ABB ACS880-01 drives Industrial Drives Hardware manual
Below you will find brief information for ACS880-01 drives. This document contains information about the ACS880-01 drive’s hardware. This manual covers drive installation and wiring, and provides important information about the technical data, safety instructions and maintenance procedures. You can use this information to ensure proper installation and operation of your drive.
PDF
Download
Document
Advertisement
Advertisement
ABB industrial drives Hardware manual ACS880-01 drives (0.55 to 250 kW, 0.75 to 350 hp) List of related manuals Drive hardware manuals and guides ACS880-01 hardware manual ACS880-01 quick installation guide for frames R1 to R3 ACS880-01 quick installation guide for frames R4 and R5 ACS880-01 quick installation guide for frames R6 to R9 ACS880-01 +P940/+P944 drives for cabinet installation supplement ACS880-01 assembly drawings for cable entry boxes of IP21 frames R5 to R9 ACS-AP-x assistant control panels user’s manual Vibration dampers for ACS880-01 drives (frames R4 and R5, option +C131) installation guide Vibration dampers for ACS880-01 drives (frames R6 to R9, option +C131) installation guide ACS880-01/04 +C132 marine type-approved drives supplement Flange mounting kit installation supplement Common mode filter kit for ACS880-01 drives (frame R6, option +E208) installation guide Common mode filter kit for ACS880-01 drives (frame R7, option +E208) installation guide Common mode filter kit for ACS880-01 drives (frame R8, option +E208) installation guide Common mode filter kit for ACS880-01 drives (frame R9, option +E208) installation guide ACS880-01 drives and ACS880-04 drive modules common DC systems application guide Drive firmware manuals and guides ACS880 primary control program firmware manual Quick start-up guide for ACS880 drives with primary control program Code (English) 3AUA0000078093 3AUA0000085966 3AUA0000099663 3AUA0000099689 3AUA0000145446 3AUA0000119627 3AUA0000085685 3AXD50000010497 3AXD50000013389 3AXD50000010521 3AXD50000019100 3AXD50000015178 3AXD50000015179 3AXD50000015180 3AXD50000015201 3AUA0000127818 3AUA0000085967 3AUA0000098062 Option manuals and guides Manuals and quick guides for I/O extension modules, fieldbus adapters, etc. You can find manuals and other product documents in PDF format on the Internet. See section Document library on the Internet on the inside of the back cover. For manuals not available in the Document library, contact your local ABB representative. The code below opens an online listing of the manuals applicable to this product. ACS880-01 manuals Hardware manual ACS880-01 drives (0.55 to 250 kW, 0.75 to 350 hp) Table of contents 1. Safety instructions 4. Mechanical installation 6. Electrical installation 8. Start-up ¤ 2015 ABB Oy. All Rights Reserved. 3AUA0000078093 Rev J EN EFFECTIVE: 2015-06-23 5 Table of contents List of related manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Safety instructions What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Use of warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety in installation and maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permanent magnet motor drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Printed circuit boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safe start-up and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permanent magnet motor drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 14 15 16 17 18 18 18 19 2. Introduction to the manual What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents of the manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Categorization by frame size and option code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quick installation, start-up and operating flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 22 22 23 24 3. Operation principle and hardware description What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout (IP55, option +B056) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout (UL Type 12, option +B056) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout (IP20 – UL Open Type, options +P940 and +P944) . . . . . . . . . . . . . . . . . . . . . . . Overview of power and control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External control connection terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control panel mounting platform cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control panel door mounting kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Type designation label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Type designation key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 26 27 28 29 29 30 31 32 32 32 33 33 4. Mechanical installation What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Examining the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Necessary tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moving the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unpacking and examining the delivery (frames R1 to R5) . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R5 cable entry box (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unpacking and examining the delivery (frames R6 to R9) . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R6 cable entry box (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R7 cable entry box (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R8 cable entry box (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R9 cable entry box (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installing the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installing vibration dampers (option +C131) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frames R1 to R4 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frames R5 to R9 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frames R1 to R9 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flange mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grounding inside the cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installing drives above one another . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 38 39 40 42 43 45 46 47 48 49 49 50 51 53 55 55 55 56 56 5. Planning the electrical installation What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Limitation of liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Selecting the supply disconnecting device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 European Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Other regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Selecting and dimensioning the main contactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Checking the compatibility of the motor and drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Protecting the motor insulation and bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Requirements table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Additional requirements for ABB motors of types other than M2_, M3_, M4_, HX_ and AM_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Additional requirements for ABB high-output and IP23 motors . . . . . . . . . . . . . . . . . 63 Additional requirements for non-ABB high-output and IP23 motors . . . . . . . . . . . . . 64 Additional data for calculating the rise time and the peak line-to-line voltage . . . . . . 65 Additional note for sine filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Selecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical power cable sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Alternative power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Recommended power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Power cable types for limited use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Not allowed power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Motor cable shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Additional US requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Conduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Armored cable / shielded power cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Selecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7 Signals in separate cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signals allowed to be run in the same cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Relay cable type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control panel cable length and type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Routing the cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Separate control cable ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous motor cable shield or enclosure for equipment on the motor cable . . . . . . . . Implementing thermal overload and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . Protecting the drive and input power cable in short-circuits . . . . . . . . . . . . . . . . . . . . . . . Circuit breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protecting the motor and motor cable in short-circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . Protecting the drive and the input power and motor cables against thermal overload . . . Protecting the motor against thermal overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protecting the drive against ground faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Residual current device compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting drives to a common DC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementing the Emergency stop function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementing the Safe torque off function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementing the safety functions with the FSO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . Declaration of Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementing the ATEX-certified Safe motor disconnection function (option +Q971) . . . . . . Implementing the Power-loss ride-through function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using power factor compensation capacitors with the drive . . . . . . . . . . . . . . . . . . . . . . . . . . Using a contactor between the drive and the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementing a bypass connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example bypass connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching the motor power supply from drive to direct-on-line . . . . . . . . . . . . . . . . . . Switching the motor power supply from direct-on-line to drive . . . . . . . . . . . . . . . . . . Protecting the contacts of relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting a motor temperature sensor to the drive I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 73 73 74 74 75 75 75 75 76 78 79 79 79 79 80 80 80 80 80 80 81 81 82 82 83 84 84 84 86 6. Electrical installation What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Checking the insulation of the assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Input power cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Motor and motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Brake resistor assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Checking the compatibility with IT (ungrounded) systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Connecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Connection procedure for frames R1 to R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Connection procedure for frames R4 and R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Connection procedure for frames R6 to R9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Grounding the motor cable shield at the motor end . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DC connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Connecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Default I/O connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Jumpers and switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External power supply for the control unit (XPOW) . . . . . . . . . . . . . . . . . . . . . . . . . AI1 and AI2 as Pt100, Pt1000, PTC and KTY84 sensor inputs (XAI, XAO) . . . . . . Drive-to-drive link (XD2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DIIL input (XD24:1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DI6 (XDI:6) as PTC sensor input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safe torque off (XSTO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety functions module connection (X12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control cable connection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting a PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controlling several drives through panel bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installing optional modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical installation of I/O extension, fieldbus adapter and pulse encoder interface modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wiring I/O extension, fieldbus adapter and pulse encoder interface modules . . . . . . . . Installation of safety functions modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installation procedure into Slot 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installation next to the control unit on frames R7 to R9 . . . . . . . . . . . . . . . . . . . . . . 108 109 109 110 110 111 111 111 112 114 115 117 117 118 119 119 121 7. Installation checklist What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8. Start-up What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Startup procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9. Fault tracing What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Warning and fault messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10. Maintenance What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maintenance intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Descriptions of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended annual maintenance actions by the user . . . . . . . . . . . . . . . . . . . . . . . Recommended maintenance intervals after start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . Heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the main cooling fan of frames R1 to R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the auxiliary cooling fan of IP55 frames R1 to R3 . . . . . . . . . . . . . . . . . . . . . Replacing the main cooling fan of frames R4 and R5 . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the auxiliary cooling fan of frames R4 and R5 (IP55 and option +C135) and IP21 frame R5 types ACS880-01-xxxx-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the main cooling fan of frames R6 to R8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the auxiliary cooling fan of frames R6 to R9 . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the IP55 auxiliary cooling fan of frames R8 and R9 . . . . . . . . . . . . . . . . . . . 129 129 130 130 130 130 131 132 133 134 135 136 137 138 9 Replacing the main cooling fans of frame R9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the drive (IP21, UL Type 1, frames R1 to R9) . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reforming the capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the memory unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the control panel battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing safety functions modules (FSO-12, option +Q973) . . . . . . . . . . . . . . . . . . . . . . . 140 141 142 143 143 143 144 144 11. Technical data What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marine type-approved drives (option +C132) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ambient temperature derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IP21 (UL Type 1) drive types and other IP55 (UL Type 12) types than listed in the following subheadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IP55 (UL Type 12) drive types -274A-2, 293A-3, -260A-5, -302A-5 and -174A-7 . . IP55 (UL Type 12) drive type -240A-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IP55 (UL Type 12) drive types -363A-3 and -361A-5 . . . . . . . . . . . . . . . . . . . . . . . . IP55 (UL Type 12) drive type -210A-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IP55 (UL Type 12) types -0430A-3, -0414A-5 and -0271A-7 . . . . . . . . . . . . . . . . . . Altitude derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deratings for special settings in the drive control program . . . . . . . . . . . . . . . . . . . . . . . Ex motor, sine filter, low noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuses (IEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . aR fuses (frames R1 to R9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gG fuses (frames R1 to R9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quick guide for selecting between gG and aR fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . Calculating the short-circuit current of the installation . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuses (UL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions. weights and free space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Free space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Losses, cooling data and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling air flow and heat dissipation for flange mounting (option +C135) . . . . . . . . . . . Terminal and lead-through data for the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UL listed cable lugs and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminal data for the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical power network specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor connection data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control unit (ZCU-12) connection data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ambient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 145 146 152 154 154 154 154 155 156 157 157 157 158 159 165 168 169 172 175 178 179 182 183 184 186 189 189 190 191 191 192 192 193 197 197 197 198 200 10 Compliance with the European Low Voltage Directive . . . . . . . . . . . . . . . . . . . . . . . . . Compliance with the European EMC Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applicable standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compliance with the European RoHS Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compliance with the European Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . Declaration of Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compliance with the EN 61800-3:2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Category C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Category C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Category C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UL marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UL checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSA marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “C-tick” marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAC marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cyber security disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 200 200 201 201 202 204 204 204 205 205 206 206 206 206 207 207 207 207 12. Dimension drawings What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R1 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R1 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R2 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R2 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R3 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R3 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R4 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R4 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R5 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R5 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R6 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R6 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R7 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R7 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R8 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R8 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R9 (IP21, UL Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame R9 (IP55, UL Type 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 13. Safe Torque off function What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compliance with the European Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activation switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cable types and lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grounding of protective shields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 229 230 230 231 231 231 11 Single drive (internal power supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple drives (internal power supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple drives (external power supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Start-up including acceptance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Competence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acceptance test reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acceptance test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Competence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety data (SIL, PL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 233 234 235 235 235 235 235 237 238 238 238 239 241 14. Resistor braking What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation principle and hardware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Planning the braking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting the brake circuit components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting a custom resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting and routing the brake resistor cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimizing electromagnetic interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum cable length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMC compliance of the complete installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Placing the brake resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protecting the system against thermal overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frames R1 to R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frames R5 to R9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protecting the resistor cable against short-circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the insulation of the assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Degree of protection and thermal constant of the resistors . . . . . . . . . . . . . . . . . . . . . . Terminals and cable lead-through data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions and weights of external resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JBR-03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SACE08RE44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SACE15RE13 and SACE15RE22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAFUR80F500 and SAFUR90F575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAFUR125F500 and SAFUR200F500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 243 243 243 244 244 245 245 245 245 246 246 246 247 247 247 247 247 247 247 249 249 251 251 251 252 253 254 254 255 15. Common mode, du/dt and sine filters What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 12 Common mode filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . When is a common mode filter needed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . du/dt filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . When is a du/dt filter needed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . du/dt filter types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description, installation and technical data of the FOCH filters . . . . . . . . . . . . . . . . . . . Description, installation and technical data of the NOCH filters . . . . . . . . . . . . . . . . . . . Sine filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting a sine filter for a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description, installation and technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 257 257 257 258 258 258 259 259 261 261 Further information Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document library on the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 263 263 263 Safety instructions 13 1 Safety instructions What this chapter contains This chapter contains the safety instructions which you must obey when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, motor or driven equipment. Read the safety instructions before you work on the unit. Use of warnings Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment and advise on how to avoid the danger. The following warning symbols are used in this manual: Electricity warning warns of hazards from electricity which can cause physical injury and/or damage to the equipment. General warning warns about conditions, other than those caused by electricity, which can result in physical injury and/or damage to the equipment. Electrostatic sensitive devices warning warns of electrostatic discharge which can damage the equipment. 14 Safety instructions Safety in installation and maintenance Electrical safety These warnings are intended for all who work on the drive, motor cable or motor. WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment: • Only qualified electricians are allowed to install and maintain the drive. • Never work on the drive, motor cable or motor when main power is applied. After disconnecting the input power, always wait for 5 minutes to let the intermediate circuit capacitors discharge before you start working on the drive, motor or motor cable. Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that: • voltage between drive input phases L1, L2 and L3 and the frame is close to 0 V • voltage between terminals UDC+ and UDC- and the frame is close to 0 V. • Do not work on the control cables when power is applied to the drive or to the external control circuits. Externally supplied control circuits may cause dangerous voltages inside the drive even when the main power on the drive is switched off. • Do not make any insulation or voltage withstand tests on the drive. • Do not connect the drive to a voltage higher than what is marked on the type designation label. Higher voltage can activate the brake chopper and lead to brake resistor overload, or activate the overvoltage controller what can lead to motor rushing to maximum speed. Note: • The motor cable terminals on the drive are at a dangerously high voltage when the input power is on, regardless of whether the motor is running or not. • The DC terminals (UDC+, UDC-) carry a dangerous DC voltage (over 500 V) when internally connected to the intermediate DC circuit. • Depending on the external wiring, dangerous voltages (115 V, 220 V or 230 V) may be present on the terminals of relay outputs (XRO1, XRO2 and XRO3). • The Safe torque off function does not remove the voltage from the main and auxiliary circuits. The function is ineffective against deliberate sabotage or misuse. Safety instructions 15 Grounding These instructions are intended for all who are responsible for the grounding of the drive. WARNING! Ignoring the following instructions can cause physical injury, death, increased electromagnetic interference and equipment malfunction: • Ground the drive, motor and adjoining equipment to ensure personnel safety in all circumstances, and to reduce electromagnetic emission and interference. • Make sure that grounding conductors are adequately sized as required by safety regulations. • In a multiple-drive installation, connect each drive separately to protective earth (PE). • Where EMC emissions must be minimized, make a 360° high frequency grounding of cable entries in order to suppress electromagnetic disturbances. In addition, connect the cable shields to protective earth (PE) in order to meet safety regulations. • Do not install d drive with EMC filter options +E200 or +E202 on an ungrounded power system or a high-resistance-grounded (over 30 ohms) power system. See page 89. Note: • Power cable shields are suitable for equipment grounding conductors only when adequately sized to meet safety regulations. • Standard EN 61800-5-1 (section 4.3.5.5.2.) requires that as the normal touch current of the drive is higher than 3.5 mA AC or 10 mA DC, you must use a fixed protective earth connection and • a cross-section of the protective earthing conductor of at least 10 mm2 Cu or 16 mm2 Al, or • automatic disconnection of the supply in case of discontinuity of the protective earthing conductor, or • a second protective earthing conductor of the same cross-sectional area as the original protective earthing conductor. 16 Safety instructions Permanent magnet motor drives These are additional warnings concerning permanent magnet motor drives. WARNING! Ignoring the instructions can cause physical injury or death, or damage to the equipment: • Do not work on the drive when the permanent magnet motor is rotating. Also, when the supply power is switched off and the inverter is stopped, a rotating permanent magnet motor feeds power to the intermediate circuit of the drive and the supply connections become live. Before installation and maintenance work on the drive: • Stop the motor. • Ensure that there is no voltage on the drive power terminals according to step 1 or 2, or if possible, according to the both steps. 1. Disconnect the motor from the drive with a safety switch or by other means. Check by measuring that there is no voltage present on the drive input or output terminals (L1, L2, L3, T1/U, T2/V, T3/W, UDC+, UDC-). 2. Ensure that the motor cannot rotate during work. Make sure that no other system, like hydraulic crawling drives, is able to rotate the motor directly or through any mechanical connection like felt, nip, rope, etc. Check by measuring that there is no voltage present on the drive input or output terminals (L1, L2, L3, T1/U, T2/V, T3/W, UDC+, UDC-). Ground the drive output terminals temporarily by connecting them together as well as to the PE. Safety instructions 17 General safety These instructions are intended for all who install and service the drive. WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment: • Use safety shoes with a metal toe cap to avoid foot injury. Wear protective gloves and long sleeves. Some parts have sharp edges. • Handle the unit carefully. • For frame sizes R6 to R9: Lift the drive using the lifting eyes of the unit. Do not tilt the drive. The drive is heavy and its center of gravity is high. An overturning unit can cause physical injury. • Beware of hot surfaces. Some parts, such as heatsinks of power semiconductors, remain hot for a while after disconnection of the electrical supply. • Ensure that debris from borings and grindings does not enter the drive when installing. Electrically conductive debris inside the unit may cause damage or malfunction. • Ensure sufficient cooling. • Do not attach the drive by riveting or welding. 18 Safety instructions Printed circuit boards WARNING! Ignoring the following instructions can cause damage to the printed circuit boards: • Wear a grounding wrist band when handling the boards. Do not touch the boards unnecessarily. The printed circuit boards contain components sensitive to electrostatic discharge. Safe start-up and operation General safety These warnings are intended for all who plan the operation of the drive or operate the drive. WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment: • Before you connect voltage to the drive, make sure that the drive covers are on. Keep the covers on during the operation. • Before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. The drive can be adjusted to operate the motor at speeds above and below the speed provided by connecting the motor directly to the power line. • Before you activate the automatic fault reset or automatic restart functions of the drive control program, make sure that no dangerous situations can occur. These functions reset the drive automatically and continue operation after a fault or supply break. • The maximum number of drive power-ups is five in ten minutes. Too frequent power-ups can damage the charging circuit of the DC capacitors. • Make sure that any safety circuits (for example, emergency stop and Safe torque off) are validated in start-up. See chapter Start-up for reference of the validation instructions. Note: • If you select an external source for start command and it is ON, the drive will start immediately after an input voltage break or fault reset unless the drive is configured for 3-wire (a pulse) start/stop. • When the control location is not set to local, the stop key on the control panel will not stop the drive. Safety instructions 19 Permanent magnet motor drives WARNING! Do not run the motor over the rated speed. Motor overspeed leads to overvoltage which may damage or explode the capacitors in the intermediate circuit of the drive. 20 Safety instructions Introduction to the manual 21 2 Introduction to the manual What this chapter contains This chapter describes the manual. It contains a flowchart of steps for checking the delivery, installing and starting up the drive. The flowchart refers to chapters/sections in this manual and to other manuals. Target audience This manual is intended for people who plan the installation, install, start-up, use and service the drive. Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols. The manual is written for readers worldwide. Both SI and imperial units are shown. Contents of the manual This manual contains the instructions and information for the basic drive configuration. The chapters of the manual are briefly described below. Safety instructions gives safety instructions for the installation, start up, operation and maintenance of the drive. Introduction to the manual introduces the manual. Operation principle and hardware description describes the drive. Mechanical installation describes how to install the basic drive mechanically. Planning the electrical installation contains instructions for the motor and cable selection, protections and cable routing. 22 Introduction to the manual Electrical installation gives instructions on wiring the drive. Installation checklist contains a list for checking the mechanical and electrical installation of the drive. Start-up describes the start-up procedure of the drive. Fault tracing describes the fault tracing of the drive. Maintenance contains preventive maintenance instructions. Technical data contains the technical specifications of the drive, eg, the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings. Dimension drawings contains dimension drawings of the drives and auxiliary components. Safe Torque off function describes the Safe torque off function of the drive and gives instructions on its implementing. Resistor braking describes selection, protection and wiring of brake choppers and resistors. The chapter also contains technical data. Common mode, du/dt and sine filters describes selection external filters for the drive. Related manuals See List of related manuals on the inside of the front cover. Categorization by frame size and option code The instructions, technical data and dimension drawings which concern only certain drive frame sizes are marked with the symbol of the frame size (R1, R2, etc.). The frame size is marked on the type designation label. The instructions and technical data which concern only certain optional selections are marked with option codes (such as +E200). The options included in the drive can be identified from the option codes visible on the type designation label. The option selections are listed in section Type designation key on page 33. Introduction to the manual 23 Quick installation, start-up and operating flowchart Task See Plan the electrical installation and acquire the accessories needed (cables, fuses, etc.). Planning the electrical installation (page 57) Check the ratings, required cooling air flow, input power connection, compatibility of the motor, motor connection, and other technical data. Technical data (page 145) Check the installation site. Ambient conditions (page 197) Unpack and examine the units (only intact units may be started up). Mechanical installation (page 40 or 43) Mount the drive. If the drive has been non-operational for more than one year, the converter DC link capacitors need to be reformed (page 142) Route the cables. Routing the cables (page 74) Check the insulation of the supply cable, the motor and the motor cable. Checking the insulation of the assembly (page 87) Connect the power cables. Connect the control cables. Connecting the power cables (page 90), Connecting the control cables (page 106) Check the installation. Installation checklist (page 123) Start the drive up. Start-up (page 125) Operate the drive: start, stop, speed control etc. ACS880 quick start-up guide, firmware manual Examine that all necessary optional modules and equipment are present and correct. 24 Introduction to the manual Terms and abbreviations Term/ Explanation Abbreviation EMC Electromagnetic compatibility EMI Electromagnetic interference EMT Electrical metallic tubing FAIO-01 Optional analog I/O extension module FDIO-01 Optional digital /O extension module FIO-01 Optional digital I/O extension module FIO-11 Optional analog I/O extension module FCAN-01 Optional FCAN-01 CANopen adapter module FCNA-01 Optional ControlNet™ adapter module FDNA-01 Optional DeviceNet™ adapter module FECA-01 Optional EtherCAT adapter module FEPL-01 Optional Ethernet POWERLINK adapter module FENA-01 Optional Ethernet/IP™ and Modbus/TCP and PROFINET adapter module FENA-11 Optional dual port Ethernet/IP™ and Modbus/TCP and PROFINET adapter module FLON-01 Optional LonWorks® adapter module FPBA-01 Optional PROFIBUS DP adapter module FEN-01 Optional TTL incremental encoder interface module FEN-11 Optional TTL absolute encoder interface module FEN-21 Optional resolver interface module FEN-31 Optional HTL incremental encoder interface module FDCO-01 Optional optical DDCS communication adapter module FSO-12 Optional functional safety module Frame (size) Physical size of the drive IGBT Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to their easy controllability and high switching frequency. I/O Input/Output ZCON Control board in which the control program runs. ZCU Control board built in a housing. The external I/O control signals are connected to the control unit, or optional I/O extensions mounted on it. ZGAB Brake chopper adapter board in frames R8 to R9 ZGAD Gate driver adapter board in frames R6 to R9 ZINT Main circuit board ZMU The memory unit attached to the control unit of the drive R1…R9 Frame size designation of the drive Operation principle and hardware description 25 3 Operation principle and hardware description What this chapter contains This chapter briefly describes the operation principle and construction of the drive. Product overview The ACS880-01 is a drive for controlling asynchronous AC induction motors, permanent magnet synchronous motors, AC induction servomotors and ABB synchronous reluctance motors (SynRM motors) with option +N7502. The main cooling air fan of the drive is speed controlled and the auxiliary cooling fan on/off controlled. 26 Operation principle and hardware description Main circuit The main circuit of the drive is shown below. ACS880-01 1 2 3 L1 L2 T1/U T2/V L3 T3/W 4 R- UDC+ UDCR+ 1 Rectifier. Converts alternating current and voltage to direct current and voltage. 2 DC link. DC circuit between rectifier and inverter. 3 Inverter. Converts direct current and voltage to alternating current and voltage. 4 Brake chopper. Conducts the surplus energy from the intermediate DC circuit of the drive to the brake resistor when necessary. The chopper operates when the DC link voltage exceeds a certain maximum limit. The voltage rise is typically caused by deceleration (braking) of a high inertia motor. User obtains and installs the brake resistor when needed. Operation principle and hardware description 27 Layout (IP21, UL Type 1) The components of the standard IP21 drive are shown below (view of frame R5). 4 4 6 1 1 5 2 6 3 Control panel 2 Front cover 3 Cable entry box 4 Four fastening points at the back of the unit 5 Heatsink 6 Lifting holes 28 Operation principle and hardware description Layout (IP55, option +B056) The components of the IP55 drive (option +B056) are shown below (view of frame R4). 3 3 5 1 1 4 2 5 Control panel behind the control panel cover 2 Front cover 3 Four fastening points at the back of the unit 4 Heatsink 5 Lifting holes Operation principle and hardware description 29 Layout (UL Type 12, option +B056) The components of the UL Type 12 drive (option +B056) are shown below (view of frame R6). 6 5 3 3 1 1 4 Control panel behind the control panel cover 2 Front cover 3 Four fastening points at the back of the drive 4 Heatsink 5 Lifting holes 6 Hood (included in frames R4 to R9) 2 5 Layout (IP20 – UL Open Type, options +P940 and +P944) See ACS880-01 +P940/+P944 drives for cabinet installation supplement (3AUA0000145446 [English]). 30 Operation principle and hardware description Overview of power and control connections .......... .......... The diagram shows the power connections and control interfaces of the drive. .......... .......... FXX Slot 2 FXXX PE .......... .......... X12 ...... ...... 4 Slot 1 1 X208 X13 2 6 ... 5 Slot 3 3 ... L1 PE L1 U/T1 L2 L2 V/T2 L3 L3 R- 1 2 3 7 ..... ..... FXX W/T3 UDC+ R+ UDC- M 3~ 8 Analog and digital I/O extension modules, feedback interface modules and fieldbus communication modules can be inserted into slots 1, 2 and 3. See section Type designation key, page 33.. 4 Memory unit, see page 143. 5 Connector for safety functions modules, see page 119. 6 See page 31, Default I/O connection diagram (page 107) and Control unit (ZCU-12) connection data (page 193). 7 See section Control panel, page 32. 8 du/dt, common mode or sine filter (optional), see page 257. Operation principle and hardware description 31 External control connection terminals The layout of external control connection terminals of the drive is shown below. Description XPOW XAI X202 X13 X208 X205 XAO Analog outputs Drive-to-drive link XRO1 Relay output 1 XRO2 Relay output 2 XRO3 Relay output 3 XD24 Start interlock connection (DIIL) and +24 V output XDI XSTO X12 X204 XRO1 J1, J2 XPOW XAI XDI XRO3 Safe torque off connection Connector for safety functions modules (optional) X13 Control panel connection X202 Option slot 1 X203 Option slot 2 X204 Option slot 3 X205 Memory unit connection X208 Auxiliary cooling fan connection J1, J2 Voltage/Current selection jumpers (J1, J2) for analog inputs J3, J6 Drive-to-drive link termination jumper (J3), common digital input ground selection jumper (J6) XAO XD2D XRO2 XDIO XD24 Digital input/outputs Digital inputs X12 J3, J6 XSTO Analog inputs XD2D XDIO X203 External power input 32 Operation principle and hardware description Control panel The control panel can be removed by pulling it forward from the top edge and reinstalled in reverse order. For the use of the control panel, see the firmware manual or ACS-AP assistant control panels user’s manual (3AUA0000085685 [English]). Control panel mounting platform cover In deliveries without control panel (option + 0J400) the control panel mounting platform is covered. The indication LEDs on the platform are visible through the protective cover. Note: The cover is not included with options +0J400+P940 and +0J400+P944. Control panel door mounting kits Door mounting kits for the control panel are available. For more information see DPMP-01 mounting platform installation guide (3AUA0000100140 [English]) or DPMP-02 mounting platform installation guide (3AUA0000136205 [English]. Operation principle and hardware description 33 Type designation label The type designation label includes an IEC and NEMA rating, appropriate markings, a type designation and a serial number, which allow identification of each unit. The type designation label is located on the front cover. An example label is shown below. 1 4 3 2 5 No. Description 1 Type designation, see section Type designation key on page 33. 2 Frame size 3 Ratings in the supply voltage range 4 Valid markings 5 Serial number. The first digit of the serial number refers to the manufacturing plant. The next four digits refer to the unit’s manufacturing year and week, respectively. The remaining digits complete the serial number so that there are no two units with the same number. Type designation key The type designation contains information on the specifications and configuration of the drive. The first digits from left express the basic configuration, eg, ACS880-0112A6-3 The optional selections are given thereafter, separated by plus signs, eg, +L519. The main selections are described below. Not all selections are available for all types. For more information, refer to ACS880-01 Ordering Information (3AXD10000014923), available on request. CODE DESCRIPTION Basic codes ACS880 Product series 01 When no options are selected: Wall mounted drive, IP21 (UL Type 1), ACS-AP-I assistant control panel, no EMC filter, DC choke, ACS880 primary control program, Safe torque off function, cable entry box, brake chopper in frames R1 to R4, coated boards, printed multilingual quick guides and CD containing all manuals. Size xxxx Refer to the rating tables, page 146 Voltage range 2 208…240 V 3 380…415 V 34 Operation principle and hardware description CODE DESCRIPTION 5 380…500 V 7 525…690 V Option codes (plus codes) Degree of protection B056 IP55 (UL Type 12) Construction C131 Vibration dampers for frames R4 to R9 C132 Marine type approved drive. Requires option +C131 in wall installations for frames R4 to R9. Includes common mode filter for frames R6 to R9. C135 Drive for flange mounting. Removes the cable entry box. Resistor braking D150 Brake chopper for frame R5 and up Filters E200 EMC filter for second environment TN (grounded) system, category C3. E201 EMC filter for second environment IT (ungrounded) system, category C3. Available for 380…500 V frames R6 to R9. E202 EMC filter for first environment TN (grounded) system, category C2. E208 Common mode filter Cable entry box H358 UK cable entry box Control panel 0J400 No control panel. Includes control panel holder cover. Note: You need at least one loose control panel to be able to commission the drive. Fieldbus adapters K451 FDNA-01 DeviceNet™ adapter module K452 FLON-01 LonWorks® adapter module K454 FPBA-01 PROFIBUS DP adapter module K457 FCAN-01 CANopen adapter module K458 FSCA-01 RS-485 adapter module K462 FCNA-01 ControlNet™ adapter module K469 FECA-01 EtherCAT adapter module K470 FEPL-01 Ethernet POWERLINK adapter module K473 FENA-11 high performance Ethernet/IP™, Modbus/TCP and PROFINET adapter module I/O extensions and feedback interfaces L500 FIO-11 analog I/O extension module L501 FIO-01 digital I/O extension module L502 FEN-31 HTL incremental encoder interface module L503 FDCO-01 optical DDCS communication adapter module Operation principle and hardware description 35 CODE DESCRIPTION L508 FDCO-02 optical DDCS communication adapter module L515 FEA-03 I/O extension adapter L516 FEN-21 resolver interface module L517 FEN-01 TTL incremental encoder interface module L518 FEN-11 absolute encoder interface module L525 FAIO-01 analog I/O extension module L526 FDIO-01 digital I/O extension module Control program N7502 Enables setting of synchronous reluctance motor parameters in the drive control program. Specialties P904 Extended warranty P940 Drive without front covers and cable entry box. Includes control panel. Note: With option +0J400 does not include control panel holder cover. P944 Drive without cable entry box. Includes control panel. Note: With option +0J400 does not include control panel holder cover. ATEX-certified function Q971 ATEX-certified Safe motor disconnection function using the Safe torque off function Safety functions modules Q973 FSO-12 safety functions module Full set of printed manuals in selected language. Note: The delivered manual set may include manuals in English if the translation is not available. R700 English R701 German R702 Italian R703 Dutch R704 Danish R705 Swedish R706 Finnish R707 French R708 Spanish R709 Portuguese R711 Russian R713 Polish R714 Turkish 36 Operation principle and hardware description Mechanical installation 37 4 Mechanical installation What this chapter contains This chapter gives a description of the mechanical installation of the drive. Safety WARNING! For frame sizes R6 to R9: Use the lifting eyes of the drive when you lift the drive. Do not tilt the drive. The drive is heavy and its center of gravity is high. An overturning drive can cause physical injury. 38 Mechanical installation Examining the installation site The drive must be installed in an upright position with the cooling section against a wall. All IP21 (UL Type 1) and IP55 drives and UL Type 12 drives of frames R1 to R3 can be installed tightly side by side. For UL Type 12 drives of frames R4 to R9, leave 100 mm (4 in) between the hoods. Make sure that the installation site agrees with these requirements: • The installation site has sufficient ventilation to prevent overheating of the drive. See section Losses, cooling data and noise on page 184. • The operation conditions of the drive agree with the specifications in section Ambient conditions (page 197). • The wall is vertical, not flammable and strong enough to hold the weight of the drive. See page 182. • The material below the installation is not flammable. • There is enough free space above and below the drive for cooling air flow, service and maintenance. See page 182. There is enough free space in front of the drive for operation, service and maintenance. 200 mm (7.87 in.) 300 mm (11.81 in.) Necessary tools • Drill and drill bits • Screwdriver and/or wrench with bits. The drive cover has Torx screws. Mechanical installation 39 Moving the drive Move the transport package by pallet truck to the installation site. 40 Mechanical installation Unpacking and examining the delivery (frames R1 to R5) This illustration shows the layout of the transport package. Examine that all items are present and there are no signs of damage. Read the data on the type designation label of the drive to make sure that the drive is of the correct type. IP21 (UL Type 1) 7 11 22 66 33 11 10 10 5 13 99 88 Item 44 Description Item Description 1 Drive with factory installed options. Control cable grounding shelf. Romex connectors in IP21 frames R1 to R3 in a plastic bag inside the cable entry box. 6…9 Cushions 2 Manuals CD 13 Vibration damper package (option +C131) Frame R4 and IP55 (UL Type 12) frame R5: below the cable entry box IP21 (Ul Type 1) frame R5: inside the cable entry box 3 Printed quick guides and manuals, multilingual residual voltage warning sticker 10 4 Cardboard tray 11 5 Cardboard sleeve - PET straps Top cardboard cover - Mechanical installation 41 IP55 (UL Type 12) ,'VWLFNHUHQG 3 4 9 2 8 7 10 6 12 14 5 1 11 13 15 Item 3 Description Item 1 Printed quick guides and manuals, multilingual residual voltage warning sticker 7…11 Cushions and cardboard support 2 Manuals CD 12 PET straps 3 Cardboard tray 13 Hood included in frames R4 and R5. The hood is required only in UL Type 12 installations. 4 Cardboard sleeve 14 Support 5 Cushion 15 Vibration damper package (option +C131) 6 Drive with factory installed options. Control cable grounding shelf. - Description - To unpack: • 3AXD50000003341 Cut the straps (10). • Remove the top cardboard cover (11) and cushions (6…9). • Lift the cardboard sleeve (5). • Lift the drive. 42 Mechanical installation Frame R5 cable entry box (IP21, UL Type 1) This illustration shows the contents of the cable entry box package. The package also includes an assembly drawing which shows how to install the cable entry box to the drive module frame. 3aua0000118007 Mechanical installation 43 Unpacking and examining the delivery (frames R6 to R9) This illustration shows the layout of the transport package. Examine that all items are present and there are no signs of damage. Read the data on the type designation label of the drive to make sure that the drive is of the correct type. IP21 (UL Type 1) 3 8 7 2 6 1 5 Item 9 Description 4 3axd50000012445 Item Description 1 Drive with factory installed options 6 Cushion 2 Cable entry box. Power and control cable grounding shelves in a plastic bag, assembly drawing. Note: The cable entry box is mounted to the IP55 drive module frame at the factory. 7 Straps 3 Cardboard cover 8 Printed quick guides and manuals CD and multilingual residual voltage warning sticker 4 Stopper 9 Vibration damper package (option +C131). For frame R6: inside the cable entry box. 5 Pallet tray - - 44 Mechanical installation IP55 (UL Type 12) 2 7 6 5 8 1 4 3axd50000012445 3 Item Description Item Description 1 Drive with factory installed options 5 Cushion 2 Cardboard cover 6 Straps 3 Stopper 7 Hood (required only in UL Type 12 installation) 4 Pallet tray 8 Printed quick guides and manuals CD and multilingual residual voltage warning sticker To unpack: • Cut the straps (6). • Remove the top cardboard cover (3) and cushion (4). • Lift the cardboard sleeve (5). • Attach lifting hooks to the lifting eyes of the drive. Lift the drive with a hoist. Mechanical installation 45 Frame R6 cable entry box (IP21, UL Type 1) This illustration shows the contents of the cable entry box package. The package also includes an assembly drawing which shows how to install the cable entry box to the drive module frame. 3aua0000112044 46 Mechanical installation Frame R7 cable entry box (IP21, UL Type 1) This illustration shows the contents of the cable entry box package. The package also includes an assembly drawing which shows how to install the cable entry box to the drive module frame. 3aua0000111117 Mechanical installation 47 Frame R8 cable entry box (IP21, UL Type 1) This illustration shows the contents of the cable entry box package. There is also an assembly drawing which shows how to install the cable entry box to the drive module frame. 3aua0000112174 48 Mechanical installation Frame R9 cable entry box (IP21, UL Type 1) This illustration shows the contents of the cable entry box package. The package also includes an assembly drawing which shows how to install the cable entry box to the drive module frame. 3aua0000112356 Mechanical installation 49 Installing the drive This section tells you how to install the drive on wall without vibration dampers. Installing vibration dampers (option +C131) Marine type approval (option +C132) requires the installation of vibration dampers for frames R4 to R9 in wall installations. See Vibration dampers for ACS880-01 drives (frames R4 and R5, option +C131) installation guide (3AXD50000010497 [English]) or Vibration dampers for ACS880-01 drives (frames R6 to R9, option +C131) installation guide (3AXD50000010497 [English]). The guide is included in the vibration damper package and on the manuals CD. 50 Mechanical installation Frames R1 to R4 (IP21, UL Type 1) 1. See the dimensions in chapter Dimension drawings. Mark the locations for the four mounting holes. 2. Drill the mounting holes. 3. Start the screws or bolts into the mounting holes. 4. Position the drive onto the screws on the wall. 5. Tighten the screws in the wall securely. 1 2 3 ×4 ×4 M5 ×4 5 ×4 4 Mechanical installation 51 Frames R5 to R9 (IP21, UL Type 1) 1. See the dimensions in chapter Dimension drawings. Mark the locations for the four or six mounting holes. Note: The lowest holes/mounting screws are not necessarily needed. If you use also them, you can replace the drive module without removing the cable entry box from the wall. 2. Drill the mounting holes. 3. Start the screws or bolts into the mounting holes. 4. Position the drive module onto the screws on the wall. 5. Tighten the upper mounting screws in the wall securely. 6. Remove the front cover. 7. Attach the cable entry box to the drive frame. For instructions, see the assembly drawing in the cable entry box. A view of frame R8 is shown below. 8. Tighten the lower mounting screws in the wall securely. 52 Mechanical installation IP21 (UL Type 1) R5 … R9 Screw size 200 mm (7.87”) 2 3 R5 M5 R6 M8 R7 M8 R8 M8 R9 M8 1 5 300 mm (11.81”) 4 6 7 8 < 40 °C Mechanical installation 53 Frames R1 to R9 (IP55, UL Type 12) Note: Do not open or remove the cable entry box for easier installation. The gaskets do not fulfill the degree of protection if the box is opened. 1. See the dimensions in chapter Dimension drawings. Mark the locations for the four or six mounting holes. The lowest holes are not necessarily needed. 2. Drill the mounting holes. 3. Start the upper screws or bolts into the mounting holes. 4. Position the drive onto the upper screws on the wall. 5. For UL Type 12 drives of frames R4 to R9: Put the hood onto the upper screws. 6. Tighten the upper screws in the wall securely. 7. Start the lower screws or bolts into the mounting holes. 8. Tighten the lower screws in the wall securely. 54 Mechanical installation IP55 (UL Type 12) R1…R9 200 mm (7.87”) 3 UL Type 12 (R4…R9) 5 1 2 6 300 mm (11.81”) Screw size R1…R5 M5 R6…R9 M8 6 4 7 8 Mechanical installation 55 Flange mounting See Flange mounting kit installation supplement (3AXD50000019100 [English]). Cabinet installation This section gives the basic cabinet installation instructions for the drive. For more information, see ACS880-01 +P940 drives for cabinet installation supplement (3AUA0000145446 [English]). Cooling Make sure that there is sufficient cooling: • Make sure that the temperature of the cooling air that goes into the drive does not exceed +40 °C (+104 °F). • Prevent cooling air recirculation inside the cabinet. You can use air baffle plates or an extra fan at the inlet or outlet of the cabinet. if you use a fan, we recommend an inlet fan with a filter. Such a fan causes an overpressure inside the cabinet which helps to keep the dust out. • Prevent cooling air recirculation outside the cabinet. Let the outlet air away from the inlet: to the other side of the cabinet or upwards. • Make sure that there is sufficient cooling in the room in which the cabinet is placed. 6 2 3 4 5 1 1 Main air flow in 2 Main air flow out 3 Air baffle plate 4 Drive 5 Air inlet filter 6 Air outlet filter 56 Mechanical installation Note: You can remove the front cover of the drive module for better cooling. Grounding inside the cabinet Leave the contact surfaces of the attaching points of the drive unpainted (bare metalto-metal contact). The drive frame will be grounded to the PE busbar of the cabinet via the attaching surfaces, screws and the cabinet frame. Alternatively, use a separate grounding conductor between the PE terminal of the drive and the PE busbar of the cabinet. Installing drives above one another Make sure that the outlet cooling air flows away from the drive above. 3 4 250 mm (9.84”) 1 max.+40 °C (+104 °F) 1 2 Air flow through the drive 2 Air baffle 3 Mounting plate that allows air through flow 4 Minimum spacing between the drives Planning the electrical installation 57 5 Planning the electrical installation What this chapter contains This chapter contains instructions for planning the electrical installation of the drive. Some instructions are mandatory to follow in every installation, others provide useful information that only concerns certain applications. Limitation of liability The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover. Selecting the supply disconnecting device Install a hand-operated input disconnecting device between the AC power source and the drive. The disconnecting device must be of a type that can be locked to the open position for installation and maintenance work. 58 Planning the electrical installation European Union To meet the European Union Directives, according to standard EN 60204-1, Safety of Machinery, the disconnecting device must be one of the following types: • switch-disconnector of utilization category AC-23B (EN 60947-3) • disconnector that has an auxiliary contact that in all cases causes switching devices to break the load circuit before the opening of the main contacts of the disconnector (EN 60947-3) • circuit breaker suitable for isolation in accordance with EN 60947-2. Other regions The disconnecting device must conform to the applicable safety regulations. Selecting and dimensioning the main contactor If a main contactor is used, its utilization category (number of operations under load) must be AC-1 according to IEC 60947-4, Low-voltage switchgear and controlgear. Dimension the main contactor according to the nominal voltage and current of the drive. Checking the compatibility of the motor and drive Use an asynchronous AC induction motor, permanent magnet synchronous motor, AC induction servomotor or ABB synchronous reluctance motor (SynRM motor) with the drive. Several induction motors can be connected to the drive at a time. Select the motor size and drive type from to the rating tables in chapter Technical data on basis of the AC line voltage and motor load. Use the DriveSize PC tool if you need to tune the selection more in detail. Ensure that the motor withstands the maximum peak voltage in the motor terminals. See the Requirements table on page 59. For basics of protecting the motor insulation and bearings in drive systems, refer to section Protecting the motor insulation and bearings below. Note: • Consult the motor manufacturer before using a motor whose nominal voltage differs from the AC line voltage connected to the drive input. • The voltage peaks at the motor terminals are relative to the supply voltage of the drive, not the drive output voltage. • If the motor and drive are not of the same size, consider the following operation limits of the drive control program: • motor nominal voltage range 1/6 ... 2 · UN • motor nominal current range 1/6 ... 2 · IN of the drive in DTC control and 0 ... 2 · IN in scalar control. The control mode is selected by a drive parameter. Planning the electrical installation 59 Protecting the motor insulation and bearings The drive employs modern IGBT inverter technology. Regardless of frequency, the drive output comprises pulses of approximately the drive DC bus voltage with a very short rise time. The pulse voltage can almost double at the motor terminals, depending on the attenuation and reflection properties of the motor cable and the terminals. This can cause additional stress on the motor and motor cable insulation. Modern variable speed drives with their fast rising voltage pulses and high switching frequencies can generate current pulses that flow through the motor bearings. This can gradually erode the bearing races and rolling elements. Optional du/dt filters protect motor insulation system and reduce bearing currents. Optional common mode filters mainly reduce bearing currents. Insulated N-end (nondrive end) bearings protect the motor bearings. Requirements table The following table shows how to select the motor insulation system and when an optional drive du/dt and common mode filters and insulated N-end (non-drive end) motor bearings are required. Ignoring the requirements or improper installation may shorten motor life or damage the motor bearings and voids the warranty. 60 Planning the electrical installation Motor type Nominal AC supply voltage Requirement for Motor insulation system ABB du/dt and common mode filters, insulated N-end motor bearings PN < 100 kW and frame size < IEC 315 100 kW < PN < 350 kW or IEC 315 < frame size < IEC 400 134 hp < PN < 469 hp PN < 134 hp and frame size < NEMA 500 or NEMA 500 < frame size < NEMA 580 ABB motors Random- UN < 500 V wound 500 V < UN < 600 V M2_,M3_ and M4_ Standard - +N Standard + du/dt + du/dt + N or Reinforced - +N 600 V < UN < 690 V (cable length < 150 m) Reinforced + du/dt + du/dt + N 600 V < UN < 690 V (cable length > 150 m) Reinforced - +N Formwound HX_ and AM_ 380 V < UN < 690 V Standard n.a. + N + CMF Old* formwound HX_ and modular 380 V < UN < 690 V Check with the motor manufacturer. + du/dt with voltages over 500 V + N + CMF 0 V < UN < 500 V Enamelled wire with fiber glass taping + N + CMF Randomwound HX_ and AM_ ** 500 V < UN < 690 V HDP Consult the motor manufacturer. + du/dt + N + CMF * manufactured before 1.1.1998 ** For motors manufactured before 1.1.1998, check for additional instructions with the motor manufacturer. Planning the electrical installation 61 Motor type Nominal AC supply voltage Requirement for Motor insulation system ABB du/dt and common mode filters, insulated N-end motor bearings PN < 100 kW and frame size < IEC 315 PN < 134 hp and frame size < NEMA 500 100 kW < PN < 350 kW or IEC 315 < frame size < IEC 400 134 hp < PN < 469 hp or NEMA 500 < frame size < NEMA 580 Non-ABB motors Random- UN < 420 V wound and form- 420 V < U < 500 V N wound Standard: ÛLL = 1300 V - + N or CMF Standard: ÛLL = 1300 V + du/dt + du/dt + (N or CMF) Reinforced: ÛLL = 1600 V, 0.2 microsecond rise time - + N or CMF Reinforced: ÛLL = 1600 V + du/dt + du/dt + (N or CMF) Reinforced: ÛLL = 1800 V - + N or CMF Reinforced: ÛLL = 1800 V + du/dt + du/dt + N Reinforced: ÛLL = 2000 V, 0.3 microsecond rise time *** - N + CMF or 500 V < UN < 600 V or 600 V < UN < 690 V *** If the intermediate DC circuit voltage of the drive is increased from the nominal level by resistor braking, check with the motor manufacturer if additional output filters are needed in the applied drive operation range. 62 Planning the electrical installation The abbreviations used in the table are defined below. Abbr. Definition UN Nominal AC line voltage ÛLL Peak line-to-line voltage at motor terminals which the motor insulation must withstand PN Motor nominal power du/dt du/dt filter at the output of the drive. Available from ABB as an optional add-on kit. CMF Common mode filter. Depending on the drive type, CMF is available from ABB as an optional add-on kit. N N-end bearing: insulated motor non-drive end bearing n.a. Motors of this power range are not available as standard units. Consult the motor manufacturer. Additional requirements for explosion-safe (EX) motors If you will use an explosion-safe (EX) motor, follow the rules in the requirements table above. In addition, consult the motor manufacturer for any further requirements. Additional requirements for ABB motors of types other than M2_, M3_, M4_, HX_ and AM_ Use the selection criteria given for non-ABB motors. Additional requirements for the braking applications When the motor brakes the machinery, the intermediate circuit DC voltage of the drive increases, the effect being similar to increasing the motor supply voltage by up to 20 percent. Consider this voltage increase when specifying the motor insulation requirements if the motor will be braking a large part of its operation time. Example: Motor insulation requirement for a 400 V AC line voltage application must be selected as if the drive were supplied with 480 V. Planning the electrical installation 63 Additional requirements for ABB high-output and IP23 motors The rated output power of high output motors is higher than what is stated for the particular frame size in EN 50347 (2001). This table shows the requirements for ABB random-wound motor series (for example, M3AA, M3AP and M3BP). Requirement for Nominal mains voltage (AC line voltage) UN < 500 V Motor insulation system Standard 500 V < UN < 600 V Standard ABB du/dt and common mode filters, insulated Nend motor bearings PN < 100 kW 100 kW < PN < 200 kW PN > 200 kW PN < 140 hp 140 hp < PN < 268 hp PN > 268 hp - +N + N + CMF + du/dt + du/dt + N + du/dt + N + CMF - +N + N + CMF + du/dt + du/dt + N + du/dt + N + CMF or Reinforced 600 V < UN < 690 V Reinforced 64 Planning the electrical installation Additional requirements for non-ABB high-output and IP23 motors The rated output power of high output motors is higher than what is stated for the particular frame size in EN 50347 (2001). The table below shows the requirements for random-wound and form-wound non-ABB motors. Nominal AC line voltage UN < 420 V Requirement for Motor insulation system ABB du/dt filter, insulated N-end bearing and ABB common mode filter PN < 100 kW or frame size < IEC 315 100 kW < PN < 350 kW or IEC 315 < frame size < IEC 400 PN < 134 hp or frame size < NEMA 500 134 hp < PN < 469 hp or NEMA 500 < frame size < NEMA 580 Standard: ÛLL = + N or CMF 1300 V 420 V < UN < 500 V Standard: ÛLL = + du/dt + (N or CMF) 1300 V + N + CMF + du/dt + N + CMF or Reinforced: ÛLL = 1600 V, 0.2 microsecond rise time + N or CMF 500 V < UN < 600 V Reinforced: ÛLL + du/dt + (N or CMF) = 1600 V + N + CMF + du/dt + N + CMF or Reinforced: ÛLL = 1800 V + N or CMF + N + CMF 600 V < UN < 690 V Reinforced: ÛLL = 1800 V + du/dt + N + du/dt + N + CMF N + CMF N + CMF Reinforced: ÛLL = 2000 V, 0.3 microsecond rise time *** *** If the intermediate DC circuit voltage of the drive is increased from the nominal level by resistor braking, check with the motor manufacturer if additional output filters are needed in the applied drive operation range. Planning the electrical installation 65 Additional data for calculating the rise time and the peak line-to-line voltage If you need to calculate the actual peak voltage and voltage rise time considering the actual cable length, proceed as follows: • Peak line-to line voltage: Read the relative ÛLL/UN value from the appropriate diagram below and multiply it by the nominal supply voltage (UN). • Voltage rise time: Read the relative values ÛLL/UN and (du/dt)/UN from the appropriate diagram below. Multiply the values by the nominal supply voltage (U N) and substitute into equation t = 0.8 · ÛLL/(du/dt). 66 Planning the electrical installation 3.0 ÛLL/UN 2.5 2.0 A 1.5 1.0 du/dt ------------- (1/Ps) UN 0.5 0.0 100 200 300 l (m) 5.5 5.0 4.5 du/dt ------------- (1/Ps) UN 4.0 B 3.5 3.0 ÛLL/UN 2.5 2.0 1.5 1.0 100 A Drive with du/dt filter B Drive without du/dt filter l Motor cable length 200 300 l (m) ÛLL/UN Relative peak line-to-line voltage (du/dt)/UN Relative du/dt value Note: ÛLL and du/dt values are approximately 20% higher with resistor braking. Planning the electrical installation 67 Additional note for sine filters Sine filters protect the motor insulation system. Therefore, du/dt filter can be replaced with a sine filter. The peak phase-to-phase voltage with the sine filter is approximately 1.5 · UN. Selecting the power cables General rules Select the input power and motor cables according to local regulations: • Select a cable capable of carrying the drive nominal current. See section Ratings (page 146) for the rated currents. • Select a cable rated for at least 70 °C maximum permissible temperature of conductor in continuous use. For frame R3 drives with option +B056 (IP55, UL Type 12) and ambient temperature above 39 °C (102 °F), select a cable rated for at least 75 °C maximum permissible temperature of conductor in continuous use. For US, see Additional US requirements, page 72. • The inductance and impedance of the PE conductor/cable (grounding wire) must be rated according to permissible touch voltage appearing under fault conditions (so that the fault point voltage will not rise excessively when a ground fault occurs). • 600 V AC cable is accepted for up to 500 V AC. 750 V AC cable is accepted for up to 600 V AC. For 690 V AC rated equipment, the rated voltage between the conductors of the cable should be at least 1 kV. Use symmetrical shielded motor cable (see page 70) for drive frame size R5 and larger, or motors larger than 30 kW (40 hp). A four-conductor system can be used up to frame size R4 with up to 30 kW (40 hp) motors, but shielded symmetrical motor cable is always recommended. Ground motor cable shields 360° at both ends. Keep the motor cable and its PE pigtail (twisted shield) as short as possible to reduce highfrequency electromagnetic emissions. Note: When continuous metal conduit is employed, shielded cable is not required. The conduit must have bonding at both ends. A four-conductor system is allowed for input cabling, but shielded symmetrical cable is recommended. Compared to a four-conductor system, the use of symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as the stress on motor insulation, bearing currents and wear. The protective conductor must always have an adequate conductivity. The table below shows the minimum cross-sectional area related to the phase conductor size according to IEC 61439-1 when the phase conductor and the protective conductor are made of the same metal. 68 Planning the electrical installation Cross-sectional area of the phase conductors Minimum cross-sectional area of the corresponding protective conductor S (mm2) Sp (mm2) S < 16 S 16 < S < 35 16 35 < S S/2 Typical power cable sizes The table below gives copper and aluminum cable types with concentric copper shield for the drives with nominal current. Drive type ACS88001- Frame size IEC 1) US 2) Cu cable type Al cable type Cu cable type Al cable type mm2 mm2 AWG/kcmil AWG/kcmil UN = 230 V 04A6-2 R1 3×1.5 - 14 - 06A6-2 R1 3×1.5 - 14 - 07A5-2 R1 3×1.5 - 14 - 10A6-2 R1 3×1.5 - 14 - 16A8-2 R2 3×6 - 10 - 24A3-2 R2 3×6 - 10 - 031A-2 R3 3×10 - 8 - 046A-2 R4 3×16 3×35 6 - 061A-2 R4 3×25 3×35 4 - 075A-2 R5 3×35 3×50 3 - 087A-2 R5 3×35 3×70 3 - 115A-2 R6 3×50 3×70 1 - 145A-2 R6 3×95 3×120 2/0 - 170A-2 R7 3×120 3×150 3/0 - 206A-2 R7 3×150 3×240 250 MCM - 274A-2 R8 2 × (3×95) 3) 2 × (3×120) 2 × 3/0 - 02A4-3 R1 3×1.5 - 14 - 03A3-3 R1 3×1.5 - 14 - 04A0-3 R1 3×1.5 - 14 - 05A6-3 R1 3×1.5 - 14 - 07A2-3 R1 3×1.5 - 14 - 09A4-3 R1 3×1.5 - 14 - 12A6-3 R1 3×1.5 - 14 - 017A-3 R2 3×6 - 10 - 025A-3 R2 3×6 - 10 - UN = 400 V Planning the electrical installation 69 Drive type ACS88001- Frame size IEC 1) US 2) Cu cable type Al cable type Cu cable type Al cable type mm2 mm2 AWG/kcmil AWG/kcmil 032A-3 R3 3×10 - 8 - 038A-3 R3 3×10 - 8 - 045A-3 R4 3×16 3×35 6 - 061A-3 R4 3×25 3×35 4 - 072A-3 R5 3×35 3×50 3 - 087A-3 R5 3×35 3×70 3 - 105A-3 R6 3×50 3×70 1 - 145A-3 R6 3×95 3×120 2/0 - 169A-3 R7 3×120 3×150 3/0 - 206A-3 R7 3×150 3×240 250 MCM - 246A-3 R8 2 × (3×70) 3) 2 × (3×95) 300 MCM - 293A-3 R8 2 × (3×95) 3) 2 × (3×120) 2 × 3/0 - 363A-3 R9 2 × (3×120) 2 × (3×185) 2 × 4/0 - 430A-3 R9 2 × (3×150) 2 × (3×240) 2 × 250 MCM - 02A1-5 R1 3×1.5 - 14 03A0-5 R1 3×1.5 - 14 - 03A4-5 R1 3×1.5 - 14 - 04A8-5 R1 3×1.5 - 14 - 05A2-5 R1 3×1.5 - 14 - 07A6-5 R1 3×1.5 - 14 - 11A0-5 R1 3×1.5 - 14 - 014A-5 R2 3×6 - 10 - 021A-5 R2 3×6 - 10 - 027A-5 R3 3×10 - 8 - 034A-5 R3 3×10 - 8 - 040A-5 R4 3×16 3×25 6 - 052A-5 R4 3×25 3×25 4 - 065A-5 R5 3×35 3×35 3 - 077A-5 R5 3×35 3×50 3 - 096A-5 R6 3×50 3×70 1 - 124A-5 R6 3×95 3×95 2/0 - UN = 500 V 156A-5 R7 3×120 3×150 3/0 - 180A-5 R7 3×150 3×185 250 MCM - 240A-5 R8 2 × (3×70) 3) 2 × (3×95) 300 MCM - 260A-5 R8 2 × (3×70) 3) 2 × (3×95) 2 × 2/0 - 302A-5 R9 2 × (3×95) 2 × (3×120) 2 × 3/0 - 361A-5 R9 2 × (3×120) 2 × (3×185) 2 × 250 MCM - 70 Planning the electrical installation Drive type Frame size IEC 1) US 2) Cu cable type Al cable type Cu cable type Al cable type mm2 mm2 R9 AWG/kcmil AWG/kcmil 2 × (3×150) 2 × (3×240) 2 × 250 MCM - 07A3-7 09A8-7 R5 3×1.5 - 14 12 R5 3×1.5 - 14 12 14A2-7 R5 3×2.5 - 14 12 018A-7 R5 3×4 - 12 10 022A-7 R5 3×6 - 10 8 026A-7 R5 3×10 3×25 8 6 035A-7 R5 3×10 3×25 8 6 042A-7 R5 3×16 3×25 6 4 049A-7 R5 3×16 3×25 6 4 061A-7 R6 3×25 3×35 4 3 084A-7 R6 3×35 3×50 3 2 098A-7 R7 3×50 3×70 2 1/0 119A-7 R7 3×70 3×95 1/0 3/0 142A-7 R8 3×95 3) 3×120 2/0 4/0 174A-7 R8 3×120 3) 2 × (3×70) 4/0 300 210A-7 R9 3×185 2 × (3×95) 300 MCM 2 × 3/0 271A-7 R9 3×240 2 × (3×120) 400 MCM ACS88001414A-5 UN = 690 V 2 × 4/0 3AXD00000588487 1) The cable sizing is based on max. 9 cables laid on a cable ladder side by side, three ladder type trays one on top of the other, ambient temperature 30 °C, PVC insulation, surface temperature 70 °C (EN 60204-1 and IEC 60364-5-52/2001). For other conditions, size the cables according to local safety regulations, appropriate input voltage and the load current of the drive. See also page 189 for the accepted cable sizes of the drive. 2) The cable sizing is based on NEC Table 310-16 for copper wires, 75 °C (167 °F) wire insulation at 40 °C (104 °F) ambient temperature. Not more than three current-carrying conductors in raceway or cable or earth (directly buried). For other conditions, size the cables according to local safety regulations, appropriate input voltage and the load current of the drive. See also page 190 for the accepted cable sizes of the drive. 3) The biggest cable size accepted by the connection terminals of frame R8 is 2 × (3×150). Biggest possible cable size is 3x240 or 400 MCM if the terminal type is changed and the cable entry box is not used. Alternative power cable types The recommended and not allowed power cable types to be used with the drive are presented below. Planning the electrical installation 71 Recommended power cable types PE PE PE Symmetrical shielded cable with three phase conductors and a concentric PE conductor as shield. The shield must meet the requirements of IEC 61439-1, see page 67. Check with local / state / country electrical codes for allowance. Symmetrical shielded cable with three phase conductors and a concentric PE conductor as shield. A separate PE conductor is required if the shield does not meet the requirements of IEC 61439-1, see page 67. Symmetrical shielded cable with three phase conductors and symmetrically constructed PE conductor, and a shield. The PE conductor must meet the requirements of IEC 61439-1. Power cable types for limited use A four-conductor system (three phase conductors and a protective conductor on a cable tray) is not allowed for motor cabling (it is allowed for input cabling). PE PVC EMT A four-conductor system (three phase conductors and a PE conductor in a PVC conduit) is allowed for input and motor cabling with phase conductor cross-section less than 10 mm2 (8 AWG) or motors < 30 kW (40 hp). Not allowed in USA. Corrugated or EMT cable with three phase conductors and a protective conductor is allowed for motor cabling with phase conductor cross section less than 10 mm2 (8 AWG) or motors < 30 kW (40 hp). Not allowed power cable types PE Symmetrical shielded cable with individual shields for each phase conductor is not allowed on any cable size for input and motor cabling. 72 Planning the electrical installation Motor cable shield If the motor cable shield is used as the sole protective earth conductor of the motor, ensure that the conductivity of the shield is sufficient. See subsection General rules above, or IEC 61439-1. To effectively suppress radiated and conducted radiofrequency emissions, the cable shield conductivity must be at least 1/10 of the phase conductor conductivity. The requirements are easily met with a copper or aluminum shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires with an open helix of copper tape or copper wire. The better and tighter the shield, the lower the emission level and bearing currents. 4 1 3 1 Insulation jacket 2 Copper wire screen 3 Helix of copper tape or copper wire 4 Inner insulation 5 Cable core 5 2 Additional US requirements Use type MC continuous corrugated aluminum armor cable with symmetrical grounds or shielded power cable for the motor cables if metallic conduit is not used. For the North American market, 600 V AC cable is accepted for up to 500 V AC. 1000 V AC cable is required above 500 V AC (below 600 V AC). For drives rated over 100 amperes, the power cables must be rated for 75 °C (167 °F). Conduit Couple separate parts of a conduit together: bridge the joints with a ground conductor bonded to the conduit on each side of the joint. Also bond the conduits to the drive enclosure and motor frame. Use separate conduits for input power, motor, brake resistor, and control wiring. When conduit is employed, type MC continuous corrugated aluminum armor cable or shielded cable is not required. A dedicated ground cable is always required. Note: Do not run motor wiring from more than one drive in the same conduit. Planning the electrical installation 73 Armored cable / shielded power cable Six conductor (3 phases and 3 ground) type MC continuous corrugated aluminum armor cable with symmetrical grounds is available from the following suppliers (trade names in parentheses): • Anixter Wire & Cable (Philsheath) • BICC General Corp (Philsheath) • Rockbestos Co. (Gardex) • Oaknite (CLX). Shielded power cables are available from Belden, LAPPKABEL (ÖLFLEX) and Pirelli. Selecting the control cables Shielding All control cables must be shielded. Use a double-shielded twisted pair cable for analog signals. This type of cable is recommended for the pulse encoder signals also. Employ one individually shielded pair for each signal. Do not use common return for different analog signals. A double-shielded cable (figure a below) is the best alternative for low-voltage digital signals but single-shielded (b) twisted pair cable is also acceptable. a b Signals in separate cables Run analog and digital signals in separate, shielded cables. Never mix 24 V DC and 115/230 V AC signals in the same cable. Signals allowed to be run in the same cable Relay-controlled signals, providing their voltage does not exceed 48 V, can be run in the same cables as digital input signals. The relay-controlled signals should be run as twisted pairs. Relay cable type The cable type with braided metallic screen (for example ÖLFLEX by LAPPKABEL, Germany) has been tested and approved by ABB. 74 Planning the electrical installation Control panel cable length and type In remote use, the cable connecting the control panel to the drive must not exceed three meters (10 ft). Cable type: shielded CAT 5e or better Ethernet patch cable with RJ-45 ends. Routing the cables Route the motor cable away from other cable routes. Motor cables of several drives can be run in parallel installed next to each other. The motor cable, input power cable and control cables should be installed on separate trays. Avoid long parallel runs of motor cables with other cables in order to decrease electromagnetic interference caused by the rapid changes in the drive output voltage. Where control cables must cross power cables, ensure they are arranged at an angle as near to 90 degrees as possible. Do not run extra cables through the drive. The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminum tray systems can be used to improve local equalizing of potential. A diagram of the cable routing is shown below. Motor cable Drive Power cable Motor cable Input power cable min 200 mm (8 in.) min 300 mm (12 in.) 90 ° Control cables min 500 mm (20 in.) Planning the electrical installation 75 Separate control cable ducts Lead 24 V and 230 V (120 V) control cables in separate ducts unless the 24 V cable is insulated for 230 V (120 V) or insulated with an insulation sleeving for 230 V (120 V). 24 V 230 V (120 V) 230 V 24 V (120 V) Continuous motor cable shield or enclosure for equipment on the motor cable To minimize the emission level when safety switches, contactors, connection boxes or similar equipment are installed on the motor cable between the drive and the motor: • European Union: Install the equipment in a metal enclosure with 360 degree grounding for the shields of both the incoming and outgoing cable, or connect the shields of the cables otherwise together. • US: Install the equipment in a metal enclosure in a way that the conduit or motor cable shielding runs consistently without breaks from the drive to the motor. Implementing thermal overload and short-circuit protection Protecting the drive and input power cable in short-circuits Protect the drive and input cable with fuses as follows: ~ ~ M 3~ 76 Planning the electrical installation Size the fuses at the distribution board according to instructions given in chapter Technical data. The fuses will protect the input cable in short-circuit situations, restrict drive damage and prevent damage to adjoining equipment in case of a short-circuit inside the drive. Circuit breakers The protective characteristics of circuit breakers depend on the type, construction and settings of the breakers. There are also limitations pertaining to the short-circuit capacity of the supply network. Your local ABB representative can help you in selecting the breaker type when the supply network characteristics are known. Note: Circuit breakers must not be used without fuses in the USA. WARNING! Due to the inherent operating principle and construction of circuit breakers, independent of the manufacturer, hot ionized gases can escape from the breaker enclosure in case of a short-circuit. To ensure safe use, pay special attention to the installation and placement of the breakers. Obey the manufacturer’s instructions. ABB has tested these circuit breakers with the drive. Fuses must be used with other circuit breakers Drive type ACS880-01- Frame size ABB miniature circuit breaker ABB moulded case circuit breaker (Tmax) Type kA 1) Type kA 1) - UN = 230 V 04A6-2 R1 S 203 M/P-B/C 6 5 - 06A6-2 R1 S 203 M/P-B/C 6 5 - - 07A5-2 R1 S 203 M/P-B/C 16 5 - - 10A6-2 R1 S 203 M/P-B/C 16 5 - - 16A8-2 R2 S 203 M/P-B/C 20 5 - - 24A3-2 R2 S 203 M/P-B/C 32 5 - - 031A-2 R3 S 203 M/P-B/C 50 5 - - 046A-2 R4 S 803 S-B/C 75 10 - - 061A-2 R4 S 803 S-B/C 80 10 - - 075A-2 R5 S 803 S-B/C 125 10 1SDA067918R1 65 087A-2 R5 S 803 S-B/C 125 10 1SDA067918R1 65 115A-2 R6 - - 1SDA067918R1 65 145A-2 R6 - - 1SDA068555R1 65 170A-2 R7 - - 1SDA068555R1 65 206A-2 R7 - - 1SDA054141R1 65 274A-2 R8 - - 1SDA054141R1 65 R1 S 203 M/P-B/C 6 5 - - UN = 400 V 02A4-3 Planning the electrical installation 77 Drive type ACS880-01- Frame size ABB miniature circuit breaker ABB moulded case circuit breaker (Tmax) Type kA 1) Type kA 1) - 03A3-3 R1 S 203 M/P-B/C 6 5 - 04A0-3 R1 S 203 M/P-B/C 6 5 - - 05A6-3 R1 S 203 M/P-B/C 10 5 - - 07A2-3 R1 S 203 M/P-B/C 13 5 - - 09A4-3 R1 S 203 M/P-B/C 13 5 - - 12A6-3 R1 S 203 M/P-B/C 20 5 - - 017A-3 R2 S 203 M/P-B/C 25 5 - - 025A-3 R2 S 203 M/P-B/C 32 5 - - 032A-3 R3 S 203 M/P-B/C 50 5 - - 038A-3 R3 S 203 M/P-B/C 63 5 - - 045A-3 R4 S 803 S-B/C 63 10 - - 061A-3 R4 S 803 S-B/C 75 10 - - 072A-3 R5 S 803 S-B/C 125 10 1SDA067918R1 65 087A-3 R5 S 803 S-B/C 125 10 1SDA067918R1 65 105A-3 R6 - - 1SDA068555R1 65 145A-3 R6 - - 1SDA068555R1 65 169A-3 R7 - - 1SDA068555R1 65 206A-3 R7 - - 1SDA054141R1 65 246A-3 R8 - - 1SDA054365R1 65 293A-3 R8 - - 1SDA054420R1 65 363A-3 R9 - - 1SDA054420R1 65 430A-3 R9 - - 1SDA054420R1 65 02A1-5 R1 S 803 S-B/C 6 10 - - 03A0-5 R1 S 803 S-B/C 6 10 - - 03A4-5 R1 S 803 S-B/C 6 10 - - 04A8-5 R1 S 803 S-B/C 10 10 - - 05A2-5 R1 S 803 S-B/C 13 10 - - 07A6-5 R1 S 803 S-B/C 13 10 - - 11A0-5 R1 S 803 S-B/C 20 10 - - 014A-5 R2 S 803 S-B/C 25 10 - - 021A-5 R2 S 803 S-B/C 32 10 - - 027A-5 R3 S 803 S-B/C 50 10 - - 034A-5 R3 S 803 S-B/C 63 10 - - 040A-5 R4 S 803 S-B/C 63 10 - - 052A-5 R4 S 803 S-B/C 75 10 - - 065A-5 R5 S 803 S-B/C 125 10 1SDA067918R1 65 077A-5 R5 S 803 S-B/C 125 10 1SDA067918R1 65 096A-5 R6 - - 1SDA068555R1 65 UN = 500 V 78 Planning the electrical installation Drive type ACS880-01- Frame size ABB miniature circuit breaker ABB moulded case circuit breaker (Tmax) Type kA 1) Type kA 1) 124A-5 R6 - - 1SDA068555R1 65 156A-5 R7 - - 1SDA068555R1 65 180A-5 R7 - - 1SDA054141R1 65 240A-5 R8 - - 1SDA054420R1 65 260A-5 R8 - - 1SDA054420R1 65 361A-5 R9 - - 1SDA054420R1 65 414A-5 R9 - - 1SDA054420R1 65 07A3-7 R5 S 803 S-B/C 13 4 1SDA067915R1 18 09A8-7 R5 S 803 S-B/C 20 4 1SDA067915R1 18 14A2-7 R5 S 803 S-B/C 25 4 1SDA067915R1 18 018A-7 R5 S 803 S-B/C 32 4 1SDA067916R1 18 022A-7 R5 S 803 S-B/C 50 4 1SDA067916R1 18 026A-7 R5 S 803 S-B/C 63 4 1SDA067916R1 18 035A-7 R5 S 803 S-B/C 63 4 1SDA067916R1 18 042A-7 R5 S 803 S-B/C 80 4 1SDA067917R1 18 UN = 690 V 1SDA054069R1 35 18 049A-7 R5 S 803 S-B/C 80 4 1SDA067917R1 1SDA054069R1 35 061A-7 R6 S 803 S-B/C 125 3 1SDA067918R1 20 1SDA054070R1 35 084A-7 R6 S 803 S-B/C 125 3 1SDA067918R1 20 1SDA054070R1 35 098A-7 R7 - - 1SDA068555R1 20 1SDA054071R1 35 119A-7 R7 - - 1SDA068555R1 20 1SDA054071R1 35 142A-7 R8 - - 1SDA068555R1 20 1SDA054071R1 35 174A-7 R8 - 1SDA054141R1 35 210A-7 R9 - 1SDA054365R1 35 271A-7 R9 - 1SDA054420R1 35 3AXD00000588487, 3AXD10000114581 1) Maximum allowed rated conditional short-circuit current (IEC 61439-1) of the electrical power network Protecting the motor and motor cable in short-circuits The drive protects the motor cable and motor in a short-circuit situation when the motor cable is sized according to the nominal current of the drive. No additional protection devices are needed. Planning the electrical installation 79 Protecting the drive and the input power and motor cables against thermal overload The drive protects itself and the input and motor cables against thermal overload when the cables are sized according to the nominal current of the drive. No additional thermal protection devices are needed. WARNING! If the drive is connected to multiple motors, use a separate circuit breaker or fuses for protecting each motor cable and motor against overload. The drive overload protection is tuned for the total motor load. It may not trip due to an overload in one motor circuit only Protecting the motor against thermal overload According to regulations, the motor must be protected against thermal overload and the current must be switched off when overload is detected. The drive includes a motor thermal protection function that protects the motor and switches off the current when necessary. Depending on a drive parameter value, the function either monitors a calculated temperature value (based on a motor thermal model) or an actual temperature indication given by motor temperature sensors. The user can tune the thermal model further by feeding in additional motor and load data. The most common temperature sensors are: • motor sizes IEC180…225: thermal switch, eg, Klixon • motor sizes IEC200…250 and larger: PTC or Pt100. See the firmware manual for more information on the motor thermal protection, and the connection and use of the temperature sensors. Protecting the drive against ground faults The drive is equipped with an internal ground fault protective function to protect the unit against ground faults in the motor and motor cable. This is not a personnel safety or a fire protection feature. The ground fault protective function can be disabled with a parameter, refer to the firmware manual. Residual current device compatibility The drive is suitable to be used with residual current devices of Type B. Note: The EMC filter of the drive includes capacitors connected between the main circuit and the frame. These capacitors and long motor cables increase the ground leakage current and may cause fault current circuit breakers to function. 80 Planning the electrical installation Connecting drives to a common DC system See ACS880-01 drives and ACS880-04 drive modules common DC systems application guide (3AUA0000127818 [English]). Implementing the Emergency stop function For safety reasons, install the emergency stop devices at each operator control station and at other operating stations where emergency stop may be needed. You can use the Safe torque off function of the drive to implement the Emergency stop function. See chapter Safe Torque off function on page 229. Note: Pressing the stop key on the control panel of the drive does not generate an emergency stop of the motor or separate the drive from dangerous potential. Implementing the Safe torque off function See chapter Safe Torque off function on page 229. Implementing the safety functions with the FSO module The drive can be equipped with a safety functions module as factory installed (option +Q973). The module is also available as a retrofilt kit. The safety functions module enables the implementation of functions such as Safe brake control (SBC), Safe stop 1 (SS1), Safe stop emergency (SSE), Safely limited speed (SLS) and Safe maximum speed (SMS). The settings of the FSO-xx are at default when delivered from the factory. The wiring of the external safety circuit and configuration of the FSO-xx module are the responsibility of the machine builder. The FSO-xx reserves the standard Safe torque off (STO) connection of the drive control unit. STO can still be utilized by other safety circuits through the FSO-xx. For the installation of the safety functions module, see section Installation of safety functions modules on page 119. For wiring instructions, safety data and more information on the option, see FSO-12 safety functions module user’s manual (3AXD50000015612 [English]). Declaration of Conformity See page 202. Implementing the ATEX-certified Safe motor disconnection function (option +Q971) With option +Q971, the drive supplies ATEX-certified safe motor disconnection without contactor that uses the drive Safe torque off function. For more information, see ACS880 ATEX-certified Safe disconnection function application guide Planning the electrical installation 81 (3AUA0000132231 [English]). See also section Deratings for special settings in the drive control program on page 158. Implementing the Power-loss ride-through function Implement the power-loss ride-through function as follows: • Check that the power-loss ride-through function of the drive is enabled with parameter 30.31 Undervoltage control in the ACS880 primary control program. • If the installation is equipped with a main contactor, prevent its tripping at the input power break. For example, use a time delay relay (hold) in the contactor control circuit. WARNING! Make sure that the flying restart of the motor will not cause any danger. If you are in doubt, do not implement the Power-loss ride-through function. Using power factor compensation capacitors with the drive Power factor compensation is not needed with AC drives. However, if a drive is to be connected in a system with compensation capacitors installed, note the following restrictions. WARNING! Do not connect power factor compensation capacitors or harmonic filters to the motor cables (between the drive and the motor). They are not meant to be used with AC drives and can cause permanent damage to the drive or themselves. If there are power factor compensation capacitors in parallel with the three phase input of the drive: 1. Do not connect a high-power capacitor to the power line while the drive is connected. The connection will cause voltage transients that may trip or even damage the drive. 2. If capacitor load is increased/decreased step by step when the AC drive is connected to the power line, ensure that the connection steps are low enough not to cause voltage transients that would trip the drive. 3. Check that the power factor compensation unit is suitable for use in systems with AC drives, ie, harmonic generating loads. In such systems, the compensation unit should typically be equipped with a blocking reactor or harmonic filter. 82 Planning the electrical installation Using a contactor between the drive and the motor Implementing the control of the output contactor depends on how you select the drive to operate. See also section Implementing a bypass connection on page 82. When you have selected to use DTC motor control mode and motor ramp stop, open the contactor as follows: 1. Give a stop command to the drive. 2. Wait until the drive decelerates the motor to zero speed. 3. Open the contactor. When you have selected to use DTC motor control mode and motor coast stop, or scalar control mode, open the contactor as follows: 1. Give a stop command to the drive. 2. Open the contactor. WARNING! When the DTC motor control mode is in use, never open the output contactor while the drive controls the motor. The DTC motor control operates extremely fast, much faster than it takes for the contactor to open its contacts. When the contactor starts opening while the drive controls the motor, the DTC control will try to maintain the load current by immediately increasing the drive output voltage to the maximum. This will damage, or even burn the contactor completely. Implementing a bypass connection If bypassing is required, employ mechanically or electrically interlocked contactors between the motor and the drive and between the motor and the power line. Ensure with interlocking that the contactors cannot be closed simultaneously. WARNING! Never connect the drive output to the electrical power network. The connection may damage the drive. Planning the electrical installation 83 Example bypass connection An example bypass connection is shown below. Q1 Drive main switch S11 Drive main contactor on/off control Q4 Bypass circuit breaker S40 Motor power supply selection (drive or direct-on-line) K1 Drive main contactor S41 Start when motor is connected direct-online K4 Bypass contactor S42 Stop when motor is connected direct-online K5 Drive output contactor 84 Planning the electrical installation Switching the motor power supply from drive to direct-on-line 1. Stop the drive and the motor with the drive control panel (drive in local control mode) or with the external stop signal (drive in remote control mode). 2. Open the main contactor of the drive with S11. 3. Switch the motor power supply from the drive to direct-on-line with S40. 4. Wait for 10 seconds to allow the motor magnetization to die away. 5. Start the motor with S41. Switching the motor power supply from direct-on-line to drive 1. Stop the motor with S42. 2. Switch the motor power supply from direct-on-line to the drive with S40. 3. Close the main contactor of the drive with switch S11 (-> turn to position ST for two seconds and leave at position 1). 4. Start the drive and the motor with the drive control panel (drive in local control mode) or with the external start signal (drive in remote control mode). Protecting the contacts of relay outputs Inductive loads (relays, contactors, motors) cause voltage transients when switched off. The relay contacts on the drive control unit are protected with varistors (250 V) against overvoltage peaks. In spite of this, it is highly recommended that inductive loads are equipped with noise attenuating circuits (varistors, RC filters [AC] or diodes [DC]) in order to minimize the EMC emission at switch-off. If not suppressed, the disturbances may connect capacitively or inductively to other conductors in the control cable and form a risk of malfunction in other parts of the system. Install the protective component as close to the inductive load as possible. Do not install protective components at the relay outputs. Planning the electrical installation 85 1 230 V AC 2 230 V AC 3 + 24 V DC 4 1) Relay outputs; 2) Varistor; 3) RC filter; 4) diode 86 Planning the electrical installation Connecting a motor temperature sensor to the drive I/O WARNING! IEC 60664 requires double or reinforced insulation between live parts and the surface of accessible parts of electrical equipment which are either non-conductive or conductive but not connected to the protective earth. To fulfill this requirement, the connection of a thermistor (and other similar components) to the digital inputs of the drive can be implemented in three alternate ways: 1. There is double or reinforced insulation between the thermistor and live parts of the motor. 2. Circuits connected to all digital and analog inputs of the drive are protected against contact and insulated with basic insulation (the same voltage level as the drive main circuit) from other low voltage circuits. 3. An external thermistor relay is used. The insulation of the relay must be rated for the same voltage level as the main circuit of the drive. For connection, see the firmware manual. See section AI1 and AI2 as Pt100, Pt1000, PTC and KTY84 sensor inputs (XAI, XAO) on page 109 or section DI6 (XDI:6) as PTC sensor input on page 111 for the connections. This table shows what sensor types you can connect to the drive I/O extension and encoder interface modules. These modules require double or reinforced insulation between live parts and the surface of accessible parts of electrical equipment Option module Temperature sensor type PTC KTY Pt100, Pt1000 FIO-11 - X X FEN-xx X - - FEN-11, FEN-21, FEN-31 X X - FAIO-01 - X X Note: The inaccuracy of the analog inputs on the drive control unit for Pt100 and Pt1000 sensors is 10 °C (50 °F). If more accuracy is needed, use the FAIO-01 analog I/O extension module (option +L525). It forms double insulation. Electrical installation 87 6 Electrical installation What this chapter contains This chapter gives instructions on wiring the drive. Warnings WARNING! Only qualified electricians are allowed to carry out the work described in this chapter. Follow the Safety instructions in the first chapter of this manual. Ignoring the safety instructions can cause physical injury or death. Checking the insulation of the assembly Drive Do not make any voltage tolerance or insulation resistance tests on any part of the drive as testing can damage the drive. Every drive has been tested for insulation between the main circuit and the chassis at the factory. Also, there are voltagelimiting circuits inside the drive which cut down the testing voltage automatically. Input power cable Check the insulation of the input cable according to local regulations before connecting it to the drive. 88 Electrical installation Motor and motor cable Check the insulation of the motor and motor cable as follows: 1. Check that the motor cable is disconnected from the drive output terminals T1/U, T2/V and T3/W. 2. Measure the insulation resistance between each phase conductor and then between each phase conductor and the Protective Earth conductor using a measuring voltage of 1000 V DC. The insulation resistance of an ABB motor must exceed 100 Mohm (reference value at 25 °C or 77 °F). For the insulation resistance of other motors, please consult the manufacturer’s instructions. Note: Moisture inside the motor casing will reduce the insulation resistance. If moisture is suspected, dry the motor and repeat the measurement. ohm U1 V1 ohm W1 M 3~ PE Brake resistor assembly Check the insulation of the brake resistor assembly (if present) as follows: 1. Check that the resistor cable is connected to the resistor, and disconnected from the drive output terminals R+ and R-. 2. At the drive end, connect the R+ and R- conductors of the resistor cable together. Measure the insulation resistance between the combined conductors and the PE conductor by using a measuring voltage of 1 kV DC. The insulation resistance must be higher than 1 Mohm. R+ Rohm PE Electrical installation 89 Checking the compatibility with IT (ungrounded) systems EMC filters +E200 and +E202 are not suitable for use in an IT (ungrounded) system. If the drive is equipped with filter +E200 or +E202, disconnect the filter before connecting the drive to the supply network. Undo the two screws which are marked with EMC AC and EMC DC on the skeleton. See EMC filter disconnecting instructions for ACS880-01 drives with filters +E200 and +E202 (3AUA0000125152 [English]). For frame R4, contact ABB WARNING! If a drive with EMC filter +E200 or +E202 is installed on an IT system (an ungrounded power system or a high resistance-grounded [over 30 ohm] power system), the system will be connected to earth potential through the EMC filter capacitors of the drive. This can cause danger, or damage the drive. 90 Electrical installation Connecting the power cables Connection diagram ACS880-01 L1 L2 R- L3 UDC+ R+ UDC- T1/U T2/V T3/W PE 2b 2a 3 4 3 7 6 5 1 V1 U1 (PE) PE (PE) L1 L2 L3 W1 3~M 1 For alternatives, see section Selecting the supply disconnecting device on page 57. 2 Use a separate grounding PE cable (2a) or a cable with a separate PE conductor (2b) if the conductivity of the shield does not meet the requirements for the PE conductor (see page 67). 3 360-degree grounding is recommended if shielded cable is used. Ground the other end of the input cable shield or PE conductor at the distribution board. 4 360-degree grounding is required. 5 External brake resistor 6 Use a separate grounding cable if the shield does not meet the requirements of IEC 61439-1 (see page 67) and there is no symmetrically constructed grounding conductor in the cable (see page 72). 7 du/dt filter or sine filter (optional, see page 257). Note: If there is a symmetrically constructed grounding conductor on the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the drive and motor ends. Do not use an asymmetrically constructed motor cable for motors above 30 kW (see page 67). Connecting its fourth conductor at the motor end increases bearing currents and causes extra wear. Electrical installation 91 Connection procedure for frames R1 to R3 1. Undo the mounting screws at the sides of the front cover. 2. Remove the cover by sliding it forward. 3. Attach the residual voltage warning sticker in the local language to the control panel mounting platform. 4. Remove the rubber grommets from the lead-through plate for the cables to be connected. 5. IP21 units: Fasten the cable connectors (included in the delivery in a plastic bag) to the cable lead-through plate holes. 6. Prepare the input power and motor cable ends as illustrated in the figure. Note: Bare shield will be grounded 360 degrees. 7. IP21 units: Ground the shields 360 degrees in the connectors by tightening the connector onto the stripped part of the cable. IP55 units: Tighten the clamps onto the stripped part of the cables. Mind the sharp edges. 8. Connect the twisted shields of the power cables to the grounding terminals. 9. Connect the additional PE conductor (if used, see page 15) of the input cable to the grounding terminal. 10. Connect the phase conductors of the input cable to the L1, L2 and L3 terminals and the phase conductors of the motor cable to the T1/U, T2/V and T3/W terminals. Connect the brake resistor conductors (if present) to the R+ and Rterminals. Tighten the screws to the torque given in the figure below. 11. Install the control cable grounding shelf in the cable entry box. 12. Secure the cables outside the unit mechanically. Note: For US cable conduit installation, see the quick installation guide. 92 Electrical installation R1…R3 IP55 10 IP21 1 2 1 1 3 5 4 Electrical installation 93 R1…R3 9 8 8 6 6 PE PE PE 8 6 PE 8 10 10 T3/W T2/V T1/U UDC- R+ L3 L2 L1 R- L1, L2, L3, T1/U, T2/V, T3/W, R-, R+/UDC+, UDC 8 9 7 (N·m) (N·m) R1 0.6 1.8 R2 0.6 1.8 R3 1.7 1.8 94 Electrical installation 11 Connection procedure for frames R4 and R5 1. Remove the front cover. IP21 units: Release the retaining clip with a screwdriver (a) and lift the cover from the bottom outwards (b). 2. For IP21 drives: Remove the cable entry box cover by undoing the mounting screw. 3. For frame R4: Remove the EMC shroud that separates the input and output cabling if needed for easier installation. 4. Remove the shroud on the power cable terminals by releasing the clips and lifting the shroud up from the sides with a screwdriver (a). Knock out holes in the shroud for the cables to be installed (b). 5. Attach the residual voltage warning sticker in the local language next to the control unit top. 6. Cut adequate holes into the rubber grommets. Slide the grommets onto the cables. Slide the cables through the holes of the bottom plate and attach the grommets to the holes. 7. Prepare the ends of the input power and motor cables as illustrated in the figure. Note: Bare shield will be grounded 360 degrees under the grounding clamp. 8. Ground the cable shields 360 degrees under the grounding clamps. Mind the sharp edges. 9. Connect the twisted cable shields to the grounding terminals. 10. Connect the phase conductors of the input cable to the L1, L2 and L3 terminals and the phase conductors of the motor cable to the T1/U, T2/V and T3/W terminals. Tighten the screws to the torque given in the figure below. Note for aluminum cables: Apply grease onto the conductor ends before you put them into the terminals. Electrical installation 95 Note for cable lug installation (frame R5): Detach the connector and install a cable lug to the terminal post as follows: • Remove the combi screw that attaches the connector to its terminal post and pull the connector off. • Attach the cable lug to the conductor. • Put the cable lug onto the terminal post. Start the nut, and turn it at least two rotations by hand. WARNING! Before using tools, make sure that the nut/screw is not crossthreading. Cross-threading will damage the drive and cause danger. • Tighten the nut to a torque of 5 N·m. 11. Install the EMC shroud separating the input and output cabling if not installed yet. 12. Units with option +D150: Slide the brake resistor cable through the brake resistor and control cable clamp assembly. Connect the conductors to the R+ and Rterminals and tighten to the torque given in the figure. 13. Reinstall the shroud on the power terminals. 14. Secure the cables outside the unit mechanically. Install the rubber grommets to the unused lead-through plate holes. Note for US cable conduit installation: See the quick installation guide. In case of a cable lug installation, use UL listed cable lugs and tools to agree with UL requirements. See page 191. 96 Electrical installation R4, R5 3 IP55 1 IP21 1b 1a 2 4b 4a 4 3 Electrical installation 97 R4, R5 PE 5 7 6 6 PE 7 6 98 Electrical installation R4, R5 10 10 8 9 9 L1, L2, L3, T1/U, R-, R+/UDC+, T2/V, T3/W UDC(N·m) (N·m) (N·m) R4 3.3 3.3 2.9 R5 5.6 5.6 2.9 11 12 9 13 Electrical installation 99 Connection procedure for frames R6 to R9 1. Remove the front cover: For IP21 drives: Release the retaining clip with a screwdriver (a) and pull the cover by the bottom outwards (b). 2. For IP21 drives: Remove the cable entry box cover by undoing the mounting screws. 3. Attach the residual voltage warning sticker in the local language next to the control unit. 4. Remove the side plates of the cable entry box by undoing the mounting screws. 5. Remove the shroud on the power cable terminals by releasing the clips on the sides with a screwdriver and lifting (a). Knock out holes for the cables to be installed (b). 6. If parallel cables are installed (frames R8 and R9): Knock out the shrouds on the power cable terminals for the cables to be installed. 7. Prepare the ends of the input power and motor cables as illustrated in the figure. Note: Bare shield will be grounded 360 degrees under the clamp. 8. Cut adequate holes into the rubber grommets (a). Slide the grommets onto the cables. Slide the cables through the holes of the bottom plate and attach the grommets to the holes (b). 9. Tighten the clamp onto the stripped part of the cable. Mind the sharp edges. 10. Fasten the twisted shields of the cables under the grounding clamps. 11. Connect the phase conductors of the input cable to the L1, L2 and L3 terminals and the phase conductors of the motor cable to the T1/U, T2/V and T3/W terminals. Tighten the screws to the torque given in the figure. Note 1 for frames R8 and R9: if you put only one conductor to the connector, we recommend that you put it under the upper pressure plate. Note 2 for frames R8 and R9: We do not recommend that you detach the connectors. If you do, detach and reinstall the connector as follows. L1, L2 and L3 terminals • Remove the combi screw that attaches the connector to its terminal post, and pull the connector off. • Put the conductor under the connector pressure plate and pretighten the conductor. • Put the connector back onto the terminal post. Start the combi screw, and turn it at least two rotations by hand. 100 Electrical installation WARNING! Before using tools, make sure that the nut/screw is not crossthreading. Cross-threading will damage the drive and cause danger. • Tighten the combi screw to a torque of 30 N·m. • Tighten the conductor(s) to 40 N·m for frame R8 or to 70 N·m for frame R9. T1/U, T2/V and T3/W terminals • Remove the nut that attaches the connector to its busbar. • Put the conductor under the connector pressure plate and pretighten the conductor. • Put the connector back to its busbar. Start the nut, and turn it at least two rotations by hand. WARNING! Before using tools, make sure that the nut/screw is not crossthreading. Cross-threading will damage the drive and cause danger. • Tighten the nut to a torque of 30 N·m. • Tighten the conductor(s) to 40 N·m for frame R8 or to 70 N·m for frame R9. Note for cable lug installation (frames R6 to R9): Detach the connector and install a cable lug to the terminal post / busbar as follows: • Remove the combi screw that attaches the connector to its terminal post / busbar, and pull the connector off. • Attach the cable lug to the conductor. • Put the cable lug onto the terminal post / busbar. Start the nut, and turn it at least two rotations by hand. WARNING! Before using tools, make sure that the nut/screw is not crossthreading. Cross-threading will damage the drive and cause danger. • Tighten the nut to a torque of 30 N·m. 12. Units with option +D150: Connect the brake resistor cable conductors to the R+ and R- terminals. 13. If parallel cables are installed (frames R8 and R9), install the grounding shelves for them. Repeat steps 8 to 12. 14. Reinstall the shroud on the power terminals. 15. Reinstall the side plates of the cable entry box. 16. Install the control cable grounding shelf in the cable entry box. Electrical installation 101 17. Secure the cables outside the unit mechanically. Install the rubber grommets to the unused lead-through plate holes. Note for US cable conduit installation: See the quick installation guide. In case of a cable lug installation, use UL listed cable lugs and tools to agree with UL requirements. See page 191. 102 Electrical installation R6 … R9 IP55 1a 1b 2 IP21 33 5b 5a 4 4 Electrical installation 103 R6 … R9 R8, R9 6 7 PE 8a PE 7 104 Electrical installation R6 … R9 11 12 10 11 10 10 9 Frame L1, L2, L3, T1/U, T2/V, T3/W R-, R+/UDC+, UDC- T (Wire screw) T (Wire screw) M… M… N·m N·m T N·m R6 M10 30 M8 20 9.8 R7 M10 40 (30*) M10 30 9.8 R8 M10 40 M10 40 9.8 R9 M12 70 M12 70 9.8 * for 525…690 V drives Electrical installation 105 R6 … R9 R8, R9 13 16 106 Electrical installation Grounding the motor cable shield at the motor end Always ground the motor cable shield at the motor end. For minimum radio frequency interference, ground the motor cable shield 360 degrees at the lead-through of the motor terminal box. DC connection The UDC+ and UDC- terminals are intended for common DC configurations of a number of drives, allowing regenerative energy from one drive to be utilized by the other drives in motoring mode. Contact your local ABB representative for further instructions. Connecting the control cables See section Default I/O connection diagram below for the default I/O connections of the Factory macro of ACS880 primary control program. For other macros and control programs, see the firmware manual. Connect the cables as described under Control cable connection procedure on page 112. Electrical installation 107 Default I/O connection diagram Wire sizes: 0.5 … 2.5 mm2 (24…12 AWG) Tightening torques: 0.5 N·m (5 lbf·in) for both stranded and solid wiring. Fault See the next page for the notes. XPOW External power input 1 +24VI 24 V DC, 2 A 2 GND XAI Reference voltage and analog inputs 1 +VREF 10 V DC, RL 1…10 kohm 2 -VREF -10 V DC, RL 1…10 kohm 3 AGND Ground 4 AI1+ Speed reference 0(2)…10 V, Rin > 200 kohm 1) 5 AI16 AI2+ By default not in use. 0(4)…20 mA, Rin = 100 ohm 2) 7 AI2J1 J1 AI1 current/voltage selection jumper J2 J2 AI2 current/voltage selection jumper XAO Analog outputs 1 AO1 Motor speed rpm 0…20 mA, RL < 2 AGND 500 ohm 3 AO2 Motor current 0…20 mA, RL < 500 ohm 4 AGND XD2D Drive-to-drive link 1 B Drive-to-drive link 2 A 3 BGND J3 J3 Drive-to-drive link termination switch XRO1, XRO2, XRO3 Relay outputs 11 NC Ready 250 V AC / 30 V DC 12 COM 2A 13 NO 21 NC Running 250 V AC / 30 V DC 22 COM 2A 23 NO 31 NC Faulted(-1) 250 V AC / 30 V DC 32 COM 2A 33 NO XD24 Digital interlock 1 DIIL Run enable 2 +24VD +24 V DC 200 mA 3) 3 DICOM Digital input ground 4 +24VD +24 V DC 200 mA 3) 5 DIOGND Digital input/output ground J6 Ground selection switch XDIO Digital input/outputs 1 DIO1 Output: Ready 2 DIO2 Output: Running XDI Digital inputs 1 DI1 Stop (0) / Start (1) 2 DI2 Forward (0) / Reverse (1) 3 DI3 Reset 4 DI4 Acceleration & deceleration select 4) 5 DI5 Constant speed 1 (1 = On) 6 DI6 By default not in use. XSTO Safe torque off 1 OUT1 2 SGND Safe torque off. Both circuits must be closed for the drive to start. 3 IN1 4 IN2 X12 Safety functions module connection X13 Control panel connection X205 Memory unit connection 108 Electrical installation Notes: 1) Current [0(4)…20 mA, Rin = 100 ohm] or voltage [ 0(2)…10 V, Rin > 200 kohm] input selected with jumper J1. Change of setting requires reboot of control unit. 2) Current [0(4)…20 mA, Rin = 100 ohm] or voltage [ 0(2)…10 V, Rin > 200 kohm] input selected with jumper J2. Change of setting requires reboot of control unit. 3) Total load capacity of these outputs is 4.8 W (200 mA / 24 V) minus the power taken by DIO1 and DIO2. 4) 0 = open, 1 = closed DI4 Ramp times according to 0 Parameters 23.12 and 23.13 1 Parameters 23.14 and 23.15 Further information on the usage of the connectors and jumpers is given in the sections below. See also section Control unit (ZCU-12) connection data on page 193. Jumpers and switches Jumper/ Switch J1 (AI1) Description Determines whether analog input AI1 is used as a current or voltage input. Positions Current (I) Voltage (U) J2 (AI2) Determines whether analog input AI2 is used as a current or voltage input. Current (I) Voltage (U) J3 J6 Drive-to-drive link termination. Must be set to terminated position when the drive is the last unit on the link. Common digital input ground selection switch. Determines whether DICOM is separated from DIOGND (ie, common reference for digital inputs floats). See Ground isolation diagram on page 196. Bus is terminated. Bus is not terminated. DICOM and DIOGND connected (default). DICOM and DIOGND separated. Electrical installation 109 External power supply for the control unit (XPOW) External +24 V (2 A) power supply for the control unit can be connected to terminal block XPOW. Using an external supply is recommended if • the control board needs to be kept operational during input power breaks, for example, due to continuous fieldbus communication • immediate restart is needed after power breaks (that is, no control board power up delay is allowed). AI1 and AI2 as Pt100, Pt1000, PTC and KTY84 sensor inputs (XAI, XAO) Three Pt100, Pt1000 and PTC sensors or one KTY84 sensor for motor temperature measurement can be connected between an analog input and output as shown below. Do not connect both ends of the cable shields directly to ground. If a capacitor cannot be used at one end, leave that end of the shield unconnected. 1…3 × Pt100/Pt1000/PTC or 1 × KTY XAI AIn+ 1) AIn- T T XAO T AOn 2) AGND 3.3 nF > 630 V AC 1) Set the input type to voltage with switch J1 for analog input AI1or with J2 for analog input AI2. Set the appropriate analog input unit to V (volt) in parameter group 12 Standard AI. 2) Select the excitation mode in parameter group 13 Standard AO. WARNING! As the inputs pictured above are not insulated according to IEC 60664, the connection of the motor temperature sensor requires double or reinforced insulation between motor live parts and the sensor. If the assembly does not fulfill the requirement, the I/O board terminals must be protected against contact and must not be connected to other equipment or the temperature sensor must be isolated from the I/O terminals. 110 Electrical installation Drive-to-drive link (XD2D) The drive-to-drive link is a daisy-chained RS-485 transmission line that allows basic master/follower communication with one master drive and multiple followers. Set termination activation jumper J3 (see section Jumpers and switches above) next to this terminal block to the ON position on the drives at the ends of the drive-to-drive link. On intermediate drives, set the jumper to the OFF position. Use shielded twisted-pair cable (~100 ohm, for example, PROFIBUS-compatible cable) for the wiring. For best immunity, high quality cable is recommended. Keep the cable as short as possible; the maximum length of the link is 50 meters (164 ft). Avoid unnecessary loops and running the cable near power cables (such as motor cables). The following diagram shows the wiring of the drive-to-drive link. ... ... ... ... 3.3 nF J3 J3 BGND 3 A 2 B 1 XD2D BGND 3 A 2 B 1 XD2D BGND 3 A 2 B 1 XD2D > 630 V AC J3 DIIL input (XD24:1) The DIIL input can be selected as the source of, for example, an emergency stop command or an external event. See the firmware manual for more information. Electrical installation 111 DI6 (XDI:6) as PTC sensor input A PTC sensor can be connected to this input for motor temperature measurement as follows. The sensor resistance must not exceed the threshold resistance of the digital input at the motor normal operating temperature. Do not connect both ends of the cable shield directly to ground. If a capacitor cannot be used at one end, leave that end of the shield unconnected. See the firmware manual for parameter settings. +24VD DI6 T PTC 3.3 nF > 630 V AC “0” > 4 kohm “1” < 1.5 kohm Imax = 5 mA WARNING! As the inputs pictured above are not insulated according to IEC 60664, the connection of the motor temperature sensor requires double or reinforced insulation between motor live parts and the sensor. If the assembly does not fulfill the requirement, the I/O board terminals must be protected against contact and must not be connected to other equipment or the temperature sensor must be isolated from the I/O terminals. Safe torque off (XSTO) For the drive to start, both connections (OUT1 to IN1 and IN2) must be closed. By default, the terminal block has jumpers to close the circuit. Remove the jumpers before connecting an external Safe torque off circuitry to the drive. See page 229. Safety functions module connection (X12) See section Implementing the safety functions with the FSO module on page 80, and FSO-12 safety functions module user’s manual (3AXD50000015612 [English]). 112 Electrical installation Control cable connection procedure WARNING! Follow the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the front cover(s). See section Connecting the power cables starting from page 90. 3. Cut adequate holes into the rubber grommets and slide the grommets onto the cables. Slide the cables through the holes of the bottom plate and attach the grommets to the holes. 4. Route the cables as shown on page 113. 5. Ground the outer shields of all control cables 360 degrees at a grounding clamp in the cable entry box, see page 113. Tighten the clamp to 1.5 N·m (13 lbf·in). Keep the shields continuous as close to the terminals of the control unit as possible. Secure the cables mechanically at the clamps below the control unit. Frames R1 to R3: Ground also the pair-cable shields and grounding wires at the cable entry box grounding clamp. 6. Frames R4 to R9: Ground the pair-cable shields and all grounding wires to the clamp below the control unit, see page 113. 7. Connect the conductors to the appropriate terminals (see page 107) of the control unit and tighten to 0.5 N·m (5 lbf·in). 8. For connecting the fieldbus cables, see appropriate quick installation guide: ACS880-01 quick installation guide for frames R1 to R3 3AUA0000085966 ACS880-01 quick installation guide for frames R4 and R5 3AUA0000099663 ACS880-01 quick installation guide for frames R6 to R9 3AUA0000099689 Note: • Leave the other ends of the control cable shields unconnected or ground them indirectly via a high-frequency capacitor with a few nanofarads, eg, 3.3 nF / 630 V. The shield can also be grounded directly at both ends if they are in the same ground line with no significant voltage drop between the end points. • Keep any signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire reduces disturbances caused by inductive coupling. Electrical installation 113 0.5 N·m 1.5 N·m 7 6 7 5 1.5 N·m 3 3 114 Electrical installation Connecting a PC WARNING! Do not connect the PC directly to the control panel connector of the control unit as this can cause damage. Connect a PC to the drive with an USB data cable (USB Type A <-> USB Type MiniB) as follows: 1. Lift the USB connector cover from bottom upwards. 2. Insert the USB cable Mini-B plug in the control panel USB connector. 3. Insert the USB cable A-plug in the USB connector of the PC. -> The panel displays: USB connected. 1 2 3 Electrical installation 115 Controlling several drives through panel bus One control panel (or PC) can be used to control several drives by constructing a panel bus. 1. Connect the panel to one drive using an Ethernet (eg. CAT5E) cable. Note for IP55 (UL Type 12) drives: Remove the front cover and put the cables through the control cable lead-throughs. • Use Menu – Settings – Edit texts – Drive to give a descriptive name to the drive. • Use parameter 49.01 to assign the drive with a unique node ID number. • Set other parameters in group 49 if necessary. • Use parameter 49.06 to validate any changes. Repeat the above for each drive. 2. With the panel connected to one drive, link the drives together using Ethernet cables. (Each panel platform has two connectors.) 3. In the last drive, switch bus termination on. With a panel platform, move the terminating switch into the outer position.Termination should be off on all other units. 4. On the control panel, switch on the panel bus functionality (Options – Select drive – Panel bus). The unit to be controlled can now be selected from the list under Options – Select drive. 5. If a PC is connected to the control panel, the drives on the panel bus are automatically displayed in the Drive composer tool. 6. For IP55 (UL Type 12) drives, Install the front cover. 116 Electrical installation 1 IP55 (UL Type 12) IP21 (UL Type 1) 1 2 3 1 3 2 Electrical installation 117 Installing optional modules Note: In frames R1 and R2, 90° connector cannot be used in Slot 1. In other frames, there is 50 to 55 mm free space for the connector and its cable available on Slots 1, 2 and 3. Mechanical installation of I/O extension, fieldbus adapter and pulse encoder interface modules See page 30 for the available slots for each module. Install the optional modules as follows: WARNING! Follow the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the front cover (see the section Connecting the power cables starting from page 90. 3. Frames R1 to R3: Pull the control panel mounting platform upwards to gain access to the optional module slots. 4. Insert the module carefully into its position on the control unit. 5. Tighten the mounting screw torque of 0.8 N·m. Note: The screw tightens the connections and grounds the module. It is essential for fulfilling the EMC requirements and for proper operation of the module. 118 Electrical installation 3 4 5 Wiring I/O extension, fieldbus adapter and pulse encoder interface modules See the appropriate optional module manual for specific installation and wiring instructions. See page 113 for the routing of the cables. Electrical installation 119 Installation of safety functions modules The safety functions module can be mounted onto Slot 2 on the control unit or, in frames R7 to R9, also next to the control unit. Installation procedure into Slot 2 WARNING! Follow the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the front cover (see the section Connecting the power cables on page 90). 3. Frames R1 to R3: Pull the control panel mounting platform upwards to gain access to the optional module slots. 4. Insert the module carefully into its position on the control unit. 5. Attach the module with four screws. Note: The grounding screw (a) is essential for fulfilling the EMC requirements and for proper operation of the module. 6. Tighten the grounding screw of the electronics to 0.8 N·m. 7. Connect the data communication cable to slot X110 on the module and to connector X12 on the drive control unit. 8. Connect the Safe torque off wires to connector X111 on the module and to connector XSTO on the drive module control unit as shown in section Wiring on page 230. 9. Connect the external +24 V power supply cable to connector X112. 10. Connect the other wires as shown in FSO-12 safety functions module user’s manual (3AXD50000015612 [English]). 120 Electrical installation 3 X12 5 6 5 5a 5 Electrical installation 121 Installation next to the control unit on frames R7 to R9 WARNING! Follow the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the front cover (see page 102). 3. Insert the module carefully into its position. 4. Attach the module with four screws. Note: Correct installation of the grounding screw (a) is essential for fulfilling the EMC requirements and for proper operation of the module. 5. Tighten the grounding screw of the electronics to 0.8 N·m. 6. Connect the data communication cable to slot X110 on the module and to connector X12 on the drive control unit. 7. Connect the Safe torque off wires to connector X111 on the module and to connector XSTO on the drive module control unit as shown in section Wiring on page 230. 8. Connect the external +24 V power supply cable to connector X112. 9. Connect the other wires as shown in FSO-12 safety functions module user’s manual (3AXD50000015612 [English]). 122 Electrical installation X12 1 6 5 4 4 4a 4 Installation checklist 123 7 Installation checklist What this chapter contains This chapter contains a list for checking the mechanical and electrical installation of the drive. Checklist Check the mechanical and electrical installation of the drive before start-up. Go through the checklist together with another person. WARNING! Only qualified electricians are allowed to carry out the work described below. Follow the complete safety instructions of the drive. Ignoring the safety instructions can cause injury or death. Open the main disconnector of the drive and lock it to open position. Measure to ensure that the drive is not powered. Check that … The ambient operating conditions meet the specification in chapter Technical data. If the drive will be connected to an IT (ungrounded) supply network: Optional EMC filters of type +E200 and +E202 have been disconnected. Consult ABB for the instructions. If the drive has been stored over one year: The electrolytic DC capacitors in the DC link of the drive have been reformed. See page 142 There is an adequately sized protective earth (ground) conductor between the drive and the switchboard. 124 Installation checklist Check that … There is an adequately sized protective earth (ground) conductor between the motor and the drive. All protective earth (ground) conductors have been connected to the appropriate terminals and the terminals have been tightened (pull conductors to check). The supply voltage matches the nominal input voltage of the drive. Check the type designation label. The input power cable has been connected to appropriate terminals, the phase order is right, and the terminals have been tightened (pull conductors to check). Appropriate supply fuses and disconnector have been installed. The motor cable has been connected to appropriate terminals, the phase order is right, and the terminals have been tightened (pull conductors to check). The brake resistor cable (if present) has been connected to appropriate terminals, and the terminals have been tightened (pull conductors to check). The motor cable (and brake resistor cable, if present) has been routed away from other cables. No power factor compensation capacitors have been connected to the motor cable. The control cables (if any) have been connected to the control unit. If a drive bypass connection will be used: The direct-on-line contactor of the motor and the drive output contactor are either mechanically or electrically interlocked (cannot be closed simultaneously). There are no tools, foreign objects or dust from drilling inside the drive. Drive and motor connection box covers are in place. The motor and the driven equipment are ready for start-up. Start-up 125 8 Start-up What this chapter contains This chapter describes the start-up procedure of the drive. Startup procedure 1. Run setup of the drive control program according to the start-up instructions given in Quick start-up guide for ACS880 primary control program or in the firmware manual. • For drives with resistor braking (option +D151): see also section Start-up on page 247. • For option +N7502, see also SynRM motor control program (option +N7502) for ACS880-01, ACS880-07, ACS850-04 and ACQ810-04 drives supplement (3AXD50000026332 [English]). • For drives with ABB sine filter, check that parameter 95.15 Special HW settings is set to ABB sine filter. For other sine filters, see Sine filter hardware manual (3AXD50000016814 [English]). • For drives with ABB motors in explosive atmospheres, see also ACS880 drives with ABB motors in explosive atmospheres (3AXD50000019585 [English]). 2. Validate the Safe torque off function according to the instructions given in chapter Safe Torque off function on page 229. 3. Validate the safety functions (option +Q973) as described in FSO-12 safety functions module user’s manual (3AXD50000015612 [English]). 126 Start-up Fault tracing 127 9 Fault tracing What this chapter contains This chapter describes the fault tracing possibilities of the drive. LEDs Where LED Color When the LED is lit Control panel mounting platform POWER Green Control unit is powered and +15 V is supplied to the control panel. FAULT Red Drive in fault state. Warning and fault messages See the firmware manual for the descriptions, causes and remedies of the drive control program warning and fault messages. 128 Fault tracing Maintenance 129 10 Maintenance What this chapter contains This chapter contains preventive maintenance instructions. Maintenance intervals If installed in an appropriate environment, the drive requires very little maintenance. The table below lists the routine maintenance intervals recommended by ABB. The recommended maintenance intervals and component replacements are based on specified operational and environmental conditions. Note: Long-term operation near the specified maximum ratings or environmental conditions may require shorter maintenance intervals for certain components. The tables below contain user tasks. For tasks to be performed by ABB and more details on the maintenance, consult your local ABB Service representative. On the Internet, go to www.abb.com/searchchannels 130 Maintenance Descriptions of symbols Action I P R Description Visual inspection and maintenance action if needed Performance of on/off-site work (commissioning, tests, measurements or other work) Replacement of component Recommended annual maintenance actions by the user ABB recommends these annual inspections to ensure the highest reliability and optimum performance. Action P I P I I I Target Quality of supply voltage Spare parts DC circuit capacitor reforming, spare modules and spare capacitors Tightness of terminals Dustiness, corrosion or temperature Heat sink cleaning Recommended maintenance intervals after start-up Component Years from start-up 3 6 9 12 15 18 20 21 Cooling Main cooling fan (frames R1 to R9) R Auxiliary cooling fan for circuit boards (frames R R1 to R9) R R R R R R R R R Auxiliary cooling fan (IP55 frames R8 and R9) R R R R R R R R Aging Battery for control panel and ZCU control unit R R R 4FPS10000239703 Heatsink The module heatsink fins pick up dust from the cooling air. The drive runs into overtemperature warnings and faults if the heatsink is not clean. When necessary, clean the heatsink as follows. WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. Maintenance 131 WARNING! Use a vacuum cleaner with antistatic hose and nozzle. Using a normal vacuum cleaner creates static discharges which can damage circuit boards. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the cooling fan(s). See section Fans below. 3. Blow clean compressed air (not humid or oily) from bottom to top and simultaneously use a vacuum cleaner at the air outlet to trap the dust. Note: If there is a risk of dust entering adjoining equipment, perform the cleaning in another room. 4. Refit the cooling fan. Fans The lifespan of the cooling fans of the drive depend on the running time of the fan, ambient temperature and dust concentration. See the firmware manual for the actual signal which indicates the running time of the cooling fan. Reset the running time signal after a fan replacement. Replacement fans are available from ABB. Do not use other than ABB specified spare parts. 132 Maintenance Replacing the main cooling fan of frames R1 to R3 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Release the retaining clip by pushing with a flat screwdriver and turning to the right. 3. Lift the fan assembly up. 4. Install the new fan assembly in reverse order. Make sure that the fan blows upwards. 5. Reset the counter in group 5 in the primary control program. 3 2 Maintenance 133 Replacing the auxiliary cooling fan of IP55 frames R1 to R3 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the front cover by undoing the mounting screws at the sides. 3. Unplug the fan power supply wires. 4. Lift the fan off. 5. Install the new fan in reverse order. Make sure that the arrow (a) on the fan points down. Note: Bundle the wires under the clip (b) otherwise the cover will not fit properly. 5b 3 5a 134 Maintenance Replacing the main cooling fan of frames R4 and R5 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Lift the fan mounting plate up from the front edge. 3. Unplug the power supply wires. 4. Lift the fan assembly off. 5. Install the new fan assembly in reverse order. Make sure that the fan blows upwards. 6. Reset the counter in group 5 in the primary control program. 2 3 4 Maintenance 135 Replacing the auxiliary cooling fan of frames R4 and R5 (IP55 and option +C135) and IP21 frame R5 types ACS880-01-xxxx-7 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the front cover. See page 96. 3. Unplug the fan power supply wires. 4. Lift the fan up. 5. Install the new fan in reverse order. Make sure that the arrow in the fan points to the direction marked on the drive frame. 4 5 3 136 Maintenance Replacing the main cooling fan of frames R6 to R8 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Undo the mounting screws of the fan mounting plate (view from bottom below). 3. Pull the fan mounting plate down from the side edge. 4. Unplug the power supply wires. 5. Lift the fan mounting plate off. 6. Remove the fan from the mounting plate. 7. Install the new fan in reverse order. Make sure that the fan blows upwards. 8. Reset the counter in group 5 in the primary control program. 2 3 2 6 Maintenance 137 Replacing the auxiliary cooling fan of frames R6 to R9 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the lower front cover (see page 99). 3. Unplug the control panel power supply wires from the control unit terminal X13 and the auxiliary cooling fan power supply wires from the terminal X208:FAN2. 4. Remove the upper front cover. 5. Release the retaining clips. 6. Lift the fan up. 7. Install the new fan in reverse order. Make sure that the arrow on the fan points up. 4 3 5 6 138 Maintenance Replacing the IP55 auxiliary cooling fan of frames R8 and R9 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the IP55 front cover. 3. Remove the lower front cover from the IP55 cover. 4. Unplug the fan power supply wires. 5. Remove the fan. 6. Install the new fan in reverse order. Make sure that the arrow on the fan points up. 7. Reset the counter in group 5 in the primary control program. Maintenance 139 4 3 3 5 140 Maintenance Replacing the main cooling fans of frame R9 WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Undo the two mounting screws of the fan mounting plate (view from drive bottom below). 3. Turn the mounting plate downwards. 4. Disconnect the fan power supply wires. 5. Remove the fan mounting plate. 6. Remove the fan by undoing the two mounting screws. 7. Install the new fan in reverse order. Make sure that the fan blows upwards. 8. Reset the counter in group 5 in the primary control program. 2 2 6 3 4 Maintenance 141 Replacing the drive (IP21, UL Type 1, frames R1 to R9) This section gives instructions for replacing the drive module without the cable entry box. This allows you to leave the cables installed (except from disconnecting the conductors). Note for IP55 (UL Type 12) drives: It is not allowed to remove the cable entry box. WARNING! Obey the safety instructions, page 14. Ignoring the instructions can cause physical injury or death, or damage to the equipment. 1. Disconnect the drive from the power line. Lock the main disconnecting device and ensure by measuring that there is no voltage. 2. Remove the front covers. See section Connection procedure for frames R1 to R3 on page 91 or Connection procedure for frames R4 and R5 on page 94. 3. For frames R6 to R9: Remove the side plates of the cable entry box by loosening the mounting screws. 4. Disconnect the power and control cables. 5. Undo the screw(s) that fasten drive module to the cable entry box. 6. Undo the two screws that fasten drive module to the wall from top. 7. Undo the two screws which attach the drive module and cable entry box to the wall. Leave the lower wall mounting screws of the cable box in place. 8. Lift the drive off. 9. Install the new drive module in reverse order. 142 Maintenance R4, R5 R1…R3 6 4 6 6 4 5 3 4 5 Capacitors The drive intermediate DC circuit employs several electrolytic capacitors. Their lifespan depends on the operating time of the drive, loading and ambient temperature. Capacitor life can be prolonged by lowering the ambient temperature. In frames R1 to R3, the capacitors are integrated to the ZINT board and in frames R4 to R5 to the ZMAC board. In frames R6 to R8, the capacitors are separate. Maintenance 143 Capacitor failure is usually followed by damage to the unit and an input cable fuse failure, or a fault trip. Contact ABB if capacitor failure is suspected. Replacements are available from ABB. Do not use other than ABB specified spare parts. Reforming the capacitors Reform the capacitors if the drive has not been powered for a year or more. See page 33 for information on finding out the manufacturing date. For information on reforming the capacitors, see Converter module capacitor reforming instructions (3BFE64059629 [English]). Memory unit When a drive is replaced, the parameter settings can be retained by transferring the memory unit from the defective drive to the new drive. The memory unit is located on the control unit, see page 31. WARNING! Do not remove or insert a memory unit when the drive is powered or the control unit is powered from an external power source. After power-up, the drive will scan the memory unit. If different parameter settings are detected, they are copied to the drive. This may take several minutes. Replacing the memory unit Undo the memory unit mounting screw and take the memory unit up. Replace the unit in reverse order. Note: There is a spare screw next to the memory unit slot. 144 Maintenance Replacing the control panel battery The battery is housed on the rear of the control panel. Replace with a new CR 2032 battery. Dispose the old battery according to local disposal rules or applicable laws. Replacing safety functions modules (FSO-12, option +Q973) Do not repair safety functions modules. Replace a faulty module with a new one as described under Installation of safety functions modules on page 119. Technical data 145 11 Technical data What this chapter contains This chapter contains the technical specifications of the drive, for example, the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings. Marine type-approved drives (option +C132) See ACS880-01/04+C132 marine type-approved drives supplement (3AXD50000010521 [English]) for the ratings, marine-specific data and reference to valid marine type approvals. 146 Technical data Ratings The nominal ratings for the drives with 50 Hz and 60 Hz supply are given below. The symbols are described below the table. IEC RATINGS Drive type Frame size ACS88001- Input rating Output ratings Nominal use Light-overload use Heavy-duty use I1N Imax IN PN SN ILd PLd IHd PHd A A A kW kVA A kW A kW UN = 230 V 04A6-2 R1 4.6 6.3 4.6 0.75 1.8 4.4 0.75 3.7 0.55 06A6-2 R1 6.6 7.8 6.6 1.1 2.6 6.3 1.1 4.6 0.75 07A5-2 R1 7.5 11.2 7.5 1.5 3.0 7.1 1.5 6.6 1.1 10A6-2 R1 10.6 12.8 10.6 2.2 4.2 10.1 2.2 7.5 1.5 16A8-2 R2 16.8 18.0 16.8 4.0 7 16.0 4.0 10.6 2.2 24A3-2 R2 24.3 28.6 24.3 5.5 10 23.1 5.5 16.8 4.0 031A-2 R3 31.0 41 31 7.5 12 29.3 7.5 24.3 5.5 046A-2 R4 46 64 46 11 18 44 11 38 7.5 061A-2 R4 61 76 61 15 24 58 15 45 11.0 075A-2 R5 75 104 75 18.5 30 71 18.5 61 15 087A-2 R5 87 122 87 22 35 83 22 72 18.5 115A-2 R6 115 148 115 30 46 109 30 87 22.0 145A-2 R6 145 178 145 37 58 138 37 105 30.0 170A-2 R7 170 247 170 45 68 162 45 145 37 206A-2 R7 206 287 206 55 82 196 55 169 45 274A-2 R8 274 362 274 75 109 260 75 213 55 02A4-3 R1 2.4 3.1 2.4 0.75 1.7 2.3 0.75 1.8 0.55 03A3-3 R1 3.3 4.1 3.3 1.1 2.3 3.1 1.1 2.4 0.75 04A0-3 R1 4.0 5.6 4.0 1.5 2.8 3.8 1.5 3.3 1.1 05A6-3 R1 5.6 6.8 5.6 2.2 3.9 5.3 2.2 4.0 1.5 07A2-3 R1 8.0 9.5 8.0 3.0 5.5 7.6 3.0 5.6 2.2 09A4-3 R1 10.0 12.2 10.0 4.0 6.9 9.5 4.0 8.0 3.0 12A6-3 R1 12.9 16.0 12.9 5.5 8.9 12.0 5.5 10.0 4.0 017A-3 R2 17 21 17 7.5 12 16 7.5 12.6 5.5 7.5 UN = 400 V 025A-3 R2 25 29 25 11 17 24 11 17 032A-3 R3 32 42 32 15 22 30 15 25 11 038A-3 R3 38 54 38 18.5 26 36 18.5 32 15.0 045A-3 R4 45 64 45 22 31 43 22 38 19 061A-3 R4 61 76 61 30 42 58 30 45 22 072A-3 R5 72 104 72 37 50 68 37 61 30 Technical data 147 IEC RATINGS Drive type Frame size ACS88001- Input rating Output ratings Nominal use Light-overload use Heavy-duty use I1N Imax IN PN SN ILd PLd IHd PHd A A A kW kVA A kW A kW 087A-3 R5 87 122 87 45 60 83 45 72 37 105A-3 R6 105 148 105 55 73 100 55 87 45 145A-3 R6 145 178 145 75 100 138 75 105 55 169A-3 R7 169 247 169 90 117 161 90 145 75 206A-3 R7 206 287 206 110 143 196 110 169 90 246A-3 R8 246 350 246 132 170 234 132 206 110 293A-3 R8 293 418 293 160 203 278 160 246* 132 363A-3 R9 363 498 363 200 251 345 200 293 160 430A-3 R9 4301) 545 4301) 250 298 400 200 363** 200 1) At 25 °C (77 °F) ambient temperature the current is 451 A. UN = 400 V 02A1-5 R1 2.1 3.1 2.1 0.75 1.8 2.0 0.55 1.7 0.55 03A0-5 R1 3.0 4.1 3.0 1.1 2.6 2.8 1.1 2.1 0.75 03A4-5 R1 3.4 5.6 3.4 1.1 2.9 3.2 1.1 3.0 1.1 04A8-5 R1 4.8 6.8 4.8 1.5 4.2 4.6 1.5 3.4 1.1 05A2-5 R1 5.2 9.5 5.2 2.2 4.5 5.0 2.2 4.8 1.5 07A6-5 R1 7.6 12.2 7.6 3.0 6.6 7.2 3.0 5.2 2.2 11A0-5 R1 11.0 16.0 11.0 4.0 9.5 10.4 4.0 7.6 3.0 014A-5 R2 14 21 14 5.5 12 13 5.5 11 4.0 021A-5 R2 21 29 21 7.5 18 19 7.5 14 5.5 027A-5 R3 27 42 27 11 23 26 11 21 7.5 034A-5 R3 34 54 34 15 29 32 15.0 27 11 040A-5 R4 40 64 40 18.5 35 38 18.5 34 15 052A-5 R4 52 76 52 22 45 49 22 40 18.5 065A-5 R5 65 104 65 30 56 62 30 52 22 077A-5 R5 77 122 77 37 67 73 37 65 30 096A-5 R6 96 148 96 45 83 91 45 77 37 124A-5 R6 124 178 124 55 107 118 55 96 45 156A-5 R7 156 247 156 75 135 148 75 124 55 180A-5 R7 180 287 180 90 156 171 90 156 75 240A-5 R8 240 350 240 110 208 228 110 180 90 260A-5 R8 260 418 260 132 225 247 132 240* 110 361A-5 R9 361 542 361 200 313 343 160 302 160 414A-5 R9 414 542 414 200 359 393 200 361 ** 200 148 Technical data IEC RATINGS Drive type Frame size ACS88001- Input rating Output ratings Nominal use Light-overload use Heavy-duty use I1N Imax IN PN SN ILd PLd IHd PHd A A A kW kVA A kW A kW UN = 500 V 02A1-5 R1 2.1 3.1 2.1 0.75 1.8 2.0 0.75 1.7 0.55 03A0-5 R1 3.0 4.1 3.0 1.1 2.6 2.8 1.1 2.1 0.75 03A4-5 R1 3.4 5.6 3.4 1.5 2.9 3.2 1.5 3.0 1.1 04A8-5 R1 4.8 6.8 4.8 2.2 4.2 4.6 2.2 3.4 1.5 05A2-5 R1 5.2 9.5 5.2 3.0 4.5 4.9 3.0 4.8 2.2 07A6-5 R1 7.6 12.2 7.6 4.0 6.6 7.2 4.0 5.2 3.0 11A0-5 R1 11.0 16.0 11.0 5.5 9.5 10.4 5.5 7.6 4.0 014A-5 R2 14 21 14 7.5 12 13 7.5 11 5.5 7.5 021A-5 R2 21 29 21 11 18 19 11.0 14 027A-5 R3 27 42 27 15 23 26 15 21 11 034A-5 R3 34 54 34 18.5 29 32 18.5 27 15.0 040A-5 R4 40 64 40 22 35 38 22 34 19 052A-5 R4 52 76 52 30 45 49 30 40 22 065A-5 R5 65 104 65 37 56 62 37 52 30 077A-5 R5 77 122 77 45 67 73 45 65 37 096A-5 R6 96 148 96 55 83 91 55 77 45 124A-5 R6 124 178 124 75 107 118 75 96 55 156A-5 R7 156 247 156 90 135 148 90 124 75 180A-5 R7 180 287 180 110 156 171 110 156 90 240A-5 R8 240 350 240 132 208 228 132 180 110 260A-5 R8 260 418 260 160 225 247 160 240* 132 361A-5 R9 361 542 361 200 313 343 200 302 200 414A-5 R9 414 542 414 250 359 393 250 361** 200 Technical data 149 IEC RATINGS Drive type Frame size ACS88001- Input rating Output ratings Nominal use Light-overload use Heavy-duty use I1N Imax IN PN SN ILd PLd IHd PHd A A A kW kVA A kW A kW UN = 690 V 07A3-7 R5 7.3 12.2 7.3 5.5 8.7 6.9 5.5 5.6 4 09A8-7 R5 9.8 18 9.8 7.5 11.7 9.3 7.5 7.3 5.5 14A2-7 R5 14.2 22 14.2 11 17 13.5 11 9.8 7.5 018A-7 R5 18 30 18 15 22 17 15 14.2 11 022A-7 R5 22 44 22 18.5 26 21 18.5 18 15 026A-7 R5 26 54 26 22 31 25 22 22 18.5 035A-7 R5 35 64 35 30 42 33 30 26 22 042A-7 R5 42 74 42 37 50 40 37 35 30 049A-7 R5 49 76 49 45 59 47 45 42 37 061A-7 R6 61 104 61 55 73 58 55 49 45 084A-7 R6 84 124 84 75 100 80 75 61 55 098A-7 R7 98 168 98 90 117 93 90 84 75 119A-7 R7 119 198 119 110 142 113 110 98 90 142A-7 R8 142 250 142 132 170 135 132 119 110 174A-7 R8 174 274 174 160 208 165 160 142 132 210A-7 R9 210 384 210 200 251 200 200 174 160 271A-7 R9 271 411 271 250 324 257 250 210 200 3AXD00000588487 150 Technical data NEMA RATINGS Drive type Frame Input size rating ACS88001- Output ratings Max. current App. power Light-overload use PLd Heavy-duty use I1N Imax Sn ILd A A kVA A kW hp IHd A kW PHd hp 0.75 UN = 230 V 04A6-2 R1 4.4 6.3 1.8 4.4 0.75 1.0 3.7 0.55 06A6-2 R1 6.3 7.8 2.6 6.3 1.1 1.5 4.6 0.75 1.0 07A5-2 R1 7.1 11.2 3.0 7.1 1.5 2.0 6.6 1.1 1.5 10A6-2 R1 10.1 12.8 4.2 10.1 2.2 3.0 7.5 1.5 2.0 16A8-2 R2 16.0 18.0 7 16.0 4.0 5.0 10.6 2.2 3.0 24A3-2 R2 23.1 28.6 10 23.1 5.5 7.5 16.8 4.0 5.0 031A-2 R3 29.3 41 12 29.3 7.5 10 24.3 5.5 7.5 046A-2 R4 44 64 18 44 11 15 38 7.5 10 061A-2 R4 58 76 24 58 15 20 45 11.0 15 075A-2 R5 71 104 30 71 18.5 25 61 15 20 087A-2 R5 83 122 35 83 22 30 72 18.5 25 115A-2 R6 109 148 46 109 30 40 87 22.0 30 145A-2 R6 138 178 58 138 37 50 105 30.0 40 170A-2 R7 162 247 68 162 45 60 145 37 50 206A-2 R7 196 287 82 196 55 75 169 45 60 274A-2 R8 260 362 109 260 75 100 213 55 75 Technical data 151 NEMA RATINGS Drive type Frame Input size rating ACS88001- Output ratings Max. current App. power Light-overload use Heavy-duty use I1N Imax Sn ILd A A kVA A kW hp A kW hp 0.75 PLd IHd PHd UN = 460 V 02A1-5 R1 2.1 3.1 1.8 2.1 0.75 1.0 1.7 0.55 03A0-5 R1 3.0 4.1 2.6 3.0 1.1 1.5 2.1 0.75 1.0 03A4-5 R1 3.4 5.6 2.9 3.4 1.5 2.0 3.0 1.1 1.5 04A8-5 R1 4.8 6.8 4.2 4.8 2.2 3.0 3.4 1.5 2.0 05A2-5 R1 5.2 9.5 4.5 5.2 3.0 3.0 4.8 1.5 2.0 07A6-5 R1 7.6 12.2 6.6 7.6 4.0 5.0 5.2 2.2 3.0 11A0-5 R1 11 16.0 9.5 11 5.5 7.5 7.6 4.0 5.0 014A-5 R2 14 21 12 14 7.5 10 11 5.5 7.5 021A-5 R2 21 29 18 21 11 15 14 7.5 10 027A-5 R3 27 42 23 27 15 20 21 11 15 034A-5 R3 34 54 29 34 18.5 25 27 15 20.0 040A-5 R4 40 64 35 40 22 30 34 18.5 25 052A-5 R4 52 76 45 52 30 40 40 22 30 065A-5 R5 65 104 56 65 37 50 52 30 40 077A-5 R5 77 122 67 77 45 60 65 37 50 096A-5 R6 96 148 83 96 55 75 77 45 60 124A-5 R6 124 178 107 124 75 100 96 55 75 156A-5 R7 156 247 135 156 90 125 124 75 100 180A-5 R7 180 287 156 180 110 150 156 90 125 240A-5 R8 240 350 208 240 132 200 180 110 150 260A-5 R8 260 418 225 260 132 200 240* 110 150 302A-5 R9 302 498 262 302 200 250 260 132 200 361A-5 R9 361 542 313 361 200 300 302 200 250 414A-5 R9 414 542 359 3932) 250 350 361** 200 300 2) At 30 °C (86 °F) ambient temperature the current is 414 A. 152 Technical data NEMA RATINGS Frame Input size rating Drive type ACS88001- Output ratings Max. current App. power Light-overload use I1N Imax Sn ILd A A kVA A PLd Heavy-duty use IHd kW hp A PHd kW hp UN = 575 V 07A3-7 R5 9 12.2 8.7 9 5.5 7.5 6.1 4.0 5.0 09A8-7 R5 11 18 11.7 11 7.5 10 9 5.5 7.5 14A2-7 R5 17 22 17 17 11 15 11 7.5 10 018A-7 R5 22 30 22 22 15 20 17 11 15 022A-7 R5 27 44 26 27 18.5 25 22 15 20 026A-7 R5 32 54 31 32 22 30 27 18.5 25 035A-7 R5 41 64 42 41 30 40 32 22 30 042A-7 R5 52 74 50 52 37 50 41 30 40 049A-7 R5 52 76 59 52 37 50 41 30 40 061A-7 R6 62 104 73 62 45 60 52 37 50 084A-7 R6 77 124 100 77 55 75 62 45 60 098A-7 R7 99 168 117 99 75 100 77 55 75 119A-7 R7 125 198 142 125 90 125 99 75 100 142A-7 R8 144 250 170 144 110 150 125 90 125 174A-7 (See Note 3 below) R8 180 274 208 180 132 200 144 110 150 210A-7 R9 242 384 251 242 160 250 192 132 200 271A-7 (See Note 4 below) R9 271 411 324 271 200 250 242* 160 250 3AXD00000588487 Definitions UN Nominal voltage of the drive I1N Nominal rms input current IN Nominal output current (available continuously with no over-loading) PN Typical motor power in no-overload use ILd Continuous rms output current allowing 10% overload for 1 minute every 5 minutes PLd Typical motor power in light-overload use Imax Maximum output current. Available for 10 seconds at start. then as long as allowed by drive temperature. Technical data 153 IHd Continuous rms output current allowing 50% overload for 1 minute every 5 minutes. * Continuous rms output current allowing 30% overload for 1 minute every 5 minutes. ** Continuous rms output current allowing 25% overload for 1 minute every 5 minutes. PHd Typical motor power in heavy-duty use Note 1: The ratings apply at an ambient temperature of 40 °C (104 °F). Note 2: To achieve the rated motor power given in the table, the rated current of the drive must be higher than or equal to the rated motor current. The DriveSize dimensioning tool available from ABB is recommended for selecting the drive, motor and gear combination. Note 3 – ACS880-01-174A-7 amp rating: The drive can deliver 192 A continuously with no overload. Note 4 – ACS880-01-271A-7 power rating: The power rating is as per NEC Table 42.1. However, the drive can be used for a typical 4-pole motor rated to 300 hp meeting NEMA MG 1 Table 12-11 minimum efficiency standard (EPAct efficiency electrical motors) if motor full load current is not more than 271 A. 154 Technical data Derating Ambient temperature derating IP21 (UL Type 1) drive types and other IP55 (UL Type 12) types than listed in the following subheadings In the temperature range +40…55 °C (+104…131 °F), the rated output current is derated by 1% for every added 1 °C (1.8 °F). The output current can be calculated by multiplying the current given in the rating table by the derating factor (k): k 1.00 0.95 0.90 0.85 0.80 -15 °C +5°F … +50 °C +122 °F +40 °C +104 °F +55 °C +131 °F T IP55 (UL Type 12) drive types -274A-2, 293A-3, -260A-5, -302A-5 and -174A-7 In the temperature range +40…45 °C (+104…113 °F), the rated output current is derated by 1% for every added 1 °C (1.8 °F). In the temperature range +45…55 °C (+113…131 °F), the rated output current is derated by 2.5% for every added 1 °C (1.8 °F). The output current can be calculated by multiplying the current given in the rating table by the derating factor (k): k 1.00 0.95 0.90 0.85 0.80 0.75 0.70 -15 °C +5 °F … +40 °C +104 °F +45 °C +113 °F +50 °C +122 °F +55 °C +131 °F T Technical data 155 IP55 (UL Type 12) drive type -240A-5 In the temperature range +40…50 °C (+104…122 °F), the rated output current is derated by 1% for every added 1 °C (1.8 °F). In the temperature range +50…55 °C (+122…131 °F), the rated output current is derated by 2.5% for every added 1 °C (1.8 °F). The output current can be calculated by multiplying the current given in the rating table by the derating factor (k): k 1.00 0.95 0.90 0.85 0.80 0.75 -15 °C +5 °F … +40 °C +104 °F +45 °C +113 °F +50 °C +122 °F +55 °C +131 °F T 156 Technical data IP55 (UL Type 12) drive types -363A-3 and -361A-5 In the temperature range +40…45 °C (+104…113 °F), the rated output current is derated by 1% for every added 1 °C (1.8 °F). In the temperature range +45…50 °C (+113…122 °F), the rated output current is derated by 2.5% for every added 1 °C (1.8 °F). In the temperature range +50…55 °C (+122…131 °F), the rated output current is derated by 5% for every added 1 °C (1.8 °F).The output current can be calculated by multiplying the current given in the rating table by the derating factor (k): k 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 -15 °C +5 °F … +40 °C +104 °F +45 °C +113 °F +50 °C +122 °F +55 °C +131 °F T Technical data 157 IP55 (UL Type 12) drive type -210A-7 In the temperature range +40…45 °C (+104…113 °F), the rated output current is derated by 3.5% for every added 1 °C (1.8 °F). The maximum temperature is 45 °C (113 °F). The output current can be calculated by multiplying the current given in the rating table by the derating factor (k): k 1.00 0.95 0.90 0.85 0.80 -15 °C +5 °F … +40 °C +104 °F +45 °C T +113 °F IP55 (UL Type 12) types -0430A-3, -0414A-5 and -0271A-7 The maximum ambient temperature is 35 °C (95 °F). Altitude derating At altitudes from 1000 to 4000 m (3300 to 13123 ft) above sea level, the derating is 1% for every 100 m (328 ft). If ambient temperature is below +40 °C (+104 °F), the derating can be reduced by 1.5% for every 1 °C reduction in temperature. For a more accurate derating, use the DriveSize PC tool. A few altitude derating curves are shown below. For a more accurate derating, use the DriveSize PC tool. 158 Technical data Installation site altitude 4000 m 13123 ft 0.80 3500 m 11429 ft 0.85 3000 m 9842 ft 0.90 0.95 2500 m 8202 ft 1.00 2000 m 6562 ft 1500 m 4921 ft 1000 m 3300 ft +20 °C +68 °F +25 °C +77 °F +30 °C +86 °F +35 °C +40 °C +95 °F +104 °F Ambient temperature Derating factor 1.00 Derating factor 0.95 Derating factor 0.9 Derating factor 0.85 Derating factor 0.80 Deratings for special settings in the drive control program Enabling special settings in the drive control program can require output current derating. Technical data 159 Ex motor, sine filter, low noise Contact ABB for the deratings of these cases: • drive is used with an ABB motor for explosive atmospheres (Ex) and EX motor in Parameter 95.15 Special HW settings is enabled • sine filter given in the selection table on page 222 is used and ABB sine filter in Parameter 95.15 Special HW settings is enabled • Low noise optimization is selected in Parameter 97.09 Switching freq mode. Drive type ACS880-01- Output ratings EX motor (ABB Ex motors) Nominal use ABB Sine filter Light- Heavyduty duty use use Nominal use Lightduty use Heavyduty use IN PN ILd IHd IN PN ILd IHd A kW A A A kW A A 04A6-2 4.6 0.75 4.4 3.7 4.3 0.55 4.1 3.5 06A6-2 6.6 1.1 6.3 4.6 6.2 0.8 5.9 4.3 07A5-2 7.5 1.5 7.1 6.6 7.4 1.5 7.0 6.2 10A6-2 10.6 2.2 10.1 7.5 10.0 2.2 9.5 7.4 16A8-2 16.8 4.0 16.0 10.6 15.9 4.0 15.1 10.0 24A3-2 24.3 5.5 23.1 16.8 23.1 5.5 21.9 15.9 031A-2 31 7.5 29.3 24.3 30.5 7.5 29.0 23.1 046A-2 46 11.0 44 38 43.0 11.0 41 31 061A-2 61 15 58 45 58 15 55 41 075A-2 75 19 71 61 65 15 62 55 087A-2 87 22 83 72 77 18.5 73 62 UN = 230 V 115A-2 106 22 101 87 100 22 95 73 145A-2 134 30 127 105 126 30 120 95 170A-2 161 37 153 134 153 37 145 120 206A-2 195 45 185 161 186 45 177 145 274A-2 251 55 238 195 233 55 221 169 02A4-3 2.4 0.75 2.3 1.80 2.3 0.55 2.2 1.7 03A3-3 3.3 1.1 3.1 2.4 3.1 0.75 2.9 2.3 04A0-3 4.0 1.5 3.8 3.3 3.8 1.1 3.6 3.1 05A6-3 5.6 2.2 5.3 4.0 5.3 1.5 5.0 3.8 07A2-3 8.0 3.0 7.6 5.6 7.2 2.2 6.8 5.3 09A4-3 10.0 4.0 9.5 8.0 9.2 3.0 8.7 7.2 12A6-3 12.9 5.5 12.0 10.0 12.1 4.0 11.5 9.2 017A-3 17 8 16 12.6 16 5.5 15 12 025A-3 25 11 24 17 23 7.5 22 16 UN = 400 V 160 Technical data Drive type ACS880-01- Output ratings EX motor (ABB Ex motors) Nominal use 032A-3 ABB Sine filter Light- Heavyduty duty use use Nominal use Lightduty use Heavyduty use IHd IN PN ILd IHd IN PN ILd A kW A A A kW A A 32 15 30 25 31 11 29 23 038A-3 38 19 36 32 36 15 34 31 045A-3 45 22 43 38 43 18.5 41 36 061A-3 61 30 58 45 58 22 55 43 072A-3 72 37 68 61 64 30 61 58 087A-3 87 45 83 72 77 37 73 64 105A-3 97 45 92 87 91 45 86 77 145A-3 134 55 127 97 126 55 120 91 169A-3 160 75 152 134 152 75 144 126 206A-3 195 90 185 160 186 90 177 152 246A-3 225 110 214 195 209 110 199 186 293A-3 269 132 256 225* 249 132 237 209* 363A-3 325 160 309 269 296 160 281 249 430A-3 385 200 366 325** 352 160 334 296** 02A1-5 2.1 0.75 2.0 1.7 1.9 0.55 1.8 1.5 03A0-5 3.0 1.1 2.8 2.1 2.8 0.75 2.7 1.9 03A4-5 3.4 1.5 3.2 3.0 3.1 1.1 2.9 2.8 04A8-5 4.8 2.2 4.6 3.4 4.4 1.5 4.2 3.1 05A2-5 5.2 3.0 5.0 4.8 4.8 2.2 4.6 4.4 07A6-5 7.6 4.0 7.2 5.2 7.0 3.0 6.7 4.8 11A0-5 11.0 5.5 10.4 7.6 10.2 4.0 9.7 7.0 10.2 UN = 500 V 014A-5 14 7.5 13 11 13 5.5 12 021A-5 21 11.0 19 14 19 7.5 18 13 027A-5 27 15 26 21 25 11.0 24 19.0 034A-5 34 18.5 32 27.0 31 15 29 25 040A-5 40 22 38 34 34 18.5 32 31.0 052A-5 52 30 49 40 44 22 42 34 065A-5 65 37 62 52 52 30 49 44 077A-5 77 45 73 65 61 37 58 52 096A-5 88 45 84 77 82 45 78 61 124A-5 115 55 109 88 104 55 99 82 156A-5 147 75 140 115 140 75 133 104 180A-5 170 90 162 147 161 90 153 140 240A-5 220 110 209 170 204 110 194 161 Technical data 161 Drive type ACS880-01- Output ratings EX motor (ABB Ex motors) Nominal use 260A-5 ABB Sine filter Light- Heavyduty duty use use Nominal use Lightduty use Heavyduty use IHd IN PN ILd IHd IN PN ILd A kW A A A kW A A 238 132 226 220* 221 110 210 204* 361A-5 322 200 306 270 289 160 275 242 414A-5 370 200 352 322** 332 200 315 289** 07A3-7 7.3 5.5 6.9 5.6 6.9 4.0 6.6 5.5 09A8-7 9.8 7.5 9.3 7.3 9.3 5.5 8.8 6.9 14A2-7 14.2 11 13.5 10 13.5 7.5 12.8 9.3 018A-7 18 15 17 14 17 11 16 14 022A-7 22 18.5 21 18.0 21 15 20 17 026A-7 26 22 25 22 24 18.5 22.8 21 035A-7 35 30 33 26 33 22 31 24 042A-7 42 37 40 35 40 30 38 33 049A-7 49 45 47 42 46 37 44 40 061A-7 61 55 58 49 49 45 47 46 084A-7 84 75 80 61 68 55 65 49 098A-7 98 90 93 84 83 75 79 68 119A-7 119 110 113 98 101 90 96 83 142A-7 126 110 120 119 112 90 106 90 174A-7 154 132 146 126 137 110 130 112 210A-7 184 160 175 154 161 132 153 137 271A-7 238 200 226 184 207 160 197 161 UN = 690 V 3AXD00000588487 UN Supply voltage range IN Nominal output current (available continuously with no over-loading) PN Typical motor power in no-overload use ILd Continuous rms output current allowing 10% overload for 1 minute every 5 minutes IHd Continuous rms output current allowing 50% overload for 1 minute every 5 minutes. * Continuous rms output current allowing 30% overload for 1 minute every 5 minutes. ** Continuous rms output current allowing 25% overload for 1 minute every 5 minutes. PHd Typical motor power in heavy-duty use Note 1: The ratings apply at an ambient temperature of 40 °C (104 °F). 162 Technical data Drive type ACS880-01- Output ratings with selection Low noise optimization of parameter Parameter 97.09 Switching freq mode Light- duty use Heavy-duty use IN Nominal use PN ILd IHd A kW A A UN = 230 V 04A6-2 4.1 3.9 3.3 06A6-2 5.9 5.6 4.1 07A5-2 6.7 6.4 5.9 10A6-2 9.5 9.0 6.7 16A8-2 15.0 14.3 9.5 24A3-2 22.0 20.9 15.0 031A-2 30.0 28.5 22.0 046A-2 41.0 39.0 30.0 061A-2 56 53 41 075A-2 56 53 47 087A-2 67 64 56 115A-2 94 89 67 145A-2 118 112 94 170A-2 146 139 118 206A-2 178 169 146 274A-2 216 205 178 02A4-3 2.2 2.1 1.7 03A3-3 3.0 2.9 2.2 04A0-3 3.6 3.4 3.0 05A6-3 5.0 4.8 3.6 07A2-3 6.5 6.2 5.0 09A4-3 8.5 8.1 6.5 12A6-3 11.3 10.7 8.5 UN = 400 V 017A-3 15 14.3 11.3 025A-3 22 20.9 15.0 032A-3 30 29 22 038A-3 35 33 30 045A-3 41 39 35 061A-3 56 53 41 072A-3 56 53 47 087A-3 67 64 56 105A-3 86 82 67 145A-3 118 112 86 169A-3 146 139 118 Technical data 163 Drive type ACS880-01- Output ratings with selection Low noise optimization of parameter Parameter 97.09 Switching freq mode Light- duty use Heavy-duty use IN Nominal use PN ILd IHd A kW A A 146 206A-3 178 169 246A-3 194 184 178 293A-3 236 224 194* 363A-3 274 260 236 430A-3 325 309 274** 02A1-5 1.8 1.7 1.4 03A0-5 2.6 2.5 1.8 03A4-5 2.9 2.8 2.6 04A8-5 4.1 3.9 2.9 05A2-5 4.4 4.2 4.1 07A6-5 6.5 6.2 4.4 11A0-5 9.4 8.9 6.5 014A-5 12.0 11.4 9.4 021A-5 18.0 17.1 12.0 027A-5 23.0 21.9 18.0 034A-5 29 28 23 040A-5 29 28 23 052A-5 37 35 29 065A-5 39 37 33 077A-5 46 44 39 096A-5 72 68 46 124A-5 93 88 72 156A-5 133 126 93 180A-5 153 145 133 240A-5 191 181 153 260A-5 206 196 191* 361A-5 258 245 206 414A-5 296 281 258** UN = 500 V UN = 690 V 07A3-7 6.9 4.0 6.6 5.5 09A8-7 9.3 5.5 8.8 6.9 14A2-7 13.5 7.5 12.8 9.3 018A-7 17 11 16 14 022A-7 21 15 20 17 026A-7 24 18.5 22.8 21.0 035A-7 33 22 31 24 164 Technical data Drive type ACS880-01- Output ratings with selection Low noise optimization of parameter Parameter 97.09 Switching freq mode Light- duty use Heavy-duty use IN Nominal use PN ILd IHd A kW A A 042A-7 40 30 38 33 049A-7 46 37 44 40 061A-7 49 45 47 46 084A-7 68 55 65 49 098A-7 83 75 79 68 119A-7 101 90 96 83 142A-7 101 90 96 84 174A-7 122 110 116 101 210A-7 138 132 131 122 271A-7 178 160 169 138 3AXD00000588487 UN Supply voltage range IN Nominal output current (available continuously with no over-loading) PN Typical motor power in no-overload use ILd Continuous rms output current allowing 10% overload for 1 minute every 5 minutes IHd Continuous rms output current allowing 50% overload for 1 minute every 5 minutes. * Continuous rms output current allowing 30% overload for 1 minute every 5 minutes. ** Continuous rms output current allowing 25% overload for 1 minute every 5 minutes. PHd Typical motor power in heavy-duty use Note 1: The ratings apply at an ambient temperature of 40 °C (104 °F). Technical data 165 High speed mode Selection High speed mode of parameter 95.15 Special HW settings improves control performance at high output frequencies. We recommend it to be selected with output frequency of 120 Hz and above. This table gives the drive module ratings for 120 Hz output frequency and the maximum output frequency for the drive ratings when High speed mode in parameter 95.15 Special HW settings is enabled: With output frequencies smaller than this recommended maximum output frequency, the current derating is less than the values given in the table. Contact ABB for operation above the recommended maximum output frequency or for the output current derating with output frequencies above 120 Hz and below the maximum output frequency. Drive module type ACS88001- Output ratings with selection High speed mode of parameter 95.15 Special HW settings 120 Hz output frequency f Hz Nominal use Maximum output frequency Light- Heavy- fmax duty duty use use IN PN ILd IHd A kW A A Nominal use Light- Heavyduty duty use use IN PN ILd IHd Hz A kW A A UN = 230 V 04A6-2 120 500 4.1 3.9 3.3 06A6-2 120 500 5.9 5.6 4.1 07A5-2 120 500 6.7 6.4 5.9 10A6-2 120 500 9.5 9.0 6.7 16A8-2 120 500 15.0 14.3 9.5 24A3-2 120 500 22.0 20.9 15.0 031A-2 120 500 30.0 28.5 22.0 046A-2 120 500 41.0 39.0 30.0 061A-2 120 500 56 53 41 075A-2 120 500 56 53 47 087A-2 120 500 67 64 56 115A-2 120 500 84 80 67 145A-2 120 500 106 101 84 170A-2 120 500 135 128 106 206A-2 120 500 165 157 135 274A-2 120 500 189 180 165 166 Technical data Drive module type ACS88001- Output ratings with selection High speed mode of parameter 95.15 Special HW settings 120 Hz output frequency f Hz Nominal use Maximum output frequency Light- Heavy- fmax duty duty use use IN PN ILd IHd A kW A A Nominal use Light- Heavyduty duty use use IN PN ILd IHd Hz A kW A A UN = 400 V 02A4-3 120 500 2.2 2.1 1.7 03A3-3 120 500 3.0 2.9 2.2 04A0-3 120 500 3.6 3.4 3.0 05A6-3 120 500 5.0 4.8 3.6 07A2-3 120 500 6.5 6.2 5.0 09A4-3 120 500 8.5 8.1 6.5 12A6-3 120 500 11.3 10.7 8.5 017A-3 120 500 15 14.3 11.3 025A-3 120 500 22 20.9 15.0 032A-3 120 500 30 29 22 038A-3 120 500 35 33 30 045A-3 120 500 41 39 35 061A-3 120 500 56 53 41 072A-3 120 500 56 53 47 087A-3 120 500 67 64 56 105A-3 120 500 77 73 67 145A-3 120 500 106 101 77 169A-3 120 500 135 128 106 206A-3 120 500 165 157 135 246A-3 120 500 170 162 143 293A-3 120 500 202 192 170* 363A-3 120 500 236 224 202 430A-3 120 500 280 266 236** 02A1-5 120 500 1.8 1.7 1.4 03A0-5 120 500 2.6 2.5 1.8 03A4-5 120 500 2.9 2.8 2.6 04A8-5 120 500 4.1 3.9 2.9 UN= 500 V Technical data 167 Drive module type ACS88001- Output ratings with selection High speed mode of parameter 95.15 Special HW settings 120 Hz output frequency f Hz Nominal use Maximum output frequency Light- Heavy- fmax duty duty use use IN PN ILd IHd A kW A A Nominal use Light- Heavyduty duty use use IN PN ILd IHd Hz A kW A A 05A2-5 120 500 4.4 4.2 4.1 07A6-5 120 500 6.5 6.2 4.4 11A0-5 120 500 9.4 8.9 6.5 014A-5 120 500 12.0 11.4 9.4 021A-5 120 500 18.0 17.1 12.0 027A-5 120 500 23.0 21.9 18.0 034A-5 120 500 29 28 23 040A-5 120 500 29 28 23 052A-5 120 500 37 35 29 065A-5 120 500 39 37 33 077A-5 120 500 46 44 39 096A-5 120 500 58 55 46 124A-5 120 500 74 70 58 156A-5 120 500 122 116 74 180A-5 120 500 140 133 122 240A-5 120 500 168 160 140 260A-5 120 500 182 173 168* 361A-5 120 500 206 196 182 414A-5 120 500 236 224 206** 07A3-7 120 500 6.6 6.3 5.3 09A8-7 120 500 8.8 8.4 6.6 UN= 690 V 14A2-7 120 500 12.8 12.2 8.8 018A-7 120 500 16 15 13 022A-7 120 500 20 19 16 026A-7 120 500 23 22 20 035A-7 120 500 32 30 23 042A-7 120 500 38 36 32 049A-7 120 500 44 42 38 168 Technical data Drive module type ACS88001- Output ratings with selection High speed mode of parameter 95.15 Special HW settings 120 Hz output frequency f Hz Nominal use Maximum output frequency Light- Heavy- fmax duty duty use use IN PN ILd IHd A kW A A Nominal use Light- Heavyduty duty use use IN PN ILd IHd Hz A kW A A 061A-7 120 500 44 42 40 084A-7 120 500 53 50 44 098A-7 120 500 68 65 53 119A-7 120 500 83 79 68 142A-7 120 500 83 79 72 174A-7 120 500 96 91 83 210A-7 120 500 101 96 83 271A-7 120 500 130 124 101 3AXD00000588487 f Output frequency fmax Maximum output frequency with High speed mode UN Nominal voltage of the drive IN Continuous rms output current. No overload capability at 40 °C (104 °F) PN Typical motor power in no-overload use. ILd Continuous rms output current allowing 10% overload for 1 minute every 5 minutes IHd Continuous rms output current allowing 50% overload for 1 minute every 5 minutes * Continuous rms output current allowing 40% overload for 1 minute every 5 minutes ** Continuous rms output current allowing 25% overload for 1 minute every 5 minutes Fuses (IEC) gG and aR fuses for protection against short-circuit in the input power cable or drive are listed below. Either fuse type can be used for frames R1 to R6 if it operates rapidly enough. The operating time depends on the supply network impedance and the cross-sectional area and length of the supply cable. For frames R7 to R9 ultrarapid (aR) fuses must be used. Note 1: See also Implementing thermal overload and short-circuit protection on page 75. Technical data 169 Note 2: Fuses with higher current rating than the recommended ones must not be used. Fuses with lower current rating can be used. Note 3: Fuses from other manufacturers can be used if they meet the ratings and the melting curve of the fuse does not exceed the melting curve of the fuse mentioned in the table. aR fuses (frames R1 to R9) Ultrarapid (aR) fuses (one fuse per phase) Min. Input Drive shortcurrent type circuit (A) ACS880current 1) 01(A) Fuse A A2 s V Manufacturer Type Type IEC 60269 UN = 230 V 04A6-2 30 4.6 16 48 690 Bussmann 170M1559 000 06A6-2 30 6.6 16 48 690 Bussmann 170M1559 000 07A5-2 30 7.5 16 48 690 Bussmann 170M1559 000 10A6-2 53 10.6 20 78 690 Bussmann 170M1560 000 16A8-2 65 16.8 25 130 690 Bussmann 170M1561 000 24A3-2 120 24.3 40 460 690 Bussmann 170M1563 000 031A-2 160 31.0 63 1450 690 Bussmann 170M1565 000 046A-2 280 46 80 2550 690 Bussmann 170M1566 000 061A-2 300 61 125 8500 690 Bussmann 170M1568 000 075A-2 380 75 125 3700 690 Bussmann 170M3813 1 087A-2 380 87 160 7500 690 Bussmann 170M3814 1 115A-2 500 115 200 15000 690 Bussmann 170M3815 1 145A-2 700 145 250 28500 690 Bussmann 170M3816 1 170A-2 1000 170 315 46500 690 Bussmann 170M3817 1 206A-2 1280 206 350 68500 690 Bussmann 170M3818 1 274A-2 1810 274 450 105000 690 Bussmann 170M5809 2 02A4-3 65 2.4 25 130 690 Bussmann 170M1561 000 03A3-3 65 3.3 25 130 690 Bussmann 170M1561 000 04A0-3 65 4.0 25 130 690 Bussmann 170M1561 000 05A6-3 65 5.6 25 130 690 Bussmann 170M1561 000 07A2-3 65 8.0 25 130 690 Bussmann 170M1561 000 09A4-3 65 10.0 25 130 690 Bussmann 170M1561 000 12A6-3 65 12.9 25 130 690 Bussmann 170M1561 000 017A-3 120 17 40 460 690 Bussmann 170M1563 000 025A-3 120 25 40 460 690 Bussmann 170M1563 000 032A-3 170 32 63 1450 690 Bussmann 170M1565 000 038A-3 170 38 63 1450 690 Bussmann 170M1565 000 UN = 400 V 170 Technical data Ultrarapid (aR) fuses (one fuse per phase) Min. Drive Input shorttype current circuit ACS880(A) current 1) 01(A) Fuse A A2 s V Manufacturer Type Type IEC 60269 045A-3 280 45 80 2550 690 Bussmann 170M1566 000 061A-3 380 61 100 4650 690 Bussmann 170M1567 000 072A-3 480 72 125 8500 690 Bussmann 170M1568 000 087A-3 480 87 160 16000 690 Bussmann 170M1569 000 105A-3 700 105 200 15000 690 Bussmann 170M3815 1 145A-3 700 145 250 28500 690 Bussmann 170M3816 1 169A-3 1280 169 315 46500 690 Bussmann 170M3817 1 68500 206A-3 1280 206 350 690 Bussmann 170M3818 1 246A-3 1520 246 450 105000 690 Bussmann 170M5809 2 293A-3 1810 293 500 145000 690 Bussmann 170M5810 2 363A-3 2620 363 630 275000 690 Bussmann 170M5812 2 430A-3 3010 430 700 405000 690 Bussmann 170M5813 2 02A1-5 65 2.1 25 130 690 Bussmann 170M1561 000 03A0-5 65 3.0 25 130 690 Bussmann 170M1561 000 03A4-5 65 3.4 25 130 690 Bussmann 170M1561 000 04A8-5 65 4.8 25 130 690 Bussmann 170M1561 000 05A2-5 65 5.2 25 130 690 Bussmann 170M1561 000 07A6-5 65 7.6 25 130 690 Bussmann 170M1561 000 11A0-5 65 11.0 25 130 690 Bussmann 170M1561 000 014A-5 120 14 40 460 690 Bussmann 170M1563 000 021A-5 120 21 40 460 690 Bussmann 170M1563 000 027A-5 170 27 63 1450 690 Bussmann 170M1565 000 034A-5 170 34 63 1450 690 Bussmann 170M1565 000 040A-5 280 40 80 2550 690 Bussmann 170M1566 000 052A-5 300 52 100 4650 690 Bussmann 170M1567 000 065A-5 480 65 125 8500 690 Bussmann 170M1568 000 077A-5 480 77 160 16000 690 Bussmann 170M1569 000 096A-5 700 96 200 15000 690 Bussmann 170M3815 1 124A-5 700 124 250 28500 690 Bussmann 170M3816 1 156A-5 1280 156 315 46500 690 Bussmann 170M3817 1 180A-5 1280 180 315 46500 690 Bussmann 170M3817 1 240A-5 1520 240 400 74000 690 Bussmann 170M5808 2 260A-5 1810 260 450 105000 690 Bussmann 170M5809 2 361A-5 2620 361 630 275000 690 Bussmann 170M5812 2 414A-5 3010 414 700 405000 690 Bussmann 170M5813 2 UN = 500 V UN = 690 V Technical data 171 Ultrarapid (aR) fuses (one fuse per phase) Input Min. Drive current shorttype (A) circuit ACS880current 1) 01(A) Fuse A A2 s V Manufacturer Type Type IEC 60269 000 07A3-7 40 7.3 16 48 690 Bussmann 170M1559 09A8-7 53 9.8 20 78 690 Bussmann 170M1560 000 14A2-7 94 14.2 32 270 690 Bussmann 170M1562 000 018A-7 120 18 40 460 690 Bussmann 170M1563 000 022A-7 160 22 50 770 690 Bussmann 170M1564 000 026A-7 160 26 50 770 690 Bussmann 170M1564 000 035A-7 170 35 63 1450 690 Bussmann 170M1565 000 042A-7 280 42 80 2550 690 Bussmann 170M1566 000 049A-7 280 49 80 2550 690 Bussmann 170M1566 000 061A-7 480 61 125 8500 690 Bussmann 170M1568 000 084A-7 700 84 160 16000 690 Bussmann 170M1569 000 098A-7 700 98 200 15000 690 Bussmann 170M3815 1 119A-7 700 119 200 15000 690 Bussmann 170M3815 1 142A-7 1000 142 250 28500 690 Bussmann 170M3816 1 174A-7 1280 174 315 46500 690 Bussmann 170M3817 1 210A-7 1610 210 400 74000 690 Bussmann 170M5808 2 271A-7 1610 271 500 145000 690 Bussmann 170M5810 2 1) minimum short-circuit current of the installation 172 Technical data gG fuses (frames R1 to R9) Check on the fuse time-current curve to ensure the operating time of the fuse is below 0.5 seconds. Obey the local regulations. gG fuses (one fuse per phase) Drive type ACS88001… Min. Input short- current circuit current1) Fuse A 2s V Manufacturer 6 110 500 10 360 500 16 740 10.6 16 200 16.8 350 24.3 031A-2 400 046A-2 061A-2 Type IEC size ABB OFAF000H6 000 ABB OFAF000H10 000 500 ABB OFAF000H16 000 740 500 ABB OFAF000H16 000 25 2500 500 ABB OFAF000H25 000 40 7700 500 ABB OFAF000H40 000 31.0 50 16000 500 ABB OFAF000H50 000 500 46 63 20100 500 ABB OFAF000H63 000 800 61 80 37500 500 ABB OFAF000H80 000 075A-2 1000 75 100 65000 500 ABB OFAF000H100 000 087A-2 1300 87 125 100000 500 ABB OFAF00H125 00 115A-2 1700 115 160 170000 500 ABB OFAF00H160 00 145A-2 2300 145 200 300000 500 ABB OFAF0H200 0 170A-2 3300 170 250 600000 500 ABB OFAF0H250 0 206A-2 5500 206 315 710000 500 ABB OFAF1H315 1 274A-2 7000 274 400 1100000 500 ABB OFAF2H400 2 02A4-3 17 2.4 4 53 500 ABB OFAF000H4 000 03A3-3 40 3.3 6 110 500 ABB OFAF000H6 000 04A0-3 40 4.0 6 110 500 ABB OFAF000H6 000 05A6-3 80 5.6 10 355 500 ABB OFAF000H10 000 07A2-3 80 8.0 10 355 500 ABB OFAF000H10 000 09A4-3 120 10.0 16 700 500 ABB OFAF000H16 000 12A6-3 120 12.9 16 700 500 ABB OFAF000H16 000 017A-3 200 17 25 2500 500 ABB OFAF000H25 000 025A-3 250 25 32 4500 500 ABB OFAF000H32 000 032A-3 350 32 40 7700 500 ABB OFAF000H40 000 038A-3 400 38 50 15400 500 ABB OFAF000H50 000 045A-3 500 45 63 21300 500 ABB OFAF000H63 000 061A-3 800 61 80 37000 500 ABB OFAF000H80 000 072A-3 1000 72 100 63600 500 ABB OFAF000H100 000 A A 04A6-2 40 4.6 06A6-2 80 6.6 07A5-2 120 7.5 10A6-2 120 16A8-2 24A3-2 A UN = 230 V UN = 400 V Technical data 173 gG fuses (one fuse per phase) Drive type ACS88001… Input Min. short- current circuit current1) A A Fuse A A 2s V Manufacturer Type IEC size 087A-3 1000 87 100 63600 500 ABB OFAF000H100 000 105A-3 1300 105 125 103000 500 ABB OFAF00H125 00 145A-3 1700 145 160 185000 500 ABB OFAF00H160 00 169A-3 3300 169 250 600000 500 ABB OFAF0H250 0 206A-3 5500 206 315 710000 500 ABB OFAF1H315 1 246A-3 6400 246 355 920000 500 ABB OFAF1H355 1 293A-3 7800 293 425 1300000 500 ABB OFAF2H425 2 363A-3 9400 363 500 2000000 500 ABB OFAF2H500 2 430A-3 10200 430 630 2800000 500 ABB OFAF3H630 3 UN = 500 V 02A1-5 17 2.1 4 53 500 ABB OFAF000H4 000 03A0-5 40 3.0 6 110 500 ABB OFAF000H6 000 03A4-5 40 3.4 6 110 500 ABB OFAF000H6 000 04A8-5 80 4.8 10 355 500 ABB OFAF000H10 000 05A2-5 80 5.2 10 355 500 ABB OFAF000H10 000 07A6-5 120 7.6 16 700 500 ABB OFAF000H16 000 11A0-5 120 11.0 16 700 500 ABB OFAF000H16 000 014A-5 200 14 25 2500 500 ABB OFAF000H25 000 021A-5 250 21 32 4500 500 ABB OFAF000H32 000 027A-5 350 27 40 7700 500 ABB OFAF000H40 000 034A-5 400 34 50 15400 500 ABB OFAF000H50 000 040A-5 500 40 63 21300 500 ABB OFAF000H63 000 052A-5 800 52 80 37000 500 ABB OFAF000H80 000 065A-5 1000 65 100 63600 500 ABB OFAF000H100 000 077A-5 1000 77 100 63600 500 ABB OFAF000H100 000 096A-5 1300 96 125 103000 500 ABB OFAF00H125 00 124A-5 1700 124 160 185000 500 ABB OFAF00H160 00 156A-5 3300 156 250 600000 500 ABB OFAF0H250 0 180A-5 5500 180 315 710000 500 ABB OFAF1H315 1 240A-5 6400 240 355 920000 500 ABB OFAF1H355 1 260A-5 7000 260 400 1100000 500 ABB OFAF2H400 2 361A-5 10200 361 630 2800000 500 ABB OFAF3H630 3 414A-5 10200 414 630 2800000 500 ABB OFAF3H630 3 07A3-7 115 7.3 16 1200 690 ABB OFAA000GG16 000 09A8-7 145 9.8 20 2400 690 ABB OFAA000GG20 000 UN = 690 V 174 Technical data gG fuses (one fuse per phase) Drive type ACS88001… Input Min. short- current circuit current1) Fuse A 2s V Manufacturer Type IEC size 4000 690 ABB OFAA000GG25 000 12000 690 ABB OFAA000GG35 000 24000 690 ABB OFAA000GG50 000 50 24000 690 ABB OFAA000GG50 000 35 63 30000 690 ABB OFAA000GG63 000 800 42 80 51000 690 ABB OFAA0GG80 0 049A-7 800 49 80 51000 690 ABB OFAA0GG80 0 061A-7 1050 61 100 95000 690 ABB OFAA0GG100 0 084A-7 1700 84 160 240000 690 ABB OFAA1GG160 1 098A-7 1700 98 160 240000 690 ABB OFAA1GG160 1 119A-7 2200 119 200 350000 690 ABB OFAA1GG200 1 142A-7 3200 142 250 700000 690 ABB OFAA1GG250 1 174A-7 5500 174 315 850000 690 ABB OFAA2GG315 2 210A-7 7000 210 400 1300000 690 ABB OFAA3GG400 3 271A-7 7000 271 400 1300000 690 ABB OFAA3GG400 3 A A 14A2-7 190 14.2 25 018A-7 280 18 35 022A-7 450 22 50 026A-7 450 26 035A-7 520 042A-7 1) A minimum short-circuit current of the installation Technical data 175 Quick guide for selecting between gG and aR fuses The combinations (cable size, cable length, transformer size and fuse type) in this table fulfil the minimum requirements for the proper operation of the fuse. Use this table to select between gG and aR fuses or calculate the short-circuit current of the installation as described under Calculating the short-circuit current of the installation on page 178). Drive type ACS88001… Cable type Copper Aluminium mm2 04A6-2 06A6-2 Supply transformer minimum apparent power SN (kVA) Maximum cable length with gG fuses Maximum cable length with aR fuses mm2 10 m 10 m 3×1.5 - 1.1 1.1 - 1.1 1.2 - 3×1.5 - 2.2 2.4 - 1.1 1.2 - 07A5-2 3×1.5 - 3.3 4.3 - 1.1 1.2 - 10A6-2 3×1.5 - 3.3 4.3 - 1.5 1.8 - 16A8-2 3×6 - 5.5 5.8 - 1.8 1.8 - 24A3-2 3×6 - 9.7 11 - 3.3 3.5 - 031A-2 3×10 - 11 12 - 4.4 4.6 - 046A-2 3×16 3×35 14 15 - 7.7 8.2 - 061A-2 3×25 3×35 22 24 - 8.3 8.6 - 075A-2 3×35 3×50 28 29 - 11 11 - 087A-2 3×35 3×70 36 39 - 14 15 - 115A-2 3×50 3×70 48 52 - 19 21 - 145A-2 3×95 3×120 64 70 - 28 30 - 170A-2 3×120 3×150 93 104 - 36 39 - 206A-2 3×150 3×240 158 194 - 40 45 - 274A-2 2×(3×95) 2×(3×120) 198 229 - 57 62 - 02A4-3 3×1.5 - 0.82 0.82 0.82 3.1 3.4 5.0 03A3-3 3×1.5 - 1.9 1.9 2.0 3.1 3.4 5.0 04A0-3 3×1.5 - 1.9 1.9 2.0 3.1 3.4 5.0 05A6-3 3×1.5 - 3.8 4.0 4.4 3.1 3.4 5.0 07A2-3 3×1.5 - 3.8 4.0 4.4 3.1 3.4 5.0 09A4-3 3×1.5 - 5.8 6.2 8.4 3.1 3.4 5.0 12A6-3 3×1.5 - 5.8 6.2 8.4 3.1 3.4 5.0 017A-3 3×6 - 9.6 9.8 10 5.8 5.9 6.2 025A-3 3×6 - 12 12 13 5.8 5.9 6.2 032A-3 3×10 - 17 17 18 8.2 8.3 8.7 038A-3 3×10 - 19 20 21 8.2 8.3 8.7 045A-3 3×16 3×25 24 24 26 13 14 15 061A-3 3×25 3×25 39 39 42 18 19 20 50 m 100 m 100 m 200 m UN = 230 V UN = 400 V 176 Technical data Drive type ACS88001… Cable type Copper Aluminium Supply transformer minimum apparent power SN (kVA) Maximum cable length with gG fuses Maximum cable length with aR fuses mm2 mm2 10 m 50 m 100 m 10 m 100 m 200 m 072A-3 3×35 3×35 48 49 52 23 24 25 087A-3 3×35 3×50 48 49 52 34 35 38 105A-3 3×50 3×70 63 65 68 34 35 37 145A-3 3×95 3×95 82 85 88 48 50 53 169A-3 3×120 3×150 160 170 187 62 65 69 206A-3 3×150 3×185 269 298 357 73 78 84 246A-3 2×(3×70) 2×(3×95) 311 335 393 99 103 111 293A-3 2×(3×95) 2×(3×120) 380 411 478 106 111 118 363A-3 2×(3×120) 2×(3×185) 459 502 591 150 159 173 430A-3 2×(3×150) 2×(3×240) 499 547 641 174 186 205 UN = 500 V 02A1-5 3×1.5 - 1.0 1.0 1.0 3.9 4.1 5.0 03A0-5 3×1.5 - 2.4 2.4 2.4 3.9 4.1 5.0 03A4-5 3×1.5 - 2.4 2.4 2.4 3.9 4.1 5.0 04A8-5 3×1.5 - 4.8 4.9 5.2 3.9 4.1 5.0 05A2-5 3×1.5 - 4.8 4.9 5.2 3.9 4.1 5.0 07A6-5 3×1.5 - 7.2 7.5 8.9 3.9 4.1 5.0 11A0-5 3×1.5 - 7.2 7.5 8.9 3.9 4.1 5.0 014A-5 3×6 - 12 12 12 7.2 7.3 7.6 021A-5 3×6 - 15 15 16 7.2 7.3 7.6 027A-5 3×10 - 21 21 22 10 10 11 034A-5 3×10 - 24 24 25 10 10 11 040A-5 3×16 3×35 30 30 31 17 17 18 052A-5 3×25 3×35 48 49 51 18 18 19 065A-5 3×35 3×50 60 61 63 29 29 30 077A-5 3×35 3×70 60 61 63 42 43 46 096A-5 3×50 3×70 78 80 83 42 43 45 124A-5 3×95 3×120 103 105 108 60 62 65 156A-5 3×120 3×150 200 209 224 77 80 84 180A-5 3×150 3×240 335 362 411 77 80 84 240A-5 2×(3×70) 2×(3×95) 388 410 456 108 112 117 260A-5 2×(3×70) 2×(3×95) 425 452 512 123 128 135 361A-5 2×(3×120) 2×(3×185) 621 669 763 187 196 208 414A-5 2×(3×150) 2×(3×240) 621 666 747 217 229 246 UN = 690 V 07A3-7 3×1.5 - 9.5 9.7 10.4 3.3 3.3 3.5 09A8-7 3×1.5 - 12 12 14 4.4 4.5 4.7 Technical data 177 Drive type ACS88001… Cable type Copper Aluminium Supply transformer minimum apparent power SN (kVA) Maximum cable length with gG fuses Maximum cable length with aR fuses mm2 mm2 10 m 50 m 100 m 10 m 100 m 200 m 14A2-7 3×2.5 - 16 16 17 7.8 8.0 8.6 018A-7 3×4 - 23 24 25 9.9 10 11 022A-7 3×6 - 37 38 41 13 13 14 026A-7 3×10 3×25 37 38 39 13 13 14 035A-7 3×10 3×25 43 44 45 14 14 14 042A-7 3×16 3×25 66 67 70 23 23 24 049A-7 3×16 3×25 66 67 70 23 23 24 061A-7 3×25 3×35 87 89 91 40 40 42 084A-7 3×35 3×50 141 145 152 58 59 61 098A-7 3×50 3×70 141 143 146 58 59 60 119A-7 3×70 3×95 183 187 192 58 59 60 142A-7 3×95 3×120 267 275 286 83 85 87 174A-7 3×120 3×185 452 476 515 106 109 112 210A-7 3×185 2×(3×95) 584 608 654 134 136 139 271A-7 3×240 2×(3×120 584 605 640 183 187 193 178 Technical data Calculating the short-circuit current of the installation Check that the short-circuit current of the installation is at least the value given in the fuse table. The short-circuit current ot the installation can be calculated as follows: U Ik2-ph = 2 · Rc2 + (Zk + Xc)2 where Ik2-ph = short-circuit current in symmetrical two-phase short-circuit U = network line-to-line voltage (V) Rc = cable resistance (ohm) Zk = zk · UN2/SN = transformer impedance (ohm) zk = transformer impedance (%) UN = transformer rated voltage (V) SN = nominal apparent power of the transformer (kVA) Xc = cable reactance (ohm). Calculation example Drive: • ACS880-01-145A-3 • supply voltage = 410 V Transformer: • rated power SN = 600 kVA • rated voltage (drive supply voltage) UN = 430 V • transformer impedance zk = 7.2%. Supply cable: • length = 170 m • resistance/length = 0.398 ohm/km • reactance/length = 0.082 ohm/km. Technical data 179 Zk = zk · UN2 SN = 0.072 · (430 V)2 600 kVA = 22.19 mohm ohm Rc = 170 m · 0.398 km = 67.66 mohm Xc = 170 m · 0.082 Ik2-ph ohm = 13.94 mohm km 410 V = 2· = 2.7 kA (67.66 mohm)2 + (22.19 mohm + 13.94 mohm)2 The calculated short-circuit current 2.7 kA is higher than the minimum short-circuit current of the drive gG fuse type OFAF00H160 (1700 A). -> The 500 V gG fuse (ABB Control OFAF00H160) can be used. Fuses (UL) UL class T fuses for branch circuit protection per NEC are listed below. Fast acting class T or faster fuses are recommended in the USA. Check on the fuse timecurrent curve to ensure the operating time of the fuse is below 0.5 seconds for units of frame sizes R1 to R6 and below 0.1 seconds for units of frame sizes R7 to R9. Obey local regulations. Note 1: See also Implementing thermal overload and short-circuit protection on page 75. Note 2: Fuses with higher current rating than the recommended ones must not be used. Fuses with lower current rating can be used. Note 3: Fuses from other manufacturers can be used if they meet the ratings and the melting curve of the fuse does not exceed the melting curve of the fuse mentioned in the table. 180 Technical data Drive type ACS880-01… Input current Fuse (one fuse per phase) A A V Manufacturer Type UL class 04A6-2 4.4 15 600 Bussmann JJS-15 T 06A6-2 6.3 15 600 Bussmann JJS-15 T 07A5-2 7.1 15 600 Bussmann JJS-15 T 10A6-2 10.1 20 600 Bussmann JJS-20 T 16A8-2 16.0 25 600 Bussmann JJS-25 T 24A3-2 23.1 40 600 Bussmann JJS-40 T 031A-2 29.3 50 600 Bussmann JJS-50 T 046A-2 44 80 600 Bussmann JJS-80 T 061A-2 58 100 600 Bussmann JJS-100 T 075A-2 71 125 600 Bussmann JJS-125 T 087A-2 83 125 600 Bussmann JJS-125 T 115A-2 109 150 600 Bussmann JJS-150 T 145A-2 138 200 600 Bussmann JJS-200 T 170A-2 162 250 600 Bussmann JJS-250 T 206A-2 196 300 600 Bussmann JJS-300 T 274A-2 260 400 600 Bussmann JJS-400 T 02A1-5 2.1 3 600 Bussmann JJS-3 T 03A0-5 3.0 6 600 Bussmann JJS-6 T 03A4-5 3.4 6 600 Bussmann JJS-6 T 04A8-5 4.8 10 600 Bussmann JJS-10 T 05A2-5 5.2 10 600 Bussmann JJS-10 T 07A6-5 7.6 15 600 Bussmann JJS-15 T 11A0-5 11 20 600 Bussmann JJS-20 T 014A-5 14 25 600 Bussmann JJS-25 T 021A-5 21 35 600 Bussmann JJS-35 T 027A-5 27 40 600 Bussmann JJS-40 T 034A-5 34 50 600 Bussmann JJS-50 T 040A-5 40 60 600 Bussmann JJS-60 T 052A-5 52 80 600 Bussmann JJS-80 T 065A-5 65 90 600 Bussmann JJS-90 T 077A-5 77 110 600 Bussmann JJS-110 T UN = 230 V UN = 460 V 096A-5 96 150 600 Bussmann JJS-150 T 124A-5 124 200 600 Bussmann JJS-200 T 156A-5 156 225 600 Bussmann JJS-225 T 180A-5 180 300 600 Bussmann JJS-300 T 240A-5 240 350 600 Bussmann JJS-350 T 260A-5 260 400 600 Bussmann JJS-400 T Technical data 181 Drive type ACS880-01… Input current Fuse (one fuse per phase) A A V Manufacturer Type UL class 302A-5 302 400 600 Bussmann JJS-400 T 361A-5 361 500 600 Bussmann JJS-500 T 414A-5 414 600 600 Bussmann JJS-600 T UN = 575 V 07A3-7 9.0 15 600 Bussmann JJS-15 T 09A8-7 11 20 600 Bussmann JJS-20 T 14A2-7 17 30 600 Bussmann JJS-30 T 018A-7 22 40 600 Bussmann JJS-40 T 022A-7 27 50 600 Bussmann JJS-50 T 026A-7 32 50 600 Bussmann JJS-50 T 035A-7 41 60 600 Bussmann JJS-60 T 042A-7 52 80 600 Bussmann JJS-80 T 049A-7 52 80 600 Bussmann JJS-80 T 061A-7 62 110 600 Bussmann JJS-110 T 084A-7 77 150 600 Bussmann JJS-150 T 098A-7 99 150 600 Bussmann JJS-150 T 119A-7 125 200 600 Bussmann JJS-200 T 142A-7 144 250 600 Bussmann JJS-250 T 174A-7 180 300 600 Bussmann JJS-300 T 210A-7 242 400 600 Bussmann JJS-400 T 271A-7 271 400 600 Bussmann JJS-400 T 182 Technical data Dimensions. weights and free space requirements Frame IP21 UL type 1 H1 H2 W D Weight H1 H2 W D mm mm mm mm kg in. in. in. in. Weight lb R1 409 370 155 226 6 16.11 14.57 6.10 8.89 13 R2 409 370 155 249 8 16.11 14.57 6.10 9.80 18 R3 475 420 172 261 10 18.71 16.54 6.77 10.28 22 R4 576 490 203 274 18.5 22.70 19.30 7.99 10.80 41 R5 730 596 203 274 23 28.74 23.46 7.99 10.79 51 R6 726 569 251 357 45 28.60 22.40 9.92 14.09 99 R7 880 600 284 365 55 34.70 23.60 11.22 14.37 121 R8 963 681 300 386 70 37.90 26.82 11.81 15.21 154 R9 955 680 380 413 98 37.59 26.77 14.96 16.27 216 H1 H2 W D Weight H1 * H3 W ** D mm mm mm mm kg in. in. in. in. lb R1 450 - 162 292 6 17.72 - 6.38 11.50 20 R2 450 - 161 315 8 17.72 - 6.38 12.40 18 R3 525 - 180 327 10 20.70 - 7.09 12.87 22 R4 576 - 203 344 18.5 22.70 - 7.99 13.54 41 R5 730 - 203 344 23 28.73 - 7.99 13.54 51 R6 726 - 252 421 45 28.60 - 9.92 16.46 99 R7 880 - 284 423 55 34.66 - 11.18 16.65 121 R8 963 - 300 452 72 37.90 - 11.81 17.78 159 R9 955 - 380 477 100 37.59 - 14.96 18.78 220 Frame IP55 UL type 12 H1 Height with cable entry box. H2 Height without cable entry box (option +P940) H3 Height with hood Weight W Width with cable entry box D Depth with cable entry box * Hood increases height with 155 mm (6.10 in) in frames R4 to R8 and with 230 mm (9.06 in) in frame R9. ** Hood increases width with 23 mm (0.91 in) in frames R4 and R5, 40 mm (1.57 in) in frames R6 and R7 and 50 mm (1.97 in) in frames R8 and R9. Note 1: For more information on dimensions, see chapter Dimension drawings. Note 2: For dimensions of option +P940 and +P944, see ACS880-01 +P940/+P944 drives for cabinet installation supplement (3AUA0000145446 [English]). Note 3: For dimensions of option +C135, see Flange mounting kit installation supplement (3AXD50000019100 [English]). For weights of the drive without cable entry box see ACS880-01 Technical data 183 +P940/+P944 drives for cabinet installation supplement (3AUA0000145446 [English]), for the additional weight of the flange mounting kit, see the table below. Frame Weight of flange mounting kit (option +C135) kg lb R6 4.5 10 R7 5 11 R8 6 13 R9 7 15 R1 R2 R3 R4 R5 Free space requirements 200 mm (7.87 in.) free space is required at top of the drive. 300 mm (11.81 in.) free space (when measured from the drive base without the cable entry box) is required at bottom of the drive. 184 Technical data Losses, cooling data and noise Drive type ACS880-01- Frame Air flow Heat dissipation Noise m3/h ft3/min W dB(A) 46 UN = 230 V 04A6-2 R1 44 26 73 06A6-2 R1 44 26 94 46 07A5-2 R1 44 26 122 46 10A6-2 R1 44 26 172 46 16A8-2 R2 88 52 232 51 24A3-2 R2 88 52 337 51 031A-2 R3 134 79 457 57 046A-2 R4 134 79 500 62 061A-2 R4 280 165 630 62 075A-2 R5 280 165 680 62 087A-2 R5 280 165 730 62 115A-2 R6 435 256 840 67 145A-2 R6 435 256 940 67 170A-2 R7 450 265 1260 67 206A-2 R7 450 265 1500 67 274A-2 R8 550 324 2100 65 02A4-3 R1 44 26 30 46 03A3-3 R1 44 26 40 46 04A0-3 R1 44 26 52 46 05A6-3 R1 44 26 73 46 07A2-3 R1 44 26 94 46 09A4-3 R1 44 26 122 46 12A6-3 R1 44 26 172 46 017A-3 R2 88 52 232 51 025A-3 R2 88 52 337 51 032A-3 R3 134 79 457 57 038A-3 R3 134 79 562 57 045A-3 R4 134 79 667 62 061A-3 R4 280 165 907 62 072A-3 R5 280 165 1117 62 087A-3 R5 280 165 1120 62 105A-3 R6 435 256 1295 67 145A-3 R6 435 256 1440 67 169A-3 R7 450 265 1940 67 206A-3 R7 450 265 2310 67 246A-3 R8 550 324 3300 65 UN = 400 V Technical data 185 Drive type ACS880-01- Frame Air flow Heat dissipation Noise dB(A) m3/h ft3/min W 293A-3 R8 550 324 3900 65 363A-3 R9 1150 677 4800 68 430A-3 R9 1150 677 6000 68 02A1-5 R1 44 26 30 46 03A0-5 R1 44 26 40 46 03A4-5 R1 44 26 52 46 04A8-5 R1 44 26 73 46 05A2-5 R1 44 26 94 46 07A6-5 R1 44 26 122 46 UN = 500 V 11A0-5 R1 44 26 172 46 014A-5 R2 88 52 232 51 021A-5 R2 88 52 337 51 027A-5 R3 134 79 457 57 034A-5 R3 134 79 562 57 040A-5 R4 134 79 667 62 052A-5 R4 280 165 907 62 065A-5 R5 280 165 1117 62 077A-5 R5 280 165 1120 62 096A-5 R6 435 256 1295 67 124A-5 R6 435 256 1440 67 156A-5 R7 450 265 1940 67 180A-5 R7 450 265 2310 67 240A-5 R8 550 324 3300 65 260A-5 R8 550 324 3900 65 302A-5 R9 1150 677 4200 68 361A-5 R9 1150 677 4800 68 414A-5 R9 1150 677 6000 68 07A3-7 R5 280 165 217 62 09A8-7 R5 280 165 284 62 14A2-7 R5 280 165 399 62 018A-7 R5 280 165 490 62 022A-7 R5 280 165 578 62 026A-7 R5 280 165 660 62 035A-7 R5 280 165 864 62 042A-7 R5 280 165 998 62 049A-7 R5 280 165 1120 62 061A-7 R6 435 256 1295 67 UN = 690 V 186 Technical data Drive type ACS880-01- Frame Air flow m3/h ft3/min Heat dissipation Noise W dB(A) 084A-7 R6 435 256 1440 67 098A-7 R7 450 265 1940 67 119A-7 R7 450 265 2310 67 142A-7 R8 550 324 3300 65 174A-7 R8 550 324 3900 65 210A-7 R9 1150 677 4200 68 271A-7 R9 1150 677 4800 68 Cooling air flow and heat dissipation for flange mounting (option +C135) Drive type ACS880-01- Frame Air flow (option +C135) Heat dissipation (option +C135) Heatsink Front Heatsink Front m3/h m3/h W W UN = 230 V 04A6-2 R1 44 9 57 16 06A6-2 R1 44 9 76 18 07A5-2 R1 44 9 101 21 10A6-2 R1 44 9 146 26 16A8-2 R2 88 16 195 37 24A3-2 R2 88 16 290 47 031A-2 R3 134 22 393 64 046A-2 R4 134 32 423 77 061A-2 R4 280 32 540 90 075A-2 R5 280 42 567 113 087A-2 R5 280 42 612 118 115A-2 R6 435 52 711 129 145A-2 R6 435 52 801 139 170A-2 R7 450 75 1089 171 206A-2 R7 450 75 1305 195 274A-2 R8 550 120 1845 255 02A4-3 R1 44 9 18 12 03A3-3 R1 44 9 27 13 04A0-3 R1 44 9 38 14 05A6-3 R1 44 9 57 16 07A2-3 R1 44 9 76 18 09A4-3 R1 44 9 101 21 12A6-3 R1 44 9 146 26 UN = 400 V Technical data 187 Drive type ACS880-01- 017A-3 Frame R2 Air flow (option +C135) Heat dissipation (option +C135) Heatsink Front Heatsink m3/h m3/h W W 88 16 195 37 Front 025A-3 R2 88 16 290 47 032A-3 R3 134 22 393 64 038A-3 R3 134 22 488 74 045A-3 R4 134 32 573 94 061A-3 R4 280 32 789 118 072A-3 R5 280 42 960 157 087A-3 R5 280 42 963 157 105A-3 R6 435 52 1121 175 145A-3 R6 435 52 1251 189 169A-3 R7 450 75 1701 239 206A-3 R7 450 75 2034 276 246A-3 R8 550 120 2925 375 293A-3 R8 550 120 3465 435 363A-3 R9 1150 170 4275 525 430A-3 R9 1150 170 5355 645 02A1-5 R1 44 9 18 12 03A0-5 R1 44 9 27 13 03A4-5 R1 44 9 38 14 04A8-5 R1 44 9 57 16 05A2-5 R1 44 9 76 18 07A6-5 R1 44 9 101 21 11A0-5 R1 44 9 146 26 014A-5 R2 88 16 195 37 021A-5 R2 88 16 290 47 027A-5 R3 134 22 393 64 034A-5 R3 134 22 488 74 040A-5 R4 134 32 573 94 052A-5 R4 280 32 789 118 065A-5 R5 280 42 960 157 077A-5 R5 280 42 963 157 096A-5 R6 435 52 1121 175 124A-5 R6 435 52 1251 189 156A-5 R7 450 75 1701 239 180A-5 R7 450 75 2034 276 240A-5 R8 550 120 2925 375 260A-5 R8 550 120 3465 435 UN = 500 V 188 Technical data Drive type ACS880-01- Frame Air flow (option +C135) Heat dissipation (option +C135) Heatsink Front Heatsink m3/h m3/h W W Front 302A-5 R9 1150 170 3735 465 361A-5 R9 1150 170 4275 525 414A-5 R9 1150 170 5355 645 UN = 690 V 07A3-7 R5 280 42 150 67 09A8-7 R5 280 42 211 73 14A2-7 R5 280 42 314 85 018A-7 R5 280 42 396 94 022A-7 R5 280 42 475 103 026A-7 R5 280 42 549 111 035A-7 R5 280 42 733 131 042A-7 R5 280 42 854 145 049A-7 R5 280 42 963 157 061A-7 R6 435 52 1121 175 084A-7 R6 435 52 1251 189 098A-7 R7 450 75 1701 239 119A-7 R7 450 75 2034 276 142A-7 R8 550 120 2925 375 174A-7 R8 550 120 3465 435 210A-7 R9 1150 170 3735 465 271A-7 R9 1150 170 4275 525 Technical data 189 Terminal and lead-through data for the power cables IEC Input, motor, resistor and DC cable terminal screw sizes, accepted wire sizes (per phase) and tightening torques (T) are given below. l denotes stripping length inside the terminal. Frame Cable leadthroughs L1, L2, L3, T1/U, T2/V, T3/W Grounding terminals Max. wire size T N·m mm2 N·m - - 25 1.8 8 - - 25 1.8 10 - - 25 1.8 Ø* Wire size T (Wire screw) l T (Terminal nut) pcs mm mm2 M… N·m mm M... R1 2 17 0.75…6 - 0.6 8 R2 2 17 0.75…6 - 0.6 R3 2 21 0.5…16 - 1.7 R4 2 24 0.5…35 - 3.3 18 - - 25 2.9 R5 2 32 6…70 M8 15 18 - - 35 2.9 R6 2 45 25…150 M10 30 30 - - 185 9.8 R7 2 54 95…240 (25…150**) M10 40 (30**) 30 - - 185 9.8 R8 4 45 2 × (50…150) M10 40 30 M10 24 2×185 9.8 R9 4 54 2 × (95…240) M12 70 30 M10 24 2×185 9.8 Frame Cable leadthroughs R-, R+/UDC+ and UDC- terminals Ø* Wire size pcs mm mm2 M… T (Wire screw) N·m mm l T (Terminal nut) M… N·m R1 1 17 0.75…6 - 0.6 8 - - R2 1 17 0.75…6 - 0.6 8 - - R3 1 21 0.5…16 - 1.7 10 - - R4 1 24 0.5…35 - 3.3 18 - R5 1 32 6…70 M8 5.6 18 - R6 1 35 25…95 M8 20 30 - R7 1 43 25…150 M10 30 30 - R8 2 45 2 × (50…150) M10 40 30 M8 24 R9 2 54 2 × (95…240) M12 70 30 M8 24 * maximum cable diameter accepted. For the lead-through plate hole diameters, see chapter Dimension drawings. ** 525…690 V drives Note: When you use a cable size smaller than what is accepted by the terminal, remove the terminal and use suitable cable lugs for connecting the cable directly under the head of the bolt. 190 Technical data US Input, motor, resistor and DC cable terminal screw sizes, accepted wire sizes (per phase) and tightening torques (T) in US units are given below. l denotes stripping length inside the terminal. Frame Cable leadthroughs L1, L2, L3, T1/U, T2/V, T3/W Ø* Wire size T (Wire screw) l Grounding terminals Max. T (Terminal wire size nut) pcs in. kcmil/AWG M… lbf·ft in. M… AWG lbf·ft R1 2 0.67 18…10 - 0.4 0.31 - - 4 1.3 R2 2 0.67 18…10 - 0.4 0.31 - - 4 1.3 R3 2 0.83 20…6 - 1.3 0.39 - - 4 1.3 R4 2 0.94 20…2 - 2.4 0.70 - - 4 2.1 R5 2 1.26 10…2/0 M8 11 0.70 - - 2 2.1 22.1 1.18 - - 350 MCM 7.2 29.5 1.18 (22.1**) - - 350 MCM 7.2 R6 2 1.77 4…300 MCM M10 R7 2 2.13 3/0…400 MCM M10 (4…300 MCM) R8 4 1.77 2 × (1/0…300 MCM) M10 29.5 1.18 M10 17.7 2× 7.2 350 MCM R9 4 2.13 2 × (3/0…400 MCM) M12 51.6 1.18 M10 17.7 2× 7.2 350 MCM Frame Cable leadthroughs R-, R+/UDC+ and UDC- terminals Ø* Wire size T (Wire screw) pcs in. kcmil/AWG M… lbf·ft mm l T (Terminal nut) M… R1 1 0.67 18…10 - 0.4 0.31 - - R2 1 0..67 18…10 - 0.4 0.31 - - R3 1 0.83 20…6 - 1.3 0.39 - - R4 1 0.94 20…2 - 2.4 0.70 - - R5 1 1.26 10…2/0 M8 11 1.18 - - lbf·ft R6 1 1.38 4…3/0 M8 14.8 1.18 - - R7 1 1.69 4…300 MCM M10 22,1 1.18 - - R8 2 1.77 2 × (1/0…300 MCM) M10 29.5 1.18 M8 17.7 R9 2 2.13 2 × (3/0…400 MCM) M12 51.6 1.18 M8 17.7 * maximum cable diameter accepted. Cable connector inside diameter: 3/4” (frames R1 and R2), 1” (R3). For the lead-through plate hole diameters, see chapter Dimension drawings. ** 525…690 V drives Technical data 191 UL listed cable lugs and tools Wire size kcmil/AWG 6 4 Compression lug Manufacturer Thomas & Betts 1 1 Burndy MY29-3 CCL-6-38 Ilsco ILC-10 2 Thomas & Betts TBM4S 1 Thomas & Betts 54140 Burndy MY29-3 1 Ilsco CCL-4-38 Ilsco MT-25 1 Thomas & Betts 54143TB 54142TB Thomas & Betts TBM4S TBM4S 1 YA4C-L4BOX 2 Burndy MY29-3 Ilsco CRC-2 Ilsco IDT-12 1 Ilsco CCL-2-38 Ilsco MT-25 1 Thomas & Betts TBM-8 3 2 Thomas & Betts YA2C-L4BOX 54148 Burndy MY29-3 Ilsco CRA-1-38 Ilsco IDT-12 1 Ilsco CCL-1-38 Ilsco MT-25 1 Thomas & Betts TBM-8 3 Burndy MY29-3 2 Ilsco IDT-12 1 Thomas & Betts Burndy 2/0 No. of crimps TBM4S TBM45S YAV6C-L2 Burndy 1/0 Type Thomas & Betts Ilsco Burndy 1 E10731 54136 Crimping tool Manufacturer Burndy Burndy 2 Type YA1C-L4BOX 54109 YA25-L4BOX Ilsco CRB-0 Ilsco CCL-1/0-38 Thomas & Betts Burndy 54110 YAL26T38 Ilsco MT-25 1 Thomas & Betts TBM-8 3 Burndy MY29-3 2 Ilsco CRA-2/0 Ilsco IDT-12 1 Ilsco CCL-2/0-38 Ilsco MT-25 1 Terminal data for the control cables See Control unit (ZCU-12) connection data below. 192 Technical data Electrical power network specification Voltage (U1) ACS880-01-xxxx-2 drives: 208 … 240 V AC 3-phase +10%…-15%. This is indicated in the type designation label as typical input voltage level 3 ~230 V AC. ACS880-01-xxxx-3 drives: 380 … 415 V AC 3-phase +10%…-15%. This is indicated in the type designation label as typical input voltage level 3 ~400 V AC. ACS880-01-xxxx-5 drives: 380 … 500 V AC 3-phase +10%…-15%. This is indicated in the type designation label as typical input voltage levels 3 ~400/480/500 V AC. ACS880-01-xxxx-7 drives: 525 … 690 V AC 3-phase +10%…-15%. This is indicated in the type designation label as typical input voltage levels 3 ~525/600/690 V AC. Network type TN (grounded) and IT (ungrounded) systems. Rated conditional short-circuit current (IEC 61439-1) 65 kA when protected by fuses given in the fuse tables Short-circuit current protection (UL 508C, CSA C22.2 No. 14-05) US and Canada: The drive is suitable for use on a circuit capable of delivering not more than 100 kA symmetrical amperes (rms) at 600 V maximum when protected by fuses given in the fuse table Frequency 47 to 63 Hz, maximum rate of change 17%/s Imbalance Max. ± 3% of nominal phase to phase input voltage Fundamental power factor (cos phi1) 0.98 (at nominal load) Motor connection data Motor types Asynchronous AC induction motors, permanent magnet synchronous motors, AC induction servomotors and ABB synchronous reluctance motors (SynRM motors) with option +N7502 Voltage (U2) 0 to U1, 3-phase symmetrical, Umax at the field weakening point Frequency 0…500 Hz For drives with du/dt filter: 120 Hz For drives with sine filter: 120 Hz Current See section Ratings. Switching frequency 2.7 kHz (typically) Technical data 193 Maximum recommended motor cable length For ACS880-01-xxxx-2, ACS880-01-xxxx-3 and ACS88001-xxxx-5 frames R1 to R3 and for types ACS880-0107A3-7, ACS880-01-09A8-7, ACS880-01-14A2-7 and ACS880-01-018A-7: 150 m (492 ft) For ACS880-01-xxxx-2, ACS880-01-xxxx-3 and ACS88001-xxxx-5 frames R4 to R9 and for types from ACS880-01022A-7 to ACS880-01-271A-7: 300 m (984 ft). Note: With motor cables longer than 150 m (492 ft) or switching frequencies higher than default, the EMC Directive requirements may not be fulfilled. Control unit (ZCU-12) connection data Power supply (XPOW) 24 V (±10%) DC, 2 A Supplied from the power unit of the drive, or from an external power supply through connector XPOW (pitch 5 mm, wire size 2.5 mm2). Relay outputs RO1…RO3 (XRO1 … XRO3) Connector pitch 5 mm, wire size 2.5 mm2 250 V AC / 30 V DC, 2 A Protected by varistors +24 V output (XD24:2 and XD24:4) Connector pitch 5 mm, wire size 2.5 mm2 Digital inputs DI1…DI6 (XDI:1 … XDI:6) Connector pitch 5 mm, wire size 2.5 mm2 24 V logic levels: “0” < 5 V, “1” > 15 V Rin: 2.0 kohm Input type: NPN/PNP (DI1…DI5), NPN (DI6) Hardware filtering: 0.04 ms, digital filtering up to 8 ms Total load capacity of these outputs is 4.8 W (200 mA / 24 V) minus the power taken by DIO1 and DIO2. DI6 (XDI:6) can alternatively be used as an input for PTC sensors. “0” > 4 kohm, “1” < 1.5 kohm Imax: 15 mA (for DI6 5 mA) Start interlock input DIIL (XD24:1) Connector pitch 5 mm, wire size 2.5 mm2 24 V logic levels: “0” < 5 V, “1” > 15 V Rin: 2.0 kohm Input type: NPN/PNP Hardware filtering: 0.04 ms, digital filtering up to 8 ms 194 Technical data Digital inputs/outputs DIO1 and Connector pitch 5 mm, wire size 2.5 mm2 DIO2 (XDIO:1 and XDIO:2) As inputs: 24 V logic levels: “0” < 5 V, “1” > 15 V Input/output mode selection by Rin: 2.0 kohm parameters. Filtering: 0.25 ms DIO1 can be configured as a frequency input (0…16 kHz with As outputs: hardware filtering of 4 Total output current from +24VD is limited to 200 mA. microseconds) for 24 V level +24VD square wave signal (sinusoidal or other wave form cannot be used). DIO2 can be configured as a 24 V level square wave frequency output. See the firmware manual, DIOx parameter group 11. RL DIOGND Reference voltage for analog inputs +VREF and -VREF (XAI:1 and XAI:2) Connector pitch 5 mm, wire size 2.5 mm2 10 V ±1% and –10 V ±1%, Rload 1…10 kohm Analog inputs AI1 and AI2 (XAI:4 … XAI:7). Connector pitch 5 mm, wire size 2.5 mm2 Current input: –20…20 mA, Rin: 100 ohm Voltage input: –10…10 V, Rin: > 200 kohm Differential inputs, common mode range ±30 V Sampling interval per channel: 0.25 ms Hardware filtering: 0.25 ms, adjustable digital filtering up to 8 ms Resolution: 11 bit + sign bit Inaccuracy: 1% of full scale range Inaccuracy for Pt100 sensors: 10 °C (50 °F) Current/voltage input mode selection by jumpers. See page 108. Analog outputs AO1 and AO2 (XAO) Connector pitch 5 mm, wire size 2.5 mm2 0…20 mA, Rload < 500 ohm Frequency range: 0…300 Hz Resolution: 11 bit + sign bit Inaccuracy: 2% of full scale range Drive to drive link (XD2D) Connector pitch 5 mm, wire size 2.5 mm2 Physical layer: RS-485 Termination by switch Technical data 195 Safe torque off connection (XSTO) Connector pitch 5 mm, wire size 2.5 mm2 Input voltage range: -3…30 V DC Logic levels: “0” < 5 V, “1” > 17 V Current consumption of frames R1 to R7: 12 mA (24 V DC, continuous) per STO channel Current consumption of frames R8 and R9: 30 mA (24 V DC, continuous) per STO channel For the drive to start, both connections must be closed (OUT1 to IN1 and IN2). EMC (immunity) according to IEC 61326-3-1 Control panel / PC connection Connector: RJ-45 Cable length < 3 m The terminals on the board fulfil the Protective Extra Low Voltage (PELV) requirements. The PELV requirements of a relay output are not fulfilled if a voltage higher than 48 V is connected to the relay output. 196 Technical data Ground isolation diagram XPOW +24VI GND 1 2 +VREF -VREF AGND AI1+ AI1AI2+ AI2- 1 2 3 4 5 6 7 XAI Common mode voltage between channels +30 V XAO AO1 AGND AO2 AGND 1 2 3 4 XD2D B A BGND 1 2 3 XRO1, XRO2, XRO3 NC COM NO NC COM NO NC COM NO 11 12 13 21 22 23 31 32 33 * Ground selector J6 settings: XD24 DIIL +24VD DICOM +24VD DIOGND 1 2 3 4 5 . All digital inputs share a common ground (DICOM connected to DIOGND). This is the default setting. XDIO DIO1 DIO2 1 2 DI1 DI2 DI3 DI4 DI5 DI6 1 2 3 4 5 6 XDI XSTO OUT1 SGND IN1 IN2 * Ground of digital inputs DI1…DI5 and DIIL (DICOM) is isolated from DIO signal ground (DIOGND). Isolation voltage 50 V. 1 2 3 4 Ground Technical data 197 Efficiency Approximately 98% at nominal power level Protection classes Degree of protection (IEC/EN 60529) IP21, IP55. Option +P940 and +P944: IP20 Enclosure types (UL508C) UL Type 1, UL Type 12. Option +P940: UL Open Type. For indoor use only. Overvoltage category (IEC 60664-1) III Protective class (IEC/EN 61800- I 5-1) Ambient conditions Environmental limits for the drive are given below. The drive is to be used in a heated, indoor, controlled environment. Installation site altitude Transportation in the protective package Storage in the protective package Operation installed for stationary use • 0 to 4000 m (13123 ft) above sea level - 1) • 0 to 2000 m (6561 ft) above sea level 2) Above 1000 m [3281 ft]), see page 157. Air temperature -15 to +55 °C (5 to -40 to +70 °C (-40 -40 to +70 °C (-40 131 °F). 3) to +158 °F) to +158 °F) No frost allowed. See section Ratings. Relative humidity 5 to 95% Max. 95% Max. 95% No condensation allowed. Maximum allowed relative humidity is 60% in the presence of corrosive gases. 198 Technical data Contamination levels (IEC 60721-3-3, IEC 60721-3-2, IEC 60721-3-1) No conductive dust allowed. Chemical gases: Class 3C2. For circuit boards in IP55 drives Class 3C3 and ANSI/ISA S71.04-1985 GX Solid particles: Class 3S2 Chemical gases: Class 1C2 Solid particles: Class 1S3 Chemical gases: Class 2C2 Solid particles: Class 2S2 Atmospheric pressure 70 to 106 kPa 0.7 to 1.05 atmospheres 70 to 106 kPa 0.7 to 1.05 atmospheres 60 to 106 kPa 0.6 to 1.05 atmospheres Vibration (IEC 60068-2) Max. 1 mm (0.04 in.) (5 to 13.2 Hz), max. 7 m/s2 (23 ft/s2) (13.2 to 100 Hz) sinusoidal Max. 1 mm (0.04 in.) (5 to 13.2 Hz), max. 7 m/s2 (23 ft/s2) (13.2 to 100 Hz) sinusoidal Max. 3.5 mm (0.14 in.) (2 to 9 Hz), max. 15 m/s2 (49 ft/s2) (9 to 200 Hz) sinusoidal Shock (IEC 60068-2-27) Not allowed Max. 100 m/s2 Max. 100 m/s2 (330 ft./s2), 11 ms (330 ft./s2), 11 ms Free fall Not allowed 100 mm (4 in.) for 100 mm (4 in.) for weight over 100 weight over 100 kg (220 lb) kg (220 lb) 1. For neutral-grounded TN and TT systems and non-corner grounded IT systems 2. For corner-grounded TN, TT and IT systems 3. For IP55 (UL Type 12) type -210A-7: -15 to +45 °C (5 to 113 °F). For IP55 (UL Type 12) types -0430A-3, -0414A-5 and -0271A-7: -15 to +35 °C (5 to 95 °F). Materials Drive enclosure • PC/ABS 3 mm, color NCS 1502-Y (RAL 9002 / PMS 1C Cool Grey) and RAL 9017 • PC+10%GF 3.0mm, Color RAL 9017 (in frames R1 to R3 only) • hot-dip zinc coated steel sheet 1.5 to 2.5 mm, thickness of coating 100 micrometers, color NCS 1502-Y Technical data 199 Package Plywood and cardboard. Foam cushions PP-E, bands PP. Frame Package Length (mm) Disposal Width (mm) Height (mm) R1 574 256 281 R1 (IP55) 574 256 364 R2 574 256 304 R2 (IP55) 574 256 386 R3 624 256 316 R3 (+P940) 624 256 316 R3 IP55 624 256 399 R4 IP21 691 290 329 R4 (+P940) 691 290 329 R4 (IP55) 691 290 415 R5 IP21 896 293 329 R5 (+P940) 896 293 329 R6 870 325 580 R7 992 400 568 R8 1145 485 630 R9 1145 485 630 The main parts of the drive can be recycled to preserve natural resources and energy. Product parts and materials should be dismantled and separated. Generally all metals, such as steel, aluminum, copper and its alloys, and precious metals can be recycled as material. Plastics, rubber, cardboard and other packaging material can be used in energy recovery. Printed circuit boards and DC capacitors (C1-1 to C1-x) need selective treatment according to IEC 62635 guidelines. To aid recycling, plastic parts are marked with an appropriate identification code. Contact your local ABB distributor for further information on environmental aspects and recycling instructions for professional recyclers. End of life treatment must follow international and local regulations. 200 Technical data Applicable standards The drive complies with the following standards. The compliance with the European Low Voltage Directive is verified according to standard EN 61800-5-1. EN 60204-1:2006 + A1 2009 Safety of machinery. Electrical equipment of machines. Part 1: General requirements. Provisions for compliance: The final assembler of the machine is responsible for installing - emergency-stop device - supply disconnecting device. IEC/EN 60529:1991 + A1 2000 Degrees of protection provided by enclosures (IP code) IEC 60664-1:2007 Insulation coordination for equipment within low-voltage systems. Part 1: Principles, requirements and tests. EN 61800-3:2004 Adjustable speed electrical power drive systems. Part 3: EMC requirements and specific test methods EN 61800-5-1:2007 Adjustable speed electrical power drive systems. Part 5-1: Safety requirements – electrical, thermal and energy EN 61800-5-2:2007 Adjustable speed electrical power drive systems. Part 5-2: Safety requirements – Functional UL 508C:2002 UL Standard for Safety, Power Conversion Equipment, third edition NEMA 250:2008 Enclosures for Electrical Equipment (1000 Volts Maximum) CSA C22.2 No. 14-10 Industrial control equipment GOST R 51321-1:2007 Low-voltage switchgear and control gear assemblies. Part 1 - Requirements for type-tested and partially type-tested assemblies - General technical requirements and methods of tests CE marking A CE mark is attached to the drive to verify that the drive follows the provisions of the European Low Voltage, EMC and RoHS Directives. The CE marking also verifies that the drive, in regard to its safety functions (such as Safe torque off), conforms with the Machinery Directive as a safety component. Compliance with the European Low Voltage Directive The compliance with the European Low Voltage Directive has been verified according to standards EN 60204-1 and EN 61800-5-1. Compliance with the European EMC Directive The EMC Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 618003:2004) covers requirements stated for drives. See section Compliance with the EN 61800-3:2004 below. Technical data 201 Compliance with the European RoHS Directive The RoHS Directive defines the restriction of the use of certain hazardous substances in electrical and electronic equipment. Compliance with the European Machinery Directive The drive is an electronic product which is covered by the European Low Voltage Directive. However, the drive includes the Safe torque off function and can be equipped with other safety functions for machinery which, as safety components, are in the scope of the Machinery Directive. These functions of the drive comply with European harmonized standards such as EN 61800-5-2. The declaration of conformity is shown below. 202 Technical data Declaration of Conformity Technical data 203 204 Technical data Compliance with the EN 61800-3:2004 Definitions EMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality. First environment includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes. Second environment includes establishments connected to a network not supplying domestic premises. Drive of category C2: drive of rated voltage less than 1000 V and intended to be installed and started up only by a professional when used in the first environment. Note: A professional is a person or organization having necessary skills in installing and/or starting up power drive systems, including their EMC aspects. Drive of category C3: drive of rated voltage less than 1000 V and intended for use in the second environment and not intended for use in the first environment. Drive of category C4: drive of rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment. Category C2 The drive complies with the standard with the following provisions: 1. The drive is equipped with EMC filter +E202. 2. The motor and control cables are selected as specified in the hardware manual. 3. The drive is installed according to the instructions given in the hardware manual. 4. Maximum motor cable length is 150 meters. WARNING! The drive may cause radio interference if used in residential or domestic environment. The user is required to take measures to prevent interference, in association to the requirements for the CE compliance listed above, if necessary. Note: Do not install a drive equipped with EMC filter +E202 on IT (ungrounded) systems. The supply network becomes connected to ground potential through the EMC filter capacitors which may cause danger or damage to the unit. Technical data 205 Category C3 The drive complies with the standard with the following provisions: 1. The drive is equipped with EMC filter +E200 or +E201. 2. The motor and control cables are selected as specified in the hardware manual. 3. The drive is installed according to the instructions given in the hardware manual. 4. Maximum motor cable length is 150 meters. WARNING! A drive of category C3 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network. Category C4 If the provisions under Category C3 cannot be met, the requirements of the standard can be met as follows: 1. It is ensured that no excessive emission is propagated to neighboring low-voltage networks. In some cases, the inherent suppression in transformers and cables is sufficient. If in doubt, the supply transformer with static screening between the primary and secondary windings can be used. Medium voltage network Supply transformer Neighboring network Static screen Point of measurement Low voltage Low voltage Equipment (victim) Equipment Drive Equipment 2. An EMC plan for preventing disturbances is drawn up for the installation. A template is available from the local ABB representative. 3. The motor and control cables are selected as specified in the hardware manual. 4. The drive is installed according to the instructions given in the hardware manual. 206 Technical data WARNING! A drive of category C4 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network. UL marking The drive is cULus Listed. UL checklist • The drive is to be used in a heated, indoor controlled environment. The drive must be installed in clean air according to enclosure classification. Cooling air must be clean, free from corrosive materials and electrically conductive dust. See page 197. • The maximum ambient air temperature is 40 °C (104 °F) at rated current. The current is derated for 40 to 55 °C (104 to 131 °F). • The drive is suitable for use in a circuit capable of delivering not more than 100,000 rms symmetrical amperes, 600 V maximum. The ampere rating is based on tests done according to UL 508C. • The cables located within the motor circuit must be rated for at least 75 °C (167 °F) in UL-compliant installations. • The input cable must be protected with fuses. Circuit breakers must not be used without fuses in the USA. Suitable IEC (class aR) fuses are listed on page 168 and UL (class T) fuses on page 179. For suitable circuit breakers, contact your local ABB representative. • For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. To fulfill this requirement, use the UL classified fuses. • For installation in Canada, branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes. To fulfill this requirement, use the UL classified fuses. • The drive provides overload protection in accordance with the National Electrical Code (NEC). CSA marking The drive is CSA-marked. “C-tick” marking The drive is “C-tick” marked. “C-tick” marking is required in Australia and New Zealand. A “C-tick” mark is attached to the 380…500 V drives to verify compliance with the relevant standard (IEC 618003:2004), mandated by the Trans-Tasman Electromagnetic Compatibility Scheme. Technical data 207 For fulfilling the requirements of the standard, see section Compliance with the EN 61800-3:2004 on page 204. EAC marking The drive has EAC certification. EAC marking is required in Russia, Belarus and Kazakhstan. Approvals The drive is marine type approved. For more information, see ACS880-01/04 +C132 marine type-approved drives supplement (3AXD50000010521 [English]). Cyber security disclaimer This product is designed to be connected to and to communicate information and data via a network interface. It is Customer's sole responsibility to provide and continuously ensure a secure connection between the product and Customer network or any other network (as the case may be). Customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information. Disclaimer The manufacturer shall have no obligation hereunder with respect to any product which (i) has been improperly repaired or altered; (ii) has been subjected to misuse, negligence or accident; (iii) has been used in a manner contrary to the Manufacturer's instructions; or (iv) has failed as a result of ordinary wear and tear. 208 Technical data Dimension drawings 209 12 Dimension drawings What this chapter contains This chapter contains dimension drawings of the standard drive (IP21, UL Type 1) and drive with option +B056 (IP55, UL Type 12). For dimension drawings of options +P940 and +P944 (IP20, UL Open Type), see ACS880-01 +P940/+P944 drives for cabinet installation supplement (3AUA0000145446 [English]. 210 Dimension drawings 3AUA0000097621 Frame R1 (IP21, UL Type 1) Dimension drawings 211 3AUA0000097621 Frame R1 (IP55, UL Type 12) 212 Dimension drawings 3AUA0000097691 Frame R2 (IP21, UL Type 1) Dimension drawings 213 3AUA0000097691 Frame R2 (IP55, UL Type 12) 214 Dimension drawings 3AUA0000097847 Frame R3 (IP21, UL Type 1) Dimension drawings 215 3AUA0000097847 Frame R3 (IP55, UL Type 12) 576[22.69] 48[1.89] 74[2.90] 65[2.55] 124[4.86] 203[7.99] 274[10.80] A 8[.32] 160[6.30] SUGGESTED MOUNTING HOLES 13 [ .51 ] PLATE HOLE 44 [1.73] (3pcs.) GROMMET UP TO 24 [0.94] CABLE DIAMETER PLATE HOLE 22 [0.87] (3pcs.) GROMMET UP TO 15 [0.59] CABLE DIAMETER 22[.85] 505[19.88] p j 475[18.70] SUGGESTED MOUNTING HOLES 22[.85] 18[.72] 98[3.86] 15 [ .57 ] 7 [ .26 ] B 3AUA0000098285 7 [ .26 ] A B 7[.28] 490[19.291] WITHOUT GLAND BOX g 216 Dimension drawings Frame R4 (IP21, UL Type 1) Dimension drawings 217 3aua0000098285 Frame R4 (IP55, UL Type 12) 730[28.73] 124[4.86] 48[1.88] 74[2.90] 65[2.55] 203[7.99] 274[10.77] PLATE HOLE 51 [2.01] (3pcs.) GROMMET UP TO 32 [1.26] CABLE DIAMETER PLATE HOLE 29 [1.12] (2pcs.) GROMMET UP TO 22 [0.87] CABLE DIAMETER A 8[.32] 15 [ .57 ] 7 [ .26 ] 98[3.86] 160[6.30] SUGGESTED MOUNTING HOLES 7 [ .26 ] 22[.85] 3AUA0000097965 B 7 [ .26 ] A B 7[.28] 596[23.46] WITHOUT GLAND BOX 22[.85] 612[24.07] p j 581[22.87] SUGGESTED MOUNTING HOLES g 218 Dimension drawings Frame R5 (IP21, UL Type 1) Dimension drawings 219 3aua0000097965 Frame R5 (IP55, UL Type 12) 220 Dimension drawings 3AUA0000098321 Frame R6 (IP21, UL Type 1) Dimension drawings 221 3AUA0000098321 Frame R6 (IP55, UL Type 12) 222 Dimension drawings 3AUA0000073149 Frame R7 (IP21, UL Type 1) Dimension drawings 223 3AUA0000073149 Frame R7 (IP55, UL Type 12) 224 Dimension drawings 3AUA0000073150 Frame R8 (IP21, UL Type 1) Dimension drawings 225 3AUA0000073150 Frame R8 (IP55, UL Type 12) 226 Dimension drawings 3AUA0000073151 Frame R9 (IP21, UL Type 1) Dimension drawings 227 3AUA0000073151 Frame R9 (IP55, UL Type 12) 228 Dimension drawings Safe Torque off function 229 13 Safe Torque off function What this chapter contains This chapter describes the Safe torque off function of the drive and gives instructions for its use. Description The Safe torque off function can be used, for example, to construct safety or supervision circuits that stop the drive in case of danger (such as an emergency stop circuit). Another possible application is a prevention of unexpected start-up switch that enables short-time maintenance operations like cleaning or work on nonelectrical parts of the machinery without switching off the power supply to the drive. When activated, the Safe torque off function disables the control voltage of the power semiconductors of the drive output stage (A, see diagram below), thus preventing the drive from generating the torque required to rotate the motor. If the motor is running when Safe torque off is activated, it coasts to a stop. The Safe torque off function has a redundant architecture, that is, both channels must be used in the safety function implementation. The safety data given in this manual is calculated for redundant use, and does not apply if both channels are not used. The Safe torque off function of the drive complies with these standards: Standard Name EN 60204-1:2006 + AC:2010 Safety of machinery – Electrical equipment of machines – Part 1: General requirements 230 Safe Torque off function Standard Name IEC 61326-3-1:2008 Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) – General industrial applications IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 1: General requirements IEC 61508-2:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 2: Requirements for electrical/electronic/programmable electronic safety-related systems IEC 61511:2003 Functional safety – Safety instrumented systems for the process industry sector IEC/EN 61800-5-2:2007 Adjustable speed electrical power drive systems – Part 5-2: Safety requirements – Functional EN 62061:2005 + A1:2013 IEC 62061:2005 + A1:2012 Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems EN ISO 13849-1:2008 + AC:2009 Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design EN ISO 13849-2:2012 Safety of machinery – Safety-related parts of control systems – Part 2: Validation The function also corresponds to prevention of unexpected start-up as specified by EN 1037:1995 + A1:2008 and uncontrolled stop (stop category 0) as specified in EN 60204-1:2006 + AC:2010. Compliance with the European Machinery Directive See section Compliance with the European Machinery Directive on page 201. Wiring The following diagrams show examples of Safe torque off wiring for • a single drive (page 232) • multiple drives (page 233) • multiple drives when an external 24 V DC power supply is used (page 234). For information on the specifications of the STO input, see section Control unit (ZCU12) connection data on page 193. Safe Torque off function 231 Activation switch In the wiring diagrams below, the activation switch has the designation (K). This represents a component such as a manually operated switch, an emergency stop push button switch, or the contacts of a safety relay or safety PLC. • If a manually operated activation switch is used, the switch must be of a type that can be locked out to the open position. • The contacts of the switch or relay must open/close within 200 ms of each other. • An FSO-xx safety functions module can also be used. For more information, see the FSO-xx module documentation. Cable types and lengths Double-shielded twisted-pair cable is recommended. Maximum cable lengths: • 300 m (984 ft) between activation switch (K) and drive control unit • 60 m (200 ft) between multiple drives • 60 m (200 ft) between external power supply and first drive. Note that the voltage at the INx terminals of each drive must be at least 17 V DC to be interpreted as “1”. Grounding of protective shields • Ground the shield in the cabling between the activation switch and the control unit at the control unit. • Ground the shield in the cabling between two control units at one control unit only. 232 Safe Torque off function Single drive (internal power supply) ACS880-01 ZCU +24 V OUT1 SGND K IN1 IN2 Control logic UDC+ A UDC- T1/U, T2/V, T3/W Safe Torque off function 233 Multiple drives (internal power supply) ACS880-01 ZCU +24 V OUT1 SGND K IN1 IN2 ACS880-01 ZCU OUT1 SGND IN1 IN2 ACS880-01 ZCU OUT1 SGND IN1 IN2 234 Safe Torque off function Multiple drives (external power supply) ACS880-01 ZCU +24 V DC +24 V OUT1 SGND IN1 IN2 ACS880-01 ZCU OUT1 SGND IN1 IN2 ACS880-01 ZCU OUT1 SGND IN1 IN2 + K Safe Torque off function 235 Operation principle 1. The Safe torque off activates (the activation switch is opened, or safety relay contacts open). 2. STO inputs on the drive control unit de-energize. 3. The control unit cuts off the control voltage from the drive IGBTs. 4. The control program generates an indication as defined by parameter 31.22 (refer to the firmware manual of the drive). 5. Motor coasts to stop (if running). The drive cannot restart while the activation switch or safety relay contacts are open. After the contacts close, a new start command is required to start the drive. Start-up including acceptance test To ensure safe operation of the Safe torque off function, validation is required. The final assembler of the machine must validate the function by performing an acceptance test. The acceptance test must be performed: • at initial start-up of the safety function • after any changes related to the safety function (circuit boards, wiring, components, settings, etc.) • after any maintenance work related to the safety function. Competence The acceptance test of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6. The test procedures and report must be documented and signed by this person. Acceptance test reports Signed acceptance test reports must be stored in the logbook of the machine. The report shall include documentation of start-up activities and test results, references to failure reports and resolution of failures. Any new acceptance tests performed due to changes or maintenance shall be logged into the logbook. Acceptance test procedure After wiring the Safe torque off function, validate its operation as follows. Setting of the control program parameters is not needed. If an FSO-xx safety functions module (option +Q973) is installed, do the procedure shown in the FSO module 236 Safe Torque off function documentation.. Action WARNING! Obey the Safety instructions, page 13. Ignoring the instructions can cause physical injury or death, or damage to the equipment. Ensure that the drive can be run and stopped freely during start-up. Stop the drive (if running), switch the input power off and isolate the drive from the power line by a disconnector. Check the Safe torque off (STO) circuit connections against the circuit diagram. Close the disconnector and switch the power on. Test the operation of the STO function when the motor is stopped. • Give a stop command for the drive (if running) and wait until the motor shaft is at a standstill. Make sure that the drive operates as follows: • Open the STO circuit. The drive generates an indication if one is defined for ‘stopped’ state in parameter 31.22 (see the firmware manual). • Give a start command to verify that the STO function blocks the drive operations. The motor should not start. • Close the STO circuit. • Reset any active faults. Restart the drive and check that the motor runs normally. Test the operation of the STO function when the motor is running: • Start the drive and make sure the motor is running. • Open the STO circuit. The motor should stop. The drive generates an indication if one is defined for ‘running’ state in parameter 31.22 (see the firmware manual). • Reset any active faults and try to start the drive. • Make sure that the motor stays at standstill and the drive operates as described above in testing the operation when the motor is stopped. • Close the STO circuit. • Reset any active faults. Restart the drive and check that the motor runs normally. Document and sign the acceptance test report which verifies that the safety function is safe and accepted for operation. Safe Torque off function 237 Use 1. Open the activation switch, or activate the safety functionality that is wired to the STO connection. 2. STO inputs on the drive control unit de-energize, and the drive control unit cuts off the control voltage from the inverter IGBTs. 3. The control program generates an indication as defined by parameter 31.22 (refer to the firmware manual of the drive). 4. Motor coasts to stop (if running). The drive will not restart while the activation switch or safety relay contacts are open. 5. Deactivate the STO by closing the activation switch, or reseting the safety functionality that is wired to the STO connection. 6. Reset any faults before restarting. WARNING! The Safe torque off function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore maintenance work on electrical parts of the drive or the motor can only be carried out after isolating the drive system from the main supply. WARNING! (With permanent magnet or synchronous reluctance [SynRM] motors only) In case of a multiple IGBT power semiconductor failure, the drive system can produce an alignment torque which maximally rotates the motor shaft by 180/p (with permanent magnet motors) or 180/2p (with synchronous reluctance [SynRM] motors) degrees regardless of the activation of the Safe torque off function. p denotes the number of pole pairs. Notes: • If a running drive is stopped by using the Safe torque off function, the drive will cut off the motor supply voltage and the motor will coast to a stop. If this causes danger or is not otherwise acceptable, stop the drive and machinery using the appropriate stop mode before activating the Safe torque off function. • The Safe torque off function overrides all other functions of the drive. • The Safe torque off function is ineffective against deliberate sabotage or misuse. • The Safe torque off function has been designed to reduce the recognized hazardous conditions. In spite of this, it is not always possible to eliminate all potential hazards. The assembler of the machine must inform the final user about the residual risks. 238 Safe Torque off function Maintenance After the operation of the circuit is verified at start-up, the STO function shall be maintained by periodic proof testing. In high demand mode of operation, the maximum proof test interval is 20 years. In low demand mode of operation, the maximum proof test interval is 2 years. The test procedure is given in section Acceptance test procedure on page 235. Note: See also the Recommendation of Use CNB/M/11.050 (published by the European co-ordination of Notified Bodies) concerning dual-channel safety-related systems with electromechanical outputs: • When the safety integrity requirement for the safety function is SIL 3 or PL e (cat. 3 or 4), the proof test for the function must be performed at least every month. • When the safety integrity requirement for the safety function is SIL 2 (HFT = 1) or PL d (cat. 3), the proof test for the function must be performed at least every 12 months. The STO function of the drive does not contain any electromechanical components. In addition to proof testing, it is a good practice to check the operation of the function when other maintenance procedures are carried out on the machinery. Include the Safe torque off operation test described above in the routine maintenance program of the machinery that the inverter runs. If any wiring or component change is needed after start up, or the parameters are restored, follow the test given in section Acceptance test procedure on page 235. Use only ABB approved spare parts. Record all maintenance and proof test activities in the machine logbook. Competence The maintenance and proof test activities of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6. Fault tracing The indications given during the normal operation of the Safe torque off function are selected by drive parameter 31.22. The diagnostics of the Safe torque off function cross-compare the status of the two STO channels. In case the channels are not in the same state, a fault reaction function is performed and the drive trips on an “STO hardware failure” fault. An attempt to use the STO in a non-redundant manner, for example activating only one channel, will trigger the same reaction. Safe Torque off function 239 See the drive firmware manual for the indications generated by the drive, and for details on directing fault and warning indications to an output on the control unit for external diagnostics. Any failures of the Safe torque off function must be reported to ABB. Safety data (SIL, PL) The safety data for the Safe torque off function is given below. Note: The safety data is calculated for redundant use, and does not apply if both channels are not used. Frame IEC 61508 and EN/IEC 61800-5-2 SIL/ SC PL SFF SILCL (%) PFD MTTFd DC* Cat. HFT CCF LifePFH (a) (%) (%) time (T1 = 20 a) (T1 = 2 a) (1/h) (a) UN = 230 V R1 3 3 e 99.67 2.33E-09 (2.33 FIT) 4.58E-7 7321 > 90 3 1 80 20 R2 3 3 e 99.67 2.33E-09 (2.33 FIT) 4.58E-7 7321 > 90 3 1 80 20 R3 3 3 e 99.68 2.33E-09 (2.33 FIT) 3.69E-7 9093 > 90 3 1 80 20 R4 3 3 e 99.66 2.43E-09 (2.43 FIT) 5.85E-7 5731 > 90 3 1 80 20 R5 3 3 e 99.66 2.43E-09 (2.43 FIT) 5.85E-7 5731 > 90 3 1 80 20 R6 3 3 e 99.65 2.44E-09 (2.44 FIT) 8.70E-7 3847 > 90 3 1 80 20 R7 3 3 e 99.65 2.44E-09 (2.44 FIT) 8.70E-7 3847 > 90 3 1 80 20 R8 3 3 e 99.65 2.44E-09 (2.44 FIT) 8.70E-7 3847 > 90 3 1 80 20 UN = 400 V, UN = 500 V R1 3 3 e 99.67 2.33E-09 (2.33 FIT) 4.58E-7 7321 > 90 3 1 80 20 R2 3 3 e 99.67 2.33E-09 (2.33 FIT) 4.58E-7 7321 > 90 3 1 80 20 R3 3 3 e 99.68 2.33E-09 (2.33 FIT) 3.69E-7 9093 > 90 3 1 80 20 R4 3 3 e 99.66 2.43E-09 (2.43 FIT) 5.85E-7 5731 > 90 3 1 80 20 R5 3 3 e 99.66 2.43E-09 (2.43 FIT) 5.85E-7 5731 > 90 3 1 80 20 R6 3 3 e 99.65 2.44E-09 (2.44 FIT) 8.70E-7 3847 > 90 3 1 80 20 240 Safe Torque off function Frame IEC 61508 and EN/IEC 61800-5-2 SIL/ SC PL SFF SILCL (%) PFD MTTFd DC* Cat. HFT CCF LifePFH (a) (%) (%) time (T1 = 20 a) (T1 = 2 a) (1/h) (a) R7 3 3 e 99.65 2.44E-09 (2.44 FIT) 8.70E-7 3847 > 90 3 1 80 20 R8 3 3 e 95.04 3.84E-09 (3.84 FIT) 1.56E-4 1374 > 90 3 1 80 20 R9 3 3 e 95.04 3.84E-09 (3.84 FIT) 1.56E-4 1374 > 90 3 1 80 20 R5 3 3 e 91.78 2.89E-09 (2.89 FIT) 7.70E-5 1374 > 90 3 1 80 20 R6…R9 3 3 e 95.04 3.84E-09 (3.84 FIT) 1.56E-4 1374 > 90 3 1 80 20 UN = 690 V * according to Table E.1 in EN/ISO 13849-1 • This temperature profile is used in the safety value calculations: • 670 on/off cycles per year with • 1340 on/off cycles per year with T = 71.66 °C T = 61.66 °C • 30 on/off cycles per year with • 32 °C board temperature at 2.0% of time T = 10.0 °C • 60 °C board temperature at 1.5% of time • 85 °C board temperature at 2.3% of time. • The STO is a type A safety component as defined in IEC 61508-2. • Relevant failure modes: • The STO trips spuriously (safe failure) • The STO does not activate when requested A fault exclusion on the failure mode “short circuit on printed circuit board” has been made (EN 13849-2, table D.5). The analysis is based on an assumption that one failure occurs at one time. No accumulated failures have been analyzed. • STO reaction time (shortest detectable break): 1 ms • STO response time: 2 ms (typical), 5 ms (maximum) • Fault detection time: Channels in different states for longer than 200 ms • Fault reaction time: Fault detection time + 10 ms • STO fault indication (parameter 31.22) delay: < 500 ms • STO warning indication (parameter 31.22) delay: < 1000 ms Safe Torque off function 241 Abbreviations Abbr. Reference Description Cat. EN ISO 13849-1 Classification of the safety-related parts of a control system in respect of their resistance to faults and their subsequent behavior in the fault condition, and which is achieved by the structural arrangement of the parts, fault detection and/or by their reliability. The categories are: B, 1, 2, 3 and 4. CCF EN ISO 13849-1 Common cause failure (%) DC EN ISO 13849-1 Diagnostic coverage FIT IEC 61508 Failure in time: 1E-9 hours HFT IEC 61508 Hardware fault tolerance MTTFd EN ISO 13849-1 Mean time to dangerous failure: (The total number of life units) / (the number of dangerous, undetected failures) during a particular measurement interval under stated conditions PFD IEC 61508 Probability of failure on demand PFH IEC 61508 Probability of dangerous failures per hour PL EN ISO 13849-1 Performance level. Levels a…e correspond to SIL SC IEC 61508 Systematic capability SFF IEC 61508 Safe failure fraction (%) SIL IEC 61508 Safety integrity level (1…3) SILCL IEC/EN 62061 Maximum SIL (level 1…3) that can be claimed for a safety function or subsystem SS1 IEC/EN 61800-5-2 Safe stop 1 STO IEC/EN 61800-5-2 Safe torque off T1 IEC 61508-6 Proof test interval. T1 is a parameter used to define the probabilistic failure rate (PFH or PFD) for the safety function or subsystem. Performing a proof test at a maximum interval of T1 is required to keep the SIL capability valid. The same interval must be followed to keep the PL capability (EN ISO 13849) valid. Note that any T1 values given cannot be regarded as a guarantee or warranty. See also section Maintenance on page 238. 242 Safe Torque off function Resistor braking 243 14 Resistor braking What this chapter contains This chapter describes how to select, protect and wire brake choppers and resistors. The chapter also contains technical data. Operation principle and hardware description Frames R1 to R4 have a built-in brake chopper as standard. Frames R5 and up can be equipped with optional built-in brake chopper (+D150). Brake resistors are available as add-on kits. The brake chopper handles the energy generated by a decelerating motor. The chopper connects the brake resistor to the intermediate DC circuit whenever the voltage in the circuit exceeds the limit defined by the control program. Energy consumption by the resistor losses lowers the voltage until the resistor can be disconnected. Planning the braking system Selecting the brake circuit components 1. Calculate the maximum power generated by the motor during braking (Pmax). 2. Select a suitable drive, brake chopper and brake resistor combination for the application from the rating table on page 249. The braking power of the chopper must be greater or equal than the maximum power generated by the motor during the braking. 3. Check the resistor selection. The energy generated by the motor during a 400second period must not exceed the resistor heat dissipation capacity ER. 244 Resistor braking Note: If the ER value is not sufficient, it is possible to use a four-resistor assembly in which two standard resistors are connected in parallel, two in series. The ER value of the four-resistor assembly is four times the value specified for the standard resistor. Selecting a custom resistor If you use a resistor other than the default resistor, make sure that: 1. The resistance of the custom resistor is greater or equal than the resistance of the default resistor in the rating table on page 249: R > Rmin where R Resistance of the custom resistor. WARNING! Never use a brake resistor with a resistance smaller than Rmin. The drive and the chopper are not able to handle the overcurrent caused by the low resistance. Rmin Resistance of the default resistor 2. The load capacity of the custom resistor is higher than the instantaneous maximum power consumption of the resistor when it is connected to the drive DC link voltage by the chopper: 2 Pr < UDC R where Pr Load capacity of the custom resistor UDC Drive DC link voltage. 1.35 · 1.25 · 415 V DC (when supply voltage is 380 to 415 V AC) 1.35 · 1.25 · 500 V DC (when supply voltage is 440 to 500 V AC) or 1.35 · 1.25 · 690 V DC (when supply voltage is 525 to 690 AC) R Resistance of the custom resistor Selecting and routing the brake resistor cables Use the same cable type for the resistor cabling as for the drive input cabling to ensure that the input fuses also protect the resistor cable. Alternatively, a two conductor shielded cable with the same cross-sectional area can be used. Resistor braking 245 Minimizing electromagnetic interference Follow these rules in order to minimize electromagnetic interference caused by the rapid current changes in the resistor cables: • Shield the braking power line completely, either by using shielded cable or a metallic enclosure. Unshielded single-core cable can only be used if it is routed inside a cabinet that efficiently suppresses the radiated emissions. • Install the cables away from other cable routes. • Avoid long parallel runs with other cables. The minimum parallel cabling separation distance should be 0.3 meters. • Cross the other cables at right angles. • Keep the cable as short as possible in order to minimize the radiated emissions and stress on chopper IGBTs. The longer the cable the higher the radiated emissions, inductive load and voltage peaks over the IGBT semiconductors of the brake chopper. Maximum cable length The maximum length of the resistor cable(s) is 10 m (33 ft). EMC compliance of the complete installation Note: ABB has not verified that the EMC requirements are fulfilled with external userdefined brake resistors and cabling. The EMC compliance of the complete installation must be considered by the customer. Placing the brake resistors Install the resistors outside the drive in a place where they will cool. Arrange the cooling of the resistor in a way that: • no danger of overheating is caused to the resistor or nearby materials • the temperature of the room the resistor is located in does not exceed the allowed maximum. Supply the resistor with cooling air/water according to the resistor manufacturer’s instructions. WARNING! The materials near the brake resistor must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius. If the exhaust vents are connected to a ventilation system, ensure that the material withstands high temperatures. Protect the resistor against contact. 246 Resistor braking Protecting the system against thermal overload The brake chopper protects itself and the resistor cables against thermal overload when the cables are dimensioned according to the nominal current of the drive. The drive control program includes a resistor and resistor cable thermal protection function which can be tuned by the user. See the firmware manual. Frames R1 to R4 Equipping the drive with a main contactor is highly recommended for safety reasons. Wire the contactor so that it opens in case the resistor overheats. This is essential for safety since the drive will not otherwise be able to interrupt the main supply if the chopper remains conductive in a fault situation. An example wiring diagram is shown below. ABB resistors are equipped with a thermal switch (1) inside the resistor assembly as standard. The switch indicates overtemperature and overload. We recommend that you also wire the thermal switch to a digital input of the drive. L1 L2 L3 1 OFF 2 1 3 13 5 3 ON 2 ACS880 4 14 6 4 1 4 ACS880 L1 L2 L3 +24VD x DIx x K1 Frames R5 to R9 A main contactor is not required for protecting against resistor overheating when the resistor is dimensioned according to the instructions and the internal brake chopper is in use. The drive will disable power flow through the input bridge if the chopper remains conductive in a fault situation but the charging resistor may fail. Note: If an external brake chopper (outside the drive module) is used, a main contactor is always required. Resistor braking 247 A thermal switch (standard in ABB resistors) is required for safety reasons. The thermal switch cable must be shielded and may not be longer than the resistor cable. Wire the switch to a digital input on the drive control unit as shown in the figure below. +24VD x DIx x 4 Protecting the resistor cable against short-circuits The input fuses will also protect the resistor cable when it is identical with the input cable. Mechanical installation All brake resistors must be installed outside the drive. Follow the resistor manufacturer’s instructions. Electrical installation Checking the insulation of the assembly Follow the instructions given under Brake resistor assembly on page 88. Connection diagram See section Connection diagram on page 90. Connection procedure • Connect the resistor cables to the R+ and R- terminals in the same way as the other power cables. If a shielded three-conductor cable is used, cut the third conductor, insulate it, and ground the twisted shield of the cable (protective earth conductor of the resistor assembly) at both ends. • Connect the thermal switch of the brake resistor as described above in section Frames R1 to R4 or Frames R5 to R9. Start-up Note: Protective oil on the brake resistors will burn off when the brake resistor is used for the first time. Make sure that the airflow is sufficient. 248 Resistor braking Set the following parameters (ACS880 primary control program): • Disable the overvoltage control of the drive by parameter 30.30 Overvoltage control. • Set parameter 31.01 External event 1 source to point to the digital input where the thermal switch of the brake resistor is wired. • Set parameter 31.02 External event 1 type to Fault. • Enable the brake chopper by parameter 43.06 Brake chopper enable. If Enabled with thermal model is selected, set also the brake resistor overload protection parameters 43.08 and 43.09 according to the application. • For frames R5 to R9: Set parameter 43.07 Brake chopper runtime enable to Other [bit] and select from parameter 10.01 DI status the digital input where the thermal switch of the brake resistor is wired. • Check the resistance value of parameter 43.10 Brake resistance. With these parameter settings, the drive stops by coasting on brake resistor overtemperature. WARNING! If the drive is equipped with a brake chopper but the chopper is not enabled by the parameter setting, the internal thermal protection of the drive against resistor overheating is not in use. In this case, the brake resistor must be disconnected. For settings of other control programs, see the appropriate firmware manual. Resistor braking 249 Technical data Ratings Drive type Internal brake chopper Pbrcont Rmin kW ohm Example brake resistor(s) Type R ER PRcont ohm kJ kW UN = 230 V ACS880-01-04A6-2 0.75 65 JBR-03 80 40 0.14 ACS880-01-06A6-2 1.1 65 JBR-03 80 40 0.14 ACS880-01-07A5-2 1.5 65 JBR-03 80 40 0.14 ACS880-01-10A6-2 2.2 65 JBR-03 80 40 0.14 ACS880-01-16A8-2 4.0 18 SACE15RE22 22 420 2 ACS880-01-24A3-2 5.5 18 SACE15RE22 22 420 2 ACS880-01-031A-2 7.5 13 SACE15RE13 13 435 2 ACS880-01-046A-2 11 12 SACE15RE13 13 435 2 ACS880-01-061A-2 11 12 SACE15RE13 13 435 2 ACS880-01-075A-2 18.5 6 SAFUR90F575 8 1800 4.5 ACS880-01-087A-2 22 6 SAFUR90F575 8 1800 4.5 ACS880-01-115A-2 30 3.5 SAFUR125F500 4 3600 9 ACS880-01-145A-2 37 3.5 SAFUR125F500 4 3600 9 ACS880-01-170A-2 45 2.4 SAFUR200F500 2.7 5400 13.5 ACS880-01-206A-2 55 2.4 SAFUR200F500 2.7 5400 13.5 ACS880-01-274A-2 75 1.8 SAFUR200F500 2.7 5400 13.5 UN = 400 V ACS880-01-02A4-3 0.75 78 JBR-03 80 40 0.14 ACS880-01-03A3-3 1.1 78 JBR-03 80 40 0.14 ACS880-01-04A0-3 1.5 78 JBR-03 80 40 0.14 ACS880-01-05A6-3 2.2 78 JBR-03 80 40 0.14 ACS880-01-07A2-3 3.0 78 JBR-03 80 40 0.14 ACS880-01-09A4-3 4.0 78 JBR-03 80 40 0.14 ACS880-01-12A6-3 5.5 78 JBR-03 80 40 0.14 ACS880-01-017A-3 7.5 39 SACE08RE44 44 210 1 ACS880-01-025A-3 11 39 SACE08RE44 44 210 1 ACS880-01-032A-3 15 19 SACE15RE22 22 420 2 ACS880-01-038A-3 18.5 19 SACE15RE22 22 420 2 ACS880-01-045A-3 22 13 SACE15RE13 13 435 2 ACS880-01-061A-3 22 13 SACE15RE13 13 435 2 ACS880-01-072A-3 37 8 SAFUR90F575 8 1800 4.5 ACS880-01-087A-3 45 8 SAFUR90F575 8 1800 4.5 ACS880-01-105A-3 55 5.4 SAFUR80F500 6 2400 6 ACS880-01-145A-3 75 5.4 SAFUR80F500 6 2400 6 250 Resistor braking Drive type Internal brake chopper Pbrcont Rmin kW ohm ACS880-01-169A-3 90 3.3 ACS880-01-206A-3 110 ACS880-01-246A-3 ACS880-01-293A-3 Example brake resistor(s) Type R ER PRcont ohm kJ kW SAFUR125F500 4 3600 9 3.3 SAFUR125F500 4 3600 9 132 2.3 SAFUR200F500 2.7 5400 13.5 132 2.3 SAFUR200F500 2.7 5400 13.5 ACS880-01-363A-3 160 2.0 SAFUR200F500 2.7 5400 13.5 ACS880-01-430A-3 160 2.0 SAFUR200F500 2.7 5400 13.5 ACS880-01-02A1-5 0.75 78 JBR-03 80 40 0.14 ACS880-01-03A0-5 1.1 78 JBR-03 80 40 0.14 ACS880-01-03A4-5 1.5 78 JBR-03 80 40 0.14 ACS880-01-04A8-5 2.2 78 JBR-03 80 40 0.14 ACS880-01-05A2-5 3.0 78 JBR-03 80 40 0.14 ACS880-01-07A6-5 4.0 78 JBR-03 80 40 0.14 ACS880-01-11A0-5 5.5 78 JBR-03 80 40 0.14 ACS880-01-014A-5 7.5 39 SACE08RE44 44 210 1 ACS880-01-021A-5 11 39 SACE08RE44 44 210 1 ACS880-01-027A-5 15 19 SACE15RE22 22 420 2 ACS880-01-034A-5 18.5 19 SACE15RE22 22 420 2 ACS880-01-040A-5 22 13 SACE15RE13 13 435 2 ACS880-01-052A-5 22 13 SACE15RE13 13 435 2 ACS880-01-065A-5 37 8 SAFUR90F575 8 1800 4.5 ACS880-01-077A-5 45 8 SAFUR90F575 8 1800 4.5 ACS880-01-096A-5 55 5.4 SAFUR80F500 6 2400 6 ACS880-01-124A-5 75 5.4 SAFUR80F500 6 2400 6 ACS880-01-156A-5 90 3.3 SAFUR125F500 4 3600 9 ACS880-01-180A-5 110 3.3 SAFUR125F500 4 3600 9 ACS880-01-240A-5 132 2.3 SAFUR200F500 2.7 5400 13.5 ACS880-01-260A-5 132 2.3 SAFUR200F500 2.7 5400 13.5 ACS880-01-302A-5 160 2.3 SAFUR200F500 2.7 5400 13.5 ACS880-01-361A-5 160 2.3 SAFUR200F500 2.7 5400 13.5 ACS880-01-414A-5 160 2.3 SAFUR200F500 2.7 5400 13.5 ACS880-01-07A3-7 6 18 SACE08RE44 44 210 1 ACS880-01-09A8-7 8 18 SACE08RE44 44 210 1 ACS880-01-14A2-7 11 18 SACE08RE44 44 210 1 ACS880-01-018A-7 17 18 SACE15RE22 22 420 2 ACS880-01-022A-7 23 18 SACE15RE22 22 420 2 ACS880-01-026A-7 28 18 SACE15RE22 22 420 2 UN = 500 V UN = 690 V Resistor braking 251 Drive type Internal brake chopper Pbrcont Rmin kW ohm ACS880-01-035A-7 33 18 ACS880-01-042A-7 45 ACS880-01-049A-7 Example brake resistor(s) Type R ER PRcont ohm kJ kW SACE15RE22 22 420 2 18 SACE15RE22 22 420 2 45 18 SACE15RE22 22 420 2 ACS880-01-061A-7 55 13 SACE15RE13 13 435 2 ACS880-01-084A-7 65 13 SACE15RE13 13 435 2 ACS880-01-098A-7 90 8 SAFUR90F575 8 1800 4.5 ACS880-01-119A-7 110 8 SAFUR90F575 8 1800 4.5 ACS880-01-142A-7 132 6 SAFUR80F500 6 2400 6 ACS880-01-174A-7 160 6 SAFUR80F500 6 2400 6 ACS880-01-210A-7 200 4 SAFUR125F500 4 3600 9 ACS880-01-271A-7 200 4 SAFUR125F500 4 3600 9 3AXD00000588487 Pbrcont Maximum continuous braking power. The braking is considered continuous if the braking time exceeds 30 seconds. Rmin The minimum allowed resistance value of the brake resistor R Resistance value for the listed resistor assembly ER Short energy pulse that the resistor assembly withstands every 400 seconds PRcont Continuous power (heat) dissipation of the resistor when placed correctly The rating apply at an ambient temperature of 40 °C (104 °F) Degree of protection and thermal constant of the resistors Resistor type Degree of protection Thermal constant (s) SACE IP21 200 SAFUR IP00 555 Terminals and cable lead-through data See section Terminal and lead-through data for the power cables on page 189. Dimensions and weights of external resistors 252 Resistor braking JBR-03 3AFE68711444 Resistor braking 253 JBR-03 brake resistor Dimension A 340 mm (13.39 in) Dimension B 200 mm (7.87 in) Dimension C 170 mm (6.69 in) Weight 0.8 kg (1.8 lb) Maximum wire size of main terminals 10 mm2 (AWG6) Tightening torque of main terminals 1.5 … 1.8 N·m (13 … 16 lbf·in) Wire size of thermal switch terminals 4 mm2 (AWG12) Tightening torque of thermal switch terminals 0.6 … 0.8 N·m (5.3 … 7.1 lbf·in) SACE08RE44 260 Ø6 Weight: 6 kg (13 lb) 350 365 SACE_ _RE_ _ Ø6 290 131 254 Resistor braking SACE15RE13 and SACE15RE22 260 Weight: 6 kg (13 lb) 350 365 SACE15RExx Ø6 290 131 SAFUR80F500 and SAFUR90F575 R+ 550 600 234 R- Ø7 300 Brake resistor type 345 Weight SAFUR80F500 14 kg (31 lb) SAFUR90F500 12 kg (26 lb) Resistor braking 255 SAFUR125F500 and SAFUR200F500 1270 1320 234 Ø7 300 345 Brake resistor type Weight SAFUR125F500 25 kg (55 lb) SAFUR200F500 30 kg (66 lb) 256 Resistor braking Common mode, du/dt and sine filters 257 15 Common mode, du/dt and sine filters What this chapter contains This chapter describes how to select external filters for the drive. Common mode filters When is a common mode filter needed? See section Checking the compatibility of the motor and drive, page 58. A common mode filter kit is available from ABB with order number is 64315811 for the drive. The kit includes three wound cores. For installation instructions of the cores, see the instruction included in the core package. du/dt filters When is a du/dt filter needed? See section Checking the compatibility of the motor and drive, page 58. 258 Common mode, du/dt and sine filters du/dt filter types Drive type du/dt filter type Drive type ACS880-01- du/dt filter type Drive type ACS880-01- UN = 400 V du/dt filter type ACS880-01- UN = 500 V UN = 690 V 02A4-3 NOCH0016-6X 02A1-5 NOCH0016-6X 07A3-7 NOCH0016-6X 03A3-3 NOCH0016-6X 03A0-5 NOCH0016-6X 09A8-7 NOCH0016-6X 04A0-3 NOCH0016-6X 03A4-5 NOCH0016-6X 14A2-7 NOCH0016-6X 05A6-3 NOCH0016-6X 04A8-5 NOCH0016-6X 018A-7 NOCH0030-6X 07A2-3 NOCH0016-6X 05A2-5 NOCH0016-6X 022A-7 NOCH0030-6X 09A4-3 NOCH0016-6X 07A6-5 NOCH0016-6X 026A-7 NOCH0030-6X 12A6-3 NOCH0016-6X 11A0-5 NOCH0016-6X 035A-7 NOCH0070-6X 017A-3 NOCH0030-6X 014A-5 NOCH0030-6X 042A-7 NOCH0070-6X 025A-3 NOCH0030-6X 021A-5 NOCH0030-6X 049A-7 NOCH0070-6X 032A-3 NOCH0070-6X 027A-5 NOCH0070-6X 061A-7 NOCH0120-6X 038A-3 NOCH0070-6X 034A-5 NOCH0070-6X 084A-7 NOCH0120-6X 045A-3 NOCH0070-6X 040A-5 NOCH0070-6X 098A-7 NOCH0120-6X 061A-3 NOCH0070-6X 052A-5 NOCH0070-6X 119A-7 FOCH0260-70 072A-3 NOCH0120-6X 065A-5 NOCH0120-6X 142A-7 FOCH0260-70 087A-3 NOCH0120-6X 077A-5 NOCH0120-6X 174A-7 FOCH0260-70 105A-3 NOCH0120-6X 096A-5 NOCH0120-6X 210A-7 FOCH0260-70 145A-3 FOCH0260-70 124A-5 FOCH0260-70 271A-7 FOCH0260-70 169A-3 FOCH0260-70 156A-5 FOCH0260-70 - - 206A-3 FOCH0260-70 180A-5 FOCH0260-70 - - 246A-3 FOCH0260-70 240A-5 FOCH0260-70 - - 293A-3 FOCH0260-70 260A-5 FOCH0260-70 - - 363A-3 FOCH0320-50 302A-5 FOCH0320-50 - - 430A-3 FOCH0320-50 361A-5 FOCH0320-50 - - 414A-5 FOCH0320-50 - - - 3AXD00000588487 Description, installation and technical data of the FOCH filters See FOCH du/dt filters hardware manual (3AFE68577519 [English]). Description, installation and technical data of the NOCH filters See AOCH and NOCH du/dt filters hardware manual (3AFE58933368 [English]). Common mode, du/dt and sine filters 259 Sine filters Selecting a sine filter for a drive Drive type ACS88001-... Sine filter type Icont. Pcont. max max Drive Filter Total A kW W W W dB(A) 72 Heat dissipation Noise UN = 400 V 02A4-3 B84143V0004R229 2.3 1.7 30 60 90 03A3-3 B84143V0004R229 3.1 2.3 40 60 100 72 04A0-3 B84143V0004R229 3.8 2.9 52 60 112 72 05A6-3 B84143V0006R229 5.3 4.0 73 100 173 72 07A2-3 B84143V00011R229 7.2 5.4 94 90 184 72 09A4-3 B84143V00011R229 9.2 6.9 122 90 212 72 12A6-3 B84143V0016R229 12.1 9.1 172 80 252 72 017A-3 B84143V0025R229 16 12.1 232 140 372 75 025A-3 B84143V0025R229 24 17.7 337 140 477 75 032A-3 B84143V0033R229 31 23.4 457 160 617 75 038A-3 B84143V0050R229 37 27.5 562 220 782 78 045A-3 B84143V0050R229 43 32.4 667 220 887 78 061A-3 B84143V0066R229 60 45.2 907 250 1157 78 072A-3 B84143V0075R229 64 48.2 1117 310 1427 79 087A-3 B84143V0095R229 77 58.0 1120 400 1520 79 105A-3 B84143V0130R230 91 68.6 1295 * 1295 80 145A-3 B84143V0162R229 126 94.6 1440 * 1440 80 169A-3 B84143V0162R229 153 115.0 1940 * 1940 80 206A-3 B84143V0230R229 187 140.6 2310 900 3210 80 246A-3 B84143V0230R229 209 157.6 3300 900 4200 80 293A-3 B84143V0390R229 249 187.8 3900 1570 5470 80 363A-3 B84143V0390R229 297 223.6 4800 1570 6370 80 430A-3 B84143V0390R229 352 265.2 6000 1570 7570 80 02A1-5 B84143V0004R229 1.9 1.4 30 60 90 72 03A0-5 B84143V0004R230 2.8 2.1 40 60 100 72 03A4-5 B84143V0004R231 3.1 2.3 52 60 112 72 04A8-5 B84143V0006R229 4.4 3.3 73 100 173 72 05A2-5 B84143V0006R229 4.8 3.6 94 100 194 72 UN = 500 V 260 Common mode, du/dt and sine filters Sine filter type Drive type ACS88001-... Icont. Pcont. max max Drive Heat dissipation Filter Total A kW W W W Noise dB(A) 07A6-5 B84143V00011R229 7.0 5.3 122 90 212 72 11A0-5 B84143V00011R229 10.2 7.7 172 90 262 72 014A-5 B84143V0016R229 13 9.8 232 80 312 70 021A-5 B84143V0025R229 20 14.7 337 140 477 75 027A-5 B84143V0033R229 25 18.8 457 160 617 75 034A-5 B84143V0050R229 32 23.7 562 220 782 78 040A-5 B84143V0050R229 35 26.0 667 220 887 78 052A-5 B84143V0066R229 49 36.9 907 250 1157 78 065A-5 B84143V0066R229 60 45.1 1117 250 1367 78 077A-5 B84143V0075R229 62 46.3 1120 310 1430 78 096A-5 B84143V0130R230 80 60.6 1295 * 1295 80 124A-5 B84143V0130R230 104 78.7 1440 * 1440 80 156A-5 B84143V0162R229 140 105.8 1940 * 1940 80 180A-5 B84143V0162R229 162 121.8 2310 * 2310 80 240A-5 B84143V0230R229 205 154.3 3300 900 4200 80 260A-5 B84143V0230R229 221 166.7 3900 900 4800 80 361A-5 B84143V0390R229 289 217.9 4800 1570 6370 80 414A-5 B84143V0390R229 332 250.1 6000 1570 7570 80 B84143V0010R230 6.9 5.2 217 90 307 72 UN = 690 V 07A3-7 09A8-7 B84143V0010R230 9.3 7.0 284 90 374 72 14A2-7 B84143V0018R230 13.5 10.2 399 130 529 72 018A-7 B84143V0018R230 17.1 12.9 490 130 620 72 022A-7 B84143V0026R230 21 15.7 578 160 738 72 026A-7 B84143V0026R230 25 18.6 660 160 820 72 035A-7 B84143V0040R230 33 25.1 864 250 1114 75 042A-7 B84143V0040R230 40 30.1 998 250 1248 75 049A-7 B84143V0056R230 48 36.2 1120 290 1410 78 061A-7 B84143V0056R230 56 42.5 1295 290 1585 78 084A-7 B84143V0092R230 78 58.6 1440 610 2050 79 098A-7 B84143V0092R230 92 69.3 1940 610 2550 79 119A-7 B84143V0130R230 112 84.2 2310 * 2310 80 142A-7 B84143V0130R230 112 84.7 3300 * 3300 80 Common mode, du/dt and sine filters 261 Drive type ACS88001-... Sine filter type Icont. Pcont. max max Drive Filter Total A kW W W W dB(A) 174A-7 210A-7 B84143V0207R230 138 103.7 3900 930 4830 80 B84143V0207R230 161 121.3 4200 930 5130 80 271A-7 B84143V0207R230 208 156.4 4800 930 5730 80 Heat dissipation Noise 3AXD00000588487 * Contact ABB. Derating See section Deratings for special settings in the drive control program on page 158. Description, installation and technical data See Sine filters hardware manual (3AXD50000016814 [English]) 262 Common mode, du/dt and sine filters Further information Product and service inquiries Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/searchchannels. Product training For information on ABB product training, navigate to new.abb.com/service/training. Providing feedback on ABB Drives manuals Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form. Document library on the Internet You can find manuals and other product documents in PDF format on the Internet. at www.abb.com/drives/documents. Contact us www.abb.com/drives www.abb.com/drivespartners 3AUA0000078093 Rev J (EN) EFFECTIVE. 2015-06-23 ">
Advertisement
Key Features
- Installation instructions
- Wiring diagrams
- Technical data
- Safety instructions
- Maintenance procedures
Frequently Answers and Questions
What is the purpose of this manual?
This manual provides information about the ACS880-01 drive’s hardware. This includes installation, wiring, technical data, safety instructions and maintenance procedures.
What is the power rating of this drive?
The ACS880-01 drive is available in power ratings from 0.55 to 250 kW (0.75 to 350 hp).
What are the protection classes available for this drive?
The drive is available in protection classes IP21 (UL Type 1) and IP55 (UL Type 12).
What are the main components of the drive?
The main components of the drive are the control unit, power module, and cooling fans.
What are some of the safety features of the drive?
The drive has a number of safety features, including an Emergency Stop function, Safe Torque Off function, and Power-loss ride-through function.