and best practices in which those protocols can and should be used. In addition,
a list of available commands and options for each protocol is described.
The examples in this document include topology, configuration methods and sample output
and verifying commands to better understand the way they operate.
All mentioned protocols and technologies can be used in a more complex and advanced
configuration than some of those demonstrated in this document; however, the main goal is
to demonstrate common and well-tested implementations.
Version 6.8
11
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
12
Document #: LTRT-31657
Configuration Guide
2
2. IPv4
IPv4
IPv4 is the common and most widespread version of the Internet Protocol which is
responsible for routing traffic on the internet and private networks. IPv4 also defines the
structure and rules of IP addressing for network devices and nodes.
MSBR maintains a routing table which lists the IP addresses familiar to the device and how
to reach them in terms of next-hop. Information stored in the routing table is received from
different sources, such as local physical and logical interfaces, static routes configured by
the network administrator, and dynamic routing protocols. All of the listed items are seen as
different routing domains.
IP addresses on the MSBR are configured on interfaces, and usually are accompanied by
the subnet mask, which is used for the subnet calculation.
Each Layer-3 interface can be assigned one primary IP address, and several secondary IP
addresses. Secondary IP addresses are typically used to provide connectivity to several
subnets through a single interface, facilitating network transitions and multi-homing.
2.1
Example of Primary and Secondary IP Address
Configuration
The following is an example of primary and secondary IP address configuration.
2.1.1
Configuration
MSBR# configure data
MSBR(conf-data)# interface VLAN 1
MSBR(conf-if-VLAN 1)# ip address 192.169.12.1 255.255.255.0
MSBR(conf-if-VLAN 1)# ip address 192.169.0.1 255.255.255.0
secondary
MSBR(conf-if-VLAN 1)# no shutdown
2.1.2
Output
MSBR# show data int vlan 1
VLAN 1 is Connected.
Description: LAN switch VLAN 1
Hardware address is 00:90:8f:4a:23:43
IP address is 192.169.12.1
netmask is 255.255.255.0
State Time: 242:26:48
Time since creation: 242:27:11
Time since last counters clear :
0:00:05
mtu auto
Secondary IP address is 192.169.0.1
Secondary netmask is 255.255.255.0
DNS is configured static
DNS primary IP address is 0.0.0.0
DNS secondary IP address is 0.0.0.0
Version 6.8
13
Mediant MSBR
IP Networking Configuration
2.2
Interface VLAN – Link State Monitor
MSBR handles physical and logical interfaces. While the state of a physical interface is
determined by whether its connected to the power (plugged in or not), logical interfaces,
such as interface VLAN, can remain in UP state even if ports associated with them are
disconnected. To prevent such a scenario, it is possible to enable a link-state monitor,
which probes the state of VLAN-associated interfaces, and brings down VLAN interfaces if
ports associated with them are disconnected.
2.2.1
Configuration
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface vlan vlan
Enters the interface vlan configuration mode.
(conf-if-Vlan num)# link-state
monitor
Configuration Guide
Enables the link-state monitor.
14
Document #: LTRT-31657
Configuration Guide
3
3. ICMP
ICMP
Internet Control Message Protocol (ICMP) is one of the main protocols in the IP suite and
in general, is used by network equipment to obtain information or notify about data delivery
problems, for example, in case a specific service is unavailable or a specific network or
host is unreachable.
The most common and known usages of ICMP are the ping and traceroute
commands, using ICMP messages to test IP reachability to an IP address on the internet,
and to verify the IP “hops” a packet travels on its way to the destination, respectively.
The ICMP protocol “runs” over UDP and is defined in RFC 792.
3.1
ping
The ping tests IP reachability to a desired destination. If the destination is reachable, there
will be the same amount of echo requests and replies.
Command structure:
ping <IP address / host> options
where the options are:

repeat - amount of ICMP requests to send.

size - size of the of the ICMP packet in bytes.

source – source from where to send the packets

summarized - display summarized results (! - successful reply, .U - No reply, timeout
and Unreachable)

source [data voip]- interface to use as source address for the ICMP requests. Voip or
data interfaces can be used. “Source voip” – allows you to select the source interface
as name or as VLAN number. “Source data – allows you to select any interface as
source for ping. The pings are sent from this interface. “Source data source-address”
allows you to ping from IP of any address while the next hop calculated using the
routing table. “Source data vrf” allows you to ping from any configured VRF.
Typical output:
MSBR# ping 192.168.0.3
Reply from 192.168.0.3: time=1 ms
Reply from 192.168.0.3: time=1 ms
Reply from 192.168.0.3: time=1 ms
Reply from 192.168.0.3: time=1 ms
4 packets transmitted, 4 packets received
Round-trip min/avg/max = 1/1/1 ms
Version 6.8
15
Mediant MSBR
IP Networking Configuration
3.2
Traceroute
The ping command informs you if the destination is reachable or not. Traceroute can be
used to discover the path that packets travel to the remote destination.
Command structure:
traceroute <IP Address / host> [vrf | source-address]
Typical output:
MSBR# traceroute 8.8.8.8
1 192.168.0.1 (192.168.0.3) 1.169 ms * 7.346 ms
2 100.100.100.2 (100.100.100.2) 1.169 ms * 7.346 ms
.
.
8 8.8.8.8 (8.8.8.8) 1.169 ms * 7.346 ms
Traceroute: Destination reached
MSBR#
Configuration Guide
16
Document #: LTRT-31657
Configuration Guide
4
4. VRRP
VRRP
VRRP provides for automatic assignment of available routers to participating hosts. This
increases the availability and reliability of routing paths via automatic default gateway
selections on a LAN.
The protocol achieves this by creating virtual routers, comprised of master and backup
routers. VRRP routers use multicast to notify its presence in the LAN (never forwarding
outside of the LAN).
VRRP is based on RFC 2338 and RFC 3768.
4.1
Feature Key
Advanced routing feature key must be enabled.
4.2
CLI Configuration and Status Commands
The following describes the CLI Configuration and Status commands.
4.2.1
Configuration Commands
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface
<Interface>
Configures an interface.
vrrp <VRID> ip <ip address>
Sets primary IP address for the VRID
vrrp <VRID> ip <ip address>
secondary
Sets secondary IP address for the VRID
vrrp <VRID> priority <priority>
Sets priority for VRID, range 1-254
vrrp <VRID> preempt
Sets preemption for lower priority Master
vrrp <VRID> advertisement-timer
<time in seconds>
4.2.2
Sets interval timer for advertising the Master
VRID
Status Commands
Command
Description
show data vrrp
Displays vrrp status
show data vrrp interface
<interface name>
Displays vrrp interface status.
show data vrrp brief
Displays vrrp brief status
# show data vrrp
VLAN 1 - Group 1
State is Master
Virtual IP address is 10.4.6.14
Advertisement interval is 1 sec
Preemption is enabled
Version 6.8
17
Mediant MSBR
IP Networking Configuration
Priority is 100
Master Router is 10.4.6.12 (local), priority is 100
Master Advertisement interval is 1 sec
Master Down interval is 3.609 sec
VLAN 2 - Group 1
State is Master
Virtual IP address is 10.7.5.4
Advertisement interval is 10 sec
Preemption is enabled
Priority is 120
Master Router is 10.7.7.7 (local), priority is 120
Master Advertisement interval is 10 sec
Master Down interval is 30.531 sec
# show data vrrp interface vlan 2
VLAN 2 - Group 1
State is Master
Virtual IP address is 10.7.5.4
Advertisement interval is 10 sec
Preemption is enabled
Priority is 120
Master Router is 10.7.7.7 (local), priority is 120
Master Advertisement interval is 10 sec
Master Down interval is 30.531 sec
# show data vrrp brief
Interface
Grp Pri Time,msec
addr
Group addr
VLAN 1000
2
100 765609
101.101.101.101 2.2.2.2
VLAN 1000
100 255 3003
101.101.101.101 101.101.101.101
VLAN 2
3
100 3609
10.50.50.50
200.200.200.200
VLAN 2
4
100 3609
10.50.50.50
10.4.3.2
VLAN 2
2
120 300531
10.50.50.50
10.9.9.9
Configuration Guide
18
Own Pre State
Y
Y
Master
Y
Y
Master
Y
Y
Master
Y
Y
Master
Y
Y
Master
Master
Document #: LTRT-31657
Configuration Guide
4.3
4. VRRP
VRRP Example
In the example below, there are two VRRP routers – one with IP 10.100.10.2 and one with
10.100.10.3. They use a common virtual IP address 10.100.10.1, where one is the Master
and the other is the Backup. In the example, we will use VRID 1 over VLAN 1.
Figure 4-1: VRRP Example
The Master will be the MSBR with the higher priority. For example:


Version 6.8
Master configuration:
Mediant 800B# configure data
Mediant 800B(config-data)# interface vlan 1
Mediant 800B(conf-if-VLAN 1)# vrrp 1 ip 10.100.10.1
Mediant 800B(conf-if-VLAN 1)# vrrp 1 priority 200
Mediant 800B(conf-if-VLAN 1)# exit
Mediant 800B(config-data)
Backup configuration:
Mediant 800B# configure data
Mediant 800B(config-data)# interface vlan 1
Mediant 800B(conf-if-VLAN 1)# vrrp 1 ip 10.100.10.1
Mediant 800B(conf-if-VLAN 1)# vrrp 1 priority 100
Mediant 800B(conf-if-VLAN 1)# exit
Mediant 800B(config-data)
19
Mediant MSBR
IP Networking Configuration
The following is an example of the show run command for two MSBRs:

Master:
M500 *# show run
# Running Configuration M500
## VoIP Configuration
configure voip
interface network-dev 0
name "vlan 1"
activate
exit
interface network-if 0
ip-address 192.168.10.2
prefix-length 24
gateway 192.168.10.1
name "Voice"
primary-dns 192.168.10.1
underlying-dev "vlan 1"
activate
exit
media udp-port-configuration
udp-port-spacing 10
activate
exit
voip-network realm 0
name "DefaultRealm"
ipv4if "Voice"
port-range-start 4000
session-leg 6154
port-range-end 65530
is-default true
activate
exit
megaco naming
physical-start-num 0 0
physical-start-num 1 1
physical-start-num 2 1
physical-start-num 3 0
physical-start-num 4 0
activate
exit
tdm
pcm-law-select mulaw
activate
exit
exit
Configuration Guide
20
Document #: LTRT-31657
Configuration Guide
4. VRRP
## System Configuration
configure system
cli-terminal
wan-ssh-allow on
wan-telnet-allow on
ssh on
idle-timeout 0
activate
exit
ntp
set primary-server "0.0.0.0"
activate
exit
snmp
no activate-keep-alive-trap
activate
exit
web
wan-http-allow on
set https-cipher-string "RC4:EXP"
activate
exit
configuration-version 0
exit
## Data Configuration
configure data
interface GigabitEthernet 0/0
ip address dhcp
ip dhcp-client default-route
mtu auto
desc "WAN Copper"
no ipv6 enable
speed auto
duplex auto
no service dhcp
ip dns server auto
napt
firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 200.0.0.2 255.255.255.252
mtu auto
desc "WAN Fiber"
no ipv6 enable
no service dhcp
ip dns server static
no napt
Version 6.8
21
Mediant MSBR
IP Networking Configuration
no firewall enable
no shutdown
exit
interface dsl 0/2
#DSL configuration is automatic
#Termination cpe
mode adsl
shutdown
exit
interface EFM 0/2
#This interface is DISABLED due to physical layer
configuration
no ip address
mtu auto
desc "WAN DSL"
no ipv6 enable
no service dhcp
ip dns server static
no shutdown
exit
interface GigabitEthernet 1/1
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/2
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/3
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/4
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface VLAN 1
ip address 10.100.10.2 255.255.255.0
vrrp 1 advertisement-timer 10
vrrp 1 priority 200
Configuration Guide
22
Document #: LTRT-31657
Configuration Guide
4. VRRP
vrrp 1 ip 10.100.10.1
mtu auto
desc "LAN switch VLAN 1"
no ipv6 enable
no napt
no firewall enable
no link-state monitor
no shutdown
exit
ip nat translation udp-timeout 120
ip nat translation tcp-timeout 86400
ip nat translation icmp-timeout 6
# Note: The following WAN ports are in use by system
services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
ip domain name home
ip domain localhost msbr
pm sample-interval minute 5
pm sample-interval seconds 15
exit

Slave:
M500 *# show run
# Running Configuration M500
## VoIP Configuration
configure voip
interface network-dev 0
name "vlan 1"
activate
exit
interface network-if 0
ip-address 192.168.10.2
prefix-length 24
gateway 192.168.10.1
name "Voice"
primary-dns 192.168.10.1
underlying-dev "vlan 1"
activate
exit
media udp-port-configuration
udp-port-spacing 10
activate
exit
Version 6.8
23
Mediant MSBR
IP Networking Configuration
voip-network realm 0
name "DefaultRealm"
ipv4if "Voice"
port-range-start 4000
session-leg 6154
port-range-end 65530
is-default true
activate
exit
megaco naming
physical-start-num 0 0
physical-start-num 1 1
physical-start-num 2 1
physical-start-num 3 0
physical-start-num 4 0
activate
exit
tdm
pcm-law-select mulaw
activate
exit
exit
## System Configuration
configure system
cli-terminal
wan-ssh-allow on
wan-telnet-allow on
ssh on
idle-timeout 0
activate
exit
ntp
set primary-server "0.0.0.0"
activate
exit
snmp
no activate-keep-alive-trap
activate
exit
web
wan-http-allow on
set https-cipher-string "RC4:EXP"
activate
exit
configuration-version 0
exit
Configuration Guide
24
Document #: LTRT-31657
Configuration Guide
4. VRRP
## Data Configuration
configure data
interface GigabitEthernet 0/0
ip address dhcp
ip dhcp-client default-route
mtu auto
desc "WAN Copper"
no ipv6 enable
speed auto
duplex auto
no service dhcp
ip dns server auto
napt
firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 200.0.0.3 255.255.255.252
mtu auto
desc "WAN Fiber"
no ipv6 enable
no service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dsl 0/2
#DSL configuration is automatic
#Termination cpe
mode adsl
shutdown
exit
interface EFM 0/2
#This interface is DISABLED due to physical layer
configuration
no ip address
mtu auto
desc "WAN DSL"
no ipv6 enable
no service dhcp
ip dns server static
no shutdown
exit
interface GigabitEthernet 1/1
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
Version 6.8
25
Mediant MSBR
IP Networking Configuration
interface GigabitEthernet 1/2
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/3
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/4
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface VLAN 1
ip address 10.100.10.3 255.255.255.0
vrrp 1 advertisement-timer 10
vrrp 1 priority 100
vrrp 1 ip 10.100.10.1
mtu auto
desc "LAN switch VLAN 1"
no ipv6 enable
ip dns server static
no napt
no firewall enable
no link-state monitor
no shutdown
exit
ip nat translation udp-timeout 120
ip nat translation tcp-timeout 86400
ip nat translation icmp-timeout 6
# Note: The following WAN ports are in use by system
services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
ip domain name home
ip domain localhost msbr
pm sample-interval minute 5
pm sample-interval seconds 15
exit
Configuration Guide
26
Document #: LTRT-31657
Configuration Guide
5
5. DHCP
DHCP
DHCP is a network protocol that allows network devices to acquire IPv4 address and
additional network configuration parameters automatically from a DHCP server. DHCP is
defined in RFC 2131 and the DHCP server options are defined in RFC 2132.
MSBR supports the following DHCP operation modes:
5.1

DHCP Client

DHCP Server

DHCP Relay
DHCP Client
The DHCP client operation mode allows the MSBR to acquire IPv4 addresses and network
configuration parameters automatically on its network interfaces.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface
gigabitethernet 0/0
Selects an interface to configure.
(config-if-VLAN-1)# ip address
dhcp
Configures the interface to acquire the IPv4
address and configuration via DHCP.
(config-if-VLAN-1)# ip dhcp-client
default-route
Configures the interface to use the gateway
address received via DHCP as the default route.
(config-if-VLAN-1)# ip dhcp-client
default-route track 1
Configures the interface to use the gateway
address received via DHCP as default route
when track 1 is up.
Note: If the track destination is remote, a static
route will automatically be added to reach it
through the gateway address.
(config-if-VLAN-1)# no service
dhcp
Disables the DHCP server service on the
interface.
Note: Track number cannot be configured using zero-conf.
Version 6.8
27
Mediant MSBR
IP Networking Configuration
5.2
DHCP Server
The DHCP server operation mode allows the MSBR to act as a DHCP server on the
network and to lease IPv4 addresses to network devices. The DHCP server functionality is
configured per interface.
Command
MSBR# configure data
(config-data)# interface VLAN 1
(config-if-VLAN-1)# ip dhcpserver network 192.169.12.10
192.169.12.20 255.255.255.0
(config-if-VLAN-1)# ip dhcpserver dns-server 0.0.0.0
(config-if-VLAN-1)# ip dhcpserver netbios-name-server
0.0.0.0
(config-if-VLAN-1)# ip dhcpserver netbios-node-type
(config-if-VLAN-1)# ip dhcpserver lease 0 1 0
(config-if-VLAN-1)# ip dhcpserver provide-host-name
(config-if-VLAN-1)# ip dhcpserver ntp-server 0.0.0.0
(config-if-VLAN-1)# ip dhcpserver tftp-server 0.0.0.0
(config-if-VLAN-1)# ip dhcpserver override-router-address
0.0.0.0
(config-if-VLAN-1)# ip dhcpserver next-server 0.0.0.0
Description
Enters the data configuration menu.
Selects an interface to configure.
Configures the start and end IP address for the
leased range and the network mask.
Configures the DNS server address that will be
advertised.
Configures the NetBIOS server address that will
be advertised.
Configures the NetBIOS node type.
Configures the lease timer for the IP addresses
(days , hours , and minutes).
Configures whether the server provides
hostnames for network devices.
Configures the NTP server IP address that will
be advertised.
Configures the TFTP server IP address that will
be advertised.
Configures the Default Gateway to advertise to
clients when not acting as a default gateway.
Configures the next TFTP server that can be
used to advertise.
(config-if-VLAN-1)# ip dhcpserver boot-file-name
Configures a boot file path/name that will be
advertised to clients (DHCP option 67).
(config-if-VLAN-1)# ip dhcpserver classless-static-route
Configures a static route that will be advertised to
clients (DHCP option 121).
(config-if-VLAN-1)# ip dhcpserver static-host HostName
(static-dhcp)# ip 1.1.1.1
(static-dhcp)# mac
AA:BB:CC:DD:EE:FF
(config-if-VLAN-1)# ip dhcpserver tftp-server-name
(config-if-VLAN-1)# ip dhcpserver time-offset
(config-if-VLAN-1)# ip dhcpserver tr069-acs-server-name
Configuration Guide
•
•
•
Enters the static address binding menu
Configures the MAC address for the binding.
Configures the IP address for the binding.
Configures the TFTP server name that will be
advertised to clients.
Configures the time-offset (GMT time zone) to be
advertised to clients (in seconds).
Configures ACS server IP to be advertised to
clients.
28
Document #: LTRT-31657
Configuration Guide
5. DHCP
Command
Description
(config-if-VLAN-1)# service dhcp
5.2.1
Enable the DHCP service on the interface.
DHCP Zones
DHCP zones enable a router to act as a DHCP server to several different subnets. Each
DHCP zone has its own IP address pool and an array of selectors indicating which
requests each zone accepts.
If zones are configured in addition to the DHCP configuration as above, this configuration is
referred to as the default zone.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface VLAN 1
Selects an interface to configure.
(config-if-VLAN-1)# ip dhcp-server
zone meep
Enters the configuration menu for zone meep
(conf-zone meep)# network 5.5.1.1
5.5.200.200 255.255.0.0
Configures the start and end IP addresses for the
zone’s leased range and the network mask. A
zone’s pool can’t conflict with any other zone’s IP
pool.
(conf-zone meep)# lease 0 1 0
Configures the lease timer for the IP addresses
(days, hours, and minutes) in the zone.
(conf-zone meep)# next-server
0.0.0.0
Configures the next TFTP server that can be
used to advertise. If not defined, the interface’s
IP address will be used as a default value.
(conf-zone meep)# dns 55.44.33.22
Configures the DNS server address that will be
advertised.
(conf-zone meep)#exit
(config-if-VLAN-1)# service dhcp
Exits the zone definition and starts the DHCP
service.
5.2.1.1
Selectors
Packet selectors can be defined on the following properties:

DHCP Option 60

DHCP Option 61 (client identifier)

DHCP Option 77 (user class option)

MAC Address

Relay agent which forwarded this packet to server
A packet will be accepted by a zone if it meets one or more of the selectors defined in it. If
a packet matches several zones, it will receive its IP from an arbitrary zone among them. If
a zone has no selectors defined, it can accept no requests.
Version 6.8
29
Mediant MSBR
IP Networking Configuration
The same selector can’t be defined in multiple zones.
Command
Description
(conf-zone meep)# selector option
60 MSBR
Accepts packets where the value of Option 60 is
exactly ‘MSBR’
(conf-zone meep)# selector option
60 substr MSBR
(conf-zone meep)# selector option
61 01008F58C0EE
(conf-zone meep)# selector option
61 prefix 01008F58
(conf-zone meep)# selector option
77 phone
(conf-zone meep)# selector option
77 substr phone
Accepts packets where the value of Option 60
contains ‘MSBR’, ex MSBR500
Accepts packets where the value of Option 61 is
the hex value 0x01008F58C0EE
Accepts packets where the value of Option 61
starts with the hex value 0x01008F58
Accepts packets where the value of Option 77 is
exactly ‘phone’
Accepts packets where the value of Option 77
contains ‘phone’, ex ip-phone
(conf-zone meep)# selector mac
00:8F:58:C0:22:EE
Accepts packets where the client’s mac address
is 00:8F:58:C0:22:EE
(conf-zone meep)# selector mac
prefix 00:8F:58
Accepts packets where the client’s mac address
starts with 00:8F:58
(conf-zone meep)# selector relay
3.3.3.3
(conf-zone meep)# selector relay
3.3.3.3 3.3.3.16
5.2.1.2
Accepts packets received from the relay agent
whose IP is 3.3.3.3
Accepts packets received from the relay agent
whose IP is in the range between 3.3.3.3 and
3.3.3.16
Default Zone
The DHCP server also has a default zone, which if configured will accept and respond to
any DHCP request that no other zone accepts. See configuration details above.
Configuration Guide
30
Document #: LTRT-31657
Configuration Guide
5.3
5. DHCP
DHCP Relay
The DHCP relay operation mode allows the MSBR to relay and forward DHCP packets
between different Layer-3 network segments, and between different interfaces.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface VLAN 1
Selects an interface to configure.
(config-if-VLAN-1)# ip dhcp-server
1.1.1.1
Version 6.8
Configures the IP address of the DHCP server
from which to relay messages.
31
Mediant MSBR
IP Networking Configuration
5.4
Example of DHCP Server and DHCP Client
This example configuration demonstrates a scenario in which the MSBR acts as a DHCP
server on the LAN network to which it is connected, and acquires its' WAN address using
DHCP (as a client).
Note: Acquiring a WAN address using DHCP and acting as a DHCP server on the LAN
is a common case, and describes a best-practice hierarchical DHCP functionality.
Figure 5-1: DHCP
On the WAN interface, the address is dynamically acquired once connectivity is
established with a DHCP server. On the LAN interface, you need to configure MSBR to
activate the DHCP service, specify the DHCP address pool, and which Default Gateway
address to advertise. In addition, we specify the lease timers and TFTP and DNS server
addresses to be advertised to DHCP clients.
5.4.1
DHCP Client Configuration Example (WAN Side)
MSBR# configure data
MSBR(conf-data)# interface GigabitEthernet 0/0
MSBR(conf-if-GE 0/0)# firewall enable
MSBR(conf-if-GE 0/0)# napt
MSBR(conf-if-GE 0/0)# ip address dhcp
MSBR(conf-if-GE 0/0)# ip dhcp-client default-route
MSBR(conf-if-GE 0/0)# no service dhcp
MSBR(conf-if-GE 0/0)# no shutdown
MSBR(conf-if-GE 0/0)# exit
5.4.2
DHCP Server Configuration Example (LAN Side)
MSBR# configure data
MSBR(conf-data)# interface VLAN 1
MSBR(conf-if-VLAN 1)# ip address 192.168.0.1 255.255.255.0
MSBR(conf-if-VLAN 1)# desc "VLAN 1 LAN VOIP"
MSBR(conf-if-VLAN 1)# ip dhcp-server network 192.168.0.10
192.168.0.20 255.255.255.0
MSBR(conf-if-VLAN 1)# ip dhcp-server lease 0 1 0
MSBR(conf-if-VLAN 1)# service dhcp
MSBR(conf-if-VLAN 1)# no shutdown
MSBR(conf-if-VLAN 1)# exit
Configuration Guide
32
Document #: LTRT-31657
Configuration Guide
5.5
5. DHCP
Example of DHCP Relay
This example configures the MSBR to accept DHCP packets from the configured IP
address, which will act as a DHCP relay.
MSBR# configure data
MSBR(conf-data)# ip dhcp-server 100.100.100.100 gigabitEthernet
0/0
5.6
Example of DHCP Server with Zones
In this example, the server is connected to three subnets via relay agents. For every
subnet, a zone is configured, in addition to a default zone.
Configure the first zone, which accepts packets with source mac addresses beginning with
00:33:22:
MSBR# configure data
(config-data)# interface VLAN 1
(config-if-VLAN-1)# ip dhcp-server zone z1
(conf-zone z1)# selector mac prefix 00:33:22
(conf-zone z1)#network 20.20.10.5 20.20.10.200 255.255.255.0
(conf-zone z1)#lease 0 1 0
(conf-zone z1)#exit
Configure the second zone, which accepts packets arriving via relay agents whose
addresses are in the 20.20.20.1-20.20.20.4 range:
(config-if-VLAN-1)# ip dhcp-server zone z2
(conf-zone z2)# selector relay 20.20.20.1 20.20.20.4
(conf-zone z2)#network 20.20.20.5 20.20.20.200 255.255.255.0
(conf-zone z2)#lease 0 1 0
(conf-zone z2)#exit
Version 6.8
33
Mediant MSBR
IP Networking Configuration
Configure the third zone, which accepts packets whose DHCP option 60’s value contains
the text “phone”:
(config-if-VLAN-1)# ip dhcp-server zone z3
(conf-zone z3)# selector option 60 substr phone
(conf-zone z3)#network 20.20.30.5 20.20.30.200 255.255.255.0
(conf-zone z3)#lease 0 1 0
(conf-zone z3)#exit
Configure the default zone to have an address pool in the same subnet as its IP and
activate the dhcp server:
(config-if-VLAN-1)# ip address 20.20.1.1 255.255.0.0
(config-if-VLAN-1)# ip dhcp-server 20.20.1.5 20.20.1.200
255.255.0.0
(config-if-VLAN-1)# ip dhcp-server lease 0 1 0
(config-if-VLAN-1)# service dhcp
Configuration Guide
34
Document #: LTRT-31657
Configuration Guide
5.7
5. DHCP
Output of show Commands
The following displays the output of the show commands.
5.7.1
show dhcp server leased ip addresses
MSBR# show data ip dhcp binding
Hostname
Ip address
Lease expiration
Test-Laptop
192.169.1.10
37
5.7.2
Mac address
e8:11:32:05:05:26
IF name
VLAN 1
show dhcp relay configuration display
MSBR# show data ip dhcp-server all
DHCP relay server of interface GigabitEthernet 0/0:
Relay Server is enabled.
Configured servers:
100.100.100.100
Version 6.8
35
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
36
Document #: LTRT-31657
Configuration Guide
6
6. DNS
DNS
Domain Name System (DNS) is a hierarchical naming system for computers, devices, or
any resources connected to a network. DNS is used to resolve hostnames into IP
addresses, and to enforce naming conventions for devices in the network and/or domain.
DNS configuration for devices can be either static – administrator configured – or acquired
dynamically through DHCP.
6.1
DNS Configuration
The following describes DNS configuration commands.
6.1.1
Global Configuration
The following is the global configuration of the DNS:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip dns server
<all|static>
Configures the DNS configuration method (static
or dynamic).
(config-data)# ip name-server
server1ip [server2ip] all
6.1.2
Configures DNS server(s) IP address in case of
static configuration.
Interface-specific Configuration
The following is the configuration of the DNS per interface:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface int_name
Selects an interface to configure
(config-if-name)# ip dns server
<dynamic|static>
Configures interface-specific DNS configuration
method: static or dynamic
(config-if-name)# ip name-server
server1ip [server2ip] all
Configures DNS server/s ip address in case of
static configuration on the interface
The MSBR can act as a DNS server. To configure the MSBR as a DNS server, use the
following commands:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip host <name> <ip
| ipv6> <ttl>



Version 6.8
37
<name>: any name for the host.
<ip | ipv6>: can configure IPv4 or IPv6 for the
name.
<TTL>: time to live of the DNS record.
Mediant MSBR
IP Networking Configuration
6.2
Example #1 of Basic Dynamic DNS Configuration
In this typical example scenario, the MSBR, acting as an access router for the
organizational network, receives the DNS server’s IP address dynamically through DHCP
on the WAN interface. The MSBR also acts as a DHCP server on the LAN, and by the
configuration ip name-server 0.0.0.0, the MSBR acts as a DNS server, relaying
DNS messages to the DNS server's IP address that it acquires dynamically on the WAN
interface.
Figure 6-1: Dynamic DNS
6.2.1
Configuration
MSBR# configure data
MSBR(conf-data)# interface GigabitEthernet 0/0
# WAN Interface is set as DHCP client
MSBR(conf-if-GE 0/0)# firewall enable
MSBR(conf-if-GE 0/0)# napt
MSBR(conf-if-GE 0/0)# ip address dhcp
MSBR(conf-if-GE 0/0)# ip dhcp-client default-route
MSBR(conf-if-GE 0/0)# ip dns-server auto
MSBR(conf-if-GE 0/0)# no shutdown
MSBR(conf-if-GE 0/0)# exit
MSBR(conf-data)# interface VLAN 1
# LAN Interface is set as DHCP server
MSBR(conf-if-VLAN 1)# ip address 192.168.0.1 255.255.255.0
MSBR(conf-if-VLAN 1)# desc "VLAN 1 LAN VOIP"
MSBR(conf-if-VLAN 1)# ip dhcp-server network 192.168.0.10
192.168.0.20 255.255.255.0
MSBR(conf-if-VLAN 1)# ip dhcp-server lease 0 1 0
MSBR(conf-if-VLAN 1)# ip dns server static
MSBR(conf-if-VLAN 1)# ip name-server 0.0.0.0
MSBR(conf-if-VLAN 1)# service dhcp
MSBR(conf-if-VLAN 1)# no shutdown
MSBR(conf-if-VLAN 1)# exit
Configuration Guide
38
Document #: LTRT-31657
Configuration Guide
6.2.2
6. DNS
Output and show Commands
MSBR# show data hosts
Interface name
DNS configuration Primary IP address
Secondary IP address
------------------------------------------------------------------------------------GigabitEthernet 0/0 Dynamic
80.179.52.100
80.179.55.100
Fiber 0/1
Static
0.0.0.0
0.0.0.0
VLAN 1
Static
0.0.0.0
0.0.0.0
Host
Version 6.8
Type
Parameters
39
Mediant MSBR
IP Networking Configuration
6.3
Example #2 of Basic Static DNS Configuration
In this typical example scenario, the MSBR, acting as an access router for the
organizational network, is configured with a static DNS server address. The MSBR also
acts as a DHCP server on the LAN, and by the configuration ip name-server
0.0.0.0, the MSBR acts as a DNS server, relaying DNS messages to the DNS server's
IP address that was provided statically or dynamically from the WAN interface.
Figure 6-2: Static DNS
6.3.1
Configuration
MSBR# configure data
MSBR(conf-data)# interface GigabitEthernet 0/0
MSBR(conf-if-GE 0/0)# firewall enable
MSBR(conf-if-GE 0/0)# napt
MSBR(conf-if-GE 0/0)# ip address dhcp
MSBR(conf-if-GE 0/0)# ip dhcp-client default-route
MSBR(conf-if-GE 0/0)# ip dns-server static
MSBR(conf-if-GE 0/0)# ip name-server 10.10.10.10
MSBR(conf-if-GE 0/0)# no service dhcp
MSBR(conf-if-GE 0/0)# no shutdown
MSBR(conf-if-GE 0/0)# exit
MSBR(conf-data)# interface VLAN 1
MSBR(conf-if-VLAN 1)# ip address 192.168.0.1 255.255.255.0
MSBR(conf-if-VLAN 1)# desc "VLAN 1 LAN VOIP"
MSBR(conf-if-VLAN 1)# ip dhcp-server network 192.168.0.10
192.168.0.20 255.255.255.0
MSBR(conf-if-VLAN 1)# ip dhcp-server lease 0 1 0
MSBR(conf-if-VLAN 1)# ip dns server static
MSBR(conf-if-VLAN 1)# ip name-server 0.0.0.0
MSBR(conf-if-VLAN 1)# service dhcp
MSBR(conf-if-VLAN 1)# no shutdown
Configuration Guide
40
Document #: LTRT-31657
Configuration Guide
7
7. Track
Track
This command tracks a destination IP address from a given source interface. The tracking
is done by sending ICMP probes and monitors the replies. If the destination is reachable,
the Track Status is set to ‘up’. When a configurable number of replies are not received, the
Track Status is set to ‘down’.
7.1
Configuring Track
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# track id icmpecho
destIP interface [source-ipinterface interface] [interval
val] [retries val]
7.2
Configures a Track to monitor reachability to
destIP from the interface.
Output
MSBR1# show data track brief
Track
Type
State
1
ICMP reachability Up
Max round trip time (m.s)
37
Get the time of up to the last 10 Track states:
MSBR1# show data track 1 history
Track history:
Version 6.8
New state
Up
Down
Up
Date and Time [MM-DD-YYYY@hh:mm:ss]
08-28-2015@18:17:40
08-28-2015@18:25:30
08-28-2015@18:26:20
41
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
42
Document #: LTRT-31657
Configuration Guide
8
8. Static Routing
Static Routing
Static routing is used when the router uses pre-defined, user-configured routing entries to
forward traffic. Static routes are usually manually configured by the network administrator
and are added to the routing table.
A Common use of static routes is for providing the gateway of a "last resort", i.e., providing
an instruction on how to forward traffic when no other route exists.
Static routes have a much lower administrative distance in the system than the dynamic
routing protocols, and in most scenarios are prioritized over the dynamic routes.
8.1
Configuring Static Routing
Command
Description
MSBR# configure data
Enter the data configuration menu.
(config-data)# ip route [vrf vrf]
destIP destMask [next-hop]
interface [A-distance] [track
number]
[output-vrf vrf]
8.2
Configure a static route by specifying the
destination prefix, an output interface and
optionally a next-hop address, the metric for the
route and a tracking object and output vrf.
Example of Basic Static Route Configuration
In this example, the MSBR1 needs to reach the 10.10.10.0/24 network segment from its
LAN. The destination segment is located somewhere in the network, behind MSBR2. This
example does not include the configuration of dynamic routing. For this to configuration to
work, MSBR1 needs to be configured to forward traffic to 10.10.10.0/24 through MSBR2’s
network interface, interfacing with MSBR1, whose address is 10.0.12.20.
Figure 8-1: Static Routing
8.2.1
Configuration
MSBR1# configure data
MSBR1(config-data)# ip route 10.10.10.0 255.255.255.0 100.0.12.20
gigabitethernet 0/0
MSBR1(config-data)#
Version 6.8
43
Mediant MSBR
IP Networking Configuration
8.2.2
Output
MSBR1# show running-config data
Configure data
******************************************************************
**
General configuration omitted, assume that configured as in
diagram
******************************************************************
**
ip route 10.10.10.0 255.255.255.0 100.0.12.20 GigabitEthernet 0/0
1
exit
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
C
0/0
C
S
1.1.1.12/32 [1/4] is directly connected, Loopback 1
100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
192.169.12.0/24 [1/4] is directly connected, VLAN 1
10.10.10.0/24 [1/1] via 100.0.12.20, GigabitEthernet 0/0
Configuration Guide
44
Document #: LTRT-31657
Configuration Guide
8.3
8. Static Routing
Example of "Floating” Static Route and Track
In this example, the MSBR1 needs to reach the 10.10.10.0/24 network segment from its
LAN. The destination network segment is reachable from both MSBR-R-WAN1 and MSBRR-WAN2; however, this example assumes that due to routing considerations, the route
through MSBR-R-WAN1 is preferable. Static routes will be configured through both of the
MSBRs, while the one pointing to MSBR-R-WAN2 will have lower metric value and will be
linked with a tracking object.
Figure 8-2: Multi WAN with Floating Static Route
If connectivity through MSBR2 fails, the tracking mechanism deletes the static route
pointing to MSBR-R-WAN1 from the local MSBR's routing table and the second, higher
metric value static route is used.
8.3.1
Configuration
MSBR1# show run data
Configure data
******************************************************************
**
General configuration omitted, assume that configured as in
diagram
******************************************************************
**
track 1 IcmpEcho 100.0.12.20 GigabitEthernet 0/0 interval 2
retries 2
ip route 10.10.10.0 255.255.255.0 100.0.12.20 GigabitEthernet
0/0 30 track 1
ip route 10.10.10.0 255.255.255.0 100.0.12.30 GigabitEthernet
0/0 50
Exit
MSBR1# show data track brief
Track
Type
time (m.s)
1
ICMP reachability
State
Max round trip
Up
21
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
C
0/0
C
S
Version 6.8
1.1.1.12/32 [1/4] is directly connected, Loopback 1
100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
192.169.12.0/24 [1/4] is directly connected, VLAN 1
10.10.10.0/24 [1/30] via 100.0.12.20, GigabitEthernet 0/0
45
Mediant MSBR
IP Networking Configuration
S

10.10.10.0/24 [1/50] via 100.0.12.30, GigabitEthernet 0/0
After reachability failure to MSBR2:
MSBR1# show data track brief
Track
time (m.s)
1
Type
State
Max round trip
ICMP reachability
Down
-218137
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
C
0/0
C
S
1.1.1.12/32 [1/4] is directly connected, Loopback 1
100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
192.169.12.0/24 [1/4] is directly connected, VLAN 1
10.10.10.0/24 [1/50] via 100.0.12.30, GigabitEthernet 0/0
MSBR-R-WAN1#
Configuration Guide
46
Document #: LTRT-31657
Configuration Guide
9
9. Manipulating the Routing Table
Manipulating the Routing Table
MSBR’s routing table contains the “best” routes the device is familiar with to known
destinations; however, how does it decide which route is the better route to a destination?
MSBR starts by examining the prefixes and prefix lengths. The same prefixes, however
with different prefix lengths are considered as different destinations, and as a rule, the most
specific prefix always “wins” in a tie. Next, for destinations with the same prefixes and
prefix lengths, the decision is made according to the lower Administrative Distance (AD) of
the protocol it was learned from. Next, if there are two routes with similar AD, the one with
the lower metric wins. The product of this decision process is the “best” route to a specific
network destination.
The parameters which determine the best route are configurable, i.e. a network
administrator can influence of the determination of this route by configuring the AD of the
protocols running on the MSBR (OSPF, RIP, BGP, and Static) and the metrics of the
specific protocols, for example, changing BGP attributes, changing BW for OSPF and,
changing metrics for static routes, etc.).
Version 6.8
47
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
48
Document #: LTRT-31657
Configuration Guide
10
10. Administrative Distance
Administrative Distance
The parameter that is used by the MSBR to rate the priority of routing information from the
different routing domains is called the Administrative Distance and the system default ADs
are as follows:

Connected – 1 (can’t be changed)

Static – 1

RIP - 120

OSPF - 110

BGP – 200/20 (iBGP / eBGP)
(can’t be changed)
If the router learns how to reach the same subnet from two different sources, the subnet
with the lower AD is added in the routing table.
It is important to understand that the MSBR's routing table does not necessarily represent
all the routes known to the MSBR, merely the best ones, while every route protocol has a
routing database of its own for storing known routes.
When a routing decision is made and there are two routes in the routing table with the
same prefix, with two similar AD values, the decision is reached according to the metric
parameter.
10.1
Examples of Configuring AD for Various Protocols
The following examples configure AD for various protocols.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router
<OSPF|BGP|RIP>
Enters routing protocol configuration mode.
(config-router)# distance distance
Configures the AD for the selected dynamic
routing protocol.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip route
prefix/length next-hop interface
[metric]
Version 6.8
Configures a static route with a non-default
metric.
49
Mediant MSBR
IP Networking Configuration
10.2
Example of Changing Default AD for a Dynamic
Routing Protocol
The following examples configure AD for various protocols.
10.2.1 Configuration
This example changes the default AD for the RIP dynamic routing protocol.
Assume a pre-configured network with the correct RIP routing according to the following
diagram:
Figure 10-1: Changing RIP Protocol AD
 To demonstrate the effect of the AD change, configure the following:
MSBR1# configure data
MSBR1(config-data)# router rip
MSBR1(conf-router)# distance 60
10.2.2 Output

Before the change:
MSBR(conf-router)#
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
1.1.1.12/32 [1/4] is directly connected, Loopback 1
C
100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0
C
192.169.0.0/24 [1/4] is directly connected, VLAN 1
R
192.168.0.0/24 [120/2] via 100.0.12.30, Gigabit Ethernet
0/0, 00:00:58

After the change:
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
1.1.1.12/32 [1/4] is directly connected, Loopback 1
C
100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0
C
192.169.0.0/24 [1/4] is directly connected, VLAN 1
Configuration Guide
50
Document #: LTRT-31657
Configuration Guide
10. Administrative Distance
R
192.168.0.0/24 [60/2] via 100.0.12.30, GigabitEthernet
0/0, 00:00:21
10.3
Example of Configuring Static Route with Custom
Metric
The following is an example of configuring static route with custom metric.
10.3.1 Configuration
In the event where there is a prefix that needs to be reached and is located behind
MSBR2, you need to configure a static route on MSBR1 that points to this prefix through
MSBR2’s interface towards MSBR1.
Figure 10-2: Changing Static Route Metric
Configure this static route with a non-default metric:
MSBR1# configure data
MSBR1(config-data)# ip route 10.10.10.0 255.255.255.0 100.0.12.20
gigabitethernet 0/0 50
MSBR1(config-data)#
10.3.2 Output
MSBR1# show running-config data
Configure data
******************************************************************
**
General configuration omitted, assume that configured as in
diagram
******************************************************************
**
ip route 10.10.10.0 255.255.255.0 100.0.12.20 GigabitEthernet 0/0
50
exit
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
Version 6.8
1.1.1.12/32 [1/4] is directly connected, Loopback 1
51
Mediant MSBR
IP Networking Configuration
C
0/0
C
S
100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
192.169.12.0/24 [1/4] is directly connected, VLAN 1
10.10.10.0/24 [1/50] via 100.0.12.20, GigabitEthernet 0/0
Configuration Guide
52
Document #: LTRT-31657
Configuration Guide
11
11. Dynamic IP Routing
Dynamic IP Routing
While the concept of data IP routing deals with getting data from point A to point B over the
network, it is important to note that there are two distinct methods for doing this:

Static routing: specifically and manually pointing the router as to through which nexthop to route to which destination.

Dynamic routing: configuring a dynamic routing protocol on all the routers in the
network, enabling them to become aware of each other and the different subnets in
the network and dynamically learn the best route to each destination.
The advantages of dynamic routing are clear – it is automated, adaptive, makes routers
network-aware and provides even redundant routing paths.
This chapter elaborates on the different dynamic routing protocols that are supported by
the MSBR.
11.1
RIP Routing Protocol
Routing Information Protocol (RIP) is a dynamic routing protocol from the Distance Vector
family which uses hop-count as a routing metric. The protocol is limited to 15 hops per
route, which prevents loops; however also limits the network size and scalability.
Low metric routes are considered “better” and a route with hop count (metric) of 16 is
considered “unreachable”.
RIP is considered a “chatty” and bandwidth consuming protocol due to the fact it “floods” its
routing database once in a period (default is 30 seconds).
RIP can work both in broadcast and unicast modes (without or with peers, respectively).
The MSBR supports both RIP versions, RIPv1 (RFC 1058) and RIPv2 (RFC 2453).
11.1.1 Configuring RIP
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router rip
Enters the RIP configuration mode.
(conf-router)# default-information
originate
Configures whether to advertise the default
route.
(conf-router)# default-metric
metric
Configures the metric for redistributed routes.
(conf-router)# distance distance
Configures the AD for the protocol.
(conf-router)# distribute-list
prefix list-name <in/out>
interface
Configures filtering of incoming/outgoing routing
updates.
(conf-router)# neighbor IPaddress
password Password
Configures a neighbor with secured session
password.
(conf-router)# neighbor IPaddress
Configures a neighbor router.
(conf-router)# network interface
(conf-router)# network
prefix/prefLen
Configures a network or interface upon which to
enable RIP routing.
(conf-router)# passive-interface
interface
Configures suppression of routing updates on an
interface.
(conf-router)# redistribute
protocol metric metric [route-map
Configures redistribution of routes from other
Version 6.8
53
Mediant MSBR
IP Networking Configuration
Command
Description
name]
protocols into RIP.
(conf-router)# route prefix/length
Adds a RIP static route.
(conf-router)# route-map RMname
<in/out> interface interface
Configures a route-map for the RIP routing.
(conf-router)# timers basic value
Configures the routing table update timer.
(conf-router)# version <1/2>
Configures which RIP version to run.
Rip interface configuration:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface
GigabitEthernet 0/0
Enters the interface configuration mode.
(conf-if-GE 0/0)# ip rip
receive
Rip version for received packets.
(conf-if-GE 0/0)# ip rip
send
Rip version for sent packets.
(conf-if-GE 0/0)# ip rip
split-horizon
Perform split horizon.
Rip general configuration:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# key chain
Configuration Guide
Rip Authentication key management.
54
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
11.1.2 Example of RIP Routing
This example demonstrates a LAN network scenario
connection to the WAN is through RIP.
with an MSBR, where the
Figure 11-1: RIP Routing
11.1.2.1 Configuration


Version 6.8
MSBR1:
MSBR1# configure data
MSBR1(config-data)# router rip
MSBR1(conf-router)# network vlan 1
MSBR1(conf-router)# network gigabitethernet 0/0
MSBR1(conf-router)# neighbor 100.0.12.20
MSBR1(conf-router)# version 2
MSBR1(conf-router)# timers basic 60
MSBR2:
MSBR2# configure data
MSBR2(config-data)# router rip
MSBR2(conf-router)# network vlan 1
MSBR2(conf-router)# network gigabitethernet 0/0
MSBR2(conf-router)# neighbor 100.0.12.10
MSBR2(conf-router)# version 2
MSBR2(conf-router)# timers basic 60
55
Mediant MSBR
IP Networking Configuration
11.1.2.2 Output and show Commands
MSBR# show data ip rip
Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP
Sub-codes:
(n) - normal, (s) - static, (d) - default, (r) redistribute,
(i) - interface
Network
C(i) 100.0.0.0/16
R(n) 192.168.0.0/24
02:34
C(i) 192.169.12.0/24
Next Hop
0.0.0.0
100.0.12.20
0.0.0.0
Metric From
Tag Time
1 self
0
2 100.0.12.20 0
1 self
0
A network learned
via RIP protocol
MSBR# show data ip rip status
Routing Protocol is "rip"
Sending updates every 30 seconds with +/-50, next due in 1041379202 seconds
Timeout after 180 seconds, garbage collect after 120 seconds
Outgoing update filter list for all interface is not set
Incoming update filter list for all interface is not set
Default redistribution metric is 1
Redistributing:
Default version control: send version 2, receive version 2
Interface
Send Recv
Key-chain
VLAN 1
2
2
GigabitEthernet 0/0
2
2
Routing for Networks:
GigabitEthernet 0/0
List of RIP peers and parameters
VLAN 1
100.0.12.20
Routing Information Sources:
Gateway
BadPackets BadRoutes Distance Last Update
100.0.12.20
163
0
120
00:00:08
Distance: (default is 120)
Configuration Guide
56
Document #: LTRT-31657
Configuration Guide
11.2
11. Dynamic IP Routing
OSPF Routing Protocol
Open Shortest Path First (OSPF) is a dynamic routing protocol from the Link-State family,
basing its routing decisions on the bandwidth parameter using the Dijkstra Algorithm. The
protocol establishes adjacencies with other OSPF routers to which it’s connected, and
maintains detailed topology and routing tables. OSPF provides fast network convergence
and great scalability. The version of the protocol that is being used is OSPFv2 (RFC 2328).
11.2.1 Configuring OSPF
The following describes how to configure OSPF.
11.2.1.1 Router-Configuration Level
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router ospf
Enters the OSPF configuration mode.
(conf-router)# area area
authentication [message-digest]
Configures authentication in the specified area.
(conf-router)#area area defaultcost cost
Configures default summary cost for stub and
NSSA areas.
(conf-router)#area area filterlist prefix list <in/out>
Configures filtering of networks between OSPF
areas.
(conf-router)#area area nssa [nosummary|translatealways|translatecandidate|translate-never]
Configures the specified area as nssa.
(conf-router)# area area range
prefix/length [advertise|cost|notadvertise|substitude]
Configures summarization of routes that match
the specified prefix.
(conf-router)#area area stub [nosummary]
Configures the specified area as stub or totally
stubby.
(conf-router)# auto-cost
reference-bandwidth bandwidth
Configures auto-calculation of interface cost
using the provided reference cost.
(conf-router)# compatible rfc1583
Configures the protocol to be compatible with
RFC 1583 (summary route cost calculation).
(conf-router)# default-information
originate [always|metric|metrictype|route-map]
Configures the advertisement of default route.
(conf-router)# default-metric
metric
Configures the default metric for redistributed
routes.
(conf-router)# distance distance
Configures the AD for OSPF routes in the
system.
(conf-router)# distance ospf
<external/inter-area/intra-area>
distance
Configures the AD for the different types of
OSPF routes in the system.
(conf-router)# log-adjacencychanges [detail]
Configures the system to log changes in OSPF
peers adjacency state changes.
Version 6.8
57
Mediant MSBR
IP Networking Configuration
Command
Description
(conf-router)# max-metric routerlsa <administrative/onshutdown/on-startup> seconds
Configures the system to advertise
maximum-metric (infinite-distance) for OSPF
routes.
(conf-router)# neighbor address
[poll-interval seconds] [priority
priority ]
Configures neighbor IP address when
connected to a non-broadcast network.
(conf-router)# network
prefix/length area area
Configures OSPF routing and advertisement on
an IP network.
(conf-router)# ospf abr-type
<cisco/ibm/shortcut/standard>
Configures the OSPF ABR implementation type.
(conf-router)# ospf
rfc1583comptibility
Enables the RF1583 compatibility flag (OSPF
cost calculation in summarized routes).
(conf-router)# ospf router-id
router-id
Configures the router-id for the OSPF process.
(conf-router)# passive-interface
interface
Configures an interface to not participate in the
OSPF routing.
(conf-router)# redistribute
<bgp/connected/kernel/rip/static>
[metric metric] [metric-type 1/2]
[route-map map]
Configures redistribution of routes from another
protocol into OSPF.
(conf-router)# refresh timer
seconds
Configures the refresh timer for LSAs in the
OSPF LSDB.
(conf-router)# router-id router-id
Configures the router-id for the OSPF process.
(conf-router)# timers spf
chanedelay holdtime
Configures OSPF SPF timers: delay between
change and calculation, and the hold-time
between calculations.
(conf-router)# timers throttle spf
delay initialhold maxhold
Configures the OSPF hold timers: delay from
change to calculation, initial hold timer, and the
maximum hold timer.
11.2.1.2 Interface-Configuration Level
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface interface
Enters the interface configuration mode.
(conf-if-int)# ip ospf
authentication [ address /messagedigest/null ]
Configures the type of OSPF authentication to
use on the specified interface.
(conf-if-int)# ip ospf
authentication-key auth-key
Configures the authentication key to be used on
the specified interface in case authentication is
configured.
(conf-if-int)# ip ospf cost cost
Configures the OSPF cost for the specified
interface.
(conf-if-int)# ip ospf <hellointerval/dead-interval> seconds
Configures the Hello and Dead timer for OSPF
to use on the specified interface.
Configuration Guide
58
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
Command
Description
(conf-if-int)# ip ospf messagedigest-key key md5 password
[address]
Configures the MD5 key to use for
message-digest authentication.
(conf-if-int)# ip ospf mtu-ignore
Configures to ignore the MTU mismatch
detection on the specified interface.
(conf-if-int)# ip ospf network
<broadcast/non-broadcast/point-tomultipoint/point-to-point>
Configures the network type the interface
connects to (has effects on adjacency formation
and message forwarding).
(conf-if-int)# ip ospf priority
priority
Configures the OSPF priority of the specified
interface (used for DR election).
(conf-if-int)# ip ospf retransmitinterval seconds
Configures the time between retransmitting lost
LSAs.
(conf-if-int)# ip ospf transmitdelay seconds
Configures the link state transmit delay.
11.2.2 Example of OSPF Routing
The example shown below demonstrates a typical scenario where an MSBR acts as a
default gateway for a LAN network, and connects to the WAN network using the OSPF
protocol. The example includes a single-area (area 0) OSPF network; however, in more
complex and large-scale networks, multi-area topology may be more adequate in terms of
scalability.
Figure 11-2: OSPF Routing
The following configuration demonstrates a basic OSPF configuration in which OSPF is
activated on the LAN interfaces (for advertisement) and on the WAN interfaces (for
adjacency forming). The router-ids are explicitly configured to the addresses of loopback
interfaces configured on the MSBR. Adjacency change logging is activated for debugging.
The OSPF timers are configured on the WAN interfaces of the MSBRs and should always
be matched on both ends to avoid adjacency flapping.
******************************************************************
IP address configuration is omitted, assume it is as described in
the topology above.
******************************************************************
MSBR1:
MSBR1# configure data
MSBR1(config-data)# router ospf
MSBR1(conf-router)# network 100.0.12.0/24 area 0
MSBR1(conf-router)# network 192.168.12.0/24 area 0
MSBR1(conf-router)# router-id 1.1.1.12
Version 6.8
59
Mediant MSBR
IP Networking Configuration
MSBR1(conf-router)# log-adjacency-changes
MSBR1(conf-router)# exit
MSBR1(config-data)# interface gigabitEthernet 0/0
MSBR1(conf-if-GE 0/0)# ip ospf hello-interval 1
MSBR1(conf-if-GE 0/0)# ip ospf dead-interval 3
MSBR2:
MSBR2# configure data
MSBR2(config-data)# router ospf
MSBR2(conf-router)# network 100.0.12.0/24 area 0
MSBR2(conf-router)# network 192.168.12.0/24 area 0
MSBR2(conf-router)# router-id 1.1.1.22
MSBR2(conf-router)# log-adjacency-changes
MSBR2(conf-router)# exit
MSBR2(config-data)# interface gigabitEthernet 0/0
MSBR2(conf-if-GE 0/0)# ip ospf hello-interval 1
MSBR2(conf-if-GE 0/0)# ip ospf dead-interval 3
11.2.3 Useful Output and show Commands
MSBR2# show data ip ospf neighbor
Neighbor ID Pri State
RXmtL RqstL DBsmL
1.1.1.12
1 Full/Backup
GigabitEthernet 0/0:10.31.2.8
Dead Time Address
0
Interface
38.143s 100.0.12.10
0
0
MSBR2# # sh d ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B – BGP
OSPF Neighbor Details
C
1.1.1.22/32 [1/4] is directly connected, Loopback 1
C
100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
0/0
C
192.168.0.0/24 [1/4] is directly connected, VLAN 1
O
192.169.12.0/24 [110/20] via 100.0.12.10,
GigabitEthernet0/0,01:30:46
A network learned via
OSPF protocol
MSBR2# show data ip ospf
OSPF Routing Process, Router ID: 1.1.1.22
Supports only single TOS (TOS0) routes
This implementation conforms to RFC2328
RFC1583Compatibility flag is disabled
Initial SPF scheduling delay 200 millisec(s)
Minimum hold time between consecutive SPFs 1000 millisec(s)
Maximum hold time between consecutive SPFs 10000 millisec(s)
Hold time multiplier is currently 2
SPF algorithm last executed 1m01s ago
SPF timer is inactive
Refresh timer 10 secs
Number of external LSA 0. Checksum Sum 0x00000000
Configuration Guide
60
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
Number of areas attached to this router: 1
All adjacency changes are logged
Area ID: 0.0.0.0 (Backbone)
Number of interfaces in this area: Total: 2, Active: 2
Number of fully adjacent neighbors in this area: 1
Area has no authentication
SPF algorithm executed 8 times
Number of LSA 3
Number of router LSA 2. Checksum Sum 0x00009eee
Number of network LSA 1. Checksum Sum 0x00005e16
Number of summary LSA 0. Checksum Sum 0x00000000
Number of ASBR summary LSA 0. Checksum Sum 0x00000000
Number of NSSA LSA 0. Checksum Sum 0x00000000
Version 6.8
61
Mediant MSBR
IP Networking Configuration
11.3
Border Gateway Protocol (BGP)
BGP is a standardized exterior gateway protocol (EGP) for exchanging routing and
reachability information between routers on different Autonomous Systems (AS’s) in large
scale, internet provider and public internet networks.
It does not use the metrics used by IGP protocols (such as RIP, OSPF, EIGRP, ISIS),
however, makes its routing decisions based on paths, network policies and custom rules
configured by network administrators.
BGP is more stable and much less “chatty” protocols than the common IGP protocols, and
does not form adjacencies unless specifically configured. The formed adjacencies are
connection oriented and based on TCP connections.
BGP is the main routing protocol of internet service providers and the Internet.
11.3.1 Configuring BGP
The following describes the commands for configuring BGP.
11.3.1.1 Address-Family Level Configuration (configuration can also be set
without entering the AF mode)
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router bgp asnumber
Enters the BGP configuration mode and the
number of the local autonomous system.
(conf-router)# address-family ipv4
[unicast]
Enters the address-family configuration mode.
(conf-router-af)# aggregateaddress prefix/[length][as-set]
[summery-only]
Configures BGP aggregate entries.
(conf-router-af)# bgp dampening
[1-45]
Configures route-flap dampening.
(conf-router-af)# neighbor address
activate
Enables the address family for the specified
neighbor.
(conf-router-af)# neighbor address
aloowas-in [occ.]
Accepts as-path with local AS present in it.
(conf-router-af)# neighbor address
attribute-unchanged [aspath/med/next-hop]
Configures unchanged propagation of the
specified attribute to the neighbor.
(conf-router-af)# neighbor address
capability orf prefix-list
<both/receive/send>
Advertises ORF capability to the specified
neighbor.
(conf-router-af)# neighbor address
default-originate [route-map]
Advertises default route to the specified
neighbor.
(conf-router-af)# neighbor address
filter-list name <in/out>
Configures BGP AS-Path filter list.
(conf-router-af)# neighbor address
maximum-prefix num [threshold]
[restart] [warning-only]
Configures a maximum number of prefixes that
can be learned from the specified neighbor.
(conf-router-af)# neighbor address
Configuration Guide
Configures advertisement of self as next-hop for
62
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
Command
Description
next-hop-self
routing.
(conf-router-af)# neighbor address
peer-group name
Configures as member of a peer-group.
(conf-router-af)# neighbor address
prefix-list name <in/out>
Configures filtering of updates to/from the
specified neighbor.
(conf-router-af)# neighbor address
remove-private-as
Removes the private AS number from outbound
updates.
(conf-router-af)# neighbor address
route-map name
<export/import/in/out>
Configures to apply a route-map to a neighbor.
(conf-router-af)# neighbor address
route-reflector-client
Configures neighbor as a route reflector client.
(conf-router-af)# neighbor address
route-server-client
Configures neighbor as route server client.
(conf-router-af)# neighbor address
send-community
[both/extended/standard]
Configures to send community attributes to the
specified neighbor.
(conf-router-af)# neighbor address
soft-reconfiguration inbound
Configures per-neighbor soft reconfiguration.
(conf-router-af)# neighbor address
unsuppresse-map
Configures a route-map to selectively
un-suppress suppressed routes.
(conf-router-af)# network
prefix/[length] [route-map name]
Version 6.8
Configures a network to be announced via BGP
protocol.
63
Mediant MSBR
IP Networking Configuration
11.3.1.2 General Configuration
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router bgp asnumber
Enters the BGP configuration mode and the
number of the local autonomous system.
(conf-router)# bgp always-comparemed
Configures to always compare MED attribute
from different neighbors.
(conf-router)# bgp bestpath <aspath/compare-routerid/med>
Changes the default parameter for best path
selection.
(conf-router)# bgp client-toclient reflection
Configures Client-to-Client route reflection.
(conf-router)# bgp cluster-id
cluster-id
Configures route-reflector cluster-id.
(conf-router)# bgp confederation
<peers/identifier>
Configures BGP confederation parameters.
(conf-router)# bgp dampening
[time]
Configures route-flap dampening.
(conf-router)# bgp default <localpreference/ipv4-unicast>
Configures BGP default parameters.
(conf-router)# bgp deterministicmed
Configures to pick best-MED path advertised
from neighbors.
(conf-router)# bgp enforce-firstas
Configures to enforce the first AS for EBGP
routes.
(conf-router)# bgp fast-externalfailover
Configures to reset the session when a link to a
directly connected neighbor goes down.
(conf-router)# bgp gracefulrestart [stalepath-time]
Configures BGP graceful restart parameters.
(conf-router)# bgp log-neighborchanges
Configures to log changes in neighbors state
and reason.
(conf-router)# bgp network importcheck
Configures BGP to check whether network route
exists in IGP.
(conf-router)# bgp router-id
router-id
Configures a router-id manually.
(conf-router)# bgp scan-time sec
Configures the background scanner interval.
(conf-router)# distance dist [bgp
internal external local ]
Configures the administrative distance and BGP
distances.
(conf-router)# neighbor address
Configure BGP neighbor address and
parameters.
(conf-router)# network
prefix/[length] [route-map name]
Configures a network to be announced via BGP
protocol.
(conf-router)# redistribute
protocol [metric] [route-map]
Configures redistribution of routes from other
routing protocols into BGP.
(conf-router)#timers bgp keepalive
holdtime
Configuration Guide
Configures routing timers.
64
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
Note: When applying the configuration, some changes may require a process/peer clear
to take effect. To perform a process clear, the following command can be used.
MSBR# clear ip bgp [AS] [address] [dampening] [external] [peergroup] [view] [*]

AS: Clears peers with the AS number

Address: BGP neighbor IP address to clear

Dampening: Clears route flap dampening information

External: Clears all external peers

Peer-group: Clears all members of peer-group

View: BGP view

* : Clears all peers
It is typically recommended to use the clear ip bgp * command. This clears all the
peers and their TCP sessions, allowing for configuration changes to take effect.
11.3.2 Example of Basic BGP WAN Connectivity
Figure 11-3: Basic BGP Routing
This example shows a basic and a very common BGP WAN connectivity. The local MSBR
establishes a BGP adjacency with the ISP router and receives a default route it, enabling it
full connectivity to the “outer world”.
Usually in scenarios like this, the internal (LAN) network segment is allocated by the ISP
and allows it to be routed across the ISP network.
11.3.2.1 Configuration
MSBR# configure data
MSBR(conf-router)# router bgp 65000
MSBR(conf-router)# bgp router-id 1.1.1.1
MSBR(conf-router)# bgp log-neighbor-changes
MSBR(conf-router)# network 100.0.12.0/24
MSBR(conf-router)# network 192.168.0.0/24
MSBR(conf-router)# neighbor 100.0.12.10 remote-as 55101
MSBR(conf-router)# exit
Version 6.8
65
Mediant MSBR
IP Networking Configuration
11.3.2.2 Output
The output shows local parameters of the BGP process and also the established BGP
adjacencies:
MSBR# show data ip bgp summary
BGP router identifier 1.1.1.1, local AS number 65000
RIB entries 3, using 264 bytes of memory
Peers 1, using 4488 bytes of memory
Neighbor
V
AS MsgRcvd MsgSent
Up/Down State/PfxRcd
100.0.12.10
4 55101
100
100
01:36:56
2
TblVer
0
InQ OutQ
0
0
Total number of neighbors 1
MSBR#
The following output shows that the router learns a default route through ISP BGP peer:
MSBR# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
100.0.12.0/24 is directly connected, GigabitEthernet 0/0
C
192.168.0.0/24 is directly connected, VLAN 1
B
0.0.0.0/0 [20/0] via 100.0.12.10, GigabitEthernet 0/0,
01:30:46
MSBR#
11.3.3 Example 2
51B
The example shows a scenario in which an organization is connected to the public internet
through two ISPs. This is often called a Multi-WAN configuration and it provides high
availability and redundancy of the internet connection. It is demonstrated that both ISPs
advertise a default route through the BGP protocol, and are prioritized by manually
changing the BGP Weight attribute.
Figure 11-4: BGP Multi-WAN
Configuration Guide
66
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
11.3.3.1 Configuration
*******************************************
Basic Configuration omitted
*******************************************
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
router bgp 65000
bgp router-id 1.1.1.1
bgp log-neighbor-changes
network 100.0.12.0/24
network 200.0.5.0/24
network 192.168.0.0/24
neighbor 100.0.12.20 remote-as 55101
neighbor 100.0.12.20 Activate
neighbor 200.0.5.20 remote-as 55202
neighbor 200.0.5.10 Activate
The configuration includes two important parts:

The basic configuration defines the networks to be advertised and routed, and the
neighbors to which to establish adjacency.

The second part of the configuration deals with prioritizing the routes received from
neighbors. Given the fact that a default route is received via the BGP protocols from
both neighbors, you need to give one of them a higher priority (better metric). This is
performed using a route-map that tweaks the “Weight” BGP attribute of incoming
route-updates, and the one with the higher Weight value gets inserted into the routing
table.
Version 6.8
67
Mediant MSBR
IP Networking Configuration
11.3.3.2 Output

BGP adjacency status:
MSBG# show data ip bgp sum
BGP router identifier 1.1.1.1, local AS number 65000
RIB entries 3, using 264 bytes of memory
Peers 2, using 8976 bytes of memory
Neighbor
V
AS MsgRcvd MsgSent
Up/Down State/PfxRcd
100.0.12.20
4 55101
120
139
01:04:09
1
200.0.5.20
4 55202
158
166
00:00:35
1
TblVer
InQ OutQ
0
0
0
0
0
0
Total number of neighbors 2
MSBG#

MSBR routing table:
MSBR # show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
C
C
B
100.0.12.0/24 is directly connected, GigabitEthernet 0/0
192.168.0.0/24 is directly connected, VLAN 1
200.0.5.0/24 is directly connected, Fiber 0/3
0.0.0.0/0 [20/0] via 200.0.5.20, Fiber 0/3, 00:51:25
MSBR #

If the main ISP fails:
MSBR# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
100.0.12.0/24 is directly connected, GigabitEthernet 0/0
C
192.168.0.0/24 is directly connected, VLAN 1
B
0.0.0.0/0 [20/0] via 100.0.12.20, GigabitEthernet 0/0,
00:00:06
MSBR#
Configuration Guide
68
Document #: LTRT-31657
Configuration Guide
11.4
11. Dynamic IP Routing
Advanced Routing Examples
The following are examples of Advanced Routing.
11.4.1 Multi-WAN with BGP and Static Route
This example shows a scenario with multi-WAN topology, involving two types of
technologies for redundant connectivity -- BGP dynamic routing protocol static routing,
where each protocol runs on a different physical interface.
This type of connectivity provides redundancy and a failover option for cases where the
primary service provider fails.
Note that even though the static route should be preferred over the BGP, it is fine-tuned to
be a “floating” route only for an ISP failure scenario, through fine-tuning BGP’s
administrative distance, and the static route’s metric.
Figure 11-5: Multi-Wan with Floating Static Route
11.4.1.1 Configuration
*******************************************
Basic Configuration omitted
*******************************************
MSBR(config-data)# router bgp 65000
MSBR(conf-router)# bgp router-id 1.1.1.1
MSBR(conf-router)# bgp log-neighbor-changes
MSBR(conf-router)# network 100.0.12.0/24
MSBR(conf-router)# network 192.169.0.0/24
MSBR(conf-router)# neighbor 100.0.12.20 remote-as 55101
MSBR(conf-router)# neighbor 100.0.12.20 Activate
MSBR(conf-router)# distance bgp 1 1 1
MSBR(conf-router)# exit
MSBR(config-data)# ip route 0.0.0.0 0.0.0.0 gig 0/0 40
Version 6.8
69
Mediant MSBR
IP Networking Configuration
11.4.1.2 Output and show Commands

Before failover:
MSBR# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
B
0.0.0.0/0 [1/0] via 100.0.12.20, GigabitEthernet 0/0,
00:23:06
C
100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0
C
200.0.5.0/24 [1/3] is directly connected, Fiber 0/1
MSBR#
Client1> traceroute 8.8.8.8
Tracing route to 10.10.10.3 over a maximum of 30 hops
1 192.169.0.1 (192.169.0.1) 0.980 ms 0.808 ms 0.809 ms
2 100.0.12.20 (100.0.12.20) 51.238 ms 7.115 ms 10.770 ms
.
10 8.8.8.8 (8.8.8.8) 44.878 ms * 56.230 ms
Trace complete.
Client1>

After failover:
MSBR# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
S
0.0.0.0/0 [1/40] via 200.0.5.20, Fiber 0/1
C
100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0
C
200.0.5.0/24 [1/3] is directly connected, Fiber 0/1
MSBR#
Client1> traceroute 8.8.8.8
Tracing route to 10.10.10.3 over a maximum of 30 hops
1 192.169.1.1 (192.169.0.1) 0.870 ms 0.807 ms 0.800 ms
2 200.0.5.20 (200.0.5.20) 51.238 ms 7.123 ms 10.770 ms
.
10 10.10.10.3 (8.8.8.8) 44.878 ms * 56.230 ms
Trace complete.
Client1>
Configuration Guide
70
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
11.4.2 Filtering Dynamic Routing Protocol Routes
You can manipulate the BGP/OSPF/RIP routing advertisements using the route-map
menu. Route-map contains tools to prioritize routes from specific BGP/OSPF/RIP sources,
as well as denying some BGP/OSPF/RIP sources to be advertised in the MSBR routing
table. The example below demonstrates both methods:
*******************************************
Basic Configuration omitted
*******************************************
MSBR(conf-router)# ip prefix-list Example seq 5 deny host
10.10.10.10
MSBR(conf-router)# route-map Example1 permit 10
MSBR(conf-route-map)# match ip address prefix-list Example
MSBR(conf-route-map)# set weight 10
MSBR(conf-route-map)# exit
BGP Attribute
MSBR(conf-router)# route-map Example1 permit 20
tweaking using
MSBR(conf-route-map)# exit
Route-Maps
MSBR(conf-router)# route-map Example2 permit 10
MSBR(conf-route-map)# match ip address prefix-list Example
MSBR(conf-route-map)# set weight 20
MSBR(conf-route-map)# exit
MSBR(conf-router)# route-map Example2 permit 20
MSBR(conf-route-map)# exit
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)#
Version 6.8
router bgp 65000
bgp router-id 1.1.1.1
bgp log-neighbor-changes
network 100.0.12.0/24
network 200.0.5.0/24
network 192.168.0.0/24
neighbor 100.0.12.20 remote-as 55101
neighbor 100.0.12.20 Activate
neighbor 100.0.12.20 route-map Example1 in
neighbor 200.0.5.20 remote-as 55202
neighbor 200.0.5.10 Activate
neighbor 200.0.5.10 route-map Example1 in
71
Mediant MSBR
IP Networking Configuration
11.4.3 Multi-WAN with BGP and IPSec
This example shows a scenario with multi-WAN topology, involving two types of
technologies for redundant connectivity -- BGP dynamic routing protocol and IPsec VPN,
with each protocol running on a different physical interface.
This type of connectivity provides redundancy, security on untrusted circuits and an option
to fine-tune routing parameters in your network.
Figure 11-6: Multi WAN with BGP and IPsec
11.4.3.1 MSBR1 Configuration
configure data
access-list ipsec permit ip 192.168.0.0 0.0.0.255 any
crypto isakmp key P@ssw0rd address 10.10.10.20
crypto isakmp policy 1
encr aes 128
authentication pre-share
hash sha
group 2
lifetime 3600
exit
crypto ipsec transform-set crypto_set1 esp-aes 128 esp-sha-hmac
mode tunnel
exit
crypto map MAP1 1 ipsec-isakmp
set peer 10.10.10.20
set transform-set crypto_set1
set security-association lifetime seconds 28000
match address ipsec
set metric 42
exit
interface GigabitEthernet 0/0
ip address 20.20.20.10 255.255.255.0
mtu auto
desc "WAN Copper"
speed auto
duplex auto
no service dhcp
Configuration Guide
72
Document #: LTRT-31657
Configuration Guide
11. Dynamic IP Routing
ip dns server static
napt
no firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 10.10.10.10 255.255.255.0
mtu auto
desc "WAN Fiber"
no service dhcp
ip dns server static
crypto map MAP1
no firewall enable
no shutdown
exit
interface VLAN 1
ip address 192.168.0.1 255.255.255.0
exit
router bgp 60001
bgp router-id 20.20.20.10
network 20.20.20.0/24
neighbor 20.20.20.20 remote-as 60002
neighbor 20.20.20.20 default-originate
distance bgp 1 1 1
exit
11.4.3.1.1 ISP1
ISP1 is used for BGP connectivity and therefore, it is configured accordingly for BGP
peering with the MSBR over the GigabitEthernet interface, and propagates a default route
to the MSBR.
11.4.3.1.2 ISP2
ISP2 is used to set up an IPSec tunnel over the Fiber interface, for security and
redundancy reasons. The IPSec configuration on the ISP2, in terms of key, authentication
and encryption matches with the IPSec configuration on the MSBR.
Version 6.8
73
Mediant MSBR
IP Networking Configuration
11.4.3.2 Output
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
10.10.10.20/32 is directly connected, Fiber 0/1
C
192.168.0.0/24 is directly connected, VLAN 1
C
20.20.20.0/24 is directly connected, GigabitEthernet 0/0
C
10.10.10.0/24 is directly connected, Fiber 0/1
default [42] via 10.10.10.20, Fiber 0/1 [IPSec]
B
0.0.0.0/0 [1/0] via 20.20.20.20, GigabitEthernet 0/0,
00:00:30
MSBR1#
Note: If and when the main link fails, the default route learned through BGP is erased
from the routing table and IPSec is then used as a gateway of last resort. This can be
observed, for example, using Traceroute, which shows that the next-hop is through
IPsec.
The following shows the Routing table after the change:
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
10.10.10.20/32 is directly connected, Fiber 0/1
C
192.168.0.0/24 is directly connected, VLAN 1
C
20.20.20.0/24 is directly connected, GigabitEthernet 0/0
C
10.10.10.0/24 is directly connected, Fiber 0/1
default [42] via 10.10.10.20, Fiber 0/1 [IPSec]
MSBR1#
Configuration Guide
74
Document #: LTRT-31657
Configuration Guide
12
12. Policy Based Routing (PBR)
Policy Based Routing (PBR)
Policy Based Routing (PBR) is a solution in the routing world that allows you to perform
user-defined routing manipulation on specific network traffic up to various parameters, like
layer-4 ports. PBR is implemented using a tool called Route-maps.
Route-maps are powerful tools for routing manipulation. Route-maps allow you to select
specific traffic, by match at extended access-list and route it to specific interface and IP
next hop (if needed).
12.1
PBR Configuration
The following describes PBR configuration.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface VLAN 1
Enters VLAN 2 configuration menu.
(conf-if-VLAN 2)# ip policy routemap-static name
Configures the static route map for traffic that
received by this interface.
(conf-if-VLAN 2)# exit
Exits the VLAN 2 configuration menu.
(config-data)# route-map-static
name
Configures the static route map and enter routemap-static configuration mode.
(conf-route-map-static)# match ip
address ACL_name
Configures the access list that select the traffic
which route by the route-map.
(conf-route-map-static)# set
attribute value
Configures the set command for traffic that
passed the match condition.
Only single match rule can be applied in a single route-map-static, and only single set
interface and set next-hop rules can be set.
12.1.1 Example of PBR using Route-Map-Static
In this example, MSBR acts as a router for two LAN segments: VLAN1 and VLAN2.
The example assumes that the MSBR needs to reach a specific destination network
segment in the WAN, and a default route on the MSBR has been configured to route
regular traffic through R-WAN1, but the traffic from host 192.169.0.115 and assigned to
TCP port 80, route through R-WAN2.
This is easily done using PBR and route-map-static.
Figure 12-1: PBR Source-Based Routing
Version 6.8
75
Mediant MSBR
IP Networking Configuration
12.1.1.1 Configuration
MSBR1# configure data
MSBR1(config-data)# access-list 130 permit tcp host 192.169.0.115
0.0.0.0 255.255.255.255 eq 80
MSBR1(config-data)# access-list 130 deny ip any any
MSBR1(config-data)# ip route 0.0.0.0 0.0.0.0 100.0.12.20
GigabitEthernt 0/0
MSBR1(config-data)# route-map-static example1
MSBR1(conf-route-map-static)# match ip address 130
MSBR1(conf-route-map-static)# set interface GigabitEthernt 0/0
MSBR1(conf-route-map-static)# set next-hop 100.0.12.20
MSBR1(conf-route-map-static)# exit
12.1.1.2 Output
14B

Client 1:
Client1> traceroute 10.10.10.3
Tracing route to 10.10.10.3 over a maximum of 30 hops
1 192.169.1.1 (192.169.1.1) 0.980 ms 0.808 ms 0.809 ms
2 100.0.12.20 (100.0.12.20) 51.238 ms 7.115 ms 10.770 ms
.
.
.
10 10.10.10.3 (10.10.10.3) 44.878 ms * 56.230 ms
Trace complete.
Client1>

Client 2
Client2> traceroute 10.10.10.3
Tracing route to 10.10.10.3 over a maximum of 30 hops
1 192.169.1.1 (192.169.1.1) 0.870 ms 0.807 ms 0.800 ms
2 100.0.12.30 (100.0.12.30) 51.238 ms 7.123 ms 10.770 ms
.
.
.
10 10.10.10.3 (10.10.10.3) 44.878 ms * 56.230 ms
Trace complete.
Client2>
Configuration Guide
76
Document #: LTRT-31657
Configuration Guide

12. Policy Based Routing (PBR)
MSBR:
MSBR1# show data ip route
From input dev [VLAN 1] match up to ACL [130] route to
[GigabitEthernet 0/0] via GW [100.0.12.20]
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
S
0.0.0.0/0 [1/1] is directly connected, PPPOE
C
1.1.1.12/32 [1/4] is directly connected, Loopback 1
C
100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0
C
192.169.12.0/24 [1/4] is directly connected, VLAN 1
C
192.169.1.0/24 [1/4] is directly connected, VLAN 2
MSBR1#
Version 6.8
77
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
78
Document #: LTRT-31657
Configuration Guide
13
13. Loopback Interfaces
Loopback Interfaces
Loopback interfaces are logical interfaces configured by the network administrator, which in
contrary to physical interfaces on the MSBR, will always be in “Connected” and “IP” state,
as they do not correspond to a physical port. Usage of loopback interfaces for
management IPs, router IDs for various protocols and persistent peer IDs for neighbor
relationships is considered good practice.
IP addresses on these interfaces are configured without a subnet mask, as they are by
definition /32 e.g. single host subnet.
13.1.1 Loopback Interface Configuration
The following describes the commands for Loopback Interface configuration.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface loopback
number
Creates a loopback interface (up to 5) and enter
the interface configuration mode.
(conf-if-Loopback num)#
Interfaces configuration mode.
The configuration options available for loopback interfaces in the interface configuration
mode are generally similar to those of physical interfaces, except for L1/L2 options.
13.1.2 Example of Loopback Interface Configuration
The following is an example of Loopback Interface configuration.
13.1.2.1 Configuration
MSBR# configure data
MSBR(config-data)# interface loopback 1
MSBR(conf-if-Loopback 1)# ip address 1.1.1.1
MSBR(conf-if-Loopback 1)# description LOOPBACK
13.1.2.2 Output
16B
MSBR1# show data ip interfaces brief
Interface
Protocol
GigabitEthernet 0/0
Up
Fiber 0/1
Up
VLAN 1
Up
VLAN 2
Up
Loopback 1
Up
Version 6.8
IP Address
Status
100.0.0 .10
Connected
unassigned
Enabled
192.168.1.1
Connected
192.169.2.1
Connected
1.1.1.1
Connected
79
Mediant MSBR
IP Networking Configuration
MSBR1# show running-config data
configure data
******************************************************************
**
General configuration omitted
******************************************************************
**
interface Loopback 1
ip address 1.1.1.12
mtu auto
desc "LOOPBACK"
no napt
no firewall enable
no shutdown
exit
Configuration Guide
80
Document #: LTRT-31657
Configuration Guide
13. Loopback Interfaces
13.1.3 Example of Protocol Binding to Loopback Interfaces
The following is an example of Protocol Binding to Loopback Interfaces.
13.1.3.1 OAMP Binding to Loopback
In some cases, you may wish to bind the management protocols and interface to a
loopback interface on the MSBR, instead of a physical interface, so that management
protocols and messages will have to originate from and be addressed to this loopback
interface.
This can be configured as follows:
MSBR# configure data
MSBR(config-data)# interface loopback 1
MSBR(conf-if-Loopback 1)# ip address 1.1.1.1
MSBR(conf-if-Loopback 1)# description LOOPBACK
MSBR(conf-if-Loopback 1)#exit
MSBR(config-data)#exit
MSBR# config system
MSBR(config-system)# bind interface loopback 1 management-servers
13.1.3.2 BGP Termination on Loopback
18B
It is common practice to terminate the BGP adjacency on loopback interfaces instead of
the physical interfaces, which provides more stability for the connection in case of
connectivity failure.
Version 6.8
81
Mediant MSBR
IP Networking Configuration
13.1.4 Configuring Loopback Interfaces to Work with Voice
In some cases it is a good practice to use telephony traffic with the loopback interface. In
this case, if more than one WAN connection is being used, and one WAN connection fails,
the traffic is be able to flow via the secondary connection.
For Voice traffic, NAT rules need to be created for MSBR to forward traffic to the Voice
processor. If a global VRF is used to forward Voice traffic, the MSBR can be configured to
create these NAT rules automatically.
In order for the MSBR to route Voice traffic via the loopback interface, the loopback needs
to be bound to the saved “WAN” keyword in the voice configuration context. For this to
work, the sip-interface in the voice context needs to be assigned to the WAN keyword, and
loopback interface needs to be assigned to voice. In this way the MSBR will know to route
the voice traffic from LAN to WAN and vice versa using the Loopback interface.
The following is the required configuration to bind the loopback configuration to WAN
keyword.
 To bind the loopback configuration to WAN keyword:
1.
2.
3.
Bind the SIP interface to the WAN keyword.
MSBR# conf voip
MSBR(config-voip)# voip-network sip-interface 2
MSBR(sip-interface-2)# network-interface "WAN"
Note: Changes to this parameter will take effect when applying
the 'activate' or 'exit' command
MSBR(sip-interface-2)# exit
MSBR(config-voip)# exit
MSBR#
Configure the Loopback as WAN.
MSBR# configure data
MSBR(config-data)# interface loopback 1
MSBR(conf-if-Loopback 1)# network wan
MSBR(conf-if-Loopback 1)# exit
MSBR(config-data)# exit
MSBR#
Bind the loopback interface to the WAN.
MSBR# configure system
MSBR(config-system)# bind interface loopback 1 voip
Note: Changes will take effect after reset.
MSBR(config-system)*# exit
MSBR*#
Configuration Guide
82
Document #: LTRT-31657
Configuration Guide
4.
5.
13. Loopback Interfaces
Reset the router for the configuration to take effect.
To check that the configuration took effect, use the “show run” command. At the
bottom of the data configuration, the ports used by system services are shown.
# Note: The following WAN ports are in use by system
services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
#
Ports 6000 - 6090 --> RealmPortPool::MR_WAN
#
Ports 5060 - 5060 --> SIPUDP#2
#
Ports 5060 - 5060 --> SIPLISTENING#2
#
Ports 5061 - 5061 --> SIPLISTENING#2
To see the WAN binding, use the “show voip wan-bindings” command:
MSBR# show voip wan-bindings
WAN interface was defined by configuration (Loopback 1, ip
address 0.0.0.0)
The following WAN ports are in use by VOIP services:
Ports 6000 - 6090 --> RealmPortPool::MR_WAN
Ports 5060 - 5060 --> SIPUDP#2
Ports 5060 - 5060 --> SIPLISTENING#2
Ports 5061 - 5061 --> SIPLISTENING#2
Note: This feature cannot be used with VRFs other than global. If other than global
VRFs are used, the port forwarding rules need to be added manually for all VoIP
inbound and outbound traffic.
Version 6.8
83
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
84
Document #: LTRT-31657
Configuration Guide
14
14. Virtual Routing and Forwarding (VRF)
Virtual Routing and Forwarding (VRF)
VRF is an IP feature that is included in IP network routers, which allows the simultaneous
existence and work of multiple routing tables on a single physical router. This can be
visualized, in general and simple terms, as several logical routers inside a physical one.
Because of this separation to different routing and forwarding tables, this feature allows the
creation of different networks and segments without using multiple devices, creation of
VPNs, and isolation of different network segments for better security due to the fact that no
data is transferred from one VRF to another, and much more.
In addition, to utilize this separation of routing and forwarding tables, many components
and configuration objects can be associated with different VRFs on the same device, such
as physical and logical interfaces, static routes, prefix-lists and routing protocol instances.
On the MSBR's MAIN-VRF by default, BGP, OSPF, RIP services exist. The MSBR
supports up to five additional VRFs. For all additional VRFs, the user can enable up to five
dynamic routing services. For example, if VRF “BLUE” has BGP enabled towards the
WAN and RIP towards the LAN, the other VRFs will have cumulatively only three services
remaining for use.
14.1.1 VRF Configuration
The following describes the VRF configuration commands.
14.1.1.1 Global Configuration
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip vrf vrf-name
Creates a VRF instance.
(config-data)# ip vrf vrf-name
enable <ospf/rip/bgp>
Enables a routing protocol on the VRF instance.
14.1.1.2 Interface Configuration
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface int-name
Enters the interface configuration mode.
(conf-if-name)# ip vrf forwarding
vrf-name
Associates the interface with a specific VRF.
14.1.1.3 Other
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip route vrf vrfname destination mask next-hop
interface
Associates a static route with a VRF instance.
(config-data)# ip prefix-list
list-name vrf vrf-name action
prefix/length
Associates a prefix-list with a VRF instance.
Version 6.8
85
Mediant MSBR
IP Networking Configuration
(config-data)# route-map <name>
vrf vrf-name
Associates a route-map with a VRF.
(config-data)# router ospf|bgp|rip
vrf vrf-name
Associates a BGP/OSPF/RIP routing-instance
with a VRF.
Also the show commands of the above configurations and the following utilities: Ping,
Traceroute, Copy files, debug capture data physical, show data mac table.
14.1.2 VRF App Awareness
The MSBR VRF App awareness is essentially the ability to perform ICMP commands (such
as ping, and traceroute) with a vrf attribute, enabling VRF-specific reachability and
connectivity testing. Note that ICMP packets are not routed from one VRF to another.
The operation is performed according to the ICMP ping and traceroute command syntax,
for example:
MSBR# ping 192.168.0.1 source data vrf blue
4 packets transmitted, 0 packets received
MSBR#
Configuration Guide
86
Document #: LTRT-31657
Configuration Guide
14. Virtual Routing and Forwarding (VRF)
14.1.3 Example of Segment Isolation using VRF
This example includes two hosts, each connected to a separate VLAN. On the MSBR,
Layer-3 interface VLANS for the two VLANS are configured where each interface VLAN is
associated to a different VRF.
Without a VRF configuration, there would be routing between the two Layer-3 interfaces
where if Workstation 1 tries to reach Workstation 2 (with ICMP Ping, for example) it would
get an answer.
In the example, Layer-3 VLAN interfaces are associated with different VRFs and belong to
different routing tables. The MSBR isolates them from one another, and if ICMP
reachability is checked, an Unreachable message is received.
Figure 14-1: Segment Isolation using VRF
14.1.3.1 Configuration
MSBR# configure data
MSBR(conf-data)# ip vrf blue
MSBR(conf-data)# ip vrf red
MSBR(conf-data)# interface VLAN 1
MSBR(conf-if-VLAN 1)# ip address 192.169.0.1 255.255.255.0
MSBR(conf-if-VLAN 1)# desc "VLAN 1 – Lan segment 1"
MSBR(conf-if-VLAN 1)# ip vrf forwarding blue
MSBR(conf-if-VLAN 1)# exit
MSBR(conf-data)# interface VLAN 2
MSBR(conf-if-VLAN 2)# ip address 192.169.1.1 255.255.255.0
MSBR(conf-if-VLAN 2)# desc "VLAN 2 – Lan segment 2"
MSBR(conf-if-VLAN 2)# ip vrf forwarding red
MSBR(conf-data)# interface gi 0/0.1
MSBR(conf-if-VLAN 2)# desc "vlan 1 - WAN"
MSBR(conf-if-VLAN 2)# ip vrf forwarding blue
MSBR(conf-data)# interface gi 0/0.2
MSBR(conf-if-VLAN 2)# desc "vlan 2 – WAN"
MSBR(conf-if-VLAN 2)# ip vrf forwarding red
Version 6.8
87
Mediant MSBR
IP Networking Configuration
14.1.3.2 Output
Client 1>ping 192.169.0.100
Pinging 192.169.0.100 with 32 bytes of data:
Request timed out.
Ping statistics for 192.169.0.100:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Client 1>
Client 2>ping 192.169.1.100
Pinging 192.169.1.100 with 32 bytes of data:
Request timed out.
Ping statistics for 192.169.1.100:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Client 2>
MSBR# show data ip vrf
VRF - blue
Interfaces: VLAN 1
Enabled protocols:
GigabitEthernet 0/0.1
VRF - red
Interfaces: VLAN 2
Enabled protocols:
GigabitEthernet 0/0.2
MSBR#
MSBR# show data ip route vrf blue
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
192.169.0.0/24 is directly connected, VLAN 1
MSBR#
MSBR# show data ip route vrf red
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
192.169.1.0/24 is directly connected, VLAN 2
MSBR#
Configuration Guide
88
Document #: LTRT-31657
Configuration Guide
14. Virtual Routing and Forwarding (VRF)
14.1.4 Routing Services on Different VRF’S
This example shows a scenario in which there are several LAN segments connected to the
MSBR via different VLANs, which are associated with different VRFs. The Data VRF has
BGP connectivity to the ISP and RIP protocol for routing on the LAN. The ipTV VRF has a
static route towards the ISP and OSPF routing protocol for the LAN network.
This is a conceptual scenario to show how to provide different services using different
protocols on different VRFs.
Figure 14-2: Routing Services on Different VRFs
14.1.4.1 Configuration
The configuration regarding the VRFs and their associated protocols is shown below.
Standard protocol and addressing configuration is omitted and can be observed in their
respective chapters in this guide.
MSBR(config-data)# ip vrf DATA enable bgp
MSBR(config-data)# ip vrf DATA enable rip
MSBR(config-data)# ip vrf VOICE
MSBR(config-data)# ip vrf IPTV enable ospf
MSBR(config-data)#interface vlan 1
MSBR(config-if-VLAN-1)#ip address 192.168.0.1 255.255.255.0
MSBR(config-if-VLAN-1)#ip vrf forwarding DATA
MSBR(config-if-VLAN-1)#exit
MSBR(config-data)#interface vlan 2
MSBR(config-if-VLAN-2)#ip address 192.168.1.1 255.255.255.0
MSBR(config-if-VLAN-2)#ip vrf forwarding VOICE
MSBR(config-if-VLAN-2)#exit
MSBR(config-data)#interface vlan 3
MSBR(config-if-VLAN-3)#ip address 192.168.3.1 255.255.255.0
MSBR(config-if-VLAN-3)#ip vrf forwarding IPTV
MSBR(config-if-VLAN-3)#exit
MSBR(config-data)#interface gigabitethernet 0/0.1
MSBR(config-if-GE 0/0.1)#ip address 100.0.0.1 255.255.255.0
MSBR(config-if-GE 0/0.1)#ip vrf forwarding VOICE
MSBR(config-if-GE 0/0.1)#exit
MSBR(config-data)#interface gigabitethernet 0/0.2
MSBR(config-if-GE 0/0.2)#ip address 100.0.1.1 255.255.255.0
MSBR(config-if-GE 0/0.2)#ip vrf forwarding IPTV
Version 6.8
89
Mediant MSBR
IP Networking Configuration
MSBR(config-if-GE 0/0.2)#exit
MSBR(config-data)#interface fiber 0/3
MSBR(config-if-Fi 0/3)#ip address 200.0.0.1 255.255.255.0
MSBR(config-if-Fi 0/3)#ip vrf forwarding DATA
MSBR(config-if-Fi 0/3)# napt
MSBR(config-if-Fi 0/3)# firewall enable
MSBR(config-if-Fi 0/3)#exit
MSBR(config-data)# router ospf vrf IPTV
***********************************************
Standard protocol configuration – omitted
***********************************************
MSBG(config-data)# router rip vrf DATA
***********************************************
Standard protocol configuration – omitted
***********************************************
MSBR(config-data)# router bgp 65000 vrf DATA
***********************************************
Standard protocol configuration – omitted
***********************************************
MSBR(config-data)#
14.1.4.2 Output
MSBR# show data ip vrf
VRF - DATA
Interfaces: VLAN 1 Fiber 0/3
Enabled protocols: bgp rip
VRF - VOICE
Interfaces: VLAN 2
Enabled protocols:
GigabitEthernet 0/0.1
VRF - IPTV
Interfaces: VLAN 3 GigabitEthernet 0/0.2
Enabled protocols: ospf
MSBR#
Configuration Guide
90
Document #: LTRT-31657
Configuration Guide
15
15. GRE Tunnels
GRE Tunnels
MSBR supports GRE tunnels. Tunnels are a type of interface where when there is a proper
and working IP connectivity between its two ends, appears as directly connected to the
“other side”, even if there are multiple different IP networks between them. GRE tunnels
are tunnels that use a special encapsulation on the IP packets.
15.1.1 Configuring GRE Tunnels
The following describes the commands for configuring GRE Tunnels.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface gre
<number>
MSBR supports up to 255 GRE interfaces. The
GRE interfaces can be a number from 1 to 255.
(conf-if-GRE 1)# ip address <IP>
<MASK>
Configures the IP address of the GRE interface.
The mask is not mandatory and if not stated the
default value of 255.255.255.255 is applied.
(conf-if-GRE 1)# tunnel
destination <IP>
Configures the destination IP for the tunnel
interface. The tunnel is created for this address.
15.1.2 Example of Connecting Multiple Subnets using GRE
This example describes the configuration of the next topology, where three different
subnets are connected using GRE tunnels. Note that for a GRE tunnel to work properly,
you must have a route to the tunnel destination.
Figure 15-1: Multiple Subnets using GRE
Version 6.8
91
Mediant MSBR
IP Networking Configuration
15.1.2.1 Configuration


MSBR1:
MSBR1# conf d
MSBR1(config-data)# int gigabitethernet 0/0
MSBR1(conf-if-GE 0/0)# ip address 180.1.1.1 255.255.255.0
MSBR1(conf-if-GE 0/0)# no firewall enable
MSBR1(config-data)# int vla 1
MSBR1(conf-if-VLAN 1)# ip address 192.168.11.1 255.255.255.0
MSBR1(conf-if-VLAN 1)# exit
MSBR1(config-data)# int vla 2
MSBR1(conf-if-VLAN 2)# ip address 192.168.12.1 255.255.255.0
MSBR1(conf-if-VLAN 2)# no shutdown
MSBR1(conf-if-VLAN 2)# exit
MSBR1(config-data)# int vla 3
MSBR1(conf-if-VLAN 3)# ip address 192.168.13.1 255.255.255.0
MSBR1(conf-if-VLAN 3)# no shutdown
MSBR1(conf-if-VLAN 3)# exit
MSBR1(config-data)# interface gre 1
MSBR1(conf-if-GRE 1)# ip address 1.1.1.1 255.255.255.0
MSBR1(conf-if-GRE 1)# tunnel destination 180.1.1.2
MSBR1(conf-if-GRE 1)# no shutdown
MSBR1(conf-if-GRE 1)# exit
MSBR1(config-data)# ip route 192.168.1.0 255.255.255.0 gre 1
MSBR1(config-data)# ip route 192.168.2.0 255.255.255.0 gre 1
MSBR1(config-data)# ip route 192.168.3.0 255.255.255.0 gre 1
MSBR2:
MSBR2# conf d
MSBR2(config-data)# int gigabitethernet 0/0
MSBR2(conf-if-GE 0/0)# ip address 180.1.1.2 255.255.255.0
MSBR2(conf-if-GE 0/0)# no firewall enable
MSBR2(config-data)# int vla 1
MSBR2(conf-if-VLAN 1)# ip address 192.168.1.1 255.255.255.0
MSBR2(conf-if-VLAN 1)# exit
MSBR2(config-data)# int vla 2
MSBR2(conf-if-VLAN 1)# ip address 192.168.2.1 255.255.255.0
MSBR2(conf-if-VLAN 1)# no shutdown
MSBR2(conf-if-VLAN 1)# exit
MSBR2(config-data)# int vla 3
MSBR2(conf-if-VLAN 1)# ip address 192.168.3.1 255.255.255.0
MSBR2(conf-if-VLAN 1)# no shutdown
MSBR2(conf-if-VLAN 1)# exit
MSBR2(config-data)# interface gre 1
MSBR2(conf-if-GRE 1)# ip address 1.1.1.2 255.255.255.0
MSBR2(conf-if-GRE 1)# tunnel destination 180.1.1.1
MSBR2(conf-if-GRE 1)# no shutdown
MSBR2(conf-if-GRE 1)# exit
MSBR2(config-data)# ip route 192.168.11.0 255.255.255.0 gre 1
MSBR2(config-data)# ip route 192.168.12.0 255.255.255.0 gre 1
MSBR2(config-data)# ip route 192.168.13.0 255.255.255.0 gre 1
Configuration Guide
92
Document #: LTRT-31657
Configuration Guide
15. GRE Tunnels
15.1.2.2 Output

IP routing table of MSBR1:
MSBR1# sh d ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
S
S
S
C
C
C

180.1.1.0/24 is directly connected, GigabitEthernet 0/0
192.168.1.0/24 [1/1] is directly connected, GRE 1
192.168.2.0/24 [1/1] is directly connected, GRE 1
192.168.3.0/24 [1/1] is directly connected, GRE 1
192.168.11.0/24 is directly connected, VLAN 1
192.168.12.0/24 is directly connected, VLAN 2
192.168.13.0/24 is directly connected, VLAN 3
IP routing table of MSBR2:
MSBR2# sh d ip route
Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B - BGP
C
180.1.1.0/24 is directly connected, GigabitEthernet 0/0
C
192.168.1.0/24 is directly connected, VLAN 1
C
192.168.2.0/24 is directly connected, VLAN 2
C
192.168.3.0/24 is directly connected, VLAN 3
S
192.168.11.0/24 [1/1] is directly connected, GRE 1
S
192.168.12.0/24 [1/1] is directly connected, GRE 1
S
192.168.13.0/24 [1/1] is directly connected, GRE 1
MSBR2#
To verify a connection among networks, you can ping each network from MSBR:
MSBR1# ping 192.168.11.1
Reply from 192.168.11.1: time=0 ms
Reply from 192.168.11.1: time=0 ms
Reply from 192.168.11.1: time=0 ms
3 packets transmitted, 3 packets received
Round-trip min/avg/max = 0/0/0 ms
MSBR1# ping 192.168.12.1
Reply from 192.168.12.1: time=0 ms
Reply from 192.168.12.1: time=0 ms
Reply from 192.168.12.1: time=0 ms
MSBR1# Reply from 192.168.12.1: time=0 ms
4 packets transmitted, 4 packets received
Round-trip min/avg/max = 0/0/0 ms
MSBR1# ping 192.168.13.1
Reply from 192.168.13.1:
Reply from 192.168.13.1:
Reply from 192.168.13.1:
3 packets transmitted, 3
Round-trip min/avg/max =
MSBR1#
Version 6.8
time=0 ms
time=0 ms
time=0 ms
packets received
0/0/0 ms
93
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
94
Document #: LTRT-31657
Configuration Guide
16
16. Quality of Service (QoS)
Quality of Service (QoS)
In modern networks, different types of traffic are transported over the same infrastructure:
Data, Voice, Video, latency sensitive, application specific and more. In cases of network
congestion, some amount of data may be delayed or dropped and retransmitted, and while
some kinds of traffic are tolerant to this phenomenon, others such as video and voice are
sensitive to it.
QoS is a set of mechanisms to handle the prioritization of some traffic over another to
make sure it gets the amount of network bandwidth it requires, proper latency, etc.
It is important to be familiar with several concepts that are crucial for the QoS process:

Traffic filtering: the first step in the QoS mechanism. You need to filter and define the
preferred traffic”; basically stating which traffic should receive the special priority
handling. This step is usually performed using ACLs, VLAN-Priority or the DSCP
value.

The DiffServ (the system behind DSCP) is a computer networking mechanism for
classifying, managing and providing QoS for data in IP networks in layer 3, while TOS
is quite similar, however uses a slightly different terminology and rating for traffic in
layer 2.
The usual event flow of the QoS mechanism is as follows:
Figure 16-1: QOS Handling Flow-Chart
Match-maps bind the “match” statements with marking rules, meaning that once there are
rules matching the specified traffic, you can mark it for further processing, using the DSCP
system.
After the marking, the actual QoS mechanism is activated using the service-map objects,
which are configured on the physical egress interface and contain the actual queues to
which the different traffic is divided. For each queue the following actions can be
performed:

Shaping: assuring an amount of bandwidth for the specified traffic – usually media
requires minimal bandwidth.

Prioritization: setting different priorities for different traffic associated with different
queues, thus providing lower delay for higher priority traffic.

Drop policy and queue scheduling: setting rules for planned packet drop or sharing
the bandwidth according to user-defined thresholds.
Note: It is considered good practice to perform the matching as close to the ingress
interface as possible, and the manipulation on the physical egress interface.
Version 6.8
95
Mediant MSBR
IP Networking Configuration
16.1.1 QoS Configuration
The QoS configuration consists of several steps:
6.
Defining interesting traffic.
7.
Marking it.
8.
Configuring a shaping policy
9.
Applying it.
The following table describes the QoS CLI commands.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# access-list acl-name
permit protocol src dst
<eq/range/dscp/established/log/stateless
>
Configures an access-list to filter the
requested “interesting traffic”.
(config-data)# qos match-map <in/out>
map-name interface
Configures a match-map for the QoS
mechanism.
(conf-m-map)# match < access-list/ any/
dscp/ length/ precedence/ priority>
Configures match clauses for the matchmap.
(conf-m-map)# set < dscp/ precedence/
priority/ queue>
(config-data)# qos service-map interface
output
Configures the marking for the matched
traffic.
Configures a service-map.
(conf-s-map)# bandwidth bw
Configures the maximum bandwidth for
the service-map.
(conf-s-map)# queue <name/default>
Configures the queue for the servicemap and enter the queue configuration
mode.
(conf-s-map-q)# [bandwidth bw | policy
policy | priority priority]
Configures queue parameters.
Configuration Guide
96
Document #: LTRT-31657
Configuration Guide
16. Quality of Service (QoS)
16.1.2 Example of Weighted Bandwidth Sharing
This example includes a branch office with several network segments: VoIP, IP and Users,
connected to VLANS 1, 2, and 3, respectively. The WAN interface bandwidth needs to be
shared according to the network administrator’s design and functional requirements, which
in this example, is 40% for VoIP, 40% for IT, and 20% for Users.
Figure 16-2: Weighted QOS Handling
Version 6.8
97
Mediant MSBR
IP Networking Configuration
16.1.2.1 Configuration
MSBR(config-data)# ip access-list VLAN1_IN permit ip any any log
MSBR(config-data)# ip access-list VLAN2_IN permit ip any any log
MSBR(config-data)# ip access-list VLAN3_IN permit ip any any log
MSBR(config-data)# qos match-map input QOS_VOIP vlan 1
MSBR(conf-m-map)# match access-list VLAN1_IN
MSBR(conf-m-map)# set queue VoIP
MSBR(conf-m-map)# exit
MSBR(config-data)# qos match-map input QOS_IT vlan 2
MSBR(conf-m-map)# match access-list VLAN2_IN
MSBR(conf-m-map)# set queue IT
MSBR(conf-m-map)# exit
MSBR(config-data)# qos match-map input QOS_USR vlan 3
MSBR(conf-m-map)# match access-list VLAN3_IN
MSBR(conf-m-map)# set queue USR
MSBR(conf-m-map)# exit
MSBR(config-data)# qos service-map gigabitethernet 0/0 output
MSBR(conf-s-map)# queue default
MSBR(conf-s-map-q)# priority 4
MSBR(conf-s-map-q)# exit
MSBR(conf-s-map)# queue VoIP
MSBR(conf-s-map-q)# priority 1
MSBR(conf-s-map-q)# bandwidth percent 40
MSBR(conf-s-map-q)# exit
MSBR(conf-s-map)# queue IT
MSBR(conf-s-map-q)# priority 2
MSBR(conf-s-map-q)# bandwidth percent 40
MSBR(conf-s-map-q)# exit
MSBR(conf-s-map)# queue USR
MSBR(conf-s-map-q)# priority 3
MSBR(conf-s-map-q)# bandwidth percent 20
MSBR(conf-s-map-q)# exit
MSBR(conf-s-map)# exit
MSBR(config-data)#
16.1.2.2 Output
MSBR# show data qos match-map
match-map input QOS_VOIP vlan 1
match access-list VLAN1_IN
set queue VOIP
match-map input QOS_IT vlan 2
match access-list VLAN2_IN
set queue IT
match-map input QOS_USR vlan 3
match access-list VLAN3_IN
set queue USR
MSBR#
Configuration Guide
98
Document #: LTRT-31657
Configuration Guide
16. Quality of Service (QoS)
MSBR# show data qos service-map
LAN service map:
service map does not exist
WAN service map:
GigabitEthernet 0/0:
service map maximum bandwidth 100000
default queue:
STRICT PRIORITY
priority 4
reserved bandwidth 0 kbps maximum bandwidth is unlimited
VOIP queue:
STRICT PRIORITY
priority 1
reserved bandwidth 40 percent maximum bandwidth is unlimited
IT queue:
STRICT PRIORITY
priority 2
reserved bandwidth 40 percent maximum bandwidth is unlimited
USR queue:
STRICT PRIORITY
priority 3
reserved bandwidth 20 percent maximum bandwidth is unlimited
Fiber 0/1:
service map does not exist
MSBR#
MSBR# show data qos queue
Global statistics for LAN Queues:
No available queue statistics.
Global statistics for WAN Queues:
GigabitEthernet 0/0:
queue name|sent packets|sent bytes|packet rate|rate(bytes/s)|packets
delayed|packets dropped
------------|------------|----------|-----------|-------------|--------------|--------Default
| 1
| 1234
| 20
| 40
| 0
| 0
VOIP
| 38
| 56378
| 16
| 32
| 0
| 0
IT
| 24
| 35436
| 6
| 15
| 0
| 0
USR
| 1
| 34
| 4
| 10
| 0
| 0
Fiber 0/1:
No available queue statistics.
EFM 0/2:
No available queue statistics.
Note: Queue name may be truncated (limited to 20 characters).
MSBR#
Version 6.8
99
Mediant MSBR
IP Networking Configuration
16.1.3 Example using QoS to Ensure Bandwidth for Critical Traffic
This example assumes two PC workstations, each on a different VLAN and subnet. Client
1 is running a very important and sensitive application that requires a minimum of 2 Mbits
of network bandwidth for proper operation. Based on the mechanisms described in this
chapter, a policy is configured to ensure the client obtains the required bandwidth.
Figure 16-3: QoS Bandwidth Shaping
16.1.3.1 Configuration
MSBR# configure data
MSBR(config-data)# access-list exampleList1 permit ip 192.168.0.3
0.0.0.0 any
MSBR(config-data)# qos match-map output mMap1 gigabitethernet 0/0
MSBR(conf-m-map)# match access-list exampleList1
MSBR(conf-m-map)# set queue ex1
MSBR(conf-m-map)# exit
MSBR(config-data)# qos service-map gigabitethernet 0/0 output
MSBR(conf-s-map)# queue ex1
MSBR(conf-s-map-q)# bandwidth 2048
MSBR(conf-s-map-q)# exit
MSBR(conf-s-map)# exit
MSBR(config-data)#
16.1.3.2 Output
MSBR# show data qos match-map gigabitethernet 0/0
match-map output mMap1 GigabitEthernet 0/0
match access list ex1
set queue ex1
MSBR#
MSBR# show data qos service-map
LAN service map:
service map does not exist
WAN service map:
GigabitEthernet 0/0:
service map maximum bandwidth 100000
default queue:
STRICT PRIORITY
priority 4
reserved bandwidth 0 kbps maximum bandwidth is unlimited
Configuration Guide
100
Document #: LTRT-31657
Configuration Guide
16. Quality of Service (QoS)
ex1 queue:
STRICT PRIORITY
priority 4
reserved bandwidth 2048 kbps maximum bandwidth is unlimited
Fiber 0/3:
service map does not exist
MSBR#
Version 6.8
101
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
102
Document #: LTRT-31657
Configuration Guide
17
17. IPv6
IPv6
IPv6, as described in RFC 2460, is a new version of the Internet Protocol, designed to be a
successor to the IPv4 protocol. It has new features that can be described in the following
categories:

Expanded addressing capabilities. The IPv6 address size is 128 bits compared to
32bits of the IPv4 protocol.

The IPv6 header has fewer fields than IPv4.
The IPv6 packet header is shown below:
Version[4 bits]
Traffic class [8 bits]
Flow label [20 bits]
Payload length [16 bits]
Next header [8 bits]
Hop limit [8 bits]
Source address [128 bits]
Destination address [128 bits]

Improved support for extensions and options.

Flow labeling for particular traffic flows.

Authentication and privacy capabilities.
IPv6 addresses on the MSBR are configured on routed interfaces, and usually are
accompanied by the subnet mask, which is used for subnet calculation.
As is the case with IPv4, each Layer-3 interface can be assigned one primary IPv6 address
and several secondary IPv6 addresses.
To configure IPv6 addresses per interface, use the following configuration steps:
Command
MSBR# configure data
(config-data)# interface
<interfaces number>
(conf-if-GE 0/0)# ipv6 enable
(conf-if-GE 0/0)# ipv6 address
<IPv6 addr>/<mask>
(conf-if-GE 0/0)# ipv6 address
<IPv6 addr>/<mask>
Version 6.8
Description
Enters the data configuration menu.
Enters the interface configuration.
Enables IPv6 on the interface.
Configures the IPv6 address and mask
separated by a forward slash "/".
Configures an optional, multiple addresses using
the same command (The keyword "secondary" is
not required for IPv6).
103
Mediant MSBR
IP Networking Configuration
17.1
Example of multiple IPv6 Address Configuration
The following is an example of multiple IPv6 Address configuration.
17.1.1 Configuration
The configuration of two IPv6 addresses is shown below:
MSBR# configure data
MSBR(config-data)# interface gigabitethernet 0/0
MSBR(conf-if-GE 0/0)# ipv6 enable
MSBR(conf-if-GE 0/0)# ipv6 address 2001:100::1/64
MSBR(conf-if-GE 0/0)# ipv6 address 2001:200::1/64
17.1.2 Output
70B
The output of the show commands is shown below:
MSBR# show data interfaces gigabitethernet 0/0
GigabitEthernet 0/0 is Connected.
Description: WAN Copper
Hardware address is 00:90:8f:4b:fc:28
Port Link:UP
Port Speed : 1Gbps
Port Duplex:FULL
State Time:
0:00:20
Time since creation:
1:13:37
Time since last counters clear :
0:00:20
mtu auto
napt
IPv6 is enabled, link-local address is
fe80::290:8fff:fe4b:fc28/64
Global unicast address(es):
2001:200::1/64
2001:100::1/64
Joined group address(es):
ff02::1:ff00:0
ff02::1:ff00:1
ff02::1:ff4b:fc28
ff02::1
rx_packets 16
rx_bytes 1260
0
rx_errors 0
tx_packets 5
tx_bytes 454
0
tx_errors 0
15-seconds input rate:
1.3 Kbps, 2 packets/sec
15-seconds output rate: 0 bits/sec, 0 packets/sec
rx_dropped
tx_dropped
MSBR# show data ipv6 neighbors
Configuration Guide
104
Document #: LTRT-31657
Configuration Guide
17. IPv6
IPv6 Address
Interface
2001:100::16
00:90:8f:48:cd:7f
Fiber 0/1
fe80::290:8fff:fe48:cd7f
00:90:8f:48:cd:7f
Fiber 0/1
MAC Address
End of neigh table, 2 entries displayed.
MSBR#
The show data ipv6 neighbors command is similar to the show arp command in
the IPv4 environment, displaying the IPv6 address and MAC addresses of known
neighbors on the interfaces connected to the MSBR.
17.1.3 Example of a Dual-Stack Configuration
71B
The following is an example of a dual-stack configuration. Dual stack is a configuration if
IPv4 and IPv6 are on the same interface.
17.1.3.1 Configuration
132B
MSBR# configure data
MSBR(config-data)# interface vlan 1
MSBR(conf-if-VLAN 1)# ip address 192.168.0.1 255.255.255.0
MSBR(conf-if-VLAN 1)# ipv address 2001:100::1/64
MSBR(conf-if-VLAN 1)#
17.1.3.2 Output
13B
MSBR# show data ip interface brief
Interface
GigabitEthernet 0/0
Fiber 0/3
VLAN 1
VLAN 4001
IP Address
Status
0.0.0.0
Enabled
0.0.0.0
Enabled
192.168.0.1
Connected
169.254.254.253 Connected
Protocol
Up
Up
Up
Up
MSBR# show data ipv6 interface brief
Interface
VLAN 1
VLAN 1
Version 6.8
IP Address
fe80::290:8fff:fe4a:2343
2001:100::1
105
Status
Connected
Connected
Protocol
Up
Up
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
106
Document #: LTRT-31657
Configuration Guide
18
18. ICMPv6
ICMPv6
The following describes the Internet Control Message Protocol Version 6 (ICMPv6)
commands.
18.1
ping ipv6
The ping ipv6 tests IP reachability to a desired destination. If the destination is reachable,
there will be the same amount of echo requests and replies.
Command Structure:
ping ipv6 <IP address / host> [source data vrf/source
address/interface name] [repeat times] [size size] [summarized]
where:

<IP address / host>: Defines the destination IP address or hostname of the node you
wish to ping.

<source>: Defines the vrf/address/interface to use as source for the ICMP requests.
Typically, MSBR chooses the source address/interface; however, specifying one
allows you to simulate testing reachability from a specific connected subnet.

repeat: Defines the number of ICMP requests to send.

size: Defines the size of the of the ICMP packet in bytes.

summarized: Defines the summarized output.
Typical Output:
MSBR# ping ipv6 2000::1
Reply from 2000::1 : time=1 ms
Reply from 2000::1 : time=1 ms
Reply from 2000::1 : time=1 ms
Reply from 2000::1 : time=1 ms
4 packets transmitted, 4 packets received
Round-trip min/avg/max = 1/1/1 ms
MSBR#
Version 6.8
107
Mediant MSBR
IP Networking Configuration
18.2
Traceroute v6
The ping informs you if the destination is reachable or not. The traceroute command can
be used to discover the path that packets travel to the remote destination.
Command Structure:
Traceroute ipv6 <IP Address> [vrf
vrf / source address]
Typical Output:
MSBR# trace ipv6 3000::1
1 2000::1 (2000::2) 1.169 ms *
2 2020::1 (2020::2) 1.169 ms *
.
.
8 3000::1 (3000::1) 1.169 ms *
Traceroute: Destination reached
7.346 ms
7.346 ms
7.346 ms
MSBR#
Configuration Guide
108
Document #: LTRT-31657
Configuration Guide
19
19. Track v6
Track v6
This command keeps track of a destination IP address from a given source interface. The
tracking is done by sending ICMPv6 probes and monitors the replies. If the destination is
reachable, the Track status is ‘up’. When the (configurable) number of replies are not
received, the Track status moves to ‘down’.
19.1
Configuring Track
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# track id icmpv6echo
destIP interface [source-ipinterface interface] [interval
val] [retries val]
19.2
Configures a Track to monitor reachability to
destIP from interface.
Output
MSBR1# show data track brief
Track
Type
State
1
ICMP reachability Up
Max round trip time (m.s)
37
Get the time of up to last 10 Track states:
MSBR1# show data track 1 history
Track history:
Version 6.8
New state
Up
Down
Up
Date and Time [MM-DD-YYYY@hh:mm:ss]
08-28-2015@18:17:40
08-28-2015@18:25:30
08-28-2015@18:26:20
109
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
110
Document #: LTRT-31657
Configuration Guide
20
20. IPv6 Routing
IPv6 Routing
The following describes Internet Protocol version 6 (IPv6) routing.
20.1
Static Routing
Static routing is used when the router uses pre-defined, user-configured routing entries to
forward traffic. Static routes are usually manually configured by the network administrator
and added to the routing table.
A common use of static routes is for providing the gateway as a last resort, meaning,
providing an instruction on how to forward traffic when no other route exists.
Static routes have a much lower administrative distance in the system than the dynamic
routing protocols, and in most scenarios are prioritized over the dynamic routes.
20.1.1 Configuring Static Routing
The configuration is the same as IPv4:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ipv6 route [vrf
vrf] destIP destMask next-hop
interface [A-distance] [track
number]
Configures a static route by specifying the
destination prefix, a next-hop address and
optionally the administrative distance for the
route and a tracking object.
20.1.2 Example of a Basic Static Route Configuration
In this example, the MSBR needs to reach the 2001:10::/64 network segment from its LAN
network. The destination segment is located somewhere in the network, behind MSBR2,
and in this example, no dynamic routing is configured. For this to work, you need to
configure MSBR1 to forward traffic to 2001:10::/64 through MSBR2’s interface facing
MSBR1 (2001:1::2).
Figure 20-1: Static Routing
20.1.2.1 Configuration
MSBR1# configure data
MSBR1(config-data)# ipv6 route 2001:10::/64 2001:1::1
gigabitethernet 0/0
MSBR1(config-data)#
Version 6.8
111
Mediant MSBR
IP Networking Configuration
20.1.2.2 Output
MSBR1# show running-config data
Configure data
******************************************************************
**
General configuration omitted, assume that configured as in
diagram
******************************************************************
**
ipv6 route 2001:10::/64 2001:1::1 GigabitEthernet 0/0 1
MSBR1# show data ipv6 route
Codes: K - kernel route, C - connected, S - static,
R - RIPng, O - OSPFv6, B - BGP
S
C
0/0
C
2001:10::/64 [1/1] via 2001:100::10, GigabitEthernet 0/0
2001:100::/64 [1/4] is directly connected, GigabitEthernet
fe80::/64 [1/4] is directly connected, GigabitEthernet 0/0
MSBR1#
Configuration Guide
112
Document #: LTRT-31657
Configuration Guide
20.2
20. IPv6 Routing
RIPng Routing Protocol
Routing Information Protocol next generation (RIPng) is a dynamic routing protocol from
the Distance Vector family which uses hop-count as a routing metric. The protocol is limited
to 15 hops per route, which prevents loops; however, also limits the network size and
scalability.
Low metric routes are considered “better” and a route with hop count (metric) of 16 is
considered “unreachable”.
RIPng is considered a “chatty” and bandwidth consuming protocol due to the fact it “floods”
its routing database once in a period (default is 30 seconds).
RIPng can work both in broadcast and unicast modes (without or with peers, respectively).
The MSBR supports RIPng, defined in RFC 2080.
20.2.1 Configuring RIPng
Command
MSBR# configure data
Description
Enters the data configuration menu.
(config-data)# router ripng
Enters the RIPng configuration mode.
(conf-router)# default-information
originate
Configures whether to advertise the default
route.
(conf-router)# default-metric
metric
Configures the metric for redistributed routes.
(conf-router)# distribute-list
prefix list-name <in/out>
interface
Configures filtering of incoming/outgoing routing
updates.
(conf-router)# network interface
(conf-router)# network
prefix/prefLen
Configures a network or interface upon which to
enable RIP routing.
(conf-router)# passive-interface
interface
Configures suppression of routing updates on an
interface.
(conf-router)# redistribute
protocol metric metric [route-map
name]
Configures redistribution of routes from other
protocols into RIP.
(conf-router)# route prefix/length
Adds a RIP static route.
(conf-router)# route-map RMname
<in/out> interface interface
(conf-router)# timers basic value
Version 6.8
Configures a route-map for the RIP routing.
Configures the routing table update timer.
113
Mediant MSBR
IP Networking Configuration
20.2.2 Example of RIPng Routing
This example demonstrates a LAN scenario with an MSBR, connecting to the WAN
through RIP.
Figure 20-2: RIPng Routing
RIP
VLAN 1
LAN
Network
VLAN 1
Gi 0/0
Gi 0/0
LAN
Network
MPLS
MPLS
.10
.20
2005::1/64
2042::1/64
2002::1/64
20.2.2.1 Configuration


MSBR1:
MSBR1# configure data
MSBR1(config-data)# router ripng
MSBR1(conf-router)# network GigabitEthernet 0/0
MSBR1(conf-router)# redistribute connected
MSBR2:
MSBR2# configure data
MSBR2(config-data)# router ripng
MSBR2(conf-router)# network GigabitEthernet 0/0
MSBR1(conf-router)# route 2001:100:2::1/64
Configuration Guide
114
Document #: LTRT-31657
Configuration Guide
20. IPv6 Routing
20.2.2.2 Output and show Commands
MSB1# show da ipv ripng
Codes: R - RIPng, C - connected, S - Static, O - OSPF, B - BGP
Sub-codes:
(n) - normal, (s) - static, (d) - default, (r) redistribute,
(i) - interface, (a/S) - aggregated/Suppressed
Network
Next Hop
Via
Metric Tag Time
R(n) 2001:1::/64 fe80::290:8fff:fe2e:eda8
GigabitEthernet 0/0
2
0 02:38
C(i) 2001:100:1::/64
::
self
1
0
R(n) 2001:100:2::/64
fe80::290:8fff:fe2e:eda8
GigabitEthernet 0/0
2
0 02:38
MSBR1# show data ipv6 route ripng
Codes: K - kernel route, C - connected, S - static,
R - RIPng, O - OSPFv6, B - BGP
R
66::/64 [120/2] via fe80::290:8fff:fe2e:eda8, VLAN 1,
00:14:29
MSBR1# show da ipv route ripng
Codes: K - kernel route, C - connected, S - static,
R - RIPng, O - OSPFv6, B - BGP
R
2001:1::/64 [120/2] via fe80::290:8fff:fe2e:eda8,
GigabitEthernet 0/0, 00:01:53
R
2001:100:2::/64 [120/2] via fe80::290:8fff:fe2e:eda8,
GigabitEthernet 0/0, 00:01:53
MSBR1# show da ipv ripng status
Routing Protocol is "RIPng"
Sending updates every 30 seconds with +/-50, next due in 3
seconds
Timeout after 180 seconds, garbage collect after 120 seconds
Outgoing update filter list for all interface is not set
Incoming update filter list for all interface is not set
Default redistribution metric is 1
Redistributing:
connected
Default version control: send version 1, receive version 1
Interface
Send Recv
GigabitEthernet 0/0
1
1
Routing for Networks:
GigabitEthernet 0/0
Routing Information Sources:
Gateway
BadPackets BadRoutes Distance Last Update
fe80::290:8fff:fe2e:eda8
0
0
120
00:00:16
Version 6.8
115
Mediant MSBR
IP Networking Configuration
20.3
OSPFv3 Routing Protocol
Open Shortest Path First (OSPF) is a dynamic routing protocol from the Link-State family,
basing its routing decisions on the bandwidth parameter using the Dijkstra Algorithm. The
protocol establishes adjacencies with other OSPF routers to which it is connected, and
maintains detailed topology and routing tables. OSPF provides fast network convergence
and great scalability. The version of the protocol that is being used is OSPFv3 (RFC 5340).
Note: OSPFv3 is called OSPF6 in Linux and therefore, commands that are written as
ospf6. OSPFv3 and OSPF6 are synonymous.
20.3.1 Configuring OSPF
The following describes the commands for configuring OSPF.
20.3.1.1 Router-Configuration Level
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router ospf6
Enters the OSPF6 configuration mode.
20.3.1.2 OSPF6 Router Level
Command
Description
(config-router)# area A.B.C.D
Configured area parameters.
(config-router)# interface
interface area A.B.C.D
Enables routing on an IPv6 interface and defines
IPv4-formatted area to interface.
(conf-router)# redistribute
Redistributes routes from other protocols.
20.3.1.3 Main options for Interface-Configuration Level
Command
Description
(config-data)# interface
gigabitethernet 0/0
Enters the interface configuration menu.
(config-if-GE 0/0)# ipv6 ospf6
advertise
Advertising options.
(config-if-GE 0/0)# ipv6 ospf6
passive
Passive interface in listen mode only.
(conf-if-int)# ipv6 ospf6 cost
cost
Configuration Guide
Configures the OSPF6 cost for the specified
interface.
116
Document #: LTRT-31657
Configuration Guide
20. IPv6 Routing
20.3.2 Example of OSPFv3 Routing
This example demonstrates a typical scenario where an MSBR acts as a default gateway
for a LAN network, and connects to the WAN network using the OSPF6 protocol. This
example includes a single-area (area 0.0.0.5) OSPF6 network; however, in more complex
and large-scale networks, multi-area topology may be more adequate in terms of
scalability.
Figure 20-3: OSPF6 Routing
The following configuration demonstrates a basic OSPF6 configuration in which OSPF6 is
activated on the LAN interfaces (for advertisement) and on the WAN interfaces (for
adjacency forming). The router-ids are explicitly configured to the addresses of loopback
interfaces configured on the MSBR. Adjacency change logging is activated for debugging.
The OSPF6 timers are configured on the WAN interfaces of the MSBRs and should always
be matched on both ends to avoid adjacency flapping.
******************************************************************
IPv6 address configuration is omitted, assume it is as described
in the topology above.
******************************************************************
MSBR1:
MSBR1# config data
MSBR1 (config-data)# router ospf6
MSBR1 (conf-router)# router-id 1.1.1.1
MSBR1 (conf-router)# redistribute connected
MSBR1 (conf-router)# interface GigabitEthernet 0/0 area 0.0.0.5
MSBR1 (conf-router)# exit
MSBR1(config-data)# interface GigabitEthernet 0/0
MSBR1(conf-if-GE 0/0)# ipv6 ospf6 hello-interval 1
MSBR1(conf-if-GE 0/0)# ipv6 ospf6 dead-interval 3
MSBR2:
MSBR2# config data
MSBR2(config-data)# router ospf6
MSBR2(conf-router)# router-id 1.1.1.2
MSBR2(conf-router)# redistribute connected
MSBR2(conf-router)# interface GigabitEthernet 0/0 area 0.0.0.5
MSBR2(conf-router)# exit
MSBR1(config-data)# interface GigabitEthernet 0/0
MSBR1(conf-if-GE 0/0)# ipv6 ospf6 hello-interval 1
MSBR1(conf-if-GE 0/0)# ipv6 ospf6 dead-interval 3
Version 6.8
117
Mediant MSBR
IP Networking Configuration
20.3.3 Useful Output and show Commands
MSBR2# show data ipv6 ospf neighbor
Neighbor ID
1.1.1.1
Pri
1
DeadTime
00:00:40
State/IfState
Full/DR
Duration I/F[State]
00:15:25 VLAN 1[BDR]
MSBR2# show data ipv6 ospf6
OSPFv3 Routing Process (0) with Router-ID 1.1.1.2
Running 00:16:14
Number of AS scoped LSAs is 7
Number of areas in this router is 1
Area 0.0.0.5
Number of Area scoped LSAs is 5
Interface attached to this area: VLAN 1
MSBR2# show data ipv6 route ospf6
Codes: K - kernel route, C - connected, S - static,
R - RIPng, O - OSPFv6, B - BGP
O
2000::33:0/124 [110/1] via fe80::290:8fff:fe2e:eda8, VLAN 1,
00:12:41
O
2002::/64 [110/2] via fe80::290:8fff:fe2e:eda8, VLAN 1, 00:12:41
O
2011:3333::/64 [110/1] is directly connected, VLAN 1, 00:22:22
O
2014:9999::/64 [110/1] via fe80::290:8fff:fe2e:eda8, VLAN 1,
00:12:41
O
fc11::/124 [110/1] via fe80::290:8fff:fe2e:eda8, VLAN 1, 00:12:41
O
fc12::/124 [110/1] via fe80::290:8fff:fe2e:eda8, VLAN 1, 00:12:41
Configuration Guide
118
Document #: LTRT-31657
Configuration Guide
20.4
20. IPv6 Routing
Border Gateway Protocol (BGP) for IPv6
BGP is a standardized exterior gateway protocol (EGP) for exchanging routing and
reachability information between routers on different Autonomous Systems (AS’s) in large
scale, internet provider and public internet networks.
BGP does not use the metrics used by IGP protocols (such as RIP, OSPF, EIGRP, ISIS),
however makes its routing decisions based on paths, network policies and custom rules
configured by network administrators.
BGP is more stable and much less “chatty” protocols than the common IGP protocols, and
does not form adjacencies unless specifically configured. The formed adjacencies are
connection oriented and based on TCP connections.
BGP is the main routing protocol of internet service providers and the Internet.
20.4.1 Configuring BGP
The following describes the commands for configuring BGP.
20.4.1.1 Main options for Address-Family Level Configuration
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router bgp asnumber
Enters the BGP configuration mode and the
number of the local autonomous system.
(conf-router)# address-family ipv6
Enters the BGP IPv6 Address Family
configuration mode.
(conf-router-af)# neighbor address
activate
Activate the BGP IPv6 protocol with this
neighbor.
(conf-router-af)# neighbor address
default-originate
Originate default route to this neighbor.
(conf-router-af)# neighbor address
prefix-list
Filter updates to/from this neighbor .
(conf-router-af)# neighbor address
route-map
Version 6.8
Apply route map to neighbor.
119
Mediant MSBR
IP Networking Configuration
20.4.2 Example of Basic BGP WAN Connectivity
This example includes a basic and very common BGP WAN connectivity scenario. The
local MSBR establishes a BGP adjacency with the ISP router and receives a default route
from it, allowing it full connectivity to the “Outside World”.
Usually in scenarios like this, the internal (LAN) network segment is allocated by the ISP
and allows it to be routed across the ISP network.
Figure 20-4: BGP IPv6 Example
20.4.2.1 Configuration
MSBR# configure data
MSBR(conf-data)# router bgp AS-Number
MSBR(conf-router)# neighbor <ISP address> remote-as 55101
MSBR(conf-router)# address-family ipv6
MSBR(conf-router-af)# neighbor <ISP address> activate
20.4.2.2 Output
The following output shows the local parameters of the BGP process and the established
BGP adjacencies:
MSBR# show data ipv6 bgp summary
MSBR#
The following output shows that the router is learning a default route through the ISP BGP
peer:
MSBR# show data ipv6 route
MSBR#
Configuration Guide
120
Document #: LTRT-31657
Configuration Guide
20. IPv6 Routing
20.4.3 Example 2
This example shows a scenario in which an organization is connected to the public internet
through two ISPs. This is often called a Multi-WAN configuration and it provides high
availability and redundancy of the internet connection. It is demonstrated that both ISPs
advertise a default route through the BGP protocol, and are prioritized using manual
modification of the BGP Weight attribute.
Figure 20-5: BGP IPv6 Example 2
20.4.3.1 Configuration
*******************************************
Basic Configuration omitted
*******************************************
MSBR(conf-router)# router bgp 65000
MSBR(conf-router)# bgp router-id 1.1.1.1
MSBR(conf-router)# bgp log-neighbor-changes
MSBR(conf-router)# neighbor 2001:1::20 remote-as 6500
MSBR(conf-router)# neighbor 2001:2::20 remote-as 6501
MSBR(conf-router)# address-family ipv6
MSBR(conf-router)# network 2001::/64
MSBR(conf-router)# network 2001:100:1::/64
MSBR(conf-router)# neighbor 2001:1::20 activate
MSBR(conf-router)# neighbor 2001:2::20 activate

Version 6.8
MSBR1:
MSBR(conf-data)# router bgp 6500
MSBR(conf-router)# bgp router-id 10.4.4.69
MSBR(conf-router)# neighbor 2001:1::10 remote-as 65000
MSBR(conf-router)#
MSBR(conf-router)#
MSBR(conf-router)# address-family ipv6
MSBR(conf-router-af)# redistribute connected <- redistribute
all IPv6 connected routes
MSBR(conf-router-af)# neighbor 2002:1::10 activate <- activate
the bgp ipv6 with this neighbor (differently from ipv4, it is
a mandatory command)
MSBR(conf-router-af)# exit
MSBR(conf-router)# exit
121
Mediant MSBR
IP Networking Configuration

MSBR2:
MSBR(conf-data)# router bgp 6501
MSBR(conf-router)# bgp router-id 11.11.11.11
MSBR(conf-router)# neighbor 2001:1::10 remote-as 65000
MSBR(conf-router)# address-family ipv6
MSBR(conf-router-af)# redistribute connected
MSBR(conf-router-af)# neighbor 2002:1::10 activate
MSBR(conf-router-af)# exit
MSBR(conf-router)# exit
The configuration includes two important parts:

The basic configuration defines the networks to be advertised and routed, and the
neighbors to which to establish adjacency.

The second part of the configuration deals with the prioritization of the routes received
from neighbors. Given the fact that a default route is received via the BGP protocols
from both neighbors, you need to give one of them a higher priority (better metric).
This is performed using a route-map that fine-tunes the “Weight” BGP attribute of
incoming route-updates, where the route with the higher weight value is inserted into
the routing table.
Configuration Guide
122
Document #: LTRT-31657
Configuration Guide
20. IPv6 Routing
20.4.3.2 Output

BGP adjacency status:
MSBR# show data ipv6 bgp summary
BGP router identifier 10.4.4.69, local AS number 6500
RIB entries 11, using 1056 bytes of memory
Peers 1, using 4560 bytes of memory
Neighbor
V AS MsgRcvd MsgSent TblVer InQ
State/PfxRcd
2002::
4 6501
28
30
0
0
5
OutQ
0
Up/Down
00:14:18
MSBR# show data ipv6 bgp
BGP table version is 0, local router ID is 10.4.4.69
Status codes: s suppressed, d damped, h history, * valid, >
best, i - internal,
r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
Network
Next Hop
*> 2000::33:0/124 2002::2
* 2002::/64
2002::2
*> ::
*> 2014:9999::/64 2002::2
*> 3003::/64
::
*> fc11::/124
2002::2
*> fc12::/124
2002::2
Metric LocPrf Weight Path
3
0
6501 ?
4
0
6501 ?
4
32768 ?
3
0
6501 ?
4
32768 ?
3
0
6501 ?
3
0
6501 ?
Total number of prefixes 6
MSBR# show data ipv6 bgp neighbors 2002::2 advertised-routes
BGP table version is 0, local router ID is 10.4.4.69
Status codes: s suppressed, d damped, h history, * valid, >
best, i - internal,
r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
Network
*> 2002::/64
*> 3003::/64
Next Hop
2002::3
2002::3
Metric LocPrf Weight Path
4
32768 ?
4
32768 ?
Total number of prefixes 2
Version 6.8
123
Mediant MSBR
IP Networking Configuration
MSBR# show data ipv6 bgp neighbors 2002::2 routes
BGP table version is 0, local router ID is 10.4.4.69
Status codes: s suppressed, d damped, h history, * valid, >
best, i - internal,
r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
*>
*
*>
*>
*>
Network
2000::33:0/124
2002::/64
2014:9999::/64
fc11::/124
fc12::/124
Next Hop
2002::2
2002::2
2002::2
2002::2
2002::2
Metric
3
4
3
3
3
LocPrf
0
0
0
0
0
Weight Path
6501 ?
6501 ?
6501 ?
6501 ?
6501 ?
Total number of prefixes 5

MSBR routing table:
MSBR# show data ipv6 route
Codes: K - kernel route, C - connected, S - static,
R - RIPng, O - OSPFv6, B - BGP
B
2000::33:0/124 [200/3] via fe80::290:8fff:fe40:3e1c, VLAN
1, 00:00:14
C
2002::/64 [1/4] is directly connected, VLAN 1
B
2014:9999::/64 [200/3] via fe80::290:8fff:fe40:3e1c, VLAN
1, 00:00:14
B
3003::/64 [200/4] via fe80::290:8fff:fe40:3e1c, VLAN 1,
00:00:14
B
4004::/64 [200/4] via fe80::290:8fff:fe40:3e1c, VLAN 1,
00:00:14
B
5050::/64 [200/0] via fe80::290:8fff:fe40:3e1c, VLAN 1,
00:00:29
B
fc11::/124 [200/3] via fe80::290:8fff:fe40:3e1c, VLAN 1,
00:00:14
B
fc12::/124 [200/3] via fe80::290:8fff:fe40:3e1c, VLAN 1,
00:00:14
C
fe80::/64 [1/4] is directly connected, VLAN 1
Configuration Guide
124
Document #: LTRT-31657
Configuration Guide
20.5
20. IPv6 Routing
DCHPv6
DHCPv6 is the DHCP protocol that runs with IPv6. This protocol works in a different way
on IPv6 than on IPv4; however, the goal of the protocol remains the same.
The MSBR can obtain configuration if it's WAN interface using two modes: stateful or
stateless. In stateful mode, the entire configuration is provided using the DHCP server. In
stateless mode, the IP configuration can be provided using the Network Discovery Protocol
(NDP), and other configuration protocols such as NTP. In addition, a DNS address can be
provided using the DHCP server, and also the NDP protocol can be used. In both cases,
the hosts cannot obtain an IP address using Prefix Delegation. If the WAN address is
dynamically configured, the hosts can obtain dynamic IP addresses using Router
Advertisement (RA) or it can be configured as a static address.
Some routers connected to ISPs require IPv6 addresses not only for their WAN interfaces,
but also for hosts connected to their LAN interfaces. In the IPv4 world, the ISP provides the
router with one or more IP addresses for the WAN interface. The network operator uses
NAT with a local DHCP server to assign IP addresses to the hosts on the LAN side.
However, in the IPv6 world, there is no NAT protocol because there is no need to save
IPv6 addresses - they are abundant. In the IPv6 world, the IPv6 addresses are provided by
the ISP using prefix delegation. Prefix delegation, described in RFC 3769, is used to assign
a router IP prefix which can be delegated to the LAN side as networks. Hosts will receive
IPv6 addresses in these networks.
Figure 20-6: IPv6 Prefix Delegation
The figure above shows an example of a network topology using the IPv6 prefix delegation.
The ISP router delegates the prefix 2001:0100:0:FFF0::/56 to the MSBR. The MSBR needs
to assign addresses to three LAN networks: Interface VLAN 10, Interface VLAN 20 and
Interface VLAN 30. Every host on the LAN network is assigned with an address with prefix
/64. This means that the MSBR can assign every LAN interface with a network in an
amount of 264−56 = 28 = 256 . This means that MSBR can assign addresses on 256
VLANs. The computers attached to interface VLAN 1 will have IPs in the network
2001:100:0:FF00:: /64, on VLAN 2, the computers will have IPs in the network
2001:100:0:FF01:: /64 etc.
Version 6.8
125
Mediant MSBR
IP Networking Configuration
20.5.1 Configuring Stateless DHCP
To configure stateless IP address, use the following commands:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface <WAN
Interface>
Configures a WAN interface.
(conf-if-WAN int)# ipv6 address
autoconfig
Uses autoconfig, stateless mode to configure an
IP address on the interface.
20.5.2 Configuring Stateful DHCP
To configure stateful IP addresses, use the following commands:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface <WAN
Interface>
Configures a WAN interface.
(conf-if-WAN int)# ipv6 address
dhcp [rapid-commit]
Uses DHCP stateful mode to configure an IP
address on the interface.
20.5.3 Configuring Router Advertisement
For stateful and stateless IP address configuration, router advertisement (RA) can be
configured for hosts to allow dynamic IP allocation. Use the configuration steps described
in the table below to configure RA.
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# VLAN <No>
Enters LAN interface configuration.
(conf-if-VLAN 1)# ipv6 address
2001:100:1::1/64
Configures a static IP address for the LAN
address.
(conf-if-VLAN 1)# ipv6 nd prefix
2001:100:1:: default
Configures an RA prefix with default timers.
Instead of default timers, lifetime timers can be
used, according to RFC 4861.
(conf-if-VLAN 1)# no ipv6 nd ra
suppress
By default, the RA is suppressed and not
operational. Use the no command to stop the
suppression and activate RA.
Configuration Guide
126
Document #: LTRT-31657
Configuration Guide
20. IPv6 Routing
20.5.4 Configuring Prefix Delegation
For the configuration of the prefix delegation, the interface VLAN on the LAN side needs to
know from where to receive the IPv6 prefix delegation, and the WAN interface needs to
know from where to receive DHCPv6 data. To configure prefix delegation, use the
configuration steps that are described in the following table .
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface <WAN
interface>
Enters the WAN interface that is connected to
the WAN.
(conf-if-WAN int)# ipv6 dhcpclient pd [rapid-commit]
Configures the WAN interface to receive PD
messages.
Rapid-commit – uses two-message exchange
rather than four-message exchange to obtain an
IP address according to RFC 4039.
(config-data)# interface vlan
<number>
Enters the LAN interface configuration.
(config-data)# ipv6 enable
Enables IPv6 on the interface.
(config-data)# ipv6 dhcp server
enable
Enables DHCP service on the interface.
(conf-if-VLAN <No>)# ipv6 nd pd
<WAN interface> <IPv6 Prefix>
Version 6.8
Configures the LAN interface to obtain IPv6
prefix from the <WAN interface>.
<IPv6 Prefix> is the prefix delegated to the hosts
attached to the LAN interface. According to the
example, if the configured MSBR is on interface
VLAN 2, the prefix should be
2001:100:100:ff01::/64.
127
Mediant MSBR
IP Networking Configuration
20.5.5 Example of DHCPv6 Prefix Delegation
The following is an example of DHCPv6 Prefix Delegation.
20.5.5.1 Configuration of Prefix Delegation
The configuration is based on the following example scenario:
Figure 20-7: DHCPv6 Prefix Delegation Example
The configuration of the ISP CISCO 7200 router is as follows (irrelevant sections of the
configuration have been omitted):
ISP# ipv6 unicast-routing
ISP# ipv6 dhcp pool dhcpv6
prefix-delegation pool dhcpv6-pool1 lifetime 1800 600
interface FastEthernet0/0
ISP# no ip address
ISP# duplex auto
ISP# speed auto
ISP# ipv6 address 2001:100:1::1/64
ISP# ipv6 enable
ISP# ipv6 dhcp server dhcpv6 rapid-commit
!
ISP# ipv6 local pool dhcpv6-pool1 2001:100:0:FF00::/56 56
!
The MSBR needs to be configured as follows.
MSBR(config-data)# int gigabitethernet 0/0
MSBR(conf-if-GE 0/0)# ipv6 dhcp-client pd rapid-commit
MSBR(conf-if-GE 0/0)# exit
MSBR(config-data)# interface vlan 1
Configuration Guide
128
Document #: LTRT-31657
Configuration Guide
20. IPv6 Routing
MSBR(conf-if-VLAN 1)# ipv6 enable
MSBR(conf-if-VLAN 1)# ipv6 dhcp-server enable
MSBR(conf-if-VLAN 1)# ipv6 nd pd GigabitEthernet 0/0
2001:100:100:ff01::/64
20.5.5.2 Output
ISP CISCO 7200 output is as follows.
ISP# show ipv6 dhcp pool
DHCPv6 pool: dhcpv6
Prefix pool: dhcpv6-pool1
preferred lifetime 600, valid lifetime 1800
Active clients: 1
ISP#
ISP# show ipv6 dhcp binding
Client: FE80::290:8FFF:FE4A:2344 (FastEthernet0/0)
DUID: 0001000112EF4ABE00908F4A2343
IA PD: IA ID 0x00000000, T1 300, T2 480
Prefix: 2001:100:0:FF00::/56
preferred lifetime 600, valid lifetime 1800
expires at May 04 2014 11:52 AM (1685 seconds)
ISP#
The following host's output shows that the host received an IPv6 prefix and generated an
IP address for itself:
>ipconfig
Ethernet adapter LAN:
Connection-specific DNS Suffix . :
IP Address. . . . . . . . . . . . : 180.1.100.20
Subnet Mask . . . . . . . . . . . : 255.255.255.0
IP Address. . . . . . . . . . . . :
2001:100:100:ff01:9077:cd4e:f720:f9a5
Link-local IPv6 Address . . . . . : fe80::290:8fff:fe4a:2343%6
IPv4 Address. . . . . . . . . . . : 192.168.99.1
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 180.1.1.1
fe80::c801:2aff:fe90:6%29
Version 6.8
129
Mediant MSBR
IP Networking Configuration
20.5.6 Example of RA Configuration
The following is an example of Router Advertisement (RA) configuration.
20.5.6.1 Configuration
In this example, a host is connected to the LAN interface of MSBR on VLAN 1.
MSBR# configure data
MSBR(config-data)# interface vlan 1
MSBR(conf-if-VLAN 1)# ipv6 enable
MSBR(conf-if-VLAN 1)# ipv6 address 2001:100:1::1/64
MSBR(conf-if-VLAN 1)# ipv6 nd prefix 2001:100:1:: default
MSBR(conf-if-VLAN 1)# no ipv6 nd ra suppress
MSBR(conf-if-VLAN 1)#
20.5.6.2 Output
The following is the output of the ipconfig command at the host connected to the MSBR:
Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix
IPv6 Address. . . . . . . . . .
2001:100:1:0:808e:a770:deb7:1cd3
Link-local IPv6 Address . . . .
fe80::808e:a770:deb7:1cd3%12
IPv4 Address. . . . . . . . . .
Subnet Mask . . . . . . . . . .
Default Gateway . . . . . . . .
Configuration Guide
130
. :
. :
. :
. : 180.1.1.50
. : 255.255.255.0
. : fe80::c800:24ff:fe90:8%12
fe80::c801:24ff:fe90:8%12
Document #: LTRT-31657
Configuration Guide
20.6
20. IPv6 Routing
DNSv6
DNS is a hierarchical naming system for computers, devices, or any resources connected
to a network. DNS is used to resolve hostnames into IP addresses, and to enforce naming
conventions for devices in the network and/or domain.
DNS configuration for devices can be either static – administrator configured – or acquired
dynamically through DHCP.
While working with DHCPv6 and DNSv6, the DNS server IPv6 address is not sent to the
clients if Neighbor Discovery or Router Advertisement is used. For this scenario, static IPv6
addresses need to be configured.
20.6.1 DNSv6 Configuration
The following describes DNSv6 configuration..
20.6.1.1 Global Configuration
The following is the global configuration of DNS:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip dns server
<all|static>
Configures the DNS configuration method (static
or dynamic).
(config-data)# ip name-server
server1ipv6 [server2ip] all
Configures the DNS server(s) IPv6 address in
case of static configuration.
20.6.1.2 Interface-Specific Configuration
The following is the configuration of the DNS per interface:
Command
MSBR# configure data
(config-data)# interface int_name
(config-if-name)# ip dns server
<all|static>
(config-if-name)# ip name-server
server1ipv6 [server2ipv6] all
Description
Enters the data configuration menu.
Selects an interface to configure.
Configures an interface-specific DNS
configuration method (static or dynamic).
Configures DNS server(s) IPv6 address in case
of static configuration on the interface.
MSBR can act as a DNS server. To configure the MSBR to act as a DNS server, use the
following commands:
Command
Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip host <name> <ip
| IPv6> <TTL>



Version 6.8
131
<Name>: any name for the host.
<IP | IPv6>: configure IPv4 or IPv6 for the
name.
<TTL>: Time to live of the DNS record.
Mediant MSBR
IP Networking Configuration
20.6.2 Example of Basic Static DNS Configuration
This example configures a DNS record on the MSBR. nslookup is used in the Windows
workstation and another MSBR unit is used to lookup the record. A Windows 7 workstation
and another MSBR (MSBR2) are connected to the LAN ports of the MSBR. This example
assumes that the DNS server IPv6 is 2001::1.
MSBR1# configure data
MSBR1(config-data)# ip host audioCodes 2001::1 10
At the Window workstation, run cmd, type “nslookup”, and then do the following:
C:\Users\timg>nslookup
Default Server: AudioCodes
Address: 2001::1
> set srchlist=
> set type=AAAA
> Audiocodes
Server: AudioCodes
Address: 2001::1
Name:
Audiocodes
Addresses: 2001::1
2001::1
>
On the MSBR2, attached to the MSBR, use the following commands:
# configure gigabitethernet 0/0 to get IP from the MSBR1
MSBR2# configure data
MSBR2(config-data)# interface gigabitethernet 0/0
MSBR2(conf-if-GE 0/0)# ipv6 address autoconfig
# Configure Static DNS Server
MSBR2(conf-if-GE 0/0)# ip dns server static
MSBR2(conf-if-GE 0/0)# ip name-server 2001::1
# Get IPv6 Record from the DNS
MSBR2# nslookup AudioCodes type aaaa
AudioCodes resolved to 2001::1
AudioCodes resolved to 2001::1
MSBR2#
Configuration Guide
132
Document #: LTRT-31657
Configuration Guide
21
21. IP Multicast – PIM Sparse Mode
IP Multicast – PIM Sparse Mode
Protocol-Independent Multicast (PIM) is a family of multicast routing protocols for Internet
Protocol (IP) networks that provide one-to-many and many-to-many distribution of data
over a LAN, WAN or the Internet. It is termed protocol-independent because PIM does not
include its own topology discovery mechanism; however, instead uses routing information
supplied by other routing protocols.
There are four variants of PIM. AudioCodes supports the most common variant:
PIM Sparse Mode (PIM-SM) explicitly builds unidirectional shared trees rooted at a
rendezvous point (RP) per group, and optionally creates shortest-path trees per source.
PIM-SM generally scales fairly well for wide-area usage.
21.1
Feature Key
Advanced routing feature key must be enabled. Some networks require dynamic routing
protocols- OSPF\BGP and VRF capabilities. To support these capabilities, the appropriate
Feature key should be set.
21.2
CLI Configuration and Status Commands
The following describes the CLI Configuration and Status commands.
21.2.1 Configuration Commands
Command
Description
MSBR# configure data
Enters the data configuration menu.
ip multicast-routing
Enables the multicast protocol on the
MSBR.
mode pim
exit
Sets multicast mode to PIM and returns
to configure data.
ip pim rp-address <ip> group <Multicast
group prefix>
ip pim rp-candidate <IP | Interface>
priority <0-255> time <0-3600>
Sets static RP address for router, should
be configured on all related PIM routers.



ip pim bsr-candidate <IP | Interface>
priority <0-255>
Version 6.8
133

Sets router to be a candidate RP,
chosen by priority.
Sets router to be a candidate RP,
Advertising Interval in seconds.
When interface is used – the RP
candidate will be set to interface IP.
Sets router to be a BSR candidate,
chosen by priority when Interface is
used – the BSR candidate will be set
to interface IP.
Mediant MSBR
IP Networking Configuration
ip pim spt-threshold infinity
OR
ip pim spt-threshold packets <number of
packets> interval <sec>
OR
ip pim spt-threshold rate <kpps>
interval <sec>
group-prefix
Sets threshold for moving to shortest
path tree between the multicast server
and the client.
 infinity - Never switch to shortest
path
 packets – Move to shortest path tree
when number of packets threshold
was crossed during the specified
interval
 rate - Move to shortest path tree when
packet rate threshold was crossed
during the specified interval
Group Prefixes supported by RP
Candidate. Up to 255 groups are
supported.
21.2.2 Status Commands
Command
Description
show data ip mroute
Displays Multicast route information.
show data ip mroute interfaces
Displays Multicast route interface information.
show data ip mroute detail
Displays Detailed multicast route information.
show data ip pim bsr-router
Displays PIM BSR information.
show data ip pim groups
Displays PIM group information.
show data ip pim interfaces
Displays PIM interface and neighbor information.
show data ip pim rp
Displays PIM RP information.
MSBR# show data ip mroute
(Source, Multicast Group)
Interface
(192.168.10.3, 232.0.0.42)
Input Interface
Output
VLAN 1
Fiber 0/1
Show data ip mroute interfaces
500L - MSBR2*# show data ip mroute interfaces
Interface
BytesIn PktsIn BytesOut PktsOut Flags
Local
Remote
0 VLAN 1
26082
162
6956
7
NONE
192.168.2.1
0.0.0.0
2 Giga 0/0
0
0
0
NONE
172.17.116.22
0.0.0.0
3 Fiber 0/1
6956
7
0
0
NONE
200.200.200.2
0.0.0.0
4 PIM
0
0
0
0
REGISTER
192.168.2.1
0.0.0.0
500L - MSBR2*#
Configuration Guide
134
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
MSBR# show data ip mroute detail
Iif - Incoming interface, Oif - Outgoing interface
Origin
Group
Iif
Pkts
Bytes
Oifs:TTL
192.168.10.3
232.0.0.42
VLAN 1
36
27360
Fiber 0/1:1 PIM:1
Wrong
0
MSBR# show data ip pim groups
Multicast Group Routing Table - Legend:
---Flags:
SPT
Shortest Path Tree, internal interface toward source
WC
(*,G) entry
RP
internal interface iif toward RP
CACHE
a mirror for the kernel cache
SG
(S,G) pure, not hanging off of (*,G)
CLONE_SG
clone (S,G) from (*,G) or (*,*,RP)
---Multicast Group Routing Table
Source
Group
RP addr
Flags
---------------------------(*,G)---------------------------INADDR_ANY
232.0.0.42
200.0.0.2
WC RP
Joined
oifs: Fiber 0/1
Pruned
oifs:
Leaves
oifs:
Asserted oifs:
Outgoing oifs: Fiber 0/1
Incoming
: PIM_FORWARDING
TIMERS:
Entry
165
Joine-Prune
20
VLAN 1
Fiber 0/1
GigabitEthernet 0/0
PIM_FORWARDING
Register-Suppression
0
:
:
:
:
Assert
0
0
165
0
0
Source
Group
RP addr
Flags
---------------------------(S,G)---------------------------192.168.10.3
232.0.0.42
200.0.0.2
SPT CACHE SG
Joined
oifs: Fiber 0/1 PIM_FORWARDING
Pruned
oifs:
Leaves
oifs:
Asserted oifs:
Outgoing oifs: Fiber 0/1 PIM_FORWARDING
Incoming
: VLAN 1
TIMERS:
VLAN 1
Fiber 0/1
Version 6.8
Entry
180
Joine-Prune
30
Register-Suppression
0
:
:
135
Assert
0
0
180
Mediant MSBR
IP Networking Configuration
GigabitEthernet 0/0
PIM_FORWARDING
:
:
0
0
Source
Group
RP addr
Flags
--------------------------(*,*,RP)-------------------------Number of Groups: 1
Number of Cache MIRRORs: 1
show data ip pim interfaces
Virtual Interface Table - Flag Legend:
---DOWN
Kernel state of interface
DISABLED
Administratively disabled
DR
Specified interface is the designated
NO-NBR
No PIM neighbors on virtual interface
PIM
PIM neighbor on virtual interface
DVMRP
DVMRP neighbor on virtual interface
---Virtual Interface Table
Vif Local address
Interface
Neighbors
(Expire)
0 192.168.0.1
BVI 1
NO-NBR
2 10.31.2.86
GigabitEthernet 0/0
DISABLED
3 200.0.0.1
Fiber 0/1
200.0.0.2
(00:01:30)
MSBR# show data ip pim rp
RP address
Interface
Holdtime (Seconds)
200.0.0.2
Fiber 0/1
65535
router
Thresh
Flags
1
DR
1
1
PIM
Group prefix
Priority
224.0.0.0/4
1
21.2.3 Multicast Example - Static RP
The concept of setting a static RP involves forcing the PIM protocol to use a specific IP
address as the Rendezvous Point.
Use “ip multicast-routing” to enter the multicast routing configuration mode and
activate the PIM protocol on the MSBR system.
ip multicast-routing
mode pim
exit
Next, each interface that is used for multicast traffic should be specifically turned on:
interface Fiber 0/1
ip pim sparse-mode
exit
Setting static RP – the join-group packet will be sent to the RP IP address, in case the RP
support the desired group – multicast streaming will be performed.
Configuration Guide
136
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
ip pim rp-address 200.0.0.2
The example below shows an implementation of media streaming using VLC free software.
Figure 21-1: Multicast Example - Static RP

PC IP – 192.168.2.3 is the rtp receiver

PC IP – 192.168.0.3 is the rtp transmitter
Setting Multicast Streamer and Receiver using VLC player :
http://get.videolan.org/vlc/2.1.5/win32/vlc-2.1.5-win32.exe
The example below shows an implementation of media streaming using VLC on the client
side for receiving multicast traffic.
Version 6.8
137
Mediant MSBR
IP Networking Configuration
 To implement media streaming on the server side:
1.
Open VLC:
Figure 21-2: VLC Media Player
2.
Add the media file to the stream and then select the stream.
Figure 21-3: VLC Media Player
Configuration Guide
138
Document #: LTRT-31657
Configuration Guide
3.
21. IP Multicast – PIM Sparse Mode
Continue with streaming wizard, and click Next.
Figure 21-4: Stream Output
4.
Stream to multicast address:
Figure 21-5: Stream Output-Destination Setup
\
Version 6.8
139
Mediant MSBR
IP Networking Configuration
5.
Update the stream TTL manually.
Figure 21-6: Stream Output-Destination Setup-Option Setup
6.
Click the Stream button to start streaming the movie.
Configuration Guide
140
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
 To implement media streaming on the receiver side:
1.
Open VLC.
Figure 21-7: Open Network Stream
2.
Stream from multicast address.
Figure 21-8: Open Media
Version 6.8
141
Mediant MSBR
IP Networking Configuration
3.
Watch Movie.
The following is an example of a show run command for two MSBRs:
M500_Transmitter*# show run
# Running Configuration M500_Transmitter
## VoIP Configuration
configure voip
interface network-dev 0
name "vlan 1"
activate
exit
interface network-if 0
ip-address 192.168.10.2
prefix-length 24
gateway 192.168.10.1
name "Voice"
primary-dns 192.168.10.1
underlying-dev "vlan 1"
activate
exit
media udp-port-configuration
udp-port-spacing 10
activate
exit
voip-network realm 0
name "DefaultRealm"
ipv4if "Voice"
port-range-start 4000
session-leg 6154
port-range-end 65530
is-default true
activate
exit
megaco naming
physical-start-num 0 0
physical-start-num 1 1
physical-start-num 2 1
physical-start-num 3 0
physical-start-num 4 0
activate
exit
tdm
pcm-law-select mulaw
activate
exit
exit
Configuration Guide
142
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
## System Configuration
configure system
cli-terminal
wan-ssh-allow on
wan-telnet-allow on
ssh on
idle-timeout 0
activate
exit
ntp
set primary-server "0.0.0.0"
activate
exit
snmp
no activate-keep-alive-trap
activate
exit
web
wan-http-allow on
set https-cipher-string "RC4:EXP"
activate
exit
hostname M500_Transmitter
configuration-version 0
exit
## Data Configuration
configure data
ip multicast-routing
mode pim
exit
interface GigabitEthernet 0/0
ip address dhcp
ip dhcp-client default-route
mtu auto
desc "WAN Copper"
no ipv6 enable
speed auto
duplex auto
no service dhcp
ip dns server auto
napt
firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 200.0.0.2 255.255.255.252
ip pim sparse-mode
mtu auto
Version 6.8
143
Mediant MSBR
IP Networking Configuration
desc "WAN Fiber"
no ipv6 enable
no service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dsl 0/2
#DSL configuration is automatic
#Termination cpe
mode adsl
shutdown
exit
interface EFM 0/2
#This interface is DISABLED due to physical layer configuration
no ip address
mtu auto
desc "WAN DSL"
no ipv6 enable
no service dhcp
ip dns server static
no shutdown
exit
interface GigabitEthernet 1/1
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/2
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/3
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/4
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
Configuration Guide
144
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
exit
interface VLAN 1
ip address 192.168.10.1 255.255.255.0
ip pim sparse-mode
mtu auto
desc "LAN switch VLAN 1"
no ipv6 enable
ip dhcp-server network 192.168.10.3 192.168.10.8 255.255.255.0
ip dhcp-server dns-server 0.0.0.0
ip dhcp-server netbios-name-server 0.0.0.0
ip dhcp-server lease 0 1 0
ip dhcp-server provide-host-name
ip dhcp-server ntp-server 0.0.0.0
ip dhcp-server tftp-server 0.0.0.0
ip dhcp-server override-router-address 0.0.0.0
ip dhcp-server next-server 0.0.0.0
service dhcp
ip dns server static
no napt
no firewall enable
no link-state monitor
no shutdown
exit
ip pim rp-address 200.0.0.2
ip nat translation udp-timeout 120
ip nat translation tcp-timeout 86400
ip nat translation icmp-timeout 6
# Note: The following WAN ports are in use by system services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
ip domain name home
ip domain localhost msbr
pm sample-interval minute 5
pm sample-interval seconds 15
exit
# Running Configuration M500_Reciver
## VoIP Configuration
configure voip
interface network-dev 0
name "vlan 1"
activate
exit
interface network-if 0
ip-address 192.168.0.2
prefix-length 24
Version 6.8
145
Mediant MSBR
IP Networking Configuration
gateway 192.168.0.1
name "Voice"
primary-dns 192.168.0.1
underlying-dev "vlan 1"
activate
exit
media udp-port-configuration
udp-port-spacing 10
activate
exit
voip-network realm 0
name "DefaultRealm"
ipv4if "Voice"
port-range-start 4000
session-leg 6154
port-range-end 65530
is-default true
activate
exit
megaco naming
physical-start-num 0 0
physical-start-num 1 1
physical-start-num 2 1
physical-start-num 3 0
physical-start-num 4 0
activate
exit
tdm
pcm-law-select mulaw
activate
exit
exit
## System Configuration
configure system
cli-terminal
wan-ssh-allow on
wan-telnet-allow on
idle-timeout 0
activate
exit
ntp
set primary-server "0.0.0.0"
activate
exit
snmp
no activate-keep-alive-trap
activate
exit
web
Configuration Guide
146
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
wan-http-allow on
set https-cipher-string "RC4:EXP"
activate
exit
hostname M500_Reciver
configuration-version 0
exit
## Data Configuration
configure data
radio shutdown
ip multicast-routing
mode pim
exit
interface GigabitEthernet 0/0
ip address dhcp
ip dhcp-client default-route
mtu auto
desc "WAN Copper"
no ipv6 enable
speed auto
duplex auto
no service dhcp
ip dns server auto
napt
firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 200.0.0.1 255.255.255.252
ip pim sparse-mode
mtu auto
desc "WAN Fiber"
no ipv6 enable
no service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dsl 0/2
#DSL configuration is automatic
#Termination cpe
mode adsl
shutdown
exit
interface EFM 0/2
#This interface is DISABLED due to physical layer configuration
no ip address
Version 6.8
147
Mediant MSBR
IP Networking Configuration
mtu auto
desc "WAN DSL"
no ipv6 enable
no service dhcp
ip dns server static
no shutdown
exit
interface GigabitEthernet 1/1
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/2
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/3
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/4
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface VLAN 1
no ip address
bridge-group 1
mtu auto
desc "LAN switch VLAN 1"
no ipv6 enable
no service dhcp
no link-state monitor
no shutdown
exit
interface BVI 1
ip address 192.168.0.1 255.255.255.0
ip pim sparse-mode
mtu auto
desc "LAN Bridge"
ip dhcp-server network 192.168.0.3 192.168.0.8 255.255.255.0
ip dhcp-server dns-server 0.0.0.0
Configuration Guide
148
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
ip dhcp-server netbios-name-server 0.0.0.0
ip dhcp-server lease 0 1 0
ip dhcp-server provide-host-name
ip dhcp-server ntp-server 0.0.0.0
ip dhcp-server tftp-server 0.0.0.0
ip dhcp-server override-router-address 0.0.0.0
ip dhcp-server next-server 0.0.0.0
service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dot11radio 1
#This interface is DISABLED due to physical layer configuration
no ip address
bridge-group 1
mtu auto
desc "LAN Wireless 802.11n Access Point"
no ipv6 enable
no service dhcp
ssid MSBR
broadcast
security mode NONE
no security mac mode
mode ngb
channel width 40/20
channel auto
wmm
exit
ip pim rp-address 200.0.0.2
router ospf
redistribute connected
network 200.0.0.0/30 area 1.1.1.1
exit
ip nat translation udp-timeout 120
ip nat translation tcp-timeout 86400
ip nat translation icmp-timeout 6
# Note: The following WAN ports are in use by system services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
ip domain name home
ip domain localhost msbr
pm sample-interval minute 5
pm sample-interval seconds 15
exit
Version 6.8
149
Mediant MSBR
IP Networking Configuration
21.2.4 Multicast Example - Dynamic RP – Bootstrap Router Elects RP
This section includes multicast examples for Dynamic RP – Bootstrap Router Elects RP.
The VLC configuration and example from the “static multicast” chapter can be reused to
run multicast traffic for demonstrating this section.

Making the MSBR look for best RP:
Bootstrap Router publishes its multicast properties – the network selects the best
Bootstrap Router as the multicast manager that indicates for the best Rendezvous
Point as a multicast streamer.
Use “ip multicast-routing” to enter multicast configuration mode and “mode pim”
to activate PIM protocol on the MSBR system.
Next, each interface that will be used for multicast traffic should be specifically turned
on:
interface Fiber 0/1
ip pim sparse-mode
exit

Server\Media Streaming Side:
Setting BSR – for the media streaming side we define the Giga 0/0 as the BSR. The
BSR will define the best RP for IP multicast traffic.
ip pim bsr-candidate Fiber 0/1 priority 1
Setting RP defines the VLAN 1 IP address to be the MSBR RP point;. the join-group
packet is sent to the RP IP address. In case the RP supports the desired group, then
multicast streaming will be made.
ip pim rp-candidate VLAN 1 priority 1
21.2.4.1 On the Client \ Media Receiving Side
No special configuration should be added. The user should activate “mode pim” in “ip
multicast-routing” and specifically on each interface that uses the multicast traffic, the PIM
protocol should be enabled.
configure data
ip multicast-routing
mode pim
exit
interface Fiber 0/1
ip pim sparse-mode
no shutdown
exit
interface BVI 1
ip pim sparse-mode
no shutdown
exit
The figure below illustrates the implementation of media streaming using VLC free software
on the server side, and using VLC on the client side for receiving multicast traffic.
Configuration Guide
150
Document #: LTRT-31657
Configuration Guide
21. IP Multicast – PIM Sparse Mode
Figure 21-9: Setup Description
Voice and System configurations were not changed and are written in the static RP
example.
Version 6.8
151
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
152
Document #: LTRT-31657
Configuration Guide
22
22. IP Multicast – IGMP Proxy
IP Multicast – IGMP Proxy
The Internet Group Management Protocol (IGMP) is a communications protocol used by
hosts and adjacent routers on IPv4 networks to establish multicast group memberships.
IGMP is an integral part of IP multicast. The group refers to the multicast address
(224.0.0.0/4).
The IGMP proxy feature allows the MSBR to forward clients’ IGMP messages for multicast
services from the LAN towards the multicast source via the WAN interface. When the
MSBR receives multicast traffic on the WAN interface, it forwards the traffic towards any
LAN interface that has previously sent an IGMP join message to the MSBR.
When a client in the LAN wishes to leave the multicast group, it sends an IGMP Leave
message to the MSBR on the LAN interface. If this is the last client to leave the group from
the LAN interface, then the MSBR will not forward the multicast traffic to the interface. If
this the last client to leave the group from all the LAN interfaces of the MSBR, the MSBR
sends an IGMP Leave message to the multicast source.
22.1
Feature Key
Advanced routing feature key must be enabled.
22.2
CLI Configuration and Status Commands
22.2.1 Configuration Commands
Command
Description
MSBR# configure data
Enters the data configuration menu.
ip multicast-routing
Enters the multicast protocol menu
mode igmp-proxy
Sets multicast mode to IGMP Proxy
igmp fast-leave
exit
Stops multicast forwarding to interfaces
on last IGMP leave message, exit back to
configure data
Interface <interface>
Enters interface to enable igmp proxy
igmp enable-proxy
Enables igmp proxy on interface
• Same command for LAN and WAN
interfaces
22.2.2 Status Commands
Command
Description
show data ip igmp proxy groups
IGMP proxy group information
show data ip igmp proxy lan-interface
<interface>
IGMP proxy information per LAN
interface
show data ip igmp proxy lan-interfaces
IGMP proxy LAN interfaces information
Version 6.8
153
Mediant MSBR
IP Networking Configuration
MSBR# show data ip igmp proxy groups
Active WAN Interfaces with IGMPv3 proxies
GigabitEthernet 0/0
VLAN 1
Group
Report
232.3.4.111
232.3.4.119
232.3.4.1
232.131.41.101
232.9.9.9
232.9.9.19
232.9.9.191
232.31.4.111
Subscriber IFs on Group
Timer for Unsolicited
2
1
1
1
1
1
1
1
Done
Done
1.1
2.91
Done
Done
Done
Done
Sending
Sending
Sending
Sending
Sending
Sending
MSBR# show data ip igmp proxy lan-interfaces
Interface: VLAN 2
IGMPv3 State: Querier
Groups: 1
[0]: group 232.3.4.111
filter mode: Exclude
group timer: 156 seconds left
client(s): 00:90:8f:4b:fb:61
Interface: VLAN 4
IGMPv3 State: Querier
Groups: 0
MSBR# show data ip igmp proxy lan-interface <interface>
Interface: VLAN 2
IGMPv3 State: Querier
Groups: 1
[0]: group 232.3.4.111
filter mode: Exclude
group timer: 194 seconds left
client(s): 00:90:8f:4b:fb:61
22.2.3 Multicast Example
The minimal configuration has one LAN interface with igmp proxy enabled and one LAN
interface with igmp proxy enabled. A LAN interface will receive IGMP messages from
clients and will forward traffic related to the clients’ groups accordingly. A WAN interface
will forward IGMP messages to the WAN for the relevant groups, and listen for multicast
traffic from that group.
First, enable igmp-proxy mode from the data configuration mode:
configure data
ip multicast-routing
mode igmp-proxy
Configuration Guide
154
Document #: LTRT-31657
Configuration Guide
22. IP Multicast – IGMP Proxy
exit
Next, enable igmp-proxy on a LAN interface and a WAN interface
interface GigabitEthernet 0/0
ip igmp enable-proxy
exit
interface VLAN 1
ip igmp enable-proxy
exit
Figure 22-1 Multicast Example – IGMP Proxy

PC IP – 192.168.2.3 is the rtp receiver

PC IP – 200.200.200.3 is the rtp transmitter.
Setting Multicast Streamer and Receiver using VLC player:
http://get.videolan.org/vlc/2.1.5/win32/vlc-2.1.5-win32.exe
The example below shows an implementation of media streaming using VLC on the client
side for receiving multicast traffic.
Version 6.8
155
Mediant MSBR
IP Networking Configuration
 To implement media streaming on the server side:
1.
Open VLC; the following screen appears.
Figure 22-2: VLC Media Player
2.
Add the media file to the stream and then click Stream.
Figure 22-3: Open Media
Configuration Guide
156
Document #: LTRT-31657
Configuration Guide
3.
22. IP Multicast – IGMP Proxy
Continue with the streaming wizard.
Figure 22-4 Add Media to Stream
4.
From the ‘New destination’ drop-down list, select RTP Audio/Video Profile and then
click Add.
Figure 22-5 Select RTP Audio/Video Profile
Version 6.8
157
Mediant MSBR
IP Networking Configuration
5.
Stream to the multicast address.
Figure 22-6: Stream Output-Destination Setup
\
6.
Update the stream TTL manually.
Figure 22-7: Stream Output-Destination Setup-Option Setup
7.
Click Stream to start streaming the movie.
Configuration Guide
158
Document #: LTRT-31657
Configuration Guide
22. IP Multicast – IGMP Proxy
 To implement media streaming on the receiver side:
1.
Open VLC.
Figure 22-8: VLC Media Player
Figure 22-9 Open Network Stream
2.
Stream from the multicast address.
Figure 22-10: Open Media
Version 6.8
159
Mediant MSBR
IP Networking Configuration
3.
Click Play to watch the movie.
The following is an example of a show run command for MSBR:
M500 *# show run
# Running Configuration M500
## VoIP Configuration
configure voip
interface network-dev 0
name "vlan 1"
activate
exit
interface network-if 0
ip-address 192.168.10.2
prefix-length 24
gateway 192.168.10.1
name "Voice"
primary-dns 192.168.10.1
underlying-dev "vlan 1"
activate
exit
media udp-port-configuration
udp-port-spacing 10
activate
exit
voip-network realm 0
name "DefaultRealm"
ipv4if "Voice"
port-range-start 4000
session-leg 6154
port-range-end 65530
is-default true
activate
exit
megaco naming
physical-start-num 0 0
physical-start-num 1 1
physical-start-num 2 1
physical-start-num 3 0
physical-start-num 4 0
activate
exit
tdm
pcm-law-select mulaw
activate
exit
exit
Configuration Guide
160
Document #: LTRT-31657
Configuration Guide
22. IP Multicast – IGMP Proxy
## System Configuration
configure system
cli-terminal
wan-ssh-allow on
wan-telnet-allow on
ssh on
idle-timeout 0
activate
exit
ntp
set primary-server "0.0.0.0"
activate
exit
snmp
no activate-keep-alive-trap
activate
exit
web
wan-http-allow on
set https-cipher-string "RC4:EXP"
activate
exit
hostname M500_Transmitter
configuration-version 0
exit
## Data Configuration
configure data
ip multicast-routing
mode igmp-proxy
exit
interface GigabitEthernet 0/0
ip address dhcp
ip dhcp-client default-route
mtu auto
desc "WAN Copper"
no ipv6 enable
speed auto
duplex auto
no service dhcp
ip dns server auto
napt
firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 200.0.0.2 255.255.255.252
ip igmp enable-proxy
mtu auto
Version 6.8
161
Mediant MSBR
IP Networking Configuration
desc "WAN Fiber"
no ipv6 enable
no service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dsl 0/2
#DSL configuration is automatic
#Termination cpe
mode adsl
shutdown
exit
interface EFM 0/2
#This interface is DISABLED due to physical layer configuration
no ip address
mtu auto
desc "WAN DSL"
no ipv6 enable
no service dhcp
ip dns server static
no shutdown
exit
interface GigabitEthernet 1/1
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/2
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/3
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/4
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
Configuration Guide
162
Document #: LTRT-31657
Configuration Guide
22. IP Multicast – IGMP Proxy
exit
interface VLAN 1
ip address 192.168.10.1 255.255.255.0
ip igmp enable-proxy
mtu auto
desc "LAN switch VLAN 1"
no ipv6 enable
ip dhcp-server network 192.168.10.3 192.168.10.8 255.255.255.0
ip dhcp-server dns-server 0.0.0.0
ip dhcp-server netbios-name-server 0.0.0.0
ip dhcp-server lease 0 1 0
ip dhcp-server provide-host-name
ip dhcp-server ntp-server 0.0.0.0
ip dhcp-server tftp-server 0.0.0.0
ip dhcp-server override-router-address 0.0.0.0
ip dhcp-server next-server 0.0.0.0
service dhcp
ip dns server static
no napt
no firewall enable
no link-state monitor
no shutdown
exit
ip nat translation udp-timeout 120
ip nat translation tcp-timeout 86400
ip nat translation icmp-timeout 6
# Note: The following WAN ports are in use by system services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
ip domain name home
ip domain localhost msbr
pm sample-interval minute 5
pm sample-interval seconds 15
exit
Version 6.8
163
Mediant MSBR
IP Networking Configuration
This page is intentionally left blank.
Configuration Guide
164
Document #: LTRT-31657
Configuration Guide
A
A. Mediant 500 Transmitter Examples
Mediant 500 Transmitter Examples
M500_Transmitter
configure data
ip multicast-routing
interface GigabitEthernet 0/0
ip address dhcp
ip dhcp-client default-route
mtu auto
desc "WAN Copper"
no ipv6 enable
speed auto
duplex auto
no service dhcp
ip dns server auto
napt
firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 200.0.0.2 255.255.255.252
ip pim sparse-mode
mtu auto
desc "WAN Fiber"
no ipv6 enable
no service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dsl 0/2
#DSL configuration is automatic
#Termination cpe
mode adsl
shutdown
exit
interface EFM 0/2
#This interface is DISABLED due to physical layer configuration
no ip address
mtu auto
desc "WAN DSL"
no ipv6 enable
no service dhcp
ip dns server static
no shutdown
exit
interface GigabitEthernet 1/1
speed auto
duplex auto
Version 6.8
165
Mediant MSBR
IP Networking Configuration
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/2
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/3
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/4
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface VLAN 1
ip address 192.168.10.1 255.255.255.0
ip pim sparse-mode
mtu auto
desc "LAN switch VLAN 1"
no ipv6 enable
ip dhcp-server network 192.168.10.3 192.168.10.8 255.255.255.0
ip dhcp-server dns-server 0.0.0.0
ip dhcp-server netbios-name-server 0.0.0.0
ip dhcp-server lease 0 1 0
ip dhcp-server provide-host-name
ip dhcp-server ntp-server 0.0.0.0
ip dhcp-server tftp-server 0.0.0.0
ip dhcp-server override-router-address 0.0.0.0
ip dhcp-server next-server 0.0.0.0
service dhcp
ip dns server static
no napt
no firewall enable
no link-state monitor
no shutdown
exit
ip pim bsr-candidate Fiber 0/1 priority 1
ip pim rp-candidate VLAN 1 priority 1
ip pim spt-threshold packets 10 interval 10
router ospf
redistribute connected
Configuration Guide
166
Document #: LTRT-31657
Configuration Guide
A. Mediant 500 Transmitter Examples
network 200.0.0.0/30 area 1.1.1.1
exit
ip nat translation udp-timeout 120
ip nat translation tcp-timeout 86400
ip nat translation icmp-timeout 6
# Note: The following WAN ports are in use by system services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
ip domain name home
ip domain localhost msbr
pm sample-interval minute 5
pm sample-interval seconds 15
exit
M500_Receiver
configure data
radio shutdown
ip multicast-routing
interface GigabitEthernet 0/0
ip address dhcp
ip dhcp-client default-route
mtu auto
desc "WAN Copper"
no ipv6 enable
speed auto
duplex auto
no service dhcp
ip dns server auto
napt
firewall enable
no shutdown
exit
interface Fiber 0/1
ip address 200.0.0.1 255.255.255.252
ip pim sparse-mode
mtu auto
desc "WAN Fiber"
no ipv6 enable
no service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dsl 0/2
#DSL configuration is automatic
Version 6.8
167
Mediant MSBR
IP Networking Configuration
#Termination cpe
mode adsl
shutdown
exit
interface EFM 0/2
#This interface is DISABLED due to physical layer configuration
no ip address
mtu auto
desc "WAN DSL"
no ipv6 enable
no service dhcp
ip dns server static
no shutdown
exit
interface GigabitEthernet 1/1
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/2
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/3
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface GigabitEthernet 1/4
speed auto
duplex auto
switchport mode trunk
switchport trunk native vlan 1
no shutdown
exit
interface VLAN 1
no ip address
bridge-group 1
mtu auto
desc "LAN switch VLAN 1"
no ipv6 enable
no service dhcp
no link-state monitor
no shutdown
Configuration Guide
168
Document #: LTRT-31657
Configuration Guide
A. Mediant 500 Transmitter Examples
exit
interface BVI 1
ip address 192.168.0.1 255.255.255.0
ip pim sparse-mode
mtu auto
desc "LAN Bridge"
ip dhcp-server network 192.168.0.3 192.168.0.8 255.255.255.0
ip dhcp-server dns-server 0.0.0.0
ip dhcp-server netbios-name-server 0.0.0.0
ip dhcp-server lease 0 1 0
ip dhcp-server provide-host-name
ip dhcp-server ntp-server 0.0.0.0
ip dhcp-server tftp-server 0.0.0.0
ip dhcp-server override-router-address 0.0.0.0
ip dhcp-server next-server 0.0.0.0
service dhcp
ip dns server static
no napt
no firewall enable
no shutdown
exit
interface dot11radio 1
#This interface is DISABLED due to physical layer configuration
no ip address
bridge-group 1
mtu auto
desc "LAN Wireless 802.11n Access Point"
no ipv6 enable
no service dhcp
ssid MSBR
broadcast
security mode NONE
no security mac mode
mode ngb
channel width 40/20
channel auto
wmm
exit
router ospf
redistribute connected
network 200.0.0.0/30 area 1.1.1.1
exit
ip nat translation udp-timeout 120
ip nat translation tcp-timeout 86400
ip nat translation icmp-timeout 6
# Note: The following WAN ports are in use by system services,
#
conflicting rules should not be created:
#
Ports 80 - 80 --> HTTP
#
Ports 23 - 23 --> Telnet CLI
#
Ports 22 - 22 --> SSH CLI
#
Ports 82 - 82 --> TR069
Version 6.8
169
Mediant MSBR
IP Networking Configuration
ip domain name home
ip domain localhost msbr
pm sample-interval minute 5
pm sample-interval seconds 15
exit
Configuration Guide
170
Document #: LTRT-31657
Configuration Guide
A. Mediant 500 Transmitter Examples
This page is intentionally left blank.
Version 6.8
171
Mediant MSBR
International Headquarters
AudioCodes Inc.
1 Hayarden Street,
27 World’s Fair Drive,
Airport City
Somerset, NJ 08873
Lod 7019900, Israel
Tel: +1-732-469-0880
Tel: +972-3-976-4000
Fax: +1-732-469-2298
Fax: +972-3-976-4040
Contact us: www.audiocodes.com/info
Website: www.audiocodes.com
Document #: LTRT-31657
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising