Robacta PTW 500 / 1500 / 3500 [42,0410,1151]

Robacta PTW 500 / 1500 / 3500 [42,0410,1151]
TÄYDELLISTÄ HITSAUSTA
ROBACTA PTW 500/1500/3500
/ Operating Instructions
/ Spare Parts List
v.01/2012 ENG
Introduction
Thank you for choosing Fronius - and congratulations on your new, technically highgrade Fronius product! This instruction manual will help you get to know your new
machine. Read the manual carefully and you will soon be familiar with all the many
great features of your new Fronius product. This really is the best way to get the most
out of all the advantages that your machine has to offer.
Please also take special note of the safety rules - and observe them! In this way, you
will help to ensure more safety at your product location. And of course, if you treat your
product carefully, this definitely helps to prolong its enduring quality and reliability - things
which are both essential prerequisites for getting outstanding results.
ud_fr_st_et_00493
01/2012
EN
Dear Reader
General .........................................................................................................................................................
Machine concept ......................................................................................................................................
Applications ..............................................................................................................................................
Scope of supply ........................................................................................................................................
PTW 500 options .....................................................................................................................................
PTW 1500 options ...................................................................................................................................
PTW 3500 options ...................................................................................................................................
2
2
3
3
5
5
5
Assembling the Robacta PTW 500, 1500, 3500 ...........................................................................................
Safety .......................................................................................................................................................
Assembling the Robacta PTW 500 ..........................................................................................................
Assembling the Robacta PTW 1500 ........................................................................................................
Assembling the Robacta PTW 3500 ........................................................................................................
Assembling the Robacta PTW 3500 ........................................................................................................
6
6
6
7
7
8
Adjusting the tungsten electrode ................................................................................................................... 9
General .................................................................................................................................................... 9
Adjusting the PTW 500 tungsten electrode .............................................................................................. 9
Calibrating the PTW 1500 adjusting gauge ............................................................................................ 10
Adjusting the PTW 1500 tungsten electrode .......................................................................................... 10
Adjusting the PTW 3500 tungsten electrode ........................................................................................... 11
Start-up ........................................................................................................................................................
General ..................................................................................................................................................
Proper use .............................................................................................................................................
Start-up ..................................................................................................................................................
12
12
12
12
Loading limits dependent on the plasma gas flow rate ...............................................................................
General ..................................................................................................................................................
Loading limits dependent on the plasma gas flow rate ..........................................................................
Loading limit example (PTW 1500) ........................................................................................................
14
14
14
15
Troubleshooting ........................................................................................................................................... 16
Safety ..................................................................................................................................................... 16
Troubleshooting ..................................................................................................................................... 16
Care, maintenance and disposal .................................................................................................................
General ..................................................................................................................................................
At every start-up .....................................................................................................................................
Monthly ...................................................................................................................................................
Disposal .................................................................................................................................................
17
17
17
17
17
Technical data ............................................................................................................................................. 18
PTW 500, PTW 1500, PTW 3500 .......................................................................................................... 18
1
EN
Table of contents
General
Machine concept
(Cold) wire feeder
Robacta Plasma KD Drive
Robacta PTW 500
Robacta PTW 500 with Robacta Plasma KD Drive and wirefeed options
(Cold) wire feeder
Robacta Plasma KD Drive
Robacta PTW 1500
Robacta PTW 1500 with Robacta Plasma KD Drive and wirefeed options
(Cold) wire feeder
Robacta Plasma KD Drive
Robacta PTW 3500
Robacta PTW 3500 with Robacta Plasma KD Drive and wirefeed options
2
The water-cooled plasma robot welding torch is designed for plasma welding and plasma brazing of materials up to a thickness of 1.5 mm (PTW 500), 3 mm (PTW 1500) and
8 mm (PTW 3500).
The welding torches have a Fronius F++ connection as standard. Various adapters are
available to enable the torches to be operated with any standard plasma device. Each
torch can be equipped with KD Drive, a pushed wire-feed unit or a drag gas nozzle.
Applications
The plasma robot welding torch is used in automated applications, e.g.:
Pipeline and equipment construction
Container construction
Applications requiring the highest quality standards
Applications using special materials (e.g. titanium, nickel-based alloys)
EN
Machine concept
(continued)
Scope of supply
Adjusting
gauge
Holder
Ceramic
gas nozzle
Hosepack 4 m,
Fronius F++ / FG connection
Torch cap
Clamping sleeve
∅ 1.0 mm
Holder
Connection for
cut-out box
Tungsten electrode ∅ 1.0 mm
Torch body with stop ring
Plasma nozzle ∅ 1.2 mm
Shielding gas nozzle
Robacta PTW 500 scope of supply
3
Scope of supply
(continued)
Ceramic centring tube
Torch body with stop ring
Tungsten electrode WL 15, ∅ 2.4 mm
Adjusting
gauge
∅ 2.5 - 3 mm
Holder
Clamping sleeve ∅ 2.4 mm
Robacta PTW 1500 torch cap
Hosepack 4 m,
Fronius F++ connection
Connection for cut-out box
Plasma nozzle ∅ 2.5 mm
Shielding gas nozzle
Robacta PTW 1500 scope of supply
Plasma nozzle ∅ 3.2 mm
Adjusting gauge
Shielding gas
nozzle
Ceramic centring tube
Water
stopper
Torch body
with stop ring
Connection for cut-out box
Hosepack 4 m,
Fronius F++ / FG connection
Robacta PTW 3500 torch cap
Clamping sleeve ∅ 4.8 mm
Tungsten electrode WL 15, ∅ 4.8 mm
Holder
Robacta PTW 3500 scope of supply
4
-
Hot wire option
Plasma nozzle 0.6 / 0.8 / 1.0 / 1.4 / 1.6 mm
Adapter for the non-digital PlasmaModul
Cold wire feeder with drive (push-pull system): Robacta Plasma KD Drive
Cold wire feeder (push system): Robacta Plasma KD
Drag gas nozzle 50 / 100 mm
PTW 1500 options
-
Adjusting gauge ∅ 1.5 - 2 mm
Cold wire feeder with drive (push-pull system): Robacta Plasma KD Drive
Cold wire feeder (push system): Robacta Plasma KD
Hot wire option
Plasma nozzle 1.0 / 1.5 / 2 / 3 mm; 2.0 x 29 mm long
Ceramic centring tube 1.6 / 3.2 mm
Clamping sleeve 1.6 / 3.2 mm
Adapter for the non-digital PlasmaModul
Drag gas nozzle 50 / 100 mm
PTW 3500 options
-
Cold wire feeder with drive (push-pull system): Robacta Plasma KD Drive
Cold wire feeder (push system): Robacta Plasma KD
Hot wire option
Plasma nozzle 2.0 / 2.5 / 3.5 / 4.0 mm
Plasma nozzle 2.0 / 2.5 / 3.2 / 3.5 / 4.0 mm with 4 x 1 mm balance holes
Conical plasma nozzle
Ceramic centring tube 6.4 mm
Clamping sleeve 6.4 mm
Adapter for the non-digital PlasmaModul
Drag gas nozzle 50 / 100 mm
Ceramic gas nozzle + appropriate stop ring
EN
PTW 500 options
5
Assembling the Robacta PTW 500, 1500, 3500
Safety
1
2
3
4
5
1
2x360°
2
Assembling the
Robacta PTW 500
WARNING! Work that is carried out incorrectly can cause serious injury and
damage. The following activities must only be carried out by trained and qualified personnel. Follow the safety regulations.
2
3
1
Insert tungsten electrode
Insert clamping sleeve
Important! Insert the tungsten electrode so that the tip protrudes approx. 10 mm out of
the torch body. Slightly tighten the torch cap so that the tungsten electrode can still move
inside the torch body.
Important! Check that the tungsten
electrode is adjusted correctly (see „Adjusting the tungsten electrode“)
3
1
2
3
Assemble centring tube, plasma nozzle and
shielding gas nozzle
6
Assembling the
Robacta PTW
1500
1
EN
2
4
3
1
2
Insert tungsten electrode
Fit holder, insert clamping sleeve
Important! Insert the tungsten electrode so that the tip protrudes approx. 10 mm out of
the torch body. Slightly tighten the torch cap so that the tungsten electrode can still move
inside the torch body.
Important! Check that the tungsten
electrode is adjusted correctly (see „Adjusting the tungsten electrode“)
1
2
3
∼
10
mm
Assemble centring tube, plasma nozzle and
shielding gas nozzle
Assembling the
Robacta PTW
3500
2
1
1
2
4
1
3
2
Insert tungsten electrode
Fit holder, insert clamping sleeve
7
Assembling the
Robacta PTW
3500
Important! Insert the tungsten electrode so that the tip protrudes approx. 10 mm out of
the torch body. Slightly tighten the torch cap so that the tungsten electrode can still move
inside the torch body.
Water-cooled protective gas nozzles must
be connected to the water connections.
Ceramic protective gas nozzles do not
need any water cooling. If ceramic protective gas nozzles are being used, the two
water connections must be joined together
using the water stopper.
3
10mm
1
Important! Check that the tungsten
electrode is adjusted correctly (see „Adjusting the tungsten electrode“)
2
3
Assemble centring tube, plasma nozzle and
shielding gas nozzle
8
General
Alongside the specified plasma gas flow rate, the position of the tungsten electrode
plays a crucial role in determining the loading limits.
By loading limits we mean the maximum possible welding current
for a particular plasma nozzle,
for a particular plasma gas flow rate,
for a particular tungsten electrode position.
The setting process for the tungsten electrode for plasma welding / plasma brazing is
described in the following section.
WARNING! Work that is carried out incorrectly can cause serious injury and
damage. The following activities must only be carried out by trained and qualified personnel. Follow the safety regulations.
1
2
3
2
1
2x360°
1
Adjusting the
PTW 500 tungsten electrode
2
4
*
*) Loosen the torch cap - caution, the tungsten
electrode may fall out of the plasma torch if the
torch is in a particular position.
3
4
1
0
1
... and adjust tungsten electrode
9
EN
Adjusting the tungsten electrode
Adjusting the
PTW 500 tungsten electrode
(continued)
5
6
1
2
3
1
Calibrating the
PTW 1500 adjusting gauge
NOTE! The standard setting for
measurement „x“ on the adjusting
gauge depends on the diameter
of the plasma nozzle. Refer to the
following table when adjusting the
standard setting for measurement
„x“:
Setting the adjusting gauge to measurement „x“
∅ Plasma
nozzle
„x“
Adjusting
gauge
1.0 mm
-
-
1.5 mm
1.5 mm
∅ 1.5 - 2 mm
2.0 mm
2.0 mm
∅ 1.5 - 2 mm
2.5 mm
2.5 mm
∅ 2.5 - 3 mm
3.0 mm
2.5 mm
∅ 2.5 - 3 mm
Adjusting the
PTW 1500 tungsten electrode
Loosen the torch cap - caution, the tungsten
electrode may fall out of the plasma torch if the
torch is in a particular position.
10
Place adjusting gauge onto plasma nozzle ...
EN
Adjusting the
PTW 1500 tungsten electrode
(continued)
... and adjust tungsten electrode
Adjusting the
PTW 3500 tungsten electrode
Fix the tungsten electrode in place using the torch
cap
1
2
2
2
Loosen the torch cap - caution, the tungsten
electrode may fall out of the plasma torch if the
torch is in a particular position.
Place adjusting gauge onto plasma nozzle ...
4
3
1
... and adjust tungsten electrode
Fix the tungsten electrode in place using the torch
cap
11
Start-up
General
Proper use
WARNING! Operating the equipment incorrectly can cause serious injury and
damage. Do not use the functions described until you have thoroughly read and
understood the following documents:
these Operating Instructions
all the operating instructions for the system components, especially the
safety rules
The plasma torch is intended exclusively for plasma welding and plasma brazing.
Utilisation for any other purpose, or in any other manner, shall be deemed to be „not in
accordance with the intended purpose“. The manufacturer shall not be liable for any
damage resulting from such improper use.
Utilisation in accordance with the „intended purpose“ also comprises
following all the instructions in these operating instructions
carrying out all the specified inspection and servicing work
Start-up
1.
2.
Mount plasma torch onto robot
Check plasma torch to see whether:
- all parts are present
- the parts have been correctly fitted
NOTE! An incorrectly adjusted tungsten electrode can damage the plasma
nozzle during commissioning. Adjust the tungsten electrode according to the
plasma nozzle used and the application.
3.
4.
Adjust the tungsten electrode using the adjusting gauge
Connect the components of the plasma torch hosepack to the plasma device:
- Current/shielding gas connection
- Pilot flow cable
- Cable for pilot flow mass/plasma gas
- Water return hose
- Water flow hose
Pilot flow plus connection
Pilot flow minus / plasma gas connection
Cut-out box connections
Water return connection
Water flow connection
Current/shielding gas connection
Plasma torch hosepack: connections
12
5.
6.
7.
When starting up for the first time, make sure the gas flow is correct
Position plasma torch (adjust robot)
Purge shielding gas and plasma gas for at least 30 seconds
NOTE! The plasma torch must be cooled constantly during operation.
8.
Check that the cooling circuit on the plasma machine is functioning correctly, set the
cooling unit to permanent operation (e.g. set-up menu on power source, parameter
C-C =ON)
NOTE! Igniting the pilot arc without presetting the plasma gas can damage the
plasma nozzle, ceramic centring tube and tungsten electrode (all wearing
parts).
9.
Specify the plasma gas value (according to the diameter of the plasma nozzle and
the application)
10. Ignite pilot arc
Important! To reduce wear, the pilot arc should burn throughout the operation.
11. Start welding (depending on the application)
13
EN
Start-up
(continued)
Loading limits dependent on the plasma gas flow
rate
General
Loading limits for plasma welding/plasma brazing depend on the following factors:
Diameter of the plasma nozzle
Position of the tungsten electrode
Plasma gas flow rate
The following loading limits apply to the standard tungsten electrode setting (see also
„Adjusting the tungsten electrode“).
Loading limits
dependent on the
plasma gas flow
rate
For plasma welding, the values for the plasma gas flow rate and maximum welding
current must lie within the set limits. An upper or lower exceed of these limits can change
the plasma properties, e.g.:
Low plasma gas flow rate ............ „soft“ plasma jet
High plasma gas flow rate ........... „hard“ plasma jet („plasma cutting“)
Important! Do not exceed the upper or lower limits set for plasma gas values and max.
welding current during operation.
Important! The minimum coolant flow rate is 1 l/min
This table is only valid for the PTW 500 (electrode diameter 1.0 mm; d.c. 60%):
∅ Plasma nozzle
Plasma gas flow rate
0.6 mm
min.0.30 l/min
15 A
0.8 mm
min.0.30 l/min
20 A
1 mm
min.0.30 l/min
28 A
1.2 mm
min.0.30 l/min
35 A
1.4 mm
min.0.30 l/min
45 A
1.6 mm
min.0.30 l/min
50 A
1.8 mm
min.0.30 l/min
50 A
Max. welding current
This table is only valid for the PTW 1500:
∅ Plasma nozzle
Plasma gas flow rate
1.5 mm
min.0.30 l/min
max.0.80 l/min
60 A
100 A
2.0 mm
min.0.35 l/min
max.1.00 l/min
80 A
120 A
2.5 mm
min.0.45 l/min
max.1.20 l/min
110 A
145 A
3.0 mm
min.0.55 l/min
max.1.30 l/min
130 A
150 A
Max. welding current
This table is only valid for the PTW 3500 in conjunction with a FK9000 cooling unit:
14
∅ Plasma nozzle
Plasma gas flow rate
2.0 mm
min.1.0 l/min
170 A
2.5 mm
min.1.0 l/min
190 A
3.2 mm
min.1.0 l/min
210 A
3.5 mm
min.1.0 l/min
225 A
4.0 mm
min.1.0 l/min
250 A
Max. welding current
Table is only valid for the PTW 3500 in conjunction with a CHILLY 15 cooling unit:
∅ Plasma nozzle
Plasma gas flow rate
2.0 mm
min.1.0 l/min
225 A
2.5 mm
min.1.0 l/min
250 A
3.2 mm
min.1.0 l/min
275 A
3.5 mm
min.2.0 l/min
300 A
4.0 mm
min.2.0 l/min
350 A
Max. welding current
Minimum plasma gas flow rate:
Amount of gas at which the welding arc still remains stable.
Important! Welding using a minimum plasma gas flow places a severe load on the
plasma nozzle and should be avoided.
Maximum plasma gas flow rate:
Amount of gas that makes working with the maximum welding current possible,
depending on the plasma nozzle
Maximum welding current:
Welding current permitted when using a particular plasma nozzle, standard tungsten
electrode setting and minimum or maximum plasma gas flow rate.
Important! Use pure argon as plasma gas. The limit values listed above can only be
obtained using pure argon.
Loading limit
example (PTW
1500)
In the case of a plasma nozzle with a diameter of 2.0 mm and a selected minimum
plasma gas flow rate of 0.35 l/min, a maximum welding current of 80 A is permitted for
the standard tungsten electrode setting.
15
EN
Loading limits
dependent on the
plasma gas flow
rate
(continued)
Troubleshooting
Safety
Troubleshooting
WARNING! An electric shock can be fatal. Before carrying out any work on the
plasma torch:
Switch the power source and plasma device mains switch to the „O“
position
Disconnect power source and plasma device from the mains
Put up an easy-to-understand warning sign to stop anybody inadvertently
switching it back on again
Pilot arc not igniting
Cause:
Remedy:
Tungsten electrode missing
Insert tungsten electrode
Cause:
Remedy:
Plasma nozzle and tungsten electrode too far apart
Position tungsten electrode correctly
Cause:
Plasma nozzle and tungsten electrode touching or too close (short circuit
between plasma nozzle and tungsten electrode)
Position tungsten electrode correctly
Remedy:
Copper droplets on the plasma nozzle after a brief period of welding
Droplet formation on the plasma nozzle is a sign that the plasma nozzle has been badly
damaged: due to excessive heat, the copper contained in the plasma nozzle is melting
and leaking out.
Cause:
Remedy:
Loading values too high
Replace plasma nozzle, reduce load
Increased plasma nozzle wear
Cause:
Remedy:
Insufficient cooling
Check the cooling circuit, increase the plasma gas flow, check for wear on
the nozzle connection
16
General
Regular and preventive maintenance of the plasma torch is essential for problem-free
operation. The plasma torch is subjected to high temperatures. The plasma torch therefore requires more frequent maintenance than other components in a plasma welding
system.
WARNING! An electric shock can be fatal. Before carrying out any work on the
plasma torch:
Switch the power source and plasma device mains switch to the „O“
position
Disconnect power source and plasma device from the mains
Put up an easy-to-understand warning sign to stop anybody inadvertently
switching it back on again
At every start-up
-
Monthly
-
Check plasma torch, torch hosepack and current connections for signs of damage
Check gas and water connections for leaks
Check that the cooling unit used for cooling the plasma torch is functioning perfectly,
monitor the water return amount in the coolant container, and bleed the cooling unit
if necessary
Check that the wearing parts for the plasma torch are in perfect condition, and clean
wearing parts before fitting them
If applicable, check filter in the cooling circuit for contamination
Check that coolant is pure; if there are any impurities, replace the coolant and rinse
the plasma torch thoroughly several times by letting coolant flow into it and back out
again
NOTE! Deposits inside the plasma torch can cause high frequency arc-overs,
thereby damaging the plasma torch
-
Disposal
Dismantle the plasma torch and check for deposits/contamination
Dispose of in accordance with the applicable national and local regulations.
17
EN
Care, maintenance and disposal
Technical data
PTW 500, PTW
1500, PTW 3500
PTW 500
PTW 1500
PTW 3500
Power range
0.5 - 50 A
3 - 150 A
3 - 350 A
Maximum value at 60 % d.c. (duty cycle)
50 A
-
-
Maximum value at 100 % d.c. (duty cycle)
35 A
150 A
350 A
Pilot arc current
5A
10 A
30 A
Voltage measurement (V-Peak)
141 V
141 V
141 V
Plasma gas/shielding gas (EN 439)
Argon
Argon
Argon
Hosepack length
4m
4/6m
4/6m
Electrode diameter
1 mm
1,6 - 3,2 mm
4,8-6,4 mm
Cooling system
Coolant
*)
**)
*)
**)
*)
**)
Cooling power ***)
500 W
700 / 1000 W
1,7/1,9 kW
Min. coolant pressure
3.0 bar
43.50 psi
3.0 bar
43.50 psi
3.0 bar
43.50 psi
Max. coolant pressure
5.5 bar
79.74 psi
5.5 bar
79.74 psi
5.5 bar
79.74 psi
Minimum coolant flowrate
1.0 l/min
1.0 l/min
1.0 l/min
*) Liquid cooling
**) Original Fronius coolant
***) Minimum cooling power in accordance with standard IEC 60974-2
The product complies with standard IEC 60974-7
18
Maahantuonti ja myynti:
Pronius Oy
Keisarinviitta 20 B
33960 Pirkkala
+358 (0)44 200 9060
info@pronius.fi
www.pronius.fi
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising