Airbus A320 Family Non-Normal Notes

Airbus A320 Family Non-Normal Notes
Airbus A320 Family
Non-Normal Notes
Version 2.2.1
Airbus A320 Family Non-Normal Notes
Airbus A320 Family Non-Normal Notes: Version 2.2.1
Airbus A320 Family Non-Normal Notes
Table of Contents
Change log .............................................................................. ix
1. Change highlighting .................................................... ix
2. Changes since version 2.2 ............................................ ix
3. Changes since version 2.1.1 .......................................... ix
4. Changes since version 2.1 ............................................. x
5. Changes since version 2.0 ............................................. x
1. Operating techniques .............................................................. 1
1.1. Rejected Takeoff ...................................................... 1
1.2. Failures during takeoff when above V1 ......................... 2
1.3. EOSID .................................................................... 3
2. Miscellaneous ....................................................................... 5
2.1. Emergency descent (memory item) ................................ 5
2.2. Windshear (memory item) ........................................... 6
2.3. Unreliable airspeed (memory item) ................................ 7
2.4. Incapacitation (memory item) ....................................... 9
2.5. Ditching ................................................................ 10
2.6. Forced landing ........................................................ 10
2.7. Evacuation ............................................................. 11
2.8. Overweight landing .................................................. 12
2.9. Immediate VMC recovery with single engine ................ 12
2.10. Engine failure in cruise ........................................... 13
2.11. Single engine circling ............................................. 13
2.12. Bomb on board ..................................................... 13
2.13. Stall recovery (memory item) .................................... 14
2.14. Computer reset ..................................................... 16
2.15. Landing distance calculations ................................... 16
2.16. Abnormal V Alpha Prot .......................................... 16
2.17. Overspeed Recovery .............................................. 17
2.18. Volcanic Ash Encounter .......................................... 17
3. Air conditioning, pressurisation and ventilation .......................... 19
3.1. Cabin overpressure .................................................. 19
3.2. Excess cabin altitude ................................................ 19
3.3. Pack fault .............................................................. 19
3.4. Pack overheat ......................................................... 20
3.5. Pack off ................................................................ 20
iii
Airbus A320 Family Non-Normal Notes
3.6. Pack regulator faults ................................................
3.7. ACSC single lane failure ..........................................
3.8. Duct overheat .........................................................
3.9. Hot air fault ...........................................................
3.10. Trim air faults .......................................................
3.11. Cabin fan faults .....................................................
3.12. Lavatory and galley fan faults ...................................
3.13. Pressure controller faults .........................................
3.14. Low diff pressure ..................................................
3.15. Outflow valve closed on ground ................................
3.16. Open safety valve ..................................................
3.17. Blower fault ..........................................................
3.18. Extract fault ..........................................................
3.19. Skin valve fault ......................................................
3.20. Avionics ventilation system vault ..............................
4. Electrical ............................................................................
4.1. Emergency configuration ..........................................
4.2. Battery only ...........................................................
4.3. IDG low oil pressure/ high oil temperature ....................
4.4. Generator fault ........................................................
4.5. Battery fault ...........................................................
4.6. AC Bus 1 fault .......................................................
4.7. AC Bus 2 fault .......................................................
4.8. AC Ess Bus fault .....................................................
4.9. AC Essential Shed Bus lost .......................................
4.10. DC Bus 1 fault ......................................................
4.11. DC Bus 2 fault ......................................................
4.12. DC Essential Bus fault ............................................
4.13. DC Essential shed ..................................................
4.14. Loss of DC Bus 1 and DC Bus 2 ..............................
4.15. Generator overload ................................................
4.16. Loss of TR ...........................................................
4.17. Battery bus fault ....................................................
4.18. DC Emergency configuration ...................................
4.19. Static inverter fault ................................................
4.20. Generator 1 line off ...............................................
4.21. Tripped circuit breakers ..........................................
iv
20
21
21
21
21
22
22
22
23
24
24
24
25
25
25
27
27
27
28
28
28
28
29
29
29
29
30
30
31
31
32
32
32
32
33
33
33
Airbus A320 Family Non-Normal Notes
5. Flight controls .....................................................................
5.1. Elevator faults .........................................................
5.2. Stabilizer jam .........................................................
5.3. Aileron faults ..........................................................
5.4. Spoiler faults ..........................................................
5.5. Rudder Jam ............................................................
5.6. Flaps and/or slats fault/locked ....................................
5.7. SFCC faults ............................................................
5.8. ELAC fault ............................................................
5.9. SEC fault ...............................................................
5.10. FCDC faults .........................................................
5.11. Direct Law ...........................................................
5.12. Alternate Law .......................................................
5.13. Wingtip brake fault ................................................
5.14. Flap attach sensor failure ........................................
5.15. Flight control servo faults ........................................
5.16. Speed brake disagree ..............................................
5.17. Speed brake fault ...................................................
5.18. Stiff sidestick/ rudder pedals ....................................
5.19. Sidestick unannunciated transducer faults ...................
6. Fire ...................................................................................
6.1. Smoke and fumes ....................................................
6.2. Smoke/ fumes removal .............................................
6.3. Engine fire .............................................................
6.4. Lithium Battery Fire ................................................
7. Fuel ..................................................................................
7.1. Fuel leak ...............................................................
7.2. Fuel imbalance .......................................................
7.3. Gravity fuel feeding .................................................
7.4. Wing tank pump(s) low pressure ................................
7.5. Center tank pumps low pressure .................................
7.6. Auto feed fault ........................................................
7.7. Low fuel level ........................................................
7.8. Outer tank transfer valves failed closed ........................
7.9. Outer tank transfer valve open out of sequence ..............
7.10. Cross-feed valve fault .............................................
7.11. Low fuel temperature .............................................
35
35
35
36
36
36
37
39
39
39
40
40
41
41
41
42
42
42
42
43
45
45
47
47
48
49
49
50
50
51
51
51
52
52
52
52
53
v
Airbus A320 Family Non-Normal Notes
7.12. High fuel temperature .............................................
8. Landing gear .......................................................................
8.1. Loss of braking (memory item) ...................................
8.2. Residual braking procedure .......................................
8.3. Gravity extension ....................................................
8.4. Asymmetric braking ................................................
8.5. Landing with abnormal landing gear ............................
8.6. Flight with landing gear extended ...............................
8.7. Gear shock absorber fault ..........................................
8.8. Gear not uplocked ...................................................
8.9. Gear not downlocked ...............................................
8.10. Gear doors not closed .............................................
8.11. Uplock fault ..........................................................
8.12. LGCIU disagreement .............................................
8.13. LGCIU fault .........................................................
8.14. Gear not down ......................................................
8.15. Park brake on .......................................................
8.16. Nosewheel steering fault .........................................
8.17. Antiskid nosewheel steering off ................................
8.18. Antiskid nosewheel steering fault ..............................
8.19. Brake system fault .................................................
8.20. Brakes hot ............................................................
8.21. Auto brake fault ....................................................
8.22. Hydraulic selector valve fault ...................................
8.23. Failure of normal braking system ..............................
8.24. Failure of alternate braking system ............................
8.25. Failure of normal and alternate braking systems ...........
8.26. Brake accumulator low pressure ................................
8.27. Released brakes, normal system ................................
8.28. Released brakes, alternate system ..............................
8.29. Minor nosewheel steering fault .................................
8.30. Brake temperature limitations requiring maintenance
action ..........................................................................
9. Power plant ........................................................................
9.1. Dual engine failure ..................................................
9.2. Single Engine failure ................................................
9.3. Single engine operation ............................................
vi
53
55
55
55
55
56
56
57
57
58
58
58
58
59
59
59
60
60
60
60
61
61
61
61
62
62
62
62
63
63
63
63
65
65
66
67
Airbus A320 Family Non-Normal Notes
9.4. Engine relight in flight .............................................
9.5. Engine stall ............................................................
9.6. Engine tailpipe fire ..................................................
9.7. High engine vibration ...............................................
9.8. Low oil pressure .....................................................
9.9. High oil temperature ................................................
9.10. Oil filter clog ........................................................
9.11. Fuel filter clog ......................................................
9.12. Uncommanded reverser pressurisation .......................
9.13. Reverser unlocked in flight ......................................
9.14. EIU fault ..............................................................
9.15. N1/N2/EGT overlimit .............................................
9.16. N1/N2/EGT/FF discrepancy ....................................
9.17. Start valve fault .....................................................
9.18. Start faults ............................................................
9.19. Ignition faults ........................................................
9.20. Thrust lever angle sensor faults .................................
9.21. FADEC faults .......................................................
10. Navigation ........................................................................
10.1. EGPWS alerts (memory item) ...................................
10.2. TCAS warnings (memory item) .................................
10.3. RNAV downgrades ................................................
10.4. ADR faults ...........................................................
10.5. ADR disagree .......................................................
10.6. RA faults .............................................................
10.7. IR faults ...............................................................
10.8. IR disagree ...........................................................
10.9. IR alignment in ATT mode ......................................
10.10. FM/GPS position disagree .....................................
11. Auto-flight ........................................................................
11.1. FAC faults ............................................................
11.2. Yaw damper faults .................................................
11.3. Rudder trim faults ..................................................
11.4. Rudder travel limiter faults ......................................
11.5. FCU faults ............................................................
12. Hydraulics ........................................................................
12.1. Green + yellow systems low pressure .........................
69
69
70
71
71
71
72
72
72
72
73
73
74
74
74
75
75
76
77
77
77
78
80
81
81
81
82
82
82
83
83
83
83
84
84
85
85
vii
Airbus A320 Family Non-Normal Notes
13.
14.
15.
16.
17.
viii
12.2. Blue + yellow systems low pressure ........................... 86
12.3. Green + blue systems low pressure ............................ 86
12.4. Green system low pressure ...................................... 87
12.5. Yellow system low pressure ..................................... 87
12.6. Blue system low pressure ........................................ 88
12.7. Engine driven pump low pressure .............................. 88
12.8. Electric pump low pressure or overheat ...................... 88
12.9. Low reservoir air pressure ....................................... 88
12.10. Reservoir overheat ............................................... 89
12.11. Low reservoir fluid level ....................................... 89
12.12. PTU fault ........................................................... 89
12.13. RAT fault ........................................................... 89
Ice and rain protection ........................................................ 91
13.1. Double AOA heat fail ............................................. 91
13.2. Single pitot probe heat or static port heat fault .............. 91
13.3. Multiple pitot heat failures ...................................... 91
13.4. Single AOA or TAT heat fault .................................. 92
13.5. Probe heat computer failure ..................................... 92
13.6. Window heat fault .................................................. 92
13.7. Engine anti-ice valve fault ........................................ 92
13.8. Wing anti-ice valve open when commanded closed ........ 92
13.9. Wing anti-ice valve closed when commanded open ........ 93
13.10. Wing anti-ice valves fail to close after ground selftest ............................................................................. 93
13.11. High pressure detected when wing anti-ice turned on .... 93
Indicating/ Recording .......................................................... 95
14.1. Display unit failure ................................................ 95
14.2. Multiple spurious ECAM alerts ................................ 96
14.3. Flight Warning Computer failure .............................. 96
Pneumatic ......................................................................... 97
15.1. Dual bleed failure .................................................. 97
Communications ................................................................ 99
16.1. Communication failure (ICAO) ................................ 99
16.2. Communication failure (UK airspace) ...................... 100
Miscellaneous Tips ........................................................... 101
Change log
Change log
1. Change highlighting
Changes since version 2.0 are highlighted. Change highlighting is only available in the online version. This may be found at:
https://hursts.org.uk
Changed sections have a green background, added sections have a yellow
background. Removed sections are notified in the change log.
Change bars will be incorporated into the printed version as soon as they
are supported by the Apache Formatting Objects Processor.
2. Changes since version 2.2
• Added information to Section 9.14, “EIU fault”.
• Added new AP/FD TCAS mode to Section 10.2, “TCAS warnings (memory item)”.
3. Changes since version 2.1.1
• Improved Section 3.13, “Pressure controller faults”.
• Updated Section 4.12, “DC Essential Bus fault” to account for progress
in the AMU audio card retrofit program.
• Updated Section 5.6, “Flaps and/or slats fault/locked” with recommended
authothrust handling in overweight case.
• Updated Section 8.6, “Flight with landing gear extended”.
• Improved section of Section 9.1, “Dual engine failure” dealing with how
to fly a glide approach.
• Updated Section 10.1, “EGPWS alerts (memory item)” to cover “Avoid”
style warnings associated with T3CAS.
ix
Change log
• Updated Section 10.10, “FM/GPS position disagree” with nav accuracy
check method from FCTM.
• Added Section 14.3, “Flight Warning Computer failure”.
4. Changes since version 2.1
• Added target speed and bank angle limit to Section 1.2, “Failures during
takeoff when above V1”. Also improved wording of containment phase.
• Improved Section 2.13, “Stall recovery (memory item)”.
5. Changes since version 2.0
• Changed phraseology from “Continue” to “Go” in Section 1.1, “Rejected
Takeoff”.
• Reordered initial actions to emphasise speed and bank angle targets in
Section 1.2, “Failures during takeoff when above V1”.
• Added phrase “Engine is secure” to Section 1.2, “Failures during takeoff
when above V1”.
• Added Section 2.15, “Landing distance calculations”.
• Added Section 2.16, “Abnormal V Alpha Prot”.
• Added Section 2.17, “Overspeed Recovery”.
• Added Section 2.18, “Volcanic Ash Encounter”.
• Added Section 6.4, “Lithium Battery Fire”.
• Added caution to not use reversers with Section 7.1, “Fuel leak”.
• Added possibility of reducing oil temp by increasing fuel flow to Section 9.9, “High oil temperature”.
• Changed references for required equipment lists in Section 10.3, “RNAV
downgrades” since they have been removed from QRH Supplementary
Information.
x
Change log
• Added Section 14.1, “Display unit failure”.
• Added Section 14.2, “Multiple spurious ECAM alerts”.
• Added tip that VLS and VFE are trustworthy with jammed flaps/slats to
Chapter 17, Miscellaneous Tips.
• Added mnemonic for double hydraulic failure to Chapter 17, Miscellaneous Tips.
xi
Change log
xii
Chapter 1. Operating techniques
Chapter 1. Operating techniques
1.1. Rejected Takeoff
The decision to reject rests solely with CM1. This decision is communicated with the words “Stop” or “Go”. “Stop” implies that CM1 is taking control
of the aircraft. Below 100kt the RTO is relatively risk free and a decision
to stop should be made for any ECAM and most other problems. Above
100kt the RTO may be hazardous and stopping should only be considered
for loss of engine thrust, any fire warning, any uninhibited ECAM or anything which indicates the aircraft will be unsafe or unable to fly.
If a stop is required, CM1 calls “Stop” while simultaneously bringing the
thrust levers to idle, then to max reverse. If the stop was commenced below
72kt the ground spoilers will not automatically deploy and the autobrake
will therefore not engage. Monitor automatic braking, and if there is any
doubt, apply manual braking as required. If normal braking fails, announce
“Loss of braking” and proceed with the loss of braking memory items (see
Section 8.1, “Loss of braking (memory item)”). If the reason for the stop was
an engine fire on the upwind side, consider turning the aircraft to keep the
fire away from the fuselage. If there is any chance of requiring evacuation,
bring the aircraft to a complete halt, stow the reversers, apply the parking
brake, and order “Attention, crew at stations” on the PA. If evacuation will
definitely not be required, once the aircraft’s safety is assured the RTO can
be discontinued and the runway cleared. In this case make a PA of “Cabin
crew, normal operations”.
During this initial phase, CM2 confirms reverse (“Reverse green”), confirms deceleration (“Decel”), cancels any audio warnings, informs ATC and
announces “70 knots” when appropriate. CM2 then locates the emergency
evacuation checklist.
Once the aircraft has stopped, CM1 takes the radios and asks CM2 to carry
out any required ECAM actions. Whilst the ECAM actions are being completed, CM1 will build up a decision as to whether to evacuate. If an evacuation is required see Section 2.7, “Evacuation”. Otherwise order “Cabin
crew, normal operations”.
1
Chapter 1. Operating techniques
If the aircraft has come to a complete halt using autobrake MAX, the brakes
can be released by disarming the spoilers.
[EOMB 3.10, FCOM PRO.ABN.10, FCTM A0-020]
1.2. Failures during takeoff when above V1
If an engine has lost thrust, apply rudder conventionally. At Vr rotate towards an initial pitch target of 12½° at a slightly reduced rate, then target
speed V2 to V2+15kt. Bank angle should be limited to 15° when more than
3kt below manoeuvring speed for the current configuration1.
When the ground to flight mode transition is complete2, select TOGA (FLX
may be used but this tends to allow speed to decay unless pitch is reduced),
adjust and trim rudder to maintain β target and request “pull heading”. If
the EOSID follows the track of the cleared SID, NAV may be used, but this
is very rare with easyJet EOSIDs. Engage the autopilot once gear is up and
rudder is trimmed.
Whilst below 400ft, the only failure related actions should be:
• If applicable, PNF should announce “Engine failure” or “Engine fire”
without specifying an engine.
• Cancellation of master warning or master caution when both pilots confirm they are aware of it.
• Heightened awareness of the possibility of missing essential normal actions, such as calling rotate or raising the gear due to the distraction of
the failure.
Once above 400ft with safe flight path assured, decide on an initial strategy.
In general, where a loss of thrust has occurred or is anticipated, the strategy
1
This is a conservative rule of thumb. If the FMGC has correctly identified an engine out condition, the FD/AP will automatically limit bank angle according to a less conservative algorithm.
[FCOM 22.20.60.40]
2
Introducing TOGA during the ground to flight mode transition (commences as the pitch increases
through 8°, complete after 5 seconds) results in a pitch up moment at a time where the effect of
stick pitch control is not wholly predictable: the stick will need to be moved forward of neutral to
counteract the introduced pitch moment and then returned to neutral as flight mode blends in. A
slight pause before selecting TOGA results in much more normal and predictable handling.
2
Chapter 1. Operating techniques
will be to fly the EOSID with a level acceleration segment (see Section 1.3,
“EOSID”). Otherwise, it will be to remain on the normal SID and fly a normal climb profile. Any deviation from the cleared SID will require ATC to
be informed as a priority, usually as part of a PAN or MAYDAY message.
In rare cases where the cleared SID requires a very early turn it may be
necessary to determine and action a strategy when below 400ft. If this is
the case, it must be thoroughly briefed.
Once the flight path strategy has been agreed and actioned, the failure can
be triaged, diagnosed and contained. If the failure has resulted in an ECAM
warning, PF initiates this phase by asking PNF to “Read ECAM”. Once the
diagnosis is agreed, PF will take the radios and request PNF to carry out
the containment actions. The standard phraseology is “My Radios, ECAM
actions”. PF taking the radios is also a good trigger to consider a Mayday
and an “Attention crew at stations”.
When applying ECAM procedures, PF is responsible for moving the thrust
levers once confirmed by PNF. PNF is responsible for everything else, but
movement of engine master switches, IR selectors and any guarded switch
must be confirmed with PF.
PNF indicates high priorty tasks are completed with the phrase “Engine is
secure.” This call is not official SOP (i.e. it is not mentioned in any manual),
but has evolved to be standard in the sim since it is PF’s trigger to interrupt
ECAM and accelerate. High priority tasks are defined as:
• For engine failure, the master switch of the affected engine has been
turned off.
• For engine fire, one squib has been fired and the fire warning has extinguished or both squibs have been fired.
[FCOM PRO.ABN.10, FCTM A0-020]
1.3. EOSID
Before the divergence point (the last common point between the SID and
the EOSID), if the aircraft detects a loss of thrust the EOSID will be displayed as a temporary flight plan. In this case the temporary flight plan
3
Chapter 1. Operating techniques
can be inserted and NAV mode used. Otherwise it will be necessary to pull
heading and manually follow either the yellow line or bring up a pre-prepared secondary flight plan and follow the white line.
If beyond the divergence point, pull heading and make an immediate turn
the shortest way onto the EOSID. Airbus specifically recommends against
this in DSC.22_20.60.40, but easyJet states it as policy in EOMB 4.4.4.
Electing to fly the EOSID implies a level acceleration segment:
• Initially fly a TOGA climb at the higher of V2 or current speed, up to
a limit of V2+15kt. If a FLEX takeoff was carried out, a FLEX climb
is permissible. This climb is continued until all high priority tasks are
complete (see Section 1.2, “Failures during takeoff when above V1”)
• The next segment is a TOGA level acceleration and clean up, either to
Conf 1 and S speed if an immediate VMC return is desired or to Conf 0
and green dot. Again FLEX may be used if a FLEX takeoff was carried
out. Level acceleration is usually achieved by pushing V/S. The phrases
“Stop ECAM” and “Continue ECAM” can be used to interrupt ECAM
procedures in order to initiate this segment.
• The final segment is a MCT climb segment to MSA, either at S speed
if in Conf 1 or at green dot speed if in Conf 0. This is usually achieved
in open climb.
TOGA may be used for a maximum of 10 minutes.
If an EOSID is annotated as “STD”, then acceleration should be completed
prior to commencing the first turn. If “NON-STD”, the turn takes priority.
[EOMB 4.4.4, FCOM DSC.22_20.60.40]
4
Chapter 2. Miscellaneous
Chapter 2. Miscellaneous
2.1. Emergency descent (memory item)
If an emergency descent is required, the Captain should consider taking
control if not already PF.
Don oxygen masks, set them to the N position and establish communication.
Descent with autopilot and autothrottle engaged is preferred. The configuration is thrust idle, full speed brake and maximum appropriate speed, taking into account possible structural damage. Target altitude is FL100 or
MORA if this is higher. If speed is low, allow speed to increase before deploying full speedbrake to prevent activation of the angle of attack protection. Landing gear may be used below 25,000ft, but speed must be below
VLO when it is extended and remain below VLE. If on an airway, consider
turning 90° to the left.
PNF should, from memory, turn seatbelt signs on, set continuous ignition on
the engines, set 7700 on the transponder and inform ATC of the descent. If
cabin altitude will exceed 14,000ft, he should also deploy the cabin oxygen
masks.
Once the memory actions are complete and the aircraft is descending, PF
should finesse the target altitude, speed and heading. He should then take
over communications and call for the emergency descent checklist.
The QRH checklist calls for an announcement of the Emergency Descent
on the PA. Training standards have decreed that the automated PA that
occurs in the event of loss of cabin pressure fulfils this requirement, and
thus no PA is required from the flight crew during the descent. {TODO: this
is just information from a TRE; I can find no reference in any controlled
documentation.}
Once level, restore the aircraft to a normal configuration. When safe to do
so, advise cabin crew and passengers that it is safe to remove their masks.
[EOMB 3.80.2, QRH ABN.80, FCOM PRO.ABN.80, FCTM A0.90]
5
Chapter 2. Miscellaneous
2.2. Windshear (memory item)
2.2.1. Reactive
The windshear detection system is a function of the Flight Augmentation
Computer (FAC). It only operates during the takeoff and landing phases
with at least CONF 1 selected. In the takeoff phase, warnings are provided
from 3 seconds after lift off until 1300ft RA is achieved. In the landing
phase warnings are provided between 1300ft RA and 50ft RA. A warning is
indicated by a red “WINDSHEAR” flag on the PFD and a “WINDSHEAR,
WINDSHEAR, WINDSHEAR” aural warning.
When on the ground, windshear is only indicated by significant airspeed
variations. It is possible that these fluctuations may cause V1 to occur significantly later in the takeoff run then it should. It therefore falls to the
Captain to make an assessment of whether sufficient runway remains to
reject the takeoff, or whether getting airborne below Vr would be the better option. If the takeoff is to be continued in windshear conditions, call
“Windshear, TOGA” and apply TOGA power. Rotate at Vr or with sufficient runway remaining and follow SRS orders. {TODO: This is Boeing
advice – Airbus offers no advice if there is insufficient runway available
to rotate at normal speeds}. SRS will maintain a minimum rate of climb,
even if airspeed must be sacrificed.
If a warning occurs when airborne, call “Windshear, TOGA”, apply TOGA
power and maintain current configuration. The autopilot can fly the escape
manoeuvre as long as αreq < αprot. If the autopilot is not engaged, follow
the SRS orders on the FD. If the FD is not available, initially pitch up to
17.5°, then increase as required.
In severe windshear, it is possible that ALPHA FLOOR protection will
activate. As TOGA will already be selected, this will have no immediate
effect. Once clear of the windshear, however, TOGA LK will be active,
requiring the autothrust to be disconnected to avoid an overspeed.
[FCOM PRO.ABN.80, QRH ABN.80]
6
Chapter 2. Miscellaneous
2.2.2. Predictive
When below 2300ft AGL, the weather radar scans a 5nm radius 60° arc
ahead of the aircraft for returns indicating potential windshear.
Alerts are categorised as advisory, caution or warning, in increasing order
of severity. Severity is determined by range, position and phase of flight.
Alerts are only provided when between 50ft and 1500ft, or on the ground
when below 100kt.
All types of alert produce an indication of windshear position on the ND,
providing the ND range is set to 10nm. A message on the ND instructs the
crew to change range to 10nm if not already set. Cautions also give an amber
“W/S AHEAD” message on both PFDs and an aural “MONITOR RADAR
DISPLAY” warning. Warnings give a red “W/S AHEAD” message on the
PFDs and either a “WINDSHEAR AHEAD, WINDSHEAR AHEAD” or
“GO AROUND, WINDSHEAR AHEAD” aural message.
If a warning alert occurs during the takeoff roll, reject the takeoff. If it occurs during initial climb, call “Windshear, TOGA”, apply TOGA thrust and
follow SRS orders. Configuration may be changed as long as the windshear
is not entered.
If a warning alert occurs during approach, carry out a normal go-around.
If positive verification is made that no hazard exists, providing that the
reactive windshear is serviceable the crew may downgrade the warning to
a caution. If a caution alert occurs during approach, consider use of CONF
3 and increasing VAPP to a maximum of VLS+15.
[FCOM PRO.ABN.80, QRH ABN.80]
2.3. Unreliable airspeed (memory item)
Unreliable airspeed indications may result from radome damage and/or unserviceable probes or ports. Altitude indications may also be erroneous if
static probes are affected.
The FMGCs normally reject erroneous ADR data by isolating a single
source that has significant differences to the other two sources. It is possible
7
Chapter 2. Miscellaneous
that a single remaining good source may be rejected if the other two sources
are erroneous in a sufficiently similar way. In this case, it falls to the pilots
to identify and turn off the erroneous sources to recover good data.
The first problem is recognition of a failure, since the aircraft systems may
be unable to warn of a problem. The primary method of doing this is correlation of aircraft attitude and thrust to displayed performance. Correlation
of radio altimeter and GPIRS derived data (available on GPS MONITOR
page) may also aid identification. The stall warning (available in alternate
or direct law) is based on alpha probes, so will likely be valid. Other clues
may include fluctuations in readings, abnormal behaviour of the automatics, high speed buffet or low aerodynamic noise.
If the aircraft flight path is in doubt, disconnect the automatics and fly the
following short term attitude and thrust settings to initiate a climb:
Condition
Thrust
Pitch
Below Thrust Reduction Altitude
TOGA
15°
Below FL100
Climb
10°
Above FL100
Climb
5°
If configured CONF Full, select CONF 3, otherwise flap/slat configuration
should be maintained. The gear and speedbrake should be retracted. If there
is any doubt over the validity of altitude information, the FPV must be disregarded. If altitude information is definitely good, the FPV may be used.
Once the flight path is under control and a safe altitude is attained, the aircraft should be transitioned into level flight. Refer to QRH ABN.34.07 to
extract a ballpark thrust setting, a reference attitude and a reference speed
for the current configuration, bearing in mind that an auto-retraction of the
flap may have occurred. Set the ballpark thrust setting and adjust pitch attitude to fly level; if barometric altitude data is considered accurate use the
VSI, otherwise fly a constant GPS altitude. The thrust should then be adjusted until level flight is achieved with the reference attitude. Note that in
the radome damage case, the required N1 may be as much as 5% greater
than the ballpark figure. Once stable, the speed will be equal to the reference speed.
8
Chapter 2. Miscellaneous
If there is insufficient data available to fly level (e.g. GPS data unavailable
and barometric data unreliable), fly the reference attitude with the ballpark
thrust setting. This will give approximately level flight at approximately
reference speed.
With the speed now known, the ADRs can be checked to see if any are giving
accurate data. If at least one ADR is reliable, turn off the faulty ADRs. GPS
and IRS ground speeds may also be used for an approximate cross check.
If all ADRs are considered unreliable, turn off any two of them; one is kept
on to provide stall warning from the alpha probes. More recent aircraft have
backup speed/altitude scales based on AOA probes and GPS altitudes which
are activated when below FL250 by turning off the third ADR. The ALL
ADR OFF procedure in QRH ABN.34 describes the use of these scales,
but it boils down to fly the green on the speed scale and anticipate slightly
reduced accuracy from the altitude scale. For aircraft without this functionality, tables are provided in section ABN.34.07 of the QRH to enable all
phases of flight to be flown using just pitch and thrust settings. Acceleration
and clean up are carried out in level flight. Flap 1 can be selected as soon
as climb thrust is selected, flap 0 once the appropriate S speed pitch attitude from the table on the first page of the QRH ABN.34 UNRELIABLE
SPEED procedure is reached. Configuration for approach is also carried
out in level flight, stabilising in each configuration using the technique described above. The approach is flown in CONF 3 at an attitude that should
result in VLS+10 when flying a 3° glide. Landing distance will be increased.
[QRH ABN.34, FCOM PRO.ABN.34, FCTM A0.034]
2.4. Incapacitation (memory item)
Take control, using the stick priority button if necessary. Contact cabin crew
ASAP. They should strap the incapacitated pilot to his seat, move the seat
back, then recline it. If there are two cabin crew available, the body can be
moved. Medical help should be sought from passengers, and the presence
of any type rated company pilots on board ascertained.
[FCOM PRO.ABN.80, FCTM A0.090]
9
Chapter 2. Miscellaneous
2.5. Ditching
The QRH ABN.80 DITCHING procedure applies if the engines are running. If the engines are not running, refer to the appropriate QRH ABN.70
ENG DUAL FAILURE procedure, both of which include ditching.
Preparation for ditching involves notifying ATC in order to expedite rescue, preparing survival equipment and securing the aircraft for impact. The
GPWS should be inhibited to prevent nuisance warnings. The crew oxygen
should be turned off below FL100 to prevent potentially dangerous leaks
{TODO: this is an assumption}.
The engines operative ditching configuration is gear up, config full, 11°
pitch and minimal V/S. If both engines are inoperative, use config 3 (only
slats available) and maintain at least 150kt. In strong winds, land into wind.
In lighter winds, land parallel to swell. The bleeds are all turned off and
ditching button pushed (ensure pressurisation is in auto for this to work) in
order to close all openings below the waterline and reduce water ingress.
At 2000ft, make a PA “Cabin crew, landing positions”. At 500ft, make a
PA “Brace, brace”
At touchdown, turn the engine and APU masters off. After coming to a stop,
notify ATC, push all fire buttons, discharge all agents (engine agent 2 may
not be available) and evacuate the aircraft. {TODO: There is a discrepancy
between engines operative/ inoperative regarding use of the fire buttons
after stopping}
[QRH ABN.80, QRH ABN.70, FCOM PRO.ABN.80]
2.6. Forced landing
The QRH ABN.80 FORCED LANDING procedure applies if the engines are running. If the engines are not running, refer to the appropriate
QRH ABN.70 ENG DUAL FAILURE procedure, both of which include
forced landing.
Preparation for forced landing involves notifying ATC in order to expedite
rescue, preparing survival equipment and securing the aircraft for impact.
The GPWS should be inhibited to prevent nuisance warnings. The crew
10
Chapter 2. Miscellaneous
oxygen should be turned off below FL100 to prevent potentially dangerous
leaks {TODO: this is an assumption}.
The engines operative forced landing configuration is gear down, config
full, spoilers armed. If the engines are inoperative, use config 3 (only slats
available) and maintain at least 150kt. The ram air button is used to ensure
that the aircraft will be completely depressurised at touchdown. At 2000ft,
make a PA “Cabin crew, landing positions”. At 500ft, make a PA “Brace,
brace”
At touchdown, turn the engine and APU masters off. This will leave accumulator braking only. After coming to a stop, set the parking brake, notify ATC, push all fire buttons, discharge all agents (engine agent 2 may not
be available) and evacuate the aircraft.{TODO: There is a discrepancy between engines operative/ inoperative regarding use of the fire buttons after
stopping}
[QRH ABN.80, QRH ABN.70, FCOM PRO.ABN.80]
2.7. Evacuation
Evacuation should be carried out in accordance with the emergency evacuation checklist. The easyJet procedure is for CM1 to call for the checklist
and then send a Mayday message to ATC before commencing the checklist.
{TODO: this strikes me as a bit of an odd order to do things – check its
correct}
The first two items confirm the RTO actions of stopping the aircraft, setting
the parking brake and alerting the cabin crew. The next item confirms ATC
has been alerted.
The next four items prepare the aircraft for evacuation. If manual cabin
pressure has been used, CM2 checks cabin diff is zero, and if necessary
manually opens the outflow valve. CM2 then shuts the engines down with
their master switches, and pushes all the fire buttons (including the APU).
FCTM AO.020 indicates that confirmation is not required before carrying
out these actions, but the Airbus Training Study Guide issued by the training
department specifies that cross confirmation should be carried out exactly
as if airborne. In theory, but possibly not in practice, the FCTM supersedes
11
Chapter 2. Miscellaneous
the ATSG. In response to the next checklist item, “Agents”, CM1 decides
if any extinguishing agents should be discharged and instructs CM2 to discharge them as required. Engine agent 2 will not be available. Agents should
only be discharged if there are positive signs of fire.
Finally, order the evacuation. This is primarily done with the PA “Evacuate, unfasten your seat belts and get out”, with the evacuation alarm being
triggered as a backup.
[EOMB 3.80.1, FCOM PRO.ABN.80, FCTM AO.020]
2.8. Overweight landing
A landing can be made at any weight, providing sufficient landing distance
is available. Automatic landings are certified up to MLW, but flight tests
have demonstrated autoland capability to 69000kg in case of emergency.
The preferred landing configuration is CONF FULL, but lower settings
may be used if required by QRH/ECAM procedures. QRH ABN.80.06 also
specifies CONF 3 if the aircraft weight exceeds the CONF 3 go around limit; this will only ever be a factor for airfields with elevations above 1000ft.
Packs should be turned off to provide additional go around thrust. If planned
landing configuration is less than FULL, use 1+F for go-around.
It is possible that S speed will be higher than VFE next for CONF 2. In this
case, a speed below VFE next should be selected until CONF 2 is achieved,
then managed speed can be re-engaged.
In the final stages of the approach, reduce speed to achieve VLS at runway
threshold. Land as smoothly as possible, and apply max reverse as soon
as the main gear touches down. Maximum braking can be used after nosewheel touchdown. After landing, switch on the brake fans and monitor brake
temperatures carefully. If temperatures exceed 800°C, tyre deflation may
occur.
[QRH 80.12, FCOM PRO.ABN.80]
2.9. Immediate VMC recovery with single engine
Fly circuit in CONF 1. If landing overweight check the appropriate landing
flap configuration using the table from QRH ABN.80 Overweight Landing.
12
Chapter 2. Miscellaneous
Select CONF 2 at start of base turn. Gear will usually be extended once
flaps have run to 2, but may be delayed until final approach if performance
is an issue. Select CONF 3 once gear is down and CONF full, if required,
when on final approach.
[FCOM PRO.ABN.10]
2.10. Engine failure in cruise
Set MCT on live engine then disconnect the autothrust. Start ECAM actions
and notify ATC. Decide on strategy – standard strategy increases the chance
of an engine relight, whilst obstacle strategy maintains the greatest possible obstacle clearance. If using standard strategy select speed .78/300kt. If
using obstacle strategy select green dot speed. Select altitude to LRC ceiling or green dot ceiling as appropriate to allow drift down once speed is
reached. If obstacles remain a problem, MCT and green dot speed can be
maintained to give a shallow climbing profile. Once obstacles are no longer
a problem, descend to LRC ceiling (use V/S if <500 fpm descent rate), engage the autothrust and continue at LRC speed.
[FCOM PER.OEI.GEN.10]
2.11. Single engine circling
It may not be possible to fly level in the standard circling configuration
of CONF 3 gear down. This can be ascertained by checking the table in
QRH ABN.80 CIRCLING APPROACH WITH ONE ENGINE OPERATIVE. Gear extension may be delayed until final approach if required;
the L/G NOT DOWN warning which will occur if circling below 750ft can
be silenced with the EMER CANC pb, and a TOO LOW GEAR should be
anticipated if below 500ft RA.
[QRH ABN.80]
2.12. Bomb on board
The primary aim is to get the aircraft on the ground and evacuated ASAP.
13
Chapter 2. Miscellaneous
The secondary aim is to prevent detonation of the device. This is achieved
by preventing further increases in cabin altitude through the use of manual
pressure control and by avoiding sharp manoeuvres and turbulence.
The tertiary aim is to minimise the effect of any explosion. This is achieved
by reducing the diff to 1 psi. The method is to set cabin vertical speed to
zero using manual pressurisation control, then descend to an altitude 2500ft
above cabin altitude. As further descent is required, cabin vertical speed
should be adjusted to maintain the 1 psi diff for as long as possible. Automatic pressure control is then reinstated on approach. Low speeds reduce
the damage from an explosion but increase the risk of a timed explosion
occurring whilst airborne; a compromise needs to be found. The aircraft
should be configured for landing as early as possible to avoid an explosion
damaging landing systems.
In the cabin, procedures are laid down for assessing the risks of moving the
device and for moving the device to the LRBL at door 2R.
[FCOM PRO.ABN.80, QRH ABN.80]
2.13. Stall recovery (memory item)
Aerofoil stall is always and only an angle of attack issue. It is not possible to
directly prove an unstalled condition from attitude and airspeed data. The
flight recorders from the December 2014 Air Asia accident recorded an
angle of attack of 40 degrees (i.e. around 25 degrees greater than critical
angle) with both pitch and roll zero and speeds up to 160kt. Importantly, it
is perfectly possible to be fully stalled in the emergency configurations described in Section 2.3, “Unreliable airspeed (memory item)”. Identification
of a fully stalled condition is thus largely dependent on identifying a high
and uncontrollable descent rate that does not correlate with normal flight
path expectations for the attitude and thrust applied.
To recover from a fully stalled condition, the angle of attack of the aerofoils
must be reduced to below critical. The generic stall recovery is therefore
simply to pitch the nose down sufficiently to break the stall and level the
wings. In normal operations, the velocity vector of the aircraft is around 3°
below the centreline of the aircraft (i.e. an attitude of around 3° is required
14
Chapter 2. Miscellaneous
to fly level). In a stalled condition, the velocity vector may be 40° or more
below the centreline of the aircraft. Thus the amount of pitch down required
to recover a fully stalled aircraft can be 30° or more.
The aircraft's thrust vector helps to accelerate the aircraft during the recovery, and increasing speed along the aircraft's centreline acts to reduce the
stalled angle of attack. Thus, while thrust is not a primary means of recovery, it does help. Unfortunately, Airbus have determined that due to the
pitch couple associated with underslung engines, there may be insufficient
longitudinal control authority to pitch the aircraft sufficiently to recover
from a stall if TOGA is selected. It may therefore be necessary to initially
reduce thrust to allow the primary recovery technique to be applied; this is
extremely counterintuitive.
In the two recent Airbus accidents involving stalls, the lack of physical cross
coupling of sidesticks was a major factor. If one pilot elects to hold full
back sidestick, the aircraft cannot be recovered by the other pilot unless the
takeover pushbutton is used. With all the alarms, it is easy to miss “Dual
Input”.
Once there are no longer any indications of the stall, smoothly recover from
the dive, adjust thrust, check speedbrakes retracted and if appropriate (clean
and below 20,000ft) deploy the slats by selecting flaps 1. The load factor
associated with an overly aggressive pull out can induce a secondary stall; on
the flip side, once reattachment of the airflow occurs, drag rapidly diminishes and exceedance of high speed airframe limitations becomes a threat.
If a stall warner sounds on takeoff it is likely to be spurious since you are
almost certainly in normal law. The procedure in this case is essentially to
initially assume unreliable airspeed and fly TOGA, 15°, wings level until it
can be confirmed that the warning is spurious.
A stall warning may occur at high altitude to indicate that the aircraft is
reaching αbuffet. In this case simply reduce the back pressure on the sidestick and/or reduce bank angle.
[FCOM PRO.ABN.10, QRH ABN.80]
15
Chapter 2. Miscellaneous
2.14. Computer reset
Abnormal computer behaviour can often be stopped by interrupting the
power supply of the affected computer. This can be done either with cockpit
controls or with circuit breakers. The general procedure is to interrupt the
power supply, wait 3 seconds (5 seconds if a C/B was used), restore the power, then wait another three seconds for the reset to complete. QRH ABN.80
COMPUTER RESET details the specific procedures for a variety of systems.
On the ground, almost all computers can be reset. MOC can usually supply
a reset procedure if nothing applicable is available in the QRH. The exceptions are the ECU and EIU while the associated engine is running and the
BSCU when the aircraft is not stopped.
In flight, only the computers listed in the QRH should be considered for
reset.
[QRH ABN.80, FCOM PRO.SUP.24]
2.15. Landing distance calculations
Many failures result in a longer than normal landing distance. The QRH
inflight performance section has tables for calculating VAPP and Reference Landing Distances for single failures. These reflect the performance
achievable in a typical operational landing without margin. easyJet requires
a factor of 1.15 to be applied to these distances.
The EFB module provides both factored and unfactored landing distances,
and also can calculate for multiple failures.
The safety factor may be disregarded in exceptional circumstances.
[FCOM PER.LDG, EOMB 4.14.2]
2.16. Abnormal V Alpha Prot
If two or more angle of attack vanes become blocked at the same angle
during climb, alpha floor protection will be activated once a Mach number is reached where the angle of attack at which the vanes were blocked
16
Chapter 2. Miscellaneous
becomes indicitive of an incipient stall condition. Since the flight computer's attempts to reduce angle of attack will not be registered by the blocked
vanes, a continuous nose down pitch rate which cannot be stopped with sidestick inputs will result.
Indications of the incipient condition are available from the Alpha Prot and
Alpha max strips. If the Alpha Max strip (solid red) completely hides the
Alpha Prot strip (black and amber) or the Alpha Prot strip moves rapidly
by more than 30kt during flight manoeuvres with AP on and speed brakes
retracted, blocked angle of attack vanes should be suspected.
The solution is to force the flight computers into Alternate Law where the
protection does not apply. This is most conventiently done by turning off any
two ADRs. Once in Alternate Law, the stall warning strip (red and black)
becomes available. Since this may be receiving data from a blocked angle
of attack vane, erroneous presentation is possible.
[OEBPROC-48]
2.17. Overspeed Recovery
In general the response to an overspeed should be to deploy the speedbrake
and monitor the thrust reduction actioned by the autothrust. Disconnection
of the autopilot will not normally be required. If autothrust is not in use, the
thrust levers will need to be manually retarded.
It is possible that the autopilot will automatically disengage and high speed
protection will activate, resulting in an automatic pitch up. In this case,
smoothly adjust pitch attitude as required.
[QRH ABN.80]
2.18. Volcanic Ash Encounter
Volcanic ash clouds are usually extensive, so the quickest exit will be
acheived by a 180° turn.
Air quality may be affected, so crew oxygen masks should be donned with
100% oxygen to exclude fumes. Passenger oxygen may also need to be deployed.
17
Chapter 2. Miscellaneous
Be prepared to carry out the unreliable speed procedure as airspeed indications may be compromised.
Disconnect the autothrust to prevent thrust variations. To minimise the impact on the engines, if conditions permit thrust should be reduced. Turn on
all anti-ice and set pack flow to high in order to increase bleed demand and
thus increase stall margin. Wing anti-ice should be turned off before restart
in case of double engine flameout.
If engine EGT limits are exceeded, consider precautionary engine shutdown with restart once clear of volcanic ash. Engine acceleration may be
very slow during restart. Since compressor and turbine blades may have been
eroded, avoid sudden thrust changes.
Damage to the windshield may necessitate an autoland or landing with a
sliding window open.
[QRH ABN.80, FCOM PRO.ABN.80]
18
Chapter 3. Air conditioning, pressurisation and ventilation
Chapter 3. Air conditioning, pressurisation
and ventilation
3.1. Cabin overpressure
There is no ECAM in the case of total loss of pressure control leading to
an overpressure, so apply the QRH procedure. The basic procedure is to
reduce air inflow by turning off one of the packs and put the avionics ventilation system in its smoke removal configuration so that it dumps cabin
air overboard. The ΔP is monitored, and the remaining pack is turned off
if it exceeds 9 psi. 10 minutes before landing, both packs are turned off
and remain off, and the avionics ventilation is returned to its normal configuration.
[QRH ABN.21, FCOM PRO.ABN.21]
3.2. Excess cabin altitude
An ECAM warning of excess (>9550ft) cabin altitude should be relied upon, even if not backed up by other indications.
The initial response should be to protect yourself by getting an oxygen mask
on. Initiate a descent; if above FL160, this should be according to Section 2.1, “Emergency descent (memory item)”. Once the descent is established and all relevant checklists are complete, check the position of the
outflow valve and, if it is not fully closed, use manual control to close it.
[CAB PR EXCESS CAB ALT, FCOM PRO.ABN.21, FCOM DSC.21.20.50]
3.3. Pack fault
The PACK FAULT ECAM indicates that the pack valve position disagrees
with the selected position or that the pack valve is closed. The affected
pack should be turned off. A possible reason for this failure is loss of both
channels of an Air Conditioning System Controller (ACSC). If this occurs,
the associated hot air trimming will also be lost (cockpit for ACSC 1, cabin
for ACSC 2).
19
Chapter 3. Air conditioning, pressurisation and ventilation
If there are simultaneous faults with both packs, ram air must be used. This
will necessitate depressurisation of the aircraft, so a descent to FL100 (or
MEA if higher) is required. If a PACK button FAULT light subsequently
extinguishes, an attempt should be made to reinstate that pack.
[AIR PACK 1(2)(1+2) FAULT, FCOM PRO.ABN.21, FCOM DSC.21.10.60]
3.4. Pack overheat
The associated pack flow control valve closes automatically in the event of
a pack overheating (outlet temp > 260°C or outlet temp > 230°C four times
in one flight). The remaining pack will automatically go to high flow, and is
capable of supplying all of the air conditioning requirement. This system’s
automatic response is backed up by turning off the pack. The FAULT light
in the PACK button remains illuminated whilst the overheat condition exists. The pack can be turned back on once it has cooled.
[AIR PACK 1(2) OVHT, FCOM PRO.ABN.21, FCOM DSC.21.10.60]
3.5. Pack off
A warning is generated if a functional pack is selected off in a phase of flight
when it would be expected to be on. This is usually the result of neglecting
to re-instate the packs after a packs off takeoff. Unless there is a reason not
to, turn the affected pack(s) on.
[AIR PACK 1(2) OFF, FCOM PRO.ABN.21, FCOM DSC.21.10.60]
3.6. Pack regulator faults
A regulator fault is defined as a failure of one of four devices: the bypass
valve, the ram air inlet, the compressor outlet temperature sensor or the
flow control valve. The ECAM bleed page can be used to determine which
device is at fault.
Regardless of the device at fault, the ramification is the same; the pack will
continue to operate but there may be a degradation in temperature regulation. If temperatures become uncomfortable, consideration should be given
to turning off the affected pack.
[AIR PACK 1(2) REGUL FAULT, FCOM PRO.ABN.21, FCOM 21.10.60]
20
Chapter 3. Air conditioning, pressurisation and ventilation
3.7. ACSC single lane failure
Each ACSC has two fully redundant “lanes”, so loss of a single “lane” results
in loss of redundancy only.
[AIR COND CTL 1(2) A(B) FAULT, FCOM PRO.ABN.21,
FCOM DSC.21.10.60]
3.8. Duct overheat
A duct overheat is defined as a duct reaching 88°C or a duct reaching 80°C
four times in one flight. If this occurs, the hot air pressure regulating valve
and trim air valves close automatically and the FAULT light illuminates in
the HOT AIR button. This light will extinguish when the temperature drops
to 70°C.
Once the duct has cooled, an attempt can be made to recover the hot air
system by cycling the HOT AIR button. If recovery is not possible, basic
temperature regulation will continue to be provided by the packs.
[ COND FWD CAB/AFT CAB/CKPT DUCT OVHT, FCOM PRO.ABN.21,
FCOM DSC.21.10.60]
3.9. Hot air fault
If the hot air pressure regulating valve is not in its commanded position, the
effects will depend on its actual position. If it is closed when commanded
open, the packs will provide basic temperature regulation. More serious is
if it has been commanded closed in response to a duct overheat and it fails
to close. Manual control may be effective, but if it is not the only option is
to turn off both packs and proceed as per Section 3.3, “Pack fault”.
[COND HOT AIR FAULT, FCOM PRO.ABN.21, FCOM DSC.21.10.60]
3.10. Trim air faults
Either a fault with one of the trim air valves or an overpressure downstream
of the hot air valve. An associated message indicates which condition exists.
21
Chapter 3. Air conditioning, pressurisation and ventilation
Failure of a trim valve leads to loss of optimised temperature regulation for
the corresponding zone; basic temperature regulation is still available.
The TRIM AIR HIGH PR message may be disregarded if triggered when
all the trim air valves are closed. This occurs during the first 30 seconds
after the packs are selected on and in flight if all zone heating demands
are fulfilled. {TODO: FCOM is not very informative regarding response to
overpressure when this does not apply. Investigate further.}
[COND TRIM AIR SYS FAULT, FCOM PRO.ABN.21, FCOM DSC.21.10.60]
3.11. Cabin fan faults
If both cabin fans fail, their flow should be replaced by increasing the pack
flow to HI.
[COND L + R CAB FAN FAULT, FCOM PRO.ABN.21, FCOM DSC.21.10.60]
3.12. Lavatory and galley fan faults
The cabin zone temperature sensors are normally ventilated by air extracted by these fans. Loss of the fans therefore leads to loss of accurate zone
temperature indication.
On older aircraft, temperature control reverts to maintenance of a fixed
cabin zone inlet duct temperature of 15°C.
On newer aircraft the temperature controls for the cabin revert to controlling temperature in the ducts. If ACSC 2 has also failed, the duct temperatures are maintained at the same level as the cockpit duct temperature, and
may therefore be controlled with the cockpit temperature selector.
[COND LAV + GALLEY FAN FAULT, FCOM PRO.ABN.21,
FCOM DSC.21.10.60]
3.13. Pressure controller faults
Loss of a single cabin pressure controller leads to loss of redundancy only.
22
Chapter 3. Air conditioning, pressurisation and ventilation
If both pressure controllers are lost, use manual control. The outflow valve
reacts slowly in manual mode, and it may be 10 seconds before positive
control of the outflow valve can be verified. It may also react too slowly to
prevent a temporary depressurisation.
Manual pressurisation control is activated by pressing the MODE SEL button. This allows the MAN V/S CTL toggle switch to directly control the
outflow valve. Moving the toggle to DN closes the outflow valve causing the
cabin altitude to descend, whilst moving the toggle to UP opens the outflow
valve causing the cabin altitude to climb. The target climb and descent rates
are 500fpm and 300fpm, these being displayed on the status page for easy
reference.
A table of FL versus ‘CAB ALT TGT’ is also provided on the status page; no
guidance is given for the interpretation of this table. The final action of the
procedure is to fully open the outflow valve when 2500ft QFE in preparation
for an unpressurised landing, so to avoid large pressurisation changes during
this action, the final cabin altitude target needs to be aerodrome elevation
plus 2500ft . This gives an indication of how ‘CAB ALT TGT’ should be
interpreted: it is the lowest cabin altitude that results in a safe ΔP at a given
FL. A cabin altitude greater then ‘CAB ALT TGT’ is always acceptable1
and, moreover, for the final stages of the approach, it is necessary. The
method is therefore to avoid cabin altitudes below ‘CAB ALT TGT’ for your
actual FL while ensuring that a cabin altitude of aerodrome elevation plus
2500ft will be achieved by the time you need to fully open the outflow valve.
Ensure cabin diff pressure is zero before attempting to open the doors.
[CAB PR SYS 1(2)(1+2) FAULT, FCOM PRO.ABN.21, FCOM DSC.21.20.50]
3.14. Low diff pressure
High rates of descent may lead to the aircraft descending through the cabin altitude when more than 3000ft above the landing altitude. An ECAM
warning indicates that this situation is projected to occur within the next
1½ minutes. If the rate of descent of the aircraft is not reduced, the pres1
A reasonable maximum cabin altitude is 8800ft, which is when the CAB ALTITUDE advisory
triggers.
23
Chapter 3. Air conditioning, pressurisation and ventilation
sure controllers will have to resort to high rates of change of cabin altitude,
which may cause passenger discomfort. The aircraft’s vertical speed should
be reduced unless there is a pressing reason not to.
[CAB PR LO DIFF PR, FCOM PRO.ABN.21, FCOM DSC.21.20.50]
3.15. Outflow valve closed on ground
If the outflow valve fails to automatically open on the ground, manual control should be attempted. If that doesn’t work, depressurise the aircraft by
turning off both packs.
[CAB PR OFV NOT OPEN, FCOM PRO.ABN.21, FCOM DSC.21.20.50]
3.16. Open safety valve
There are safety valves for both cabin overpressure and negative differential
pressure; the associated ECAM message does not distinguish between the
two.
If diff pressure is above 8psi, it is the overpressure valve that has opened.
Attempt manual pressurisation control and if that fails, reduce aircraft altitude.
If diff pressure is below zero, it is the negative differential valve. Reduce
aircraft vertical speed or expect high cabin rates.
[CAB PR SAFETY VALVE OPEN, FCOM PRO.ABN.21,
FCOM DSC.21.20.50]
3.17. Blower fault
Defined as low blowing pressure or duct overheat. Unless there is a DC ESS
Bus fault, the blower fan should be set to OVRD. This puts the avionics
ventilation into closed configuration and adds cooling air from the air conditioning system.{TODO:investigate involvement of DC ESS BUS fault}
[VENT BLOWER FAULT, FCOM PRO.ABN.21, FCOM DSC.21.30.70]
24
Chapter 3. Air conditioning, pressurisation and ventilation
3.18. Extract fault
Defined as low extract pressure. The extract fan should be put in OVRD.
This puts the avionics ventilation into closed configuration and adds cooling
air from the air conditioning system.
[VENT EXTRACT FAULT, FCOM PRO.ABN.21, FCOM DSC.21.30.70]
3.19. Skin valve fault
Defined as one of three faults: the inlet valve is not fully closed in flight, the
extract valve is fully open in flight or the extract valve did not automatically
close on application of take-off power. The ECAM Cab Press page will
differentiate.
If the fault is with the inlet valve, no action is required since it incorporates
a non-return valve.
If the extract valve is affected, the system should be put into smoke configuration; this sends additional close signals to the extract valve. If this fails,
the aircraft must be depressurised {TODO: find out why}.
[VENT SKIN VALVE FAULT, FCOM PRO.ABN.21, FCOM DSC.21.30.70]
3.20. Avionics ventilation system vault
Defined as either a valve not in its commanded position or the Avionics
Equipment Ventilation Controller (AEVC) being either unpowered or failing its power-up test. The system will automatically default to a safe configuration similar to smoke configuration. No crew action is required.
[VENT AVNCS SYS FAULT, FCOM PRO.ABN.21, FCOM DSC.21.30.70]
25
Chapter 3. Air conditioning, pressurisation and ventilation
26
Chapter 4. Electrical
Chapter 4. Electrical
4.1. Emergency configuration
Attempt to restore normal power by recycling the main generators. If that
fails, try again after splitting the systems with the BUS TIE button.
If normal power cannot be restored, ensure that the emergency generator is
on line (deploy the RAT manually if required) and maintain speed >140kt to
avoid RAT stall. Cycling FAC 1 will recover rudder trim. Once 45 seconds
have elapsed and when below FL250, the APU can be started.
So much equipment is lost in the emergency configuration that
QRH ABN.24 provides a table of surviving equipment. Notable losses are
all the fuel pumps (so ignition on, avoid negative G, center tank fuel is unusable), the anti-skid and three fifths of the spoilers. Landing speeds and
distances are increased significantly.
QRH ABN.24 also provides a paper summary which should be applied once
ECAM actions are complete.
[ELEC EMER CONFIG, QRH ABN.24.1 FCOM DSC.24.30, FCOM PRO.ABN.24]
4.2. Battery only
Power is available for approximately 30 minutes {TODO: Can’t find a reference for this – must have been part of CBT}. QRH ABN.24 provides details of remaining equipment. This is very similar to the emergency electrical configuration (see Section 4.1, “Emergency configuration”) with the
additional loss of FAC1 and FMGC1. An attempt should be made to bring
the emergency generator on line by ensuring speed is >140kt and deploying
the RAT with the EMER ELEC PWR MAN ON button.
[ELEC ESS BUSES ON BAT, QRH ABN.24, FCOM DSC.24.30, FCOM PRO.ABN.24]
27
Chapter 4. Electrical
4.3. IDG low oil pressure/ high oil temperature
The IDG should be disconnected. Assuming the associated engine is running, press the IDG button until the GEN FAULT light comes on. Do not
press the button for more than 3 seconds.
The APU generator should be used if available.
[ELEC IDG 1(2) OIL LO PR/OVHT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.4. Generator fault
Try to reset the generator by turning it off, then after a short pause, turning
it on again. If unsuccessful, turn it back off.
If an engine driven generator cannot be recovered, the APU generator
should be used if available.
Single generator operation leads to shedding of the galley. Loss of an engine
driven generator leads to loss of CAT III DUAL capability.
[ELEC(APU) GEN (1)(2) FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.5. Battery fault
The affected battery contactor opens automatically. APU battery start is
unavailable with a single battery.
[ELEC BAT 1(2) FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.6. AC Bus 1 fault
Some or all of the equipment on AC bus 1 becomes unavailable, including TR1. DC Bus 2 is powered from DC Bus 1 via the battery bus. Power
must be re-routed to the Essential AC bus via AC bus 2. This is automatic
on some aircraft. Manual re-routing is achieved with the AC ESS FEED
button. Once Essential AC is powered, the Essential TR powers the DC
Essential bus.
Notable lost equipment includes the blue hydraulic system and associated
services (including spoiler 3), radio altimeter 1 (and hence Cat III capabil28
Chapter 4. Electrical
ity), half the fuel pumps, the nose wheel steering, the avionics blower fan
and p1 windshield heat.
[ELEC AC BUS 1 FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.7. AC Bus 2 fault
Some or all of the equipment on AC bus 2 becomes unavailable, including
TR2. DC bus 2 is powered from DC bus 1 via the battery bus. The majority
of this equipment has a redundant backup, the loss of the FO’s PFD and
ND and a downgrade to Cat I being the major issue. Landing distances are
unchanged.
[ELEC AC BUS 2 FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.8. AC Ess Bus fault
It may be possible to recover the bus by transferring its power source to
AC BUS 2 with the AC ESS FEED button. If this is unsuccessful, some or
all of the equipment on the AC ESS bus will be lost. The majority of this
equipment has a redundant backup, with the loss of the Captain’s PFD and
ND and a downgrade to Cat I being the major issues. Landing distances
are unchanged.
[ELEC AC ESS BUS FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.9. AC Essential Shed Bus lost
Some or all of the equipment on the AC ESS SHED bus is lost. The major issue is the loss of the passenger oxygen masks. Landing distances are
unchanged.
[ELEC AC ESS BUS SHED, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.10. DC Bus 1 fault
Some or all of the equipment on DC Bus 1 is lost. Most of the equipment
loss causes loss of redundancy only. Landing distances are unchanged.
[ELEC DC BUS 1 FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
29
Chapter 4. Electrical
4.11. DC Bus 2 fault
Some or all of the equipment on DC Bus 2 is lost. The F/O’s static probe
sensor is lost, so ADR3 should be selected on the F/O’s side. FCU2 is lost,
so check that the baro ref on the FCU and PFD agree. Landing distance
increases by up to 35% due to the loss of 3 ground spoilers per side and one
reverser. Autobrake is also unavailable. Due to the loss of SFCC2, the slats
and flaps will be slow and the engines will remain in approach idle. FAC2
is lost, so the characteristic speeds on both PFDs are provided by FAC1. F/
O window heat, wipers and rain repellent is lost.
The other lost systems either have redundant backups or are non-essential.
It should be noted that the only flight computers remaining are ELAC 1,
SEC 1 and FAC 1.
[ELEC DC BUS 2 FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.12. DC Essential Bus fault
The major headache associated with DC Essential Bus failure is significant loss of communications systems. This is exacerbated by a design flaw
which, at time of writing, affects MSNs 2037–2402 and MSNs 2471–3122.
By design, ACP1 and ACP2 are lost, along with VHF1. This allows twoway communication to be recovered by one pilot using ACP3 (selected via
the AUDIO SWTG rotary selector) with VHF2 or VHF3. Since speaker 1
is also lost, having P2 handle the radios with speaker 2 at high volume is
the only method of both pilots having awareness of ATC communications.
On the MSNs detailed above, however, the audio cards connecting cockpit mikes and headsets are all powered from the DC Essential Bus. It may
be possible to receive transmissions with a combination of VHF2/3, ACP3
on FO and speaker 2 on, but transmission is limited to morse code on the
transmit switch1.
FCU1 is lost, so the baro refs should be checked. The GPWS is lost and
should be turned off.
1
I am only inferring this solution from the list of equipment lost; there is no specific documentation
to indicate that it will work.
30
Chapter 4. Electrical
Landing distances are increased due to the loss of reverser 2 and the loss of
the blue hydraulic system (and hence spoiler 3). Wing anti-ice is also lost,
so landing distances will also increase significantly if ice is accreted and
increased approach speeds are required.
Slats and flaps are slow due to the loss of SFCC1. This also leads to the
engines reverting to approach idle.
Landing capability is Cat 2 due to the loss of the auto-thrust. The ECAM
status page incorrectly reports Cat 3 single.
The FCOM lists additional systems beyond those listed on the STATUS
page that are lost with DC Essential Bus failure. Of note among these is loss
of HP fuel shutoff valves. This requires that the engines are shut down with
the Engine Fire pushbutton switches.
[ELEC DC ESS BUS FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.13. DC Essential shed
The only major issue is the loss of wing anti-ice. Therefore, avoid icing
conditions, and apply landing distance procedure if ice accretes.
[ELEC DC ESS BUS SHED, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.14. Loss of DC Bus 1 and DC Bus 2
Some or all of the systems supplied by DC Bus 1 and DC Bus 2 are lost.
Both channels of the BSCU are lost (leads to loss of anti-skid) along with
3 spoilers from each side and both reversers. This significantly increases
landing distances, particularly in the wet.
Also of note is that both center tank pumps are lost. As the center tank
cannot gravity feed, the fuel in it becomes unusable.
Finally, loss of SFCC2 means that flaps and slats are slow, and engine idle
control reverts to approach idle.
31
Chapter 4. Electrical
All other lost systems are relatively insignificant or have redundant backups.
[ELEC DC BUS 1+2 FAULT, FCOM DSC.24.30, FCOM 3.2.24]
4.15. Generator overload
Shed some load by switching off the galleys.
[ELEC GEN 1(2) OVERLOAD, ELEC APU GEN OVERLOAD,
FCOM DSC.24.30, FCOM PRO.ABN.24]
4.16. Loss of TR
No systems are lost as a result of failure of a single TR. If the fault is with
TR1 or TR2, only Cat 3 single will be available.
[ELEC TR 1(2), ELEC ESS TR FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24 ]
4.17. Battery bus fault
Some or all of the equipment on the Battery bus is lost. The only major
items lost are APU fire detection and APU battery start.
[ELEC DC BAT BUS FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.18. DC Emergency configuration
Defined as the loss of DC BUSSES 1 + 2, DC ESS BUS and DC BAT BUS.
The check list assumes that DC ESS BUS can be recovered by deploying
the RAT with the EMER ELEC PWR button.
The lost equipment is the sum of loss of DC BUS 1, DC BUS 2 (see Section 4.14, “Loss of DC Bus 1 and DC Bus 2”) and the battery bus (see Section 4.17, “Battery bus fault”), so all comments regarding these failures apply. In addition, a minimum of 140kt must be maintained to avoid RAT
stall. This combination leads to an extreme increase in landing distance requirement.
[ELEC DC EMER CONFIG, FCOM DSC.24.30, FCOM PRO.ABN.24]
32
Chapter 4. Electrical
4.19. Static inverter fault
Normal operations are not affected.
[ELEC STAT INV FAULT, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.20. Generator 1 line off
Pressing the GEN 1 LINE button on the emergency electrical panel has
much the same effect as pressing the GEN 1 button on the main electrical
panel, with the difference that GEN 1 continues to supply its associated
fuel pumps. It is primarily used for the smoke drill. If it's not meant to be
off, turn it on.
[ELEC EMER GEN 1 LINE OFF, FCOM DSC.24.30, FCOM PRO.ABN.24]
4.21. Tripped circuit breakers
It is generally not recommended to reset circuit breakers in flight. It is,
however, acceptable to attempt a single reset if it is judged necessary for
the safe continuation of the flight.
On the ground, any circuit breakers other than those for the fuel pumps may
be reset as long as the action is coordinated with MOC.
The ECAM warning will be triggered if a green circuit breaker trips.
[C/B TRIPPED, FCOM DSC.24.30, FCOM PRO.ABN.24 ]
33
Chapter 4. Electrical
34
Chapter 5. Flight controls
Chapter 5. Flight controls
5.1. Elevator faults
If a single elevator fails, the SECs use the remaining elevator to provide
pitch control in alternate law (see Section 5.12, “Alternate Law”). In addition, speed brake should not be used and the autopilots are unserviceable
{TODO: Find out why}.
If both elevators fail, the only mechanism for pitch control available is manual pitch trim, so pitch reverts to mechanical back up and roll reverts to
direct law. For the approach fly a long final, initiating the descent from at
least 5000ft AAL. Do not try to flare using trim and do not remove power until after touchdown. From 1000ft AAL, try to keep power changes to
within 2% N1. In the event of a go-around, power must be applied very
slowly if control is not to be lost.{TODO: This is Boeing advice – check if
it is relevant to Airbus}
[F/CTL L(R)(L+R) ELEV FAULT, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.2. Stabilizer jam
Manual pitch trim is a mechanical connection to the stabilizer actuator. It
may be possible to use manual pitch trim when the ELACs have detected a
stabilizer jam, although it may be heavier than normal. If it is usable, trim
for neutral elevators.
The flight controls will revert to Alternate Law. If the stabilizer could not
be moved, gear extension should be delayed until CONF 3 and VAPP are
achieved so that the elevators are properly trimmed.
If the jam is caused by the mechanical connection, it is possible that the
ELACs will not detect the problem. The procedure in this case is similar,
but Normal Law will remain.
[F/CTL STABILIZER JAM, QRH ABN.27, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
35
Chapter 5. Flight controls
5.3. Aileron faults
The lateral aircraft handling is not adversely affected even if both ailerons
fail, as the systems compensate by using the spoilers. Fuel consumption will,
however, increase by approximately 6%.
[F/CTL L(R) AIL FAULT, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.4. Spoiler faults
The effect of a spoiler fault depends on whether the spoiler fails retracted
or extended.
If the spoiler fails in the retracted position, handling should not be adversely
affected. A CONF 3 landing may reduce any buffeting that is encountered.
Speed brake should not be used if spoilers 3 + 4 are affected. The loss of
ground spoilers will significantly increase landing distances.
Airbus have identified a failure scenario that leads to high pressure hydraulic fluid reaching the extend chamber of a spoiler actuator via a failed
o-ring. This has the effect of a spoiler failing in the fully extended position.
In this case, the autopilot does not necessarily have sufficient authority to
control the aircraft, and it should be disconnected. Fuel burn will increase
significantly; FMGC fuel predictions do not account for the failure and
should be disregarded. Green dot speed will minimize this increased fuel
burn, but may not be viable if there is excessive buffet – attempt to find a
compromise speed. Landing will be flap 3; VAPP and LDG DIST factors
are available in QRH FPE-IFL.
[F/CTL (GND) SPLR (1+2)(3+4) FAULT, OEB 43, FCOM DSC.27.20.40,
FCOM PRO.ABN.27]
5.5. Rudder Jam
The main indication of jammed rudder is undue and adverse pedal movement during rolling manoeuvres caused by the yaw damper orders being fed
back to the pedals when they are no longer sent to the rudder.
Crosswinds from the side that the rudder is deflected should be avoided,
and a cross wind limit of 15kt applies. Control on the ground will require
36
Chapter 5. Flight controls
differential braking until the steering handle can be used (below 70kt), so
landing distances are increased. Do not use autobrake.
[F/CTL RUDDER JAM, QRH ABN.27, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.6. Flaps and/or slats fault/locked
The most pressing concern following a flap or slat problem is to establish
a max operating speed that will avoid overspeeding the device in its locked
position. A table is provided on page ABN.27.2 of the QRH for this purpose, but a quick estimation can be made by establishing what flap lever
position would be required to get the device into its current position and
using VFE for the configuration associated with that flap lever position as
VMO. In doing this, it must be remembered that slat deployment in CONF
2 and CONF 3 is the same (tip: think of available slat positions as being 0,
1, Intermediate or Full). This also affects use of the QRH table; the second
dot on the slat indicator on the E/WD should be considered slat 3 for the
purpose of this table, not slat 2 as might be expected. The barber’s pole displayed for VFE on the PFD is a function of the flap lever position, so it may
be worth initially selecting the flap lever to the matching CONF to have this
reference available. For minimum speeds, the VLS displayed on the PFD is
calculated from actual flap and slat position and can be trusted.
Unless there is an obvious reason not to (e.g. wing tip brake on, alignment
fault or fault due to dual hydraulic failure), the flap lever can be recycled.
If normal operation cannot be restored, there are two major issues that must
be quickly addressed. Firstly, fuel burn will be dramatically higher when
flying with a locked device. With slats extended, fuel burn will increase by
60%. With flaps extended it will increase by 80%. With slats and flaps extended, fuel burn will double. These figures are available in QRH FPE.FPF. The second issue is that landing distances are significantly increased,
in the worst case by a factor of 2.2. It may be that the combination of these
factors requires a fairly prompt diversion decision.
The flap and slat systems are largely independent, so the flap lever will
continue to move the slats if the flaps are locked and vice versa. In general,
37
Chapter 5. Flight controls
flap 3 should be selected for landing. There are two exceptions. If flaps are
locked at >3, flap full should be used. If both slats and flaps are locked at 0,
flap 1 should be used so that the AP/FD go-around is armed. Configurations
and VREF increments are available on page FPE.IFL.27A of the QRH. If a
flapless and slatless landing is required, the threshold speed may be below
VLS. This is necessary as the landing speeds in this configuration are very
close to tyre limit speeds.
During configuration, VLS is computed from actual configuration and
VFE next is computed from flap lever position. F and S speeds are essentially meaningless. The deployment method is to reduce speed to slightly
(5kt) below the limiting speed for a configuration before selecting it. If
VLS>VFE next, prioritise VLS: fly VLS, select the next configuration, then
track VLS as it reduces with the extension of the lift device. Use of autothrust with selected speed is generally recommended for all phases of the
approach, but in this case it will need to be temporarily disconnected until
landing configuration is established.
It is worth noting that failure of the slat channels of both SFCCs appears to
result in the loss of characteristic speed display on both PFDs. This is not
mentioned in the FCOM but occurs in the sim. The upshot of this is that
neither VLS nor VSW are available at all, since they are not displayed and
there is no way to calculate them. This is of particular concern when trying
to configure to flaps 2 since the aircraft must be slowed to VFE(conf 2)-5 when
still clean (remember conf 1 is slats only when configuring from conf 0). It
is highly likely that the stall warner will activate during the transition, and
if not anticipated, the subsequent recovery will overspeed the flaps. The
solution is to brief that speed will be reduced very slowly and if the stall
warning occurs the speed will be maintained whilst allowing the deployment
of the flaps to recover the stall margin.
The autopilot may be used down to 500ft AAL, but since it is not tuned for
the abnormal configuration it must be closely monitored.
For the go-around, initially maintain flap/ slat configuration. A speed 10kt
lower than max operating speed should be flown. If it is the slats that are
jammed or if the flaps are jammed at 0, clean configuration can be used to
transit to a diversion airfield.
38
Chapter 5. Flight controls
Other issues include the possible loss of the automatic operation of the centre tank pumps (which is sequenced to the slats) and possible reversion to
Alternate Law.
[F/CTL FLAPS(SLATS) FAULT(LOCKED), QRH ABN.27,
FCOM DSC.27.30.30, FCOM PRO.ABN.27]
5.7. SFCC faults
Each SFCC has fully independent slat and flap channels. A failure of a
channel in a single controller will lead to slow operation of the associated
surfaces. In addition, the flap channel of SFCC1 provides input to the idle
control part of the FADECs and to the EGPWC.
Failure of both flap channels or failure of both slat channels is covered in
Section 5.6, “Flaps and/or slats fault/locked”.
[F/CTL FLAP(SLAT) SYS 1(2) FAULT, FCOM DSC.27.30.30, FCOM PRO.ABN.27]
5.8. ELAC fault
In normal operations, ELAC 1 controls the ailerons and ELAC 2 controls
the elevators and stabiliser. Failure of a single ELAC will result in failover to
the remaining computer. Provided no uncommanded manoeuvres occurred,
an attempt can be made to reset the failed ELAC.
Failure of both ELACs leads to loss of ailerons and hence Alternate Law.
One of the SECs will take over control of the elevators and stabiliser. Again,
an attempt can be made to reset the computers.
If the fault is designated a pitch fault, only the pitch function of the associated ELAC is lost.
[F/CTL ELAC 1(2) FAULT, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.9. SEC fault
Each SEC controls either 1 or 2 spoilers per wing. SEC 1 and 2 also provide
back up for the ELACs (see Section 5.8, “ELAC fault”). Loss of a SEC
39
Chapter 5. Flight controls
leads to loss of its associated spoilers. SEC 1 provides spoiler position to the
FACs. If speedbrakes are deployed with SEC 1 u/s and SEC 3 operative,
spoiler 2 will deploy without a corresponding increase in VLS. Therefore,
do not use speedbrake if SEC 1 is affected (it won’t do much anyway!).
Pairs of SECs also provide the signal for reverse thrust lever angle to the
reversers and spoiler deployment to the autobrake. A dual SEC failure will
therefore lead to a loss of a reverser and loss of autobraking.
If all SECs are lost, all the above holds true. Furthermore the flight controls
revert to Alternate Law due to the complete loss of spoilers. Also, due to
routing of LGCIU data to the ELACs via the SECs, Direct Law will occur
at slat extension rather than gear extension.
An attempt should be made to reset the affected SEC(s).
[F/CTL SEC 1(2)(3) FAULT, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.10. FCDC faults
The two FCDCs are redundant, so a single failure has no immediate effect.
If both FCDCs fail, the ELACs and SECs can no longer supply data to
the EIS. The major effect of this is that F/CTL ECAM warnings are no
longer generated. The warning lights on the overhead panel continue to give
valid information and should be monitored. The aircraft remains in normal
law with all protections, but protection indications (bank and pitch limits,
Vα‑prot and Vα‑max) are not shown and the stall warning system becomes
active.
[F/CTL FCDC 1(2)(1+2) FAULT, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.11. Direct Law
In Direct Law, deflection of the control surfaces is a linear function of deflection of the side-stick and trimming must be done manually. The controls
are very sensitive at high speeds. Use of manual thrust is recommended as
power changes will result in pitch changes. Similarly, use of the speed brake
40
Chapter 5. Flight controls
will result in nose up pitch changes so it should be used with care. Protections are unavailable, so speed is limited to 320kt/0.77M and care must be
taken in GPWS or windshear manoeuvres. Approach speed is increased by
10kt and landing distances increase by a factor of 1.2.
[F/CTL DIRECT LAW, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.12. Alternate Law
In alternate law, pitch is as in normal law, but roll is as in direct law. Load
factor protection is retained, but other protections are either replaced with
static stability or are lost, depending on the nature of the failure. Stall warnings and overspeed warnings become active.
The main effects are that speed is limited to 320kt and stall warnings must
be respected when carrying out EGPWS manoeuvres.
Expect Direct Law after landing gear extension (see Section 5.11, “Direct
Law”), and hence increased approach speeds and landing distances due to
a CONF 3 landing (see QRH FPE.IFL.27).
[F/CTL ALTN LAW, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.13. Wingtip brake fault
The wingtip brakes activate in case of asymmetry, mechanism overspeed,
symmetrical runaway or uncommanded movements. This protection is lost.
[F/CTL FLAP(SLAT) TIP BRK FAULT, FCOM DSC.27.30.30, FCOM PRO.ABN.27]
5.14. Flap attach sensor failure
The flap attach sensor detects excessive differential movement between the
inner and outer flaps which would indicate failure of a flap attachment. This
protection is lost.
[F/CTL FLAP ATTACH SENSOR, FCOM DSC.27.30.30, FCOM PRO.ABN.27]
41
Chapter 5. Flight controls
5.15. Flight control servo faults
All flight controls have redundant servos. In the case of an elevator servo
fault, a restriction to not use speedbrake above VMO/MMO applies.
[F/CTL AIL(ELEV) SERVO FAULT, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.16. Speed brake disagree
This indicates that the spoiler positions do not correspond with the speedbrake lever position. This may be as a result of automatic retraction (alpha
floor activation or speed brakes deployed when full flap selected) or as a
result of spoiler malfunction. In both cases retract the speedbrake lever and
in the case of spoiler malfunction consider the speedbrakes unserviceable.
[F/CTL SPD BRK DISAGREE, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.17. Speed brake fault
This indicates a failure of the speedbrake lever transducers rather than a
problem with the spoilers. Ground spoiler activation may be expected on selection of reverse, so providing reversers are used, landing distances should
not be affected.
[F/CTL SPD BRK (2)(3+4) FAULT, FCOM DSC.27.20.40, FCOM PRO.ABN.27]
5.18. Stiff sidestick/ rudder pedals
This may affect both sidesticks at the same time, but not the rudder pedals
or it may affect the rudder pedals and one sidestick. Control forces will
remain moderate and the aircraft remains responsive. Confirm autopilot
disengagement and consider transferring control if one of the sidesticks is
unaffected.
[QRH ABN.27, FCOM PRO.ABN.27]
42
Chapter 5. Flight controls
5.19. Sidestick unannunciated transducer faults
It is possible for a failed sidestick transducer to cause uncommanded control
inputs. If no fault is detected, the result is that the aircraft behaves as if
that input had actually been made. Generally, the autopilot will disconnect
and any attempt to control the aircraft with the failed sidestick will fail.
The aircraft should be recovered with the other sidestick using the takeover
button. Keeping this button pressed for 40 seconds will lock out the failed
sidestick, and the autopilot can then be re-engaged. The autopilot should
not be disconnected in the normal manner as pressing the takeover button
will re-introduce the failed sidestick and the uncommanded input; use the
FCU instead.
43
Chapter 5. Flight controls
44
Chapter 6. Fire
Chapter 6. Fire
6.1. Smoke and fumes
The QRH procedure should be applied when smoke is detected and the crew
suspect the avionics, air conditioning or cabin equipment as the source.
The paper procedure includes all the steps of the avionics smoke ECAM
procedure, so if this caution is triggered, the paper procedure should be
applied instead of the ECAM1.
In the case of other smoke related ECAMs, the relevant ECAM procedure
should be applied first and then the use of the paper checklist considered.
Rain repellent fluid leaks are not covered. Orange peel smells are toxic, pine
needle smells non-toxic.
The SMOKE/ FUMES/ AVNCS SMOKE checklist attempts to isolate the
source of the smoke. It is possible that it may become impossible to carry
out this checklist due to smoke density. In this case, interrupt the checklist
and carry out the smoke removal drill (see Section 6.2, “Smoke/ fumes removal”). It is also possible that the situation may deteriorate to a level that an
immediate forced landing becomes the preferable option. In general, unless
the source of the smoke is obvious and extinguishable, a diversion should
be initiated immediately. The smoke removal drill is most effective and
adaptable at lower levels, so a descent to 10,000ft or MSA is also a priority.
The first priority is to protect yourself, so get an oxygen mask on. The mask
must be set to 100% oxygen to exclude fumes; at minimum dispatch oxygen levels this will provide as little as 15 minutes of protection. Pushing the
“Emergency pressure selector” knob will provide a few seconds of overpressure, which can be used to clear any smoke trapped in the mask as it
was donned.
1
There is an odd airframe dependency with this; on some airframes the instruction is to run the
paper checklist at latest after completing the immediate actions of the Avionics Smoke ECAM,
whilst on others it is when requested by the Avionics Smoke ECAM. Unfortunately the Avionics
Smoke ECAM itself is not described in the FCOM. A general policy of running the paper procedure
instead of the Avionics Smoke ECAM procedure seems to cover all eventualities.
45
Chapter 6. Fire
The most likely sources are the avionics, the cabin fans and the galleys.
Therefore immediate initial actions are to turn off the cabin fans and galleys
and put the avionics ventilation in smoke removal mode by selecting both
fans to OVRD.
Where the smoke source is not immediately obvious and the initial actions
have not caused it to cease, the QRH provides drills for suspected air conditioning smoke, suspected cabin equipment smoke or suspected avionics/
electrical smoke. In addition the avionics/ electrical smoke drill includes
undetermined and continuing smoke sources.
Suspect air conditioning smoke if it initially comes out of the ventilation
outlets. Several ECAM warnings are also likely to occur as sensors detect
the smoke in other areas. The displayed ECAM procedures must be applied.
Following an engine or APU failure, smoke may initially enter the air conditioning system but should dissipate quickly once the failure is contained.
The air conditioning drill starts by turning the APU bleed off in case this
is the source. The packs are then turned off one at a time to determine if
the source of the smoke is a pack.
The cabin equipment smoke drill involves selecting the commercial button
off and searching for faulty cabin equipment.
Suspect avionics smoke if the only triggered ECAM is AVIONICS
SMOKE. If an item of electrical equipment fails immediately prior to the
appearance of the smoke, that equipment should be suspected as the source.
The avionics/ electrical drill (which includes the undetermined source drill)
no longer involves systematic shedding of the AC busses due to the negative interaction that this procedure had with the battery chargers. Instead,
emergency electrical configuration (see Section 4.1, “Emergency configuration”) is adopted immediately. The electrical system should be restored
just before deploying the gear {TODO: There is an odd discrepancy concerning when the generators should be restored – some airframes it is
“just before L/G extension”, others “at 3min or 2000ft aal before landing”.
Why?}. Note that since you will not be able to restore the two IRs that were
depowered, the landing will be in Direct Law and hence CONF 3 {TODO:
QRH PRO.ABN.24 ELEC EMER CONFIG SYS REMAINING indicates
that by selecting ATT HDG selector to CAPT 3 it may be possible to retain
46
Chapter 6. Fire
IR3 and hence have sufficient equipment for a Cat 3A landing once power
is restored - investigate further}. Refer to QRH FPE.IPL.27 for VApp and
LDR factor. This is not mentioned in QRH ABN.26, and is only mentioned
on the ECAM once gear is extended.
[AVIONICS SMOKE, QRH ABN.26, FCOM PRO.ABN.26]
6.2. Smoke/ fumes removal
Smoke removal procedures initially use the pressurisation system to draw
smoke and fumes overboard by increasing the cabin altitude. If there are
no fuel vapours present, the packs are used to drive the smoke overboard.
Otherwise it is driven overboard by residual pressure.
The final target configuration is packs off, outflow valve fully open and ram
air on. As this depressurises the aircraft, it can only be achieved at lower
levels (preferably FL100). If in emergency configuration, turning the APU
master switch on connects the batteries for a maximum of 3 minutes and
allows manual control of the DC powered outflow valve motor. Once at a
suitable level and below 200kt, as a last resort PNF’s cockpit window can
be opened.
[QRH ABN.26, FCOM PRO.ABN.26]
6.3. Engine fire
The basic sequence is to bring the thrust lever of the affected engine to idle,
turn off its engine master, push its fire button, wait 10 seconds then deploy
its first fire bottle. If the fire is not extinguished after 30 seconds, indicated
by the fire button remaining lit, deploy the second bottle.
This sequence is modified on the ground in that both fire bottles are fired
immediately, and the remaining engine is then also shut down. Note that
shutting down both engines without the APU running will leave only batteries, resulting in loss of all COMS except VHF1 and loss of ECAM reference for the final actions.
[ENG 1(2) FIRE, FCOM PRO.ABN.26]
47
Chapter 6. Fire
6.4. Lithium Battery Fire
If there are flames, they should be attacked with a halon extinguisher. This
will necessitate PF donning a crew oxygen mask and PNF donning the
smoke hood.
If there are no flames, or once the flames have been extinguished, the cabin crew should remove the device from the cockpit and store it in a lined
container filled with water. If the device cannot be removed, water or nonalcoholic liquid should be poured on the device, and it should be continuously monitored for re-ignition.
Note that these procedures assume that you are dealing with lithium ion
batteries (i.e. rechargeable batteries found in laptops, tablets, phones etc.)
where the amount of water reactive lithium metal is actually fairly low.
Once the flames have been knocked down, the focus is on cooling to prevent
thermal runaway in adjacent cells. Counter-intuitively, it is vital that ice is
not used as this acts as a thermal insulator and will likely cause adjacent
cells to explode. For the same reason, smothering with anything that might
thermally insulate the battery pack (e.g. a fire bag) is probably a bad idea.
If smoke becomes the biggest threat, see Section 6.2, “Smoke/ fumes removal”. If the situation becomes unmanageable, consider an immediate
landing.
[QRH ABN.26, FCOM PRO.ABN.26, FAA videos (available on youtube)]
48
Chapter 7. Fuel
Chapter 7. Fuel
7.1. Fuel leak
Whenever a non-normal fuel event occurs, the possibility that the underlying cause of the event is a fuel leak should be considered. Only when a fuel
leak has been categorically ruled out should the cross-feed valve be opened.
The primary method used to detect fuel leaks is a regular check that actual
fuel remaining corresponds to expected fuel remaining and that fuel used
plus fuel remaining corresponds to fuel at engine start. The latter parameter
is monitored on some aircraft and may trigger an ECAM warning. Other
indications of a leak include fuel imbalance or excessive fuel flow from
an engine. It also possible that a fuel leak may be detected visually or by a
smell of fuel in the cabin.
If a leak can be confirmed to be coming from an engine or pylon, the affected engine must be shut down. In this case, cross-feeding is allowable.
Otherwise, the cross-feed must be kept closed.
If the leak cannot be confirmed to be originating from an engine or pylon,
an attempt should be made to identify the source of the leak by monitoring
the inner tank depletion rates with the crossfeed valve closed and the center
tank pumps off.
If depletion rates are similar, a leak from the center tank or from the APU
feeding line should be suspected. If there is a smell of fuel in the cabin, it
is likely that the APU feeding line is at fault and the APU should be turned
off. Fuel from the center tank should be used once one of the inner tanks
has <3000kg. {TODO: I don’t understand the logic here – surely an APU
feeding line leak would cause the left tank to decrease faster than the right,
and why not put the center tank pumps in AUTO and use the fuel as soon
as possible if you suspect a leak from the center tank?}
If, after 30 minutes, one tank has been depleted by 300kg more than the
other, the location of leak is narrowed down to the engine or the wing on
the more depleted side. To confirm which it is, shut down the engine. If the
leak then stops, an engine leak is confirmed and the cross feed can be used.
49
Chapter 7. Fuel
If not, a leak from the wing is most likely. In this case, an engine restart
should be considered.
In an emergency, a landing may be carried out with maximum fuel imbalance.
Do not use thrust reversers.
[FUEL F USED/FOB DISAGREE, QRH ABN.28, FCOM PRO.ABN.28]
7.2. Fuel imbalance
All fuel balancing must be carried out in accordance with QRH ABN.28,
paying particular attention to the possibility of a fuel leak. Any action should
be delayed until sufficient time has passed for a fuel leak to become apparent. FCOM PRO.ABN.28 adds a note not found in the QRH that “there
is no requirement to correct an imbalance until the ECAM fuel advisory
limit is displayed”, an event that occurs when one inner tank holds >1500kg
more than the other. The limitations for fuel imbalance in FCOM LIM.28,
however, show that the fuel advisory does not necessarily indicate that a
limitation is likely to be breached. In particular, when the outer tanks are
balanced and the heavier inner tank contains ≤2250kg, there are no imbalance limitations. Furthermore, the aircraft handling is not significantly impaired even at maximum imbalance.
To balance the fuel, open the cross-feed valve and turn the lighter side pumps
and the center tank pumps off.
[QRH ABN.28, FCOM 3.28.26000, FCOM LIM.28]
7.3. Gravity fuel feeding
Turn on ignition in case of fuel interruption and avoid negative G. The ceiling at which fuel can be reliably gravity fed depends on whether the fuel has
had time to deaerate. If the aircraft has been above FL300 for more than 30
minutes, the fuel may be considered deaerated and the current flight level
maintained. Otherwise, the fuel must be considered aerated and the gravity
feed ceiling is FL300 if the aircraft exceeded FL300 or FL150 if it didn’t.
If gravity feeding is required, descend to the gravity feed ceiling.
50
Chapter 7. Fuel
It is also possible to gravity cross feed by side slipping the aircraft with a
bank angle of 2° to 3° should this become necessary.
[QRH ABN.28, FCOM PRO.ABN.28]
7.4. Wing tank pump(s) low pressure
Failed pumps should be turned off.
Failure of a single pump in either tank results in reduced redundancy only.
Failure of both pumps in a given tank means that the fuel in that tank is
only available by gravity feeding. Pressurized fuel may be available from
the center tank (use manual mode if necessary) or by cross-feeding. A descent to gravity feed ceiling may be required (see Section 7.3, “Gravity fuel
feeding”).
[FUEL L(R) TK PUMP 1(2)(1+2) LO PR, FCOM PRO.ABN.28,
FCOM DSC.28.30]
7.5. Center tank pumps low pressure
Failed pumps should be turned off.
Failure of a single center tank pump results in a loss of redundancy. The
crossfeed should be opened until the center tank fuel has been exhausted so
that the remaining pump can supply both engines.
Failure of both center tank pumps makes the fuel in the center tank unusable.
[FUEL CTR TK PUMP(S)(1(2)) LO PR, FCOM PRO.ABN.28,
FCOM DSC.28.30]
7.6. Auto feed fault
The center tank pumps must be managed manually. They must be switched
off whenever slats are extended, wing tank fuel >5000kg or center tank fuel
is exhausted.
[FUEL AUTO FEED FAULT, FCOM PRO.ABN.28, FCOM DSC.28.30]
51
Chapter 7. Fuel
7.7. Low fuel level
The ECAM is triggered at approximately 750kg. The warning may be spurious if the ECAM is triggered just before the wing cell transfer valves open.
If center tank fuel remains, it should be used by selecting the center tank
pumps to manual mode. If there is a fuel imbalance and a fuel leak can be
ruled out, crossfeed fuel as required.
If both tanks are low level, about 30 minutes of flying time remain.
If any change to the current clearance will lead to landing with less than
minimum reserve fuel, declare "minimum fuel" to ATC. This is just a heads
up to ATC, not a declaration of an emergency situation. If it is calculated
that less than minimum fuel will remain after landing, declare a MAYDAY.
[FUEL(R)(L+R) WING TK LO LVL, FCOM PRO.ABN.28, FCOM DSC.28.30,
EOMA 8.3.7.2]
7.8. Outer tank transfer valves failed closed
If both transfer valves fail to open when a wing tank reaches low level,
the fuel in that outer tank becomes unusable. The fuel balance will remain
within limits since maximum outer tank imbalances are acceptable if the
total fuel in either wing is the same [FCOM LIM.28].
[FUEL L(R) XFR VALVE CLOSED, FCOM PRO.ABN.28, FCOM DSC.28.30]
7.9. Outer tank transfer valve open out of sequence
Maximum outer tank imbalances are acceptable if the total fuel in either
wing is the same [FCOM LIM.28], so no action is required.
[FUEL L(R) XFR VALVE OPEN, FCOM PRO.ABN.28, FCOM DSC.28.30]
7.10. Cross-feed valve fault
If the valve has failed open, fuel balance can be maintained through selective
use of fuel pumps. If it has failed closed, crossfeeding is unavailable.
[FUEL FEED VALVE FAULT, FCOM PRO.ABN.28, FCOM DSC.28.30]
52
Chapter 7. Fuel
7.11. Low fuel temperature
ECAM is triggered at approx -43°C. If on the ground, delay takeoff until
temperatures are within limits. If in flight, descending or increasing speed
should be considered.
[FUEL L(R) OUTER(INNER) TK LO TEMP, FCOM PRO.ABN.28,
FCOM DSC.28.30]
7.12. High fuel temperature
This ECAM is known to be triggered spuriously by interference from communication equipment. The procedure should only be applied if the message has not disappeared within 2 minutes.
The ECAM temperature triggers on the ground are 55°C for the outer cell
and 45°C for the inner cell. In the air they are 60°C for the outer cell and
54°C for the inner cell.
The temperature of fuel returning to the tanks is primarily a function of
IDG cooling requirement. The immediate action, therefore is to turn the
galley off to reduce the IDG load.
On the ground, the engine on the affected side must be shut down if the
outer cell reaches 60°C or the inner cell reaches 54°C. An expeditious taxi
may, therefore, be advantageous.
In the air, if only one side is affected, fuel flow can be increased so that less
hot fuel is returned to the tanks. If the temperature gets too high (>65°C
outer or >57° inner), IDG disconnection will be required. The engine must
be running when the IDG button is pressed, and it must not be held for more
than 3 seconds.[FCOM DSC.24.20]
[FUEL L(R) OUTER(INNER) TK HI TEMP, FCOM PRO.ABN.28,
FCOM DSC.28.30]
53
Chapter 7. Fuel
54
Chapter 8. Landing gear
Chapter 8. Landing gear
8.1. Loss of braking (memory item)
If it is simply an autobrake failure, just brake manually. Otherwise, apply
max reverse and attempt to use the alternate brake system. To do this, release the brake pedals and turn off the ASKID & NW STRG switch. If the
alternate system also appears to have failed, short successive applications
of the parking brake may be used. Use of the parking brake in this way risks
tire burst and lateral control difficulties (due brake onset asymmetry) so
delay until low speed if at all possible.
[QRH ABN.32, FCOM PRO.ABN.32]
8.2. Residual braking procedure
Residual brake pressure must be checked after landing gear extension as
there is no ECAM warning. A brief brake pressure indication is expected
as the alternate system self tests after the gear is down locked, but pressure
should quickly return to zero. If the triple indicator shows residual pressure
after this test, try to zero it by pressing the brake pedals several times. If a
landing must be made with residual pressure in the alternate braking system,
use autobrake MED or immediate manual braking to prioritise the normal
system. Anticipate brake asymmetry at touchdown.
[QRH ABN.32, FCOM PRO.ABN.32]
8.3. Gravity extension
Gravity extension is achieved by turning the GRAVITY GEAR EXTN
handcrank clockwise three times until a mechanical stop is reached. Once
the gear is down, the LG lever should be set to down to extinguish the UNLK lights and remove the LG CTL message from the WHEEL page.
Availability of landing gear indications depends on the nature of the failure
that resulted in the requirement for gravity extension. LDG GEAR control
panel indications may still be available if LGCIU 1 is otherwise unserviceable, providing that it is electrically supplied.
55
Chapter 8. Landing gear
Gear doors may show amber on the WHEEL page after gravity extension. There may also be spurious LGCIU 2 FAULT or BRAKES SYS 1(2)
FAULT ECAM warnings.
[QRH ABN.32, FCOM PRO.ABN.32]
8.4. Asymmetric braking
If brakes are only available on one side (indicated by amber brake release
indicators on both wheels of one main gear {TODO: check this} ), apply the
remaining brake progressively whilst countering swing with rudder. Do not
use the reverse on the same side as the working brake. Landing distances
will increase significantly.
[QRH ABN.32, FCOM PRO.ABN.32]
8.5. Landing with abnormal landing gear
A landing should be carried out on a hard surface runway using any available landing gear. Foaming of the runway is recommended. Manual braking should be used. Reverse thrust should not be used as it will cause ground
spoiler extension. The GRVTY GEAR EXTN handcrank should be turned
back to normal to allow the landing gear down actuators to be pressurised
and thus reduce the chance of gear collapse.
If the nose gear is not available, move the CG aft by moving passengers
to the rear of the aircraft. Use elevator to keep the nose off the runway,
but lower the nose onto the runway before elevator control is lost. Braking
must be progressive and balanced against available elevator authority. The
engines should be shut down with the ENG MASTER switches prior to nose
impact.
If one main gear is not available, consider crossfeeding to remove the fuel from the wing with the unserviceable gear. The anti-skid system cannot
operate with a single main gear extended and must be switched off to avoid
permanent brake release. The ground spoilers should not be armed in order to maintain the maximum possible roll authority. The engines should
be shut down at touchdown. After touchdown, use roll control to keep the
unsupported wing from touching down for as long as possible.
56
Chapter 8. Landing gear
If both main gear are unavailable, the engines should be shut down in the
flare. Pitch attitude at touchdown must be >6°.
All doors and slides are available for evacuation in any of the normal gear
up attitudes.
[QRH ABN.32, FCOM PRO.ABN.32]
8.6. Flight with landing gear extended
Flight into expected icing conditions is not approved. Gear down ditching
has not been demonstrated. FMGC predictions will be erroneous – selected
speed should be used for all phases except approach. CLB and DES modes
should not be used. Altitude alerting will not be available. Any failure that
normally causes a degradation to alternate law will instead cause a degradation to direct law.
The dual engine failure scenario is modified to reflect the gear limiting
speed. Assisted start should be preferred. If the APU is not available, gear
limit speeds should be disregarded to achieve a windmill start. Flight controls will be in direct law; manual pitch trim should be available, even when
not annunciated on the PFD.
Performance in all phases will be affected. In particular, approach climb
limiting weights for go-around (see FCOM PRO.SPO.25) must be reduced
by 14%. Fuel burn will increase (approximate factor is 2.3). Engine out
ceiling and take-off performance are also impacted.
[FCOM PRO.SPO.25]
8.7. Gear shock absorber fault
A shock absorber did not extend when airborne or did not compress on
landing. If airborne the gear cannot be retracted. Respect the gear extended
limit speed of 280kt and see Section 8.6, “Flight with landing gear extended”.
[L/G SHOCK ABSORBER FAULT, FCOM PRO.ABN.32,
FCOM DSC.32.10.50]
57
Chapter 8. Landing gear
8.8. Gear not uplocked
Landing gear retraction sequence has not completed within 30 seconds. If
the gear doors have closed, the gear will rest on the doors so avoid excess g
loads. If the doors have not closed, recycle the gear. If this does not work,
select the gear down and see Section 8.6, “Flight with landing gear extended”.
[L/G GEAR NOT UPLOCKED, FCOM PRO.ABN.32, FCOM DSC.32.10.50]
8.9. Gear not downlocked
If the landing gear extension sequence has not completed within 30 seconds,
retract the gear, wait until it has fully stowed, and then redeploy it. Recent
studies show that if the gear does not immediately deploy successfully following reselection, it may deploy normally within the next two minutes as
hydraulic pressure continues to act on the gear and doors throughout this
time. If still unsuccessful after two minutes, attempt to deploy the gear by
gravity (see Section 8.3, “Gravity extension”).
[L/G GEAR NOT DOWNLOCKED, FCOM PRO.ABN.32,
FCOM DSC.32.10.50]
8.10. Gear doors not closed
A gear door is not uplocked. Recycle the gear. If the doors cannot be closed,
speed is limited to 250kt/M0.6.
[L/G DOORS NOT CLOSED, FCOM PRO.ABN.32, FCOM DSC.32.10.50]
8.11. Uplock fault
An uplock is engaged when the corresponding gear is downlocked. As the
uplock will not move to accept the gear the gear must be left down. See
Section 8.6, “Flight with landing gear extended”.
[L/G GEAR UPLOCK FAULT, FCOM PRO.ABN.32, FCOM DSC.32.10.50]
58
Chapter 8. Landing gear
8.12. LGCIU disagreement
The LGCIUs disagree on the position of the gear. In the absence of other
ECAM warnings, the gear position can be assumed to agree with the gear
lever position.
[L/G SYS DISAGREE, FCOM PRO.ABN.32, FCOM DSC.32.10.50]
8.13. LGCIU fault
The FADECs use LGCIU input to determine idle mode. If a LGCIU is
determined to be faulty, the system failsafes to approach idle mode, and
modulated idle and reverse idle (and hence reversers) will not be available.
The GPWS uses LGCIU 1 to determine landing gear position. If this
LGCIU is faulty, the GPWS will need to be inhibited to prevent spurious
warnings.
If both LGCIUs are lost, normal landing gear control and indicating systems are lost. The gear must be gravity extended (see Section 8.3, “Gravity
extension”). {TODO: Autopilot and autothrust are also lost – find out why
this is}
[L/G LGCIU 1(2) FAULT, FCOM PRO.ABN.32, FCOM DSC.32.10.50]
8.14. Gear not down
Indicates that the landing gear is not downlocked when radio altitude is
below 750ft rad alt and N1 and flap setting indicate that the aircraft is on
approach. If rad alt data is not available, it indicates gear is not down when
flap 3 or flap full is selected. In some cases the warning may be cancelled
with the emergency cancel pushbutton.
[L/G GEAR NOT DOWN, FCOM PRO.ABN.32, FCOM DSC.32.10.50]
59
Chapter 8. Landing gear
8.15. Park brake on
The parking brake is set when the thrust levers are set to FLX or TOGA.
Check the position of the brake handle position and for pressure indications
on the brake triple gauge.
[CONFIG PARK BRK ON, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.16. Nosewheel steering fault
Nosewheel steering is unavailable so differential braking must be used to
steer the aircraft. The nosewheel may not be aligned if the L/G shock absorber ECAM is also displayed, in which case delay nosewheel touch down
as long as possible. Cat III dual will not be available.
[WHEEL N/W STRG FAULT, FCOM PRO.ABN.32, FCOM DSC.32.20.30]
8.17. Antiskid nosewheel steering off
The A/SKID & NW STRG switch is off. The ABCU controls braking
through the alternate braking system. Antiskid is not available so landing
distance will increase significantly. Autobrake and nosewheel steering will
also not be available.
[BRAKES ANTI SKID/NWS OFF, FCOM PRO.ABN.32,
FCOM DSC.32.30.30]
8.18. Antiskid nosewheel steering fault
Either:
• both BSCU channels have failed or
• the normal brake system has been lost and the yellow hydraulic pressure
is low.
Effects are as for Section 8.17, “Antiskid nosewheel steering off”, although
if yellow hydraulic pressure is low braking will be accumulator only.
[BRAKES A/SKID NWS FAULT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
60
Chapter 8. Landing gear
8.19. Brake system fault
A fault has been detected in one channel of the BSCU. Loss of redundancy
only.
[BRAKES SYS 1(2) FAULT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.20. Brakes hot
At least one brake temperature is >300°C. Check Section 8.30, “Brake temperature limitations requiring maintenance action” if the temperature is excessive or the brake temperatures are not reasonably even.
Temperature must be <300°C for takeoff to prevent ignition of any hydraulic fluid that leaks onto the brake. Use brake fans as necessary to bring
the temperature down in time for the next takeoff. The brake fans also cool
the temperature sensor, so assume the real brake temperature is twice that
indicated if they have recently been used. {TODO: Check whether we use
chocks and release the parking brake}.
If the warning appears in flight, providing that performance permits, the
landing gear should be extended to allow the brakes to cool.
[BRAKES HOT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.21. Auto brake fault
A failure was detected when the autobrake was armed. Brake manually.
[BRAKES AUTO BRK FAULT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.22. Hydraulic selector valve fault
This ECAM message may indicate two completely different conditions:
1.
The normal brake selector valve has failed in the open position. The
normal servo valves (downstream of the selector valve) will have continuous full pressure at their inlets, but, as long as anti-skid is operative, will control brake pressure and anti-skid normally.
61
Chapter 8. Landing gear
2.
The steering selector valve has failed in the open position. This means
that the steering will remain pressurised as long as there is pressure in
the yellow hydraulic system. This has obvious implications if towing is
attempted, but will also mean that the nosewheel will go to maximum
deflection if the A/SKID & N/W STRG switch is selected off or the
BSCU is reset.
[WHEEL HYD SEL FAULT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.23. Failure of normal braking system
Normal braking is lost, but alternate braking and anti-skid are available.
Landing distance increases slightly.
[BRAKES NORM BRK FAULT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.24. Failure of alternate braking system
Loss of redundancy only.
[BRAKES ALTN BRK FAULT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.25. Failure of normal and alternate braking systems
The only braking remaining is the parking brake. See Section 8.1, “Loss of
braking (memory item)” for method.
[BRAKES NORM + ALTN FAULT, FCOM PRO.ABN.32,
FCOM DSC.32.30.30]
8.26. Brake accumulator low pressure
Braking is not available unless either the green or yellow hydraulic systems
are pressurised. If the engines are shut down, attempt to recharge the accumulator using the yellow system electrical pump. When parking the aircraft, use chocks.
[BRAKES BRK Y ACCU LO PR, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
62
Chapter 8. Landing gear
8.27. Released brakes, normal system
If normal braking is active and at least one engine is running, the BSCU
self tests when it receives a “gear downlocked” signal from either of the
LGCIUs. The BRAKES RELEASED ECAM is provided if at least one set
of brakes on a main wheel is incorrectly released during this test. The failed
brake is shown by an amber release symbol on the WHEEL page. Loss of a
brake leads to increased landing distances. If both brakes on the same gear
are released, see Section 8.4, “Asymmetric braking”.
[BRAKES RELEASED, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.28. Released brakes, alternate system
The ABCU self tests the brakes in a similar manner to the BSCU (see Section 8.27, “Released brakes, normal system”). If this test is failed, normal
braking can be expected as long as the normal braking system is active.
If the alternate braking system is active, braking will be asymmetric (see
Section 8.4, “Asymmetric braking”).
[BRAKES ALTN L(R) RELEASED, FCOM PRO.ABN.32,
FCOM DSC.32.30.30]
8.29. Minor nosewheel steering fault
{TODO: Its not very clear from the FCOM what this refers to}
[BRAKES N/WS MINOR FAULT, FCOM PRO.ABN.32, FCOM DSC.32.30.30]
8.30. Brake temperature limitations requiring
maintenance action
Maintenance is required if:
• One brake temp is >600°C and the other brake on the same gear is 150°C
less
• One brake temp is <60°C and the other brake on the same gear is 150°C
more
63
Chapter 8. Landing gear
• The average temp of one gear is 200°C more than the average temp of
the other
• Any brake temp exceeds 900°C
• A fuse plug has melted
[FCOM PRO.SUP.32]
64
Chapter 9. Power plant
Chapter 9. Power plant
9.1. Dual engine failure
It is recommended that the relevant QRH ABN.70 paper procedure is used
rather than the ECAM.
First priority, assuming fuel remains, is to attempt a relight by turning the
ignitors on and setting the thrust levers to idle. The speed should initially
be increased to 300kt to increase windmilling and improve the chance of a
relight. At this speed, the aircraft will cover approximately 2nm for every
1000ft lost. With this in mind, a suitable plan should be constructed to cover
the possibility that relight is not possible.
Whilst awaiting a relight, ensure that the emergency electrical generator is
on line and recycle FAC1 to recover characteristic speed display and rudder
trim. For communications, VHF1 and ATC1 are available in the emergency
electrical config. Due to lack of engine bleeds, a slow depressurisation will
be occurring, so be ready to don oxygen masks.
If there has been no relight after 30 seconds, the combustion chambers
should be ventilated by turning both engine masters off for 30 seconds. Another attempt can then be made by turning them back on. This sequence
should be repeated until successful or until APU bleed air becomes available at FL200.
Once below FL250, the APU can be started. Once below FL200, speed
should be reduced to green dot and assisted starts should be attempted. At
green dot speed, 2½nm will be covered for every 1000ft lost. Attempt to
start one engine at a time in the normal manner.
If a landing must be made without power, CONF 3 slats are recommended (flaps are unavailable). Vapp should be Vref+25kt or 150kt, whichever
is higher. The gear is available with gravity extension. The stabilizer will
be frozen once engine driven hydraulics are lost and elevator trimming will
cease with transition to direct law at gear extension. Therefore, gear extension should be delayed until CONF 3 and Vapp are reached. If ditching, do
not extend the gear.
65
Chapter 9. Power plant
If an airfield can be reached, arrange to be inbound on the runway centreline
at 4nm and 2400ft aal with CONF 1, S speed and gear up. To help achieve
this, for a clean aircraft, the following rules of thumb apply:
• A standard one minute leg holding pattern loses 8000ft and an orbit loses 4000ft. Thus for every 15 seconds outbound in a holding pattern, approximately 1000ft is lost.
• Wings level, 400ft is lost per nm.
For the segment inbound from 4nm, macro adjustment of glide path is available through the timing of gear and slat deployment, then micro adjustment
is available from temporarily increasing speed above Vapp. If necessary, disregard slat limiting speeds. It is better to land fast then long. CONF 3, gear
down will give a glide ratio of approximately 850ft per nm.
If an airfield cannot be reached, refer to Section 2.5, “Ditching” or Section 2.6, “Forced landing” as appropriate.
[ENG DUAL FAILURE, QRH ABN.70, FCOM PRO.ABN.70,
FCOM DSC.70.90]
9.2. Single Engine failure
Defined as a rapid decrease in EGT, N2 and FF, followed by a decrease
in N1. The crew must determine whether the engine has been damaged or
whether a simple flame-out has occurred. Indications of damage are loud
noises, significantly increased vibration or buffeting, repeated or uncontrollable engine stalls or abnormal post-failure indications (e.g. hydraulic
fluid loss, zero N1 or N2 etc.).
Firstly, the ignitors are turned on to protect the remaining engine and to
confirm an immediate relight attempt. The thrust lever of the failed engine
is then moved to idle (PF moves the lever after confirmation from PNF).
If the FADEC hasn’t relit the failed engine within 30 seconds of the failure, it is shut down with the master switch. If damage is believed to have
occurred, the associated fire button is pushed and, after 10 seconds, agent
1 discharged.
66
Chapter 9. Power plant
If it is believed that the engine is undamaged, a relight can be considered.
The relight procedure is fairly long and highly unlikely to be successful;
do not delay diversion and landing by attempting a relight. Also note that a
relight attempt will erase FADEC troubleshooting data.
If there is vibration and/or buffeting, attempt to find an airspeed and altitude combination that minimizes the symptoms.
Refer to Section 9.3, “Single engine operation” if unable to relight the engine.
[ENG 1(2) FAIL, FCOM PRO.ABN.70, FCOM DSC.70.90]
9.3. Single engine operation
The most pressing issue is that a single engine bleed cannot support wing
anti-ice and two packs. With the crossbleed valve selector in the normal
AUTO position, the crossbleed valve is effectively synchronised to the APU
bleed valve1 and thus will most probably be closed; wing anti-ice, if it is
in use, will be operating asymmetrically. If a fire button has been pushed,
its associated side of the pneumatic system will be locked out and thus the
only option is to turn the wing anti-ice off. PRO.SUP.30 OPERATIONS
IN ICING CONDITIONS provides mitigation of icing in the event of inoperative wing anti-ice. If both sides of the cross bleed system are available,
the cross bleed valve can be manually opened at a cost of 1200ft to the single engine gross ceiling. With the cross bleed valve open, wing anti-ice is
available, but one of the packs must be turned off2 whenever it is used.
The remaining engine must be safeguarded. To this end, continuous ignition
should be selected.
A fuel imbalance may develop. Fuel imbalance limitations are detailed in
FCOM LIM.28. If the outer tanks are balanced, once the fuller inner tank
contains less than 2250kg, fuel balance will never be limiting. Since this first
1
The exception is that the crossbleed won't open if a bleed air duct leak is detected except during
engine start.
2
It will need to be pack 1 in Emergency Electrical config; otherwise it will generally be the pack
on the dead engine side.
67
Chapter 9. Power plant
occurs with approximately 5900kg of fuel remaining, fuel balancing due
to balance limitations will generally not be required. Fuel may, however,
still need to be crossfed to prevent fuel starvation of the remaining engine.
Balance this concern against feeding your live engine the same fuel that was
feeding your failed engine when it stopped working.
TCAS should be selected to TA to avoid unflyable climb RAs.
If a reverser is unlocked with associated buffet, speed should be limited to
240kt. See Section 9.13, “Reverser unlocked in flight” for more details of
this scenario.
If the remaining engine is operated at maximum power with the aircraft at
low speed (e.g. responding to windshear) it is possible that directional control may be lost before the flight computer protections apply. Be cautious
about reducing speed below VLS on one engine.
The main systems lost are the generator, bleed and hydraulic pump associated with the engine. Other systems may be lost depending on the reason
for the shutdown. The APU can be used to replace the lost generator and,
providing the left side of the pneumatic system is available, provide pressurisation through pack 1, thus giving additional margin for the go-around.
The BMCs automatically close the engine bleeds when the APU bleed valve
is opened, so it is not necessary to manually turn them off to achieve this
additional go-around margin. Note, however, that the APU cannot support
wing anti-ice.
Approach and landing will be fairly normal. The main provisos are
• Full flap should only be selected once descending on the glidepath; if
a level off is required, the landing should be CONF3 [QRH ABN.80
Straight in approach with one engine inoperative].
• Only Cat 3 Single is available due to the loss of the ability to split the
electrical system.[QRH OPS]
• On A319s, the autopilot cannot fly FINAL APP, NAV/VS or NAV/FPA
approaches. All modes are available for manual flight with flight directors. [FCOM LIM.22.10]
68
Chapter 9. Power plant
• If flying manually, consider using manual thrust to better anticipate the
rudder inputs required by thrust changes. Also consider setting rudder
trim to zero at a late stage of the approach.[FCTM AO.020]
[ENG 1(2) SHUT DOWN, FCOM DSC.70.90, FCOM PRO.ABN.70]
9.4. Engine relight in flight
A graph showing the in flight relight envelope is provided in section
ABN.70 of the QRH. The ceiling is 27000 ft. Automatic start is recommended, but crew action is required in case of abnormal start.
To prepare for the start, ensure the affected engine master switch is turned
off and the affected thrust lever is at idle. Select ignition on the engine mode
selector and open the cross bleed. If it is anticipated starter assist may be
required, ensure wing anti ice is selected off.
To begin the start sequence, select the affected master switch on. The
FADEC will determine whether starter assist is required and will open the
start valve as needed. Both ignitors are energised as soon as the master
switch is turned on, and the HP fuel valve opens at 15% N2. Closure of the
start valve and de-energisation of the ignitors occurs at 50% N2 as normal.
Light off must occur within 30 seconds of fuel flow initiation. If uncertain
about successful relight, move the thrust lever to check for engine response.
The START FAULT ENG STALL ECAM may be disregarded if all other
parameters are normal.
[QRH ABN.70, FCOM PRO.ABN.70]
9.5. Engine stall
A stall is indicated by abnormal engine noise, flame from the engine exhaust
(and possibly inlet in extreme cases), fluctuating performance parameters,
sluggish thrust lever response, high EGT and/ or rapid EGT rise when the
thrust lever is advanced. The ECAM warning will be triggered when N2 is
between 50% and idle (approx 60%). If N2 is above idle, the QRH should
be used.
The ECAM simply instructs the master switch to be turned off, and then
secures the engine using the after engine shut down procedure (see Sec69
Chapter 9. Power plant
tion 9.3, “Single engine operation”). This procedure should also be followed
if a stall occurs on the ground.
In flight, if no ECAM is triggered, the affected thrust lever should be retarded to idle. If the engine parameters remain abnormal, shut the engine
down with the master switch. If the parameters are normal, turn on all the
anti-icing to increase bleed demand {TODO: This is inferred – check it}
and slowly advance the thrust lever. If the stall recurs, the engine can be
operated at low thrust settings, otherwise it can be operated normally.
[ENG 1(2) STALL, QRH ABN.70, FCOM DSC.70.90, FCOM PRO.ABN.70]
9.6. Engine tailpipe fire
An internal engine fire may be encountered during engine start or shutdown.
It will either be seen by ground crew or may be indicated by EGT failing to
decrease after the master switch is selected off.
Start by getting the engine to a known state by ensuring the man start button
is selected off and the affected engine master is selected off.
The concept is to blow the fire out by dry cranking the engine. It is therefore essential that the fire button is not pressed, as this will remove external power from the FADEC and prevent dry cranking. Firstly, a source of
bleed air must be available to power the starter. Possibilities, in order of
preference, are the APU, the opposite engine or a ground air cart. If using
the opposite engine, the source engine bleed must be on, the target engine
bleed should be off, the cross bleed should be opened and thrust increased
to provide 30 psi of pressure. {TODO: This is just the crossbleed start procedure from QRH SI.150 – check that there are no differences}. If using
ground air, both engine bleeds should be off and the cross bleed opened.
Once high pressure air is available, select the engine mode selector to crank
and select the man start button to on. Once the fire is extinguished, select
the man start button off and the engine mode selector to normal.
As a last resort, external fire suppression agents may be used. They are,
however, highly corrosive and the engine will be a write off.
[QRH ABN.70, FCOM PRO.ABN.70]
70
Chapter 9. Power plant
9.7. High engine vibration
The ECAM VIB advisory (N1≥6 units, N2≥4.3 units) is simply an indication that engine parameters should be monitored more closely. High VIB
indications alone do not require the engine to be shut down.
High engine vibration combined with burning smells may be due to contact
of compressor blade tips with associated abradable seals.
If in icing conditions, high engine vibration may be due to fan blade or
spinner icing. The QRH provides a drill to shed this ice, after which normal
operations can be resumed.
If vibrations rapidly increase above the advisory level, the engine should be
operated at lower power settings to keep the vibrations below the advisory
level.
[QRH ABN.70, FCOM PRO.ABN.70]
9.8. Low oil pressure
The sources for the gauge on the ECAM ENG page and the ECAM warning
are different. If there is a discrepancy between the two, a faulty transducer
is the most likely cause and the engine can continue to be operated normally.
If both sources agree, the engine should be shut down by retarding its thrust
lever and selecting its master switch off and the after shutdown procedure
applied (see Section 9.3, “Single engine operation”).
[ENG 1(2) OIL LO PR, FCOM PRO.ABN.70, FCOM DSC.70.90]
9.9. High oil temperature
It may be possible to reduce oil temperature by increasing engine fuel flow.
If oil temperature exceeds 155°C or exceeds 140°C for 15 minutes, the
engine must be shut down.
[ENG 1(2) OIL HI TEMP, FCOM PRO.ABN.70]
71
Chapter 9. Power plant
9.10. Oil filter clog
If a warning occurs during a cold engine start with oil temperature <40°C,
the warning may be considered spurious. The oil filter features a bypass
mechanism, so there is no immediate problem.
[ENG 1(2) OIL FILTER CLOG, FCOM PRO.ABN.70, FCOM DSC.70.90]
9.11. Fuel filter clog
No immediate crew action required. {TODO: I assume there is some sort
of bypass mechanism, but this isn’t apparent from the FCOM}
[ENG 1(2) FUEL FILTER CLOG, FCOM PRO.ABN.70]
9.12. Uncommanded reverser pressurisation
There are two valves that prevent pressure reaching the thrust reverser actuators at an inopportune moment, plus a third that commands direction of
movement. The most upstream of these, controlled by the SECs, prevents
any hydraulic pressure reaching the Hydraulic Control Unit (HCU) when
the thrust levers are not in the reverse quadrant. If this protection is lost,
the correct operation of the HCU should keep the doors properly stowed.
An HCU malfunction, however, could result in an in-flight reverser deployment. If flight conditions permit, idle thrust should be selected on the affected engine.
{TODO: It is unclear from the FCOM whether the ECAM indicates pressure has reached the directional solenoid valve and hence that the reverser
door jacks are pressurised, albeit in the closed direction. The existence of
the REV ISOL FAULT ECAM indicates that this is probably the case. Investigate further.}
[ENG 1(2) REV PRESSURIZED, FCOM PRO.ABN.70]
9.13. Reverser unlocked in flight
If one or more reverser doors are detected as not stowed in flight, the associated FADEC will automatically command idle on the affected engine.
This should be backed up by setting the thrust lever to idle.
72
Chapter 9. Power plant
A warning without associated buffet is likely to be spurious. In this case
limit speed to 300kt/M.78, keep the engine running at idle and expect to
make a normal single engine approach and landing.
If there is buffet, shut the engine down and limit speed to 240kt. Full rudder trim may be required. The ECAM will provide one of two approach
procedures depending on how many doors are detected as not stowed:
• If all 4 doors are not stowed, it will be a flap 1 landing, with approach
speed VREF+55kt slowing to VREF+40kt below 800ft. Gear should only
be deployed once landing is assured.
• Otherwise, it will be a flap 3 landing at VREF+10kt.
[ENG 1(2) REVERSE UNLOCKED, FCOM PRO.ABN.70]
9.14. EIU fault
The Engine Interface Unit (EIU) receives data from the engine start system,
the auto-thrust system, the LGCIUs, the air conditioning controller and the
engine anti ice system and feeds it to its related FADEC. Thus loss of the
EIU leads to loss of auto-thrust, reverser, idle control (defaults to approach
idle) and start for the affected engine. If engine anti ice is used, the ignitors
must be manually selected.
If an engine fails whilst its associated EIU is inoperative, the usual ECAM
messages will not be generated. The failure can still be diagnosed from the
system pages and an appropriate drill can be actioned from the FCOM.
[ENG 1(2) EIU FAULT, FCOM PRO.ABN.70]
9.15. N1/N2/EGT overlimit
If the overlimit is moderate, the associated thrust lever can be retarded until
the overlimit ceases, and the flight may be continued normally.
If the overlimit is excessive, the engine should generally be shut down. If
there are over-riding factors precluding a shut down, the engine may be run
at minimum required thrust.
[ENG 1(2) N1/N2/EGT OVERLIMIT, FCOM PRO.ABN.70]
73
Chapter 9. Power plant
9.16. N1/N2/EGT/FF discrepancy
The system can detect a discrepancy between actual and displayed values
of N1, N2, EGT and fuel flow. This is indicated by an amber CHECK
beneath the affected parameter. Attempt to recover normal indications by
switching from DMC1 to DMC3. If this fails, values can be inferred from
the opposite engine.
[ENG 1(2) N1(N2)(EGT)(FF) DISCREPANCY, FCOM PRO.ABN.70]
9.17. Start valve fault
If a start valve fails open, remove bleed sources supplying the faulty valve.
If on the ground, turn off the MAN START button if used, and shut the
engine down with its master switch.
If the start valve fails closed, it may be that insufficient pressure is reaching
it. Try opening the cross bleed and turning on the APU bleed.
On the ground, a start may still be possible with manual operation of the
start valve.
[ENG 1(2) START VALVE FAULT, FCOM PRO.ABN.70]
9.18. Start faults
Start faults include ignition faults (no light off within 18 seconds of ignition
start), engine stalls, EGT overlimit (>725°C) and starter time exceedance
(2 mins max).
On the ground, nearly all starts are auto starts. In this case the FADEC will
automatically abort as needed. It will then automatically carry out the required dry crank phase and make further attempts. Once the FADEC gives
up, an ECAM message will instruct the crew to turn off the relevant engine
master. If the fault was a stall due to low pressure, consider another automatic start using cross bleed air.
If a manual start is attempted, the crew must monitor the relevant parameters (the FADECs will provide some passive monitoring) and, if necessary, abort the start by turning the engine master and man start button
74
Chapter 9. Power plant
off. The crew must then carry out a 30 second dry crank phase manually.
Note that this is not mentioned in the relevant supplementary procedure,
nor are the relevant lines displayed on the ECAM. It is probably worth having FCOM PRO.ABN.70 handy when carrying out manual starts.
Following an aborted start in flight, the engine master should be turned off
for 30 seconds to drain the engine. A further start attempt can then be made.
If the electrical power supply is interrupted during a start (indicated by loss
of ECAM DUs) turn the master switch off, then perform a 30 second dry
crank.
If a fuel leak from the engine drain mast is reported, run the engine at idle
for 5 minutes. If, after this time, the leakage rate is less than 90 drops/min3,
the aircraft may dispatch.
[ENG 1(2) START FAULT, FCOM PRO.ABN.70], EOMB 2.3.8.1
9.19. Ignition faults
Each engine has two ignitors. If both fail on a single engine, avoid heavy
rain, turbulence and, as far as possible, icing conditions.
[ENG 1(2) IGN FAULT, FCOM PRO.ABN.70]
9.20. Thrust lever angle sensor faults
Each thrust lever has two thrust lever angle (TLA) sensors.
Failure of one sensor only leads to a loss of redundancy; the proviso is that
it must have failed in a way that the system can positively detect.
More difficult is when the sensors are in disagreement. In this case, the
FADEC makes the assumption that one of the sensors is accurate and provides a default thrust setting based on this assumption:
• On the ground, if neither sensor is in a take-off position, idle power is
commanded. If one sensor is in take-off position and the other is above
3
A leak rate of 60-90 drops/min requires maintenance action within 25 cycles.
75
Chapter 9. Power plant
idle, take-off thrust is commanded. This leaves the completely conflicted
case of one sensor at take-off and the other at idle or below; the FADEC
selects idle power as the best compromise.
• In flight, once above thrust reduction altitude the FADEC will assume
that the largest TLA, limited to CLB, is correct. The autothrust can then
manage the thrust between idle and this position. For approach (slats extended), as long as both TLAs indicate less than MCT, thrust is commanded to idle.
If both TLA sensors fail, the FADEC again goes for sensible defaults. On
the ground, idle thrust is set. In flight, if the thrust was TO or FLEX at the
time of failure, this setting will be maintained until slat retraction, whereupon CLB will be selected. If the thrust was between IDLE and MCT, CLB
will be selected immediately. As soon as slats are deployed, IDLE is commanded; this remains the case even for go-around. Autothrust will manage
thrust between IDLE and CLB whenever CLB is assumed.
[ENG 1(2) THR LEVER DISAGREE, ENG 1(2) THR LEVER FAULT, ENG 1(2) ONE TLA FAULT, FCOM PRO.ABN.70]
9.21. FADEC faults
The FADECs have two redundant channels; loss of a single channel does
not generally require crew action. Single channel FADEC faults during start
may be considered spurious on successful application of the reset procedure
detailed in FCOM PRO.ABN.70
If both channels of a FADEC are lost, the thrust lever should be set to idle.
Engine indications will be lost. If all other parameters are normal (check
all ECAM system pages), the engine can be left running. Otherwise, shut
it down.
If a FADEC overheats, reducing engine power may reduce temperature in
the ECU area sufficiently to prevent shutdown. If on the ground the engine
must be shut down and the FADEC depowered.
[ENG 1(2) FADEC A(B) FAULT, ENG 1(2) FADEC FAULT, ENG 1(2) FADEC HI TEMP, FCOM PRO.ABN.70]
76
Chapter 10. Navigation
Chapter 10. Navigation
10.1. EGPWS alerts (memory item)
EPGWS alerts can be categorised into warnings and cautions. A warning
is any alert with the instruction “Pull up” or “Avoid” attached. All other
alerts are cautions. A warning may be downgraded to a caution if flying in
daylight VMC and positive visual verification is made that no hazard exists,
or if an applicable nuisance warning notice is promulgated in Company
documentation [EOMA 8.3.5].
The response to a “Pull up” type warning is to call “Pull up, TOGA”, disconnect the autopilot and simultaneously roll the wings level, apply full backstick and set TOGA power. The speedbrake should then be checked retracted. Once the flight path is safe and the warning stops, accelerate and
clean up as required. Note that it is highly likely that the autothrust ALPHA
FLOOR protection will have engaged and thus the autothrust will need to
be disengaged to cancel TOGA LK mode.
An “Avoid” warning indicates that a vertical manoeuvre alone is insufficient
to prevent collision, and lateral avoiding action must also be taken. The
response is essentially the same except that instead of rolling wings level, a
turn must be initiated. The direction of the turn is at the discretion of the
pilot, with the terrain or obstacle that is the source of the warning being
displayed in red and black crosshatch on the ND.
The response to a caution is to correct the flight path or aircraft configuration as necessary. A configuration warning will almost always require a
go around.
[QRH ABN.34, FCOM PRO.ABN.34]
10.2. TCAS warnings (memory item)
TCAS warnings may be either traffic advisories ("Traffic, Traffic") or resolution advisories (anything else).
From 28th January 2017, new easyJet deliveries are fitted with the new
AP/FD TCAS mode. When this mode is fitted, the autopilot is capable of
77
Chapter 10. Navigation
autonomously flying the TCAS escape manoeuvre, with the pilots simply
calling the FMAs and monitoring. If flying manually with flight directors
and autothrust on, the flight directors will give standard guidance to fly the
manoeuvre. If flying fully manually, the flight directors will pop up and the
autothrust will engage, although it may be necessary to set the thrust levers
to the climb gate.
If AP/FD TCAS mode is not installed or not available, the first response
to either advisory is to call “TCAS, I have control” to unequivocally establish who will be carrying out any manoeuvres. If it is a resolution advisory,
the autopilot should be disconnected and both flight directors turned off1.
The autothrust remains engaged and reverts to speed mode. A vertical manoeuvre should then be flown to keep the V/S needle out of the red areas
shown on the V/S scale. ATC should then be notified (e.g “Radar, Easy 123
– TCAS RA”). When clear of conflict, return to assigned level and re-engage the automatics (ATC phraseology: “Radar, Easy 123 – clear of conflict, returning to FL XXX”).
If a climb resolution advisory occurs on final approach, a go around must
be flown.
[QRH ABN.34, FCOM PRO.ABN.34, CAP413 1.7]
10.3. RNAV downgrades
RNAV operations fall into three main categories:
1.
RNAV approach (usually RNP 0.3)
2.
RNP-1 (aka PRNAV)
3.
RNP-5 (aka BRNAV)
The equipment that must be serviceable is listed in EOMB 2.3.18.3.2 for
RNAV approach FCOM PRO.SPO.51 for RNP SID/STAR.
The following messages indicate loss of RNAV capability:
1
If one FD is left engaged, the autothrust will not revert to speed mode, possibly resulting in speed
decay and engagement of normal law protections.
78
Chapter 10. Navigation
• NAV ACCUR DOWNGRAD (MCDU and ND)2
• FMS1/FMS2 POS DIFF (MCDU)
• NAV FM/GPS POS DISAGREE (ECAM)
• CHECK IRS 1(2)(3)/FM POSITION (MCDU)3
For RNAV approaches, a go-around is mandated for any of these messages
or if GPS PRIMARY LOST is annunciated on both NDs4.
In an RNP-1 (PRNAV) environment, an RNAV downgrade may leave the
aircraft unsure of position and below MSA. The initial response is to notify
ATC with the phrase “Unable RNAV due equipment” and request reclearance. An immediate climb above MSA should be considered if a suitable
alternative navigation method (e.g. radar vectors) is not available.
Some RNP-1 procedures specify additional downgrade criteria such as a requirement for dual RNAV systems or GPS. If GPS is not specifically mandated as an additional restriction, an RNP-1 procedure may still be flown
without GPS PRIMARY: set RNP to 1, check NAV ACCURACY is HIGH
and carry out a raw data check prior to commencement.
Downgrades in an RNP-5 (BRNAV) environment are less critical as the
aircraft will be above MSA. The IRSs provides RNP-5 required accuracy
for two hours from last full alignment regardless of MCDU ENP, and it is
acceptable to carry out a raw data check (see EOMB 2.3.15) to confirm that
RNP-5 capability is maintained. If loss of RNP-5 capability is confirmed,
inform ATC and continue with conventional navigation.
[FCOM PRO.SPO.51, EOM A.8.3.2.5, EOM B.2.4.51]
2
For RNP-1 and RNP-5 procedures, if NAV ACCUR DOWNGRAD occurs on one side only, the
procedure may be continued using the unaffected FMGC.
3
This is missing from the RNP-1 list in EOMB but is listed in the FCOM. It is not listed as a go
around criteria for RNAV approach, but continuing would seem somewhat brave…
4
If GPS PRIMARY LOST is annunciated on only one ND, the approach may be continued using
the unaffected FMGC. There is also conflict between EOMA and EOMB as to whether GPS PRIMARY is required at all for RNAV(VOR/DME) or RNAV(DME/DME) etc. – I've gone with the
most restrictive here.
79
Chapter 10. Navigation
10.4. ADR faults
A single ADR fault simply requires switching to the hot spare and turning
the affected unit off. Loss of ADR1 will lead to the loss of the extended
functions of the EGPWS. Loss of ADR2 will lead to both baro reference
channels being driven by the same FCU channel {TODO: Find out details
of this}, so the baro refs should be checked.
Loss of two ADRs will lead to Alternate Law with associated speed restrictions and landing configuration considerations. Air data switching is used
as necessary, and the affected ADRs are turned off. ATC switching may be
required to restore transponder. If ADR 1 and 3 are lost, the landing gear
safety valve is controlled closed, so the gear must be gravity extended and
cannot subsequently be retracted. This is not mentioned by the ECAM –
the gear will simply fail to extend normally.
If all three ADRs are lost, the result is airframe dependent. Some of the fleet
now have a NAV ADR 1+2+3 FAULT ECAM and an appropriate procedure utilising the Backup Speed Scale, completing with the QRH ABN.34
ALL ADR OFF paper procedure. For older airframes the ECAM displayed
will be for Dual ADR failure and must be ignored since it will request
meaningless air data and ATC switching. Instead revert to standby instruments (the standby ASI and Altimeter have direct pressure feeds from the
the standby pitot and static ports) and refer to QRH ABN.34 ADR 1+2+3
FAULT. Interestingly, when Backup Speed Scale is available, the ECAM
advises that the standby instrument indications may be unreliable…
Triple ADR failure has a few additional ramifications. Of note is loss of
automatic cabin pressure control (see Section 3.13, “Pressure controller
faults” for manual pressure control methodology), Alternate Law and gravity gear extension. Of lesser concern are loss of stall warning, rudder travel
limiter frozen until slat extension and loss of auto flap retraction.
[NAV ADR 1(2)(3)(1+2)(1+3)(2+3) FAULT, QRH ABN.34, FCOM PRO.ABN.34, FCOM DSC.34.10]
80
Chapter 10. Navigation
10.5. ADR disagree
The ECAM message indicates that, following an ADR fault or rejection,
there is a speed or angle of attack disagreement between the two remaining
ADRs. This will cause a degradation to alternate law. If there is a speed
disagreement, see Section 2.3, “Unreliable airspeed (memory item)”. If the
speed does not disagree, an AOA sensor is providing incorrect data and
there is a risk of spurious stall warnings.
[NAV ADR DISAGREE, FCOM PRO.ABN.34, FCOM DSC.34.10.30]
10.6. RA faults
A single RA fault results in degradation of approach capability to Cat II.
Loss of both RAs will lead to direct law at landing gear extension and a loss
of ILS APPR mode capability. Therefore, landing will be CONF 3 with
associated corrections, the approach should be flown in LOC and FPA and
autopilot disconnect should be anticipated at gear extension.
[NAV RA 1(2) FAULT, FCOM PRO.ABN.34, FCOM DSC.34.40.20]
10.7. IR faults
In case of simultaneous loss of the ADR and IR associated with an ADIRU,
apply the ADR FAULT procedure first.
A single IR fault will simply require ATT/HDG switching. This may lead to
loss of the extended functions of the EPGWS and/or loss of TCAS. It may
be possible to recover the IR in ATT mode (see Section 10.9, “IR alignment
in ATT mode”).
A dual IR fault will lead to loss of PFD indications on at least one side so
use ATT/HDG switching to recover. It will also lead to Alternate Law and
associated speed restrictions and landing configuration considerations.
[NAV IR 1(2)(3)(1+2)(1+3)(2+3) FAULT, FCOM PRO.ABN.34,
FCOM DSC.34.10.30]
81
Chapter 10. Navigation
10.8. IR disagree
Following rejection or failure of an IR, there is disagreement between the
two remaining IRs. Normal and alternate laws are lost, but alternate law
with reduced protections can be recovered by isolating the faulty IR (use
standby horizon to cross-check) and resetting the ELACs.
[NAV IR DISAGREE, FCOM PRO.ABN.34, FCOM DSC.34.10.30]
10.9. IR alignment in ATT mode
If IR alignment is lost, it may be possible to recover attitude and heading
information by switching the ADIRU selector to ATT and maintaining level
constant speed flight for 30 seconds. The magnetic heading will need to be
entered, the exact method being dependent on the ADIRS CDU fitted.
[IR ALIGNMENT IN ATT MODE, QRH ABN.34, FCOM PRO.ABN.34]
10.10. FM/GPS position disagree
This can be disregarded if on an ILS or LOC approach. On an overlay approach, revert to raw data. On an RNAV approach, go around unless visual.
In other flight phases, manually tune a VOR and check against either the
needle and DME on the ND or the BRG/DIST TO field on the PROG page.
If the error is greater than 3nm in the cruise or greater than 1nm for approach, raw data navigation and AP/FD selected lateral and vertical modes
should be used.
[NAV FM/GPS POS DISAGREE, QRH ABN.34, FCOM PRO.ABN.34, FCTM SI-030]
82
Chapter 11. Auto-flight
Chapter 11. Auto-flight
11.1. FAC faults
Failure of a single FAC results in loss of redundancy and hence loss of Cat
3 Dual. In particular, a single FAC provides all the characteristic speeds
(VSW, VLS, VFE, VFE-next, VLE, VMO/MMO, Green dot, S speed and F speed).
It may be worth cross-checking against QRH FPE.SPD.
If both FACs are lost the rudder travel limit system, rudder trim control,
yaw damper and PFD characteristic speeds are lost and Alternate Law with
mechanical yaw control becomes active. Recovery of full rudder authority at flap extension should be anticipated, but use rudder with care above
160kt.
[AUTO FLT FAC 1(2)(1+2) FAULT, FCOM DSC.22_10.50, FCOM PRO.ABN.22]
11.2. Yaw damper faults
A single failure leads to loss of redundancy, and hence loss of Cat 3 Dual.
On some airframes a reset of the affected FAC can be attempted.
With a dual failure a reset of the FACs should be attempted. If the yaw
damper is not recovered, the flight controls revert to alternate law (see Section 5.12, “Alternate Law”). Unless the failure occurred below alert height,
only Cat I will be available.
[AUTO FLT YAW DAMPER 1(2)(SYS), FCOM DSC.22_10.50, FCOM PRO.ABN.22]
11.3. Rudder trim faults
Loss of a rudder trim from a single FAC leads to loss of redundancy and
hence loss of Cat 3 Dual.
If complete loss of rudder trim occurs, an attempt should be made to reset
the FACs. If this is not successful, only Cat I is available.
[AUTO FLT RUDDER TRIM SYS(1(2) FAULT), FCOM DSC.22_10.50,
FCOM PRO.ABN.22]
83
Chapter 11. Auto-flight
11.4. Rudder travel limiter faults
Loss of rudder limit functionality from a single FAC leads to loss of redundancy only.
The effect of complete loss of rudder limiter functionality depends on when
the failure occurred. In general, the rudder should be used with caution
when above 160kt. An attempt should be made to recover the limiter by
resetting the FACs. If unsuccessful, full rudder travel authority may or may
not be recovered at slat extension. If a landing must be made with the rudder
travel limiter frozen in the high speed regime, max crosswind is reduced to
15kt and differential braking may be required on the landing roll (do not
arm autobrake).
[AUTO FLT RUD TRV LIM_1(2)(SYS), FCOM DSC.22_10.50, FCOM PRO.ABN.22]
11.5. FCU faults
Loss of a single channel will result in the spare channel automatically taking
over. All that is required is a cross check of the baro refs.
Loss of both channels leads to loss of all FCU and EFIS panels. The autopilots and autothrust are lost and parameters that are normally controlled
by the panels revert to sensible default values. If the weather radar image
remains displayed, disregard it since the scale will be incorrect.
[AUTO FLT FCU 1(2)(1+2) FAULT, FCOM DSC.22_10.50, FCOM PRO.ABN.22]
84
Chapter 12. Hydraulics
Chapter 12. Hydraulics
12.1. Green + yellow systems low pressure
It may be possible to recover the yellow system using the yellow electrical
pump. Systems lost because of low air pressure in the reservoir will be recoverable at lower altitudes. Systems lost due to reservoir overheats may be
usable for the approach once they have cooled down.
Roll control is available from ailerons and spoiler 3. Pitch control is available from the elevators, but the THS is frozen. Yaw damping is lost. Slats
are available, but slow. Flaps are frozen. Control law reverts to alternate law
without stability protections. The autopilots are lost.
The gear must be gravity extended, but due to the frozen THS this must
be delayed until VAPP is achieved in CONF 3. Furthermore, transition to
CONF 3 must be achieved in accordance with Section 5.6, “Flaps and/or
slats fault/locked” due to the flaps being frozen. Transition to direct law on
gear deployment adds to the fun, especially as pitch trim is unavailable.
Cat 2 and 3 capability is lost. The landing will be CONF 3, most probably
with only the slats deployed; the flare attitude will be abnormal. There will
only be one spoiler (#3), no reversers, accumulator only braking and no
nose wheel steering. Hence required landing distances almost triple.
The go around, in some ways, is exceptionally straightforward. The gear
cannot be raised and the configuration should be maintained. Therefore all
that needs to be done is selecting a speed of VFE‑10. As long as the flaps
are frozen at zero, the slats can be retracted for a subsequent diversion; fuel
flow will be approximately 2.3 times normal due to the extended gear.
A paper summary is available in section ABN.29 of the QRH, and this
should be applied once all ECAM actions are completed.
[HYD G + Y SYS LO PR, QRH ABN.29, FCOM DSC.29.30, FCOM PRO.ABN.29]
85
Chapter 12. Hydraulics
12.2. Blue + yellow systems low pressure
It may be possible to recover the yellow system using the yellow electrical
pump or the blue system using the RAT. Systems lost because of low air
pressure in the reservoir will be recoverable at lower altitudes. Systems lost
due to reservoir overheats may be usable for the approach once they have
cooled down.
Roll control is provided by ailerons and spoiler 5, pitch control by the THS
and left elevator. Slats and flaps are available at reduced rate. The autopilots
are lost but Normal law is retained. Speedbrake is unavailable.
Cat 2 and 3 capability is lost. Landing distances are increased due to loss
of spoilers 2, 3 and 4 and loss of #2 reverser. Approach configuration is
normal apart from slow flaps and slats and gravity gear extension (protects
green system). Nose wheel steering is lost.
Gear cannot be retracted on go-around. Fuel burn for a subsequent diversion
will be significantly greater (approx factor 2.3); see Section 8.6, “Flight
with landing gear extended” for further details.
A paper summary is available in section ABN.29 of the QRH, and this
should be applied once all ECAM actions are completed.
[HYD B + Y SYS LO PR, QRH ABN.29, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.3. Green + blue systems low pressure
If the blue system has been lost due to the loss of its electrical pump, it
may be recovered by deploying the RAT. Systems lost because of low air
pressure in the reservoir will be recoverable at lower altitudes. Systems lost
due to reservoir overheats may be usable for the approach once they have
cooled down.
Roll control is provided by spoilers 2 and 4 only. Use of speedbrake would
therefore lead to loss of roll control. Pitch control is available from the
starboard elevator; the THS remains available. Due to the limited control
86
Chapter 12. Hydraulics
surfaces available, the aircraft will be slightly sluggish. The slats are frozen,
but flaps are available. Control law reverts to alternate law without stability
protections. The autopilots are lost. The approach will be flown with the
autothrust off.
Due to the frozen slats, configuration changes must be carried out in accordance with Section 5.6, “Flaps and/or slats fault/locked”. The gear must be
gravity extended; to benefit from the improved elevator response available
in direct law, this is done at 200kt. Manual trim will be available.
Cat 2 and 3 capability is lost. The landing will be CONF 3. Two spoilers per
wing are available, reverser 2 is available, alternate braking is available and
nose wheel steering is available. Landing distances approximately double.
Go around is straightforward – the gear cannot be retracted and the flap
configuration should be maintained. Simply select VFE‑10. For diversion,
the flaps can be retracted. With the gear remaining down, fuel burn will
increase by a factor of approximately 2.3.
A paper summary is available in section ABN.29 of the QRH, and this
should be applied once all ECAM actions are completed.
[HYD G + B SYS LO PR, QRH ABN.29, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.4. Green system low pressure
The major lost systems are normal landing gear operation (gravity extension
is available) and the normal brake system, including the autobrake (alternate
braking is available). Landing distance will be increased due to loss of two
spoilers per wing and reverser 1. Flap and slat deployment will be slow.
[HYD G SYS LO PR, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.5. Yellow system low pressure
It may be possible to recover the yellow system by using the yellow electric
pump.
87
Chapter 12. Hydraulics
Two spoilers per wing and reverser 2 are lost, so landing distance will increase slightly. Nose wheel steering is lost. Flap deployment will be slow.
As the alternate braking system is only available through the brake accumulator, ensure there is sufficient pressure when the parking brake is set.
[HYD Y SYS LO PR, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.6. Blue system low pressure
One spoiler per wing will be lost but this has negligible effect on landing
distance. Slats will be slow to deploy. Deployment of the RAT is not recommended unless another system is lost. If the system is lost due to low
reservoir level, emergency generation capability is lost.
[HYD B SYS LO PR, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.7. Engine driven pump low pressure
Turn off the affected pump. The PTU will pressurise the affected system.
[HYD G(Y) ENG 1(2) PUMP LO PR, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.8. Electric pump low pressure or overheat
Turn off the affected pump. In the case of an overheat, the pump may be reengaged for the approach providing the relevant FAULT light on the overhead panel has extinguished.
[HYD Y(B) ELEC PUMP LO PR(OVHT), FCOM DSC.29.30, FCOM PRO.ABN.29]
12.9. Low reservoir air pressure
Loss of air pressure to a hydraulic reservoir may lead to pump cavitation
and hence fluctuating pressures. If this occurs, turn off the affected pump,
and if applicable, turn off the PTU. Cavitation reduces with altitude, so it
may be possible to reinstate the system during the descent.
[HYD G(Y)(B) RSVR LO AIR PR, FCOM DSC.29.30, FCOM PRO.ABN.29]
88
Chapter 12. Hydraulics
12.10. Reservoir overheat
Turn off all affected pumps and if applicable, turn off the PTU. The system
should be reinstated for the approach if it has cooled sufficiently. This is
indicated by the FAULT light going out on the overhead panel.
[HYD G(Y)(B) RSVR OVHT, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.11. Low reservoir fluid level
Turn off all affected pumps and, if applicable, turn off the PTU. The affected system is not recoverable. In the case of low reservoir level in the
yellow system, it is possible that the fluid from the brake accumulator may
also be lost. This usually occurs within 10 minutes of the initial warning.
Without the brake accumulator, the parking brake is not available, so chock
the aircraft before shutting down engine 1.
[HYD G(Y)(B) RSVR LO LVL, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.12. PTU fault
In flight this indicates that either the green or yellow system is low on fluid
and has low system pressure. The PTU must be turned off to prevent overheating the supplying system.
[HYD PTU FAULT, FCOM DSC.29.30, FCOM PRO.ABN.29]
12.13. RAT fault
Indicates that either the RAT is not fully stowed, pressure is present in the
RAT stowing actuator or that the RAT pump is not available. No action is
required.
[HYD RAT FAULT, FCOM DSC.29.30, FCOM PRO.ABN.29]
89
Chapter 12. Hydraulics
90
Chapter 13. Ice and rain protection
Chapter 13. Ice and rain protection
13.1. Double AOA heat fail
If two AOA probes are affected by icing, the computers may erroneously
deselect the remaining good ADR. Switching off one of the affected ADRs
leaves the system in the state described in Section 10.5, “ADR disagree”.
[QRH ABN.30, FCOM PRO.ABN.30]
13.2. Single pitot probe heat or static port heat
fault
The ADR associated with the failed probe or port should be considered unreliable. ADR1 or ADR2 can be replaced with ADR3 using air data switching. If using standby instruments with ADR3 unreliable, air data information must be monitored closely.
[ANTI ICE CAPT(F/O)(STBY) PITOT(L(R) STAT), FCOM DSC.30.50.30,
FCOM PRO.ABN.30]
13.3. Multiple pitot heat failures
The issue with loss of anti-ice on more than one pitot probe is that it is
possible that the two unprotected pitot probes will ice up at the same time
and provide erroneous but coherent data. This leads to a situation where the
ADR associated with the remaining protected probe is locked out despite
being the single correct source.
Obviously, the first thing to do is to avoid icing conditions. If there is a
working ADR connected to a protected probe, turn one of the ADRs associated with an unprotected probe off. This ensures that an “ADR DISAGREE” ECAM caution is triggered by significant speed discrepancies and
ensures that the protected ADR will not be automatically deselected.
If pitot heat is lost on all probes, one of the ADRs should, again, be turned
off to ensure the “ADR DISAGREE” ECAM caution is provided. If icing is
91
Chapter 13. Ice and rain protection
expected, turn off a second ADR and be ready to apply unreliable airspeed
procedures (see Section 2.3, “Unreliable airspeed (memory item)”).
[ANTI ICE ALL(CAPT(F/O)+F/O(STBY)) PITOT, FCOM DSC.30.50.30,
FCOM PRO.ABN.30]
13.4. Single AOA or TAT heat fault
No immediate operational effect.
[ANTI ICE CAPT(F/O)(STBY) AOA(TAT), FCOM DSC.30.50.30, FCOM PRO.ABN.30]
13.5. Probe heat computer failure
If applicable, deselect the affected ADR.
[ANTI ICE CAPT(F/O)(STBY) PROBES, FCOM DSC.30.50.30, FCOM PRO.ABN.30]
13.6. Window heat fault
No immediate operational effect.
[ANTI ICE L(R)(L+R) WINDSHIELD(WINDOW), FCOM DSC.30.50.30,
FCOM PRO.ABN.30]
13.7. Engine anti-ice valve fault
If a valve fails to open when commanded, avoid icing conditions. If it fails
to close when commanded, a thrust limit penalty applies {TODO: Check
this is automatically applied by the relevant FADEC}.
[ANTI ICE ENG 1(2) VALVE OPEN(CLSD), FCOM DSC.30.30.30, FCOM PRO.ABN.30]
13.8. Wing anti-ice valve open when commanded
closed
In the air, just allow the failed side to be continually anti-iced and use wing
anti-ice on the working side when required. A thrust limit penalty will apply.
92
Chapter 13. Ice and rain protection
On the ground, isolate and depressurize the pneumatic system on the failed
side.
[WING ANTI ICE L(R) VALVE OPEN, FCOM DSC.30.20.30, FCOM PRO.ABN.30]
13.9. Wing anti-ice valve closed when commanded open
The wing anti-ice must be turned off to avoid asymmetrically de-icing the
wings. Avoid icing conditions. If ice accretion does occur, landing distances
and Vapp adjustments are in QRH FPE.IFL.30. Speed must be maintained
above Vα‑prot (top of amber and black striped band) if ice has accreted as
stall margins may be reduced.
[WING ANTI ICE SYS FAULT, FCOM DSC.30.20.30, FCOM PRO.ABN.30]
13.10. Wing anti-ice valves fail to close after
ground self-test
Simply switch off the wing anti-ice with the push button. If the valves still
do not close, see Section 13.8, “Wing anti-ice valve open when commanded
closed”.
[ANTI ICE OPEN ON GND, FCOM DSC.30.20.30, FCOM PRO.ABN.30]
13.11. High pressure detected when wing anti-ice
turned on
A thrust limit penalty is applied automatically. {TODO: Check that this is
automatic}
[WING ANTI ICE L(R) HI PR, FCOM DSC.30.20.30, FCOM PRO.ABN.30]
93
Chapter 13. Ice and rain protection
94
Chapter 14. Indicating/ Recording
Chapter 14. Indicating/ Recording
14.1. Display unit failure
Intermittent flashing of DUs may be indicative of a generator issue. If P1
DUs are flashing, try turning off generator 1. If P2 DUs are flashing, try
turning off generator 2. The APU generator can be used if successful.
In the case of a blank DU, a large amber “F”, a distorted display or minimum
brightness, on some airframes a reset may be attempted by selecting the DU
brightness to OFF then back to ON. If the reset is not applicable or the DU
does not recover after 10 seconds, the affected DU can be turned off. In
the case of an INVALID DISPLAY UNIT message, an automatic recovery
attempt is initiated; this can take 40 seconds or more. If automatic recovery
does not succeed, the DU can be turned off.
An INVALID DATA message is indicative of a DMC problem; EIS DMC
switching may recover the DU, as may turning the DU OFF then ON. It is
possible that this message will appear simultaneously on all DUs; this initiates an automatic recovery attempt, which, again, can take 40 seconds or
more. DUs that are not automatically recovered may be recovered manually
by sequentially turning them off for 40 seconds then back on. If resetting
a DU triggers a recurrence of the original problem, leave that DU off for
the next recovery cycle.
In the event of an unrecoverable failure of a display unit, some automatic
display switching will occur: PFD will auto-transfer to NDUs and E/WD
will auto-transfer to SDU. Each pilot has a PFD/ND XFR button that allows
their PFD to be toggled onto their NDU and their ND to be toggled onto
their PFDU. An ECAM/ND XFR switch on the switching panel allows either the SD (when SDU xor E/WDU failed) or E/WD (SDU and E/WDU
failed) to be displayed on an NDU.
The most likely end result of a DU failure is that one ND must be shared
and/or that the SD is not displayed. The ECAM can be operated with just
the E/WD. When a SYS page is needed, press and hold the required SYS
page button. When STATUS is required, press and maintain the STS key.
95
Chapter 14. Indicating/ Recording
The E/WD will be displayed 2s after the STS key is released. To access
STATUS overflow, release then repress the STS key within 2s.
[QRH ABN.31, FCOM PRO.ABN.31]
14.2. Multiple spurious ECAM alerts
A faulty DMC can cause multiple spurious ECAM alerts (spurious as confirmed by SD pages). The EIS DMC switch should be used to identify the
faulty DMC and replace it with DMC3.
[QRH ABN.31, PRO.ABN.31]
14.3. Flight Warning Computer failure
The two identical FWCs generate alert messages, memos, aural alerts, and
synthetic voice messages. Loss of a single FWC leads to downgrade to CAT
3 Single due to loss of redundancy. The major effects of loss of both FWCs
are loss of ECAM (including attention getters, status page and takeoff/landing memos), loss of auto callouts1 (radio height and decision height) and
loss of altitude alerting. In the sim, there is also loss of rudder trim reset,
loss of APU fuel valve status and loss of cabin crew call alert as side-effects.
The procedure is simply to use the SYS pages and overhead panel warning
lights to monitor the systems, and for PM to make the relevant callouts. Alternative method for cabin crew to get flight deck attention may be required.
1
There is some question as to whether windshear and GPWS aural alerts are included under ‘auto
callouts’. The FCOM is unclear on the matter.
96
Chapter 15. Pneumatic
Chapter 15. Pneumatic
15.1. Dual bleed failure
A known problem with the A319 is that the load on a single bleed supplying
two packs at high altitude may be sufficient to cause it to trip off. In this
case, turning off one pack may allow a bleed reset.
There is no ECAM associated with a dual bleed failure. The QRH ABN.36
procedure applies both to the case where the aircraft has dispatched with
an inoperative bleed IAW MEL, and in the case where an in-flight failure
has left a single bleed remaining.
In the case of an isolated bleed duct (due bleed air leak, engine fire or failed
open start valve), the bleed associated with the duct is clearly unrecoverable. Since the remaining bleed would only have been supplying a single
pack, the overload case does not apply. Hence, this bleed is also considered
unrecoverable, and a bleed reset should not be attempted. If, on the other
hand, both ducts are available and a single bleed has been supplying two
packs, an overload may be suspected and an attempt can be made to reset
the overloaded bleed once one of the packs is turned off.
If an engine bleed cannot be recovered, providing #1 bleed duct is available,
the APU bleed may be used to supply a single pack when below FL225. If
the #2 bleed duct is isolated, only pack 1 can be used since the cross bleed
will be closed. Otherwise, either pack may be used. Note that the APU bleed
is not capable of supplying bleed air for wing anti-ice.
[QRH ABN.36, FCOM PRO.ABN.36]
97
Chapter 15. Pneumatic
98
Chapter 16. Communications
Chapter 16. Communications
16.1. Communication failure (ICAO)
If all attempts to establish contact fail, transmit message twice on designated
channel, proceeded by the phrase “Transmitting Blind.”
Set Mode A Transponder Code to 7600.
If in VMC, continue in VMC to the nearest suitable airfield and land, reporting arrival to appropriate ATS by the most expeditious means.
If in IMC or unlikely to be able to maintain VMC:
• If in airspace where a procedural separation service is being applied,
maintain speed and level, or minimum flight altitude if higher, for a period of 20 minutes following failure to report over a compulsory reporting
point, then adjust level and speed in accordance with flight plan.
• If in airspace where an ATS surveillance system is in use, maintain speed
and level, or minimum flight altitude if higher, for 7 minutes after Code
7600 is set, then adjust level and speed in accordance with flight plan.
• If being radar vectored or having been directed to proceed offset using
RNAV without specified limit, rejoin the flight plan route no later than
the next significant point.
• On reaching the appropriate NAVAID or fix serving the destination aerodrome, hold if necessary, then at EAT, or if no EAT has been received
and acknowledged, computed flight plan ETA, commence an appropriate instrument approach procedure. If possible land within 30 minutes
of this time.
• Watch for visual signals from the tower:
• Red Pyro: Permission to land cancelled
• Flashing Red Light: Land elsewhere
99
Chapter 16. Communications
• Continuous Red: Give way to other aircraft, continue circling
• Flashing Green: Return to circuit, await landing clearance
• Continuous Green: Permission to land
16.2. Communication failure (UK airspace)
The UK procedures expand on the ICAO procedures:
• If following a SID fly the published lateral and vertical profiles, including any step climb, until the last waypoint of the procedure is reached.
Maintain current speed and last assigned level (or minimum flight altitude if this is higher) until 7 minutes have elapsed since setting 7600.
Then adjust speed and level in accordance with current flight plan. This
procedure also applies to RNP-1 (PRNAV) departures.
• If following a STAR, follow the lateral profile but maintain current speed
and last assigned level (or minimum flight altitude if this is higher) until
7 minutes have elapsed since setting 7600. Subsequently, arrange descent
to be as close as possible to published planning profile. If no profile is
published, arrange to be at the IAF at minimum published level. This
procedure also applies to RNP-1 (PRNAV) arrivals.
• If under radar vectors from Approach Control Radar, comply with instructions on radar vectoring chart. If under radar vectors without specified limit from other ATS unit, continue in accordance with last instructions until 3 minutes have elapsed since setting 7600, then proceed in most
direct manner to rejoin current flight plan route. If necessary, climb to
minimum flight altitude.
• If performing an SRA, continue visually or by using an alternate approach aid. If this is not possible, carry out a missed approach and continue to the holding position of a suitable aerodrome with a notified instrument approach and carry out that procedure.
[ICAO Annex 10, ICAO DOC 4444, UKAIP ENR 1.1.3.4]
100
Chapter 17. Miscellaneous Tips
Chapter 17. Miscellaneous Tips
• When configuring, VLS is more critical than VFE, which in turn is more
critical than manoeuvring speeds (S and F speeds). Both VLS and VFE are
trustworthy with jammed flaps/slats.
• When configuring on approach, flaps do not begin to extend until CONF
2 is selected.
• Slat position does not change between CONF 2 and CONF 3.
• The AVIONICS SMOKE ECAM is non-standard. Do not run the procedure from the ECAM, use the QRH procedure instead.
• The Engine Fire on the Ground procedure is non-standard. The FO must
remember to mitigate the effects of loss of electrical power (which includes loss of ECAM and non-emergency lighting) before shutting down
the second engine.
• Dual hydraulic failure fundamentals:
• You will always need to gravity extend the gear, so you will never be
able to retract it on the go-around.
• If you only have blue, you lose the flaps; if you only have yellow, you
lose the slats. The flaps/slats jammed procedure (including go-around
modifications) is therefore incorporated into both these procedures.
• If you only have blue, the THS is frozen (think
BLUE=COLD=FROZEN THS), so you need to go Direct Law late
(at Conf 3, VAPP) to get neutral trimming of the elevators. If you only have yellow, you only have one elevator (think YELLOW=COWARDLY=Timid control response); combined with lack of slats this
requires going Direct Law early (at 200kt) to improve pitch response.
• You're going to need a longish runway. Worst case is if you only have
blue, since you have, at best, accumulator braking and you're coming
in fast due to lack of flaps. Yellow is better since you have alternate
101
Chapter 17. Miscellaneous Tips
braking, and its mainly about the lack of slats. If you have green, its
not really all that bad.
102
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement