Access line ultra-low-power 32-bit MCU ARM®-based

Access line ultra-low-power 32-bit MCU ARM®-based
STM32L031x4 STM32L031x6
Access line ultra-low-power 32-bit MCU ARM®-based
Cortex®-M0+, up to 32KB Flash, 8KB SRAM, 1KB EEPROM, ADC
Datasheet - production data
Features








Ultra-low-power platform
– 1.65 V to 3.6 V power supply
– -40 to 125 °C temperature range
– 0.23 µA Standby mode (2 wakeup pins)
– 0.35 µA Stop mode (16 wakeup lines)
– 0.6 µA Stop mode + RTC + 8 KB RAM retention
– Down to 76 µA/MHz in Run mode
– 5 µs wakeup time (from Flash memory)
– 41 µA 12-bit ADC conversion at 10 ksps
Core: ARM® 32-bit Cortex®-M0+
– From 32 kHz up to 32 MHz max.
– 0.95 DMIPS/MHz
Reset and supply management
– Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
– Ultralow power POR/PDR
– Programmable voltage detector (PVD)
Clock sources
– 1 to 25 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– High speed internal 16 MHz factory-trimmed RC
(+/- 1%)
– Internal low-power 37 kHz RC
– Internal multispeed low-power 65 kHz to
4.2 MHz RC
– PLL for CPU clock
Pre-programmed bootloader
– USART, SPI supported
Development support
– Serial wire debug supported
Up to 38 fast I/Os (31 I/Os 5V tolerant)
TSSOP20
169 mils
This is information on a product in full production.
LQFP32/48
7x7 mm
WLCSP25
2.097x2.493 mm
–


Rich Analog peripherals
– 12-bit ADC 1.14 Msps up to 10 channels (down
to 1.65 V)
– 2x ultra-low-power comparators (window mode
and wake up capability, down to 1.65 V)
7-channel DMA controller, supporting ADC, SPI,
I2C, USART, Timers

5x peripherals communication interface

1x USART (ISO 7816, IrDA), 1x UART (low power)

Up to 2 SPI interfaces, up to 16 Mbits/s

1x I2C (SMBus/PMBus)

8x timers: 1x 16-bit with up to 4 channels, 2x 16-bit
with up to 2 channels, 1x 16-bit ultra-low-power
timer, 1x SysTick, 1x RTC and 2x watchdogs
(independent/window)

CRC calculation unit, 96-bit unique ID

All packages are ECOPACK®2
Table 1. Device summary
Reference
Part number
STM32L031x4
STM32L031G4, STM32L031K4,
STM32L031C4, STM32L031E4,
STM32L031F4
STM32L031x6
STM32L031G6, STM32L031K6,
STM32L031C6, STM32L031E6,
STM32L031F6
Memories
– Up to 32 KB Flash with ECC
– 8 KB RAM
– 1 KB of data EEPROM with ECC
– 20-byte backup register
– Sector protection against R/W operation
April 2016
UFQFPN28 4x4 mm
UFQFPN32 5x5 mm
DocID027063 Rev 4
1/118
www.st.com
Contents
STM32L031x4/6
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3
ARM® Cortex®-M0+ core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.4
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6
Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 25
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9
Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11.1
3.12
Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 28
3.13
System configuration controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.14
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15
2/118
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.14.1
General-purpose timers (TIM2, TIM21 and TIM22) . . . . . . . . . . . . . . . . 29
3.14.2
Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14.3
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14.5
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DocID027063 Rev 4
STM32L031x4/6
Contents
3.15.1
I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15.2
Universal synchronous/asynchronous receiver transmitter (USART) . . 31
3.15.3
Low-power universal asynchronous receiver transmitter (LPUART) . . . 32
3.15.4
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.16
Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 32
3.17
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 52
6.3.3
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.4
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.5
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.8
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.11
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.12
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.13
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.14
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.15
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DocID027063 Rev 4
3/118
4
Contents
7
STM32L031x4/6
6.3.16
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.17
Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.18
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.1
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4
UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5
WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.7
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.7.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4/118
DocID027063 Rev 4
STM32L031x4/6
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ultra-low-power STM32L031x4/x6 device features and peripheral counts. . . . . . . . . . . . . 11
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 17
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 17
Functionalities depending on the working mode
(from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STM32L031x4/6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SPI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 52
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Current consumption in Run mode, code with data processing running
from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current consumption in Run mode vs code type,
code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current consumption in Run mode, code with data processing running from RAM . . . . . . 58
Current consumption in Run mode vs code type,
code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current consumption in Low-power Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 62
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 63
Average current consumption during wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 65
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
DocID027063 Rev 4
5/118
6
List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
6/118
STM32L031x4/6
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 75
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
USART/LPUART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
LQFP48 - 48-pin low-profile quad flat package, 7 x 7 mm, package mechanical data . . . . 97
LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data . . . . . . . . . . . 100
UFQFPN32, 5 x 5 mm, 32-pin package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . 102
UFQPN28, 4 x 4 mm, 28-pin package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . 104
WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data 106
WLCSP25 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
STM32L031x4/6 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DocID027063 Rev 4
STM32L031x4/6
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
STM32L031x4/6 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM32L031x4/6 LQFP48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L031x4/6 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L031x4/6 UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32L031x4/6 UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32L031GxUxS UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32L031x4/6 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32L031x4/6 WLCSP25 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE = 16 MHz, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 71
VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 96
LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Example of LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 99
LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Example of LQFP32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
UFQFPN32, 5 x 5 mm, 32-pin package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
UFQFPN32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Example of UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
UFQPN28, 4 x 4 mm, 28-pin package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
DocID027063 Rev 4
7/118
8
List of figures
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
8/118
STM32L031x4/6
UFQFPN28 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Example of UFQFPN28 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Example of WLCSP25 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Example of TSSOP20 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DocID027063 Rev 4
STM32L031x4/6
1
Introduction
Introduction
The ultra-low-power STM32L031x4/6 family includes devices in 5 different package types
from 20 to 48 pins. The description below gives an overview of the complete range of
peripherals proposed in this family.
These features make the ultra-low-power STM32L031x4/6 microcontrollers suitable for a
wide range of applications:

Gas/water meters and industrial sensors

Healthcare and fitness equipment

Remote control and user interface

PC peripherals, gaming, GPS equipment

Alarm system, wired and wireless sensors, video intercom
This STM32L031x4/6 datasheet should be read in conjunction with the STM32L0x1
reference manual (RM0377).
For information on the ARM® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical
Reference Manual, available from the www.arm.com website.
Figure 1 shows the general block diagram of the device family.
DocID027063 Rev 4
9/118
33
Description
2
STM32L031x4/6
Description
The access line ultra-low-power STM32L031x4/6 family incorporates the high-performance
ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, high-speed
embedded memories (up to 32 Kbytes of Flash program memory, 1 Kbytes of data
EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.
The STM32L031x4/6 devices provide high power efficiency for a wide range of
performance. It is achieved with a large choice of internal and external clock sources, an
internal voltage adaptation and several low-power modes.
The STM32L031x4/6 devices offer several analog features, one 12-bit ADC with hardware
oversampling, two ultra-low-power comparators, several timers, one low-power timer
(LPTIM), three general-purpose 16-bit timers, one RTC and one SysTick which can be used
as timebases. They also feature two watchdogs, one watchdog with independent clock and
window capability and one window watchdog based on bus clock.
Moreover, the STM32L031x4/6 devices embed standard and advanced communication
interfaces: one I2C, one SPI, one USART, and a low-power UART (LPUART).
The STM32L031x4/6 also include a real-time clock and a set of backup registers that
remain powered in Standby mode.
The ultra-low-power STM32L031x4/6 devices operate from a 1.8 to 3.6 V power supply
(down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without
BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive
set of power-saving modes allows the design of low-power applications.
10/118
DocID027063 Rev 4
Device overview
Table 2. Ultra-low-power STM32L031x4/x6 device features and peripheral counts
Peripheral
STM32
L031F4
STM32
L031E4
Flash (Kbytes)
STM32
L031G4
STM32
L031K4
STM32
L031C4
STM32
L031F6
16
1
RAM (Kbytes)
8
Generalpurpose
3
LPTIMER
1
DocID027063 Rev 4
RTC/SYSTICK/IWDG/
WWDG
Communicati
on interfaces
2(1)(1)
I2C
1
USART
1
LPUART
1
Clocks:
HSE(4)/LSE/HSI/MSI/LSI
15
20
21(23)(3)
27(2)
38
15
1
10
Comparators
2
20
21(23)(3)
27(2)
38
32 MHz
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Description
11/118
Operating voltage
STM32
L031C6
1/1/1/1/1
12-bit synchronized ADC
Number of channels
Max. CPU frequency
STM32
L031K6
1/1/1/1
SPI
GPIOs
STM32
L031G6
32
Data EEPROM (Kbytes)
Timers
STM32
L031E6
STM32L031x4/6
2.1
Peripheral
STM32
L031F4
STM32
L031E4
STM32
L031G4
STM32
L031C4
STM32
L031F6
STM32
L031E6
STM32
L031G6
STM32
L031K6
STM32
L031C6
LQFP32,
UFQFPN
UFQFPN
28
32
LQFP48
Ambient temperature: –40 to +125 °C
Junction temperature: –40 to +130 °C
Operating temperatures
Packages
STM32
L031K4
TSSOP
20
WLCSP
25
LQFP32,
UFQFPN
UFQFPN
28
32
LQFP48
TSSOP
20
WLCSP
25
Description
12/118
Table 2. Ultra-low-power STM32L031x4/x6 device features and peripheral counts (continued)
1. 1 SPI interface is a USART operating in SPI master mode.
2. LQFP32 has two GPIOs, less than UFQFPN32 (27).
3. 23 GPIOs are available only on STM32L031GxUxS part number.
4. HSE external quartz connexion available only on LQFP48.
DocID027063 Rev 4
STM32L031x4/6
STM32L031x4/6
Description
Figure 1. STM32L031x4/6 block diagram
7HPS
VHQVRU
6:'
6:'
)/$6+
((3520
%227
&257(;0&38
)PD[0+]
$'&
$,1[
63,
0,62026,
6&.166
5$0
'%*
'0$
19,&
(;7,
$
3
%
7,0
FK
7,0
FK
%5,'*(
&203
,13,10287
&203
,13,10287
/37,0
,1,1
(75287
&5&
%5,'*(
*3,23257$
3%>@
*3,23257%
3&>@
3&
*3,23257&
3+>@
26&B,1
26&B287
&.B,1
$+%)PD[0+]
3$>@
::'*
$
3
%
*3,23257+
+6(
,&
6&/6'$
60%$
86$57
5;7;576
&76&.
/38$57
5;7;576
&76
+6,0
/6,
,:'*
3//
06,
7,0
FK
57&
%&.35(*
5(6(7&/.
:.83[
26&B,1
26&B287
/6(
39'B,1
95()B287
308
1567
9''$
9''
5(*8/$725
06Y9
DocID027063 Rev 4
13/118
33
Description
2.2
STM32L031x4/6
Ultra-low-power device continuum
The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary
core up to ARM® Cortex®-M4, including ARM® Cortex®-M3 and ARM® Cortex®-M0+. The
STM32Lx series are the best choice to answer your needs in terms of ultra-low-power
features. The STM32 Ultra-low-power series are the best solution for applications such as
gas/water meter, keyboard/mouse or fitness and healthcare application. Several built-in
features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers,
128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly
cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and
long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all
STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other
hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to
respond to the latest market feature and efficiency requirements.
14/118
DocID027063 Rev 4
STM32L031x4/6
Functional overview
3
Functional overview
3.1
Low-power modes
The ultra-low-power STM32L031x4/6 supports dynamic voltage scaling to optimize its
power consumption in Run mode. The voltage from the internal low-drop regulator that
supplies the logic can be adjusted according to the system’s maximum operating frequency
and the external voltage supply.
There are three power consumption ranges:

Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz

Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz

Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz
Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:

Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.

Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal
regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both
limited.

Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode to minimize the regulator’s operating current. In Low-power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the Run
mode with the regulator on.

Stop mode with RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSE and HSI RC oscillators are disabled. The LSE or LSI is still running.
The voltage regulator is in the low-power mode.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the
processor can serve the interrupt or resume the code. The EXTI line source can be any
GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event
DocID027063 Rev 4
15/118
33
Functional overview
STM32L031x4/6
(if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup
events, the USART/I2C/LPUART/LPTIMER wakeup events.

Stop mode without RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and
LSE crystal oscillators are disabled.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The voltage regulator is in the low-power mode. The device can be woken up from Stop
mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or
resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the
comparator 1 event or comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events.

Standby mode with RTC
The Standby mode is used to achieve the lowest power consumption and real time
clock. The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSE and HSI RC oscillators are also switched off. The
LSE or LSI is still running. After entering Standby mode, the RAM and register contents
are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI,
LSE Crystal 32 KHz oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire VCORE domain is powered off. The
PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off.
After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.
Note:
16/118
The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.
DocID027063 Rev 4
STM32L031x4/6
Functional overview
Table 3. Functionalities depending on the operating power supply range
Functionalities depending on the operating power supply range
Operating power supply
range
ADC operation
Dynamic voltage
scaling range
I/O operation
VDD = 1.65 to 1.71 V
Conversion time up
to 570 ksps
Range 2 or
range 3
Degraded speed
performance
VDD = 1.71 to 2.0 V(1)
Conversion time up
to 1.14 Msps
Range 1, range 2 or
range 3
Degraded speed
performance
VDD = 2.0 to 2.4 V
Conversion time up
to 1.14 Msps
Range 1, range 2 or
range 3
Full speed operation
VDD = 2.4 to 3.6 V
Conversion time up
to 1.14 Msps
Range 1, range 2 or
range 3
Full speed operation
1. CPU frequency changes from initial to final must respect the condition: fCPU initial <4fCPU initial. It must also
respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch
from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.
Table 4. CPU frequency range depending on dynamic voltage scaling
CPU frequency range
Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws)
Range 1
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws)
Range 2
32 kHz to 4.2 MHz (0ws)
Range 3
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (1)
Standby
Run/Active
Sleep
CPU
Y
--
Y
--
--
--
Flash memory
O
O
O
O
--
--
RAM
Y
Y
Y
Y
Y
--
Backup registers
Y
Y
Y
Y
Y
Y
EEPROM
O
O
O
O
--
--
Brown-out reset
(BOR)
O
O
O
O
O
DMA
O
O
O
O
--
Programmable
Voltage Detector
(PVD)
O
O
O
O
O
IPs
DocID027063 Rev 4
Lowpower
sleep
Stop
Lowpower
run
Wakeup
capability
O
Wakeup
capability
O
O
-O
-
17/118
33
Functional overview
STM32L031x4/6
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (continued)(1)
Standby
Run/Active
Sleep
Power-on/down
reset (POR/PDR)
Y
Y
Y
Y
Y
High Speed
Internal (HSI)
O
O
--
--
(2)
--
High Speed
External (HSE)
O
O
O
O
--
--
Low Speed Internal
(LSI)
O
O
O
O
O
O
Low Speed
External (LSE)
O
O
O
O
O
O
Multi-Speed
Internal (MSI)
O
O
Y
Y
--
--
Inter-Connect
Controller
Y
Y
Y
Y
Y
--
RTC
O
O
O
O
O
O
O
RTC Tamper
O
O
O
O
O
O
O
O
Auto WakeUp
(AWU)
O
O
O
O
O
O
O
O
USART
O
O
O
O
O(3)
O
--
(3)
O
--
IPs
Lowpower
sleep
Stop
Lowpower
run
Wakeup
capability
Y
LPUART
O
O
O
O
SPI
O
O
O
O
--
I2C
O
O
O
O
O(4)
ADC
O
O
--
--
--
--
Temperature
sensor
O
O
O
O
O
--
Comparators
O
O
O
O
O
16-bit timers
O
O
O
O
--
LPTIMER
O
O
O
O
O
O
IWDG
O
O
O
O
O
O
WWDG
O
O
O
O
--
SysTick Timer
O
O
O
O
GPIOs
O
O
O
O
0 µs
0.36 µs
3 µs
32 µs
Wakeup time to
Run mode
18/118
DocID027063 Rev 4
O
Y
Wakeup
capability
Y
-O
O
--
---
O
O
---
O
O
3.5 µs
2 pins
65 µs
STM32L031x4/6
Functional overview
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (continued)(1)
IPs
Run/Active
Sleep
Lowpower
run
Stop
Lowpower
sleep
Standby
Wakeup
capability
Wakeup
capability
0.23 µA (No
0.35 µA (No
RTC) VDD=1.8 V RTC) VDD=1.8 V
Consumption
VDD=1.8 to 3.6 V
(Typ)
Down to
115 µA/MHz
(from Flash)
Down to
25 µA/MHz
(from Flash)
Down to
6.5 µA
0.39 µA (with
0.6 µA (with
=1.8
V
RTC)
VDD=1.8 V
RTC)
V
DD
Down to
3.2 µA
0.26 µA (No
0.38 µA (No
RTC) VDD=3.0 V RTC) VDD=3.0 V
0.8 µA (with
0.57 µA (with
RTC) VDD=3.0 V RTC) VDD=3.0 V
1. Legend:
“Y” = Yes (enable).
“O” = Optional, can be enabled/disabled by software)
“-” = Not available
2. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the
peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need
it anymore.
3. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start.To generate a wakeup on
address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running
the HSI clock.
4. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up
the HSI during reception.
3.2
Interconnect matrix
Several peripherals are directly interconnected. This allows autonomous communication
between peripherals, thus saving CPU resources and power consumption. In addition,
these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power
run, Low-power sleep and Stop modes.
Table 6. STM32L0xx peripherals interconnect matrix
Interconnect
source
Lowpower
sleep
Stop
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
-
Interconnect action
Run
TIM2,TIM21,
TIM22
Timer input channel,
trigger from analog
signals comparison
Y
Y
LPTIM
Timer input channel,
trigger from analog
signals comparison
Y
TIMx
Timer triggered by other
timer
Y
COMPx
TIMx
LowSleep power
run
Interconnect
destination
DocID027063 Rev 4
19/118
33
Functional overview
STM32L031x4/6
Table 6. STM32L0xx peripherals interconnect matrix (continued)
Interconnect
source
Lowpower
sleep
Stop
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
-
Timer input channel and
trigger
Y
Y
Y
Y
-
LPTIM
Timer input channel and
trigger
Y
Y
Y
Y
Y
ADC
Conversion trigger
Y
Y
Y
Y
-
Interconnect action
Run
TIM21
Timer triggered by Auto
wake-up
Y
Y
LPTIM
Timer triggered by RTC
event
Y
TIMx
Clock source used as
input channel for RC
measurement and
trimming
TIMx
RTC
All clock
source
GPIO
3.3
LowSleep power
run
Interconnect
destination
ARM® Cortex®-M0+ core
The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a
broad range of embedded applications. It offers significant benefits to developers, including:

a simple architecture that is easy to learn and program

ultra-low power, energy-efficient operation

excellent code density

deterministic, high-performance interrupt handling

upward compatibility with Cortex-M processor family

platform security robustness.
The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor
core, with a 2-stage pipeline von Neumann architecture. The processor delivers exceptional
energy efficiency through a small but powerful instruction set and extensively optimized
design, providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to its embedded ARM core, the STM32L031x4/6 are compatible with all ARM tools
and software.
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L031x4/6 embed a nested vectored interrupt controller able to
handle up to 32 maskable interrupt channels and 4 priority levels.
20/118
DocID027063 Rev 4
STM32L031x4/6
Functional overview
The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

includes a Non-Maskable Interrupt (NMI)

provides zero jitter interrupt option

provides four interrupt priority levels
The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved
through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also
significantly reduces the overhead when switching from one ISR to another.
To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to enter rapidly stop or standby mode.
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.4
Reset and supply management
3.4.1
Power supply schemes
3.4.2

VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.

VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
Power supply supervisor
The devices feature an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
Two versions are available:

The version with BOR activated at power-on operates between 1.8 V and 3.6 V.

The other version without BOR operates between 1.65 V and 3.6 V.
After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits
the POR area.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
DocID027063 Rev 4
21/118
33
Functional overview
Note:
STM32L031x4/6
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive
at power-up.
The devices feature an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.4.3
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
3.4.4

MR is used in Run mode (nominal regulation)

LPR is used in the Low-power run, Low-power sleep and Stop modes

Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,
LSI, LSE crystal 32 KHz oscillator, RCC_CSR).
Boot modes
At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:

Boot from Flash memory

Boot from System memory

Boot from embedded RAM
The boot loader is located in System memory. It is used to reprogram the Flash memory by
using SPI1 (PA4, PA5, PA6, PA7), USART2 (PA2, PA3) or USART2 (PA9, PA10). See
STM32™ microcontroller system memory boot mode AN2606 for details.
22/118
DocID027063 Rev 4
STM32L031x4/6
3.5
Functional overview
Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:

Clock prescaler
To get the best trade-off between speed and current consumption, the clock frequency
to the CPU and peripherals can be adjusted by a programmable prescaler.

Safe clock switching
Clock sources can be changed safely on the fly in Run mode through a configuration
register.

Clock management
To reduce power consumption, the clock controller can stop the clock to the core,
individual peripherals or memory.

System clock source
Three different clock sources can be used to drive the master clock SYSCLK:

–
1-25 MHz high-speed external (HSE), that can supply a PLL
–
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7
frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
When a 32.768 kHz clock source is available in the system (LSE), the MSI
frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source
Two ultra-low-power clock sources that can be used to drive the real-time clock:

–
32.768 kHz low-speed external crystal (LSE)
–
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.
RTC clock sources
The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system
clock.

Startup clock
After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI).
The prescaler ratio and clock source can be changed by the application program as
soon as the code execution starts.

Clock security system (CSS)
This feature can be enabled by software. If an HSE clock failure occurs, the master
clock is automatically switched to HSI and a software interrupt is generated if enabled.
Another clock security system can be enabled, in case of failure of the LSE it provides
an interrupt or wakeup event which is generated if enabled.

Clock-out capability (MCO: microcontroller clock output)
It outputs one of the internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
DocID027063 Rev 4
23/118
33
Functional overview
STM32L031x4/6
Figure 2. Clock tree
#9
(QDEOH:DWFKGRJ
/6,5&
:DWFKGRJ/6
/6,WHPSR
/HJHQG
+6( +LJKVSHHGH[WHUQDOFORFNVLJQDO
+6, +LJKVSHHGLQWHUQDOFORFNVLJQDO
/6, /RZVSHHGLQWHUQDOFORFNVLJQDO
/6( /RZVSHHGH[WHUQDOFORFNVLJQDO
06, 0XOWLVSHHGLQWHUQDOFORFNVLJQDO
57&6(/
57&HQDEOH
/6(26&
57&
/6(WHPSR
/68
/6'
/6'
#9
0+]
#9
06,5&
/6,
/6(
06,
/HYHOVKLIWHUV
#9
0&26(/
$'&HQDEOH
$'&&/.
0&2
QRWGHHSVOHHS
#9
+6,5&
/HYHOVKLIWHUV
#9
&.B3:5
QRWGHHSVOHHS
FNBUFKV
+6,
6\VWHP
&ORFN
06,
+6,
+6(
#9
+6(26&
/HYHOVKLIWHUV
#9
3//65&
/68
#9
0+]&ORFN
'HWHFWRU
#9
3//&/.
QRWVOHHSRU
GHHSVOHHS
+&/.
7,0[&/.
$+%
35(6&
«
FNBSOOLQ 3//
;
/HYHOVKLIWHUV
#9''&25(
+6(SUHVHQWRUQRW
)&/.
3&/.WR$3%
SHULSKHUDOV
$3%
35(6&
3HULSKHUDO
FORFNHQDEOH
WR7,0[
,I$3%SUHVF [
HOVH[
/6'
QRWVOHHSRU
GHHSVOHHS
&ORFN
6RXUFH
&RQWURO
$3%
35(6&
3HULSKHUDO
FORFNHQDEOH
3&/.WR$3%
0+]
SHULSKHUDOV
PD[
3HULSKHUDO
FORFNHQDEOH
,I$3%SUHVF [
HOVH[
/6,
/6(
+6,
6<6&/.
3&/.
WR7,0[
3HULSKHUDOV
HQDEOH
3HULSKHUDOV
HQDEOH
/37,0&/.
3HULSKHUDOV
HQDEOH
/38$57
8$57&/.
,&&/.
06Y9
24/118
DocID027063 Rev 4
STM32L031x4/6
3.6
Functional overview
Low-power real-time clock and backup registers
The real time clock (RTC) and the 5 backup registers are supplied in all modes including
standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user
application data. They are not reset by a system reset, or when the device wakes up from
Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:









Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
Two programmable alarms with wake up from Stop and Standby mode capability
Periodic wakeup from Stop and Standby with programmable resolution and period
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy
2 anti-tamper detection pins with programmable filter. The MCU can be woken up from
Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
The RTC clock sources can be:




3.7
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 37 kHz)
The high-speed external clock
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated alternate function registers. All GPIOs are high current capable.
Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate
function configuration of I/Os can be locked if needed following a specific sequence in order
to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated
IO bus with a toggling speed of up to 32 MHz.
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 26 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 38 GPIOs can be connected
to the 16 configurable interrupt/event lines. The 10 other lines are connected to PVD, RTC,
USART, I2C, LPUART, LPTIMER or comparator events.
DocID027063 Rev 4
25/118
33
Functional overview
3.8
STM32L031x4/6
Memories
The STM32L031x4/6 devices have the following features:

8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).

The non-volatile memory is divided into three arrays:
–
16 or 32 Kbytes of embedded Flash program memory
–
1 Kbytes of data EEPROM
–
Information block containing 32 user and factory options bytes plus 4 Kbytes of
system memory
The user options bytes are used to write-protect or read-out protect the memory (with
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

Level 0: no protection

Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are
connected or boot in RAM is selected

Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in
RAM selection disabled (debugline fuse)
The whole non-volatile memory embeds the error correction code (ECC) feature.
3.9
Direct memory access (DMA)
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, LPUART,
general-purpose timers, and ADC.
3.10
Analog-to-digital converter (ADC)
A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital
converter is embedded into STM32L031x4/6 devices. It has up to 10 external channels and
3 internal channels (temperature sensor, voltage reference). Three channel are fast
channel, PA0, PA4 and PA5, while the others are standard channels.
It performs conversions in single-shot or scan mode. In scan mode, automatic conversion is
performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling
rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all
frequencies (~25 µA at 10 kSPS, ~200 µA at 1MSPS). An auto-shutdown function
guarantees that the ADC is powered off except during the active conversion phase.
26/118
DocID027063 Rev 4
STM32L031x4/6
Functional overview
The ADC can be served by the DMA controller. It can operate from a supply voltage down to
1.65 V.
The ADC features a hardware oversampler up to 256 samples, this improves the resolution
to 16 bits (see AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.
3.11
Temperature sensor
The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN18 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 7. Temperature sensor calibration values
Calibration value name
3.11.1
Description
Memory address
TSENSE_CAL1
TS ADC raw data acquired at
temperature of 30 °C, VDDA= 3 V
0x1FF8 007A - 0x1FF8 007B
TSENSE_CAL2
TS ADC raw data acquired at
temperature of 130 °C, VDDA= 3 V
0x1FF8 007E - 0x1FF8 007F
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
enables accurate monitoring of the VDD value (since no external voltage, VREF+, is available
for ADC). The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
Table 8. Internal voltage reference measured values
Calibration value name
VREFINT_CAL
Description
Raw data acquired at
temperature of 25 °C
VDDA = 3 V
DocID027063 Rev 4
Memory address
0x1FF8 0078 - 0x1FF8 0079
27/118
33
Functional overview
3.12
STM32L031x4/6
Ultra-low-power comparators and reference voltage
The STM32L031x4/6 embed two comparators sharing the same current bias and reference
voltage. The reference voltage can be internal or external (coming from an I/O).

One comparator with ultra low consumption

One comparator with rail-to-rail inputs, fast or slow mode.

The threshold can be one of the following:
–
External I/O pins
–
Internal reference voltage (VREFINT)
–
submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail
comparator.
Both comparators can wake up the devices from Stop mode, and be combined into a
window comparator.
The internal reference voltage is available externally via a low-power / low-current output
buffer (driving current capability of 1 µA typical).
3.13
System configuration controller
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports.
The highly flexible routing interface allows the application firmware to control the routing of
different I/Os to the TIM2, TIM21, TIM22 and LPTIM timer input captures. It also controls the
routing of internal analog signals to the ADC, COMP1 and COMP2 and the internal
reference voltage VREFINT.
3.14
Timers and watchdogs
The ultra-low-power STM32L031x4/6 devices include three general-purpose timers, one
low- power timer (LPTM), two watchdog timers and the SysTick timer.
Table 9 compares the features of the general-purpose and basic timers.
Table 9. Timer feature comparison
Timer
Counter
resolution
Counter type
Prescaler factor
DMA
request
generation
TIM2
16-bit
Up, down,
up/down
Any integer between
1 and 65536
Yes
4
No
TIM21,
TIM22
16-bit
Up, down,
up/down
Any integer between
1 and 65536
No
2
No
28/118
DocID027063 Rev 4
Capture/compare Complementary
channels
outputs
STM32L031x4/6
3.14.1
Functional overview
General-purpose timers (TIM2, TIM21 and TIM22)
There are three synchronizable general-purpose timers embedded in the STM32L031x4/6
devices (see Table 9 for differences).
TIM2
TIM2 is based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It
features four independent channels each for input capture/output compare, PWM or onepulse mode output.
The TIM2 general-purpose timers can work together or with the TIM21 and TIM22 generalpurpose timers via the Timer Link feature for synchronization or event chaining. Their
counter can be frozen in debug mode. Any of the general-purpose timers can be used to
generate PWM outputs.
TIM2 has independent DMA request generation.
This timer is capable of handling quadrature (incremental) encoder signals and the digital
outputs from 1 to 3 hall-effect sensors.
TIM21 and TIM22
TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit
prescaler. They have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can work together and be synchronized with the TIM2, fullfeatured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
3.14.2
Low-power Timer (LPTIM)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
3.14.3

16-bit up counter with 16-bit autoreload register

16-bit compare register

Configurable output: pulse, PWM

Continuous / one shot mode

Selectable software / hardware input trigger

Selectable clock source
–
Internal clock source: LSE, LSI, HSI or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by the Pulse Counter Application)

Programmable digital glitch filter

Encoder mode
SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit downcounter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches ‘0’.
DocID027063 Rev 4
29/118
33
Functional overview
3.14.4
STM32L031x4/6
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
3.14.5
Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.15
Communication interfaces
3.15.1
I2C bus
One I2C interface (I2C1) can operate in multimaster or slave modes. The I2C interface can
support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast
Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.
The I2C interface supports 7-bit and 10-bit addressing modes, multiple 7-bit slave
addresses (2 addresses, 1 with configurable mask). They also include programmable
analog and digital noise filters.
Table 10. Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
In addition, I2C1 provides hardware support for SMBus 2.0 and PMBus 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and
ALERT protocol management. I2C1 also has a clock domain independent from the CPU
clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.
The I2C interface can be served by the DMA controller.
Refer to Table 11 for the supported modes and features of I2C interface.
30/118
DocID027063 Rev 4
STM32L031x4/6
Functional overview
Table 11. STM32L031x4/6 I2C implementation
I2C features(1)
I2C1
7-bit addressing mode
X
10-bit addressing mode
X
Standard mode (up to 100 kbit/s)
X
Fast mode (up to 400 kbit/s)
X
X(2)
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)
Independent clock
X
SMBus
X
Wakeup from STOP
X
1. X = supported.
2. See Table 15: Pin definitions on page 38 for the list of I/Os that feature Fast Mode Plus capability
3.15.2
Universal synchronous/asynchronous receiver transmitter (USART)
The USART interface (USART2) is able to communicate at speeds of up to 4 Mbit/s.
it provides hardware management of the CTS, RTS and RS485 driver enable (DE) signals,
multiprocessor communication mode, master synchronous communication and single-wire
half-duplex communication mode. USART2 also supports Smartcard communication (ISO
7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a
clock domain independent from the CPU clock that allows to wake up the MCU from Stop
mode using baudrates up to 42 Kbaud.
USART2 interface can be served by the DMA controller.
Table 12 for the supported modes and features of USART interface.
Table 12. USART implementation
USART modes/features(1)
USART2
Hardware flow control for modem
X
Continuous communication using DMA
X
Multiprocessor communication
X
Synchronous
mode(2)
X
Smartcard mode
X
Single-wire half-duplex communication
X
IrDA SIR ENDEC block
X
LIN mode
X
Dual clock domain and wakeup from Stop mode
X
Receiver timeout interrupt
X
Modbus communication
X
Auto baud rate detection (4 modes)
X
Driver Enable
X
1. X = supported.
DocID027063 Rev 4
31/118
33
Functional overview
STM32L031x4/6
2. This mode allows using the USART as an SPI master.
3.15.3
Low-power universal asynchronous receiver transmitter (LPUART)
The devices embed one Low-power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wake up the
system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop
mode are programmable and can be:

Start bit detection

Or any received data frame

Or a specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
3.15.4
Serial peripheral interface (SPI)
The SPI is able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex
and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The USARTs with synchronous capability can also be used as SPI master.
The SPI can be served by the DMA controller.
Refer to Table 13 for the supported modes and features of SPI interface.
Table 13. SPI implementation
SPI features(1)
SPI1
Hardware CRC calculation
X
I2S mode
-
TI mode
X
1. X = supported.
3.16
Cyclic redundancy check (CRC) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
32/118
DocID027063 Rev 4
STM32L031x4/6
Functional overview
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
3.17
Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
DocID027063 Rev 4
33/118
33
Pin descriptions
4
STM32L031x4/6
Pin descriptions
9''
96 6
3% 3% %2 2 7 3% 3% 3% 3% 3% 3$ 3$ Figure 3. STM32L031x4/6 LQFP48
/4)3
9''
966
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
966
9''
3&
3&
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
966$
9''$
3$
3$
3$
06Y9
1. The above figure shows the package bump view.
3$
3%
3%
3%
3%
3%
966
%227
Figure 4. STM32L031x4/6 LQFP32 pinout
9''
3$
3&26&B,1
3$
3$26&B287
3$
1567
3$
/4)3
3$
3$
9''
966
3$
3%
3%
3$
3$
3$
3$
3$
3$
9''$
3$
3$&.B,1
06Y9
1. The above figure shows the package top view.
34/118
DocID027063 Rev 4
STM32L031x4/6
Pin descriptions
3%
3%
3%
3%
3%
3$
3%
%227
Figure 5. STM32L031x4/6 UFQFPN32 pinout
966
3$
3$
3$
3$
3$
3$
3$
9''
3$
3$
3$
3$
3$
3%
3%
3%
9''
3&26&B,1
3&26&B287
1567
9''$
3$&.B,1
3$
3$
06Y9
1. The above figure shows the package top view.
9''
3$
3$
3%
3%
3%
%227
966
Figure 6. STM32L031x4/6 UFQFPN28 pinout
3$
3$
1567
3$
9''$
9''
966
3%
3$
3$
3$
3$&.B,1
3%
3&26&B287
3$
3$
3$
3$
3$
3&26&B,1
06Y9
1. The above figure shows the package top view.
2. This pinout applies to all part numbers except for STM32L031GxUxS .
DocID027063 Rev 4
35/118
45
Pin descriptions
STM32L031x4/6
%227
3$
3$
3%
3%
3%
3%
3%
Figure 7. STM32L031GxUxS UFQFPN28 pinout
3$
3$
1567
3$
9''$
9''
966
3%
3$
3$
3$
3$&.B,1
3%
3&26&B287
3$
3$
3$
3$
3$
3&26&B,1
06Y9
1. The above figure shows the package top view.
2. This pinout applies only to STM32L031GxUxS part number.
Figure 8. STM32L031x4/6 TSSOP20 pinout
%227
3&26&B,1
3&26&B287
3$
3$
3$
1567
3$
9''$
9''
3$&.B,1
966
3$
3$
3$
3%
3$
3$
3$
3$
06Y9
1. The above figure shows the package top view.
36/118
DocID027063 Rev 4
STM32L031x4/6
Pin descriptions
Figure 9. STM32L031x4/6 WLCSP25 pinout
$
3$
3$
3%
3%
%227
%
3$
3%
3$
3$
3&
26&B
,1
&
3$
3$
3$
9''$
3&
26&
B287
'
9''
3%
3$
3$
1567
(
966$
3%
3$
3$
&.B,1
3$
06Y9
1. The above figure shows the package top view.
Table 14. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
I/O structure
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during
and after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TC
Standard 3.3V I/O
B
RST
Notes
Pin functions
Definition
Dedicated BOOT0 pin
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and
after reset.
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
DocID027063 Rev 4
37/118
45
Pin descriptions
STM32L031x4/6
Table 15. Pin definitions
TSSOP20
WLCSP25(1)
UFQFPN28
UFQFPN28 (STM32L031GxUxS only)
LQFP32
UFQFPN32(2)
LQFP48
I/O structure
Pin Number
Note
-
-
-
-
-
-
2
PC13ANTI_TAMP
I/O
FT
-
-
TAMP1/WKUP2
2
B5
2
2
2
2
3
PC14OSC32_IN
I/O
TC
-
-
OSC32_IN
3
C5
3
3
3
3
4
PC15OSC32_OUT
I/O
TC
-
-
OSC32_OUT
-
-
-
-
-
-
5
PH0-OSC_IN
I/O
TC
-
-
-
-
-
-
-
-
-
6
PH1OSC_OUT
I/O
TC
-
-
-
4
D5
4
4
4
4
7
NRST
I/O
-
-
-
-
-
-
-
-
-
-
1
PC0
I/O
FT
-
LPTIM1_IN1,
EVENTOUT,
LPUART1_RX
-
-
E1
-
-
-
"0"
8
VSSA
S
-
-
-
-
5
C4
5
5
5
5
9
VDDA
S
-
-
-
-
-
LPTIM1_IN1,
TIM2_CH1,
USART2_CTS,
TIM2_ETR,
COMP1_OUT
COMP1_INM6,
ADC_IN0,
RTC_TAMP2/WKUP1
-
LPTIM1_IN1,
TIM2_CH1,
USART2_CTS,
TIM2_ETR,
COMP1_OUT
COMP1_INM6,
ADC_IN0,
RTC_TAMP2/WKUP1
6
-
E5
-
38/118
6
-
6
-
6
-
6
-
-
10
Pin name
(function
after reset)
Pin
type
PA0-CK_IN
PA0
I/O
I/O
TC
TC
DocID027063 Rev 4
Alternate
functions
Additional functions
STM32L031x4/6
Pin descriptions
Table 15. Pin definitions (continued)
7
8
9
10
11
12
B4
D4
E4
B3
D3
E3
7
8
9
10
11
12
7
8
9
10
11
12
7
8
9
10
11
12
7
8
9
10
11
12
11
12
13
14
15
16
Pin name
(function
after reset)
PA1
PA2
PA3
PA4
PA5
PA6
Pin
type
I/O
I/O
I/O
I/O
I/O
I/O
I/O structure
LQFP48
UFQFPN32(2)
LQFP32
UFQFPN28 (STM32L031GxUxS only)
UFQFPN28
WLCSP25(1)
TSSOP20
Pin Number
Note
Alternate
functions
Additional functions
-
EVENTOUT,
LPTIM1_IN2,
TIM2_CH2,
I2C1_SMBA,
USART2_RTS,
TIM21_ETR
COMP1_INP, ADC_IN1
-
TIM21_CH1,
TIM2_CH3,
USART2_TX,
LPUART1_TX,
COMP2_OUT
COMP2_INM6,
ADC_IN2,
RTC_TAMP3/RTC_TS/
RTC_OUT/WKUP3
-
TIM21_CH2,
TIM2_CH4,
USART2_RX,
LPUART1_RX
COMP2_INP, ADC_IN3
-
SPI1_NSS,
LPTIM1_IN1,
USART2_CK,
TIM22_ETR
COMP1_INM4,
COMP2_INM4,
ADC_IN4
-
SPI1_SCK,
LPTIM1_IN2,
TIM2_ETR,
TIM2_CH1
COMP1_INM5,
COMP2_INM5,
ADC_IN5
-
SPI1_MISO,
LPTIM1_ETR,
LPUART1_CTS,
TIM22_CH1,
EVENTOUT,
COMP1_OUT
ADC_IN6
FT
TC
FT
TC
TC
FT
DocID027063 Rev 4
39/118
45
Pin descriptions
STM32L031x4/6
Table 15. Pin definitions (continued)
13
-
C3
E2
13
14
13
14
13
14
13
14
17
18
Pin name
(function
after reset)
PA7
PB0
Pin
type
I/O
I/O
I/O structure
LQFP48
UFQFPN32(2)
LQFP32
UFQFPN28 (STM32L031GxUxS only)
UFQFPN28
WLCSP25(1)
TSSOP20
Pin Number
Note
Alternate
functions
Additional functions
-
SPI1_MOSI,
LPTIM1_OUT,
USART2_CTS,
TIM22_CH2,
EVENTOUT,
COMP2_OUT
ADC_IN7
-
EVENTOUT,
SPI1_MISO,
USART2_RTS,
TIM2_CH3
ADC_IN8, VREF_OUT
ADC_IN9, VREF_OUT
FT
FT
14
D2
15
15
15
15
19
PB1
I/O
FT
-
USART2_CK,
SPI1_MOSI,
LPUART1_RTS,
TIM2_CH4
-
-
-
-
-
16
20
PB2
I/O
FT
-
LPTIM1_OUT
-
-
-
-
-
-
-
21
PB10
I/O
FT
-
TIM2_CH3,
LPUART1_TX
-
-
-
-
-
-
-
22
PB11
I/O
FT
-
EVENTOUT,
TIM2_CH4,
LPUART1_RX
-
15
-
16
16
16
-
23
VSS
S
-
-
-
-
16
-
17
17
17
17
24
VDD
S
-
-
-
-
-
-
-
-
-
-
25
PB12
I/O
FT
-
SPI1_NSS,
EVENTOUT
-
-
SPI1_SCK,
MCO,
TIM21_CH1,
LPUART1_CTS
-
-
-
40/118
-
-
-
-
26
PB13
I/O
FT
DocID027063 Rev 4
STM32L031x4/6
Pin descriptions
Table 15. Pin definitions (continued)
Pin name
(function
after reset)
Pin
type
I/O structure
LQFP48
UFQFPN32(2)
LQFP32
UFQFPN28 (STM32L031GxUxS only)
UFQFPN28
WLCSP25(1)
TSSOP20
Pin Number
Note
Alternate
functions
Additional functions
-
-
-
-
-
-
-
27
PB14
I/O
FT
-
SPI1_MISO,
RTC_OUT,
TIM21_CH2,
LPUART1_RTS
-
-
-
-
-
-
28
PB15
I/O
FT
-
SPI1_MOSI,
RTC_REFIN
-
-
MCO,
LPTIM1_IN1,
EVENTOUT,
USART2_CK,
TIM2_CH1
-
-
-
C1
18
18
18
18
29
PA8
I/O
FT
17
B1
19
19
19
19
30
PA9
I/O
FTf
-
MCO,
I2C1_SCL,
USART2_TX,
TIM22_CH1
18
C2
20
20
20
20
31
PA10
I/O
FTf
-
I2C1_SDA,
USART2_RX,
TIM22_CH2
-
-
SPI1_MISO,
EVENTOUT,
USART2_CTS,
TIM21_CH2,
COMP1_OUT
-
-
-
-
-
-
-
21
21
32
PA11
I/O
FT
-
-
-
-
22
22
33
PA12
I/O
FT
-
SPI1_MOSI,
EVENTOUT,
USART2_RTS,
COMP2_OUT
19
A1
21
21
23
23
34
PA13
I/O
FT
-
SWDIO,
LPTIM1_ETR,
LPUART1_RX
DocID027063 Rev 4
41/118
45
Pin descriptions
STM32L031x4/6
Table 15. Pin definitions (continued)
TSSOP20
WLCSP25(1)
UFQFPN28
UFQFPN28 (STM32L031GxUxS only)
LQFP32
UFQFPN32(2)
LQFP48
I/O structure
Pin Number
Note
-
-
-
-
-
-
35
VSS
S
-
-
-
-
-
D1
-
-
-
-
36
VDD
S
-
-
-
-
-
SWCLK,
LPTIM1_OUT,
I2C1_SMBA,
USART2_TX,
LPUART1_TX
-
--
20
A2
22
22
24
24
37
Pin name
(function
after reset)
Pin
type
PA14
I/O
FT
Alternate
functions
Additional functions
-
-
23
23
25
25
38
PA15
I/O
FT
-
SPI1_NSS,
TIM2_ETR,
EVENTOUT,
USART2_RX,
TIM2_CH1
-
B2
24
24
26
26
39
PB3
I/O
FT
-
SPI1_SCK,
TIM2_CH2,
EVENTOUT
COMP2_INN
-
-
-
25
27
27
40
PB4
I/O
FT
-
SPI1_MISO,
EVENTOUT,
TIM22_CH1
COMP2_INP
-
SPI1_MOSI,
LPTIM1_IN1,
I2C1_SMBA,
TIM22_CH2
COMP2_INP
COMP2_INP
COMP2_INP,
VREF_PVD_IN
-
-
-
26
28
28
41
PB5
I/O
FT
-
A3
25
27
29
29
42
PB6
I/O
FTf
-
USART2_TX,
I2C1_SCL,
LPTIM1_ETR,
TIM21_CH1
-
A4
26
28
30
30
43
PB7
I/O
FTf
-
USART2_RX,
I2C1_SDA,
LPTIM1_IN2
42/118
DocID027063 Rev 4
STM32L031x4/6
Pin descriptions
Table 15. Pin definitions (continued)
TSSOP20
WLCSP25(1)
UFQFPN28
UFQFPN28 (STM32L031GxUxS only)
LQFP32
UFQFPN32(2)
LQFP48
I/O structure
Pin Number
Note
1
A5
27
1
31
31
44
BOOT0
I
-
-
-
-
-
-
-
-
-
32
45
PB8
I/O
FTf
-
I2C1_SCL
-
-
-
-
-
-
-
46
PB9
I/O
FTf
-
EVENTOUT,
I2C1_SDA
-
-
-
28
-
32
-
47
VSS
S
-
-
-
-
-
-
1
-
1
1
48
VDD
S
-
-
-
-
Pin name
(function
after reset)
Pin
type
Alternate
functions
Additional functions
1. WLCSP25 package is in development. Its ballout is subject to change.
2. VSS pins are connected to the exposed pad (see Figure 40: UFQFPN32, 5 x 5 mm, 32-pin package outline).
DocID027063 Rev 4
43/118
45
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SPI1/USART2
/LPTIM/TIM21
/EVENTOUT/
SYS_AF
SPI1/I2C1/
LPTIM
LPTIM/TIM2/
EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART2/
LPUART1/
TIM22/
EVENTOUT
TIM2/21/22
LPUART1/
EVENTOUT
COMP1/2
PA0
-
LPTIM1_IN1
TIM2_CH1
-
USART2_CTS
TIM2_ETR
-
COMP1_OUT
PA1
EVENTOUT
LPTIM1_IN2
TIM2_CH2
I2C1_SMBA
USART2_RTS
TIM21_ETR
-
-
PA2
TIM21_CH1
-
TIM2_CH3
-
USART2_TX
-
LPUART1_TX
COMP2_OUT
PA3
TIM21_CH2
-
TIM2_CH4
-
USART2_RX
-
LPUART1_RX
PA4
SPI1_NSS
LPTIM1_IN1
-
-
USART2_CK
TIM22_ETR
-
-
PA5
SPI1_SCK
LPTIM1_IN2
TIM2_ETR
-
-
TIM2_CH1
-
-
PA6
SPI1_MISO
LPTIM1_ETR
-
-
LPUART1_CTS
TIM22_CH1
EVENTOUT
COMP1_OUT
PA7
SPI1_MOSI
LPTIM1_OUT
-
-
USART2_CTS
TIM22_CH2
EVENTOUT
COMP2_OUT
PA8
MCO
-
LPTIM1_IN1
EVENTOUT
USART2_CK
TIM2_CH1
-
-
PA9
MCO
I2C1_SCL
-
-
USART2_TX
TIM22_CH1
-
-
PA10
-
I2C1_SDA
-
-
USART2_RX
TIM22_CH2
-
-
PA11
SPI1_MISO
-
EVENTOUT
-
USART2_CTS
TIM21_CH2
-
COMP1_OUT
PA12
SPI1_MOSI
-
EVENTOUT
-
USART2_RTS
-
-
COMP2_OUT
PA13
SWDIO
LPTIM1_ETR
-
-
-
-
LPUART1_RX
-
PA14
SWCLK
LPTIM1_OUT
-
I2C1_SMBA
USART2_TX
-
LPUART1_TX
-
PA15
SPI1_NSS
-
TIM2_ETR
EVENTOUT
USART2_RX
TIM2_CH1
-
-
Ports
DocID027063 Rev 4
Port A
Pin descriptions
44/118
Table 16. Alternate functions
STM32L031x4/6
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SPI1/USART2
/LPTIM/TIM21
/EVENTOUT/
SYS_AF
SPI1/I2C1/
LPTIM
LPTIM/TIM2/
EVENTOUT/
SYS_AF
I2C1/
EVENTOUT
I2C1/USART2/
LPUART1/
TIM22/
EVENTOUT
TIM2/21/22
LPUART1/
EVENTOUT
COMP1/2
PB0
EVENTOUT
SPI1_MISO
-
-
USART2_RTS
TIM2_CH3
-
-
PB1
USART2_CK
SPI1_MOSI
-
-
LPUART1_RTS
TIM2_CH4
-
-
PB2
-
-
LPTIM1_OUT
-
-
-
-
-
PB3
SPI1_SCK
-
TIM2_CH2
-
EVENTOUT
-
-
-
PB4
SPI1_MISO
-
EVENTOUT
-
TIM22_CH1
-
-
-
PB5
SPI1_MOSI
-
LPTIM1_IN1
I2C1_SMBA
TIM22_CH2
-
-
-
PB6
USART2_TX
I2C1_SCL
LPTIM1_ETR
-
-
TIM21_CH1
-
-
PB7
USART2_RX
I2C1_SDA
LPTIM1_IN2
-
-
-
-
-
PB8
-
-
-
-
I2C1_SCL
-
-
-
PB9
-
-
EVENTOUT
-
I2C1_SDA
-
-
-
PB10
-
-
TIM2_CH3
-
-
-
LPUART1_TX
-
PB11
EVENTOUT
-
TIM2_CH4
-
-
-
LPUART1_RX
-
PB12
SPI1_NSS
-
-
-
-
-
EVENTOUT
-
PB13
SPI1_SCK
-
MCO
-
-
TIM21_CH1
LPUART1_CTS
-
PB14
SPI1_MISO
-
RTC_OUT
-
-
TIM21_CH2
LPUART1_RTS
-
PB15
SPI1_MOSI
-
RTC_REFIN
-
-
-
-
-
PC0
LPTIM1_IN1
-
EVENTOUT
-
-
-
LPUART1_RX
-
PH0
-
-
-
-
-
-
-
-
PH1
-
-
-
-
-
-
-
-
Ports
DocID027063 Rev 4
Port B
Port C
Port H
45/118
Pin descriptions
AF0
STM32L031x4/6
Table 16. Alternate functions (continued)
Memory mapping
5
STM32L031x4/6
Memory mapping
Figure 10. Memory map
[))))))))
[(
[(
[)))
&RUWH[0
SHULSKHUDOV
)/0/24
[
RESERVED
[&
[))
!("
[
RESERVED
[$
[
[)))))))
2SWLRQE\WHV
!0"
[
[
6\VWHP
PHPRU\
!0"
[
[
RESERVED
[
3HULSKHUDOV
[
RESERVED
[
)ODVKV\VWHP
PHPRU\
65$0
[
RESERVED
&2'(
[
[
&LASHSYSTEM
MEMORYOR
32!-
DEMENDINGON
"//4
CONFIGURATION
5HVHUYHG
069
1. Refer to the STM32L031x4/6 reference manual for details on the Flash memory organization for each memory size.
46/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65 V  VDD  3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions
Figure 12. Pin input voltage
0&8SLQ
0&8SLQ
& S)
9,1
DLF
DocID027063 Rev 4
DLF
47/118
95
Electrical characteristics
6.1.6
STM32L031x4/6
Power supply scheme
Figure 13. Power supply scheme
287
*3,2V
,1
/HYHOVKLIWHU
6WDQGE\SRZHUFLUFXLWU\
26&57&:DNHXS
ORJLF57&EDFNXS
UHJLVWHUV
,2
/RJLF
.HUQHOORJLF
&38
'LJLWDO
0HPRULHV
9''
9''
5HJXODWRU
1îQ)
î—)
966
9''$
9''$
Q)
—)
$'&
$QDORJ
5&3//&203
«
966$
06Y9
6.1.7
Current consumption measurement
Figure 14. Current consumption measurement scheme
9''$
,''
1[9''
1îQ)
î—)
1[966
06Y9
48/118
DocID027063 Rev 4
STM32L031x4/6
6.2
Electrical characteristics
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 17: Voltage characteristics,
Table 18: Current characteristics, and Table 19: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 17. Voltage characteristics
Symbol
VDD–VSS
VIN(2)
Ratings
Min
Max
–0.3
4.0
Input voltage on FT and FTf pins
VSS  0.3
VDD+4.0
Input voltage on TC pins
VSS  0.3
4.0
Input voltage on BOOT0
VSS
VDD 4.0
VSS 0.3
4.0
External main supply voltage
(including VDDA, VDD)(1)
Input voltage on any other pin
|VDD|
Variations between different VDDx power pins
-
50
|VDDA-VDDx|
Variations between any VDDx and VDDA power
pins(3)
-
300
Variations between all different ground pins
-
50
|VSS|
VESD(HBM)
Electrostatic discharge voltage
(human body model)
Unit
V
mV
see Section 6.3.11
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2.
VIN maximum must always be respected. Refer to Table 18 for maximum allowed injected current values.
3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and device operation.
DocID027063 Rev 4
49/118
95
Electrical characteristics
STM32L031x4/6
Table 18. Current characteristics
Symbol
Ratings
Max.
ΣIVDD(2)
Total current into sum of all VDD power lines (source)(1)
105
ΣIVSS(2)
(1)
105
Total current out of sum of all VSS ground lines (sink)
(1)
IVDD(PIN)
Maximum current into each VDD power pin (source)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
100
Output current sunk by any I/O and control pin except FTf
pins
16
Output current sunk by FTf pins
22
Output current sourced by any I/O and control pin
-16
Total output current sunk by sum of all IOs and control
pins(4)
45
Total output current sourced by sum of all IOs and control
pins(4)
-45
Total output current sunk by sum of all IOs and control
pins(2)
90
Total output current sourced by sum of all IOs and control
pins(2)
-90
IIO
ΣIIO(PIN)(3)
ΣIIO(PIN)(5)
IINJ(PIN)
ΣIINJ(PIN)
Injected current on FT, FFf, RST and B pins
Unit
mA
-5/+0(6)
Injected current on TC pin
± 5(7)
Total injected current (sum of all I/O and control pins)(8)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
3. These values apply only to STM32L031GxUxS part number.
4. This current consumption must be correctly distributed over all I/Os and control pins. In particular, it must
be located the closest possible to the couple of supply and ground, and distributed on both sides.
5. These values apply to all part numbers except for STM32L031GxUxS.
6. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)
must never be exceeded. Refer to Table 17 for maximum allowed input voltage values.
7. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 17: Voltage characteristics for the maximum allowed input voltage
values.
8. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 19. Thermal characteristics
Symbol
TSTG
TJ
50/118
Ratings
Storage temperature range
Maximum junction temperature
DocID027063 Rev 4
Value
Unit
–65 to +150
°C
150
°C
STM32L031x4/6
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 20. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
32
fPCLK1
Internal APB1 clock frequency
-
0
32
fPCLK2
Internal APB2 clock frequency
-
0
32
BOR detector disabled
1.65
3.6
BOR detector enabled,
at power on
1.8
3.6
BOR detector disabled,
after power on
1.65
3.6
Must be the same voltage
as VDD(1)
1.65
3.6
2.0 V  VDD  3.6 V
-0.3
5.5
1.65 V  VDD  2.0 V
-0.3
5.2
VDD
VDDA
Standard operating voltage
Analog operating voltage
(all features)
Input voltage on FT, FTf and RST pins(2)
VIN
Input voltage on BOOT0 pin
-
0
5.5
Input voltage on TC pin
-
-0.3
VDD+0.3
LQFP48 package
-
351
LQFP32 package
-
333
-
513
-
167
WLCSP25 package
-
286
TSSOP20 package
-
333
LQFP48 package
-
88
LQFP32 package
-
83
UFQFPN32 package
-
128
UFQFPN28 package
-
42
WLCSP25 package
-
71
TSSOP20 package
-
83
Power dissipation at TA = 85 °C (range 6) UFQFPN32 package
or TA =105 °C (rage 7) (3)
UFQFPN28 package
PD
Power dissipation at TA = 125 °C (range
3) (3)
DocID027063 Rev 4
Unit
MHz
V
V
V
mW
51/118
95
Electrical characteristics
STM32L031x4/6
Table 20. General operating conditions (continued)
Symbol
TA
TJ
Parameter
Conditions
Min
Max
Maximum power
dissipation (range 6)
–40
85
Maximum power
dissipation (range 7)
–40
105
Maximum power
dissipation (range 3)
–40
125
Junction temperature range (range 6)
-40 °C  TA  85 °
–40
105
Junction temperature range (range 7)
-40 °C  TA  105 °C
–40
125
Junction temperature range (range 3)
-40 °C  TA  125 °C
–40
130
Temperature range
Unit
°C
1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and normal operation.
2. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 19: Thermal characteristics
on page 50).
6.3.2
Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
ambient temperature condition summarized in Table 20.
Table 21. Embedded reset and power control block characteristics
Symbol
Parameter
VDD rise time rate
tVDD(1)
VDD fall time rate
TRSTTEMPO(1) Reset temporization
VPOR/PDR
Power on/power down reset
threshold
VBOR0
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
52/118
Conditions
Min
Typ
Max
BOR detector enabled
0
-

BOR detector disabled
0
-
1000
BOR detector enabled
20
-

BOR detector disabled
0
-
1000
VDD rising, BOR enabled
-
2
3.3
0.4
0.7
1.6
Falling edge
1
1.5
1.65
Rising edge
1.3
1.5
1.65
Falling edge
1.67
1.7
1.74
Rising edge
1.69
1.76
1.8
Falling edge
1.87
1.93
1.97
Rising edge
1.96
2.03
2.07
Falling edge
2.22
2.30
2.35
Rising edge
2.31
2.41
2.44
VDD rising, BOR
DocID027063 Rev 4
disabled(2)
Unit
µs/V
ms
V
STM32L031x4/6
Electrical characteristics
Table 21. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Conditions
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage detector
threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst
Hysteresis voltage
Min
Typ
Max
Falling edge
2.45
2.55
2.6
Rising edge
2.54
2.66
2.7
Falling edge
2.68
2.8
2.85
Rising edge
2.78
2.9
2.95
Falling edge
1.8
1.85
1.88
Rising edge
1.88
1.94
1.99
Falling edge
1.98
2.04
2.09
Rising edge
2.08
2.14
2.18
Falling edge
2.20
2.24
2.28
Rising edge
2.28
2.34
2.38
Falling edge
2.39
2.44
2.48
Rising edge
2.47
2.54
2.58
Falling edge
2.57
2.64
2.69
Rising edge
2.68
2.74
2.79
Falling edge
2.77
2.83
2.88
Rising edge
2.87
2.94
2.99
Falling edge
2.97
3.05
3.09
Rising edge
3.08
3.15
3.20
BOR0 threshold
-
40
-
All BOR and PVD thresholds
excepting BOR0
-
100
-
Unit
V
mV
1. Guaranteed by characterization results.
2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.
DocID027063 Rev 4
53/118
95
Electrical characteristics
6.3.3
STM32L031x4/6
Embedded internal reference voltage
The parameters given in Table 23 are based on characterization results, unless otherwise
specified.
Table 22. Embedded internal reference voltage calibration values
Calibration value name
VREFINT_CAL
Description
Memory address
Raw data acquired at temperature
0x1FF8 0078 - 0x1FF8 0079
of 25 °C, VDDA= 3 V
Table 23. Embedded internal reference voltage(1)
Symbol
VREFINT out(2)
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
– 40 °C < TJ < +125 °C
1.202
1.224
1.242
V
TVREFINT
Internal reference startup time
-
-
2
3
ms
VVREF_MEAS
VDDA voltage during VREFINT
factory measure
-
2.99
3
3.01
V
AVREF_MEAS
Accuracy of factory-measured
VREFINT value(3)
Including uncertainties
due to ADC and VDDA
values
-
-
±5
mV
TCoeff(4)
Temperature coefficient
–40 °C < TJ < +125 °C
-
25
100
ppm/°C
ACoeff(4)
Long-term stability
1000 hours, T= 25 °C
-
-
1000
ppm
VDDCoeff(4)
Voltage coefficient
3.0 V < VDDA < 3.6 V
-
-
2000
ppm/V
TS_vrefint(4)(5)
ADC sampling time when
reading the internal reference
voltage
-
5
10
-
µs
TADC_BUF(4)
Startup time of reference
voltage buffer for ADC
-
-
-
10
µs
IBUF_ADC(4)
Consumption of reference
voltage buffer for ADC
-
-
13.5
25
µA
IVREF_OUT(4)
VREF_OUT output current(6)
-
-
-
1
µA
CVREF_OUT(4)
VREF_OUT output load
-
-
-
50
pF
Consumption of reference
voltage buffer for VREF_OUT
and COMP
-
-
730
1200
nA
VREFINT_DIV1(4)
1/4 reference voltage
-
24
25
26
VREFINT_DIV2(4)
1/2 reference voltage
-
49
50
51
VREFINT_DIV3(4)
3/4 reference voltage
-
74
75
76
ILPBUF(4)
%
VREFINT
1. Refer to Table 35: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current
consumption (IREFINT).
2. Guaranteed by test in production.
3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
4. Guaranteed by design.
5. Shortest sampling time can be determined in the application by multiple iterations.
6. To guarantee less than 1% VREF_OUT deviation.
54/118
DocID027063 Rev 4
STM32L031x4/6
6.3.4
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, temperature, I/O pin loading, device software configuration, operating
frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified
otherwise.
The current consumption values are derived from the tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 20: General operating
conditions unless otherwise specified.
The MCU is placed under the following conditions:

All I/O pins are configured in analog input mode

All peripherals are disabled except when explicitly mentioned

The Flash memory access time and prefetch is adjusted depending on fHCLK
frequency and voltage range to provide the best CPU performance unless otherwise
specified.

When the peripherals are enabled fAPB1 = fAPB2 = fAPB

When PLL is on, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used)

The HSE user clock is applied to OSCI_IN input (LQFP48 package) and to CK_IN
(other packages). It follows the characteristic specified in Table 37: High-speed
external user clock characteristics

For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins

For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not
specified otherwise
The parameters given in Table 44, Table 20 and Table 21 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Table 20.
DocID027063 Rev 4
55/118
95
Electrical characteristics
STM32L031x4/6
Table 24. Current consumption in Run mode, code with data processing running
from Flash memory
Symbol
Parameter
fHCLK
Typ
Max(1)
1 MHz
140
200
2 MHz
245
310
4 MHz
460
540
4 MHz
0.56
0.63
8 MHz
1.1
1.2
16 MHz
2.1
2.3
8 MHz
1.25
1.4
16 MHz
2.5
2.7
32 MHz
5
5.6
Range 2, VCORE=1.5 V,
VOS[1:0]=10,
16 MHz
2.1
2.4
Range 1, VCORE=1.8 V,
VOS[1:0]=01
32 MHz
5.1
5.7
65 kHz
34.5
110
524 kHz
86
150
4.2 MHz
505
570
Conditions
Range 3, VCORE=1.2 V
VOS[1:0]=11
IDD
(Run
from
Flash)
fHSE = fHCLK up to
16 MHz included,
Range 2, VCORE=1.5 V,
fHSE = fHCLK/2 above VOS[1:0]=10,
16 MHz (PLL on)(2)
Supply
current in
Run mode,
code
executed
from Flash
Range 1, VCORE=1.8 V,
VOS[1:0]=01
HSI clock
Range 3, VCORE=1.2 V,
VOS[1:0]=11
MSI clock
Unit
µA
mA
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Table 25. Current consumption in Run mode vs code type,
code with data processing running from Flash memory
Symbol
IDD
(Run
from
Flash)
Parameter
Supply
current in
Run mode,
code
executed
from Flash
memory
Conditions
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(1)
Range 1,
VOS[1:0]=01,
VCORE=1.8 V
1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
56/118
DocID027063 Rev 4
fHCLK
Typ
Dhrystone
460
CoreMark
455
Fibonacci
4 MHz
330
while(1)
305
while(1), prefetch
OFF
320
Dhrystone
5
CoreMark
5.15
Fibonacci
32 MHz
5
while(1)
4.35
while(1), prefetch
OFF
3.85
Unit
µA
mA
STM32L031x4/6
Electrical characteristics
Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE = 16 MHz, 1WS
,''
(
(
(
(
(
9''
'KU\VWRQH:6±ƒ&
'KU\VWRQH:6ƒ&
'KU\VWRQH:6ƒ&
'KU\VWRQH:6ƒ&
'KU\VWRQH:6ƒ&
'KU\VWRQH:6ƒ&
06Y9
Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS
,''
(
(
(
(
(
9''
ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^͕ʹϰϬΣ
ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^͕ϮϱΣ
ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^͕ϱϱΣ
ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^͕ϴϱΣ
ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^͕ϭϬϱΣ
ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^͕ϭϮϱΣ
06Y9
DocID027063 Rev 4
57/118
95
Electrical characteristics
STM32L031x4/6
Table 26. Current consumption in Run mode, code with data processing running from RAM
Symbol
Parameter
fHCLK
Typ
Max(1)
1 MHz
115
170
2 MHz
210
250
4 MHz
385
420
4 MHz
0.48
0.6
8 MHz
0.935
1.1
16 MHz
1.8
2
8 MHz
1.1
1.3
16 MHz
2.1
2.3
32 MHz
4.5
4.7
65 kHz
22
52
524 kHz
70.5
91
4.2 MHz
420
450
Range 2,
VCORE=1.5 V,
VOS[1:0]=10
16 MHz
1.95
2.2
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
32 MHz
Conditions
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
fHSE = fHCLK up to 16
MHz, included
fHSE = fHCLK/2 above
16 MHz
(PLL ON)(2)
IDD (Run
from
RAM)
Range 2,
VCORE=1.5 ,V,
VOS[1:0]=10
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
Supply current in
Run mode, code
executed from
RAM, Flash
switched OFF
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
MSI clock
HSI16 clock source
(16 MHz)
Unit
µA
mA
µA
mA
4.7
5.1
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Table 27. Current consumption in Run mode vs code type,
code with data processing running from RAM(1)
Symbol
Parameter
Conditions
fHCLK
Dhrystone
IDD (Run
from
RAM)
Supply current in
Run mode, code
executed from
RAM, Flash
switched OFF
fHSE = fHCLK up to 16
MHz, included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
CoreMark
Fibonacci
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
58/118
DocID027063 Rev 4
4 MHz
395
360
265
Dhrystone
4.5
CoreMark
Fibonacci
Unit
385
while(1)
while(1)
1. Guaranteed by characterization results, unless otherwise specified.
Typ
32 MHz
4.65
4.2
3.05
µA
mA
STM32L031x4/6
Electrical characteristics
Table 28. Current consumption in Sleep mode
Symbol
Parameter
Conditions
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
fHSE = fHCLK up to
Range 2,
16 MHz included,
VCORE=1.5 V,
fHSE = fHCLK/2
above 16 MHz (PLL VOS[1:0]=10
ON)(2)
Supply current
in Sleep
mode, Flash
memory OFF
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
Range 2,
VCORE=1.5 V,
HSI16 clock source VOS[1:0]=10
(16 MHz)
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
MSI clock
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
IDD (Sleep)
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
fHSE = fHCLK up to
Range 2,
16 MHz included,
fHSE = fHCLK/2
CORE=1.5 V,
above 16 MHz (PLL VOS[1:0]=10
ON)(2)
Supply current
in Sleep
mode, Flash
memory ON
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
Range 2,
VCORE=1.5 V,
HSI16 clock source VOS[1:0]=10
(16 MHz)
Range 1,
VCORE=1.8 V,
VOS[1:0]=01
MSI clock
Range 3,
VCORE=1.2 V,
VOS[1:0]=11
fHCLK
Typ
Max(1)
1 MHz
36.5
87
2 MHz
58
100
4 MHz
100
170
4 MHz
125
190
8 MHz
230
310
16 MHz
450
540
8 MHz
275
360
16 MHz
555
650
32 MHz
1350
1600
16 MHz
585
690
32 MHz
1500
1700
65 kHz
17
43
524 kHz
28
55
4.2 MHz
115
190
1 MHz
49
160
2 MHz
69
190
4 MHz
115
230
4 MHz
135
200
8 MHz
240
320
16 MHz
460
550
8 MHz
290
370
16 MHz
565
670
32 MHz
1350
1600
16 MHz
600
700
32 MHz
1500
1700
65 kHz
28
55
524 kHz
39.5
67
4.2 MHz
125
200
Unit
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
DocID027063 Rev 4
59/118
95
Electrical characteristics
STM32L031x4/6
Table 29. Current consumption in Low-power run mode
Symbol
Parameter
Typ
Max(1)
TA = -40 °C to 25 °C
6.3
8.4
TA = 85 °C
9.15
13
TA = 105 °C
12.5
19
TA = 125 °C
20.5
36
TA =-40 °C to 25 °C
9.45
12
TA = 85 °C
12.5
15
TA = 105 °C
16
22
TA = 125 °C
24
38
TA = -40 °C to 25 °C
17
20
TA = 55 °C
19
21
TA = 85 °C
20.5
24
TA = 105 °C
23.5
28
TA = 125 °C
31.5
46
TA = -40 °C to 25 °C
18.5
23
TA = 85 °C
23
27
TA = 105 °C
27
33
TA = 125 °C
36
52
TA = -40 °C to 25 °C
22.5
26
TA = 85 °C
27.5
31
TA = 105 °C
31
38
TA = 125 °C
40.5
56
TA = -40 °C to 25 °C
32
36
TA = 55 °C
35
37
TA = 85 °C
37.5
42
TA = 105 °C
41
47
TA = 125 °C
50
65
Conditions
MSI clock, 65 kHz
fHCLK = 32 kHz
All
peripherals
off, code
executed
from RAM,
Flash
memory
OFF, VDD
from 1.65 V
to 3.6 V
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz
fHCLK = 131 kHz
Supply
IDD
current in
(LP Run) Low-power
run mode
MSI clock, 65 kHz
fHCLK = 32 kHz
All
peripherals
off, code
executed
from Flash
memory,
VDD from
1.65 V to
3.6 V
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz
fHCLK = 131 kHz
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
60/118
DocID027063 Rev 4
Unit
µA
STM32L031x4/6
Electrical characteristics
Figure 17. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS
,''
(
(
(
(
(
(
9''
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9
Table 30. Current consumption in Low-power Sleep mode
Symbol
Parameter
Typ
Max(1)
3.2(2)
-
TA = -40 °C to 25 °C
13
19
TA = 85 °C
16
21
TA = 105 °C
18.5
24
TA = 125 °C
23.5
32
TA = -40 °C to 25 °C
13.5
19
TA = 85 °C
16.5
21
TA = 105 °C
18.5
24
TA = 125 °C
24
33
15.5
21
17.5
22
18.5
23
21
26
26
35
Conditions
MSI clock, 65 kHz
TA = -40 °C to 25 °C
fHCLK = 32 kHz
Flash memory OFF
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash memory ON
IDD
(LP Sleep)
Supply
All peripherals
current in
off, VDD from
Low-power
1.65 V to 3.6 V
sleep mode
MSI clock, 65 kHz
fHCLK = 65 kHz,
Flash memory ON
TA = -40 °C to 25 °C
T = 55 °C
MSI clock, 131 kHz A
fHCLK = 131 kHz,
TA = 85 °C
Flash memory ON
TA = 105 °C
TA = 125 °C
Unit
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. As the CPU is in Sleep mode, the difference between the current consumption with Flash memory ON and OFF (nearly
12 µA) is the same whatever the clock frequency.
DocID027063 Rev 4
61/118
95
Electrical characteristics
STM32L031x4/6
Table 31. Typical and maximum current consumptions in Stop mode
Symbol
Parameter
Conditions
IDD (Stop) Supply current in Stop mode
Typ
Max(1) Unit
TA = -40°C to 25°C
0.38
0.99
TA = 55°C
0.54
1.9
TA= 85°C
1.35
4.2
TA = 105°C
3.1
9
TA = 125°C
7.55
19
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
Figure 18. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive
(
(
(
(
(
(
(
(
(
(
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9
Figure 19. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks off
,''
(
(
(
(
(
(
(
(
(
9''
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
62/118
DocID027063 Rev 4
06Y9
STM32L031x4/6
Electrical characteristics
Table 32. Typical and maximum current consumptions in Standby mode
Symbol
Parameter
Typ
Max(1)
TA = -40 °C to 25 °C
0.8
1.6
TA = 55 °C
0.9
1.8
TA= 85 °C
1
2
TA = 105 °C
1.3
3
TA = 125 °C
2.15
7
TA = -40 °C to 25 °C
0.255
0.6
TA = 55 °C
0.28
0.7
TA = 85 °C
0.405
1
TA = 105 °C
0.7
1.7
TA = 125 °C
1.55
5
Conditions
Independent watchdog
and LSI enabled
Supply current in Standby
IDD
(Standby) mode
Independent watchdog
and LSI off
Unit
µA
1. Guaranteed by characterization results at 125 °C, unless otherwise specified
Table 33. Average current consumption during wakeup
System frequency
Current
consumption
during wakeup
HSI
1
HSI/4
0.7
MSI 4,2 MHz
0.7
MSI 1,05 MHz
0.4
MSI 65 KHz
0.1
Reset pin pulled down
-
0.21
BOR on
-
0.23
With Fast wakeup set
MSI 2,1 MHz
0.5
With Fast wakeup disabled
MSI 2,1 MHz
0.12
Symbol
IDD (WU from
Stop)
IDD (Reset)
IDD (Power Up)
IDD (WU from
StandBy)
parameter
Supply current during wakeup from
Stop mode
DocID027063 Rev 4
Unit
mA
63/118
95
Electrical characteristics
STM32L031x4/6
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following tables. The
MCU is placed under the following conditions:

all I/O pins are in input mode with a static value at VDD or VSS (no load)

all peripherals are disabled unless otherwise mentioned

the given value is calculated by measuring the current consumption
–
with all peripherals clocked off
–
with only one peripheral clocked on
Table 34. Peripheral current consumption in Run or Sleep mode(1)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
Low-power
sleep and run
WWDG
3
2
2
2
LPUART1
8
6.5
5.5
6
I2C1
11
9.5
7.5
9
LPTIM1
10
8.5
6.5
8
10.5
8.5
7
9
14.5
12
9.5
11
ADC1
5.5
5
3.5
4
SPI1
4
3
3
2.5
TIM21
7.5
6
5
5.5
TIM22
7
6
5
6
DBGMCU
1.5
1
1
0.5
SYSCFG
2.5
2
2
1.5
GPIOA
3.5
3
2.5
2.5
GPIOB
3.5
2.5
2
2.5
GPIOC
8.5
6.5
5.5
7
GPIOH
1.5
1
1
0.5
CRC
1.5
1
1
1
0(3)
0(3)
0(3)
Peripheral
APB1
TIM2
USART2
(2)
APB2
CortexM0+ core
I/O port
(3)
FLASH
0
DMA1
10
8
6.5
8.5
All enabled
101
83
66
85
PWR
2.5
2
2
1
AHB
Unit
µA/MHz (fHCLK)
µA/MHz (fHCLK)
µA/MHz (fHCLK)
µA/MHz (fHCLK)
µA/MHz (fHCLK)
1. Data based on differential IDD measurement between all peripherals off an one peripheral with clock enabled, in the following
conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Low-power
run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases.
No I/O pins toggling. Not tested in production.
2. HSI oscillator is off for this measure.
3. Current consumption is negligible and close to 0 µA.
64/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
Table 35. Peripheral current consumption in Stop and Standby mode(1)
Symbol
Typical consumption, TA = 25 °C
Peripheral
IDD(PVD / BOR)
-
IREFINT
(2)
-
LSE Low drive
VDD=1.8 V
VDD=3.0 V
0.7
1.2
1.3
1.4
0.1
0.1
-
LSI
0.27
0.31
-
IWDG
0.2
0.3
-
LPTIM1, Input 100 Hz
0.01
0.01
-
LPTIM1, Input 1 MHz
6
6
-
LPUART1
0.2
0.2
-
RTC (LSE in Bypass
mode)
0.2
0.2
Unit
µA
1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode
2.
LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN
and OSC32_OUT.-
6.3.5
Wakeup time from low-power mode
The wakeup times given in the following table are measured with the MSI or HSI16 RC
oscillator. The clock source used to wake up the device depends on the current operating
mode:

Sleep mode: the clock source is the clock that was set before entering Sleep mode

Stop mode: the clock source is either the MSI oscillator in the range configured before
entering Stop mode, the HSI16 or HSI16/4.

Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 20.
DocID027063 Rev 4
65/118
95
Electrical characteristics
STM32L031x4/6
Table 36. Low-power mode wakeup timings
Symbol
tWUSLEEP
Parameter
Conditions
Typ
Max
fHCLK = 32 MHz
7
8
fHCLK = 262 kHz
Flash memory enabled
7
8
fHCLK = 262 kHz
Flash memory switched OFF
9
10
5.0
8
4.9
7
8.0
11
fHCLK = fMSI = 4.2 MHz
Voltage range 1
5.0
8
fHCLK = fMSI = 4.2 MHz
Voltage range 2
5.0
8
fHCLK = fMSI = 4.2 MHz
Voltage range 3
5.0
8
7.3
13
13
23
28
38
fHCLK = fMSI = 262 kHz
51
65
fHCLK = fMSI = 131 kHz
100
120
fHCLK = MSI = 65 kHz
200
260
fHCLK = fHSI = 16 MHz
4.9
7
fHCLK = fHSI/4 = 4 MHz
8.0
11
fHCLK = fHSI = 16 MHz
Wakeup from Stop mode, regulator in lowfHCLK = fHSI/4 = 4 MHz
power mode, code running from RAM
fHCLK = fMSI = 4.2 MHz
4.9
7
7.9
10
4.7
8
Wakeup from Standby mode
FWU bit = 1
fHCLK = MSI = 2.1 MHz
65
130
Wakeup from Standby mode
FWU bit = 0
fHCLK = MSI = 2.1 MHz
2.2
3
Wakeup from Sleep mode
tWUSLEEP_ Wakeup from Low-power sleep mode,
fHCLK = 262 kHz
LP
fHCLK = fMSI = 4.2 MHz
Wakeup from Stop mode, regulator in Run
fHCLK = fHSI = 16 MHz
mode
fHCLK = fHSI/4 = 4 MHz
tWUSTOP
tWUSTDBY
66/118
fHCLK = fMSI = 2.1 MHz
Wakeup from Stop mode, regulator in lowfHCLK = fMSI = 1.05 MHz
power mode
fHCLK = fMSI = 524 kHz
DocID027063 Rev 4
Unit
Number
of clock
cycles
µs
ms
STM32L031x4/6
6.3.6
Electrical characteristics
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the
recommended clock input waveform is shown in Figure 20.
Table 37. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source
frequency
Conditions
Min
Typ
Max
Unit
CSS is on or
PLL is used
1
8
32
MHz
CSS is off, PLL
not used
0
8
32
MHz
-
VDD
VHSEH
OSC_IN/CK_IN(2) input pin high
level voltage
0.7VDD
VHSEL
OSC_IN/CK_IN(2) input pin low
level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN/CK_IN(2) high or low time
12
-
-
tr(HSE)
tf(HSE)
OSC_IN/CK_IN(2)
Cin(HSE)
V
-
ns
rise or fall time
OSC_IN/CK_IN(2) input capacitance
DuCy(HSE) Duty cycle
IL
OSC_IN/CK_IN(2)
Input leakage
current
VSS  VIN  VDD
-
-
20
-
2.6
-
pF
45
-
55
%
-
-
±1
µA
1. Guaranteed by design.
2. HSE external user clock is applied to OSC_IN on LQFP48 package and to CK_IN on other packages.
Figure 20. High-speed external clock source AC timing diagram
9+6(+
9+6(/
WU+6(
WI+6(
W:+6(
W:+6(
W
7+6(
(;7(5 1$/
&/2&. 6285& (
I+6(BH[W
26& B,1
,/
670/[[
DLF
DocID027063 Rev 4
67/118
95
Electrical characteristics
STM32L031x4/6
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 20.
Table 38. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
fLSE_ext
User external clock source
frequency
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
tw(LSE)
tw(LSE)
OSC32_IN high or low time
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time
CIN(LSE)
Typ
Max
Unit
1
32.768
1000
kHz
0.7VDD
-
VDD
V
-
VSS
-
0.3VDD
465
-
ns
-
-
10
-
-
0.6
-
pF
-
45
-
55
%
VSS  VIN  VDD
-
-
±1
µA
OSC32_IN input capacitance
DuCy(LSE) Duty cycle
IL
Min
OSC32_IN Input leakage current
1. Guaranteed by design.
Figure 21. Low-speed external clock source AC timing diagram
9/6(+
9/6(/
WU/6(
WI/6(
W:/6(
W:/6(
W
7/6(
(;7(5 1$/
&/2&. 6285& (
I/6(BH[W
26&B,1
,/
670/[[
DLF
68/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic
resonator oscillator (LQFP48 package only). All the information given in this paragraph are
based on characterization results obtained with typical external components specified in
Table 39. In the application, the resonator and the load capacitors have to be placed as
close as possible to the oscillator pins in order to minimize output distortion and startup
stabilization time. Refer to the crystal resonator manufacturer for more details on the
resonator characteristics (frequency, package, accuracy).
Table 39. HSE oscillator characteristics(1)
Symbol
Parameter
Conditions
fOSC_IN Oscillator frequency
RF
Feedback resistor
Gm
Maximum critical crystal
transconductance
tSU(HSE)
(2)
Startup time
Min Typ
-
1
-
-
Startup
VDD is stabilized
Max Unit
25
MHz
200
-
k
-
-
700
µA
/V
-
2
-
ms
1. Guaranteed by design.
2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is
enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 22). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 22. HSE oscillator circuit diagram
I+6(WRFRUH
5P
/P
5)
&2
&/
26&B,1
&P
JP
5HVRQDWRU
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
670
26&B287
&/
DLE
DocID027063 Rev 4
69/118
95
Electrical characteristics
STM32L031x4/6
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 40. LSE oscillator characteristics(1)
Symbol
fLSE
Gm
Conditions(2)
Min(2)
Typ
Max
Unit
-
32.768
-
kHz
LSEDRV[1:0]=00
lower driving capability
-
-
0.5
LSEDRV[1:0]= 01
medium low driving capability
-
-
0.75
LSEDRV[1:0] = 10
medium high driving capability
-
-
1.7
LSEDRV[1:0]=11
higher driving capability
-
-
2.7
VDD is stabilized
-
2
-
Parameter
LSE oscillator frequency
Maximum critical crystal
transconductance
tSU(LSE)(3) Startup time
µA/V
s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST
microcontrollers”.
3. Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to
a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 23. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
26&B,1
I/6(
'ULYH
SURJUDPPDEOH
DPSOLILHU
N+]
UHVRQDWRU
26&B287
&/
069
Note:
70/118
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DocID027063 Rev 4
STM32L031x4/6
6.3.7
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 41 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 20.
High-speed internal 16 MHz (HSI16) RC oscillator
Table 41. 16 MHz HSI16 oscillator characteristics
Symbol
fHSI16
TRIM
(1)(2)
ACCHSI16
(2)
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
VDD = 3.0 V
-
16
-
MHz
HSI16 usertrimmed resolution
Trimming code is not a multiple of 16
-
0.4
0.7
%
Trimming code is a multiple of 16
-
Accuracy of the
factory-calibrated
HSI16 oscillator
-
1.5
%
VDDA = 3.0 V, TA = 25 °C
-1(3)
-
1(3)
%
VDDA = 3.0 V, TA = 0 to 55 °C
-1.5
-
1.5
%
VDDA = 3.0 V, TA = -10 to 70 °C
-2
-
2
%
VDDA = 3.0 V, TA = -10 to 85 °C
-2.5
-
2
%
VDDA = 3.0 V, TA = -10 to 105 °C
-4
-
2
%
-5.45
-
3.25
%
VDDA = 1.65 V to 3.6 V
TA = -40 to 125 °C
tSU(HSI16)(2)
HSI16 oscillator
startup time
-
-
3.7
6
µs
IDD(HSI16)(2)
HSI16 oscillator
power consumption
-
-
100
140
µA
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
2. Guaranteed by characterization results.
3. Guaranteed by test in production.
Figure 24. HSI16 minimum and maximum value versus temperature
9PLQ
9W\S
9PD[
9PD[
9PLQ
06Y9
DocID027063 Rev 4
71/118
95
Electrical characteristics
STM32L031x4/6
Low-speed internal (LSI) RC oscillator
Table 42. LSI oscillator characteristics
Symbol
Parameter
Min
Typ
Max
Unit
fLSI(1)
LSI frequency
26
38
56
kHz
DLSI(2)
LSI oscillator frequency drift
0°C  TA  85°C
-10
-
4
%
LSI oscillator startup time
-
-
200
µs
LSI oscillator power consumption
-
400
510
nA
tsu(LSI)(3)
IDD(LSI)
(3)
1. Guaranteed by test in production.
2. This is a deviation for an individual part, once the initial frequency has been measured.
3. Guaranteed by design.
Multi-speed internal (MSI) RC oscillator
Table 43. MSI oscillator characteristics
Symbol
Condition
Typ
MSI range 0
65.5
-
MSI range 1
131
-
MSI range 2
262
-
MSI range 3
524
-
MSI range 4
1.05
-
MSI range 5
2.1
-
MSI range 6
4.2
-
Frequency error after factory calibration
-
0.5
-
%
DTEMP(MSI)(1)
MSI oscillator frequency drift
0 °C  TA  85 °C
-
3
-
%
DVOLT(MSI)(1)
MSI oscillator frequency drift
1.65 V  VDD  3.6 V, TA = 25 °C
-
-
2.5
%/V
MSI range 0
0.75
-
MSI range 1
1
-
MSI range 2
1.5
-
MSI range 3
2.5
-
MSI range 4
4.5
-
MSI range 5
8
-
MSI range 6
15
-
fMSI
ACCMSI
IDD(MSI)(2)
72/118
Parameter
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
MSI oscillator power consumption
DocID027063 Rev 4
Max Unit
kHz
MHz
µA
STM32L031x4/6
Electrical characteristics
Table 43. MSI oscillator characteristics (continued)
Symbol
tSU(MSI)
tSTAB(MSI)(2)
fOVER(MSI)
Parameter
MSI oscillator startup time
MSI oscillator stabilization time
MSI oscillator frequency overshoot
Condition
Typ
Max Unit
MSI range 0
30
-
MSI range 1
20
-
MSI range 2
15
-
MSI range 3
10
-
MSI range 4
6
-
MSI range 5
5
-
MSI range 6,
Voltage range 1
and 2
3.5
-
MSI range 6,
Voltage range 3
5
-
MSI range 0
-
40
MSI range 1
-
20
MSI range 2
-
10
MSI range 3
-
4
MSI range 4
-
2.5
MSI range 5
-
2
MSI range 6,
Voltage range 1
and 2
-
2
MSI range 3,
Voltage range 3
-
3
Any range to
range 5
-
4
Any range to
range 6
-
6
µs
µs
MHz
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
6.3.8
PLL characteristics
The parameters given in Table 44 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 20.
Table 44. PLL characteristics
Value
Symbol
fPLL_IN
Parameter
Unit
Min
Typ
Max(1)
PLL input clock(2)
2
-
24
MHz
PLL input clock duty cycle
45
-
55
%
DocID027063 Rev 4
73/118
95
Electrical characteristics
STM32L031x4/6
Table 44. PLL characteristics (continued)
Value
Symbol
Parameter
Min
Typ
Max(1)
Unit
fPLL_OUT
PLL output clock
2
-
32
MHz
tLOCK
PLL input = 16 MHz
PLL VCO = 96 MHz
-
115
160
µs
Jitter
Cycle-to-cycle jitter
-
 600
ps
IDDA(PLL)
Current consumption on VDDA
-
220
450
IDD(PLL)
Current consumption on VDD
-
120
150
µA
1. Guaranteed by characterization results.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
6.3.9
Memory characteristics
RAM memory
Table 45. RAM and hardware registers
Symbol
VRM
Parameter
Conditions
Data retention mode(1)
STOP mode (or RESET)
Min
Typ
Max
Unit
1.65
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
Flash memory and data EEPROM
Table 46. Flash memory and data EEPROM characteristics
Symbol
Conditions
Min
Typ
Max(1)
Unit
-
1.65
-
3.6
V
Erasing
-
3.28
3.94
Programming
-
3.28
3.94
Average current during
the whole programming /
erase operation
-
500
700
µA
Maximum current (peak) TA25 °C, VDD = 3.6 V
during the whole
programming / erase
operation
-
1.5
2.5
mA
Parameter
VDD
Operating voltage
Read / Write / Erase
tprog
Programming time for
word or half-page
IDD
1. Guaranteed by design.
74/118
DocID027063 Rev 4
ms
STM32L031x4/6
Electrical characteristics
Table 47. Flash memory and data EEPROM endurance and retention
Value
Symbol
Parameter
Cycling (erase / write)
Program memory
NCYC(2)
Min(1)
Unit
10
Cycling (erase / write)
EEPROM data memory
Cycling (erase / write)
Program memory
TA-40°C to 105 °C
100
kcycles
0.2
Cycling (erase / write)
EEPROM data memory
Data retention (program memory) after
10 kcycles at TA = 85 °C
Data retention (EEPROM data memory)
after 100 kcycles at TA = 85 °C
tRET(2)
Conditions
Data retention (program memory) after
10 kcycles at TA = 105 °C
Data retention (EEPROM data memory)
after 100 kcycles at TA = 105 °C
Data retention (program memory) after
200 cycles at TA = 125 °C
Data retention (EEPROM data memory)
after 2 kcycles at TA = 125 °C
TA-40°C to 125 °C
2
30
TRET = +85 °C
30
TRET = +105 °C
years
10
TRET = +125 °C
1. Guaranteed by characterization results.
2. Characterization is done according to JEDEC JESD22-A117.
DocID027063 Rev 4
75/118
95
Electrical characteristics
6.3.10
STM32L031x4/6
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.

FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
Table 48. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD 3.3 V, LQFP48, TA +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK 32 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD3.3 V, LQFP48, TA +25 °C,
fHCLK 32 MHz
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:

Corrupted program counter

Unexpected reset

Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
76/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 49. EMI characteristics
Symbol
Parameter
Monitored
frequency band
Conditions
Max vs.
fOSC/fCPU
Unit
8 MHz/32 MHz
SEMI
6.3.11
Peak level
VDD 3.6 V,
TA 25 °C,
LQFP48 package
conforming to IEC61967-2
0.1 to 30 MHz
-10
30 to 130 MHz
5
130 MHz to 1GHz
-5
EMI Level
1.5
dBµV
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 50. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Conditions
TA +25 °C,
Electrostatic discharge
conforming to
voltage (human body model)
ANSI/JEDEC JS-001
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
TA +25 °C,
conforming to
ANSI/ESD STM5.3.1.
Class
Maximum
value(1)
2
2000
Unit
V
C4
500
1. Guaranteed by characterization results.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:

A supply overvoltage is applied to each power supply pin

A current injection is applied to each input, output and configurable I/O pin
DocID027063 Rev 4
77/118
95
Electrical characteristics
STM32L031x4/6
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 51. Electrical sensitivities
Symbol
LU
6.3.12
Parameter
Static latch-up class
Conditions
Class
TA +125 °C conforming to JESD78A
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator
frequency deviation).
The test results are given in the Table 52.
Table 52. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on BOOT0
-0
NA
Injected current on PA0, PA2, PA4, PA5,
PC15, PH0 and PH1
-5
0
mA
Injected current on any other FT and FTf
pin
-5
(1)
NA
Injected current on any other pin
-5 (1)
+5
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.
78/118
DocID027063 Rev 4
Unit
STM32L031x4/6
6.3.13
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under the conditions summarized in Table 20. All I/Os are CMOS and TTL
compliant.
Table 53. I/O static characteristics
Symbol
VIL
VIH
Vhys
Ilkg
RPU
Parameter
Input low level voltage
Input high level voltage
I/O Schmitt trigger voltage hysteresis
(2)
Input leakage current (4)
Weak pull-up equivalent resistor(5)
RPD
Weak pull-down equivalent resistor
CIO
I/O pin capacitance
(5)
Conditions
Min
Typ
Max
Unit
TC, FT, FTf, RST
I/Os
-
-
0.3VDD
BOOT0 pin
-
-
0.14VDD(1)
All I/Os
0.7 VDD
-
-
Standard I/Os
-
10% VDD(3)
-
BOOT0 pin
-
0.01
-
VSS  VIN  VDD
All I/Os except
PA11, PA12, BOOT0
and FTf I/Os
-
-
±50
VSS  VIN  VDD
PA11 and P12 I/Os
-
-
-50/+250
VSS  VIN  VDD
FTf I/Os
-
-
±100
VDD VIN  5 V
All I/Os except for
PA11, PA12, BOOT0
and FTf I/Os
-
-
200
VDD VIN  5 V
FTf I/Os
-
-
500
VDD VIN  5 V
PA11, PA12 and
BOOT0
-
-
10
µA
VIN VSS
30
45
60
k
VIN VDD
30
45
60
k
-
-
5
-
pF
V
nA
1. Guaranteed by characterization.
2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
3. With a minimum of 200 mV. Guaranteed by characterization results.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
DocID027063 Rev 4
79/118
95
Electrical characteristics
STM32L031x4/6
Figure 25. VIH/VIL versus VDD (CMOS I/Os)
9,/9,+9
LQV
DOOS 9 '' 3+
3&
9 ,+PLQ W%227 IRU
S
H[FH 9 '' +
3
9 ,+PLQ 3&
7
%22
9 '
'
PLQ
9,+PLQ
LUH
UHTX
DUG
WDQG
6V
&02
WV9 ,+
PHQ
9 ,/PD[
'
9 '
,QSXWUDQJHQRW
JXDUDQWHHG
&026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9''
9,/PD[
9''9
06Y9
Figure 26. VIH/VIL versus VDD (TTL I/Os)
9,/9,+9
SLQV
DOO
3+
'
'
9
3&
9 ,+PLQ W%227 IRU
S
H[FH 9 '' 3+
LQ
9 ,+P 3&
7
%22
77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9
9,+PLQ
9 ,/PD[
'
9 '
,QSXWUDQJHQRW
JXDUDQWHHG
9,/PD[
77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9
9''9
06Y9
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±15 mA with the non-standard VOL/VOH specifications given in Table 54.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
80/118

The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD(Σ) (see Table 18).

The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS(Σ) (see Table 18).
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
Output voltage levels
Unless otherwise specified, the parameters given in Table 54 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 20. All I/Os are CMOS and TTL compliant.
Table 54. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O
pin
VOH(3)
Output high level voltage for an I/O
pin
Conditions
Min
Max
CMOS port(2),
IIO = +8 mA
2.7 V  VDD  3.6 V
-
0.4
VDD-0.4
-
(1)
Output low level voltage for an I/O
pin
TTL port(2),
IIO =+ 8 mA
2.7 V  VDD  3.6 V
-
0.4
(3)(4)
Output high level voltage for an I/O
pin
TTL port(2),
IIO = -6 mA
2.7 V  VDD  3.6 V
2.4
-
VOL(1)(4)
Output low level voltage for an I/O
pin
IIO = +15 mA
2.7 V  VDD  3.6 V
-
1.3
VOH(3)(4)
Output high level voltage for an I/O
pin
IIO = -15 mA
2.7 V  VDD  3.6 V
VDD-1.3
-
VOL(1)(4)
Output low level voltage for an I/O
pin
IIO = +4 mA
1.65 V  VDD < 3.6 V
-
0.45
VOH(3)(4)
Output high level voltage for an I/O
pin
IIO = -4 mA
V -0.45
1.65 V  VDD  3.6 V DD
VOL
VOH
Output low level voltage for an FTf
VOLFM+(1)(4)
I/O pin in Fm+ mode
Unit
V
-
IIO = 20 mA
2.7 V  VDD  3.6 V
-
0.4
IIO = 10 mA
1.65 V  VDD  3.6 V
-
0.4
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 18.
The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and
must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 18. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be
respected and must not exceed ΣIIO(PIN).
4. Guaranteed by characterization results.
DocID027063 Rev 4
81/118
95
Electrical characteristics
STM32L031x4/6
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Table 55, respectively.
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 20.
Table 55. I/O AC characteristics(1)
OSPEEDRx
[1:0] bit value(1)
Symbol
fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
00
01
Fmax(IO)out Maximum frequency(3)
10
tf(IO)out
tr(IO)out
Output rise and fall time
Fmax(IO)out Maximum frequency(3)
11
Fm+
configuration(4)
-
Min
Max(2)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
400
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
100
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
125
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
320
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
2
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
0.6
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
30
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
65
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
10
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
2
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
13
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
28
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
35
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
10
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
6
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
17
-
1
-
10
Parameter
tf(IO)out
tr(IO)out
Output rise and fall time
fmax(IO)out
Maximum frequency(3)
Conditions
tf(IO)out
Output fall time
tr(IO)out
Output rise time
-
30
Maximum frequency(3)
-
350
-
15
-
60
8
-
fmax(IO)out
CL = 50 pF, VDD = 2.5 V to 3.6 V
tf(IO)out
Output fall time
CL = 50 pF, VDD = 1.65 V to 3.6 V
tr(IO)out
Output rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
-
Unit
kHz
ns
MHz
ns
MHz
ns
MHz
ns
MHz
ns
KHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port
configuration register.
2. Guaranteed by design.
3. The maximum frequency is defined in Figure 27.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed
description of Fm+ I/O configuration.
82/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
Figure 27. I/O AC characteristics definition
(;7(51$/
287387
21&/
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI”7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´
6.3.14
DLG
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU , except when it is internally driven low (see Table 56).
Unless otherwise specified, the parameters given in Table 56 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 20.
Table 56. NRST pin characteristics
Symbol
VIL(NRST)
(1)
Parameter
Conditions
Min
Typ
NRST input low level voltage
-
VSS
-
0.8
-
1.4
-
VDD
IOL = 2 mA
2.7 V < VDD < 3.6 V
-
-
IOL = 1.5 mA
1.65 V < VDD < 2.7 V
-
-
-
-
10%VDD(2)
-
mV
Weak pull-up equivalent
resistor(3)
VIN VSS
30
45
60
k
NRST input filtered pulse
-
-
-
50
ns
NRST input not filtered pulse
-
350
-
-
ns
VIH(NRST)(1) NRST input high level voltage
NRST output low level
VOL(NRST)(1)
voltage
Vhys(NRST)(1)
RPU
VF(NRST)(1)
VNF(NRST)
(1)
NRST Schmitt trigger voltage
hysteresis
Max Unit
V
0.4
1. Guaranteed by design.
2. 200 mV minimum value
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is around 10%.
DocID027063 Rev 4
83/118
95
Electrical characteristics
STM32L031x4/6
Figure 28. Recommended NRST pin protection
9''
([WHUQDOUHVHWFLUFXLW
1567
538
,QWHUQDOUHVHW
)LOWHU
—)
670/[[
DLF
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 56. Otherwise the reset will not be taken into account by the device.
6.3.15
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 57 are values derived from tests
performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions
summarized in Table 20: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 57. ADC characteristics
Symbol
VDDA
IDDA (ADC)
fADC
fS(3)
Parameter
Conditions
Min
Typ
Max
Fast channel
1.65
-
3.6
Standard channel
1.75(1)
-
3.6
Current consumption of the
ADC on VDDA
1.14 Msps
-
200
-
10 ksps
-
40
-
Current consumption of the
ADC on VDD(2)
1.14 Msps
-
70
-
10 ksps
-
1
-
Voltage scaling Range 1
0.14
-
16
Voltage scaling Range 2
0.14
-
8
Voltage scaling Range 3
0.14
-
4
0.05
-
1.14
MHz
-
-
941
kHz
-
-
17
1/fADC
0
-
VDDA
V
-
-
50
k
-
-
1
k
-
-
8
pF
Analog supply voltage for
ADC on
ADC clock frequency
Sampling rate
fTRIG(3)
External trigger frequency
VAIN
Conversion voltage range
RAIN(3)
External input impedance
fADC = 16 MHz
See Equation 1 and
Table 58 for details
RADC(3)(4) Sampling switch resistance
CADC(3)
84/118
Internal sample and hold
capacitor
DocID027063 Rev 4
Unit
V
µA
MHz
STM32L031x4/6
Electrical characteristics
Table 57. ADC characteristics (continued)
Symbol
tCAL(3)
Parameter
Calibration time
Conditions
fADC = 16 MHz
tlatr(3)
JitterADC
ADC_DR register write
latency
Trigger conversion latency
ADC jitter on trigger
conversion
tS(3)
Sampling time
tSTAB(3)
Power-up time
tConV
(3)
Total conversion time
(including sampling time)
Typ
Max
Unit
5.2
µs
83
1/fADC
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2
-
4.5
-
fPCLK
cycle
ADC clock = PCLK/4
-
8.5
-
fPCLK
cycle
ADC clock = HSI16
WLATENCY
Min
fADC = fPCLK/2 = 16 MHz
0.266
µs
fADC = fPCLK/2
8.5
1/fPCLK
fADC = fPCLK/4 = 8 MHz
0.516
µs
fADC = fPCLK/4
16.5
1/fPCLK
fADC = fHSI16 = 16 MHz
0.252
-
0.260
µs
fADC = fHSI16
-
1
-
1/fHSI16
fADC = 16 MHz
0.093
-
10.03
µs
1.5
-
239.5
1/fADC
0
0
1
µs
10.81
µs
fADC = 16 MHz
0.875
14 to 173 (tS for sampling +12.5 for
successive approximation)
1/fADC
1. VDDA minimum value can be decreased in specific temperature conditions. Refer to Table 58: RAIN max for fADC = 16
MHz.
2. A current consumption proportional to the APB clock frequency has to be added (see Table 34: Peripheral current
consumption in Run or Sleep mode).
3. Guaranteed by design.
4. Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 58: RAIN max for
fADC = 16 MHz.
Equation 1: RAIN max formula
TS
- – R ADC
R AIN  ------------------------------------------------------------N+2
f ADC  C ADC  ln  2

The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
DocID027063 Rev 4
85/118
95
Electrical characteristics
STM32L031x4/6
Table 58. RAIN max for fADC = 16 MHz(1)
Ts
(cycles)
tS
(µs)
RAIN max for
fast channels
(k)
1.5
0.09
3.5
RAIN max for standard channels (k)
VDD > 1.65 V VDD > 1.65 V
and
and
TA > 10 °C
TA > 25 °C
VDD >
2.7 V
VDD >
2.4 V
VDD >
2.0 V
VDD >
1.8 V
VDD >
1.75 V
0.5
< 0.1
NA
NA
NA
NA
NA
NA
0.22
1
0.2
< 0.1
NA
NA
NA
NA
NA
7.5
0.47
2.5
1.7
1.5
< 0.1
NA
NA
NA
NA
12.5
0.78
4
3.2
3
1
NA
NA
NA
NA
19.5
1.22
6.5
5.7
5.5
3.5
NA
NA
NA
< 0.1
39.5
2.47
13
12.2
12
10
NA
NA
NA
5
79.5
4.97
27
26.2
26
24
< 0.1
NA
NA
19
160.5
10.03
50
49.2
49
47
32
< 0.1
< 0.1
42
1. Guaranteed by design.
Table 59. ADC accuracy(1)(2)(3)
Symbol
Parameter
Conditions
Min
Typ
Max
ET
Total unadjusted error
-
2
4
EO
Offset error
-
1
2.5
EG
Gain error
-
1
2
EL
Integral linearity error
-
1.5
2.5
ED
Differential linearity error
-
1
1.5
10.2
11
11.3
12.1
-
Signal-to-noise distortion
63
69
-
Effective number of bits
ENOB
SINAD
Effective number of bits (16-bit mode
oversampling with ratio =256)(4)
1.65 V < VDDA < 3.6 V, range
1/2/3
Signal-to-noise ratio
63
69
-
SNR
Signal-to-noise ratio (16-bit mode
oversampling with ratio =256)(4)
70
76
-
THD
Total harmonic distortion
-
-85
-73
Unit
LSB
bits
dB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input.
It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative
current.
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.12 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.
86/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
Figure 29. ADC accuracy characteristics
966$
(*
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH
(7 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW
LGHDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW
LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP
GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
(7
(2
(/
('
/6%,'($/
9''$
069
Figure 30. Typical connection diagram using the ADC
9''$
97
5$,1
9$,1
$,1[
&SDUDVLWLF
97
6DPSOHDQGKROG$'&
FRQYHUWHU
5$'&
ELW
FRQYHUWHU
,/“Q$
&$'&
06Y9
1. Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
6.3.16
Temperature sensor characteristics
Table 60. Temperature sensor calibration values
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3 V
0x1FF8 007A - 0x1FF8 007B
TS_CAL2
TS ADC raw data acquired at
temperature of 130 °C
VDDA= 3 V
0x1FF8 007E - 0x1FF8 007F
DocID027063 Rev 4
87/118
95
Electrical characteristics
STM32L031x4/6
Table 61. Temperature sensor characteristics
Symbol
Parameter
TL(1)
VSENSE linearity with temperature
Avg_Slope
(1)
Average slope
(2)
Min
Typ
Max
Unit
-
1
2
°C
1.48
1.61
1.75
mV/°C
640
670
700
mV
µA
V130
Voltage at 130°C ±5°C
IDDA(TEMP)(3)
Current consumption
-
3.4
6
tSTART(3)
Startup time
-
-
10
TS_temp(4)(3)
ADC sampling time when reading the
temperature
10
-
-
µs
1. Guaranteed by characterization results.
2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.
3. Guaranteed by design.
4. Shortest sampling time can be determined in the application by multiple iterations.
6.3.17
Comparators
Table 62. Comparator 1 characteristics
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
3.6
V
VDDA
Analog supply voltage
-
1.65
R400K
R400K value
-
-
400
-
R10K
R10K value
-
-
10
-
Comparator 1 input
voltage range
-
0.6
-
VDDA
Comparator startup time
-
-
7
10
VIN
tSTART
(2)
k
V
µs
td
Propagation delay
-
-
3
10
Voffset
Comparator offset
-
-
3
10
mV
VDDA 3.6 V
Comparator offset
VIN+ 0 V
variation in worst voltage
VIN- VREFINT
stress conditions
TA = 25 C
0
1.5
10
mV/1000 h
Current consumption(3)
-
160
260
nA
dVoffset/dt
ICOMP1
-
1. Guaranteed by characterization.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
88/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
Table 63. Comparator 2 characteristics
Symbol
VDDA
VIN
Parameter
Min
Analog supply voltage
-
1.65
-
3.6
V
Comparator 2 input voltage range
-
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
25
1.65 V  VDDA  2.7 V
-
1.8
3.5
2.7 V  VDDA  3.6 V
-
2.5
6
1.65 V  VDDA  2.7 V
-
0.8
2
2.7 V  VDDA  3.6 V
-
1.2
4
-
4
20
mV
VDDA 3.3V
TA = 0 to 50 C
V- =VREFINT,
3/4 VREFINT,
1/2 VREFINT,
1/4 VREFINT.
-
15
30
ppm
/°C
Fast mode
-
3.5
5
Slow mode
-
0.5
2
tSTART
Comparator startup time
td slow
Propagation delay(2) in slow mode
td fast
Propagation delay(2) in fast mode
Voffset
Comparator offset error
dThreshold/ Threshold voltage temperature
dt
coefficient
ICOMP2
Typ Max(1) Unit
Conditions
Current consumption(3)
µs
µA
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
6.3.18
Timer characteristics
TIM timer characteristics
The parameters given in the Table 64 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 64. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
Parameter
Timer resolution time
Conditions
fTIMxCLK = 32 MHz
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 32 MHz
Timer resolution
-
DocID027063 Rev 4
Min
Max
Unit
1
-
tTIMxCLK
31.25
-
ns
0
fTIMxCLK/2
MHz
0
16
MHz
16
bit
89/118
95
Electrical characteristics
STM32L031x4/6
Table 64. TIMx(1) characteristics (continued)
Symbol
Parameter
Conditions
Min
Max
Unit
-
1
65536
tTIMxCLK
tCOUNTER
16-bit counter clock
period when internal clock
is selected (timer’s
prescaler disabled)
2048
µs
tMAX_COUNT Maximum possible count
fTIMxCLK = 32 MHz 0.0312
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 32 MHz
-
134.2
s
1. TIMx is used as a general term to refer to the TIM2, TIM21, and TIM22 timers.
6.3.19
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:

Standard-mode (Sm) : with a bit rate up to 100 kbit/s

Fast-mode (Fm) : with a bit rate up to 400 kbit/s

Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s.
The I2C timing requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to the reference manual for details). The SDA and SCL I/O requirements
are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain.
When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is
disabled, but is still present. Only FTf I/O pins support Fm+ low level output current
maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os
characteristics).
All I2C SDA and SCL I/Os embed an analog filter (see Table 65 for the analog filter
characteristics).
Table 65. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2)
260(3)
ns
1. Guaranteed by design.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
90/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
USART/LPUART characteristics
The parameters given in the following table are guaranteed by design.
Table 66. USART/LPUART characteristics
Symbol
tWUUSART
Parameter
Wakeup time needed to
calculate the maximum
USART/LPUART baudrate
allowing to wake up from
Stop mode
Conditions
Typ
Max
Stop mode with main regulator in
Run mode, Range 2 or 3
-
8.7
Stop mode with main regulator in
Run mode, Range 1
-
8.1
Unit
µs
Stop mode with main regulator in
low-power mode, Range 2 or 3
-
12
Stop mode with main regulator in
low-power mode, Range 1
-
11.4
DocID027063 Rev 4
91/118
95
Electrical characteristics
STM32L031x4/6
SPI characteristics
Unless otherwise specified, the parameters given in the following tables are derived from
tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 20.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 67. SPI characteristics in voltage Range 1 (1)
Symbol
Parameter
Conditions
Min
Typ
-
-
Slave mode Transmitter
1.71<VDD<3.6V
-
-
12(2)
Slave mode Transmitter
2.7<VDD<3.6V
-
-
16(2)
Master mode
Slave mode receiver
fSCK
1/tc(SCK)
SPI clock frequency
Max
16
16
Duty(SCK)
Duty cycle of SPI clock
frequency
Slave mode
30
50
70
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4*Tpclk
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2*Tpclk
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
Tpclk-2
Tpclk
Tpclk+2
Master mode
8.5
-
-
Slave mode
8.5
-
-
Master mode
6
-
-
Slave mode
1
-
-
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO
Data output access time
Slave mode
15
-
36
tdis(SO)
Data output disable time
Slave mode
10
-
30
Slave mode 1.71<VDD<3.6V
-
29
41
Slave mode 2.7<VDD<3.6V
-
22
28
Master mode
-
10
17
Slave mode
9
-
-
Master mode
3
-
-
tv(SO)
Data output valid time
tv(MO)
th(SO)
th(MO)
Data output hold time
Unit
MHz
%
ns
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
92/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
Table 68. SPI characteristics in voltage Range 2 (1)
Symbol
Parameter
Conditions
Min
Typ
Master mode
fSCK
1/tc(SCK)
SPI clock frequency
Slave mode Transmitter
1.65<VDD<3.6V
Max
8
-
-
Slave mode Transmitter
2.7<VDD<3.6V
8
Duty cycle of SPI clock
frequency
Slave mode
30
50
70
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4*Tpclk
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2*Tpclk
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
Tpclk-2
Tpclk
Tpclk+2
Master mode
12
-
-
Slave mode
11
-
-
Master mode
6.5
-
-
Slave mode
2
-
-
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO
Data output access time
Slave mode
18
-
52
tdis(SO)
Data output disable time
Slave mode
12
-
42
tv(SO)
Data output valid time
40
55
tv(MO)
th(SO)
Data output hold time
Slave mode
MHz
8(2)
Duty(SCK)
tsu(MI)
Unit
-
Master mode
-
16
26
Slave mode
12
-
-
Master mode
4
-
-
%
ns
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
DocID027063 Rev 4
93/118
95
Electrical characteristics
STM32L031x4/6
Table 69. SPI characteristics in voltage Range 3 (1)
Symbol
Parameter
Min
Typ
fSCK
1/tc(SCK)
SPI clock frequency
-
-
Duty(SCK)
Duty cycle of SPI clock
frequency
Slave mode
30
50
70
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4*Tpclk
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2*Tpclk
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
Tpclk-2
Tpclk
Tpclk+2
Master mode
28.5
-
-
Slave mode
22
-
-
Master mode
7
-
-
Slave mode
5
-
-
tsu(MI)
Conditions
Data input setup time
tsu(SI)
th(MI)
Data input hold time
th(SI)
Master mode
Slave mode
Max
2
2(2)
ta(SO
Data output access time
Slave mode
30
-
70
tdis(SO)
Data output disable time
Slave mode
40
-
80
tv(SO)
Data output valid time
Slave mode
-
53
86
Master mode
-
30
54
Slave mode
18
-
-
Master mode
8
-
-
tv(MO)
Data output hold time
th(SO)
Unit
MHz
%
ns
1. Guaranteed by characterization results.
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.
Figure 31. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
W962
WD62
0,62
287387
WK62
06%287
%,7287
06%,1
%,7,1
WU6&.
WI6&.
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
94/118
DocID027063 Rev 4
STM32L031x4/6
Electrical characteristics
Figure 32. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
6&.LQSXW
W68166
&3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
&3+$ &32/ WK62
WY62
WD62
0,62
287387
06%287
WU6&.
WI6&.
WGLV62
%,7287
/6%287
WK6,
WVX6,
026,
,1387
06%,1
%,7,1
/6%,1
DLE
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Figure 33. SPI timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
&3+$ &32/ 6&.2XWSXW
WF6&.
&3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
WU6&.
WI6&.
%,7,1
06%,1
/6%,1
WK0,
026,
287387
06%287
% , 7287
WY02
/6%287
WK02
DLF
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID027063 Rev 4
95/118
95
Package information
7
STM32L031x4/6
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at http://www.st.com.
ECOPACK® is an ST trademark.
7.1
LQFP48 package information
Figure 34. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
CCC #
+
!
$
$
,
,
$
0).
)$%.4)&)#!4)/.
%
E
1. Drawing is not to scale.
96/118
%
%
B
DocID027063 Rev 4
"?-%?6
STM32L031x4/6
Package information
Table 70. LQFP48 - 48-pin low-profile quad flat package, 7 x 7 mm, package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID027063 Rev 4
97/118
114
Package information
STM32L031x4/6
Figure 35. LQFP48 recommended footprint
AID
1. Dimensions are expressed in millimeters.
LQFP48 device marking
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 36. Example of LQFP48 marking (package top view)
3URGXFWLGHQWLILFDWLRQ
670/
&7
'DWHFRGH
< ::
5HYLVLRQFRGH
3LQ
LQGHQWLILHU
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
98/118
DocID027063 Rev 4
STM32L031x4/6
LQFP32 package information
Figure 37. LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
CCC
'!5'%0,!.%
#
+
$
!
,
$
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
7.2
Package information
E
[email protected]&@7
1. Drawing is not to scale.
DocID027063 Rev 4
99/118
114
Package information
STM32L031x4/6
Table 71. LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.100
-
-
0.0039
A
-
-
1.600
-
-
0.0630
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 38. LQFP32 recommended footprint
1. Dimensions are expressed in millimeters.
100/118
DocID027063 Rev 4
6?&0?6
STM32L031x4/6
Package information
LQFP32 device marking
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 39. Example of LQFP32 marking (package top view)
3URGXFWLGHQWLILFDWLRQ
670/
.7
'DWHFRGH
< ::
5HYLVLRQFRGH
3LQ
LQGHQWLILHU
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027063 Rev 4
101/118
114
Package information
7.3
STM32L031x4/6
UFQFPN32 package information
Figure 40. UFQFPN32, 5 x 5 mm, 32-pin package outline
'
$
$
$
H
'
GGG &
&
6($7,1*
3/$1(
E
H
(
E
( (
/
'
3,1,GHQWLILHU
/
!"?-%?6
1. Drawing is not to scale.
Table 72. UFQFPN32, 5 x 5 mm, 32-pin package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
A3
-
0.200
-
-
0.0079
-
b
0.180
0.250
0.300
0.0071
0.0098
0.0118
D
4.900
5.000
5.100
0.1929
0.1969
0.2008
D2
3.200
3.450
3.700
0.1260
0.1358
0.1457
E
4.900
5.000
5.100
0.1929
0.1969
0.2008
E2
3.200
3.450
3.700
0.1260
0.1358
0.1457
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
102/118
DocID027063 Rev 4
STM32L031x4/6
Package information
Figure 41. UFQFPN32 recommended footprint
$%B)3B9
1. Dimensions are expressed in millimeters.
UFQFPN32 device marking
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 42. Example of UFQFPN32 marking (package top view)
3URGXFWLGHQWLILFDWLRQ
/.
'DWHFRGH
<
::
5HYLVLRQFRGH
5
3LQ
LQGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027063 Rev 4
103/118
114
Package information
7.4
STM32L031x4/6
UFQFPN28 package information
Figure 43. UFQPN28, 4 x 4 mm, 28-pin package outline
'HWDLO<
'
(
'
'
(
'HWDLO=
!"?-%?6
1. Drawing is not to scale.
Table 73. UFQPN28, 4 x 4 mm, 28-pin package mechanical data(1)
millimeters
inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
-
0.000
0.050
-
0.0000
0.0020
D
3.900
4.000
4.100
0.1535
0.1575
0.1614
D1
2.900
3.000
3.100
0.1142
0.1181
0.1220
E
3.900
4.000
4.100
0.1535
0.1575
0.1614
E1
2.900
3.000
3.100
0.1142
0.1181
0.1220
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
L1
0.250
0.350
0.450
0.0098
0.0138
0.0177
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
104/118
DocID027063 Rev 4
STM32L031x4/6
Package information
Figure 44. UFQFPN28 recommended footprint
!"?&0?6
1. Dimensions are expressed in millimeters.
UFQFPN28 device marking
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 45. Example of UFQFPN28 marking (package top view)
3URGXFWLGHQWLILFDWLRQ
/8
'DWHFRGH
3LQ
LQGHQWLILHU
< ::
5HYLVLRQFRGH
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027063 Rev 4
105/118
114
Package information
7.5
STM32L031x4/6
WLCSP25 package information
Figure 46. WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale
package outline
H
EEE =
$EDOOORFDWLRQ
)
H
*
$
'HWDLO$
H
H
(
$
$
$
%XPSVLGH
6LGHYLHZ
%XPS
$
RULHQWDWLRQ
UHIHUHQFH
HHH =
DDD
‘EEDOOV
FFF = ; <
GGG =
[
:DIHUEDFNVLGH
$
E
=
6HDWLQJSODQH
'HWDLO$
URWDWHGƒ
:/&63B$B0(B9
Table 74. WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data
Inches(1)
Milimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.5250
0.5550
0.5850
0.0207
0.0219
0.0230
A1
-
0.1750
-
-
0.0069
-
A2
-
0.3800
-
-
0.0150
-
A3(2)
-
0.0250
-
-
0.0010
-
b(3)
0.2200
0.2500
0.2800
0.0087
0.0098
0.0110
D
2.0620
2.0970
2.1320
0.0812
0.0826
0.0839
E
2.4580
2.4930
2.5280
0.0968
0.0981
0.0995
e
-
0.4000
-
-
0.0157
-
e1
-
1.6000
-
-
0.0630
-
e2
-
1.6000
-
-
0.0630
-
F
-
0.2485
-
-
0.0098
-
G
-
0.4465
-
-
0.0176
-
106/118
DocID027063 Rev 4
STM32L031x4/6
Package information
Table 74. WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data
Inches(1)
Milimeters
Symbol
Min
Typ
Max
Min
Typ
Max
aaa
0.1000
-
-
0.0039
-
-
bbb
0.1000
-
-
0.0039
-
-
ccc
0.1000
-
-
0.0039
-
-
ddd
0.0500
-
-
0.0020
-
-
eee
0.0500
-
-
0.0020
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 47. WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale
recommended footprint
'SDG
'VP
069
Table 75. WLCSP25 recommended PCB design rules
Dimension
Recommended values
Pitch
0.4 mm
Dpad
260 µm max. (circular)
220 µm recommended
Dsm
300 µm min. (for 260 µm diameter pad)
PCB pad design
Non-solder mask defined via underbump allowed
DocID027063 Rev 4
107/118
114
Package information
STM32L031x4/6
WLCSP25 device marking
The following figure gives an example of topside marking versus ball A1 position identifier
location.
Figure 48. Example of WLCSP25 marking (package top view)
%DOO$
LGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
/
5HYLVLRQ
FRGH
'DWHFRGH <HDUZHHN
<
::
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
108/118
DocID027063 Rev 4
STM32L031x4/6
7.6
Package information
TSSOP20 package information
Figure 49.TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package outline
ϮϬ
ϭϭ
Đ
ϭ
ϭ
^d/E'
W>E
Ϭ͘Ϯϱŵŵ
'h'W>E
ϭϬ
W/Eϭ
/Ed/&/d/KE
Ŭ
ĂĂĂ ϭ
Ϯ
ď
>
>ϭ
Ğ
zͺDͺsϯ
1. Drawing is not to scale.
Table 76. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
D
6.400
6.500
6.600
0.2520
0.2559
0.2598
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1
4.300
4.400
4.500
0.1693
0.1732
0.1772
e
-
0.650
-
-
0.0256
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
DocID027063 Rev 4
109/118
114
Package information
STM32L031x4/6
Table 76. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
Figure 50. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package footprint
1. Dimensions are expressed in millimeters.
110/118
DocID027063 Rev 4
9!?&0?6
STM32L031x4/6
Package information
TSSOP20 device marking
The following figure gives an example of topside marking versus pin 1 position identifier
location.
Figure 51. Example of TSSOP20 marking (package top view)
3URGXFWLGHQWLILFDWLRQ
/)3
3LQ
LQGHQWLILHU
'DWHFRGH
<
::
5HYLVLRQFRGH
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027063 Rev 4
111/118
114
Package information
7.7
STM32L031x4/6
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × JA)
Where:

TA max is the maximum ambient temperature in C,

JA is the package junction-to-ambient thermal resistance, in C/W,

PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),

PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 77. Thermal characteristics
Symbol
JA
112/118
Parameter
Value
Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm / 0.5 mm pitch
57
Thermal resistance junction-ambient
LQFP32 - 7 x 7 mm / 0.8 mm pitch
60
Thermal resistance junction-ambient
UFQFPN32 - 5 x 5 mm / 0.5 mm pitch
39
Thermal resistance junction-ambient
UFQFPN28 - 4 x 4 mm / 0.5 mm pitch
120
Thermal resistance junction-ambient
WLCSP25 - 0.4 mm pitch
70
Thermal resistance junction-ambient
TSSOP20 - 169 mils
60
DocID027063 Rev 4
Unit
°C/W
STM32L031x4/6
Package information
Figure 52. Thermal resistance
ϰϬϬϬ
ϯϱϬϬ
ϯϬϬϬ
3'P:
>Y&Wϰϴ
ϮϱϬϬ
>Y&WϯϮ
ϮϬϬϬ
hY&EϯϮ
hY&EϮϴ
ϭϱϬϬ
t>^WϮϱ
ϭϬϬϬ
d^^KWϮϬ
ϱϬϬ
Ϭ
ϭϮϱ
ϭϬϬ
ϳϱ
ϱϬ
Ϯϱ
Ϭ
7HPSHUDWXUHƒ&
06Y9
1. The above curves are valid for range 6. For range 7, the curves are shifted by 20 °C to the right.
7.7.1
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
DocID027063 Rev 4
113/118
114
Part numbering
8
STM32L031x4/6
Part numbering
Table 78. STM32L031x4/6 ordering information scheme
Example:
STM32 L
031
K
6
T
6
D TR
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
031 = Access line
Pin count
C = 48 pins
K = 32 pins
G = 28 pins
E = 25 pins
F = 20 pins
Flash memory size
4 = 16 Kbytes
6 = 32 Kbytes
Package
T = LQFP
U = UFQFPN
Y = WLCSP
P = TSSOP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
3 = Industrial temperature range, –40 to 125 °C
Number of UFQFPN28 power pairs
S = one power pair(1)
No character = Two power pairs
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube
1. This option is available only on STM32L031GxUxS part number. Contact your nearest ST sales office for availability.
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
114/118
DocID027063 Rev 4
STM32L031x4/6
9
Revision history
Revision history
Table 79. Document revision history
Date
Revision
18-Sep-2015
1
Initial release.
2
Datasheet status changed to production data.Updated power
consumption in run mode on cover page.
Updated Table 5: Functionalities depending on the working mode
(from Run/active down to standby).
Modified Figure 6: STM32L031x4/6 UFQFPN28 pinout and
Table 15: Pin definitions.
Updated power dissipation (PD) in Table 20: General operating
conditions.
Updated current consumption with all peripherals enabled in
Table 34: Peripheral current consumption in Run or Sleep mode
and Table 35: Peripheral current consumption in Stop and
Standby mode. Modified tWSTOP for fHCLK=65 MHz in Table 36:
Low-power mode wakeup timings.
Updated Table 24: Current consumption in Run mode, code with
data processing running from Flash memory, Table 25: Current
consumption in Run mode vs code type, code with data
processing running from Flash memory, Figure 15: IDD vs VDD,
at TA= 25/55/85/105 °C, Run mode, code running from Flash
memory, Range 2, HSE = 16 MHz, 1WS and Figure 16: IDD vs
VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS.
UpdatedTable 26: Current consumption in Run mode, code with
data processing running from RAM and Table 27: Current
consumption in Run mode vs code type, code with data
processing running from RAM, Table 28: Current consumption in
Sleep mode.
Updated Table 29: Current consumption in Low-power run mode
and Figure 17: IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Lowpower run mode, code running from RAM, Range 3, MSI (Range
0) at 64 KHz, 0 WS. Updated Table 30: Current consumption in
Low-power Sleep mode.
Updated Table 31: Typical and maximum current consumptions in
Stop mode, Table 32: Typical and maximum current
consumptions in Standby mode, Figure 18: IDD vs VDD, at TA=
25/55/ 85/105/125 °C, Stop mode with RTC enabled and running
on LSE Low drive and Figure 19: IDD vs VDD, at TA=
25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks
off.
Updated Table 48: EMS characteristics and Table 49: EMI
characteristics.
22-Oct-2015
Changes
DocID027063 Rev 4
115/118
117
Revision history
STM32L031x4/6
Table 79. Document revision history
Date
01-Feb-2016
116/118
Revision
Changes
3
Updated number of SPI interfaces on cover page and in Table 2:
Ultra-low-power STM32L031x4/x6 device features and peripheral
counts.
Updated number of GPIOs for devices in UFQFPN28 in Table 2:
Ultra-low-power STM32L031x4/x6 device features and peripheral
counts.
Updated Section 3.4.4: Boot modes.
Updated Section 3.15.2: Universal synchronous/asynchronous
receiver transmitter (USART) and Section 3.15.4: Serial
peripheral interface (SPI) to mention the fact that USARTs with
synchronous mode feature can be used as SPI master interfaces.
Modified pin 2 in Figure 5: STM32L031x4/6 UFQFPN32 pinout.
Added Figure 7: STM32L031GxUxS UFQFPN28 pinout.
Table 15: Pin definitions:
– Added UFQFPN28 for STM32L031GxUxS part number.
– Renamed PA0-WKUP-CK_IN into PA0-CK_IN
– Renamed PA0-WKUP into PA0
Updated Table 18: Current characteristics to add the total output
current for STM32L031GxUxS.
Added one power pair option in Table 78: STM32L031x4/6 ordering information scheme.
DocID027063 Rev 4
STM32L031x4/6
Revision history
Table 79. Document revision history
Date
05-Apr-2016
Revision
Changes
4
Features:
– Change minimum comparator supply voltage to 1.65 V.
– Updated current consumptions in Standby, Stop and Stop with
RTC ON modes.
Updated number of GPIOs for STM32L031GxUxS in Table 2:
Ultra-low-power STM32L031x4/x6 device features and peripheral
counts.
Removed note related to preliminary consumption values in
Table 5: Functionalities depending on the working mode (from
Run/active down to standby).
Added number of fast and standard channels in Section 3.10:
Analog-to-digital converter (ADC).
Added baudrate allowing to wake up the MCU from Stop mode in
Section 3.15.2: Universal synchronous/asynchronous receiver
transmitter (USART) and Section 3.15.3: Low-power universal
asynchronous receiver transmitter (LPUART).
Changed VDDA minimum value to 1.65 V in Table 20: General
operating conditions.
Added IREFINT value for VDD=1.8 V in Table 35: Peripheral
current consumption in Stop and Standby mode.
Section 6.3.15: 12-bit ADC characteristics:
– Table 57: ADC characteristics:
Distinction made between VDDA for fast and standard
channels; added note 1.
Added note 4. related to RADC.
Updated tS and tCONV.
– Updated Table 58: RAIN max for fADC = 16 MHz for fADC =
16 MHz and distinction made between fast and standard
channels.
Added Table 66: USART/LPUART characteristics.
DocID027063 Rev 4
117/118
117
STM32L031x4/6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
118/118
DocID027063 Rev 4
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement