G-Series MFC manual

G-Series MFC manual
1046210-001, Rev A
January, 2013
MKS G-Series
Digital
Mass Flow Controllers
Instruction Manual
WARRANTY
G-Series Mass Flow Controllers
MKS Instruments, Inc. (MKS) warrants that for one (1) year from the date of shipment the equipment
described above (the “equipment”) manufactured by MKS shall be free from defects in materials and
workmanship.
For the period commencing with the date of shipment of this equipment and ending one (1) year later, MKS
will, at its option, either repair or replace any part which is defective in materials or workmanship without
charge to the purchaser. The foregoing shall constitute the exclusive and sole remedy of the purchaser for any
breach of MKS of this warranty.
The purchaser, before returning any equipment covered by this warranty, which is asserted to be defective by
the purchaser, shall make specific written arrangements with respect to the responsibility for shipping the
equipment and handling any other incidental charges with the MKS Sales Representative or distributor from
which the equipment was purchased or, in the case of a direct purchase from MKS, with the MKS home
office in Andover, Massachusetts, USA.
This warranty does not apply to any equipment which has not been installed and used in accordance with the
specifications recommended by MKS for the proper and normal use of the equipment. MKS shall not be
liable under any circumstances for indirect, special, consequential, or incidental damages in connection with,
or arising out of, the sale, performance, or use of the equipment covered by this warranty.
MKS recommends that all MKS pressure and flow products be calibrated periodically (typically) every 6 to
12 months) to ensure accurate readings. When a product is returned to MKS for this periodic re-calibration it
is considered normal preventative maintenance not covered by any warranty.
THIS WARRANTY IS IN LIEU OF ALL OTHER RELEVANT WARRANTIES, EXPRESSED OR
IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY AND THE IMPLIED
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTY AGAINST
INFRINGEMENT OF ANY PATENT.
Copyright © 2013 by MKS Instruments, Inc.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any information storage or retrieval
system, except as may be expressly permitted in writing by MKS Instruments, Inc.
Printed in the United States of America
Baratron and Mass-Flo are registered trademarks of MKS Instruments, Inc., Andover, MA
DeviceNet™ is a trademark of Open DeviceNet Vendor Association, Inc., Coral Springs, FL
Elgiloy is a registered trademark of Elgiloy Specialty Metals, Elgin, IL
Teflon is a registered trademark of E.I. du Pont de Nemours and Company, Wilmington, DE
Swagelok and VCR are registered trademarks of Swagelok Marketing Company, Solon, OH
Protected by U. S. Patents 5314164 and 5461913 and other Patents and Patents Pending
Table of Contents
Table of Contents
List of References ............................................................................................................................................... v Mass Flow Device Safety Information ............................................................................................................. 1 Symbols Used in This Instruction Manual .................................................................................................................... 1 Symbols Found on the Unit ........................................................................................................................................... 1 Safety Procedures and Precautions ................................................................................................................................ 1 Sicherheitshinweise für das Massenflussgerät................................................................................................. 3 In dieser Betriebsanleitung vorkommende Symbole ..................................................................................................... 3 Erklärung der am Gerät angebrachten Symbole ............................................................................................................ 3 Sicherheitsvorschriften und Vorsichtsmaßnahmen ....................................................................................................... 3 Informations de sécurité pour appareils de mesure/contrôle de débit massique ......................................... 5 Symboles utilisés dans ce manuel d'utilisation .............................................................................................................. 5 Symboles figurant sur l'unité ......................................................................................................................................... 5 Mesures de sécurité et précautions ................................................................................................................................ 5 Medidas de seguridad del dispositivo de flujo de masa .................................................................................. 7 Símbolos usados en este manual de instrucciones ......................................................................................................... 7 Símbolos hallados en la unidad ..................................................................................................................................... 7 Procedimientos y precauciones de seguridad ................................................................................................................ 7 マスフロー機器の安全に関する情報 .............................................................................................................. 9 本取扱説明書のマーク ............................................................................................................................................... 9 本機器のマーク ........................................................................................................................................................... 9 安全対策について ..................................................................................................................................................... 10 질량 유량 장치 안전 정보................................................................................................................................ 13 본 지침 매뉴얼에 사용되는 기호들 ......................................................................................................................... 13 장치에 표시된 기호들 ............................................................................................................................................... 13 안전 절차 및 예방조치 .............................................................................................................................................. 14 Chapter One: General Information .............................................................................................................. 17 Introduction ................................................................................................................................................................. 17 How This Manual is Organized ................................................................................................................................... 18 Customer Support ........................................................................................................................................................ 19 Chapter Two: Overview ................................................................................................................................. 21 General Information .................................................................................................................................................... 21 How the MFC Works .................................................................................................................................................. 22 Operation of the MFC with Gases other than Nitrogen ............................................................................................... 22 Chapter Three: Installation and Configuration ........................................................................................... 24 Unpacking ................................................................................................................................................................... 24 Product Location and Requirements............................................................................................................................ 25 Product Dimensions .................................................................................................................................................... 25 GE50A and GM50A – See Appendix C ...................................................................................................................... 25 GV50A – See Appendix D .......................................................................................................................................... 25 i
Table of Contents
Mounting Hardware..................................................................................................................................................... 26 Installation Procedure .................................................................................................................................................. 26 Chapter Four: Analog and Digital Interfaces .............................................................................................. 29 Analog I/O Interface Cables ........................................................................................................................................ 29 Analog Interface Input and Output Options................................................................................................................. 30 Digital Interface Input and Output Options ................................................................................................................. 33 Chapter Five: Ethernet Interface Setup and Configuration ...................................................................... 44 Step 1: Install the Java™ Plug-in (for single IP address) ............................................................................................ 44 Step 2: Setup Network for Communication through Ethernet ..................................................................................... 45 Chapter Six: Embedded Web-Based GUI and Diagnostics ........................................................................ 54 Logging On to Your MFC ........................................................................................................................................... 54 Monitor Mode .............................................................................................................................................................. 54 Setup Mode.................................................................................................................................................................. 59 Chapter Seven: Maintenance ........................................................................................................................ 68 General Information .................................................................................................................................................... 68 Recalibration................................................................................................................................................................ 68 Flow Zero Adjustment ................................................................................................................................................. 68 Chapter Eight: Troubleshooting ................................................................................................................... 73 Troubleshooting Chart ................................................................................................................................................. 73 Appendix A: Product Specifications ............................................................................................................. 79 Performance Specifications – GE50A/GV50A/GM50A ............................................................................................. 79 Specifications are subject to change without notice.Mechanical Specifications - GE50A/GV50A/GM50A ............. 79 Electrical Specifications for GE50A, GM50A and GV50A ....................................................................................... 80 Appendix B : Model Code Explanation for GE50A & GV50A .................................................................. 84 Model Code Description – Elastomer Sealed Products ............................................................................................... 84 Appendix C: Model Code Explanation for GM50A .................................................................................... 90 Model Code Description – GM50A – Metal Sealed Products ..................................................................................... 90 Appendix D : Outline Drawings .................................................................................................................... 96 GE50A MFC and GM50A MFC/MFM ....................................................................................................................... 96 GV50A MFC w/ Integral Shut-off Valve .................................................................................................................... 99 Appendix D: Health and Safety Form ........................................................................................................ 102 ......................................................................................................................................................................... 102 ii
List of References
List of Figures
Figure 1: Serial Number Label (sample)........................................................................................................... 26 Figure 2: DeviceNet Connector Pin Diagram ................................................................................................... 33 Figure 3: Devicenet Top View .......................................................................................................................... 34 Figure 4: Devicenet Baud Rate Switch .............................................................................................................. 35 Figure 5: Devicenet MAC ID Switches ............................................................................................................ 35 Figure 6: Profibus Top View ............................................................................................................................. 38 Figure 7: Profibus Station Address Switches .................................................................................................... 39 Figure 8: RS485 Top View ............................................................................................................................... 41 Figure 9: Embedded GUI, MFC Device Page in Monitor Mode ...................................................................... 55 Figure 10: Embedded GUI, Plot Page in Monitor Mode .................................................................................. 56 Figure 11: Embedded GUI, Configuration Page in Monitor Mode .................................................................. 57 Figure 12: Embedded GUI, RS485 Comm Page in Monitor Mode .................................................................. 58 Figure 13: Setup Mode (Configuration Page) ................................................................................................... 59 Figure 14: Embedded GUI, Device Page in Setup Mode ................................................................................. 60 Figure 15: Embedded GUI, Creating A New Gas Instance .............................................................................. 61 Figure 16: Changing the Full Scale Flow Range .............................................................................................. 61 Figure 17: Embedded GUI, Plot Page in Setup Mode ...................................................................................... 62 Figure 18: Embedded GUI, Configuration Page in Setup Mode ...................................................................... 63 Figure 19: Embedded GUI, RS485 Comm Page in Setup Mode ...................................................................... 65 Figure 20: Embedded GUI, Diagnostics Page in Setup Mode .......................................................................... 66 iii
List of References
List of Tables
Table 1: Definition of Symbols Found on the Unit ............................................................................................ 1 Tabelle 2: Bedeutung der am Gerät angebrachten Symbole .............................................................................. 3 Tableau 3: Définition des symboles sur l'unité................................................................................................... 5 Tabla 4: Definición de los símbolos hallados en la unidad ................................................................................ 7 表 5: 本機器に使⽤されているマークについて ........................................................................................... 9 표 6: 장치에 표시된 기호들의 정의 .............................................................................................................. 13 Table 7: MKS Interface Cables ........................................................................................................................ 29 Table 8: Analog Interface Voltage I/O (0 to 5 VDC) – 9 Pin D Male Pinouts – Model Code A .................... 30 Table 9: Analog Interface Voltage I/O (0 to 5 VDC) – 15 Pin D Male Pinouts – Model Code B ................... 31 Table 10: Digital Interface - DeviceNet Connector Pinout – Model Code 6 ................................................... 33 Table 11: Network (NET) Status LED Indicators ............................................................................................ 34 Table 12A: Profibus 9 Pin D Male Power Connector– Model Code 4 ............................................................ 37 Table 12B: Profibus 9 Pin D Female Communications Connector – Model Code 4 ....................................... 38 Table 13: Digital Interface – RS485 Using 9 Pin D – Model Code 5 .............................................................. 40 Table 14: RS485 Module Status LED Indicators ............................................................................................. 40 Table 15: Troubleshooting Chart...................................................................................................................... 73 iv
List of References
List of References
The documents listed below are referenced throughout this manual.
[1]
“DeviceNet Specification, Volume I: DeviceNet Communication Model and Protocol”, Open
DeviceNet Vendors Association, Inc. Release 2.0. ERRATA 4.0
[2]
“DeviceNet Specification, Volume II: DeviceNet Profiles and Object Library”, Open DeviceNet
Vendors Association, Inc. Release 2.0. ERRATA 4.0
[3]
“Sensor/Actuator Network Common Device Model”, SEMI Standards Document E54.1-0097.
[4]
“Sensor/Actuator Network Communications Standard for DeviceNet”, SEMI Standards Draft
Document E54.4-0097.
[5]
“Sensor/Actuator Network Specific Device Model for Mass Flow Devices”, SEMI Standards Draft
Document #2253C.
[6]
“Sensor/Actuator Network Standard”, SEMI Standards Document E54-0097.
[7]
SEMI E17-00-0060 Guideline for Mass Flow Controller Transient Characteristics Tests
[8]
SEMI E18-00-0091. Guideline for Temperature Specifications of the Mass Flow Controller
[9]
SEMI E27-00-0092. Standard for Mass Flow Controller and Mass Flow Meter Linearity
[10] SEMI E28-00-0092. Guideline for Pressure Specifications of the Mass Flow Controller
[11] SEMI E56-00-1296. Test Method for Determining Accuracy, Linearity, Repeatability, Short Term
Reproducibility, Hysteresis, and Dead Band of Thermal Mass Flow Controllers
[12] SEMI Standards Document E52-95.
[13] SEMI E80-00-0299. Test Method Determining Attitude Sensitivity of Mass Flow Controllers
[14] SEMI Standards Document E52-95. Practice for Referencing Gases and Gas Mixtures Used in Digital
Mass Flow Controllers
[15] Instruction Manual, G-Series MFC, RS845 Supplement
[16] Instruction Manual, G-Series MFC, DeviceNet Supplement
[17] Instruction Manual, G-Series MFC, Profibus Supplement
v
List of References
This page intentionally left blank.
vi
Mass Flow Device Safety Information
Mass Flow Device Safety Information
Symbols Used in This Instruction Manual
Definitions of WARNING, CAUTION, and NOTE messages used throughout the manual.
Warning
The WARNING sign denotes a hazard. It calls attention to a procedure, practice,
condition, or the like, which, if not correctly performed or adhered to, could result
in injury to personnel.
Caution
The CAUTION sign denotes a hazard. It calls attention to an operating procedure,
practice, or the like, which, if not correctly performed or adhered to, could result in
damage to or destruction of all or part of the product.
Note
The NOTE sign denotes important information. It calls attention to a procedure, practice,
condition, or the like, which is essential to highlight.
Symbols Found on the Unit
The following table describes symbols that may be found on the unit.
Table 1: Definition of Symbols Found on the Unit
|
On (Supply)
IEC 417, No. 5007
Off (Supply)
IEC 417, No. 5008
Earth (ground)
IEC 417, No. 5017
Protective Earth (ground)
IEC 417, No. 5019
Frame or Chassis
IEC 417, No. 5020
Equipotentiality
IEC 417, No. 5021
Direct Current
IEC 417, No. 5031
Alternating Current
IEC 417, No. 5032
Both Direct and Alternating Current
IEC 417, No. 5033-a
Class II Equipment
IEC 417, No. 5172-a
Three Phase
Alternating Current
IEC 617-2, No. 020206
Caution (refer to accompanying
documents)
ISO 3864, No. B.3.1
Caution, Risk of Electric Shock
ISO 3864, No. B.3.6
Caution, Hot Surface
IEC 417, No. 5041
Safety Procedures and Precautions
Observe the following general safety precautions during all phases of operation of this instrument.
Failure to comply with these precautions or with specific warnings elsewhere in this manual violates
safety standards of intended use of the instrument and may impair the protection provided by the
equipment. MKS Instruments, Inc. assumes no liability for the customer’s failure to comply with these
requirements.
1
Mass Flow Device Safety Information
DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT
Do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to an
MKS Calibration and Service Center for service and repair to ensure that all safety features are maintained.
SERVICE BY QUALIFIED PERSONNEL ONLY
Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be
made by qualified service personnel only.
KEEP AWAY FROM LIVE CIRCUITS
Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even
with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.
USE CAUTION WHEN OPERATING WITH HAZARDOUS MATERIALS
If hazardous materials are used, users must take responsibility to observe the proper safety precautions, completely purge
the instrument when necessary, and ensure that the material used is compatible with sealing materials.
PURGE THE INSTRUMENT
After installing the unit, or before its removal from a system, be sure to purge the unit completely with a clean dry gas to
eliminate all traces of the previously used flow material.
USE PROPER PROCEDURES WHEN PURGING
This instrument must be purged under a ventilation hood, and gloves must be worn to protect personnel. To purge this
instrument properly, it must be purged in both the horizontal base down and horizontal base up configurations as defined
in SEM spec. Device has trapped volume in pressure sensor where gas which is higher than air but still hazardous can
accumulate.
DO NOT OPERATE IN AN EXPLOSIVE ENVIRONMENT
To avoid explosion, do not operate this product in an explosive environment unless it has been specifically certified for
such operation.
USE PROPER FITTINGS AND TIGHTENING PROCEDURES
All instrument fittings must be consistent with instrument specifications, and compatible with the intended use of the
instrument. Assemble and tighten fittings according to manufacturer's directions.
CHECK FOR LEAK-TIGHT FITTINGS
Before proceeding to instrument setup, carefully check all plumbing connections to the instrument to ensure leak-tight
installation.
OPERATE AT SAFE INLET PRESSURES
This unit should never be operated at pressures higher than the rated maximum pressure (refer to the product
specifications for the maximum allowable pressure).
INSTALL A SUITABLE BURST DISC
When operating from a pressurized gas source, a suitable burst disc should be installed in the vacuum system to prevent
system explosion should the system pressure rise.
KEEP THE UNIT FREE OF CONTAMINANTS
Do not allow contaminants of any kind to enter the unit before or during use. Contamination such as dust, dirt, lint, glass
chips, and metal chips may permanently damage the unit.
ALLOW PROPER WARM UP TIME FOR TEMPERATURE-CONTROLLED UNITS
Temperature-controlled unit will only meet specifications when sufficient time is allowed for the unit to meet, and
stabilize at, the designed operating temperature. Do not zero or calibrate the unit until the warm up is complete.
2
Sicherheitshinweise für das Massenflussgerät
Sicherheitshinweise für das Massenflussgerät
In dieser Betriebsanleitung vorkommende Symbole
Bedeutung der mit WARNUNG!, VORSICHT! und HINWEIS gekennzeichneten Absätze in dieser
Betriebsanleitung.
Warnung!
Das Symbol WARNUNG! weist auf eine Gefahr für das Bedienpersonal hin. Es
macht auf einen Arbeitsablauf, eine Arbeitsweise, einen Zustand oder eine
sonstige Gegebenheit aufmerksam, deren unsachgemäße Ausführung bzw.
ungenügende Berücksichtigung zu Verletzungen führen kann.
Vorsicht!
Das Symbol VORSICHT! weist auf eine Gefahr für das Gerät hin. Es macht auf
einen Bedienungsablauf, eine Arbeitsweise oder eine sonstige Gegebenheit
aufmerksam, deren unsachgemäße Ausführung bzw. ungenügende
Berücksichtigung zu einer Beschädigung oder Zerstörung des Gerätes oder von
Teilen des Gerätes führen kann.
Hinweis
Das Symbol HINWEIS macht auf wichtige Informationen bezüglich eines
Arbeitsablaufs, einer Arbeitsweise, eines Zustands oder einer sonstige Gegebenheit
aufmerksam.
Erklärung der am Gerät angebrachten Symbole
Nachstehender Tabelle sind die Bedeutungen der Symbole zu entnehmen, die am Gerät angebracht sein können.
Tabelle 2: Bedeutung der am Gerät angebrachten Symbole
|
Ein (Energie)
IEC 417, No.5007
Aus (Energie)
IEC 417, No.5008
Erdanschluss
IEC 417, No.5017
Schutzleiteranschluss
IEC 417, No.5019
Masseanschluss
IEC 417, No.5020
Aquipotentialanschluss
IEC 417, No.5021
Gleichstrom
IEC 417, No.5031
Wechselstrom
IEC 417, No.5032
Gleich- oder Wechselstrom
IEC 417, No.5033-a
Durchgängige doppelte oder
verstärkte Isolierung
IEC 417, No.5172-a
Dreileiter-Wechselstrom (Drehstrom)
IEC 617-2, No.020206
Warnung vor einer Gefahrenstelle
(Achtung, Dokumentation beachten)
ISO 3864, No.B.3.1
Warnung vor gefährlicher
elektrischer Spannung
ISO 3864, No.B.3.6
Höhere Temperatur an leicht
zugänglichen Teilen
IEC 417, No.5041
Sicherheitsvorschriften und Vorsichtsmaßnahmen
Folgende allgemeine Sicherheitsvorschriften sind während allen Betriebsphasen dieses Gerätes zu
befolgen. Eine Missachtung der Sicherheitsvorschriften und sonstiger Warnhinweise in dieser
Betriebsanleitung verletzt die für dieses Gerät und seine Bedienung geltenden Sicherheitsstandards,
3
Sicherheitshinweise für das Massenflussgerät
und kann die Schutzvorrichtungen an diesem Gerät wirkungslos machen. MKS Instruments, Inc.
haftet nicht für Missachtung dieser Sicherheitsvorschriften seitens des Kunden.
Niemals Teile austauschen oder Änderungen am Gerät vornehmen!
Ersetzen Sie keine Teile mit baugleichen oder ähnlichen Teilen, und nehmen Sie keine eigenmächtigen Änderungen am
Gerät vor. Schicken Sie das Gerät zwecks Wartung und Reparatur an den MKS-Kalibrierungs- und -Kundendienst ein.
Nur so wird sichergestellt, dass alle Schutzvorrichtungen voll funktionsfähig bleiben.
Wartung nur durch qualifizierte Fachleute!
Das Auswechseln von Komponenten und das Vornehmen von internen Einstellungen darf nur von qualifizierten
Fachleuten durchgeführt werden, niemals vom Bedienpersonal.
Vorsicht vor stromführenden Leitungen!
Ersetzen Sie keine Komponente von Geräten, die an Netzstrom angeschlossen sind. Unter Umständen kann gefährliche
Spannung auch dann bestehen, wenn das Netzanschlusskabel von der Strmversorgung entfernt wurde. Um Verletzungen
vorzubeugen sollten zuerst alle Geräte von der Stromversorgung getrennt und alle Stromkreusläufe entladen werden.
Vorsicht beim Arbeiten mit gefährlichen Stoffen!
Wenn gefährliche Stoffe verwendet werden, muss der Bediener die entsprechenden Sicherheitsvorschriften genauestens
einhalten, das Gerät, falls erforderlich, vollständig spülen, sowie sicherstellen, dass der Gefahrstoff die am Gerät
verwendeten Materialien, insbesondere Dichtungen, nicht angreift.
Spülen des Gerätes mit Gas!
Nach dem Installieren oder vor dem Ausbau aus einem System muss das Gerät unter Einsatz eines reinen Trockengases
vollständig gespült werden, um alle Rückstände des Vorgängermediums zu entfernen.
Anweisungen zum Spülen des Gerätes
Das Gerät darf nur unter einer Ablufthaube gespült werden. Schutzhandschuhe sind zu tragen.
Gerät nicht zusammen mit explosiven Stoffen, Gasen oder Dämpfen benutzen!
Um der Gefahr einer Explosion vorzubeugen, darf dieses Gerät niemals zusammen mit (oder in der Nähe von)
explosiven Stoffen aller Art eingesetzt werden, sofern es nicht ausdrücklich für diesen Zweck zugelassen ist.
Anweisungen zum Installieren der Armaturen!
Alle Anschlussstücke und Armaturenteile müssen mit der Gerätespezifikation übereinstimmen, und mit dem geplanten
Einsatz des Gerätes kompatibel sein. Der Einbau, insbesondere das Anziehen und Abdichten, muss gemäß den
Anweisungen des Herstellers vorgenommen werden.
Verbindungen auf Undichtigkeiten prüfen!
Überprüfen Sie sorgfältig alle Verbindungen der Vakuumkomponenten auf undichte Stellen.
Gerät nur unter zulässigen Anschlussdrücken betreiben!
Betreiben Sie das Gerät niemals unter Drücken, die den maximal zulässigen Druck (siehe Produktspezifikationen)
übersteigen.
Geeignete Berstscheibe installieren!
Wenn mit einer unter Druck stehenden Gasquelle gearbeitet wird, sollte eine geeignete Berstscheibe in das
Vakuumsystem installiert werden, um eine Explosionsgefahr aufgrund von steigendem Systemdruck zu vermeiden.
Verunreinigungen im Gerät vermeiden!
Stellen Sie sicher, dass Verunreinigungen jeglicher Art weder vor dem Einsatz noch während des Betriebs in das
Instrumenteninnere gelangen können. Staub- und Schmutzpartikel, Glassplitter oder Metallspäne können das Gerät
dauerhaft beschädigen oder Prozess- und Messwerte verfälschen.
Bei Geräten mit Temperaturkontrolle korrekte Anwärmzeit einhalten!
Temperaturkontrollierte Geräte arbeiten nur dann gemäß ihrer Spezifikation, wenn genügend Zeit zum Erreichen und
Stabilisieren der Betriebstemperatur eingeräumt wird. Kalibrierungen und Nulleinstellungen sollten daher nur nach
Abschluss des Anwärmvorgangs durchgeführt werden.
4
Informations de sécurité pour appareils de mesure/contrôle de débit massique
Informations de sécurité pour appareils de mesure/contrôle de débit
massique
Symboles utilisés dans ce manuel d'utilisation
Définitions des indications AVERTISSEMENT, ATTENTION, et REMARQUE utilisées dans ce manuel.
Avertissement
L'indication AVERTISSEMENT signale un danger pour le personnel. Elle
attire l'attention sur une procédure, une pratique, une condition, ou toute
autre situation présentant un risque d'accident pour le personnel, en cas
d'exécution incorrecte ou de non-respect des consignes.
Attention
L'indication ATTENTION signale un danger pour l'appareil. Elle attire
l'attention sur une procédure d'exploitation, une pratique, ou toute autre
situation, présentant un risque de dégât ou de destruction partielle ou totale
du produit, en cas d'exécution incorrecte ou de non-respect des consignes.
Remarque
L'indication REMARQUE signale une information importante. Elle attire
l'attention sur une procédure, une pratique, une condition, ou toute autre situation,
présentant un intérêt particulier.
Symboles figurant sur l'unité
Le tableau suivant décrit les symboles pouvant apparaître sur l'unité.
Tableau 3: Définition des symboles sur l'unité
|
Marche (sous tension)
IEC 417, No.5007
Arrêt (hors tension)
IEC 417, No.5008
Terre (masse)
IEC 417, No.5017
Terre de protection (masse)
IEC 417, No.5019
Masse
IEC 417, No.5020
Equipotentialité
IEC 417, No.5021
Courant continu
IEC 417, No.5031
Courant alternatif
IEC 417, No.5032
Courant continu et alternatif
IEC 417, No.5033-a
Matériel de classe II
IEC 417, No.5172-a
Courant alternatif triphasé
IEC 617-2, No.020206
Attention : se reporter
à la documentation
ISO 3864, No.B.3.1
Attention : risque de
choc électrique
ISO 3864, No.B.3.6
Attention : surface brûlante
IEC 417, No.5041
Mesures de sécurité et précautions
Observer les précautions générales de sécurité suivantes pendant toutes les phases d'exploitation de cet
appareil. Le non-respect des ces précautions ou des avertissements du manuel constitue une violation
des normes de sécurité relatives à l'utilisation de l'appareil et peut compromettre la protection assurée
5
Informations de sécurité pour appareils de mesure/contrôle de débit massique
par l'appareil. MKS Instruments, Inc. rejette toute responsabilité en cas de non-respect des consignes
par les clients.
PAS DE REMPLACEMENT DE PIÈCES OU DE MODIFICATION DE L'APPAREIL
Ne pas installer de pièces de remplacement ni effectuer des modifications non autorisées sur l'appareil. Renvoyer
l'appareil à un centre de service et de calibrage MKS pour tout dépannage ou réparation afin de garantir le l'intégrité des
dispositifs de sécurité.
DÉPANNAGE UNIQUEMENT PAR DU PERSONNEL QUALIFIÉ
Le personnel d'exploitation ne doit pas essayer de sortir les composants du boîtier ou faire des réglages internes. Le
dépannage est réservé au personnel qualifié.
ÉLOIGNEMENT DES CIRCUITS SOUS-TENSION
Ne pas remplacer de composants lorsqu’un câble d’alimentation est branché. Dans certaines conditions, des tensions
dangereuses peuvent être présentes même après le retrait du câble d’alimentation. Pour éliminer tout risque de blessure,
procéder toujours à la déconnexion et décharger les circuits avant tout contact physique.
PRÉCAUTION EN CAS D'UTILISATION AVEC DES PRODUITS DANGEREUX
Si des produits dangereux sont utilisés, l'utilisateur est responsable du respect des mesures de sécurité appropriées, de la
purge complète de l'appareil quand elle s’avère nécessaire, et doit s’assurer que les produits utilisés sont compatibles
avec les matériaux d'étanchéité.
PURGE DE L'APPAREIL
Après l'installation de l'unité, ou avant son retrait d'un système, purger l'unité complètement avec un gaz propre et sec
afin d'éliminer toute trace du produit de flux utilisé précédemment.
UTILISATION DES PROCÉDURES APPROPRIÉES POUR LA PURGE
Cet appareil doit être purgé sous une hotte de ventilation. Le personnel doit porter des gants de protection.
PAS D'EXPLOITATION DANS UN ENVIRONNEMENT EXPLOSIF
Pour éviter toute explosion, ne pas utiliser cet appareil dans un environnement explosif, sauf en cas d'homologation
spécifique pour une telle exploitation.
UTILISATION D'ÉQUIPEMENTS ET PROCÉDURES DE SERRAGE APPROPRIÉS
Tous les équipements de l'appareil doivent être conformes à ses spécifications, et compatibles avec l'utilisation prévue de
l'appareil. Assembler et serrer les équipements conformément aux directives du fabricant.
VÉRIFICATION DE L'ÉTANCHÉITÉ DES CONNEXIONS
Vérifier attentivement toutes les connexions des composants pour le vide afin de garantir l'étanchéité de l'installation.
EXPLOITATION AVEC DES PRESSIONS D'ENTRÉE NON DANGEREUSES
Ne jamais utiliser des pressions supérieures à la pression nominale maximum (se reporter aux spécifications de l'unité
pour la pression maximum admissible).
INSTALLATION D'UN DISQUE D'ÉCHAPPEMENT ADAPTÉ
En cas d'exploitation avec une source de gaz pressurisé, installer un disque d'échappement adapté dans le système à vide,
afin d'éviter une explosion du système en cas d'augmentation de la pression.
MAINTIEN DE L'UNITÉ À L'ABRI DES CONTAMINATIONS
Ne pas laisser des produits contaminants pénétrer dans l'unité avant ou pendant l'utilisation. Des produits contaminants
tels que des poussières et des fragments de tissu, de verre et de métal peuvent endommager l'unité de manière
permanente.
RESPECT DU TEMPS D'ÉCHAUFFEMENT APPROPRIÉ POUR LES UNITÉS Á RÉGULATION DE TEMPÉRATURE
Les unités à régulation de température sont conformes à leurs spécifications uniquement quand on leur laisse un temps
suffisant pour atteindre d'une manière stable la température d'exploitation. Ne pas remettre à zéro ou calibrer l'unité tant
que l'échauffement n'est pas terminé.
6
Medidas de seguridad del dispositivo de flujo de masa
Medidas de seguridad del dispositivo de flujo de masa
Símbolos usados en este manual de instrucciones
Definiciones de los mensajes de advertencia, precaución y de las notas usados en el manual.
Advertencia
El símbolo de advertencia indica la posibilidad de que se produzcan daños
personales. Pone de relieve un procedimiento, práctica, estado, etc. que en caso
de no realizarse o cumplirse correctamente puede causar daños personales.
Precaución
El símbolo de precaución indica la posibilidad de producir daños al equipo.
Pone de relieve un procedimiento operativo, práctica, etc. que en caso de no
realizarse o cumplirse correctamente puede causar daños o la destrucción total
o parcial del equipo.
Nota
El símbolo de notas indica información de importancia. Este símbolo pone de relieve
un procedimiento, práctica o condición cuyo conocimiento es esencial destacar.
Símbolos hallados en la unidad
La tabla siguiente contiene los símbolos que puede hallar en la unidad.
Tabla 4: Definición de los símbolos hallados en la unidad
|
Encendido
(alimentación eléctrica)
IEC 417, N° 5007
Apagado
(alimentación eléctrica)
IEC 417, N° 5008
Puesta a tierra
IEC 417, N° 5017
Protección a tierra
IEC 417, N° 5019
Caja o chasis
IEC 417, N° 5020
Equipotencialidad
IEC 417, N° 5021
Corriente continua
IEC 417, N° 5031
Corriente alterna
IEC 417, N° 5032
Corriente continua y alterna
IEC 417, N° 5033-a
Equipo de clase II
IEC 417, N° 5172-a
Corriente alterna trifásica
IEC 617-2, N° 020206
Precaución. Consulte los documentos
adjuntos
ISO 3864, N° B.3.1
Precaución.
Riesgo de descarga eléctrica
ISO 3864, N° B.3.6
Precaución. Superficie caliente
IEC 417, N° 5041
Procedimientos y precauciones de seguridad
Las medidas generales de seguridad descritas a continuación deben observarse durante todas las etapas
de funcionamiento del instrumento. La fMFC de cumplimiento de dichas medidas de seguridad o de las
advertencias específicas a las que se hace referencia en otras partes de este manual, constituye una
violación de las normas de seguridad establecidas para el uso previsto del instrumento y podría anular
la protección proporcionada por el equipo. Si el cliente no cumple dichas precauciones y advertencias,
MKS Instruments, Inc. no asume responsabilidad legal alguna.
7
Medidas de seguridad del dispositivo de flujo de masa
NO UTILICE PIEZAS NO ORIGINALES O MODIFIQUE EL INSTRUMENTO
No instale piezas que no sean originales ni modifique el instrumento sin autorización. Para asegurar el correcto
funcionamiento de todos los dispositivos de seguridad, envíe el instrumento al Centro de servicio y calibración de MKS
toda vez que sea necesario repararlo o efectuar tareas de mantenimiento.
LAS REPARACIONES DEBEN SER EFECTUADAS ÚNICAMENTE POR TÉCNICOS AUTORIZADOS
Los operarios no deben retirar las tapas del instrumento. El reemplazo de los componentes y las tareas de ajuste deben
ser realizadas únicamente por personal autorizado.
MANTÉNGASE ALEJADO DE LOS CIRCUITOS ACTIVOS
No reemplace componentes con el cable de alimentación eléctrica conectado. En algunos casos, puede haber presente
alto voltaje aun con el cable de alimentación eléctrica desconectado. Para evitar lesiones personales, desconecte siempre
el cable y descargue los circuitos antes de entrar en contacto con los mismos.
TENGA CUIDADO CUANDO TRABAJE CON MATERIALES TÓXICOS
Cuando se utilicen materiales tóxicos, es responsabilidad de los operarios tomar las medidas de seguridad
correspondientes, purgar totalmente el instrumento cuando sea necesario y comprobar que el material utilizado sea
compatible con los materiales de sellado.
PURGUE EL INSTRUMENTO
Una vez instalada la unidad o antes de retirarla del sistema, purgue completamente la unidad con gas limpio y seco para
eliminar todo resto de la sustancia líquida empleada anteriormente.
USE PROCEDIMIENTOS ADECUADOS PARA REALIZAR LA PURGA
El instrumento debe purgarse debajo de una campana de ventilación y deben utilizarse guantes protectores.
NO HAGA FUNCIONAR EL INSTRUMENTO EN AMBIENTES CON RIESGO DE EXPLOSIÓN
Para evitar que se produzcan explosiones, no haga funcionar este instrumento en un ambiente con riesgo de explosiones,
excepto cuando el mismo haya sido certificado específicamente para tal uso.
USE ACCESORIOS ADECUADOS Y REALICE CORRECTAMENTE LOS PROCEDIMIENTOS DE AJUSTE
Todos los accesorios del instrumento deben cumplir las especificaciones del mismo y ser compatibles con el uso que se
debe dar al instrumento. Arme y ajuste los accesorios de acuerdo con las instrucciones del fabricante.
COMPRUEBE QUE LOS ACCESORIOS SEAN A PRUEBA DE FUGAS
Antes de proceder con la instalación del instrumento, inspeccione cuidadosamente todas las conexiones de las tuberías
para comprobar que hayan sido instaladas a prueba de fugas.
HAGA FUNCIONAR EL INSTRUMENTO CON PRESIONES DE ENTRADA SEGURAS
No haga funcionar nunca el instrumento con presiones superiores a la máxima presión nominal (en las especificaciones
del instrumento hallará la presión máxima permitida).
INSTALE UNA CÁPSULA DE SEGURIDAD ADECUADA
Cuando el instrumento funcione con una fuente de gas presurizado, instale una cápsula de seguridad adecuada en el
sistema de vacío para evitar que se produzcan explosiones cuando suba la presión del sistema.
MANTENGA LA UNIDAD LIBRE DE CONTAMINANTES
No permita el ingreso de contaminantes en la unidad antes o durante su uso. Los productos contaminantes tales como
polvo, suciedad, pelusa, lascas de vidrio o virutas de metal pueden dañar irreparablemente la unidad.
CALIENTE ADECUADAMENTE LAS UNIDADES CONTROLADAS POR MEDIO DE TEMPERATURA
Las unidades controladas por medio de temperatura funcionarán de acuerdo con las especificaciones sólo cuando se las
caliente durante el tiempo suficiente para permitir que lleguen y se estabilicen a la temperatura de operación indicada.
No calibre la unidad y no la ponga en cero hasta que finalice el procedimiento de calentamiento.
8
マスフロー機器の安全に関する情報
マスフロー機器の安全に関する情報
本取扱説明書のマーク
本マニュアルでは警告、注意、ポイントのマークを⽤いて重要な事項を記載しています。
警告
この表⽰を無視して誤った取り扱い (⼿順や使⽤⽅法、条件など) をすると、⼈が重傷
を負う可能性が想定される内容を⽰しています。必ずお読みください。
注意
この表⽰を無視して誤った取り扱い (⼿順や使⽤⽅法など) をすると、 製品が損傷する
可能性が想定される内容を⽰しています。必ずお読みください。
ポイント
この表⽰は⼿順や使⽤⽅法、条件などに関する重要な情報が記載されていることを⽰
しています。必ずお読みください。
本機器のマーク
以下の表では、本機器に使⽤されているマークについて説明いたします。
表 5: 本機器に使⽤されているマークについて
|
オン (電源)
オフ (電源)
接地 (アース)
保護接地 (アース)
IEC 417, No. 5007
IEC 417, No. 5008
IEC 417, No. 5017
IEC 417, No. 5019
フレームまたはシャーシ
等電位
直流
交流
IEC 417, No. 5020
IEC 417, No. 5021
IEC 417, No. 5031
IEC 417, No. 5032
直流と交流
クラス 2 機器
三相交流
IEC 417, No. 5033-a
IEC 417, No. 5172-a
IEC 617-2, No. 020206
注意 (付属書を参照)
注意 (感電の危険あり)
注意 (表⾯が熱くなっています)
ISO 3864, No. B.3.1
ISO 3864, No. B.3.6
IEC 417, No. 5041
9
マスフロー機器の安全に関する情報
安全対策について
本機器を使⽤する際は、必ず以下の安全対策を守ってください。これらの安全対策や本マニュアルの
警告を無視すると、機器本来の⽤途の安全基準を侵害することになり、機器が提供する保護機能が
損なわれる可能性があります。MKS Instruments, Inc. は、顧客側の安全対策の不履⾏に対して
は⼀切責任を負いかねます。
勝⼿に部品を変えたり、本体を改造しないこと
本機器に代⽤部品を使⽤したり、不正な改造を加えないでください。すべての安全システムを正しく機能させるた
めの修理やメンテナンスが必要な場合は、本機器を MKS Calibration and Service Center まで戻してください。
修理は必ず専⾨の修理サービスを利⽤すること
オペレータは絶対に本機器を分解しないでください。部品の交換や内部の調整は必ず専⾨の修理サービスを利
⽤してください。
電流が通じている回路から切断すること
電源ケーブルを接続したままで部品を交換しないでください。特定の状況では、電源ケーブルを取り外した状態
でも危険な電圧が残っている場合があります。感電などの事故を防ぐため、回路に触れる前に必ず電源から切
断し、放電してください。
危険な材料を使⽤する場合は慎重に機器を使⽤すること
危険な材料を使⽤する場合は、使⽤者は各⾃の責任の元で適切な安全対策を講じてください。必要に応じて
本機器を浄化してください。また、使⽤する材料に対するシーリング材の耐久性を確認してください。
機器を浄化すること
本機器を取り付けた後やシステムから取り外す前に、きれいな乾燥ガスで本機器を浄化し、使⽤した材料を完
全に取り除いてください。
浄化する場合は適切な⼿順で⾏うこと
本機器の浄化は換気フードの下で⾏う必要があります。また、浄化作業を⾏う⼈は必ず⼿袋を着⽤してください。
爆発の危険性のある環境で機器を使⽤しないこと
爆発が起きるのを防ぐため、本機器を爆発の危険性のある環境で使⽤しないでください。ただし、そのような環境
での使⽤が特別に保証されている場合は除きます。
適切な⾦具類を使⽤し、⼿順に従って⾦具の締めを⾏うこと
⾦具類は本機器の仕様と⼀致し、機器本来の⽤途に適合したものである必要があります。⾦具類の取り付け
や締めは、製造業者の指⽰に従ってください。
液体の漏れがないよう接続箇所を確認すること
本機器を設定する前に、すべての配管の接続を慎重に確認し、液体が漏れないようにしてください。
10
マスフロー機器の安全に関する情報
安全なインレット圧⼒で使⽤すること
定格の最⼤圧⼒を超える圧⼒の下で本機器を絶対に使⽤しないでください (最⼤許容圧⼒については仕様書
を参照)。
適切なバーストディスクを取り付けること
圧⼒のかかったガスを使⽤する場合は、万⼀システムが爆発した場合にシステムの圧⼒が上昇するのを防ぐため、
真空システムに適切なバーストディスクを取り付けてください。
本機器に異物やゴミが混⼊しないようにすること
本機器の使⽤前または使⽤中に、ほこりやゴミ、繊維、ガラスの破⽚、⾦属⽚などの異物やゴミが混⼊しないよ
うにしてください。本機器が損傷する可能性があります。
温度調整された機器を⼗分に温めてから使⽤すること
温度調整された機器が適切な作動温度にならないうちに使⽤すると、仕様通りの動作をしないことがあります。
本機器が⼗分に温まるまでは⽬盛りをゼロに合わせたり、較正しないでください。
11
질량 유량 장치 안전 정보
질량 유량 장치 안전 정보
본 지침 매뉴얼에 사용되는 기호들
매뉴얼 전체에 사용되는 경고, 주의 및 참고 메시지의 정의.
경고
경고 표시는 위험을 나타냅니다. 이 표시는 올바르게 수행되거나 지켜지지 않을
경우, 사람에게 상해를 입힐 수 있는 절차, 수행지침, 상태 또는 이와 유사한
상황들에 대한 주의를 환기시킵니다.
주의
주의 표시는 위험을 나타냅니다. 이 표시는 올바르게 수행되거나 지켜지지 않을
경우, 제품의 일부나 전체에 손상이나 파손을 일으킬 수 있는 절차, 수행지침 또는
이와 유사한 상황들에 대한 주의를 환기시킵니다.
참고
참고 표시는 중요한 정보를 나타냅니다. 이 표시는 강조할 만한 주요 절차,
수행지침, 상태 또는 이와 유사한 상황들에 대한 주의를 환기시킵니다.
장치에 표시된 기호들
다음 표는 장치에서 볼 수 있는 기호들을 설명합니다.
표 6: 장치에 표시된 기호들의 정의
|
켬 (전원)
IEC 417, No. 5007
끔 (전원)
IEC 417, No. 5008
접지(지면)
IEC 417, No. 5017
보호 접지(지면)
IEC 417, No. 5019
프레임 또는 섀시
IEC 417, No. 5020
등전위성
IEC 417, No. 5021
직류
IEC 417, No. 5031
교류
IEC 417, No. 5032
직류와 교류 모두
IEC 417, No. 5033-a
클래스 II 장비
IEC 417, No. 5172-a
3상 교류
IEC 617-2, No. 020206
주의 (동봉 문서 참조)
ISO 3864, No. B.3.1
주의, 감전 위험
ISO 3864, No. B.3.6
주의, 표면이 뜨거움
IEC 417, No. 5041
13
질량 유량 장치 안전 정보
안전 절차 및 예방조치
본 기계의 모든 작동 시에 다음의 일반 안전 예방조치를 준수하십시오. 아래 예방조치를
준수하지 않거나 본 매뉴얼의 다른 부분에 있는 특정 경고를 준수하지 않을 경우, 기계
사용 목적의 안전 기준을 위반하는 것이 되며, 장비가 제공하는 보호기능을 손상시킬 수
있습니다. MKS Instruments, Inc.는 고객이 본 요건을 준수하지 않는 경우에 대해서는
어떠한 책임도 지지 않습니다.
부품을 교체하거나 기계를 개조하지 마십시오
교체 부품을 설치하거나 기계에 허가되지 않은 어떠한 수정도 가하지 마십시오. 서비스와 수리가
필요한 경우에는 모든 안전 특성이 유지되도록 기계를 MKS 보정 서비스 센터(MKS Calibration and
Service Center)로 보내주십시오.
자격이 있는 사람에게만 서비스를 받으십시오
작동하는 사람은 기계 겉면을 제거해서는 안됩니다. 부품 교체 및 내부 조정은 자격이 있는 서비스
기사에게만 받으실 수 있습니다.
전류가 통하는 회로에서 분리해 보관하십시오
전원 케이블을 연결한 채로 부품을 교체하지 마십시오. 일부 환경에서는 전원 케이블을 제거한
상태라도 위험 전압이 존재할 수 있습니다. 부상을 방지하려면, 전원을 항상 분리하고 회로를
만지기 전에 회로를 방전시키십시오.
위험한 물질과 함께 작동할 때는 주의를 기울이십시오
위험한 물질이 사용되는 경우, 사용자는 필요시 기계를 완전히 청소하여, 적절한 안전 예방조치를
준수할 책임을 지키고, 사용된 물질이 봉인 물질과 함께 사용해도 무방하다고 보증할 수 있어야
합니다.
기계를 청소하십시오
장치를 설치한 후나 시스템에서 장치를 제거하기 전에는 반드시 깨끗한 건조성 기체로 장치를
완전히 청소하여 이전에 사용된 유량 물질의 모든 흔적을 제거하십시오.
청소 시에는 적절한 절차를 사용하십시오
본 기계는 환기 후드 아래에서 청소되어야 하며, 인체 보호를 위해 장갑을 착용해야 합니다.
폭발성 환경에서 작동하지 마십시오
폭발을 방지하려면, 폭발성 환경에서 작동하도록 특별히 승인받지 않은 경우 본 제품을 폭발성
환경에서 작동하지 마십시오.
적절한 조립부품과 조임 절차를 사용하십시오
모든 기계 조립부품은 제품 사양과 일치해야 하고, 기계의 사용 목적에 부합해야 합니다.
제조업체의 지시에 따라 조립부품을 조립하고 조이십시오.
누출방지 조립부품을 점검하십시오
14
질량 유량 장치 안전 정보
기계 설치를 진행하기 전에 기계의 모든 연관 연결부를 점검해 누출방지 설치가 되었는지
확인하십시오.
안전한 흡입 압력에서 작동하십시오
이 장치는 절대 정격 최대 압력보다 높은 압력에서 작동해서는 안됩니다(최대 허용 압력에
대해서는 제품 사양을 참조하십시오).
적합한 안전 파열판을 설치하십시오
가압 가스 공급원에서 작동시, 시스템 폭발이 시스템 압력 상승을 일으키는 것을 방지하기 위해
적합한 안전 파열판이 진공 시스템에 설치되어야 합니다.
장치를 오염이 없는 곳에 보관하십시오
장치를 사용하기 전이나 사용 중에는 어떠한 종류의 오염 물질도 허용해서는 안됩니다. 먼지, 때,
보풀, 유리 조각, 금속 조각과 같은 오염 물질은 영구적으로 장치를 손상시킬 수 있습니다.
온도 제어 장치의 경우 알맞은 시동 시간을 두십시오
온도 제어 장치는 장치가 설계 작동 온도와 일치하고 이 온도에서 안정화될 수 있도록 충분한
시간을 허용해야만 사양에 맞게 작동합니다. 시동이 완료될 때까지 장치를 영점 설정하거나
보정하지 마십시오.
15
Introduction
Chapter One: General Information
Chapter One: General Information
Introduction
MKS Instruments G-Series MFCs represent state-of-the-art technology meeting the advanced process
requirements of next generation toolsets. These devices integrate thermal sensor technology together with a
MKS real-time feedback control system providing typical flow control response times of 600 to 800
milliseconds with a normally closed valve. There are three device types in the G-Series MFC product line.



GE50A – elastomer sealed MFC
GM50A – metal sealed MFC
GV50A – elastomer sealed MFC with integral downstream shut-off valve
The G-SERIES MFC are available with full scale flow ranges of 10 sccm to 50 slm (N2 equivalent) in a
standard 1.5” wide form factor with a variety of fitting types. Digital I/O options for Devicenet, Profibus and
RS485 are available. All devices include an embedded, web-based user interface.
Design Features
Increases Throughput and Performance
 1% of setpoint accuracy for the calibration gas.
 Enables better chamber matching through tight MFC accuracy.
 Includes embedded diagnostics software that allows users to check MFC functionality without
removing the MFC.
 Increases tool uptime through reduction of “No Problem Found” MFC replacements.
Reduce Overall Costs
 Over 90 selectable gases stored on the MFC.
 Reduces MFC inventory through multi-gas, multi-range availability.
 Minimizes overall footprint of gas delivery module.
Easy to Integrate and Operate
 Straightforward configuration and diagnostics through Ethernet user interface which uses a standard
web browser (e.g. IE8 or Firefox) – no special software required.
The design of these MFCs incorporates an advanced flow sensor, a control valve, and an optimized bypass.
The latest generation two-element sensing circuit provides accurate, repeatable performance even in low flow
ranges (< 10 sccm). A low temperature effect from ambient temperature change and minimal attitude
sensitivity effect are also ensured. The optimized sensor/bypass arrangement minimizes the flow splitting
error for gases with different properties, which dramatically improves measurement accuracy when gases
other than the calibration gas are used.
Control (I/O) Interfaces
These G-Series MFCs are available with either a digital or analog (future) interface I/O which is specified by
the user at time of ordering.
The digital control I/O may be via RS485, DeviceNet or Profibus protocol. An overview of each along with
connector, power supply and switch information is included in Chapter 4 of this manual. Protocol specifics
(profile) are included in separate documentation available from MKS.
17
Chapter One: General Information
How This Manual is Organized
Analog I/O is available via either a 9-pin D or 15-pin D. The 9-pin D option provides for setpoint I/O along
with a valve override function. The 15-pin D option provides for setpoint I/O, valve override and the ability
to control to an optional input. Analog I/O is covered in detail in Chapter 4 of this manual.
Reliability
To provide excellent reliability, the design utilizes a low mechanical and electronic components count and has
successfully passed the following tests:

STRIFE, including temperature cycling and vibration (sine and random tests)

EMC Directive 2004/108/EC for CE Mark compliance (with a metal braided, shielded cable, properly
grounded at both ends)

ODVA Compliance (DeviceNet version)
Cleanliness Features
The G-SERIES are available with either elastomer (GE50A & GV50A) or metal seals (GM50A). The
MFC’s mechanical design incorporates minimal wetted surface area and virtual leaks, assuring rapid drydown. All instruments are assembled and double-packaged in a Class 100 clean room environment.
The GM50A’s metal seals eliminate gas permeation and ensure extremely low external leakage under
pressure or vacuum conditions relative to atmosphere. The internal valve control plug of the GM50A is
Teflon which is chemically stable and not prone to out-gassing or particle generation. To further enhance its
cleanliness, internal surfaces are precision machined to a 10Ra surface finish that is electropolished.
How This Manual is Organized
Before installing the device in a system and/or operating it, carefully read and familiarize yourself with
all precautionary notes in the Mass Flow Device Safety Information section at the front of this manual.
In addition, observe and obey all WARNING and CAUTION notes provided throughout the manual.
Chapter One: General Information introduces the product and describes the organization of the manual.
Chapter Two: Overview provides an overview on the use of Mass Flow Control
Chapter Three: Installation and Configuration provides outline drawings and information on the product
installation.
Chapter Four: Analog and Digital Interfaces
Chapter Five: Ethernet Interface Setup and Configuration
Chapter Six: Embedded Web-Based GUI and Diagnostics
Chapter Seven: Maintenance
Chapter Eight: Troubleshooting
Appendix A: Product Specifications lists the specifications of the instrument.
Appendix B: Model Code Explanation for GE50A & GV50A
Appendix C: Model Code Explanation for GM50A
Appendix D: Outline Drawings
18
Customer Support
Chapter One: General Information
Customer Support
Standard maintenance and repair services are available through all of the regional MKS Calibration and
Service Centers.
If any difficulties arise in the use of your device, or to obtain information about companion products MKS
offers, contact any authorized MKS Calibration and Service Center. If it is necessary to return the instrument
to MKS, then two actions must be completed before shipping: (1) a RMA (Return Material Authorization)
number must be obtained and (2) a Health and Safety Form must be completed and included with the
instrument.
Warning
All returns to MKS Instruments must be free of harmful, corrosive, radioactive, or
toxic materials.
Obtaining a Return Material Authorization (RMA) Number
RMA (Return Material Authorization) numbers expedite handling and ensure proper servicing of your
instrument.
RMA numbers can be obtained by contacting the MKS Calibration and Service Center or through the MKS
website at: http://www.mksinst.com/service/servicehowtoorder.aspx.
Note
Returned instruments will not be accepted without a valid RMA number displayed on the
shipping container.
Health and Safety Form
A returned instrument will not be examined without a signed Health and Safety form indicating that the unit is
free of harmful materials.
The Health and Safety form can be obtained on the last page of this manual or through the MKS website at:
http://www.mksinst.com/service/servicehowtoorder.aspx.
Note
Warning
Returned instruments will not be examined without a signed certificate indicating the
instruments are free of harmful materials.
All returns to MKS Instruments must be free of harmful, corrosive, radioactive, or
toxic materials and is the responsibility of the user to ensure.
19
General Information
Chapter Two: Overview
Chapter Two: Overview
General Information
Typical Flow Control System Configuration
The MFC is used in a wide variety of control systems, most of which share several characteristics. The
control system consists of four basic parts:




Mass flow transducer
Control electronics
Control valve
Flow system (whose flow is being controlled by the MFC.)
The MFC provides the first three components. The mass flow transducer is a patented MKS thermal sensor
design. The MFC instrument contains the electronics necessary for flow control and communications to the
flow system host controller. The control valve included in the device is a proportional control valve. The flow
system can be any process whose flow you need to control. In addition, the MFC is capable of metering the
mass flow of the gas during the flow control operation.
Flow Measurement Overview
The MFC measures the mass flow rate of a gas and controls the flow rate according to a given setpoint. The
accuracy from 20% to 100% of Full Scale (F.S.) is ± 1% of Setpoint relative to the calibration gas. For
setpoints between 2% and 20%, MFC Mass Flow Devices have an accuracy of ±0.2% FS.
Flow Path
Upon entering the MFC, the gas stream passes first through the metering section of the instrument for its mass
flow to be measured. The gas moves on through the control valve, which regulates the flow rate according to
the given setpoint and in response to the device’s control system, and then exits the instrument at the
established rate of flow.
The metering section consists of one of the following:

A sensor tube for Full Scale ranges < 10 sccm (N2 equivalent)

A sensor tube and parallel bypass for ranges > 10 sccm (N2 equivalent)
The geometry of the sensor tube, in conjunction with the specified full scale flow rate, ensures fully
developed laminar flow in the sensing region. The bypass elements are specifically matched to the
characteristics of the sensor tube to achieve a flow splitting ratio which remains constant throughout each
range.
Flow Control Range
The MFC can control flow over a range of 2 to 100% of full scale flow. This means that a MFC with a 1000
sccm Full Scale configuration can control flow from 20 to 1000 sccm, whereas an MFC with a 100 sccm Full
Scale configuration can control flow from 2 to 100 sccm.
Measurement Technique
The flow measurement is based on differential heat transfer between temperature sensing heater elements
which are attached to the exterior of the sensor tube. This senses the thermal mass movement which is
converted to mass flow via the specific heat, Cp, of the gas.
21
Chapter Two: Overview
How the MFC Works
Control Circuitry
The controller employs the above measurement technique and utilizes a control circuit that provides drive
current for the proportioning control valve. The flow controller accepts a setpoint signal, compares it to its
own metered flow signal, and generates an error voltage. This error signal is then conditioned so that it can
reposition the control valve, thus reducing the control error to zero.
In the normally closed control valve, the MFC instrument lifts the armature and plug assembly from the seat
to regulate the gas flow rate.
Control Valve
The control valve is a specially constructed solenoid valve in which the armature (moving valve mechanism)
is suspended. The arrangement ensures that no friction is present and makes precise control possible.
How the MFC Works
The MKS MFC includes technology improvements in functionality and performance to help users increase
tool throughput and reduce overall system costs. Real-time accurate flow control is provided through
advanced digital algorithms. Enabling real-time control of process gas flow, accuracy and repeatability are
significantly improved over conventional PID based digital MFC’s. For optimum control performance, the
user can (should) specify the inlet pressure to the device through the Ethernet User Interface.
The MFC compares the flow reading to the setpoint, and positions the valve to maintain, or achieve, the
setpoint rate. The controller functions as a model based, pressure insensitive flow controller.
Example
Assume that your MFC is positioned upstream of the process chamber. The MFC is positioned before the
chamber so it will regulate the flow rate of the gas entering the process chamber.
When the actual flow rate reading is less than the setpoint value, the MFC opens the valve to increase the
amount of gas entering the system. As the valve opens, assuming adequate differential pressure across the
flow controller, gas enters the process chamber, so the flow rate rises to meet the setpoint value.
When the actual flow rate reading is more than the setpoint value, the MFC closes the valve to decrease the
amount of gas entering the system. As the valve closes, there is a reduced flow of gas entering the process
chamber, so the flow rate decreases to meet the setpoint value.
Note
The MFC must have sufficient differential pressure from inlet to outlet to achieve the setpoint.
If the device does not reach setpoint for lack of differential pressure, either increasing the inlet
pressure or decreasing the outlet pressure may be necessary.
Note
For optimal control performance, the user should specify the inlet pressure provided to the MFC
through the Ethernet user interface.
Operation of the MFC with Gases other than Nitrogen
The G-Series MFCs are unique in MKS flow control technology in that it they have pre-stored gas parameters
that allow the user to easily configure the device for gases other than Nitrogen simply using a computer with a
standard web-browser without the need for special software. The current MKS library of gases and functions
is in excess of 90 in number and includes most gases in common usage. Consult MKS Applications
Engineering for a list of the currently stored gases.
22
Operation of the MFC with Gases other than Nitrogen
Chapter Two: Overview
When a gas other than the calibration gas is selected by the user, the MFC automatically pulls up the correct
gas correction factor (GCF) to determine the flow of that gas with respect to the original N2 calibration. For
light gases such as helium and hydrogen, additional parameters are utilized to correct for the inherent
nonlinear response between Nitrogen and these gases.
23
Chapter Three: Installation and Configuration
Unpacking
Chapter Three: Installation and Configuration
Unpacking
MKS has carefully packed your device so that it will reach you in perfect operating order. Upon receiving the
unit, however, you should check for defects, cracks, broken connectors, etc., to be certain that damage has not
occurred during shipment.
Note
Do not discard any packing materials until you have completed your inspection and are sure the
unit arrived safely.
If you find any damage, notify your carrier and MKS immediately. If it is necessary to return the unit to
MKS, obtain an RMA Number (Return Material Authorization Number) from the MKS Calibration and
Service Center before shipping. Please refer to the inside of the back cover of this manual for a list of MKS
Calibration and Service Centers.
Opening the Package
Each device is assembled, leak tested with helium, and calibrated with Nitrogen in a cleanroom environment.
The instrument is double-packaged in this environment to ensure maintenance of its particle free condition
during shipment. It is very important to remove the packaging according to good clean room practices. To
maintain at least a minimal level of clean room standards, follow the instructions below:
1. Remove all cardboard and packaging materials. Set aside before entering the garmenting room. Do not
discard until the device has been inspected for damage and determined to be in working order.
2. Remove the outer plastic shipping container in an ante room (garmenting room) or transfer box. Do not
allow this container to enter the clean room.
3. Remove the inner bag in the clean room.
4. Inspect for any damage.
5. Pass the original calibration sheet to the appropriate personnel at your company.
Caution
Only qualified individuals should perform the installation and adjustments of the
MFC. Individuals must comply with all necessary ESD handling precautions while
installing and adjusting the instrument. Proper handling is essential when working
with all highly sensitive precision electronic instruments.
Unpacking Checklist
Standard Equipment:

MFC

Flow calibration sheet
24
Product Location and Requirements
Chapter Three: Installation and Configuration
Product Location and Requirements
Ventilation requirements include sufficient air circulation
Ambient operating temperature range: 10° to 50° C (50° to 122° F)
Power requirement (Devicenet): 11-25 VDC [320 mA maximum current @ 11 VDC; 146 mA @ 24 VDC
nominal)]
Note
Voltage and current requirements are specific to the device I/O type. See Appendix A for
voltage and current requirements by device I/O type.
Storage temperature range: -20° to 65° C (-4° and 149° F)
Mount the MFC in an upright position if possible for easy viewing of the display (G-SERIES only), although
any mounting orientation is satisfactory.
Install a separate positive shutoff valve if your system cannot tolerate any leakage through the MFC. The
internal flow control valve is not a positive shutoff valve so some leakage across the valve may occur.
Warning
Your corporate policy on handling toxic or hazardous gases supersedes the
instructions in this manual. Comply with your corporate policy. MKS assumes no
liability for the safe handling of such materials.
Install the MFC in a “flowing” system where gas is continually added and evacuated. Do not use the
controller in a “dead-ended” system (a system which cannot remove excess mass). The MFC cannot vent
excess mass to the atmosphere.
Warm up time: 30 minutes minimum (1 hour suggested to equilibrate with ambient environment)
Use high purity gas filters in line upstream of the device.
Observe the pressure limits for the flow device.
Controller:
Maximum gas inlet pressure is 150 psig with a properly configured valve (consult factory for cases
where inlet pressure is expected to exceed 40 psig).
Operationing differential pressure with atmosphere for standard valve configurations at the outlet is:

10 to 5000 sccm, 10 to 40 psid

10000 to 20000 sccm 15 to 40 psid

30000 to 50000 sccm 25 to 40 psid
Valve configurations for low pressure drop applications are available. Please consult MKS for these
situations.
For additional information, refer to Appendix A, Product Specifications, page 79
Product Dimensions
GE50A and GM50A – See Appendix C
GV50A – See Appendix D
25
Chapter Three: Installation and Configuration
Mounting Hardware
Serial Label
Each MFC has one serial number label. Each label shows the serial number, the model code, the full scale
flow range, and the calibration gas. The label is located on the MFC’s body below the pinout label on the
device’s enclosure.
Figure 1: Serial Number Label (sample)
Mounting Hardware
GE50A and GM50A MFCs with in-line fittings (VCR) have four threaded mounting holes located on the
bottom or base of the unit: two #8-32 and two M4. Depending on the hole pattern chosen, use #8-32 UNC-2B
or M4 hardware to mount the instrument. The outline drawings in Appendix C show the location and
dimensions of the mounting holes for standard axial fittings.
The GM50A MFC’s C-Seal and W-Seal downmount fittings are designed for device mounting using four
M5-0.8 x 30 mm long, socket head cap screws. In addition, C-Seal units may be mounted using 10-32 UNF x
1.25” long socket head cap screws if your mounting substrate requires.
GV50A MFCs are mounted on a baseplate which is attached to the base of the MFC body and the base of the
integral shut-off valve body. The four slots, one in each corner of the baseplate are to be used to mount and
secure the MFC. The outline drawings in Appendix D show the location and dimensions of the mounting
holes in the baseplate.
Control Valve – Not a Shut-off Valve
The control valve is not a positive shutoff valve. Some leakage across the valve may occur. Refer to
Appendix A, Product Specifications, page 79, for the leak integrity specifications. If necessary, install a
separate positive shutoff valve in your system.
Note
Connect the MFC to your system so that the gas flows in the direction of the flow arrow on the
front of the unit.
Installation Procedure
Install the MFC
Note
DO NOT make any electrical connections to the MFC until directed to do so.
Note
Information on electrical connections (pinouts and settings) is found in the following chapter.
26
Installation Procedure
Chapter Three: Installation and Configuration
1. The MFC is prepared for cleanroom installation.
Follow standard cleanroom practices to ensure a clean installation:
- discard outer material outside of the cleanroom
- remove the outer packaging in the gray area
-
carry the MFC into the clean area then remove the inner bag and any protective fitting covers just
prior to installation.
-
Do not discard calibration sheet
Prepare the system according to your facility’s gas handling procedures, including purging of the gas lines
with appropriate purge gas, and notification to equipment personnel and haz/mat teams.
PERSONAL Gas systems can contain toxic, explosive, combustible, corrosive or other gases
which can present life- threatening hazards. ALWAYS use appropriate personal
protection equipment. NEVER open a gas line unless the system has been
HAZARDS! properly purged of harmful gases. Certain gas system components may contain
hazardous residuals if not properly prepared. Consult with your facility safety
engineers prior to working on any gas delivery system and notify all personnel in
adjacent areas to take appropriate personal safety precautions BEFORE working
on the equipment.
SAFETY
2. Prepare the connections fittings:
• Flow clean, dry purge gas across the fittings to minimize particle contamination prior to and during
installation. Use only purge gases that are approved for your process.
• Use appropriate size and material gaskets (VCR or w-seal) or c-seals for the application. These are
not included with the MFC.
• Install the MFC and secure according to the fitting manufacturer’s instructions. DO NOT overtighten
connections.
Note
Before installing a Devicenet or a Profibus MFC be sure to set the Baud Rate and MACID for
the device.
3. Perform appropriate helium leak checking of your gas lines and MFC connections to verify the
integrity of the gas seals prior to supplying power to the MFC.
Note
Before connecting the cable leading to the MFC, verify all pinouts for power and signals match
those for the I/O type being used. Information on each I/O type’s pinouts are found in the
following chapter.
4.
Connect cable and power up the MFC.
5.
Set the device gas type and Full Scale using the Ethernet User Interface if it is to be different that
that displayed on the product lable. The device IP address may also be changed at this time. If
changes are made be sure to record the IP address, Gas Type and Maximum Flow Rate (Full
Scale Flow Rate) on the calibration sheet.
27
Chapter Three: Installation and Configuration
Note
Installation Procedure
When using Ethernet interface for setup, a crossover cable (similar to null modem) is required
when the MFC is connected directly to a PC. When the MFC is on a network with a hub
interface, a standard Ethernet cable should be used.
See Chapters 5 and 6 for details on setting up and using the Ethernet user interface.
6.
After an appropriate warmup period of at least thirty (30) minutes, zero the device.
28
Analog I/O Interface Cables
Chapter Four: Analog and Digital Interfaces
Chapter Four: Analog and Digital Interfaces
Analog I/O Interface Cables
As of January 1, 1996, all products shipped to the European Community must comply with the EMC Directive
89/336/EEC, which covers radio frequency emissions and immunity tests. MKS products that meet these
requirements are identified by application of the CE Mark.
This MKS product meets CE Mark requirements, per EMC Directive 2004/336/EEC. To ensure compliance
when installed, an overall metal braided shielded cable, properly grounded at both ends, is required during
use. MKS offers a variety of interface cables, listed in Table 12, page 27.
Table 7: MKS Interface Cables
Power Supply End
MFC End
15-Pin Type “D”
Flying Leads
15-pin Type D analog
CB147-1
CB259-6
CB259-5
9-pin Type D analog
CB147-12
Not Available
Note
An overall metal braided, shielded cable, properly grounded at both ends, is required to meet CE
Mark specifications.
Note
To order an overall metal, braided, shielded cable, add an “S”. after the cable type designation.
For example, to order a standard connection cable to connect the MFC to a power supply with a
15-pin Type .D. connector, use part number CB259-5; for an overall metal braided, shielded
cable use part number CB259S-5.
Generic Shielded Cable Description
MKS offers a full line of cables for most MKS equipment. Should you choose to manufacture your own
cables, follow the guidelines listed below:
1. The cable must have an overall metal braided shield, covering all wires. Neither aluminum foil nor spiral
shielding will be as effective; using either may nullify regulatory compliance.
2. The connectors must have a metal case with direct contact to the cable shield on the whole circumference
of the cable. The inductance of a flying lead or wire from the shield to the connector will seriously degrade
the shields effectiveness. Ground the shield to the connector before its internal wires exit.
3. With very few exceptions, the connector(s) must make good contact to the device’s case (ground). Good
contact is about 0.01 ohms and the ground should surround all wires. Contact to ground at just one point may
not suffice.
4. For shielded cables with flying leads at one or both ends; it is important to ground the shield at each such
end before the wires exit. Make this ground with absolute minimum length. (A ¼ inch piece of #22 wire may
be undesirably long since it has approximately 5 nH of inductance, equivalent to 31 ohms at 1000 MHz).
After picking up the braid ground, keep wires and braid flat against the case. With very few exceptions,
grounded metal covers are not required over terminal strips. If one is required, it will be stated in the
Declaration of Conformity.
29
Chapter Four: Analog and Digital Interfaces
Analog Interface Input and Output Options
5. In selecting the appropriate type and wire size for cables, consider:

Voltage ratings.

Cumulative I2R heating of all the conductors (keep them safely cool).

IR drop of the conductors, so that adequate power or signal voltage gets to the device.

Capacitance and inductance of cables that handle fast signals (such as data lines or stepper motor
drive cables).

Some cables may need internal shielding from specific wires to others.
Analog Interface Input and Output Options
These analog I/O types are included for future reference. They were not available at the time this
manual was written.
The G-SERIES analog I/O MFC is available with either a 9 pin D male connector or a 15 pin D male
connector for providing power and signal I/O.
Table 8: Analog Interface Voltage I/O (0 to 5 VDC) – 9 Pin D Male Pinouts – Model Code A
Pin 1
Valve Open/Close: Apply +5 to+15 VDC to Open; Pull to ground or apply -5 to -15
VDC to Close.
Pin 2
Flow Output Signal, 0 to5 VDC (into high impedance load, minimum 10K-ohm)
Pin 3
+15 to +25 VDC :Power
Pin 4
Power Common
Pin 5
No Connection
Pin 6
Setpoint Input, 0-5 VDC
Pin 7
Signal Common
Pin 8
Signal Common
Pin 9
Valve Test Point
Notes 1. Chassis ground is not available on a separate pin. Instead, it is carried out through the cable
shielding. Be sure that the connector on the other end of the cable is properly grounded to its
chassis ground.
2. The 0 to 5 VDC flow signal output comes from pin 2 and is referenced to pin 7 (signal
common).
3. Use any appropriate 0 to 5 VDC input signal of less than 1K ohm source impedance
referenced to pin 7 as the setpoint signal to pin 6.
4. A signal common line MUST be connected to the power common line at either at the tool
end or at the MFC 15 pin D connector end of the cable to avoid setpoint/readback offsets.
DO NOT connect a signal common line and the power common line at both ends of the
cable as this will result in ground loops.
30
Analog Interface Input and Output Options
Chapter Four: Analog and Digital Interfaces
Table 9: Analog Interface Voltage I/O (0 to 5 VDC) – 15 Pin D Male Pinouts – Model Code B
Pin 1
Valve Test Point
Pin 2
Flow Signal Output, 0 to 5 VDC (into high impedance load, minimum 10K-ohm)
Pin 3
Valve Close (Pull to Ground or Pull Low – 5 to -15 VDC)
Pin 4
Valve Open (Pull High +5 to +15 VDC)
Pin 5
Power Supply Common Digital Ground (see Note 4 below)
Pin 6
No Connection
Pin 7
+15 to +25 VDC (see Note 4 below)
Pin 8
Setpoint Input (0 to +5 VDC)
Pin 9
Zero Function
Pin 10
Optional Input
Pin 11
Signal Common
Pin 12
Signal Common
Pin 13
No Connection
Pin 14
No Connection
Pin 15
Chassis Ground
Note
1. The “No Connection” pin assignment refers to a pin with no internal connection.
2. The 0 to 5 VDC flow signal output comes from pin 2 and is referenced to pin 12 (signal
common).
3. Any appropriate 0 to 5 VDC input signal of less than 1K ohm source impedance referenced
to pin 12 can be used to supply a setpoint signal to pin 8.
4. A signal common line MUST be connected to the power common line at either at the tool
end or at the MFC 15 pin D connector end of the cable to avoid setpoint/readback offsets.
DO NOT connect a signal common line and the power common line at both ends of the
cable as this will result in ground loops.
The Optional Input (15 Pin D Analog Controllers Only)
The standard 15-pin MFC can control flow based on a 0 to 5 Volt signal from an external sensing device
using the optional input feature (for a 0 to 10 Volt input range, contact the MKS Applications Department). A
common application of this feature is for pressure control using input from a pressure transducer.
To use the optional input feature, route the 0-5 Volt (or 0 to 10 VDC) output from the desired external device
to the optional input pin 10.
Note
The optional input feature is only available on the 15-pin Type D connector with standard MKS
pinout assignments. The 9-pin Type D connector does not support this feature. Voltage applied
to the optional input pin overrides the signal generated by the flow sensor internal to the MFC.
The control electronics drives the valve so that the optional input signal matches the setpoint.
Use the same pin for the setpoint signal, regardless of whether you are using the optional input
or the standard flow control signal. Although controlling to the external optional input signal, the
31
Chapter Four: Analog and Digital Interfaces
Analog Interface Input and Output Options
metered flow output signal is still provided on the standard output pin 2.
Start-Up Procedure for the Analog MFC
1. Leak test the fittings on the unit using standard helium leak check procedures. Do not proceed to the
next step until you are certain that there is no gas leakage.
2. Before connecting the cable leading to the MFC, verify all pinouts for power and signals match those
for the connector being used.
3. Plug the power supply/readout cable (MKS or customer-supplied) into the connector (either a 9-pin or
15-pin D type) located at the inlet end of the device.
4. Plug the other end of the cable into an MKS or MKS-compatible power supply/readout unit.
5. Apply power to the device. Once the device is sufficiently warmed-up, you can proceed to zero it.
See instructions in Section 7.
Warm Up Time
After installation and power connection, allow the MKS MFC to warm up for a minimum of 30 minutes.
This is to account for both warm-up of the device electronics as well as for the device to reach ambient
temperature conditions.
Zeroing the Device
Although MKS flow devices are zeroed at the factory prior to shipment, it is normal to check the zero and rezero them, if needed, when they are first installed on the tool.
A mass flow meter or mass flow device will provide a zero output signal under no flow gas conditions.
Zero offset from improper zeroing procedures can contribute to flow measurement inaccuracy. This is more
apparent at the lower end of the device flow range.
In order to complete a true zeroing of the device, ensure the following conditions are satisfied prior to
beginning the procedure.

Device is installed in the orientation intended for final use (i.e. horizontal base down, vertical flow up,
etc.).

Device is powered at operating temperature, preferably for 30 or more minutes.

Devices subject to ambient temperatures other than room temperature (23º C) should be zeroed under
those conditions.

Pressure drop and flow across the device is reduced to zero. Depending on the gas panel configuration,
this may be done by one of the referenced procedures. See Chapter 7 Maintenance for zeroing procedures.
How To Override the Valve (Controllers Only)
The valve override feature enables the control valve to be fully opened (purged) or closed independent of the
setpoint command signal.
If the MFC is equipped with a 9-pin Type D connector:
To Open the valve, apply +5 to +15 VDC to Pin 1.
To Close the valve, apply -5 to -15 VDC Low to Pin 1 or connect Pin 1 to Signal Ground.
32
Digital Interface Input and Output Options
Chapter Four: Analog and Digital Interfaces
Normal Setpoint operation occurs when Pin 1 is allowed to float.
If the MFC is equipped with a 15-pin Type D connector:

To Open the valve by applying a +5 to +15 VDC to pin 4.

To Close the valve by applying a -5 to -15 VDC low to pin 3 or connect pin 3 to the power ground
pin.
Priority of the Valve Commands
The MFC executes commands based on a hierarchical command structure. The highest priority command is
Valve Open, followed by Valve Close, and Setpoint Control. Therefore, if the flow controller is operating
under Setpoint Control, you can send a Valve Open command to force the valve to the full open position.
Note
When both the Valve Close and Valve Open pins are pulled down, the Valve Open command
takes precedence and the valve is moved to the open position.
Digital Interface Input and Output Options
The G-SERIES digital I/O MFC is available with either the DeviceNet, Profibus or RS485 communications
protocol. The specific protocol is specified at the time of order.
DeviceNet Digital Interface Using 5 Pin Microconnector
The MFC has one 5-pin, male DeviceNet connector that provides the communications interface with the
DeviceNet network, electrical power from the network bus, and shielding for the instrument signals.
Table 10: Digital Interface - DeviceNet Connector Pinout – Model Code 6
Pin Number
Signal Name
1
2
3
4
5
Drain
V+
VCAN_H
CAN_L
Figure 2: DeviceNet Connector Pin Diagram
Overview of MFC DeviceNet Digital Operation
33
Chapter Four: Analog and Digital Interfaces
Digital Interface Input and Output Options
The G-SERIES (G-SERIES) MFC DeviceNet Mass Flow Device complies with the ODVA DeviceNet
Specification Volume I and Volume II [1, 2], and the SEMI Standards Common and Specific Device Models
[3, 4]. Refer to those documents for a complete functional description of the MFC Mass Flow device along
with the MKS G-Series MFC DeviceNet Supplement, 1046412-001. Please contact MKS for this document.
Power Requirements
The MFC requires an input voltage of 11 to 25 VDC with 500 mA max @ 11 VDC (230 mA @ 24 VDC,
nominal). The input voltage, provided by the DeviceNet network, is introduced to the mass flow controller
through the 5-pin micro-style connector located on the top of the instrument.
DeviceNet Controls and Indicators
The top panel of the MFC contains several DeviceNet controls and indicators.
The mass flow device has two standard bi-color (green/red) DeviceNet status LEDs, (Module Status LED and
Network Status LED) located on top of the instrument. The power-up sequence of these LEDs conforms to
the requirements in the ODVA DeviceNet Specification, Volume 1 [1].DeviceNet Network Status LED
(MOD & NET)
The Network Status LED indicates the status of the communications link. If no problems are detected, the
Network Status LED illuminates a solid green. A red, dark, or flashing green Network Status LED indicates a
fault condition on the network.
Table 11: Network (NET) Status LED Indicators
LED Status
Solid Green
Flashing Green
Solid Red
Dark
Meaning
Communications link is OK.
The device is online and connections are established.
The device is online but no connections are established.
The device has passed the Dup MAC_ID test and is online, but has no established
connections to other nodes.
Critical link failure.
The device has detected an error that prevents network communication (Duplicate
MAC_ID or bus-off.).
Not powered / Not online.
The device has not completed the Dup_MAC_ID test, or the device is not powered;
check the module status LED.
Figure 3: Devicenet Top View
34
Digital Interface Input and Output Options
Chapter Four: Analog and Digital Interfaces
DeviceNet Baud Rate and MAC ID Switches
The baud rate and MAC ID (node address) for your device can be set through software commands using
standard DeviceNet protocol over the network, or manually using the rotary switches located on the top panel
of the device. The baud rate and MAC ID switches allow you to easily configure units without an operational
network, or to network multiple units quickly.
The baud rate and MAC ID rotary switches support an assigned network position, labeled on the device as
“PGM” to indicate software operation.
If the rotary switch is in the network (PGM) position at power-up, the baud rate or address is read from the
non-volatile memory. Any changes to the values must be made over the network; any changes in the rotary
switch positions after power-up are ignored.
If the rotary switch is not in the network (PGM) position at power-up, the baud rate or address is read directly
from the switches.
Note
The DeviceNet General Error Codes are listed in the ODVA DeviceNet Specification,
Volume 1 [1].
DeviceNet Baud Rate Switch
The 4-position rotary switch is used to select the DeviceNet baud rate. The choices are: PGM (the baud rate is
read from the non-volatile memory), 125, 250, and 500 Kb. (Factory Default is 500 Kb.)
The switch positions are numbered in a clockwise direction, to correspond to the increasing address values.
Figure 4: Devicenet Baud Rate Switch
DeviceNet MAC ID (Node Address) Switches
Two 10-position rotary switches, shown below, are used to set the MAC ID (node address).
The MAC ID is an integer identification value assigned to each node on the DeviceNet network.
Figure 5: Devicenet MAC ID Switches
35
Chapter Four: Analog and Digital Interfaces
Digital Interface Input and Output Options
The valid MAC ID switch positions are 0 to 63. Use the switch on the left to set the most significant digit
(MSD), that is, the factor of ten (10, 20, 30...60). Use the switch on the right to set the least significant digit
(LSD), that is, the increments of one (1, 2, 3...9). The switch positions are numbered in a clockwise direction,
to correspond to the increasing address values. (Factory Default is 55.)
Note
Setting the switches to a value that is greater than 63 is the same as setting the rotary switch to
the “PGM” position (the baud rate is read from the non-volatile memory).
Note
The MAC ID switch on the top of the device must be set to the network (PGM) position before
power up in order for changes to be made over the network. Any changes in the rotary switch
positions after power up are ignored.
Unrecoverable Fault Condition
A hardware problem with the EEPROM, or a memory problem with the RAM are major unrecoverable faults.
This fault condition sets its exception status bit, and the Module Status LED illuminates solid red, complying
with Volume I of the DeviceNet Specification.
Note
A major unrecoverable fault prevents operation because the device cannot communicate on the
network. Contact MKS Instruments, Inc. for assistance.
Power Up
At power-up, flow device performs checks on its communications link and internal diagnostic checks of the
EEPROM and RAM. The results of these checks are indicated by the color (green or red) and condition (solid
or flashing) of the status LEDs on top of the instrument. The following LED sequence occurs when the MFC
is powered up (times are approximate):
1. The Module Status LED flashes first GREEN for ¼ second, then RED for ¼ second, then turns OFF.
2. The Network Status LED flashes first GREEN for ¼ second, then RED for ¼ second, then turns OFF.
3. The Module Status LED flashes from GREEN to RED for five seconds while the device is initializing.
The Network Status LED remains OFF.
4. The Module Status LED illuminates solid GREEN when initialization is completed.
5. When the device establishes communication with other devices on the network, the Network Status LED
illuminates GREEN.
Note
If the power up LED sequence does not function properly, contact MKS for assistance.
See Table 7: Network Status LED Indicators for more information on the operation of the
Network Status LED and the Module Status LED.
Warm-Up and Zero the MFC
After installation and power up, allow the MFC to warm up for a minimum of 30 minutes, then refer to the
installation section to Zero the MFC.
Warm Up Time
36
Digital Interface Input and Output Options
Chapter Four: Analog and Digital Interfaces
After installation and power connection, allow the MKS MFC to warm up for a minimum of 30 minutes.
This is to account for both warm-up of the device electronics as well as for the device to reach ambient
temperature conditions.
Zeroing the Device
Although MKS flow devices are zeroed at the factory prior to shipment, it is normal to check the zero and rezero them, if needed, when they are first installed on the tool.
A mass flow meter or mass flow device will provide a zero output signal under no flow gas conditions.
Zero offset from improper zeroing procedures can contribute to flow measurement inaccuracy. This is more
apparent at the lower end of the device flow range.
In order to complete a true zeroing of the device, ensure the following conditions are satisfied prior to
beginning the procedure.

Device is installed in the orientation intended for final use (i.e. horizontal base down, vertical flow up,
etc.).

Device is powered at operating temperature, preferably for 30 or more minutes.

Devices subject to ambient temperatures other than room temperature (23º C) should be zeroed under
those conditions.

Pressure drop and flow across the device is reduced to zero. Depending on the gas panel configuration,
this may be done by one of the referenced procedures. See Chapter 7 Maintenance for zeroing procedures.
Profibus Digital Interface Using Two 9 Pin D Connectors
The Profibus MFC has two 9 pin D connectors. A 9 pin D males (Table 12 A) that provides power to the
device and a 9 pin D female (Table 12 B) which provides the communications interface with the Profibus
master slave network, electrical power from the network bus.
The G-SERIES (G-SERIES) MFC Profibus Mass Flow Device connector, switches and initial power up are
described in this section. For a complete functional description of the MFC Mass Flow device along with the
MKS G-Series MFC, Profibus Supplement, 1046413-001. Please contact MKS for this document.
Table 12A: Profibus 9 Pin D Male Power Connector– Model Code 4
Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 7
Pin 8
Pin 9
Power Connector – 9 pin D male
Valve Open/Close: Apply +5 to+15 VDC to
Open; Pull to ground or apply -5 to -15 VDC
to Close.
No Connection
11 to 25 VDC Supply
No Connection
Power Common
No Connection
No Connection
No Connection
No Connection
37
Chapter Four: Analog and Digital Interfaces
Digital Interface Input and Output Options
Table 12B: Profibus 9 Pin D Female Communications Connector – Model Code 4
Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 7
Pin 8
Pin 9
Communications Connector – 9 pin D female
No Connection
No Connection
B Line (RXD/TXD-P) Bus Positive
ISO_RTS (CNTR – P (Control for Repeater)
ISO_GND (Digital Ground)
ISO_VCC (Power Supply (5 V)
No Connection
A Line (RXD/TXP – N) Bus Negative
No Connection
Profibus Controls and Indicators
The MKS G-Series Profibus mass flow device contains several Profibus controls and indicators located on the
top of the device enclosure. There are two switches which are used to set the Station Address and two
standard bi-color (green/red) Profibus status LEDs, (Module Status LED and Network Status LED). The
LEDS provide an indication of the device status. At power-up, the device performs checks on its
communications link and internal diagnostic checks of the EEPROM and RAM. The results of these checks
are indicated by the color (green or red) and illumination condition of the status LEDs on top of the
instrument. The Module and Network Status LED’s illuminate solid GREEN when initialization is complete.
The Network Status LED illuminates flashing GREEN when the device establishes communication with other
devices on the network.
Figure 6: Profibus Top View
Station Address
The address (station address) for the device is set using the rotary switches (MSD and LSD) located on the
top panel of the device. The address switches allow you to easily configure units without an operational
network, or to network multiple units quickly.
The address is read from the non-volatile memory. Any changes to the values must be made over the network;
any changes in the rotary switch positions after power-up are ignored.
38
Digital Interface Input and Output Options
Chapter Four: Analog and Digital Interfaces
Station Address Switches
Two 10-position rotary switches, shown in Figure 15, are used to set the station address.
The station address is an integer identification value assigned to each node on the Profibus network.
Figure 7: Profibus Station Address Switches
The valid STATION ADDRESS switch positions are 0 to 99. Use the switch on the left to set the most
significant digit (MSD), that is, the factor of ten (10, 20, 30...90). Use the switch on the right to set the least
significant digit (LSD), that is, the increments of one (1, 2, 3...9). The switch positions are numbered in a
clockwise direction, to correspond to the increasing address values.
Power Up
This is the power-up sequence of the LEDs.
1. MOD LED is set to solid RED if SYSTEM_ERROR in the Small Receive Data is set, otherwise it is
set to solid GREEN.
2. NET LED is set to solid GREEN if the module is in idle state. It is set to about 2 Hz blinking GREEN
if the module is in executing state (check Device Status in Slot 30, Index 9).
3. NET LED is set to about 5 Hz blinking red if the WINK_STATUS is set to 1 and stops blinking
RED if WINK_STATUS is set to 0.
Warm-Up and Zero the MFC
After installation and power up, allow the MFC to warm up for a minimum of 30 minutes, then refer to the
installation section to Zero the MFC.
Warm Up Time
After installation and power connection, allow the MKS MFC to warm up for a minimum of 30 minutes.
This is to account for both warm-up of the device electronics as well as for the device to reach ambient
temperature conditions.
Zeroing the Device
Although MKS flow devices are zeroed at the factory prior to shipment, it is normal to check the zero and rezero them, if needed, when they are first installed on the tool.
A mass flow meter or mass flow device will provide a zero output signal under no flow gas conditions.
Zero offset from improper zeroing procedures can contribute to flow measurement inaccuracy. This is more
apparent at the lower end of the device flow range.
In order to complete a true zeroing of the device, ensure the following conditions are satisfied prior to
beginning the procedure.

Device is installed in the orientation intended for final use (i.e. horizontal base down, vertical flow up,
etc.).
39
Chapter Four: Analog and Digital Interfaces
Digital Interface Input and Output Options

Device is powered at operating temperature, preferably for 30 or more minutes.

Devices subject to ambient temperatures other than room temperature (23º C) should be zeroed under
those conditions.

Pressure drop and flow across the device is reduced to zero. Depending on the gas panel configuration,
this may be done by one of the referenced procedures. See Chapter 7 Maintenance for zeroing procedures.
RS485 Digital Interface Using 9 Pin D Male Connector
The RS485 MFC has one 9 pin D male connector that provides the communications interface with the RS485
master slave network, electrical power from the network bus, and shielding for the instrument signals. There
are no analog I/O signals on this device.
Table 13: Digital Interface – RS485 Using 9 Pin D – Model Code 5
Pin Number
Assignment
Pin 1
Power & Signal Common
Pin 2
+ 11 to 25 VDC Power In
Pin 3
No connection
Pin 4
No connection
Pin 5
B/B’ (RS485+)
Pin 6
No connection
Pin 7
RS485 Common
Pin 8
Shield
Pin 9
A/A’ (RS485-)
RS485 Communications Protocol
The MFC controller acts as a slave device on an RS485 multi-drop bus. It continually listens for transaction
requests from the host controller, processes requests addressed to it, and sends replies as needed. For a
complete description of this multi-drop protocol see the MKS Document MKS G-Series MFC, RS485
Supplement, 1046411-001. Please contact MKS for this document.
RS485 Controls and Indicators
The top panel of the MFC contains a zero button and two LED indicators, Error and Comm.
Table 14: RS485 Module Status LED Indicators
LED Status
Flashing Red
Solid Red
Dark
Meaning
The device is online and functioning properly.
The Module Status LED flashes red when receiving commands from Host.
Critical link failure.
The device has detected an error that prevents network communication (Duplicate
MAC_ID or bus-off.)
Not powered / Not online.
The device is offline or the device is not powered; check the network status LED.
40
Digital Interface Input and Output Options
Chapter Four: Analog and Digital Interfaces
Figure 8: RS485 Top View
Setting the RS485 Device MACID and Baud Rate
For RS485 the baud rate and MAC ID must be set up prior to installation into a network. The baud rate and
MAC ID may be setup up individually from the host computer or via a PC using the Ethernet UI. These are
the only ways to configure an RS485 MFC. There are no Baud Rate or MAC ID switches on the device. See
the RS485 supplement for information to set the device up over the host or Chapter 6 of this manual.
Unrecoverable Fault Condition
A hardware problem with the EEPROM, or a memory problem with the RAM are major unrecoverable faults.
This fault condition sets its exception status bit, and the LED illuminates solid red
Note
A major unrecoverable fault prevents operation because the device cannot communicate on the
network. Contact MKS Instruments, Inc. for assistance.
Warm-Up and Zero the MFC
After installation and power up, allow the MFC to warm up for a minimum of 30 minutes, then refer to the
installation section to Zero the MFC.
Warm Up Time
After installation and power connection, allow the MKS MFC to warm up for a minimum of 30 minutes.
This is to account for both warm-up of the device electronics as well as for the device to reach ambient
temperature conditions.
Zeroing the Device
Although MKS flow devices are zeroed at the factory prior to shipment, it is normal to check the zero and rezero them, if needed, when they are first installed on the tool.
A mass flow meter or mass flow device will provide a zero output signal under no flow gas conditions.
Zero offset from improper zeroing procedures can contribute to flow measurement inaccuracy. This is more
apparent at the lower end of the device flow range.
In order to complete a true zeroing of the device, ensure the following conditions are satisfied prior to
41
Chapter Four: Analog and Digital Interfaces
Digital Interface Input and Output Options
beginning the procedure.

Device is installed in the orientation intended for final use (i.e. horizontal base down, vertical flow up,
etc.).

Device is powered at operating temperature, preferably for 30 or more minutes.

Devices subject to ambient temperatures other than room temperature (23º C) should be zeroed under
those conditions.

Pressure drop and flow across the device is reduced to zero. Depending on the gas panel configuration,
this may be done by one of the referenced procedures. See Chapter 7 Maintenance for zeroing procedures.
42
Digital Interface Input and Output Options
Chapter Four: Analog and Digital Interfaces
43
Chapter Five: Ethernet Interface
Setup and Configuration
Step 1: Install the Java™ Plug-in
(for single IP address)
Chapter Five: Ethernet Interface
Setup and Configuration
The Ethernet interface is a supplemental interface that can be used for MFC setup, configuration, and
diagnostics purposes. It is not used to control the MFC during normal operation. To access the diagnostic
features of the MFC via the Ethernet port, follow Steps 1 and 2.
Step 1: Install the Java™ Plug-in
(for single IP address)
The MFC interface software uses a web-based Internet Explorer interface that requires a Java Technology
plug-in to display real-time data plots.
If you are installing the MFC on a network that has web access AND you are setting up multiple IP addresses,
then go to “Option 3: For Multiple IP Address Setup” on page 49 and skip the steps below. The “Multiple IP
Address Setup” procedure enables you to access the web for download at completion.
OTHERWISE perform the following steps:
1. Download the (2) files listed below from the MKS website (www.mksinst.com/MDsw.html) by clicking
on the link “MFC java plugin file for web access.” The MKS download includes an installation script to
properly load the plug-in.
o
o
Java installer: jinstaller.exe
Installation script: InstallPlot.bat
2. Copy the installer and script file to your hard drive, then double-click on the InstallPlot.bat file.
This file connects to the Sun Microsystems download site according to the following command:
o
jinstall.exe http://java.sun.com/update/1.4.2/1.4.2-b28.xm
3. Follow the onscreen prompts to install the Java application.
44
Step 2: Setup Network for Communication
through Ethernet
Chapter Five: Ethernet Interface
Setup and Configuration
4. Read the license agreement, select “I accept...”, click “Next” to continue installation.
5. Select the “Typical” installation option and follow the prompts to install the Java plug-in.
6. Java plug-in is now complete.
Step 2: Setup Network for Communication
through Ethernet
There are three possible ways to setup your network for communication through Ethernet. Choose the correct
option based on the following criteria:
Option 1 (see below) [single port/single device]
o
o
o
o
The Java applet discussed in Step 1 on page 44 has already been installed on your computer.
You have no need to connect to the Internet.
You only have one IP address, i.e. 192.168.2.X, to connect with.
If your computer has more than one network card, this option may not work. Use option 2.
Option 2 (see page 47) [single port/multiple devices]
o
o
o
The Java applet discussed in Step 1 on page 44 has already been installed on your computer.
You have no need to connect to the Internet.
You have one or Multiple IP addresses you want to connect with, i.e. 192.168.2.X, 10.X.X.X, etc.
Option 3 (see page 49) [multiple ports/multiple devices]
o
o
o
The Java applet discussed in Step 1 on page 44 has or has not installed on your computer.
You need to be able connect to the Internet while connecting to one or multiple units.
You have Multiple IP addresses to connect with, i.e. 192.168.2.X, 10.X.X.X, etc.
45
Chapter Five: Ethernet Interface
Setup and Configuration
Step 2: Setup Network for Communication
through Ethernet
Option 1: Network Automatic Setup
A software script allows you to rapidly create a network connection to the MFC. Once connected a series of
web-browser type windows allow you to easily monitor and configure the MFC.
1. Logon to the MKS website (www.mksinst.com/MDsw.html) and download a copy of the IP setup script,
HostIP.cmd by clicking on the HostIP.cmd link.
2. Copy the setup script HostIP.cmd to your root directory (Typically C:\).
3. Connect a crossover network cable to the MFC and your laptop computer. A crossover cable is required
when the MFC is connected directly to a computer. When the MFC is connected to a network using a hub
interface, a standard Ethernet cable can be used.
4. From your computer’s “Start” menu, select “Run...” then enter the word “command” and click OK.
5. At the command prompt, if it’s not already in the root directory “C:\>”, then you can use the following
commands to change the directory: “CD\” will bring you to the root of whatever drive that is currently
set. If this is not the root directory, enter the command “C:”. Use the “CD\” command again if necessary.
This will bring you to the C:\> prompt. See the example below:
6. Enter the command “HostIP x y z” where (x) stands for the IP address of your Host computer, (y) stands
for the subnet mask and (z) stands for the gateway. The system will setup a new host IP address and
display it as shown in the example below:
Note
The HostIP.cmd script looks for a network connection with the name “Local Area Connection”.
If the network connection you’re using does not have this name and can be renamed, this is
easiest. If not, then you’ll need to use one of the other manual options.
Note
The HostIP.cmd script does not need the subnet mask (y) or gateway (z) to work. If only the
Host IP address (x) is sent with the command, the script assigns its own subnet mask (255.0.0.0)
and gateway (10.0.0.0).
Note
The MKS IP Address format is 192.168.2.X, so the Host IP Address must be of the same format.
A recommended Host IP address is 192.168.1.Y with a Subnet Mask of 255.255.252.0, where Y
is some number between 5 and 254. The combination of a Subnet Mask with the value of “252”
in the third segment along with a 192.168.1.Y IP allows for a connection to any IP address in the
192.168.1.X, 192.168.2.X & 192.168.3.X range. By setting the Host IP to 192.168.1.X, there is
assurance that there will never be a conflict between the Host and the MKS MFC.
46
Step 2: Setup Network for Communication
through Ethernet
Chapter Five: Ethernet Interface
Setup and Configuration
To restore to a dynamic IP address, run the HostIP script with an argument of “auto” as shown below:
These commands may also be entered directly in the “Run…” window. Instead of typing “command”
simply type “c:/HostIP x y z” (without “ ”) or “c:/HostIP auto” (without “ ”).
7. After running the HostIP command, launch Internet Explorer, enter “http://xx.xx.xx.xx” in the address
field, where xx.xx.xx.xx stands for the IP address of the MFC you wish to connect to, and click “Go.”
Internet Explorer will open and display the device Monitor screen which displays the device’s gas
settings, model code, valve type and the Digital I/O connection status (if applicable). The Serial Number
can always be found in the bottom left-hand corner of the browser window.
For more information on the web-based program, go to Chapter 6 on page 54.
Option 2: Manual Setup
If you have not setup automatic network script in Option 1, a manual setup is required to access the MFC
Ethernet interface.
1. Connect a crossover network cable to the MFC and your laptop computer.
A crossover cable is required when the MFC is connected directly to a computer. When the MFC is
connected to a network using a hub interface, a standard Ethernet cable can be used.
2. Open the Local Area Connection by doing one of the following options:
Option 2.1:
Select My Network Places (On Desktop typically). Right-Click on the icon, then select Properties.
In the “Network and Dial-Up Connections” window, Double-click on “Local Area Connection.” Not all
Local Area Connections have the same name, yours may have a different name.
47
Chapter Five: Ethernet Interface
Setup and Configuration
Step 2: Setup Network for Communication
through Ethernet
Option 2.2:
From your computer’s “Start” menu, select “Settings” Network and Dialup Connections  Local Area
Connections
3. Select Properties.
4. Select Internet Protocol (TCP/IP), then select Properties.
5. Select Use the following IP address.
6. Enter the IP address 192.168.0.10. Now click in the Subnet mask field and the Subnet mask
255.255.255.0 should appear. Change the 3rd 255 to “0” as shown in the figure above. So the final subnet
mask will be (255.255.0.0). Also make sure that the “Use the following DNS server Addresses” is also
selected. Leave this blank.
48
Step 2: Setup Network for Communication
through Ethernet
Chapter Five: Ethernet Interface
Setup and Configuration
Additional IP Addresses
In the case that you need to be able to connect to more than one IP Address, simply click on the
“Advanced” button at the bottom of the current window. Once the “Advanced TCP/IP Settings” window
pops up, verify that you’re on the “IP Settings” tab and then click “Add” in the “IP Addresses” section. If
you have a different IP Address on your network, e.g., 10.X.X.X, you will need to add the IP Address
10.X.X.X, where “X” is a number from 0 to 254 that is unique from any other IP address on your
network. Now click in the Subnet mask field and enter the Subnet mask (255.0.0.0).
7. Close out all dialog boxes by selecting O.K., Close, etc. as required.
8. Launch Internet Explorer (or a similar program) and enter “http://xx.xx.xx.xx” in the address field, where
xx.xx.xx.xx stands for the IP address of the MFC you wish to connect to, and click “Go.” Internet
Explorer will open and display the device Monitor screen which displays the device’s gas settings, model
code, valve type and Digital I/O connection status (if applicable). The Serial Number can always be
found in the bottom left-hand corner of the browser window.
For more information on the web-based program, go to Chapter 6 on page 54.
Option 3: For Multiple IP Address Setup
1. From your computer’s “Start” menu, select “Run...” then enter the word “command” and click OK.
2. At the command prompt, if it’s not already in the root directory “C:\>”, then you can use the following
commands to change the directory: “CD\” will bring you to the root of whatever drive that is currently
set. If this is not the root directory, enter the command “C:”. Use the “CD\” command again if necessary.
This will bring you to the C:\> prompt. See the example below:
3. Now, before going any further, it is important that you have an active network connection that allows you
to connect to the Internet. If you do not have an active connection, please set that up and then continue.
49
Chapter Five: Ethernet Interface
Setup and Configuration
Step 2: Setup Network for Communication
through Ethernet
4. At the command prompt, enter the command “ipconfig /all” (as shown below) then press Enter.
The data inside the highlighted area (lower section, between IP Address and Primary WINS Server) are
what is needed for the steps below.
5. Open the Local Area Connection by doing one of the following options:
Option 5.1:
Select My Network Places (On Desktop typically). Right-Click on the icon, then select Properties.
In the “Network and Dial-Up Connections” window, Double-click on “Local Area Connection.” Not all
Local Area Connections have the same name, yours may have a different name.
Option 5.2:
From your computer’s “Start” menu, select “Settings” Network and Dialup Connections  Local Area
Connections
6. Select Properties. In the Properties window select Internet Protocol (TCP/IP), then select Properties
50
Step 2: Setup Network for Communication
through Ethernet
Chapter Five: Ethernet Interface
Setup and Configuration
7. Select Use the following IP address. Now do the following to configure your computer so that it can still
connect to the Internet:
o
Type in the “IP address”, the “Subnet mask” and the “Default gateway” fields with values returned
from the “ipconfig /all” query in the DOS command window.
o
Select “Use the following DNS server addresses:”
o
Type in the Preferred DNS server and the Alternate DNS server fields with values returned from the
“ipconfig /all” query in the DOS command window. An example is shown below:
8. Click the “Advanced…” button at the bottom of the window. The following window will be displayed:
51
Chapter Five: Ethernet Interface
Setup and Configuration
Step 2: Setup Network for Communication
through Ethernet
10. Verify you’re on the “IP Settings” tab and then do the following to configure your computer to talk to the
MFC and any other devices with an IP address:
o
Click “Add…” in the “IP address” section and enter the IP address 192.168.0.10. Now click in the
Subnet mask field and the Subnet mask 255.255.255.0 should appear. Change this value to
255.255.0.0. Then click “OK.”
11. Now click “Add…” in the “Default gateways” group. Enter the Gateway value you will use to connect to
the MFC. Typically a gateway value will be the IP address with a (1) on the end. The Metric value will
always be (1). Then click “Add.”
** You can use Automatic Metric or enter (1)
12. In the case that you need to be able to connect to more than one IP Address, i.e. not all devices on your
network use a 10.X.X.X address; more addresses can be added by repeating steps 10 and 11 above. If you
have another MFC, you may also need to add the IP Address 10.0.0.X, where “X” is a number from 0 to
254 that is unique from any other IP address on your network. The Subnet mask for this IP address is
255.0.0.0, and the typical Default Gateway is 10.0.0.1.
13. Click the “WINS” tab.
52
Step 2: Setup Network for Communication
through Ethernet
Chapter Five: Ethernet Interface
Setup and Configuration
14. In the “WINS addresses, in order of use” section, click “Add…” Enter in the Primary WINS server
address that was returned from the “ipconfig /all” query in the DOS command window, and click “Add.”
If there were any alternate WINS servers listed in the DOS window, now enter them. If not, go ahead to
the next step.
Example is shown below:
15. Close out all dialog boxes by selecting O.K., Close, etc. as required.
16. You are ready to connect to multiple IP addresses from your computer. You can connect both to the
Internet and to your MFC local network.
17. Launch Internet Explorer (or a similar program) and enter “http://xx.xx.xx.xx” in the address field, where
xx.xx.xx.xx stands for the IP address of the MFC you wish to connect to, and click “Go.” Internet
Explorer will open and display the device Monitor screen which displays the device’s gas settings, model
code, valve type and Digital I/O connection status (if applicable). The Serial Number can always be
found in the bottom left-hand corner of the browser window.
For the plot web page to work in the MFC, a java plug-in has to be installed on your computer.
With the multiple IP addresses setup, if the Java plug-in has NOT already been installed, the IE browser
will automatically connect to the correct web site for the downloading the first time someone connects to
a MFC and clicks on the “Plot” page. If, for some reason, this does not work please follow the Step 1
instructions (see page 44).
For more information on the web-based program, go to Chapter 6 on page 54.
53
Chapter Six: Embedded Web-Based GUI and Diagnostics
Logging On to Your MFC
Chapter Six: Embedded Web-Based GUI and Diagnostics
Logging On to Your MFC
Before trying to logon to your MFC you must have your network setup correctly. To do this, complete the
steps listed in Chapter Three, Ethernet Interface Setup and Configuration, starting on page 44.
Once you complete the steps in Chapter Six, launch Internet Explorer (or a similar program) and enter
“http://xx.xx.xx.xx” in the address field, where xx.xx.xx.xx stands for the IP address of the MFC you wish to
connect to, then click “Go”. Internet Explorer will open and display the Device page in Monitor Mode.
The modes are described in detail below.
Monitor Mode
Holding true to its name, “Monitor Mode” allows the user to only Monitor the MFC performance. In order to
configure the MFC, i.e. zero the device, set the gas inlet pressure (used by device control algorithm), change
the IP Address, etc., you must enter “Setup” mode. See Setup Mode, page 59.
Each of the pages, i.e. tabs, in Monitor Mode are listed and described below in detail.
Device Page – Monitor Mode
This page, which contains the general information for the MFC, is where you are initially directed once you
logon to the MFC.
What’s Displayed
The Device Page displays the device’s selected (operating) gas, Semi gas number, calibration gas, minimum
and maximum full scales allowed for the device, the device’s current full scale for the selected gas and the
current operating pressure setting. In addition, you can see the device information and the Digital I/O
connection status (if applicable).
Note
The MFC’s serial number can always be found in the bottom left-hand corner of the browser
window.
Figure 9, next page, shows a screen capture of the Device Page for the MFC.
54
Monitor Mode
Chapter Six: Embedded Web-Based GUI and Diagnostics
Figure 9: Embedded GUI, MFC Device Page in Monitor Mode
Plot Page – Monitor Mode
This page, shown in Figure 10, enables you to plot and see real-time performance of the device. In Monitor
Mode you are able to select variables to plot, the rate at which to display them, and save the data that has been
plotted.
Note
The Plot Page requires a java applet to use the plot program. This applet, which must be installed
on the computer trying to view the page, can be downloaded by following the instructions listed
on page 44.Step 1: Install the Java™ Plug-In
Selecting Variables To Plot
On the right-hand side of the Plot page you should see the Variables section. Here you have the ability to
select one or more variables to plot.
o
o
To plot one variable: click on the variable you wish to plot.
To plot two or more variables: either select the variables one-by-one while holding your keyboard’s
control “Ctrl” key down or select all the variables by selecting the first variable in the list and then
selecting the last variable listed while holding your keyboard’s “Shift” key down.
Selecting Rate
Directly below the list of variables is the Rate selection drop down menu. Here you are able to select the
sampling rate at which you’d like to plot the variables. Available rates are 1, 2, 5, 10, 50 and 100 Hz.
55
Chapter Six: Embedded Web-Based GUI and Diagnostics
Monitor Mode
Figure 10: Embedded GUI, Plot Page in Monitor Mode
Starting and Stopping the Plot program
Below the Rate selection is the Start/Stop button for the plot program. You must click on this button to start
the plot program and click on it a second time to stop the program.
Options (Trace Autoscroll, Rescaling Y Axis, Rescaling X Axis, Save to File)
Below the Start/Stop button, you should see the Options section. Here you are able to start/stop the
autoscrolling feature, rescale the Y-Axis, rescale the X-Axis or save the plot data to a file. These options are
described in detail below:
Trace Autoscroll 
unchecking this checkbox will stop the plot program from scrolling in the X-direction.
This option only has an effect while the program is running. Rechecking this checkbox
will enable the plot program to resume scrolling. The X-Axis scroll bar may be used for
manual scrolling.
Rescaling Y-Axis  next to where it says “Y scale:” enter in the scale (Min) to (Max), and then click on the
“Rescale Y-Axis” button. This option only has an effect if the “Trace Autoscroll”
checkbox is unchecked or the plot program is stopped. Otherwise the Y-Axis will
automatically scale itself to fit all variables being plotted.
56
Monitor Mode
Chapter Six: Embedded Web-Based GUI and Diagnostics
Rescaling X-Axis  entering a value next to where it says “X scale (seconds):” adjusts the number of
seconds spanned across the X-Axis, e.g. entering a value of ten seconds sets the X-Axis
so that it will show ten second segments at a time. To use this feature, enter the value
and then click on the “Rescale X-Axis” button. This option can be used at anytime.
Save to File 
the “Save to file” option can be used at anytime once you’ve started the plot program.
The data stored consists of the data collected from the time the Start button was pressed
to the time the “Save to file” button is pressed. The file will be saved in a (.csv) format
which can be later imported into a spreadsheet for further analysis.
Configuration Page – Monitor Mode
This page displays the TCP/IP settings and the current Firmware version for the MFC. In “Monitor Mode”
you are only able to view this information. At the bottom of this page you are able to enter the password to
change into “Setup Mode.” The Factory-shipped password is “config” (without the ““). Figure11, below,
shows a screen capture of the Configuration Page in “Monitor Mode.”
Figure 11: Embedded GUI, Configuration Page in Monitor Mode
57
Chapter Six: Embedded Web-Based GUI and Diagnostics
Monitor Mode
RS485 Comm Page – Monitor Mode
This page displays the Baud Rate and MacID settings for the RS485 MFC. In “Monitor Mode” you are able to
view this information as well as change it. Figure 12, below, shows a screen capture of the Configuration
Page in “Monitor Mode.” Similar pages exist for the DeviceNet and Profibus G-Series Products.
Figure 12: Embedded GUI, RS485 Comm Page in Monitor Mode
58
Setup Mode
Chapter Six: Embedded Web-Based GUI and Diagnostics
Setup Mode
In “Setup Mode” the user is able to configure the MFC, i.e. zero the device, change the IP address, configure
the operating pressure, etc. To enter this mode, while in “Monitor Mode”, go to the “Configuration Page” and
enter the Factory-shipped password “config” (without “”). Once you press the “Change Settings” button you
will be directed to the “Configuration Page” in “Setup Mode.” You should now a see a green banner that lines
the top of the page that says, “The device is now in SETUP mode.” (See Figure 13)
Each of the pages, i.e. tabs, in “Setup Mode” are listed and described below in detail starting with the Device
Page. Please note that this section will only describe in detail the features that are different from those in
“Monitor Mode.” For a complete understanding of each page, also read the Monitor Mode section starting on
page 54.
Figure 13: Setup Mode (Configuration Page)
59
Chapter Six: Embedded Web-Based GUI and Diagnostics
Setup Mode
Device Page – Setup Mode
In “Setup Mode” this page gives you the ability to modify the gas settings.
Figure 14: Embedded GUI, Device Page in Setup Mode
Gas Settings: The Device Page enables the user to change the MFC’s gas settings. To change the gas settings
review the following possible operations and go to the appropriate page.
o
To create a new gas instance, see page 60.
o
To change the full scale range of the current gas instance, see page 61.
o
To set the MFC to a different gas instance, see page 61.
Creating A New Gas Instance
(Refer to Figure 15, Embedded GUI, Creating a New Gas Instance during the following steps.)
In the “Create A Gas” section of the Device Page:
1. Click on the “select gas” drop-down menu arrow and find the gas you’d like to create.
2. Click on the “select instance” drop-down menu arrow and find an instance that says “No Gas.” Please
note that you can write or re-write to any instance except instance 32, which is the Factory calibration.
3. Press the “Submit” button.
60
Setup Mode
Chapter Six: Embedded Web-Based GUI and Diagnostics
4. This process typically takes under two minutes to complete. When the process is completed, the browser
will display a green banner across the top of the Device Page that says, “Gas Selection Update
SUCCEEDED.”
5. You should now see the newly created gas and its attributes now listed in the “Gas Settings” section of
the Device Page. At this point, if you want to change the full scale, then go ahead to the next section on
page 61. Otherwise you need to cycle the power to the MFC. Once you cycle the power, click on the
refresh button of the browser. Once the MFC powers up, the browser will reload and start on the
Device Page in Monitor Mode.
Figure 15: Embedded GUI, Creating A New Gas Instance
Changing the Full Scale Flow Range
In the “Gas Settings” section of the Device Page the user is able to change the full scale gas flow range to any
number between the “Min Full Scale (sccm)” and the “Max Full Scale (sccm)” values.
To do this, enter in the desired full scale range in the “Full Scale (sccm):” field and then press the “Set”
button. This operation typically takes less than one minute. Once completed, cycle the power to the MFC.
Once you cycle the power, click on the refresh button of the browser. Once the MFC powers up, the
browser will reload and start on the Device Page in Monitor Mode.
Figure 16: Changing the Full Scale Flow Range
Changing the Active Gas Instance
In the “Gas Settings” section of the Device Page the user is able to change the active gas instance.
To change the “Selected Gas”, click on the drop-down menu’s arrow and select one of the gases that have
been created. Please note that you are able to select the Factory calibration gas instance (32) but you cannot
change anything. Instance (1) is an exact replica of that instance if it has not been overwritten by the user on
previous modifications to the gas tables.
Once you’ve selected the instance you want press the “Set” button. The gas will change within (10) seconds.
You’ll notice that the “Standard Number” and the minimum and maximum full-scale ranges will change also.
61
Chapter Six: Embedded Web-Based GUI and Diagnostics
Setup Mode
Plot Page – Setup Mode
In “Setup Mode” this page enables the user to adjust the Operating Pressure setting to optimize control
performance and plot and collect data. To learn more about how to tune the MFC to your system see page XX
in the xxx section. This section only deals with setting the values.
Figure 17, Embedded GUI Plot Page in Setup Mode is a screen capture of the Plot Page in “Setup Mode.” The
Flow Setpoint and Operating pressure are located above the “Select Variables” section in the top right-hand
corner of the page. This page enables you to send a setpoint to the MFC through Ethernet (see notes below),
watch the MFC’s performance on the plot, and adjust the Operating Pressure parameter accordingly to
optimize the performance of the MFC.
Note
For Analog units, sending a setpoint through Ethernet will not work unless the Analog checkbox
is selected. This checkbox tells the device to bypass the analog setpoint on the analog/power
interface. To begin sending setpoints through the analog interface again, either uncheck the
Analog checkbox or close the browser.
Figure 17: Embedded GUI, Plot Page in Setup Mode
Before a MFC leaves the factory the performance is checked with Nitrogen in a typical application. During
this test the control parameters are set so that the device’s performance is optimized.
62
Setup Mode
Chapter Six: Embedded Web-Based GUI and Diagnostics
Configuration Page – Setup Mode
As was noted earlier, the Configuration Page is where you are initially directed once you’ve entered “Setup
Mode.” Here the MFC can be zeroed, the “Setup Mode” password can be changed, changes can be made to
the Ethernet settings and firmware can be updated.
Figure 18: Embedded GUI, Configuration Page in Setup Mode
Changing the Ethernet (TCP/IP) Settings
The TCP/IP section allows you to change the IP Address, Subnet Mask, and Default Gateway for the MFC.
Caution
If you are unfamiliar with setting TCP/IP settings for the MFC, please contact your
company’s IT personnel or local MKS representative for help. If settings are done
incorrectly, you may no longer be able to connect to the MFC over Ethernet.
To set a new IP Address, enter in the IP address and press the “Submit” button. Pressing the “Reset” button
will reset the entry fields to what was in them prior to you making any changes. For the new IP address to
take effect the power to the MFC must be cycled. To use the Embedded GUI, you must now change the URL
to reflect the new IP address, e.g. http://xx.xx.xx.xx, where xx.xx.xx.xx is the new IP address for the MFC.
63
Chapter Six: Embedded Web-Based GUI and Diagnostics
Setup Mode
Updating Firmware
Updating firmware is the responsibility of your local MKS representative. If any updates are “necessary”,
then your local representative will be in contact to set up a time to complete the upgrade. Please note that a
“necessary” update is one that is deemed “Critical” by the factory.
Zeroing the MFC
For the MFC there will be a “Zero Flow” option. Before zeroing the value make sure the “Zero Adjustment”
procedure in Chapter 7 has been followed correctly. To zero the flow, press the “Zero Flow” button. A green
banner across the top of the page will tell you if the device received the command and is processing. Zeroing
typically will take (10) seconds. The MFC will be unresponsive during this time.
Caution
Zeroing the flow incorrectly can cause system failure. Make sure that the “Zero
Adjustment” procedure on page Error! Bookmark not defined. is followed properly.
Changing the Setup Mode Password
To change the “Setup Mode” password from the default password “config,” follow the steps in the “Change
Setup Password” section.
64
Setup Mode
Chapter Six: Embedded Web-Based GUI and Diagnostics
RS485 Comm Page – Monitor Mode
This page displays the Baud Rate and MacID settings for the RS485 MFC. In “Monitor Mode” you are able to
view this information as well as change it. Figure 19, below, shows a screen capture of the Configuration
Page in “Setup Mode.” Similar pages exist for the DeviceNet and Profibus G-Series Products.
Figure 19: Embedded GUI, RS485 Comm Page in Setup Mode
65
Chapter Six: Embedded Web-Based GUI and Diagnostics
Setup Mode
Diagnostics Page – Setup Mode
The Diagnostics Page consists of a few basic diagnostic tests. In this section the user is given the ability to run
basic diagnostic tests on the flow and temperature. These tests can be run individually or all at once. These
tests are explained in more detail below.
Device Diagnostics
The tests listed in this section are designed to insure that there are no major electrical problems and that the
sensors are working properly. These tests are described in detail below:
Raw Flow 
this basic test is a simple diagnostic check for the flow circuit to verify that the sensor and
the electronics are working properly. To run this test, select the checkbox next to where it
says “Raw Flow:” and then press the “Run the test” button. When the test finishes you will
either see the word “Pass” or “Fail” next to the checkbox. If the test passes, then the flow
circuit is good. If it fails, then there may be a problem.
Temperature  this basic test is a simple diagnostic check for the temperature circuit to verify that the
sensor and the electronics are working properly. To run this test, select the checkbox next
to where it says “Temperature:” and then press the “Run the test” button. When the test
finishes you will either see the word “Pass” or “Fail” next to the checkbox. If the test
passes, then the temperature circuit is good. If it fails, then there may be a problem.
Figure 20: Embedded GUI, Diagnostics Page in Setup Mode
66
Setup Mode
Chapter Six: Embedded Web-Based GUI and Diagnostics
67
Chapter Seven: Maintenance
General Information
Chapter Seven: Maintenance
General Information
In general, no maintenance is required other than proper installation and operation. Periodically check for
wear on the cables and inspect the enclosure for visible signs of damage. If a mass flow device fails to operate
properly on receipt, check for shipping damage, and check the device’s cable for proper power supply. Any
damage should be reported to the freight carrier and MKS Instruments immediately. If there is no obvious
damage, and the unit fails to operate properly, obtain an RMA Number (Return Materials Authorization
Number) before returning the unit to MKS Instruments for service to expedite handling and ensure proper
servicing of your instrument.
Recalibration
It is recommended that the instrument be recalibrated annually (once per year) if no other time interval has
been specifically established. Refer to the inside of the back cover of this instruction manual for a complete
list of MKS Calibration and Service Centers.
Flow Zero Adjustment
Recommended Interval
For the best accuracy and repeatability performance of the MFC, the zero output output of the device should
be periodically checked and reset, if necessary. All MFCs should be zeroed under actual installation
conditions prior to use. Very slight offsets in the zero condition can contribute to flow measurement
inaccuracy. This may be especially noticeable at the lower end of the device range. At minimum, it is
recommended that the MFC be checked and zeroed, if necessary:

At the time of initial installation (or reinstallation).

Any time the ambient temperature at the MFC changes more than 10 degrees Centigrade.

Monthly, as part of a normal preventative maintenance procedure.
Methods to Adjust the MFC Flow Zero
There are multiple methods to adjust the Flow Zero of the G-Series MFCs. The methods available depend on
the I/O type, either analog or digital.
Analog I/O Devices

Manually - Depress and hold the zero (“Select”) button on the top of the device enclosure for three (3)
seconds.

Via the Ethernet UI – Connect to the device using the Ethernet UI and enter the Setup Mode. Go to the
Configure Tab and zero using the “Zero Flow” button on the screen. See Figure 18.

Electronically (15 Pin D analog only) – Pull Pin 9 to ground for three (3) seconds.
Digital I/O Devices

Manually - Depress and hold the zero (“Select”) button on the top of the device enclosure for three (3)
seconds.

Via the Ethernet UI – Connect to the device using the Ethernet UI and enter the Setup Mode. Go to the
Configure Tab and zero using the “Zero Flow” button on the screen. See Figure 18.
68
Flow Zero Adjustment

Chapter Seven: Maintenance
Via the protocol Zero Service.
 For DeviceNet – Refer to “MKS G-Series MFC, Devicenet Supplement” 1046412-001.
 For Profibus – Refer to “MKS G-Series MFC Profibus Supplement”, 1046413-001
 For RS485 – Refer to “MKS G-Series MFC, RS485 Supplement”, 1046411-001.
Flow Zero Adjustment Procedure
1) Assure that the MFC is setup in the exact process conditions:
a) Verify that the MFC is installed in the final equipment and orientation (base up, base down, vertical
flow up, etc.)
b) Verify that the MFC is powered at operating temperature for at least 30 minutes.
c) If the MFC will be subjected to elevated ambient temperature conditions, verify that these
temperatures have been achieved and stable for at least 30 minutes before continuing.
2) Verify that the pressure drop across the MFC is reduced to zero and zero the device. Depending on the
gas panel configuration, this may be done by one of the following procedures.
a) System has upstream and downstream positive shut off valves
i) Close the upstream valve.
ii) Close the downstream valve.
iii) Open the MFC’s control valve.
iv) Allow pressure across MFC to equilibrate as flow output approaches zero and stabilizes.
v) Close the MFC’s control valve.
vi) Wait one minute and adjust the zero using one of the methods specified for the device I/O type.
b) For systems with downstream valve only - Zero the MFC at typical operating inlet pressure.
i) Close the downstream valve.
ii) Open the MFC’s control valve.
iii) Allow pressure to equilibrate across the MFC as flow output approaches zero and stabilizes.
iv) Close the MFC’s control valve.
v) Wait one minute and adjust zero using one of the methods specified for the device I/O type.
c) For systems with upstream valve only - MFC may be re-zeroed with downstream line under
vacuum or atmosphere.
i) Close the upstream valve.
ii) Open the MFC’s control valve.
iii) The MFC may be evacuated to vacuum or exposed to atmosphere on downstream side. For either
case, the downstream pressure must be kept constant to insure there is no pressure drop across
MFC.
iv) Allow pressure to equilibrate across MFC as flow output approaches zero and stabilizes.
v) Close the MFC’s control valve.
vi) Wait one minute and adjust zero using one of the methods specified for the device I/O type.
DeviceNet Zeroing Commands
The MFC must be in the executing state then send the zero service with a target value of zero. The following
assumes explicit messaging only using the DeviceNet communication protocol.
Place the device in the Executing State through the S-Device Supervisor Object: Note the response Status:
Success
The following DeviceNet Command places the device in executing.
Service 0x06, Class 0x30, Instance 1
1. Verify you are in executing through the S-Device Supervisor Object: Note the response Data (hex): 04
means we are in executing. Attribute 0x0B The following DeviceNet Command is used to verify you are
69
Chapter Seven: Maintenance
Flow Zero Adjustment
in executing.
Service 0xE, Class 0x30, Instance 1, Service Data (attribute) 0x0B
You should get response data of 0x04
3. Send the Zero Adjust Service using S-Analog Sensor Object Instance 1 ( Flow )
The following DeviceNet Command Starts the Pressure zero.
Service 0x4B, Class 0x31, Instance 1, Service Data (Target Value) can be Empty Data or Data Type based
value, i.e. 2 byte for integer or 4 byte real value, if a value is used, it must be a target value equal to zero.
4. The Flow zeroing procedure usually takes several seconds to perform. Recheck your flow to verify zero has
occurred. You can also perform an explicit GET(Service 0x0E) on Class 0x31, Instance 1, Attribute 0x1C,
which is the Autozero Status. This attribute’s service data will equal “1” while zeroing is in progress and
equal “0” when the zeroing has completed. It is most important that the device is at a zero flow, if a high flow
is detected by the MFC, then zeroing will not occur.
Profibus Zeroing Commands
In cyclic data exchange communication, set the AUTOZERO field in the Send Data structure to 1.
In DP-V1 Extension message, set the Auto Zero Value (Index 16) to zero in slot 0x31 in the Analog
Sensor Object .
RS485 Zeroing Commands
The MFC must be in the Calibrate Mode to zero the device. In the calibrate mode, send the command “AZ”
to zero the device. The message structure appears as shown below:
@@@254AZ!;FF
In this example, “254” is the address and “FF” is the Checksum. Substitute the correct address and checksum
applicable to your device.
70
Flow Zero Adjustment
Chapter Seven: Maintenance
This page intentionally left blank.
71
Troubleshooting Chart
Chapter Eight: Troubleshooting
Chapter Eight: Troubleshooting
Troubleshooting Chart
Table 15: Troubleshooting Chart
Symptom
MFC LED does not light
Possible Cause
Check/Corrective Action
No power
Check power source
Low power
Check supply voltage
Wrong cable
Check cable
Bad cable connection
Check pin(s) continuity
MFC does not respond to Bad DNet connection
any setpoint
Verify correct DNet I/O instance
Control circuit failure
Provide setpoint, gas & pressure to
device, run diagnostic using Ethernet
interface.
Low or no power
Check power source, measure
voltage
Contamination/Clogged Check inlet pressure @ MFC. Check
blocked MFC device or gas line outlet pressure MFC using pressure
gauge. Check outlet pressure
downstream of positive shut off
(pneumatic) valve downstream of
MFC. Check air line to pneumatic
valve. Check for any restriction such
as filter or check valve downstream
of MFC.
MFC shows 0 flow when
given setpoint
Closed upstream and/or
downstream pneumatic valves
Open valves, check inlet pressure
No gas supply
Turn on gas supply
Upstream clogged
filter/component
Check flow through of components
by measuring pressure drop across
device
MFC clogged orifice
Verify MFC inlet pressure, check
valve current for open valve
condition. Check for gas flow
downstream of MFC - If flow does
not exist, possible clogged orifice
73
Chapter Eight: Troubleshooting
Troubleshooting Chart
MFC clogged sensor
Run MFC diagnostics. Verify MFC
inlet pressure, check valve current
for open valve condition and check
for gas flow downstream of MFC. If
flow present, possible clogged
sensor
MFC control circuit failure
Run MFC diagnostics. If error
results, contact MKS service center.
MFC shows output flow > MFC valve full open
FS (overrange)
Check valve current for maximum
condition
Pressure drop across MFC is
greater than specification
Measure upstream pressure &
downstream pressure. Compare to
specification.
Faulty valve control
circuit/calibration
Run MFC diagnostics using Ethernet
GUI
Possible contamination in valve Cycle-purge MFC to clear suspected
assembly
contamination
MFC output signal does
not match setpoint
MFC output signal
oscillates
Contamination
Check for partial block orifice or
sensor. Cycle purge MFC to clear
contaminant
Inlet pressure too low
Increase inlet pressure
Outlet pressure too high
Decrease outlet pressure
Flow signal is not properly
grounded.
Check for ground loops.
Control electronics failure,
sensor failure
Run MFC diagnostics test
Inlet pressure oscillates
Check for faulty regulator
Inlet pressure too high
Lower inlet pressure
Inlet pressure too high
Adjust programmed inlet pressure
through Ethernet GUI.
MFC nameplate gas not same
as actual gas
Check for programmed gas using
Ethernet GUI or digital interface.
Reprogram as necessary
Faulty control circuit
Run MFC diagnostic test.
74
Troubleshooting Chart
MFC output signal
matches setpoint, but
actual gas flow less (as
determined by transfer
standard)
MFC cannot achieve FS
flow
Output signal matches
setpoint @ higher flows,
but will not go to 0
Chapter Eight: Troubleshooting
Contaminated bypass
Check process chamber pressure.
Compare to normal or reference.
MFC programmed for different
gas
Compare gas programmed in MFC to
actual gas used. Verify using DNet
or Ethernet interface.
Inlet pressure low
Increase inlet pressure
Outlet pressure high
Decrease outlet pressure
Valve contamination
Check valve current for maximum
position
Gas line
blockage/contamination
Measure pressure drop across
component suspected of
contamination such as filter or check
valve
MFC setpoint in counts > than
100% FS of 24567 counts
Program attributed 6 to 100% =
24567 counts (0x6000)
MFC valve partial contamination Cycle-purge device, check valve
current
Faulty control valve, adjustment Run MFC diagnostics, call MKS
or electronics
service center
Display powers up, but
MFC does not respond
Inlet pressure too high
Decrease inlet pressure
Device zero offset
re-zero device with known zero flow
conditions
Bad DNet/RS485 connection
Check status DNet polled
connection/RS485 connection. check
network LED
Incorrect MAC ID Address
Check MAC ID on device
Incorrect baud rate setting
Check baud rate on device
Incorrect DNet I/O Instance
Setting
Check I/O setting using DNet
commissioning tool/software
Check tool host
MFC output shows large
overshoot
Low power, power supply
Measure current & voltage from
power source
Inlet pressure too high
Decrease inlet pressure
Actual inlet pressure higher
than pressure programmed to
Adjust programmed inlet pressure
through Ethernet GUI.
75
Chapter Eight: Troubleshooting
Troubleshooting Chart
device.
MFC output slow to
respond to setpoint
MFC not programmed for
correct gas - actual gas used
different
Check MFC active gas using digital
interface or Ethernet GUI
MFC control parameters set
incorrectly
Contact MKS service center
Inlet pressure too low
Increase inlet pressure
Actual inlet pressure lower than Adjust programmed inlet pressure
through Ethernet GUI.
pressure programmed to
device.
Output signal > zero with
confirmed zero flow
condition
DeviceNet LED
indicator (color)
MFC not programmed for
correct gas - actual gas used
different
Check MFC active gas using digital
interface or Ethernet GUI
MFC control parameters set
incorrectly
Contact MKS service center
MFC device zero offset
Re-zero device per instruction
manual
Fault in valve adjustment, gap
between plug & orifice
Contact MKS service center
State
Indication
Link OK, On-line, Connected
The device in on-line and has
connection in the established state.
- Network status LED
Green
- For a Group 2 only device it means
that this device is not allocated to a
master.
Flashing Green
On-line, Not Connected
Device is on-line but has no
connection in the established state.
- The device has passed The
Dup_MAC_ID test, is on-line, but has
no established connections to other
nodes.
- For a Group 2 only device it means
that this device is not allocated to a
master.
76
Troubleshooting Chart
Chapter Eight: Troubleshooting
Red
Critical Link Failure
Failed communication device. The
device has detected an error that has
rendered it incapable of
communicating on the network
(Duplicate MAC ID, or Bus-off)
Flashing Red
Connection Time-Out
One or more I/O Connections are in
the Timed-Out state.
Flashing Red & Green Communication Faulted and
Received an Identify Comm
Fault Request - Long Protocol
A specific Communication Faulted
device. The device has detected a
Network Access error and is in the
Communication Faulted state. The
device has subsequently received
and accepted an Identify
Communication Faulted Request Long Protocol message.
Off
Device is not on-line
Not Powered/Not On-Line
- The device has not completed The
Dup_MAC-ID test yet
- The device may not be powered,
look at Module Status LED.
- DeviceNet Module
Status Indicator
Green
Device operational
The device is operating in a normal
condition
Flashing Green
Device in Standby (The Device
Needs Commissioning)
The device needs commisioning due
to configuration missing, incomplete
or incorrect.
Red
Unrecoverable Fault
The device has an unrecoverable
fault; may need replacing.
Flashing Red
Minor Fault
Recoverable Fault
Flashing Red & Green Device Self Testing
The Device is in Self Test.
Reference the Identity Object in
Volume II for Device states.
Off
There is no power applied to the
device
No power
77
Chapter Eight: Troubleshooting
Troubleshooting Chart
This page intentionally left blank.
78
Appendix A: Product Specifications
Performance Specifications – GE50A/GV50A/GM50A
Appendix A: Product Specifications
Performance Specifications – GE50A/GV50A/GM50A
GE50A, GV50A – Elastomer Sealed
GM50A – Metal Sealed
Full Scale Flow (N2 equivalent)
10-50000 sccm
10-50000 sccm
Maximum Inlet Pressure
150 psig, limited to maximum differential
pressure across MFC.
150 psig, limited to maximum differential
pressure across MFC.
Normal Operating Pressure
Differential (with atmospheric
pressure at the MFC outlet)
10 to 5000 sccm, 10 to 40 psid
10000 to 20000 sccm 15 to 40 psid
30000 to 50000 sccm 25 to 40 psid
10 to 5000 sccm, 10 to 40 psid
10000 to 20000 sccm 15 to 40 psid
30000 to 50000 sccm 25 to 40 psid
Proof Pressure
1000 psig
1000 psig
Burst Pressure
1500 psig
1500 psig
Control Range
2% to 100% of F.S.
2% to 100% of F.S.
Accuracy
 1% of setpoint for > 20 to 100% F.S.
 0.2% of FS for 2 to 20% F.S.
 1% of setpoint for > 20 to 100% F.S.
 0.2% of FS for 2 to 20% F.S.
Repeatability
 0.3% of Reading
 0.3% of Reading
Resolution
0.1% of Full Scale
0.1% of Full Scale
Temperature Coefficients
Zero
Span
<0.05% F.S./C
<0.05% F.S./C
<0.08% Reading/C
<0.08% Reading/C
Inlet Pressure Coefficient
< 0.02% of Reading./psi
< 0.02% of Reading./psi
Typical Controller Settling Time
(per SEMI Guideline E17-0600)
< 750 milliseconds (typical above 5% F.S.)
< 750 milliseconds (typical above 5% F.S.)
Warm-Up Time
(to within 0.2% of F.S. of steady
state performance)
< 30 min.
< 30 min.
Normal Operating Temperature
Range
10C to 50C
10C to 50C
Storage Humidity
0 to 95% Relative Humidity, noncondensing
0 to 95% Relative Humidity, noncondensing
Storage Temperature
-20C to 65C (-4F to 149F)
-20C to 65C (-4F to 149F)
ROHS Compliant
Yes
Yes
Electromagnetic Compatibility
CE Compliant 2004/108/EC
CE Compliant 2004/108/EC
Specifications are subject to change without notice.
79
Specifications are subject to change without notice.
Mechanical Specifications - GE50A/GV50A/GM50A
Appendix A: Product Specifications
Mechanical Specifications - GE50A/GV50A/GM50A
GE50A, GV50A – Elastomer Sealed
GM50A – Metal Sealed
Fittings (compatible with)
¼” Swagelok, 4 VCR, 4 VCO
¼” Swagelok, 4 VCR, 1-1/2” surface mount
(C-seal, W-seal)
Leak Integrity
External (scc/sec He)
Through closed valve
Through shut-off valve
< 1 x 10-9
< 0.1% for F.S. at 40 psig inlet to atmos.
<4x 10-09 atm-cc/sec He
< 1 x 10-10
< 1% for F.S. at 40 psig inlet to atmos.
Not Applicable
316L S.S. VAR (equivalent to 316 S.S. SCQ
for semiconductor quality), 316 S.S. ,
Elgiloy, Nickel, 430FR
Viton, Buna, or Neoprene
316L S.S. VAR (equivalent to 316 S.S. SCQ
for semiconductor quality), 316 S.S. ,
Elgiloy, KM-45, PTFE
Stainless Steel
Surface Finish
16 inches, average Ra
10 inches, average Ra, Electropolished
Weight
≤ 3 lbs (1.4 kg)
≤ 3 lbs (1.4 kg)
Wetted Materials
Standard
Seals (select option)
Electrical Specifications for GE50A, GM50A and GV50A
Analog I/O
Input Voltage Required
Max current at start-up (first 5 sec.)
Typical current at steady state
+15 to +25 VDC
15VDC (±5 %) @ TBD mA
15VDC (±5 %) @ TBD mA
Set Point Command Signal
0 to 5 VDC
Flow Output Signal
0 to 5 VDC (into high impedance load, minimum 10K-ohm)
Output Impedance
<1Ω
Connectors
15-pin Type “D”, 9-pin Type “D”
Digital I/O (DeviceNet)
Input Voltage
Max current at start-up (first 5 sec.)
Typical current at steady state
+11 to +25 VDC
15VDC (±5 %) @ 350 mA
15VDC (±5 %) @ 280 mA
Data Rate/Network Length
Date Rate (User selectable)
125 Kbps, 500 m (1,640 ft)
250 Kbps, 250m (820 ft)
500 Kbps, 100m (328 ft)
Level of Filtering
User software adjustable
Digital Functions (flow)
Select units: counts, slm, sccm % of F.S.
Remote Zero
80
Appendix A: Product Specifications
Electrical Specifications for GE50A, GM50A and GV50A
Set/read flow rate
Flow totalizer and run hours
Valve soft start
Monitor MFC status – valve drive level and trip points (alarm for high flow,
alarm for low flow, warning for high flow, warning for low flow)
Reset factory defaults
Report run time hours
Change user tags and device address
Device Identification Storage includes manufacturer information, model and
serial number, original factory calibration, software and hardware revision
numbers.
Digital Functions (temperature)
Set units
Read temperature
Alarm enable, Warning enable
Alarm settling time, Warning settling time
Alarm trip point high, Warning trip point high
Alarm trip point low, Warning trip point low
Zero adjust
Data Rate Switch
4 positions: 125, 250, 500K, PGM
(programmable over the network)
MAC ID Switches
2 switches, 10 positions; 0,0 to 6,3 are hardware ID numbers: 7,0 to 9,9 are
software ID numbers; (6,4 to 6,9 are unused and, if selected will default to
hardware ID number 6,3)
Input Power
11 to 25 VDC per DeviceNet specifications ( @ <3.5 watts)
Network Size
Up to 64 nodes
Network Topology
Linear (trunkline/dropline) power and signal on same network cable
Visual Communication Indicators
LED network status (green/red)
LED module status (green/red)
Digital I/O (RS485)
Input Voltage
Max current at start-up (first 5 sec.)
Typical current at steady state
+15 to +25 VDC
15VDC (±5 %) @ 350 mA
15VDC (±5 %) @ 280 mA
Date Rate/Network Length
Date Rate (User selectable)
9.6 KBaud/1200 m (4000 ft.)
19.2 KBaud/1200 m (4000 ft.)
38.4 KBaud /1200 m (4000 ft.)
Digital Functions (flow)
Query for MAC – Host controller will use this message to query the existence
of a MFC controller.
Freeze Follow – Host controller will use this message to configure a MFC
controller to act upon a new set point when received.
Set Point – Host controller will use this message to send a new set point to a
MFC controller.
Filtered Set Point – Host controller will use this message to get the current set
point from a MFC controller.
Indicated Flow - Host controller will use this message to get the current flow
81
Electrical Specifications for GE50A, GM50A and
GV50A
Appendix A: Product Specifications
reading from a MFC controller.
Valve Drive Current - Host controller will use this message to get the valve
drive current.
Calibration Instance (Process Gas) Selection - Host controller will use this
message to select which calibration instance is to be used for flow metering.
Query for Calibration Instance (Process Gas) Selected - Host controller will
use this message to query the selected calibration instance, which is currently
being used for flow metering.
Requested Zero Enable - Host controller will use this message to enable
requested function.
Query for Requested Zero Status – Host controller will use this message to
query if the requested zero function has been completed.
Query for Zero Offset - Host controller will use this message to query the
present sensor zero offset.
Set Ramp Time – Used to set the tamp time in ms. The set point will ramp in
from the present to the new setpoint in this period of time..
Query All - This is used to obtain 3 measurements, Flow, valve and
temperature in 1 command.
Set Actuator Mode - This is used to set valve to open, closed or normal
control
Data Rate Switch
3 positions: 9.6, 19.2, 38.4 KBaud
(programmable over the network)
MAC ID Switches
2 switches, 10 positions each; 15 available MACIDs (33-99)
Input Power
11 to 25 VDC per DeviceNet specifications ( @ <3.5 watts)
Network Size
Up to 256 nodes (15 available MFC MACIDs)
Network Topology
Master/slave
Visual Communication Indicators
LED Comm status (green/red)
LED Error status (green/red)
Specifications are subject to change without notice.
82
Appendix A: Product Specifications
Electrical Specifications for GE50A, GM50A and GV50A
83
Model Code Description – Elastomer Sealed Products
Appendix B : Model Code Explanation for GE50A & GV50A
Appendix B : Model Code Explanation for GE50A & GV50A
Model Code Description – Elastomer Sealed Products
The model code of the MFC defines features of the unit such as device type, flow range, fittings, valve
configuration, connector type, seal material and firmware revision.
CCCCC
GGG
FFF
Y
W
Z
S
VV
Configuration Code
Gas Code
Flow Range Full Scale
Fittings
Connector Type
Seal Type
Reserved For MKS Future Use
Firmware Version
Configuration Code (CCCCC)
Type GE50A Elastomer Sealed Mass Flow Controller: CCCCC = GE50A
Type GV50A Elastomer Sealed Mass Flow Controller with Integral Shut-off Valve: CCCCC = GV50A
Gas Code (GGG)
Gas codes are in accordance with SEMI Guideline E52, Practice for Referencing Gases and Gas Mixtures
Used in Digital Mass Flow Controllers. If the gas or gas mixture sought is not found in the list below, conult
MKS Applications Engineering for assistance.
Gas
Code
Symbol
Acetone
184
C3H6O
Acetylene
042
C2H2
Air
008
Air
Allene
066
C3H4
Ammonia
029
NH3
Argon
004
Ar
Arsine
035
AsH3
Boron Trichloride
070
BCl3
Boron Trifluoride
048
BF3
Bromine
021
Br2
Bromine Pentafluoride
116
BrF5
Bromine Trifluoride
076
BrF3
Bromotrifluoromethane (R-13b1)
080
CBrF3
Butane
117
C4H10
84
Appendix B : Model Code Explanation for GE50A &
GV50A
Carbon Dioxide
025
CO2
Carbon Disulfide
040
CS2
Carbon Monoxide
009
CO
Carbon Tetrachloride
101
CCl4
Carbon Tetrafluoride (R-14)
063
CF4
Carbonyl Sulfide
034
COS
Chlorine
019
Cl2
Chlorine Trifluoride
077
ClF3
Chlorodifluoromethane (R-22)
057
CHClF2
Chloroform (Trichloromethane)
071
CHCl3
Chloropentafluoroethane (R-115)
119
C2ClF5
Chlorotrifluoromethane (R-13)
074
CClF3
Cyanogen
059
C2N2
Cyanogen Chloride
037
ClCN
Cyclopropane
061
C3H6
Deuterium
014
D2
Diborane
058
B2H6
Dichlorodifluoromethane (R-12)
084
CCl2F2
Dichlorofluoromethane (R-21)
065
CHCl2F
Dichlorosilane
067
SiH2Cl2
1,2-Dichlorotetrafluoroethane (R-114)
125
C2Cl2F4
Difluoroethylene (R-1132a)
064
C2H2F2
Difluoromethane
160
CH2F2
Dimethylamine
085
C2H7N
Dimethylpropane
122
C5H12
Disilane
097
Si2H6
Ethane
054
C2H6
Ethanol
136
C2H6O
Ethyl Acetylene
093
C4H6
Ethyl Chloride
075
C2H5Cl
Ethylene
038
C2H4
Ethylene Oxide
045
C2H4O
Fluorine
018
F2
Germane
043
GeH4
Germanium Tetrachloride
113
GeCl4
Helium
001
He
Hexafluoro Butadiene-1,3
297
C4F6
Hexafluoroethane (R-116)
118
C2F6
Hexafluoropropylene
138
C3F6
Hexane
127
C6H14
Hydrogen
007
H2
Hydrogen Bromide
010
HBr
Model Code Description – Elastomer Sealed Products
85
Model Code Description – Elastomer Sealed Products
Hydrogen Chloride
011
HCl
Hydrogen Cyanide
024
HCN
Hydrogen Fluoride
012
HF
Hydrogen Iodide
017
HI
Hydrogen Selenide
023
H2Se
Hydrogen Sulfide
022
H2S
Iodine Pentafluoride
115
IF5
Isobutane
111
C4H10
Isobutylene
106
C4H8
Krypton
005
Kr
Methane
028
CH4
Methanol
176
CH4O
Methyl Acetylene
068
C3H4
Methyl Bromide
044
CH3Br
Methyl Chloride
036
CH3Cl
Methyl Fluoride
033
CH3F
Methyl Mercaptan
047
CH4S
Methylamine
052
CH5N
Methyltrichlorosilane
183
CH3Cl3Si
Molybdenum Hexafluoride
124
MoF6
Neon
002
Ne
Nitric Oxide
016
NO
Nitrogen
013
N2
Nitrogen Dioxide
026
NO2
Nitrogen Trifluoride
053
NF3
Nitrosyl Chloride
141
NOCl
Nitrous Oxide
027
N2O
Octafluorocyclobutane (R-c318)
129
C4F8
Oxygen
015
O2
Oxygen Difluoride
041
OF2
Ozone
030
O3
Pentaborane
142
B5H9
Pentafluorethane
155
C2HF5
Perchloryl Fluoride
072
ClO3F
Perfluoropropane
128
C3F8
Phosgene
060
CCl2O
Phosphine
031
PH3
Phosphorous Oxychloride
102
POCl3
Phosphorous Pentafluoride
143
PF5
Propane
089
C3H8
Propylene
069
C3H6
Radon
003
Rn
Silane
039
SiH4
Appendix B : Model Code Explanation for GE50A & GV50A
86
Appendix B : Model Code Explanation for GE50A &
GV50A
Silicon Tetrachloride
108
SiCl4
Silicon Tetrafluoride
088
SiF4
Sulfur Dioxide
032
SO2
Sulfur Hexafluoride
110
SF6
Sulfur Tetrafluoride
086
SF4
Sulfuryl Fluoride
087
SO2F2
Tetrafluoroethane (R-134a)
156
C2H2F4
Titanium Tetrachloride
114
TiCl4
Toluene
181
C7H8
Trans-Butene
098
C4H8
Trichloroethane
112
C2H3Cl3
Trichlorofluoromethane (R-11)
091
CCl3F
Trichlorosilane
147
SiHCl3
Trichlorotrifluoroethane (R-113)
126
C2Cl3F3
Trifluoromethane (Fluoroform R-23)
049
CHF3
Trimethoxyborine
131
C3H9BO3
Trimethylamine
109
C3H9N
Tungsten Hexafluoride
121
WF6
Uranium Hexafluoride
123
UF6
Vinyl Bromide
056
C2H3Br
Vinyl Chloride
055
C2H3Cl
Xenon
006
Xe
Model Code Description – Elastomer Sealed Products
87
Model Code Description – Elastomer Sealed Products
Appendix B : Model Code Explanation for GE50A & GV50A
Flow Range Full Range (FFF)
The MFC’s mass flow full scale range is indicated by a three digit code.
Mass Flow Rate
G-SERIES
Ordering
Code(FFF)
10 sccm
101
20 sccm
201
50 sccm
501
100 sccm
102
200 sccm
202
500 sccm
502
1000 sccm
103
2000 sccm
203
5000 sccm
503
10000 sccm
104
20000 sccm
204
30000 sccm
304
50000 sccm
504
FittingType (Y)
The fitting options are designated by a letter code.
Fitting Style
GE50A & GV50A
Swagelok 4 VCR male
R
Swagelok 4 VCO male
G
Swagelok ¼” compression seal
S
Downport C-Seal per SEMI 2787.1
-
Downport W-Seal per SEMI 2787.3F
-
Connector – Control I/O (W)
The MFC’s connector is designated by a single number code.
Connector Type
Ordering Code
Profibus
4
Digital RS485
5
DeviceNet
6
9 Pin D(Analog I/O)
A
15 Pin D(Analog I/O)
B
88
Appendix B : Model Code Explanation for GE50A &
GV50A
Model Code Description – Elastomer Sealed Products
Seal Type (Z)
The seal material option is designated by a letter code. The MFCs are normally closed valve with the
following seal type.
Valve Type
Ordering Code
Viton
V
Buna-N
B
Neoprene
N
Reserved For MKS Future Use (S)
Standard = 0
Firmware Version (VV)
The firmware version options are designated by a two digit number code for all product I/O types. The
versions specified below are the released firmware versions at the time of this manuals release.
Example: The release of firmware version 10.
Firmware Version
Ordering Code
Profibus (4), RS485 (5) and
Devicenet (6) I/O Devices
10
9 Pin D (A) and 15 Pin D
Analog I/O Devices
10
89
Model Code Description – GM50A – Metal Sealed
Products
Appendix C: Model Code Explanation for GM50A
Appendix C: Model Code Explanation for GM50A
Model Code Description – GM50A – Metal Sealed Products
The model code of the MFC defines features of the unit such as device type, flow range, fittings, valve
configuration, connector type, seal material and firmware revision.
CCCCC
GGG
FFF
Y
W
Z
S
VV
Configuration Code
Gas Code
Flow Range Full Scale
Fittings
Connector Type
Valve Type (Closed “M” for MFC;
None “3” for MFM)
Reserved For MKS Future Use
Firmware Version
Configuration Code (CCCCC)
Type GM50A Metal Sealed Mass Flow Controller and Mass Flow Meter: CCCCC = GM50A
Gas Code (GGG)
Gas codes are in accordance with SEMI Guideline E52, Practice for Referencing Gases and Gas Mixtures
Used in Digital Mass Flow Controllers. If the gas or gas mixture sought is not found in the list below, conult
MKS Applications Engineering for assistance.
Gas
Code
Symbol
Acetone
184
C3H6O
Acetylene
042
C2H2
Air
008
Air
Allene
066
C3H4
Ammonia
029
NH3
Argon
004
Ar
Arsine
035
AsH3
Boron Trichloride
070
BCl3
Boron Trifluoride
048
BF3
Bromine
021
Br2
Bromine Pentafluoride
116
BrF5
Bromine Trifluoride
076
BrF3
Bromotrifluoromethane (R-13b1)
080
CBrF3
Butane
117
C4H10
90
Appendix C: Model Code Explanation for GM50A
Carbon Dioxide
025
CO2
Carbon Disulfide
040
CS2
Carbon Monoxide
009
CO
Carbon Tetrachloride
101
CCl4
Carbon Tetrafluoride (R-14)
063
CF4
Carbonyl Sulfide
034
COS
Chlorine
019
Cl2
Chlorine Trifluoride
077
ClF3
Chlorodifluoromethane (R-22)
057
CHClF2
Chloroform (Trichloromethane)
071
CHCl3
Chloropentafluoroethane (R-115)
119
C2ClF5
Chlorotrifluoromethane (R-13)
074
CClF3
Cyanogen
059
C2N2
Cyanogen Chloride
037
ClCN
Cyclopropane
061
C3H6
Deuterium
014
D2
Diborane
058
B2H6
Dichlorodifluoromethane (R-12)
084
CCl2F2
Dichlorofluoromethane (R-21)
065
CHCl2F
Dichlorosilane
067
SiH2Cl2
1,2-Dichlorotetrafluoroethane (R-114)
125
C2Cl2F4
Difluoroethylene (R-1132a)
064
C2H2F2
Difluoromethane
160
CH2F2
Dimethylamine
085
C2H7N
Dimethylpropane
122
C5H12
Disilane
097
Si2H6
Ethane
054
C2H6
Ethanol
136
C2H6O
Ethyl Acetylene
093
C4H6
Ethyl Chloride
075
C2H5Cl
Ethylene
038
C2H4
Ethylene Oxide
045
C2H4O
Fluorine
018
F2
Germane
043
GeH4
Germanium Tetrachloride
113
GeCl4
Helium
001
He
Hexafluoro Butadiene-1,3
297
C4F6
Hexafluoroethane (R-116)
118
C2F6
Hexafluoropropylene
138
C3F6
Hexane
127
C6H14
Hydrogen
007
H2
Hydrogen Bromide
010
HBr
Hydrogen Chloride
011
HCl
Model Code Description – GM50A – Metal Sealed Products
91
Model Code Description – GM50A – Metal Sealed
Products
Hydrogen Cyanide
024
HCN
Hydrogen Fluoride
012
HF
Hydrogen Iodide
017
HI
Hydrogen Selenide
023
H2Se
Hydrogen Sulfide
022
H2S
Iodine Pentafluoride
115
IF5
Isobutane
111
C4H10
Isobutylene
106
C4H8
Krypton
005
Kr
Methane
028
CH4
Methanol
176
CH4O
Methyl Acetylene
068
C3H4
Methyl Bromide
044
CH3Br
Methyl Chloride
036
CH3Cl
Methyl Fluoride
033
CH3F
Methyl Mercaptan
047
CH4S
Methylamine
052
CH5N
Methyltrichlorosilane
183
CH3Cl3Si
Molybdenum Hexafluoride
124
MoF6
Neon
002
Ne
Nitric Oxide
016
NO
Nitrogen
013
N2
Nitrogen Dioxide
026
NO2
Nitrogen Trifluoride
053
NF3
Nitrosyl Chloride
141
NOCl
Nitrous Oxide
027
N2O
Octafluorocyclobutane (R-c318)
129
C4F8
Oxygen
015
O2
Oxygen Difluoride
041
OF2
Ozone
030
O3
Pentaborane
142
B5H9
Pentafluorethane
155
C2HF5
Perchloryl Fluoride
072
ClO3F
Perfluoropropane
128
C3F8
Phosgene
060
CCl2O
Phosphine
031
PH3
Phosphorous Oxychloride
102
POCl3
Phosphorous Pentafluoride
143
PF5
Propane
089
C3H8
Propylene
069
C3H6
Radon
003
Rn
Silane
039
SiH4
Appendix C: Model Code Explanation for GM50A
92
Appendix C: Model Code Explanation for GM50A
Silicon Tetrachloride
108
SiCl4
Silicon Tetrafluoride
088
SiF4
Sulfur Dioxide
032
SO2
Sulfur Hexafluoride
110
SF6
Sulfur Tetrafluoride
086
SF4
Sulfuryl Fluoride
087
SO2F2
Tetrafluoroethane (R-134a)
156
C2H2F4
Titanium Tetrachloride
114
TiCl4
Toluene
181
C7H8
Trans-Butene
098
C4H8
Trichloroethane
112
C2H3Cl3
Trichlorofluoromethane (R-11)
091
CCl3F
Trichlorosilane
147
SiHCl3
Trichlorotrifluoroethane (R-113)
126
C2Cl3F3
Trifluoromethane (Fluoroform R-23)
049
CHF3
Trimethoxyborine
131
C3H9BO3
Trimethylamine
109
C3H9N
Tungsten Hexafluoride
121
WF6
Uranium Hexafluoride
123
UF6
Vinyl Bromide
056
C2H3Br
Vinyl Chloride
055
C2H3Cl
Xenon
006
Xe
Model Code Description – GM50A – Metal Sealed Products
93
Model Code Description – GM50A – Metal Sealed
Products
Appendix C: Model Code Explanation for GM50A
Flow Range Full Range (FFF)
The MFC’s mass flow full scale range is indicated by a three digit code.
Mass Flow Rate
G-SERIES
Ordering
Code(FFF)
10 sccm
101
20 sccm
201
50 sccm
501
100 sccm
102
200 sccm
202
500 sccm
502
1000 sccm
103
2000 sccm
203
5000 sccm
503
10000 sccm
104
20000 sccm
204
30000 sccm
304
50000 sccm
504
FittingType (Y)
The fitting options are designated by a letter code.
Fitting Style
GM50A
Swagelok 4 VCR male
R
Swagelok 4 VCO male
-
Swagelok ¼” compression seal
S
Downport C-Seal per SEMI 2787.1
C
Downport W-Seal per SEMI 2787.3F
H
Connector – Control I/O (W)
The MFC’s connector is designated by a single number code.
Connector Type
Ordering Code
Profibus
4
Digital RS485
5
DeviceNet
6
9 Pin D(Analog I/O)
A
15 Pin D(Analog I/O)
B
94
Appendix C: Model Code Explanation for GM50A
Model Code Description – GM50A – Metal Sealed Products
Valve Type (Z)
The valve type option is designated by a letter or numeric code. The MFCs are normally closed valve with the
following seal type.
Valve Type
Ordering Code
Normally closed valve - MFC
M
No valve - MFM
3
Reserved For MKS Future Use (S)
Standard = 0
Firmware Version (VV)
The firmware version options are designated by a two digit number code for all product I/O types. The
versions specified below are the released firmware versions at the time of this manuals release.
Example: The release of firmware version 10.
Firmware Version
Ordering Code
Profibus (4), RS485 (5) and
Devicenet (6) I/O Devices
10
9 Pin D (A) and 15 Pin D
Analog I/O Devices
10
95
GE50A MFC and GM50A MFC/MFM
Appendix D : Outline Drawings
Appendix D : Outline Drawings
GE50A MFC and GM50A MFC/MFM
96
Appendix D : Outline Drawings
GE50A MFC and GM50A MFC/MFM
97
GE50A MFC and GM50A MFC/MFM
Appendix D : Outline Drawings
98
Appendix D : Outline Drawings
GV50A MFC w/ Integral Shut-off Valve
GV50A MFC w/ Integral Shut-off Valve
99
Appendix D : Outline Drawings
100
Appendix D : Outline Drawings
101
Appendix D: Health and Safety Form
Appendix D: Health and Safety Form
102
103
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement