USB-Compatible Lithium-Ion Battery Charger with

USB-Compatible Lithium-Ion Battery Charger with
CONSONANCE
Lithium Ion Battery Charger for Solar-Powered Systems
CN3083
General Description:
Features:
The CN3083 is a complete constant-current /constant
voltage linear charger for single cell Li-ion and Li
Polymer rechargeable batteries. The device contains
an on-chip power MOSFET and eliminates the need
for the external sense resistor and blocking diode. An
on-chip 8-bit ADC can adjust charging current
automatically based on the output capability of input
power supply, so CN3083 is ideally suited for solar
powered system. Furthermore, the CN3083 is
specifically designed to work within USB power
specifications. Thermal feedback regulates the
charge current to limit the die temperature during
high power operation or high ambient temperature.
The regulation voltage is internally fixed at 4.2V
with 1% accuracy, it can also be adjusted with an
external resistor. The charge current can be
programmed externally with a single resistor. When
the input supply is removed, the CN3083
automatically enters a low power sleep mode ,
dropping the battery drain current to less than 3uA.
Other features include undervoltage lockout,
automatic recharge, battery temperature sensing and
charging/termination indicator.
The CN3083 is available in a thermally enhanced
8-pin SOP package.

Applications:
Pin Assignment






Solar Powered System
Digital Still Cameras
MP3 Players
Bluetooth Applications
Portable Devices
Chargers
www.consonance-elec.com














On-chip 8-bit ADC can adjust charging current
automatically based on the output capability of
input power supply
Suitable for Solar-Powered System
On-chip Power MOSFET
No external Blocking Diode or Current Sense
Resistors Required
Preset 4.2V Regulation Voltage with 1%
Accuracy, adjustable with an external resistor
Precharge Conditioning for Reviving Deeply
Discharged Cells and Minimizing Heat
Dissipation During Initial Stage of Charge
Continuous Programmable Charge Current Up
to 600mA
Constant-Current/Constant-Voltage Operation
with Thermal Regulation to Maximize Charge
Rate Without Risk of Overheating
Automatic Low-Power Sleep Mode When Input
Supply Voltage is Removed
Status Indication for LEDs or uP Interface
C/10 Charge Termination
Automatic Recharge
Battery Temperature Sensing
Available in SOP8 Package
Pb-free Available
TEMP 1
8
FB
7
CH
GND 3
6
OK
VIN 4
5
BAT
ISET 2
REV 1.1
CN3083
1
CONSONANCE
Typical Application Circuit
Input Power Supply 4.4V to 6V
4
VIN
FB
8
22uF
330
BAT
5
Bat+
4.7uF
Bat-
CN3083
Green
LED
Red
LED
7
6
R1
CH
TEMP
OK
ISET
GND
3
1
NTC
2
Battery
RISET
Figure 1 Typical Application Circuit(Constant Voltage Level 4.2V)
Input Power Supply4.4V to 6V
4
VIN
FB
Rx
8
22uF
330
BAT
5
4.7uF
Bat+
CN3083
Green
LED
Red
LED
7
6
TEMP
1
BatBattery
CH
ISET
OK
GND
3
2
RISET
Figure 2 Application Circuit(Adjust Constant Voltage Level with Rx)
www.consonance-elec.com
REV 1.1
2
In Figure 2, the BAT pin’s voltage in constant voltage mode is given by the following equation:
Vbat = 4.2+3.04×10-6×Rx
Where,Vbat is in volt
Rx is in ohm
Block Diagram
VIN
+
Tamp
-
Tdie
115 C
+
ISET
BAT
Iamp
-
FB
Vamp
8-bit ADC
Iref
Decoder
and
Switch Matrix
+
-
VIN
Vref
Termination
Comparator
Recharge
Comparator
CH
TEMP
TEMP
Comparator
control
OK
UVLO
GND
Figure 3 Block Diagram
REV 1.1
3
Pin Description
Pin No.
Name
Function Description
Temperature Sense Input. Connecting TEMP pin to NTC thermistor’s
output in Lithium ion battery pack. If TEMP pin’s voltage is below 46% of
1
TEMP
input supply voltage VIN for more than 0.15S, this means that battery’s
temperature is too high or too low, charging is suspended. If TEMP’s voltage
level is above 46% of input supply voltage for more than 0.15S, battery fault
state is released, and charging will resume.
The temperature sense function can be disabled by grounding the TEMP pin.
Constant Charge Current Setting and Charge Current Monitor Pin. The
2
ISET
charge current is set by connecting a resistor RISET from this pin to GND.
When in precharge mode, the ISET pin’s voltage is regulated to 0.2V. When in
constant charge current mode, the ISET pin’s voltage is regulated to 2V. In all
modes during charging, the voltage on ISET pin can be used to measure the
charge current as follows:
ICH = (VISET/RISET)×900
3
GND
Ground Terminal.
VIN
Positive Input Supply Voltage. VIN is the power supply to the internal circuit.
When VIN drops to within 40mv of the BAT pin voltage, CN3083 enters low
power sleep mode, dropping BAT pin’s current to less than 3uA.
BAT
Battery Connection Pin. Connect the positive terminal of the battery to BAT
pin. BAT pin draws less than 3uA current in chip disable mode or in sleep
mode. BAT pin provides charge current to the battery and provides regulation
voltage of 4.2V.
OK
Open-Drain Charge termination Status Output. In charge termination
status, OK is pulled low by an internal switch; Otherwise OK pin is in high
impedance state.
7
CH
Open Drain Charge Status Output. When the battery is being charged, the
CH pin is pulled low by an internal switch, otherwise CH pin is in high
impedance state.
8
FB
Battery Voltage Kevin Sense Input. This Pin can Kelvin sense the battery
voltage; Also the regulation voltage in constant voltage mode can be adjusted
by connecting an external resistor between FB pin and BAT pin.
4
5
6
Absolute Maximum Ratings
All Terminal Voltage……………-0.3V to 6.5V
BAT Short-Circuit Duration………...Continuous
Storage Temperature….............-65℃ to 150℃
Lead Temperature(Soldering)…….............300℃
Maximum Junction Temperature…...150℃
Operating Temperature…...-40℃ to 85℃
Thermal Resistance (SOP8)………….TBD
Stresses beyond those listed under ‘Absolute Maximum Ratings’ may cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions above those indicated in the operational
sections of
the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect
device reliability.
REV 1.1
4
Electrical Characteristics
(VIN=5V, TA=-40℃ to 85℃, Typical Values are measured at TA=25℃,unless otherwise noted)
Parameters
Symbol
Input Supply Voltage
VIN
Operating Current
IVIN
Vuvlo
Undervoltage Lockout
Undervoltage Lockout
Hysteresis
Huvlo
Regulation Voltage
VREG
BAT pin Current
IBAT
Test Conditions
Min
Typ
4.4
Charge Termination Mode
400
VIN falling
Max
Unit
6
V
650
950
uA
3.7
3.9
V
0.1
V
Constant Voltage Mode
4.158
4.2
4.242
V
RISET=3.6K, VBAT=3.6V
400
500
600
RISET=3.6K, VBAT=2.4V
25
50
75
VBAT=VREG, standby mode
VIN=0V, sleep mode
1.75
3.5
7
Voltage at BAT pin rising
2.9
3
mA
uA
Precharge Threshold
Precharge Threshold
VPRE
Precharge Threshold
Hysteresis
HPRE
3.0
3.1
V
0.1
V
Charge Termination Threshold
Charge Termination
Threshold
Vterm
Measure voltage at ISET pin
0.18
0.22
0.26
V
Recharge Threshold
Recharge Threshold
VRECH
VREG-0.1
V
Sleep Mode
Sleep Mode Threshold
VSLP
VIN from high to low, measures
the voltage (VIN-VBAT)
40
mv
Sleep mode Release
Threshold
VSLPR
VIN from low to high, measures
the voltage (VIN-VBAT)
90
mv
Precharge mode
0.2
Constant current mode
2.0
ISET Pin
ISET Pin Voltage
VISET
V
TEMP PIN
Input Threshold
43.5
VTEMP
TEMP input Current
46
48.5
0.5
TEMP to VIN or to GND
%VIN
uA
OK Pin
OK Sink Current
IOK
OK Leakage Current
10
VOK=0.3V, termination mode
mA
1
VOK=6V, charge mode
uA
CH Pin
CH Sink Current
CH Leakage Current
ICH
10
VCH=0.3V, Charge status
mA
1
VCH=6V, termination mode
REV 1.1
uA
5
Detailed Description
The CN3083 is a linear battery charger designed primarily for charging single cell lithium-ion or
lithium-polymer batteries. Featuring an internal P-channel power MOSFET, the charger uses a
constant-current/constant-voltage to charge the batteries. Continuous charge current can be programmed up to
600mA with an external resistor. No blocking diode or sense resistor is required. The on-chip 8-bit ADC can
adjust charging current automatically based on the output capability of input power supply, so CN3083 is ideally
suited for the solar-powered systems, or the applications that need to charge lithium-ion battery or lithium
polymer battery with an input power supply whose output capability is limited. The open-drain output OK and
CH indicates the charger’s status. The internal thermal regulation circuit reduces the programmed charge current
if the die temperature attempts to rise above a preset value of approximately 115℃. This feature protects the
CN3083 from excessive temperature, and allows the user to push the limits of the power handling capability of a
given circuit board without risk of damaging the CN3083 or the external components. Another benefit of
adopting thermal regulation is that charge current can be set according to typical, not worst-case, ambient
temperatures for a given application with the assurance that the charger will automatically reduce the current in
worst-case conditions.
The charge cycle begins when the voltage at the VIN pin rises above the UVLO level, a current set resistor is
connected from the ISET pin to ground. The CH pin outputs a logic low to indicate that the charge cycle is
ongoing. At the beginning of the charge cycle, if the voltage at FB pin is below 3V, the charger is in precharge
mode to bring the cell voltage up to a safe level for charging. The charger goes into the fast charge
constant-current mode once the voltage on the FB pin rises above 3V. In constant current mode, the charge
current is set by RISET. When the battery approaches the regulation voltage, the charge current begins to decrease
as the CN3083 enters the constant-voltage mode. When the current drops to charge termination threshold, the
charge cycle is terminated, OK is pulled low by an internal switch and CH pin assumes a high impedance state to
indicate that the charge cycle is terminated. The charge termination threshold is 10% of the current in constant
current mode. To restart the charge cycle, just remove the input voltage and reapply it. The charge cycle can also
be automatically restarted if the FB pin voltage falls below the recharge threshold. The on-chip reference voltage,
error amplifier and the resistor divider provide regulation voltage with 1% accuracy which can meet the
requirement of lithium-ion and lithium polymer batteries. When the input voltage is not present, the charger goes
into a sleep mode, dropping battery drain current to less than 3uA. This greatly reduces the current drain on the
battery and increases the standby time.
The charging profile is shown in the following figure:
REV 1.1
6
Precharge
Phase
Constant Current
Phase
Constant Voltage
Phase
4.2V
3V
Charge terminated
Charge Current
Battery Voltage
Figure 4 Charging Profile
Application Information
Undervoltage Lockout (UVLO)
An internal undervoltage lockout circuit monitors the input voltage and keeps the charger in shutdown mode
until VIN rises above the undervoltage lockout voltage. The UVLO circuit has a built-in hysteresis of 0.1V.
Sleep mode
There is an on-chip sleep comparator. The comparator keeps the charger in sleep mode if VIN falls below sleep
mode threshold(VBAT+40mv). Once in sleep mode, the charger will not come out of sleep mode until VIN rises
90mv above the battery voltage.
Precharge mode
At the beginning of a charge cycle, if the battery voltage is below 3V, the charger goes into precharge mode ,
and the charge current is 10% of fast charge current in constant current mode.
Charging Current limited by the Output capability of Input Power Supply
If the output capability of input power supply is less than the charging current set by the resistor at ISET pin,
then the on-chip 8-bit ADC will begin to function to adjust the charging current based on the output capability
of input power supply. In this case, the charging current may be less than the value set by the resistor at ISET
pin, but it is maximized to the output capability of input power supply on the condition that the input voltage at
VIN pin is no less than 4.35V, which is the minimum operating voltage of CN3083. So the charging current can
be set according to the maximum output capability of input power supply, not the worst case.
Adjusting the regulation voltage in constant voltage mode
The regulation voltage in constant voltage mode can be adjusted by an external resistor connecting between FB
pin and BAT pin as shown in Figure 5:
REV 1.1
7
FB
8
Rx
CN3083
Input Voltage
4
VIN GND BAT
5
Vbat
3
4.7uF
4.7uF
Figure 5 Adjusting Regulation Voltage in Constant Voltage Mode
In Figure 5, the regulation voltage in constant voltage mode will be given by the following equation:
Vbat = 4.2+3.04×10-6×Rx
Where,
Vbat is in volt
Rx is in ohm
Programming Charge Current
The formula for the battery charge current in constant current mode is:
ICH = 1800V / RISET
Where:
ICH is the charge current in ampere
RISET is the total resistance from the ISET pin to ground in ohm
For example, if 500mA charge current is required, calculate:
RISET = 1800V/0.5A = 3.6kΩ
For best stability over temperature and time, 1% metal film resistors are recommended. If the charger is in
constant-temperature or constant voltage mode, the charge current can be monitored by measuring the ISET pin
voltage, and the charge current is calculated as the following equation:
ICH = (VISET / RISET) × 900
Combine Two Power Inputs
Although the CN3083 allows charging from a solar power supply, a wall adapter or a USB port can also be used
to charge Li-Ion/Li-polymer batteries. Figure 6 shows an example of how to combine 2 power inputs. A
P-channel MOSFET, M1, is used to prevent back conducting into the 2nd power supply when the 1st power
supply is present and Schottky diode, D1, is used to prevent 2nd power supply loss through the 1kΩ pull-down
resistor.
REV 1.1
8
1st power
supply
2nd power
supply
D1
VIN
M1
CN3083
1K
Figure 6 Combining 2 Input Power Supply
Battery Temperature Sense
To prevent the damage caused by the very high or very low temperature done to the battery pack, the CN3083
continuously senses battery pack temperature by measuring the voltage at TEMP pin.
If VTEMP<(46%×VIN) for 0.15 seconds, it indicates that the battery temperature is too high or too low and the
charge cycle is suspended. If VTEMP>(46%×VIN) for 0.15 seconds, the charge cycle resumes.
The battery temperature sense function can be disabled by connecting TEMP pin to GND.
Recharge
After a charge cycle has terminated, if the battery voltage drops below the recharge threshold of 4.1V, a new
charge cycle will begin automatically.
Constant-Current/Constant-Voltage/Constant-Temperature
The CN3083 use a unique architecture to charge a battery in a constant-current, constant-voltage, constant
temperature fashion as shown in Figure 3. Amplifiers Iamp, Vamp, and Tamp are used in three separate
feedback loops to force the charger into constant-current, constant-voltage, or constant-temperature mode,
respectively. In constant current mode the charge current delivered to the battery equal to 1800V/RISET. If the
power dissipation of the CN3083 results in the junction temperature approaching 115℃, the amplifier Tamp will
begin decreasing the charge current to limit the die temperature to approximately 115℃. As the battery voltage
rises, the CN3083 either returns to constant-current mode or it enters constant voltage mode straight from
constant-temperature mode.
Open-Drain Status Outputs
The CN3083 have 2 open-drain status outputs: OK and CK. CH is pulled low when the charger is in charging
status, otherwise CH becomes high impedance. OK is pulled low if the charger is in charge termination status,
otherwise OK becomes high impedance.
When the battery is not present, the charger charges the output capacitor to the regulation voltage quickly, then
the BAT pin’s voltage decays slowly to recharge threshold because of low leakage current at BAT pin, which
results in a 100mv ripple waveform at BAT pin, in the meantime, CH pin outputs a pulse to indicate that the
battery’s absence. The pulse’s frequency is around 10Hz when a 4.7uF output capacitor is used.
The open drain status output that is not used should be tied to ground.
VIN Bypass Capacitor CIN
Many types of capacitors can be used for input bypassing, CIN is typically a 22uF capacitor.
For the consideration of the bypass capacitor, please refer to the Application Note AN102 from our website.
Stability
Typically a 4.7uF capacitor from BAT pin to GND is required to stabilize the feedback loop.
REV 1.1
9
In constant current mode, the stability is also affected by the impedance at the ISET pin . With no additional
capacitance on the ISET pin, the loop is stable with current set resistors values as high as 50KΩ. However,
additional capacitance on ISET pin reduces the maximum allowed current set resistor. The pole frequency at
ISET pin should be kept above 200KHz. Therefore, if ISET pin is loaded with a capacitance C, the following
equation should be used to calculate the maximum resistance value for RISET:
RISET < 1/(6.28×2×105×C)
In order to measure average charge current or isolate capacitive load from ISET pin, a simple RC filter can be
used on ISET pin as shown in Figure 7.
CN3083
10K
ISET
Cfilter
RISET
Figure 7 Isolating Capacitive Load on ISET Pin
Board Layout Considerations
1. RISET at ISET pin should be as close to CN3083 as possible, also the parasitic capacitance at ISET pin
should be kept as small as possible.
2. The capacitance at VIN pin and BAT pin should be as close to CN3083 as possible.
3. During charging, CN3083’s temperature may be high, the NTC thermistor should be placed far enough to
CN3083 so that the thermistor can reflect the battery’s temperature correctly.
4. It is very important to use a good thermal PC board layout to maximize charging current. The thermal path
for the heat generated by the IC is from the die to the copper lead frame through the package lead(especially
the ground lead) to the PC board copper, the PC board copper is the heat sink. The footprint copper pads
should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the
surrounding ambient. Feedthrough vias to inner or backside copper layers are also useful in improving the
overall thermal performance of the charger. Other heat sources on the board, not related to the charger,
must also be considered when designing a PC board layout because they will affect overall temperature rise
and the maximum charge current.
The ability to deliver maximum charge current under all conditions require that the exposed metal pad on
the back side of the CN3083 package be soldered to the PC board ground. Failure to make the thermal
contact between the exposed pad on the backside of the package and the copper board will result in larger
thermal resistance.
REV 1.1
10
Package Information
Consonance does not assume any responsibility for use of any circuitry described. Consonance reserves the
right to change the circuitry and specifications without notice at any time.
REV 1.1
11
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising